
C'
•~sun® ~ microsystems

l __

SunViewTMl Programmer's Guide

Part Number: 800-1783-10
RevisionA, of9 May 1988

/ .

~

Sun Workstation, Sun Core, SunCGI and the Sun logo
are registered trademarks of Sun Microsystems, Incorporated.

Sun OS and Sun View are trademarks of Sun Microsystems, Incorporated.

UNIX® is a registered trademark of AT&T.

All other products or services mentioned in this document are identified
by the trademarks or service marks of their respective companies
or organizations.

Copyright© 1982, 1983, 1984, 1985, 1986, 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per­
mission from Sun Microsystems.

0

0

c

Contents

Preface... xxvii

Chapter 1 Introduction .. 3

What is Sun View? .. 3

History ... ; ... ,... 4

Release 3.0 .. 4

Release 3. 2

Release 3.4

Release 3.5

Release 4.0

On-Line Help

Code No Longer Supported , :

4

4

4

4

5

5

Chapter 2 The Sun View Model ... 9

2.1. Objects ... 9

Window Objects ... 11

Other Visual Objects ... 11

2.2. Examples of the use of Objects by Applications

2.3. Windows

2.4. Input: The Notifier

Callback Style of Programming

Why a Notification-Based System?

-iii-

20

22

Contents- Continued

Relationship Between the Notifier, Objects, and the 0
Application 22

Calling the Notifier Directly .. . 24

Chapter 3 Interface Outline 27

Sun View Libraries 27

Compiling Sun View Programs 27

Header Files 27

Object Handles 28

Attribute-based Functions 28

Standard Functions 29

Example ofSunView-Style Programming 29

Attribute List Size 29

Reserved Namespaces 30

Chapter 4 Using Windows : .. . 33

4.1. Basic Routines .. . 35
,"

Creating a Window

Initiating Event Processing

35 0 35

Modifying and Retrieving Window Attributes 35

Destroying Windows 36

4.2. Example 1- hello_ world 37

4.3. Example 2- simple _panel 39

Some Frame Attributes 40

Panels .. , 41

Fonts .. . 41

Panel Items ... c .. . 41

Notify Procedure 41

WindowSizing- window_fit() .. . 41

Fitting Frames Around Subwindows 41

4.4. Example 3- lister 42

4.5. Example 4-- filer 44

Pop-ups .. . 45

I~
') \.___J

-iv-

j

Contents - Continued

c Pop-up Text Subwindow .. 45

Pop-up Property Sheet .. 46

Invoking the 'Props' Menu Item .. 46

WIN SHOW... 47

Pop-up Confirmer ... 47

window_loop ... 48

Restrictions on Pop-Up Frames .. 49

Controlling a Pop-up or Frame's Shadowing .. 49

4.6. Example 5- image_browser_l .. 50

Specifying Subwindow Size ... 50

Default Subwindow Layout .. 51

Explicit Subwindow Layout ... 51

Specifying Subwindow Sizes and Positions ,............................ 52

Changing Subwindow Layout Dynamically .. 52

The Rect Structure .. 52

4.7. Example 6- image_browser _2 .. 53

c Row/Column Space ... 53

4.8. Attribute Ordering ... 55

Different Classes of Attributes ,.. 56

The Panel Package ... 56

4.9. File Descriptor Usage .. 57

Chapter 5 Canvases ... 61

5.1. Creating and Drawing into a Canvas.. 63

5.2. Scrolling Canvases.. 64

5.3.' Canvas Model.. 65

The Canvas ... 65

5 .4. Repainting .. 66

Retained Canvases ... 66

Non-Retained Canvases .. 66

The Repaint Procedure ... :.. 66

Retained vs. Non-Retained.. 67

5.5. Tracking Changes in the Canvas Size ... 67

-v-

Contents- Continued

Initializing a Canvas 67 0
5 .6. Automatic Sizing of the Canvas .. . 69

5. 7. Handling Input in Canvases : 70

Default Input Mask 70

Writing Your Own Event Procedure .. . 70

Translating Events from Canvas to Window Space 70

Border Highlighting 71

5.8. Color in Canvases 72

Setting the Colormap Segment .. . 72

Color in Retained Canvases 72

Color in Scrollable Canvases 72

Chapter 6 Handling Input .. . 77
6.1. An Overview of the Input Environment 79

How are events generated ? 79

What does the Notifier do with these events ? 80

How do windows determine which input they will receive? 80

6.2. Events 80 0
An event Procedure 80

How Subwindows Handle Events 81

6.3. A List of Events 81

Keyboard Motions 85

6.4. Classes of Events 86

ASCII Events , 86

Locator Button Events 86

Locator Motion Events 86

Window Events 87

Function Key Events 88

Shift Key Events 89

Semantic Events 89

Other Events 89

6.5. Event Descriptors 90

6.6. Controlling Input in a Window 90

0
-vi-

c

Contents - Continued

Input Focus : ... :.. 91

Input Mask .. 91

Determining which Window will Receive Input .. 92

6.7. Enabling and Disabling Events ... 93

Which Mask to Use ... 93

Setting the Input Mask as a Whole ... 95

Querying the Input Mask State ... 95

6.8. Querying and Setting the Event State .. 96

6.9. Releasing the Event Lock... 97

6.10. Reading Events Explicitly ... 97

Chapter 7 Imaging Facilities: Pixwins ... 101

7.1. What is aPixwin? .. 103

7.2. Accessing a Pixwin's Pixels.. 103

Obtaining the Window's Pixwin .. 103

Write Routines .. 104

Basic RasterOp Operations .. 104

Other Raster Operations .. 104

Text Routines... 105

Batching and Stenciling Routines.. 106

Drawing Polygons ... :............... 107

Drawing Curved Shapes .. 107

Drawing Lines ... 107

Read and Copy Routines .. 108

7.3. Rendering Speed .. 108

Locking ... 109

Batching ... 110

Locking and Batehing Interaction ... 112

7.4. Clipping With Regions.. 112

7.5. Color... 113

Introduction to Color ... ::.:......... 113

The Colormap .. 113

Changing the Colormap ... 114

-vii-

Contents - Continued

Colormap Segments ... 114

Background and Foreground .. 115

Default Colormap Segment ... 115

Changing Colors from the Command Line .. 115

Sharing Colormap Segments .. 115

Example: showcolor .. 116

Manipulating the Colormap .. 117

Cycling the Colormap ... 118

Miscellaneous Utilities ... 118

Using Color .. ,....... 119

Cursors and Menus ... 119

Is My Application Running on a Color Display? 119

Simulating Grayscale on a Color Display ... 120

Software Double Buffering.. 120

Hardware Double-Buffering ... 122

7.6. Plane Groups and the cgfour Frame Buffer

Sun View and Plane Groups

sun view and Plane Groups

124

125

126

Chapter 8 Text Subwindows .. 129

Summary Tables.. 129

8.1. Text Subwindow ConceptS :... 132

Creating a Subwindow :.. 132

Attribute Order.. 132

Determining a Character's Position ... }32

Getting a Text Selection ... 132

Editing a Text Subwindow .. 132

8.2. Loading a File.. 133

Checking the Status of the Text Subwindow .. 133

Textsw status Value.. 133

8.3. Writing to a Text Subwindow .. 134

Insertion Point ... 135

Positioning to End of Text ... 135

-viii-

0

0

0

Contents- Continued

8.4. Reading from a Text Subwindow ... 135

8.5. Editing the Contents of a Text Subwindow :................. 136

Removing Characters ... 136

Emulating an Editing Character... 136

Replacing Characters .. 13 7

The Editing Log... 138

Which File is Being Edited? ... 138

Interactions with the File System .. 138

8.6. Saving Edits in a Subwindow ... 139

Storing Edits .. 139

Discarding Edits .. 139

8. 7. Setting the Contents of a Text Subwindow .. 140

TEXTSW FILE CONTENTS ...•............................... 140 - -
TEXTSW CONTENTS.. 140

TEXTSW_INSERT_FROM_FILE ... 141

8.8. Positioning the Text Displayed in'!- Text Subwindow 141

Screen Lines and File Lines.. 141

Absolute Positioning ... 142

Relative Positioning .. 142

How Many Screen Lines are in the Subwindow? 143

Which File Lines are Visible? ... 143

Guaranteeing What is Visible .. 143

Ensuring that u~e Insertion Point is Visible.. 143

8.9. Finding and Matching a Pattern.. 144

Matching a Span of Characters ... 144

Matching a Specific Pattern.. 144

8.10. Marking Positions... 145

8.11. Setting the Primary Selection .. 147

8.12. Dealing with Multiple Views... 147

8.13. Notifications from a Text Subwindow .. 148

Chapter 9 Panels .. 153

9.1. Introduction to Panels and Panel Items... 158

-ix-

Contents- Continued

Message Items .. 158

Button Items .. 158

Choice Items .. 158

Toggle Items .. 159

Text Items ... 159

Slider Items .. 159

9.2. Basic Panel Routines ... 159

Creating and Sizing Panels.. 159

Creating and Positioning Panel Items ... 160

Explicit Item Positioning .. 160

Default Item Positioning ... 161

Laying Out Components Within an Item .. 162

Modifying Attributes .. 162

Panel-Wide Item Attributes... 163

Retrieving Attributes

Destroying Panel Items

9.3. Using Scrollbars With Panels .. .

Creating Scrollbars

Scrolling Panels Which Change Size

163

164

165

165

165

Detaching Scrollbars from Panels ... 166

9.4. Messages... 167

9.5. Buttons... 167

Button Selection .. 167

Button Notification .. 167

Button Image Creation Utility ... 168

9.6. Choices .. 170

Displaying Choice Items .. 170

Choice Selection .. 172

Choice Notification .. 172

Choice Value ... 172

Choice Menus ... 172

9.7. Toggles .. 176

Displaying Toggles .. 176

-x-

0

0

0

Contents- Continued

Toggle Selection.. 176

Toggle Notification .. 176

Toggle Value ... 176

Toggle Menus ... 178

9.8. Text.. 178

Displaying Text Items .. 178

Text Selection :.. 179

Text Notification .. ,,.. 180

Writing Your Own Notify Procedure .. 181

Text Value... 182

Text Menus ;>.. 183

9.9. Sliders... 184

Displaying Sliders .. 184

Slider Selection .. 184

Slider Notification .. 184

Slider Value ; .. :... 185

c 9.10. Painting Panels and Individual Items .. 185

9 .11. Iterating Over a Panel's Items ... 188

9.12. Panel Item Client Data... 188

9.13. EventHandling .. 189

Default Event Handling... 189

Writing Your Own Event Handler .. 189

Translating Events from Panel to Window Space 193

l
Chapter 10 Alerts .. 199

10.1. Introduction to Alerts ... 199

Uses of Alerts .. 201

10.2. The Components of an Alert.. 201

Graphic Image .. 201

Multiple-Line Text Message :.. 201

Buttons .. 201

Positioning .. 202

Beeping ... 202

-xi-

Contents- Continued

10.3. alert_prompt () .. . 202 0
10.4. Building an Alert .. . 202

Example 1 -Messages and Simple Buttons .. . 203

Yes and No Buttons .. , 204

Example 2 - Changing Fonts 206

Example 3 -Using Triggers 206

Chapter 11 TTY Subwindows 211

11.1. Creating a TTY Subwindow 213

11.2. Driving a TTY Subwindow ... ~ 213

ttysw_input () .. . 213

ttysw_input () .. . 214

Example: tty _io .. _. 214

11.3. TTY Subwindow Escape Sequences 214

Standard ANSI Escape Sequences 214

Special Escape Sequences .. . 215

Example: tty _io

11.4. Reading and Writing to a TTY Subwindow .. .

215

215 f) .\...
11.5. The Program in the TTY Subwindow 215

TTY_PID 215

Talking Directly to the TTY Subwindow 216

AnExample 216

Chapter 12 Menus 221

12.1. Basic Menu Usage 224

12.2. Components of Menus & Menu Items 228

Menus 228

Visual Components 228

Generate Procedures 228

Notify Procedures 228

Client Data 228

Menu Items 228

Menu Items 228

0
-xii-

Contents- Continued

Representation on the Screen ... 228

Item Values ... 229

Item Generate Procedures .. :.... 229

Item Action Procedures ... 229

Client Data .. 229

Item Margins .. 230

12.3. Examples ... 230

12.4. Item Creation Attributes ... 237

12.5. Destroying Menus .. 238

12.6. Searching for a Menu Item .. 239

12.7. Callback Procedures .. 240

FlowofControlin menu_show() .. 240

Generate Procedures.. 242
I

Menu Item Generate Procedure ... 243

Menu Generate Procedure .. 244

Pull-right Generate Procedure.. 246

c Notify/ActionProcedures .. 247

12.8. Interaction with Previously Defined Sun View Menus 248

Using an Existing Menu as a Pull-right ... 248

12.9. Initial and Default Selections ... 249

12.10. User Customizable Attributes ... 250

Chapter 13 Cursors ... ;.. 253

13.1. Creating and Modifying Cursors ... 255

13.2. Copying and Destroying Cursors... 255

13.3. Crosshairs .. 256

- 13.4. Some Cursor Attributes ... 257

Chapter 14 Icons .. 261

14.1. UsinglmagesGeneratedWith iconedit ... 262

14.2. Modifying the Icon's Image ... 263

14.3. Loading Icon Images At Run Time .. 263

C'
- xiii-

Contents- Continued

Chapter 15 Scrollbars 267 0
15.1. Scrolling Model .. . 269

15.2. Scrollbar User Interface 271

Types of Scrolling Motion .. . 271

Undoing a Scroll 271

15.3. Creating, Destroying and Modifying Scrollbars .. . 272

15.4. Programmatic Scrolling 275

Chapter 16 The Selection Service 279
16.1. Getting the Primary Selection .. . 280

16.2. Setting the Primary Selection 280

Chapter 17 The Notifier ~:; .. . 283
Header Files 283

Related Documentation .. . 283

17.1. When to Use the Notifier 285

17 .2. Restrictions .. . 285

Don't Call .. .

Don't Catch .. .

285 0
286

17.3. Overview 287

How the Notifier Works 287

Client Handles 287

Types of Interaction .. . 287

17 .4. Event Handling 288

Child Process Control Events 288

''Reaping'' Dead Processes .. . 288

Results from a Process .. . 289

Input-Pending Events (pipes) .. . 290

Example: Reading a Pipe 290

Closing the Pipe .. ~ 291

Signal Events .. . 291

A signal () Replacement for Notifier Compatibility 291

Example: Writing to a Pipe 292

0
- xiv-

'··.,

Contents - Continued

Asynchronous Event Handling .. 293

Timeout Events .. 294

Example: Periodic Feedback ... 294

Polling "~".. 295

Checking the Interval Timer ... 296

Turning the Interval Timer Off ... 296

17 .5. Interposition ···-·························· 296

How Interposition Works ... 296

Monitoring a Frame's State .. 297

Example: Interposing on Open/Close .. 297

Discarding the Default Action ... 299

Interposing on Resize Events ... 299

Example: resize_ demo .. 299

Modifying a Frame's Destruction ... 299

Destroy Events .. 300

Checking ... 300

c Destruction .. 300

A Typical Destroy Handler .. 300

Example: Interposing a Client Destroy Handler.................................. 301

17 .6. Porting Programs to Sun View ... 303

Explicit Dispatching .. 303

Implicit Dispatching .. 303

Getting Out ... 304

17.7. Error Handling.. 305

Error Codes .. 305

Handling Errors .. 305

Debugging ... 306

NOTIFY_ERROR_ABORT .. 306

Stop in notify _perror () or fprintf(3S) 306

notify_dump ... ;............................... 306

Chapter 18 Attribute Utilities ; ... :................ 309

18.1. Character Unit Macros... 309

c
-XV-

Contents- Continued

18.2. Creating Reusable Attribute Lists .. . 310 0
Default Attributes .. . 311

18.3. Maximum Attribute List Size 311

Chapter 19 Sun View Interface Summary 315
Alert Tables 316

Attributes 316

Functions 318

Canvas Tables .. . 319

Attributes ... ; 319

Functions and Macros .. . 320

Cursor Tables 321

Attributes 321

Functions ... :·················· 323

Data Types 324

Icon Tables .. . 328

Attributes

Functions and Macros .. .

328

0 329

Input Event Tables .. . 330

Event Codes 330

Event Descriptors 333

Input-Related Window Attributes 334

Menu Tables 335

Attributes 335

Item Attributes 339

Functions 341

N otifier Functions Table .. . 343

N otifier Functions Table 343

Panel Tables 346

Attributes 346

Generic Panel Item Attributes 347

Choice and Toggle Item Attributes 349

Slider Item Attributes 351

0
-xvi-

Contents - Continued'

c Text Item Attributes ... 352

Functions and Macros .. ·... 353

Pixwin Tables ... 356

Pixwin Drawing Functions and Macros Table 356

Pixwin Color Manipulation Functions Table .. 360

Attributes .. 362

Functions and Macros ... 365

Text Subwindow Tables ... 366

Attributes .. 366

Textsw action Attributes ... 370

Textsw status Values.. 371

Functions .. 372

TTY Subwindow Tables .. 376

Attributes.. 376

Functions .. 376

Special Escape Sequences .. 377

c Window Tables .. 379

Attributes .. 379

Frame Attributes .. 382

Functions and Macros.. 384

Command Line Frame Arguments .. 386

Appendix A Example Programs ... 389

Source Available ... 389

A.l. filer.. 389

A.2. image_browser_l ... 401

A.3. image_browser _2 ... 406

A.4. tty_io .. 412

A.5. font_menu ... 416

A.6. resize_demo ... 425

A.7. dctool ... 430

A.8. typein ... 437

A.9. Programs that Manipulate Color.. 441

c
- xvii-

Contents - Continued

coloredit .. . 441 0
animatecolor 447

A.lO. Two gfx subwindow-based programs converted to use
SunView 454

bounce .. . 454

spheres 461

Appendix B Sun User Interface Conventions 469
B.l. Program Names .. . 469

B.2. Frame Headers 469

B.3. Menus 469

Capitalization 469

Menus Showing Button Modifiers 470

Interaction with Standard Menus ... ~ 470

Enable/Disable Menu Items ...•........................ 470

Multi-Column Menus .. . 470

B.4. Panels .. . 470

Buttons

List of Non-Exclusive Choices .. .

471 0
471

List of Exclusive Choices 471

Binary Choices .. . 472

Textitems .. . 472

Allocation of Function Between Buttons and Menus 472

B.S. Mouse Button Usage .. . 473

Allocation of Function Between Mouse Buttons 473

Using Mouse Buttons for Accelerators 473

B.6. Cursors 473

B.7. Icons ... ~. 473

Appendix C Converting Sun Windows Programs to Sun View 477
C.l. Converting Tools 478

General Comments 478

Programming Style Changes 478

0
- xviii-

Contents - Continued

c Object typedefs .. 478

Attribute Value Interface .. 478

New Objects... 479

Canvas Subwindows .. 479

Text Subwindows .. :. 479

Scrollbars ... 479

Objects in Common between Sun View and Sun Windows 480

Cursors ... 480

Icons.. 480

Menus ... 481

Input Events .. 481

Setting up Input Event Handling .. 482

Sigwinch Handling... 482

Windows ... 482

Panels... 482

Signals ... 483

Prompts }'·· 483

C.2. Converting Gfxsubwindow-Based Code .. · 485

Basic Steps .. 485

Replacing Tool Interaction .. 485

Styles of Damage Checking ... :.... 485

Either the Notifier Takes Over .. 485

Or Your Code Stays in Control ... 486

Handling Damage :... 486

The gfxsw Structure ... 486

Finishing Up .. 487

Miscellaneous .. _... 487

Two Examples .. 488

Index.. 489

-xix-

0

0

• f

0

c

Tables

Table 3-1 Reserved Prefixes ... 30

Table 4-1 Window Usage Examples ... 33

Table 4-2 Window Row/Column Geometry Attributes .. 53

Table 4-3 Sun View File Descriptor Usage .. 57

Table 6-1 Event Codes .. 82

Table 6-2 Keyboard Motions and Accelerators ... 85

Table 6-3 Event Descriptors ... 90

Table 6-4 Attributes Used to Set Window Input Masks... 93

Table 6-5 Macros to Get the Event State .. 96

Table 6-6 Macros to Set the Event State ... 97

Table 7-1 Sample Colormap to Isolate Planes ,.............................. 121

Table 7-2 Pixwin-Level set Attributes .. 124

Table 7-3 Pixwin-Level get Attributes .. 124

Table 8-1 Textsw status Values 134

Table 8-2 Textsw action Attributes 149

· Table 9-1 Text Item Notification

Table 9-2 Return Values for Text Item Notify Pro,cecmn~s "·,,:;;;;·"··i'·''''''''·"''''.

Table 9-3 Panel Event Handling Attributes

Table 9-4 Panel Action Functions 191

c
-xxi-

Tables- Continued

Table 12-1 Attributes to Add Pre-Existing Menu Items .. 235 0
Table 12-2 Menu Item Creation Attributes.. 237

Table 12-3 Menu Attributes Recognized by menu_find () 239

Table 12-4 User Customizable Menu Attributes .. 250

Table 15-1 Scrolling Motions.. 271

Table18-1 Exampleusesofthe ATTR_ROW() and ATTR_COL()

macros···'·· 309

Table 18-2 Example uses of the ATTR _ROWS () and

ATTR_COLS () macros 310

Table 19-1 Alert Attributes .. . 316

Table 19-2 Alert Functions .. . 318

Table 19-3 Canvas Attributes 319

Table 19-4 Canvas Functions and Macros .. . 320

Table 19-5 Cursor Attributes .. . 321

Table 19-6 Cursor Functions

Table 19-7 Data Types

323

0 324

Table 19-8 Icon Attributes 328

Table 19-9 Icon Functions and Macros 329

Table 19-10 Event Codes .. . 330

Table 19-11 Event Descriptors .. . 333

Table 19-12 Input-Related Window Attributes .. . 334

Table 19-13 Menu Attributes .. . 335

Table 19-14 Menu Item Attributes .. . 339

Table 19-15 Menu Functions .. . 341

Table 19-16 Notifier Functions .. . 343

Table 19-17 Panel Attributes .. . 346

Table 19-18 Generic Panel Item Attributes .. . 347

Table 19-19 Choice and Toggle Item Attributes 349

Table 19-20 Slider Item Attributes .. . 351

Table 19-21 Text Item Attributes 352

Table 19-22 Panel Functions and Macros 353

0
- xxii-

c

Tables - Continued

Table 19-23 Pixwin Drawing Functions and Macros .. 356
-

Table 19-24 Pixwin Color Manipulation Functions ... 360

Table 19-25 Scrollbar Attributes ... 362

Table 19-26 Scrollbar Functions.. 365

Table 19-27 Text Subwindow Attributes.. 366

Table 19-28 Textsw action Attributes .. 370

Table 19-29 Textsw status Values... 371

Table 19-30 Text Subwindow Functions.. 372

Table 19-31 TIY Subwindow Attributes .. 376

Table 19-32 TIY Subwindow Functions .. 376

Table 19-33 TIY Subwindow Special Escape Sequences 377

Table 19-34 Window Attributes... 379

Table 19-35 Frame Attributes ... 382

Table 19-36 Window Functions and Macros.. 384

Table 19-37 Command Line Frame Arguments ... 386

Table C-1 SunWindows =>Sun View Equivalences .. 484

-xxiii-

0

0

0

c

Figures

Figure 2-1 Sun View Objects .. 10

Figure 2-2 Mailtool .. 12

Figure 2-3 ic6iiedit ... 13

Figure 2-4 iconedit-buttons ... 14

Figure 2-5 iconedit-menus ... 15

Figure 2-6 A subframe ... 16

Figure 2-7 Structure of iconedit ... 17

Figure 2-8 Structure of mail tool ... 17

Figure 2-9 Base frame menu .. 18

Figure 2-10 Subframe menu... 19

Figure 2-11 Flow of Control in a Conventional Program 20

Figure 2-12 Flow of Control in a Notifier-based Program 21

Figure 2-13 Flow oflnput Events in iconedit, a Sun View
Application .. 23

Figure 4-1 Hello World Window... 38

Figure 4-2 Hello World Panel 40

Figure 4-3 lister 42

Figure 4-4 filer

Figure 4-7 Pop-up Confirmer

Figure 4-8 image_ browser _1

Figure 4-9 image_browser _2

-XXV-

50

53

Figures- Continued

Figure 5-1 Canvas Geometry .. . 65 0
Figure 6-1 Input Events .. . 79

Figure 8-1 Te,l(t Subwindow .. . 129

Figure 9-1 Associating a Menu With a Button 168

Figure 9-2 A Dial-Like Choice Item : .. . 175

Figure 9-3 iconedi t 's Drawing Mode Choice Item .. . 175

Figure 9-4 A Toggle Item ... , 177

Figure 9-5 A Text Menu 183

Figure 9-6 A Typical Slider 185

Figure 9-7 Image BrowserSubframe Using
panel_window_event() 194

Figure 10-1 An Alert 201

Figure 10-2 A Simple Alert 203

Figure 10-3 A, YES/N"O Alert : .. .

Figure 10-4 An Alert with Boldface Message Strings

205 0 206

Figure 10-5 An Alert Using Triggers and Events 207

Figure 12-1 Layout of a Menu Item .. . 230

Figure 12-2 Display Stage of Menu Processing 241

Figure 12-3 Notification Stage of Menu Processing .. . 242

Figure 15-1 Scrolling Model 270

Figure 15-2 Attributes Controlling Scrollbar Appearance 274

Figure 15-3 Scrollbar Placement Attributes 274

Figure 17-1 Overview of Notification .. . 287

Figure 17-2 Flow of Control in IntetpOsition .. . 297

0
-xxvi-

c

c

0

Audience for this Manual

How this Manual is
Structured

Tutorial

User's Guide

Reference

Further Reading

Preface

This manual is addressed to anyone who is interested in writing Sun View pro­
grams. It assumes that the reader understands the C programming language.
Before you begin to write your own programs, read the Sun View 1 Beginner's
Guide and spend some time using the Sun View environment to become familiar
with the tools and demonstration programs provided with SunView.1

By convention, manuals fall into three categories, Tutorial, User's Guide, and
Reference. This manual is a combination of all three.

Chapter4, Using Windows, serves as a tutorial introduction to Sun View. As you
read and type in and finally modify its examples, you will be writing simple Sun­
View programs in the proverbial "10 minutes to Sun View" time frame. You can
then read the later chapters when you need to incorporate the features they
describe into your programs.

This entire manual is the user's guide. Start at the beginning, keep reading, and
you will understand the Sun View model, how Sun View programs work, and how
to create and use all the different Sun View objects in your own window pro­
grams.

Chapter 19, SunView Interface Summary, lists all the attributes of the different
Sun View objects and packages, and the functions and macros to operate on them.
Because of the nature of Sun View and its use of an attribute valuej]1terface, it
uses a few simple calls with many attributes for them. Hence in ma~~ge this is
all the reference section you will need on a day-to-day basis..< >

:; :o~ !~:=:~:~~: :~=~=-~~slttJ;ltwg.
with many low-level, esoteric, and complex details,iM!ij~:$un\Vib.f$ysiiffl(.···
Programmer's Guide.

1 These tools and demonstration programs are optional software. They may not be installed on your system.

Consult Installing the SunOS for more details.

-xxvii-

Preface- Continued

Format of Chapters

Lists, Summaries, and the Index

The chapters which explain the various Sun View packages have a common for­
mat. Each chapter's first page usually mentions

o what the package does

o existing Sun View programs you can run to see the package in action

o header files you must include to use the package

o what the "summary tables" for the package are, and on what pages they start
in Chapter 19, Sun View Interface Summary.

The second page of most of the chapters on packages has a list of the attributes
and functions the package provides. This information doesn't tell you what you
need to know to use the package; rather, it is intended to give you a feel for what
you can do with the package. When you are more familiar with a package, you
can go straight to its summary tables in Chapter 19 to quickly find out how to use
some attribute or function. However, there may be tricks or nuances involved in
using the package which are only covered in the chapters. You should consult
the Index before using any attribute or function that you are not familiar with.

-xxviii-

0

0

0

c

1

Introduction

Introduction ... 3

What is Sun View? .. 3

History... 4

Release 3.0 .. 4

Release 3.2 .. 4

Release 3.4 .. 4

Release 3.5 .. 4

Release 4.0

On-Line Help

Code No Longer Supported

4

5

5

(\
\._)

0

0

c

What is Sun View?

c

c

1
~~~~~.m~~~~.oom~t~l~-.ijl~~liiid~~§illil~m.~mi~~~tu~~r~~~*~l1~lil@8li~M$1~=-r~~mmm~~l~l 

"'-

Introduction 

Sun View (Sun Visual/Integrated Environment for Workstations) is a user­
interface toolkit to support interactive, graphics-based applications running 
within windows. It consists of two major areas of functionality: building blocks 
for output, and a run-time system for managing input. The building blocks 
include four types of windows: 

o canvases on which programs can draw, 

o text subwindows with built in editing capabilities, 

o panels containing items such as buttons, choice items, and analog sliders, 

o tty subwindows in which programs can be run. 

Canvases, text subwindows, and panels can be scrolled. 

These windows are arranged as subwindows withinframes, which are themselves 
windows. Frames can be transitory or permanent. 

Transient interactions with the user can also take place in menus which can 
"pop-up" anywhere on the screen, and in alerts. 

The run-time system is based on a central Noti/ter in each application which dis­
tributes input to the appropriate window, and a window manager which manages 
overlapping windows, distributing to the appropriate application. 

The exchange of data between applications running in separate windows (in the 
same or separate processes) is facilitated by a Selection Service. 

The Sun implementations of graphics standards- CGI, CORE, GKS- include 
extensions to run within windows. See the SunCGI Reference Manual, the Sun­
Core Reference Manual, and the SunGKS manual, respectively, for more infor­
mation. 

sun 
microsystems 

3 Revision A, of May 9, 1988 



4 Sun View 1 Programmer's Guide 

History 

Release 3.0 

Release 3.2 

Release 3.4 

Release 3.5 

Release 4.0 

Sun View first appeared in SunOS Release 3.0. It is an extension and refinement 
of Sun Windows 2.0, containing many enhancements, bug fixes and new facilities 
not present in Sun Windows. Sun View is upward compatible with Sun Windows 
- applications originally written under 2.0 can be recompiled and run under 
Sun View. 

In Release 3.0, these changes were reflected in a new organization for the Sun­
View documentation. The material on Pixrects from the 2.0 Sun Windows Refer­
ence Manual was broken out into a separate document, the Pixrect Reference 
Manual. Two new documents were introduced, the Sun View Programmer's 
Guide and the Sun View System Programmer's Guide. 

The basic Sun View interface, intended to meet the needs of simple and 
moderately complex applications, is documented here. This basic interface cov­
ers the functionality of the Sun Windows window and tool layers. 

The companion to this document is the Sun View System Programmer's Guide. 
Its contents are a combination of new and old material. Several of its chapters 
document new facilities such as the Notifier, the Selection Service and the 
Defaults Package. Also included is material from the old Sun Windows Reference 
Manual which is of interest to implementors of window managers and other 
advanced applications, such as the window manager routines. 

Many bug fixes and perfonnance improvements were made to Sun View for 
Release 3.2. This guide was extensively revised and added to for Release 3.2. 

Further bug fixes and enhancements came out with Release 3.4. These were 
documented in the Release 3.4 Manual. 

Release 3.5 brought support for hardware double-buffering under Sun View and 
pixrects. 

Release 4.0 brings major enhancements to the Sun View user interface- 'Search 
and Replace' in text subwindows, shadowed frames, 'Props' frame menu item, 
keyboard control of the caret, etc. -without involving major changes to its pro­
grammatic interface. For example, when programs that use text subwindows are 
recompiled, their users will be able to use the new 'Select Marked Text' pop-up 
frame. The alerts package is a new package for presenting infonnation to the 
user and allowing him/her to make choices based on it. 

This guide was revised and reprinted again for 4.0. The major changes are the 
addition of a new Alerts chapter and lists of attributes and functions at the begin­
ning of some chapters as well as in the Sun View Interface Summary chapter and 
Index. 

~\sun ~· · microsystems 
Revision A, of May 9, 1988 

0 

0 

0 



c On-Line Help 

Code No Longer Supported 

c 

C' 
. 

For infonnation on the programmatic interface to the on-line help facilities of the 
Sun386i, see the Sun386i Developer's Guide. The spot help interface will be 
supported on all Sun workstations in the next release of Sun View. 

Do not use DEFINE ICON FROM IMAGE or - - -
DEFINE_ CURSOR _FROM_ IMAGE as these macros may not be supported in 
future releases. Instead, use icon create () and cursor create () to 
create the icon or cursor at runtime-:- icon_ create () is described in Chapter 
14, Icons. cursor_create () is described in Chapter 13, Cursors. 

The old Sun Windows stacking menu package has been supplanted by the Sun­
View walking menu package, described in Chapter 12 of this document. You 
should convert your applications to use the menu package, as the·old package 
may not be included in future releases. 

The new alerts package;,described.in Chapter 10, replaces use of the old (undo­
cumented) menu _prompt () routine in situations where programs want to 
force the user to acknowledge a message or make a choice. Alerts are more flexi­
ble and easy-to-use than menu _prompt ( ) , and we strongly encourage you to 
convert to them. Again, the old package may not be included in future releases. 

~~sun ~~ microsystems 
Revision A, of May 9, 1988 



0 

0 

o~ 



c 2 
The Sun View Model 

The Sun View Model .................................................................................................................. 9 

2.1. Objects ................................................................................................................................... 9 

Window Objects ....................................................................................................... 11 

Other Visual Objects ............................................................ ,................................. 11 

2.2. Examples of the use of Objects by Applications ........................................... 12 

2.3. Windows............................................................................................................................... 16 

Frames ........................................................................................................................... 16 

c Manipulating Frames Via Menus ................................................................... 18 

Subwindows ............................................................................................................... 19 

2.4. Input: The Notifier .......................................................................................................... 20 

Callback Style of Programming...................................................................... 20 

Why a Notification-Based System? .............................................................. 22 

Relationship Between the Notifier, Objects, and the 

Application .................................................................................................................. 22 

Calling the Notifier Directly ............................................................................. 24 

c 



0 



2.1. Objects 

c 

2 
The Sun View Model 

This chapter introduces the conceptual model presented by Sun View, covering 
such basic concepts as objects, windows and the Notifier. 

It is important that you understand the material in this chapter before you begin 
to write SunView applications. 

Sun View is an object-oriented system. Think of Sun View objects as visual 
building blocks which you use to assemble the user interface to your application. 
Different types of objects are provided, each with its particular properties; you 
employ whatever type of object you need for the task at hand. 

The most important class of Sun View objects are windows. Not all objects are 
windows, however. Other visual objects include cursors, icons, menus and 
scrollbars. 

Technically, an object is a software entity presenting a functional interface. The 
implementation of the object is not exposed; you manipulate an object by passing 
its unique identifier, or handle, to its associated functions. The style of program­
matic interface resulting from this object-oriented approach is outlined in this 
Chapter. 

Figure 2-1 illustrates the different types and classes of Sun View objects: 

sun 
microsystems 

9 Reviskm A, of May 9, 1988 



10 Sun View 1 Programmer's Guide 

Figure 2-1 SunView Objects 

Object 

Menu Window 

Icon 
Frame 

Pointer Canvas 

Panel 

Panel Item Text 

TIY 

Scrollbar 

Alert -

The different types of objects are shown in nonnal font; the classes to which the 
objects belong are labeled in italics- Subwindow, Window, and Object. 

Each object type is described briefly on the next page. 

Revision A, of May 9, 1988 

0 

0 



C Window Objects 

Other Visual Objects 

c 

Chapter 2-The Sun View Model 11 

Window objects include frames and subwindows. Frames contain non­
overlapping subwindows2 within their borders. Currently, there are four types of 
subwindows provided by Sun View: 

o Panel Subwindow- A subwindow containingpanel items. 

o Text Subwindow- A subwindow containing text. 

o Canvas Subwindow- A subwindow into which programs can draw. 

o 1TY Subwindow - a tenninal emulator, in which commands can be given 
and programs executed. 

The distinctions between frames and subwindows are explained-in more detail in 
Section 2.3, Windows, later in this chapter. ~, 

The other types of objects, like windows, are displayed on the screen, but they 
differ from windows in that they are less general and more tailored to their 
specific function. They include: 

o Panel Item- A component of a panel that facilitates a particular type of 
interaction between the user and the application. Panel items can be moved, 
displayed or undisplayed under program control. There are several 
predefined types of items, including buttons, message items, choice items, 
text items and sliders. 

D Scrollbar- An object attached to and displayed within a subwindow 
through which a user can control which portion of the subwindow's contents 
are displayed. Both vertical and horizontal scrollbars can be attached to 
panels and canvases. Text subwindows contain vertical scrollbars by default 
(they cannot.cbrttain horizontal scrollbars). 

o Menu- An object through wbich a user makes choices and issues com­
mands. By con':ention in Sun View, menus pop up when the user presses the . 
right mouse bUttfm. .Like windows, menus appear on the screen when 
needed~ and d,isappear when they have served their purpose. Menus, how­
ever, <iiffer fr9~iwindows in several ways. First, they are more ephemeral 
-.a menu only fumains em the .screen as long as the menu button remains 
depress~. 3 ill cbntrast ~o a window, which remains on the screen until the 
user indicates he:is done or the controlling program explicitly undisplays it. 
Second, menu~ are less flexible than windows; they are designed specifically 
to allow the user to choose from among a list of-actions. 

2 It is Swt View's window layout policy that enforces non-overlapping subwindows, not some limitation of 
the system. H you access the window system at a very low level, subwindows can overlap successfully. 

3 The one exception is in the case of stay-up menus, which will appear when you click the RIGHT mouse 
button and disappear when you click it again. 

Revision A, of May 9, 1988 



12 'SuriViewT'Programmer''S Gu1de 

2.2. ·Examples of the use of 
Objects by 
Applications 

Figure 2-2 

~ 

> 

~ 

( 
( 

o Alert- a box on the screen which informs the user of some condition. It 
has one or more buttons which the user can push to dismiss the alert or 
choose a means of continuing. Like menus, alerts are ephemeral- they 
)disappear as soon as the user pushes a button or otherwise dismisses the 
alert. Visually, they resemble simple panels containing only images, mes­
sages, and buttons. 

o Pointer- The object indicating the mouse location on the screen. 

o Icon- a small (usually 64 x 64 pixel) image representing the application. 

The next section gives some examples showing how typical applications make 
use of Sun View objects in their user interface. 

Figure 2-2 illustrates the mail tool(l), which uses Sun View objects to provide 
a mouse-oriented interface to the SunOS mail(l) program: 

Mailtool 

. . -
1 root@sun.com Man Dec 7 133:25 55/1942 Tech Mail 
2 root@sun.com Sat Dec 5 133:15 117/31387 Tech Mail 
3 spage@polar Fri Dec 4 15:23 43/1515 what size to import scrol 
4 tjacobs@snowking Tue Dec 1 1B:4B 413/1815 Casting 
5 sages@pages Tue Nov 113 15:41 713/2177 Re: new textsw feature 
5 root@sun .com Man Oct 19 22:19 55/1571 Tech Mail 
7 root@sun .com Tue Oct 2B 22:21 141/4393 Tech Mail 
8 spage@omega Tue Oct 213 13:132 36/1354 Re: Name completion & cmd 

Show )( Next )(Delete )( Reply )[Compose) ( Print )(New Mail) 
Save )(Folder )File: +Tech Mai~ ( Mise )( Done ) 

!j!~~om root@snail Mon Oct 19 22:19:1/ 1987 
. eturn-Path: <root@snail> 

:(Received: from snail .sun.com by zorba.sun.com (3.2/SMI-3.2) 
t~ id AA19735; Mon, 19 Oct 87 22:19:13 PDT 
}~Received: by snail.sun.com (4.6/SMl-3.2) 
/ id AAB2B77; Tue, 213 Oct 87 B3: 013:139 PDT .. . 
(Include)(Deliver)( Cancel )(Re-address) 0 Disappear 

~ To: root@sun.com 
Subject: Re: Tech Mail 

!>body of message<( 

~ 

Revision A, of May 9, 1988 

0 



c 

Figure 2-3 

c 

c 

Chapter 2-The Sun View Model 13 

·. Mailtool consists of a frame containing, three subwindows: a text subwindow in 
which the message headers are displayed, a panel containing various panel items 
(mostly buttons) through which the user can give commands to mail, and a text 
subwindow which displays the current message. An additional text subwindow 
and panel (shown in the figure) appear when you press the reply or compose but­
tons. 

·The text subwindows contain scrollbars, allowing the user to bring more infor­
mation into view. 

Figure 2-3 illustrates iconedi t(l), a simple bitmap editor for generating 
images to be used by Sun View applications: 

iconedit 

Poi 

....... ..... 
::!:.. .......... .. .·· ·. --··. . ... 

. =······ ...... 7~:·::~ ... 
..... ··- ·-.= ·==· . . . . -.. ··. . .............. - . .. . .. ... . : .. · .... · 

I11age loaded. 

D1r: /usr/1nclude/111ages 

File: pa1nt1ng_hand.plj, 

(Load] (Store) (Browse) (]!ill 

5i ze C Icon Gr'i d 0 Off 

@!!D CTITIJ [rnvort) 

0 Fi 11 C llorder 

0 F111 0 Border 

abc Fi 11: 

load Fi 11 Proof 
0 Sl"'c C Src 0 Src 

iconedi t consists of a frame and five subwindows. From upper left to lower 
right they are: 

o a panel containing instructions on how to use the mouse; 

o a small panel for short messages; 

o a canvas for drawing the image; 

o a panel containing various items for issuing commands and setting options 
such as the size of the image being drawn, the drawing mode, etc;, 

o A small canvas for viewing the icon or cursor actual size. 

sun Revision A, of May 9, 1988 
microsystems 



14 Sun View 1 Programmer's Guide 

Figure 2-4 

None of these subwindows may be scrolled. 

In Figure 2-4, the user has pushed the New Mail button, and the program brings 
up a hour glass cursor (in the upper right of the text subwindow) to denote that it 
is retrieving mail: 

iconedit-buttons 

1 root@sun. com 
2 root@sun. com 
3 spage@polar 
4 tjacobs@snowk I ng 
5 sages@pages 
6 root@sun.com 
7 root@sun.com 
8 spage@omega 

mon Dec 7 03:25 
Sat Dec 5 03: 15 
Fri Dec 4 15:23 
Tue Dec 1 10:40 
Tue Nov 10 15:41 
Mon Oct 19 22:19 
Tue Oct 20 22:21 
Tue Oct 20 13:02 

:From root@snall Mon Oct 19 22:19:17 1987 
Return-Path: <root@snail> 

55/1942 Tech mall 
117/3087 Tech Mail 
43/1516 what size to import scrol 
40/1815 Casting 
70/2177 Re: new textsw feature 
55/1671 Tech Mail 

141/4393 Tech Mail 
36/1354 Re: Name completion & cmd 

Received: from snail.sun~com by zorba.sun.com (3.2/smi-3.2) 
id AA19735; Mon, 19 Oct 87 22:19:13 PDT 

Received: by sna11.sun.com (4.0/smi-3.2) 
id AA02877; Tue, 28 Oct 87 03:00:09 PDT 

Date: Tue, 20 Oct 87 03:00:09 PDT 
Message-Id: < 8710201880 .AA02077@sna 11 . sun. com> 
From: root@sun. com 
Subject : Tech Ma 11 
Apparent 1 y-To: tech-list 
Status: RO 

Sun Tech Mall for Tue Oct 20 83:00:04 PDT 1987 

••• Requests to receive tech mail should be sent to aliases@sun. ••• 
•••• Items you wish to post to tech should be sent to tech@sun. •••• 

Today's Topics: 
mh wizards, anyone? 
console window problem 

sz~ -------------------------------------------------------------------------------
iti Date: Mon, 19 Oct 87 14:54:11 PDT 
& From: nowicki@speed (Bill Nowicki) 
) Subject: mh wizards, anyone? 

~~!. I have heard that a feature I added to sendma 11 for 4.0 causes mh 
;;<; to break . I don't use mh, so cou 1 d someone who knows what it is t doing please get in touch with me? I have a feeling it is using the -t 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



Figure 2-5 

c 

c 

Chapter 2-The Sun View Model 15 

In Figure 2-5, the user has pressed the mouse button over the Folder panel button 
in the panel: 

iconedit-menus 

! root~sun. cern 
2 rootisun. em 
3 spageQpo 1 ar 
4 tjacobsQsnwking 
5 sages@pages 
6 rootG!sun, em 
7 root@sun . em 
8 spageQcrnega 

