

Contents

Preface.
Part 1I—ANSI C Overview

1. Introductionto ANSIC..........oiiiiiiiiiiiiiinnn....

' Operating Environment.

Clanguageoiiiiiiiiiiiiiiiii ...

Modular Programming inC........................

Libraries and Header Files

Creating an Executable

C-Related Programming Tools

Program Analysis.............,

Program Management.............................

Program Development.

Other Advanced Programming Utilities........... e

2. Compilingand Linking................ooiiiiiiiii...
Compiling and Linking

o O N O

iii

iv

Compiler Command Line Syntax —Basics 12

How C Programs Communicate with the Shell 18

Linking Overview it 19

Linking Summary...................o i 22

3. acc Compiler Options for SunOS4.x..........covvvuee.. 27
OptionSyntax. ...t 27
Optionsooviiinn... P e 28
Summary of Compiler Options 40
Commonly Used Command Line Options 43
Searching fora Header File......................... 43
Preparing Your Program for Symbolic Debugging 44
Preparing Your Program for Profiling A4
Non-Standard Floating Point 45

4. cc Compiler Options for SunOS5.0..............ccovvv.. 47
OptionSyntax.......... ..o, .. 47
Options 48
Summary of cc Options 62
Commonly Used cc Command Line Options 65
Searching for a Header File. R <)
Preparing Yoﬁ,r Program for Symbolic Debugging 66
Preparing Your Program for Pfofiling ceeliiiieai i, . 66
Non-Standard Floating Point 67

5. ThePartsof Counaln. et i 69

INtrOdUCHON. « v e ettt et e e e e 69

C Programmer's Guide—July 1992

Contents

CompilationModes 69

Global Behavior: Value vs. Unsigned Preserving 70
How To Use ThisChapter.......................... 71
Phases of Translation, 71
Source Files and Tokenization. 72
Tokens ... 72
Identifierso 73
Keywords ..o 73
Constants.ovviii i 73
Wide Characters and Multibyte Characters 76
String Literals e 77
Wide String Literals 77
ComMmMENtSot ttiii it 77
Preprocessingc.iiiiiiiiiiiiiiiiiiii. 78
Trigraph Sequencest 78
Preprocessing Tokens. oot 78
Preprocessing Directives 79
Declarations and Definitions 88
Introduction i 88
TYPES oo 88
SCOPE e 91
Storage Class Specifiers...............o, 92
Storage Duration i i 93
Declarators R e 94

v

Vi

Function Definitions. o, 97

Conversions and Expressions 98
Implicit Conversions 98
EXPressionsoiiiiiiiiii... 100
Operators. i, 101
Asociativity and Precedence of Operators 109
Constant Expressions 109
Initialization L 110

Statements........... 113
Expression Statement 113
Compound Statement 113
Selection Statements., 114
Iteration Statements............................... 115
Jump Statements. oL 117

Portability Considerations. 118

6. CError Messages.ocueuenerernnnenenenennennnenenss 121

Introduction. 121
Message Types and Applicable Options 122
Operator Names in Messages....................... 123

Messages i 124

OperatorNames 228

Other Error Messages.c.coouuiiiniiii... 230

Part 2—C Programming Tools

7. cscope Source Code BIrOWSer. .. .vovveterernneennnnnenns 235

C Programmer’s Guide—July 1992

Introduction.o o et e 235

How cscope WOorks. . . oo e 235
cscope—DBasicUseol 236
Step 1: Set Up the Environment 236
Step 2: Invoke the cscope Program 237
Step 3: LocatetheCodettt 238
Step4: EdittheCode. ..., 245
Command Line Options .A 246
Using Viewpaths. 249
Stacking cscope and EditorCalls. 250
Examples...... ... 251
NOLES oot e 256
Unknown Terminal Type..........t 256
Command Line Syntax for Editors. 257
SOUrCEBrOWSEeT. . . .ot 258
8. 1lint Source Code Checker............coovvuniiiennnenn 259
Scope of this Chapter................ot 259
Introduction. 259
Options and Directives 260
Message Formats e e 260
What 1int Does. ... 261
Consistency Checksot 261
Portability Checks i 262
Suspicious Constructs oo 264

Contents vii

lint Libraries o ... 267

lint Filters. i 268

Optidns and Directives Listed 269
lint-specificMessages.......... ..., 274

Part 3— Appendices

A. ANSI C Data Representationscoovvunn... 313
Storage Allocation, 314

Data Representations 314
Integer Representations. 314

float and double Representation. 315

Extreme Number Representation.................... 317

Hexadecimal Representation of Selected Numbers 318

Pointer Representation e 318
Array Storage e 318
Arithmetic Operations on Extreme Values 318
Argumenf Passing Mechanism......................... 321
Referencing Data Objects inC. EEE R TR 322
Referencing Simple Variables B 322
Referencing With Pointers. 323
Referencing Array Elements........................ 323
Referencing Structures and Unions 324

B. Implementation-Defined Behavior 327
Translation. il 327

viii C Programmer’s Guide—]July 1992

Contents

Environment........ 328

Identifiers 328
Characters.t 329
Integers L 330
Floating Point 331
Arrays And Pointers............. 332
Registers................. ST 333
Structures, Unions, Enumerations And Bit-Fields. 333
Qualifiers 335
Declarators.......... oo, U 335
Statementsiiiiieieiil, 335
Preprocessing Directives 335
Library Functions............. 338
Signals........ i 340
Streamsand Files, 342
Errno. ... oo 344
Memoryo 350
abort Function......... 350
exit Function 350
getenv Function............. 350
gystem Function.......... 351
strerror Function........... 351
Locale Behavior........... 351

ix

C. Incompatibilities between ANSI C and Sun C 2.0v(SunOS 4.1.x)

355
Library Differences.o it 355
Search Paths i ... 355
libe Differences ... 356
Library libansia ..., 357
HeaderFiles i 358
ANSI C Functionality Supplied by libansi.a........... 358
Name Space Pollutionouuuirineniinnnnanan.. 359
Header Files Modified for SunOS4.x.................... 359
/usr/include/des_crypt.h i i 359
/usr/include/hsfs/hsfs_spec.h 360
/usr/include/hsfs/hsnode.h....... 360
/usr/include/hsfs/iso_spec.h................ 360
/usr/include/mon/eeprom.h........ccovvio... 361
/usr/include/rfs/ns_xdr.h.......... 361
/usr/include/rfs/rfs_xdr.h....... 362
/usr/include/sparc/asm_linkage.h........... 362
/usr/include/stand/scsi.h.....o ol 362
/usr/include/sparc/asm_linkage.h........... 362
/usr/include/sundc/asm_linkage.h........... 363
/usr/include/sun4c/debug/asm linkage.h.... 363
/usr/include/sundev/scsi.h....... 363
/usr/include/suntool/wmgr.h................. 364

C Programmer’s Guide—July 1992

/usr/include/sunwindow/io_stream.h......... 364

/usr/include/sys/debug.ho, 365
/usr/include/sys/ioccom.h........c.ova.. 365
/usr/include/sys/termios.h.................. 368
/usr/include/sys/ttychars.h........c.ooi. .. 368
/usr/include/pixrect/pixrect.h............. 369
/usr/include/rpc/auth.h oL, 369
/usr/include/arpa/nameser.h................. 369
/usr/include/sys/types.h 370
/usr/include/sys/wait.ho 370
Problems with Header Files using the -Xc Mode 370
Bit fields which are not of type int or unsigned int 370

Tokens at the end of #else or #endif are not enclosed within
comments 370
Enumerated types which have a trailing comma. 371
Miscellaneous Differences. 371
Type Qualifier const........ ... 371
size_tType.......oo i 371
D. -Xs Differences for Sun Cand ANSIC................... 373
Introduction. i 373
GlOSSATY .. vttt 375
IndeX . ..o e 387

Contents xi

xii C Programmer’s Guide—July 1992

Figures

Figure2-1 ~ Organization of C Compilation System................... 11
Figure 7-1 ~ The cscope Menuof Taskst 238
Figure7-2 Requesting a Search fora Text String..................... 239
Figure7-3 cscope Lists Lines Containing the Text String. 240
Figure 7-4 Examining a Line of Code Found by cscope............... 241
Figure 7-5 Requesting a List of Functions That Call alloctest(). 242
Figure 7-6 cscope Lists Functions That Call alloctest() 243
Figure 7-7 cscope Lists Functions That Call mymalloc()............. 244
Figure 7-8 Viewing dispinit () inthe Editor 245
Figure 7-9 Using cscope to Fix the Problem 246
Figure 7-10 Changing a Text String. e e 251
Figure 7-11 cscope Prompts for Lines to Changed................... 252
Figureﬂ7—12‘ Marking Lines to Be Changedvovvvivennnono ... 253
Figure 7-13 cscope Displays Changed Lines of Text 254
Figure 7-14 Escaping from cscope totheShell voe. 255
Figure A-1 Examples of Simple Variable References. 322

xiii

xiv

Figure A-2 Examples of Pointer References

Figure A-3 Examples of Array Variable References

Figure A-4 Examples of Accessing Members of Structures

C Programmer’s Guide—July 1992

Tables

Table 2-1 Components of C Compilation System 11
Table 3-1 Summary of Compiler Options....................... .. 40
Table 4-1 Summary of ccOptions ..., 62
Table 5-1 Identifiersttt 73
Table 5-2 Data Type Suffixes. ...t 74
Table 5-3 Multiple-character Constant (ASCII) 75
Table 5-4 Multiple-character Constant (non-ASCID) 75
Table 5-5 Character Constantsooovviiiiiiieeeiiine... 76
Table 5-6 Trigraph Sequences.c.oviiiiiiieenennn.. 78
Table 5-7 Expansion of #and # Macros...............ol 81
Table 5-8 Constant Expression Evaluation......................... 83
Table 5-9 Pre-defined Identifierst 87
Table 5-10 Storage ClassesinC ...t 93
Table 5-11 Function Definitions oo, 97
Table 5-12 Associativity and Precedence of Operators................ 109
Table 6-1 Explanation of Compiler Diagnostics. 122

XV

xvi

Table 7-1 cscope Menu Manipulation Commands................. 238

Table 7-2 Commands for Use after an Initial Search................. 240
Table 7-3 Commands for Selecting Lines to Be Changed............. 252
Table A-1 Storage Allocation for Data Types 314
Table A-2 Representationofshorto iin 314
Table A-3 Representationofintandlong 315
Table A-4 Representationof long long.........ccoviiiinuneennnn. 315
Table A-5 float Representation e 316
Table A-6 double Representation................. s 316
Table A-7 float Representations e e 317
Table A-8 double Representationscooiviinininan. 317
Table A-9 Hexadecimal Representation of Selected Numbers........... 318
Table A-10 Extreme ValuesUsage, 319
Table A-11 Addition and Subtraction Results.......................... 319
Table A-12 Multiplication Results 320
Table A-13 DivisionResults. o i 320
Table A-14 ComparisonResults RN e 321
Table B-1 Representations and sets of values of integers........ e 330
Table B-2 Values of floating-point numbers.cooovinn. 331
Table B-3 Padding and alignment of structure members............... 334
Table B-4 Character sets tested by isalpha, islower, etc......... ... 338
Table B-5 Values returned on domain errors.ovunna.. 339
Table B-6 Semant‘ics for s igna'l signalS........oooiiiiiiniiii 340
Table B-7 Error Messages generated by perror...................... 345
Table B-8 NamesofMonthsccoiviiiiviiiiii i, 352

C Programmer’s Guide—July 1992

Table B-9
Table B-10
Table C-1
Table C-2
Table D-1

Tables

Days of the Week. [P 352
Abbreviated Days of the Week 353
Directory Search Paths 356
libe Differences. 356
-XsBehavior........... 373

xvii

xviii C Programmer’s Guide—]July 1992

Preface

The SPARCompilers™ C 2.0 Programmer’s Guide is a reference guide to this
implementation of the ANSI C language.

Operating Environment

The SPARCompiler C 2.0 compiler runs under two operating environments:
® SunOS™ 4.1.1 (and later) operating system

® SunOS 5.0 operating system

The acc compiler runs under:

® SunOS 4.1.1 (and later) operating system

¢ A SPARC™ computer, either a server or a workstation

¢ The OpenWIndows™ 3.0 application development platform.

The SunOS 4.1.1 (and later) operating system is based on the UCB BSD 4.3
operating system.

The cc compiler runs under:
® 5SunOS 5.0 operating system
¢ A SPARC computer, either a server or a workstation

¢ The OpenWIndows 3.0 application development platform.

Xix

The SunOS 5.0 operating system is based on the System V Release 4 (SVR4)
UNIX! operating system, and the ONC™ family of published networking
protocols and distirbuted services.

Organization of this Book

XX

This book covers the following broad areas:

introduction and overview of C

an overview of the compiling process, and an introduction to linking
the various options available with the acc compiler

the various options available with the cc compiler

the diagnostic, or error, messages you may see when compiling

data representations

implementation-specific behavior

the C programming tools cscope and lint

In this manual, we do not attempt to teach you how to program in C.

See the manual Installing SPARCworks and SPARCompiler Software for
instructions on installing the C compiler.

Refer to these other manuals for more information on programming in ANSI C:

C 2.0 Transition Guide
Shows how to port your C code from previous versions of C to ANSI C.

Profiling Tools
Information on various profiling tools.

We recommend two texts for programmers new to the C language:
¢ Kernighan and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall

® Harbison and Steele, C: A Reference Manual, Second Edition, 1987, Prentice-
Hall.

For implementation-specific details not covered in this book, refer to the
Application Binary Interface for your machine.

1. UNIX s a registered trademark of UNIX System Laboratories, Inc.

C Programmer’s Guide—]July 1992

Conventions in this Manual

This manual uses the following conventions:

Bold face typewriter font

Indicates commands that you should type in exactly as printed in the
manual. '

Regular typewriter font
Represents what the system prints on your workstation screen, as well as
keywords, identifiers, program names, filenames and names of libraries.

Italic font
Indicates variables or parameters that you should replace with an
appropriate word or string. It is also used for emphasis.

$

Represents your system prompt for a non-privileged user account.

Preface xxi

xxii C Programmer’s Guide—]July 1992

Part 1—ANSI C Qverview

Introductionto ANSIC

1.1 Operating Environment

This C compiler runs under two operating environments:
® SunOS™ 4.1.1 (and later) operating system
¢ 5SunOS 5.0 operating system

The acc compiler runs under:
® SunOS 4.1.1 (and later) operating system
® A SPARC™ computer, either a server or a workstation

® The OpenWIndows™ 3.0 application development platform.

