S ®
% sun

microsystems

SunCGI" Reference Manual

, Part Number: 800-1786-10
Revision A, of 9 May 1988

r/m\ \
Sun Workstation® and Sun Microsystems® are registered trademarks of Sun \\k Y.
Microsystems, Inc. 7

SunCGI™, SunCore®, SunGKS™, SunView™, SunOS™, and the combination
of Sun with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,

translated, transcribed, or transmitted, in any form, or by any means manual,

electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-

wise, without prior explicit written permission from Sun Microsystems. 7N

Contents

Chapter 1 Introduction

1.1. Using SunCGI
1.2. The SunCGI Lint Library

1.3. Overview of SunCGI

Initialization and Termination

Output Primitives

Attributes

Input

Errors

Programming TipS
Appendices

1.4. References

N OV NN R R W W

Chapter 2 Initializing and Terminating SunCGI

2.1. View Surface Initialization and Selection

11
11

Open CGI (SunCGI Extension)

12

Open View Surface (SunCGI Extension)

13

Activate View Surface (SunCGI Extension) ..

17

Deactivate View Surface (SunCGI Extension) -

Close View Surface (SunCGI Extension)

Close CGI (SunCGI Extension)
2.2. View Surface Control

VDC Extent ...

Device Viewport

—iii—

Contents — Continued

Clip Indicator

Clip Rectangle

Hard Reset

Reset to Defaults

" Clear View Surface
Clear Control

Set Error Warning Mésk

2.3. Running SunCGI with SunView

Set Up SIGWINCH (SunCGI Extension)

2.4, Interface Negotiation

Inquire Device Identification

Inquire Device Class

Inquire Physical Coordinate System

Inquire Output Function Set

Inquire VDC Type

Inquire Output Capabilities
2.5. Input Capability Inquiries

Inquire Input Capabilities

Inquire LID Capabilities

Inquire Trigger Capabilities

Chapter 3 Output

3.1. Geometrical Output Primitives

Polyline

Disjoint Polyline
Polymarker

Polygon

Partial Polygon

Rectangle

Circle

Circular Arc Center

Circular Arc Center Close

Circular Arc 3pt

—iv—

20
21
21
21
21
22
22

23

24
25
26
26
26
27
27
28
28
28
29
30

335
35
36
37
37
37
38
40
40
40
41
42

N

.........

()

Contents — Continued

Circular Arc 3pt Close 42
Ellipse 43
Elliptical Arc 43
Elliptical Arc Close 43

3.2. Raster Primitives 44
Text 44
VDM Text 44
Append Text - 45
Inquire Text Extent 45

Cell Array 46

Pixel Array 46
Bitblt Source Array 47
Bitblt Pattern Array 47
Bitblt Patterned Source Array 48
Inquire Cell Array 49
Inquire Pixel Array 49
Inquire Device Bitmap 50
Inquire Bitblt Alignments 50

3.3. Drawing Modes 50
Set Drawing Mode 51

Set Global Drawing Mode (SunCGI Extensfbn) 51
Inquire Drawing Mode 52
Chapter 4 Attributes 55
4.1. Bundled Attribute Functions 57
Set Aspect Source Flags 58
Define Bundle Index (SunCGI Extension) 59

4.2. Line Attributes 60
Polyline Bundle Index 60

Line Type 60

Line Endstyle (SunCGI Extension) 61

Line Width Specification Mode 61

Line Width 62

Contents — Continued

Line Color

4.3. Polymarker Attributes

Polymarker Bundle Index

Marker Type
Marker Size Specification Mode

Marker Size

Marker Color

4.4. Solid Object Attributes

Fill Area Bundle Index

Interior Style

4.5, Solid Interior Fill Attribute

Fill Color

4.6. Hatch and Pattern Attributes

Hatch Index

Pattern Index

Pattern Table

Pattern Reference Point

Pattern Size

Pattern with Fill Color (SunCGI Exiension)
4.7. Perimeter Attributes

Perimeter Type

Perimeter Width

Perimeter Width Specification Mode

Perimeter Color

4.8. Text Attributes

Text Bundle Index

Text Precision

Character Set Index

Text Font Index

Character Expansion Factor

Character Spacing

Character Height

Fixed Font (SunCGI Extension)

—vi—

62
62
62
63
63
63

64

64

64
65
65
65
67
67
67
68
68
68
69
69
69
70
70
70
70
71
71
71
72
72
72
73

)

/%_

-

Contents — Continued

Text Color 73
Character Orientation 73
Character Path 74

Text Alignment 74

4.9. Color Attributes 76
Color Lookup Table 76

4.10. Inquiry Functions -7
Inquire Line Attributes 78
Inquire Marker Attributes 78
Inquire Fill Area Attributes 78
Inquire Pattern Attributes 79
Inquire Text Attributes 79
Inquire Aspect Source Flags 80
Chapter 5 Input 83
5.1. Input Device Initialization 86
Initialize LID 86
Release Input Device 87
Associate 88

Set Default Trigger Associations 88
Dissociate ' 89

Set Initial Value .. 89

Set VALUATOR Range 90
Track On 90
Track Off 91

5.2. Synchronous Input 92
Request Input 93

5.3. Asynchronous Input 94
Initiate Request 94

5.4. Event Queue Input 94
Enable Events 96
Await Event 96

Flush Event Queue 97

— vii -

Contents — Continued

Selective Flush of Event Queue

5.5. Miscellaneous Input Functions

Sample Input

Get Last Requested Input

Disable Events

5.6. Status Inquiries
Inquire LID State List

Inquire LID State

Inquire Trigger State

Inquire Event Queue State

Appendix A Unsupported Aspects of CGI

Appendix B Type and Structure Definitions

he

Appendix C Error Messages
C.1. Successful Return (0)

C.2. State Errors (1-5)

C.3. Control Errors (10-16)

C.4. Coordinate Definition (20-24)

C.5. Output Attributes (30-51)

C.6. Output Primitives (60-70)

C.7. Input (80-97)

C.8. Implementation Dependent (110-112) .

C.9. Possible Causes of Visual Errors

Appendix D Sample Programs

D.1. Martini Glass
D.2. Tracking Box

D.3. Colored Lines

Appendix E Using SunCGI and Pixwins

E.1. SunCGI — Pixwins Interface

Open Pixwin CGI

— viii —

97
98
98
98
99
99
99
100
100
100

105

109

123
123

123 .

124
124
125
128
129
131
131

137
137
138
139

143
143
143

{ J

k/h\
\\W/ .

Contents — Continued

Open a CGI Pixwin
Open a CGI Canvas
Close a CGI Pixwin
Close Pixwin CGI
E.2. Using CGIPW
E.3. CGIPW Functions
E.4. Example Programs

Appendix F Using SunCGI with FORTRAN Programs
F.1. Programming Tips

F.2. Example Programs
F.3. FORTRAN Interfaces to SunCGI

Appendix G Short C Binding

Index

144
144
145
145
145
146
148

155
155
156
160

177

181

s

- Table 4-2 Attribute Source Flag Numbers

Table 2-1 SunCGI Default States

Tables

12

Table 2-2 Available SunCGI View Surfaces
Table 2-3 View Surface Default States

16

17

Table 2-4 Error Warning Masks

23

Table 2-5 Class Dependent Information

30

Table 4-1 Default Attributes

56

59

Table 4-3 Available Fonts

72

Table 4-4 Normal Alignment Values

76

Table 4-5 Default Color Lookup Table

76

Table 5-1 Input Devices Offered by SunCGI
Table 5-2 Default Trigger Associations

Table 5-3 Available Track Types

Table A-1 Unsupported Control Functions

Table A-2 Unsupported Input Functions

Table A-3 Nonstandard Control Functions

Table A-4 Nonstandard Attribute Functions

Table C-1 Attribute Errors

Table C-2 Input Errors

Table C-3 View Surface Errors ..

Table C-4 Primitive Errors

—xi—

Tables — Continued

Table E-1 List of CGIPW Functions
Table E-2 SunCGI Functions not Compatible with CGIPW Mode

Table F-1 SunCGI FORTRAN Binding — Part I
Table F-2 SunCGI FORTRAN Binding — Part IT

Table F-3 SunCGI FORTRAN Binding — Pari II1
Table F-4 SunCGI FORTRAN Binding — Part IV
Table F-5 SunCGI FORTRAN Binding — Part V

Table G-1 Correspondence Between Long and Short C Names ...

—xii—

148

160
162
165
169
171

O

N
N

-~

o

Figure 5-1 CGI Input State Model

— xiii —

Figures

85

=

S

Controlling Document

Audience

Preface

This document describes SunCGI, an implementation of the ANSI Computer
Graphics Interface (CGI) by Sun Microsystems, Inc. Previously, CGI was known
as the Virtual Device Interface (VDI) standard. Appendix A summarizes the
differences between SunCGI and ANSI CGI.

Only certain models within CGI are supported by SunCGI. Specifically SunCGI
implements input option sets 1, 2, 3, 4, and 6 and output option sets 1 through 6
of the CGI standard. CGI does not support 3D output primitives.

The following document was used in interpreting the CGI standard:

[11 ANSI X3H3 84/45. Information Processing Computer Graphics Virtual
Device Interface (VDI) Functional Description. March 1984,

The intended reader of this document is an applications programmer who is fami-
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger SunCGlI applications.

— XV —

0

10N

Introduct

tion

Introduc

SunCGI

ing
The SunCGI L.

. Usi

1
2
3

1
1
1

t Library ...
f SunCGI

i

Overview o

d Termination

ion an

izat

niti

I

ives

it

Tim

Output P
Att

ributes

Input

i

-

Errors

ips

ing T

Programm

1CCS

Append

References

4

1

A\U

)

Ntz

Introduction

SunCGI provides access to low-level graphics device functions. SunCGI is use-
ful for 2D graphics programs that do not require segmentation or transforma-
tions. The absence of segmentation from SunCGI makes drawing diagrams faster
and simpler.

SunCGlI provides output primitives, attribute selection, and input device manage-
ment at a level close to the actual device driver. The output primitives SunCGI
provides include disjoint polygons, circles, ellipses, and cell arrays (which can be
thought of as scaled and transformed pixel arrays). SunCGI’s large vocabulary of
attributes include sophisticated pattern filling. SunCGI also provides facilities
for explicitly binding virtual input devices to physical input devices as well as
explicit management of an event queue.

1.1. Using SunCGI Following is a SunCGI example application program written in C.

r

#include <cgidefs.h>
#define BOXPTS 5

Ccoor box[BOXPTS] = { 10000,10000 ,

10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

main ()
{
Cint name; /* name of CGI device (set by CGI) */
Cvwsurf device; /* device struct (see NORMAL VWSURF) */
Ccoorlist boxlist; /* struct of info for list of points */
boxlist.n = BOXPTS; /* set number of points */
boxlist.ptlist = box; /* set pointer to list of points */
NORMAL_VWSURF (device, PIXWINDD);/* view surface is default window */
open_cgi () ; /* open CGI and the view surface */
open_vws (&name, &device);
J
f& sun 3 Revision A, of 9 May 1988
microsystems

4 SunCGI Reference Mammual

polyline (&boxlist);
sleep(10);

close_ vws (name) ;
close_cgi():;

/* watch the &’ here!

/* close up the view surface and CGI */

*/ h

J

1.2. The SunCGI Lint
Library

1.3. Overview of SunCGI

D
@

SunCGI uses a variety of structures and enumerated types shown in Appendix B.
The file <cgidefs.h> should be included in each SunCGI application program

to provide necessary definitions and constants.

Here is an example of a command line for compiling box. ¢ to run in the Sun-

View environment:

: N
|% cc box.c -o box -lcgi -lsunwindow —-lpixrect -1lm]

The order in which the libraries are linked to the program is important.

All SuﬁCGI functions can be called by one of two names: the expanded name
(default) or the C language binding name. See Appendix G for information on

the list of names for the shorter C language binding.

As a final note, do not name any user-defined function or variable starting with
the letters _cgi because doing so may disrupt the internal workings of SunCGl.

FORTRAN programmers can access SunCGI functions by using the include file in
cgidefs77.h and linking with the /usr/1ib/1libcgi77.a library.
Details of the FORTRAN interface to SunCGI are provided in Appendix F.

SunCGI provides a lint library which provides type checking beyond the capabil-
ities of the C compiler. For example, you could use the SunCGI lint library to
check a program called glass . c with a command like this:

i
[% lint glass.c -lcgi

’)

Note that the error messages that lint generates are mostly warnings, and may not
necessarily have any effect on the operation of the program. For a detailed

explanation of 1int, see the lint chapter in the Programmer’s Tools Manuals

Minibox manual.

This section provides an overview of the substance of this manual. The four
major sections of the manual (which correspond to chapters) are:

o view surface initialization and termination (control)
o output primitives
o attributes

o input

sun

microsystems

Revision A, of 9 May 1988

.

Chapter 1 — Introduction 5

&

Initialization and Termination

Output Primitives

Attributes

@

The overview of these chapters contains a brief introduction to the basic concepts
of CGL

Chapter 2 describes functions for the following:

o initializing and terminating the entire SunCGI package and individual view
surfaces

o defining the coordinate systems
o interface negotiation
o signal trapping

The first section in Chapter 2 describes functions for opening and closing view
surfaces (which are either windows or screens). SunCGI provides facilities for
writing primitives to multiple view surfaces. Output primitives can be written to
a selected subset of the open view surfaces by using the act ivate vws () and
deactivate_vws () functions (which turn a view surface on or off without
closing the view surface or affecting the display). The functions discussed in
Chapter 2 also define the range of virtual device coordinates (VDC space) and
device coordinates (screen space). The coordinates of most SunCG/ functions
are expressed in terms of VDC space. The limits of both VDC space and screen
space can be defined by the application program.

If you are attempting to run an application program developed on another
vendor’s version of CGI, negotiation functions are provided that describe the
capabilities of SunCGI. The application program can use the information
obtained by using the negotiation functions to call appropriate functions in
SunCGlI to make the application program run correctly. Finally, Chapter 2
describes SunCGI’s option for trapping SIGWINCH signals (generated by mani-
pulating the window environment that the application program is using).

Chapter 3 describes SunCGI functions for drawing geometrical output primitives
(for example, polymarkers, polygons, circles, and ellipses) as well as functions
for performing raster operations. The coordinates of output primitives are
specified in VDC space (with the exception of some raster functions). Geometri-
cal output primitives are affected by attributes described in Chapter 4 (such as fill
style and line width). All output primitives are affected by the drawing mode,
which determines how an output primitive is affected by pixels that have been
previously drawn on the screen.

Chapter 4 describes the attribute functions that control the appearance of output
primitives. Attributes can be set individually, or in groups called bundles. The
use of most attributes is fairly straightforward; fill textures, however, require a
word of explanation. Geometrical output primitives can be filled with textures
called hatches or patterns. Hatches are simply arrays of color values with each
clement of the array corresponding to a pixel. Patterns are arrays of color values
which can be scaled and translated.

sun ~ Revision A, of 9 May 1988

microsystems

6 SunCGI Reference Manual

Input

Errors

Programming Tips

Appendices

Chapter 5 describes the standard interface SunCGI offers for receiving input from
the mouse and the keyboard. The CGI input model is based on the logical input
device model in GKS. In this system, a logical input device (for example, a
LOCATOR device), is bound to a physical device (for example, the x-y position
of the mouse) called a trigger. Triggers may be associated with logical input
devices by the application program. Each logical input device has an associated
measure (for example, the measure of a LOCATOR device is the mouse position
on the s¢reen). Each logical input device also has a state which determines how
a device handles input. Each logical input device can be in one of five states:

o RELEASED (uninitialized)

. NOJi_EVENTS (inifialized but unable to receive input)

o REQUEST_EVENT (waiting for one event)

o RESPOND_EVENT (report one event asynchronously)

o QUEUE_EVENT (put each event at the end of the event queue)

Errors afe reported in SunCGlI by setting the retumn value of the function to a
nonzero result and echoing an error message and number on the terminal. How-
ever, error trapping can be controlled by the set_error_ warning mask ()
function, An explanation of each error message (and suggestions for how to
eliminate them) is presented in Appendix C.

For nov1ce C language users, the syntax of SunCGI may pose some initial
d1fﬁcult1es When a pointer is specified as an argument to a SunCGI function,
SunCGlI usually expects space to be allocated by the application program and the
function argument to be preceded by an ampersand (&). SunCGI uses many
enumerated types. These types are printed by the print£ () function as
integers. If you want to print out these values in English, you should use the
enumerated types as indices into a character array which contains appropriate
English equivalents of the enumerated types. Finally, if you are a novice pro-
grammer, copy the example programs in Appendix D and use them as templates
o buildJyour own program. Further help can be obtained by referring to the
tables at the end of Appendix C. These tables list commonly encountered prob-
lems anh how to solve them.

\
The first four appendices are intended to make SunCGI easier to understand.
Appendlx A lists the ANSI CGI standard functions not implemented by SunCGI
and the kunCGI functions not part of the ANSI CGI standard. Appendix B pro-
vides the type definitions used by the SunCGI functions. Appendix C lists the
error méssages and possible strategies for eliminating them. Appendix C also
lists poss1ble causes of simple run-time errors. Appendix D describes sample
programs.

Append‘ices E and F describe the interfaces between SunCGI and other Sun
softwar? packages: SunView and FORTRAN. Appendix E explains how to call

SunCGl from application programs written on top of SunView. This interface
allows SunCGI to write output primitives in different windows using different

attributes.

% S u n Revision A, of 9 May 1988

microsystems

N
N

Chapter 1 — Introduction 7

C Appendix F describes the interface to the FORTRAN programming language.
The behavior of each SunCGI function is the same in both C and FORTRAN.

The final appendix, Appendix G, describes the SunCGI C binding for CGI. These
names are contained in the header file <cgicbind.h>, which must be included
in an application program using the short C binding.

1.4. References [1]
(2]

(3]
[4]
[5]
(6]

- m
8]
. 9]
[10]
[11]

()

ANSI X3H3. Computer Graphics Virtual Device Interface. March 1984,

Conrac Corporation. Raster Graphics Handbook, Second Edition. Van
Nostrand Reinhold, 1985.

J.D. Foley and A. van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley, 1982.

B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

W.M. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979,

V.R. Pratt. Standards and Performance Issues in the Workstation Market.
IEEE Computer Graphics and Applications, April 1984.

SunView 1 Programmer’s Guide. Sun Microsystems.
SunView 1 System Programmer’s Guide. Sun Microsystems.
Pixrect Reference Manual. Sun Microsystems.

SunCore Reference Manual. Sun Microsystems.

FORTRAN Programmer’ s Guide for the Sun Workstation. Sun Microsys-
tems.

>
@:{/) sSun Revision A, of 9 May 1988

microsystems

e’

()

SunCGI

inating

itializing and Term

In

SunCGI

ating

d Termi

itializing an

In

alization and Selection

(1]

Ini

Open CGI (SunCGI Extension)

Surface

View

1

2

Surface (SunCGI Extension)
ew Surface (SunCGI Extension)

1IeW

Open 'V

Activate Vi

Surface (SunCGI EXtension)ooeenn.

Surface (SunCGI Extension)

Close CGI (SunCGI Extension)

A%

tivate View

Deac

View

Close

TN

C

Surface Control

(A

i

2

2

VDC Extent

rt

iewpo

V:

1ce

Dev

ip Indicator

Cl

Rectangle

Clip

Hard Reset

Reset to Defaults

Surface

1ewW

Clear V

Clear Control
Set Error Wa

rming Mask
SunCGI w

ith SunView

Set Up SIGWINCH (SunCGI Extension)

nning

. Ru

3

2

ation
Id

Interface Negoti

4

2

entification
Class

1ce

Devi

1re

Inqu

1Ce

ire Devi

Inqu

Inquire Physical Coordinate System

Inquire Output Function Set
Inquire VDC Type

Inquire Output Capabilities

2.5. Input Capability Inquiries

Inquire Input Capabilities

Inquire LID Capabilities

Inquire Trigger Capabilities

26
27
27
28
28
28
29
30

N

(K\\

\\
R

2.1. View Surface
Initialization and
Selection

Initializing and Terminating SunCGI

The current CGI standard does not provide functions for initializing and terminat-
ing devices. ANSICGI is intended to provide an interface for a single view sur-
face (one per CGI instance). SunCGI extends CGI into the window environment
by allowing a single CGI process to control multiple view surfaces. Six nonstan-
dard functions, open_cgi (), close_cgi (), open vws (),
close_vws(),activate _vws (), and deactivate_vws (), are
included in SunCGI. open_cgi () and close cgi () initialize and ter-
minate the operation of the SunCGI package. open vws () and

close vws () initialize and terminate a view surface. activate vws ()
activates the view surface. deactivate vws () restricts output primitives
from a view surface. '

SunCGl is capable of handling up to five view surfaces at once.

A view surface is automatically activated when it is opened. However, a view
surface can be deactivated (with the deactivate vws () function) when the
output stream is not intended to appear on all view surfaces. Subsequent calls to
SunCGI output functions will not apply to deactivated view surfaces. until
activate_ wvws () is called again (see the following example). However,
inputs can be received on deactivated view surfaces.

r

#include <cgidefs.h>
main ()
{
Ccoor 11, /* coord of lower-left corner of rectangle */
ur, /* coord of upper-right corner of rectangle */
center; /* coord of center of circle */
Cint namel, /* name of first CGI view surface */
name2, /* name of second CGI view surface */
radius; /* radius of circle *x/
Cvwsurf devicel, /* 1lst CGI device struct (see NORMAL_VWSURF) */
device2; /* 2nd CGI device struct (see NORMAL VWSURF) */
static Cchar *scrn_name = "/dev/fb";
char *toolposition "0,0,250,250,0,0,250,250,0";
N ,
(11l.x = 1l1.y = 5000; /* set rectangle coordinates */
e ur.x = ur.y = 15000;
\o J
@:?f ﬁrgstgrl‘s 1 Revision A, of 9 May 1988

12 SunCGI Reference Manual

N
[center.x = center.y = 10000; /* set circle coordinates */) N
radius = 5000;
NORMAL VWSURF (devicel, PIXWINDD); /* set up a default window */
NORMAL VWSURF (device2, PIXWINDD); /* set up a 2nd default window *x/
device2.flags = VWSURF_NEWFLG; /* don’t take over current window */
device2.ptr = &toolposition; /* set position and size of 2nd */
open_cgi(); /* open CGI and view surfaces */
open_ vws (&namel, &devicel);
open vws (&name2, &device2);
rectangle(&1ll, &ur); /* rectangle draws on both devices */
deactivate vws (name2); /* only display one is acive now */
circle(¢er, radius); /* draw circle on device one only */
activate vws (name2); /* both displays active again */
circle (¢er, 2*radius); /* circle draws on both devices */
sleep(20);
close vws (namel) ; /* close view surfaces and CGI */
close vws (name2) ;
close cgi();
}
\. J
N’
Open CGI (SunCGI Cerror open_cgi()
Extension) open_cgi () initializes the state of SunCGI to CGOP (CGi OPen).
open_cgi () does not initialize input devices but does initialize the event
queue. No other CGI functions can be used without generating an error if
open_cgi () hasnot been called. SunCGI traps various signals as described in
Section 2.3. '
ENOTCjGCL [1] CGI not in proper state: CGI shall be in state CGCL.
Table 2-1 SunCGI Default States
| | State I Value
| Range of VDC space 0-32767 in both x and y directions
Clip Indicator CLIP
Clip Rectangle Range of VDC space
Error Warning Mask INTERRUPT
Input Devices Uninitialized
Input Queue EMPTY
Trigger Associations Defaults specific values listed in Table 5-2
Echo Modes Device specific values listed in Table 5-3
../

4
=
=

Revision A, of 9 May 1988

microsystems

Chapter 2 — Initializing and Terminating SunCGI 13

C You may be unfamiliar with some of the entries discussed in Table 2-1. How-
ever, these concepts are explained in the course of this chapter. Further, each of
these concepts are referenced in the index.

Open View Surface (SunCGI Cerror open vws (name, devdd)
Extension) Cint *name; /* name assigned to cgi view surface */
Cvwsurf *devdd; /* view surface descriptor */

open_vws () initializes a view surface. The list of available view surfaces is
described in Table 2-2. open_vws () initializes the attributes to their default
values (listed in Table 2-3). The returned argument name is the identifier which
is used to refer to this view surface in other SunCGI functions. To reinitialize the
state of the view surface without reopening it, use the hard reset () function.

A maximum of five view surfaces may be open at one time. Output primitives
are displayed on all active view surfaces (view surfaces must be opened before
they are activated). However, input is only echoed on the view surface pointed
to by the mouse. Most of the Cvwsurf fields should be zeroed, as by the
NORMAL VWSURF macro. Set the view surface type by assigning the dd (device
driver) element of the devdd argument to the name of the appropriate device
driver as in this example:!

Cvwsurf device;
NORMAL__VWSURF (device, BW2DD) ;
(\ open_vws (&name, &device);

NOTE The NORMAL_VWSURF macro initializes the dd element of the Cvwsurf struc-
ture and guarantees that the view surface will be opened in the normal fashion.
However, to open a window with some nonstandard parameters, or to open a
second window from a graphics tool, read the following paragraphs. To use an
existing Pixwin, skip the following paragraphs and read Appendix E instead.

If the view surface of the specified type has been previously initialized and the
type of view surface is a window (PIXWINDD or CGPIXWINDD), a CGI tool (a
window with the name CGI Tool) is opened. Other characteristics of the view
surface can be defined by setting the other elements of the devdd argument
(which is of type Cvwsurf).

1 Notice that when SunCGI specifies a pointer it usually requires that the argument is prefaced by an &

/ o character when the argument is actually used.
N
4 -
&V mkr!s-!stm Revision A, of 9 May 1988

14 SunCGI Reference Manual

@
J
typedef struct ({ N
char screenname [DEVNAMESIZE]; /* physical screen */
char windowname [DEVNAMESIZE]; /* window */
int windowfd; /* window file descriptor */
int retained; /* retained flag */
int dd; /* device */
int cmapsize; /* colormap size */
char cmapname [DEVNAMESIZE]; /* colormap name */
int flags; /* new flag */
chér **ptr; /* CGI tool descriptor */

} Cvwsurf;

The elements screenname and windowname specify altemate screens (for exam-
ple, /devicgone0) or alternate windows (for example, /deviwinl0). If these ele-
ments are left blank, the current screen and the current window are used, unless
the dd ﬁéld implicitly specifies a device (for example, CGIDD). The element
windowfd is the window file descriptor for the current device. The current imple-

mentatiofn of SunCGI ignores this element.

If the element retained is nonzero, then the view surface created by

open_\}ws () has a retained window associated with it (that is, if the window is

covered up by another window and then revealed, the picture present before the

window was covered-up will be redisplayed. By default the window created by
open_vws () is non-retained. That is, if the window is covered-up and then

revealed, the covered-portion will be redisplayed as white. However, drawingin =~ /™ ™
non-retained windows is twice as fast as drawing in retained windows, so the K S
choice of which type of view surface to open should be carefully considered.

The dd é%lement specifies the view surface type. The cmapsize and the cmapname
elements determine the size and the name of the colormap. No colormap is

enabled ‘for monochrome devices. The colormap determines the mapping

between color indices and red, green, and blue values. If the colormap specified

by the ci;napname element of the devdd argument is the same as a colormap seg-

ment wlﬁch already exists, then the colormap segment is shared. cmapsize

should be a power of two, less than or equal to 256. The cmapsize and the cmap-

name ﬁejlds provided in the Cvwsur £ structure that is passed to open_vws ()

must belinitialized to modify the colormap.

See Chapter 4, section 4.9, for a description on using colormaps in SunCGI. For
more information about colormaps in CGIPW, refer to the SunView 1
Programmer’s Guide.

SunCGI must define its own colormap by creating a new colormap or using a
shared colormap whether the SunCGI application is running inside or outside the
window system.

The SunCGI color intensity scheme ranges from 0 to 255.

In SunCGl, first set the dd element of the view surface structure to be the frame

buffer type {CG1DD, CG2DD, CG4DD, GP1DD, or CGPIXWINDD]}. In the win-

dow environment, the graphics processor is accessed through CGPIXWINDD. If N
the graphics processor is available, the CGPIXWINDD uses the device for N
transformation calculations. Within the view surface structure, set the cmapsize

0%:% sun | Revision A, of 9 May 1988

microsystems

SN

N

1

Chapter 2 — Initializing and Terminating SunCGI 15

element to the colormap size, and the cmapname element to the string that names
the colormap. When the view surface is opened, and the red, green, and blue
color atrays are initialized, the colormap array of type Ccentry points to the
red, green, and blue color arrays.

When the flags element is nonzero, no attempt is made to take over the current
graphics subwindow (if one exists). If this flag is set or the graphics subwindow
has already been taken over by SunCGI, then a CGI Tool (a window with the
name View Surface Tool) is created. The ptr element specifies the size and
placement of the CGI Tool. ptr is a pointer to an array of strings, only the first of
which is currently used. This string should consist of nine decimal numbers
separated by commas. The array takes the following form:

"nl,nt,nw,nh,il,it,iw,ih, I"

Each element of the array should be filled with an integer. The first two elements
specify the x and y coordinates of the upper left-hand comer of the CGI Tool in
screen, or Pixwin coordinates. This coordinate system specifies the upper left-
hand corner as the origin, so be sure that the y value for the upper comer given
is less than the value for the lower comer. The third and fourth elements specify
the width and height of the CGI Tool. The fifth through eighth elements specify
the position and size of the iconic form of the CGI Tool. If the ninth element is
nonzero, the tool is displayed in its iconic form.

ENOTOPOP [5] CGI not in proper state; CGI should be in state CGOP,
VSOP, or VSAC.

ENOWSTYP [11] Specified view surface type does not exist.

EMAXVSOP [12] Maximum number of view surfaces already open.
EMEMSPAC [110] Space allocation has failed.

ENOTCCPW [112] Function or argument not compatible with CGIPW mode.

SunCGI distinguishes between the inside and the outside of the window system.
While running under suntools, SunCGI uses different window devices as the
view surface.

The color view surfaces for the window system are the "color graphics pixwins,’

called cgpixwindds. SunCGI, while running inside the window system, uses

cgpixwindds or gppixwindds. While running outside the window system,
SunCGI uses the raw frame buffer. These devices are described in the following
table.

sSun Revision A, of 9 May 1988 -

microsystems

16

SunCGI Reference Manual

Table 2-2 Available SunCGI View Surfaces

dd Element
of View Surface Name Description
‘ 1 ‘ BW1DD The Sun 1 monochrome frame buffer

device; and for Sun 2 multibus systems
when running outside suntools,in
console mode.

2 BW2DD The Sun 2 VME and Sun 3 monochrome
frame buffer device when running out-
side suntools, in console mode.

3 CG1DD The Sun 1 color frame buffer device;
and for Sun 2 multibus systems when
running outside suntools, in console
mode.

4 BWPIXWINDD A monochrome window, when running
the application in a suntools win-
dow, or in a SunView canvas subwin-
dow, as in the case for CGIPW.

5 CGPIXWINDD A color window, when running the
application in a suntools window; or
in a SunView canvas subwindow, as is

the case for CGIPW.

6 GP1DD The graphics processer{ when running
the application outside suntools,in
console mode.

7 CG2DD The Sun 2 and Sun 3 color frame device

when running outside suntools, in
console mode.

8 CG4DD The Sun 3/110 color frame buffer device
when running outside suntools,in
console mode.

running the application in a suntools
window, or in a SunView canvas
subwindow as in the case of CGIPW.
Use this device when you are not sure
whether you will have a monochrome or
color monitor.

i 9 PIXWINDD A monochrome or color window, when " |

T The graphics processor is Sun’s hardware graphics accelerator. This is
a single board option. An additional graphics buffer board option may
also be added at a later time.

&
% S u n Revision A, of 9 May 1988

% microsystems

S

»

Activate View Surface
(SunCGI Extension)

Deactivate View Surface
(SunCGI Extension)

Close View Surface (SunCGI
Extension)

(N

Chapter 2 — Initializing and Terminating SunCGI 17

View Surface Default States

State l Value

View Surface Cleared
Device Viewport View Surface

Most failures during the opening of a view surface result in error ENOWSTYP
[11]. The most common reason is missetting (or failing to set) the dd element
of the Cvwsurf structure. For example, opening a device surface type
PIXWINDD instead of CGPIXWINDD on a color pixwin, or using CG2DD when
a /devicgtwo surface is being used by suntools. The NORMAL VWSURF
macro should be used to initialize this structure.

Cerror activate_ vws (name)
Cint name; /* view surface name */

activate_vws () activates the view surface specified by name. Subsequent
SunCGI calls affect this view surface. Nothing is displayed on a view surface
unless that view surface is active. Since a view surface is active as soon as it is
opened, activate vws () is only needed to reactivate a deactivated view sur-
face. Note that activating a view surface may reset the state of SunCGI.

ENOTOPOP [5] - CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.
EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.
EVSISACT [14] Specified view»svurface is active.
Cerror deactivate_vws (name)

Cint name; /* view surface name */

deactivate_vws () prevents calls to SunCGI functions from having an effect
on this view surface. The view surface may be reactivated by

activate_vws () at alater ime without having to be reopened. Note that
deactivating a view surface may reset the state of SunCGI.

ENOTVSAC [4] CGI not ih proper state: CGI shall be in state VSAC.
EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

EVSNTACT [15] Specified view surface is not active.

Cerror close_vws (name)

Cint name; /* view surface name */

close_ vws () terminates a view surface. Future SunCGI calls have no effect
on this view surface. The view surface cannot be reactivated without being reo-
pened.

y U I Revision A, of 9 May 1988
ems

microsyst

18 SunCGI Reference Manual

Close CGI (SunCGI
Extension)

2.2. View Surface Control

VDC Extent

) N

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP, e/
VSOP, or VSAC.
EVSIDINV [10] Specified view surface name is invalid.

EVSNOTQOP [13] Specified view surface not open.
ENOTCCPW [112] Function or argument not compatible with CGIPW mode.

Cerror close_cgi()

close_cgi () terminates all open view surfaces and restores the state of the
SunView to the state that it was in before SunCGI was opened. Future SunCGI
calls will have no effect and will generate errors.

Acallto ;close_cgi () should be included in the exit routines of an applica-
tion program to guarantee leaving the SunView and SunCGlI in a stable state.

ENOTOPOP [5] | CGI not in proper state: CGI should be in state CGOP,
‘ VSOP, or VSAC.

ENOT CC?PW [112] Function or argument not compatible with CGIPW mode.

The fundtions described in this section perform the following:

o define the range of world and device coordinates

o control clippin /”\
| pping o/

o reset selected aspects of the view surface and the internal state of SunCGl.

Most furictions in SunCGI express coordinates in VDC space (Virtual Device
Coordinate space). In conventional computer graphics terms, VDC space
corresponds to world coordinate space. The mapping between VDC space and
screen space is determined by the physical size of the screen in pixels. Screen
space is set by default to the entire size of the screen or the graphics window
depending on the device type. The mapping from VDC space to screen space is
always isotropic (the shape of the rectangle defining screen space is the same
shape as VDC space). Therefore, VDC space defines the shape of the active view
surface. ‘The portion of screen space which does not correspond to VDC space is
ignored. The aspect ratio (the ratio between the height and width) is therefore,
defined by VDC space and not screen space.

Cerror vdc_extent {cl, c2)
Ccoor *cl, *c2; /* bottom left-hand and */
/* top right-hand corner of VDC space */

vdc_extent () defines the limits of VDC space. The range of the coordinates
must be between -32767 and 32767 (or an error is generated). VDC space can be
set by the application program, but it ranges from 0 to 32767 in both the x and
the y directions by default. Resetting VDC space impacts the display of output
primitives on all view surfaces.

Resetting the limits of VDC space automatically redefines the clipping rectangle @
to the new limits of VDC space, regardless of the value of the clip indicator. -

| . S \
/ % S u n Revision A, of 9 May 1988

microsystems

Chapter 2 — Initializing and Terminating SunCGI

»

Changing the mapping from screen space to VDC space allows for translation

(move) or scaling (zoom in/zoom out) of output primitives. However, no rota-
tion functions are provided by SunCGI, and therefore, must be supplied in the

application program. The code fragment below translates and zooms in on a rec-

tangle.
ENOTOPOP [5]

EBADRCTD [20]
EVDCSDIL [24]
ENOTCCPW [112]

CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Rectangle definition is invalid.
VDC space definition is illegal.
Function or argument not compatible with CGIPW mode.