~~~ g:~ ; :~:i~ 
Fri Doc 4 15:23
Tuo Doc 1 19:49
Tue Nov 19 15:41
Mon Oct 19 22:19
Tuo Oct 29 22:21
Tuo Oct 29 13:92

1~~~~~;~ T=~~ ::~1
43/1516 what size to import scrol
49/1B16 Casting
78/2177 Re: 08ld textBliJ feature
55/1671 Tech Mall

141/4393 Tech Mall
36/1354 Ro: Name canplotion & cmd

~~~~~ 
~lfold +ECDSPEC +SYDOC 

~:;;:::~;;;:~~~l!liD.I•• +Ter•1 no logy f• Frcm root@sna1 +docuaent +laff 
Return-Path: < +personal +sunY1ftl 
Rece1ved~df~~ +troff +11n•g11t 

Received: by snail.sun.com (~. llilltl~3.2) 
id AAB2B77; Tue, 29 Oct B7 93:99:99 PDT 

Date: Tue, 29 Oct B7 93:99:99 PDT 
Message-Id: <B71B291999 .AA92977!sna ll . sun. com> 
From: rootf!:sun.ccrn 
Subject: Tech Mail 
Apparently-To: tech-list 
Status: RO 

Sun Tech Mall for Tue Oct 29 93:99:94 PDT 19B7 

+SVMII 
+bugs 
+not1f1ar 
•ter111 no logJ/ ~ 
+ybinfo 

••• Requests to receive tech man should be sent to a11ases@sun. 
••n Items you wish to post to tech should be sent to tech@sun. •••• 

,,,. Today •s ~Topics: 

~~ 
mh wi z.ards, anyone? 
console window problem f -------------------------------------------------------------------------------

tl Date: Mon, 19 Oct B7 14:54:11 PDT 
%\From: nowicki!speed (all! Nowicki) 
~:•• Subject: mh w1z.ards, anyone? 

It I have heard that a feature I adcled to senchail for 4.8 causes mh 
:;~; to break. I don • t use mh, so cou 1 d scneone who knows what it 1 s 
~doing please get in touch with me? I have a feeling it is using the -t 

mail tool has displayed a pop-up menu showing names of files which the user 
can insert into the text item File: by selecting a file. The purpose of this menu is 
to keep a current record of the mailfiles that the user has. 

Revision A, of May 9, 1988 



16 Sun View 1 Programmer's Guide 

2.3. Windows 

Frames 

There are two basic classes of windows in SunView: overlappingframes, which 0 
contain non-overlapping subwindows. This section describes the distinction 

Figure 2-6 

between the two. 

A frame is not useful in itself- its purpose is to bring subwindows of diff~:?rent 
types together into a common framework so they can be operated on as a unit. A 
frame is said to own the subwindows it contains. 

Frames may also own other frames. Thus the basic Sun View structure is a 
hierarchy of windows. It could also be viewed as a tree of windows in which the 
non-leaf nodes are frames and the leaf nodes are subwindows. 

The frame at the top of the hierarchy will be referred to in this document as the 
base frame; other frames will be referred to as subframes.4 Subframes are typi­
cally used to implement pop-ups, which perform auxiliary functions such as 
allowing the user to set options, or displaying help text. 5 

iconedi t uses a pop-up for browsing images. When the user presses the but­
ton labeled Browse, iconedi t displays a pop-up which consists of a subframe 
containing a single panel subwindow. 

Figure 2-6 illustrates iconedi t with its pop-up displayed. 

Asubframe 

· 4 Note that while an application will usually be implemented as a single base frame (and its subwindows and 
subframes), it could well include several base frames. 

S For details on pop-ups, see Section 4.5.1, Pop-ups, in Chapter 4, Using Windows. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



c 
Figure 2-7 

c 
Figure 2-8 

c 

Chapter 2-The Sun View Model 17 

Figure 2-7 and Figure 2-8 illustrate the structures of iconedi t and mail­
tool as a tree of windows. Frames are shown as rectangles; subwindows as cir­
cles: 

Structure of iconedit 

Structure of mailtool 

Revision A, of May 9, 1988 



18 Sun View 1 Programmer's Guide 

Manipulating Frames Via 
Menus 

Frames may be manipulated programmatically by setting the frame's attributes, 
as described in Chapter 4, Using Windows . Each frame also has a menu which 
allows the user to manipulate the frame directly. The frame menu is invoked by 
pressing the RIGHT mouse button on the exposed parts of the frame, which 
include the double lines surrounding the subwindows and the black frame header 
which usually appears at the top of the frame. 

The menus for base frames and subframes differ slightly, as you can see from 
Figure 2-9 and Figure 2-10. The first window shows the base frame menu; the 
second window shows the subframe menu: 

Figure 2-9 Base frame menu 

.!I . . .. 
•• iU. .... . . a· ·:·.e. ..... : . 

···( Ill: : 

·i. 

~~sun ~~ microsystems 

-. ..... 
•iii 

. .... 

Revision A, of May 9, 1988 

0 

0 



c 

c 

Sub windows 

c 

Figure 2-10 Subframe menu 

Pol 

.·· ...... 
-= .. , ..... 

·=.. 
. ... •••: :. ••• 

Chapter 2-The Sun View Model 19 

.II . . 

•!! . 

Both menus contain the 'Move', 'Resize', 'Front', 'Back', and 'Redisplay' com­
mands. 'Move' allows the user to change the frame's location. 'Resize' allows 
him or her to change the window's width and height. 'Front' causes the frame to 
move in front of the other windows, becoming fully visible on the "surface" of 
the screen, while 'Back' does the opposite, moving the frame behind any other 
windows occupying the same portion of the screen. 'Redisplay' simply causes 
the window to be displayed again. 

When the user is finished working with a base frame he may want to destroy it 
for good, in which case he would choose 'Quit'. Or he may want to 'Oose' the 
frame, with the anticipation of opening it later and continuing work where he left 
off. A base frame in its closed state is represented on the screen as a small (usu­
ally 64 by 64 pixel) icon. The icon is typically a picture indicating the function 
of the underlying application. 

Subframes may not be closed into icons; when the user finishes with a subframe, 
he simply chooses Done from the menu. While not destroying the subframe, this 
causes it to disappear from the screen. 

Subwindows differ from frames in several basic ways. Subwindows never exist 
independently. They are always owned by a frame, and may not themselves own 
subwindows or subframes. While frames can be moved freely around the screen, 
subwindows are constrained to fit within the borders of the frame to which they 
belong. Also in contrast to frames, subwindows are tiled- they may not over­
lap each other within their frame. Within these constraints (which are enforced 
by a run-time boundary manager) subwindows may be moved and resized by 
either a program or a user. 

So far this chapter has discussed the static aspects of the Sun View model. The 
section below outlines the system's model from a dynamic point of view. 

~sun Revision A, of May 9, 1988 
microsystems 



20 SooView 1 Programmer's Guide 

2.4. Input: The Notifier 

Callback Style of Programming 

Figure 2-11 

Sun View is a notification-based system. The Notifier acts as the controlling 
entity within a user process, reading UNIX input from the kernel, and formatting 
it into higher-level events, which it distributes to the different Sun View objects.6 

In the conventional style of interactive programming, the main control loop 
resides in the application. An editor, for example, will read a character, take 
some action based on the character, then read the next character, and so on. 
When a character is received that represents the user's request to quit, the pro­
gram exits. Figure 2-11 illustrates this approach: 

Flow of Control in a Conventional Program 

start 

read 
input 

process 
input 

end 

Notification-based systems invert this '"straight line" control structure. The main 
control loop resides in the Notifier, not the application. The Notifier reads events 
and notifies, or calls out to, various procedures which the application has previ­
ously registered with the Notifier. These procedures are called notify procs or 
callback procs. This control structure is shown in Figure 2-12. 

6 Sun View events are in a form which you can easily use: an ASCII key has been pressed, a mouse button has 

0 

0 

been pressed or released, the mouse has moved, the mouse has entered or exited a window, etc. Events are 0 
described in detail in in Chapter 6, Handling Input. 

Revision A, of May 9, 1988 



c 

c 

c 

Figure ~-12 Flow of Control in a Notifier-based Program 

Application Code 

start 

register 
callback procs 
with N otifier 

call 
Notifier 

end 

process 
event 

sun 
microsystems 

Notifier 

read 
input 

call 
appropriate 

callback 
procedure 

Yes 

return 
to application 

Chapter 2-The ~un View Model 21 

No 

Revision A, of May 9, 1988 



22 Sun View 1 Programmer's Guide 

Why a Notification-Based 
System? 

Relationship Between the 
Notifier, Objects, and the 
Application 

For programmers who are not used to it, this callback style of programming takes 
some getting used to. Its big advantage is that it takes over the burden of manag­
ing a complex, event-driven environment. In Sun View, an application typically 
has many objects. In the absence of a centralized notifier, each application must 
be responsible for detecting and dispatching events to all the objects in the pro­
cess. With a centralized Notifier, each component of an application receives only 
the events the user has directed towards it. 

It is not necessary for you to interact with the Notifier directly in your applica­
tion. Sun View has a two-tiered scheme in which the packages that support the 
various objects- panels, canvases, scrollbars, etc. - interact with the Notifier 
directly, registering their own callback procedures. The application, in turn, 
registers its own callback procedures with the object. 

Typically, when writing a Sun View application you first create the various win­
dows and other objects you need for your interface, and register your callback 
procedures with the objects. Then you pass control to the Notifier. The work is 
done in the various callback procedures. 

Let's illustrate the relationship of the Notifier, the Sun View objects and the 
application by taking iconedi t as an example. Figure 2-13 illustrates how the 
Notifier receives UNIX input and calls back to iconedit 's subwindows, which 
in tum call back to procedures supplied by iconedit. 

sun Revision A, of May 9, 1988 
microsystems 

0 

0 

0 



c 

c 

s 
u 
n v 
1 
e 
w 

A 
p 

~ . 
1 
c 
a 
t 
1 
0 
n 

Chapter 2-The Sun View Model 23 

Figure 2-13 Flow of Input Events in iconedit, a SunView Application 

notifyproc 
foritem 1 

user types, moves mouse, presses mouse buttons ... 

\ I I 
UNIX events: input on file descriptors 

Notifier 
·formats UNIX input into Sun View events, 
passes each event to the event procedure 

of the appropriate window 

Sun View events 

~ 

Control Drawing 
Panel 

notify proc 
for item n 

Canvas 

eventproc 
for 

Drawing 
Canvas 

iconedi t 's notify procedures 
for panel items 

Proof 
Canvas 

eventproc 
for 

Proof 
Canvas 

event 
procedures 

for 
subwindows 

iconedit's 
event 

procedures 

Revision A, of May 9, 1988 



24 Sun View 1 Programmer's Guide 

Calling the Notifier Directly 

/ 

The main point of the diagram on the preceding page is to make clear the 
double-tiered callback scheme. How you register the callback procedures will be 
explained in the chapters on panels and canvases. 

One point worth mentioning is the distinction between the "event procedures" for 
the canvases and the "notify procedures" for the panel items. They are all call­
back procedures, but they have different purposes. The canvas's event procedure 
doesn't do much work- basically it calls out to the application's event pro­
cedure each time an event is received. The application sees every event and is 
free to interpret the events however it likes. 

The event procedure for panels, on the other hand, does quite a bit of processing. 
It determines which item should receive the event, and places its own interpreta­
tion on events - the middle mouse button is ignored, left mouse button down 
over an item is interpreted as a "tentative" activation of the item, etc. It does not 
call back to the notify procedure for the item until it receives a left mouse button 
up over the item. So panel item notify procedures are not so much concerned 
with the event which caused them to be called, but with the fact that the button 
was pushed, or a new choice made, etc. 

As mentioned previously, for many applications you will not need to call or be 
called by the Notifier directly- the Notifier calls back to the subwindows, 
which in turn call back to your application. 

0 

However, if you need to use signals, or be notified of the death of a child process o 
which you have spawned, you do need to call the Notifier directly. 

The Notifier also provides calls which allow you to insert your own routine in the 
event stream ahead of a window. This technique is known as interposition. 

When and how to call the Notifier directly is covered in Chapter 17, The Notifier. 

Revision A, of May 9, 1988 

0 



c 
3 

Interface Outline 

Interface Outline ........................................................................................................................... 27 

Sun View Libraries ....................................................................................................... 27 

Compiling Sun View Programs ............................................................................. 27 

Header Files ..................................................................................................................... 27 

Object Handles ............................................................................................................... 28 
' Attribute-based Functions ........................................................................................ 28 

Standard Functions ...................................................................................................... 29 

c· Example of Sun View-Style Programming..................................................... 29 

Attribute List Size ............................................... :........................................................ 29 

Reserved N amespaces ................................................................................................ 30 



0 

0 

0 



c~ 

c 

Sun View Libraries 

3 
Interface Outline 

This chapter outlines the Sun View interface, the Sun View libraries, header files, 
object handles, attributes and the standard functions applicable to objects of each 

type. 

The Sun View functions that an application calls are mostly in the library file 

/usr I lib/ libsuntool. a if you are using the archive libraries and 

/usr I lib/ libsuntool. so if you are using the shared libraries. These 
. libraries include the code to create and manipulate high-level objects such as 

frames, panels, scrollbars and icons. These packages in tum call routines in 
/usr/lib/libsunwindow.aor/usr/lib/libsunwindow.soW 
create and manipulate windows and interact with the Notifier. These in tum call 
routines in /usr/ lib/libpixrect. a or /usr /lib/ libpixrect. so 
that do the drawing on the screen. 

NOTE Shared libraries are introduced in 4.0. The main benefit to using shared libraries 

is that the executables are much smaller (for example, 24 K instead of 1Mb for 
textedit alone) because the libraries are loaded dynamically at runtime and are 

subsequently shared by other executables. Additionally, when the shared 
libraries are recompiled, n,ew functionality is added, or bug fixes are made, the 

client applications don't n~ed to be recompiled and linked unless the . so or an 
interface changed. For m<i>re information on shared libraries, see Programming 
Utilities and Libraries. 

Compiling Sun View Programs To compile a Sun View program you must link in these three libraries, and, 
because they are built one on top of another, their order is important. For exam­
ple, to compile a typical Sun View application whose source is myprog. c, you 

would type in the command: 

Header Files The basic definitions needed by a Sun View application- covering windows, 
frames, menus, icons and cursors- are obtained by including the header file 
<suntool/ sunview. h>. Definitions for the other types of object are found 
in their own include files- <suntool/ canvas. h>, <suntool/text. h>, 

<suntool/panel. h>, etc. 

sun 
microsystems 

27 Revision A, of May 9, 1988 



28 Sun View 1 Programmer's Guide 

Object Handles 

Attribute-based Functions 

When you create a Sun View object, the creation function returns a handle for the 
object. Later, when you wish to manipulate the object or inquire about its state, 
you pass its handle to the appropriate function. This reliance on object handles is 
a way of information-hiding. The handles are opaque in the sense that you can't 
"see through" them to the actual data structure which represents the object. 

Each object type has a corresponding type of handle. The window types of 
Frame, Canvas, Textsw, Tty and Panel are grouped under the type Win­
dow. So, for example, you can declare a panel as either a Panel or a Window, 
whichever is most appropriate. The other object types are Panel_ i tern, Menu, 
Scrollbar, Cursor, and Icon. 

Since C doesn't have an opaque type, all the opaque data types mentioned 
above are typedef'd to the UNix type caddr t (for"character address 
type"), which in tum is typedef'd to char *. 

In addition to the opaque data types, there are several t ypedef s which refer 
not to pointers but to structs: Event, Pixfont, Pixrect, Pixwin, Rect, 
and Rectlist. Generally pointers to these structs are passed to Sun View func­
tions, so they are declared as Event *, Pixwin *,etc. The reason that the 
"*"is not included in the typedef is that the structs are publicly available, in 
contrast to the object handles, which include the "*" and which refer to structs 
that are not publicly available. 

0 

The Sun View data types are summarized in the table beginning on page 324 in f'\ 
Chapter 19, Sun View Interface Summary. \_) 

A model such as that used by Sun View, which is based on complex and flexible 
objects, presents the problem of how the client is to manipulate the objects. The 
basic idea behind the Sun View interface is to present a small number of func­
tions, which take as arguments a large set of attributes. 

For a given call to create or modify an object, only a subset of the set of all appli­
cable attributes will be of interest. So that only the relevant attributes need be 
mentioned, Sun View functions make use of variable-length attribute lists. An 
attribute list consists of attribute/value pairs, separated by commas, and ending 
with a zero. 

Each type of object has its own set of attributes. The attributes have prefixes 
which indicate the type of object they apply to, i.e. FRAME_*, TEXTSW _ *, 
CANVAS_*,TTY_*,PANEL_*,MENU_*,CURSOR_*,ICON_*,SCROLL_*, 
etc. 

In addition to the sets of attributes applying to each type of object, there is a set 
of window attributes of the form WIN_* which apply to all window objects. 
These are attributes such as WIN_HEIGHT and WIN_WIDTH, which apply to all 
windows regardless of whether they happen to be panels, canvases, etc. 

~~sun ~~ microsystems 
Revision A, of May 9, 1988 

0 



c 

c 

Standard Functions 

Example of Sun View-Style 
Programming 

Attribute List Size 

Chapter 3 -Interface Outline 29 

For objects of all types there is a set of standard functions to create and destroy 
the object and to get and set the object's attributes. 

Window functions are prefixed with window_, yielding 

o window_create{}, 

o window _get {} , 

o window_ set {} , and 

o window_destroy{). 

Providing common window functions reduces the complexity of the interface. 
Non-window functions are prefixed with the name of the object. So, to take 
menus as an example, the standard functions are 

o menu_create {), 

o menu_get (}, 

o menu_set (),and 

o menu_destroy{). 

The flavor of the interface is illustrated with the following code fragment, which 
creates a scrollbar with a width of 10 pixels and a black bubble. Later, the 
scrollbar's width is changed to 20 pixels. Finally, the scrollbar is destroyed: 

Scrollbar bar; 
bar= scrollbar_create(SCROLL_WIDTH, 10, 

SCROLL_BAR_COLOR, SCROLL_BLACK, 
0); 

scrollbar_set(bar, SCROLL WIDTH, 20, 0); 
scrollbar_destroy(bar); 

Note the zero which teiminates the attribute lists in the*_ create {) and 
*_set {} calls. The most common mistake in using attribute lists is to forget 
the final zero. This will not be flagged by the compiler as an error; however, it 
will cause Sun View to generate a run-time error message. 

As youlcan see from the example above, you can specify several attributes in a 
single create {} or set {} call. The maximum length of attribute lists in Sun­
View is 250; see Maximum Attribute List Size in Chapter 18, Attribute Utilities. 

Revision A, of May 9, 1988 



r 
I 
I 

I 

30 Sun View 1 Programmer's Guide 

Reserved N amespaces 

Table 3-1 

Sun View reserves names beginning with the object types, as well as certain other 
prefixes, for its own use. 

The prefixes listed below should not be used by applications in lower, upper, or 
mixed case. 

Reserved Prefixes 

ACTION icon scroll 
alert menu seln 
attr notify_ textsw 
canvas panel_ text 
cursor pixrect_ toolsw 
defaults pixwin_ tool 
ei pr_ ttysw_ 
es pw_ tty_ 
event rect window 
ev rl win 
frame scrollbar wmgr_ 

,help 

~~sun 
-~ microsystams 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

4 
Using Windows 

Using Windows.............................................................................................................................. 33 

4.1. Basic Routines................................................................................................................... 35 

Creating a Window ...................................................................................................... 35 

Initiating Event Processing ................................................................................ 35 

M d'fy' d R . . w· d Att 'b o 1 mg an etnevmg m ow n utes ........................................... . 

Destroying Windows ................................................................................................. . 

4.2. Example 1 ~ hello_ world .......................................................................................... . 

4.3. Example 2- simple _yanel ....................................................................................... . 

Some Frame Attributes .............................................................................................. . 

35 

36 

37 

39 

40 

Panels................................................................................................................................... 41 

Fonts ..................................................................................................................................... 41 

Panel Items ....................................................................................................................... 41 

Notify Procedure ...................................................................................................... 41 

Window Sizing- window_fit () ............................................................. 41 

Fitting Frames Around Subwindows ........................................................... 41 

4.4. Example 3- lister .......................................................................................................... 42 

4.5. Example 4--filer............................................................................................................ 44 

Pop-ups............................................................................................................................... 45 

Pop-up Text Subwindow .......................................................................................... 45 

Pop-up Property Sheet .......................................................................................... 46 

Invoking the 'Props' Menu Item .................................................................... 46 

WIN_SHOW ............................................................................................................... 47 

Pop-up Confirmer ......................................................................................................... 47 



window_loop .................................................................................................... . 48 

Restrictions on Pop-Up Frames ..................................................................... . 

Controlling a Pop-up or Frame's Shadowing ....................................... . 

49 

0 49 
4.6. Example 5- image_browser _1 ................... : ......................................................... . 50 

Specifying Subwindow Size .................................................................................. . 50 
Default Subwindow Layout ................................................................................... . 51 
Explicit Subwindow Layout .................................................................................. . 51 

Specifying Subwindow Sizes and Positions ........................................... . 52 
Changing Subwindow Layout Dynamically ........................................... . 52 

The Rect Structure ................................................................................................. . 52 
4.7. Example 6- image _browser _2 ............................................................................. . 53 

Row/Column Space .................................................................................................... . 53 
4.8. Attribute Ordering ......................................................................................................... .. 55 

Different Classes of Attributes ............................................................................. . 56 
The Panel Package ...................................................................................................... . 56 

4.9. File Descriptor Usage ................................................................................................... . 57 

0 

0 



0 

Table 4-1 

c 

Summary Listing and Tables 

4 
Using Windows 

This chapter describes how to build Sun View applications out of frames and 
subwindows. 

The first section presents the basic window routines. Succeeding sections give 
examples, ranging from the simplest possible application to a moderately useful 
file manager. For quick reference, the examples are given in the table below: 

Window Usage Examples 

Example Description Illustrates Page 

hello world Minimal Sun View program. Compilation, frames. 37 

simple _panel Panel w/message and button. Basic attributes, panels. 39 

lister Front end to Is Panels, tty subwindows. 42 

filer File manager Pop-ups, Selection Service. 44 

image_ browser _1 Displays images Subwindow layout. 50 

image browser 2 Displays images Row/column space. 53 

To give you a feeling of what you can do with frames and subwindows, the fol­
lowing page lists the available window and frame attributes, functions and mac­
ros. Many attributes are discussed as they occur in the examples, and in other 
chapters (use the Index to check). However, this chapter does not attempt com­
plete coverage of all the attributes. All are briefly described with their arguments 
in the window and frame summary tables in Chapter 19, Sun View Interface Sum­
mary: 

o the Window Attributes table begins on page 379; 

o the Frame Attributes table begins on page 382; 

o the Window Functions and Macros table begins on page 384; 

o the Command Line Frame Arguments table begins on page 386. 

sun 33 Revision A, of May 9, 1988 
microsystems 



34 SooView 1 Programmer's Guide 

WIN BELOW 
WIN BOTTOM MARGIN 
WIN CLIENT DATA - -
WIN COLUMNS 
WIN COLUMN GAP 
WIN COLUMN WIDTH 
WIN CONSUME KBD EVENT 
WIN CONSUME KBD EVENTS 
WIN CONSUME PICK EVENT 
WIN CONSUME PICK EVENTS 
WIN CURSOR 
WIN DEVICE NAME 
WIN DEVICE NUMBER 
WIN ERROR MSG - -
WIN EVENT PROC 
WIN EVENT STATE 
WIN FD 
WIN FIT HEIGHT 

FRAME ARGS 
FRAME ARGC PTR ARGV 
FRAME BACKGROUND COLOR 
FRAME CLOSED 
FRAME CLOSED RECT 

' FRAME CMDLINE HELP PROC - -
FRAME CURRENT RECT 

window_bell(win) 

Window Attributes 
WIN FIT WIDTH 
WIN FONT 
WIN_GRAB_ALL INPUT 
WIN HEIGHT 
WIN HORIZONTAL SCROLLBAR - -
WIN IGNORE KED EVENT - -
WIN IGNORE KED EVENTS 
WIN IGNORE PICK EVENT 
WIN IGNORE PICK EVENTS - -
WIN INPUT DESIGNEE - -
WIN KED FOCUS 
WIN KED INPUT MASK - - -
WIN LEFT MARGIN 
WIN MENU 
WIN MOUSE XY 
WIN NAME 
WIN OWNER 
WIN PERCENT HEIGHT 

Frame Attributes 
FRAME DEFAULT DONE PROC - - -
FRAME DONE PROC 
FRAME EMBOLDEN LABEL - -
FRAME FOREGROUND COLOR - -
FRAME ICON 
FRAME INHERIT COLORS - -
FRAME LABEL 

Window Functions and Macros 

WIN PERCENT WIDTH - -
WIN PICK INPUT MASK - - -
WIN PIXWIN 
WIN RECT 
WIN RIGHT MARGIN - -
WIN RIGHT OF 
WIN ROW GAP 
WIN ROW HEIGHT 
WIN ROWS 
WIN SCREEN RECT 
WIN SHOW 
WIN.TOP MARGIN 
WIN TYPE 
WIN VERTICAL SCROLLBAR 
WIN WIDTH 
WIN X 
WIN Y 

FRAME NO CONFIRM 
FRAME NTH SUBFRAME 
FRAME NTH SUBWINDOW 
FRAME NTH WINDOW 
FRAME OPEN RECT - -
FRAME SHOW LABEL 
FRAME SUBWINDOWS ADJUSTABLE - -

window_create(owner, type, attributes) 
window_default_event_proc(window, event, arg) 
window_destroy(win) 

window_get(win, attribute) 
window_loop(subframe) 
window_main_loop(base_frame) 
window_read_event(window, event) 
window_refuse_kbd_focus(window) 
window_release_event_lock(window) 
window_return(value) 

window_done(win) 
window_fit(win) 
window_fit_height(win) 
window fit width(win) 

~~sun ~ microsysterns 

window set(win, attributes) 

Revision A, of May 9, 1988 

0 

0 

0 



c 4.1. Basic Routines 

Creating a Window 

C Initiating Event Processing 

c 

Modifying and Retrieving 
Window Attributes 

Chapter 4 -Using Windows 35 

This section introduces the basic routines for using windows. It explains how to 
create, modify, and destroy windows. 

You create all windows with the function: 

Window 
window_create(owner, type, attributes) 

Window owner; 
<window type> type; 
<attribute-list> attributes; 

If you recall from Chapter 2, The SunView Model, a Sun View application is 
implemented as a hierarchy of frames. Each frame owns one or more subwin­
dows. The frame at the top of the hierarchy (the base frame) will have a null 
owner. In the above function, the owner parameter isthe handle of the window 
to which the window returned by window_create () will belong. The type 

parameter is the type of the new window; for example, FRAME, PANEL, 

TEXTSW, CANVAS, or TTY. 

A very simple example of this function would be to create a panel belonging to a 
frame called base_ frame, you would use: 

Panel panel; 
window_create(base_frame, Panel, 0); 

The window_ create () call does not display the frame on the screen. You 
bring it to life after creating a base frame and its subwindows and subframes, by 
calling window_main_loop (base_frame). This call displays the frame 
on the screen and begins processing the events by passing control to the Notifier. 
Chapter 2, The Sun View Model, gave a brief explanation of the Notifier. 

Keep in mind that subframes are treated different from base frames because they 
are not tied to the base frame that is activated in the window_ main _loop () 

call. In addition, if you create a subframe with WIN_ SHOW set to TRUE, when 
the user tries to manipulate the subfrarrie 'garbage' data will appear on the 
screen. 

You modify and retrieve the value of window attributes with the following two 
functions: 

int 
window_set(window, attributes) 

Window window; 
<attribute-list> attributes; 

caddr t 
window_get(window, attribute) 

Window window; 
Window attribute attribute; 

sun 
microsystems 

Revision A, of May 9, 1988 



36 Sun View 1 Programmer's Guide 

Destroying Windows 

NOTE If you call window _get () and specify an inappropriate attribute, a zero will 
be returned. For example, a sub frame cannot be closed. Therefore, the call 
window_get (sub_frame, FRAME_CLOSED_RECT) will not work, so the 
value returned will be zero. A segmentation violation will occur if an attempt is 
made to dereference the return value. 

When you get a pointer back from window get (),the pointer points into a 
private data structure, whose contents may~change.7 

You destroy windows with the following two functions: 

int 
window_destroy{window) 

Window window; 

int 
window_done{window) 

Window window; 

The difference between these two is that window_destroy () destroys only 
window and its subwindows and subframes. window_ done () , on the other 
hand, destroys the entire hierarchy to which the subwindow or subframe belongs. 

When window_destroy () is called on a window, the corresponding file 
descriptors cannot be used again until the Notifier is called. The file descriptor 
associated with the window is noi reclaimed until the notifier has a chance to dis­
tribute notifications again. 

The way window_ destroy () works is that it asks the window owner if it is 
willing to be destroyed. If so, it queues up a notification procedure to destroy the 
window. This delay protects the program from destroying a window that is being 
accessed in the current call stack. You can work around this restriction, assum­
ing you never reference this window again, by calling 
notify_ flush_pending () after calling window_ destroy (). 

1 For most attributes the pointer returned by window _get () points into per-window storage, but for some 

0 

0 

the storage is static, per-process data. These attributes are flagged in the tables Chapter 19, Sun View Interface 0 
Summary. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 



c 

C' 

4.2. Example 1-
hello world 

Chapter4- Using Windows 37 

In learning a new programming language or environment, it usually helps to 

begin with a small program that simply prints some output. By creating, compil­

ing, loading, and running the program, you will master the mechanical details. 

Here is a small Sun View program: 

#include <suntool/sunview.h> 

main() 
{ 

Frame frame; 
frame= window_create(NULL, FRAME, 

FRAME_LABEL, 
0); 

window_main_loop(frame); 

"hello world", 

After you create the above program in a file called hello_ world. c, you com­

pile it with the command: 

Where, 

o hello_world is the executable output file that will be created 

o -lsuntool specifies to link with the suntool object library 

o -lsunwindow specifies to link with the sunwindow object library 

o -lpixrect specifies to link with pixrect object library 

After you compile the program, type "hello_ world", and the window will come 

up as shown in Figure 4-1 - a single frame with the words "hello world" in the 

frame header: 

Revision ~ ... of May 9, 1988 



38 Sun View 1 Programmer's Guide 

hello 
world 

Figure 4-1 Hello World Window 

This window is "alive" within the Sun View user interface; it can be closed, 
moved, resized, hidden, etc. When closed, a default icon is displayed, which 
contains the text from the frame header. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 

0 



Chapter 4-Using Windows 39 

C' 4.3. Example 2-
simple _yanel 

The next program is more complex than the first program. It creates a frame that 

contains a frame label and a panel that contains a panel button and a message. 

This program also includes an image that appears when the window closes down 

to--an icon. Some basic attributes dealing with fonts, icons, help, error messages 

and parsing command-line flags are introduced. 

c 

c 

finclude <stdio.h> 
finclude <suntool/sunview.h> 
finclude <suntool/panel.h> 
finclude <suntool/icon.h> 

static void quit_proc(); 
Frame frame; 
Panel panel; 
Pix.font *bold; 
Icon icon; 

static short icon_image[] = { 

finclude <images/hello_world.icon> 

} ; 

mpr_static(hello_world, 64, 64, 1, icon_image); 

main(argc, argv) 
int argc; char **argv; 

bold= pf_open("/usr/lib/fonts/fixedwidthfonts/screen.b.l2"}; 

if (bold== NULL) exit(l); 

icon= icon_create(ICON_IMAGE, &hello_world, 0); 

frame= window_create(NULL, FRAME, 
FRAME_LABEL, "hello_world_panel", 

FRAME_ICON, icon, 
FRAME_ARGS, 
WIN_ERROR_MSG, 
0); 

argc, argv, 
"Can't create window.", 

panel window_create(frame, PANEL, WIN_FONT, bold, 0); 

panel_create_item(panel, PANEL_MESSAGE, 

PANEL_LABEL_STRING, "Push button to quit.", 0); 

panel_create_item(panel, PANEL_BUTTON, 

PANEL_LABEL_IMAGE, panel_button_image(panel, "Good-bye", 0, 0), 

PANEL_NOTIFY_PROC, quit_proc, 

0); 

window_fit(panel); 
window_fit(frame); 
window_main_loop(frame); 

static void 
quit_proc () 
{ 

window_set(frame, FRAME_NO_CONFJRM, TRUE, 0); 

window_destroy(frame); 

Revision A, of May 9, 1988 



40 Sun View 1 Programmer's Guide 

This program creates a frame containing a single panel with a message and a but- 0 
ton: 

Figure 4-2 Hello World Panel 

Some Frame Attributes 

FRAME LABEL 

FRAME ICON 

WIN ERROR MSG 

The features and attributes used in the above program are discussed below. 

The attributes are discussed below in the order that they appear in the above 
panel. 

The string given as the value for FRAME_ LABEL will appear in a black frame 
header strip at the top of the frame. If you do not want ~e label and the frame 
header to appear, then set the attribute FRAME_ SHOW_ LABEL to FALSE. 

The program used FRAME I CON to specify the icon to be shown when the frame 
is closed. This is done by first using the macro mpr _static () to define a 
static memory pixrect that contains this data. Where hello_ world is the 
name of the pixrect to be defined. The next three arguments specify the width, o 
height, and depth of the image. Typically, for an icon, this is 64, 64, and 1. The 
final argument is an array of shorts that contains the bit pattern of the icon image. 
It takes its image from the file 
/usr/ include/images/hello_world. icon. This statically defined 
image is passed to icon_ create () at runtime. 

The application uses FRAME_ARGS8 to pass command-line arguments given by 
the user to the frame. A set of command line arguments are recognized by all 
frames. These arguments allow the user to control such basic attributes as the 
frame's dimensions and label and whether the frame's initial state is open or 
closed, etc. These arguments begin with -W; for a complete list ofthem see the 
Command Line Frame Arguments table in Chapter 19, Sun View I nteiface Sum­
mary. 

WIN_ ERROR_ MS G provides a simple fonn of error checking. If this attribute is 
not specified, then window_ create () will return 0 on failure. If a value for 
WIN_ERROR_MSG is specified and window_create () fails, then it will print 
the error message on stderr and exit with a status of 1. 

8 As an alternative to FRAME ARGS, you can use FRAME ARGC P TR ARGV, which takes a pointer to 
argc, rather than argc itself. 1hls~ttribute causes window_ ;:;reat; () t;strip all arguments beginning with 
-W out of argv, and decrement argc accordingly. 0 

_) 

Revision A, of May 9, 1988 



Chapter 4 -Using Windows 41 

C'- Panels The panel is created by calling window_ create () with the previously created 

frame as the owner and PANEL as the window type. 

c 

c 

Fonts By default, text in the panel is rendered in the default system font, which 

window_create () obtains by calling pf_default () .9 The program 

specified a font by first opening the font with pf open () , and then passing it 

into the panel as WIN_ FONT. -

NOTE In the Sun View context, note that setting WIN_ FONT is not equivalent to specify­

ing a font at run time with the -wt command-line argument: -Wt opens the 

default system font, WIN _FONT doesn't. The only window types that currently 

make use of WIN_ FONT to render characters are panels and text subwind<;>ws. 

Panel Items The panel contains two panel items: the message saying "Push button to quit" 

and the Good-bye button. They are created with panel_create_item(). 

Notify Procedure 

Window Sizing -
window_fit () 

Fitting Frames Around 
Sub windows 

The concept of callback procedures was introduced in Chapter 2, The Sun View 

Model. Callback procedures for panel items are known as notify procedures. 
' 

The program registered its notify procedure qui t_proc () with the Quit but-

ton using the attribute PANEL_NOTIFY_PROC. quit_proc () is called when 

the user selects theibutton. It in turn calls window_destroy (),which, as 

explained in the earlier subsection on Destroying Windows, causes 

window main Jloop () to return. Before calling window destroy () , it 

disables the standatd Sun View confirmation by setting the attribute 
I 

FRAME_NO_CON,IRM for the frame. 

The final feature illustrated by the example is the use of the window fit () 

macro. This macrd causes a window to exactly fit its contents. -

The contents of a danel are its panel items; the contents of a frame are its subwin­

dows. Therfore, thb example program calls window_ fit () twice, first fitting 

the panel around id; two items, then fitting the frame around its panel. 

A window fit ~idth () macro and a window fit height() macro 

are used to pennitadjusting in only one dimension. These correspond to the 

window attributes i-nN FIT WIDTH and WIN FIT HEIGHT. 

Since Release 3.2, J.fyo~ use ~indow_fit () ~rits ~ariants for sizing the 

width and height o: a frame, you need to be careful that the subwindows have 

some specified sizJ, or they will be shrunk very small by the win dow fit ( ) 

call. Usually you ~ive a subwindow a fixed size in one or both dimensions, or 

size it to be a percentage of the frame's size. The default size of a frame is that it 