The SunOS 4.1.1 (and later) operating system is based on the UCB BSD 4.3
operating system.

The cc compiler runs under:

® SunOS 5.0 operating system

® A SPARC computer, either a server or a workstation

® The OpenWIndows 3.0 application development platform.

The SunOS 5.0 operating system is based on the System V Release 4 (SVR4)
UNIX! operating system, and the ONC™ family of published networking
protocols and distirbuted services.

1.2 CLanguage

Over the past few years, C has become the worldwide programing language of
choice. C was developed on the UNIX operating system and is largely used to
code that operating system’s kernel. A very large number of UNIX and UNIX-
derived applications are written in C.

Chapter 5, “The Parts of C,” provides a reference guide to the C language. Here
are some features of the language:

® basic data types: characters, integers of various sizes, and floating point
numbers;

¢ derived data types: functions, arrays, pointers, structures, and unions;
® a rich set of operators, including bit-wise operators;

® flow of control: 1f, if-else, switch, while, do-while, and for
statements.

Application programs written in C usually can be transported to other
machines without difficulty. Programs written in ANSI standard C (conforming
to standards set down by the American National Standards Institute) enjoy an
even higher degree of portability.

Programs that require direct interaction with the kernel — for low-level I/O,
memory management, interprocess communication, and the like — can be
written efficiently in C using the calls to system functions contained in the
standard C library, and described in Section 2 of the SunOS Reference Manual.

Modular Programming in C

C is a language that lends itself readily to modular programming. It is natural
in C to think in terms of functions. And since the functions of a C program can
be compiled separately, the next logical step is to put each function, or group of
related functions, in its own file. Each file can then be treated as a component,
or a module, of your program.

1. UNIXis a registered trademark of UNIX System Laboratories, Inc.

C Programmer’s Guide—]July 1992

Chapter 2, “Compiling and Linking,” describes briefly how to link C programs
so that the modules of programs can communicate with each other. What we
want to stress here is that coding a program in small pieces eases the job of
making changes: you need only recompile the revised modules. It also makes it
easier to build programs from code you have written already; as you write
functions for one program, you will surely find that many can be picked up for
another.

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. The functions that perform standard I/0,
for example, use the definitions and declarations in the header file stdio.h.
When you use the line

#include <stdio.h>

in your program, you ensure that the interface between your program and the
standard I/0 library agrees with the interface that was used to build the
library.

The C Programmer’s Guide describes some of the more important standard
libraries and lists the header files that you need to include in your program if
you call a function in those libraries. It also shows you how to use library
functions in your program and how to include a header file. You can, of course,
create your own libraries and header files.

1.3 Creating an Executable

Chapter 2, “Compiling and Linking,” describes the C compilation system, the
set of software tools that you use to generate an executable program from C
language source files. It contains material that may be of interest to the novice
and expert programmer alike.

Additionally, Chapter 2, “Compiling and Linking,” details the command line
syntax that is used to produce a binary representation of a program — an
executable object file. We mentioned earlier that the modules of a C program

Introduction to ANSI C 3

can communicate with each other. A symbol declared in one source file can be
defined in another, for example. Link editing refers to the process whereby the
symbol referenced in the first file is connected with the definition in the
second. By means of command line options to the cc command, you can select
either of two link editing models:

® static linking, in which external references are resolved before execution;

® dynamic linking, in which external references are resolved during execution.

Use the cc command and its options to control the process in which object files
are created from source files, then linked with each other, and with the library
functions called in your program.

Chapter 6, “C Error Messages,” lists the warning and error messages produced
by the C compiler. Check the code examples given in the compiler diagnostics
chapter when you need to clarify your understanding of the rules of syntax
and semantics summarized in the language chapter. In many cases they’ll
prove helpful.

1.4 C-Related Programming Tools

There are a number of tools that you can use to aid you in developing,
maintaining, and improving your C programs. The two most closely tied to C,
cscope and 1int, are described in this manual. Others are described in the
SunOS 5.0 Reference Manual; some are given detailed treatment in the books
Programming Utilities — Sun0S5.0 and Profiling Tools.

Program Analysis
lint

Checks for code constructs that may cause your C program not to compile,
or to execute with unexpected results. 1int issues every error and warning
message produced by the C compiler. It also issues 1int— specific warnings
about inconsistencies in definition and use across files and about potential
portability problems. The chapter includes a list of these warnings, with
examples of source code that would elicit them.

Use lint to check your program for portability and cross-file consistency, and to assure
it will compile.

4 C Programmer’s Guide—]July 1992

tcovis also supported in
ANSIC. See tcov (1) for
further information.
Profilers are tools that
analyze the dynamic
behavior of your program:
how fast and how often the
parts of its code are
executed.

prof

Reports the amount of time and the percentage of time that was spent
executing the parts of a program. It also reports the number of calls to each
function and the average execution time of the calls.

gprof

In addition to reporting execution times and percentages, like prof, gprof
produces acall-graph profile that displays a list of modules that call, and/or
are called by, other modules.

lprof

A line-by-line frequency profiler. It reports how many times each line of C
source code was executed. In that way, it lets you identify the unexecuted
and most frequently executed parts of your code. 1prof is available with
SunOS 5.0 only.

cscope

An interactive program that locates specified elements of code in C, 1ex, or
yacc source files. It lets you search and, if you want, edit your source files
more efficiently than you could with a typical editor. That’s because cscope
knows about function calls — when a function is being called, when it is
doing the calling — and C language identifiers and keywords. cscope is
available with SunOS 5.0 only.

Use prof and 1lprof to identify, and cscope to rewrite, inefficient lines of code.
Use cscope for any other program-editing task.

Program Management

make

Used to keep track of the dependencies between modules of a program, so
that when one module is changed, dependent ones are brought up to date.
make reads a specification of how the modules of your program depend on
each other, and what to do when one of them is modified. When make finds
a component that has been changed more recently than modules that
depend on it, the specified commands — typically to recompile the
dependent modules — are passed to the shell for execution.

Introduction to ANSIC 5

SCCS

The Source Code Control System, SCCS, is a set of programs that you can
use to track evolving versions of files, ordinary text files as well as source
files. When a file has been put under control of SCCS, you can specify that
only a single copy of any version of it can be retrieved for editing at a time.
When the edited file is returned to SCCS, the changes are recorded. That
makes it possible to audit the changes and reconstruct the file’s earlier
versions.

Use make for any program with multiple files. Use SCCS to keep track of program
versions.

Program Development

Two system tools were designed to make it easier to build C programs. lex
and yacc generate C language modules that can be useful components of a
larger application, in fact, any kind of application that needs to recognize and
act on a systematic input.

lex

Generates a C language module that performs lexical analysis of an input
stream. The lexical analyzer scans the input stream for sequences of
characters — tokens — that match regular expressions you specify. When a
token is found, an action, which you also specify, is performed.

yacc

Other Advanced

m4

Generates a C language module that parses tokens that have been passed to
it by a lexical analyzer. The parser describes the grammatical form of the
tokens according to rules you specify. When a particular grammatical form
is found, an action, which again you specify, is taken. The lexical analyzer
need not have been generated by lex. You could write it in C, with
somewhat more effort.

Use lex to create the lexical analyzer, and yacc the parser, of a user interface.

Programming Ultilities

6 C Programmer’s Guide—July 1992

A general-purpose macro processor that can be used to preprocess C and
assembly language programs.

Tools for analyzing source code:
cb

A C program “beautifier.” Formats your source code to make it more
readable.

cflow

Produces a chart of the external references in C, 1ex, yacc, and assembly
language files. Use it to check program dependencies.

ctrace

Prints out variables as each program statement is executed. Use it to follow
the execution of a C program statement by statement.

cxref

Analyzes a group of C source files and builds a cross-reference table for the
automatic, static, and global symbols in each file. Use it to check program
dependencies and to expose program structure.

indent

Correctly indents and formats C source files.
Tools for reading and manipulating object files:
dis

Dis-assembles object code.
dump

Dumps selected parts of object files.
lorder

Generates an ordered listing of object files.
mcs

Manipulates the sections of an object file.

Introduction to ANSIC 7

nm
Prints the symbol table of an object file.
size '
Reports the number of bytes in an object file’s sections or loadable segments.

strip

Removes symbolic debugging information and symbol tables from an object
file.

unifdef

Resolves and removes #ifdef’d code lines from preprocessor output.

8 C Programmer’s Guide—July 1992

Compilingand Linking

2.1 Compiling and Linking

The C compilation system consists of a compiler, assembler, and link editor.
The cc command invokes each of these components automatically-unless you
use command line options to specify otherwise. Before we turn to the cc
command line syntax, let’s look briefly at the four general steps in which an
executable C program is created:

1. The preprocessor component of the compiler reads lines in your source files
that direct it to replace a name with a token string (#define), perhaps
conditionally (#1 f, for example).! It also accepts directives in your source
files to include the contents of a named file in your program (#include).

Included header files for the most part consist of #define directives and
declarations of external symbols, definitions and declarations that you want
to make available to more than one source file.

2. The compiler proper translates the C language code in your source files,
which now contain the preprocessed contents of any included header files,
' into assembly language code.

3. The assembler translates the assembly language code into the machine
instructions of the computer your program is to run on. These instructions
are stored in object files that correspond to each of your source files. In other

1. The preprocessor is built directly into the compiler (except in -Xs mode, where it is called separately).

words, each object file contains a binary representation of the C language
code in the corresponding source file. Object files are made up of sections, of
which there are usually at least two. The text section consists mainly of
program instructions; text sections normally have read and execute, but not
write, permissions. Data sections normally have read, write, and execute
permissions.

4. The link editor links these object files with each other and with any library
functions that you have called in your program, although when it links with
the library functions depends on the link editing model you have chosen:

An archive, or statically linked, library

A statically linked library is a collection of object files each of which
contains the code for a function or a group of related functions in the
library. When you use a library function in your program, and specify a
static linking option on the cc command line, a copy of the object file
that contains the function is incorporated in your executable at link time.

A shared object, or dynamically linked; library

A dynamically linked library is a single object file that contains the code
for every function in the library. When you call a library function in your
program, and specify a dynamic linking option on the cc command line,
the entire contents of the shared object are mapped into the virtual
address space of your process at run time. As its name implies, a shared
object contains code that can be used simultaneously by different
programs at run time.

We'll discuss briefly these two ways in which libraries are implemented in
“Linking Overview” on page 19.

10 C Programmer’s Guide—July 1992

Figure 2-1 shows the organization of the C compilation system. Note that we
have omitted discussing the optimizer here because it is optional. (See

Chapters 3 and 4).
CC or acc
C source & compiler compiler optimizer link ‘
header files [P preprocessor proger (optional) assembler editor [P @-out
libraries
Figure 2-1 Organization of C Compilation System
Here are the specific components, by name (in order):
Table 2-1 Components of C Compilation System
When
Component Description
P P Used
cpp Preprocessor -Xs
acomp Compiler (preprocessor built in for non-Xs modes)
basicblk Basic block ctr for use with 1prof (SunOS 5.0 only) -ql
iropt Code optimizer -0
-x0[2-4]
cg Code generator —xa
~-fast
inline Inline code generator .11 file
present
as {cc) Assembler
fbe (acc) Assembler
1d Linker

Compiling and Linking

11

Compiler Command Line Syntax — Basics

Now let’s look at how this process works for a C language program called
takeover.c. Here is the source code for the program:

#include <stdio.h>

main (void)

{
(void). printf ("Coelenterates Rule!\n");
return(0) ;

When compiled and executed, the program prints the words Coelenterates Rule!

The command to create an executable program from C language source files is
cc:

$ cc takeover.c

The source files to be compiled must have names that end in the characters. c.

Since we haven’t committed any syntactic or semantic errors in our source
code, the above command will create an executable program in the file a.out
in our current directory:

$ 1s
a.out
takeover.c

(Note that no. o file is created when you compile a single source file.)

We can execute the program by entering its name after the system prompt:

S a.out
Coelenterates Rule!

Since the name a.out is only of temporary usefulness, we'll rename the
program (or executable):

$ mv a.out takeover

12 » C Programmer’s Guide—July 1992

We could also have named the program takeover when we compiled it, with
the —o option to the cc command:

$ cc -o takeover takeover.c

In either case, we execute the program by entering its name after the system
prompt:

$ takeover
Coelenterates Rule!

Now let’s look at how the cc command controls the four-step process that we
described earlier in “Compiling and Linking” on page 9. Using compiler
options, we'll break down the compilation process.

When we specify the —P option to cc, only the preprocessor component of the
compiler is invoked:

$ cc -P takeover.c

The preprocessor’s output — the source code plus the preprocessed contents of
stdio.h — is left in the file takeover. 1 in our current directory:

S 1ls
takeover.c
takeover.i

That output could be useful if, for example, you received a compiler error
message for the undefined symbol a in the following fragment of erroneous
source code:

if (1> 4)

/* declaration follows
int a; /* end of declaration */

Compiling and Linking 13

14

Because the comment on the third line is unterminated (the word follows
should be followed by */), the compiler would treat the declaration that follows
(int a;) it as part of the comment. Because the preprocessor removes
comments, its output

if (1 > 4

Jt
a = 4;

}

would clearly show the effect of the unterminated comment on the declaration.

You can also use the preprocessed output to examine the results of conditional
compilation and macro expansion.

If we specify the —S option to the cc command, only the preprocessor and
compiler phases are invoked:

$ cc -S takeover.c

The output — the assembly language code for the compiled source — is left in
the file takeover.s in our current directory. That output could be useful if
you were writing an assembly language routine and wanted to see how the
compiler went about a similar task.

If, finally, we specify the —c option to cc, all the components but the link
editor are invoked:

S cc —-c takeover.c

The output — the assembled object code for the program — is left in the object
file takeover.o in our current directory. You would typically want this
output when using make.

Now we need only enter the command

S cc takeover.o

C Programmer’s Guide—]July 1992

to create the executable object file a.out. By default, the link editor arranges
for the standard C library function that we have called in our program —
printf () — to be linked with the executable at run time. In other words, the
standard C library is a shared object, at least in the default arrangement we are
describing here.

The outputs we have described above are, of course, inputs to the components
of the compilation system. They are not the only inputs, however. The link
editor, for example, will supply code that runs just before and just after your
program to do startup and cleanup tasks. This code is automatically linked
with your program only when the link editor is invoked through cc. That’s
why we specified

cc takeover.o

in the previous example rather than

1d takeover.o

For similar reasons, you should invoke the assembler through cc rather than
the assembler (fbe):

$ cc takeover.s

The last line of takeover.c

return (0);

causes the program to terminate gracefully: flushing buffers, closing files, and
returning allocated memory to the environment.