(#include <cgidefs.h>

main ()

{
Cvwsurf device;
Cint name;
Ccoor dvl,

dv2, lower,

open_cgi();
open_vws {&name, &device);
dvl.x = dvl.y = 0;

dv2.x = dv2.y = 200;
vdc_extent (&dvl, &dv2);

s,

VR

lower.x = lower.y = 30;
upper.x = upper.y = 70;
rectangle (&upper, &lower);
sleep(4);

dvl.x = dvl.y 0;

dv2.x = dv2.y = 100;
vde_extent (&dvl, &dv2);
rectangle (&upper, &lower);
sleep(4);

dvl.x = dvl.y = 20;

dv2.x = dv2.y = 80;
vde_extent (&dvl, &dv2);
rectangle (&upper, &lower);
sleep (20);

close_vws(name);
close_cgi ();

upper;

/*
/*

/*

/%
/%

/*
/*

NORMAL_VWSURF (device, PIXWINDD);

coord. space (0<x|y<200) */

rectangle coordinates */

draw initial rectangle */

coord. space (0<x|y<100) */
center rectangle */

coord. space (20<x|y<80) */
enlarge rectangle */

4ysun

microsystems

Revision A, of 9 May 1988

20 SunCGI Reference Manual

Device Viewport

Clip Indicator

Cerror device_ viewport (name, cl, c2)
Cint name; /* name assigned to cgi view surface */
Ccoor *cl, *c2; /* bottom left-hand and top right-hand */
/* corner of view surface to map */
/* device (expressed in pixels) */

device viewport () redefines the limits of screen space. The coordinate
values specified are in pixels and are in the screen’s coordinate system, which has
its origin in the upper left-hand comer of the screen. If the new limits are not
less than or equal to the size of the current screen or window size, an error is
returned. Although device viewport () does not redefine the aspect ratio,
it may redefine which areas of the screen are unused.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
: VSOP, or VSAC.

EVS IDiNV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

EBADR(}:TD [20] Rectangle definition is invalid.
‘ A

EBDVI#.WP [21] Viewport is not within Device Coordinates.
ENOTCCPW [112] Function or argument not compatible with CGIPW mode.

Cerror clip indicator(cflag) <ji>
Cclip lcflag; /* CLIP, NOCLIP or CLIP RECTANGLE */ o

The value of the argument cflag determines whether output primitives are clipped
within the viewport before they are displayed. The default state is CLIP. The
advantage of tumning clipping off is that it improves the speed of drawing primi-
tives. However,if clipping is set to NOCLIP, SunCGI may draw output primi-
tives ow‘kside of the window or within the bounds of an overlapping window. The
application is responsible for placing the object within the limits of the display
rectangle. Drawing outside the display rectangle can result in unpredictable
results, including system errors.

|
If clipping is not NOCLIP, output primitives are clipped to either the clip rectan-
gle (if ¢flag equals CLIP_RECTANGLE), or the full extent of VDC space (if cflag
equals ¢LP). The extent of VDC may be set with the vdc_extent () function.

typedéf enum {

NOCLIP,
CLIP,
CLIP_ RECTANGLE
} Cclip;
ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC.

ENOTCCPW [112] Function or argument not compatible with CGIPW mode. /~
N

sun Revision A, of 9 May 1988

microsystems

Chapter 2 — Initializing and Terminating SunCGI 21

-

Clip Rectangle
Hard Reset
/‘“\.
N
Reset to Defaults
Clear Vjew Surface
’/7'"‘\‘
o

Cerror clip_rectangle (xmin, =xzmax, ymin, ymax)
Cint xmin, xmax, ymin, ymax; /* bottom left-hand and top */

/* right-hand corner of clipping *

/* rectangle */

clip_rectangle () defines the clipping rectangle in VDC space, to be used
when the clip indicator is set to CLIP_RECTANGLE. By default, the clipping
rectangle is set to the borders of VDC space. The clipping rectangle is automati-
cally reset by vde_extent ().

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBADRCTD [20] Rectangle definition is invalid.
ECLIPTOL [22] Clipping rectangle is too large.
ECLIPTOS [23] Clipping rectangle is too small.
ENOTCCPW [112] Function or argument not compatible with CGIPW mode.

Cerror hard_reset ()

Device control functions restore the view surface and the intemal state of
SunCGI 10 a known state. The individual aspects of the device which can be
reset are the output attributes, the view surface (screen), and the error reporting.

hard_reset () returns the output attributes to their default values: it ter-
minates all input devices, empties the event queue, and clears all view surfaces.
VDC space is reset to its default values and the clip indicator is set to CLIP. This .
function should be used sparingly because most control, attribute, and input func-
tions called before this function will not have any effect on functions called after
hard_ reset () is called.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.
Cerror reset to defaults()

reset_to_def aults () retumns output attributes to defaults (see Table 4-1).
reset_to_defaults () does not clear the screen, reset the input devices, or
reset the character set index.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.

Cerror clear view_surface(name, defflag, index)

Cint name; /* name assigned to cgi view surface */
Cflag defflag; /* default color flag */
Cint index; /* color of cleared screen */

clear view_surface () changes all pixels in the relevant area of the view
surface specified by name to the color specified by the index argument, unless the

S u n Revision A, of 9 May 1988

microsystems

22 SunCGI Reference Manual

Clear Control

Set Error Warning Mask

defflag argument is set to OFF. If defflag is equal to OFF, the view surface is "
cleared to color zero. The area of the view surface which is actually cleared is

determined by the clear control () function.

clear view_surface () also resets the internal state of SunCGI according

to previous calls to the clear control () function.

clear view surface () resets the current background color to the color of

the cleared view surface.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVSIDINV [10] Specified view surface name is invalid.

EVSNOTiOP [13] Specified view surface not open.

EVSNTACT [15] Specified view surface is not active.

EC INDXLZ [35] Color index is less than zero.

EBADCOLX [36] Color index is invaliq.

Cerroriclear_pontrol(soft, hard, intern, extent)
Cacttype soft, hard; /* soft and hard copy actions */
Cacttype intern; /* internal action */

Cextty?e extent; /* clear extent */

clear_‘control () determines the action taken when

clear |[view surface () iscalled. The argument soft can be st to either .
NO_OP or CLEAR. The argument hard, which regulates clearing rules for { /
plotters, ﬁs ignored (because SunCGI does not currently support hard-copy dev- N
ices) and is included only for ANSI CGI compatibility. The argument intern is set

to either RETAIN or CLEAR. This parameter was included to support segmenta-

tion storage, which is not currently a part of ANSICGI. Therefore, the intern

argument is ignored. The argument extent determines what area of the screen is

cleared. lIt is set to one of the values in the Cexttype enumerated type:

typedef enum {
CLIP_RECT,
VIIT:WPORT ’

VIEWSURFACE

} Cext%ype;

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

ENOTCCPW [112] Function or argument not compatible with CGIPW mode.

Cerror set_error_warning mask (action)

Cerrtype action; /* action on receipt of an error */

set_error_warning_mask ()2 determines the action taken by SunCG/
when an error occurs. Three types of action are possible: NO_ACTION, POLL,

2 The syntax of set_error warning mask() in SunCGI is slightly different from the proposed ANSI o~
standard in that the ANSI definition allows different actions for different classes of errors. { A

N

D
@:@ S Revision A, of 9 May 1988

icrosystems

Chapter 2 — Initializing and Terminating SunCGI . 23

2.3. Running SunCGI with

INTERRUPT. If the action argument is set to NO_ACTION, errors are detected
internally, but not reported. The error number is returned to the caller of a CGI
routine. The user is advised not to set the action argument to NO_ACTION.

POLL and INTERRUPT actions print an error message on the terminal, and also
return the error number (see Appendix C) so the program can perform exception
handling. The default set_error warning mask () is INTERRUPT.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Error Warning Masks
Error Message Program Error
Warning Mask Printed Aborted Number Returned
NO_ACTION No No Yes
POLL Yes No Yes
INTERRUPT Yes FATAL errorst Non-FATAL errors

T SunCGlI defines no errors as FATAL. All errors are non-fatal
so the application has complete control to abort or perform other
processing as desired. Therefore, POLL and INTERRUPT are the
same in SunCGlI.

SunCGI always traps five signals: SIGINT, SIGCHLD, SIGIO, SIGHUP and
SIGWINCH. The first four of these cause SunCGI cleanup and program termina-
tion. When using a Graphics Processor option, SunCGI also traps SIGXCPU. All
registered signal handlers are called when its respective signal occurs. Be careful
that the actions performed by one signal handler do not interfere with the actions
performed by another signal handler, including SunCGI’s. The Notifier is an
example of a signal handler that must be coordinated in this way.

Unless a SunCGI application program has opened a retained view surface, over-
lapping another window onto a graphics subwindow will destroy the picture
below. SunCGI programs can regenerate a display surface by trapping the
SIGWINCH (SIGnal WINdow CHange) signal.

It is possible (though unsupported) to install a signal handler for signals after cal-
ling open_pw_cgi () (see Appendix E). Since these signal handlers replace
SunCGI’s handler, the application should save SunCGI’s signal handler (returned
by signal), and call the saved handler when the signal occurs (amid the user’s
own processing). Because the response of the program to the signal then depends
on the place in the user’s own signal handling that SunCGI’s handler is called,
results are unpredictable, and may change with a new version of SunCGI.

Note that it is not necessary for an application to catch a SIGWINCH signal, since
SunCGI’s set_up_sigwinch () routine offers an easier interface. A user’s
sig function () has adifferent calling semantics from a SIGWINCH in that
pw_damaged () and pw_donedamaged () have already been invoked.

S
&}@ SUun Revision A, of 9 May 1988

microsystems

24 SunCGI Reference Manual

When a window’s contents needs regeneration during execution time, the process N
associated with a window receives a SIGWINCH signal. The application can use
this signal to determine when a view surface needs to be regenerated.

NOTE Under no circumstances will the user be able to access the SIGWINCH signals
generated when a view surface is initialized.

When a window obstructs a SunCGI view surface, output to that view surface is
normally clipped to the exposed portion only (unless the clip indicator is
NOCLIP). When the obstruction is removed, unless the window is RETAINED,
the picture must be regenerated by re-running the output generation of the appli-
cations, for that view surface at least. An application’s SIGWINCH handling
function is called for this purpose.

When a SimCGI window’s size changes during execution, the picture must be
regeneratéd. But first, SunCGI updates the transformation used to map VDC
space into screen space. Then, if the affected view surface is RETAINED, the
retained c:pr is rewritten onto the view surface. (Because of the size change,
this may not repair the damage satisfactorily.) Lastly, the application’s

SIGWINCH function is called.

Set Up SIGWINCH (SunCGI Cerror %et_pp_sigwinéh(name, sig_function)

Extension) Cint name;
Cint (*sig function) (); /* signal handling function */
set- up sigwinch () allows the application program to trap SIGWINCH sig- m
nals for view surface name. sig function () is a pointer to a function R

‘ returning an integer. If sig function () is nonzero, all SIGWINCH signals
| that are not trapped by the internals of SunCGlI (from view surface initialization)
1 are passed to the function specified by sig_function ().

The sig function () is called when the SIGWINCH signal is received. Itis
the programmer’s responsibility to use a flag to determine if it is safe to process
the signal at this time, or to set a flag indicating that signal processing has been
put off until later. See the SunView 1 Programmer’s Guide for information on
SIGWINCH handling.

The sig | function () argument is called with a single argument: the name of
the view surface with which it is associated by the call to

set_up sigwinch (). This allows more than one view surface to share the
same sig_function (), and differentiate which view surface needs redisplay.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Following is an example of a program that uses set_up_sigwinch().

O

S,
é}{, sun Revision A, of 9 May 1988

\ microsystems

Chapter 2 — Initializing and Terminating SunCGI 25

()

2.4. Interface Negotiation

(#include <cgidefs.h>

Ccoor box[5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

Cint name;

extern Cint redraw():

Cvwsurf device;

main ()

{

Ccoorlist boxlist;

boxlist.n = 5;
boxlist.ptlist = box;
NORMAL_ VWSURF (device, PIXWINDD) ;

open_cgi();
open_vws (&name, &device);
set_up_ sigwinch(name, redraw);

polyline (&boxlist) ;
sleep(10);

close_vws (name) ;
close_cgi();

}

Cint redraw()

{

clear_view surface(name, ON, 0);

}

.. J

CGl is intended to support a ‘negotiated device interface’, allowing hardware-
specific programs written to run on other machines. SunCGI only allows inquiry
of most of the settable modes.? You may want to find out which types of input
devices are supported. However, functions for setting color precision, coordinate
type, specification mode, and color specification are not provided because
SunCGI only supports one type of color precision (8-bit), coordinate type
(integers), and color specification (indexed). The width and size specification
modes are settable; the functions that set them are described in Chapter 4. The
inquiry negotiation functions are supported so that an application program writ-
ten for a CGI on another manufacturers’ workstation can find out whether the
SunCGl is capable of running that application.

3 The functions not supported by SunCGI are classified as non-required by the March 1984 ANSI CGI
standard. See Appendix A.

Su Revision A, of 9 May 1988

microsystems

26 SunCGI Reference Manual

Inquire Device Identification

Inquire Device Class

Inquire Physical Coordinate
System

Cerror inquire device identification(name, devid)
Cint name; /* device name */
Cchar devid|[DEVNAMESIZE]; /* workstation type */

inquire device identification () reports which type of Sun Works-

tation view surface name is associated with. The argument devid may be set to

one of the Sun Workstation types described in Table 2-2. The inclusion of the

name argument deviates from the ANSI standard, but is necessary so that the

chamc&ﬁsﬁcs of individual view surfaces may be inquired.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.

Cerror inquire device_class(output, input)
Cint *output, *input; /* output and input abilities */

inquire device_class () describes the capabilities of Sun Workstations

in terms of the CGI functions they support. 4 Each of the two returned values

reports the number of functions of each of the two classes that are supported in

SunCGI. These numbers (the values of input and outpuf) are used to make more

detailed inquiries by using functions inquire input_capabilities ()

and inquire output_capabilities(). N

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror inquire physical_coordinate_system(name, xbase,

ybase, xext, yext, xunits, yunits)
Cint name; /* name assigned to cgi view surface */
Cint *xbase, *ybase; /* base coordinates */
Cint *xext, *yext; /* pixels in x and y directions */
Cfloat *=xunits, *yunits; /* number of pixzels per mm. */

inquire physical coordinate_system() reports the physical
dimensions of the coordinate system of view surface name in pixels and millime-
ters. inquire_physical_coordinate_system() is provided to permit
the drawing of objects of a known physical size.

inquire physical coordinate_system() is also provided to assist
in the computation of parameters for the device viewport () function.

xbase and ybase are expressed in the screen coordinate system and are therefore
given in pixels, meaning they have the upper left-hand corner of the screen as
their origin. xext and yext describe the maximum extent of the window in which
the application program is run. (The window may or may not cover the entire
screen.) The number of pixels per millimeter is always set to 0 because the
actual screen size of device varies between individual monitors. The actual size

4 The output argument does not include the non-standard CGI functions.

S un Revision A, of 9 May 1988

microsystems

Chapter 2 — Initializing and Terminating SunCGI 27

Inquire Output Function Set

Inquire VDC Type

of the screen may be obtained from the number of pixels in the x and y directions
from the monitor specifications and perform the division in an application pro-
gram. ‘

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.

Cerror inquire_output_function_ set (level, support)
Cint level; /* level of output */
Csuptype *support; /* amount of support */

inquire output_function_set () reports the extent to which each level
of the output portion of the ANSI CGI standard is supported.

typedef enum {
NONE,
REQUIRED FUNCTIONS ONILY,
SOME_NON_REQUIRED FUNCTIONS,
ALL NON_REQUIRED FUNCTIONS

} Csuptype;

The standard requires that the level argument be an enumerated type; however,
for reasons of simplicity only the level number is used by SunCGI. Levels 1-6
are supported completely (that is, both required and non-required functions are
implemented). Level 7 is not supported at all. Refer to the ANSI standard for
the precise definition of each level.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror inquire_vdc_type (type)
Cvdctype *type; /* type of VDC space */

inquire_vdc_type () reports the type of coordinates used by SunCGI in the
returned argument type.

typedef enum {
INTEGER,
REAL,
BOTH

} Cvdctype;

type is always set to INTEGER (32-bit). SunCore is a higher-level graphics sys-
tem with coordinate space expressed in real numbers.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

2SU I Revision A, of 9 May 1988

microsystems

28 SunCGI Reference Manual

Inquire Output Capabilities

2.5. Input Capability
Inquiries

Inquire Input Capabilities

&
R
Cerror inquire_ output_capabilities(first, num, list)
Cint first:; /* first element */
Cint num; /* number of elements in list to be returned */

Cchar *list[]; /* returned list */

inquire output_capabilities () lists the output functions in the
returned argument J/isz. The range of the first and aum arguments is determined
by the returned argument output from the inquire device_class() func-
tion. | ,

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
: ‘ VSOP, or VSAC.

EINQLTL [16] Inquiry arguments are longer than list.

Input devices have a separate class of negotiation functions. Input capability
inquiries report qualitative abilities as well as quantitative abilities of input dev-
ices. The inquire input capabilities () function reports which dev-
ices and overall features are supported by SunCGI. The remaining functions
report the capabilities of individual devices or features. Input devices are virtual
devices which must be associated with physical triggers (such as mouse but-
tons). Initializing an input device defines the measure used by a device, for
exampl;'e initializing a LOCATOR device defines the measure as x-y coordinates.
In addition to being associated with a trigger, each device has selectable screen
echoing capabilities. Association and echoing capabilities for each input device {)

are repbrted by the functions described in this section. N
Cerror inquire_input_capabilities(valid, table)
Clogical *valid; - /* device state */
Ccgidesctab *table; /* CGI input description table */
inqu:ﬂre_input_c apabilities () reports the total number of input dev-
ices of each class that is supported. The argument valid returns the value
L_TRU]; if SunCGl is initialized, and I._FALSE otherwise. If valid is set to
L_TRUE, the elements of table are set to the quantity and quality of inputs sup-
ported. All Sun Workstations support input at the same level.
o/

n Revision A, of 9 May 1988
ems

Chapter 2 — Initializirg and Terminating SunCGI 29

@

C | Inquire LID Capabilities

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk;
Cint numchoice;
Cint numstr;
Cint numtrig;
Csuptype event queue;
Csuptype asynch;
Csuptype coord map;
Csuptype echo;
Csuptype tracking:;
Csuptype prompt;
Csuptype acknowledgement;
Csuptype trigger _manipulation;
} Ccgidesctab;

Elements of type Cint report how many of each type device is supported, as
well as how many types of triggers are supported. Elements of type Csuptype
report how many of the functions of each class are supported. All functions
except the tracking functions are fully supported.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror inquire lid capabilities(devclass, devnum,
valid, table) '

Cdevoff devclass;

Cint devnum; /* device number */

Clogical *valid; /* device supported at all */

Cliddescript *table; /* table of descriptors */

inquire lid capabilities () describes the capabilities of a specific
input device (hereafter, specified device). The input arguments devclass and dev-
num refer to a specific device type and number. The argument valid reports

‘whether CGI is initialized.

typedef struct {
Clogical sample;
Cchangetype change:;
Cint numassoc;
Cint *trigassoc;
Cinputability prompt:;
Cinputability acknowledgement:;
Cechotypelst *echo;
Cchar *classdep;
Cstatelist state;

} Cliddescript;

Cliddescript indicates whether an ability is present in the specified logical
input device. The change element reports whether associations are changeable at
all (all input devices except string are changeable). The numassoc and trigassoc
elements of table report how many and which triggers may be associated with the

sun Revision A, of 9 May 1988

microsystems

30 SunCGI Reference Manual

Table 2-5

Inquire Trigger Capabilities

N
specified logical input device. SunCGI does not support either prompt or ack- N
nowledgement for any input device. The echo argument describes which echo
types are supported (see Chapter 5 for a list of echo types).5 The classdep argu-
ment provides class dependent information in character form (the type of infor-
mation is given in Table 2-5). If more than one piece of class dependent infor-
mation is returned, then the pieces of information are separated by commas. The
state argument reports the initial state of the specified device. See the
inquire_lid state list() function.
Class Dependent Information
Device Class l Information | Possible Values
IC_LOCATOR Coordinate Mapping Yes, No, Partial
| Native Range xmin, Xmax,
| ymin, ymax
IC_VALUATOR Set Valuator Range yes/no
IC_STROKE Time Increment Settable yes/no
; Minimum Distance yes/no
IC_CH(PICE Range min/max
IC_STRING None None
|
ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
‘ VSOP, or VSAC.
o’

Cerror inquire trigger capabilities(trigger, valid, tdis)
Cint trigger; /* trigger number */

Clogi#al *valid; /* trigger supported at all */

Ctrigdis *tdis; /* trigger description table */

| . . ,
inquiP:e_trigger_capabilities () describes how a particular trigger
can be associated. The argument valid reports whether the device supports input

at all.

typedéf struct {

Céhangetype change;

C%ssoclid *numassoc;

Cint maxassoc;

Cﬁromstate prompt;
Céckstate acknowledgement;
Cchar *name;

Cchar *description;

} Ctr%gdis;

The change element of tdis reports whether the specified trigger can be associ-
ated with a logical input device. The numassoc element of tdis gives supported
LID associations for this trigger. This consists of n, the number of LID classes
which can be associated with the trigger, a pointer to an array of n entries telling

which r‘z device classes can be associated with the trigger, and how many of each

5 Notejthat inquire 1id capabilities () retums an enumerated type whereas track_on ()
accepts integers. Therefore these values may be different.
|

S u n Revision A, of 9 May 1988

microsystems

Chapter 2 — Initializing and Terminating SunCGI 31

device class is defined. The maxassoc field gives the number of LIDs which can
be concurrently associated with this trigger. SunCGI does not support either
prompt or acknowledgement for any input device. The name element is simply a
character form of the trigger name (for example, LEFT MOUSE BUTTON). The
description element is never filled and is included for standards compatibility.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EINTRNEX [86] Trigger does not exist.

S
% sun Revision A, of 9 May 1988

\ microsystems

O

Output

3.1. Geometrical Output Primitives
Polyline

Disjoint Polyline

Polymarker

Polygon
S Partial Polygon

Rectangle

—

Circle

Circular Arc Center

Circular Arc Center Close

Circular Arc 3pt

Circular Arc 3pt Close

Ellipse
Elliptical Arc

Elliptical Arc Close

3.2. Raster Primitives

Text

VDM Text

Append Text

Inquire Text Extent
Cell Array

Pixel Array

35

35
36
37
37
37
38
40
40
40
41
42
42
43
43
43
44
44
44
45
45
46
46

Bitblt Source Array

Bitblt Pattern Array

Bitblt Patterned Source Array

Inquire Cell Array

Inquire Pixel Array

Inquire Device Bitmap

Inquire Bitblt Alignments

3.3. Drawing Modes

Set Drawing Mode

Set Global Drawing Mode (SunCGI Extension)
Inquire Drawing Mode ‘

47
47
48
49
49
50
50
50
51
51
52

N’

{(
.

8

Output

SunCGI supports two classes of output primitives: geometrical output primitives
and raster primitives. :

Geometrical Output Primitives
include arcs, circles, polylines, polygons, and markers. The position of
geometrical output primitives are always specified in absolute VDC coordi-
nates.5 ‘

Raster Primitives
draw text and scaled and unscaled 2D arrays. The coordinate system for ras-
ter primitives depends on the type of primitive. The drawing mode deter- .
mines how output primitives are drawn on top of other output primitives or

(\ the background.
3.1. Geometrical Output Geometrical primitives (except polymarker ()) are considered either closed
Primitives or not closed. Polymarker uses its own attributes (see Section 4.3). Non-closed

figures (polylines, circular arcs, or elliptical arcs) are drawn with a style, width
and color determined from line attributes (see Section 4.2). Closed figures
(polygons, rectangles, circles, ellipses, and circular and elliptical closed arcs) use
the solid object attributes (see Section 4.4). The geometrical information
specifies the boundary of a closed figure. The interior of this boundary is filled
using fill area attributes. The boundary may be surrounded with a line, drawn
with perimeter attributes, not the line attributes. For example, a circle of radius
1000 and a perimeter width of 100 VDC units has its perimeter between the circle
of radius 1000 and a concentric circle of radius 1100 (not from 950 through
1050).

(A 6 SunCGI (unlike SunCore) maintains no concept of current position.

é%@ S u n 35 " Revision A, of 9 May 1988
microsystems

36 SunCGI Reference Manual

Polyline

Most polygonal primitives (polyline (), polymarker (), polygon(),
and partial polygon ()) take one argument of type Ccoorlist:

typedef struct {
Cint x;.
Cint y:

} Ccoor;

typedgf struct {
C?oor *ptlist;
Cint n;

} Cco?rlist;

The element ptlist is really a pointer to an array of type Ccoor, which contains
the n c&ordinates of the points defining the primitive. The style, color, and other
feature% of lines, markers, and fill patterns used by geometrical output primitives
are set by the attribute functions described in Chapter 4.

The mﬂygons generated by SunCGI may or may not be closed. SunCGI automat-
ically assumes the polygon is closed for the purpose of filling. However, a
polygon must be explicitly closed in order to get all of its edges drawn, so take
care to generate explicitly closed polygons. The rectangle () function impli-

citly generates closed objects.’

SunCGI has two classes of conical primitives: circular and elliptical. Each class
has functions for drawing solid objects, arcs, and closed arcs. Drawing of conical
pﬁmitix}res is regulated by the same attributes that regulate the drawing of
polygons and polylines.

\
Cerror polyline (polycoors)
Ccoorlist *polycoors; /* list of points */

po lyline () draws lines between the points specified by the ptlist €lement of
polycm‘i)rs. polyline () does not draw a line between the first and last element
of the point list. To generate a closed polyline, the last point on the list must
have the same coordinates as the first point on the list. The style, color, and
width df the lines are set by the polyline bundle index(),

line type(),line color(),line_width () and

line width_specification_mode () functions. If aline segment of a
polyline has a length of zero, the line is not drawn. To draw a point, use the
circle () function. If you specify a polyline that has less than two points, an
error is| generated. Similarly, if the number of points specified is greater than the
maximum number of points (MAXPTS), an error is generated.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMP’IJSTL [601] Number of points is too large.

EPLMTWPT [61] Polylines must have at least two points.

7 A closed portion of a closed figure boundary will not be drawn if it exceeds a clipping boundary.

Q@ sun | Revision A, of 9 May 1988

icrosystems

f

N’

N

Chapter 3 — Output 37

(-
- Disjoint Polyline
Polymarker
s
(
Polygon
\

e

@

Cerror disjoint_polyline (polycoors)
Ccoorlist *polycoors; /* list of points */

disjoint_polyline () draws lines between pairs of elements in priist. The
line attributes described in Section 4.2 determine the appearance of the
disjoint polyline () function. If polycoors contains an odd number of
points, the last point is ignored. As with polyline (), if the number of points
is less than two or greater than MAXPTS, an error is generated.

disjoint_polyline () is typically used to implement scan-line polygon
filling algorithms. ‘

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

ENMPTSTL [60] Number of points is too large.

EPLMTWPT [61] Polylines must have at least two points.
Cerror polymarker (polycoors)
Ccoorlist *polycoors; /* list of points */

polymarker () draws a marker at each point. The type, color, and size of
marker are set by the polymarker bundle_index(),marker_ type(),
marker_color (),marker size(),and
marker_size_specification_mode () functions. If the number.of
points specified is greater than the maximum number of points, an error is gen-
erated. polymarker () is useful for making graphs such as scatter plots.

CGI not in proper state: CGI shall be in state VSAC.
Number of points is too large.

ENOTVSAC [4]
ENMPTSTL [60]

Cerror polygon(polycoors)
Ccoorlist *polycoors; /* list of points */

polygon () displays the polygon described by the points in polycoors. Any
points added to the global polygon list by the partial polygon () function
are also displayed. The polygon is filled between edges. Polygons are allowed
to be self-intersecting. The visibility of individual edges can only be set by the
partial polygon () function. The style and color used to fill the polygon
are set by the solid object attribute functions described in Chapter 4. The charac-
teristics of the edges are controlled by the perimeter attribute functions. The
number of points in the polygon used to determine the error condition of too few3
or too many points is the total number of points on the global polygon list, not
the number of points specified in polycoors. After the polygon is drawn, the glo-
bal polygon list is emptied.

3 The CGI standard specifies that po lygon () may be called with fewer than three points without
generating an error. Zero points should be a no-op, one should be a point, and two should be a line segment.
SunCGI does not support these degenerate polygons.

sun

microsystems

Revision A, of 9 May 1988

38 SunCGI Reference Manual

Partial Polygon

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. \Q,,,/A
ENMPTSTL [60] Number of points is too large.

EPGMTHPT [62] Polygons must have at least three points.

EGPLISFL [63] Global polygon list is full.

Cerror;partial_polygon(polycoors, cflaqg)
Ccoorlist *polycoors; /* list of points */
Ccflag‘cflag; /* CLOSE previous polygon? */

partial polygon () adds elements to the global polygon list without
displaying the polygon. The partial polygon () function provides the
capability of drawing multiple-boundary polygons, including polygons with
holes. The drawing is actually performed when polygon () is called.
polygdn () will close the last boundary on the global polygon list and add the
coordina;ke list it is passed as the final polygon boundary before drawing.

¢flag controls whether the last polygon in the global polygon list is open or
closed. If cflag is set to CLOSE, the last polygon on the global polygon list will
be closed by drawing a visible perimeter edge between the last and the first points
of the last polygon on the global polygon list. If the cflag is set to OPEN, the
points in polycoors are appended to the last polygon on the global polygon list,

but an in!visz‘ble perimeter edge will be drawn between the last point currently on

the globc}zl polygon list and the first point in the Ccoorlist. The visibility of o~
polygon edges can be individually controlled by calling _J
partial polygon () with cflag set to OPEN for each invisible edge and with

cflag setto CLOSE for each new boundary. The interpretation of cflag is slightly

different than the pseudocode given in the CGI standard. Future versions of CGI

may use a different syntax to offer the capabilities of multiple-boundary

polygons and invisible edges.

The CGI standard specifies that circle (), rectangle() and ellipse ()
are primitives that may use the global polygon list for filling. SunCGI does not
use the global polygon list in these functions, and therefore leaves it untouched.
These SunCGI routines do not empty the global polygon list.

An error is detected if the number of points on the global polygon list exceeds
MAXPTS. In this case, the polygon on the global polygon list is drawn, and the
new inf&rmation is not added. The same error handling applies to polygon ().
ENOTVSVAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTL [60] Number of points is too large.

EPGMTHPT [62] Polygons must have at least three points.

EGPLISFL [63] . Global polygon list is full.

(O
N

sSun Revision A, of 9 May 1988

o

Mo

Chapter 3 — Output

39

-
#include <cgidefs.h>

#define NPTS 4

main{)

{
Cint name;
Cvwsurf device:
Ccoor list [NPTS];
Ccoorlist points;

NORMAL_ VWSURF (device, PIXWINDD) ;

open_cgi();
open_vws (&name, &device);

interior style (SOLIDI, ON):;

list[0].x = list[0].y = 10000;
list[1].x = 10000;
list[1].y = 20000;
list[2].x = list[2].y = 20000;
list{3].x = 20000;

list[3].y = 10000;

points.ptlist = list;

points.n = NPTS;

partial_ polygon (&points, CLOSE);

/* list of coords. */
/* structure for list of coords. */

/* solid £ill with edge */

/* draw closed polygon */

l1ist[0].x = list[0].y = 12500;
list[1].x = 12500;
list[1].y = 17500;
list[2].x = 1list([2].y = 17500;
list[3].x = 17500;
list[3].y = 12500;
points.ptlist = list; /* [Redundant, but good practice]*/
points.n = NPTS;
polygon {&points) ; /* cut a hole in it */
sleep(10);
close vws (name); _
close cgi();
} -
\.
f%%a Sun Revision A, of 9 May 1988
microsystems _

40 SunCGI Reference Manual

Rectangle

Circle

Circular Arc Center

Cerror rectangle(rbc, ltc)
Ccoor *rbc, *1ltc; /* corners defining rectangle */

rectangle () displays a box with its lower right-hand corner at point rbc and
its upper left-hand comer at point /zc. Calls to rectangle () do not affect the
global polygon list. The interior of the rectangle (the filled portion) is defined by
rbc and ltc. The perimeter is drawn outside of this region. The appearance of the
rectangle is determined by the fill area and perimeter attributes. A rectangle with
one side coincident with a clipping boundary specifies an interior extending to
the boundary. Hence, a portion of the perimeter is outside the clipping boundary
and is not drawn.

If the arguments to rectangle () would result in a point or a line, the point or
line is drawn However, if the arguments to rectangle determine a point, the
point is drawn with width zero, regardless of the current value of perimeter
width. If the values of rbc and ltc are reversed, the points are automatically
reversed and the rectangle is drawn normally.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror circle{cl, rad)
Ccoor *cl; /* center */
Cint rad; /* .radius */

circle () draws acircle of radius rad centered at cI. The argument rad is
expressed in terms of VDC space. The color, form, and visibility of the interior
and perimeter are controlled by the same solid object attributes which control the
drawing of polygons and rectangles.

The argument rad determines the size of the interior of the circle. Therefore, a
circle w1th a thick perimeter may be larger than expected. If the radius is zero, a
point is drawn and no textured perimeter is drawn, even if the perimeter width is
large. If ‘the radius is negative, the absolute value of the radius is used.

Textured circles may possibly contain an incorrect element at one point because
the dlgltal circumference may not be exactly divisible by the length of the texture
element.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
Cerror circular_arc_center(cl, c2x, c2y, c3x, c3y, rad)
Ccoor *cl; /* center */

Cint c2x, c2y, c¢3x, c3y; /* endpoints */

Cint rad; /* radius */

circular arc_ center () draws a circular arc between points c2x, c2y and
c3x, c3y with circle of radius rad at center cI. Point ¢2x, ¢2y is the starting point
and point ¢3x, ¢3y is the ending point. Circular arcs are drawn in a counterclock-
wise manner.

Ifradis negative the points 180 degrees opposite from ¢2x, c2y and c3x, c3y are
used as the endpoints of the arc. If the rad is zero, a point is drawn at cI. If
either c2x, c2y or c3x, c3y are not on the circumference of the circle determined

‘by ¢l and rad, an error is generated, and the arc is not drawn. The attributes

S
%2&SsSun Revision A, of 9 May 1988

microsystems

Chapter 3 — Output 41

(w' which determine the style, width, and color of the arc are the same functions
which regulate the drawing of polylines.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EARCPNCI [64] Arc points do not lie on circle.

Circular Arc Center Close Cerror circular_arc center_close(cl, c2x,
c2y, c3x, c3y, rad, close)
Ccoor *cl: /* center */
Cint c2x, c2y, c3x, ¢3y; /* endpoints */
Cint rad; /* radius */
Cclosetype close; /* PIE or CHORD */

circular arc_center_close () draws a closed arc centered at ¢/ with
radius rad and endpoints ¢2x, c2y and ¢3x, c3y. Arcs are closed with either the
PIE or CHORD algorithm. The PIE algorithm draws a line from each of the end-
points of the arc to the center point of the circle. SunCGI then fills this region as
it would any other solid object. The CHORD algorithm draws a line connecting
the endpoints of the arc and then fills this region using solid object attributes.
circular arc center_ close () is useful for drawing pie charts (see the
following example program).

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
/’””\\ ~ EARCPNCI [64] Arc points do not lie on circle.

#include <cgidefs.h>

/* Indices of colors to be used. Using the defaults. */
#define RED 1
#define YELLOW 2
#define GREEN 3
#define CYAN 4

/* definitions for circle coord’s and values */

#define MID 16000
#define RAD (MID / 2)
#define MIN (MID - RAD)
#define MAX ({MID + RAD)
main () /* draws four quadrants in different colors and fills */
{
Ccoor cl; /* coord of center */
Cint name; /* CGI name for view surface */
Cvwsurf device; /* view surface device struct */

cl.x = ¢l.y = MID; /* center */

NORMAL VWSURF (device, CGPIXWINDD) ;

K~) open_cgi();
e open_vws{ &name, &device);
\.. . W,
N
&?&' sSsun Revision A, of 9 May 1988
% microsystems

42

SunCGI Reference Manual

perimeter width(1.0); /* perimeter width 1% of VDC */

interior style(SOLIDI, OFF);
£ill color(RED); /* color of gquadrant 1 */
circular_arc_center_close(&cl, MAX, MID, MID, MAX, RAD, PIE);

interior style(HOLLOW, OFF);
f£fill color(YELLOW) ; /* color of quadrant 2 */
circular arc_center_ close(§cl, MID, MAX, MIN, MID, RAD, PIE);

interior_ style(SOLIDI, ON),
£fill color(GREEN) ; /* color of quadrant 3 */
circular arc_center close(&cl, MIN, MID, MID, MIN, RAD, PIE);

interior style(HOLLOW ON),)
£fi11l color(CYAN); /* color of quadrant 4 */
circular arc center close(&cl MID, MIN, MAX, MID, RAD, PIE);

sleep(lO);
close vws (name) ; . /* close view surface and CGI */
close cgi();

Circular Arc 3pt Cerror circular arc_ 3pt(cl, ¢2, c3)

Circular Arc 3pt Close Cerror circular arc 3pt _close(cl, c2, c3, close)

Ccoor *cl, *c2, *c3; /* starting, intermediate
and ending points */

circular arc_3pt () draws acircular arc starting at point ¢l and ending at
point ¢3 which is guaranteed to pass through point ¢2. The line attributes func-

. tions described in Section 4.2 determine the appearance of the

circular_arc_3pt () function. If the circular arc is textured (for example,
dotted) then the intermediate point may not be displayed. However, if the arc is

solid, the intermediate point is always drawn. If the three points are colinear, a
line is drawn. If two of the three points are coincident, a line is drawn between
the two distinct points. Finally, if all three points are coincident, a point is

drawn.} circular arc 3pt () is considerably slower than

circular_arc_center (); therefore, you are advised to use

circular_ arc_ center () if both functions can meet your needs.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Ccoor: *cl, *c2, *c3; /* starting, intermediate
; and énding points */
Cclosetype close; /* PIE or CHORD */

circular arc 3pt close () draws a circular arc starting at point ¢/ and
ending at point ¢3 which is guaranteed to pass through point ¢2. The solid object
attributes described in Section 4.4 determine the appearance of the

circular arc 3pt close () function.

circular arc_ 3pt_close() is considerably slower than

f%g sSun Revision A, of 9 May 1988

microsystems

/‘-’%\
L

Chapter 3 — Output 43

Ellipse
Elliptical Arc
N
Elliptical Arc Close

N

circular arc_center_close (); therefore, you are advised to use
circular_arc_center_close () if both functions meet your needs.