I 

encloses an area 34 rows by 80 columns in its default font. 

9 For details on fonts ke the Pixrect Reference Manual. 

.§!!.!! Revision A, of May 9, 1988 



42 SliD View 1 Programmer's Guide 

4.4. Example 3- lister Figure 4-3 illustrates a program to help manage files. The first version simply 
lets the user list files in the current directory, forming a front-end to the ls(l) 
command: 

Figure 4-3 lister 

11ster 

File: *·~ 

coral% ls *.c 
br"iggs_tools.c 
canvas_demo.c 
conf"irm.c 
dg_cycle.c 
d"irtool.c 
f"iler.c 
filer3_save. c 
coral% D 

f"iler_save.c 
gsh_panel. c 
hello_world.c 
hello_world2.c 
helper_save.c 
helper_vers"ionl.c 
"icon_test.c 

ileaf.c 
1tens_demo.c 
11Ster.c 
lockscreen.c 
nargin_test.c 
misc_merge.c 
order_testl.c 

order_test2.c 
order_test3.c 
order_test4.c 
panel.c 
panel_text.c 
sunview_nanual.c 

The tool presents two subwindows. The top subwindow is a control panel with a 
text item. It contains a place to specify the files to be listed, a List button, and a 
Quit button. 

Below the control panel is a tty subwindow. When the user pushes the List but­
ton, the program constructs a command string consisting of the string "Is", fol­
lowed by the value of the File: item, followed by a newline, and inputs the com­
mand string to the tty subwindow by calling ttysw_input (). 

The program is listed in its entirety below. 

Notice that the frame, the panel and the tty subwindow are all declared as type 
Window. They could just as well have been declared as type Frame, Panel 
and Tty. 

Revision A, of May 9, 1988 

0 

0 

0 



c #include <suntool/sunview.h> 

#include <suntool/panel.h> 

#include <suntool/tty.h> 

Window frame, panel, tty; 

Panel_item fname_item; 

static void ls_proc{}, quit_proc(}; 

main{argc, argv} 
int argc; char **argv; 

frame window_create{NULL, FRAME, 

FRAME_ARGS, argc, argv, 
FRAME_LABEL, "lister", 

0}; 
panel= window_create{frame, PANEL, 0}; 

create_panel_items(}; 

tty= window_create{frame, TTY, 0}; 

window_main_loop{frame}; 

exit(O}; 

create_panel_items{} 
{ 

fname_item = panel_create_item(panel, PANEL_TEXT, 

PANEL_LABEL_STRING, "File: ", 

PANEL_VALUE_DISPLAY_LENGTH, 55, 

0}; 

panel_create_item(panel, PANEL_BUTTON, 

PANEL_LABEL_IMAGE, panel_button_image {panel, "List", 5, 0}, 

PANEL_NOTIFY_PROC, ls_proc, 

0}; 

panel_create_item{panel, PANEL_BUTTON, 

PANEL_LABEL_IMAGE, panel_button_image(panel, "Quit", 5, 0), 

PANEL_NOTIFY_PROC, quit_proc, 

0) ; 

window_fit_height(panel}; 

static void 
ls_proc(/* ARGS UNUSED*/) 
{ 

char cmdstring[256]; 

sprintf(cmdstring, "ls %s\n", panel_get_value(fname_item)); 

ttysw_input(tty, cmdstring, strlen{cmdstring)); 

static void 
quit_proc{/* ARGS UNUSED *i} 

{ 

window_destroy{frame); 

sun 
microsystems 

Chapter4- Using Windows 43 

Revision A, of May 9, 1988 



44 Sun View 1 Programmer's Guide 

4.5. Example 4-filer Our next example builds on the simple front end to 1 s given in the previous 
example to create a more interesting file manipulation tool. This application 
illustrates the use of the text subwindow, the Selection Service, and pop-ups­
windows that appear on the screen and disappear dynamically during execution 
of a program. 

In appearance,filer is similar to lister, in that it contains a control panel and tty 
sub window. The user specifies the directory and file, and pushes the List button, 
causing the 1 s command to be sent to the tty subwindow: 

Figure 4-4 filer 

filer 

[List Directory) [Set ls flags) [Edit) [Delete) (Quit) 
Filing Mode: 0 Use "File:" item 

Directory: /usr/view/doc/app/code 
File: *,c • 
/usr/view/doc/app/code/confirm.c 
/usr/view/doc/app/code/dctool .c 
/usr/view/doc/~pp/code/filer.c 
/usr/view/doc/app/code/font menu.c 
/usr/view/doc/app/code/hello world.c 
/usr/view/doc/app/code/image-browser i.e 
/usr/view/doc/app/code/image-browser-2.c 
/usr/view/doc/app/code/lister.c -
/usr/view/doc/app/code/menugenproc.c 
/usr/view/doc/app/code/resize demo.c 
/usr/view/doc/app/code/seln demo.c 
/usr/view/doc/app/code/showcolor.c 
/usr/view/doc/app/code/simple canvas.c 
/usr/view/doc/app/code/simple-panel .c 
/usr/view/doc/app/code/spheres.c 
/usr/view/doc/app/code/tty io.c 
/usr/vfew/doc/app/code/typein.c 
polar"l. D 

There are three new buttons, each of which illustrates a typical use of pop-ups: 

Set Is flags a pop-up property sheet for setting options to 1s; 

Edit a pop-up text subwindow for browsing and editing files; 

Delete a pop-up confirmer which forces the user to confirm or cancel. 

The three buttons are discussed in the pages that follow. The discussion makes 
reference to specific routines in the filer pr9gram, which is listed in its entirety as 
filer in Appendix A, Example Programs . 

. ·4l~Sllll ,~ microsystems 
Revision A, of May 9, 1988 

0 

0 



c Pop-ups 

Pop-up Text Subwindow 

Chapter4- Using Windows 45 

In Sun View, pop-ups are implemented as subframes containing subwindows. 

The subframe, along with its subwindows, is displayed and undisplayed as 
needed. Pop-ups may be displayed in either a blocking or a non-blocking mode. 

Examples of Sun View pop-ups include the mail tool's composition window and 
textedit's search and replace. 

The Edit button illustrates a non-blocking pop-up. When the user selects a 
filename and presses the button, a pop-up text subwindow containing the file 

appears: 

Figure 4-5 A Pop-up Text Su!Jwindow 

filer 

(List Directory) (Set ls flags) (Edit) (Delete) (Quit) 

Filing Mode: CUse "file:" item 
----------------------------------------------------------------11 

/usr/view/doc/app/code 

I 
#ifndef lint 
static char sccsid[] • "@(#)confirm.c 1.4 87/IH/137 Copyr 
986 Sun Micro"; 

. #endif 

. I*************·******************************************* 

: #include <suntool/sunview.h> 
: #include <suntool/panel.h> 

static Frame 
static int 
static void 

init confirmer(); 
confirm(); 
yes_no_ok(); 

int 
confirm_yes(message) 

Both the subframe and text subwindow for the pop-up are created at initialization 

time with the calls: 

edit frame window_create(base_frame, FRAME, 
FRAME_SHOW_LABEL, TRUE, 
0) ; 

window_create(edit_frame, TEXTSW, 0); editsw 

When the user selects the Edit button, the notify procedure edit proc () is 
invoked. This function first calls the Selection Service to get the name of the file 

the user has selected.10 

~~sun ~ ·microsystems 
Revision A, of May 9, 1988 



46 Sun View 1 Programmer's Guide 

Pop-up Property Sheet 

Figure 4-6 

Invoking the 'Props' Menu Item 

It then loads the file into the text subwindow, sets the frame header to the 
filename, and displays the frame with these two calls: 

window_set(editsw, TEXTSW_FILE, filename, 0); 
window_set(edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0); 

The property sheet shown in Figure 4-6 is a typical example of a non-blocking 
pop-up. By pushing the Set Is flags button, the user can get a property sheet 
which allows him to set some of the options to the 1 s command. While the pro­
perty sheet is displayed, the user can continue to interact with the application, 
setting options now and then. The user can cause the pop-up to disappear at any 
time by pushing the Done button, selecting Done from the subframe's menu, or 
by pressing the Sun View function key labelled ~-

A Non-blocking Pop-up 

filer ' 

(List Directory) (Set ls flags) (Edit) (Delete) (Quit) 
Filing Mode: Ouse"File:" item 
-------------------------------------------------------------
Directory: /usr/view/doc/app/code 

~ 

File: confirm·~ 

/usr/view/doc/app/code/confirm.c 
/usr/view/doc/app/code/dctool .c 
/usr/view/doc/app/code/filer.c 
/usr/view/ 
/usr/view/ Options for ls command 
/usr/view/ Format: 0 Short 
/usr/view/ Sort Order: 0 Descending /usr/view/ 
/usr/view/ Sort criterion: 0Name 
/usr/view/ For directories, 1 ist: 0 Contents 
/usr/view/ Recursively list subdirectories? 0No /usr/view/ 
/usr/view/ Indicate type of file? 0No 
/usr/view/ 
/usr/view/ 

(Done) 

/usr/view/doc/app!cooelccy_,o.c 
/usr/view/doc/app/code/typein.c 
polar'!. D 

Two attributes are used to control whether the 'Props' menu item is active or able 
to be invoked in the frame's menu. The code fragment given below is taken 
from the filer program. 

The FRAME PROPS ACTION PROC attribute specifies which procedure will 
be called when the 'Props' menu item is chosen or the I Props I key is pressed. In 

0 

0 

the code below, FRAME_PROPS_PROC specifies that the procedure o 
ls_flags_proc () is called when the (Props I key is pressed. \.._ 

~\sun ~ microsystems 
Revision A, of May 9, 1988 



C' 

WIN SHOW 

Pop-up Co:g.firmer 

c 

Chapter 4-Using Windows 47 

The FRAME_ PROPs _ACTIVE attribute specifies whether the procedure that is 

specified by the FRAME_PROPS_ACTION_PROC will be called or not. lfthe 

attribute FRAME_PROPS_ACTIVE is TRUE, then the frame menu will contain 

an un-greyed 'Props' menu item. Ifthe attribute FRAME_PROPS_ACTIVE is 

FALSE, then the frame menu will contain a greyed out 'Props' menu item. 

base frame window_create(NULL, FRAME, 
FRAME_ ARGS, argc, argv, 
FRAME_LABEL, "filer", 
FRAME~PROPS_ACTION_PROC, ls_flags_proc, 
FRAME_PROPS_ACTIVE, TRUE, 
0) ; 

The display of a non-blocking pop-up is controlled using the WIN_ sHOW attri­

bute. The initialization routine create_ls_flags_popup () creates the 

subframe, panel, and panel items for the property sheet. When the subframe is 

created, WIN_ sHOW is FALSE.11 The notify procedure for the Set Is flags but­

ton, ls_flags_proc (),simply sets WIN_SHOW to TRUE for the subframe.l2 

When the notify procedure for the List button, ls_proc (),is called, it calls 

compose _ls _options () to construct the appropriate string of flags based 

on the settings of the items in the property sheet. 

Both the property slreet and the editing subwindow described in the preceding 

section are examples of non-blocking pop-ups, in which the application contin­

ues to receive input while the pop-up is displayed. 

Blocking pop-ups differ in that, when displayed, they receive all input directed to 

the screen. Blocking pop-ups are appropriate when you want to force the user to 

confinn or cancel an irreversible operation before changing the application's 

state in any way. 

Most uses of blocking pop-ups should use the alert package described in Chapter 

10, Alerts. In the example given below, filer uses an alert for the Delete button 

confinnation. However, if you want to use other panel features, or other kinds of 

win~ows, then you can use window _l,oop () for the same effect. 

For example, in Figure @NumberOf(alert-win), when the user makes a selection 

and pushes the Quit button, filer displays a pop-up asking for confinnation. All 

input is directed into this confinner, and the user is forced to either accept the 

deletion by selecting Yes or cancel it by selecting No : · 

11 Note that while WIN _:SHOW defaults to TRUE for base frames, it defaults to FALSE for subframes. The 

same holds for FRAME SHOW LABEL. 

12 Note tbat the subframe won't actually be displayed until control is returned to the Notifier. 

Revision A, of May 9,.1988 



48 SliD View 1 Programmer's Guide 

Figure4-7 

window_loop 

Pop-up Confirmer 

~j"',.,.,.,.,.,,_...,.,,.,.,.,.,,.,.,.,,""'"'''"'''''''"'"'"''~""'"'"'~''"'''''''''''''''''"""''"""'"'''''"''''"'"'m'""''"'''''''o"""''"''o"'v.'"''''''''"'o"·"''"'"'''~"''''''''"'""'""'''''''""'''[m 

~i! (List Directory) [set ls flags) [Edit) (Deletelll~~l::J. !!!\ 
!iii Filing Mode: C Use ",File:" i tern !!iii 
=~:~ ------------------------------------------------------------------------------- !:!:! I :::.~:1' />mchi~/1.75/~c /o.ol=. bio/•-i"""";,mtool/o-loo I 
,.,. akeflle dctool* menugenproc.c ·:~ 
iii! akefile.customer dctool.c resize_demo* i:i! 
i:i: akefile. doc err resize_demo. c iiiii 
~i! akefile. old filer* seln_demo* !iii! 
lili SCCS@ · !iii! 
1.:: addnewtest* ~?: 
!iii addnewtest. c m~ 
:,:, animatecolor* Are you sure you want to Quit? :;:;: 

Ill' ~~~;~:~:olor.c ~~~~ 
~:; canvas input* ~;:; 
~:: -. ~:~ :::: canvas_lnput. c ::::: 
!!!! canvas_repa~nt11' image_browser _2* tty _io. c !W. 
iii! canvas_repawt. c image_browser _2. c type in* W 
;:;: coloredit* loopback* typein.c ;:;:; 
!iii oloredit.c loopback.c !!!!: *' confirm c menugenproc* :~;: iii apia% 0. ll~ 

L~--------~---~--J 
The display of a non-blocking pop-up is controlled using the WIN_ SHOW attri­
bute. The display of a blocking pop-up, on the other hand, is controlled with the 
two functions window _loop () and window_ ret urn () . 

caddr t 
window_loop(subframe) 

Frame subframe; 

void 
window_return(return_value) 

caddr_t return_value; 

window _loop () causes the pop-up to be displayed and receive all input 
directed to the screen. The call will not return until window_ return () is 
called from one of the pop-up's notify procedures. The value passed to 
window_ return() as return_ value will be returned by 
window _loop () . Its interpretation is up to the application. That is, it may be 
used to indicate whether the command was confirmed, whether a valid file name 
was entered, and so on. 

sun Revision A, of May 9, 1988 
microsystems 

0 

0 

0 



c 

c 

Restrictions on Pop-Up Frames 

Controlling a Pop-up or 
Frame's Shadowing 

Chapter 4-Using Windows 49 

There are some restrictions on pop-up frames displayed using 
window_loop (}: 

o You can only have one subwindow in the pop-up frame. 

o The only subwindow types that work properly are canvases and panels. 

These limitations do not apply to non-blocking pop-ups displayed using 

WIN SHOW. 

Sun's convention is that only transient items such as pop-ups have shadows. 

However, using the attribute FRAME_ sHOW_ sHAD OW you may control the sha­

dowing effect of a frame or a subframe: 

o If you want your base frame to have a shadow, then set the attribute 
FRAME SHOW SHADOW to TRUE. 

o You may stop a shadow from appearing with a sub_frame during create time 

by setting FRAME_ SHADOW to FALSE. 

Revision A, of May 9, 1988 



50 Sun View 1 Programmer's Guide 

4.6. Example 5-
image browser 1 - -

Figure 4-8 

Specifying Subwindow Size 

Figure 4-8 illustrates how to specify the size and position of subwindows in order 
to get the layout that you want This application lets the user view the images in 
files generated by iconedit. The user first presses the List button to get a list­
ing. The user then selects a file that contains an image and press the Show but­
ton to view the image: 

image_browser _1 

i mage_br·owser 
lame. icon 
ello_world. icon 

lper.icon 
e. icon 

op. icon 
unview_manual.icon 
orld.icon 
oral% ls -1 *.icon 

lown. icon 
lame. icon 
ello_world.icon 
elper.icon 
ome. icon 
top. icon 
unview_manual.icon 
rld.icon 

oral% 

Di r: 

File: *.ico~ 
(list) (Show) (~Q~u~it~) 

~ 
~ 

This example presents a somewhat more complex subwindow layout: the tty 
subwindow has been moved to the left, the control panel to the upper right, and a 
panel for displaying the image added on the lower right 

You can specify the size of a subwindow either in pixels; with WIN_HEIGHT 
and WIN WIDTH or in terms of rows and columns, with WIN ROWS and 
WIN-COLUMNS .13 If its dimensions are not specified, then a subwindow will 
extend in the y direction to the bottom edge, and in the x direction to the right 
edge of the frame. In this case the subwindow's height and width will have the 
special value WIN_EXTEND_TO_EDGE,14 and will track the edge ofthe frame 
at run time, expanding or shrinking appropriately when the user resizes the 
frame. 

Keep in mind that if you alter the size of a frame so that it exactly borders on a 
subwindow by calling window_fit (),the dimension of the subwindow that 
touches the frame will automatically become WIN_ EXTEND_ TO_ EDGE. 

13 Row/column space is discussed in the next example. 

14 It is meaningless to set the width or height of a frame to WIN_ EXTEND_ TO_ EDGE, and it will interfere 
with subwindow behavior. 

Revision A, of May 9, 1988 

0 



c Default Subwindow Layout 

Explicit Subwindow Layout 

c· 

Chapter 4 -Using Windows 51 

The default subwindow layout algorithm is simple. The first subwindow is 
placed at the upper left comer of the frame (leaving space for the frame's header 

and a border). If the width of the previously-created subwindow is fixed, not 

extend-to-edge, then the next subwindow is placed to the right of it. If the width 
of the previously-created subwindow is extend-to-edge, then the next subwindow 

is placed below it, at the left of the frame. 
' 

This default layout algorithm handles only very simple topologies. Sun View 

provides attributes that allow you to specify more complex layouts by explicitly 
positioning subwindows. You can position one subwindow relative to another by 

using WIN_ BELOW and WIN_ RIGHT_ OF. These attributes take as their value 
the handle of the subwindow you want the new subwindow to be below or to the 

right of. 

image_browser _1, pictured on the preceding page, illustrates the use of 

window_ fit () along with explicit subwindow positioning to obtain a particu­
lar layout. The relevant calls are shown below: 

tty= window_create(frame, TTY, 
WIN_ROWS, 20, 
WIN_COLUMNS, 30, 
0); 

control_panel = window_create(frame, PANEL, 0); 

(create panel items ... ) 

window_fit(control_panel); 

display_panel = window_create(frame, PANEL, 
WIN_BELOW, control_panel, 
WIN_RIGHT_OF, tty, 
0); 

window_fit(frame); 

First the tty subwindow is created with a fixed height and width. Then the con­

trol panel is created, with no specification of origin or dimensions. 

Since the width of the previous subwindow was fixed, the control panel is placed 

by default just to the right. After its items are created, the control panel is shrunk 

around its items in both dimensions with window _fit (). 

Next, the display panel is created and explicitly positioned below the control 
panel and to the right of the tty subwindow. Both dimensions ofthe display 
panel default to WIN_ EXTEND_ TO_ EDGE. 

Finally, window_ fit () is called to shrink the frame to the height of the tty 
window and the combined width of the tty window and the control pane1.15 

15 window_ fit () causes the window to shrink until it encounters the first fixed border. Subwindows 

which are extend-to-edge don't stop the shrinking. 

Revision A, of May 9, 1988 



52 Sun View 1 Programmer's Guide 

NOTE One thing to watch out for is thatWIN_BELOW only affects the subwindow's y 
dimension, and WIN_ RIGHT_ OF only affects the x dimension. 

0 
Specifying Subwindow Sizes 
and Positions 

Changing Subwindow Layout 
Dynamically 

The Rect Structure 

You can also specify the origin of a subwindow in pixels using WIN X and 
WIN_ Y. The computations for these attributes take the borders and header of the 
frame into account, so that specifying WIN_ x and WIN_ Y of 0 will then result in 
the subwindow being placed correctly at the upper left comer of the frame. 

The program resize_ demo, listed in Appendix A, uses these attributes to lay out 
its subwindows in a non-standard manner. 

If you programmatically change the size or position of subwindows after you 
create them, then you must explicitly re-specify the origin of any subwindows 
thatare below or to the right of the altered subwindows. This must be done even 
if you specified the positions of these other subwindows using relative position 
attributes, such as WIN _::BELOW. 

This step is necessary because subwindows are not automatically laid out again 
when the positions and sizes of other subwindows are changed. They are only 
laid out again if the frame changes size. When re-specifying the layout of the 
other subwindows, you can use relative position attributes such as WIN_ BELOW. 

The attributes WIN_X, WIN_Y, WIN__:WIDTH and WIN_HEIGHT, taken together, 
define the rectangle occupied by a window. This rectangle is actually stored as a 0 
Rect struct, which you can get or set using the attribute WIN _

16
RECT. The ~j 

definition of a Rect, found in <sun window I rect. h>, is: 

typedef struct rect 
short r_left; 
short r_top; 
short r_width; 
short r_height; 

Rect;, 

The Rect is the basic data structure used in Sun View window geometry. Where 
complex shapes are required, they are built up out of groups of rectangles.17 

16 The result that a window returns is relative to a frame's positioning space. It is not self-relative and it is 
not parent-relative. Therefore, WIN_ RECT should only be used for window positioning operations. Do not use 
it forpw_lock (). 

17 For a detailed discussion of rectangle geometry, including useful macros for operating on rectangles, see 
the chapter entitled Reels and Rectlists in the Sun View 1 System Programmer's Guide. . 0 

Revision A, of May 9, 1988 



c 

4.7. Example 6-
image _browser _2 

Figure 4-9 

Row/Column Space 

Table 4-2 

Chapter4- Using Windows 53 

In the next example, when the user specifies a filename and pushes Browse the 
images in the files are displayed in a scrollable panel: 

image_browser _2 

/usr/view/doc/app/code 

*.iCOilt, 
[Browse] 
[ Quit ] 

The point of this example is to illustrate how you can use row/column space to 
specify the size of a subwindow. The goal was to make the panel just the right 
size to display a single page of icons, with four rows, four columns, and 10 pixels 
of white space around each icon. 

Row/column space refers to a logical grid defining the rows and columns of a 
window. You can define the row/column space for a window by using the attri­
butes in the following table: 

Window Row/Column Geometry Attributes 

Attribute Description Default Def. in Panels 

WIN BOTTOM MARGIN Bottom margin. 0 (same) 

WIN COLUMN GAP Space after columns. 0 (same) 

WIN COLUMN WIDTH Width of a column. WidthofWIN FONT. (same) 

WIN LEFT MARGIN Left margin. 5 4 

WIN RIGHT MARGIN Right margin. 5 0 

WIN ROW GAP Space after rows. 0 5 

WIN ROW HEIGHT Height of a row. Height of WIN_ FONT (same) 

WIN TOP MARGIN Top margin. 519 4 

19 In frames with headers, the default for WIN_ TOP_ MARGIN depends on the system font. With the default 

Revision A, of May 9, 1988 



54 Sun View 1 Programmer's Guide 

Defining a Panel's Row /Column 
Space 

Positioning Panel Items in 
Row/Column Space 

Using the row/column space attributes, the icon browsing panel pictured on the 
preceding page is specified as follows: 

Scrollbar scrollbar = scrollbar_create(SCROLL MARGIN,10,0); 
bar_width = (int)scrollbar_get(scrollbar, SCROLL_THICKNESS, 0); 
display_panel = window_create(base_frame, PANEL, 

WIN_VERTICAL_SCROLLBAR, scrollbar, 
WIN_ROW_HEIGHT, 64, 
WIN_COLUMN_WIDTH, 64, 
WIN_ROW_GAP, 10, 
WIN_COLUMN_GAP, 10, 
WIN_LEFT_MARGIN, bar width + 10, 
WIN_TOP_MARGIN, 10, 
WIN_ROWS, 
WIN_COLUMNS, 
0); 

4, 
4, 

window_set(display_panel, WIN_LEFT_MARGIN, 10, 0); 

This achieves our goal of a panel the right size for a 4x4 array of 64 pixel square 
icons, with 10 pixels of white space around each icon. 

Once you have defined your row/column space, you can position panel items 
within that space with the ATTR _ROW () and ATTR _COL () macros.20 The code 

0 

fragment shown below shows how the items for the browsing panel are created ( 
and positioned at the proper row and column each time the Browse button is U 
pushed: 

for (row = 0, image_count = 0; image_count < files_count; row++) 
for (col = 0; col <= 4 && image_count < files_count; col++) { 

if (image= get_image(image_count)) { 
panel_create_item(display_panel, PANEL_MESSAGE, 

PANEL_ITEM_Y, ATTR_ROW(row), 
PANEL_ITEM_X, ATTR_COL(col), 
PANEL_LABEL_IMAGE, image, 0); 

image_count++; 

This example is complicated somewhat by an inconsistency in the way margins 
are handled in the current release of Sun View. The left and top margins are used 
in two ways: for determining the size of the panel, and for determining the loca­
tion of panel items positioned with ATTR_COL () and ATTR_ROW (). The size 
computation does not take into account any scrollbar which may be present; the 
positioning computation, on the other hand, does take the scrollbar into account. 
That is why, in the call to window_create () above, WIN_LEFT_MARGIN is 
set to the width of the scrollbar plus 10 pixels, and then set immediately after­
ward to 10 pixels. 

system font, it defaults to 17. 

20 These "character unit macros" are described fully in Chapter 18, Attribute Utilities. 

Revision A, of May 9, 1988 

0 



c· 4.8. Attribute Ordering 

Command-line Arguments 

c 

c 

Chapter4- Using Windows 55 

The general rule is that attributes in Sun View are evaluated in the order they are 

given. The following two examples of text subwindow calls illustrate how giv­

ing the same attributes in different orders can produce different effects: 

window_set(textsw, TEXTSW_FILE, "file_l", 0); 

window_set(textsw, TEXTSW_FIRST, 20, TEXTSW_FILE, "file_2", 0); 

window_set(textsw, TEXTSW_FILE, "file_l", 0); 

window_set(textsw, TEXTSW_FILE, "file_2", TEXTSW_FIRST, 20, 0); 

In the first pair of calls, the index is first set to the 20th character of file _1, 

then file_ 2 is loaded, starting at character zero. The second pair of calls first 

loads file_2, then sets the index in file_2 to 20. 

The attribute FRAME_ ARGS bears special mention. As described in the second 

example in this chapter, simple _panel, this attribute causes the frame to process 

the command-line arguments given by the user at run time. Some of these argu­

ments correspond to attributes that can be set programmatically; for example, -
Wh corresponds to WIN ROWS.21 

The basic rule, that attributes are evaluated in the order given, applies equally to 
attributes that are explicitly specified in the program and to those that are 
specified at run time using their command-line equivalents. If a given attribute is 

specified more than once, then the last setting is the one that takes effect You 

can therefore control· whether your application or the user has the last word by 
specifying attributes after or before FRAME_ ARGS. 

Let's take a couple of examples: 

window_create(O, FRAME, 
FRAME_ARGS, argc, argv, 
FRAME_LABEL, "LABEL FROM PROGRAM", 

WIN_ROWS, 10, 
0) ; 

window_create(O, FRAME, 
FRAME_LABEL, "LABEL FROM PROGRAM", 

WIN_ROWS, 10, 
FRAME_ARGS, argc, argv, 
0) ; 

Assume that the program was invoked with a command line containing the fol­

lowing arguments: 

-Wl "LABEL FROM COMMAND-LINE" -Wh 4 

In the first call, by putting FRAME_ ARGS at the start of the list, the application 

overrides the command-line arguments, and guarantees that the frame header will 
read "LABEL FROM PROGRAM" and the height will be 10 lines. 

21 For a complete list of these arguments see the Command Line Frame Arguments table in Chapter 19, 

Sun View Interface Summary. 

Revision A, of May 9, 1988 



56 Sun View 1 Programmer's Guide 

Different Classes of Attributes 

The Panel Package 

In the second call, since FRAME_ ARGS appears at the end of the list, the 
command-line arguments override what the application /has specified, resulting in 
a label of"LABEL FROM COMMAND-LINE" and a'h~ight of 4lines. 

Keep in mind that if you specify WIN FONT, it does not override the font that 
the user specified using -Wt. 

In the case of different objects, the window attributes (those beginning with 
WIN_) are processed after the others (FRAME_*, PANEL_*, and so on). 

Suppose that you want to create a canvas with a scroll bar. You also want the 
logical canvas to expand ·when the user makes the window bigger, but never to 
shrink past its initial size, even if the user shrinks the window. The initial size of 
the canvas should be the size of the "inner" portion of the window - not includ­
ing the scrollbar. 

The straightforward approach would be to simply set all relevant attributes when 
the window is created, as in: 

~anvas = window_create(frame, CANVAS, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create(O), 
CANVAS_AUTO_SHRINK, FALSE, 
0); 

This call, however, results in a canvas which is too big, extending underneath the 
vertical scrollbar. This is because of the order in which the CANVAS and WIN 
attributes are evaluated. 

Since the window attributes are evaluated after the canvas attributes, the canvas 
size is set according to the initial size of the window, which does not have a 
scrollbar. By the time WIN_ VERTICAL_SCROLLBAR is evaluated, the canvas 
refuses to shrink to the smaller inner portion of the window, since 
CANVAS_ AUTO_ SHRINK has already been evaluated and set to FALSE. 

In general, you can force a particular order of evaluation by using separate 
window_ set () calls, as in: 

~anvas = window_create(frame, CANVAS, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create(O), 
0); 

~indow_set(canvas, CANVAS_AUTO_SHRINK, FALSE, 0); 

The panel package deviates from the norm in that its attributes are generally not 
order-dependent. For example, you can specify the label of an item before the 
font, and the font will be used even though it appears after the label. 

The only thing to watch out for is that you can't change the font in a single call, 
as in: 

Revision A, of May 9, 1988 

0 

0 

0 



4.9. File Descriptor Usage 

Table 4-3 

c~ 

C' 

Chapter4- Using Windows 57 

panel_set(text_item, 
PANEL_FONT, font_l, 
PANEL LABEL_STRING, "Label:", 
PANEL_FONT, font_2, 
PANEL_VALUE, 
0) ; 

"initial value", 

The above call will cause both the label and the value for text i tern to be ren­

dered in font 2. 

In Sun View, each window is actually a device, I dev I w innnn, that is accessed 

through a file descriptor. Other packages such as the selection service also use 

file descriptors. In SunOS there is a limit to the number of file descriptors one 

program can have open; in Release 4.0 it is 64. Thus it is possible for your appli­

cation to run out of file descriptors. 

The following table summarizes how file descriptors are used in Sun View. 

Sun View File Descriptor Usage 

Window Type/ 
Package FD Usage How FDs are used 

FRAME 1 1 for the window. 

CANVAS 1 1 for the window. 

TEXTSW 3 1 for the window, 
+ 1 for the file to be edited-(if any), 
+ 1 for scratch (the ltmpiText ... file), 

(2) 2 temporarily created during a save. 

PANEL 1 1 for the window. 

TTYSW 2 1 for the window, 
+ 1 for the pty (pseudo-tty). 

MENU 0 Fullscreen access uses the window's FD. 

ALERT 1 1 for positioning 
Alerts have a frame and a panel; 
however, the FDs are allocated for the 
firs~ alert and reused by subsequent alerts. 

Pointer 0 Most pointers are managed by the kernel. 

Icon 0 Frame uses same FD whether open or iconic. 

sun Revision A, of May 9, 1988 
microsystems 



~----~~-- ~~--~~·---------

58 SilllView 1 Programmer's Guide 

Table 4-3 Sun View File Descriptor Usage- Continued 

Window Type/ 
Package 

Scroll bar 

window manager 

UNIX 

frame buffer 

Selection Service 

~~sun 
• microsystems 

FD Usage 
0 

(1) 

3 

1 

3 

How FDs are used 
(implemented as a region -- read the 
Sun View System Programmer's Guide) 

1 temporarily used for window 
management operations. 

stdin/stdout/stderr 

frame buffer FD gets allocated 
automatically with the base frame. The screen 
device must be opened for your program 
to draw on it. 

selection service fd's 
are allocated whenever there is something 
that will set or get from the selection 
service, For example, if you put in 
selection service code or the first time' 
a panel item is allocated. 

This uses sockets to communicate: 
1 for the connection to the service 
+ 1 to receive UDP requests 
+ 1 TCP rendezvous socket for transfers. 

(1) 1 transiently opened when a transfer 
is in progress to carry it. 

Revision A, of May 9, 1988 

0 

0 

0 



c 
5 

Canvases 

Canvases .............................................................................................................................................. 61 

5.1. Creating and Drawing into a Canvas.................................................................... 63 

5.2. Scrolling Canvases.......................................................................................................... 64 

5.3. Canvas Model.................................................................................................................... 65 

The Canvas ....................................................................................................................... 65 

5.4. Repainting............................................................................................................................ 66 

Retained Canvases ....................................................................................................... 66 

c Non-Retained Canvases ............................................................................................ 66 

The Repaint Procedure .............................................................................................. 66 

Retained vs. Non-Retained...................................................................................... 67 

5.5. Tracking Changes in the Canvas Size ................................................................. 67 

Initializing a Canvas ................................................................................................... 67 

5.6. Automatic Sizing of the Canvas ............................................................................. 69 

5. 7. Handling Input in Canvases ....................................................................................... 70 

Default Input Mask ...................................................................................................... 70 

Writing Your Own Event Procedure ................................................................. 70 

Translating Events from Canvas to Window Space .................................. 70 

Border Highlighting .................................................................................................... 71 

5.8. Color in Canvases............................................................................................................ 72 

Setting the Colormap Segment ............................................................................. 72 

Color in Retained Canvases .................................................................................... 72 

Color in Scrollable Canvases ................................................................................. 72 

c 



0 



c 

c Summary Listing and Tables 

c 

5 
Canvases 

The most basic type of subwindow provided by Sun View is the Canvas. A can­
vas is essentially a window into which you can draw. 

For a demonstration of the various canvas attributes, run the program 
/usr/demo/ canvas_demo. For examples of canvases that illustrate event 
handling, run the image editor iconedi t(1). iconedi t uses two canvases, 
the large drawing canvas on the left, and the small proof area on the lower right. 

In order to use canvases you must include the header file 
<suntool/canvas.h>. 

To give you a feeling for what you can do with canvases, the following page lists 
the available canvas attributes, functions and macros. Many of these are dis­
cussed in the rest of this chapter and elsewhere (use the Index to check). All are 
briefly described with their arguments in the canvas summary tables jn Chapter 
19, SunView Interface Summary: 

o the Canvas Attributes table begins on page 319; 

o the Canvas Functions and Macros table begins on page 320. 

sun 61 Revision A, of May 9, 1988 
microsystems 



62 Sun View 1 Programmer's Guide 

CANVAS AUTO CLEAR 
CANVAS AUTO EXPAND 
CANVAS AUTO SHRINK 
CANVAS FAST MONO 

Canvas Attributes 
CANVAS FIXED IMAGE - -
CANVAS HEIGHT 
CANVAS MARGIN 
CANVAS PIXWIN 

CANVAS REPAINT PROC 
CANVAS RESIZE PROC - -
CANVAS RETAINED 
CANVAS WIDTH 

Canvas Functions and Macros 
canvas_event(canvas, event) 
canvas pixwin(canvas) 

~~sun ~~ microsystems 

canvas_window_event(canvas, event) 

Revision A, of May 9, 1988 

{~ 
\ ] 

'-......-/ 



c 

c 

5.1. Creating and Drawing 
into a Canvas 

Example 1: 

Chapter 5 -Canvases 63 

Like all windows in Sun View, canvas subwindows are created with 
window_create (). When drawing into a canvas use the canvas pixwin, 
which you can get with the canvas_pixwin () macro. 

The pixwin is the structure through which you render images in a window. You 
draw points, lines and text on a pixwin with a set of functions of the fonn 
pw_ * () -pw_write (), pw_vector (), pw_text () etc.22 

As a beginning example, the following program puts up a canvas containing a 
box with the words "Hello World!": 

#include <suntoollsunview.h> 
#include <suntoollcanvas.h> 

main(argc, argv) 
int argc; 
char **argv; 
{ 

Frame 
Canvas 
Pixwin 

frame; 
canvas; 

*pw; 

I* create frame and canvas *I 
frame window_create(NULL, FRAME, 0); 
canvas= window_create(frame, CANVAS, 0); 

I* get the canvas pixwin to draw into *I 
pw = canvas_pixwin(canvas); 

I* draw top,. bottom, left, right borders of box 
pw_vector(pw, 100, 100, 200, 100, PIX_SRC, 1); 
pw_vector(pw, 100, 200, 200, 200, PIX_SRC, 1); 
pw_vector(pw, 100, 100, 100, 200, PIX_SRC, 1); 
pw_vector(pw, 200, 100, 200, 200, PIX_SRC, 1); 

*I 

I* write text at (125,150) in default font *I 
pw_text(pw, 125, 150, PIX_SRC, 0, "Hello World!"); 

window_main_loop(frame); 
exit(O); 

The PIX_SRC argument to pw_ vector() and pw_text () is a rasterop 
function specifying the operation which is to produce the destination pixel 
values. There are several other rasterop functions besides PIX_ SRC; they are 
described in Chapter 2 of the Pixrect Reference Manual. 

22 Pix wins and their associated functions are covered in detail in Chapter 7 ,Imaging Facilities: Pixwins. 

sun Revision A, of May 9, 1988 
microsystems 



64 Sun View 1 Programmer's Guide 

5.2. Scrolling Canvases 

Example 2: 

Many applications need to view and manipulate a large object through a smaller 
viewing window. To facilitate this Sun View provides scrollbars, which can be 
attached to subwindows of type canvas, text or panel. 

The code below creates a canvas that is scrollable in both directions: 

frame = window_create(NULL, FRAME, 0); 
canvas = window_create(frame, CANVAS, 

CANVAS_AUTO_SHRINK, FALSE, 
CANVAS_WIDTH, 1000, 
CANVAS_HEIGHT, 1000, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create(O), 
WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(O), 
0); 

The distinction between the dimensions of the canvas and of the window is 
important. In the above example, we set the canvas width and height to 1000 
pixels. Since the dimensions ofthe canvas subwindow (i.e. WIN_WIDTH and 
WIN HEIGHT) were not explicitly set, the subwindow extends to fill the frame. 
The frame's dimensions, in tum, were not explicitly set, so it defaults to 25lines 
by 80 characters in the default font. The result is a logical canvas roughly the 
area of the screen, which is viewed through a 'Yindow about one fourth that size. 

NOTE It is necessary to explicitly disable the "auto-shrink" feature in the above exam-
ple. If this were not done, the canvas size would be truncated to the size of the (~ 
window. See Section 5.6, Automatic Sizing of the Canvas. "'-· ) 

Revision A, of May 9, 1988 



C 5.3. Canvas Model 

The Canvas 

The Canvas Pixwin 

Figure 5-1 

Chapter 5 -Canvases 65 

The components of a canvas subwindow and their relationships can be seen in 
Figure 5-1. 

Canvas Geometry 

Scrollbars 

CANVAS_WDll-1 

Think of the canvas itself as a logical surface on which you can draw. The width 
and height of the canvas are set via the attributes CANVAS_ WIDTH and 
CANVAS_HEIGHT. So the coordinate system is as shown in Figure 5-l, with the 
origin at the upper left comer and the point (CANVAS WIDTH-1, 

CANVAS_ HEIGHT-1) at the lower right comer. Note that the logical canvas 
origin is always at (0, 0). 

As mentioned above, you draw on the canvas by writing into the canvas pixwin, 
which is retrieved via the CANVAS P IXWIN attribute or the 
canvas _pixwin (} macro. 

The canvas pixwin is set up to take scrolling into account by performing the 
transformation from your canvas coordinate system to its pixwin coordinate sys­
tem. So when you draw into the canvas pixwin using the pw _ * functions you 
don't have to do any mapping yourself- the arguments you give should be in 
the canvas coordinate system. 

Between the frame border and the canvas pixwin is a margin, set via the attribute 
CANVAS_ MARGIN. This margin defaults to zero pixels, so in the simple case, 
the canvas pixwin occupies the entire inner area of the window pixwin. If one or 
more scrollbars are present, the canvas margin begins at the inside border of the 
scroll bar. 

Note the distinction between the pixwin of the canvas (attribute 
CANVAS_ P IXWIN) and the pixwin of the window (attribute WIN_ P IXWIN). 
The canvas pixwin is one of several regions of the window's pixwin, which also 
includes the regions occupied by the scrollbars and the margin. 

sun Revision A, of May 9, 1988 
microsystems 



66 Sun View 1 Programmer's Guide 

5.4. Repainting 

Retained Canvases 

Non-Retained Canvases 

The Repaint Procedure 

~~ 
The canvas package manages the canvas pixwin for you. In particular, the clip- (_ ; 
ping list is restricted to the area of the canvas pixwin actually backed by the can- • ./ 
vas. This means that you can never draw off the edge of the canvas. For exam-
ple, if you have set the canvas height to be less than the height of the canvas 
pixwin, any pw...:.... * operations that attempt to draw below the canvas height will 