When you run this program from a shell, as above, the return (0) ; statement
is not needed. However, when you execute it from any environment where the
exit status is examined, such as executing from a make file, the absence of the
statement return (0) ; will cause trouble.

In the Makefile example below, the return (0) ; statement has been left out
of takeover.c.

tutorial% cat Makefile
a.out: takeover.c
cc takeover.c
a.out

Compiling and Linking 15

Upon execution of the Makefile, you are likely to get the following;:

tutorial% make

cc takeover.c

a.out

Coelenterates Rule!

**%* Error code 1

make: Fatal error: Command failed for target ‘a.out’
tutorial%

This error occurred because make examined a . out and discovered that its exit
status was undefined and therefore in error. You can use 1int to detect this
error, as shown below.

tutorial% lint takeover.c
(6) warning: function has no return statement: main
function falls off bottom before returning value
(6) main
tutorial$%

To correct the program takeover.c, add

exit (0);

or

return(0) ;

More generally, if a function is declared with a result type, but ends without
returning a result, then the program is in error.

Notice that both main and printf () are declared to be type void. This
means that they do not return any value when called . takeover.c will
compile and run perfectly well without these declarations; however, 1int will
complain about their absence. It's good programming practice to declare the
return value of functions, to avoid unexpected return results (an int where
you expected a double, for example).

16 C Programmer’s Guide—]July 1992

The compilation process is largely identical if your program is in multiple
source files. The only difference is that the default cc command line will create
object files, as well as the executable object file a . out, in your current
directory:

$ cc filel.c file2.c file3.c
S 1s

a.out
filel.
filel.
file2.
file2.
file3.
file3.

o0 o0 o0

What this means is that if one of your source files fails to compile, you need
not recompile the others. Suppose, for example, you receive a compiler error
diagnostic for f£ilel. c in the above command line. Your current directory will
look like this:

S 1s

filel.
file2.
file2.
file3.
file3.

O Q0 o0 a0

That is, compilation proceeds but linking is suppressed. Assuming you have
fixed the error, the following command

S cc filel.c file2.o file3.o

will create the object file filel. o and link it with file2.0 and file3.o to
produce the executable program a.out. As the example suggests, C source
files are compiled separately and independently. To create an executable
program, the link editor must connect the definition of a symbol in one source
file with external references to it in another.

Note, finally, that not all the cc command line options that we have discussed
are compiler options. Because, for example, it is the link editor that creates an
executable program, the —o option — the one you use to give your program a

Compiling and Linking 17

18

name other than a.out — is actually an 1d option that is accepted by the cc
command and passed to the link editor. We’ll see further examples of this
below. The main reason we mention it is so that you can read about these
options on the appropriate manual page.

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on
the command line, which is to say, by the shell. We have already seen, for
instance, how you invoke the cc command with the names of your source files
as arguments:

S cec filel.c file2.c file3.c

Note - This section shows examples of invoking the cc ("K&R" C compiler).
For the ANSI C compiler, use acc.

When you execute a C program, command line arguments are made available
to the function main () in two parameters, an argument count, conventionally
called argc, and an argument vector, conventionally called argv. (Every C
program is required to have an entry point named main.) argc is the number
of arguments with which the program was invoked. argv is an array of
pointers to character strings that contain the arguments, one per string. Since
the command name itself is considered to be the first argument, or argv[0],
the count is always at least one. Here is the declaration for main():

int main(int argc, char *argv[])

See the C 2.0 Libraries Reference Manual for more information on using these
variables.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes (" abc def’) or double quotes (“abc def”) are passed to the
program as one argument even if blanks or tabs are among the characters. You
are responsible for error checking and otherwise making sure that the
argument received is what your program expects it to be.

C Programmer’s Guide—July 1992

C programs exit voluntarily, returning control to the operating system, by
returning from main () or by calling the exit () function. That is, a return
(n) frommain () is equivalent to the call exit (7). (Remember that main ()
has type function returning int.)

Your program should return a value to the operating system to say whether it
completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? (Bourne shell) $status (C shell) shell variable if
you executed your program in the foreground. By convention, a return value of
zero denotes success, a non-zero return value means some sort of error
occurred. You can use the macros EXIT_SUCCESS and EXIT_FAILURE,
defined in the header file stdlib.h, as return values from main () or
argument values for exit ().

In addition to the chapters discussed here, this manual includes appendices on
assembly language escapes that use the keyword asm, and on mapfiles, a
facility for mapping object file input sections to executable file output
segments. It also includes a glossary and an index.

Linking Overview

Note — Linking is covered in detail in the manual Linker and Libraries Manual
SunOS 5.0.

Link editing refers to the process in which a symbol referenced in one module
of your program is connected with its definition in another — more concretely,
the process by which the symbol printf () in our sample source file
takeover.c is connected with its definition in the standard C library.
Whichever link editing model you choose, static or dynamic, the link editor
will search each module of your program, including any libraries you have
used, for definitions of undefined external symbols in the other modules. If it
does not find a definition for a symbol, the link editor will report an error by
default, and fail to create an executable program. (Multiply defined symbols
are treated differently, however, under each approach.) The principal difference
between static and dynamic linking lies in what happens after this search is
completed:

Compiling and Linking 19

20

® Under static linking, copies of the archive library object files that satisfy still
unresolved external references in your program are incorporated in your
executable at link time. External references in your program are connected
with their definitions — assigned addresses in memory — when the
executable is created.

® Under dynamic linking, the contents of a shared object are mapped into the
virtual address space of your process at run time. External references in
your program are connected with their definitions when the program is
executed.

Here are the reasons why you might prefer dynamic to static linking:

® Dynamically linked programs save disk storage and system process memory
by sharing library code at run time.

® Dynamically linked code can be fixed or enhanced without having to relink
applications that depend on it.

Default Arrangement

We stated earlier that the default cc command line

$ cc filel.c file2.c file3.c

would create object files corresponding to each of your source files, and link
them with each other to create an executable program. These object files are
called relocatable object files because they contain references to symbols that
have not yet been connected with their definitions — have not yet been
assigned addresses in memory.

We also suggested that this command line would arrange for the standard C
library functions that you have called in your program to be linked with your
executable automatically. The standard C library is, in this default
arrangement, a shared object called 1ibc.so, which means that the functions
you have called will be linked with your program at run time. (There are some
exceptions. A number of C library functions have been left out of 1ibc.so by
design. If you use one of these functions in your program, the code for the
function will be incorporated in your executable at link time. That is, the
function will still be automatically linked with your program, only statically
rather than dynamically.) The standard C library contains the system calls

C Programmer’s Guide—]July 1992

described in Section 2 of the SunOS Reference Manual, and the C language
functions described in Section 3, Subsections 3C and 3S. See also the
SPARCompiler C Libraries Reference Manual.

Now let’s look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefix 1ib and the suffix .so; archives, or statically linked
libraries, are designated by the prefix 1ib and the suffix .a. Then libc. so
is the shared object version of the standard C library and 1ibc.a is the
archive version.

2. These conventions are recognized, in turn, by the ~1 option to the cc
command. That is, the command

$ cc filel.c file2.c file3d.c -1lx

directs the link editor to search the shared object 1ibx. so or the archive
library 1ibx.a. The cc command automatically passes —1c to the link
editor.

3. By default, the link editor chooses the shared object implementation of a
library, 1ibx. so, in preference to the archive library implementation,
libx.a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/1lib and /usr/ccs/1lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/lib.

Adding it up, we can say, more exactly than before, that the default cc
command line will direct the link editor to search /usr/1ib/libc. so rather
than its archive library counterpart.

libc. so is, with one exception, the only shared object library supplied by the
C compilation system. (The exception, 1ibdl. so, is used with the
programming interface to the dynamic linking mechanism described later.
Other shared object libraries are supplied with the operating system, and
usually are kept in the standard places.) In the next section, we’ll show you
how to link your program with the archive version of 1ibc to avoid the
dynamic linking default. Of course, you can link your program with libraries

Compiling and Linking 21

that perform other tasks as well. Finally, you can create your own shared
objects and archive libraries. We’ll show you the mechanics of doing that
below.

The default arrangement, then, is this: the cc command creates and then links
relocatable object files to generate an executable program, then arranges for the
executable to be linked with the shared C library at run time. If you are
satisfied with this arrangement, you need make no other provision for link
editing on the cc command line.

Linking Summary

By convention, shared objects, or dynamically linked libraries are ,designated
by the prefix 1ib and the suffix . so; archives, or statically linked libraries, are
designated by the prefix 1ib and the suffix .a. Then 1ibc. so is the shared
object version of the standard C library and 1ibc.a is the archive version.

1. These conventions are recognized, in turn, by the -1 option to the cc
command. That is, —1x directs the link editor to search the shared object
libx.so or the archive library 1ibx.a. The cc command automatically
passes —1c to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program
transparently.

2. By default, the link editor chooses the shared object implementation of a
library, 1ibx. so, in preference to the archive library implementation,
libx.a, in the same directory.

3. By default, the link editor searches for libraries in the standard places on
your system, /usr/lib and /usr/ccs/1lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/lib.

In this arrangement, then, C programs are dynamically linked with 1ibc.so
automatically:

S cc filel.c file2.c file3.c

22 C Programmer’s Guide—July 1992

To link your program statically with 1ibc.a, turn off the dynamic linking
default with the —dn option:

$ cc -dn filel.c file2.c file3.c

Specify the —1 option explicitly to link your program with any other library. If
the library is in the standard place, the command

$ cc filel.c file2.c file3d.c -1lx

will direct the link editor to search for 1ibx. so, then search for 1ibx. a in the
standard place. Note that the compilation system supplies shared object
versions only of 1ibc and 1ibdl. (Other shared object libraries are supplied
with the operating system and usually are kept in the standard places.) Note,
too, that, as a rule, it’s best to place -1 at the end of the command line.

If the library is not in the standard place, specify the path of the directory in
which it is stored with the —-L option

$ cc -Ldir filel.c file2.c file3.c -1lx

or the environment variable LD_LIBRARY_PATH.

Note — The SunOS 5.0 linker assumes that the LD_LIBRARY_PATH value inthe
user’s environment, if not semicolon separated, should be interpreted as if the
semicolon has been appended. Furthermore, the value cannot be overriden by
any other option (such as, -L).

Bourne Shell:

S LD_LIBRARY_PATH:dif; export LD _LIBRARY_ PATH
$ cc -Ldir filel.c file2.c file3.c -1x

C Shell:

o

setenv LD_LIBRARY_PATH dir
% cc filel.c file2.c file3.c -1lx

Compiling and Linking 23

24

If the library is a shared object and is not in the standard place, you must also
specify the path of the directory in which it is stored with either the
environment variable LD_RUN_PATH (read by SunOS 5.0 only) at link time, or
the environment variable LD_LIBRARY_PATH at run time

Note — For SunOS 5.0, do not include the /usr/ccs/11ib directory in the
LD_LIBRARY PATH environment variable. If /usr/ccs/1ib is included,
particularly if placed before /opt /SUNWspro/SC2 .0, the unbundled
compilers will pick up the incorrect 1ibm.a from /usr/ccs/1lib.

Note - For SunOS 5.0, if using cc and linking with FORTRAN libraries (such as,
cc hello.c -1F77), set LD_RUN_PATH to /opt/SUNWspro/SC2.0, or to
where ever you have installed the compilers. Alternatively, you can use the -R
option to 1d(1) to specify the path.

Bourne Shell:

$ LD_RUN_PATH=dir; export LD_RUN_PATH
$ LD_LIBRARY_PATH=dir; export LD_LIBRARY PATH

C Shell:

oe

setenv LD_RUN_PATH dir
% setenv LD_LIBRARY PATH dir

It’s best to use an absolute path when you set these environment variables.
Note that LD_LIBRARY_PATH is read both at link time and at run time.

For SunOS 5.0, to direct the link editor to search 1ibx.a where 1ibx. so exists
in the same directory, turn off the dynamic linking default with the —-dn option:

$ cec -dn -Ldir filel.c file2.c file3.c -1x

C Programmer’s Guide—July 1992

That command will direct the link editor to search 1ibc.a well as 1ibx.a. To
link your program statically with 1ibx.a and dynamically with 1ibc.so, use
the -Bstatic and -Bdynamic options to turn dynamic linking off and on:

$ ce ~Ldir filel.c file2.c file3.c -Bstatic -lx -Bdynamic

Files, including libraries, are searched for definitions in the order they are
listed on the cc command line. The standard C library is always searched last.

Compiling and Linking 25

26 C Programmer’s Guide—]July 1992

3.1 Option Syntax

acc Compiler Options for SunOS4.x

This chapter describes the various options available with the C compiler (acc).

If you are porting a “K&R” C program to ANSI C, make special note of the
sections on -sys5 and -X (compatibility) flags, described later in this chapter.
Using them will make the migration to ANSI C easier. Also see the
SPARCompiler C 2.0 Transition Guide.

The SunOS 4.x operating system is not fully compliant with the ANSI C
standard. See Table C-1 andTable C-2 for further details.

The syntax of the acc command is shown below:

tutorial% acc [options] filenames [libraries] . . .

where

® options represents one or more of the various options described in this
chapter

® filenames represent one or more files used in building the executable
program

27

28

3.2 Options

acc accepts a list of C source files and object files contained in the list of
files specified by filenames. The resulting executable code is placed in a . out,
unless the (-0) option (see below) is used. In that case, the code is placed in
the file named by the (-0) option.

acc lets you compile and link any combination of the following:
o C source files, with a . c suffix

o C preprocessed source files, with a . 1 suffix

o Operating system object-code files, with .o suffixes

o Assembler source files, with . s suffixes

After linking, acc places the linked files, which are now in executable code,
into a file named a. out, or into the file specified by the -o option.

® libraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

Note that unless otherwise specified, options may follow the filename, as in

tutorial% acc sourcefilename.c -o outputfilename.

See Table 3-1 on page 40 for a summary of available options.
-Aname [(tokens)]

Associates name as a predicate with the specified tokens as if by an #assert
preprocessing directive.

Preassertions:

system (unix)
cpu (sparc)
machine (sparc)

These preassertions are not valid in -Xc mode.

C Programmer’s Guide—]January 1992

This option directs acc to insert code to count the number of times the
program executes each of its blocks. It then creates a . d file with the
accumulated execution data for each corresponding . c source file. You may
then run tcov(1) on the source files to generate statistics about the program.