If the three points are colinear, a line is drawn. If two of the three points are
coincident, a line is drawn between the two distinct points. Finally, if all three
points are coincident, a point is drawn. In none of these cases will any region be
filled. '

ENOTVSAC [4] CGI not in proper state; CGI shall be in state VSAC.

Cerror ellipse(cl, majx, miny)
Ccoor *cl; /* center */ -
Cint majx, miny; /* length of x and y axes */

ellipse draws an ellipse centered at point ¢/ with major (x) and minor (y) axes of
length majx and miny.? If either majx or miny are zero, a line is drawn. If both
majx and miny are zero, a point is drawn. The attributes which control the draw-
ing of ellipses are the solid object attributes described in Section 4 4.

~ ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
Cerror elliptical arc(cl, sx, sy, ex, ey, majx, miny)
Ccoor *cl; /* center */
Cint sx, sy; /* starting point of arc */
Cint ex, ey; /* ending point of arc */

Cint majx, miny; /* endpoints of major and minor axes */

elliptical_arc() draws an elliptical arc centered at ¢ with major (x) and
minor (y) axes of length majx and miny. sx, sy and ex, ey are the starting and
ending points of the arc. An error is generated (and the ellipse is not drawn) if
the points (sx, sy, and ex, ey) are not on the perimeter of the ellipse. Elliptical
arcs are drawn in a counterclockwise manner. Switching the values of sx, sy and
ex, ey will produce complementary arcs.

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, a
point is drawn. Polyline attributes are used to determine the appearance of ellipt-
ical arcs.

ENOTVSAC [4] CGI not in proper state; CGI shall be in state VSAC.
EARCPNEL [65] Arc points do not lie on ellipse.

Cerror elliptical_arc_close(cl, sx, sy, ex,
ey, majx, miny, close)

Ccoor *cl; /* center */ :
Cint sx, sy /* starting point of arc */
Cint ex, ey; /* ending point of arc */

Cint majx, miny; /* endpoints of major and minor axes */
Cclésetype close; /* PIE or CHORD x/

9 Although the axes are called the major and minor axes by the standard they are really the x and y axes. In
fact, the x axis can either be the major or minor axis, depending on the relative length of the y axis.

S u n Revision A, of 9 May 1988

microsystems

44 SunCGI Reference Manual

3.2. Raster Primitives

Text

VDM Text

4

elliptical arc_close () draws an elliptical arc specified by sx, sy, ex, ey
and majx, miny. The arc is closed with either the PIE or CHORD algorithm. The
same restrictions on sx, sy, ex, and ey are applied to
elliptical_arc_close() astoelliptical_ arc (). However,
elliptical arc_close () uses the fill area and perimeter attributes,
whereas elliptical_arc () uses the line attributes.

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, a
point is drawn. In neither of these cases will any region be filled.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EARCPi\IEL [65] Arc points do not lie on ellipse.

Raster primitives include text, cell arrays, pixel arrays, and bitblts (bit block
transfer). Bitblts are pixel arrays (bitmaps) which can be drawn using the various
drawiné modes. The current drawing mode determines how bitblt primitives are
affected by information which is already on the screen. Raster primitives differ
from géomeﬁcﬂ primitives because their dimensions are not necessarily
express%td in VDC space. Therefore, you must be careful to consider whether

position arguments are expressed in VDC space or screen coordinates.

Cerror text (cl, tstring)
Ccoor |*cl; /* starting point of text (in VDC space) */
Cchar *tstring; /* text */

text () displays the text contained in zstring at point ¢l (expressed in VDC
space). | The appearance of text is controlled by the text attributes described in
Section'4.8. Control characters are displayed as blanks, except in the SYMBOL

fontw iere they may be drawn as pictures of bugs.
ENOTV!SAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror‘: vdm_text (cl, flag, tstring)

Ccoor *cl; /* starting point of text (in VDC space) */
Ctext%inal flag; /* final text for alignment */

Cchar *tstring; /* text */

vdm_tjext () displays the text contained in tstring at point ¢l (expressed in
VDC space). The intended difference between text () and vdm_text () is
that vdm_text () allows control characters; however, SunCGI does not handle
control characters so text drawn with vdm text () will appear identical to text
drawn with the text () function. If the flag argument is equal to FINAL, the
previous text and the appended text are aligned separately. However, if the flag
argument is equal to NOT_FINAL, the appended and previous text are aligned
together.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
y U 1N Revision A, of 9 May 1988
microsystems

NI

Chapter 3 — Output 45

{/\~._\\
N’

Append Text

Inquire Text Extent

N

Ve

-

Criiane”

>

Cerror append text(flag, tstring)
Ctextfinal flag; /* final text for alignment */
Cchar *tstring; /* text */

append_ text () displays the text contained in tstring after the end of the most
recently written text. The type of text written depends on the same attributes
which control the display of text. The flag argument determines whether the
appended text is aligned with the previous text if the alignment is continuous. If
the flag argument is equal to FINAL, then the previous text and the appended text
are aligned separately. However, if the flag argument is equal to NOT_FINAL,
the appended and previous text are aligned together. '

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror inquire_text_ extent (tstring, nextchar, concat,
lleft, uleft, uright)
Cchar *tstring; /* text */
Cchar nextchar; /* next character (for kerning) */
Ccoor *concat; /* concatenation point */
Ccoor *1lleft, *uleft, *uright;
/* coordinates of text bounding box */

inquire_text extent () determines how large text tstring would be and
where it would be placed if it were drawn using the current text attributes. The
nextchar parameter is used to determine the point where text would start if more
text (starting with nextchar) were appénded to the text specified by tstring. 10 If
nextchar equals ’single space’, the last point of the current character is used. The
argument concat returns the coordinates of the point where appended text would
start. The arguments left, uleft, and uright return three of the four comers of the
bounding box of text contained in tstring.

The bounding box is a parallelogram (a rectangle if the character up vector and
the character base vector are orthogonal). The names of the parallelogram
corners are correct if no rotation is applied to the text. For some character orien-
tations, the implied relationships:do not hold. For example, lleft may not be the
lowest. The fourth comer may be easily calculated from the three returned:

uright->x + lleft->x - uleft->x
uright->y + lleft->y - uleft->y

The concatenation point and text alignment parallelogram are returned in VDC
space, but assume a text position of (0, 0). If the text is to be drawn at a position
(x, y) then (x, y) must be added to each point to yield the true locations.

The values of lleft, uleft, and uright are defined by the bounding box of the char-
acter and therefore may not be at the exact pixel where the character ends or
begins.

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC.

10 This is a method for accounting for proportional spacing.

sun Revision A, of 9 May 1988

microsystems

’ 46 SunCGI Reference Manual

Cell Array

- Pixel Array

Cerror cell array(p, q, r, dx, dy, colorind)
Ccoor *p, *q, *r;
i /* corners of parallelogram (in VDC space) */
cint dx, dy; /* dimensions of color array */
Cint *colorind; /* array of color values */

cell array () draws a scaled and skewed pixel array on the view surface(s).
Points p, g and r (expressed in VDC space) define a parallelogram. Line p-gisa
diagonal. p is the corner where the first color is deposited, going in the direction
of r and continuing filling lines until ¢. 7 is one of the remaining two comers. dx
and dy deﬁne the width and the height of the array colorind, which is mapped
onto the parallelogram defined by p, g, and r.

cell array () is one of the few primitives which depends on the actual size
of the view surface. Cell arrays are not drawn if the elements of the array would
be smaller than one pixel. However, because different view surfaces may have
different dimensions, a cell array might be drawn on one view surface, but not on
another ismaller view surface. Finally, all cells composing the cell array are the
same siz‘e; therefore, the upper left hand comer of the cell array might be down
and to the right of point ¢ because of the accumulated error of making all of the
cells slightly smaller than their floating point size. For example if each cell of a
3x3 ceM array is supposed to be 3.333 pixels wide, the actual cell array will be

nine pixels wide instead of ten.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 1\\& J
ECELLATS [66] Distance between p and q too small for given dx, dy.

ECELLPOS [67] Cell array dimensions must be positive.

Cerror pixel array({pcell, m, n, colorind)

Ccoor *pcell; /* base of array in VDC space */

Cint m, n; /* dimensions of color array in screen space */
Cint *colorind; /* array of color values */

pixel array () draws the array of colors colorind starting at point pcell
(expressed in VDC space). m and n (expressed in screen space) define the x and y
dimensions of the array. Therefore, pixel arrays always have a constant physical
size, independent of the dimensions of VDC space. The pixel array is drawn
down aﬁ‘d to the right from point pcell. If either m or n are not positive, the abso-
lute value of m and the absolute value of n are used. pixel array () is not
affected by the current drawing mode.

|
ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

EVALOVWS [69]) Value outside of view surface.

\ ;
é{{? U n Revision A, of 9 May 1988

Chapter 3 — Output 47

C

Bitblt Source Array

Bitblt Pattern Array

("

Cerror bitblt_ source_array(pixsource, xo, yo, Xe, ye,
pixtarget, xt, yt, -name)
Cpixrect *pixsource, *pixtarget;
/* source and target pixel arrays */
Cint xo, yo;
/* coordinates of source array (in VDC space) */
Cint xe, ye:;
/* dimensions of source array (in screen space) */
Cint xt, yt:;
/* coordinates of target pixel array (in VDC space) */
Cint name; /* view surface name */

bitblt source_ array () moves a pixel array from point (xo, yo) to point
(xt, yt) using the current drawing mode. Both of these points are expressed in
VDC space. The size of the pixel array is determined by the xe and ye arguments,
which are expressed in screen space. pixsonrce and pixtarget are pointers to pix-
rects, which must already be created by mem_create () .11 These pixrects must
be the same depth as the view surface: 1-bit deep on a monochrome device, §-
bits on a color device.

The source area of the view surface associated with name is saved into pixsource
(at 0,0). The target area, after pixsource is applied to it, is read into pixtarget
pixrect (at 0,0).

An error is detected if either xe or ye are not positive. If the replicated pattern
array overlaps with the source array on the screen, the visual result depends on
the current drawing mode. pixsource and pixtarget may have different contents,
depending on the screen drawing mode (see the set _drawing mode () func-
tion).

Multiple view surfaces and bitblts are incompatible, so a name argument must be
specified.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.

Cerror bitblt pattern_ array(pixpat, px, py, pixtarget,
rx, ry, ox, oy, dx, dy, name)

Cpixrect *pixpat; /* pattern source array */

Cint px, py; /* pattern extent */

Cpixrect *pixtarget; /* destination pattern array */
Cint rx, ry:; /* pattern reference point */
Cint ox, oy:; /* destination origin */

Cint dx, dy; /* destination extent */

Cint name; /* view surface name */

bitblt pattern array () replicates the pattern (using the current draw-
ing mode) stored in pixpat to fill the area of the view surface, which is deter-
mined by ox, oy and dx, dy. The pattern reference point determines the offset of

11 Refer to the Pixrect Reference Manual for more information about pixrects.

Sun Revision A, of 9 May 1988

48 SunCGI Reference Manual

Bitblt Patterned Source Array

the pattern array from the point zero. The resultant pattern array is displayed at
ox, oy. The visual result depends on the current drawing mode.

pixpat is a pointer to a pixrect which must be created and initialized with the pat-
tern by the application program. pixtarget is a pointer to a pixrect (with same
depth as the device) which must already be created by the user, using
mem_create (). The target area, after pixpat is applied to it, is read into the
pixtarget pixrect (at 0,0).

Multlpl‘e view surfaces and bltblts are incompatible, so a name argument must be
specified.

ENOTVSAC (41 CGI not in proper state: CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.
EPXNOTCR [70] Pixrect not created.

|
Cerrox bitblt patterned source_array(pixpat, px, py,
pixsource, sx, sy, pixtarget, rx, ry, ox, oy,
d*, dy, name)

Cpixrect *pixpat; /* pattern source array */

Cint px, py: /* pattern extent */

Cpixrect *pixsource; /* source array */

Cint sx, sy; /* source origin */

Cpixrect *pixtarget; /* destination pattern array */
Cint EX, TV " /* pattern reference point */
Cint ox, oy; /* destination origin */

Cint dx, dy:; /* destination extent */

Cint name; /* view surface name */

bitblt patterned source array () replicates (using the current draw-
ing mode) the pattern stored in pixpat to fill the area of the view surface deter-
mined by ox, oy and dx, dy. The source area of the view surface is read into the
pixrect pomted to by pixsource (which must already be created by the user with
same depth as the device) at 0,0. The source area is stenciled through the repli-
cated pattern onto the view surface at ox, oy, using the current drawing mode.
The target area, after the copy, is read into the pixtarget pixrect. If the replicated
pattern array overlaps with the source array on the screen, the visual result
depends on the current drawing mode.

Multiple view surfaces and bitblts are incompatible, so a name argument must be
specified.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.

EPXNOTCR [70] Pixrect not created.

&%?? Ssun Revision A, of 9 May 1988

mlcrosystems

-

./

e

O

e

j

Chapter 3 — Output 49

s

Inquire Cell Array Cerror inquire_ cell array(name, p, q, r, dx, dy, colorind)
Cint name; /* view surface name */
Ccoor *p, *q, *r;
) /* corners of parallelogram (in VDC space) */
. Cint dx, dy: /* dimensions of color array */
Cint *colorind; /* array of color values */

Points p, g and r (in VDC space) define a parallelogram with line p-g as the diag-
onal, where p is the lower left-hand corner. r is one of the remaining two
corners. dx and dy define the width and the height of the array colorind which
contains the colors of the pixels on the screen which lie within the parallelogram
defined by p, g, and r. Notice that a view surface identifier, name, must be
specified because the result of this function is highly dependent on the dimen-
sions and contents of the view surface.

The area of the screen corresponding to the parallelogram is assumed to contain a
regular grid of points. However, if each element of the grid is larger than one
pixel, the color of the pixel at the lower left-hand comer of each element of the
grid is defined to be the color of the grid element. Therefore, the values con-
tained in colorind are highly dependent on the size of the view surface. An error
is produced if the elements of the grid are smaller than one pixel.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VS/AC.
(- EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.
EVSNTACT [15] Specified view surface i§ not active. “
ECELLATS [66] Distance between p and q too small for given dx, dy.

ECELLPOS [67] Cell array dimensions must be positive.
Inquire Pixel Array Cerror inquire pixel array(p, m, n, colorind, name)
Ccoor *p; /* base of array in VDC space */
Cint m, n; : /* dimensions of color array in screen space */
Cint *colorind; /* array of color values */
Cint name; /* view surface name */

inquire_pixel array () fills array colorind with the values of pixels in
the area of the screen defined by point p (expressed in VDC space) and points m
and n (expressed in screen space). The array is filled down and to the right from
point p. If either m or n are not positive, the absolute value of these arguments is
used.

Multiple view surfaces and bitblts are incompatible, so a name argument must be
specified.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.
EPXNOTCR [70] Pixrect not created.

O

A\
B @% s un Revision A, of 9 May 1988

50 SunCGI Reference Manual

Inquire Device Bitmap

Inquire Bitblt Alignments

3.3. Drawing Modes

Cpixrect *inquire device bitmap (name)
Cint name; /* name assigned to cgi view surface */

inquire device bitmap () retums the pixrect that corresponds to the
view surface. The pixrect describes the entire device, even if the view surface is
a smaller pixwin. If you want to use subareas of this pixrect or manipulate it any
other way, refer to the Pixrect Reference Manual.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror inquire_bitblt_alignments (base, width, px, pv,
Maxpx, maxpy, name) \

Cint *base; /* bitmap base -alignment */

Cint 4width; . /* width alignment */

Cint *px, *py:; /* pattern extent alignment */

Cint *maxpx, *maxpy; /* maximum pattern size */

Cint niame; /* name assigned to cgi view surface */

inquire bitblt_alignments () reports the alignment criteria necessary
for some implementations. These factors are not critical for SunCGI. However,
you shohld keep in mind the appropriate depth for the pixrect when talking to a
specific device. Therefore the arguments base, width, px, and py are always set
to zero. The arguments maxpx and maxpy are device dependent and determine

the maximum size of a pattern for bitblt pattern_array () and
bitblF_patterned_source__array 0.

Multiplé view surfaces and bitblts are incompatible, so a name argument must be
specified.

ENOTVSAC [4] CGI not in proper state: CGI should be it state VSAC.
EVSIDINV [10] Specified view surface name is invalid.
EVSNOJIOP [13] Specified view surface not open.

EVSNTTACT [15] Specified view surface is not active.

Drawinﬁ modes determine the result of drawing any output primitive on the clear
screen qbackground) or on top of a previously drawn object. Drawing modes
only affpct the drawing of bitblt primitives. However, a non-standard
set_global_drawing_mode () function is provided, which affects all out-
put primitives except bitblts. Resetting the drawing mode in the middle of an
applicaﬁ;ion program only affects those output primitives drawn after the mode is
reset. The novice user is advised not to reset the drawing mode until the user has

written ;ht least one application program using SunCGl.

sun Revision A, of 9 May 1988

microsystems

Chapter 3 — Output 51

Set Drawing Mode

=

N
Set Global Drawing Mode
{(SunCGI Extension)

-

Cerror set_drawing mode (visibility, source,
destination, combination)

Cbmode visibility; /* transparent or opaque */
Cbitmaptype source; /* NOT source bits */
Cbitmaptype destination; /* NOT destination bits */
Ccombtype combination; /* .combination rules */

set_drawing_mode () determines the current drawing mode which in tum
determines how bitblt primitives are displayed. The visibility argument deter-
mines how pixels with index zero are treated.

typedef enum {
TRANSPARENT,
OPAQUE

} Cbmode;

typedef enum {
BITTRUE,
BITNOT

} Cbitmaptype;

typedef enum {
REPLACE,
AND,
OR,
NOT,
XOR

} Ccombtype;

If visibility is set to TRANSPARENT, all source pixels with index zero leave the
destination pixel unchanged, regardless of the operation, whereas if visibility is
set to OPAQUEE, all pixels are treated normally. The arguments source and desti-
nation determine whether the contents of the source and destination pixrects are
NOT-ted before the bithit operation is performed.

The combination argument determines how the source and destination pixrects
are combined. If combination is equal to REPLACE, the source pixrect (after
optionally being NOT-ted) replaces the destination pixrect. If combination is
equal to AND, OR, or XOR, the source pixrect and the destination pixrect are
combined in the indicated Boolean fashion. If combination is equal to NOT, then
the destination is set to a bitwise NOT operation of the source pixrect.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC.

Cerror set_global drawing mode (combination)
Ccombtype combination; /* combination rules */

set_global drawing mode () determines the current global drawing
mode which in turn determines how all output primitives except bitblts are
displayed. The combination argument determines how the source and destina-
tion pixrects are combined. If combination is equal to REPLACE (the default
value), the output primitive replaces the destination background. If combination

S u n » Revision A, of 9 May 1988

microsystems

52 SunCGI Reference Manual

Inquire Drawing Mode

O

is equal to AND, OR, or XOR, the output primitive and the information on the s
screen are combined in the indicated Boolean fashion. If combination is equal to
NOT, then the destination is set to a bitwise NOT operation of the source pixrect.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror inquire drawing mode (visibility, source,
destination, combination)

Cbmode *visibility; /* transparent or opaque */
Cbitmaptype *source; © /* NOT source bits */
Cbitmaptype *destination; /* NOT destination bits */
Ccombtype *combination; /* combination rules */

inquire drawing_mode () retums the values of the four components of the
current'drawing mode.

ENOTOEPOP 5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

~
Nare
N
N
sun Revision A, of 9 May 1988
microsystems

-
B

=
s c
% g
H G 3 3
&) § & & S
w @) HM M 17}
g g M < = Q L
g wu = (3} S =] 3
5 B - O L] o= =
0 o < e O = = Savm S 9
‘nHX [) 0 S S.m Q 2 .m =
= e 5 5 g5 g 5 3 5 2 48 < < ‘
g2 g8 o {83 2§ |8 TYg iz | &
2 8 2 » T o & = n s 2 [8
.bSﬂem L wn AB 8 < § @ B
ESEEE % SRS sgTiai]
- 72 5 5§ 2 A B € 8§ 5§ » 8 NN o o9 /A 5 = 0 A
D) ACB.HemdMMI.RkTSSC.mpJasmOd
— = & 8 & nWWOIMmrrrrbmrtlm
o 42 9 = B m U « g 8 & 8 O o & ©
= < § < g E & 2 & & < g = O
3 maeemmmmmmmmmmammmummum
7)) .m e T B IL = S B) 11.1n1.1,m|a.
= g BSDLPLLLLL%PMMMM&FI%FH
= g ~ o ol < vy O
ﬂ m < < < ~ < <

4.7. Perimeter Attributes

4.8. Text Attributes

4.9. Color Attributes

4.10.

Hatch Index

Pattern Index
Pattern Table

Pattern Reference Point

Pattern Size

Pattern with Fill Color (SunCGI Extension)

Perimeter Type

Perimeter Width

Perimeter Width Specification Mode

Perimeter Color

Text Bundle Index

Text Precision

Character Set Index

Text Font Index

Character Expansion Factor

Character Spacing

Character Height

Fixed Font (SunCGI Extension)

Text Color

Character Orientation

Character Path

Text Alignment

Color Lookup Table

Inquiry Functions

Inquire Line Attributes

Inquire Marker Attributes

Inquire Fill Area Attributes

Inquire Pattern Attributes

Inquire Text Attributes
Inquire Aspect Source Flags

67
67
67
68
68
68
69
69
69
70
70
70
70
71
71
71
72
72
72
73
73
73
74
74
76
76
77
78
78
78
79
79
80

C

.

)

N’

=
s

()

(\

Attributes

The current attributes determine how output primitives are displayed. Attributes
are not specific to any view surface, but affect all view surfaces. The default
attributes are defined in Table 4-1.

The attributes associated with an output primitive may be set either individually
or in bundles. The method for setting the current attribute depends on the state of
the aspect source flag (ASF) of each attribute. The ASF works as follows:

o If the ASF for an attribute is INDIVIDUAL, then the value used is the current
value set for that individual attribute. For example, a line is drawn in the
current line color as set by the last call to the 1ine color () function.

o If the ASF is BUNDLED, then the value for that attribute is obtained from the
entry in the bundle table, as set by the define bundle index () func-
tion. The bundle table is a collection of attributes for a particular type of
primitive. A bundle table may describe the appearance of lines, markers, fill
areas, edges, and text.

Each attribute in the bundle table is pointed to by a bundle index. The value
of a BUNDLED attribute is determined by this index and the contents of the
specified bundle when the primitive is generated. The default bundle index
is 1 (which initially contains the default values for the attribute). The max-
imum value for a bundle index is 10.

By using a bundle table you can set multiple attributes for an output primi-
tive with a single function call. For example, a bundle table may be defined
and then referenced that will set the line type, line width, and line color for
subsequent polyline () calls.

The majority of this chapter is devoted to individual attribute functions. Indivi-
dual attribute functions are grouped according to the output primitives they
effect: polylines, polymarkers, filled objects, and text. The color table()
function (which redefines color lookup table entries) is also included in this
chapter. Finally, functions for obtaining the values of the current attributes are
discussed.

Sun 55 Revision A, of 9 May 1988

microsysterns !

SunCGI Reference Manual

Default Attributes
Attribute Value

Bundle Attributes:
All ASFs INDIVIDUAL
All Bundle Indices 1
Line Attributes:
Line Color 1
Line Endstyle BEST_FIT
Line Type SOLID
Line Width 0.0
Line Width Specification Mode SCALED
Marker Attributes:
Marker, Color 1
Marker|Size 4.0
Marker Size Specification Mode SCALED
Marker Type DOT
Fill Attributes:
Fill Col‘or 1
Fill Hatch Index 0
Fill Pattern Index 1
Interior Style HOLLOW
Number of Pattern Table Entries 2
Pattern Size 300,300
Pattern Reference Point 0,0
Pattern with Fill Color OFF
Perimeter Color 1
Perimeter Type SOLID
Perimeter Visibility ON
Perimeter Width 0.0
Perimeter Width Specification Mode SCALED
Text Aitributes:
Character Base.x 1.0
Charactﬁr Base.y 0.0
Character Expansion Factor 1.0
&arac#er Height 1000
Character Path RIGHT
Character Spacing 0.1
Character Up.x 0.0
Character Up.y 1.0
Fixed ﬁont 0
Fontset! I
Horizontal Text Alignment NRMAL
Text C ‘lor 1
Text Continuous Alignment.x 1.0

Xz sun

microsystems

Revision A, of 9 May 1988

O

Chapter 4 — Attributes 57

Table 4-1

4.1. Bundled Attribute
Functions

Default Attributes— Continued

Attribute Value
Text Continuous Alignment.y 1.0
Text Font STICK
Text Precision STRING
Vertical Text Alignment NORMAL

The attribute selector functions determine whether the current attributes are
defined individually or by using a bundle table. The CGI standard specifies the
bundle table as read-only but SunCGI allows user-definition of entries in the bun-
dle table.

The following example program illustrates how to change the appearance of
primitives with bundled attributes. The program draws a polyline using different
line style and line width attributes. The bundled define also shows possible non-
default attributes for other output primitives.

#include <cgidefs.h>

#define BOXPTS
#define NUMATTRS
#define BUNDLE_INDEX

Ccoor box[BOXPTS] {

Cbunatt bundle {

main ()

{
Cint i,

name;

Cvwsurf device;
Ccoorlist boxlist;
Cflaglist flags;
boxlist.n = BOXPTS;

open _cgil{);

boxlist.ptlist = box;

NORMAL VWSURF (device, PIXWINDD) ;

5
18
2

10000,10000
10000,20000
20000,20000
20000,10000 ,

10000,10000 };

DASHED DOTTED, 1., 4, X, 6., 4,
PATTERN, 1, 1, 2, DOTTED, 1.5, 1,
STICK, CHARACTER, 1.3, 0.05, 1 };

/* counter variable */
/* structure of coords. */
/* structure of ASF’s * /

//m“ open_vws (&name, &device);
N
/* allocate room for array of ASF’s (one for each attribute) */
. J
D '
%% sSun Revision A, of 9 May 1988
§ microsystems

58 SunCGI Reference Manual

(flags.value = (Casptype *) malloc(NUMATTRS*sizecof (Casptype));)
flags.num = (Cint *) malloc(NUMATTRS*sizeof (Cint)):
/* set all the ASF’s to "BUNDLED", and set the appropriate flag #'s */
for (i = 0; i < NUMATTRS; i++) {
flags.value[i] = BUNDLED;
flags.num([i] = i;
}
flags.n = NUMATTRS;
/* define our bundle which contains a setting for every attribute */
define bundle_ index(BUNDLE INDEX, &bundle):;
set_aspect_source_flags(&flags);
q polyline bundle index(BUNDLE_INDEX); /* select our polyline bundle */
polyline (&boxlist);
sleep(10);
close_vws (name) ; /* close view surface and CGI */
close_cgi();
}
\ J
Set Aspect Source Flags Cerror set aspect_source_flags (flags)

Cflaglist *flags; /* list of ASFs */

set_aspect_source_ flags () determines whether individual attributes
are set individually or from bundle table entries.

typedef struct {

Cint n;

Cint numl[];

Casptype valuel]l:
} Cfl#glist; ‘
The n e;lement of the flags argument determines how many flags are to be set.
The num array of the flags argument determines which flags are to be set. Flag
numbers are provided in Table 4-2. Finally, the value array of the flags argument
determilnes the values of the flags specified in num. If a value is assigned to
INDIVIDUAL, the individual attribute functions affect the current attribute. If the
value of index is BUNDLED, calls to individual attribute functions have no

eﬁect.lz‘ The default value of all aspect source flags is INDIVIDUAL.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

/

2m fact, SunCGI currently produces error 30 when these individual attribute function is called while the
corresponding ASF is BUNDLED.

S —
@:{4 sun Revision A, of 9 May 1988

microsystems

Chapter 4 — Attributes 59

e
Define Bundle Index (SunCGI
Extension)
PN

. 4

Attribute Source Flag Numbers

Flag | Attribute | Flag | Attribute
0 line type 9 fill color
1 line width 10 perimeter type
2 line color 11 perimeter width
3 marker type 12 perimeter color
4 marker width 13 text font index
5 marker color 14 text precision
6 interior style 15 character expansion factor
7 hatch index 16 character spacing
8 pattern index 17 text color

Cerror define bundle_index(index, entry)
Cint index; /* entry in attribute bundle table */
Cbunatt *entry; /* new attribute values */

define_ bundle_ index () defines an entry in the bundle table. The type
Cbunatt is a structure that contains elements corresponding to all the attributes.
index is an entry into a list of available attribute bundles. The default bundle
index is set to 1 (which initially contains the default value for the attributes
specified in Table 4-1). The maximum value for a bundle table index is 10, and
the minimum value is 1. If the contents of a bundle table entry are changed, all
subsequently drawn primitives use the information in the new entry, depending
on the relevant aspect source flags. You should keep this fact in mind if you are
designing display list traversal algorithms using SunCGI.

typedef struct {

Clintype line_type;

Cfloat line_width;

Cint line_color;

Cmartype marker type:;
Cfloat marker size;

Cint marker_color;
Cintertype interior_style;
Cint hatch_ index; —
Cint pattern_index;

Cint fill color;

Clintype perimeter type:;
Cfloat perimeter width;
Cint perimeter_color;

Cint text font;

Cprectype text precision;
Cfloat character_expansion;
Cfloat character_spacing;
Cint text_color;

} Cbunatt;

In addition to the errors listed below, other errors can be detected if any of the
attribute values are invalid, as specified in later sections. Results are undefined if
an error occurs.

S u n Revision A, of 9 May 1988

microsystems

60 SunCGI Reference Manual

4.2. Line Attributes

Polyline Bundle Index

Line Type

),
U

ENOTOPOP [5]

EBBDTBDI [31] |

CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC.

Bundle table index out of range.

SunCGI provides for specifying the style, width and color of lines which consti-
tute polylines, circular arcs, and elliptical arcs. The functions do not affect the
drawing of the perimeter of solid objects, which are set by the perimeter func-

tions.

Cerror polyline bundle_ index (index)
Cint index; /* polyline bundle index */

polyline bundle index () sets the current polyline bundle index to the
value of index. The contents of the polyline bundle index are line type, line width
and line color. The line width specification mode and the line endstyle attributes
are not included in the polyline bundle. If index is not defined, an error is gen-
erated, and the polyline bundle index does not change. If the ASFs for any of
these attributes is set to BUNDLED, the current values of these attributes are set
to the contents of the bundle.

CGI not in proper state: CGI should be in state CGOP,

ENOTOPOP [5]

EBADLINX [33]

VSOP, or VSAC.

Polyline index is invalid.

Cerror line_type (type)
Clintype type; /* style of line */

line_type () defines the line type for polylines. The enumerated type Clin-
type contains values that correspond to valid line types.

typedef enum {
SOLID,
DOTTED,
DASHED,

DASHED_DOTTED,
DASH_DOT_DOTTED,

LONG_DASHED
} Clintype;

The default line style is SOLID

. The actual representation of a line on the screen

is affected by the line endstyle. DASH_DOT_DOTTED actually has three dots

between dashes.

ENOTOPOP [5]

EBTBUNDL [30]

sun

microsystems

CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC.
ASF is BUNDLED.

Revision A, of 9 May 1988

&
N

D

£
2\

'

Chapter 4 — Attributes - 61

Line Endstyle (SunCGI
Extension)

Line Width Specification
Mode

Cerror line_endstyle (type)
Cendstyle type; /* style of line */

line endstyle () determines how a textured (non-SOLID) line terminates.
The enumerated type Cendstyle contains values that correspond to valid line
end styles.

typedef enum {
NATURAL,
POINT,
BEST_FIT

} Cendstyle;

If the endstyle selected is NATURAL, the last component of the line texture (for
example, a dash or a dot) which can be completely drawn is drawn. A blank
space at the end of the line may cause the line to not appear as long as specified
by the starting and ending coordinates. If the endstyle selected is POINT, the last
point of the line is drawn whether it is appropriate or not. In this case, the end-
points of the line always appear on the screen. If the endstyle selected is
BEST_FIT, the last point is always drawn but is extended as far back as the last
space if appropriate. However, the BEST_FIT endstyle may shorten the space
between the last element of the line and the element preceding the last element
by one in order to guarantee that the line ends on a drawn point. The default
endstyle is BEST_FIT.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror line width_specification mode (mode)
Cspecmode mode; /* pixels or percent */

line_width_specification mode () allows the line width to be
specified in pixels or as a percentage of VDC space according to the value of
mode. The enumerated type Cspecmode contains values that correspond to
line width specification modes.

typedef enum ({
ABSOLUTE,
SCALED

} Cspecmode;

If the line width specification mode is changed from ABSOLUTE to SCALED, the
change in the line width will probably be dramatic. The default line width
specification mode is SCALED.

If multiple view surfaces are active, the line width is scaled separately for each
view surface.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

%%; sun Revision A, of 9 May 1988

microsystems

62 SunCGI Reference Manual

Line Width

Line Color

4.3. Polymarker Attributes

Polymarker Bundle Index

Cerror line_width (index) N’
Cfloat index; /* line width */
line width () determines the width of the lines composing polylines, circular
arcs, and so on. If the line width specification mode is SCALED, index is
expressed in percent of VDC space, and if the x and y dimensions are different,
the width is calculated on the basis of the range of the x coordinate of VDC space.
If the parameter setting would result in a line less than one pixel wide, the line
width is displayed as one pixel wide. The default line width is 0.0 (SCALED).
ENOTOi‘—’OP [5] CGI not in proper state: CGI should be in state CGOP,

3 VSOP, or VSAC.
EBTBUNDL [30] ASF is BUNDLED.
EBDWIDTH [34] Width must be nonnegative.
Cerror line_ color (index)
Cint ﬁndex; /* line color */
line color () determines the color of the lines. index selects an entry in the
color lolokup table. The default value of index is 1. An error is detected if index
is not b?tween 0 and 255.
ENOTO?OP [5] CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC. .)

EBTBUNDL [30] ASF is BUNDLED. A
ECIND%(LZ [35] Color index is less than zero.
EBADCOLX [36] Color index is invalid.
The typ}e, size and color of markers (the components of polymarkers) are con-
trolled by the following functions.
Cerror polymarker bundle index(index)
Cint -index; /* polymarker bundle index */

\
polymarker bundle index () sets the current polymarker bundle index to
the value of index. The contents of a polymarker bundle are marker type, marker
size and marker color. The marker size specification mode function is not
included in the polymarker bundle. If index is not defined, an error is generated,
and the ‘polymar,ker bundle index does not change. If the ASFs for any of these
attn’butéf*,s is set to BUNDLED, the current values of these attributes are set to the
values qf the corresponding attribute in the bundle.

| .
ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,

i VSOP, or VSAC. ;

1
EBADMRKX [37] Polymarker index is invalid.

_

) u Revision A, of 9 May 1988

Chapter 4 — Attributes 63

C Marker Type

Cerror marker_type (type)
Cmartype type; /* style of marker */

marker_ type () sets the marker type. The enumerated type Cmartype con-
tains values that correspond to valid marker types.

typedef enum {
DoT,
PLUS,
ASTERISK,
CIRCLE,
X

} Cmartype:

Note that all marker types appear as a point when the marker size is very small.
The default marker type is DOT.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
: VSOP, or VSAC.

EBTBUNDI [30] ASF is BUNDLED.

Marker Size Specification :‘Cerror marker_ size specification_mode (mode)
Mode _ Cspecmode mode; /* pixels or percent */
- marker size_specification_mode () allows the marker size to be
(W specified in pixels or as a percentage of VDC space according to the value of
- mode. The enumerated type Cspecmode contains values that correspond to

valid marker size specifications.

typedef enum {
ABSOLUTE,
SCALED

} Cspecmode;

The default marker size specification mode is SCALED.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Marker Size Cerror marker_size (index)
Cfloat index; /* marker size */

marker size () sets the size of the marker height and marker width. index is
expressed in percent of VDC space. The default marker size is 4.0 percent of
VDC space. If the marker size becomes very small, markers of all types are
displayed as points. An error is detected if index is negative. :

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBADSIZE [38] Size must be nonnegative.

commr

S ,
@?@ sUun Revision A, of 9 May 1988
tems

64 SunCGI Reference Manual

Marker Color

4.4. Solid Object Attributes

Fill Area Bundle Index

Interior Style

Cerror marker color (index)
Cint index; /* marker color */

marker color () determines the color of the markers. index selects an entry
in the color lookup table. An error is detected if index is not between 0 and 255.
The defauit marker color is 1.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.