be clipped away. 

By default, canvases are retained- i.e. the canvas package maintains a copy of 
the bits on the screen in a backing pixrect, from which it automatically repaints 
the screen image when necessary. If you wish to handle repainting yourself, you 
can defeat this feature. 

The canvas package allocates a backing pixrect the size of the logical canvas. 
When the canvas. width or height changes, a new backing pixrect of the proper 
dimensions is allocated, the contents of the old pixrect are copied into the new 
pixrect, and the old pixrect is freed. 

For a non-retained canvas, set CANVAS_ RETAINED to FALSE, and give your 
own repaint function as the value of CANVAS_ REPAINT_ PROC. 

The repaint procedure is called whenever some part of the canvas has to be 
repainted onto the canvas pixwin. Note that if you supply a repaint proc, it will 
be called even if the canvas is retained - i.e. the canvas package will not 
automatically copy from the backing pixrect to the canvas pixwin. (\ 

\.__j 
The form of the repaint procedure is: 

sample_repaint_proc(canvas, pixwin, repaint_area) 
Canvas canvas; 
Pixwin 
Rectlist 

*pixwin; 
*repaint_area; 

The first two arguments are the canvas and its pixwin (i.e. the value of 
canvas_pixwin (canvas)). The third argument, repaint_area, is a 
pointer to a list of rectangles (type Rectlist *)which define the area to be 
painted.23 

Before the canvas package calls your repaint procedure, it restricts the clipping 
list to the area which needs to be painted. Thus if your application is not capable 
of repainting arbitrary areas of the canvas you can repaint the entire image 
without worrying about excessive repainting. 

If you choose not to redraw each individual rect in the repaint area, you can use 
the rectangle given by repaint_area->rl_bound, which is the bounding 
rectangle for the repaint area. 

Note that if the attribute CANVAS_ AUTO_ CLEAR is TRUE, the canvas package 
will clear the repaint area before calling your repaint procedure. 

23 Rectlists are covered in detail in the chapter on Rects and Rectlists in the Sun View 1 System 
Programmer's Guide. 

4}~sun 
~ microsystems 

Revision A. of May 9, 1988 



c 

c 

Retained vs. Non-Retained 

5.5. Tracking Changes in 
the Canvas Size . 

NOTE 

Initializing a Canvas 

Chapter 5 -Canvases 67 

A retained canvas has two advantages. First, the repainting will be faster since it 
is a siinple block copy operation. Second, it eliminates the need for the applica­
tion to keep a display list from which to regenerate the image. 

On the other hand there is a perfonnance penalty on writing, since each operation 
is perfonned both on the canvas pixwin and the backing pixrect. This penalty 
may be reduced by using the pw _batch ( ) call described in the chapter entitled 
Imaging Facilities: Pi:xwins. 

The client's resize procedure is called whenever the canvas width or height 
changes. Its fonn is: 

sample_resize_proc(canvas, width, height) 
Canvas canvas; 
int width; 
int height; 

You should never repaint the image in the resize procedure, since if there is any 
new area to be painted, the repaint procedure will be called later. 

_/There are some subtle points to be aware of related to whether or not the image is 
fixed size (CANVAS _FIXED_ IMAGE is TRUE). In the default case the image is 
fixed size, and the repaint procedure will not be called when the canvas gets 
smaller, since there will be no new canvas area to be repainted. If the image is 
not fixed size, then whenever the canvas size changes, the canvas package 
assumes that the entire canvas needs to be repainted, and the repaint area will 
contain the entire canvas. 

Neither the repaint procedure nor the resize procedure will be called until the 
canvas subwindow has been displayed at least once. This allows you to create 
and initialize a canvas without having to deal with the resize/repaint procedures. 
The very first time the canvas is displayed, .the resize procedure will be called 
with the current canvas size. This initial call to the resize procedure allows you 
to synchronize with the canvas size. 

Revision A, of May 9, 1988 



68 Sun View 1 Programmer's Guide 

Example 3: The canvas in the program below has a repaint procedure which fills the canvas 
with an appropriately sized rectangle and diagonals. 

tinclude <suntoollsunview.h> 
tinclude <suntoollcanvas.h> 

static void repaint_canvas(); 

main (argc, argv) 
int argc; 
char **argv; 
{ 

Frame frame; 

frame= window_create(NULL, FRAME, 0); 
window_create(frame, CANVAS, 

CANVAS_RETAINED, FALSE, 
CANVAS_FIXED_IMAGE, FALSE, 
CANVAS_REPAINT_PROC, repaint_canvas, 
0); 

window_main_loop(frame); 
exit(O); 

static void 
repaint_canvas(canvas, pw, repaint_area) 

Canvas canvas; 
Pixwin 
Rectlist 

*pw; 
*repaint_area; 

int width 
int height 
int margin 
int xleft 
int xright 
int ytop 
int ybottom 

(int)window_get(canvas, CANVAS_WIDTH); 
(int)window_get(canvas, CANVAS_HEIGHT); 
10; 

I* draw box *I 

margin; 
width - margin; 
margin; 
height - margin; 

pw_vector(pw, xleft, ytop, xright, ytop, PIX_SRC, 1); 
pw_vector(pw, xri9ht, ytop, xright, ybottom, PIX_SRC, 1); 
pw_vector(pw, xright, ybottom, xleft, ybottom, PIX_SRC, 1); 
pw_vector(pw, xleft, ybottom, xleft, ytop, PIX_SRC, 1); 

I* draw diagonals *I 
pw_vector(pw, xleft, ytop, xright, ybottom, PIX_SRC, 1); 
pw_vector(pw, xright, ytop, xleft, ybottom, PIX_SRC, 1); 

Revision A, of May 9, 1988 



c 

5.6. Automatic Sizing of 
the Canvas 

Chapter 5 -Canvases 69 

There are several points to note from the example on the previous page. First, 
since the width and height of the canvas are not specified, they default to the 
width and height of the window. Second, since the image being drawn is depen­
dent on the size of the canvas, we set CANVAS_FIXED_IMAGE to FALSE. 
Third, when the repaint proc is called, we don't bother to draw the specified 
repaint area, instead we rely on the clipping list to be restricted correctly and 
simply redraw the entire image. 

Two attributes requiring some explanation are CANVAS_AUTO_EXPAND and 
CANVAS_AUTO_SHRINK. Setting both these attributes to TRUE allows you to 
have a drawing area which automatically tracks the size of the window. 

If CANVAS_ AUTO_ EXPAND is TRUE, the canvas width and height are never 
allowed to be less than the edges of the canvas pix win. For example, if you try to 
set CANVAS WIDTH to a value which is smaller than the width of the canvas 
pixwin, the value will be automatically expanded (rounded up) to the width of 
the canvas pixwin. 

The main use of CANVAS_ AUTO_ EXPAND is to allow the canvas to grow bigger 
as the user stretches the window. For example, if the canvas starts out exactly 
the same size as the canvas pixwin, and the user stretches the window, the canvas 
pixwin will get bigger, which will cause the canvas itself to expand. 

Another point to keep in mind is that whenever you set 
CANVAS_ AUTO_ EXPAND to TRUE, the canvas will be expanded to the edges of 
the canvas pixwin (if it is smaller to begin with). 

CANVAS_AUTO_SHRINK is symmetrical to CANVAS_AUTO_EXPAND. If 
CANVAS_ AUTO_ SHRINK is TRUE, the canvas width and height are never 
allowed to be greater than the edges of the canvas pixwin. 

NOTE As described in Section 4.8, Attribute Ordering, the canvas attributes are 
evaluated before the generic window attributes. This means that, if you want to 
set the window size and then disable automatic sizing of the canvas, you must 
first set the window size, then, in a separate window_ set () call, disable 
CANVAS_AUTO_SHRINK and/or CANVAS_AUTO_EXPAND. If you do both in 
the same call, the auto-sizing will be turned off before the window size is set, so 
the canvas size will not match the window size you specify. Here is an example 
of how to do it correctly: 

canvas = window_create(frame, CANVAS, 
WIN_HEIGHT, 400, 
WIN_WIDTH, 600, 
0); 

window_set(canvas, 

sun 
microsystems 

CANVAS AUTO_SHRINK, FALSE, 
CANVAS_AUTO_EXPAND, FALSE, 
0); 

Revisio:r: A, of May 9, 1988 



70 Sun View 1 Programmer's Guide 

5. 7. Handling Input in 
Canvases 

Default Input Mask 

NOTE 

Writing Your Own Event 
Procedure 

Translating Events from 
Canvas to Window Space 

This section gives some hints on basic handling of input in canvases.24 

By default, canvases enable LOC WINENTER, LOC WINEXIT, LOC MOVE and 
the three mouse buttons, MS_LEFT, MS_MibDLE and MS_RIGHT.25-

Since the canvas pixwin is actually a region of the sul:Jwindow' s pixwin, your 
event procedure will receive LOC _ RGNENTER and LOC _ RGNEXIT events 
rather than LOC WINENTER and LOC WINEXIT. The locator motion events - -
- LOC_MOVE, LOC_STILL, LOC_DRAG, and LOC_TRAJECTORY -will 
only be passed to your event procedure if they fall within the canvas pixwin. 

You can enable events other than those listed above with the window attributes 
applying to events. So, for example, you could allow the user to type in text to a 
canvas by calling: 

window_set(canvas, WIN CONSUME KBD EVENT, WIN_ASCII_EVENTS, 0); 
- - - ,r 

An application needing to track mouse motion with the button down would 
enable LOC _DRAG by calling: 

window_set(canvas, WIN_CONSUME_PICK_EVENT, LOC_DRAG, 0); 

If you supply an event procedure as the value ofWIN_EVENT_PROC, it will get 
called when any event is received for the canvas. Before your event procedure 
gets called, however, the canvas package does some processing. If the event is 
WIN_REPAINT or WIN_RESIZE, the canvas package calls your repaint or 
resize procedures if necessary. If the event is SCROLL REQUEST, then the can­
vas package performs the scroll. 26 The repaint, resize and scroll events are then 
passed to your event procedure. In the case of events which have x-y coordi­
nates, the canvas package translates the events from the coordinate space of the 
canvas pixwin to that of the logical canvas. 

Functions are provided to translate event coordinates from the coordinate space 
of the canvas to the coordinate space of the canvas subwindow, aild vice versa. 

To go from canvas space to window space, use canvas_ window_ event () . 
Keep in mind that the canvas_ window_ event function changes fields in its 
event argument structure. For example, if you want to put up a menu in a canvas 

24 The general input paradigm for Sunview is discussed in Chapter 6, Handling lnpuJ. See that chapter for a 
full discussion of the available input events and how to use them. 

25 Note that the canvas package apects to receive these events, and will not function properly if you disable 
them. Also, if the user has the enabled the Left_ Handed option in the lnpuJ category of default sed it (1 ), 
the mouse buttons are reversed: MS _LEFT refers to the right mouse button, MS _RIGHT to the left mouse 
button. 

26 If you want write a procedure which is called before the repaint, resize or scroll event is processed by the 
canvas package, in order to modify the interpretation of the event, you must interpose on the event, as described 
in Chapter 17, The Notifier. 

Revision A, of May 9, 1988 



Border Highlighting 

Example4: 

c 

Chapter 5 -Canvases 71 

subwindow, you need to specify the menu's location in the coordinate of the 
sub window, not of the canvas. 

To go from window space to canvas space, use canvas_event (). This 
returns the Event *it is passed, with the x andy fields changed. The transla­
tion is necessary if you read your own events with window_ read_ event (), 

described in the next chapter, Handling Input. 

The Sun View convention is that a subwindow indicates that it is accepting key­
board events by highlighted its border. By default, canvas subwindows do not 
enable any keyboard events, so the border is not highlighted. However, if you 
explicitly enable keyboard events, by consuming WIN_ASCII_EVENTS, the 
canvas package will highlight the canvas border when it is given the input focus. 

The program below prints out the corresponding string when the user types 0, 1, 
or 2 into its canvas: 

#include <suntool/sunview.h> 
#include <suntool/canvas.h> 

static void my_event_proc(); 

main(argc, argv) 
int argc; 
char **argv; 
{ 

Frame frame; 

frame= window_create(NULL, FRAME, 0); 
window_create(frame, CANVAS, 

WIN_CONSUME_KBD_EVENT, WIN_ASCII_EVENTS, 
WIN_EVENT_PROC, 
0) ; 

window_main_loop(frame); 
exit(O); 

static void 
my_event_proc(canvas, event) 

Canvas canvas; 
Event *event; 

char *string = NULL; 

switch (event_action(event)) 
case '0': 

string= "zero"; 
break; 

case '1': 
string "one "; 
break; 

my_event_proc, 

Revision A, of May 9, 1988 



72 Sun View 1 Programmer's Guide 

case '2': 
string "two "; 
break; 

default: 
break; 

if (string != NULL) 
pw_text(canvas_pixwin(canvas), 

10, 10, PIX_SRC, NULL, string); 

5.8. Color in Canvases You can use color in canvases by specifying a colonnap segment for the canvas 
with the colonnap manipulation routines described in Chapter 6, Handling Input. 

Setting the Colormap Segment The first thing to note is that since the canvas pixwin is a region of the 

Color in Retained Canvases 

Color in Scrollable Canvases 

WIN_ P IXWIN, you must also set the colonnap segment for the canvas pixwin. 

If the canvas is retained, then the colonnap segment must be set before 
CANVAS_ RETAINED is set to TRUE. This is because the canvas package will 
detennine the depth of the backing pixrect based on depth of the colonnap seg­
ment defined for the WIN_PIXWIN. (If the colonnap segment depth is greater 
than two, then the full depth of the display will be used. Otherwise, the backing 
pixrect depth will be set to one.) 

Since the depth of the backing pixrect is detennined when the canvas is created, 
you must create the canvas with CANVAS RETAINED FALSE, then set the 
colonnap segment, then set CANVAS_ RETAINED to TRUE. 

If the canvas has scrollbars, you need to attach the scrollbars to the canvas after 
the colonnap segment has been changed. If the canvas has already been created 
with scrollbars attached, you should change the colonnap, then re-attach the 
scrollbars. This will insure that the scrollbar pixwin regions use the new color­
map segment. 

sun 
mlcrosystems 

Revision A, of May 9, 1988 



C ExampleS: 

c 

Chapter 5 -Canvases 73 

Below is an example of setting the colonnap segment for a canvas: 

finclude <suntoollsunview.h> 
finclude <suntoollcanvas.h> 
finclude <sunwindowlcms_rainbow.h> 

init_color_canvas(base_frame) 
Frame base_frame; 

sun 
microsystems 

Canvas 
Pixwin 
unsigned char 
unsigned char 
unsigned char 

canvas; 
*pw; 

red[CMS_RAINBOWSIZE]; 
green[CMS_RAINBOWSIZE]; 
blue[CMS_RAINBOWSIZE]; 

canvas = window_create(base_frame, CANVAS, 
CANVAS_RETAINED, FALSE, 
0); 

cms_rainbowsetup(red, green, blue); 

I* set the WIN PIXWIN colormap *I 
pw = (Pixwin *) window_get(canvas, WIN_PIXWIN); 
pw_setcmsname(pw, CMS_RAINBOW); 
pw_putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue); 

I* set the CANVAS_PIXWIN colormap *I 
pw = (Pixwin *) canvas_pixwin(canvas); 
pw_setcmsname(pw, CMS_RAINBOW); 
pw_putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue); 

window~set(canvas, 

CANVAS_RETAINED, TRUE, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create(O), 
WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(O), 
0); 

Revision A, of May 9, 1988 





c 
6 

Handling Input 

Handling Input ................................................................................................................................ 77 

6.1. An Overview of the Input Environment ............................................................. 79 

How are events generated ? ............................................................................... 79 

What does the Notifier do with these events ? ........................................ 80 

How do windows determine which input they will receive? ......... 80 

6.2. Events ..................................................................................................................................... 80 

An event Procedure ................................................................................................ -80 

c - How Subwindows Handle Events .................................................................. 81 

6.3. A List of Events ................................................................................................................ 81 

Keyboard Motions ........................................... ,...................................................... 85 
\ 

6.4. Classes of Events ............................................................................................................. 86 

ASCII Events .................................................................................................................. 86 

Locator Button Events ............................................................................................... 86 

Locator Motion Events .............................................................................................. 86 

Window Events .............................................................................................................. 87 

Function Key Events ................................................................................................... 88 

Shift Key Events ............................................................................................................ 89 

Semantic Events ............................................................................................................ 89 

Other Events .................................................................................................................... 8 9 

6.5. Event Descriptors ............................................................................................................ 90 

6.6. Controlling Input in a Window................................................................................ 90 

Input Focus ....................................................................................................................... 91 

Input Mask ........................................................................................................................ 91 



Determining which Window will Receive Input ....................................... . 92 

6.7. Enabling and Disabling Events .............................................................................. . 93 r~\ 

Which Mask to Use .................................................................................................... . 93 u 
Setting the Input Mask as a Whole .................................................................... . 95 

Querying the Input Mask State ............................................................................ . 95 

6.8. Querying and Setting the Event State ................................................................. . 96 

6.9. Releasing the Event Lock .......................................................................................... . 97 

6.10. Reading Events Explicitly ...................................................................................... . 97 



c 

Material Covered 

Header Files 

Related Documentation 

Summary Listing and Tables 

6 

Handling Input 

This chapter explains how input is handled in Sun View. Specifically it: 

o gives an overview on how input is handled in Sun View 

o describes events and how they are used; 

o gives various classes of events -ASCII, action events, function keys, locator 
buttons, locator motion, window generated events, and so on; 

. o explains the input focus model distinguishing between pick and keyboard 
focuses; 

o shows how to control where input is distributed using input masks; 

o shows how to query the state of an event; 

o shows how to explicitly read events. 

The material in this chapter applies to the window system as a whole. However, 
it is of special interest to alerts or clients of canvases, who typically will want to 
handle events themselves. 

The definitions necessary to use Sun View's input facilities are in the header file 
<sunwindow/win_input. h>, which is included by 
<sunwindow/window_hs. h>, which in tum is included by default when 
you include <suntool/ sunview. h>. 

The chapter titled Workstations in the SunView 1 System Programmer's Guide 
explains the input system at a lower level, covering such topics as how to add 
user input devices to Sun View. 

To give you a feeling for what you can do with events, a list of the available 
event descriptors and input related window events is given on the following page. 
Many of these are discussed in the rest of this chapter and elsewhere (use the 
Index to check). All are briefly described with their arguments in the input sum­
mary tables in Chapter 19, Sun View Interface Summary: 

o the Event Descriptors table begins on page 333; 

o the Input-Related Window Attributes table begins on page 334. 

sun 
microsystems 

77 ReviSion A, ofMay 9, 1988 



78 Sun View 1 Programmer's Guide 

Input-Related Window Attributes 
WIN INPUT DESIGNEE 
WIN GRAB ALL INPUT 
WIN KBD FOCUS - -
WIN KBD INPUT MASK 
WIN PICK INPUT MASK 
WIN CONSUME KBD EVENT 
WIN IGNORE KBD EVENT 

WIN NO EVENTS 
WIN ASCII EVENTS 
WIN IN TRANSIT EVENTS 
WIN LEFT KEYS 

- -
WIN MOUSE BUTTONS 

~~sun ~ microsystems 

Event Descriptors 

WIN CONSUME KBD EVENTS 
WIN IGNORE KBD EVENTS - - -
WIN CONSUME PICK EVENT 
WIN IGNORE PICK EVENT 
WIN CONSUME PICK EVENTS 
WIN IGNORE PICK EVENTS 

WIN RIGHT KEYS - -
WIN TOP KEYS 
WIN UP ASCII EVENTS - - -
WIN UP EVENTS 

Revision A, of May 9, 1988 



c 

6.1. An Overview of the 
Input Environment 

How are events generated ? 

Figure 6-1 

Chapter 6- Handling fuput 79 

The input environment for Sun View differs from UNIX programs. Most UNIX 
programs read characters from standard input by using either the read(2) system 
call or the standard 1/0 functions such as get c(3S), get s(3S), or scanf(3S). 
Sun View is different in that the underlying Notifier formats user input into uni­
form events, which it distributes to the window's event procedure. 

Figure 6-1 illustrates how events are generated and handled in Sun View. 

Input Events 

vuid firll events 

DriYer 

Physical 
Input 

DeY ice 

DriYer 

Physical 
Inpu.t 

DeYice 

Driver 

Kernel Proc~ss ~ ............................................................................................................................................ 
Application Process 

Procedure 

Notifier 

Events 

EYent 
Procedure Procedure 

Revision A, of May 9, 1988 



80 Sun View 1 Programmer's Guide 

What does the Notifier do with 
these events ? 

How do windows determine 
which input they will receive? 

6.2. Events 

An event Procedure 

Events are generated from several sources. These include standard devices such 
as the keyboard and mouse, special input devices such as graphics tablets, and 
the window system itself. 

Sun View does not directly receive events from the hardware devices. Instead 
each user action is interpreted by a "virtual" user input device (VUID) interface. 
This interface packages the data it receives into an event and sends it to the appli­
cation process.27 

The Notifier weaves events from all of these sources into a single, ordered event 
stream. This event stream eliminates the need for the application to poll separate 
streams from the different devices. 

Because the underlying Notifier multiplexes the input stream between windows, 
each individual window operates under the illusion that it has the user's full 
attention. That is, it sees precisely those input events that the user has directed to 
it. 

Each window indicates which events it is prepared to handle using input masks, 
described in Section 6.6, Controlling Input in a Window. These masks only let 
specified events through to the process. 

As discussed in the previous section, each user action generates an input event. 
This event is passed to your event procedure as an Event pointer (type 
Event *). Three types of information are encoded as part of an event: 

o an identifying code, accessed with the macro event_action () 

o the location of the event in the window's coordinate system, accessed with 
the macros event_x () and event_y () 

o a timestamp, accessed with the macro event_ time ( ) 

Notice that the macro event_action () has replaced the old event_id (). 
For compatibility reasons, event_id () is still supported, so that old code that 
does not use the new action event codes will still work. See Section 6.4, Classes 
of Events, for an explanation of action events. New programs that want to take 
advantage of the new action events must use the event_action () macro. 

Use the following form to specify an an event procedure in your applications: 

void 
sample_event_proc(window, event, arg) 

Window window; 
Event *event; 
caddr t arg; 

27 It is possible to bypass the VUID and receive unencoded events. Refer to the section on Unencodedlnput 
in Chapter? of the Sun View 1 System Programmer's Guide. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

,/""\ 
. ) 
\__/ 



c 

c 

How Subwindows Handle 
Events 

6.3. A List of Events 

Chapter 6 - Handling Input 81 

The arguments passed in are the window, the event, and an optional argument 
containing data pertaining to the event. For example, if the event is a 
SCROLL_ REQUEST, arg will be the scrollbar that sent the event. 

The canvas and panel subwindows pass events that they receive on to an event 
procedure. These event procedures are supplied by the application as the value 
ofWIN_EVENT_PROC. lfyou set the WIN_EVENT_PROC of a canvas or panel 
to a function you have written, you can receive events after they have been pro­
cessed by the canvas or panel. Both the canvas and panel packages process 
SCROLL_REQUEST, WIN_RESIZE, and WIN_REPAINT events before calling 
your event procedure. The form of an event procedure is: 

void 
sample_event_proc(window, event, arg) 

Window window; 
Event 
caddr t 

event; 
arg; 

The arguments passed in are the window (canvas or panel), the event, and an 
optional argument containing data pertaining to the event. For example, if the 
event is a SCROLL_ REQUEST, arg will be the scrollbar that sent the event. 

The default panel event procedure maps events to actions and determines which 
panel item to send the event to. The default canvas event procedure does no 
further processing of the event. You can call the default window event procedure 
by calling window default event proc () with the same arguments 
passed to your event procedure.28 -

Two tables are given on the following pages. Table 6-1, Event Codes, lists the 
predefined event codes and their values. 29 The event id or code numbers that the 
window system uses to represent an event are included in this table. These event 
code numbers are in the range of 0-65535. The numbers are useful when debug­
ging a program because the debugger reports event codes as decimal integers and 
not as names. 

Table 6-2, Keyboard Motions and Accelerators, lists the event name and its asso­
ciated keyboard accelerator. 

28 H you need to receive an event before it is processed by a canvas, panel, or any other type of window, you 
can use the more general notifier interposition mechanism described in Chapter 17, The Notijier, 

29 The same table also appears in the input summary section of Chapter 19, Sun View Interface Summary. 

sun Revision A, of May 9, 1988 
microsystems 



82 Sun View 1 Programmer's Guide 

Table 6-1 

Event Code 
ASCII FIRST 

ASCII LAST 

META FIRST 

META LAST 

ACTION ERASE CHAR BACKWARD - -
ACTION ERASE CHAR FORWARD - -
ACTION ERASE WORD BACKWARD - - -
ACTION ERASE WORD FORWARD 

ACTION ERASE LINE BACKWARD 

ACTION ERASE LINE END 

ACTION GO CHAR BACKWARD 

ACTI'ON GO CHAR FORWARD - - -
ACTION GO WORD BACKWARD 

ACTION GO WORD END - - -
ACTION GO WORD FORWARD 

ACTION GO LINE BACKWARD - - -
ACTION GO LINE END - - -
ACTION GO LINE FORWARD 

ACTION GO COLUMN BACKWARD 

ACTION GO COLUMN FORWARD 

ACTION GO DOCUMENT START 

ACTION GO DOCUMENT END 

ACTION STOP 

ACTION AGAIN 

ACTION PROPS 

ACTION UNDO 

ACTION FRONT 

ACTION BACK 

ACTION OPEN 

ACTION CLOSE 

ACTION COPY 

ACTION PASTE 

ACTION CUT 

ACTION COPY THEN PASTE 

ACTION FIND FORWARD 

ACTION FIND BACKWARD - -
ACTION FIND AND REPLACE - - -
ACTION_SELECT_FIELD_FORWARD 

ACTION_SELECT_FIELD_BACKWARD 

Event Codes 

Description 
Marks beginning of ASCII range 

Marks end of ASCII range 

Marks beginning of MET A range 

Marks end of MET A range 

Erase char to the left of caret 

Erase char to the right of caret 

Erase word to the left of caret 

Erase word to the right of caret 

Erase to the beginning of the line 

Erase to the end of the line 

Move the caret one character to the left 

Move the caret one character to the right 

Move the caret one word to the left 

Move the caret to the end of the word 

Move the caret one word to the right 

Move the caret to the start of the line 

Move the caret to the end of the line 

Move the caret to the start of the next line 

Move the caret up one line, 

maintaining column position · 

Move the caret down one line, 

maintaining column position 

Move the caret to the beginning of the text 

Move the caret to the end of the text 

Stop the operation 

Repeat previous operation 

Show property sheet window 

Undo previous operation 

Bring window to the front of the desktop 

Put the window at the back of the desktop 

Open a window from its icon form or close 

if already open) 

Close a window to an icon 

Copy the selection to the clipboard 

Copy clipboard contents to the insertion point 

Delete the selection, put on clipboard 

Copies then pastes text 

Find the text selection to the right of the caret 

Find the text selection to the left of the caret 

Show find and replace window 

Select the next delimited field 

Select the previous delimited field 

;---\ 
1"._) 

Value (for debugging) 
0 

127 

128 

255 

31744 

31745 

31746 

31747 

31748 

31749 

31752 

31753 

31754 

31756 

31755 

31757 

31759 

31758 

31761 {'\ 

u 
31762 

31763 

31764 

31767 

31768 

31769 

31770 

31772 

31773 

31775 

31776 

31774 

31777 

31781 

31784 

31779 

31778 

31780 

31783 (\ 
31782 "......_,_..,_/ 

Revision A, of May 9, 1988 



c Table 6-1 

Event Code 
ACTION MATCH DELIMITER 

ACTION_QUOTE 

ACTION EMPTY 

ACTION STORE 

ACTION LOAD 

ACTION GET FILENAME 

ACTION SET DIRECTORY 

ACT.ION INCLUDE FILE 

ACTION CAPs LOCK 

PANEL EVENT CANCEL 

PANEL EVENT MOVE IN 

PANEL EVENT DRAG IN - -

SCROLL_REQUEST 

SCROLL ENTER 

(' SCROLL EXIT 

"-~ 
LOC MOVE 

LOC STILL 

LOC WINENTER 

LOC WINEXIT 

LOC DRAG 

LOC RGNENTER 

LOC RGNEXIT 

LOC TRAJECTORY 

WIN REPAINT 

WIN RESIZE 

WIN STOP 

KBD_REQUEST 

KBD USE 

KBD DONE 

SHIFT LEFT 

SHIFT RIGHT 

SHIFT CTRL 

SHIFT META c SHIFT LOCK 

SHIFT CAPSLOCK 

'l~ ' 

Event Codes- Continued 

Description 
Selects text up to a matching delimiter 

Causes next event in the input stream to 

pass untranslated by the keymapping system 

Causes the subwindow to be emptied 

Stores the specified selection as a new file 

Loads the specified selection as a new file 

Gets the selected filename 

Sets the directory to the selection 

Selects the current line (in pending-delete mode) 

and attempts to insert the file described by that selection 

Toggle caps lock state 

The panel or panel item is no longer "current" 

The panel or panel item was entered 

with no mouse buttons down 

The panel or panel item was entered with one or more 
mouse buttons down 

Scrolling has been requested 

Locator (mouse) has moved into the scrollbar 

Locator (mouse) has moved out of the scrollbar 

Locator (mouse) has moved 

Locator (mouse) has been still for 1/5 second 

Locator (mouse) has entered window 

Locator (mouse) has exited window 

Locator (mouse) has moved while a button was down 

Locator (mouse) has entered a region of the window 

Locator (mouse) has exited a region of the window 

Inhibits the collapse of mouse motions; clients receive 
LOC _TRAJECTORY events for every locator motion 
the window system detects. 

Some portion of window requires repainting 

Window has been resized 

User has pressed the stop key 

Window is about to become the focus of keyboard input 

Window is now the focus of keyboard input 

Window is no longer the focus of keyboard input 

Left shift key changed state 

Right shift key changed state 

Control key changed state 

Meta key changed state 

Shift lock key changed state 

Caps lock key changed state 

sun 
microsystems 

Chapter 6 - Handling Input 83 

Value (for debugging) 
31894 

31898 

31899 

31785 

31786 

31788 

31788 

31891 

31895 

32000 

32001 

32002 

32256 

32257 

32258 

32512 

32513 

32514 

32515 

32516 

32519 

32520 

32523 

32517 

32518 

32522 

32526 

32524 

32525 

32530 

32531 

32532 

32534 

32529 

32528 

Revision A, of May 9, 1988 



84 Sun View 1 Programmer's Guide 

Table 6-1 

Event Code 
BUT(i) 
MS LEFT 

MS MIDDLE 

MS RIGHT 

KEY_LEFT(i) 
KEY_RIGHT(i) 
KEY_TOP(i) 

Event Codes- Continued 

Description 
Locator (mouse) buttons 1-10 

Left mouse button 

Middle mouse button 

Right mouse button 

Left function keys 1-15 

Right function keys 1-15 

Top function keys 1-15 

Value (for debugging) 
BUT(1) is 32544 

32544 

32545 

32546 

KEY_ LEFT ( 1) is 32554 

KEY_RIGHT (1) is32570 

KEY_ TOP ( 1) is 32586 

Revision A, of May 9, 1988 

0 



c 

c 

Table 6-2 Keyboard Motions and Accelerators 

Command Token 

ACTION ERASE CHAR BACKWARD 

ACTION ERASE CHAR FORWARD - -
ACTION ERASE WORD BACKWARD 

ACTION ERASE WORD FORWARD 

ACTION ERASE LINE BACKWARD - -
ACTION ERASE LINE END - - -
ACTION GO CHAR BACKWARD 

ACTION_GO_CHAR_FORWARD 

ACTION GO WORD BACKWARD 

ACTION_GO_WORD_END 

ACTION GO WORD FORWARD 
- - -

ACTION GO LINE FORWARD - - -
ACTION GO LINE BACKWARD - - -
ACTION_GO_LINE_END 

ACTION GO COLUMN BACKWARD 
- - /-

ACTION GO COLUMN FORWARD 

ACTION GO DOCUMENT START 

ACTION GO DOCUMENT END 

ACTION STOP 

ACTION AGAIN 

ACTION PROPS 

ACTION UNDO 

ACTION FRONT 

ACTION BACK 

ACTION OPEN 

ACTION CLOSE 

ACTION COPY 

ACTION PASTE 

ACTION CUT 

ACTION COPY THEN PASTE 

ACTION FIND FORWARD 

ACTION FIND BACKWARD 

ACTION FIND AND REPLACE 

ACTION SELECT FIELD FORWARD - -
ACTION SELECT FIELD BACKWARD 

ACTION MATCH DELIMITER 

ACTION_QUOTE 

ACTION EMPtY (Document) 

ACTION STORE 

~~sun ~ microsystems 

Sun View 4.0 

~ 
I Shift-Delete I 
I Control-W I 
I Shift-Control-W I 
I Control-U I 
I Shift-Control-U I 
I Control-B J or ( Shift-Control-F I or 

QliQJ 
I Control-F I or ( Shift-Control-B I or 

IR12J 

I Control-comma ) or 

(Shift-Control-period I or 

I Shift-Control-slash I 
I Control-period I 
I Control-slash I or 

I Shift-Control-comma J 

I Control-semicolon I or QliD 
( Control-A ) or I Shift-Control-E I 
I Control-E I or I Shift-Control-A I 
I Contro]-P I or I Shift-Control-N I or 

(Rill 
I Control-N I or (Shift-Control-PI or 

OillJ 
I Shift-Control-Return I or (]I) 
I Control-Return I or ( Rl3l 

liD 
I L2 I or (Meta-A I 
a:D 
I L4 I or( Meta-VI 

a:n 
I Shift-L5 I 
(ill 
( Shift-L71 

I L6 I or( Meta-C I 
G:[) or I Meta-VI 

o::JQ) or I Meta-X I 
(Meta-PI 

(]]] or CMeiii}J 
I Shift-L9 I or ( Shift-Meta-F I 
( Control-L9 I 

I Control-Tab J 

I Shift -Control-Tab I 
I Meta-D I 
IMeta-0 I 
(Meta-E) 

I Meta-S I 

Chapter 6 -Handling Input 85 

SunView3.x 

~ 
I Shift-Delete I 
I Control-W I 
I Shift-Control-W I 
I Control-U I 
I Shift-Control-U J 

I Control-Return I 

liD 
1]:2"1 
a:D 
(li) 

a:n 
(Shift-LSI 

(ill 
I Shift-L7 I 

(L61 

G:[) or I Control-G l 
o::JQ) or ( Control-D I 

( Control-P I 
I L9J or I Control-F) 

I Shift-L9 lor ( Shift-Control-F I 

Revision A, of May 9, 1988 



86 Sun View 1 Programmer's Guide 

Table 6-2 

Command Token 
ACTION LOAD 
ACTION INCLUDE FILE - -
ACTION HELP30 
ACTION GET FILENAME 
ACTION CAPS LOCK 

6.4. Classes of Events 

ASCllEvents 

Locator Button Events 

Locator Motion Events 

Keyboard Motions and Accelerators- Continued 

SunView4.0 
[Meta-L] 

l Meta-l] 

~ (I Metq-Shift-1 0 
~ 
em 

SunView3.x 

This section groups each of the events described in Table 6-1, Event Codes, into 
logical classes. Each class is described below. 

The event codes in the range 0 to 255 inclusive are assigned to the ASCII event 
class. This includes the standard 7-bit ASCII codes and their 8-bit META coun­
terparts. 

If a user strikes a key which has an obvious ASCII meaning; that is, a key in the 
main typing array labeled with a single letter, it causes the VUID to enqueue for 
the appropriate window an event whose code is the corresponding 7-bit ASCII 
character. 

The META event code values (128 through 255) are generated when the user 
strikes a key that would generate a 7 -bit ASCII code while the MET A key is also 
depressed. 

The standard Sun locator is a three button mouse, whose buttons generate the 
event codes MS_LEFT, MS_MIDDLE andMS_RIGHT. 

In general, a physical locator can have up to 10 buttons connected to it. In some 
cases, the locator itself may not have any buttons on it; however, it may have 
buttons from another device assigned to it. A light pen is an example of such a 
locator. 

Each button that is associated with the VUID's locator is assigned an event code; 
the i-th button is assigned the code BUT ( i) . Thus the event codes MS _LEFT, 
MS _MIDDLE and MS _RIGHT correspond to BUT ( 1) , BUT ( 2) and BUT ( 3) . 

The physical locator constantly provides an (x, y) coordinate position in pixels; 
this position is transformed by Sun View to the coordinate system of the window 
receiving an event. Locator motion event codes include LOC _MOVE, 
LOC_DRAG, LOC_TRAJECTORY, and LOC_STILL. 

Since the locator tracking mechanism reports the current position at a set sam­
pling rate, 40 times per second, fast motions will yield non-adjacent locations in 
consecutive events. 

30 If your keyboard has the ( L16 l key, you may also use it. 

sun Revision A, of May 9, 1988 
microsystems 

~~ \ . 
-.._)' 



c 

Window Events 

Chapter 6- Handling Input 87 

A LOC _MOVE event is reported when the locator moves, regardless of the state 
of the locator buttons. If you only want to know about locator motion when a 
button is down, then enable LOC _DRAG instead of LOC _MOVE. This will 
greatly reduce the number of motion events that your application has to process. 

When you enable LOC_MOVE or LOC_DRAG, the window system gives you the 
current locator position by collapsing consecutive locator motion events into one. 
This operation is appropriate for applications such as dragging an image from 
one point to another, in which it is important to keep up with the mouse cursor. 

For some applications, however, each point on the cursor trajectory is of interest; 
for example, a program that lets the user draw. In these situations you may not 
want to collapse consecutive motion events. In such a situation you should ask 
for LOC _TRAJECTORY events, which suppresses any event collapsing so that 
you get all the locator movements that the window system sees. 

Note that when you ask for LOC TRAJECTORY events, you get (many!) 
LOC _TRAJECTORY events in place of LOC _MOVE's, but you still get 
LOC _DRAG events if you have enabled them. 

If you ask for LOC_STILL, a single LOC_STILL event will be reported after 
the locator has been still for l/5 of a second. 

Window events are generated by the window system itself. They are meaningful 
only to the window to which they are directed. 

To be informed when the locator enters or exits a window, enable events with the 
codes LOC WINENTER and LOC WINEXIT. 

NOTE If you are using the tile mechanism described in the Sun View 1 System 
Programmer's Guide, then you will be told when the locator has entered or 
exited a tile using the LOC RGNENTER and LOC RGNEXIT events. To receive 
these events you must also have~ LOC _MOVE enabled. 

Resize & Repaint Events When the size of a window is changed (either by the user or programmatically) a 
WIN_RESIZE event is generated to give the client a chance to adjust any 
relevant internal state to the new window size. You should not repaint the screen 
on receiving a resize event. You will receive a separate WIN_ REPAINT event 
when a portion of the window needs to be repainted. 

NOTE If you are using a canvas subwindow you will not need to track resize and 
repaint events directly. The canvas package receives these events, computes the 
new window dimensions or the precise area requiring repainting, and calls your 
resize or repaint procedures directly. See Chapter 5, Canvases for more details. 

sun Revision A, of May 9, 1988 
microsystams 



8 8 Sun View 1 Programmer's Guide 

Keyboard Focus Events 

Stop Event 

Function Key Events 

Three events let your application interact with the keyboard focus mechanism 
(the keyboard focus is explained in section 6.6, Controlling Input in a Window). 
When the user explicitly directs the keyboard focus towards your window, you . 
will receive a KBD _REQUEST event. Your window will then become the key­
board focus unless you call window_ refuse_kbd_focus (). Refusing the 
keyboard focus, when you don't ~eed it, contributes to the usefulness of the split 
keyboard/pick focus mode available as a runtime option to sunview( 1 ). 

The events KBD:_ USE and KBD _DONE parallel the locator events 
LOC _ WINENTER and LOC _ WINEXIT, respectively. KBD _USE indicates that 