-a is not compatible with the -g option.

-Bbinding

This option specifies whether bindings of libraries for linking are static or
dynamic, indicating whether libraries are non-shared or shared,
respectively.

-C

This option prevents the C preprocessor from removing comments (except
those on preprocessing directive lines).

Directs acc to suppress linking with 1d (1) and to produce a . o file for
each source file. You may explicitly name a single object file using the -o
option.

-cg87

This floating-point code generation option does not exploit features such as
the fsgrts and f£sqrtd instructions that are not implemented in hardware
on all Sun-4 workstations. It is the default.

-cg89

This floating-point code generation option will generate code for any newer
Sun-4 that has features like hardware fsgrts and f£sgrtd instructions.
Code compiled with -cg89 should be executed on Sun-4/1xx and Sun-
4/2xx systems with Weitek 1164/65 floating-point hardware.

The -cg87 and -cg89 options are mutually exclusive. That is, if you
compile one procedure with one of these two options, then you should
compile all procedures of the program with the same option. Similarly, for a
library: compile all procedures in a library with the same -cg87 or -cg89
options.

acc Corr'lpiler Options for SunOS 4.x 29

If you are binding an executable, or building a non-shared library, then this
consistency is enforced at load time; a message is issued that the link/load
failed.

But, if you are building a shared library with -~cg89 and -pic, then there is
no load-time check for any modules mis-combining -cg87 and -cg89
options.

~Dname [=tokens]

Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

Predefinitions:

sparc
sun
unix

These predefinitions are not valid in -Xc mode.
-dalign

Generates double load/store instructions wherever possible for improved
performance. Assumes that all double-type data are double aligned;
-dalign should not be used when correct alignment is not assured.

-dryrun

This option directs acc to show, but not execute, the commands constructed
by the compilation driver.

-B

This option runs the source file through the preprocessor only and sends the
output to stdio.! Includes the preprocessor line numbering information.
(See also the -P option.)

1. The preprocessor is built directly into the compiler (except in -Xs mode, where it is called directly).

30 C Programmer’s Guide—January 1992

-fast

This option allows you to select the best combination of compilation options
for speed. This should provide close to the maximum performance for most
realistic applications.

It is a convenience option, and it chooses the fastest code generation option
available on the compile-time hardware (cgx on a Sun-4), the optimization
level -02, a set of inline expansion templates, and the fnonstd floating-
point option.

If you combine —fast with other options, the last specification applies. The
code generation option, the optimization level and use of inline template
files can be overridden by subsequent switches. For example, although the
optimization part of —~fast is ~02, the optimization part of ~fast -01 is
-01.

Do not use this option for programs that depend on IEEE standard
exception handling; you can get different numerical results, premature
program termination, or unexpected SIGFPE signals.

-fnonstd

This option causes non-standard initialization of floating-point arithmetic
hardware. By default, IEEE 754 floating-point arithmetic is nonstop, and
underflows are gradual.The -fnonstd option causes hardware traps to be
enabled for floating-point overflow, division by zero, and invalid operations
exceptions. These are converted into SIGFPE signals, and if the program has
no SIGFPE handler, it will terminate with a memory dump.

-fgingle

(-Xt and -Xs modes only) Causes the compiler to evaluate float
expressions as single precision rather than double precision. (This option
has no effect if the compiler is used in either -Xa or -Xc modes, as float
expressions are already evaluated as single precision.)

-9

This option produces additional symbol table information for dbx.

Note — Unlike other versions of the C compiler, this version allows the —O-
option to be used with -g. -

acc Compiler Options for SunOS 4.x 31

32

Prints to the standard output, the path name, one per line, of each file
included during the current compilation.

The display is indented so as to show which files are included by other files.
Here the program sample.c includes the files stdio.h and math.h;
math.h includes the file floatingpoint .h, which itself includes
functions that use ieeefp.h:

$ acc -H sample.c
/usr/include/stdio.h
/usr/include/math.h
/usr/include/floatingpoint.h
/usr/include/ieeefp.h

-help
This option displays information about acc.
- Ipathname

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash).

The preprocessor first searches for #include files in the directory
containing sourcefile, then in directories named with ~T options (if any), and
finally, in /usr/include. Programs that use system calls, for example,
would need to use the file types.h as one of their #include files.
types.h contains many type definitions used by common system calls. (See
Section 3.3, “Commonly Used Command Line Options,” for more details.)

-keeptmp

Causes temporary files created during compilation to be retained instead of
deleted automatically.

~-L dir

Add dir to the list of directories searched for libraries by 1d(1). This option
and its arguments are passed to 1d.

C Programmer’s Guide—]January 1992

-1 library

This option directs 14 to link with object library library. The ordering of
libraries in the command line is important, as symbols are resolved from left
to right.

Note — This option must follow the sourcefile arguments.

-1libmil

This option selects the best inline templates for the floating-point option and
operating system release available on this system.

-M

This option runs only the cpp macro preprocessor on the named C
programs, requesting that it generate makefile dependencies and send the
result to the standard output (see make(1) for details about makefiles and
dependencies).

-misalign
Generates code to allow loading and storage of misaligned data.
-native

This option directs the compiler to compile code targeted for the machine
that is doing the compiling. For a Sun-4 that means -cg87 or -cg89.

-nolibmil

This option resets -fast so that it does not include inline templates. Use it
after the -fast option. For example: acc -fast -nolibmil

-—nogqueue

The -noqueue option tells the compiler not to queue this compile request if
a license is not available. Under normal circumstances, if no license is
available, the compiler waits until one becomes available. With this option,
the compiler returns immediately.

acc Compiler Options for SunOS 4.x 33

-0 [level]

Equivalent to -02. If the optimizer runs out of memory, it tries to recover by
retrying the current procedure at a lower level of optimization and resumes
subsequent procedures at the original level specified in the O{l 2}
command-line option.

-o outputfile

This option names the output file outputfile (as opposed to the default,
a.out). outputfile must have the appropriate suffix for the type of file to be
produced by the compilation. outputfile cannot be the same as sourcefile, since
acc will not overwrite the source file. This option and its arguments are
passed to 1d(1).

-P

This option runs the source file through the C preprocessor only. It then puts
the output in a file with a . i suffix. Unlike -E, it does not include
preprocessor-type line number information in the output. (See also the -E
option.)

-p

This option prepares the object code to collect data for profiling with
prof(1). -p invokes a run-time recording mechanism that produces a
mon . out file at normal termination. See Profiling Tools for more on prof.

-bg

This option prepares the object code to collect data for profiling with
gprof(1). It invokes a run-time recording mechanism that produces a
gmon.out file at normal termination.

-PIC

This option produces position-independent code. Each reference to a global
datum is generated as a de-reference of a pointer in the global offset table.
Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

-PIC lets the global offset table span the range of 32-bit addresses in those
rare cases where there are too many global data objects for —pic.

34 C Programmer’s Guide—January 1992

-pic

This option produces position-independent code. It is similar to ~PIC, but
the size of the global offset table is limited to 8K.

There are two nominal performance costs with -pic and -PIC, namely:

o A routine compiled with either -pic or -PIC executes a few extra
instructions upon entry (in order to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library’s global
or static variables.

o Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE_. (If the compile is done
with ~PIC, there are an additional two instructions per global/static
memory reference.)

When considering the above costs, one should remember that the use of

-pic and -PIC can significantly reduce system memory requirements, due
to the effect of library code sharing. Every page of code in a shared library
compiled -pic or ~PIC can be shared by every process that uses the library.
If a page of code in a shared library contains even a single non-pic (i.e.,

absolute) memory reference, the page becomes nonsharable, and a copy of
the page must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with -
pic or —PIC is with the nm command:

tutorial® nmfile.o | grep _ GLOBAL_OFFSET TABLE_
U __GLOBAL_OFFSET_TABLE_
tutorial%

A .o file containing position-independent code will contain an unresolved
external reference to __ GLOBAL_OFFSET_TABLE_ (indicated by the letter
).

To determine whether to use -pic or —PIC, use nm to identify the number
of distinct global/static variables used or defined in the library. If the size of
—GLOBAL_OFFSET_TABLE_ is under 8192 bytes, you may use -pic.
Otherwise, you must use —-PIC.

-Qdir or -qdir directory

This option allows you to search for compiler components in directory X.

acc Compiler Options for SunOS 4.x 35

-Qoption or —~goption prog opt

This option passes the option opt to the compiler phase prog. The option
must be appropriate to that program and may begin with a minus sign. prog
can be one of as(1), cpp(1), inline(1), or 1d4(1).

-Qpath or —gpath pathname

This option inserts a directory pathname into the search path used to locate
compiler components. This path will also be searched first for certain
relocatable object files that are implicitly referenced by the compiler driver,
for example *crt* .o and bb_link.o. This lets you choose whether or not
to use default versions of programs invoked during compilation.

-Qproduce or -gproduce sourcetype

This option causes acc to produce source code of the type sourcetype.
sourcetype can be one of the following:

.c Csource.

.1 Preprocessed C source from cpp.

.o Object file from as.

.s Assembler source (from acomp, or inline(1)).
-R

This option directs acc to merge the data segment with the text segment for
as(1). Data initialized in the object file produced by this compilation is read-
only, and (unless linked with 1d -N) is shared between processes. This
option is ignored when -g is used.

-5

This option directs acc to produce an assembly source file but not to
assemble the program.

-S

Removes all symbolic debugging information from the output object file. '
Passed to 1d(1).

36 C Programmer’s Guide—January 1992

-sb

This option generates and compiles extra symbol table information for the
SourceBrowser.

-sbfast

This option generates, but does not compile, extra symbol table information
for the SourceBrowser.

-strconst

This option inserts string literals into the text segment instead of the data
segment.

-sysh

This option adds the SystemV header files and libraries to the compiler
directory search paths. See Table C-1 and Table C-2 for further details.

~-temp= dir

This option sets the directory to contain temporary files generated during
the compilation process to be dir.

-time

This option directs acc to report execution times for the various
compilation passes.

-Uname

This option removes any initial definition of the preprocessor symbol name.
This option is the inverse of the —D option. Multiple U options may be
given.

-V

This option directs acc to print the name and version ID of each pass as the
compiler executes.

-V

Verbose. Print the version number of the compiler and the name of each
program it executes.

acc Compiler Options for SunOS 4.x 37

38

e

This option directs the compiler to perform stricter semantic checks and to
enable other lint-like checks. For example, the code

#include <stdio.h>
main (void)
{

printf(”Solipsism isn’t for everybody.\n”) ;

}

will compile and execute without problem. With -vc, it still compiles;
however, the compiler displays this warning:

"solipsism.c”, line 5: warning: function has no return
statement: main

Note that -vc does not give all the warnings that 1int(1) does. (Try
running the above example through lint.)

See Chapter 6, “C Error Messages,” for an explanation of the compiler error
messages.

-W
This option directs acc to not print warnings.

The following -X (note case) options provide varying degrees of compliance to
the ANSI C standard. -Xt is the default mode.

-Xa

(a = ANSD) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C interpretation.

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C

compatibility extensions. The compiler will reject programs that use non-
ANSI C constructs.

C Programmer’s Guide—January 1992

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

-xlicinfo

The -x1icinfo option returns information about the licensing system. In
particular, it returns the name of the license server and the userids of users
who have licenses checked out. When you use this option, the compiler is
not invoked and a license is not checked out.

acc Compiler Options for SunOS 4.x 39

40

Summary of Compiler Options

Table 3-1 Summary of Compiler Options (Sheet 1 of 3)

Option or Flag

Description

—aname [(tokens)]

Preprocessor predicate assertion

-a Count number of times a program executes each of its blocks

—Bbinding Specify binding type (dynamic or static)

-C Preprocessor comments left in

-c Produce . o file but do not actually do linking

-cg87 Generates floating-point code; fsqrts nad fsgrtd not imple-
mented in hardware

-cg89 Generates floating-point code; fsgrts nad £sgrtd implemented

in hardware

—Dname|=token]

Associate name with token as if by #define

-dalign Assume doubles are doubleword aligned

-dryrun Show constructed command, but do not execute

-E Run source through preprocessor only

~fast Options for best performance

-fnonstd Non-standard initialization of floating-point hardware
-fsingle Use single-precision arithmetic (-xt and -Xs modes only)
-g Generate info for dbx

-H Print paths of included files during compilation
~-help Display information about acc

—Ipathname Add dir to include search path

-keeptmp Keep temporary files

-Ldir Add dir to 1d library path

-llibrary Link object library (for 1d)

-libmil Select best inline templates for floating-point

-M Run macro processor only; generate makefile dependencies
-misalign Allow loading and storage of misaligned data
-native Target code for machine doing the compiling

C Programmer’s Guide—January 1992

Table 3-1 Summary of Compiler Options (Sheet 2 of 3)

Option or Flag Description
-nolibmil Reset -fast; do not include inline templates
-noqueue Do not queue compiler request if license is unavailable
~o file Set name of output file
-0 Generate optimized code (equivalent to -x02)
-P Run source through preprocessor only; send output to . i file
-p Collect data for prof
-pg Collect data for gprof
-PIC Produce position independent code
-pic Like -PIC, but with a smaller global offset table
-Qdiror -gdir dir Search for compiler components in dir x
—Qoptionor-goption | Pass option opt to compiler phase prog
prog opt
-Qpath or -gpath Insert directory pathname into compiler component search
pathname path
-Oproduce or Produce source code of type sourcetype
-gproduce sourcetype
-R Merge data segment with text segment for assembler
-5 Product . s file only (do not assemble or link)
-s strip (4.1); pass to 1d (5.0)
-sb Generate and compile symbol table information for SourceBrowser
-sbfast Generate, but do not compile, symbol table information for Source-
Browser
-strconst Insert string literals into text segment rather than data segment
-sysb Add SystemV header files and libraries to directory search path
-temp= dir Sets the directory dir to contain compiler generated temporary files
-time Report execution times for various compilation passes
~Uname Undefine preprocessor symbol name as if by #undef
-V Report versions of invoked programs
-v Print compiler version no. and name of programs executed

acc Compiler Options for SunOS 4.x 41

42

Table 3-1 Summary of Compiler Options (Sheet 3 of 3)

Option or Flag Description

-ve Impose stricter semantic checks and enable other lint-like
checks

-w Do not print warnings

-Xa {a = ANSI) Compatibility options (ANSI, conformant, K&R C,
transition)

-Xc (c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions

~-Xs (s = senescent) Compiled language includes all features compatible
with (pre-ANSI) K&R C

-Xt (t = transition) ANSI C plus K&R compatibility extensions,
without semantic changes required by ANSI C

-xlicinfo Returns information about the licensing system

C Programmer’s Guide—January 1992

3.3 Commonly Used Command Line Options

Searching for a Header File

Recall that the first line of our sample program was

#include <stdio.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The

angle brackets (<>) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own
directories:

#include "header.h"

The quotation marks (" ") tell the preprocessor to search for header . h first in
the directory of the file containing the #include line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, specify the path of the
directory in which it is stored with the —T option to acc. Suppose, for instance,
that you have included both stdio.h and header.h in the source file
mycode.c:

#include <stdio.h>
#include "header.h"

Suppose further that header .h is stored in the directory . ../defs. The
command

$ acc -I../defs mycode.c

will direct the preprocessor to search for header.h first in the current
directory, then in the directory . . ./defs, and finally in the standard place. It
will also direct the preprocessor to search for stdio.h firstin . . . /defs, then

acc Compiler Options for SunOS 4.x 43

in the standard place — the difference being that the current directory is
searched only for header files whose name you have enclosed in quotation
marks.