ECINDXLZ [35] Color index is less than zero.

EBADCOLX [36] Color index is invalid.

The solid object attribute functions describe how all solid object primitives are
filled (cplored-in). There are three sets of solid object attribute functions:

fill area attributes
determine the general method for filling solid geometrical objects.

hatch and pattern attributes
determine a pixel array for filling a polygon if the fill style is set to PAT-
TERN.-

perimetfzr attributes
determine how the boundary of a geometrical object is displayed if the per-
imeter visibility is ON.

VR

Cerror fill area bundle_ index(index)
Cint index; /* fill area bundle index */

fill area bundle index () sets the current fill area bundle index to the
value of index. The contents of the fill area bundle are interior style, fill color,
hatch index, pattern index, perimeter type, perimeter width, and perimeter color.
The perimeter width specification mode and the pattern attributes are not
included in the definition of the fill area bundle. If index is not defined, an error
is genefiated, and the fill area bundle index does not change. If the ASFs for any
of these attributes is set to BUNDLED, the current value of the attribute is set to
the valu]e of the corresponding attribute in the bundle.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBADFABX [39] Fill area index is invalid.
Cerror interior_style(istyle, perimvis)

Cintertype istyle; /* fill style */
Cflag perimvis; /* perimeter visibility */

interiox style () sets the fill style for solid objects. The enumerated type
Cintertype contains values that correspond to valid line types. N

S ll n Revision A, of 9 May 1988

5

Chapter 4 — Attributes 65

4.5. Solid Interior Fill
Attribute

Fill Color

4.6. Hatch and Pattern
Attributes

typedef enum {
HOLLOW,
SOLIDI,
PATTERN,
HATCH

} Cintertype;

If the fill style is set to SOLIDI, the solid object is filled with the current fill color.
If istyle is set to PATTERN or HATCH, the solid object is filled with the current
PATTERN or HATCH style. The PATTERN and HATCH styles are explained in
the pattern attributes section. The default fill style is HOLLOW.

interior_style () also determines whether the perimeter of the solid object
is visible according to the value of perimvis (which must be ON or OFF). If per-
imvis is OFF, the perimeter attributes have no effect. The default value of perim-
eter visibility is ON.

“"Be careful when using the interior style function to explicitly specify the per-

imvis argument. If you do not specify it, or set it to OFF, the geometrical output
primitive may not be displayed because the interior style is HOLLOW.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

The following section contains the description of a function that determines the
color of an interior region if the fill style is not HOLLOW,

Cerror fill color(color)
Cint color; /* color for solid object £ill */

£fill color () determines the color for filling solid objects, if the fill style is
not set to HOLLOW.

The default fill style is HOLLOW, so changing the fill color will not have an
effect without changing the interior style first. The default fill coloris 1. An
error is detected if fill color is not between 0 and 255.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.
ECINDXILZ [35] Color index is less than zero.

EBADCOLX [36] Color index is invalid.

Geometrical primitives can be filled with 2D arrays of color values called pat-
terns. SunCGI supports pre-defined as well as user-defined patterns. Pattern 0 is
initially defined to be a 3 x 3 matrix which is set to zero at the comers and one
elsewhere. Pattern O produces simple cross-hatching. Pattern 1 (which produces
a polka-dot pattern) is initially defined to be a 3 X 3 matrix which is set to 1 at the
center and 0 elsewhere.

-

S un Revision A, of 9 May 1988

microsystems

66 SunCGI Reference Manual

The definition of patterns is stored in the pattern table. Each entry in the pattern e’
table consists of a 2D array of color values and the x and y dimensions of the

array. The starting position (upper left-hand corner) of the pattern is determined

by the pattern reference point.

Two types of patterns are available: PATTERNs and HATCHes; PATTERNS can
be scaled and translated. HATCHes can’t and simply fill the geometrical output
primitives with pixel arrays.

The following example program illustrates how to change the appearance with
the individual attribute functions. The program draws a polygon and fills it with
a pattern.

{ N\
#include <cgidefs.h>

#define BOXPTS 5
#define PAT_ROWS -~ 4
#define PAT COLS 4
#define PAT SIZE (
#define PAT INDEX 2

PAT ROWS * PAT_ COLS)

#define PAT DX 250
#define PAT DY 250

Ccoor box[BOXPTS] = { 10000,10000 , /
i 10000,20000 , N’
20000,20000 ,
20000,10000 ,
10000,10000 };

/*Cint pattern[PAT SIZE] = { 50, 75, 100, 125,
150, o, 0, 175,
200, o, 0, 225,
250, 275, 300, 325 };*/

Cint pattern[PAT SIZE] = { 6, 1, 1, 2,

‘ 7’ 0’ OI 3'

7’ OI ol 3'
6, 5, 5, 4 }:

main ()

{ 1
dint name;
Cvwsurf device;

Ccoorlist boxlist;

boxlist.n = BOXPTS;
boxlist.ptlist = box;
NORMAIL VWSURF (device, PIXWINDD) ;

open_cgi(); : .
open_vws(&name, &device); <:“>
\ S
D 3
%42 sun Revision A, of 9 May 1988
microsystems .

Chapter 4 — Attributes 67

(\\
- (interior_ style(PATTERN, ON);)

pattern_table(PAT_ INDEX, PAT ROWS, PAT COLS, pattern);
pattern_index(PAT_INDEX);

pattern_size(PAT_DX, PAT DY);

polygon(&boxlist);

sleep (10);

close_vws (name) ;
close_cgi():

Hatch Index Cerror hatch_index (index)
Cint index; /* HATCH index in the pattern table */

hatch_index () determines which entry in the i>attem table is used to fill
solid objects when the fill style is set to HATCH. The default hatch index is 0.
An error is generated if index points to an undefined entry in the pattemn table.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP, -
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
(ESTYLLEZ [42] Style (pattern or hatch) index is less than zero.
S ENOPATNX [43] Pattern table index not defined.
Pattern Index Cerror pattern_index(index)
Cint index; /* PATTERN index in the pattern table */

pattern_ index () determines which index in the pattern table is used to fill
solid objects when the fill style is set to PATTERN. The default pattern index is
1. An error is generated if index points to an undefined entry in the pattern table.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ESTYLLEZ [42] Style (pattern or hatch) index is less than zero.
ENOPATNX [43] Pattern table index not defined.

Pattern Table Cerror pattern_table(index, m, n, colorind)
Cint index; /* entry in table */
Cint m, n; /* number of rows and columns */

Cint *colorind; /* array containing pattern */

pattern table () defines an entry in the pattern table. index defines the
entry in the table (which must be less than 50). An error is generated if index is
outside the bounds of the pattern table. m and n define the height and width of
f ‘ the pattern (in pixels). The array pointed to by the argument colorind contains
the actual pattern row-wise from the upper left. For monochrome view surfaces,

(

0}?; sun Revision A, of 9 May 1988

\ microsystems

68 SunCGI Reference Manual

Pattern Reference Point

Pattern Size

Pattern with Fill Color
(SunCGI Extension)

)

s
8

all nonzero entries in colorind are treated as 1. The maximum number of ele-
ments in a pattern (m X n) is MAXPATSIZE.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EPATARTL [40] Pattern array too large.

EPATS§ZTS [41] Pattern size too smail.

ESTYL“LEZ f42] Style (pattem or hatch) index is less than zero.
EPATITOL [44] Pattern table index too large.

Cerro% pattern reference_point (begin)
Ccoor *begin;

pattern reference point () defines the point in VDC space where the
pattern box begins. The pattern is then replicated over all VDC space. The upper
left-hand corner of the pattern box is determined by begin. The default pattern
reference point is (0, 0). pattern reference_point () has no effect if
the interior style is not set to PATTERN.

ENOTOPOP 5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror pattern_size(dx, dy) f”“\
Cint dx, dy:; /* size of pattern in VDC space */ \%M/

pattern_size () defines the size of the pattern array in VDC coordinates. dx
and dy detennine the size of an element of the pattern in VDC space.

pattern size () therefore allows you to ‘stretch’ the pattern to a certain
size. Ii'l dx or dy would result in pattern elements less than one pixel wide, 1 is
used. If the pattern size is larger than the bounds of screen space, the effective
pattern size is the size of VDC space. The default pattern size is (300, 300).

ENOTQPOP [5] CGI not in proper state: CGI should be in state CGOP,
‘ VSOP, or VSAC. .

Cerror pattern with fill color(flag)
Cflag!flag; /* ON to use nonzero pattern
‘ elements as f£ill color */

Binary patterns allow the same pattern to be applied in different colors, without
redefining the pattern array. pattern_with fill color () setsanon-
standar{d CGI state pattern with fill color. The default pattern with fill color is
OFF, and each color value in a pattern table entry is used verbatim, as in standard
CGL When a pattern is used while pattern with fill color is ON, the pattern is
considered to be a 2D array of flags; when the pattern element is nonzero, the
current|fill color is used, instead of the actual value of the pattern element.
(When [the pattern element is zero, a zero color index is used, just as when the

flag is OFF.)

sun Revision A, of 9 May 1988

mlcrosys!ems

Chapter 4 — Attributes 69

a

. 4.7. Perimeter Attributes
Perimeter Type

i/‘ N

N
Perimeter Width

,/ bk,

{

N

@

The following sections contain descriptions of functions that determine the per-
imeter attributes perimeter type, perimeter width, perimeter width specification
mode, and perimeter color.

Cerror perimeter type (type)
Clintype type; /* style of perimeter */

perimeter_ type () defines the perimeter type for solid objects. The
enumerated type Clintype contains values that correspond to valid perimeter
types.
typedef enum {

SOLID,

DOTTED,

DASHED,

DASHED_ DOTTED,

DASH_DOT_DOTTED,

LONG_DASHED
} Clintype:

The default perimeter style is SOLID. Notice that there is no ending style for per-
imeter. The endstyle is controlled by the 1ine endstyle () function.

As mentioned previously, control of the drawing of the borders of solid objects is
under the control of the perimeter attribute functions, not the line attribute func-
tions. However, the two sets of functions take the same values. The perimeter
attributes are essentially the same as the line attributes except that they affect the
borders of solid attributes. The appearance of a perimeter can be similar to a line
especially if interior style is set to HOLLOW. Perimeter attribute functions have
no effect if the perimeter visibility is set to OFF,

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.

Cerror perimeter_ width (width)
Cfloat width; /* perimeter width */

perimeter_ width () determines the width of the perimeters of solid objects.
index can be expressed in percent of VDC space or pixels. If the perimeter width
specification. mode is set to SCALED and the x and y dimensions are different, the
perimeter width is calculated on the basis of the range of the x coordinate of VDC
space. ‘If the parameter setting would result in a perimeter less than one pixel
wide, the perimeter width is displayed as one pixel wide. The default perimeter
width is 0.0 (SCALED).

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDIL [30] ASF is BUNDLED.
EBDWIDTH [34] Width must be nonnegative.

Sun Revision A, of 9 May 1988

microsystems

70 SunCGI Reference Manual

Perimeter Width Specification
Mode

Perimeter Color

4.8. Text Attributes

Text Bundle Index

0

Cerror perimeter width specification_mode (mode)
Cspecmode mode; /* pixels or percent */

perimeter width_ specification_mode () allows the

perimeter width () to be specified in pixels or as a percentage of VDC
space according to the value of mode (which can either be ABSOLUTE or
SCALED). If the perimeter width specification mode is changed from ABSO-
LUTE to SCALED, the change in the line width will probably be dramatic. The

" default perimeter width specification mode is SCALED.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.
|
Cerroriperimeter_color(index)
Cint index; /* perimeter color */

per iméter_color () determines the color of the perimeters. index selects
an entry in the color lookup table. The default value of index is 1. An error is
detected if index is not between 0 and 2535.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.

ECINDXLZ [35] Color index is less than zero.

PanN
N

A

EBADCOLX [36] Color index is invalid.

SunCGI provides a variety of functions for determining how text is written to the
screen. The most important text attribute is text precision. If text precision is set
to STRING, firmware characters are used. The fonts, size, spacing, and alignment
of firmware are more limited than characters drawn with text precision set to a
value other than STRING. Therefore, calls to text attribute functions regulating
these aspects of text drawing have no effect when text precision is set to STRING.
Cerror‘text_bundle_index(index)

Cint index; /* text bundle index */

text_k§>undl e_index () sets the current text bundle index to the value of
index. The contents of the text bundle index are text font, text precision, charac-
ter expansion factor, character spacing, and text color. The character height,
character orientation, character path, text alignment, and fixed font are not
included in the definition of the text bundle. If index is not defined, an error is
generate‘H, and the text bundle index does not change. If the ASFs for any of
these attributes are set to BUNDLED, the current values of these attributes are set

to the co;htents of the bundle.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
‘ VSOP, or VSAC.
. o~
EBADTXTX [45] Text index is invalid. .

o ,
@ s U n Revision A, of 9 May 1988
microsystems

Chapter 4 — Attributes 71

_

Text Precision

Character Set Index
Text Font Index
-
\.—/

@

Cerror text_precision(type)
Cprectype type; /* text type */

text _precision () controls the precision with which text is displayed. The
enumerated type Cprectype contains values that correspond to valid text pre-
cisions.
typedef enum {

STRING,

CHARACTER,

' STROKE

} Cgrectype ;

If the text precision is set to STRING, the firmware character set is used.
Firmware characters cannot be scaled or rotated.

Characters are clipped, but not in parts (that is, if any portion of the character
exceeds the clipping boundary the whole character is clipped). If the text preci-
sion is set to CHARACTER, software generated characters are employed, and
characters are clipped, but not in parts. All text attributes have a visible effect on
software generated characters. If the text precision is set to STROKE, the CHAR-
ACTER precision capabilities are enabled, and characters are clipped in parts.
The default text precision is STRING.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC. -

EBTBUNDL [30] ASF is BUNDLED.

Cerror character set index(index)
Cint index; /* font set */

character_ set_index () selects a set of fonts. Although SunCGI supports
this function, only set number 1 is defined. Calls to

character set index () with index assigned to a value other than 1 are
ignored.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror text font_index(index)

Cint index; /* font */

text font index () determines the current font. A list of available fonts
and their availability when text precision is set to STRING is given in Table 4-3.
A warning about the SYMBOL font: undefined characters are displayed as bugs
(the six-legged kind). The default font is STICK.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ETXTFLIN [47] Text font is invalid.

Ssun Revision A, of 9 May 1988

microsysterris

72 SunCGI Reference Manual

Table 4-3

Character Expansion Factor

Character Spacing

Character Height

Available Fonts N

Font String Precision | Font Number

ROMAN Yes
GREEK Yes¥
SCRIPT Yes
OLDENGLISH No
STICK Yes
SYMBOLS No

N WD -=O

T displayed as STICK font.
Cerror character_expansion_ factor(efac)
Cfloat efac; /* width factor */

character expansion_factor () determines the width-to-height ratio of
characters. If efac is greater than 1 the characters appear fatter. If efac is less
than 1 the characters appear slimmer. The default character expansion factor is
1.0. Anerror is generated if efac is less than 0.01 or greater than 10.

ENOTOP bP [5] CGI not in proper state: CGI should be in state CGOP,
| VSOP, or VSAC.

EBTBUNDIL [30] ASF is BUNDLED.
ECEXFOOR [48] Expansion factor is out of range. PN

{W
3
A

Cerror character_spacing(spcratio)
Cfloat spcratio; /* spacing ratio */

character spacing() sets the spacing between characters based on the
height of the characters. The amount of space between characters is obtained by
multiplying the character height by spcratio. The default character spacing fac-
tor is 0.1. Anerror is generated if spcratio is less than -10 or greater than 10.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ECEXFOOR [48] Expansion factor is out of range.
Cerror character height (height)

Cint height; /* height in VDC */

The character height () function determines the height of text in VDC
units. The height is defined as the distance from the top to the bottom of the
character. Notice that changing the character height implicitly changes the char-
acter spacing.

The default character height is 1000. This may result in huge characters if VDC
space is reset from its default range (0-32767).

N

Revision A, of 9 May 1988

4)
{

Chapter 4 — Attributes 73

Fixed Font (SunCGI
Extension)

/
I

Text Color

Character Orientation

If the x and y dimensions of VDC space are different, the height is calculated on
the basis of the range of the x coordinate of VDC space.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL {30] ASF is BUNDLED.
ECHHTLEZ [49] Character height is less than or equal to zero.

Cerror fixed font (flag)
Cint flag; /* fixed or variable width characters */

fixed font () allows characters to be of fixed or variable size. If flag is
nonzero, the characters are of uniform size, otherwise the characters are packed
proportional to their actual sizes. If the character precision is STRING, this func-
tion has no effect. By default SunCGI supports variable width characters.

ENOTOPOP (5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror text color (index)
Cint index; /* color */

text color () determines the color of the text. index selects an entry in the
color lookup table. The default value of index is 1. An error is detected if index
is not between 0 and 255.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ECINDXLZ [35] Color index is less than zero.
EBADCOLX [36] Color index is invalid.

Cerror character orientation(xbase, ybase, zup, yup)
Cfloat xbase, ybase, xup, yup;
/* character base and up vectors */

character_orientation () specifies the skew and direction of text. The
left side of the character box lies on an invisible line called the character up vec-
tor, whose slope is determined by xup and yup. The bottom of the character box
lies on an invisible line called the character base vector, whose slope is deter-
mined by xbase and ybase.

If the character up vector and the character base vector are not orthogonal, the
text is distorted. Callsto character_ orientation () have no effect if text
precision is set to STRING. The default values for the character base vector and
the character up vector are xbase = 1.0, ybase = 0.0, xup = 0.0, and yup = 1.0.

The character base vector and the character up vector influence the character
path and the text alignment. For example, if xbase = -1.0 and the character path
is RIGHT, the text is written to the left.

7 sun Revision A, of 9 May 1988

microsystems

74 SunCGI Reference Manual

Character Path

Text Alignment

a

ENOTOPOP [5] CGI not in proper state; CGI should be in state CGOP, N’/
VSOP, or VSAC.

ECHRUPVZ [50] Length of character up vector or character base vector is
ZEro. :

Cerror character_ path({(path)
Cpathtype path; /* text direction */

character path() specifies the direction in which text is written. The
enumerated type Cpathtype contains values that correspond to valid character
paths.

typedef enum {
RIGHT,
LEFT,
UP,
DOWN

} Cpathtype:

The actual effect of character_path () depends on the character up vector
and the' character base vector. RIGHT specifies that the text is written in the
direction of the character base vector. For example, if the direction of the char-
acter base vector points left instead of right (xup = -1.0 instead of 1.0), the text
will be written right-to-left instead of left-to-right, which is the usual interpreta-
tion of RIGHT. LEFT specifies that the text is written in the opposite direction of N
the character base vector. The character up vector and character base vector N J
essentially change functions when the character direction is set to UP or DOWN.
UP specifies that the text is written in the direction of the character up vector.
“DOWN specifies that the text is written in the opposite direction of the character
up vector. The default character path is RIGHT.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror text_alignment (halign, valign, hcalind, vcalind)
Chaligntype halign; /* horizontal alignment type */
Cvaligntype valign; /* vertical alignment type */
Cfloat hcalind, wvcalind;

/* continuous alignment indicators */

text_alignment () determines where the text is positioned relative to the
starting point specified by the c¢I argument of the text () or vdm_text ()
function. halign determines where the character is placed in relation to the x
component of the starting coordinate of the text position (specified by the ¢l
argument of text). The enumerated type Chaligntype contains values that
correspond to valid horizontal alignments.

S -
@:\@ sun [Revision A, of 9 May 1988

microsystems

»

‘‘‘‘‘‘

P

S

N

Chapter 4 — Attributes 75

typedef enum {
LFT,
CNTER,
RGHT,
NRMAL,
CNT

} Chaligntype;

If the value of kalign is LFT, the horizontal position of the text will begin at the
left edge of the box enclosing the text. Similarly, if the value of halign is RGHT,
the horizontal position of the text will begin at the right edge of the box enclos-
ing the text. If the value of halign is CNTER the horizontal position of the text
will begin equidistant from the right and the left edges of the text box. NRMAL
assigns the alignment based on the value of the character path (see Table 4-4).
If the value of halign is CNT (continuous) the horizontal position of the text is
determined by the argument Acalind. In this case, the text will begin hcalind
fraction of the width of the text box from the left edge of the character box. The
default value of halign is NRMAL.

valign specifies where the character is placed in relation to the y component of
the text position. The enumerated type Cvaligntype contains values that
correspond to valid vertical alignments.

typedef enum {
TOP,
CAP,
HALF,
BASE,
BOTTOM,
NORMAL,
CONT

} Cvaligntype;

If the value of valign is TOP, the vertical position of the text will begin at the top
edge of the character box. If the value of valign is CAP, the vertical position of
the text will begin at the cap line of the character.!3 Similarly, if the value of
valign is BOTTOM, the vertical position of the text will begin at the bottom edge
of the character box. If the value of valign is BASE, the vertical position of the
text will begin at the baseline of the character.14 If the value of valign is HALF
the vertical position of the text will begin equidistant from the top and the bottom
edges of the character box. NORMAL assigns the alignment based on the value
of the character path (see Table 4-4). If the value of valign is assigned to CONT
(continuous), the vertical position of the text is determined by the argument
vealind and will begin vcalind fraction of the height of the character box from the
bottom edge of the character box. The default value of valign is NORMAL.

13 The cap line is defined as the invisible line corresponding to the top of the average character within a font.

14 The baseline is defined as the invisible line corresponding 1o the bottom of the average character within a
font. The baseline does not necessarily correspond to the bottom of a character. For example, a the tail of a
lower-case g extends below the baseline.

S u n Revision A, of 9 May 1988

microsystems

76 SunCGI Reference Manual

Table 4-4

4.9. Color Attributes

Table 4-5

Color Lookup Table

@

a
Normal Alignment Values o/
Character | Horizontal Vertical
Path Normal Normal
RIGHT LEFT BASELINE
LEFT RIGHT BASELINE
UP CENTER BASELINE
DOWN, CENTER TOP
ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.
SunCGI supports only one color specification mode — INDEXED. This color
speciﬁczgion mode means that the red, green, and blue values (hereafier referred
to as RGB values) are obtained from a table known as the color lookup table.
The inigial values of the color lookup table are provided in Table 4-5.
Default ‘Color Lookup Table
Index'| Color | RGB Intensities
0 black 0,0,0
1 red 255,0,0
2 yellow 128, 128,0
'3 green 0,255,0 £
4 cyan 0, 128, 128 N/
5 blue 0,0, 255
6 magenta 128, 0, 128
7 white 255, 255,255
Cerror color_table(istart, clist)
cint istart; /* starting address */
Ccentry *clist; /* color triples and number of entries */
color] table() defines RGB entries into the color lookup table used by CGI.
The color lookup table is initialized based on the depth of the display frame
buffer, the cmapsize field provided in the Cvwsur£ structure provided to
open_vws (), and the colormap defined by the RGB arrays. Before you can
modify the color lookup table, both the cmapsize and cmapname fields provided
in the Cvwsur £ structure must be initialized
A monochrome device has an unwritable colormap; non-zero color indices are
displayed as black, zero is displayed as white. A color device gets a colormap
segment with 8 entries if the cmapsize field is zero upon opening the view sur-
face. Larger colormaps are also initialized to a power of 2, even if you are not
going to initialize all entries in the colormap.
The structure Ccent ry contains elements that describe a colormap entry.
N

sun Revision A, of 9 May 1988

microsystems

N’

Chapter 4 — Attributes 77

4.10. Inquiry Functions

4

typedef struct {
unsigned char *ra;
unsigned char *ga;
unsigned char *ba;
Cint n;

} Ccentry:;

The minimum and maximum color lookup table entries are treated specially by
SunView and hence by SunCGI. If they are set to be the same value, the user’s
values for these two entries are both ignored. They revert to the inverse of the

normal values; entry 0 becomes white, the maximum entry becomes black.

The argument istart determines the first entry in the color lookup table to be
modified. The argument clist contains the color information for entry istart in
terms of triples of values of numbers ranging between 0 and 255. The last field
of clist reports how many entries are to be modified. An error is generated if
either the indices to the color lookup table are out of range.

The following steps describe how to set up a color lookup table in SunCGI. /

1. Set up the RGB arrays of colors. The number of elements in each arra(y
must be a power of 2. Each array must have intensities that range from 0 to
255; 255 represents a strong intensity of that color, and 0 is no intensity.

A color is defined by the RGB array elements for that index of the color.
For example, color element 3 is the color defined by red(3), green(3), and
blue(3).

2. Set the RGB arrays into the Ccentry structure.

Call the co lbr__t able () function to set the colors in the color lookup
table.

To later change the color lookup table, update the RGB arrays and call
color table (). See Appendix E for an example program.

To set or change a color lookup table in CGIPW, use the pw_putcolormap ()
function. This function is described in detail in the SunView I Programmer’s
Guide.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

ECINDXLZ [35] Color index is less than zero.

EBADCOLX [36] Color index is invalid.

The attribute inquiry functions permit examination of the current attributes.
Attributes are reported in groups corresponding to the class of output primitive

they modify. The argument to each inquiry function has its own structure type
which has an element for each of the individual attributes (see Appendix B).

sun Revision A, of 9 May 1988

microsystems

78 SunCGI Reference Manual

Inquire Line Attributes

Inquire Marker Attributes

Inquire Fill Area Attributes

\ /
Nz
Clinatt *inquire_line attributes()
/* returns a pointer to line attribute structure */

inquire line attributes () reports the current line style, line width,
line color, and polyline bundle index in the appropriate elements of the returned
value of the function.

typedef struct {
Clintype style;
Cfloat width;
Ciht color;
Cint index;

} Clin?tt;
inqui:i‘:e_line__attributes () returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to

NO_ACTION.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
: VSOP, or VSAC.

8

Cmarkatt *inquire marker_attributes()
/* returns a pointer to marker attribute structure */

inqui;re_marke r attributes () reports the current marker style, marker

width, marker color, and polymarker bundle index in the appropriate elements of (’%\

the returned value of the function. N/
|

typedqf struct {
Cmartype type:;
Cﬂloat size;
cint color;
Cint index;

} Cmarkatt;

\
inquii‘:e_marke r_attributes () returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to

NO_ACTION.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
| VSOP, or VSAC.

Cfilldtt *inquire_f£fill area_ attributes()

The curl'ent interior style, perimeter visibility, fill color, hatch index, pattern
index, fill area bundle index, perimeter style, perimeter width, and perimeter
color can be obtained by using the inquire fill area attributes ()
function.

!

D
% SUnNn Revision A, of 9 May 1988

microsystems

Chapter 4 — Attributes 79

5

Inquire Pattern Attributes

it

Inquire Text Attributes

typedef struct {
Cintertype style;
Cflagtype visible;
Cint color;
Cint hatch_ index;
Cint pattern_index;
Cint index;
Clintype pstyle;
Cfloat pwidth;
Cint pcolor;

} fillatt;

inquire fill area attributes () returnsa NULL (not an error
number) in case of errors. Errors are printed if the error warning mode is not set

‘to NO_ACTION.

ENOTOPOP [5] CGI not in proper state; CGI should be in state CGOP,
VSOP, or VSAC.

Cpatternatt *inquire pattern attributes()
/* returns a pointer to pattern attribute structure */

inquire pattern attributes () reports the current pattern index, row
count, column count, color list, pattern reference point, and pattern size.

typedef struct ({
Cint cur_index;
Cint row;
Cint column;
Cint *colorlist;
Ccoor *point;
Cint dx;
Cint dy;
} patternatt;
inquire pattern_attributes () returns a NULL (not an error number)

in case of errors. Errors are printed if the error waming mode is not set to
NO_ACTION.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Ctextatt *inquire text attributes()
/* returns a pointer to text attribute structure */

inquire_text attributes () reports the current font set, text bundle
index, font, text precision, character expansion factor, character spacing, text
color, character height, character base vector, character up vector; character
path, and text alignment.

@ sSun Revision A, of 9 May 1988

microsystems

80 SunCGI Reference Manual

Inquire Aspect Source Flags

typedef struct {
Cint fontset;
Cint index;
Cint current_font;
Cprectype precision;
Cfloat exp_ factor;
Cfloat space;
Cint color;
Cint height;
Cfloat basex;
Cfloat basey:;
Cfloat upx;
Cfloat upy;
Cpathtype path;
Cﬂaligntype halign;
Cvaligntype valign;
Cfloat hcalind;
Cfloat wvcalind;

} textatt;

inquire_text_ attributes() returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to
NO_ACTION.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP, P
VSOP, or VSAC. N

Cflaglist *inquire aspect_source_flags()
/* returns a pointer to text attribute structure */

inquire_aspect_source_flags () reports whether attributes are set

individually by returning all of the values of the ASFs. The element n of the
flaglist struct is set to 18. The definitions of each flag are in Table 4-2.

typedef struct {
Cint n; '
Cint *num;
Casptype *value;
} Cflaglist;

.inquire aspect source_flags () returns a NULL (not an error

number) in case of errors. Errors are printed if the error warning mode is not set
to NO_ACTION.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Revision A, of 9 May 1988

TN

R

Input

5.1 Input Device Initialization

Initialize LID

Release Input Device

Associate

“Set Default Trigger Associations

Dissociate

Set Initial Value

Set VALUATOR Range
Track On

Track Off

5.2. Synchronous Input
Request Input

5.3. Asynchronous Input

Initiate Request

5.4. Event Queue Input
Enable Events.

Await Event

Flush Event Queue
Selective Flush of Event Queue ..
5.5. Miscellaneous Input Functions

Sample Input .

Get Last Requested Input

83

86
86
87
88
88
89
89
90
90
91
92
93
%94
94
94
96
96
97
97
98
98
98

S

Disable Events

5.6. Status Inquiries

Inquire LID State List

Inquire LID State

Inquire Trigger State

Inquire Event Queue State

99
99
99

- 100

100
100

/WM‘« .

v i

e

Input

CGI has a collection of functions for managing input devices. The design of
these functions has two purposes: provide an interface close to the actual input
device and maintain portability of applications. CGI accomplishes the first goal
with different input device classes and methods of extracting input values. The
second goal is achieved through CGI’s model of logical input devices (LID), an
abstraction whereby logical input devices required by the CGI standard are
mapped onto the physical devices available to a CGI implementation. This
chapter will introduce some of the terms used in describing the functionality of
the CGI input primitives. '

A CGI input device consists of a measure associated with a trigger. A measure is
the current value of a logical input device. For example, the IC_LOCATOR dev-
ice reports an x-y position. This device is useful for determining a position on
the screen. A trigger is a physical device used by an operator to accept a current
value. A trigger fire corresponds to an event on a physical input device. At the
request of the application program, SunCGI associates a measure with a trigger.
Table 5-1 has a list of the five logical input devices available to SunCGI applica-
tion programs and the available triggers. For example, a mouse button on a Sun
workstation is a trigger that can be associated with a IC_LOCATOR device.
When the mouse button is pressed, the x-y position of the mouse is returned as
the measure of the IC_LOCATOR input device.

An input event is the information saved when a trigger fires. This includes the
measure of a logical input device associated with a trigger.

) u ’ 83 - Revision A, of 9 May 1988

SunCGI Reference Manual

Table 5-1

Input Devices Offered by SunCGI e/
IZZC: Measure ;Ziiee: Trigger
IC_LOCATOR x-y position in VDC 2 Left mouse button
space. 3 Middle mouse button
4 Right mouse button
5 Mouse movement¥
6 Mouse stillf
IC_STROKE Array of x-y points in 2 Left mouse button
VDC space. 3 Middle mouse button
4 Right mouse button
IC_VALUATOR Normalized x position 2 Left mouse button
3 Middle mouse button
4 Right mouse button
5 Mouse movement
6 Mouse still
IC_CHOICE A non-negative integer 2 Left mouse button
| that identifies which 3 Middle mouse button
mouse button was 4 Right mouse button
pressed. Zero
| represents "no choice"”. o~
IC_STRING Character string. 1 Keyboard input ter- _/
minated a carriage)
returmn.

T The Mouse Movement trigger fires when the mouse moves.
I The Mouse Still trigger fires when the mouse does not move forone
ﬁftfg of a second or more.

|
The grziphical method with which the measure of an input device is displayed is
called tracking. SunCGI provides several methods of tracking for each input
device. Table 5-3 has a list of track types available for each input device class.
Tracking must be explicitly enabled for each device.

Each input device can be in one of the five states described plctonally in Figure
5-1. The state of an input device determines the manner in which the application
program retrieves the measure of the input device. The input functions that allow
a change of state are listed next to the arrows indicating the state change.

Revision A, of 9 May 1988

Chapter 5 — Input 85

Figure 5-1 CGI Input State Model

RELEASED

Initialize LID Release LID

NO
EVENTS -

i Disabl .
Request timeout .. isable Enable Disable:
or Initiate Events

Input . Events Events
trigger fire Request or

trigger fire

. RESPOND REQUEST QUEUE
EVENT EVENT EVENT

RELEASED
Before an input device is initialized, it is in the RELEASED state. Any input
function (except initialization) will generate an error in this state.

NO_EVENTS
After an input device has been initialized, it is in the NO_EVENTS state. An
application program can extract an input value of an input device in
NO_EVENTS state. This will result in either the value that the device was
initialized with or the value the device had when it was in a state where it
could process events. This is not-necessarily the current measure of the dev-
ice and does not change while the device is in this state.

RESPOND_EVENT

The RESPOND_EVENT state corresponds with synchronous communication

between the process that controls the input device and the application pro-

gram. When an application program requests the measure of an input device

in RESPOND_EVENT state, SunCGI blocks program execution until it can
P fulfill the request. The request_input () function will return when the
\ trigger fires and the input request is satisfied or after a timeout penod The

““““ input device then reverts to NO_EVENTS state.

&%?é SUnNn Revision A, of 9 May 1988

microsystems

86 SunCGI Reference Manual

5.1. Input Device
Initialization

Initialize LID

@

The function that requests input and puts the input device in -
RESPOND_EVENT state is request_input (). When the trigger associ-

ated with an input device in RESPOND_EVENT state fires, the measure of

that mput device is then stored in the request register as well as returned by

the request_input () function.

REQUEST_EVENT
The REQUEST_EVENT state corresponds with asynchronous communication
between the process that controls the input device and the application pro-
gram. When an application samples an input device, input handling and pro-
gram execution continue in parallel. Either the requested trigger fires or an
exphcn request is made to disable event processmg and return the device to
NO_EVENTS state.

When the trigger associated with an input device in REQUEST_EVENT state
fires, the measure of that input device is then stored in the request register, a
buﬁ#r with one element per device. The request register can be then be read
with get last requested input ().

QUEUE_EVENT
When a device is in QUEUE_EVENT mode, events associated with the indi-
cate;d device are appended to the event queue, a first-in, first-out (FIFO)
buffer shared by all input devices. After calling enable_events (), the
Sung’GI application retains program control. While an input device is in
QUEUE_EVENT mode, events are simultaneously added to the event queue N
when the program executes. ./
await _event () returns the event at the head of the event queue. If the
queue is empty, await_event () will wait for the designated trigger to
fire or a timeout. The app11cat10n program must process this queue in a
timely fashion or it will overflow. The event queue can be flushed com-
pletely or for a specific device. The application program must make an
exphcn request to disable event queue processing and retum an input device

to NO_EVENTS state.

Before input can be processed, an input device must be initialized and associated
with a tt‘%gger. Input device initialization requires at least one active view sur-
face. Typically, the procedure for initializing an input device includes calls to
the initialize 1id() and associate () functions, which turn on an

input device and associate it with a specific trigger.

Cerror initialize lid(devclass, devnum, ival)

Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Cinrep *ival; /* initial value of device measure */

initialize_lid() initializes an input device and changes its state from
RELEASED to NO_EVENTS. This function must be called for an input device
before 1t can be referenced by any other input function. The argument devclass
spec1ﬁes the desired type of input value. devnum indicates the number of the TN
device within that class. The argument ival sets the initial measure of the device. N

sun Revision A, of 9 May 1988

microsystems

®

Chapter 5 — Input 87

Release Input Device

The Cinrep structure contains different elements for each type of measure. The
appropriate element of Cinrep must be set or an error will be generated.

typedef struct {

Ccoor *xypt; /* LOCATOR */

Ccoorlist *points; /* STROKE devices */

Cfloat val; /* VALUATOR device */

Cint choice; /* CHOICE devices */

Cchar *string; /* STRING device */

Cpick *pick; /* PICK devices (unsupported) */
} Cinrep;

For example, in a LOCATOR device initialization, the xypt field of Cinrep must
be set to the address of a Ccoor allocated by the application program before the
x and y elements can be set.

Notice that whenever a device is initialized, no associations with triggers are
made. This must be done by having the application program call the appropriate
functions. An error is generated by initialize 1id() if the device does
not exist, if it is already initialized, or if the initial value is out of range.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDALIN [82] Input device already initialized.13

EBADDATA [95] Contents of input data record are invalid.

ESTRSIZE [96] Length of initial string is greater than the implementation

defined maximum.