your window now has the keyboard focus and KBD _DONE indicates that your 
window no longer has it. 

If the user presses and releases the ~ key, an event with the code 
WIN_ STOP will be sent to the window under the cursor.31 In addition, a 
SIGURG signal is sent to the window's process. Your application can use the 
(]!QQJ key by clearing a stop flag and setting a S IGURG interrupt handler32 

before entering a section of code that might, from the user's perspective, take a 
long time. If your SIGURG handler is called, set the stop flag and return. In the 
code that is taking a long time, query the stop flag whenever convenient. When 
you notice that the stop flag has been set, read the event, then gracefully ter­
minate your long operation. 

The function keys in the VUID define an idealized standard layout that groups 
keys by location: 15left, 15 right, 15 top and 2 bottom.33 

The event codes associated with the function keys are KEY_ LEFT ( i) , 
KEY_ RIGHT ( i) and KEY_ TOP ( i), where i ranges from 1 to 15. 

If you specifically ask for a function key eventcode, then that event code will be 
passed to your event procedure. 

If you don't specifically ask for a given function key event code, then when the 
user presses that function key you will get an escape sequence instead of the 
function key event code (assuming ASCII events have been enabled). For physi­
cal keystations that are mapped to cursor control keys, events with codes that 
correspond to the ANSI X3.64 7-bit ASCII encoding for the cursor control func­
tion are transmitted. For physical keystations mapped to other function keys, 
events with codes that correspond to an ANSI X3.64 user-definable escape 
sequence are transmitted. 

31 WIN_ STOP only works when enabled in the PICK event mask and not in the KBD event mask. 
3i See notify_set_signal_func () in in Chapter 17, The Notifier 

33 The actual position of the function keys on a given physical keyboard may differ- see kbd(5) for details 
on various keyboards. 

sun 
microsystems 

Revision A, of May 9, 1988 

.!""'\ 
\ ; .._,/ 

(~ 
\_.J 

0 



C Shift Key Events 

Semantic Events 

Other Events 

c 

Chapter 6- Handling Input 89 

Applications can notice when a shift key ch~ges state by enabling events with 
the following codes: SHIFT_LEFT, SHIFT_RIGHT, SHIFT_CTRL, 

SHIFT_META, SHIFT_LOCK and SHIFT_CAPSLOCK. Although these codes 
allow you to treat one or more shift key as function-invoking keys, this is not 
recommended. Instead of watching for the event directly, you should query the 
state of the shift keys via the macros described on the next page. 

Release 4.0 of the SunOS introduces a new type of event. These events are 
called action events and represent some old and many new functions in the win­
dow system. They are similar to the old events in that they are mapped to 
specific keys on the keyboard. That is, certain combinations of keystrokes in 
Sun View correspond to high-level action events. For example, pressing the 
~key copies' the current selection to the Qipboard in text subwindows, 
panels and tty subwindows. 

Action events differ from the old events in that applications can directly express 
interest in the high-level action, "Copy the selection to the Qipboard" rather than 
in the low-level, "The L6 key was pushed". These events appear in Table 6-1 
with the prefix ACT ION_. Applications should use action events, because left­
handed users can assign~ to a different key, and in the future users will be 

allowed to tie high-level events to arbitrary key combinations. 

Your application may receive events which don't fall into any of the classes 
described above. For example, a non-standard input device, such as a second 
mouse, may emit its own types of events. Also, a software object may communi­
cate with other software objects via events, as is the case when a scrollbar sends a 
SCROLL_ REQUEST to a panel or a canvas. 

In general, your event procedure should not treat such unexpected events as 
errors. They can simply be ignored. 

Revision A, of May 9, 1988 



90 Sun View 1 Programmer's Guide 

6.5. Event Descriptors 

Table 6-3 

6.6. Controlling Input in a 
Window 

Events have been further grouped into descriptors. Descriptors describe classes 
of events such as all ASCII events, all mouse buttons, all top function keys, and 
so on. You will use these descriptors to set input masks, described in Section 6.7 
Enabling and Disabling Events 

The descriptors are summarized in the following table. 

Event Descriptors 

Event Descriptor 

WIN NO EVENTS 

WIN~ASCII EVENTS 

Explanation 

Clears input mask- no events will be accepted. Note: the 

effect is the same whether used with a consume or an 

ignore attribute. A new window has a cleared input mask. 

All ASCII events. ASCII events that occur while the MET A 
key is depressed are reported with codes in the MET A range. 

In addition, cursor control keys and function keys are 

reported as ANSI escape sequences: a sequence of events 

whose codes are ASCII characters, beginning with <ESC>. 

WIN IN TRANSIT EVENTS Enables immediate LOC _MOVE, 

LOC_WINENTER, and 

WIN LEFT KEYS 

WIN MOUSE BUTTONS - -
MS MIDDLE 

and MS LEFT. 

WIN RIGHT KEYS 

WIN TOP KEYS 

WIN UP ASCII EVENTS - - -

WIN UP EVENTS 

LOC _ WINEXIT events. Pick mask only. Off by default 

The left function keys, KEY_LEFf(l)- KEY_LEFf(15). 

Shorthand forMS_ RIGHT, 

Also sets or resets WIN UP EVENTS. 

The right function keys, KEY_RIGHT(l)- KEY_RIGHT(15). 

The top function keys, KEY_TOP(l)- KEY_TOP(15). 

Causes the matching up transitions to normal 
ASCII events to be reported- if you see an 'a' 

go down, you'll eventually see the matching 'a' up. 

Causes up transitions to be reported for button 

and function key events being consumed. 

Input may be controlled using input focus and input mask. The input focus is the 
window that is currently receiving input. The input mask specifies which events 
a window will receive and which events a window will ignore. This section 
introduces these concepts and gives the algorithm used by the window system to 
decide which window will receive a given input. 

sun 
microsysterns 

Revision A, of May 9, 1988 

(\, 
\__) 



c Input Focus 

Input Mask 

c 

Chapter 6 - Handling Input 91 

Sun View supports two types of focus models, a single focus model and a split 
focus model. 

The single focus model specifies that all input, no matter which input device it 
came from, goes to the same window. The split input focus lets the user control 
the pick input focus and the keyboard input focus separately. 

The word pick comes from the general graphics term pick device, which is a user 
input device that allows you to move a cursor on the screen and then click a but­
ton to choose a point on the screen. The most common pick devices are the 
mouse, light pen and graphics tablet. 

Under the split input focus model, mouse clicks and keystrokes may be distri­
buted to different windows. This makes some operations easier for the user. For 
example, the user can select text in one window and move it to another window 
without having to position the cursor over the destination window. 

In general, the user controls the keyboard focus by using specific button clicks 
and controls the pick focus by moving the mouse. Sometimes, it is appropriate 
for input focuses to be under program control. Generally you should only change 
an input focus based on some explicit and predictable user action. 

You can indicate that you want a window to become the keyboard focus by set­
ting the WIN_ KEYBOARD _FOCUS attribute to TRUE. Note that this is only a 
hint to the window system. If the keyboard focus is tied to the pick focus, then 
this call has no effect. The target window might also refuse the,keyboard focus 
request generated by this call (see KBD _REQUEST under Window Events above). 
You can set the pick focus via the WIN MOUSE XY attribute, which sets the 
mouse cursor to a particular position within a window. 

For example, the call 

window_set(win, WIN_MOUSE_XY, 200, 300, 0); 

sets the cursor to the window-relative position (200, 300) and sets the pick focus 
to win. 

An input mask specifies which events a window will receive and which events it 
will ignore. In other words, an input mask serves as a read enable mask. Each 
window has both a pick input mask, to specify which pick related events it wants, 
and a keyboard input mask, to specify which keyboard related events it wants. 

When a window is the pick focus, its pick mask is used to screen events. When a 
window is the keyboard focus, its keyboard mask is used to screen events. 

This section describes how to specify which events a window will receive and 
which it will ignore. 

4}~sun 
~ microsystems 

Revision A, of May 9, 1988 



92 Sun View 1 Progrilmmer's Guide 

Determining which Window 
will Receive Input 

The Notifier determines which window will receive a given event according to 
the following algorithm: 

o First, the keyboard input mask for the window which is the keyboard focus 
is checked to see if it wants the event. If so, then it becomes the recipient; 
otherwise the next test is applied. 

o Second, the pick input mask for the window which is under the cursor is 
checked to see if it wants the event. If several windows are layered under 
the cursor, then the event is tested against the pick input mask of the topmost 
window. If the mask wants the event, then it becomes the recipient; other­
wise the next test is applied. 

o If the event does not match the pick input mask of the window under the cur­
sor, then the event will be offered to that window's designee. By default the 
designee is the window's owner. You can set the designee explicitly by cal­
ling window_set () with the WIN_INPUT_DESIGNEE attribute.34 

o If an event is offered unsuccessfully to the root window, it is discarded. 
Windows which are not in the chain of designated recipients never have a 
chance to accept the event. 

o Occasionally you may want to specify that a given window is to receive all 
events, regardless of their location on the screen. You can do this by setting 
the WIN GRAB ALL INPUT attribute for the window to TRUE. 

o If a recipient is found, then the locator coordinates are adjusted to the coor­
dinate system of the recipient, and the event is appended to the recipient's 
input stream. Thus, every window sees a single ordered stream of time­
stamped input events, which contain only the events that a window has 
declared to be of interest. 

34 Note that you must give the WIN DEVICE NUMBER of the window you wish to be the designee, not its 
handle. This is to allow specifying windows in ~ther user process as the input designee. So the following call 
would set win2 to be the designee for winl: window_ set (winl, WIN _INPUT_DESIGNEE, 
window_get(win2, WIN_DEVICE_NUMBER)); 

·~~sun ~ microsystems 
Revision A, of May 9, 1988 



c 

c 

6.7. Enabling and 
Disabling Events 

Chapter 6 -Handling Input 93 

You specify which events a window will receive and which it will ignore by set­
ting the window's input masks via the following set of attributes: 

Table 6-4 Attributes Used to Set Window Input Masks 

Which Mask to Use 

Examples 

Events Taking a 
Single Code 

WIN CONSUME KBD EVENT 

WIN IGNORE KBD EVENT 

WIN CONSUME PICK EVENT - -

WIN IGNORE PICK EVENT 

Events Taking a Null 
Terminated List 

WIN_CONSUME_KBD_EVENTS 

WIN_IGNORE_KBD:.._EVENTS 

WIN_CONSUME_PICK_EVENTS 

WIN_IGNORE_PICK_EVENTS 

The above attributes take as values either event codes such as LOC _MOVE, 

MS _LEFT, KEY _LEFT ( 2) , and so on, or event descriptors. The attributes in 
the left column, ending in"_ EVENT", take a single code or descriptor, while 
those on the right, ending in "_EVENTs", take a null tenninated list 

To enable or disable ASCII events, use the keyboard mask. To enable or disable 
locator motion and button events, use the pick mask. 

Function keys are typically associated with the keyboard mask, but sometimes it 
makes sense to include some function keys in the pick mask- in effect extend­
ing the number of buttons associated with the pick device. For example, in the 
Sun View interface the (Again I, fii'iidO), ~. ~. (Qii), and I Find I func­
tion keys are associated with the keyboard mask, while the ~. I Front I, and, 
~ keys are associated with the pick mask. 

The event attributes cause precisely the events you specify to be enabled or dis­
abled- the input mask is not automatically cleared to an initial state. To be 
sure that an input mask will let through the events you specify, first clear the 
mask with the special WIN_ NO_ EVENTS descriptor. Take, for example, the fol­
lowing two calls: 

window_set(win, WIN_CONSUME_PICK_EVENTS, 
WIN_MOUSE_BUTTONS, LOC_DRAG, 0, 
0) ; 

window_set(win, WIN CONSUME PICK EVENTS, 
WIN_NO_EVENTS, WIN_MOUSE_BUTTONS, LOC_DRAG, 0, 
0) ; 

The first call adds the mouse buttons and LOC _DRAG to the existing pick input 
mask, while the second call sets the mask to let only the mouse buttons and 
LOC _DRAG through. 

sun 
microsystems 

Revision A, of May 9, 1988 



94 Sun View 1 Programmer's Guide 

1~1 
Canvases by default enable LOC WINENTER, LOC WINEXIT, LOC MOVE, \_) 
and the three mouse buttons, MS=LEFT, MS_MIDDLE, andMS_RIGHT.35 You 
could allow the user to type in text to a canvas by calling: 

window_set(canvas, WIN_CONSUME_KBD_EVENT, WIN ASCII_EVENTS, 0); 

Sometime later you could disable type-in by calling: 

window_set(canvas, WIN_IGNORE_KBD_EVENT, WIN_ASCII_EVENTS, 0); 

An application needing to track mouse motion with the button down would 
enable LOC_DRAG by calling: 

window_set(canvas, WIN_CONSUME_PICK_EVENT, LOC_DRAG, 0); 

You can enable or disable the left, right or top function keys as a group via the 
event descriptors WIN_LEFT_KEYS, WIN_RIGHT_KEYS, or 
WIN_TOP_KEYS. Note that if you want to see the up event you must also ask 
for WIN_ UP_ EVENTS, as in: 

window_set(win, WIN_CONSUME_KBD_EVENTS, WIN_LEFT_KEYS, 
WIN_UP_EVENTS, 0); 

In order to improve interactive performance, in the default case, windows do not 
receive locator motion events (LOC _ WINENTER, LOC _ WINEXIT, and 
LOC _MOVE) until after a LOC _STILL has been generated. If each window 
responds to all of the events that are generated each time the mouse passes over 
the window, then the response time of the system will be slowed down. Each 
window will "wake up" when the mouse passes over it on the way to somewhere 
else on the screen. 

If you want a window to receive all events, even if the mouse is just passing over 
the window without stopping, enable WIN_IN_TRANSIT_EVENTS, with a call 
such as: 

window_set(canvas, WIN_CONSUME_PICK_EVENTS, 
WIN_IN_TRANSIT_EVENTS, 0); 

(\1 
I I 

'-~/ 

35 Note that the canvas package expects to receive these events, and will not function properly if you disable (\ 
them. 

\-... ...... _,,.__/'/ 

sun Revision A, of May 9, 1988 
microsystems 



c 

Setting the Input Mask as a 
Whole 

Querying the Input Mask 
State 

Chapter 6 -Handling Input 95 

The attributes WIN KBD INPUT MASK and WIN PICK INPUT MASK allow 
you to get or set an entire input mask. Let's take the example of a subroutine that 

- provides interactive feedback. You can save the input mask on entry to the sub­
routine, set up the mask as appropriate, and restore the original mask before 
returning as follows: 

do_feedback () 
{ 

Inputmask *saved_mask; 

saved_mask = (Inputmask *) 
window_get(win, WIN_KBD_INPUT_MASK); 

window_set(win, WIN_KBD_INPUT_MASK, saved_mask, 0); 

Keep in mind that the inputmask pointer returned by window _get () points to 
a static structure which is shared by all windows in the application. Getting 
either the keyboard or pick input masks for another window will cause the static 
structure to be overwritten. 

You can use window_get () with WIN_CONSUME_PICK_EVEN'::r' and 
WIN_ CONSUME_ KBD _EVENT to query the state of the input masks. For exam­
ple, the following call will find out whether or not a canvas is accepting 
LOC DRAGs: 

flag= (int)window_get(canvas, WIN_CONSUME_PICK_EVENT, LOC_DRAG); 

Revision A, of May 9, 1988 



96 Sun View 1 Programmer's Guide 

6.8. Querying and Setting 
the Event State 

Table 6-5 

You can query the state associated with an event using the following macros, all 
of which take as their only argument a pointer to an Event. 

Macros to Get the Event State 

Macro 
event_action () 

event_is_up () 

event_is_down () 

event_x() 

event_y() 

event_shiftmask() 

event_time () 

event shift_is_down() 

event_ctrl_is_down() 

event_meta_is_down() 

event_is_button() 

event_is_ascii () 

event_is_meta () 

event_is_key_left() 

event_is_key_right() 

event is key top() 

Returns 
The identifying code of the event. The codes are dis­
cussed in the previous section.36 

TRUE if the event is a button or key 

event and the state is up. 

TRUE if the event is a button or key 

event and the state is down. 

The x coordinate of the locator in the window's 

coordinate system at the time the event occurred. 

The y coordinate of the locator in the window's 

coordinate system at the time the event occurred. 

The value of predefined shift-keys 

(described in kbd(5)). Possible values: 

#define CAPSMASK OxOOOl 

#define SHIFTMASK OxOOOE 

#define CTRLMASK Ox0030 

#define META SHIFT MASK Ox0040 

The event's timestamp, formatted as a timeval 

struct, as defined in <sys/time. h>. 

TRUE if one of the shift keys are down. 

TRUE if the control key is down. 

TRUE if the meta key is down. 

TRUE if the event is a mouse button. 

TRUE if the event is in the ASCll range (0 thru 127). 

TRUE if the event is in the META range (128 thru 255). 

TRUE if the event is any KEY_LEFT (i). 

TRUE if the event is any KEY_ RIGHT (i). 

TRUE if the event is any KEY TOP ( i ) : 

In addition to the above macros, which tell about the state of a particular event, 
you can query the state of any button or key via the WIN_EVENT_STATE attri­
bute. For example, to find out whether or not the first right function key is down 
you would call: 

kl down (int) 
window_get(canvas, WIN_EVENT_STATE, KEY_RIGHT(l)); 

The call will return non-zero if the key is down, and zero if the key is up. 

The following macros are provided to let you set some of the states associated 
with an event. 

36 event id () is replaced by event action () However, for compatibility, event id () will still 
be supported.- · - -

sun Revision A, of May 9, 1988 
microsystems 



c Table 6-6 

6.9. Releasing the Event 
Lock 

6.10. Reading Events 
Explicitly 

Macros to Set the Event State 

Macro 
event_set_action(event, code) 

event set shiftmask 

(event, shiftmask) 

event_set_x(event, x) 

event_set_y(event, y) 
event_set_time(event, time) 

event_set_up(event) 

event set down(event) 

Chapter 6- Handling Input 97 

Effect 
set event's id to code. 

set event's shiftmask to shiftmask. 

Possible values: 

fdefine CAPSMASK OxOOOl 

fdefine SHIFTMASK OxOOOE 

fdefine CTRLMASK Ox0030 

fdefine META SHIFT MASK Ox0040 

set event's x coordinate to x. 

set event's y coordinate toy. 

set event's timestamp to time. 

set state of a button event to up. 

set state of a button event to down. 

If an operation generated by an input event is going to take over 5 seconds, then 
call this routine to allow other processes to get input:37 

void 
window_release event lock(window) 

Window window; 

There are times when it is appropriate to go get the next event yourself, rather 
than waiting for it to come through the normal event stream from the Notifier. In 

' particular, when tracking the mouse with an image which requires significant 
computation, it may be desirable to read events until a particular action, such as a 
mouse button up, is detected. To read the next input event for a window, bypass­
ing the Notifier, use the function: 

int 
window_read_event(window, event) 

Window window; 
Event *event; 

window_ read_ event () fills in the event structure, and returns 0 if all went 
well. In case of error, it sets the global variable errno and returns -1. 

window_ read_ event () can be used in either a blocking or non-blocking 
mode, depending on how the window has been set up. 38 

37 For more details see the section on synchronization in the Workstations chapter of the Sun View 1 System 
Programmer's Guide. 

38 window _read_eventO is the high-levellibrary standard fWiction equivalent of input_readeventO in the 
low-level library. For further information, see Section 5.6, Reading Input in the Sun View 1 System 
Programmer's Guide. 

Revision A, of May 9, 1988 



98 Sun View 1 Programmer's Guide 

Note that if you read events in a canvas subwindow yourself, you must translate 
the event's location to canvas space by calling canvas_ event () : 

event_in_canvas_space = canvas_event (canvas, event).; 

Revision A, of May 9, 1988 

(\ 
\ I 
~/ 



7 
Imaging Facilities: Pixwins 

Imaging Facilities: Pixwins .................................................................................................. 101 

7 .1. What is a Pixwin? ............................................................................................................ 103 

7.2. Accessing a Pixwin's Pixels...................................................................................... 103 

Obtaining the Window's Pixwin .......................................................................... 103 

Write Routines ................................................................................................................ 104 

Basic RasterOp Operations................................................................................ 104 

Other Raster Operations ...................................................................................... 104 

Text Routines ............................................................................................................. " 105 

Batching and Stenciling Routines.................................................................. 106 

Drawing Polygons ................................................................................................... 107 

Drawing Curved Shapes...................................................................................... 107 

Drawing Lines ........................................................................................................... 107 

Read and Copy Routines .......................................................................................... 108 

7 .3. Rendering Speed .............................................................................................................. 108 

Locking ............................................................................................................................... 109 

Batching ............................................................................................................................. 110 

Locking and Batching Interaction ....................................................................... 112 

7.4. Clipping With Regions ................................................................................................. 112 

7.5. Color ....................................................................................................................................... 113 

Introduction to Color .................................................................................................. 113 

The Colormap ............................................................................................................ 113 

Changing the Colormap ....................................................................................... 114 

Colormap Segments ............................................................................................... 114 



Background and Foreground ........................................................................... . 115 

Default Colormap Segment .............................................................................. . 

Changing Colors from the Command Line ............................................. . 

115 I~ 

115 ~'-) 

Sharing Colormap Segments ........................................................................... . 115 

Example: showcolor ............................................................................................. . 116 

Manipulating the Colormap ····························-'······················································· 117 

Cycling the Colormap .......................................................................................... . 118 

Miscellaneous Utilities ..................................... , .................................................. . 118 

Using Color ..................................................................................................................... . 119 

Cursors and Menus ................................................................................................ . 119 

Is My Application Running on a Color Display? ................................ . 119 

Simulating Grayscale on a Color Display ................................................ . 120 

Software Double Buffering ............................................................................... . 120 

Hardware Double-Buffering ............................................................................ . 122 

7.6. Plane Groups and the cgfour Frame Buffer ............................................. . 124 

Sun View and Plane Groups ................................................................................... . 125 

sunview and Plane Groups ............................................................................... . 126 



c 

Material Covered 

Related Documentation 

Header Files 

Summary Listing and Tables 

c 

7 
Imaging Facilities: Pixwins 

This chapter describes the pixwin which is the construct you use to draw or 
render images in Sun View. The most basic use ofpixwins is to draw in a canvas 
subwindow. 

In addition to basic pixwin usage, this chapter covers: 

o How to boost your rendering speed by locking and hatching 

o How to use regions for clipping 

o How to manipulate the colormap 

o How to use the plane groups 

This chapter is addressed primarily to programmers who write simple applica­
tions using canvas subwindows~ For lower level details, see the chapter on 
Advanced Imaging in the Sunqew System Programmers Guide. 

The pixwin drawing operationsido not directly support high-level graphics opera­
tions such as shading, segment~. 3-D, etc. If your application requires these, then 
you should consider some graphics package such as SunGKS, SunCore, or 
SunCGI. All of these will run ih windows (see the SunCore Reference Manual 

I 

and SunCGI Reference Manual! for more information). 

The definitions necessary to use pixwins are in the header file 
<sunwindow /pixwin. h>, which is included by 
<sunwindow/window hs .. h>, which in tum is included by default when 
you include <suntool/ sunview. h>. 

To give you a feeling for what you can do with pixwins, the following page con­
tains a list of the available pixiJ:l functions and macros. Many of these are dis­
cussed in the rest of this chapter and elsewhere (use the Index to check). All are 
briefly described with their argliments in the pixwin summary tables in Chapter 
19, Sun View Interface Summary: 

o the Pixwin Drawing Functions and Macros table begins on page 356; 

o the Pixwin Color Manipulation Fu~~tions table begins on page 360. 

~~sun ~ microsystems 
101 Revision A, of May 9, 1988 



102 Sun View 1 Programmer's Guide 

pw_batch(pw, n) 
pw_batch_off(pw) 
pw_batch_on(pw) 

Pixwin Drawing Functions and Macros 

pw_batchrop(pw, dx, dy, op, items, n) 
pw_char(pw, x, y, op, font, c) 
pw_close(pw) 
pw_copy(dpw, dx, dy, dw, dh, op, spw, sx, sy) 
pw_get(pw, x, y) 
pw_get_region_rect(pw, r) 
pw_line(pw, xO, yO, xl, yl, brush, tex, op) 
pw_lock (pw, r) 
pw_pfsysclose () 
pw_pfsysopen () 
pw_polygon_2(pw, dx, dy, nbds, npts, vlist, op, spr, sx, sy) 
pw_polyline(pw, dx, dy, npts, ptlist, mvlist, brush, tex, op) 
pw_polypoint(pw, dx, dy, npts, ptlist, op) 
pw_put(pw, x, y, value) 
pw_read(pr, dx, dy, dw, dh, op, pw, sx, sy) 
pw_region(pw, x, y, width, height) 
pw_replrop(pw, dx, dy, dw, dh, op, pr, sx, sy) 
pw _reset (pw) 
pw_rop(pw, dx, dy, dw, dh, op, sp, sx, sy) 
pw_set_region_rect(pw, r, use_same_pr) 
pw_show (pw) 
pw_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, sty, spr, sx, sy) 
pw_text(pw, x, y, op, font, s) 
pw_traprop(pw, dx, dy, t, op, pr, sx, sy) 
pw_ttext(pw, x, y, op, font, s) 
pw_unlock(pw) 
pw_vector(pw, xO, yO, xl, yl, op, value) 
pw_write(pw, dx, dy, dw, dh, op, pr, sx, sy) 
pw writebackground(pw, dx, dy, dw, dh, op) 

Pixwin Color Manipulation Functions 
pw_blackonwhite(pw, min, max) 
pw_cyclecolormap(pw, cycles, index, count) 
pw_dbl_access(pw) 
pw_dbl_flip (pw) 
pw_dbl_get(pw, attribute) 
pw_dbl_release () 
pw_dbl_set(pw, attributes) 
pw_getattributes(pw, planes) 
pw getcmsname(pw, cmsname) 

pw_getcolormap(pw, index, count, 
red, green, blue) 

pw_getdefaultcms(cms, map) 
pw_putattributes(pw, planes) 
pw_putcolormap(pw, index, count, 

red, green, blue) 
pw_reversevideo(pw, min, max) 
pw_setcmsname(pw, cmsname) 
pw whiteonblack(pw, min, max) 

Revision A, of May 9, 1988 



C 7.1. What is a Pixwin? 

c 

7.2. Accessing a Pixwin's 
Pixels 

Obtaining the Window's 
Pixwin 

Chapter 7 -Imaging Facilities: Pixwins 103 

An image in Sun View, whether on the screen or in memory, is composed of dots 
called pixels and is represented internally as a rectangle of such pixels. The pix­
rect structure is the construct used at a low level to access an image and operate 
on it. You can program at the pixrect level to draw on the screen; this is covered 
in the Pixrect Reference Manual. 

However, in Sun View drawing operations are displayed in a window coexisting 
on the screen with other, possibly overlapping windows. Except in certain cir­
cumstances, drawing operations should be "well-behaved," meaning that they 
should not spill over into other windows and they should not be visible in por­
tions of the window which are covered by other windows. The pixwin is the 
interface through which you operate on the pixels in a particular window. It 
guarantees that the above two conditions will be met. 

Each pixel has a value. On a monochrome display the value is 1 or 0, since the 
pixel can only be on or off, black or white. Such pixels are said to be 1 bit deep. 
On a color display each pixel can have several values corresponding to different 
colors. 

This section summarizes the functions provided for accessing the pixels of a 
pixwin. Most of the pw * functions described in this section are based on 
corresponding pr * routines, which are fully documented in the Pixrect Refer­
ence Manual. For full discussion of the semantics of a given pixwin function, 
refer to the discussion of the corresponding pixrect function in the Pixrect Refer­
ence Manual and/or the errata/addenda section of the most recent Release 
Manual. 

In particular the pixrect manual gives useful values for the op argument which \ 
determines what the result of combining the source and destination pixels will 
be. 

The procedures described in this section will maintain the memory pixrect for a 
retained pixwin. That is, they perform their operation on the data in memory, as 
well as on the screen. 

All of these procedures require the pixwin of the window you are drawing in as 
an argument. To draw in a canvas, you use the pixwin that is returned by the 
procedure: 

Pixwin *pw; 
canvas_pixwin(canvas); 
Canvas canvas; 

Look at the example in Section 5.1, Creating and Drawing into a Canvas, to see 
how canvas _pixwin () is used. 

The pixwin is also available as the value of the CANVAS_PIXWIN attribute of 
the canvas subwindow.39 

39 Aside from the canvas pix win, all windows, regardless of type, have a pix win which is available as the 

value of WIN_ P IXWIN. However, most applications should not need to explicitly write pixels into other types 

of windows. 

Revision A, of May 9, 1988 



104 Sun View 1 Programmer's Guide 

Write Routines 

Basic RasterOp Operations 

Other Raster Operations 

The following routines allow you to draw areas, backgrounds, vectors, text, 
polygons, lines, and polylines in a pixwin. 

The following are the basic low-level raster operations that draw on the screen. 
They are common to many imaging systems. 

pw_write(pw, dx, dy, dw, dh, op, pr, sx, sy) 
-or-
pw_rop(pw, 

Pixwin 
int 

dx, dy, dw, dh, op, pr, sx, sy) 
*pw; 
dx, dy, dw, dh, op, sx, sy; 

Pixrect *pr; 

pw_write () and pw_rop () are differentnaines for the same procedure. 
They perform the indicated rasterop (op) from the source pixrect to the destina­
tion in the pixwin. Pixels are written to the rectangle defined by dx, dy, dw, and 
dh in the pixwin pw using rasterop function op. dx and dy are the position of 
the top left-hand comer of the rectangle, and dw and dh are the width and height 
of the rectangle. They are copied from the rectangle with its origin at sx, sy in 
the source pixrect pointed to by pr. 

pw _write () is essential for many window system operations such as scrolling 
a window, drawing frames and borders, and drawing an icon on the screen. 

The routines in this section are variations on the basic rasterop routine. 

pw_writebackground(pw, dx, dy, dw, dh, op) 
Pixwin *pw; 
int dx, dy, dw, dh, op; 

pw _ wr i tebackground () uses a conceptually infinite set of pixels, all of 
which are set to zero, as the source. It is often used to clear a canvas pixwin 
before drawing a new image.40 

The following routine draws a pixel of va 1 u e at ( x, y ) in the addressed 
pix win: 

pw_put(pw, x, y, value) 
Pixwin *pw; 
int x, y, value; 

Using this routine to draw is very slow and should be avoided. If you use it, be 
sure to read the later sections on hatching and locking. 

40 Canvases will automatically clear damaged areas if they are set not to be retained, or if the attribute 
CANVAS_ AUTO_ CLEAR is set. See Chapter 5, Canvases, for more information. 

sun Revision A, of May 9, 1988 
microsystems 



c 

Text Routines 

Chapter 7 -Imaging Facilities: Pixwins 105 

There is a similar routine to draw many pixels in a single call. 

pw_polypoint(pw, dx, dy, npts, ptlist, op) 
Pixwin *pw; 
int dx, dy, npts; 
struct pr_pos *ptlist; 
int op; 

All npts points in the array ptlist are drawn in the pixwin pw starting at the 

offset dx, dy under the control of the op argument 

The next routine draws a vector of pixel value from (xO, yO) to (xl, yl) in the 

addressed pixwin using rasterop op: 

pw_vector(pw, xO, yO, xl, yl, op, value) 
Pixwin *pw; 
int xO, yO, xl, yl, op, value; 

To replicate a pattern in a pixrect onto a pixwin, use: 

pw_replrop(pw, dx, dy, dw, dh, op, pr, sx, sy) 
Pixwin *pw; 
int dx, dy, dw, dh, op, sx, sy; 
Pixrect *pr; 

pw _rep lr op ( ) replicates a small "patch" of pattern in a pixrect onto an entire 
pixwin. It is often used to draw a patterned background in a window, such as the 
root gray pattern in sunview(l). Standard patterns, created by iconedi t(l), 

may be found in /usr/include/images/square_ * .pr. 

The following two routines write a string of characters and a single character, 

respectively, to a pixwin, using rasterop op as above: 

pw_text(pw, x, y, op, font, S) 

Pixwin *pw; 
int x, y, op; 
Pixfont *font; 
char *s; 

pw_char(pw, x, y, op, font, c) 
Pixwin *pw; 
int x, y, op; 
Pixfont *font; 
char c; 

Revision A, of May 9, 1988 



106 Sun View 1 Programmer's Guide 

B atching and Stenciling 
Routines 

These text rendering routines are distinguished by their own coordinate system: 
the destination is given as the left edge and baseline of the first character. The 
left edge does not take into account any kerning (character position adjustment 
depending on its neighbors), so it is possible for a character to have some pixels 
to the left of the x-coordinate. The baseline is the y-coordinate of the lowest 
pixel of characters without descenders, 'L' or 'o' for example, so pixels will fre­
quently occur both above and below the baseline in a string.41 

font may be NULL in which case the system font is used. 

The system font is reference counted and shared between software packages. 
The following routines are provided to open and close the system font:42 

Pixfont * 
pw_pfsysopen () 

pw_pfsysclose () 

The following routine: 

pw_ttext(pw, x, y, op, font, s) 
Pixwin *pw; 
int x, y, op; 
Pixt'ont *font; 
char *s; 

is just like pw _text () except that it writes transparent text. Transparent text 
writes the shape of the letters without disturbing the background behind it. This 
is most useful with color pixwins. Monochrome pixwins can use pw_ text () 
and a PIX_SRC I PIX_DST op, which is faster. 

Applications such as displaying text perform the same operation on a number of 
pixrects in a fashion that is amenable to global optimization. The batchrop pro­
cedure is provided for these situations: 

pw_batchrop(pw, dx, dy, op, items, n) 
Pixwin *pw; 
int dx, dy, op, n; 
struct pr_prpos items[]; 43 

Stencil operations are like raster ops except that the source pixrect is written 
through a stencil pixrect which functions as a pixel-by-pixel write enable mask. 
The indicated raster operation is applied only to destination pixels where the 
stencil pixrect stpr is non-zero; other destination pixels remain unchanged. 

41 A font to be used in pw _text () is required to have the same pc _home. y and character height for all 
characters in the font. 

42 The system font can also be obtained by calling pf _default (). 

43 The structure of pr _prpos is given in Appendix C of the Pixrect Reference Manual. 

Revision A, of May 9, 1988 

(~ 
\ ) 
--.._/ 

,I\ 
\ ; 
"._/ 



c 

Drawing Polygons 

Drawing Curved Shapes 

c 
Drawing Lines 

Chapter 7 -Imaging Facilities: Pixwins 107 

pw_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, 
sty, spr, sx, sy) 

Pixwin *dpw; 
Pixrect *stpr, *spr; 
int dx, dy, dw, dh, op, stx, sty, sx, sy; 

The following macro draws a polygon within a pixwin: 

pw_polygon_2(pw, dx, dy, nbds, npts, vlist, op, spr, sx, sy) 

Pixwin *pw; 
int dx, dy, nbds, op, sx, sy; 
int npts[]; 
struct pr_pos *vlist; 
Pixrect *spr; 

You can create a polygon filled with a solid or textured pattern. 

pw_traprop () is a pixwin operation analogous to pw_rop (),which 
operates on a trapezon rather than a rectangle: 

pw_traprop(pw, dx, 
Pixwin 
struct pr_trap 
Pixrect 
int 

dy, t, op, pr, sx, sy) 
*pw; 
t; 

*pr; 
dx, dy, op, sx, sy; 

pw_traprop () writes the source pixrect pr into the destination pixwin pw via 
the operation op. The output is clipped to the trapezon t. 

The following routine draws a solid or textured line between two points with a 
"brush" of a specified width: 

pw_line(pw, xO, yO, xl, yl, brush, tex, op) 
Pixwin *pw; 
int xO, yO, xl, yl, op; 
struct pr_brush *brush; 
struct pr_texture *tex; 

There is a similar routine to draw several noncontiguous line segments between a 
set of points: 

pw_polyline(pw, dx, dy, npts, ptlist, mvlist, brush, tex, op) 

Pixwin 
int 
struct pr_pos 
u char 

*pw; 
dx, dy, 

*ptlist; 
*mvlist; 

struct pr_brush *brush 
struct pr texture *tex; 

sun 
microsystems 

npts, op; 

Revision A, of May 9, 1988 



108 Sun View 1 Programmer's Guide 

Read and Copy Routines 

7.3. Rendering Speed 

The following routines use the pixwin as a source of pixels. To get the value of 
the pixel at ( x, y ) in pixwin pw call: 

int 
pw_get(pw, x, y) 

Pixwin *pw; 
int x, y; 

To read pixels from a pixwin into a pixrect call: 

pw_read(pr, dx, dy, dw, dh, op, pw, sx, sy) 
Pixwin *pw; 
int. dx, dy, dw, dh, op, sx, sy; 
Pixrect *pr; 

This routine reads pixels from pw starting at offset ( sx, sy ), using rasterop op. 
The pixels are stored in the rectangle with its origin at dx, dy of width dw and 
height dh in the pixrect pointed to by pr. 

When the destination, as well as the source, is a pixwin, use: 

pw_copy(dpw, dx, dy, dw, dh, op, spw, sx, sy) 
Pixwin *dpw, *spw; 
int dx, dy, dw, dh, op, sx, sy; 

dpw and spw must be the same pixwin. Also, only horizontal or vertical copies 
are supported. 

These read and copy routines fail if they try to read from a portion of a non­
retained pixwin which is hidden, and therefore has no pixels. Therefore it is con­
sidered advanced usage to call them on a non-retained pixwin; refer to the section 
entitled Handling Fixup in the Sun View 1 System Programmer's Guide. 

Making correct and judicious use of explicit display locking and/or hatching is 
important for getting the best display speed possible. 

There are two major impediments to you getting the best possible display render­
ing speed. The first is display locking, which prevents window processes from 
interfering with each other in several ways: 

o Raster hardware may require several operations to complete a change to the 
display; one process' use of the hardware should be protected from interfer­
ence by others during this critical interval. 

o Changes to the arrangement of windows must be prevented while a process 
is painting, lest an area be removed from a window as it is being painted. 

o A software cursor that the window process does not control (the kernel is 
usually responsible for the cursor) may have to be removed so that it does 
not interfere with the window's image. 

Display locking is relatively expensive compared to the time it takes to do simple 