You can specify the —I option more than once on the acc command line. The
preprocessor will search the specified directories in the order they appear on
the command line. Needless to say, you can specify multiple options to acc on
the same command line:

$ acc -o prog -I../defs mycode.c

Preparing Your Program for Symbolic Debugging

When you specify the —g option to acc,

$ acc —-g mycode.c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger dox. The
information supplied to dbx will allow you to use the symbolic debugger to
trace function calls, display the values of variables, set breakpoints, and so on.

Note — Both the -o and -g options support the debugging of optimized code.
For detailed information, see the discussion in Debugging a Prograim.

Preparin ¢ Your Program for Profiling

The various profilers for optimizing your source code are described briefly in
Chapter 1, “Introduction to ANSI C,” and extensively in Profiling Tools.

To use the profilers that are supplied with the C compilation system, you must
do two things: '

44 C Programmer’s Guide—January 1992

1. Compile and link your program with a profiling option:

$ acc -pg -0 prog mycode.c (for gprof)
$ acc -a -o prog mycode.c (for tcov)

2. Run the profiled program:

$ prog

At the end of execution, data about your program’s run-time behavior is
written to a file in your current directory:

S 1s

gmon.out (for gprof)
mon.out (for prof)
mycode.c

mycode.d (for tcov)

3. Run the profiler:

$ gprof prog > output.file
$ tcov mycode.c (produces mycode.tcov file)
$ prof prog > output.file

The files are inputs to the profilers.

See the Profiling Tools manual for more information on gprof(1), tcov(1), and
prof(1).

Non-Standard Floating Point

This explanation is by
necessity rather over-
simplified. See the Numerical
Computation Guide for more
rigorous descriptions.

IEEE 754 floating-point default arithmetic is “nonstop” and underflows are
“gradual.” What do we mean by these terms?

Nonstop means that execution doesn’t halt on things like division by zero,
floating-point overflow, or invalid operation exceptions. For example, consider
the following, where x is zero and vy is positive:

z =y / X5

acc Compiler Options for SunOS 4.x 45

46

By default, x gets set to the value +Inf, and execution continues. With the
- fnonstd option, however, this code causes an ungraceful exit (say, a core
dump).

Here’s how gradual underflow works. Suppose you have the following code:

x = 10;
for (i = 0; i < LARGE_NUMBER; i++)
x =x / 10;

The first time through the loop, x is set to 1; the second time through, to 0.1;
the third time through, to 0.01; and so on. Eventually, x will reach the lower
limit of the machine’s capacity to represent its value. What happens the next
time the loop runs?

Let’s say that the smallest number characterizable is

1.234567e-38

The next time the loop runs, the number is modified by “stealing” from the
mantissa and “giving” to the exponent:

1.23456e-39

and, subsequently,
1.2345e-40

and so on. This is know as “gradual underflow” and it’s the default behavior.
In non-standard behavior, none of this “stealing” goes on; typically, x is simply
set to zero.

C Programmer’s Guide—January 1992

4.1 Option Syntax

cc Compiler Options for Sun(0S5.0

This chapter describes the various options available with the C compiler (cc).

If you are porting a “K&R” C program to ANSI C, make special note of the
section on -X (compatibility) flags described later in this chapter. Using them
will make the migration to ANSI C easier. And see also the C 2.0 Transition
Guide.

The syntax of the cc command is shown below:

tutorial® cc [options] filenames [libraries] . . .

where

® options represents one or more of the various options described in this
chapter

® filenames represent one or more files used in building the executable
program

cc accepts a list of C source files and object files contained in the list of files
specified by filenames. The resulting executable code is placed in a.out,
unless the (-o) option (see below) is used. In that case, the code is placed in
the file named by the (-0) option.

cc lets you compile and link any combination of the following:

47

o C source files, with a . c suffix

o C preprocessed source files, with a . i suffix

o Operating system object-code files, with .o suffixes
o Assembler source files, with . s suffixes

After linking, cc places the linked files, which are now in executable code,
into a file named a. out, or into the file specified by the -o option.

® [ibraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

Note that unless otherwise specified, options may follow the filename, as in

tutorial% cc sourcefilename.c -o outputfilename.

4.2 Options

See Table 4-1 on page 62 for a summary of available options.
-#

Causes the compiler to work in verbose mode, showing each component as it
is invoked.

-#iH
Shows each component as it is invoked, but does not actually execute it.
-Aname [(tokens)]

Associates name as a predicate with the specified tokens as if by an #assert
preprocessing directive.

Preassertions:

system (unix)
cpu (sparc)
machine (sparc)

These preassertions are not valid in -Xc mode.

48 C Programmer’s Guide—July 1992

-Bbinding

This option specifies whether bindings of libraries for linking are static or
dynamic, indicating whether libraries are non-shared or shared,
respectively.

~-C

This option prevents the C preprocessor from removing comments (except
those on preprocessing directive lines).

-C

Directs cc to suppress linking with 1d (1) and to produce a . o file for each
source file. You may explicitly name a single object file using the -o option.

-Dname [=tokens]

Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

Predefinitions:

sparc
sun
unix

These predefinitions are not valid in -Xc mode.
-dc

¢ can be either y or n.
o -dy specifies dynamic linking, which is the default, in the link editor.
o -dn specifies static linking in the link editor.

This option and its arguments are passed to 1d(1).
-dalign

Generates double load/store instructions wherever possible for improved
performance. Assumes that all double-type data are double aligned;
-dalign should not be used when correct alignment is not assured.

cc Compiler Options for Sun0OS 5.0 49

This option runs the source file through the preprocessor only and sends the
output to stdio.! Includes the preprocessor line numbering information.
(See also the —P option.)

-Foption

Reserved for future floating-point options.

-fast

This option allows you to select the best combination of compilation options
for speed. This should provide close to the maximum performance for most
realistic applications.

It is a convenience option, and it chooses the fastest code generation option
available on the compile-time hardware, the optimization level -x02, a set
of inline expansion templates, and the fnonstd floating-point option. It
also adds -1m to link in the math library.

If you combine - fast with other options, the last specification applies. The
code generation option, the optimization level and use of inline template
files can be overridden by subsequent switches. For example, although the
optimization part of —~fast is -x02, the optimization part of ~fast -xOl1
is -xO1.

Do not use this option for programs that depend on IEEE standard
exception handling; you can get different numerical results, premature
program termination, or unexpected SIGFPE signals.

-flags

Prints a one-line summary of each option.

-fnonstd

This option causes non-standard initialization of floating-point arithmetic
hardware. By default, IEEE 754 floating-point arithmetic is nonstop, and
underflows are gradual. (See “Non-Standard Floating Point” on page 67 for
a further explanation.) The -fnonstd option causes hardware traps to be

1. The preprocessor is built directly into the compiler (except in -Xs mode, where it is called directly).

C Programmer’s Guide—July 1992

enabled for floating-point overflow, division by zero, and invalid operations
exceptions. These are converted into SIGFPE signals, and if the program has
no SIGFPE handler, it will terminate with a memory dump.

-fnonstd also causes the math library to be linked in, by passing -1m to
the linker.

-fgingle

(-xt and -Xs modes only) Causes the compiler to evaluate float
expressions as single precision rather than double precision. (This option
has no effect if the compiler is used in either -Xa or -Xc modes, as float
expressions are already evaluated as single precision.)

-G

Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to 1d(1). It cannot be
used with the-dn option.

-9

This option produces additional symbol table information for dbx.

Note — Unlike other versions of the C compiler, this version allows the -0
option to be used with -g.

-H

Prints to the standard output, the path name, one per line, of each file
included during the current compilation.

The display is indented so as to show which files are included by other files.
Here the program sample.c includes the files stdio.h and math.h;
math.h includes the file floatingpoint .h, which itself includes
functions that use ieeefp.h:

$ cc -H sample.c
/usr/include/stdio.h
/usr/include/math.h
/usr/include/floatingpoint.h -
/usr/include/ieeefp.h

cc Compiler Options for SunOS 5.0 51

-h name

This option assigns a name to a shared dynamic library as a way to have
different versions of a library. In general, the name after ~h should be the
same as the filename given after the -o option. (The space between -h and
name is optional.)

The loader assigns the specified name to the library and records the name in
the library file as the intrinsic name of the library. If there is no -hname
option, then no intrinsic name is recorded in the library file.

When the run-time linker loads the library into an executable file, it copies
the intrinsic name from the library file into the executable, into a list of
needed shared library files. (Every executable has such a list.) If there is no
intrinsic name of a shared library, then the linker copies the path of the
shared library file instead.

Here’s how you’d make and use one version of a shared library:

¢ 1d -G -o libxyz.l -h libxyz.l ... (create shared library)
$ 1n libxyz.l1 libxyz.so (link 1ibxyz.soto 1libxyz.1)
$ cc -o verA -lxyz . . . (executable vera needs 1ibxyz.1)

Here’s how you’d make and use a different version of the library:

$ 1d -G -o libxyz.2 -h libxyz.2 ... (create shared library)

$ rm libxyz.so (remove old link)

¢ 1n 1libxyz.2 libxyz.so (link 1ibxyz.soto 1libxyz.2)

$ cc -o verB -lxyz . . . (executable verB needs 1ibxyz.2)
-Ipathname

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash).

The preprocessor first searches for #include files in the directory
containing sourcefile, then in directories named with ~T options (if any), and
finally, in /usr/include.

-i

This option tells the compiler to ignore any LD_LIBRARY_PATH setting.

52 C Programmer’s Guide—July 1992

-KPIC

This option produces position-independent code. Each reference to a global
datum is generated as a de-reference of a pointer in the global offset table.
Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

-KPIC lets the global offset table span the range of 32-bit addresses in those
rare cases where there are too many global data objects for ~Kpic.

-Kpic

This option produces position-independent code. It is similar to ~XPTC, but
the size of the global offset table is limited to 8K.

There are two nominal performance costs with ~kpic and ~KPIC, namely:

o A routine compiled with either ~kpic or ~-KPIC executes a few extra
instructions upon entry (in order to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library’s global
or static variables.

o Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE_. (If the compile is done
with ~KPIC, there are an additional two instructions per global/static
memory reference.)

When considering the above costs, one should remember that the use of
~kpic and -KPIC can significantly reduce system memory requirements,
due to the effect of library code sharing. Every page of code in a shared
library compiled ~kpic or ~KPIC can be shared by every process that uses
the library. If a page of code in a shared library contains even a single non-
pic (i.e., absolute) memory reference, the page becomes nonsharable, and a
copy of the page must be created each time a program using the library is
executed.

The easiest way to tell whether or not a . o file has been compiled with
-kpic or -KPIC is with the nm command:

tutorial% mmfile.o | grep _ GLOBAL_OFFSET_TABLE
U __GLOBAL_OFFSET_TABLE_
tutorial%

cc Compiler Options for Sun0S 5.0 53

An .o file containing position-independent code will contain an unresolved
external reference to ___GLOBAL_OFFSET_TABLE_ (indicated by the letter
u).

To determine whether to use —kpic or —~KPIC, use nm to identify the
number of distinct global/static variables used or defined in the library. If
the size of _GLOBAL_OFFSET_TABLE_ is under 8192 bytes, you may use
-kpic. Otherwise, you must use —KPIC.

-keeptmp

Causes temporary files created during compilation to be retained instead of
deleted automatically.

cc normally creates temporary files in the directory /var/tmp. You may
specify another directory by setting the environment variable TMPDIR to the
directory of your choice. (If TMPDIR isn’t a valid directory, cc will use
/var/tmp.)

Bourne Shell:

$ TMPDIR=dir; export TMPDIR

C Shell:

% setenv TMPDIR dir

-Ldir

Add dir to the list of directories searched for libraries by 1d(1). This option
and its arguments are passed to 1d.

-1library -

This option directs 1d to link with object library library. The ordering of
libraries in the command line is important, as symbols are resolved from left
to right.

Note — This option must follow the sourcefile arguments.

54 C Programmer’s Guide—]July 1992

-misalign
Generates code to allow loading and storage of ccmisaligned data.
-nogueue

The -noqueue option tells the compiler not to queue this compile request if
a license is not available. Under normal circumstances, if no license is
available, the compiler waits until one becomes available. With this option,
the compiler returns immediately.

-0
Equivalent to -x02.
~o outputfile

This option names the output file outputfile (as opposed to the default,
a.out). outputfile cannot be the same as sourcefile, since cc will not
overwrite the source file. This option and its arguments are passed to
14a(1).

-P

This option runs the source file through the C preprocessor only. It then puts
the output in a file with a . i suffix. Unlike -E, it does not include
preprocessor-type line number information in the output. (See also the -E
option.)

-

This option prepares the object code to collect data for profiling with
prof(l). -p invokes a run-time recording mechanism that produces a
mon. out file at normal termination. See Profiling Tools for more on prof.

_QC
¢ can be either v or n. -Qy is the default.

If c is v, identification information about each invoked compilation tool will
be added to the output files. This can be useful for software administration.

-Qn suppresses this information.

cc Compiler Options for Sun0OS 5.0 55

-qgc
¢ can be either 1 or p.

-1 causes the invocation of the basic block analyzer and arranges for the
production of code that counts the number of times each source line is
executed. A listing of these counts can be generated by use of 1pro£(l).

-qp is a synonym for -p. -g cannot be used with either -0 or -x0 options.
See Profiling Tools for more on 1prot.

Rdir[:dir]
This option specifies the library search path for the dynamic linker.
-5

This option directs cc to produce an assembly source file but not to
assemble the program.