Cerror release_input_device (devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

release_input_device () releases all associations between a device and
its triggers, and removes all pending events for the device from the event queue.
release_input_device () changes the state of the specified input device
from NO_EVENTS to RELEASED. An error is produced if devclass and devnum
do not refer to an existing and initialized device.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

15 The ANSI standard allows initialized input devices to be re-initialized. SunCGT does not because it is felt
that re-initialization is usually a mistake.

y U Revision A, of 9 May 1988

88 SunCGI Reference Manual

Associate

Set Default Trigger
Associations

Cerror associate(trigger, devclass, devnum)
Cint trigger; /* trigger number */
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

associate () links a trigger with a specific device. The trigger numbers
available for each device are listed in Table 5-1. Multiple associations are
allowed; however, some associations are not allowed (for example,
IC_LOCATOR may not be associated with the keyboard).

The interaction between an IC_STROKE device and the trigger requires some
additional explanation. IC_STROKE can only be associated with the mouse but-
tons. The first coordinate in the IC_STROKE array is entered when the mouse
button is initially pressed; the last coordinate is entered when the mouse button is
released. For IC_LOCATOR and IC_VALUATOR devices, the measure is reported
when the mouse button is pressed.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.

EINDNOEX [80] Input device does not exist.
|

EINDINTT [81] Input device not initialized.

EINASAEX [83] Association already exists.

EINATIMP [84] Association is impossible.

EINTRNEX [86] Trigger does not exist.

Cerror set_default_trigger_ associations(devclass, devnum)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

set _default_trigger associations () associates a device with a
default trigger. The default associations are listed in Table 5-2. The rules for
trigger association are the same as those for the associate () function.

Table 5-2 Default Trigger Associations
|
. Device Trigger ,
. Class Number Trigger
IC_LOC,LATOR 5 Mouse position
IC_STROKE 4 Right mouse button
IC_VALUATOR 3 Middle mouse button
IC_CHOICE 2 Left mouse button
IC_STRING 1 Keyboard
ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.
S
% sun Revision A, of 9 May 1988
microsystems

N

i

N’

.
\\

Chapter 5 —Input 89

Dissociate

Set Initial Value

/“_””\“
N

e
t

EINASAEX [83] Association already exists.
EINTRNEX [86] Trigger does not exist.

Cerror dissociate(trigger, devclass, devnum)

Cint trigger; /* trigger number */
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

dissociate () removes the association between a trigger and a specified dev-
ice. If dissociate () is called while there are events pending in the event
queue for the dissociated device, the pending events are discarded.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC. .
EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EINNTASD [85] Association does not exist.

EINTRNEX [86] Trigger does not exist.

Cerror set_initial value(devclass, devnum, value)

Cdevoff devclass; /* device type */ [
Cint devnum; /* device number */
Cinrep *value: /* device value */

set_initial value() sets the current measure of a specified device. This
function resets the position of the track, if the track is appropriate and activated.
set_initial wvalue () also resets the request register.

A pointer element of the Cinrep structure must be set to the address of an
application program allocated area before the values can be set.

Cinrep ivalue;

point.x = 16384;

point.y = 16384;

ivalue.xypt = g&point;

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EBADDATA [95] Contents of input data record are invalid.

ESTRSIZE [96] Length of initial string is greater than the implementation
defined maximum.

S u n Revision A, of 9 May 1988

microsystems

90 SunCGI Reference Manual

Set VALUATOR Range

Track On

Q

Cerror set valuator_range (devnum, vmin, vmax)
Cint devnum; /* device number */
Cfloat wvmin, vmax; /* limits of VALUATOR */

set_valuator_range () specifies the limits of the IC_VALUATOR. Device
coordinates are mapped into the IC_VALUATOR range. IC_VALUATOR events
already on the event queue are not rescaled. These events must be dequeued with
either the selective flush of_ event_queue () function or
flush_event_ queue (). '

ENOTVSAC [4] 7 CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

Cerror track_on(devclass, devnum, tracktype,
trackregion, value)

Cdevoff devclass; /* device type */

Cint devnum; /* device number */

cint tracktype; /* track number */
Ccoorpair *trackregion; /* window for tracking */
Cinrep *value; /* device value */

Tracking functions determine how the measure of an input device is displayed on

the vievgr surface. Each class of devices has its own set of possible tracks (given N
in Table 5-3). Although SunCGI allows certain classes of devices to track simul- ___/
taneously, all types of input devices are not allowed to track at once. Tracking is

not provided in the NO_EVENTS state unless the track type is PRINTERS_FIST.

track_on () initiates track (or echo) for a specific device. The tracktype argu-
ment specifics the type of track to be used. The trackregion argument is not
used; the device tracks in all areas of the view surface. The argument value is
used to ‘initialize tracking. The track is initially displayed on the first view sur-
face opened.

The xypt element of the Cinrep structure must be set to the address of an appli-
cation allocated Ccoor and the Ccoor’s x and y fields are set to position the
cursor. ‘The reference point for IC_STROKE echos 2 through 5 is the first point in
the STROKE array. The reference point for STRING_TRACK echo is the
append text () concatenation point, and can be changed by calling text ()
or app‘end_text 0.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINECHON [88] Track already on.

EINETNSU [91] Track type not supported.

EBADDATA [95] Contents of input data record are invalid.
ESTRSIZE [96] Length of initial string is greater than the implementation
defined maximum.
7
\\,‘_ W
) u 11 Revision A, of 9 May 1988
microsystems

Chapter 5 — Input

91

Table 5-3 Available Track Types
Device Number Track Type¥ Description
Class :
IC_LOCATOR(dd <0 NO_ECHO Default cursor.
1 PRINTERS_FIST Designate the current position of the IC_LOCATOR dev-
ice with a printer’s fist cursor.
IC_STROKE# <0 NO_ECHO Default cursor.
1 PRINTERS_FIST Designate the current position of the IC_STROKE device |
. with a printer’s fist cursor.

2 SOLID_LINE Draw a line from the origin to the current position in the
STROKE array.

3 X_LINE Draw a line from the x-axis to the current position in the
STROKE array.

4 Y_LINE Draw a line from the y-axis to the current position in the
STROKE array.

5 RUBBER_BAND_BOX Designate the current position of the IC_STROKE device
with a rubber band line connecting the initial position
and the current position in the STROKE array.

IC_VALUATOR% <0 NO_ECHO Default cursor.

1 PRINTERS_FIST Indicate the state of the IC_VALUATOR device with a
printer’s fist cursor.

s 2 STRING_TRACK Display a digital representation of the current
_ IC_VALUATOR value.
IC_CHOICE# <0 NO_ECHO Default cursor.
1 PRINTERS_FIST Indicate the state of the IC_CHOICE device with a
printer’s fist cursor.
IC_STRING ¢ <0 NO_ECHO Default cursor.
1 PRINTERS_FIST Indicate the state of the IC_STRING device with a
y printer’s fist cursor.
2 STRING_TRACK Display the current STRING value.

T The values listed in the Track Type column are contained in the enumerated type Cechotype returned in
the Cstatelist structure by inquire_lid_state_list (). They are notused by track_on () to
define a track type.

I This is a mouse device.

¢ This is a keyboard device.

Track Off

Cerror track off(devclass, devnum, tracktype, action)
Cdevoff devclass; /* device type */

Cint devnum;

Cint tracktype;
Cfreeze action;

/* device number */

track_off () terminates tracking for a specified input device. The tracktype
and the action arguments are always ignored.

4»sun

microsystems

Revision A, of 9 May 1988

92 SunCGI Reference Manual

N
ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC. N
EINDNOEX [80] Input device does not exist.
EINDINTIT [81] Input device not initialized.
5.2. Synchronous Input The synchronous input function request_input () allows the application
program to obtain the current measure an of input device. This function requires
explicit identification of an input device (through the associate () function).
The foﬂowing example program illustrates how to use the synchronous input
functions to get information from an input device. First, an IC_LOCATOR device
is initialized and associated with a trigger (the left mouse button). The tracking
method for the IC_LOCATOR is defined to be a printer’s fist. Then measure of
the IC_LOCATOR is requested with a timeout period of ten seconds. If the
trigger is activated during this period, request_input () retums a valid
measure in ivalue. Finally, the IC_LOCATOR is dissociated from the mouse but-
ton and released. The program exits.
e ; A
/* NOTE: This example should be run from a grfxtool. */
#include <stdio.h>
#include <cgidefs.h>
#define TEN_SECS (10 * 1000 * 1000) {f"“”\,
#define LID LOC 1 ‘ (s
#define MOUSE BUTTON 1 2
#define MOUSE BUTTON 2 3
#define MOUSE_BUTTON 3 4
#define MOUSE_MOVE 5
main ()
{
static Ccoor ipt = { 16384, 16384 }; /* initial pt */
static Cinrep ivalue = { &ipt, NULL, 0., O, ' /, NULL }; /* init LID */
Cawresult valid; 1
Cint name,
trigger:;
Cvwsurf device;
char dummy, buf[80];
fprintf (stderr, "Move cursor in graphics area & click mouse buttons.0);
fprintf (stderr, "To exit, press mouse button three (right).0);
NORMAL VWSURF (device, PIXWINDD);
open_cgi(); ‘
open_vws (&name, &device);
initialize_ lid(IC_LOCATOR, LID_LOC, &ivalue); /* create locator dev */
associate (MOUSE BUTTON 1, IC.LOCATOR, LID LOC); /* trigger = button 1 */ N
associate (MOUSE_BUTTON 2, IC LOCATOR, LID LOC); /* trigger = button 1 */ ./
7

S u n Revision A, of 9 May 1988

microsystems

Chapter 5 —Input =~ 93

N associate (MOUSE_BUTTON 3, IC_LOCATOR, LID_LOC); /* trigger = button 1 */)
associate (MOUSE_MOVE, IC_LOCATOR, LID_LOC) ; /* trigger = button 1 */
do { /* loop until get bad data or hit right mouse button */

request_input (IC_LOCATOR, LID_LOC, TEN SECS,
&valid, &ivalue, &trigger);
sprintf(buf, "X= %d Y= %d wvalid= %d trig= %d0,
ipt.x, ipt.y, wvalid, trigger):
fprintf (stderr, "%s™, buf);
} while (valid == VALID DATA && trigger != MOUSE_ BUTTON_3);

dissociate (MOUSE_BUTTON_1, IC LOCATOR, LID LOC);

dissociate (MOUSE_BUTTON_2, IC_LOCATOR, LID_LOC);

dissociate (MOUSE_BUTTON_ 3, IC_LOCATOR, LID LOC);

dissociate (MOUSE_MOVE, IC_LOCATOR, LID LOC);

release input_device(IC_LOCATOR, LID LOC); /* shut down locator */

close_vws (name) ;
close_cgi();

Request Input Cerror request_input (devclass, devnum, timeout,

— - valid, sample, trigger)
;o _ Cdevoff devclass; /* device type */
Cint devnum; /* device number */
Cint timeout; /* amount of time to wait for input */
Cawresult *valid; /* device status */
Cinrep *sample; /* device value */
Cint *trigger; /* trigger number */

Ve

request_input () waits timeout microseconds for activation of a trigger
associated with a specific device. If timeout is negative, the request will wait for-

- ever. request_input () puts the input device in the RESPOND_EVENT
state. If a trigger is activated within this period, the activating trigger and the
device measure are returned in the trigger and sample arguments. If the trigger is
not activated within this period, the current device measure is returned in the
sample argument, and trigger is set to zero. Before returning, the input device is
reset to NO_EVENTS state.

request_input () retumns a device status in the argument valid. This argu-
ment uses the enumerated type Cawresult (AWait Result), which contains
values describing the state of an input device.

typedef enum {
VALID DATA,
TIMED OUT,
DISABLED,
WRONG_STATE,
» NOT_SUPPORTED
P } Cawresult;

o

e

4;% sun Revision A, of 9 May 1988

94 SunCGI Reference Manual

5.3. Asynchronous Input

Initiate Request

5.4. Event Queue Input

N
VALID_DATA indicates that a trigger is activated within the specified timeout N’
period. TIMED_OUT indicates that a trigger was not activated with a specified
period. DISABLED indicates that a trigger is not activated. WRONG_STATE
indicates SunCGl is not in state VSAC. NOT_SUPPORTED indicates the
requested device is not a legal device.
If the appropriate field of the sample argument is a pomter it must be set to an
application program allocated area.
ENOTVS%AC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.
EINEVNEN [94] Events not enabled.
This section explains the asynchronous method of input device management
where the application process and the input device process operate simultane-
ously. The designated input device is sampled with initiate request ()
and the measure of the input device is read with
get_l?st_requested_input (). Alteratively, the current measure of a
device may be read with sample input ().
Cerror initiate_request (devclass, devnum)
Cdevoff devclass; /* device type */ a
Cint devnum; /* device number */ . ./
initiate request () sets up adevice so that the measure resulting from
the next‘ trigger activation will be placed in the request register.
initiate request () puts the device in the REQUEST_EVENT state. It
then returns to the calling function without waiting for a trigger activation. The
value caused by the trigger activation can be obtained by the
get last requested_input () function.
ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.
EINNTASD [85] No triggers associated with device.
The eveht queue is a single FIFO buffer that holds events from input devices.
Since the event queue has a fixed length, it must be processed in a timely fashion
orit w1u overflow. Events can be removed from the event queue in three ways:
the eveqt at the head of the event queue can be processed with
await event (); the entire event queue can be emptied with
flush_event_ queue (); and the events from a particular device can be
removeé;l from the event queue with
selective flush of event_ queue().
N

Revision A, of 9 May 1988

microsystems

-

)

" Chaptér 5= Tnpiit 95

The following example program illustrates how to use the event queue input
functions to get information from an input device. First, an IC_STRING device is
initialized and associated with a trigger (the keyboard). The tracking method for
the IC_STRING is defined to be a string that echos the keyboard input on the bot-
tom of the viewport. The-IC_STRING is put into the QUEUE_EVENT state with
enable_events (). After the trigger fires, the measure of the IC_STRING
device is determined with await event (). Finally, the IC_STRING is disso-
ciated from the keyboard and released. The program then exits.

r
/*

#include <cgidefs.h>

#define TEN SECONDS (10 * 1000 * 1000)

main ()
-+
Cint name ;
Cvwsurf device;
Cawresult valid;
Ccoor point;
Cdevoff devclass = IC_STRING;
Cegflow overflow;
Cinrep ivalue;
Cint devnum = 1,

NOTE: This example should be run from a grfxtool. */

replost,

time stamp,

timeout = TEN_SECONDS,

tracktype = 2,

trigger = 1;
Cmesstype message link;
Cagtype gstat; ‘
NORMAL VWSURF (device, PIXWINDD) :;
point.x = point.y = 16384;
ivalue.xypt = &point;
ivalue.string = "Return from await event";

open_cgi{);
open_vws(&name, &device);

initialize 1id(devclass, devnum, &ivalue):

associate(trigger, devclass, devnum);

track_on(devclass, devnum, tracktype, (Ccoorpair *)0, &ivalue);
enable events(devclass, devnum);

await event (timeout, &valid, &devclass, &devnum, &ivalue,
&message_linﬁ, &replost, &time stamp, &gstat, &overflow):

printf("%s0, ivalue.string);

disable events(IC_STRING, devnum);

dissociate(trigger, IC STRING, devnum);

release input_device(IC STRING, devnum);

A
’#\\{f S un Revision A, of 9 May 1988

96 SunCGI Reference Manual

close_vws (name);

close_cgi();

Enable Events

Await Event

Cerror enable events(devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

enable events () allows adevice in NO_EVENTS state to put events on the
event queue. enable events () puts the input device in the QUEUE_EVENT
state. An error is generated if the device specified by devclass or devnum does
not exist or is not initialized.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EIAEVNEN [93] Events already enabled.

Cerror await_event (timeout, wvalid, devclass, devnum,
measure, message link, replost, time_ stamp,
q&tat, overflow)
Cint timeout; /* input timeout period */ N
Cawresult *valid; /* status */ N/
Cdevoff *devclass; /* device type */
Cint ﬂdevnum; /* device number */
Cinrep *measure; /* device value */
Cmesstype *message link; /* type of message */
Cint *replost; /* reports lost */
Cint *time stamp; /* time stamp */
Cgtype *gstat; /* queue status */
Cegfldw *overflow; /* event queue status */

await| event () processes the event at the head of the event queue. valid is
set to WRONG_STATE if SunCGI is not in state VSAC. If the event queue is
EMPTY, then await_event () waits timeout microseconds for a trigger to be
activated. If timeout is less than 0, SunCGI waits until a trigger is activated.
valid is set to VALID_DATA if a trigger is activated within the specified timeout
period and TIMED_OUT otherwise.

If either the event queue is not empty or a trigger is activated, the class, number
and value of the device generating the event are reported in the returned argu-
ments devclass, devaum, and measure. If the appropriate field of the measure
argument is a pointer, it must be set to an application program allocated area.

If two events on the event queue have the same trigger but different values, the

argumeht message_link is assigned to SIMULTANEOUS_EVENT_FOLLOWS; oth-

erwise the argument message_link is set to SINGLE_EVENT. The enumerated

type Cmesstype contains the following values. 7

S u n Revision A, of 9 May 1988

rmicrosystems

Chapter 5 —Input 97

e

TN

Flush Event Queue

Selective Flush of Event
Queue

/
(

typedef enum {
SIMULTANEQOUS_EVENT FOLLOWS,
SINGLE_EVENT

} Cmesstype;

The replost and time_stamp arguments should be ignored and are always zero.
The returned argument gstat reports the queue status after an event is removed
from the head of the event queue.

typedef enum {
NOT VALID,
EMPTY,
NON_EMPTY,
ALMOST FULL,
FULL

} Catype;

gstat is set to EMPTY if the event queue has no pending events. gstat is set to
NON_EMPTY if the event queue has events pending, but is not FULL or
ALMOST_FULL. gstat is set to ALMOST_FULL if there is room for only one
more event on the event queue. gstat is set to FULL if there is no room for more
events on the event queue.

The argument overflow indicates whether the event queue has overflowed or not.
The enumerated type Ceqf low contains the following values:

typedef enum {
NO_OFLO,
OFLO

} Cegflow;

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINQOVFL [97] Input queue has overflowed.

Cerror flush event queue ()

flush_event_queue () discards all events in the event queue. The purpose
of flush_event_queue () is to return the event queue to a stable state
(NO_OFLO). flush_event_gueue () does not affect the state of input dev-
ices. This function should be used carefully to avoid throwing away mouse-
ahead or type-ahead inputs.

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

Cerror selective_flush_of event queue (devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

selective flush of event queue () discards all events in the event
queue which were generated by a specified device.

selective_flush of event queue () does not affect the state of the
specified input device. devclass and devnum must refer to an existing and

Sun Revision A, of 9 May 1988

microsystems

98 SunCGI Reference Manual

5.5. Miscellaneous Input
Functions

Sample Input

Get Last Requested Input

initialized device or an error is produced. However, no error is returned if no
events from the specified device are pending.

CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC.

ENOTOPOP [5]

EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

The functions described in this section can be used with several of the input dev-
ice management techniques described in the previous sections. For example,

sample input () canbe used when a device is in either REQUEST_EVENT or

QUEUE_EVENT state. Likewise, disable events () can be used in either
of these states.

Cerror sample input (devclass, devnum, valid, sample)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */
Clogical *valid; /* device status */
Cinrep *sample; /* device wvalue */

~sample input () reports the current measure of the specified input device in
the returned argument sample. The returned argument valid reports whether the
device is initialized and prepared to receive an input. The current measure of the
device may be set by a queued event, a requested event, or a device initialization
depending on the state of the input device and the most recent trigger
activation(s). See the introduction of this chapter for an explanation of the rela-
tionship between the measure of an input device and the state of an input device.
If the appropriate field of the sample argument is a pointer, it must be set to an

application program allocated area.
ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

Cerror get_last_requested_input (devclass, devnum,

valid, sample)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */
Clogical *valid; /* device status */
Cinrep *sample; /* device value */

get last requested input () returns the contents of the request regis-
ter. get last_ requested_input () isusually used with

initiate request (),but request_input () also changes the contents
of the request register. The returned argument valid indicates whether the device
exists and is initialized. The returned argument sample reports the event in the
requcst register. Ifno event is in the request register, the initial device value is

reported If the appropriate field of the sample argument is a pointer, it must be
set to an application program allocated area.
2 ,
”? Su n Revision A, of 9 May 1988
mlcrosyslems

)
NN

)

(ﬁw\

\\m,,__,v'

‘)

Chapter 5 — Input 99

Disable Events

5.6. Status Inquiries

Inquire LID State List

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

Cerror disable_events(devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

disable_ events () puts the input device in the NO_EVENTS state. If the
device is in RESPOND_EVENT state, the specified device is returned to
NO_EVENTS state; the measure of the device is not changed by
disable_events (). If the device is in QUEUE_EVENT state,
disable_events () stops the specified device from putting events on the
event queue. However, existing entries on the event queue are not removed and
existing associations remain. devclass and devaum must refer to an existing and
initialized device or an error is produced.

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX {80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EINEVNEN [94] Events not enabled.

The current state of the input devices, triggers, and the event queue can be
obtained by using the functions discussed in this section.

Cerror inquire_lid state list (devclass, devnum,
valid, 1ist)

Cdevoff devclass; /* device type */

Cint devnum; /* device number. */ .

Clogical *valid; /* device supported at all */

Cstatelist *list; /* table of descriptors */

inquire 1id state list () reports the status of a specific input device
specified by devclass and devnum. The argument valid reports whether the dev-
ice is supported at all. The list argument reports the track, associations, state,
and measure of the device in the appropriate elements of list. When checking the
elements of list, first check the state element — if state is RELEASED, the other
elements of list are undefined.

typedef struct ({
Clidstate state; -
Cpromstate prompt;
Cackstate acknowledgement;
Cinrep *current;
Cint n;
Cint *triggers;
Cechotype echotyp:;
Cechostate echosta;
Cint echodat;

} Cstatelist;

@:?& SUun Revision A, of 9 May 1988

microsystems

100 SunCGI Reference Manual

Inquire LID State

Inquire Trigger State

Inquire Event Queue State

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNOEX [80] Input device does not exist.

Cerror inquire 1id state(devclass, devnum, valid, state)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Clogical *valid; /* device supported at all */
Clidstate *state; /* table of descriptors */

inquire_1lid_state () reports the status of a specific input device specified
by devclass and devnum. The argument valid reports whether the device is sup-

ported atall. The state argument (of type Clidstate) reports the current state

of the s;‘)eciﬁed input device.
typedéf enum {
RELEASE,
NO_EVENTS,
REQUEST_EVENT, N
RESPOND_EVENT,
QUEUE_EVENT
} Clidstate;

ENOTVSAC [4] CGI not in proper state: CGI should be in state VSAC.
EINDNbEX [80] Input device does not exist.

| ™

Cerro% inquire_trigger state(trigger, valid, list) e’/
Cint trigger; /* trigger number */
Clogical.*valid; /* trigger state */

Ctrigstate *list; /* trigger description table */

inquire trigger_ state () describes the binding between a trigger and an
input device. If the state element of the returned argument Jist is INACTIVE, no
associations have been made with the trigger. An error is generated if the trigger
does not exist.

typedéf struct {

Cactstate state; /* state */

Céssoclid *assoc; /* list of associations */
} Ctrigstate;

: \
ENOT\#SAC [4] CGI not in proper state: CGI should be in state VSAC.
EINTRNEX [86] Trigger does not exist.

Cerror inquire_event_gueue_state(gstat, gflow)
Cqtype * gstat; /* queue state */
Cegflow * gflow; /* overflow indicator */

inquire event_queue_state () reports the status of the event queue.
gstat indicates whether any events are pending. The argument gflow reports if
the event queue is overflowing. VN

) un Revision A, of 9 May 1988

Chapter 5 —Input 101

%

typedef enum {
NOT VALID,
EMPTY,
NON_EMPTY,
ALMOST FULL,
FULL

} Catype;

typedef enum {
NO_OFLO,
OFLO

} Ceqgflow;

ENOTVSAC [4]

sun

microsystems

CGI not in proper state: CGI should be in state VSAC.

~Revision A, of @ May 1988

N/

S

Unsupported Aspects of CGI

Unsupported Aspects of CGI . 105

O

)

P

Unsupported Aspects of CGI

SunCGlI does not support certain optional aspects of the 1984 draft ANSI CGI
standard. (This draft may greatly differ from other drafts of CGIL.) Most notably
SunCGI does not support the full constellation of negotiation functions or track-
ing. SunCGI does not allow the resetting of coordinate type, coordinate preci-
sion or color specification mode because to do so would greatly reduce the speed
. of application programs written in SunCGI. Furthermore, SunCGI does not sup-
port echoing functions for input, but provides the tracking functions instead.

Unsupported Control Functions

Function

vdc_type ()
vdc_precision_for_ integer points()
vde_precision_ for real points()
integer_precision()

real precision{()

index precision ()
color_selection_mode ()

color precision()

color index precision()
viewport_specification_mode ()
make_ picture current ()

Unsupported Input Functions

Function
set_prompt_state ()
set_acknowledgement state ()
echo_on()
echo_off ()
echo update ()

sSun 105 Revision A, of 9 May 1988

microsystems

106 SunCGI Reference Manual

The following SunCGI functions are nonstandard (that is, are not in the standards e’
document) and are included to make CGI easier to use. In addition, SunCGI has
non-standard view surface arguments for certain control functions.

Table A-3 Nonstaqdard Control Functions

Function
open_cgi ()
open |vws ()
activate vws ()

deacéivate_vws 0O

clos e‘_vw s ()
close cgil()
| ;

Table A-4 Nonstandard Attribute Functions

Function
define bundle_index()
line endstyle()
set global drawing mode ()
pattern with fill color()
fixed font ()

|
N
The Cinrep structure contains a presently unsupported pick field, for compati- o/
bility with future segment manipulation capabilities.
I
\
1
|
|
|
1
@
N

S,
&%@ sSun Revision A, of 9 May 1988

microsystems

Type and Structure Definitions

Type and Structure Definitions e 109
o) ;
e
/‘m_“) ’

-

. . o
o - g = v“d

i‘\

(.

- Type and Structure Definitions
This appendix provides a list of the structures and enumerated types used by
SunCGlI functions. In addition, a list of useful constants defined in
<cgiconstants.h> is given.
-
/* devices */
#define BW1DD 1
#define BW2DD 2 //
#define CGIDD 3
#define BWPIXWINDD 4
#define CGPIXWINDD 5
#define GP1DD 6
T #define CG2DD 7
_ $define CGA4DD 8
#define PIXWINDD 9
#define VWSURF_NEWFLG 1
#define MAXVWS 5
#define MAXTRIG 6 -
#define MAXASSOC 5 /* maximum associations for a device */
#define MAXEVENTS 1024 /* maximum number of events the buffer holds */
/* limits */
#define MAXAESSIZE 10 /* maximum number of AES table entries */
#define MAXNUMPATS 50 /* maximum number of pattern table entries */
#define MAXPATSIZE 256 /* maximum pattern size-*/
#define MAXPTS 1024 /* maximum number of pts per polygon */
#define MAXCHAR 256 /* maximum number of chars in a string */
#define OUTFUNS 67 /* number of output functions */
#define INFUNS 22 /* number of input functions */
#define DEVNAMESIZE 20
\
o~

SUun 109 Revision A, of 9 May 1988

110 SunCGI Reference Manual

The type and structure definitions that follow can be found in the header file N/
<cgidéfs.h>.

typedef enum {
ACK_ON,
ACK_OFF

} Cackstate;

typedef enum {
A¢TIVE,
INACTIVE

} Cactstate;

j typedéf enum { .
| CLEAR,
NO_OP,
| RETAIN
} Cacttype;

typedef enum {
INDIVIDUAL,
BUNDLED

} Casptype;

typedef struct { N
Cint n; \%w/
Cdevoff *class;

Cint *assoc;

} Cas#oclid;

typedef enum {
VALID DATA,
TIMED_OUT,
DISABLED,
WRONG_STATE,
NOT SUPPORTED
} Cawresult;

typedef enum {
BITNOT,
BITTRUE

} Cbitmaptype:;

typedef enum {
TRANSPARENT,
OPAQUE

} Cbmode;

)

microsystems

&%29 S u n Revision A, of 9 May 1988

Appendix B — Type and Structure Definitions

111

A
@

typedef struct {

Clintype line type:;
Cfloat - line width;
Cint line color;
Cmartype marker type;
Cfloat marker size;
Cint marker color;
Cintertype interior style;
Cint hatch index;
Cint pattern_index;
Cint fill color;
Clintype perimeter type;
Cfloat perimeter width;
Cint perimeter color;
Cint text font;
Cprectype text precision;
Cfloat character_ expansion;
Cfloat character spacing;
Cint text_color;

} Cbunatt;

typedef struct {

unsigned char *ra;
unsigned char *ga;
unsigned char *ba;
Cint n;

} Ccentry;

typedef enum {
OPEN,
CLOSE

} Ccflag;

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk;
Cint numchoice;
Cint numstr;
Cint numtrig;

Csuptype event_gqueue;
Csuptype asynch;
Csuptype coord map;

Csuptype echo;

Csuptype tracking;

Csuptype prompt;

Csuptype acknowledgement:;
Csuptype trigger manipulation;

} Ccgidesctab;

Sun

microsystems

Revision A, of 9 May 1988

112

SunCGI Reference Manual

typedef enum {
YES,
NO

} Cchengetype;

typedef char Cchar;

typedef enum {
NOCLIP,
CLIP,
CLIP_RECTANGLE
} Cclip:

typedef enum {
CHORD,
PIE

} Cc%osetype;
\

typedef enum {
REPLACE,
AND,
OR,
NOT,
XOR

} Ccombtype;

typedef struct {

Cint x;
Cint y;
} Ccoor:;

typedef struct {
Ccoor ‘*ptlist;
Cint n;

} Ccoorlist;

typedef struct {
dcoor *upper;
Ccoor *lower;

} Ccoorpair;

typedef enum {
IC LOCATOR,
IC_STROKE,
IC_VALUATOR,
IC_CHOICE,
IC_STRING,
IC_PICK

} Cdevoff;

sun

microsysterms

Revision A, of 9 May 1988

O

Appendix B — Type and Structure Definitions 113

typedef enum {
E_TRACK,
E_ECHO,
E_TRACK_OR_ECHO,
E_TRACK_AND ECHO
} Cechoav;

typedef struct ({
Cinrep *echos;
Cint n;

}. Cechodatalst;

typedef enum {
ECHO_OFF,
ECHO_ON, '
TRACK_ON

} Cechostate;

typedef struct {
Cechostate *echos;
Cint n;

} Cechostatelst;

typedef enum {
NO_ECHO,
PRINTERS FIST,
HIGHLIGHT,
RUBBER_BAND_ BOX,
DOTITED_LINE,
SOLID_LINE,
STRING_ECHO,
XLINE,
YLINE

} Cechotype;

)

typedef struct {
Cint n;
Cechoav *elements;
Cechotype *echos;

} Cechotypelst;

typedef enum {
NATURAL,
POINT,
BEST FIT

} Cendstyle;

typedef enum {
NO_OFLO,

N OFLO
) } Cegflow;

D,
; @:\@ sun | Revision A, of 9 May 1988

microsystems

114 SunCGI Reference Manual

typedef Cint Cerror;

typedef enum {
INTERRUPT,
NO_ACTION,
POLL

} Ceerype;

typedef enum {
CLIP_RECT,
VIEWPORT, _
VIEWSURFACE

} Cexttype:;

typedef struct ({
Cintertype style;

Cflag visible;

cint color;

Cfnt hatch index;
Cint pattern_index;
Cint index;
Clintype pstyle;

Cfloat pwidth;

Cint pcolor;

} Cfillatt;

typedef enum {
OFF,

ON
} Cflag;

typedef struct {
Cint n; \
Cint *num;
Casptype *value;

} Cflaglist;

typedef float Cfloat;

typedef enum {
FREEZE,
REMOVE

} Cfréeze:

typedef enum {
LFT,
CNTER,
RGHT,
NRMATL,
CNT

} Chaligntype;

Revision A, of 9 May 1988

®

Appendix B — Type and Structure Definitions 115

typedef enum {
NO_INPUT,
ALWAYS ON,
SETTABLE,

DEPENDS_ON_LID

} Cinputability:

typedef struct {

Ccoor *xypt:;
Ccoorlist *points;
Cfloat val;
Cint choice;
Cchar *string;
Cpick *pick;

} Cinrep;

typedef int Cint;

typedef enum {
HOLLOW,
SOLIDI,
PATTERN,
HATCH

} Cintertype:;

typedef struct {
Clogical
Cchangetype
Cint
Cint
Cinputability
Cinputability
Cechotypelst
Cchar
Cstatelist

} Cliddescript:;

typedef enum {
RELEASE,
NO_EVENTS,
REQUEST EVENT,
RESPOND EVENT,
QUEUE_EVENT

} Clidstate;

typedef struct ({

sample;
change;
numassoc;
*trigassoc;
prompt;

acknowledgement ;

*echo;
*classdep;
state;

Clintype style;

microsystems

Cfloat width;
Cint color;
Cint index;
} Clinatt;
/
sSsun

Revision A, of 9 May 1988

116

SunCGI Reference Manual

typedef enum {
SOLID,
DOTTED,
DASHED, ,
DASHED DOTTED,
DASH_DOT_DOTTED,
LONG_DASHED

} Clintype;

typedef enum {
L_FALSE,
L_TRUE

} Clogical;

typedef struct {

Cmartype type;
Cfloat size;
Cint color;
Cint index;

} Cmarkatt;

typedef enum {
DOT,
PLUS,
ASTERISK,
CIRCLE,
X

} Cmartype:;

typedef enum {
SIMULTANEOUS EVENT FOLLOWS,
SINGLE_EVENT

} Cmesstype;

typedef enum {
RIGHT,
LEFT,
UP,
DOWN

} Cpathtype:;

typedef struct {

Cint cur_index;
Cint row;

Cint column;
Cint *colorlist;
Ccoor ‘*point;
Cint dx;

Cint dy;

} Cpatternatt;

Revision A, of 9 May 1988

N’

Appendix B — Type and Structure Definitions 117

typedef struct {
int segid;
int pickid;
} Cpick;

typedef struct pixrect Cpixrect;

typedef enum {
STRING,
CHARACTER,
STROKE

} Cprectype:;

typedef enum {
PROMPT OFF,
PROMPT ON

} Cpromstate;

typedef enum {
NOT_VALID,
EMPTY,
NON_EMPTY,
ALMOST FULL,
FULL

} Cgtype:;

typedef enum {
ABSOLUTE,
SCALED

} Cspecmode;

typedef struct {
Clidstate state;
Cpromstate prompt;
Cackstate acknowledgement;

Cinrep *current;
Cint n;
Cint *triggers;

Cechotype echotyp;

Cechostate echosta;

Cint echodat;
} Cstatelist;

typedef enum {
NONE,
REQUIRED_FUNCTIONS_ ONLY,
SOME_NON_REQUIRED FUNCTIONS,
ALL NON_REQUIRED FUNCTIONS

} Csuptype:

f}%& u Revision A, of 9 May 1988

\ microsystems

118

SunCGI Reference Manual

typedef struct {
Cint
Cint
Cint
Cprectype
Cfloat
Cfloat
Cint
Cint
Cfloat
Cfloat
Cfloat
Cfloat
Cpathtype
Chaligntype
Cvaligntype

© Cfloat

Cfloat

} Ctextatt;

typedef enum {
NOT FINAL,
FINAL

} Ctextfinal;

typedef struct {
Cchangetype
Cassoclid
Cint
Cpromstate
Cackstate
Cchar
Cchar

} Ctrigdis;

typedef struct ({

fontset;
index;
current_font;
precision;
exp_factor;
space;
color;
height;
basex;
basey:;

upx;

upy;

path;
halign;
valign;
hcalind;
vcalind;

change;
*numassoc;
maxassoc;
prompt;
acknowledgement;
*name;
*description;

Cactstate state;
Cassoclid *assoc;

} Ctrigstate;

typedef enum {
TOP,
CaAP,
HALF,
BASE,
BOTTOM,
NORMAL,
CONT

} Cvaligntype;

»sun

microsystems

Revision A, of 9 May 1988

4)
.

()

)

]

Appendix B — Type and Structure Definitions 119

>
@

typedef enum {
INTEGER,
REAL,
BOTH

} Cvdctype;

typedef struct {
Cchar screenname [DEVNAMESIZE];
Cchar windowname [DEVNAMESIZE];
Cint windowfd;
Cint retained;
Cint dd;
Cint cmapsize;
Cchar cmapname [DEVNAMESIZE];
Cint flags;
Cchar **ptr;

} Cvwsurf;

sun

microsystems

Revision A, of 9 May 1988

N/

Error Messages

Error Messages

Successful Return (0)
State Errors (1

1
2
3
4
5

5)

C
C
C
C

-16)

Control Errors (10
Coord

-

tion (20-24)

inate Defini
butes (30

.

-51)

Output Attri

—
]
oy
Qo
N=)
~
w2
[5]
2
oA~
£ &
= 9
a8
Mf\
& 3
= B
o =
el
O O
\‘

C

Dependent (110-112)

on

Implementati

8
9

C
C

al Errors

1su

ble Causes of V

. Possi

®

O

C.1. Successful Return (0)

C.2. State Errors (1-5)

>

@

Error Messages

This appendix lists the error messages in numerical order. The probable cause of
each error is given in the sentences following the error. In addition to explaining
the error message, an initial suggestion for corrective action is given. In the title
- for each group of errors, the range of error numbers is given in parentheses after
the title. If your application program is not behaving as you want it to, but does
not generate error messages, then the tables at the end of this appendix, which
lists commonly encountered problems and frequent causes, may be helpful.