display operations. Thus you can reduce your display time by reducing the 
number of times that you have to acquire the display lock. The subsection below 
titled Locking explains how to do this. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 
·\... ... / 



c 

Locking 

NOTE 

c 

c 

Chapter 7 -Imaging Facilities: Pixwins 109 

The second major impediment to maximum display speed is the use of retained 
pixwins. It is obvious that if you have to write to the screen and to memory for 
every display operation that it will take longer than writing to only one place. 
Thus, there is a mechanism, called pix win hatching which allows you to write 
only to memory and then refresh the screen with a quick raster operation from 
memory. The subsection entitled Batching explains how to use hatching. 

Locking allows a client program to obtain exclusive use of the display. If the 
client program does not obtain an explicit lock, the window system will. For 
example, if your application is going to draw one hundred lines it canoeither 
explicitly lock the display once, draw the lines, and unlock explicitly, or it can 
ignore locking and simply draw the lines. In the latter case, the window system 
will perfonn locking and unlocking around each drawing operation, acquiring 
and releasing the lock one hundred times instead of once. 

For efficiency's sake, application programs should lock explicitly around a body 
of screen access operations. 

You can acquire a lock by calling the macro: 

pw_lock (pw, r) 
Pixwin *pw; 
Rect *r; 

pw is the pixwin to be used for the output; r is the rectangle in the pixwin's coor­
dinate system that bounds the area to be affected. See The Rect Structure in 
Chapter 4, Using Windows, for an explanation of the Rect structure. 
pw _lock () blocks if the lock is unavailable (if, for example, another process 
currently has the display locked). 

' 
When the cursor is on the surface where drawing occurs, if the pixwin is locked 
with pw _lock (),sometimes the region in which the cursor rect resides is not 
drawn to. This results in an empty region (16 x 16 pixels) when the cursor is 
moved. The image is put to its correct state when it is redisplayed. 

Lock operations for a single pixwin may be nested; inner lock operations merely 
increment a count of locks outstanding and are thus very lightweight. Their 
affected rectangles must lie within the rectangles affected by the original lock. 

To decrement the lock count, call: 

pw_unlock(pw) 
Pixwin *pw; 

When the lock count reaches 0, the lock is actually released. 

Since locks may be nested, it is possible for a client procedure to find itself, espe­
cially in error handling, with a lock which may require an indefinite number of 
unlocks. To handle this situation cleanly, another routine is provided. The fol­
lowing macro sets pw's lock count to 0 and releases its lock: 

pw_reset(pw) 
Pixwin *pw; 

Revision A, of May 9, 1988 



110 Sun View 1 Programmer's Guide 

Batching 

Acquisition of a lock has the following effects: 

o If the cursor is in conflict with the affected rectangle, it is removed from the 
screen. While the screen is locked, the cursor will not be moved in such a 
way as to disrupt any screen accessing. 

o Access to the display is restricted to the process acquiring the lock. 

o Modification of the database that describes the positions of all the windows 
on the screen is prevented. 

o The clipping information for the pix win is validated and, if necessary, 
updated. 

o In the case of a non-retained pixwin with only a single rectangle visible, the 
internals of the pixwin mechanism can be set up to bypass the pixwin 
software by going directly to the pixrect level on subsequent display opera­
tions. 

While it has the screen locked, a process should not: 

o do any significant computation unrelated to displaying its image. 

o invoke any system calls, including other 1/0, which might cause it to block. 

o invoke any pixwin calls except pw _unlock () and those described in the 
previous section, Accessing a Pixwin' s Pixels. In any case, the lock should 
not be held longer than about a quarter of a second, even following all these 
guidelines. 

When a display lock is held for more than two seconds of process virtual time, 
the lock is broken. However, the offending process is not notified by signal, 
because a process shouldn't be aborted for this infraction. Instead, a message is 
displayed on the console. 

Batching allows you to write only to the memory pixrect of a retained pixwin and 
then refresh the screen with the memory pixrect's contents at specific times. If 
you do not explicitly batch when using a retained pixwin, the window system 
will write to both the display and memory on every display operation. 

Considering the same example used for locking above, if your application pro­
gram has a retained pixwin and is going to draw one hundred lines, it can either 
explicitly start a batch, draw the lines, and end the batch explicitly, or it can 
ignore hatching and simply draw the lines. In the latter case, the window system 
will draw the lines two hundred times instead of one hundred times. 

NOTE For efficiency's sake, application programs should batch explicitly around a 
body of screen access operations when using a retained pixwin. 

Revision A, of May 9, 1988 

/~ 
I J 

"-.j 

(\ 
\ J 
\,_/ 



c 

Chapter 7- Imaging Facilities: Pixwins 111 

Two macros are provided to control hatching: 

pw_batch_on(pw) 
Pixwin *pw; 

pw_batch_off(pw) 
Pixwin *pw; 

pw _batch_ on () starts a batch; pw _batch_ off () refreshes. the screen with 
the portion of the memory pixrect that has changed. While hatching, the pixwin 
internally maintains a rectangle that describes which pixels in the memory pix­
rect need to be transferred to the screen at the end of the batch. 

NOTE Don't turn hatching on and leave it on, as this causes problems with scrolling. 
The recommended use is batch on () (draw something in window) 
batch_off (). 

While in the middle of hatching, your code might reach a point at which you 
would like the screen to be updated. The following macro refreshes the screen, 
but otherwise doesn't change the hatching mode: 

pw_show(pw) 
Pixwin *pw; 

Unlike locking operations, batch operations for a single pixwin do not nest. 
Thus, each hatching routine in this section affects the hatching mode/status. 

These three macros- pw batch on (), pw batch off () and 
pw_show () -all call the routine-pw_batch() whiCh actually implements 
the hatching mechanism. You can call pw_batch () directly to tell the hatch­
ing mechanism to refresh the screen after every n display operations. 

pw_batch(pw, kind) 
Pixwin 
Pw_batch_type 

*pw; 
kind; 

Because the routine does more than one kind of thing, calling it is a little tricky. 
kind is the kind of hatching requested. You use the following macro to convert 
n,the number of display operations you want to be hatched before a refresh, to a 
Pw_batch_type: 

#define PW_OP_COUNT(n) ((Pw_batch_type) (n)) 

So, to have hatching and ensure the image on-screen is refreshed after every n 
operations, call: 

pw_batch(pw, PW_OP_COUNT(n)); 

Clients with a group of screen updates to do can gain noticeably by doing the 
group as a batch. Also, the locking overhead, discussed above, will only be 
incurred when the screen is refreshed. An example of such a group is displaying 
a screen full of text, or a series of vectors with pre-computed endpoints. 

In considering how to do hatching, it's a good idea to be sensitive to how long 
the user is staring at a blank screen or an old image, and adjust the rate of screen 

Revision A, of May 9, 1988 



112 SnnView 1 Programmer's Guide 

Locking and Batching 
Interaction 

7.4. Clipping With Regions 

refresh accordingly. 

There are situations in which hatching around locking calls makes sense. Con­
sider that 

o while hatching, locking calls are a no-op; 

o if a pixwin is not retained, hatching calls are a no-op. 

Thus, if your application has a switch to run retained or not, it makes good sense 
to batch around locking calls. If you batch around locking calls then your appli­
cation gets the benefit of hatching if running retained and the benefit of locking if 
running non-retained. 

Locking around batches, on the other hand, is not very efficient. 

You can use pixwins to clip rectangular regions within a window's own rec­
tangular area. The region operation creates a new pixwin that refers to an area 
within an existing pixwin: 

Pixwin * 
pw_region(pw, x, y, w, h) 

Pixwin *pw; 
int x, y, w, h; 

pw is the source pixwin; x, y, w and h describe the rectangle to be included in 
the new pixwin. The upper left pixel in the returned pixwin is at coordinates 
(0,0); this pixel has coordinates ( x, y) in the source pixwin. 

If the source pixwin is retained, the new region will be retained as well. How­
ever, the region refers back to the bits of memory pixrect of the source pixwin 
when accessing the image. 

To change the size of an existing region, call: 

int 
pw_set_region_rect(pw, r, use_same_pr) 

Pixwin *pw; 
Rect *r; 
unsigned use_same_pr; 

The position and size of the region pw are set to the rect * r; a return value of -1 
indicates failure. This is more efficient then destroying the old region and creat­
ing a new one. The use_ same _pr flag should be set to 0 if you want a new 
retained pixrect allocated for the region that is the size of the region. 

To determine the size of an existing region, call: 

int 
pw_get_region_rect(pw, r) 

Pixwin *pw; 
Rect *r; 

Revision A, of May 9, 1988 

0 
\ i 
~/ 

~' 
I ' \...__,I 



Chapter 7 -Imaging Facilities: Pixwins 113 

*r is set to the size and position of the region pw. 

When finished with a region, you should release it by calling: to: 

pw_close(pw) 
Pixwin *pw; 

This routine frees any dynamic storage associated with the pixwin, including its 
retained memory pixrect, if any. If the pix win has a lock on the screen, it is 
released. 

NOTE You should close any regions before closing the pixwin containing the regions. 

7.5. Color The dicussion which follows is divided into three sections: 

Introduction to Color 

The Colormap 

o Introduction to Color, which introduces the concepts of the colonnap and 
colormap segments, 

o Changing the Colormap, which describes how to change a colonnap seg­
ment, and 

o Using Color, which describes how to make color applications compatible 
with monochrome and grayscale screens, and how to perform smooth anima­
tion by using double buffering. 

Just as there must be arbitration between different windows to decide what is 
displayed on the screen when several windows overlap, there must likewise be 
some process of allocation when several windows want to display different sets 
of many colors all at once. To understand how this works you need to know how 
color is handled. ~ 

The pixels on a color display are not simply on or off; they take many different 
values for different colors. On all current Sun color displays44 each pixel has 8 
bits. Such an "8 .bit deep" pixel can have any value from 0 to 255. The value in 
each pixel helps to determine what color appears in that dot on the screen, but it 
is not in a one-to-one correspondence with the color displayed; otherwise Sun 
color displays would only be able to display 256 different colors. 

Instead, the value of the pixel serves as an index into the colormap of the display. 
The colonnap is an array of 256 colormap entries. The colonnap entry for each 
index drives the color that is actually displayed for the corresponding pixel value. 
A colonnap entry consists of 8 bits of red intensity, 8 bits of~green intensity and 
8 bits of blue, packaged into the following structure: 

struct singlecolor { 
u char red, green, blue; 

} ; 

Hence a Sun color display is capable of displaying over 16 million colors 
(because each colonnap entry has 24 bits) but can only display 256 colors simul­
taneously (because there are only 256 colonnap entries). 

44 See cgone(4S), cgtwo(4S) and cgfour(4S) in the UNIX Interface Overview manual. 

~~sun ~ microsysterns 
Revision A, of May 9, 1988 



114 Sun View 1 Programmer's Guide 

A Colormap Example 

Changing the Colormap 

Colormap Segments 

Suppose that in a group of pixels on the screen, some have the value 0 while oth­
ers have the value 193. All pixels with the same value will be displayed in the 
same color. The colormap determines what that color will be. If entry 0 in the 
colormap of the screen is 

red = 250; green = 0; blue = 3; 

then the pixels with a value of 0 will come out bright red. If entry 0 in the color­
map is changed to 

red = 1; green = 8; blue = 2; 

then the pixels with a value ofO will immediately change color to an almost­
blackgreen. Similarly, entry 193 in the colormap determines what color the pix­
els with a value of 193 will have. 

Because changing the colormap is much faster than redrawing many thousands of 
pixels with a new value, manipulating the colormap is the basis of many graphics 
and animation techniques. For examples of programs that manipulate the color­
map, run /usr I demo/ suncube or /usr I demo/ flight. 

-
Try running spheresedemo -g plus another color program at the same time. 
You will notice that as you move the mouse into the spheres demo window, 
the colors in the other windows on the display change dramatically. This is 
because hardware is only capable of displaying 256 colors at once. When two 
programs that each want to display 256 different colors are run simultaneously, 
the window system itself must manipulate the colormap. When the cursor enters 
one of the windows, the window system changes the colormap to use the colors 
of that window. 

The window system allows each window to claim a portion of the total available 
colormap entries, called a colormap segment. The colo~ap segment need not be 
the same in all windows of a tool: frames and subwindows can have different 
colormaps, or can share colormaps (see Sharing Colormap Segments below). If 
the total number of entries in all the colormap segments being requested exceeds 
the limit of 256 at any given time, the window system gives priority to the win­
do~ under the cursor, and removes segments belonging to other windows as 
necessary. 

The window system loads colormap segments at arbitrary locations within the 
colormap. To the application program, this indirection is transparent. The rou­
tines that access a pixwin's pixels do not distinguish between windows which use 
colormap segments and those which use the entire colormap. 

NOTE While you can have multiple pixwins within a window, there is only one color­
map segment per window. A separate colormap for each pixwin in a window is 
not supported. This limitation should only be of interest if you are using pixwin 
regions (described in the Sun View System Programmer's Guide). 

Revision A, of May 9, 1988 

~~ 
l I 

\..... .. / 



c 

c 

Background and Foreground 

Default Colormap Segment 

Changing-colors from the 
Command Line 

Sharing Colormap Segments 

Chapter 7 -Imaging Facilities: Pixwins 115 

Every colormap segment has two distinguished values, its background and fore­
ground. The background color is defined as the value at the first position of a 
colormap segment; the foreground color is the value at the last position. 

The first pix win created for a window sets the background and foreground of the 
window to be those of the default colormap segment. This is the monochrome 
colormap segment defined in 

<sunwindow/ cms_mono. h>. Subsequent pixwins created for the window 
inherit the background and foreground of the window. 

The user can modify the default colormap for all applications by invoking -
sunview with the -F and -B command line arguments.45 The user can also 
change the default colormap segment on a per-application basis by invoking the 
application with certain flags. The -Wf flag sets the foreground color, -Wb sets 
the background color, and -wg specifies that the colormap of the frame will be 
inherited by the frame's subwindows. 

The equivalent frame attributes for these flags are 
FRAME_FOREG~OUND_COLOR,FRAME_BACKGROUND_COLOR,and 

FRAME INHERIT COLORS. 

It is possible for different processes to share a single colormap segment. For 
some applications, you want to guarantee that your colormap segment is not 
shared' by another process. For example, a colormap segment to be used for ani­
mation, as described later in the section on Double Buffering, should not be 
shared. The way to ensure that a colormap segment will not be shared by another 
window is to give it a. unique name. A common way to generate a unique name 
is to append the process' id to a more meaningful string that describes the usage 
of the colormap segment. 

If a colormap segment's usage is static in nature, then it pays to use a shared 
colormap segment definition, since colormap entries are scarce. Windows, in the 
same or different processes, can share the same colormap by referring to it by the 
same name. 

There are three basic types of shared colormap segments: 

o A colormap segment used by a single program. Sharing occurs when multi­
ple instances of the same program are running. An example of such a pro­
gram is a color terminal emulator in which the terminal has a fixed selection 
of colors. 

J 
o A colormap segment used by a group of highly interrelated programs. Shar-

ing occurs whenever two or more programs of this group are running at the 
same time. An example of such a group is a series of CAD/CAM programs 
in which it is common to have multiple programs running at the same time. 

45 This is not true for a Sun-3/110 and other machines with cgfour frame buffers, due to their use of an 

overlay plane to implement most monochrome windows. 

Revision A, of May 9, 1988 



116 Sun View 1 Programmer's Guide 

Example: showcolor 

o A colonnap segment used by a group of unrelated programs. Sharing occurs 
whenever two or more programs of this group are running. An example of 
such a colonnap segment is the default colonnap, CMS_MONOCHROME, 
defined in <sunwindow/ ems_ mono. h>. Other common useful color­
map segment definitions that you can use and share with other windows 
include cms_rgb. h, cms_grays. h, cms_mono. h, and 
cms_rainbow. h, found in<sunwindow/cms_ *. h>. 

The program on the following page shows the actual colors in the display's 
colonnap. It should help you see how the window system manages the color­
map. Run this program soon after bringing up sunview, then run several color 
graphics programs such as the demos mentioned earlier. Try bringing up dif­
ferent windows with different foreground and background colors, as in: 

I* 
* showcolor. c 
* Draw a grey ramp that graphically shows the colormap 
* segment activity of the environment when the cursor 
* is NOT in the canvas of this tool. 
*I 

#include <suntoollsunview.h> 
#include <suntoollcanvas.h> 

#define CMS SIZE 256 
fdefine CAN HEIGHT 10 

main (argc, argv) 
char 

Frame 
Canvas 

**a:rgv; 

register Pixwin 
register int 
u char 

frame; 
canvas; 
*pw; 
i; 
red[CMS_SIZE], 
green[CMS_SIZE], 
blue[CMS_SIZE]; 

I* Create frame and canvas *I 
frame = window_create(O, FRAME, 

FRAME_LABEL, argv[O], 
FRAME_ARGS, argc, argv, 
0); 

canvas window_create(frame, CANVAS, 

window_fit(frame); 

WIN~HEIGHT, CAN_HEIGHT, 
WIN_WIDTH, 2 * CMS_SIZE, 
0); 

pw = canvas_pixwin(canvas); 

I* Initialize colormap to grey ramp *I 

sun Revision A, of May 9, 1988 
microsystems 

0 



c 

Manipulating the Colormap 

If you set the foreground and back­
ground colors (which are entries 
count - 1 and 0 in the colormap 
segment, respectively) to the same 
color, the system will change them 
to the foreground and background 
colors of sun view. In other words, 
you are prevented from making the 
foreground and background colors 
of a pixwin indistinguishable. 

Chapter 7 -Imaging Facilities: Pixwins 117 

for (i = 0; i < CMS_SIZE; i++) 
red[i] = green[i] = blue[i] 

pw_setcmsname(pw, "showcolor"); 
i; 

pw_putcolormap(pw, 0, CMS_SIZE, red, green, blue); 

I* Draw ramp of colors */ 
for (i = 0; i < CMS_SIZE; i++) 

pw_rop(pw, i*2, 0, 2, CAN_HEIGHT, 
PIX_SRC I PIX_COLOR(i), (Pixrect *)0, 0, 0); 

window_main_loop(frame); 
exit(O); 

The following sections document the routines that implement the techniques 

described above. 

To change a window's colonnap segment, you must: 

1. Name the colonnap segment with pw _set ems name {) . 

2. Set the size of the segment by loading the colors with 
pw_putcolormap{). 

It is important that these two steps happen in order and together. The call to 
pw _setcmsname () does not take effect until you write at least one color 
value into the colonnap with pw _putcolormap (). 

You set and retrieve the name of a colonnap segment with these two functions: 

pw_setcmsname(pw, name) 
Pixwin *pw; 
char name[CMS_NAMESIZE]; 

pw_getcmsname(pw, name) 
Pixwin *pw; 
char name[CMS_NAMESIZE]; 

Setting the name resets the colonnap segment to a NULL entry. After calling 

pw _setcmsname (),you must immediately call pw _putcolormap {) to set 

the size of the colonnap segment and load it with the actual colors desired. 
pw_putcolormap () and the corresponding routine to retrieve the colonnap's 

state, pw _getcolormap () , are defined as follows: 

~\sun ~~ microsystems 
Revision A, of May 9, 1988 



118 Sun View 1 Programmer's Guide 

Cycling the Co1ormap 

Miscellaneous Utilities 

pw_putcolormap(pw, index, count, red, green, blue) 
Pixwin *pw; 
int index, count; 
unsigned char red[], green~], blue[]; 

pw_getcolormap(pw, index, count, red, green, blue) 
Pixwin *pw; 
int index, count; 
unsigned char red[ ], green[ ], blue[ ]; 

pw_putcolormap loads the count elements of the pixwin's colormap seg­
ment starting at index (zero origin) with the first count values in the three 
arrays. 

The first time pw_putcolormap () is called after calling 
pw_setcmsname (),the count parameter defines the size of the colormap 
segment. The size of a colormap segment must be a power of 2, and can't be 
changed unless pw _ setcmsname () is called with another name. You can call 
pw_putcolormap () subsequently to modify a subrange of the colormap­
use a larger value for index and a smaller value for count. 

NOTE If you attempt to install a colormap segment that is not a power of2, your color­
map segment has a high likelyhood of taking up too much space. This means 
that the screen will flash when you move the cursor into the window with this 
odd sized co1ormap. 

In Appendix A, Example Programs, there is a program called coloredit which 
uses pw _putcolormap () to change the colors of its subwindows as the user 
adjusts sliders for red, green and blue. 

A utility is provided to make it easy to cycle colormap entries: 

pw_cyclecolormap(pw, cycles, index, count) 
Pixwin *pw; 
int cycles, index, count; 

Starting at index, the count entries of the colormap associated with the 
pixwin's window are rotated among themselves for cycles. A cycle is defined 
as number of shifts it takes one entry to move through every position once. 

To see an example of colormap cycling, run jumpdemo (6) with the -c option. 

If you are are going to cycle one of the common colormap segment definitions, 
you should give the colormap a unique name, otherwise the colormap of other 
applications will change as well. 

The following utilities are provided as convenient ways to set the forground and 
background colors to common settings. min should be the first entry in the 
colormap segment, representing the background color. max should be the last 
entry, representing the forground color. 

Revision A, of May 9, 1988 



c 

Using Color 

Cursors and Menus 

Is My Application Running on a 
Color Display? 

Chapter 7 -Imaging Facilities: Pixwins 119 

pw_reversevideo(pw, min, max) 
Pixwin *pw; 
int min, max; 

pw_blackonwhite(pw, min, max) 
Pixw±:n *pw; 
int min, max; 

pw_whiteonblack(pw, min, max) 
Pixwin *pw; 
int min, max; 

On a monochrome display, these calls don't take effect until you write to the 
pixwin. On a color display, they take effect immediately. 

This section gives some notes on the use of color by cursors and menus, how to 
make color applications compatible with monochrome and grayscale screens, and 
how to use double buffering for smooth animation. 

Cursors appear in the foreground color, the last color in the pix win's colormap. 

Menus and prompts usejullscreen access, covered in Chapter 12, Menus and 
Prompts, of the SunView 1 System Programmer's Guide. Fullscreen access saves 
the colors in the first and last entries of the screen's colormap, puts in the fore­
ground and background colors, and displays the menu or prompt. This means 
that depending on where your application's colormap segment resides in the 
screen's colormap, some colors in your tool may change whenever menus or 
prompts are put up. You can allow for this by making the background and fore­
ground colors in your colormap segment the same as the screen's background 
and foreground. 

There are other menu/cursor "glitches" that occur when running applications on 
frame buffers which support multiple plane groups. These are covered in the 
later section on Multiple Plane Groups. 

None of the colormap manipulations described in this chapter causes an error if 
run on a monochrome display. All colors other than zero map to the foreground 
color, so if your application displays colored objects on a background of zero, 
they will appear as black objects on a white foreground on a monochrome 
display46• The window system detects and prevents the foreground and back­
ground being the same color on color displays. 

However, you may may want to determine at run time whether your application 
has a color or monochrome display available to it. For example, when displaying 
a chart, you may want to use patterns if colors are not available. You can deter­
mille whether the display is color or monochrome by finding out how deep the 
pixels are. Each pixwin includes a pointer to a pixrect which represents its pixels 
on the screen. Pixrects, in tum, have a depth field which holds the number of bits 

46 Unless you are running with black and white inverted, using the -i option to sun view. 

Revision A, of May 9, 1988 



~ 120 SmView 1 Programmer's Guide 

Simulating Grayscale on a 
Color Display 

Software Double Buffering 

per screen pixel. Thus 

Pixwin *pw; 

int depth = pw->pw_pixrect->pr_depth; 

will have a value of 1 for windows displayed on monochrome devices, and a 
value greater than 1 for color screens. Currently, all Sun color displays have 8 
bits per pixel. 

There is no way to tell if your application is running on a grayscale monitor, 
since it runs off the same color board. The grayscale monitor is usually driven 
from the red output of the color board, so if two colors have different green and 
blue values but the same red value, they will show up the same on a greyscale 
display. 

To see how your color application will look on a grayscale monitor, temporarily 
set your colormap segment so that the green and blue components of each color­
map entry are the same as the red component. This will simulate the grayscale 
display on a color monitor. 

Sometimes you want to rapidly display different images in an application. If you 
just use the pixwin write operations to display the new image, the redrawing of 
the pixels will be perceptible to the user, even though the operations are fast. 
Instead, you can use a technique called software double-buffering. 

As we have seen, on a color display, there are 8 bits associated with each pixel. 
If you are not using 256 shades at once, then some of these bits are unused. 
What you would like to do is to store values for two or more different images in 
these 8 bits, but only display one set of values at a time. 

The first goal can easily be accomplished using the pw _putattributes () 
routine to restrict writes to a pmticular set of planes: 

pw_putattributes(pw, planes) 
Pixwin *pw; 
int *planes; 

planes is a bitplane access enable mask. Only those bits of the pixel 
corresponding to a 1 in the same bit position of *planes will be affected by 
pixwin operations. If planes is NULL, that attribu~ value will not be written. 

A corresponding routine is provided to retrieve the value of the access enable 
mask: 

pw_getattributes(pw, planes) 
Pixwin *pw; 
int *planes; 

NOTE Use pw_putattributes () with care, as it changes the internal state of the Q 
pixwin. The correct usage is to first save the existing bitplane mask by calling 

Revision A, of May 9, 1988 



c 

c 

Chapter 7 -Imaging Facilities: Pixwins 121 

pw_getattributes (),then call pw_putattributes (),then, when 
done, restore the initial state by calling pw_putattributes () with the saved 

mask. 

The second goal- only displaying what is in some of the planes- is trickier. 
There is no way to tell the hardware to only look at the values in some of the 

planes to determine the colors to show. 

What you do instead is modify the colormap so that only values in certain planes 
of the colormap change the color on the display, so in effect only those planes are 

visible. For example, to display two different four-color images you could use 

the colormap shown in the following table. 

Table 7-1 Sample Colormap to Isolate Planes 

ColormapA ColormapB 
Pixel Value (Only upper planes (Only lower planes 

are "visible") are "visible" 

0 0 0 0 blue blue 
0 0 0 1 blue red 
0 0 1 0 blue green 
0 0 1 1 blue pink 

0 1 0 0 red blue 
0 1 0 1 red red 
0 1 1 0 red green 
0 1 1 1 red pink 

1 0 0 0 green blue 
1 0 0 1 green red 
1 0 1 0 green green 
1 0 1 1 green pink 

1 1 0 0 pink blue 
1 1 0 1 pink red 
1 1 1 0 pink green 
1 1 1 1 pink pink 

From the above table, you can see that if colormap A is set (using 
pw _putcolormap () ), then no matter what the value in the two lower planes, 
the color displayed is the same; the value in the upper two planes alone controls 
the color. So, if you use this colormap while only enabling the two lower planes 

(by passing pw _putattributes () the value 3 ), then the values you write 
into the lower planes won't change what is shown. 

When you switch to colormap B, the situation is reversed. Only the values in the 
lower planes affect what is visible. You would then pass 
pw_putattributes () the value 12 to write to the uppertwo planes. The 
two sets of colors need not be the same, so you can switch between two 
different -colored images. 

Revision A, of May 9, 1988 



122 Sun View 1 Programmer's Guide 

Using Software Double 
Buffering For Smooth 
Animation 

Hardware Double-Buffering 

You would use the same technique to switch between more images and/or to 
display more colors. You can display two different images, each with 16 dif­
ferent colors, or 8 different monochrome images, or values in between. 

One application of the above technique is to provide smooth animation. To 
move an image across the screen, you must draw it in one location, erase it, and 
redraw it in another. Even on a fast system, the erasing and redrawing is visible. 
You'd like the object to immediately appear in its new position, without disap­
pearing momentarily. You can do this by alternating two colormaps so that the 
object disappears in its old location and reappears in a new one. This is called 
software double-buffering, because you are using the display planes as alternat­
ing buffers; as you write to one set of planes, the other set of planes is displayed. 

The colormaps in the table on the preceding page come from the software pro­
gram animatecolor in Appendix A, Example Programs. This program uses 
software double buffering to animate some squares. The routines it uses to create 
the two colormaps and swap between them are complicated, but can be reused in 
more sophisticated graphics applications. 

The following routines will allow programs to do true hardware double-buffering 
on the Thecg5board. on the device driver interface, refer the the cgtwo(4S) 
manual page. 47 color framebuffer and on future framebuffers that support 
double-buffering. 

Double-buffering is treated as an even scarcer resource than colormaps, since f""', 
only one window can be truly double-buffered at any one time. The cursor con- \_ ) 
trois which window will flip the display buffers. Applications are able to run the 
same code on non-double-buffered displays and it will be as if the double-
buffering calls were never made. The following code fragment contains proto-
typical application code. 

Rect rectangle; 
Pixwin *pw; 
rectangle.r_left= .•• ; 

if (!pw_dbl_get (pw, PW_DBL_AVAIL)) 
{ ... if program cares ... } 
pw_dbl_access (pw); 
while (rendering_frames) { 

... calculate one frame ... 
pw_lock (pw, &rectangle); 
... render one frame ... 
. .. may include unlocks and locks ... 
pw_dbl_flip (pw); 
pw_unlock (pw); 

pw_dbl_release (pw) ;. 

47 The cg5 board is binary compitable with both the Sun-3 Color Board and the Sun-2 Color Board. cg5 is 
necessary for hardware double-buffering. ("'\: 

"-"/ 

sun 
microsysterns 

Revision A, ofMay 9, 1988 



c 

Chapter 7- hnaging Facilities: Pixwins 123 

The notion of the "active" double-buffering window is important. There is at 
most one active window at a time. If the cursor is in a double-buffering window, 
then the window is the active double-buffering window. If the cursor leaves the 
active window, that window remains active until the cursor enters another 
double-buffering window. If the active double-buffering window dies, goes 
iconic, or becomes totally obscured, and the cursor is not left in a double­
buffering window, then the top-most visible double-buffering window becomes 
the active window (if there is one). 

Only the active window will be allowed to write to a single buffer. All other win­
dows write to both buffers, so that when the display flips to the other buffer, their 
contents remain unchanged. The notion of active will change only during a 
pw_dbl_flip () call. 

pw_dbl_access() which resets the window's data structure so that first frame 
will be rendered to the background. The very first double buffer sets both READ 

and WRITE to the backgound. pw_dbl_access() should only be called when 
ready to actively animate: 

pw_dbl_access (pw) 
Pixwin *pw; 

If the pixwin's window has not been accessed for double-buffering then there is 
no change, and both buffers will be written to. 

If the window is marked as accessible for double-buffering and the window is 
"active" , then the frame double-buffering control to whatever this window 
requested with its last pw_dbl_set () call. If there was no pw_dbl_set () 

call, then set WRITE and READ to the background. Change the frame buffer 
double-buffering control bits to reflect this. 

If the window is accessible for double-buffering then potentially flip the display. 
The display is flipped only if the window is "active": pw_dbl_flip () deter­
mines if its window has become active: 

pw_dbl_flip (pw) 
Pixwin *pw; 

The flip can be done inside or outside of a lock region although it may be prefer­
able to place inside a lock region just before an unlock so that calculations for the 
next frame can proceed even if another window momentarily grabs the lock. The 
flip from one buffer to another is synchronized with the display's vertical retrace. 

The procedure 

pw_dbl_release(pw) 
Pixwin *pw; 

signifies the end of double-buffering by the window associated with the pixwin. 
Call pw _ dbl_ release () as soon as your program has completed a section of 
active animation. This procedure will copy the foreground buffer to the back­
ground. Because of this, it is important to leave the animation loop after a 
pw dbl flip () has been done and before drawing the next frame has started. 
Otherwise, the window will contain an incomplete buffer image after the release. 

sun 
microsystems 

Revision A, of May 9, 1988 



124 SID1View 1 Programmer's Guide 

Sun View provides the ability for an actively double-buffering window to write to Q 
both buffers. For example, the instrument gauge readings can be set in a real-
time simulator. If pw is not the active double buffer, the frame buffer control bits 
are not changed. The procedure and the attributes that it may use are discussed 
below. 

pw_dbl_set(pw, attributes) 
Pixwin *pw; 
<attribute-list> attributes; 

Table 7-2 Pixwin-Level set Attributes 

Attribute 
PW DBL WRITE 
PW DBL READ 

Possible Values to set 
PW_DBL FORE, PW_DBL_BACK, PW DBL BOTH 
PW DBL FORE, PW DBL BACK 

The attribute value returned from pw _ dbl_get () does not reflect the true state 
of double buffering hardware. This is especially true if the active double buffer 
is not this pixwin. The procedure and the attributes that is uses are given below. 

pw_dbl_get(pw, attribute) 
Pixwin *pw; 
Pw dbl attribute attribute; 

Table 7-3 Pixwin-Level get Attributes 

7.6. Plane Groups and the 
cgfour Frame Buffer 

Attribute 
PW DBL AVAIL - -
PW DBL DISPLAY 
PW DBL WRITE 
PW DBL READ 

Possible Values Returned 
PW DBL EXISTS 

PW_DBL_FORE, PW_DBL_BACK, PW DBL BOTH 
PW DBL FORE, PW DBL BACK 

The Sun-3/110, Sun-3/60, and Sun-4/110 color machines use the 
cgfour ( 4 s) 48 frame buffer, which supports multiple "plane groups." Each 
displays either 24-bit color or black and white. In the former case its color is 
determined by a value in an 8-bit color buffer, in the latter case, a monochrome 
buffer called the overlay plane. 

Whether the pixel displays in color or black/white is controlled by the value for 
the pixel in the enable plane, a third plane. If the value in the enable plane is not 
set, then the 8-bit deep value in the color buffer is passed to the circuitry that pro­
duces the color from the lookup table. If it is set, then the overlay plane deter­
mines the pixel's color (black or white). The effect is like having a color and 
monochrome display in one, with the enable plane determining which is shown 
in each pixel. 

48 Read the cgf our ( 4 s) manual page for more information on this frame buffer architecture. 

Revision A, of May 9, 1988 

(', 
\ 

"'-·· 



Sun View and Plane Groups 

Chapter 7-Imaging Facilities: Pixwins 125 

In fact, in the color Sun-3/60 and Sun-4/110 plane group implementations, you 
can set the colors in the overlay plane to other that black and white. There are 
only two colors in the overlay plane since it is only one-bit deep, but they can 
have colors other than black and white assigned to them. 

Such sets of buffers are referred to as plane groups. 

At the pixrect level it is possible to manipulate the three plane groups of multiple 
plane group framebuffers directly. At the Sun View level, some decisions have 
been made for you. Raster operations in the overlay plane are faster than in the 
color plane, so Sun View objects which only use the foreground and background 
colors such as frames, text subwindows, panels, cursors, menus; etc. all try to run 
in the overlay plane. If you set the foreground and background explicitly using 
the techniques explained in Changing Colors from the Command Line above, or 
if you have told sunview to run in the color buffer only by giving it the com­
mand line argument -8bi.t_col.or_onl.y, then these objects will run in the 
color plane. 

However, canvases and graphics subwindows default to using the color plane 
group whenever possible, on the assumption that you want to draw in color. If 
this is not the case, then you may find that your application runs faster if you hint 
to these subwindows to use the overlay plane: 

o For canvases, set the attribute CANVAS_ FAST_ MONO, either when creating 
the canvas or later, as in: 

window_set(canvas, CANVAS_FAST_MONO, TRUE; 0); 

If your application uses scrollbars, then you need to set 
CANVAS_ FAST_ MONO before you create the canvas' scrollbars, since they 
share the canvas' pixwin. 

o For graphics subwindows in old-style Sun Windows applications, use the 
pixwin call pw_use_fast_monochrome (pw) as follows: 

pw_use_fast_monochrome(gfx->gfx_pixwin); 

Both calls affect only multiple plane group displays, so it is safe and desirable to 
put tllem in any Sun application that uses monochrome canvases or graphics 
subwindows. Again, if the user gives the appropriate command line arguments, 
canvases and graphics subwindows will run in the color plane regardless of these 
calls. 

sun 
microsystems 

Revision A, of May 9, 1988 



126 Sun View 1 Programmer's Guide 

"Glitches" Visible when Using 
Plane Groups 

sun view and Plane Groups 

For perfonnance reasons, the cursor image is only written in the plane group of 
the window under it. So, if the cursor's hot spot is in a black and white window 
in the overlay plane and there is an adjacent color window, that part of its image 
that would lie over the color window is invisible, since it is drawn in the overlay 
plane but the enable plane is still showing the value in the color buffer. The 
same disappearance applies in the reverse situation. 

When menus are drawn, the enable plane is set so that they are visible. 

It is possible to direct sunview(l) to only use the color buffer or the overlay 
plane; it is also possible to start up a second copy of sunview in the other plane 
group, and switch between them using swi tcher(l) or­
adjacentscreens(l). Consult these programs' manual pages for more infor­
mation. 

~~sun ~~ microsystems 
Revision A, of May 9, 1988 

/~ 
I ' \ 1 

"-._/ 



8 