-8

Removes all symbolic debugging information from the output object file.
Passed to 1d(1).

-Uname

This option removes any initial definition of the preprocessor symbol narne.
This option is the inverse of the -D option. Multiple ~U options may be
given.

-V

This option directs cc to print the name and version ID of each pass as the
compiler executes.

-V

This option directs the compiler to perform stricter semantic checks and to
enable other lint-like checks. For example, the code

#include <stdio.h>
main(void)
{
printf (”Solipsism isn’t for everybody.\n”);

}

56 C Programmer’s Guide—July 1992

will compile and execute without problem. With -v, it still compiles;
however, the compiler displays this warning;:
“solipsism.c”, line 5: warning: function has no return

statement: main

Note that -v does not give all the warnings that 1int(1) does. (Try running
the above example through 1int.)

See Chapter 6, “C Error Messages,” for an explanation of the compiler error
messages.

-Wtool,argslarg,]

Hands off the argument(s) arg; each as a separate argument to fool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character.) fool can be one of the following:

assembler (fbe)

b basic block analyzer (basicblk)
c C code génerator (cg)

i inliner (inline)

1 link editor (Id)

p preprocessor (cpp)

0 compiler (acomp)

2 optimizer (iropt)

-W
This option directs cc to not print warnings.

The following -X (note case) options provide varying degrees of compliance to
the ANSI C standard. -Xt is the default mode.

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C interpretation.

cc Compiler Options for SunOS 5.0 57

58

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non-
ANSI C constructs.

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C. '

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

—Xa

Inserts code to count how many times each basic block is executed. Invokes
a run-time recording mechanism that creates a . d file for every .c file (at
normal termination). The .4 file accumulates execution data for the
corresponding source file. tcov(l) can then be run on the source file to
generate statistics about the program. Since this option entails some
optimization, it is incompatible with -g. See Profiling Tools for more on
tcow

-xF

Produces code that can be re-ordered at the function level. Each function in
the file is placed in a separate section; for example, functions foo () and
bar () will be placed in the sections .text%foo and .text%bar,
respectively. Function ordering in the executable can be controlled by using
-xF in conjunction with the -M option to 1d4(1).

~xlibmil
Includes inline expansion templates for 1ibm.

-xlicinfo

C Programmer’s Guide—July 1992

The -x1icinfo option returns information about the licensing system. In
particular, it returns he name of the license server and the userids of users
who have licenses checked out. When you give this option, the compiler is
not invoked and a license is not checked out.

-xM

This option runs only the macro preprocessor (/usr/ccs/bin/cpp) on the
named C programs, requesting that it generate makefile dependencies and
send the result to the standard output (see make(1) for details about
makefiles and dependencies).

-xnolibmil
This option resets ~fast so that it does not include inline templates. Use it
after the —fast option. For example:

cc —fast -xnolibmil....
-x0 [level]

This option directs cc to optimize the object code. -x0 [level] may be
combined with—g, but not with -a.

Note — Unlike other versions of the C compiler, this version allows the -0
option to be used with -g.

level can be one of the following:

1
Do postpass assembly-level optimization only.
2
Do global optimization before code generation, including loop
optimizations, common subexpression elimination, copy
propagation, and automatic register allocation. —x02 does not
optimize references to or definitions of external or indirect variables.
3

Same as -x02, but do loop unrolling and optimize uses and
definitions of external variables. -x03 does not trace the effects of
pointer assignments.

cc Compiler Options for SunOS 5.0 59

60

Same as -x03, but trace the effects of pointer assignments, gather
aliasing information, and do parameter propagation, and perform
inlining.

Note - If you use -0 without specifying the level, it is equivalent to using
-x02.

Neither -x03 nor -x04 should be used when compiling either device
drivers or programs that modify external variables from within signal
handlers. Also, levels -x03 and -x04 may increase the size of executables;
when optimizing for size, use -x02.

If the optimizer runs out of memory, it tries to recover by retrying the
current procedure at a lower level of optimization and resumes subsequent
procedures at the original level specified in the -x0{1, 2} command-line
option.

-XPpg

This option prepares the object code to collect data for profiling with
gprof(l). It invokes a run-time recording mechanism that produces a
gmon . out file at normal termination. See Profiling Tools for more on gprof.

-X8

This option disables autoload for dbx. This is in case you cannot keep the.o
files around. This passes the -s option to the assembler and the linker.

No Autoload: This is the older way of loading symbol tables.

o Place all symbol tables for dbx in the executable file.
o The linker links more slowly and dbx initializes more slowly.

o If you move the executables to another directory, then to use dbx you
must move the source files, but you do not need to move the object (. o)
files.

Autoload: This is the newer (and default) way of loading symbol tables.

o Distribute this information in the . o files so that dbx loads the symbol
table information only if and when it is needed.

o The linker links faster and dbx initializes faster.

o If you move the executables to another directory, then to use dbx you
must move both the source files and the object (. o) files.

C Programmer’s Guide—July 1992

-xsb

This option generates extra symbol table information for the SourceBrowser.

-xsbfast
Same as -xsb, but does not actually compile.
-xXstrconst

This option inserts string literals into the read-only data segment instead of
the default data segment.

-Yitem, dir

Specify a new directory dir for the location of item. item can consist of any of
the characters representing tools that are listed under the -w option, or it
may be any of the following characters representing directories containing
special files:

I directory searched last for include files: INCDIR (see -T)

P New default directories for finding libraries; dir in this case is
a colon-separated path list.

S directory containing the start-up object files: LIBDIR

If the location of a tool is being specified, then the new path name for the
tool will be dirtool. If more than one -Y option is applied to any one item,
then the last occurrence holds.

cc Compiler Options for SunOS 5.0 61

62

Summary of cc Options

Table 4-1 Summary of cc Options (Sheet 1 of 3)

Option or Flag Description
i Verbose mode
Sikikii Show components, but do not execute
—asymbol Preprocessor predicate assertion
-Bbinding Specify binding type (dynamic or static)
-C Preprocessor comments left in
e Produce .o file but do not actually do linking

~Dnamel =token]

Associate name with token as if by #define

—-dlyln] Dynamic linking [yes | no]

~dalign Assume doubles are doubleword aligned

-5 Run source through preprocessor only

~F Reserved for future floating-point optimization directives
~fast Options for best performance

-flags Print summary of compiler options

~fnonstd Non-standard initialization of floating-point hardware
-fsingle Use single-precision arithmetic (-Xt and -Xs modes only)
-G Like —dy, but no crt1.o is linked

-g Generate info for dbx

~-H Print paths of included files during compilation

-h Name a shared dynamic library

-1dir Add dir to include path

-1 Ignore any LD_LIBRARY_PATH setting

-KPIC Produce position independent code

-Kpic Like KPIC, but with a smaller global offset table

-keeptmp Keep temporary files

~Ldir Add dir to 14 library path

- 1dir Read object library (for 1d)

C Programmer’s Guide—July 1992

Table 4-1 Summary of cc Options (Sheet 2 of 3)

Option or Flag Description
-misalign Allow loading and storage of misaligned data
-nogueue Don’t queue license requests
-o file Set name of output file
-0 Generate optimized code (equivalent to -x02)
-P Run source thru preprocessor, output to . i
-p Collect data for prof
-QlyIn] Add or don‘t add version stamp info
-qlllpl Collect data for lprof or prof
-Rdir [:dir] Specify library search path for dynamic linker
-S Product . s file only (do not assemble or link)
-5 strip (4.1); pass to 1d (5.0)

—~Uname Undefine preprocessor symbol name as if by #undef
-V Report versions of invoked programs

-v Do stricter, 1int-like semantic checking

—Wtool , arg(s) Hand off arguments to other components

-w Do not print warnings

-X[a,c,s,t]

Compatibility options (ANSI, conformant, K&R C, transition)

-xa Collect data for basic block profiling (t cov)

-xF Produce code that can be re-ordered at function level

~x1ibmil Include inline templates as part of -fast

-xlicinfo Return status of licensing system

-xM Preprocess, send makefile dependencies to standard output
-xnolibmil Reset —fast so that it does not include inline templates
-x0[1,2,3,4] Generate optimized code (default is -X02)

—-Xpg Collect data for gprof

-Xs places all stabs in . stab section

-xsb Collect info for code browser

cc Compiler Options for SunOS 5.0 63

Table 4-1 Summary of cc Options (Sheet 3 of 3)

Option or Flag

Description

-xsbfast

Collect info for code browser, but do not compile

-xXstrconst

Place string literals into read-only data segment

~Yitem, dir

Change pathname for components

64 C Programmer’s Guide—July 1992

4.3 Commonly Used cc Command Line Options

Searching for a Header File

Recall that the first line of our sample program was

#include <stdio.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The
angle brackets (<>) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own
directories:

#include "header.h"

The quotation marks (" ") tell the preprocessor to search for header . h first in
the directory of the file containing the #include line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, specify the path of the
directory in which it is stored with the —T option to cc. Suppose, for instance,
that you have included both stdio.h and header.h in the source file
mycode.c:

#include <stdio.h>
#include "header.h"

Suppose further that header.h is stored in the directory. . /defs. The
command

$ cc -I../defs mycode.c

will direct the preprocessor to search for header . h first in the current
directory, then in the directory . . /defs, and finally in the standard place. It
will also direct the preprocessor to search for stdio.h first in . . /defs, then

cc Compiler Options for SunOS 5.0 65

in the standard place — the difference being that the current directory is
searched only for header files whose name you have enclosed in quotation
marks.

You can specify the —I option more than once on the cc command line. The
preprocessor will search the specified directories in the order they appear on
the command line. Needless to say, you can specify multiple options to cc on
the same command line:

($ cc —o prog -I../defs mycode.c

Preparing Your Program for Symbolic Debugging

When you specify the —g option to cc,

4 $ cc —g mycode.c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger dbx. The
information supplied to dbx will allow you to use the symbolic debugger to
trace function calls, display the values of variables, set breakpoints, and so on.

Preparing Your Program for Profiling

The various profilers for optimizing your source code are described briefly in
Chapter 1, “Introduction to ANSI C,” and extensively in Profiling Tools.

To use the profilers that are supplied with the C compilation system, you must
do two things:

66 C Programmer’s Guide—]July 1992

1. Compile and link your program with a profiling option:

cC -Xpg -0 prog mycode.c
cc -gql -o prog mycode.c
cc -xa -o prog mycode.c
cCc —-@gp -0 prog mycode.c

Uy U Ur

(for gprof)
(for lprof)
(for tcov)

(for prof; -p may replace -qp)

2. Run the profiled program:

$ prog

At the end of execution, data about your program’s run-time behavior is
written to a file in your current directory:

S 1ls
gmon.out
mon.out
mycode.c
mycode.d
prog
prog.cnt

(for gprof)
(for prof)

(for tcov)

(for lprof:)

3. Run the profiler:

$ gprof prog > output.file

$ lprof -o prog > output.file
S tcov mycode.c

$ prof prog > output.file

(produces mycode. tcov file)

The files are inputs to the profilers.

See the Profiling Tools manual for more information on gprof(l), 1prof(l),

tcov(l), and prof(1).

Non-Standard Floating Point

IEEE 754 floating-point default arithmetic is “nonstop” and underflows are
“gradual.” What do we mean by these terms?

cc Compiler Options for SunOS 5.0

67

This explanation is by
necessity rather over-
simplified. See the Numerical
Computation Guide for more
rigorous descriptions.

68

Nonstop means that execution doesn’t halt on things like division by zero,
floating-point overflow, or invalid operation exceptions. For example, consider
the following, where x is zero and y is positive:

z =y / X;

By default, x gets set to the value +Inf, and execution continues. With the
- fnonstd option, however, this code causes an ungraceful exit (say, a core
dump).

Here’s how gradual underflow works. Suppose you have the following code:

x = 10;
for (1 = 0; i < LARGE_NUMBER; 14++)
x =x / 10;

The first time through the loop, x is set to 1; the second time through, to 0.1;
the third time through, to 0.01; and so on. Eventually, x will reach the lower
limit of the machine’s capacity to represent its value. What happens the next
time the loop runs?

Let’s say that the smallest number characterizable is

1.234567e-38

The next time the loop runs, the number is modified by “stealing” from the
mantissa and “giving” to the exponent:

1.23456e-39

and, subsequently,
1.2345e-40

and so on. This is know as “gradual underflow” and it’s the default behavior.
In non-standard behavior, none of this “stealing” goes on; typically, x is simply
set to zero.

C Programmer’s Guide—]July 1992

The Partsof C

5.1 Introduction

This chapter is a guide to the ANSI C language (not K&R C) compiler. The
level of presentation assumes some experience with C and familiarity with
fundamental programming concepts.

The compilers are compatible with the C language described in the American
National Standards Institute (ANSI) “American National Standard for
Information Systems—Programming Language —C,” document number ANSI
X3.159-1989.

The standard language is referred to as ANSI C in this document. The notation
K&R C refers to non-ANSI (or pre-ANSI) C..

Compilation Modes

The compilation system has the following compilation modes, which
correspond to degrees of compliance with ANSI C. -Xt is the default mode:

-Xa

(@ = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C intrepretation.

69

-Xc

(¢ = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non-
ANSI C constructs.

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

Global Behavior: Value vs. Unsigned Preserving

A program that depends on unsigned-preserving arithmetic conversions will
behave differently. This is considered to be the most serious change made by
ANSI C to a widespread current practice.

In the first edition of Kernighan and Ritchie, The C Programming Language
(Prentice-Hall, 1978), unsigned specified exactly one type; there were no
unsigned chars, unsigned shorts, or unsigned longs, but most C
compilers added these very soon thereafter.

In previous C compilers, the unsigned preserving rule is used for promotions:
when an unsigned type needs to be widened, it is widened to an unsigned
type; when an unsigned type mixes with a signed type, the result is an
unsigned type.

The other rule, specified by ANSI C, came to be called value preserving, in
which the result type depends on the relative sizes of the operand types.
When an unsigned char or unsigned short is widened, the result type is
int if an int is large enough to represent all the values of the smaller type.
Otherwise the result type is unsigned int. The value preserving rule produces
the least surprise arithmetic result for most expressions.

70 C Programmer’s Guide—]July 1992

Only in the -Xt amd -Xs modes does the compiler use the unsigned preserving
promotions; in the other modes, -Xc and -Xa, the value preserving promotion
rules are used. No matter what the current mode may be, the compiler warns
about each expression whose behavior might depend on the promotion rules
used.

This warning is not optional because this is a serious change in behavior.