NO_ERROR [(]

ENOTCGCL [1]

ENOTCGOP [2]

ENOTVSOP [3]

ENOTVSAC [4]

sun

microsystems

No error.

CGI not in proper state: CGI should be in state CGCL. A
call to open_cgi () was attempted when cgi was already
open. Elimination of the error can be accomplished by
removing the offending call to open_cgi ().

CGl not in proper state: CGI should be in state CGOP.
Every function except open_cgi () requires that CGI be
open. If this error is received, make sure that your applica-
tion program has called open_cgi (), or that it has not
recently called close cgi ().

CGlI not in proper state: CGI should be in state VSOP.
The function which generated the error requires that at
least one view surface be open. Corrective action would
include either removing the most recent call to
close_vws () orby including a call to open_vws ().

CGI not in proper state: CGI should be in state VSAC.
The function which generated the error requires that at
least one view surface be active. Corrective action would
include either removing the most recent call to
deactivate_ vws ()} orby including a call to
activate vws ().

123 Revision A, of 9 May 1988

124 SunCGI Reference Manual

C.3. Control Errors (10-16)

C.4. Coordinate Definition

(20-24)

D

ENOTOPOP [5]

EVSIDINV [10]

ENOWSTYP [11]

EMAXVSOP [12]

EVSNOTOP [13]

EVSISACT [14]

EVSNTACT [15]

EINQALTL [16]

EBADRCTD [20]

Sun

microsystems

CGI not in proper state: CGI should be in state CGOP,
VSOP, or VSAC. The function which generated the error
requires that SunCGl is at least initialized. If this error is
received, make sure that your application program has
called open_cgi (), or that it has not recently called
close_cgi{().

Specified view surface name is invalid. The view surface
name specified by the name argument has never been
opened or if it has been opened, it has since been closed.
Corrective action involves opening the view surface or
changing the value of the name argument.

Specified view surface type does not exist. The application
program has specified a type of view surface which is not
supported by SunCGI. Corrective action involves chang-
ing the type of view surface.

Maximum number of view surfaces already open. An
attempt was made to open a view surface when the max-
imum number of view surfaces is already open. Corrective
action involves removing one call to open_vws ().

Specified view surface not open. An attempt was made to
close a view surface which is already closed. Corrective
action involves removing one callto close_vws ().

Specified view surface is active. An attempt was made to
activate a view surface which is already activated. Correc-
tive action involves removing one call to
activate'_vws ().

Specified view surface is not active. An attempt was made
to deactivate a view surface which has already been deac-
tivated. Corrective action involves removing one call to
deactivate_vws ().

Inquiry arguments are longer than list. A call to an
inquiry negotiation function with indices greater than the
number of supported functions was made. The returned
list is always empty. Corrective action may be facilitated
by obtaining the size of the list by using the

inquire device class () function.

Rectangle definition is invalid. The application program
has made a call to vdc_extent () or

device viewport () with the coordinates of both
comers equal in the x or y dimensions or both. Corrective
action involves changing one of the arguments to the func-
tion which generated the error so that the values of the two
arguments are different in both the x and y dimensions.

Revision A, of 9 May 1988

N

Appendix C — Error Messages 125

EBDVIEWP [21] Viewport is not within Device Coordinates. A call to
device_ viewport () has been made which specifies a
viewport larger than the view surface. Corrective action
involves making the arguments to
device_ viewport () less than the view surface size.
The size of the view surface can be obtained by calling the
inquire physical coordinate_system()
function.

ECLIPTOL [22] Clipping rectangle is too large. The clipping rectangle
would exceed the boundaries of VDC space. Corrective
action involves resetting the clipping rectangle to be
within the limits of VDC space.

ECLIPTOS [23] Clipping rectangle is too small. The clipping rectangle
would define an area of screen space smaller than one
pixel. The clipping rectangle remains unchanged. Since
the occurrence of this error is partially a function of the
size of the view surface, changing the size of the view sur-
face may be a viable alternative to changing the size of the
clipping rectangle.

EVDCSDIL [24] VDC space definition is illegal. One or more of the argu-
. ments to the vdc_extent () function exceeds the
(" acceptable limits (-32767 to 32767) or the coordinates of
the lower-left hand corner are greater than the coordinates
of the upper-right hand comer. Corrective action involves
changing the arguments to vdc_extent (). -

C.5. Output Attributes EBTBUNDL [30] ASF is BUNDLED. Error 30 is generated when attempting
(30-51) to call an individual attribute function when the attributes
are specified by entries in the attribute table. Calls to
these functions have no effect on the current attributes.
Corrective action includes resetting the attribute selector
to BUNDLED by using the attribute selector functions.

EBBDTBDI[31] Bundle table index out of range. The entry in the bundle
table exceeds the size of the table. The only corrective
action is to change the value of the index argument.

EBTUNDEF [32] Bundle table index is undefined. The entry in the attribute
table specified by the most recent call to an attribute table
index setting function has not been defined by SunCGI or
the application program.

EBADLINX [33] Polyline index is invalid. The polyline bundle is not
defined. Corrective action involves changing the index
argument to polyline bundle index(},orby
defining the polyline bundle index.

. ‘
@:{a sun Revision A, of 9 May 1988

microsystems

126

SunCGI Reference Manual

7
®

EBDWIDTH [34]

ECINDXLZ [35]

EBADCOLX [36]

EBADMRKX [37]

EBADSIZE [38]

EBADFABX [39]

EPATARTL [40]

EPATSZTS [41]

ESTYLLEZ [42]

sun

microsystems

Width must be nonnegative. The width of a perimeter or
line must be greater than or equal to zero. The current
value of the perimeter width or line width remains
unchanged. Changing the value of the width argument to a
nonnegative value will correct this error.

Color index is less than zero. The value of the index argu-
ment to one of the attribute functions or the color entry in

one of the bundles is negative. Corrective action involves
changing the value of the color.

Color index is invalid. The color index argument to one of
the attribute functions or the color entry in one of the bun-
dles is not defined in the colormap. Indices in the color
lookup table must be between 0 and 255 for the Sun 8-bit
per pixel frame buffer. Any color specification outside of
this range is ignored. Corrective action involves changing
the value of the color.

Polymarker index is invalid. The polymarker bundle is not
defined. Corrective action involves changing the index
argument to polymarker bundle_index (), orby
defining the polymarker bundle index.

Size must be nonnegative. The size of a marker or line E-/—"\,
must be greater than or equal to zero. The current value of -’
the marker size remains unchanged. Changing the value of

the size argument to a nonnegative value will correct this

error.

Fill area index is invalid. The fill area bundle is not
defined. Corrective action involves changing the index
argumentto £i11 area bundle_index(),orby
defining the fill area bundle index.

Pattern array too large. The pattern array must contain
less than 257 elements. The pattern is not entered into the
pattern table. Corrective action involves designing a new
pattern.

Pattern size too small. 'The pattern size must be at least
two-by-two. The pattern is not entered into the pattern
table. Corrective action could include designing a new
pattern which includes several replications of the original
pattern.

Style (pattern or hatch) index is less than zero. All indices
in the pattern table must be positive. To fix this mistake,
change the argument to the pattern_ index () orthe
hatch_ index () orthe entries in the bundle table.

Revision A, of 9 May 1988

/“’"\

g

Appendix C — Error Messages 127

ENOPATNX [43]

EPATITOL [44]

EBADTXTX [45]

EBDCHRIX [46]

ETXTFLIN [47]

ECEXFOOR [48]

ECHHTLEZ [49]

ECHRUPVZ [50]

ECOLRNGE [51]

SUun

microsystems

Pattern table index not defined. The argument to the
hatch index() orpattern_index () function or
the entry bundle table should be reset to correspond to a
defined value.

Pattern table index too large. The index argument to
pattern_table () exceeded the bounds of the pattern
table. The pattern is not entered into the pattern table.
Redefining the pattern index to be between one and ten
will eliminate the error.

Text index is invalid. The text bundle is not defined.
Corrective action involves changing the index argument to
text bundle_index (), orby defining the text bundle
index.

Character index is undefined. CGlignores all character
indices other than index 1. You are advised to ignore the
character_set_index () function entirely.

Text font is invalid. The text fonts range from 110 6. All
other integers do not correspond to actual fonts. Correc-
tive action involves changing the argument to the
text font_ index () function or resetting the font
index in the text bundle.

Expansion factor is out of range. The character expansion
factor or the character space expansion factor would
result in a character or a space which would exceed the
bounds of the screen or would result in a character smaller
than the limitations of the character drawing software. To
eliminate this error, reset the offending value to within an
acceptable range (0.1-2.0 are reasonable guidelines).

Character height is less than or equal to zero. The char-
acter height must be positive. Corrective action involves
changing the argument to the character height function or
the element of the text bundle.

Length of character up vector or character base vector is
zero. Both the character up vector and the character base
vector must be nonzero. Corrective action involves chang-
ing the arguments to the

character orientation() function or the element
of the text bundle.

RGB values must be between 0 and 255. The red, green,
and blue values are only defined between 0 and 255. The
callto color_ table () that produced the error is
ignored. Corrective action requires respecifying the values
of the arguments to color table().

Revision A, of 9 May 1988

128 SunCGI Reference Mannal

C.6. Output Primitives
(60-70)

N\

ENMPTSTL [60]

EPLMTWPT [61]

EPGMTHPT [62]

EGPLISFL [63]

EARCPNCI [64]

EARCPNEL [65]

ECELLATS [66]

ECELLPOS [67]

ECELLTLS [68]

2sun

microsystems

7
Number of points is too large. The number of points N’
exceeds MAXPTS. Change the n element of the Ccoor-
1ist structure to a value less than or equal to MAXPTS.

polylines must have at least two points. Change the n ele-
ment of the Ccoorlist structure to a value greater than
or equal to 2 and add the corresponding points to the ptlist
element.

Polygons must have at least three points. Change the n
element of the Ccoorlist structure to a value greater
than or equal to 3 and add the corresponding points to the
ptlist element.

Global polygon list is full. The number of points on the
global polygon list exceeds MAXPTS. The points which
exceed MAXPTS are ignored. This error can be corrected
by inserting a call to polygon () (which clears the glo-
bal polygon list by displaying its contents) before the call
to partial polygon () that caused the overflow.

Arc points do not lie on circle. The starting and ending
points of either an open or close circular arc do not liec on

the perimeter of the circle described by the arguments ¢!

and rad. If this error occurs, the arc is not drawn. Correc-

tive action may include determination of the endpoints fﬂ\
with the application program (for example ¢2.x = e/
rad*cos(start_angle),).

Arc points do not lie on ellipse. The starting and ending
points of either an open or close-elliptical arc do not lie on
the perimeter of the ellipse described by the arguments c/,
¢2, and c3. If this error occurs, the arc is not drawn.
Corrective action may include determination of the end-
points with the application program.

Distance between p and q too small for given dx, dy. The
dimensions of the cell array are too small for a cell array
element to be mapped onto one pixel of the view surface.
The cell array is not drawn. This error depends on the
physical size of the view surface as well as the limits of
VDC space. Therefore, corrective action might require
changing the size of the view surface, VDC space, or both.

Cell array dimensions must be positive. Negative cell
array dimensions are not permitted. Corrective action
requires changing the parameters to the cell array func-
tion.

Is not used.

Revision A, of 9 May 1988

»

O

Appendix C — Error Messages 129

EVALOVWS [69] Value outside of view surface. A coordinate of a pixel
array is outside the physical range of the view surface.
The pixel array is not drawn. Change the arguments to the
pixel array() orbitblt source array().

EPXNOTCR [70] Pixrect not created. One of the bitblt functions required a
user-defined pixrect, and that pixrect had not been created.
Corrective action involves creating a pixrect in your appli-
cation program before calling the offending bitblt function.

C.7. Input (80-97) EINDNOEX [80] Input device does not exist. The input device specification
(specified by the devclass and devnum arguments of most
input functions) does not exist. Corrective action involves
resetting the device specification to a valid device.

EINDINIT [81] Input device not initialized. A call to an input device func-
tion specified a device that was not initialized. Calls
which generate this error have no effect. A call to
initialize 1id() should be inserted before the call
generating the error.

EINDALIN [82] Input device already initialized. An attempt was made to
initialize a device that has previously been initialized. The
parameters to the offending call to initialize 1id()
are ignored. Removing the offending call to
initialize 1id () will correct this error.

EINASAEX [83] Association already exists. An attempt is being made to
bind the input device to a trigger to which it has been pre-
viously bound. The status of the input device trigger are
unchanged. This error is purely informational and no
corrective action is required.

EINATIMP [84] Association is impossible. An attempt is being made to
bind the input device to a trigger to which it cannot be
bound. For example, an IC_STRING device cannot be
bound to a mouse button. To eliminate this error, change
the arguments to the offending call of the associate ()
function.

EINNTASD [85] Association does not exist. An attempt to call an input
function that specifies a device with no associated triggers
was made. The offending call is ignored. Corrective
action involves calling associate () before the offend-
ing call is issued.

EINTRNEX [86] Trigger does not exist. An attempt was made to associate
or inquire about a trigger which has a number less than one
or greater than five. The offending call is ignored. To
eliminate the error, change the trigger number.

S
&}{& sun Revision A, of 9 May 1988

\ microsystems

130

SunCGI Reference Manual

D,

EINNECHO [87]

EINECHON [88]

EINEINCP [89]

EINERVWS [90]

EINETNSU [91]

EINENOTO [92]

EIAEVNEN [93]

EINEVNEN [94]

EBADDATA [95]

Sun

microsystems

N
Input device does not echo. CHOICE devices can only
echo if one echos the LOCATOR device. Create and use
the device as a CHOICE device, but for the track_on ()
function call, pass the device argument as a LOCATOR
device, even though it is a CHOICE device.

Echo already on. A callto track_on () has been made
to a device whose echoing ability has already been
activated. To stop generation of the error either remove
the offending call or change the arguments to specify a
device whose echo is currently off.

Echo incompatible with existing echos. Although SunCGI
can support certain combinations of echos (such as
IC_STRING and IC_LLOCATOR), not all combinations are
supported. The easiest remedy is to remove the offending
call from the application program.

Echo region larger than view surface. Error 90 is gen-
erated when the rectangle defined by the echoregion argu-
ment exceeds the limits of VDC space. To eliminate this
error, change the values to the echoregion argument to be
within the confines of VDC space.

Echo type not supported. All devices except the N
IC_STROKE device only support one type of echo. There- '
fore, assigning a value to echotype other than zero or one
will produce an error for any device except IC_STROKE.
Corrective action involves changing the value of the echo-

type argument.
Echo not on. The device echoing has not been turmed on.

Either remove the call to track_off (), tumn the echo
on, or change the device specification.

Events already enabled. Events have already been enabled
for the specified device. The solution is to remove the
offending call to enable events ().

Events not enabled. Events have not been enabled for the
specified device. The solution is to include a call to
enable events () before a call to the

await event (), sample input (), or

get last_requested input () functionis made
with the specified device as input parameter.

Contents of input data record are invalid. The value argu-
ment of initialize 1id () function is out of range or
is the wrong type. The solution is to change the contents
of the value argument.

Revision A, of 9 May 1988

Appendix C — Error Messages 131

C.8. Implementation
Dependent (110-112)

C.9. Possible Causes of

<° Visual Errors
- Table C-1 Attribute Errors
Behavior Possible Cause
Attribute setting has no effect Attribute ASF is set to BUNDLED.
Text attributes have no effect Text precision is set to CHARAC-
TER.
Attribute ASF is set to BUNDLED.
PATTERN fill is the same as pattern index and hatch index
) HATCH are identical.
pattern size is too small.
PATTERN fill is different on dif- View surfaces are of different
ferent view surfaces. size.
‘/m\
\\.../
D
&&\@ sun Revision A, of 9 May 1988
microsystems

ESTRSIZE [96]

EINQOVFL [97]

EMEMSPAC [110]

ENOTCSTD [111]

ENOTCCPW [112]

Length of initial string is greater than the implementation
defined maximum. The initial string in the value argument
is greater than 80 characters. Shorten the string.

Input queue has overflowed. The event queue can no
longer record input events. Solutions include flushing the
event queue or dequeueing events with the
await_event (), sample_ input(),or
get_last_ requested_ input () function.

Space allocation has failed. A function that was supposed
to work has failed. The only action which you can take is

to eliminate other processes which may be using memory.

If you have eliminated all other processes, and this error is
still generated, please contact Sun Microsystems.

. Function or argument not compatible with standard CGI.

A function call is not supported by the CGI library.

Function ar argument not compatible with CGIPW mode.
A function call is not supported by the CGIPW library.

132 SunCGI Reference Manual

Table C-2

Table C-3

Input Errors

Behavior

Possible Cause

Input device does not report
Input device does not echo

Input device does not echo on
whole view surface

Device not initialized.
Echo not initialized.

Echo region not set to whole
view surface.

View Surface Errors

Behavior

Possible Cause

Segmentation fault for
open_vws ()

No primitives displayed

Primitives displayed on
undesired view surfaces

Segmentation fault for inquiry
functions

devdd argument for
open_vws () is declared as a
pointer (the address of devdd
should be passed).

View surface not initialized.
View surface not active.

VDC to device coordinate map-
ping makes objects too small.

Clipping rectangle is too small
and clipping is ON.

Perimeter visibility is set to OFF
and interior style is set to HOL-
LOW.

line color or fill color is set t0
background color.

Undesired view surfaces have
not been deactivated.

Passing variable instead of
address (&) of variable,

Revision A, of 9 May 1988

Appendix C — Error Messages

133

Possible Cause

‘\\
o
N ,
Table C-4 Primitive Errors
’ Behavior

Polylines or polymarkers aren’t
displayed.
Polygon borders aren’t
displayed.
Circles aren’t displayed.
Ellipses aren’t displayed.
Text isn’t displayed.

N

Cell arrays aren’t displayed.

Cell arrays aren’t displayed on
all active view surfaces.

Pixel arrays aren’t displayed.

Bitblts aren’t displayed.

‘Width or size is zero.

Color is the same as back-
ground.

Width is zero.

Color is the same as back-
ground.

Perimeter visibility is set to OFF.

Width or size is zero.

Color is the same as back-
ground.

Width or size is zero.

Color is the same as back-
ground.

Width or size is zero.

Color is the same as back-
ground.

Character height is too small.

Coordinates are outside the
range of VDC space or the clip-
ping rectangle.

dx or dy arguments are t0o
small,

Color is the same as back-
ground.

Mapping from cell size to view
surface for smaller view sur-
faces is too small.

Location is outside of view sur-
face or clipping rectangle.

Color is the same as back-
ground.

Width or size is zero.

Color is the same as back-
ground.

4»sun

microsystems

Revision A, of 9 May 1988

7

Sample Programs

Sample Programs

D.1. Martini Glass

D.2. Tracking Box

D.3. Colored Lines

o

137

137
138
139

0

»

St

D.1. Martini Glass

@

Sample Programs

This chapter contains sample SunCGI programs written in C. Refer to Appendix
E for sample programs that use CGIPW functions and Appendix F for sample
SunCGI FORTRAN programs .

The following program draws a martini glass. The program exits after 10
seconds.

{])
#include <cgidefs.h>

Ccoorlist martinilist;

Ccoor glass_coords[10] = { 0,0,
-10,0,
-1,1,
-1,20,
-15, 35,
15,35,
1,20,
1,1,
10,0,
0,0 };

Ccoor water coords[2] = { -12,33,

12,33 };
{ -50,-10 };
{ 50,80 1}

Ccoor vpll
Ccoor vpur

main ()

{
Cvwsurf device;
Cint name;

NORMAL VWSURF (device, PIXWINDD) ;

open_cgi():
open_vws (&name, &device);
vdc_extent (&vpll, &vpur);

martinilist.ptlist = glass_coords;
martinilist.n = 10;
polyline (&martinilist);

S

\.
sun 137 Revision A, of 9 May 1988

microsystems

138 SunCGI Reference Manual

f’“\
(martinilist.ptlist = water_ coords;) N
martinilist.n = 2;
polyline (&martinilist);
sleep (10} ;
close_vws (name) ;
close_cgi():
}
\ J
D.2. Tracking Box The following program demonstrates the use of the CGI input functions. A
square is displayed on the screen and moved with the mouse. The program exits
if the mouse is still for five seconds.
r ~ D
#include <cgidefs.h>
#define DEVNUM 1 /* device number */
#define MOUSE POSITION 5 /* trigger number */
#define TIMEOUT (5 * 1000 * 1000) /* timeout in microseconds */
Ccoor ulc = {1000, 2000};
Ccoor lrc = {2000, 1000};
main ()
{ f’wx
Cint name; N

Cvwsurf device;

Cawresult stat;

Cinrep sample; /* device measure value */
Ccoor samp; /* LOCATOR'’s x,y position */
Cint trigger; /* trigger number */

NORMAL_VWSURF(device, PIXWINDD) ;
sample.xypt = &samp;

samp.x = 0;

samp.y = 27000;

open_cgi () ;
copen_vws (&name, &device);
set _global_ drawing mode (XOR) ;
initialize 1id(IC_LOCATOR, DEVNUM, &sample);
associlate (MOUSE_POSITION, IC LOCATOR, DEVNUM) ;
rectangle(&lrc, &ulc); /* draw. first rectangle */
/* wait TIMEOUT micro-seconds for input and check the status */
while (request_input(IC_LOCATOR, DEVNUM, TIMEOUT,
&stat, &sample, &trigger), (stat == VALID DATA)) {
if ((sample.xypt->x != ulc.x) || (sample.xypt->y != lrc.y)) {
rectangle (&1lrc, &ulc):;
lrc.y = sample.xypt->y; /* move to new location */
lrc.x = (sample.xypt->x + 1000);
ulc.x = sample.xypt->x; fﬁw\
ulc.y (sample.xypt->y + 1000);

]

”}:?& sun Revision A, of 9 May 1988

microsystems

5

e

g

Appendix D — Sample Programs

139

rectangle (&lrc, &ulce);
}

}

dissociate (MOUSE POSITION, IC LOCATOR, DEVNUM) ;
release_ input_ device (IC_LOCATOR, DEVNUM) ;

close_vws (name) ;
close cgi();

D.3. Colored Lines

The following program draws colored lines.

#include <cgidefs.h>
#include <stdio.h>

#define NCOLORS 64
#define MIN 0

#define MAX 10000
typedef unsigned char Color;
static Ccoor vpll = { MIN, MIN };
static Ccoor vpur = { MAX, MAX };
main ()
{

int name;

Cvwsurf device;

Ccoorlist line;

Ccoor points[2];

int i;

Ccentry clist;

Color red [NCOLORS] ;

Color green [NCOLORS] ;

Color blue [NCOLORS];

device.dd = PIXWINDD;
open_cgi() ;

open_vws (&name, &device) ;
vdc_extent (&vpll, &vpur) ;

/*
/*

/*
/*
/*
/*
/'k
/*
/*
/*
/*

/*
/*
/*
/*

‘lower left corner */

upper right corner */

view surface name */

view surface device */

line coordinate list */

point list */

position counter */

color map list */

red color map */ .
green color map */

blue color map */

select output device */
initilize cgi */

open view surface */
reset vdc space */

line_width specification_mode (ABSOLUTE) ;

line width(1.0);

for (i=0; i<NCOLORS; i++) {
red([i] = (i*3);
green[i] = 64;
bluefi] = 128;

}
clist.n = NCOLORS;
clist.ra = red;

/'k

/*

set the line attributes */

set up the color map */

J

sun

microsystems

Revision A, of 9 May 1988

140 SunCGI Reference Manual

clist.ga = green;
clist.ba blue;

color_table(0,&clist);

for(i=0; i<NCOLORS; i++) {
line.n = 2; /* draw a line
line.ptlist = points;
line_color(i);
points[b].y = MIN;
points[0] .x (1i*1000) ;
points{l].y MAX;
points[1}.x = (i*1000);
polyline (&line);

sleep(3);

close_vws (name) ;
close_cgi{();

*/

,
i

4ysun

microsystems

Revision A, of 9 May 1988

Hosien

IXWINs

[}
e o
(5]
g |
.Mn.luxme ms
O £ 3S£3£%.:%
= s S :888:h5E
[Im“aaaﬁc 2
S] mnnn%n&vgwp
50 T B RRREEZAE
: 27 e
m m : MM

\\ Hammas
o
A

- —

)

/N
p—

E.1. SunCGI - Pixwins
Interface

Open Pixwin CGI

NOTE

e
N

4

Using SunCGI and Pixwins

This appendix describes how to add the richness of CGI’s primitives (such as cir-
cles and arcs) to the Pixwins application through CGIPW. To accomplish this,
you must first write a standard Pixwins program, which brings up windows and
controls the events delivered to them with the notifier. You may then add the
CGIPW functions, thus enabling you to draw with both the CGI and Pixwins out-
put primitives.16" .

With the CGIPW functions, you can also combine CGI with Pixwins’ ability to
manage multiple (potentially overlapping) windows. The CGI standard does not
provide facilities for dealing with multiple overlapping windows.

The command line to compile a CGIPW program is as follows:

[cc box.c -0 box -lcgi -lsuntool -lsunwindow -lpixrect -1m J

where box. c is the source program.

Many CGI calls have been replaced with CGIPW calls. For example,
cgipw_polyline () replaces polyline (). The first argument of each
CGIPW function is a pixwin descriptor of type Ccgiwin.

The file <cgipw.h> must be included in the CGIPW application program
instead of <cgidefs.h>.

The five functions open_pw_cgi (), open_cgi pw()},
open_cgi_canvas(),close_cgi pw() and close pw cgi () are
necessary for managing the SunCGI — Pixwins interface.

Cerror open_pw_cgi ()

open_pw_cgi () initializes CGI by setting the attributes to the default values
and setting the VDC to device coordinates (i.e. Pixwin coordinates) mapping to
1:1. Therefore, all input and output primitives will use device coordinates.

As in Pixwins coordinates, the origin of the device coordinates is in the upper
left-hand corner instead of the lower left-hand corner.

16 This appendix assumes familiarity with both SunCGI and Pixwins. See the SunView 1 Programmer's
Guide for designing the application’s Pixwins windows, input, color usage, and output.

sun 143 Revision A, of 9 May 1988

microsystems

144 SunCGI Reference Manual

Open a CGI Pixwin

Open a CéI Canvas

N’

The entire window is used, not just a square region within it. No standard errors
are specified for open _pw_cgi (). Ifopen_pw_cgi () returns a nonzero
result, then the initialization failed. open_pw_cgi () corresponds to
open_cgi ().

Cerror open cgi pw(pw, desc, name)

struct pixwin *pw; /* pixwin */

Ccgiwin *desc; /* CGI pixwin descriptor */
Cint *name;

open_cgi pw () informs CGI of the pixwin pointed to by pw. Calls to CGI
primitives may then reference this pixwin. However, CGI does not guarantee that
a pixwin exists or is in any other way properly initialized. descis a pointer to a
CGI pixwin descriptor allocated by the application program and defined by
open_cgi_pw (). It will be used as the first argument to CGIPW functions.
Calls may also be made to any pixwin function. Multiple calls to
open_cgi_pw () with pointers to different Ccgiwin structures will allow
primitives to be displayed on multiple view surfaces by repeating calls to CGIPW
functions with different Ccgiwin descriptors. Attributes are local to the pixwin
associated with the CGI descriptor passed to the CGIPW attribute functions.
open_cgi pw() corresponds to open_vws (}. open_pw_cgi () mustbe
called prior to open_cgi_pw () ; otherwise, error 111 is returned. Other errors
(as with open_vws ()) may also be detected.

ENOTOPOP [5] CGI not in proper state: CGI shall be either in state CGOP, O

VSOP, or VSAC.
ENOWSTYP [11] Specified view surface type does not exist.
EMAXVSOP [12] Maximum number of view surfaces already open.
EMEMSPAC [110] Space allocation has failed.
ENOTCSTD [111] Function or argument not compatible with standard CGI.
Cerror open_cgi canvas(canvas, desc, name)
Canvas canvas;

Ccgiwin *desc;
Cint *name;

open_cgi_canvas () is a view surface initialization function for compatibil-
ity with SunView canvases. This must be used instead of open_cgi _pw (), 50
SunCGI knows to handle coordinate transformation and window repainting in a
way that is compatible with the Canvas package.

‘open_cgi_canvas () is used in place of open_cgi_pw () to initialize

S

SunCGI to use a canvas. This gives SunCGI the canvas handle, which is a
higher-level object than a pixwin. After calling this initialization function, the
resultant descriptor can be treated like that from open_cgi_pw () for calling
any CGIPW function, including close_cgi_pw (). Note that a canvasis a
pointer to the canvas handle of type Canvas retumed by window create ().

With the exception of input functions, CGIPW functions should work correctly AN
with canvases. In particular, the new SunCGI extension

sun Revision A, of 9 May 1988

microsystems

‘Appendix E — Using SunCGI and Pixwins 145

Close a CGI Pixwin

Close Pixwin CGI
\

E.2. Using CGIPW
P!
e

NOTE

cgipw_set vdc_extent () will correctly map the VDC extent to the under-
lying canvas. SunCGI input should not be used with canvases, since the Canvas
package handles all input events on the canvas by calling a client handler func-
tion. SunCGI has no knowledge of this handler, and would consume input events
the Canvas package expects, thus interfering with scrollbars and tool border
functions such as menus.

Cerror close_cgi_ pw(desc)
Ccgiwin *desc; /* CGI pixwin descriptor */

close_cgi_pw () takes the CGI pixwin descriptor desc as an argument and
removes it from the list of pixwins to which CGI writes. The pixwin is not
closed. close_cgi_ pw () correspondsto close vws (), and may return
any of the errors close_ vws () detects (except 112).

CGI not in proper state: CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface name is invalid.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13] Specified view surface not open.

Cerror close_pw_cgi()

close pw_cgi () takes care of leaving CGI in an orderly state. This function
should be called before exiting the application program. close pw_cgi ()
corresponds to close cgi ().

ENOTOPOP [5] CGI not in proper state: CGI should be in state CGOP,

VSOP, or VSAC.

After calling the two initialization functions (open_pw_cgi () and
open_cgi_pw ()), the application program may call functions from both the
Pixwins and CGIPW libraries.

Since CGIPW functions use a 1:1 mapping from VDC to device coordinates, attri-
butes in VDC units (such as pattern size and character height) will be huge
unless they are reset. And because the CGIPW origin is the device coordinate ori-
gin, the upper left-hand comer, attributes with direction or position (for example,
pattern reference point and character orientation) have their meaning reversed in
the y dimension. ‘

Most CGIPW functions do not print error messages even if the error wamning
mask is INTERRUPT or POLL. They all return error codes which may be tested.

The application program should not use both SunCGI and window system input
functions, since both SunCGI and the window system share a common event
queue. For example, events handled by a SunCGI function will not be handled
by a window system call after the SunCGI call. However,

pw_putcolormap () calls before, within, and after the call to open CGIPW
will change the colormap.

Revision A, of 9 May 1988

146 SunCGI Reference Manual

E.3. CGIPW Functions

Table E-1 contains a list of functions available in CGIPW. If a function is not
included in this table, then use the normal SunCGI function except as described
in Table E-2. SunCGI functions incompatible with CGIPW are given in Table E-
2.

Most of the functions listed in Table E-1 are output and attribute functions; how-
ever, the tracking functions are listed so that you can control which surfaces
input devices echo on. The arguments of the CGIPW functions are the same as
those of the SunCGI functions except that the first argument is always a desc
argument of type Ccgiwin. desc is a pointer to a pixwin descriptor filled in by
the open_cgi_pw () function. '

partial polygon () may be used with cgipw_polygon (), but the glo-
bal polygon list is freed after use by cgipw_polygon (), so calls to
partial polygon () must be repeated prior to use of cgipw_polygon ()
on another view surface.

Table E-1 List of CGIPW Functions
SunCGI Function Name | cGIPW Function Name
append_text (flag, tstring) cgipw_append text (desc, flag, tstring)
cell array(p, g, r, dx, dy, colorind) cgipw_cell array(desc, p, q, ¥, dx, dy, colorind)
character expansion_ factor(sfac) cgipw_character_expansion factor{desc, sfac)
1 character_height (height) cgipw_character_height (desc, height)
1 character_ orientation(xbase, ybase, cgipw_character orientation(desc, xbase, ybase,
‘ xup, yup) xup, yup)
character_path (path) cgipw_character path(desc, path)

| character_set_index (index)

circle(cl, rad)

circular_arc 3pt(cl, c2, c3} cgipw_circular_arc_ 3pt(desc, cl, c2, c3})
circular_arc 3pt close(cl, c2, c3, cgipw_circular_arc 3pt_close(desc, cl, ¢2, c3,
close) ' close)
circular_arc_center(cl, c2x, c2y, cgipw_circular arc_center(desc, cl, c2x, cly,
c3x, c3y, rad) c3x, c3y, rad)

| circular_arc center close(cl, c2x, cgipw_circular arc_center_ close(desc, cl, c2x,

ellipse(cl, majx, miny)
majx, miny)
ey, majx, miny, close)

£fill colox (color)
fixed font (index)

hatch_index (index)

character_spacing (spcratio)

| c2y, ¢3x%, c3y, rad, close)
color table({istart, clist)
define bundle index (index)
disjeoint_polyline (polycoors)

elliptical_arc(cl, sx, sy, ex, ey, cgipw_elliptical_arc{desc, ¢l, sx, sy, ex, ey,
elliptical_arc _close(cl, sx, sy, ex, cgipw_elliptical_arc close(desc, cl, sx, sy, ex,

fill_area bundle index (index)

inquire_aspect_source_flags ()
inquire_fill area_attributes{)

cgipw_character. _set_index(desc, index)
cgipw_character spacing(desc, spcratio)

cgipw_circle(desc, ¢l, rad)

c2y, c3x, c3y, rad, close)
cgipw_color_table(desc, istart, clist)
cgipw_define bundle index(desc, index)
cgipw_disjoint_polyline (desc, polycoors)
cgipw_ellipse (desc, cl, majx, miny)

majx, miny)

ey, majx, miny, close)
cgipw_fill area bundle index (desc, index)
cgipw_fill color(desc, color)
cgipw_fixed font (desc, index)
cgipw_hatch_index(desc, index});
cgipw_inquire_aspect_source_ flags (desc);

@

cgipw_inquire_fill area_attributes(desc):

S u n Revision A, of 9 May 1988

microsystems

Appendix E — Using SunCGI and Pixwins 147

C’ Table E-1 List of CGIPW Functions— Continued

SunCGI Function Name

CGIPW Function Name

inquire line attributes ()
inquire marker attributes ()
inquire text_attributes ()
inquire_text_extent(tstring,
nextchar, concat, lleft, uleft,
uright}

interior_style(istyle, perimvis)
line color (index)

line_endstyle (ttyp)

line_type (ttyp)

line width (index)

line width_specification_mode (mode)
marker color (index)
marker size (index)

marker size specification_mode (mode)
marker type (ttyp)

pattern_index (index)
pattern_reference_ point (open)
pattern_size (dx, dy)
perimeter color (index)
perimeter type (ttyp)
perimeter width (width)

R

pixel_array(pcell, m, n, colorind)
polygon (polycoors)

polyline (polycoors)
polyline bundle_ index (index)
polymarker (polycoors)
polymarker bundle_ index (index)
rectangle (lrc, ulc)
set_aspect source flags(flags)
text (¢l, tstring)
text_alignment (halign, valign,
hcalind, vcalind)
text_bundle_index (index)

text color (index)

text font_ index (index)

text precision (ttyp)
vdec_extent)cl, c2)

vdm_text (cl, flag, tstring)

perimeter width_specification_mode (mode)

cgipw_inquire line_attributes (desc);
cgipw_inquire marker_attributes (desc);
cgipw_inquire text_ attributes (desc);
cgipw_inquire_text extent (desc, tstring,
nextchar, concat, lleft, uleft, uright)

cgipw_interior style(desc, istyle, perimvis)
cgipw_line color(desc, index)

cgipw_line endstyle(desc, ttyp)

cgipw_line type(desc, ttyp)
cgipw_line_width (desc, index)

cgipw_line width specification mode (desc, mode)
cgipw_marker color (desc, index)
cgipw_marker_size(desc, index)
cgipw_marker size specification_mode (desc, mode)
cgipw_marker type(desc, ttyp)
cgipw_pattern_index(desc, index);

cgipw _pattern_ reference point (desc, open)
cgipw_pattern_ size(desc, dx, dy)
cgipw_perimeter color(desc, index)
cgipw_perimeter type (desc, ttyp)
cgipw_perimeter width (desc, width)
cgipw_perimeter width specification_ mode (desc,
mode)

cgipw_pixel array{desc, pcell, m, n, colorind)
cgipw_polygon (desc, polycoors)

cgipw_polyline (desc, polycoors)

cgipw_polyline bundle_index(desc, index)
cgipw_polymarker (desc, polycoors)
cgipw_polymarker bundle index(desc, index)
cgipw_rectangle(desc, lrec, ulc)

cgipw_set aspect_source flags(desc, flags)
cgipw_text (desc, cl, tstring)

cgipw_text alignment (desc, halign, valign,
hcalind, vcalind)

cgipw_text_bundle index(desc, index)
cgipw_text color(desc, index)
cgipw_text font index(desc, index)

cgipw_text precision(desc, ttyp)
cgipw_set_vdc_extent)desc, cl, c2)

cgipw_vdm text (desc, cl, flag, tstring)

4»sun

microsystems

Revision A, of 9 May 1988

148 SunCGI Reference Manual

Table E-2

E.4. Example Programs

SunCGI Functions not Compatible with CGIPW Mode

Function | Discussion
clear control()t All clear extents are identical
clip_indicator ()t when cflag is

CLIP_RECTANGLE

clip rectangle()t Instead, use pw_region ()
prior to open_cgi_pw ()

close cgi()t Use close pw_cgi ()
close_vws ()t Use close_cgi_pw()

device viewport ()t usepw_region() priorto
open_cgi_pw()

open_cgi () Use open_pw_cgi ()
open_vws () 1 Use open_cgi_pw()

partial polygon () global polygon list is freed
after cgipw_polygon ()

+ This function produces error ENOTCCPW [112]

The following example program creates a SunView canvas. When the user clicks /™™

the left mouse button, CGIPW draws a triangle inside a 10-by-10 rectangle.