Text Subwindows 

Text Subwindows ......................................................................................................................... 129 

Summary Tables...................................................................................................... 129 

8.1. Text Subwindow Concepts ........................................................................................ 132 

Creating a Subwindow ............................................................................................... 132 

Attribute Order.......................................................................................................... 132 

Determining a Character's Position ................................................................... 132 

Getting a Text Selection ........................................................................................... 132 

Editing a Text Subwindow ................................. :.................................................... 132 

8.2. Loading a File .................................................................................................................... 133 

Checking the Status of the Text Subwindow ................................................ 133 

Textsw_status Value................................................................................ 133 

8.3. Writing to a Text Subwindow .................................................................................. 134 

Insertion Point ................................................................................................................. 135 

Positioning to End of Text ................................................................................. 135 

8.4. Reading from a Text Subwindow ........................................................................... 135 

8.5. Editing the Contents of a Text Subwindow ...................................................... 136 

Removing Characters ................................................................................................. 136 

Emulating an Editing Character ........................................................................... 136 

Replacing Characters .................................................................................................. 137 

The Editing Log............................................................................................................. 138 

Which File is Being Edited? ................................................................................... 138 

Interactions with the File System ........................................................................ 138 

8.6. Saving Edits in a Subwindow ................................................................................... 139 



Storing Edits .................................................................................................................... 139 

Discarding Edits ............................................................................................................ 139 

8.7. Setting the Contents of a Text Subwindow ...................................................... 140 

TEXTSW_FILE_CONTENTS ............................................................................. 140 

TEXTSW_CONTENTS .............................................................................................. 140 

TEXTSW_INSERT_FROM_FILE ................................................................... 141 

8.8. Positioning the Text Displayed in a Text Subwindow ............................... 141 

Screen Lines and File Lines.................................................................................... 141 

Absolute Positioning ................................................................................................... 142 

Relative Positioning .................................................................................................... 142 

How Many Screen Lines are in the Subwindow? ...................................... 143 

Which File Lines are Visible? ............................................................................... 143 

Guaranteeing What is Visible ................................................................................ 143 

Ensuring that the Insertion Point is Visible.............................................. 143 

8.9. Finding and Matching a Pattern.............................................................................. 144 

Matching a Span of Characters ............................................................................. 144 

Matching a Specific Pattern.................................................................................... 144 

8.10. Marking Positions......................................................................................................... 145 

8.11. Setting the Primary Selection ................................................................................ 147 

8.12. Dealing with Multiple Views................................................................................. 147 

8.13. Notifications from a Text Subwindow .............................................................. 148 

,r\, 
[ I 

\.__j 



Figure 8-1 

Summary Tables 

8 
Text Subwindows 

This chapter describes the, text subwindow package, which you can use by 
including the file <suntool/textsw. h>. 

Figure 8-1 is a text subwindow. A text subwindow allows a user or client to 
display and edit a sequence of ASOI characters. These characters are stored in a 
file or in primary memory. Its features range from inserting into a file to search­
ing for and replacing a string of text or a character. 

Text Subwindow 

~ Scratch window 

File .. \ 

Di spla' Undo ,. 
Find COjl)l 
Extras Paste 

""'' """'~-,C;,:u..:.t ~~---ill 
Show C 1 i pboard ,. 
COllY, then Paste 

To give you a feeling for what you can do with text subwindows, overleaf there 
is a list of the available text subwindow attributes and functions. Many of these 
are discussed in the rest of this chapter and elsewhere (use the Index to check). 
All are briefly described with their arguments in the text subwindow summary 
tables in Chapter 19, Sun View Interface Summary: 

o the Text Subwindow Attributes table begins on page 366; 

o the Textsw_action Attributes table begins on page 370; 

o the Textsw_status Valuestab1ebeginsonpage371; 

o the Text Subwindow Functions table begins on page 372. 

129 Revision A, of May 9, 1988 



130 Sun View 1 Programmer's Guide 

Text Subwindow Attributes 

TEXTSW ADJUST IS PENDING DELETE 

TEXTSW AGAIN RECORDING 
- -

TEXTSW AUTO INDENT 

TEXTSW AUTO SCROLL BY - -
TEXTSW BLINK CARET 
TEXTSW BROWSING 
TEXTSW_CHECKPOINT_FREQUENCY 

TEXTSW CLIENT DATA 
TEXTSW CONFIRM OVERWRITE 
TEXTSW CONTENTS 

TEXTSW CONTROL CHARS USE FONT - - -
TEXTSW DISABLE CD 
TEXTSW DISABLE LOAD 
TEXTSW EDIT COUNT 

TEXTSW FILE 
TEXTSW FILE CONTENTS 

TEXTSW FIRST 
TEXTSW FIRST LINE - -
TEXTSW HISTORY LIMIT - -
TEXTSW IGNORE LIMIT 

TEXTSW INSERT FROM FILE 
TEXTSW INSERT MAKES VISIBLE - - -
TEXTSW INSERTION POINT - -
TEXTSW LEFT MARGIN 

TEXTSW LENGTH 
TEXTSW LINE BREAK ACTION - - -
TEXTSW LOWER CONTEXT 
TEXTSW MEMORY MAXIMUM 
TEXTSW MENU 
TEXTSW MODIFIED 
TEXTSW MULTI CLICK SPACE 
TEXTSW MULTI CLICK TIMEOUT 
TEXTSW NOTIFY PROC 
TEXTSW READ ONLY - -
TEXTSW SCROLLBAR 
TEXTSW STATUS 

TEXTSW STORE CHANGES FILE - -
TEXTSW STORE SELF IS SAVE - - -
TEXTSW UPDATE SCROLLBAR - -
TEXTSW UPPER CONTEXT 

Textsw action Attributes 

TEXTSW ACTION CAPS LOCK - -
TEXTSW ACTION CHANGED DIRECTORY 

TEXTSW ACTION EDITED FILE 
TEXTSW ACTION EDITED MEMORY 

TEXTSW ACTION FILE IS READONLY 

TEXTSW ACTION LOADED FILE 

sun 
microsystems 

TEXTSW ACTION TOOL CLOSE - -
TEXTSW ACTION TOOL DESTROY - - -
TEXTSW_ACTION_TOOL_QUIT 
TEXTSW ACTION TOOL MGR - -
TEXTSW ACTION USING MEMORY 

Revision A, of May 9, 1988 

!~ 
' ' 
\ ' \.___,/ 

(~ 
' I '--._j 



Chapter 8 -Text Subwindows 131 

Text Subwindow Functions 
textsw_add_mark(textsw, position, flags) 
textsw_append_file_name(textsw, name) 
textsw_delete(textsw, first, last_plus_one) 

textsw_edit(textsw, unit, count, direction) 
textsw_erase(textsw, first, last_plus_one) 
textsw_file_lines_visible(textsw, top,-bottom) 
textsw_find_bytes(textsw, first, last_plus_one, buf, buf_len, flags) 

textsw_find_mark(textsw, mark) 
textsw_first(textsw) 
textsw_index_for_file_line(textsw, line) 

textsw_insert(textsw, buf, buf_len) 
textsw_match_bytes(textsw, first, last_plus_one, 

start_sym, start_sym_len, end_sym, end_sym_len, field_flag) 

textsw_next(textsw) 
textsw_normalize_view(textsw, position) 
textsw_possibly_normalize(textsw, position) 

textsw_remove_mark(textsw, mark) 
textsw_replace_bytes(textsw, first, last_plus_one, buf, buf_len) 

textsw_reset(textsw, x, y) 
textsw_save(textsw, x, y) 
textsw_screen_line_count(textsw) 
textsw_scroll_lines(textsw, count) 

textsw_set_selection(textsw, first, last_plus_one, type) 

textsw store file(textsw, filename, x, y) 

sun 
microsystems 

Revision A, of May 9, 1988 



132 Sun View 1 Programmer's Guide 

8.1. Text Subwindow 
Concepts 

Creating a Subwindow 

Attribute Order 

Determining a Character's 
Position 

Getting a Text Selection 

Editing a Text Subwindow 

This section introduces the basic concepts of a text subwindow. 

You create a text subwindow the same way that you create any Sun View window 
object, by calling the window creation routine with the appropriate type parame­
ter: 

Textsw textsw; 
textsw = window_create (base_frame, TEXTSW, attributes, 0); 

The attributes in the above call constitute an attribute list which is discussed in a 
Section later in this chapter, titled Attribute-based Functions. 

Most attributes are orthogonal; thus you usually need not worry about their order. 
However, in a few cases the attributes in a list may interact, so you need to be 
careful to specify them in a particular order. Such cases are noted in the sections 
which follow.49 In particular, you must pass TEXTSW STATUS first in any call 
to window_ ere ate () or window_ set () if you want to find the status after 
setting some other attribute in the same call. 

The contents of a text subwindow are a sequence of characters. At any moment, 
each character can be uniquely identified by its position in the sequence (type 
Textsw_index). Editing operations, such as inserting and deleting text, cause 
the index of any particular character to change over time. The valid indices are 0 
through length-l inclusive, where length is the number of characters currently in 
the text subwindow, returned by the TEXTSW _LENGTH attribute. 

The text subwindow has a notion of the current index after which the next char­
acter will be inserted at any given moment. This is called the insertion point. A 
caret is drawn on the screen immediately after this index to give the user a visual 
indication of the insertion point. 

A text selection is made by the user, and it is indicated on the screen with 
reverse-video highlighting. A text subwindow function or procedure is not used 
to determine which window has the current selection or to retrieve information 
contained in a text subwindow. Instead, these functions are carried out by the 
Selection Service. For an example of how this is done, refer to Section 16, The 
Selection Service. 

A text subwindow may be edited by the user, or by a client program. When you 
create a text subwindow, by default the user can edit it. By using the special 
attributes discussed in this section, the client program can edit the subwindow. 
These edits are then stored in /tmp/textProcess-id.Counter. 

The following five sections explain the functions and attributes that you will use 
to load, read, write, edit, and finally save a text file. 

49 For a discussion of attribute ordering in general, see Section 4.8, Attribute Ordering. 

sun Revision A, of May 9, 1988 
microsystems 



Chapter 8-Text Subwindows 133 

r 
\ 8.2. Loading a File You can load a file into a textsw by using TEXTSW _FILE, as in: 

NOTE 

Checking the Status of the 
Text Subwindow 

window_set(textsw, TEXTSW_FILE, file_name, 0); 

Keep in mind, that if the existing text has been edited, then these edits will be 

lost. To avoid such loss, first check whether ~ere are any outstanding edits by 
calling: · 

( window_get(textsw, TEXTSW_MODIFIED) ) 
The above call to window_ set () will load the new file with the text posi­
tioned so that the first character displayed has the same index as the first charac­
ter that was displayed in the previous file- which is probably not what you 
want. To load the file with the first displayed character having its index specified 
by position, use the following: 

window_set(textsw, TEXTSW_FILE, file name, 
TEXTSW_FIRST, position, 0); 

The order of these attributes is important. Because attributes are evaluated in 

the order given, reversing the order would first reposition the existing file, then 

load the new file. This would cause an unnecessary repaint, and mis-position the 

old file, if it was shorter than position. For a full discussion of attribute ord­
ering, see Section 8.5. 

Both of the above calls blindly trust that the load of the new file was successful. 

This is, in general, a bad idea. To find out whether the load succeeded, and if 

not, why not, use the following call: 

window_set(textsw, 
TEXTSW_STATUS, &status, 
TEXTSW_FILE, file_name, 
TEXTSW_FIRST, position, 
0) ; 

where status is declared to be oftype Textsw_status. 

NOTE The TEXTSW _STATUS attribute and handle must appear in the attribute list 

before the operation whose status you want to determine. 

Textsw status Value The valid values for such a variable are enumerated in the following table, where 
the common prefix TEXTSW_STATUS_has been removed. For example, OKAY 

in the table is actually TEXTSW _STATUS_ OKAY. 

Revision A, of May 9, 1988 



134 Sun View 1 Programmer's Guide 

Table 8-1 Textsw status Values 

Value Description 
TEXTSW STATUS OKAY The operation encountered no problems. 

TEXTSW STATUS BAD ATTR The attribute list contained an illegal or unrecognized attribute. 

TEXTSW STATUS BAD ATTR VALUE The attribute list contained an illegal value for an attribute, 
usually an out of range value for an enumeration. 

TEXTSW STATUS CANNOT ALLOCATE A call to calloc(2) or malloc(2) failed. - -

TEXTSW STATUS CANNOT OPEN INPUT The specified input file does not exist or cannot be accessed. 

TEXTSW STATUS CANNOT INSERT FROM FILE The operation encountered a problem when trying 

to insert from file. 

TEXTSW STATUS OUT OF MEMORY The operation ran out of memory while editing in memory. 

TEXTSW STATUS OTHER ERROR 

8.3. Writing to a Text 
Subwindow 

NOTE 

The operation encountered a problem not covered by any of 
the other error indications. 

To insert text into a text subwindow at the current insertion point, call: 

Textsw index 
textsw_insert(textsw, buf, buf_len) 

Textsw 
char 
int 

textsw; 
*buf; 
buf_len; 

The return value is the number of characters actually inserted into the text 
subwindow. This number will equal buf _len unless either the text subwindow 
has had a memory allocation failure, or the portion of text containing the inser­
tion point is read only. The insertion point is moved forward by the number of 
characters inserted. 

This routine does not do terminal-style interpretation of the input characters. 
Thus "editing" characters (such as CTRL-H or DEL for character erase, etc.) are 
simply inserted into the text subwindow rather than performing edits to the exist­
ing contents of the text subwindow. In order to do terminal-style emulation, you 
must pre-scan the characters to be inserted, and invoke textsw_edit () where 
appropriate, as described in the next section. 

Revision A, of May 9, 1988 



c 

c 

(", 
\ 

Insertion Point 

Chapter 8-Text Subwindows 135 

The attribute TEXTSW_INSERTION_POINT is used to interrogate and to set 
the insertion point For instance, the following call determines where the inser­
tion point is: 

Textsw_index point; 
point= (Textsw_index)window_get(textsw, 

TEXTSW INSERTION_POINT); 

whereas the following call sets the insertion point to be just before the third char­
acter of the text: 

window_set(textsw, TEXTSW_INSERTION_POINT, 2, 0); 

Positioning to End of Text To set the insertion point at the end of the text, set 
TEXTSW_INSERTION_POINT to the special index TEXTSW_INFINITY. 

NOTE This call does not ensure that the new insertion point will be visible in the text 
subwindow; even ifthe TEXTSW_INSERT_MAKES_VISIBLE attribute is 
TRUE. To guarantee that the caret will be visible afterwards, you should call 
textsw_possibly_normalize(). 

8.4. Reading from a Text 
Subwindow 

Many applications that incmporate text subwindows never need to read the con­
tents of the text directly from the text subwindow. Often, this is because the text 
subwindow is only being used to display text to the user. 

Even when the user is allowed to edit the text, some applications simply wait for 
the user to perform some action that indicates that all of the edits have been 
made. They then use either textsw_save () ortextsw _store_file () to 
place the text in the file. The text can then be read via the usual file input utili­
ties, or the file itself can be passed off to another program. 

It is, however, useful to be able to directly examine the text in the text subwin­
dow. You can do this using the TEXTSW _CONTENTS attribute. The following 
code fragment illustrates how to use TEXT sw _CONTENTs to get a span of char­
acters from the text subwindow. It gets the 1000 characters beginning at position 
500 out of the text subwindow and places them into a null-terminated string. 

fdefine TO READ 1000 

char buf[TO_READ+l]; 
Textsw_index next_pos; 

next_pos = (Textsw_index) 
window_get(textsw, TEXTSW_CONTENTS, 500, buf, TO_READ); 

if (next_pos != SOO+TO_READ) 
Error case 

else 
buf[TO_READ] = '\0'; 

Revision A, of May 9, 1988 



136 Sun View 1 Programmer's Guide 

8.5. Editing the Contents of 
a Text Subwindow 

Removing Characters 

Emulating an Editing 
Character 

The file or memory being edited by a text subwindow is referred to as the back­
ing store. Several attributes and functions are provided to allow you to manipu­
late the backing store of a text sub window. 50 This section describes the pro­
cedures and attributes that you can use to edit a text subwindow. 

You can remove a contiguous span of characters from a text subwindow by cal­
ling: 

Textsw index 
textsw_delete(textsw, first, last_plus_one) 

Textsw textsw; 
Textsw index first, last_plus_one; 

first specifies the first character of the span that will be deleted, while 
last_plus_one specifies the first character after the span that will not be 
deleted. first should be less than, or equal to, last_plus_one. To delete 
to the end of the text, pass the special value TEXTSW _INFINITY for 
last_plus_one. 

The return value is the number of characters deleted, and is last_plus_one 
- first, unless all or part of the specified span is read-only. In this case, only 
those characters that are not read-only will be deleted, and the return value will 
indicate how many such characters there were. If the insertion point is in the 
span being deleted, it will be left at first. ,!"'\ 

A side-effect of calling textsw _delete () is that the deleted characters \._j 
become the contents of the global Clipboard. To remove the characters from the 
textsw subwindow without affecting the Clipboard, call: 

Textsw index 
textsw_erase(textsw, first, last_plus_one) 

Textsw textsw; 
Textsw index first, last_plus_one; 

Again, the return value is the number of characters removed, and 
last_plus_one can be TEXTSW_INFINITY. 

Both of these procedures will return 0 if the operation fails. 

You can emulate the behavior of an editing character, such as CfRL-H, with 
textsw_edit (): 

Textsw index 
textsw_edit(textsw, unit, count, direction) 

Textsw textsw; 
unsigned unit, count, direction; 

so Note that the edit log maintained by the text subwindow package is reset on each operation affecting the 
backing store. For a description of the edit log, see the discussion at the end of Editing the Contents of a Text 
Subwindow. (\, 

\_j 

sun 
microsystems 

Revision A, of May 9, 1988 



c\ 
Replacing Characters 

c 

Chapter 8 -Text Subwindows 137 

Depending on the value of unit, this routine will erase either a character, a 
word, or a line. Set unit to: 

o TEXTSW_UNIT_IS_CHAR to erase individual characters, 

o TEXTSW_UNIT_IS_WORD to erase the span of characters that make up a 
word (including any intervening white space or other non-word characters), 
or 

o TEXTSW UNIT IS LINE to erase all characters in the line on one side of 
the insertion point. 

If the direction parameter is 0, the operation will affect characters after the 
insertion point, otherwise it will affect characters before the insertion point. 

The number of times the operation will be applied is determined by the value of 
the count parameter. Set it to one to do the edit once, or to a value greater than 
one to do multiple edits in a single call. text sw _edit () returns the number 
of characters actually removed. 

For example, suppose you want to interpret the function key I F7 I as meaning 
"delete word forward". On receiving the event code for the I F7J key going up, 
you would make the call: 

' 
textsw_edit(textsw, TEXTSW_UNIT_IS_WORD, 1, 0); 

While a span of characters may be replaced by calling textsw_erase () fol­
lowed by text sw _insert () , character replacement is done most efficiently 
by calling: 

Textsw index 
textsw_replace_bytes(textsw, first, last_plus_one, buf, buf_len) 

Textsw textsw; 
Textsw_index first, last_plus_one; 
char *buf; 
int buf_len; 

The span of characters to be replaced is specified by first and 
last_plus_one,just as in the call to textsw_erase (). The new charac­
ters are specified by buf and buf _len, just as in the call to 
textsw_insert (). Once again, if last_plus_one is 
TEXTSW _INFINITY, the replace affects all characters from first to the end 
of the text. If the insertion point is in the span being replaced, it will be left at 
first + buf len. 

The return value is the net number of bytes inserted. The number is negative if 
the original string is longer than the one which replaces it. If a problem occurs 
when an attempt is made to replace a span, then it will return an error code of 0. 

textsw_replace_bytes (),like textsw_erase (),does not put the 
characters it removes on the global Oipboard. 

Revision A, of May 9, 1988 



138 Sun View 1 Programmer's Guide 

The Editing Log 

Which File is Being Edited? 

Interactions with the File 
System 

All text subwindows allow the user to undo editing actions. In order to imple­
ment this feature, the text subwindow package keeps a running log of all the 
edits. If there is a file associated with the text subwindow, this log is kept in a 
file in the /tmp directory. 

This file can grow until this directory runs out of space. To limit the size of the 
edit log and to avoid filling up all of tmp the user can set the tex wrap around 
size in the defaultsedit(l) Tty!text_wraparound_size. lfthere is no associ­
ated file, the edit log is kept in memory, and the maximum size of the log is con­
trolled by the attribute TEXTSW _MEMORY_ MAXIMUM, which defaults to 20,000 
bytes. 

Unfortunately, once an edit log kept in memory has reached its maximum size, 
no more characters can be inserted into or removed from the text subwindow. In 
particular, since deletions, as well as insertions, are logged, space cannot be 
recovered by deleting characters. 

It is important to understand how the edit log works because you may want to use 
a text subwindow with no associated file to implement a temporary scratch area 
or error message log. If such a text subwindow is used for a long time, the 
default limit of 20,000 bytes may well be reached, and it will be impossible for 
either the user or your code to insert any more characters even though there may 
be only a few characters visible in the text subwindow. Therefore, it is recom­
mended to set TEXTSW _MEMORY_ MAXIMUM much higher, say to 200,000. 

To find out which file the text subwindow is editing, call: 

int 
textsw_append_file_name(textsw, name) 

Textsw textsw; 
char *name; 

If the text subwindow is editing memory, then this routine will return a non-zero 
value. Otherwise, it will return 0, and append the name of the file to the end of 
name. 

If a text subwindow is editing a file called myfile and the user chooses 'Save 
Current File' from the subwindow's menu (or client code invokes 
textsw_save ()),the following sequence of file operations occurs: 

o myfile is copied to myfile% 

o The contents ofmyfile% are combined with information from the edit log 
file (!tmp/TextProcess-id. Counter) and written overmyfile (thereby 
preserving all its permissions, etc). 

o The edit log file is removed from I tmp. 

Ifmyfile is a symbolic link to . .lsome_dir/otherfile, then the backup file 
is created as . ./some_dir/otherfile%. 

sun Revision A, of May 9, 1988 
microsystems 

f"', 
' . 
\_) 



8.6. Saving Edits in a 
Subwindow 

Storing Edits 

Chapter 8 -Text Subwindows 139 

Keep in mind that the user can change the current directory by selecting 'Load 
File' or 'Set Directory' from the text subwindow menu. lfmyfile is a relative 
path name, then the copy to myfile% and the save take place in the current 
directory. 

To save any edits made to a file currently loaded into a text subwindow call: 

unsigned 
textsw_save(textsw, locx, locy) 

Textsw textsw; 
int locx, locy; 

locx and locy are relative to the upper left corner of the text subwindow and 
are used to position the upper left corner of the alert should the save fail for some 
reason- usually they should be 0. The return value is 0 if and only if the save 

succeeded. 

The text subwindow may not contain a file, or the client may wish to place the 
edited version of the text (whether or not the original text came from a file) in 
some specific file. To store the contents of a text subwindow to a file call: 

unsigned 
textsw_store_file(textsw, filename, locx, locy) 

Textsw textsw; 
char *filename; 
int locx, locy; 

Again, locx and locy are used to position the upper left corner of the message 
box. The return value is 0 if and only if the store succeeded. 

NOTE By default, this call changes the file that the text subwindow is editing, so that 
subsequent saves will save the edits to the new file. To override this policy, set 
the attribute TEXTSW STORE CHANGES FILE to FALSE. 

Discarding Edits To discard the edits perfonned on the contents of a text subwindow, call: 

void 
textsw_reset(textsw, locx, locy) 

Textsw textsw; 
int locx, locy; 

locx and locy are as above. Note that if the text subwindow coqtains a file 
which has not been edited, the effect of textsw _reset is to unload the file 
and replace it by memory provided by the text subwindow package; thus the user 
will see an absolutely empty text subwindow. Alternatively, if the text subwin­
dow already was editing memory then another, untouched, piece of primary 
memory will be provided and the edited piece will be deallocated. 

The rest of this chapter describes the other functions that are available for text 
subwindows. These features include setting the contents of a subwindow, setting 
the primary selection, and how to deal with multiple or split views. 

Revision A. of May 9, 1988 



140 Sun View 1 Programmer's Guide 

8. 7. Setting the Contents of 
a Text Subwindow 

TEXTSW FILE CONTENTS 

TEXTSW CONTENTS 

You may want to set the initial contents of a text subwindow that your applica­
tion uses. For example, the Sun View mai 1 too 1 sets the initial contents of the 
composition window to come up with the headings To, Subject, and so on. 

To set the initial contents of a text subwindow, use one of three attributes: 
TEXTSW_INSERT_FROM_FILE,TEXTSW_FILE_CONTENTS,and 
TEXT sw _CONTENTs. Each attribute is illustrated in code fragments given 
below. 

The attribute TEXTSW_FILE_CONTENTS makes it possible for a client to ini­
tialize the text subwindow contents from a file yet still edit the contents in 
memory. The user can return a text subwindow to its initial state after an editing 
session by choosing 'Undo All Edits' in the text menu. 

The following code fragment shows how you would use this attribute. 

Textsw textsw; 
char *filename; 
Textsw index pos; 

window_set(textsw, 
TEXTSW FILE_CONTENTS, filename, 
TEXTSW_FIRST, pos, 
0); 

When the client calls the undo routine and filename is not a null string, then it 
will initialize the memory used by the text subwindow with the contents of the 
file specified by filename. 

When the client calls the undo routine and the filename is a null string, then it 
will initialize the memory used by the text subwindow with the previous contents 
of the text sub window. 

TEXTSW_CONTENTS lets you insert a text string from memory, instead of a file, 
into the text subwindow. The default for this attribute is NULL. 

If you use window_create () with this attribute, then it will specify the initial 
contents for a non-file text subwindow. 

If you use window_ set () with this attribute it will set the contents of a win­
dow as in: 

window_set(textsw, TEXTSW_CONTENTS, "text", 0); 

If you use window _get () with this attribute, then you will need to provide 
additional parameters as in: 

window_get(textsw, TEXTSW_CONTENTS, pos, buf, buf_len) 

The return value is the next position to be read. The buffer array 

sun 
microsystems 

Revision A, of May 9, 1988 

~\ 
I 1 

~I 



C' 
" 

c 

Chapter 8 -Text Subwindows 141 

buf [ 0 ... buf_len-1] is filled with the characters from textsw beginning at 
the index pos, and is null-terminated only if there were too few characters to fill 
the buffer. 

TEXTSW INSERT FROM FILE TEXTSW INSERT FROM FILE allows a client to insert the contents of a file 
into a text subwindow at the current insertion point. It is the programming 
equivalent of a user choosing 'Include File' from the text menu. 

8.8. Positioning the Text 
Displayed in a Text 
Subwindow 

Screen Lines and File Lines 

The following code fragment is a sample of using this attribute. 

Textsw textsw; 
.Textsw status status; 

window_set(textsw, 
TEXTSW_STATUS, &status, 
TEXTSW_INSERT_FROM_FILE, filename, 
0); 

Three status values may be returned for this attribute when the argument 
TEXTSW _STATUS is passed in the same call to window_ create () or 
window_set (): 

o TEXTSW _STATUS_ OKAY- the operation was successful. 

o TEXTSW _STATUS_ CANNOT_ INSERT _FROM _FILE- the operation 
failed 

o TEXTSW STATUS OUT OF MEMORY -the function cannot insert the 
text, because it ran out of memory 

Usually there is more text managed by the text subwindow than can be displayed 
all at once. As a result, it is often necessary to determine the indices of the char­
acters that are being displayed, and to control exactly which portion of the text is 
being displayed. 

When there are long lines in the text it is necessary to draw a distinction between 
two different definitions of "line of text." 

A screen line reflects what is actually displayed on the screen. A line begins 
with the leftmost character in the subwindow and continues across until either a 
newline character or the right edge of the subwindow is encountered. A file line, 
on the other hand, can only be terminated by the newline character. It is defined 
as the span of characters starting after a newline character (or the beginning of 
the file) running through the next newline character (or the end of the file). 

Whenever the right edge of the subwindow is encountered before the newline, if 
TEXTSW_LINE_BREAK_ACTIONisTEXTSW_WRAP_AT_CHAR,iliene~ 

character and its successors will be displayed on the next lower screen line. In 
this case there would be two screen lines, but only one file line. From me per­
spective of the display there are two lines; from the perspective of me file only 
one. If, on ilie oilier hand TEXTSW _LINE_ BREAK_ ACTION is 
TEXTSW _WRAP_ AT_ WORD, the entire word will be displayed on the next line. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 



142 Sun View 1 Programmer's Guide 

(\ 
Unless otherwise specified, all text subwindow attributes and procedures use the 

1
'-) 

file line definition. 

NOTE Line indices have a zero-origin, like the character indices; that is, the first line 
has index 0, not 1. 

Absolute Positioning Two attributes are provided to allow you to specify which portion of the text is 
displayed in the text subwindow. 

Relative Positioning 

Setting the attribute TEXTSW _FIRST to a given index causes the first character 
of the line containing the index to become the first character displayed in the text 
subwindow. Thus the following call causes the text to be positioned so that the 
first displayed character is the first character of the line which contains index 
1000. This call only positions one view at a time: 

window_set(textsw, TEXTSW_FIRST, 1000, 0); 

To position all of the views in a text subwindow, use the attribute 
TEXTSW _FOR_ ALL_ VIEWS as in the following call: 

window_set(textsw,TEXTSW_FOR_ALL_VIEWS, TRUE, 
TEXTSW_FIRST, 1000, 0); 

Conversely, the following call retrieves the index of the first displayed character: 

index= (Textsw_index)window_get(textsw, TEXTSW_FIRST); 

A related attribute, useful in similar situations, is TEXTSW _FIRST_ LINE. 
When used in a call on window_ set () or window _get (),the value is a 
file line index within the text. 

You can determine the character index that corresponds to a given line index 
(both zero-origin) within the text by calling: 

Textsw index 
textsw_index_for_file_line(textsw, line) 

Textsw textsw; 
int line; 

The return value is the character index for the first character in the line, so char­
acter index 0 always corresponds to line index 0. 

To move the text in a text subwindow up or down by a small number oflines, 
call the routine: 

void 
textsw scroll_lines(textsw, count) 

Textsw textsw; 
int count; 

A positive value for count causes the text to scroll up, just as if the user had 
used the left mouse button in the scrollbar, while a negative value causes the text 

Revision A, of May 9, 1988 

0 



c 

How Many Screen Lines are 
in the Subwindow? 

Which File Lines are Visible? 

Guaranteeing What is Visible 

Ensuring that the Insertion Point 
is Visible 

Chapter 8-Text Subwindows 143 

to scroll down, as if the user had used the right mouse button in the scrollbar. 

When calling textsw_scroll_lines () you may want to know how many 
screen lines are in the text subwindow. You can find. this out by calling: 

int 
textsw_screen_line_count(textsw) 

Textsw textsw; 

Exactly which file lines are visible on the screen is determined by calling: 

void 
textsw_file_lines_visible(textsw, top, bottom) 

Textsw textsw; 
int *top, *bottom; 

This routine fills in the addressed integers with the file line indices of the first and 
last file lines being displayed in the specified text subwindow. 

To ensure that a particular line or character is visible, call: 

void 
textsw_possibly_normalize(textsw, position) 

Textsw textsw; 
Textsw_index position; 

The text subwindow must be displayed on the screen, before this function will 
work. 

If the character at the specified position is already visible, then this routine 
does nothing. If it is not visible, then it repositions the text so that it is visible 
and at the top of the subwindow. 

If a particular character should always be at the top of the subwindow, then cal­
ling the following routine is more appropriate: 

void 
textsw_normalize_view(textsw, position) 

Textsw textsw; 
Textsw_index position; 

Most of the programmatic editing actions do not update the text subwindow to 
display the caret, even if TEXTSW_INSERT_MAKES_VISIBLE is set. If you 
want to ensure that the insertion point is visible, call something like 

textsw_possibly_normalize(textsw, 
(Textsw_index} window_get(textsw, TEXTSW_INSERTION_POINT}; 

Revision A, of May 9, 1988 



144 Sun View 1 Programmer's Guide 

8.9. Finding and Matching 
a Pattern 

Matching a Span of 
Characters 

Matching a Specific Pattern 

A common operation performed on text is finding a span of characters that match 
some specification. The text subwindow provides several rudimentary pattern 
matching facilities. This section describes two functions that you may call in 
order to perform similar operations. 

To find the nearest span of characters that match a pattern, call: 

int 
textsw_find_bytes(textsw, first, last_plus_one, buf, 

buf_len, flags) 
Textsw 
Textsw index 
char 
unsigned 
unsigned 

textsw; 
*first, *last_plus_one; 
*buf; 
buf_len; 
flags; 

The pattern to match is specified by buf and buf _len. The matcher looks for 
an exact and literal match- it is sensitive to case, and does not recognize any 
kind of meta-character in the pattern. first specifies the position at which to 
start the search. If flags is 0, the search proceeds forwards through the text, if 
1 the search proceeds backwards. The return value is -1 if the pattern cannot be 
found, else it is some non-negative value, in which case the indices addressed by 
first and last_plus_one will have been updated to indicate the span of 
characters that match the pattern. 

Another useful operation is to find delimited text. For example, you might want 
to find the starting brace and the ending brace in a piece of code. To find a 
matching pattern, call: 

int 
textsw_match_bytes(textsw, first, last_plus_one, 

start_sym, start_sym_len, 
end_sym, end_sym_len, field_flag) 

Textsw 
Textsw index 
char 
int 
unsigned 

textsw; 
*first, *last_plus_one; 
*start_sym, *end_sym; 
start_sym_len, end_sym_len; 
field_flag; 

first stores the starting position of the pattern that you want to search for. 
last_plus_one stores the cursor position of the end pattern. Its value is one 
position past the text. start_sym and end_sym store the beginning position 
and ending position of the pattern respectively. start_sym_len and 
end_sym_len store starting and ending pattern's length respectively. 

Use one of the three field flag values to search for matches: 
TEXTSW_DELIMITER_FORWARD,TEXTSW_DELIMITER_BACKWARD,and 
TEXTSW DELIMITER ENCLOSE. 

o TEXTSW_DELIMITER_FORWARD begins from first and searches for- c 
ward until it finds start_sym and matches it forward with end_sym. __ ) 

Revision A, of May 9, 1988 



-------------------------------------------------------------------------~-----------------------------

8.10. Marking Positions 

Chapter 8-Text Subwindows 145 

o TEXTSW_DELIMITER_BACKWARD begins from first and searches 
backward for end_ sym and matches it backward with start_sym . 

o TEXT SW _DELIMITER_ ENCLOSE begins from first and expands both 
directions to match start_ s ym and end_ sym of the next level. 

If no match is found, then text sw _rna t c h _bytes ( ) will return a value of 
-1. If a match is found, then it will return the index of the first match. 

The following code fragment is an example of finding delimited text. Notice that 
the field_flag value is TEXTSW_DELIMITER_FORWARD. 

Textsw index first, last_plus_one, pos; 

first = (Textsw_index) window_get(textsw, TEXTSW_INSERTION_POINT); 
pos = textsw_match_bytes(textsw, &first, &last_plus_one, 

"/*", strlen("*/"), 
"/*", strlen("*/"), TEXTSW_DELIMITER_FORWARD); 

if (pos > 0) { 
textsw_set_selection(textsw, first, last_plus_one, 1); 
window_set(textsw, TEXTSW_INSERTION_POINT, last_plus_one, 0); 

else 
(void) window_bell(textsw); 

This code searches forward from first until it finds the starting*/ and 
matches it forward with the next*/. If no match is found, a bell will ring in the 
text subwindow. 

Often a client wants to keep track of a particular character, or group of characters 
that are in the text subwmdow. Given that arbitrary editing .can occur in a text 
sub window, and that it is very tedious to intercept and track all of the editing 
operations applied to a text subwindow, it is often easier to simply place one or 
more marks at various positions in the text subwindow. These marks are 
automatically updated by the text subwindow to account for user and client edits. 
There is no limit to the number of marks you can add. 

A new mark is created by calling: 

Textsw mark 
textsw_add_mark(textsw, position, flags) 

Textsw textsw; 
Textsw index position; 
unsigned flags; 

The flags argument is either TEXTSW_MARK_DEFAULTS or 
TEXTSW MARK MOVE AT INSERT. The latter causes an insertion that occurs - - - -
at the marked position to move the mark to the end of the inserted text, whereas 
the former causes the mark to not move when text is inserted at the mark's 
current position. As an example, suppose that the text managed by the text 
subwindow consists of the two lines 

sun 
microsystems 

Revision A, of May 9, 1988 



146 SruiView 1 Programmer's Guide 

~-
Assume a mark is set at position 5 Gust before the i in is on the first line) with ~) 
flagsofTEXTSW_MARK_MOVE_AT_INSERT. 

When the user selects just before the is (thereby placing the insertion point before 
the i, at position 5) and types an Bh, making the text read 

the mark moves with the insertion point and they both end up at position 6. 

However, if the flags had been TEXTSW_MARK_DEFAULTS, then the mark 

would remain at position 5 after the user typed the h, although the insertion point 