How To Use This Chapter

You can use this chapter either as a quick reference guide, or as a
comprehensive summary of the language as implemented by the compilation
system. Many topics are grouped according to their place in the ANSI-
specified phases of translation, which describe the steps by which a source file
is translated into an executable program.

Phases of Translation

The compiler processes a source file into an executable in eight conceptual
steps, which are called phases of translation. While some of these phases may in
actuality be folded together, the compiler behaves as if they occur separately, in
sequence.

1. Trigraph sequences are replaced by their single-character equivalents.
(Trigraph sequences are explained in “Trigraph Sequences” on page 78).

2. Any source lines that end with a backslash and new-line are spliced together
with the next line by deleting the backslash and new-line.

3. The source file is partitioned into preprocessing tokens and sequences of
white-space characters. Each comment is, in effect, replaced by one space
character. (Preprocessing tokens are explained in “Preprocessing Tokens” on
page 78).

4. Preprocessing directives are executed, and macros are expanded. Any files
named in #include statements are processed from phase 1 through phase
4, recursively.

5. Escape sequences in character constants and string literals are converted to
their character equivalents.

The Parts of C 71

72

. Adjacent character string literals and wide character string literals are

concatenated.

Each preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated. (Tokens are
explained under “Tokens” on page 72).

All external object and function references are resolved. Libraries are linked
to satisfy external references not defined in the current translation unit. All
translator output is collected into a program image which contains
information needed for execution.

Output from certain phases may be saved and examined by specifying option
flags on the compiler command line.

The preprocessing token sequence resulting from Phase 4 can be saved by
using the following options:

® _p leaves preprocessed output in a file with a .1 extension.

* _g sends preprocessed output to the standard output.

Use the —c option to cc (or acc) to save output from Phase 7 in a file with a .o
extension. The output of Phase 8 is the compilation system’s final output:

(a.out).‘

5.2 Source Files and Tokenization

Tokens

A token is a series of contiguous characters that the compiler treats as a unit.
Translation phase 3 partitions a source file into a sequence of tokens. Tokens
fall into seven classes:

Identifiers
Keywords

Numeric Constants
Character Constants
String literals

Operators

C Programmer’s Guide—]July 1992

Identifiers

Keywords

Constants

¢ Other separators and punctuators

® Identifiers name things such as variables, functions, data types, and macros.

® Identifiers are made up of a combination of letters, digits, or underscore (_)

characters.

® First character may not be a digit.

The following identifiers are reserved for use as keywords and may not be

used otherwise:

Table 5-1 Identifiers

asm default for short union
auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch

continue float return typedef

The keyword asm is reserved in all compilation modes except ~Xc. The

keyword __asm is a synonym for asm and is available under all compilation
modes, although a warning will be issued when it is used under the —xXc mode.

Integral Constants
® Decimal
- Digits 0-9.
o First digit may not be 0 (zero).

The Parts of C 73

® Octal

o Digits 0-7.

o First digit must be 0 (zero).
¢ Hexadecimal

o Digits 0-9 plus letters a-f or A-F. Letters correspond to decimal values
10-15.
o Prefixed by 0x or 0X (digit zero).

Note — An octal or hexadecimal constant with the sign bit on is treated as an
unsigned value. For example, 0x80 through Oxff will not fit into a char, 0x8000
through Oxffff will not fit into a short, and 0x80000000 through Ox{fffffff will not
fit into an int. If these values are used as initializers, the following error
message results: warning: initializer does not fit.

® Suffixes

o All of the above can be suffixed to indicate type, as follows:

Table 5-2 Data Type Suffixes

Suffix Type

uoryu unsigned

lorkL long

11 or LL long long®

luor LU or Lu or 1U unsigned long

11lu or LLU or LLu or 11U unsigned long longa

a. long long is not available in -Xc mode.

When assigning types to constants, the compiler uses the first of this list in
which the value can be represented:

int

long int

unsigned long int

long long int (not available in -Xc mode)

unsigned long long int (not available in -Xc mode)

74 C Programmer’s Guide—]July 1992

Floating Point Constants

Floating-point constants consist of integer part, decimal point, fraction part, an
e or E, an optionally signed integer exponent, and a type suffix, one of £, F, 1,
or L. Each of these elements is optional; however one of the following must be
present for the constant to be a floating point constant:

® A decimal point (preceded or followed by a number).
® An e with an exponent.

® Any combination of the above. Examples:

XXx e exp
XXX.
XXX

® Type determined by suffix; f or F indicates f1oat, 1 or L indicates long
double; otherwise type is double.

Character Constants
¢ One or more characters enclosed in single quotes, as in "x".

¢ All character constants have type int.

® Value of a character constant is the numeric value of the character in the
ASCII character set.

* A multiple-character constant that is not an escape sequence (see below) has
a value derived from the numeric values of each character. For example, the
constant “123’ has a value of

Table 5-3 Multiple-character Constant (ASCII)

0 13/ !2/ .Ill

or 0x333231. In other, non-ANSI versions of C the value is

Table 5-4 Multiple-character Constant (non-ASCII)

LO Ill 121 131

or 0x313233.

The Parts of C . 75

e Character constants may not contain the character ’ or new-line. To
represent these characters, and some others that may not be contained in the
source character set, the compiler provides the following escape sequences:

Table 5-5 Character Constants

Character Abbreviation Escape Sequence Character Abbreviation Escape Sequence
new-line NL (LE) \n audible alert BEL \a
horizontal tab HT \t question mark ? \?
vertical tab VT \v double quote ! \"
backspace BS \b octal escape 000 \ooo
carriage return CR \r hexadecimal escape hh \xhh
formfeed FF \f backslash \ A\
single quote ! \

Wide Characters and Multibyte Characters

76

® The octal escape consists of one to three octal digits.

If the character following a backslash is not one of those specified, the compiler
will issue a warning and treat the backslash-character sequence as the
character itself. Thus, \g will be treated as g. However, if you represent a
character this way, you run the risk that the character may be made into an
escape sequence in the future, with unpredictable results. An explicit new-line
character is invalid in a character constant and will cause an error message.

* The hexadecimal escape consists of one or more hexadecimal digits.

e A wide character constant is a character constant prefixed by the letter L.

¢ A wide character has an external encoding as a multibyte character and an

internal representation as the integral type wchar_t, defined in stddef . h.

¢ A wide character constant has the integral value for the multibyte character

between single quote characters, as defined by the locale-dependent
mapping function mbtowc.

C Programmer’s Guide—]July 1992

String Literals

One or more characters surrounded by double quotes, as in "xyz".
Initialized with the characters contained in the double quotes.
Have static storage duration and type array of characters.

The escape sequences described in “Character Constants” may also be used
in string literals. A double quote within the string must be escaped with a
backslash. New-line characters are not valid within a string.

Adjacent string literals are concatenated into a single string. A null
character, \0, is appended to the result of the concatenation, if any.

String literals are also known as string constants.

Wide String Literals

Comments

A wide-character string literal is a string literal immediately prefixed by the
letter L.

Wide-character string literals have type array of wchar_t.

Wide string literals may contain escape sequences, and they may be
concatenated like ordinary string literals.

Comments begin with the characters /* and end with the next * /.

/* this is a comment */

Comments do nof nest.

If a comment appears to begin within a string literal or character constant, it
will be taken as part of the literal or constant, as specified by the phases of
translation.

char *p = "/* this is not a comment */"; /* but this is */

The Parts of C 77

5.3 Preprocessing

® Preprocessing handles macro substitution, conditional compilation, and file
inclusion.

® Lines beginning with # indicate a preprocessing control line. Spaces and
tabs may appear before and after the #.

® Lines that end with a backslash character \ and new-line are joined with the
next line by deleting the backslash and the new-line characters. This occurs
(in translation phase 2) before input is divided into tokens.

® Each preprocessing control line must appear on a line by itself.

Trigraph Sequences

Trigraph sequences are three-character sequences that are replaced by a
corresponding single character in Translation Phase 1. The trigraph sequences
are provided as a way to specify characters that are not available on some
terminals, but that the C language uses, as follows:

Table 5-6 Trigraph Sequences

Sequence Rep]lsayced Sequence Rep];;ced Sequenée Rep;;ced
77= # 22([77< {
??/ \ ??) 1 77> }
27 A 27! | 27?-

No other such sequences are recognized.

Preprocessing Tokens

A token is the basic lexical unit of the language. All source input must be
formed into valid tokens by translation phase seven. Preprocessing tokens
(pp-tokens) are a superset of regular tokens. Preprocessing tokens allow the
source file to contain non-token character sequences that constitute valid
preprocessing tokens during translation. There are four categories of
preprocessing tokens:

78 C Programmer’s Guide—July 1992

® Header file names, meant to be taken as a single token.
® Preprocessing numbers (discussed in “Preprocessing Numbers” on page 79).

® All other single characters that are not otherwise (regular) tokens. See the
example under “Preprocessing Numbers” on page 79.

® Identifiers, numeric constants, character constants, string literals, operators,
and punctuators.

Preprocessing Numbers

® A preprocessing number is made up of a digit, optionally preceded by a
period, and may be followed by letters, underscores, digits, periods, and
any one of e+ e- E+ E-.

® Preprocessing numbers include all valid number tokens, plus some that are
not valid number tokens. For example, in the macro definition:

#define R 2e ## 3

the preprocessing number 2e is not a valid number. However, the
preprocessing operator ## will paste it together with the preprocessing
number 3 when R is replaced, resulting in the preprocessing number 2e3,
which is a valid number. See “Preprocessing Operators” on page 79 for a
discussion of the ## operator.

Preprocessing Directives

Preprocessing Operators

The preprocessing operators are evaluated left to right, without any defined
precedence.

#
A macro parameter preceded by the # preprocessing operator has its
corresponding unexpanded argument tokens converted into a string literal.
(Any double quotes and backslashes contained in character constants or part
of string literals are escaped by a backslash). The # character is sometimes
referred to as the stringizing operator. This rule applies only within
function-like macros.

The Parts of C 79

#H
If a replacement token sequence (see “Macro Definition ‘and Expansion”
below) contains a ## operator, the ## and any surrounding white space are
deleted and adjacent tokens are concatenated, creating a new token. This
occurs only when the macro is expanded.

Macro Definition and Expansion
® An object-like macro is defined with a line of the form

#define identifier token-sequence,y;

where identifier will be replaced with token-sequence wherever identifier
appears in regular text.

® A function-like macro is defined with a line of the form

#define identifier (identifier-list,,) token-sequence,y

where the macro parameters are contained in the comma-separated

identifier-list. The token-sequence following the identifier list determines
the behavior of the macro, and is referred to as the replacement list. There
can be no space between the identifier and the (character. For example:

#define FLM(a,b) a+b

The replacement-list a+b determines that the two parameters a and b will
be added.

® A function-like macro is invoked in normal text by using its identifier,
followed by a (token, a list of token sequences separated by commas, and a
) token. For example:

FLM(3,2)

® The arguments in the invocation (comma-separated token sequences) may
be expanded, and they then replace the corresponding parameters in the
replacement token sequence of the macro definition. Macro arguments in
the invocation are not expanded if they are operands of # or ## operators in
the replacement string. Otherwise, expansion does take place. For example:

80 C Programmer’s Guide—]July 1992

Assume that M1 is defined as 3:

#define M1 3

When the function-like macro FLM is used, use of the # or ## operators will
affect expansion (and the result), as follows:

Table 5-7 Expansion of # and ## Macros

Definition Invocation Result Expansion?
a+b FLM (M1, 2) 3+ 2 Yes, Yes
#a FLM (M1) "MLt No
a##tb FLM(M1,2) M12 No, No
a+#b FLM(M1,2) 3 0+ "2 Yes, No

In the last example line, the first a in a+#a is expanded, but the second a is
not expanded because it is an operand of the # operator.

¢ The number of arguments in the invocation must match the number of
parameters in the definition.

® A macro’s definition, if any, can be eliminated with a line of the form:

#undef identifier

There is no effect if the definition doesn’t exist.

File Inclusion
® A line of the form:

#include "filename"

causes the entire line to be replaced with the contents of filename. The
following directories are searched, in order:

a. The current directory (of the file containing the #include line).

b. Any directories named in -I options to the compiler, in order.

The Parts of C 81

82

c. A list of standard places, typically, but not necessarily, /usr/include.

A line of the form:

#include <filename>

causes the entire line to be replaced with contents of filename. The angle
brackets surrounding filename indicate that filename is not searched for in the
current directory.

A third form allows an arbitrary number of preprocessing tokens to follow
the #include, as in:

#include preprocessing-tokens

The preprocessing tokens are processed the same way as when they are
used in normal text. Any defined macro name is replaced with its
replacement list of preprocessing tokens. The preprocessing tokens must
expand to match one of the first two forms (< ... >or"...").

A file name beginning with a slash / indicates the absolute pathname of a
file to include, no matter which form of #include is used.

Any #include statements found in an included file cause recursive
processing of the named file(s).

Conditional Compilation

Different segments of a program may be compiled conditionally. Conditional
compilation statements must observe the following sequence:

1.

2
3.
4

One of: #if or #ifdef or #ifndef.

. Any number of optional #elif lines.

One optional #else line.

. One #endif line.

#1f integral-constant-expression
Is true, if integral-constant-expression evaluates to nonzero.

If true, tokens following the if line are included.

C Programmer’s Guide—]July 1992

The integral-constant-expression following the if is evaluated by following this
sequence of steps:

1.

Any preprocessing tokens in the expression are expanded. Any use of the
defined operator evaluates to 1 or 0 if its operand is, respectively, defined,
or not.

If any identifiers remain, they evaluate to 0.

The remaining integral constant expression is evaluated. The constant
expression must be made up of components that evaluate to an integral
constant. In the context of a #1f, the integral constant expression may not
contain the sizeof operator, casts, or floating point constants.

The following table shows how various types of constant expressions
following a #if would be evaluated. Assume that name is not defined.

Table 5-8 Constant Expression Evaluation

Constant Expression Step 1 Step 2 Step 3
__STDC__ 1 1 1
ldefined(__STDC__) 11 11 0
3| I name 31 | name 3110 1
2 + name 2 + name 2+0 2

® #ifdef

® identifier

Is true if identifier is currently defined by #define or by the -D option to
the compiler command line.

® #ifndef identifier

Is true if identifier is not currently defined by #define (or has been

undefined).

® #elif constant-expression

Indicates alternate if-condition when all preceding if-conditions are false.

® jfelse

The Parts of C

83

Indicates alternate action when no preceding if or elif conditions are
true. A comment may follow the else, but a token may not.

® #endif

Terminates the current conditional. A comment may follow the endif, but
a token may not.