Sun Revision A, of 9 May 1988

microsystems

../

Appendix E — Using SunCGI and Pixwins 149

{ N
#include <suntool/sunview.h>

#include <suntool/canvas.h>

#include <cgipw.h>

»

/*
* SunView window handles
*/

Frame frame;

Canvas canvas;

/*
* CGIPW canvas
*/ -
Ccgiwin vpw;
/*
* Canvas event handler
*x/
canvas_event proc(window, event)
Window window; /* unused */
Event *event;

{

if (event_is down(event))

return;
//“\(switch (event id(event)) {
1\ .
e case MS_LEFT:
draw_box at (event_x(event), event_y(event});
break;
case MS MIDDLE:
printf("print_canvas_event: 0);
printf ("canvas x,y = (%d,%d)0,
event_x (event), event_y(event));
canvas_window_event (canvas, event);
printf ("pixwin region x,y = (%d,%4)0,
event_x (event), event_y(event));
break;
case MS RIGHT:
window_done { frame);
close cgi_pw(&vpw);
close_pw_cgi();
exit (0);
default:
break;
}
}
\ J

N
&%\&& S u n Revision A, of 9 May 1988

microsystems

150

SunCGI Reference Manual

{ ™
main ()

{

Cint name; /* goes unused in this example */

frame = window_create(NULL, FRAME, 0):
canvas = window_create(frame, CANVAS,

CANVAS AUTO_SHRINK, FALSE,
WIN_EVENT_ PROC, canvas_event_proc,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,

WIN VERTICAL SCROLLBAR, scrollbar_create(0),
WIN_HORIZONTAL_SCROLLBAR,scrollbar_create(0),
0);

open_pw_cgi();
open_cgi_ canvas(canvas, &vpw, &name);
window main_loop(frame);

} |

The next example draws using SunView and CGIPW operations in a canvas. If
SunView color is initialized, the SunView output primitives and the CGIPW out-
put primitives both recognize the SunView colormap.

s Un Revision A, of 9 May 1988

/*
* draw_kox_at ()
* -
* Draw a rectangular box using the passed x,y point as
* the upper left corner of the box.
*/
draw_box_at (x,y)
int X,¥;5
{
Ccoor 1r,ul;
Ccoor triangle[3];
Ccoorlist coorlist;
ul.x = x;
ul.y = y;
lr.x = x + 10;
lr.y =y + 10;
cgipw_rectangle(&vpw, &lr, &ul);
triangle[0].x = x+2;
triangle[0] .y = y+7;
triangle[l].x = x+8;
triangle[l]l.y =y + 7;
triangle[2].x = x + 5;
triangle[2].y =y + 2;
coorlist.n = 3;
coorlist.ptlist = triangle;
cgipw_polygon (&vpw, &coorlist);
}
\. J/

)

s

f’)
i‘ y

P

csames”

Appendix E — Using SunCGI and Pixwins 151

{

int
initiali

{

pw =

(#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/canvas.h>
#include <suntool/scrollbar.h>
#include <sunwindow/notify.h>
#include <cgipw.h>
#include <math.h>
Frame frame;

Panel panel;

Panel item button;

int button_notify();

Canvas canvas;

Pixwin *pw;

Ccgiwin desc;

Cint name;

u_char red[8], green[8], blue[8];
main ()

initialize sunview({();
set_up_sunview colors({();
initialize_cgipw();
window _main_loop(frame);

ze_sunview() /* initialize Sunview */
frame = window_create(NULL, FRAME, 0);
panel = window create (frame, PANEL, 0);

button= panel create item(panel, PANEL BUTTON,

PANEL LABEL IMAGE,
PANEL NOTIFY_ PROC,
0);

window_fit height(panel);

canvas= window_ create (frame, CANVAS,
CANVAS_ RETAINED,
CANVAS WIDTH,
CANVAS_HEIGHT,
WIN_VERTICAL_ SCROLLBAR,
WIN_ HORIZONTAL SCROLLBAR,
CANVAS FIXED IMAGE,
CANVAS AUTO_EXPAND,
CAN VAS AUTO_SHRINK,
0);

canvas_pixwin(canvas);

panel button image (panel, "Draw",4,0),
button notify,

TRUE,

750,

750,

scrollbar create(0),
scrollbar create(0),
TRUE,
FALSE,
FALSE,

sun

microsystemns

Revision A, of 9 May 1988

152 SunCGI Reference Manual
(int)
initialize cgipw() /* initialize cgi, view surface */

{

}

open_pw_cgi();
open_cgi canvas(canvas, &desc, &name);

button_notify ()

{

}

Ccoor center;
Cint radius;

printf{("we are in the panel button notify proc0);
pw_vector(pw, 000, 000, 100, 100, PIX SRC| PIX_COLOR(1l), 1);
pw_vector (pw, 100, 100, 200, 200, PIX SRC| PIX COLOR(2), 1):
pw_vector (pw, 200, 200, 300, 300, PIX SRC| PIX COLOR(3), 1):
pw_vector (pw, 300, 300, 400, 400, PIX SRC| PIX COLOR(4), 1);
pw_vector(pw, 400, 400, 500, 500, PIX SRC| PIX COLOR(3)}, 1) ;
pw_vector (pw, 500, 500, 600, 600, PIX_SRC| PIX COLOR(6), 1);
pw_text (pw, 20, 20, PIX SRC| PIX COLOR(7), 0, "canvas text"):;

interior style{(SOLIDI, ON);

perimeter color(3); /* set perimeter color */
£ill colox(3); /* set £ill color */
center.x = 400;

center.y 400;

radius = 50;

cgipw _circle(&desc, ¢er, radius);

set up sunview colors()

{

/* initialize Sunview colormap */

red[0] = 255; green[0] = 255; Dbluel[0] = 255; /* white */
red[1l] = 000; green[l] = 255; bluell] 000; /* green */

red[2] = 000; green[2] = 000; Dbluel[2] = 255; /* blue */
red[3] = 255; green[3] = 255; Dbluel[3] = 000; /* yellow */
red{4] = 000; green[4] = 255; blue[4] = 255; /* aqua */

" red{5] = 255; green[5] = 000; bluel[5] = 255; /* purple */
red[6] = 255; green[6] = 000; blue[6] = 000; /* red */
red[7] = 000; green[7] = 000; bluel[7] = 000; /* black */

pw_setcmsname(pw, "my colors");
pw_putcolormap(pw, 0, 8, red, green, blue):;

@:%g sun Revision A, of 9 May 1988

microsystems

O

I with FORTRAN Pro-

g
& &
@)
A <
z. A
m e
8
R SSC
3 8 Eif
e = gwm
K= g B
= 2 EAZ
N 8 EEE
oy L@ = g 3 K
S E & £d=R
) U Ee

o

./

O

Using SunCGI with FORTRAN
Programs

All functions provided in SunCGI may be called from FORTRAN programs by
linking them with the 1ibcgi77. a library. This is done by using the f77 com-
piler with a command line like:

[% £77 -o box box.f -1lcgi77 -lcgi -lsunwindow -lpixrect -lm]

where box. £ is the FORTRAN source program. Note that 1ibcgi . a must be
linked with the program (the -1cgi option), and 1ibcgi77 . a must precede it
(the ~1cgi77 option).

- Defined constants may be referenced in source programs by including
{ ‘ cgidefs77.h. In a FORTRAN program, this must be done via a source state-
S ment like:

[include "cgidefs77.h’ J

This include statement must be in each FORTRAN program unit which uses the
defined constants, not just once in each source program file.

In the Sun release of FORTRAN, names are restricted to sixteen characters in
length and may not contain the underline character. For this reason, FORTRAN
programs must use abbreviated names to call the corresponding SunCGI func-
tions. The correspondence between the full SunCGI names and the FORTRAN
names appears later in this appendix. In addition, FORTRAN declarations for all
SunCGl functions appear at the end of this appendix.

F.1. Programming Tips o The abbreviated names of the SunCGI functions are less readable than the full
length names because the underline character cannot be used in the FORTRAN
names. However, since FORTRAN doesn’t distinguish between upper-case and
lower-case letters in names, upper-case characters can be used to improve rea-
dability.

o Character strings passed from FORTRAN programs to SunCGI cannot be
longer than 256 characters.

i o Pointers returned by C functions are handled in FORTRAN as integer*4
w values, and exist solely to be passed to other Sun graphics functions.

S
42{4 sun 155 Revision A, of 9 May 1988

microsystems

156 SunCGI Reference Manual

F.2. Example Programs

&

o FORTRAN passes all arguments by reference. Although some SunCGI func- Q
tions receive arguments by value, the FORTRAN programmer need not worry
about this. The interface routines in /usr/1ib/libcgi77. a handle this
situation correctly. When in doubt, look at the FORTRAN declarations for
SunCGlI functions at the end of this appendix.
o Some SunCGI functions have structures as arguments or return values. These
are handled in FORTRAN by unbundling the structures into separate argu-
ments. In general, these will be in the same order, and have the same names,
as the members of the C structures. One exception is the Ccoorlist struc-
ture, which is replaced in FORTRAN with an array of x’s, and one of y’s, rather
than an array of x-y pairs. You may need to consult both the C and FORTRAN
documentation to determine which FORTRAN arguments are input values, and
which are output.
o Since FORTRAN does not distinguish between upper-case letters and lower-
case letters in identifiers, any FORTRAN program unit which includes the
cgidefs77.h header file cannot use the same spelling as any constant
defined in that header file, regardless of case.
o The function cfgout cap returns the FORTRAN binding names of the output
capabilities, rather than the C bindings. This is an exception to the rule that
the FORTRAN library provides a transparent interface to the C functions.
The following example is the FORTRAN equivalent of the very simple program N
for drawing a martini glass. N,
4 ™
include "/usr/include/f77/cgidefs77.h"
o]
parameter (ibignum=256)
C
integer name
character screenname* (ibignum)
integer screenlen
character windowname* (ibignum)
integer windowlen
integer windowfd
integer retained
integer dd
integer cmapsize
character cmapname* (ibignum)
integer cmaplen
integer flags
character ptr* (ibignum)
integer noargs
C
integer xc(10), yc(10), n
integer xc2(2), yc2(2)
data xc¢ /0, -10, -1, -1, -15, 15, 1, 1, 10, 0/
data yc /0, 0, 1, 20, 35, 35, 20, 1, 0, 0O/ /’“\
data xec2 /-12, 12/ o
data yc2 /33, 33/
\, J
Sumn Revision A, of 9 May 1988

microsystems

o

)

Sagion”

Appendix F — Using SunCGI with FORTRAN Programs

157

&

-
C
C Initialize CGI and view surface
C
call cfopencgi ()
dd = 4
call cfopenvws (name, screenname, windowname,
windowfd, retained, dd ,cmapsize,
cmapname, ~ flags, ptr, noargs)
] call cfvdcext(-50, -10, 50, 80)
C
C Set clipping off
C
call cfclipind(0)
C
C Draw the martini glass
C
n = 10
call cfpolyline(xc, yc, n)
n=2
call cfpolyline(xc2, yc2, n)
C
C Display the glass for 5 seconds
c
call sleep(5)
C
c Terminate graphics
C
call cfclosevws (name)
call cfclosecgi()
call exit ()
end
§

sun

microsystems

Revision A, of 9 May 1988

158

SunCGI Reference Manual

The next example is the FORTRAN equivalent of the program for drawing

colored lines.
4 N
program f77colors
include ’/usx/include/f77/cgidefs?77.h’
integer name
integer x(2),y(2)
integer ncolors
integer red (8) ,grn(8) ,blu(8)
ncolors = 8
C
C Open CGI
C
call cfopencgi ()
(o]
c Open a view surface
(o}
call cfopenvws (name,0,0,0,1,CGPIXWINDD,ncolors,’Color’,0,0)
C
c Set color map
C
call setupcolors(red, grn, blu)
C
c Assign the color map
C
call cfcotable(l,red,grn,blu,ncolors)
C
C Draw the lines
C
do 11 i = 1, ncolors
call cflncolor (i)
x(1) =i * 2000
y{(1) =0
x(1) =i * 2000
y(2) = 30000
call cfpolyline(x,y,2)
11l continue
C
Cc Wait 10 seconds
C
call sleep(10)
C
C Close CGI
Cc
call cfclosevws (name)
call cfclosecgi ()
end
C
o] Subroutine to set up the colormap
C .
subroutine setupcolors(red, grn, blu)
integer red(8)
\. J

%?? S u n Revision A, of 9 May 1988

microsystems

9

)

N

Appendix F — Using SunCGI with FORTRAN Programs 159

[A
integer grn(8)
integer blu(8)
o Set up colormap similar to the default colormap
Cc on page 76 except the first color is white, and
C the last color is black.
Cc
red(l) = 255
grn(l) = 255
blu(l) = 255
' red(2) = 255
grn(2) = 0
biu(2) =0
red(3) = 255
grn(3) = 255
blu(3) =0
red(4) = 0
grn (4) = 255
blu(4) = 0
red(5) = 0
grn(5) = 128
. blu(5) = 128
N
1!
. red(6) = 0
grn(6) = 0
blu(6) = 255
red(7) = 128
grn(7) = 0
blu(7) = 128
red(8) =0
grn(8) = 0
blu(8) = 0
return
end
_ J
D ,
% . Revision A, of 9 May 1988
microsystems

160 SunCGI Reference Manual

, s -
F.3. FORTRAN Interfaces Note: Although all SunCGI procedures are declared here as functions, each may N/
to SunCGI also be called as a subroutine if the user does not want to check the returned

value.

Table F-1 SunCGI FORTRAN Binding — Part I

CGI Specification Name | FORTRAN Binding
Activate View Surface integer function cfactvws (name)

(SunCG{ Extension) integer name

Append]%xt integer function cfaptext (flag, string)

integer flag
character* (*) string

Associate integer function cfassoc(trigger, devclass, devnum}
integer trigger
integer devclass
integer devnum

Await Event integer function cfawaitev(timeout, valid, devclass,
1 devnum, x, y, xlist, ylist, n, val, choice, string,
2 segid, pickid, message_link, replost, time stamp,
3 gstat, overflow)
integer timeout
integer valid
integer devclass
integer devnum N
integer x, y ./
integer xlist (*)
integer ylist (*)
integer n
real val
integer choice
character* (*) string
integer segid
integer pickid
integer message_link
integer replost
integer time stamp
integer gstat
integer overflow

Bitblt Pattern Array integer function cfbtblpatarr(pixpat, px, py, pixtarget,
1 rx, ry, ox, oy, dx, dy, name)
integer pixpat
integer px, py
integer pixtarget
integer rx, ry
integer ox, oy
integer dx, dy
integer name

@ S u n Revision A, of 9 May 1988

microsystems

®

//m\

e

e

Appendix F — Using SunCGI with FORTRAN Programs

161

Table F-1

SunCGI FORTRAN Binding — Part I— Continued

CGI Specification Name |

FORTRAN Binding

Bitblt Patterned Source
Array

Bitbit Source Array

Cell Array

Character Expansion
Factor

Character Height
Character Orientation
Character Path
Character Set Index
Character Spacing

Circle

Circular Arc 3pt Close

Circular Arc 3pt

integer function cfbtblpatsouarr (pixpat, px, py, pixsource,
1 sx, sy, pixtarget, rx, ry, ox, oy, dx, dy, name)
integer pixpat

integer px, py

integer pixsource

integer sx, sy

integer pixtarget

integer rx, ry

integer ox, oy

integer dx, dy

integer name

integer function cfbtblsouarr (bitsource, xo, yo, xe, ye,
1 bittarget, xt, yt, name)

integer*4 bitsource, bittarget

integer xo, yo, xe, ye, xt, yt

integer name

integer function cfcellarr(px, gx, rX, py, q¥, Ty,
1 dx, dy, colorind)

integer px, py

integer gx, qy

integer rx, ry

integer dx, dy

integer colorind (*)

integer function cfcharexpfac (efac)
real efac

integer function cfcharheight (height)
integer height

integer function cfcharorient (bx, by, dx, dy)
real bx, by, dx, dy

integer function cfcharpath (path)
integer path

integer function cfcharsetix (index)
integer index

integer function cfcharspacing (efac)
real efac :

integer function cfcircle(x, y, rad)
integer x

integer y

integer rad

integer function cfcircarcthreecl (clx, cly, c2x, c2y,
1 c3x, c3y, close)

integer clx, cly, c2x, c2y, ¢3x, c3y

integer close

integer function cfcircarcthree(clx, cly, c2x, c2y,
1 c3x, c3y)
integer clx, cly, ¢2x, c2y, c3x, c3y

S,
@

\

un

microsystems

Revision A, of 9 May 1988

162 SunCGI Reference Manual
Table F-1 SunCGI FORTRAN Binding — Part I— Continued
CGI Specification Name I FORTRAN Binding
Circular Arc Center integer function cfcircarcecentcl (clx, cly, c2x, c2y,
Close 1 ¢3x, c3y, rad, close)

Circular Arc Center

Clear Control

integer clx, cly, c2x, c2y, c3x, c3y
integer rad
integer close

integer function cfcircarccent (clx, cly, c2x, c2y, ¢3x,
1 c3y, rad)

integer clx, cly, c2x, c2y, c3x, c3y

integer rad

integer function cfclrcont (soft, hard, intern, extent)
integer soft, hard

integer intern

integer extent

2

Clear View Surface integer function cfclrvws(name, defflag, color)
integer name
integer defflag
integer color
Clip Indicator integer function cfclipind (flag)
integer flag
Clip Rectangle integer function cfcliprect (xmin, xmax, ymin, ymax)
integer xmin, xmax, ymin, ymax
Close CGI integer function cfclosecgi ()
(SunCGlI Extension)
Close View Surface integer function cfclosevws (name)
(SunCGl Extension) integer name
Table F-2 SunCGI FORTRAN Binding — Part Il
CGI Specification Name | FORTRAN Binding
Color Table integer function cfcotable(istart, ra, ga, ba, n)
integer istart
integer ra(*), ga(*), ba(*)
integer n
Deactivate View Surface integer function cfdeactvws (name)
(SunCGl Extension) integer name
é}?ﬁ sSsun Revision A, of 9 May 1988
\ microsystems

)

e,

Appendix F — Using SunCGI with FORTRAN Programs

163

Table F-2 SunCGI FORTRAN Binding — Part II— Continued
CGI Specification Name | ' FORTRAN Binding
Define Bundle Index integer function cfdefbundix (index, linetype, linewidth,
CgunCX}]lgagnsu”u 1 linecolor, marktype, marksize, markcolor, intstyle,

Device Viewport

Disable Events

Disjoint Polyline

Dissociate

Ellipse

Elliptical Arc Close

2 batchindex, pattindex, fillcolor, perimtype,
3 perimwidth, perimcolor, t3extfont, textprec,
4 charexpand, charspace, textcolor)
integer index

integer linetype

real linewidth

integer linecolor

integer marktype

real marksize

integer markcolor

integer intstyle

integer batchindex

integer pattindex

integer fillcolor

integer perimtype

real perimwidth

integer perimcolor

integer t3extfont

integer textprec

real charexpand

real charspace

integer textcolor

integer function cfdevvpt (name, xbot, ybot, xtop, yvtop)
integer name
integer xbot, ybot, xtop, ytop

integer function cfdaevents(devclass, devnumf/
integer devclass
integer devnum

integer function cfdpolyline (xcoors, ycoors, n)
integer xcoors (*)

integer ycoors (*)

integer n

integer function cfdissoc(trigger, devclass, devnum)
integer trigger

integer devclass

integer devnum

integer function cfellipse(x, y, majx, miny)
integer x, y
integer majx, miny

integer function cfelliparcecl(x, y, sx, sy, ex, ey,
1 majx, miny, close)

integer x, y

integer sx, sy

integer ex, ey

integer majx, miny

integer close

@

Sun

microsystems

Revision A, of 9 May 1988

164

SunCGI Reference Manual

Table F-2

SunCGI FORTRAN Binding — Part II— Continued

CGI Specification Name |

FORTRAN Binding

Elliptical Arc

Enable Events

Fill Color

Fixed Font
(SunCGlI Extension)

Flush Event Queue

Get Last Requested
Input

Hard Reset
Hatch Index

Initialize LID

Fill Area Bundle Index

integer function cfelliparc(x, y, sX, sy, eX, e¥, majx,
1 miny)

integer x, ¥y

integer sx, sy

integer ex, ey

integer majx, miny

integer function cfenevents(devclass, devnum)
integer devclass
integer devnum

integer function cfflareabundix (index)
integer index

integer function cfflcolor (color)
integer color

integer function cffixedfont (index)
integer index

integer function cfflusheventqu ()

integer function cfgetlastreqinp(devclass, devnum, valid,
1 x, y, xlist, ylist, n, val, choice, string, segid,
2 pickid)

integer devclass

integer devnum

integer valid

integer x, y

integer xlist (*)

integer ylist (*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

integer function cfhardrst ()

integer function cfhatchix (index)
integer index

integer function cfinitlid(devclass, devnum, x, y, xlist,
1 ylist, n, val, choice, string, segid, pickid)
integer devclass

integer devnum

integer x, y

integer xlist (¥*)

integer ylist (*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

@

SUun Revision A, of 9 May 1988

microsystems

N

Appendix F — Using SunCGI with FORTRAN Programs

165

()

afe.,
T

/m
{

Table F-2

SunCGI FORTRAN Binding — Part II— Continued

CGI Specification Name |

FORTRAN Binding

Initiate Request

Inquire Aspect Source
Flags

Inquire Bitblt
Alignments

Inquire Cell Array

Inquire Device Bitmap

Inquire Device Class

integer function cfinitreqg(devclass, devnum)
integer devclass
integer devnum

integer function cfgasfs(n, num, vals)
integer n

integer num(*)

integer vals (*)

integer function cfgbtbltalign (base, width, px, py,
1 maxpx, maxpy, name)

integer base

integer width

integer px

integer py

integer maxpx

integer maxpy

integer name

integer function cfgcellarr(name, px, gx, rX, PY, qY,
1 ry, dx, dy, colorind)

integer name

integer px, py

integer gx, qy

integer rx, ry

integer dx, dy

integer colorind(*)

integer function cfgdevbtmp (name, map)
integer name
integer*4 map

integer function cfqdevclass (output, input)
integer output, input

Table F-3 SunCGI FORTRAN Binding — Part Il
CGI Specification Name | FORTRAN Binding
Inquhel)evkm integer function cfgdevid(name, devid)
Identification integer name
character* (*) devid
Inquire Drawing Mode integer function cfgdrawmode (visibility, source,
1 destination, combination)
integer visibility
integer source ;
integer destination
integer combination
Inquire Event Queue integer function cfgevque (gstate, goflow)
State integer gstate

integer goflow

Revision A, of 9 May 1988

166

SunCGI Reference Manual

Table F-3

SunCGI FORTRAN Binding — Part IlI— Continued

CGI Specification Name |

FORTRAN Binding

Inquire Fill Area
Attributes

Inquire Input
Capabilities

Inquire LID State List

integer function cfgflareaatts(style, vis, color, hindex,
1 pindex, bindex, pstyle, pwidth, pcolor)

integer style, vis, color

integer hindex, pindex, bindex

integer pstyle -

real pwidth

integer pcolorxr

integer function cfqginpcaps(valid, numloc, numval, numstrk,
1 numchoice, numstr, numtrig, evqueue, asynch, coordmap,
2 echo, tracking, prompt, acknowledgement, trigman)
integer valid

integer numloc

integer numval

integer numstrk

integer numchoice

integer numstr

integer numtrig

integer evqueue

integer asynch

integer coordmap

integer echo

integer tracking

integer prompt

integer acknowledgement

integer trigman

integer function cfglidstatelis(devclass, devnum, valid,
1 state, prompt, acknowledgement, x, y, xlist, ylist, n,
2 val, choice, string, segid, pickid, n, triggers,
3 echotype, echosta, echodat)

integer devclass

integer devnum

integer valid

integer state

integer prompt

integer acknowledgement

integer x

integer y

integer xlist (*)

integer ylist (¥*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

integer n .

integer triggers (*)

integer echotype

integer echosta

integer echodat

microsystems

Revision A, of 9 May 1988

)

./

N

o

Appendix F — Using SunCGI with FORTRAN Programs

167

Table F-3 SunCGI FORTRAN Binding — Part IIl— Continued
CGI Specification Name | FORTRAN Binding
Inquire LID State integer function cfqlidstate (devclass, devnum, valid,

Inquire LID Capabilities

Inquire Line Attributes

Inquire Marker
Attributes

Inguire Output
Capabilities

Inquire Output Function
Set

Inquire Pattern
Attributes

1 state)
integer devclass
integer devnum
integer valid
integer state

integer function cfqlidcaps (devclass, devnum, valid,
1 sample, change, numassoc, trigassoc, prompt,

2 acknowledgement, echo, echotype, n, classdep, state)
integer devclass

integer devnum

integer valid

integer sample

integer change

integer numassoc

integer trigassoc(*)

integer prompt

integer acknowledgement

integer echo (*)

integer echotype (*)

integer n

character* (*) classdep

integer state(*)

integer function cfqglnatts (style, width, color, index)
integer style

real width

integer color, index

integer function cfgmkatts (type, size, color, index)
integer type
real size

integer color, index

{

integer function cfgoutcap(first, last, list)
integer first, last
character*80 list (*)

integer function cfgoutfunset (level, support)
integer level
integer support

integer function cfgpatatts(cindex, row, column, colorlis,
1 x, y, dx, dy)

integer cindex

integer row

integer column

integer colorlis (*)

integer x

integer y

integer dx

integer dy

4

sun

microsystems

Revision A, of 9 May 1988

168 SunCGI Reference Manual
Table F-3 SunCGI FORTRAN Binding — Part IIl— Continued
CGI Specification Name | FORTRAN Binding
Inquire Physical integer function cfgphyscsys (name, xbase, ybase, xext, yext,

Coordinate System

Inquire Pixel Array

Inquire Text Attributes

Inquire Text Extent

Inquire Trigger
Capabilities

1 xunits, yunits)
integer name

integer xbase, ybase
integer xext, yext
real xunits, yunits

integer function cfgpixarr (px, py, m, n, colorind, name)
integer px, py

integer m, n

integer colorind(*)

integer name

integer function cfgtextatts(fontset, index, cfont, prec,
1 efac, space, color, hgt, bx, by, ux, uy, path, halign,
2 valign, hfac, cfac)

integer fontset, index, cfont, prec

real efac, space

integer color, hgt

real bx, by, ux, uy

integer path, halign, valign

real hfac, cfac

integer function cfgtextext (string, nextchar,
1 conx, cony, llpx, llpy, ulpx, ulpy, urpx, urpy)
character* (*) string

character* (*) nextchar

integer conx

integer cony

integer llpx

integer llpy

integer ulpx

integer ulpy

integer urpx

integer urpy

integer function cfqtrigcaps (trigger, valid, chénge, n,
1 class, assoc, maxassoc, prompt, acknowledgement,
2 name, description)

integer trigger

integer valid

integer change

integer n

integer class(¥*)

integer assoc(*)

integer maxassoc

integer prompt

integer acknowledgement

character* (*) name

character* (*) description

L

Sun 7 Revision A, of 9 May 1988

microsystems

N

Appendix F— Using SunCGI with FORTRAN Programs 169

Table F-3 SunCGI FORTRAN Binding — Part III— Continued
CGI Specification Name | FORTRAN Binding
Inquire Trigger State integer function cfgtrigstate(trigger, valid, state, n,
1 class, assoc)
integer trigger
integer valid
integer state
integer n
¢ integer class (*)
integer assoc (*)
Inquire VDC Type integer function cfgvdctype (type)
integer type
Interior Style integer function cfintstyle(istyle, perimvis)
integer istyle
integer perimvis
Line Color integer function cflncolor (index)
integer index ~
Line Endstyle integer function cflnendstyle (ttyp)
(SunCGI Extension) integer ttyp
Line Type integer function cflntype (ttyp)
integer ttyp
7 Line Width Specification integer function c¢flnspecmode (mode)
P
K) Mode integer mode
Table F-4 SunCGI FORTRAN Binding — Part IV
CGI Specification Name | FORTRAN Binding
Line Width integer function cflnwidth (index)
real index
Marker Color integer function cfmkcolor (index)
integer index
Marker Size integer function cfmkspecmode (mode)
Specification Mode integer mode
Marker Size integer function cfmksize (index)
real index
Marker Type integer function cfmktype (ttyp)
integer ttyp
Open CGI integer function cfopencgi ()
(SunCG]I Extension)
/m'»Hh\
3
/}{& U Revision A, of 9 May 1988
% microsystems

170 SunCGI Reference Manual
Table F-4 SunCGI FORTRAN Binding — Part IV— Continued
CGI Specification Name | FORTRAN Binding
(Zpentﬁeu)Suﬂhce integer function cfopenvws(name, screenname, windowname,
(SunCGl Extension) 1 windowfd, retained, dd, cmapsize, cmapname, flags,
2 ptr)
integer name
character* (*) screenname
character* (*) windowname
integer windowfd
integer retained
integer dd
integer cmapsize
character* (*) cmapname
integer flags
character* (*) ptr
Parﬁali&ﬂygon integer function cfppolygon (xcoors, ycoors, n, flag)
integer xcoors(*)
integer ycoors (*)
integer n
integer flag
Pattern Index integer function cfpatix (index)
integer index
Pattern Reference Point integer function cfpatrefpt (x, y)

Pattern Size

Pattern Table

Pattern with Fill Color
(SunCGI Extension)

Perimeter Color
Perimeter Type

Perimeter Width
Specification Mode

Perimeter Width

Pixel Array

integer x, ¥y

integer function cfpatsize (dx, dy)
integer dx, dy

integer function cfpattable(index, m, n, colorind}
integer index

integer m, n

integer colorind(*)

integer function cfpatfillcolox(flag)
integer flag ’

integer function cfperimcolor (index)
integer index

integer function cfperimtype (ttyp)
integer ttyp

integer function cfperimspecmode (mode)
integer mode

integer function cfperimwidth (index)
real index

integer function cfpixarr(px, py, m, n, colorind)
integer px, py

integer m, n

integer colorind (*)

L4

sun

microsystems

Revision A, of 9 May 1988

O

/m
i

;”\g

Appéndix F — Using SunCGI with FORTRAN Programs

171

®

Table F-4

SunCGI FORTRAN Binding — Part IV— Continued

CGI Specification Name |

FORTRAN Binding

Polygon

Polyline Bundle Index

Pobyline

Polymarker Bundle
Index

Polymarker

Rectangle

Release Input Device

integer function cfpolygon (xcoors, ycoors, n)
integer xcoors (*)

integer ycoors (*)

integer n

integer function éfpolylnbundix(index)
integer index

integer function cfpolyline (xcoors, ycoors, n).
integer xcoors (*)

integer ycoors (*)

integer n

integer function cfpolymkbundix (index)
integer index

integer function cfpolymarker (xcoors, ycoors, n)
integer xcoors (*)

integer ycoors (*)

integer n

integer function cfrectangle (xbot, ybot, xtop, ytop)
integer xbot, ybot, xtop, ytop

integer function cfrelidev(devclass, devnum)
integer devclass
integer devnum

Table F-5

SunCGI FORTRAN Binding — Part V

CGI Specification Name |

FORTRAN Binding

Request Input

Reset to Defaults

integer function cfreqinp (devclass, devnum, timeout,
1 valid, trigger, x, y, xlist, ylist, n, val, choice, string,
2 segid, trigger, pickid)

integer devclass

integer devnum

integer timeout

integer valid

integer trigger

integer x, y

integer xlist (*)

integer ylist (*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

integer function cfrsttodefs()

@

3
[+
]

o
=

ystems

Revision A, of 9 May 1988

172

SunCGI Reference Manual

Table F-5

SunCGI FORTRAN Binding — Part V— Continued

CGI Specification Name |

FORTRAN Binding

Sample Input

Selective Flush of Event
Queue

Set Aspect Source Flags

Set Default Trigger
Associations

Set Drawing Mode

Set Error Warning Mask

Set Global Drawing
Mode
(SunCGlI Extension)

Set Initial Value

integer function cfsampinp(devclass, devnum, valid, x, y,
1 xlist, ylist, n, val, choice, string, segid, pickid)
integer devclass

integer devnum

integer valid

integer x, y

integer xlist (*)

integer ylist (*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

integer function cfsflusheventqu (devclass, devnum)
integer devclass
integer devnum

integer function cfsaspsouflags(fval, £fnum, n)
integer fval(*), fnum(*), n

integer function cfsdefatrigassoc (devclass, devnum)
integer devclass
integer devnum

integer function cfsdrawmode (visibility, source,
1 destination, combination)

integer visibility

integer source

integer destination

integer combination

integer function cfserrwarnmk(action)
integer action

integer function cfsgldrawmode (combination)
integer combination

integer function cfsinitval (devclass, devnum, X, ¥,
1 xlist, ylist, n, val, choice, string, segid, pickid)
integer devclass

integer devnum

integer x, y

integer xlist (*)

integer ylist (*)

integer n

real val

integer choice

character* (*) string

integer segid

integer pickid

un Revision A, of 9 May 1988

Appendix F — Using SunCGI with FORTRAN Programs

173

Table F-5

SunCGI FORTRAN Binding — Part V— Continued

CGlI Specification Name |

FORTRAN Binding

Set Up SIGWINCH
(SunCGI Extension)

Set VALUATOR Range

Text Alignment

Text Bundle Index
Text Color

Text Font Index
Text Precision

Text

Track Off

Track On

integer function cfsupsig(name, sig_function)
integer name
external sig_function

integer function cfsvalrange (devnum, mn, mx)
integer devnum
real mn, mx

integer function cftextalign(halign, valign, hcalind,
1 vcalind)

integer halign

integer valign

real hcalind, vcalind

integer function cftextbundix (index)
integer index

integer function cftextcolor (index)
integer index

integer function cftextfontix (index)
integer index

integer function cftextprec (ttyp)
integer ttyp

integer function cftext (x, y, string)
integer x

integer y

character* (*) string

integer function cftrackoff (devclass, devnum, tracktype,
1 action)

integer devclass

integer devnum

integer tracktype

integer action

integer function cftrackon(devclass, devnum, echotype,
1 exlow, eylow, exup, eyup, X, y, xlist, ylist, n, val,
2 choice, string, segid, pickid)

integer devclass

integer devnum

integer echotype

integer exlow

integer eylow

integer exup

integer eyup

integer x, y

integer xlist (*)

integer ylist (*)

integer n

real val

integer choice

character* (*} string

integer segid

integer pickid

4ysun

icrosystems

Revision A, of 9 May 1988

174 SunCGI Reference Manual
Table F-5 SunCGI FORTRAN Binding — Part V— Continued
CGI Specification Name | FORTRAN Binding
VDC Extent integer function cfvdcext (xbot, ybot, xtop, ytop)
integer xbot, ybot, xtop, ytop
VDM Text integer function cfvdmtext (x, y, flag, string)

integer x

integer y

integer flag
character* (*) string

Revision A, of 9 May 1988

a

g

in

d

n

Short CB

ng

indi

Short CB

=

ot

/

N’

()

(mm.
it

Table G-1

@

Short C Binding

At the time SunCGI was implemented, there was no official ANSI C binding for
CGI. Sun Microsystems has tried to anticipate the eventual C binding with a set
of shorter function names. The SunCGI binding is inspired by the C language
binding of GKS. These names are contained in the header file <cgicbind.h>
which must be included in an application program using the short C binding.

Correspondence Between Long and Short C Names

Long Name | Short Name

activate vws ()
append_text ()
associate ()
await_event ()

bitblt_pattern array ()

bitblt_patterned source array ()

bitblt_source_array ()
cell array ()
character_gxpansion_factor()
charactexr height ()
character_orientation ()
character path ()
character_set_index ()
character_ spacing()
circle()
circular arc 3pt ()
circular arc 3pt_close()
circular arc_center ()
circular arc_center close ()
clear control ()
clear view surface ()
clip_indicator ()

clip rectangle ()
close_cgi ()

close_vws ()
color_table ()
deactivate vws ()

define_bundle_index()

Cactvws ()
Captext ()
Cassoc ()
Cawaitev ()
Cbtblpatarr ()
Cbhtblpatsouarr ()
Cbtblsouarr ()
Ccellarr ()
Ccharexpfac ()
Ccharheight ()
Ccharorientation ()
Ccharpath ()
Ccharsetix ()
Ccharspacing ()
Cecircle ()
Ccircarcthree ()
Ccircarcthreecl ()
Ccircarccent ()
Ccircarccentcl ()
Celrcont ()
Cclrvws ()
Ceclipind()
Ccliprect ()
Cclosecgi ()
Cclosevws ()
Ccotable ()
Cdeactvws ()
Cdefbundix ()

sSun 177

microsystems

Revision A, of 9 May 1988

SunCGI Reference Manual

Table G-1

@

Correspondence Between Long and Short C Names— Continued

elliptical_arc close()

enable events ()

fill area_bundle index()

£fill colozx()

fixed font ()
flush_event_gueue()

get last_requested_input ()
hard reset ()

hatch_index ()

initialize_lid()

initiate request ()

inquire aspect_source_flags ()
inquire_bitblt_alignments()
inquire_cell array ()
inquire_device_ bitmap ()
inguire device_class()

inquire device identification()
inquire_drawing mode ()
inquire event queue_state ()
inquire fill area_attributes()
inquire input_capabilities (}
inguire lid capabilities()
inquire_lid_state({()
inquire 1id state_list ()
inquire_line_attributes()
inquire marker attributes ()
inquire_putput_capabilities()
inquire output_ function_set ()
inquire pattern_attributes ()
inquire physical_ coordinate_system()
inquire pixel array(}
ingquire text attributes()
inquire_text_ extent ()

inquire trigger capabilities ()
inquire trigger state()

inquire vdc_type ()

interior_style ()

Long Name Short Name
device_ viewport () Cdevvpt ()
disable events() Cdaevents ()
disjoint_polyline () Cdpolyline ()
dissociate() Cdissoc ()
echo_off () Cechooff ()
echo_on () Cechoon ()
echo_update () Cechoupd ()
ellipse () Cellipse ()
elliptical arc() Celliparc ()

Celliparccl ()
Cenevents ()
Cflareabundix ()
Cflcolor ()
Cfixedfont ()
Cflusheventqu ()
Cgetlastreqinp ()
Chardrst ()
Chatchix ()
Cinitlid ()
Cinitreq()
Cgasfs ()
Cgbtblalign ()
Cqgcellarr ()
Cgdevbtmp ()
quevclass()/
Cqgdevid ()
Cgdrawmode ()
Cgevquestate ()
Cgflareaatts ()
Cginpcaps ()
Cglidcaps ()
Cglidstate ()
Cglidstatelis ()
Cglnatts ()
Cgmkatts ()
Céoutcap()
Cgoutfunset ()
Cgpatatts ()
Cgphyscsys ()
Cagpixarr ()
Cgtextatts ()
Cgtextext ()
Cgtrigcaps ()
Cgtrigstate ()
Cqvdctype ()
Cintstyle ()

sSun

microsystems

Revision A, of 9 May 1988

@

{

)

Appendix G — Short C Binding

Correspondence Between Long and Short C Names— Continued

Long Name | Short Name
line color() Clncolor ()
line_endstyle () Clnendstyle ()
line_type () Clntype ()
line width{() Clnwidth ()

line_width_specification mode ()
marker color () ‘
marker_size ()

marker_size specification_mode ()
marker_ type ()

open_cgi ()

open_vws ()

partial_polygon ()
pattern_index ()

pattern_ reference point ()
pattern_size()

pattern_ table ()
pattern with fill colox ()}
perimeter color()
perimeter type ()

perimeter width ()

perimeter_width specification mode ()

pixel array ()

polygon () .

polyline()

polyline bundle index ()
polymarker ()
polymarker bundle Index() -
rectangle ()
release input device ()
request_input ()

reset_to defaults()
sample_input ()
selective flush of event queue()
set_aspect_source flags()
set_default trigger associations ()
set_drawing_mode ()
set_error warning_mask ()
set_global drawing mode ()
set_initial value()

set up_ sigwinch ()
set_valuator_range ()

text () ‘

text_ alignment ()

text bundle_index()

text color ()

text_font_ index()

Clnwidthspecmode ()
Cmkcolor ()
Cmksize ()
Cmksizespecmode ()
Cmktype ()
Copencgi ()
Copenvws ()
Cppolygon ()
Cpatix ()
Cpatrefpt ()
Cpatsize ()
Cpattable ()
Cpatfillcolor()
Cperimcolor ()
Cperimtype ()
Cperimwidth ()
Cperimwidthspecmode ()
Cpixarr ()
Cpolygon ()
Cpolyline ()
Cpolylnbundix ()
Cpolymarker ()
Cpolymkbundix ()
Crectangle ()
Crelidev ()
Creginp ()
Crsttodefs ()
Csampinp ()
Cselectflusheventqu ()
Csaspsouflags ()
Csdefatrigassoc ()
Csdrawmode ()
Cserrwarnmk ()}
Csgldrawmode ()
Csinitval ()
Csupsig ()
Csvalrange ()
Ctext ()
Ctextalign ()
Ctextbundix ()
Ctextcolor ()
Ctextfontix ()

4»sun

microsystems

179

Revision A, of 9 May 1988

180 SunCGI Reference Manual

Table G-1 Correspondence Between Long and Short C Names— Continued

Long Name | Short Name
text_precision () Ctextprec ()
track_off () Ctrackoff ()
track_on () Ctrackon ()
vde_extent () Cvdcext ()
vdm_text () Cvdmtext ()
&%é@ mSicrgstg Revision A, of 9 May 1988

@

Index

A
Activate View Surface (SunCGI Extension)
C function, 17
FORTRAN function, 160
activate vws(),17
Append Text
C function, 45
FORTRAN function, 160
append_text (), 45
aspect source flag, see bundles
associate (), 88
Associate
C function, 88
FORTRAN function, 160
associations, 28
adding, 88
removing, 89
asynchronous input functions, 94
attribute inquiries
inquire_aspect_source_flags (), 80
inquire fill area attributes(),78
inquire line attributes(),78
inquire _marker attributes(),78
inquire pattern attributes(),79
inquire_ text_attributes(), 79
attributes, 55 thru 80
bundled, 57 thru 60
color, 76 thru 77
fill area, 64 thru 65
inquiry, 77 thru 80
line, 60 thru 62
pattern, 65 thru 68
perimeter, 69, 70
polymarker, 62 thru 64
solid object, 64 thru 70
text, 70 thru 76
Await Event
C function, 96
FORTRAN function, 160
await_event (), 96

B
bitblt, 35, 44, 51
Bitblt Pattern Array
C function, 47
FORTRAN function, 160
Bitblt Patterned Source Array

Bitblt Patterned Source Array, continued
C function, 48
FORTRAN function, 161
Bitblt Source Array
C function, 47
FORTRAN function, 161
bitblt pattern_array(),47
bitblt_patterned source array(),48
bitblt_source_array{(), 47
bundle
aspect source flag, 55
attributes, 57 thru 60
define_bundle index (), 59
fill area bundle_ index(), 64
index, 55
polyline bundle index (), 60
polymarker bundle index(), 62
set_aspect_source_ flags(),58
table, 55, 57
text_bundle_index (), 70

C

C function
activate vws (), 17
append_text (), 45
associate (), 88
await_event (), 96
bitblt_pattern array(),47
bitblt_patterned source_array(),48
bitblt source_array(),47
cell array(),46
character_ expansion factor
character_height (),72
character orientation ()
character_path(),74
character_ set_index
character spacing
circle(),40
circular arc 3pt(),4
circular_arc 3pt_clo
circular _arc_center(),
circular_arc_center clo
clear_ control(),22
clear view surface(},21
clip indicator(),20
clip rectangle(),21
close_cgi(), 18
close vws (), 17

Index — Continued

C function, continued
color_table (), 76
deactivate vws(}, 17
define bundle index(),59
device viewport (},20
disable_events (), 99
disjoint_polyline(),37
dissociate(), 89
ellipse(),43
elliptical_arc(),43
elliptical arc_close(),43
enable_events (), 96 '
fill area bundle_index (), 64
£ill_colox(}, 65
fixed font(),73
flush_event_queue (), 97
get last_requested input (), 98
hard reset(),21
hatch index (), 67
initialize 1id(),86
initiate request(}),9%4
inquire marker attributes(),78
inquire aspect_source_flags (), 80
inquire bitblt alignments(},50
inquire cell_array(),49
inquire device bitmap(),50
inquire device class(),26
inquire_device_identification (),26
inquire_drawing_mode (), 52
inquire_event_queue_state (), 100
inquire_fill_area_attributes(),78
inguire input_capabilities(),28
inquire 1lid capabilities(),29
inquire_1id state (), 100
inquire 1id_state list (), 99
inquire_line attributes(),78
inquire_output_capabilities (), 28
inquire output_ function_ set (), 27
inquire pattern_attributes(),79
inquire_physical_coordinate system(),26
inquire pixel_array(),49
inquire text_attributes(),79
inquire text_extent (), 45
inquire_trigger capabilities(),30
inquire trigger state(),100
inquire vdc type(),27
interior_style(), 64
line color(), 62
line_endstyle (), 61
line type (), 60
line width(), 62
line width specification _mode (), 61
marker_color(}, 64
marker_ size (), 63
marker_size specification_mode(}, 63
marker_ type (), 63)
open_cgi (), 12
open_vws (), 13
partial polygon(),38
patternindex (), 67
pattern_reference point (), 68
pattern_ size(), 68
pattern table (), 67
pattern_with fill color(), 68

C function, continued _/’/

perimeter color(),70

perimeter_type(), 69

perimeter_width(), 69
perimeter width specification mode(), 70
pixel_array(),46

polygon (), 37

polyline (), 36

polyline bundle_ index(}, 60

polymarker (), 37

polymarker bundle index (), 62
rectangle (), 40

release_input_device(), 87
request_input (), 93

reset to_defaults(),2l

sample input (), 98

selective flush of event queue(),9%7
set_aspect_source_flags (), 58
set_default_trigger associations(), 88
set_drawing mode (), 51
set_error_warning mask(),22
set_global_drawing_mode (}, 51
set_initial value(), 89
set_up_sigwinch(},24
set_valuator_range (), 90

text (),44

text_alignment (),74

text bundle_index(),70

text_color(),73

text_font_index(),71 /,.-..,,\

text_precision(),71
track_off (),91
track_on{(), 90
vdc_extent (), 18
vdm_text (), 44
Cell Array
C function, 46
FORTRAN function, 161
cell_array(), 46
cfactvws (), 160
cfaptext (), 160
cfassoc (), 160
cfawaitev (), 160
cfbtblpatarr (), 160
cfbtblpatsouarr (), 161
cfbtblsouarr (), 161
cfcellarr (), 161

“cfcharexpfac (), 161

—-182 -

cfcharheight (}, 161
cfcharorient (), 161
cfcharpath (), 161
cfcharsetix (), 161
cfcharspacing (), 161
cfcircarccent (), 162
cfcircarccentcl (), 162
cfecircarcthree (), 161
cfeircarcthreecl (), 161
cfcircle(), 161
cfelipind (), 162
cfcliprect (), 162
cfclosecgi (), 162

O

cfclosevws (), 162
cfclreont (), 162
cfclrvws (), 162
cfcotable (), 162
cfdaevents (}, 163
cfdeactvws (), 162
cfdefbundix (), 163
cfdevvpt (), 163
cfdissoc (), 163
cfdpolyline (), 163
cfelliparc (), 164
cfelliparcecl (), 163
cfellipse(), 163
cfenevents (), 164
cffixedfont (), 164
cfflareabundix (), 164
cfflcolor (), 164
cfflusheventqu (), 164
cfgetlastreginp (), 164
cfhardrst (), 164
cfhatchix (), 164
cfinitlid(), 164
cfinitreq(), 165
cfintstyle (), 169
cflncolor (), 169
cflnendstyle (), 169
cflnspecmode (), 169
cflntype (), 169
cflnwidth (), 169
cfmkeolor (), 169
cfmksize (), 169
cfmkspecmode (), 169
cfmktype (), 169
cfopencgi (), 169
cfopenvws (), 170
cfpatfillcolor (), 170
cfpatix(}, 170
cfpatrefpt (), 170
cfpatsize (), 170
cfpattable (), 170
cfperimcolor (), 170
cfperimspecmode (), 170
cfperimtype (), 170
cfperimwidth (), 170
cfpixazxr (), 170
cfpolygon (), 171
cfpolyline (), 171
cfpolylnbundix (), 171
cfpolymarker (), 171
cfpolymkbundix (), 171
cfppolygon (}, 170
cfqasfs (), 165
cfgbtbltalign (), 165
cfqgcellarr (), 165
cfgdevbtmp (), 165
cfgdevclass (), 165
cfgdevid (), 165
cfgdrawmode (), 165

cfgevque (), 165
cfgflareaatts (), 166
cfginpcaps (), 166
cfglidcaps (), 167
cfqlidstate (), 167
cfglidstatelis (), 166
cfglnatts (), 167
cfgmkatts (), 167
cfgoutcap (), 167
cfgoutfunset (), 167
cfgpatatts (), 167
cfgphyscsys (), 168
cfgpixarr (), 168
cfgtextatts (), 168
cfgtextext (), 168
cfgtrigecaps (), 168
cfgtrigstate(), 169
cfgvdctype (), 169
cfrectangle (), 171
cfrelidev (), 171
cfreqinp (), 171
cfrsttodefs (),171
cfsampinp (), 172
cfsaspsouflags (), 172
cfsdefatrigassoc (), 172
cfsdrawmode (), 172
cfserrwarnmk (), 172
cfsflusheventqu (), 172
cfsgldrawmode (), 172
cfsinitval (), 172
cfsupsig(), 173
cfsvalrange (), 173
cftext (),173
cftextalign (), 173
cftextbundix (), 173
cftextcolox (),173
cftextfontix (), 173
cftextprec (), 173
cftrackoff (), 173
cftrackon (), 173
cfvdcext (), 174
cfvdmtext (), 174
CGITool, 15
CGI type definitions, 109 thru 119
CGI with Pixwins, 143 thru 152
close_cgi pw(), 145
close_pw_cgi(), 145
example, 150
open_cgi_canvas(}, 144
open_cgi_pw (), 144
open_pw_cgi (), 143
using CGIPW, 145 thru 146
cgicbind.h, 177
cgiconstants.h, 109
cgidefs.h, 110
Character Expansion Factor
C function, 72
FORTRAN function, 161
Character Height

Index — Continued

Index — Continued

Character Height, continued
C function, 72
FORTRAN function, 161

Character Orientation
C function, 73
FORTRAN function, 161

Character Path
C function, 74
FORTRAN function, 161

Character Set Index
C function, 71
FORTRAN function, 161

Character Spacing
C function, 72
FORTRAN function, 161

character_expansion_factox(),72

character height (},72
character_orientation(),73
character_path (), 74
character_ set_index(},71
character_ spacing(),72
Circle

C function, 40

FORTRAN function, 161
circle(),40
Circular Arc 3pt

C function, 42

FORTRAN function, 161
Circular Arc 3pt Close

C function, 42

FORTRAN function, 161
Circular Arc Center

C function, 40

FORTRAN function, 162
Circular Arc Center Close

C function, 41 .

FORTRAN function, 162
circular_arc_ 3pt(),42
circular arc_3pt_close(),42
circulax;axe center(),40

Clear Cont¥

C function, 22

FORTRAN function, 162
Clear View Surface

C function, 21

FORTRAN function, 162
clear control(),22
clear view_surface(),21
Clip Indicator

C function, 20

FORTRAN function, 162
Clip Rectangle

C function, 21

FORTRAN function, 162
clip indicator(),20
clip rectangle(),21
clipping, 18, 20
Close a CGI Pixwin, 145
Close CGI (SunCGI Extension)

C function, 18

—184 -

Close CGI (SunCGI Extension), continued
FORTRAN function, 162
Close Pixwin CGI, 145
Close View Surface (SunCGI Extension)
C function, 17
FORTRAN function, 162
close cgi (), 18
close_cgi_pw(), 145
close pw_cgi(), 145
close_vws (), 17
color
attributes, 76 thru 77
color_table(),76
Color Lookup Table
C function, 76
FORTRAN function, 162
color_table(},76
conical output primitives, 36 thru 44
control error, 124
coordinate definition error, 124 thru 125

D
data type definitions, 109 thru 119

Deactivate View Surface (SunCGI Extension)

C function, 17

FORTRAN function, 162
deactivate_vws (), 17
Define Bundle Index (SunCGI Extension)

C function, 59

FORTRAN function, 163
define bundle_index(),59
device coordinates, see screen space
Device Viewport

C function, 20

FORTRAN function, 163
device viewport (), 20
Disable Events

C function, 99

FORTRAN function, 163
disable_events (), 99
Disjoint Polyline

C function, 37

FORTRAN function, 163
disjoint_polyline(), 37
dissociate (), 89
Dissociate

C function, 89

FORTRAN function, 163
drawing mode, 5, 44, 50 thru 52

inquire drawing_mode (), 52

set_drawing mode (), 51

set_global_ drawing mode (), 51

E
ellipse(),43
Ellipse
C function, 43
FORTRAN function, 163
Elliptical Arc
C function, 43 :
FORTRAN function, 164

Index — Continued

Elliptical Arc Close

C function, 43

FORTRAN function, 163
elliptical_arc(),43
elliptical_arc_close(),43
Enable Events

C function, 96

FORTRAN function, 164
enable events (), 96
error, 22

control, 22, 124

coordinate definition, 124 thru 125
implementation dependent, 131

input, 129 thru 131

output attribute, 125 taru 127
output primitive, 128 thru 129
possible causes of visual, 131 thre 133

state, 123 thru 124

error message

EARCPNCI, 128
EARCPNEL, 128
EBADCOLX, 126
EBADDATA, 130
EBADFABX, 126
EBADLINX, 125
EBADMRKY, 126
ERADRCTD, 124
EBADSTIZE, 126
EBADTXTX, 127
EBBDTBDI, 125
EBDCHRIX, 127
EBDVIEWP, 125
EBDWIDTH, 126
ERTBUNDL, 125
EBTUNDEF, 125
ECELLATS, 128
ECELLPOS, 128
ECELLTLS, 128
ECEXFOOR, 127
ECHHTLEZ, 127
ECHRUPVZ, 127
ECINDXLZ, 126
ECLIPTOL, 125
ECLIPTOS, 125
ECOLRNGE, 127
EGPLISFIL, 128
EIAEVNEN, 130
EINAIIMP, 129
EINASAEYX, 129
EINDALIN, 129
EINDINIT, 129
EINDNOEX, 129
EINECHON, 130
EINEINCP, 130
EINENOTO, 130
EINERVWS, 130
EINETNSU, 130
EINEVNEN, 130
EINNECHO, 130
EINNTASD, 129
EINQALTI, 124
EINQOVFI, 131
EINTRNEX, 129

—-185-

error message, continued
EMAXVSOP, 124
EMEMSPAC, 131
ENMPTSTL, 128
ENOPATNX, 127
ENOTCCPW, 131
ENOTCGCL, 123
ENOTCGOP, 123
ENOTCSTD, 131
ENOTOPOP, 124
ENOTVSAC, 123
ENOTVSOP, 123
ENOWSTYP, 124
EPATARTIL, 126
EPATITOL, 127
EPATSZTS, 126
EPGMTHPT, 128
EPLMTWPT, 128
EPXNOTCR, 129
ESTRSIZE, 131
ESTYLLEZ, 126
ETXTFLIN, 127
EVALOVWS, 129
EVDCSDIL, 125
EVSIDINV, 124
EVSISACT, 124
EVSNOTOP, 124
EVSNTACT, 124
NO_ERROR, 123
event queue, 89, 97

input functions, 94 thru 99
status, 99

F

fill area attributes, 64 thru 65
Fill Area Bundle Index
C function, 64
FORTRAN function, 164
Fill Color -
C function, 65
FORTRAN function, 164
£ill _area bundle index(), 64
£i11 _color(), 65
Fixed Font (SunCGI Extension)
C function, 73
FORTRAN function, 164
fixed font(),73
Flush Event Queue
C function, 97
FORTRAN function, 164
flush_event queue(), 97
FORTRAN function, 165, 169
cfactvws (), 160
cfaptext (}, 160
cfassoc (), 160
cfawaitev (), 160
cfbtblpatarr (), 160
cfbtblpatsouarr (), 161
cfbtblsouarr (), 161
cfcellarr (), 161
cfcharexpfac(}, 161
cfcharheight (), 161
cfcharorient (), 161

Index — Continued

FORTRAN function, continued

cfcharpath (), 161
cfcharsetix (), 161
cfcharspacing (), 161
cfeircarccent (), 162
cfcircarccentcl (), 162
cfeircarcthree (), 161
cfcircarcthreecl (), 161
cfcircle(), 161
cfclipind(), 162
cfcliprect (), 162
cfclosecgi (), 162
cfclosevws (), 162
cfclrcont (), 162
cfclxrvws (), 162
cfcotable (), 162
cfdaevents (), 163
cfdeactvws (), 162
cfdefbundix (), 163
cfdevvpt (), 163
cfdissoc (), 163
cfdpolyline (), 163
cfelliparc (), 164
cfelliparccl (), 163
cfellipse (), 163
cfenevents (), 164
cffixedfont (), 164
cfflareabundix (), 164
cfflcolor (), 164
cfflusheventqu(), 164
cfgetlastreqinp(), 164
cfhardrst (), 164
cfhatchix (), 164
cfinitlid (), 164
cfinitreq(), 165
cfintstyle(), 169
cflncolor (), 169
cflnendstyle(), 169
cflnspecmode (), 169
cflnwidth (), 169
cfmkcolor (), 169
cfmksize (), 169
cfmkspecmode (), 169
cfmktype ()}, 169
cfopencgi (), 169
cfopenvws (), 170
cfpatfilleolor (), 170
cfpatix (), 170
cfpatrefpt (), 170
cfpatsize (), 170
cfpattable (), 170
cfperimcolorx (), 170
cfperimspecmode (), 170
cfperimtype ()}, 170
cfperimwidth (), 170
cfpixarr(), 170
cfpolygon (), 171
cfpolyline (), 171
cfpolylnbundix (), 171
cfpolymarker (), 171
cfpolymkbundix (), 171
cfppolygon (), 170
cfgasfs (), 165
cfgbtbltalign (), 165

- 186 —

FORTRAN function, continued

cfgcellarr(), 165
cfgdevclass (), 165
cfgdevid(), 165
cfgdrawmode (), 165
cfgevque (), 165
cfgflareaatts (), 166
cfginpcaps (), 166
cfglidcaps (}, 167
cfglidstate ()}, 167
cfglidstatelis (), 166
cfglnatts (), 167
cfgmkatts (), 167
cfgoutcap (), 167
cfgoutfunset (), 167
cfgpatatts (), 167
cfgphyscsys (), 168
cfgpixarr (), 168
cfgtextatts (), 168
cfgtextext (), 168
cfgtrigcaps (), 168
cfgqtrigstate (), 169
cfgudctype (), 169
cfrectangle (), 171
cfrelidev (), 171
cfreqginp (), 171
cfrsttodefs (), 171
cfsampinp (), 172
cfsaspsouflags, 172
cfsdefatrigassoc(), 172
cfsdrawmode (), 172
cfserrwarnmk (), 172
cfsflusheventqu (), 172
cfsgldrawmode (), 172
cfsinitval (), 172
cfsupsig(), 173
cfsvalrange (), 173
cftext (),173
cftextalign(}, 173
cftextbundix (), 173
cftextcolor (), 173
cftextfontix (), 173
cftextprec (), 173
cftrackoff (},173
cftrackon (), 173
cfvdcext (), 174
cfvdmtext (), 174

FORTRAN interface
function definitions, 160 thru 174

programming hints, 155 thru 156
using FORTRAN, 155

G

geometrical output primitives, 35, 35 thru 44
Get Last Requested Input

C function, 98
FORTRAN function, 164

get_last_reguested_ input (), 98
global polygon list, 37, 38

/ ™,

//ﬁ'r‘"\

{
.

g

Hard Reset
C function, 21
FORTRAN function, 164
hard reset (},21
Hatch Index
C function, 67
FORTRAN function, 164
hatch_index (), 67

I
IC_STROKE, 88
implementation dependent error, 131
include files, 4
initialize
activate vws(),17
close_cgi(), 18
close_vws (), 17
deactivate vws (), 17
open_cgi (), 12
open_vws (), 13
SunCGI, 12
Initialize LID
C function, 86
FORTRAN function, 164
initialize 1id({(), 86
Initiate Request
C function, 94
FORTRAN function, 165
initiate request (), 9%
input device, 86
capabilities, 28
initialization functions, 86 thru 92
status, 99
input error, 129 thru 131
input functions
associate (), 88
await_event (), 96
disable_events ()}, 99
dissociate (), 89
enable events (), 96
flush_event_queue (), 97

get_last_requested input (), 98

initialize_1id(), 86
initiate request(),9%4

inquire event queue_state(), 100

inquire lid state (), 100

inquire_lid state list (), 99
inquire trigger state (), 100

release_ input_device(), 87
request_input (}, 93
sample input (), 98

selective_flush of event_queue (), 97
set_default_trigger associations(),88

set_initial value (), 89
set_valuator_range (), 90
track _off(),91
track_on(}, 90
Inquire Aspect Source Flags
C function, 80
FORTRAN function, 165
Inquire Bitblt Alignments

- 187 -

Inquire Bitblt Alignments, continued
C function, 50 -
FORTRAN function, 165

Inquire Cell Array
C function, 49
FORTRAN function, 165

Inguire Device Bitmap
C function, 50
FORTRAN function, 165

Inquire Device Class
C function, 26
FORTRAN function, 165

Inguire Device Identification
C function, 26

. FORTRAN function, 165

Inquire Drawing Mode
C function, 52
FORTRAN function, 165

Inquire Event Queue State
C function, 100
FORTRAN function, 165

Inquire Fill Area Attributes
C function, 78
FORTRAN function, 166

Inquire Input Capabilities
C function, 28
FORTRAN function, 166

Inquire LID Capabilities
C function, 29
FORTRAN function, 167

Inquire LID State
C function, 100
FORTRAN function, 167

Inquire LID State List
C function, 99
FORTRAN function, 166

Inquire Line Attributes
C function, 78
FORTRAN function, 167

Inquire Marker Attributes
C function, 78
FORTRAN function, 167

Inguire Output Capabilities
C function, 28
FORTRAN function, 167

Inquire Output Function Set
C function, 27
FORTRAN function, 167

Inguire Pattern Attributes
C function, 79
FORTRAN function, 167

Inquire Physical Coordinate System
C function, 26
FORTRAN function, 168

Inguire Pixel Array
C function, 49
FORTRAN function, 168

Inquire Text Attributes
C function, 79
FORTRAN function, 168

Inquire Text Extent
C function, 45

Index — Continued

Index — Continued

Inquire Text Extent, continued
FORTRAN function, 168
Inquire Trigger Capabilities
C function, 30
FORTRAN function, 168
Inquire Trigger State
C function, 100
FORTRAN function, 169
Inquire VDC Type
C function, 27
FORTRAN function, 169
inquire aspect_source_ flags (), 80
inquire bitblt_alignments (), 50
inquire_cell_array(),49
inquire_device_ bitmap(}, 50
inquire_device_class(),26
inquire device identification (), 26
inguire drawing mode (), 52
inquire event queue_state(), 100
inquire fill area_attributes(),78
inquire input_capabilities(),28
inquire lid capabilities(}),29
inquire lid state{(), 100
inquire lid state 1list(),99
inquire line attributes(),78
inquire marker_attributes(),78
inquire_output_capabilities(),28
inquire output_function_set (), 27
inquire pattern_attributes(),79
inquire physical_coordinate system(), 26
inquire pixel array(),49
inquire text_attributes(),79
inquire_text_extent (), 45
inquire trigger capabilities(),30
inquire_trigger_state(), 100
inquire vdec_type(),27
interface negotiation, 25 thru 31
inquire_device class(},26
inquire_device identification(),26
inquire_input_capabilities(),28
inquire_lid_capabilities(),29
inquire_output_capabilities(),28
inquire output_function_set (), 27

inquire_physical_coordinate system(),26

inquire_trigger capabilities(),30
inquire_vdc_type (), 27
Interior Style
C function, 64
FORTRAN function, 169

interior_ style (), 64

L

line attributes, 60 thru 62

color, 62

endstyle, 61

polyline bundle index, 60

type, 60

width, 62

width specification mode, 61
Line Color

- 188 —

Line Color, continued
C function, 62
FORTRAN function, 169
Line Endstyle (SunCGI Extension)
C function, 61
FORTRAN function, 169
Line Type {
: C function, 60
FORTRAN function, 169
Line Width
C function, 62
FORTRAN function, 169
Line Width Specification Mode
C function, 61
FORTRAN function, 169
line colox(), 62
line endstyle(), 61
line type (), 60
line width(), 62
line width_specification_mode (), 61
linking SunCGI, 3
lint library, 4
logical input device, 6

M

Marker Color

C function, 64

FORTRAN function, 169
Marker Size

C function, 63

FORTRAN function, 169
Marker Size Specification Mode

C function, 63

FORTRAN function, 169
Marker Type

C function, 63

FORTRAN function, 169
marker_color(), 64
marker_size (), 63
marker_size specification_mode (), 63
marker_type (}, 63

N

negotiation functions, 5
non-retained windows, 14
NORMAL VWSURF, 13, 17

0]
Open a CGI Canvas, 144
Open a CGI Pixwin, 144
Open CGI (SunCGI Extension)
C function, 12
FORTRAN function, 169
Open Pixwin CGI, 143
Open View Surface (SunCGI Extension)
C function, 13
FORTRAN function, 170
open_cgi (), 12
open_cgi_canvas (), 14
open_cgi_pw(),144

Index — Continued

)

open_pw_cgi (), 143

open_vws (), 13

output attribute error, 125 thru 127

output primitive error, 128 thru 129

output primitives, 3, 5, 35 thru 52
append text (),45
bitblt pattern_array(),47
bitblt patterned_source_array (), 48
bitblt_source_array (), 47
cell_array(),46
circle (), 40
circular_arc_3pt(),42
circular_arc_3pt_close(),42
circular_arc center(), 40
circular_arc center close(),41
conical, 36 thru 44
disjoint_polyline (), 37
drawing mode, 50 thru 52
ellipse(),43
elliptical_arc(),43
elliptical_arc_close{(),43
geometrical, 35 thru 44
inquire_bitblt_alignments (), 50
inquire_cell array(),49
inquire_device bitmap(}, 50
inquire_drawing mode (), 52
inquire pixel array (), 49
inquire text_extent (},45
partial_ polygon(),38
pixel_array (), 46
polygon (), 37
polygonal, 35, 35 thru 40
polyline (), 36
polymarker (), 37
raster, 44 thru 50
rectangle (), 40
set_drawing mode (), 51
set_global drawing mode({), 51
text (), 44
vdm_text (),44

P

Partial Polygon

C function, 38

FORTRAN function, 170
partial polygon(),38
pattern attributes, 65 thru 68

fill color, 68

hatch index, 67

pattern index, 67

reference point, 68

size, 68

table, 67
Pattern Index

C function, 67

FORTRAN function, 170
Pattern Reference Point

C function, 68

FORTRAN function, 170
Pattern Size

C function, 68

FORTRAN function, 170
Pattern Table

- 189 —

Pattern Table, continued

C function, 67

FORTRAN function, 170
Pattern with Fill Color (SunCGI Extension)

C function, 68

FORTRAN function, 170
pattern_ index (), 67
pattern reference point (), 68
pattern_size(), 68
pattern_table (), 67
pattern with fill color (), 68
perimeter attributes, 69 thru 70

color, 70

endstyle, 69

type, 69

visibility, 65

width, 69

width specification mode, 70
Perimeter Color

C function, 70

FORTRAN function, 170
Perimeter Type

C function, 69

FORTRAN function, 170
Perimeter Width

C function, 69

FORTRAN function, 170
Perimeter Width Specification Mode

C function, 70

FORTRAN function, 170
perimeter color(),70
perimeter type(},69
perimeter width(}, 69
perimeter width specification mode ()}, 70
Pixel Array

C function, 46

FORTRAN function, 170
pixel array(),46
Pixwins with CGI, 143 thru 152

example, 150

functions, 146 thru 148

using CGIPW, 145 thru 146
polygon (), 37
Polygon

C function, 37

FORTRAN function, 171
polygonal primitives, 35, 35 thru 40
polyline (), 36
Polyline

C function, 36

FORTRAN function, 171
Polyline Bundle Index

C function, 60

FORTRAN function, 171
polyline bundle index (), 60
polymarker (), 37
Polymarker

C function, 37

FORTRAN function, 171
polymarker attributes, 62 thru 64

bundle index, 62

Index — Continued

polymarker attributes, continued

color, 64

size, 63

size specification mode, 63

type, 63
Polymarker Bundle Index

C function, 62

FORTRAN function, 171
polymarker bundle index{(), 62

R

raster primitives, 35, 44 thru 50
rectangle (), 40
Rectangle

C function, 40

FORTRAN function, 171
Release Input Device

C function, 87

FORTRAN function, 171
release_input_device (), 87
Request Input

C function, 93

FORTRAN function, 171
request register, 94, 98
request_input (), 93

" Reset to Defaults

C function, 21

FORTRAN function, 171
reset to_defaults{(),21
retained windows, 14

S
Sample Input
C function, 98
FORTRAN function, 172
sample input (), 98
screen space, 5, 18, 20
Selective Flush of Event Queue
C function, 97
FORTRAN function, 172
selective_flush_of_event_queue (), 97
Set Aspect Source Flags
C function, 58
FORTRAN function, 172
Set Default Trigger Associations
C function, 88
FORTRAN function, 172
Set Drawing Mode
C function, 51
FORTRAN function, 172
Set Error Warning Mask
C function, 22
FORTRAN function, 172
Set Global Drawing Mode (SunCGI Extension)
C function, 51
FORTRAN function, 172
Set Initial Value
C function, 89
FORTRAN function, 172
Set Up SIGWINCH (SunCGI Extension)
C function, 24

—190 -

Set Up SIGWINCH (SunCGI Extension), continued
FORTRAN function, 173
Set VALUATOR Range
C function, 90
FORTRAN function, 173
set_aspect_source_flags (), 58
set_default_trigger_associations(), 88
set_drawing mode (), 31
set_error_ warning mask(),22
set_global_drawing mode (), 51
set_initial_value(), 89
set_up sigwinch(),24
set_valuator_range (), 90
signal trapping, 23, 25
SIGWINCH, 5, 23
solid object attributes, 64 thru 70
£ill area bundle_index(), 64
£ill color(), 65
interior_style(), 64
state error, 123 thru 124
status inquiries, 99 thru 101
synchronous input functions, 92 thru 94

T

[}

Text

C function, 44

FORTRAN function, 173
Text Alignment

C function, 74

FORTRAN function, 173
text attributes, 70 thru 76

character expansion factor, 72

character height, 72

character orientation, 73

character path, 74

character set index, 71

character spacing, 72

fixed font, 73

text alignment, 74

text bundle index, 70

text color, 73

text font index, 71

text precision, 71
Text Bundle Index

C function, 70

FORTRAN function, 173
Text Color

C function, 73

FORTRAN function, 173
Text Font Index

C function, 71

FORTRAN function, 173
Text Precision

C function, 71

FORTRAN function, 173
text alignment (), 74
text (),4 :
text_bundle_index(),70
text color(),73
text_font_index(),71
text_precision(),71

®

~

Index — Continued

Track Off
C function, 91
FORTRAN function, 173
Track On
C function, 90
FORTRAN function, 173
track off(),91
track_on (), 90
tracking, 90 thru 92
trigger, 6, 28, 88
capabilities, 30
interaction with STROKE device, 88
status, 99
type definitions, 109 thru 119

U
unsupported CGI functions, 105 thru 106
using SunCGI, 3

A%

VDC Extent
C function, 18
FORTRAN function, 174

VDC space, 5, 18

vde_extent (), 18

VDM Text
C function, 44
FORTRAN function, 174

vdm_text (), 44

view surface, 11, 15
active, 5
clearing, 21
default states, 16
initializing, 13
multiple, 5, 13

view surface control, 18 thru 23
clear control (),22
clear view_surface(),2l
clip indicator(),20
clip rectangle(),21
device_viewport(),20
hard reset(),21
reset_to_defaults(),21
set_error warning mask(),22
vde_extent (), 18

visual error, 131 thru 133

W

windows
nonretained, 13
retained, 13
world coordinates, see VDC space

-191 -

	Title Page

	Contents

	Tables

	Figures

	Preface

	1. Introduction

	2. Initializing and Terminating SunCGI

	3. Output

	4. Attributes

	5. Input

	A. Unsupported Aspects of CGI

	B. Type and Structure Definitions

	C. Error Messages

	D. Sample Programs

	E. Using SunCGI and Pixwins

	F. Using SunCGI with FORTRAN Programs

	G. Short C Binding

	Index