Line Control
® Useful for programs that generate C programs.

® A line of the form

#line constant "filename"

causes the compiler to believe, for the purposes of error diagnostics and
debugging, that the line number of the next source line is equal to constant
(which must be a decimal integer) and the current input file is filename
(enclosed in double quotes). The quoted file name is optional. constant must
be a decimal integer in the range 1 to MAXINT. MAXINT is defined in
limits.h.

Assertions

A line of the form

#assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space
(separate from the space used for macro definitions). The predicate must be an
identifier token.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

84 C Programmer’s Guide—July 1992

The compiler provides the following predefined predicates by default:

#assert machine (SPARC)
#assert system (unix)
#assert cpu (SPARC)

Any assertion may be removed by using #uhassert, which uses the same
syntax as assert. Using #unassert with no argument deletes all assertions
on the predicate; specifying an assertion deletes only that assertion.

An assertion may be tested in a #1f statement with the following syntax:

#if #predicate(non-empty token-list)

For example, the predefined predicate sy stem can be tested with the following
line:

#if #system(unix)

which will evaluate true.

Version Control

The #ident directive is used to help administer version control information.

#ident "version"

puts an arbitrary string in the . comment section of the object file. The
-comment section is not Joaded into memory when the program is executed.

Pragmas

Preprocessing lines of the form

!Tprag‘ma pp-tokens T

specify implementation-defined actions.

The following #pragmas are recognized by the compilation system:

The Parts of C 85

® #pragma fini identifier
(SunOS 5.0 only). Marking identifier as a “finalization function.” Such
functions are expected to be of type void and to accept no arguments,
and are called either when a program terminates under program control
or when the containing shared object is removed from memory. As with
“initialization functions,” finalization functions are executed in the order
processed by the link editor(s).

® 4pragma init identifier
(SunOS 5.0 only). Marking identifier as an “initialization function.” Such
functions are expected to be of type void and to accept no arguments,
and are called while constructing the memory image of the program at
the start of execution. In the case of initializers in a shared object, they
will be executed during the operation that brings the shared object into
memory, either program start-up or some dynamic loading operation
such as dlopen (). The only ordering of calls to initialization functions
is the order in which they were processed by the link editor(s), both static
and dynamic.

® #pragma ident string
Place string in the . comment section of the executable

® #pragma int_to_unsigned function name
For a function that returns a type of unsigned, in -Xt or -Xs mode,
change the function return to be of type int.

® i¢pragma unknown_control_flow (name, [, name])
Specifies a list of routines that violate the usual control flow properties of
procedure calls. For example, the statement following a call to
setjmp () can be reached from an arbitrary call to any other routine.
The statement is reached by a call to longjmp (). Since such routines
render standard flowgraph analysis invalid, routines that call them
cannot be safely optimized; hence, they are compiled with the optimizer
disabled.

* #pragma unshared (name [, name])
(SunOS 5.0 only). Any identifer named in the id list must be marked in
the symbol table as unshared (thread-local), so that subsequent symbol
table accesses for the symbol will be able to pass along this information
to any tool that needs it. errno is an example of a symbol which should
be marked.

86 C Programmer’s Guide—July 1992

¢ #pragma weak function name = _function name
(SunOS 5.0 only). If a defined global symbol function name exists, the
appearance of a weak symbol _function name with the same name will not
cause an error.

® d#pragma weak function name
(SunOS 5.0 only). The linker will not complain if it does not find a
definition for function name.

The compiler ignores unrecognized pragmas.

Error Generation

A preprocessing line consisting of

terror token-sequence W

causes the compiler to produce a diagnostic message containing the token-
sequence, and stop.

Predefined Names

The following identifiers are predefined as object-like macros:

Table 5-9 Pre-defined Identifiers

Identifier Description
_ LINE__ The current line number as a decimal constant.
__FILE__ A string literal representing the name of the file being compiled.
__DATE__ The date of compilation as a string literal in the form "Mmm dd

‘ yyyy-"
__TIME__ The time of compilation, as a string literal in the form "hh:mm:ss.”
__STDC__ The constant 1 under compilation mode -Xc, otherwise 0.

With the exception of __STDC__, these predefined names may not be
undefined or redefined. Under compilation mode -Xt, __STDC__ may be
undefined (#undef __ STDC_) to cause a source file to think it is being
compiled by a previous version of the compiler.

The Parts of C 87

88

__STDC__ is not defined in -Xs mode.

5.4 Declarations and Definitions

Introduction

Types

A declaration describes an identifier in terms of its type and storage duration.
The location of a declaration (usually, relative to function blocks) implicitly
determines the scope of the identifier.

Basic Types

The basic types and their sizes are:
® char (1 byte)

®* short int (2 bytes)

® int (4 bytes)

® long int (4 bytes)

® Jong long int (8 bytes)1

Each of char, short, int, long, and long long may be prefixed with
signed or unsigned. A type specified with signed is the same as the type
specified without signed.

® float (4 bytes)

® double (8 bytes)

®* long double (16 bytes)
® void

Integral and floating types are collectively referred to as arithmetic types.
Arithmetic types and pointer types (see “Pointer Declarators” on page 94)
make up the scalar types.

1. long long isnot available in -Xc mode.

C Programmer’s Guide—]July 1992

Type Qualifiers

® const

The compiler may place an object declared const in read-only memory.
The program may not change its value and no further assignment may be
made to it. An explicit attempt to assign to a const object will provoke an
€rTor.

® volatile

volatile advises the compiler that unexpected, asynchronous events may
affect the object so declared and warns it against making assumptions. An
object declared volatile is protected from optimization that might
otherwise occur.

Structures and Unions
® Structures

A structure is a type that consists of a sequence of named members. The
members of a structure may have different object types (as opposed to an
array, whose members are all of the same type). To declare a structure is to
declare a new type. A declaration of an object of type struct reserves
enough storage space so that all of the member types can be stored
simultaneously.

A structure member may consist of a specified number of bits, called a bit-
field. The number of bits (the size of the bit-field) is specified by appending
a colon and the size (an integral constant expression, the number of bits) to
the declarator that names the bit-field. The declarator name itself is
optional; a colon and integer will declare the bit-field. A bit-field must have
integral type. The size may be zero, in which case the declaration name
must not be specified, and the next member starts on a boundary of the type
specified. For example:

char :0

The Parts of C 89

920

means “start the next member (if possible) on a char boundary.” A named
bit-field number that is not declared with an explicitly unsigned type holds
values in the range

0 - (2"-1)

where 7 is the number of bits. A bit-field declared with an explicit signed
type holds values in the range

2n—1 (211—1__1)

An optional structure tag identifier may follow the keyword struct. The
tag names the kind of structure described and struct may then be used as
a shorthand name for the declarations that make up the body of the
structure. For example:

struct t {
int x;
float vy;

} stl, st2;

Here, st1 and st2 are structures, each made up of x, an int, and v, a
float. The tag t may be used to declare more structures identical to st1
and st2, as in:

struct t st3;

A structure may include a pointer to itself as a member; this is known as a
self-referential structure.

struct n {

int X;

struct n *left;
struct n *right;
Y

Note — Bit-fields of type long long are not permitted in structures or unions.

C Programmer’s Guide—]July 1992

Scope

® Unions

A union is an object that may contain one of several different possible
member types. A union may have bit-field members. Like a structure,
declaring a union declares a new type. Unlike a structure, a union stores the
value of only one member at a given time. A union does, however, reserve
enough storage to hold its largest member.

Enumerations

An enumeration is a unique type that consists of a set of constants called
enumerators. The enumerators are declared as constants of type int, and
optionally may be initialized by an integral constant expression separated from
the identifier by an = character.

Enumerations consist of two parts:
¢ The set of constants.
® An optional tag.

For example:

enum color {red, blue=5, yellow};

color is the tag for this enumeration type. red, blue, and yellow are its
enumeration constants. If the first enumeration constant in the set is not
followed by an =, its value is 0. Each subsequent enumeration constant not
followed by an = is determined by adding 1 to the value of the previous
enumeration constant. Thus yellow has the value 6.

enum color car_color;

declares car_color to be an object of type enum color.

The use of an identifier is limited to an area of program text known as the
identifier’s scope. The four kinds of scope are function, file, block, and
function prototype.

The Parts of C 91

® The scope of every identifier (other than label names) is determined by the
placement of its declaration (in a declarator or type specifier).

® The scope of structure, union and enumeration tags begins just after the
appearance of the tag in a type specifier that declares the tag. Each
enumeration constant has scope that begins just after the appearance of its
defining enumerator in an enumerator list. Any other identifier has scope
that begins just after the completion of its declarator.

® If the declarator or type specifier appears outside a function or parameter
list, the identifier has file scope, which terminates at the end of the file (and
all included files).

® If the declarator or type specifier appears inside a block or within the list of
parameter declarations in a function definition, the identifier has block
scope, which ends at the end of the block (at the } that closes that block).

® If the declarator or type specifier appears in the list of parameter
declarations in a function prototype declaration, the identifier has function
prototype scope, which ends at the end of the function declarator (at the)
that ends the list).

® Label names always have function scope. A label name must be unique
within a function.

Storage Class Specifiers
® auto

An object may be declared auto only within a function. It has block scope
and the defined object has automatic storage duration.

® register

A register declaration is equivalent to an auto declaration. It also
advises the compiler that the object will be accessed frequently.

® static

static gives a declared object static storage duration (see “Storage
Duration”). The object may be defined inside or outside functions. An
identifier declared static with file scope has internal linkage. A function
may be declared or defined with static. If a function is defined to be
static, the function has internal linkage. A function may be declared with
static at block scope; the function should be defined with static as well.

92 C Programmer’s Guide—]July 1992

® extern

extern gives a declared object static storage duration. An object or
function declared with extern has the same linkage as any visible
declaration of the identifier at file scope. If no file scope declaration is
visible the identifier has external linkage.

® typedef

Using typedef as a storage class specifier does not reserve storage.
Instead, typedef defines an identifier that names a type.

Table 5-10 Storage Classes in C

Storage class Declaration in C Scope and initialization by compiler
Automatic auto int a; Local to block or function in which
int a; they are declared. Values do not

persist. Not initialized by compiler.

Register register int a; Local to block or function in which
they are declared. Values do not
persist. Not initialized by compiler.

Static static int a; Local to function in which they are
declared. Values persist. Initialized to
0 at compile time.

External extern int aj; Globally available to any function if
declared outside and above that
function. Globally available to all
functions, regardless of number of
source files, if declared as extern
within each function. Values persist.
Initialized to 0 at compile time.

Storage Duration
¢ Automatic Storage Duration

Storage is reserved for an automatic object, and is available for the object on
each entry (by any means) into the block in which the object is declared. On
any kind of exit from the block, storage is no longer reserved.

® Static Storage Duration

The Parts of C 93

An object declared outside any block, or declared with the keywords
static or extern, has storage reserved for it for the duration of the
entire program. The object retains its last-stored value throughout program
execution.

Declarators

A brief summary of the syntax of declarators:

declarator:
pointer,y,; direct-declarator
direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionyy;]
direct-declarator (parameter-type-list)
direct-declarator (identifier-list,p;)
pointer:
*type-qualifier-listoy,
*type-qualifier-list,,; pointer

Pointer Declarators
® Pointer to a type:

char *p;

p is a pointer to type char. p contains the address of a char object.

Care should be taken when pointer declarations are qualified with const :

const int *pci;

declares a pointer to a const-qualified (read-only) int.

int *const cpi;

declares a constant pointer to int that is itself read-only.

94 C Programmer’s Guide—]July 1992

® Pointer to a pointer:

char **t;

t points to a character pointer.

® Pointer to a function:

int (*£) ();

f is a pointer to a function that returns an int.

® Pointer to void:

void *

A pointer to void may be converted to or from a pointer to any object or
incomplete type, without loss of information. This “generic pointer”

behavior was previously carried out by char *;a pointer to void has the
same representation and alignment requirements as a pointer to a character

type.

Array Declarators
® One-dimensional array:

int ia[10];

ia is an array of 10 integers.

® Two-dimensional array:

char d[4]1[107; 4}

d is an array of 4 arrays of 10 characters each.

® Array of pointers:

char *pl[7];

The Parts of C

95

96

p is an array of seven character pointers.

An array type of unknown size is known as an incomplete type.

Function Declarators
® A function declaration includes the return type of the function, the function
identifier, and an optional list of parameters.

* Function prototype declarations include declarations of parameters in the
parameter list.

® If the function takes no arguments, the keyword void may be substituted
for the parameter list in a prototype.

® A parameter type list may end with an ellipsis “, . . . ” to indicate that the
function may take more arguments than the number described. The comma
is necessary only if it is preceded by an argument.

® The parameter list may be omitted, which indicates that no parameter
information is being provided.

Examples:

void srand(unsigned int seed);

The function srand returns nothing; it has a single parameter which is an
unsigned int. The name seed goes out of scope at the) and as such serves
solely as documentation.

int rand(void) ;

The function rand returns an int; it has no parameters.

int strcmp(const char *, const char *);

The function st rcmp returns an int; it has two parameters, both of which are
pointers to character strings that st rcmp does not change.

void (*signal (int, void (*) (int))) (int);

C Programmer’s Guide—]July 1992

The function signal returns a pointer to a function that itself returns nothing
and has an int parameter; the function signal has two parameters, the first
of which has type int and the second is a pointer to a function which returns
void (this “second” function itself has one argument of type int).

int fprintf(FILE *stream, const char *format, ...);

The function fprintf returns an int; FILE is a typedef name declared in
stdio.h; format is a const qualified character pointer; note the use of
ellipsis (. . .) to indicate an unknown number of arguments.

Function Definitions

A function definition includes the body of the function after the declaration of
the function. As with declarations, a function may be defined as a function
prototype definition or defined in the old style. The function prototype style
includes type declarations for each parameter in the parameter list. This
example shows how main would be defined in each style:

Table 5-11 Function Definitions

Function Prototype Style Old Style
int int
main(int argc, char *argvl[]) main(argc, argv)
{ int argc;

char *argvl[];

{

} }

Some important rules that govern function definitions:

® An old style definition names its parameters in an identifier list, and their
declarations appear between the function declarator and the “{” that begins
the function body.

® Under the old style, if the type declaration for a parameter was absent, the
type defaulted to int. In the new style, all parameters in the parameter list
must be type-specified and named. The exception to this rule is the use of
ellipsis, explained in “Function Declarators” on page 96.

® A function definition serves as a declaration.

The Parts of C 97

* Incomplete ty<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>