moved on to position 6. 

Now, suppose instead that the user had selected before the this on the first line, 
and typed Kep, making the text read 

In this case, no matter what flags the mark had been created with, it would end 
up at position 8, still just before the i in is. 

If a mark is in the middle of a span of characters that is subsequently deleted, the 
mark 'moves to the beginning of the span. Going back to the original scenario, r~ 

with the original text and the mark set at position 5, assume that the user deletes '\_,) 

from the h in this through the e in the on the first line, resulting in the text 

When the user is done, the mark will be at position 1, just before the e in te. 

The current position of a mark is determined by calling: 

Textsw index 
textsw_find_mark(textsw, mark) 

Textsw textsw; 
Textsw_mark mark; 

An existing mark is removed by calling: 

void 
textsw_remove_mark(textsw, mark) 

Textsw textsw; 
Textsw_mark mark; 

Note that marks are dynamically allocated, and it is the client's responsibility to 
keep track of them and to remove them when they are no longer needed. 

sun Revision A, of May 9, 1988 
microsystems 



8.11. Setting the Primary 
Selection 

8.12. Dealing with Multiple 
Views 

Chapter 8 -Text Subwindows 14 7 

The primary selection may be set by calling: 

void 
textsw_set_selection(textsw, first, last_plus_one, type) 

Textsw textsw; 
Textsw index first, last_plus_one; 
unsigned type; 

A value of 1 for type means primary selection, while a value of 2 means secon­
dary selection, and a value of 17 is pending delete Note that there is no require­
ment that all or part of the selection be visible; use 
textsw_possibly_normalize () (described previously in Section 8.5, 
Editing the Contents of a Text Subwindow) to guarantee visibility. 

By using the 'Split View' menu operation, the user can create multiple views of 
the text being managed by the text subwindow. Although these additional views 
are usually transparent to the client code controlling the text subwindow; it may 
occasionally be necessary for a client to deal directly with all of the views. This 
is accomplished by using the following routines, and the information that split 
views are simply extra text subwindows that happen to share the text of the origi­
nal text subwindow. 

Textsw 
textsw_first(textsw) 

Textsw textsw; 

Given an arbitrary view out of a set of multiple views, textsw_first () 
returns the first view (currently, this is the original text subwindow that the client 
created). To move through the other views ofthe set, call: 

Textsw 
textsw_next(textsw) 

Textsw textsw; 

Given any view of the set, textsw_next () returns some othermemberofthe 
set, or NULL if there are none left to enumerate. The following loop is 
guaranteed to process an of the views in the set: 

for (textsw=textsw_first(any_split); 
*textsw; 
textsw=textsw_next(textsw)) 

processing involving textsw; 

When you create a text subwindow take into account that your user may split the 
window. If you do something like try to enlarge the window, you will run into 
problems. 

Revision A, of May 9, 1988 



148 Sun View 1 Programmer's Guide 

8.13. Notifications from a 
Text Subwindow 

The text subwindow notifies its client about interesting changes in the 
subwindow's or text's state by calling a notification procedure. It also calls this 
procedure in response to user actions. If the client does not provide an explicit 
notification procedure by using the attribute TEXTSW _NOTIFY _PROC, then the 
text subwindow provides a default procedure. The declaration for this procedure 
looks like: 

void 
notify_proc(textsw, avlist) 

Textsw textsw; 
Attr avlist avlist; 

avlist contains attributes that are the members ofthe Textsw action 
enumeration. 

Your notification procedure must be careful to either process all of the possible 
attributes that it can be called with or to pass through the attributes that it does 
not process to the standard notification procedure. This is important because 
among the attributes that can be in the avlist are those that cause the standard 
notification procedure to implement the Front, Back, Open, Close, and Quit 
accelerators of the user interface. 

Here is an example of a client notify procedure, and a code fragment demonstrat­
ing how it would be used: 

int (*default textsw_notify) (); 

void 
client_notify_proc(textsw, attributes) 

Textsw textsw; 
Attr avlist attributes; 

int pass_on = FALSE; 
Attr avlist attrs; 

for (attrs = attributes; ·*atltrs; 
attrs = attr_next(attrs)}. { 

switch ((Textsw_action) (*attrs)) 
case TEXTSW ACTION CAPS LOCK: 

I* Swallow this attribute *I 
ATTR_CONSUME(*attrs); 
break; 

case TEXTSW ACTION CHANGED DIRECTORY: 
I* Monitor the attribute, don't swallow it *I 

strcpy(current_directory, (char *}attrs[l]); 
pass_on = TRUE; 
break; 
default: 
pass_on TRUE; 
break; 

if (pass_on) 
I (void) default_textsw_notify(textsw, attributes); 

Revision A, of May 9, 1988 



c 

c 

Table 8-2 

Attribute 

TEXTSW ACTION CAPS LOCK 

Chapter 8-Text Subwindows 149 

default_textsw_~otify = 
(void (*) ())window_get(textsw, TEXTSW_NOTIFY_PROC); 

window_set(textsw, TEXTSW_NOTIFY_PROC, client_notify_proc); 

The Textsw_action attributes which may be passed to your notify procedure 

are listed in the following table (duplicated in Chapter 19, Sun View Interface 

Summary). Remember that they constitute a special class of attributes which are 

passed to your textsw notification procedure. They are not attributes of the text 

subwindow in the usual sense, and can not be retrieved or modified using 

window_get() orwindow_set(). 

Textsw action Attributes 

Value Type 

boolean 

Description 

The user pressed the CAPS-lock function key to change the 

setting of the CAPS-lock (it is initially 0, meaning oft). 

TEXTSW ACTION CHANGED DIRECTORY char* The current working directory for the process has been 

changed to the directory named by the provided string value. 

TEXTSW ACTION EDITED FILE 

TEXTSW ACTION EDITED MEMORY 

TEXTSW ACTION FILE IS READONLY - - -

TEXTSW ACTION LOADED FILE 

TEXTSW ACTION TOOL CLOSE 

TEXTSW ACTION TOOL DESTROY 

TEXTSW_ACTION_TOOL_QUIT 

TEXTSW ACTION TOOL MGR 

TEXTSW ACTION USING MEMORY 

sun 
microsystems 

char* 

none 

char* 

char* 

(no value) 

Event* 

Event* 

Event* 

(no value) 

The file named by the provided string value has been edited. 

Appears once per session of edits (see below). 

monitors whether an empty text subwindow has been edited. 

The file named by the provided string value does not have 

write permission. 

The text subwindow is being used to view the file named 

by the provided string value. 

The frame containing the text subwindow should become 

iconic. 

The tool containing the text subwindow should exit, 

without checking for a veto from other subwindows. 

The value is the user action that caused the destroy. 

The tool containing the text subwindow should exit 

normally. The value is the user action that caused 

the exit. 

The tool containing the text subwindow should do the 

window manager operation associated with the 

provided event value. 

The text subwindow is being used to edit a string stored in 

primary memory, not a file. 

Revision A, of May 9, 1988 



150 SliD View 1 Programmer's Guide 

The attribute TEXTSW_ACTION_EDITED_FILE is a slight misnomer, as it is 
given to the notify procedure after the first edit to any text, whether or not it 
came from a file. This notification only happens once per session of edits, where 
notification ofTEXTSW ACTION LOADED FILE is considered to tenninate 
the old session and start a new one. 

NOTE The attribute TEXTSW_ACTION_LOADED_FILE must be treated very care­
fully. This is because the notify procedure gets called with this attribute in 
several situations: after a file is initially loaded, after any successful 'Save 
Current File' menu operation, after a 'Undo All Edits' menu operation, and dur­
ing successful calls to textsw _reset (), textsw _save () and 
textsw_store (). 

The appropriate response by the procedure is to interpret these notifications as 
being equivalent to: 

"The text subwindow is displaying the file named by the provided 
string value; no edits have been perfonned on the file yet. In addition, 
any previously displayed or edited file has been either reset, saved, or 
stored under another name." 

Revision A, of May 9, 1988 



9 

Panels 

Panels ............................................................................................................... ,...................................... 153 

9.1. Introduction to Panels and Panel Items·························'······································ 158 

Message Items .......................................................................... :...................................... 158 

Button Items ............................................................................. ;...................................... 158 

Choice Items ·············································································~······································ 158 

Toggle Items .................................................................................................................... 159 

Text Items .................................................................................. :...................................... 159 

c Slider Items ...................................................................................................................... 159 

9.2. Basic Panel Routines ..................................................................................................... 159 

Creating and Sizing Panels···············································~······································ 159 

Creating and Positioning Panel Items ························f······································ 160 

Explicit Item Positioning ............................................. ,...................................... 160 

Default Item Positioning ...................................................................................... 161 

Laying Out Components Within an Item ...........•....................................... 162 

Modifying Attributes .......................................................... 1••••••••••••••••••••••••••••••••••••••• 162 

Panel-Wide Item Attributes............................................................................... 163 

Retrieving Attributes .......................................................... :....................................... 163 

Destroying Panel Items ..................................................... :....................................... 164 
I 

9.3. Using Scrollbars With Panels ................................................................................... 165 
I 

Creating Scrollbars .............................................................. :....................................... 165 

Scrolling Panels Which Change Size ................................................................ 165 

Detaching Scrollbars from Panels ....................................................................... 166 

9.4. Messages............................................................................................................................... 167 



9.5. Buttons................................................................................................................................... 167 

Button Selection ............................................................................................................ 167 

Button Notification ...................................................................................................... 167 

Button Image Creation Utility............................................................................... 168 

9.6. Choices ···································'······························································································ 170 
Displaying Choice Items .......................................................................................... 170 

Choice Selection ............................................................................................................ 172 

Choice Notification...................................................................................................... 172 

Choice Value ................................................................................................................... 172 

Choice Menus ................................................................................................................. 172 

9.7. Toggles .................................................................................................................................. 176 
Displaying Toggles ...................................................................................................... 176 

Toggle Selection ............................................................................................................ 176 

Toggle Notification ································································:····································· 176 
Toggle Value................................................................................................................... 176 

Toggle Menus ................................................................................................................. 178 
9.8. Text.......................................................................................................................................... 178 

Displaying Text Items ................................................................................................ 178 

Text Selection ................................................................................................................. 179 

Text Notification ........................................................................................................... 180 

Writing Your Own Notify Procedure .......................................................... 181 

Text Value ......................................................................................................................... 182 

Text Menus ....................................................................................................................... 183 
9.9. Sliders..................................................................................................................................... 184 

Displaying Sliders ........................................................................................................ 184 

Slider Selection .............................................................................................................. 184 

Slider Notification ........................................................................................................ 184 

Slider Value ..................................................................................................................... 185 
9.10. Painting Panels and Individual Items ................................................................ 185 

9.11. Iterating Over a Panel's Items ............................................................................... 188 

9.12. Panel Item Client Data............................................................................................... 188 
9.13. Event Handling .............................................................................................................. 189 

Default Event Handling............................................................................................. 189 

Writing Your Own Event Handler ...................................................................... 189 

Translating Events from Panel to Window Space ..................................... 193 
-~ 



c 

c 

Quick Reference, Listi_ngs and 
Summary Tables 

9 
Panels 

This chapter describes the panel subwindow package, which you can use by 

including the file <suntool/panel. h>. 

Section 1 provides a non-technical introduction to panels. Section 2 introduces 

the basic concepts and routines needed to use panels. Scrollable panels are 
covered in Section 3. Sections 4 through 9 describe the different types of panel 

items in detail, including examples. 

For examples of complete panels, see the programs filer, image_browser _1 and 

image_browser _2, which are listed in Appendix A and discussed in Chapter 4, 

Using Windows. 

For quick reference, the next two pages are a visual index to the different effects 

possible in panels. After that come lists of the available panel and panel item 
attributes, functions and macros. Many of these are discussed in the rest of this 
chapter and elsewhere (use the index to check). Finally, tables that summarize 

the usage of panel attributes, functions and macros are in Chapter 19, SunView 

Interface Summary: 

o the Panel Attributes table begins on page 346; 

o the Generic Panel Item Attributes table begins on page 347; 

o the Choice and Toggle Item Attributes table begins on page 349; 

o the Slider Attributes table begins on page 351; 

o the Text Item Attributes table begins on page 352; 

o the Panel Functions and Macros table begins on page 353. 

153 Revision A, of May 9, 1988 



154 Sun View 1 Programmer's Guide 

Page Description 

167 Messages 

168 Buttons 

173 Choice (default) 

173 Choice (custom marks) 

173 Choice (inverted) 

174 Choice (current) 

174 Choice (cycle) 

175 Choice (dial) 

175 Choice (images, menu) 

171 Choice (images) 

Example 

~~ This actlon will cause unsaYed edits to be lost. 

(Reset) ( Reset ) 

Drawing Mode: Ul Points r.u ne Ul Rectangle Ul Circle Ul Text 

Drawing Mode: Points • line Rectangle Circle Text 

Drawing Mode: Points ~ Rectangle Circle Text 

Drawing Mode: line 

Drawing. Mode: Cline 

Rect 
Line~ Circle 

Points "----" Text 

Drawing Mode 

abc 

Points 
..,/line 

Rectangle 
Circle 
Text 

.. ~~.. ·:·.·· D ~.. miJ···· II 11 • ...... ······ 
~ 

Revision A, of May 9, 1988 

U
(\i 

I~ 
' I 
\_) 



Page Description 

177 Toggle (vertical) 

178 Text 

179 Text (masked) 

183 Text with menu 

185 Slider 

168 Button with menu 

194 Buttons with menus 

on scrollable panel 

Example 

Format Options: 

rifLong 

0 Reverse 

rif Show all files 

Name: Edward G. Robinson 

Password: ******** 

File: dervish.image ESC- Filename completion 

Brightness: [75] 

sun 
microsystems 

Introduction 
sunView Model 
Windows 
Canvases 
Input 

~L- Load image from f1le 
~s - Store image to file 
AB - Browse directory 
~q - Quit 

8 

Pixwins 
Text Subwindows 

-+Mi'rlit 
TTY Subwindows 
Menus 

Chapter9-Panels 155 

Cursors 
Icons 
Scrollbars 
Selection Service 
Notifier 

188 

Revision A, of May 9, 1988 



156 Sun View 1 Programmer's Guide 

PANEL ACCEPT KEYSTROKE 
PANEL BACKGROUND PROC 

PANEL BLINK CARET 

PANEL CARET ITEM 

PANEL ACCEPT KEYSTROKE 
PANEL CLIENT DATA 

PANEL EVENT PROC 

PANEL ITEM RECT 

PANEL ITEM X 

PANEL ITEM Y 

PANEL LABEL X 

PANEL LABEL Y 

PANEL LABEL BOLD 

PANEL LABEL FONT 

PANEL LABEL IMAGE 

PANEL LABEL STRING 

PANEL LAYOUT 

PANEL MENU CHOICE FONTS 

,,.-

Panel Attributes 
PANEL EVENT PROC - -
PANEL FIRST ITEM - -
PANEL ITEM X GAP - --
PANEL ITEM Y GAP 

Generic Panel Item Attributes 

PANEL LABEL BOLD 

PANEL LAYOUT 

PANEL SHOW MENU 

PANEL MENU CHOICE IMAGES 
PANEL MENU CHOICE STRINGS - -
PANEL MENU CHOICE VALUES 
PANEL MENU TITLE FONT 

PANEL MENU TITLE IMAGE 
PANEL MENU TITLE STRING 

PANEL NEXT ITEM - -
PANEL NOTIFY PROC 

PANEL PAINT 

PANEL PARENT PANEL 

PANEL SHOW ITEM 

PANEL SHOW MENU 

PANEL VALUE X 

PANEL VALUE Y 

Choice and Toggle Item Attributes 
PANEL CHOICE FONTS 

PANEL CHOICE IMAGE 

PANEL CHOICE IMAGES 

PANEL CHOICE STRING 

PANEL CHOICE STRINGS 

PANEL CHOICE X 

PANEL CHOICE XS 

PANEL CHOICE Y 

PANEL CHOICE YS 
PANEL CHOICES BOLD 

PANEL DISPLAY LEVEL 

PANEL FEEDBACK 

PANEL LAYOUT 

PANEL MIN VALUE 
PANEL MAX VALUE 
PANEL NOTIFY LEVEL 

sun 
microsystems 

Slider Item Attributes 
PANEL SHOW RANGE 
PANEL SHOW VALUE - -
PANEL SLIDER WIDTH 

PANEL MARK IMAGE 
PANEL MARK IMAGES 

PANEL MARK X - -
PANEL MARK XS 

PANEL MARK Y - -
PANEL MARK YS 

PANEL MENU MARK IMAGE 
PANEL MENU NOMARK IMAGE 
PANEL NOMARK IMAGE - -
PANEL NOMARK IMAGES - -
PANEL SHOW MENU MARK - - -
PANEL TOGGLE VALUE - -
PANEL VALUE 

PANEL VALUE 
PANEL VALUE FONT 

Revision A, of May 9, 1988 

0 



Chapter9-Panels 157 

Text Item Attributes 

PANEL MASK CHAR 

PANEL NOTIFY LEVEL 

PANEL NOTIFY STRING 

PANEL VALUE DISPLAY LENGTH - -
PANEL VALUE 

PANEL VALUE FONT 

PANEL VALUE STORED LENGTH - -

Panel Functions and Macros 
panel_accept_key(object, event) 

panel_accept_menu(object, event) 

panel_accept_preview(object, event) 

panel_advance_caret(panel) 

panel_backup_caret(panel) 

panel_begin_preview(object, event) 

panel_button_image(panel, string, width, font) 

panel_cancel_preview(object, event) 

panel_create_item(panel, item_type, attributes) 

panel_default_handle_event(object, event) 

panel_destroy_item(item) 

panel_each_item(panel, item) 

panel_event(panel, event) 

panel_get(item, attribute[, optional_arg]) 

panel_get_value(item) 

panel_paint(panel_object, paint_behavior) 

panel_set(item, attributes) 

panel_set_value(item, value) 

panel_text_notify(item, event) 

panel_update_preview(object, event) 

panel_update_scrolling_size(panel) 

panel window event(panel, event) 

Revision A, of May 9, 1988 



158 SllilView 1 Programmer's Guide 

9.1. Introduction to Panels 
and Panel Items 

Message Items 

Button Items 

Choice Items 

Panels contain items through which the user interacts with a program. Panels are 
quite flexible; you can use them to model a variety of things, including: 

o a form consisting mainly of text items; 

o a message window containing status or error messages; 

o a complex control panel containing items and menus of many types. 

Panels need not be limited to the size of the subwindow they appear in. By 
attaching scrollbars to a panel, you can show a large panel within a smaller 
subwindow. The user can then bring the area of interest into view by means of 
the scrollbars. 

There are six basic types of panel items: messages, buttons, choices, toggles, 
text and sliders. Items are made up of one or more displayable components. One 
component shared by all item types is the label. An item label is either a string 
or a graphic image (i.e., a pointer to a pixrect). Button, choice, toggle, and text 
items also have a menu component. Thus the user may interact with most items 
in either of two ways: by selecting the item directly or by selecting from the 
item's menu. 

Each item type is introduced briefly below. 

The only visible component of a message item is a label, which may be an image 
or a string in a specified font. Message items are useful for annotations of all 
kinds, including titles, comments, descriptions, pictures, and dynamic status mes- Q 
sages. 

Message items are selectable, and you may specify a notify procedure to be 
called when the item is selected. 

Button items allow the user of a program to initiate commands. Buttons, like 
message items, have a label, are selectable, and have a notify procedure. Button 
items differ from message items in that they have visible feedback for preview­
ing and accepting the selection. 

Choice items allow the user to select one choice from a list. The displayed form 
of a choice item can vary radically, depending on how you set its attributes. A 
choice item can be presented as: 

o a horizontal or vertical list of choices, with all choices visible and the current 
choice indicated by a mark (such as a checkmark); 

o a horizontal or vertical list of choices, with all choices visible and the current 
choice in reverse-video; 

o a "cycle item", or list of choices with only the current choice visible. Select­
ing the item causes the next choice in the list to be selected and displayed; 

0 

0 

a dial, knob or switch with a pointer of some sort which turns to indicate one 
of several choices; 

a place holder for a pop-up menu, with only the label visible until the menu 
button is pressed. 

sun Revision A, of May 9, 1988 
microsystems 

0 



c 
Toggle Items 

Text Items 

Slider Items 

C 9.2. Basic Panel Routines 

Creating and Sizing Panels 

c 

Chapter9-Panels 159 

Behind this flexibility of presentation lies a uniform structure consisting of a 
label, a list of choices, and, optionally, a corresponding lists of on-marks and 
off-marks used to indicate which choice is currently selected. 

In appearance and structure, toggle items are identical to choice items. The 
difference lies in the behavior of the two types of items when selected. In a 
choice item exactly one element of the list is selected, or current, at a time. A 
toggle item, on the other hand, is best understood as a list of elements which 
behave as toggles: each choice may be either on or off, independently of the 
other choices. Selecting a choice causes it to change state. There is no concept 
of a single current choice; at any given time all, some, or none of the choices 
may be selected. 

Text items are basically type-in fields with optional labels and menus. You can 
specify that your notify procedure be called on each character typed in, only on 
specified characters, or not at all. This allows an application such as a forms­
entry program to process input on a per character, per field, or per screen basis. 

Slider items allow the graphical representation and selection of a value within a 
range. They are appropriate for situations where it is desired to make fine adjust­
ments over a continuous range of values. A familiar model would be a horizontal 
volume control lever on a stereo panel. 

This section covers basic panel usage, including creating and sizing panels, creat­
ing and positioning panel items, modifying and retrieving the attributes for 
panels and panel items, and destroying panel items. 

Like all windows in Sun View, panels are created by calling the window creation 
routine with the appropriate type parameter: 

Panel panel; 
panel= window_create(frame, PANEL, 0); 

The above call will produce a panel which extends to the bottom and right edges 
of the frame. You can specify the panel's dimensions explicitly in character 
units via WIN COLUMNS and WIN ROWS, or in pixel units via WIN WIDTH 

and WIN HEIGHT.51 - -

Sl For a fuller discussion of subwindow sizing and layout see are in Chapter 4, Using Windows. 

sun 
microsystems 

Revision A, of May 9, 1988 



160 Sun View 1 Programmer's Guide 

Creating and Positioning 
Panel Items 

Explicit Item Positioning 

Often you want the panel to be just high enough to encompass all of the items 
within it After creating all of the items, and before creating any other subwin­
dows in the frame, set the height of the panel by calling the macro 
window_fit_height (}. This macro will compute the lowest point occu­
pied by any of the panel's items and set the panel height to that point plus a bot­
tom margin of four pixels. The macros window_ fit_ width (} to set the 
width, and window fit (} to set both the height and the width, are also pro­
vided. 

To create a panel item, call: 

Panel item 
panel_create_item(panel, item_type, attributes) 

Panel panel; 
<item type> i tern_ type; 
<attribute-list> attributes; 

Values for item_type must be oneofPANEL_MESSAGE, PANEL_BUTTON, 
PANEL_CHOICE,PANEL_CYCLE,PANEL_TOGGLE,PANEL_TEXT,or 
PANEL SLIDER. 

The position of items within the panel may be specified explicitly by means of 
the attributes PANEL ITEM X and PANEL ITEM Y.52 PANEL ITEM X sets - - - - - -
the left edge of the item's rectangle (the rectangle which encloses the item's label 
and value). PANEL_ ITEM_ Y sets the top edge of the item's rectangle. 

All coordinate specification attributes interpret their values in pixel units. For 
simple panels and fonns which do not make heavy use of images and have ofily 
one text font, it is usually more convenient to specify positions in character units 
-columns and rows rather than x's andy's. You can specify positions in char­
acter units with the ATTR _ROW (} and ATTR _COL {} macros, 53 which interpret 
their arguments as rows or columns, respectively, and convert the value to the 
corresponding number of pixels, based on the panel's font, as specified by 
WIN_FONT. Compare the two calls below: 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Hi!", 
PANEL_ITEM_X, 10, 
PANEL_ITEM_Y, 20, 
0); 

52 Many attributes, such as those relating to item positioning, apply across all of the item types; these are 
called generic attributes. A comprehensive summary of these generic attributes is given in the Generic Item 
Attributes table in are in Chapter 19, Sun View lnteiface SumnuJry. 

S3 ATTR _ROW() and ATTR _COL () are described fully in Chapter l8,Attribute Utilities. 

Revision A, of May 9, 1988 

0 .. ) "-/ 

/~ 
( ) 

'-.._,./ 



c 

c 

c 

Default Item Positioning 

Chapter9-Panels 161 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Hi!", 
PANEL_ITEM_X, ATTR_COL(lO), 
PANEL_ITEM_Y, ATTR_ROW{20), 
0); 

The first will place the item at pixel location (10,20), while the second will place 
the item at row 20, column 10. 

NOTE The value computed for ATTR_ROW (} includes the top margin, given by 
WIN_TOP_MARGIN, and the value computed for ATTR_COL (} includes the 
left margin, given by WIN_ LEFT _MARGIN. The alternate macros 
ATTR _ROWS (} and ATTR _ COLS (} are also provided, which compute values 
that do not include the margins. 

If you create an item without specifying its position, it is placed just to the right 
of the item on the "lowest row" of the panel, where lowest row is defined as the 
maximum y-coordinate (PANEL_ ITEM_ Y ) of all the items. So in the absence 
of specific instructions, items will be placed within the panel in reading order as 
they are created: beginning four pixels in from the left and four pixels down 
from the top, items are located from left to right, top to bottom. If an item will 
not fit on a row, and more of the item would be visible on the next row, it will be 
placed on the next row. The number of pixels left blank between items on a row 
may be specified by PANEL_ ITEM_ X_ GAP, which has a default value of 10. 

The number of pixels left blank between rows of items may be specified by 
PANEL_ ITEM_ Y _GAP, which has a default value of 5. 

The default position for the next item is computed after an item is created. But if 
a client calls panel_ set (} after creating an item in such a way that the 
enclosing rectangle of the item is altered, the default position for the next item 
will not be recomputed. So, for example, 

item= panel_create_item(panel, PANEL_MESSAGE, 0); 
panel_set(item, PANEL_LABEL_STRING, "Hi", 0); 

iteml = panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "There", 
0); 

will result in There overlapping Hi. 

CAUTION Choice items currently have problems with item "creep." Each time the label 
of a choice item is set, the position of the item will be evaluated. If the value's 
position has not been fixed (with VALUE_ X/Y), the value is positioned after the 
label. The problem is that the label is baseline-adjusted for a choice item. If the 
item position is not given when the label is set, the choice item will creep down 
because of the baseline adjustment. 

Revision A. of May 9, 1988 



162 Sun View 1 Programmer's Guide 

Laying Out Components Within 
an Item 

Modifying Attributes 

You may also specify the layout of the various components within an item, by 
means ofthe attributes PANEL_LABEL_X, PANEL_LABEL_Y, 
PANEL_VALUE_X, PANEL_VALUE_Y, etc. lfthe components are not expli­
citly positioned, then the value is placed either eight pixels to the right of the 
label, if PANEL LAYOUT is PANEL HORIZONTAL (the default), or four pixels - -
below the label, ifPANEL_LAYOUT is PANEL_ VERTICAL. 

This section describes how to modify the values of attributes of panels or indivi­
dual panel items which have already been created. 

Since panels are a type of window, their attributes are set with window_set (). 
To set attributes of panel items, use: 

panel_set(item, attributes) 
Panel_item item; 
<attribut~-list> at tributes; 

A macro is provided to ease the syntax for the common operation of setting an 
item's value (attribute PANEL_ VALUE): 

panel_set_value(item, value) 
Pane.l_item item; 
caddr t value; 

~~ 
( ) 
'-...../ 

Several examples of setting attributes are given here; for a complete list of the !""\ 
~~butesrfiapplysing to panels and items, see the tables in are in Chapter 19, Sun- \___) 
view Inte ace ummary. 

To move a panel's caret to the text item name_ i tern: 

window_set(panel, 
PANEL_CARET_ITEM, 
name_ item, 0); 

To set the value of the choice item format_item to the third choice (choices 
are zero-based): 

Panel_item format_item; 
panel_set_value(format_item, 2); 

The first call below creates a message which is initially "hidden" (not displayed 
on the screen); the second call displays the message: 

warning = panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Warning: file will be deleted.", 
PANEL_SHOW_ITEM, FALSE, 
0); 

panel_set(warning, PANEL_SHOW_ITEM, TRUE, 0); 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

r-\ 
I ' 
~/ 



c 

c 

Chapter 9 -Panels 163 

NOTE The values for string-valued attributes are dynamically allocated when they are 

set (at creation time or later). If a previous value was present, it is freed after the 

new string is allocated. This is in contrast to the storage-allocation policy for 

retrieving attributes, described in the section titled Retrieving Attributes. 

Panel-Wide Item Attribu;es Some attributes which apply to items may be set for all items in the panel by set­

ting them when the panel is created. Such attributes include whether items have 

menus, whether item labels appear in bold, whether items are laid out vertically 

or horizontally, and whether items are automatically repainted when their attri­

butes are modified. 54 For example, the call: 

Retrieving Attributes 

panel = window_create(frame, PANEL 
PANEL_SHOW_MENU, 
PANEL_LABEL_BOLD, 
PANEL_LAYOUT, 
PANEL_PAINT, 
0); 

FALSE, 
TRUE, 
PANEL_VERTICAL, 
PANEL_NONE, 

overrides the defaults for all the attributes mentioned: any items subsequently 

created in that panel will not have menus, will have their labels printed in bold 

and their components laid out vertically, and will not be repainted automatically 

when their attributes are modified. 

NOTE When you set the attribute PANEL_ LAYOUT, it will only affect the components 

in each item, not the items themselves. That is, all items in a panel will not be 

layed out vertically. 

Keep in mind that he panel-wide item attributes mentioned above are only used 

to supply default values for items which are subsequently created. This means, 

for example, that you cannot change all the item labels to bold by first creating 

the items and then setting PANEL_ LABEL_ BOLD to TRUE for the panel. 

Use window _get {) to retrieve attributes for a panel. To retrieve attributes 

applying to panel items, use: 

caddr t 

panel_get(item, attribute[, optional_arg]) 

Panel_item item; 
Panel_attribute attribute; 
Panel attribute optional_arg; 

A macro is provided to ease the syntax for the common operation of getting an 

item's value (attribute PANEL_ VALUE): 

54 For a complete list of panel-wide item attributes, see the Panel Attributes table in are in Chapter 19, 

Sun View Interface Summary. 

Revision A, of May 9, 1988 



164 Sun View 1 Programmer's Guide 

caddr t 
panel_get_value(item, value) 

Panel_item item; 
caddr t value; 

Since the* _get () routines are used to retrieve attributes of all types, you 
should coerce the value returned into the type appropriate to the attribute being 
retrieved, as in the examples below. 

To find out whether an item is currently being displayed on the screen: 

int displayed; 
displayed= (int)panel_get(item, PANEL_SHOW_ITEM); 

To find out whether the caret in a panel is blinking or non-blinking: 

int blinking; 
blinking= (int)window_get(panel, PANEL_BLINK_CARET); 

To get the image for a choice item's third (counting from zero) choice: 

Pixrect *image; 

,r"\ 
' ' \_) 

image= (Pixrect *)panel_get(item, PANEL_CHOICE_IMAGE, 2); ~ 
I l 
\_./ 

The above example illustrates the use of the optional_arg argument, which 
is used for only a few item attributes. 

NOTE panel get () does not dynamically allocate storage for the values it returns. 
If the value returned is a pointer, it points directly into the panel's private data. It 
is your responsibility to copy the information pointed to. The policy for setting 
attributes is different: the values for string-valued attributes are dynamically 
allocated (see the note above under Modifying Attributes). 

Destroying Panel Items To destroy a panel item (and free its associated dynamic storage), call: 

panel_destroy_item(item); 
Panel item item; 

~\sun ~~ microsystems 
Revision A, of May 9, 1988 

(\, 
I i 
\...,__/ 



------------------------------------------------------------------~---------~--------------------------~ 

c 

9.3. Using Scrollbars With 
Panels 

Creating Scrollbars 

Scrolling Panels Which 
Change Size 

Chapter 9-Panels 165 

A scrollable panel is a large panel which can be viewed through a smaller 
subwindow by means of scrollbars. 

Scrollbars come in two orientations: vertical and horizontal. The call below 
creates a panel with both vertical and horizontal scrollbars (as would be desirable 

in a long, many-columned table, for example): 

panel= window_create(frame, PANEL, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create(O), 

WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(O), 

0); 

The values of the attributes WIN VERTICAL SCROLLBAR and 
WIN_ HORIZONTAL_ SCROLLBAR are the scrollbars which are returned by the 
scrollbar_create () calls.55 

Commonly the scrollbar will remain attached to the panel for the duration of the 

panel's existence, and there will be no need to modify the scrollbar's attributes. 

In this simple case, there is no need to save the handle returned by 
s crollbar _create () . If you desire to destroy the scrollbar, modify its 
attributes, or detach it from one panel and attach it to another, you must either 

save the handle or retrieve it from the panel. 56 For example, to destroy a panel's 

vertical scrollbar: 

scrollbar_destroy(panel_get(panel, WIN_VERTICAL_SCROLLBAR)); 

panel_set(panel, WIN_VERTICAL_SCROLLBAR, NULL, 0); 

Often panels are used to display information for browsing. iconedi t(l), for 

example, uses a popup panel to allow the user to browse through the images in a 

directory. The easiest way to do this is to create the panel items anew each time 

different information is displayed. For example, the iconedit function which 

fills the browsing panel first destroys any existing panel items, then creates an 

item for each image found. 

If you are going to change the size of the panel in this way, you must inform the 

scrollb~ of the new size by calling the function: 

panel_update_scrolling_size(panel) 

Panel panel; 

55 The call scrollbar _create ( 0) produces a default scrollbar. It is usually best to create a default 

scrollbar and let the user specify how it looks via defaultsedit. You can, of course, override the user's default 

settings by explicitly setting the scrollbar' s attributes. For a complete list of scrollbar attributes see Chapter 19, 

Sun View Interface Summary. 

56 In order to save the scrollbar' s handle or reference any scrollbar attributes you must include the file 

<suntool/scrollbar.h>. 

4}~sun 
~ microsystems 

Revision A, of May 9, 1988 



166 Sun View 1 Programmer's Guide 

Detaching Scrollbars from 
Panels 

The correct time to call panel_update_scrolling_size () is after you 
have created all the items and given them labels. If you don't update the 
scrollbar's idea of the panel's size, the size of the scrollbar's bubble will be 
wrong. 

You may want the same panel to be scrollable at one time, and not scrollable at 
another. The code fragment below illustrates how this can be accomplished by 
attaching and detaching a scrollbar from a panel: 

panel= window_create(frame, PANEL, 0); 

(create items, do any other processinQ_ ... ) 

I* create scrollbar and attach it to panel *I 
sb = scrollbar_create(O); 
panel_set(panel, WIN_VERTICAL_SCROLLBAR, sb, 0); 

(panel functions with scrollbar ... ) 

I* now detach scrollbar from panel *I 
panel_set(panel, WIN_VERTICAL_SCROLLBAR, NULL, 0); 

(panel functions without scrollbar ... ) 

scrollbar_destroy(sb); 

Note'l:hat the two packages are to be considered from the application's viewpoint 
as independent packages which can be used together. Tl}e application, not the 
panel package, has the responsibility for creating any scrollbars. In order to free 
the application of the responsibility for destroying the scrollbar, panels, when 
they ,are destroyed, destroy any scrollbars attached to them. However, detaching 
a scrollbar from a panel, as in the above example, does not cause that scrollbar to 
be destroyed. The same scroll bar may be attached and detached from any 
number of panels any number of times. 

The sections which follow discuss the six item types in detail. 

Revision A, of May 9, 1988 

0 



('· 
~-- 9.4. Messages 

Example 

9.5. Buttons 

Button Selection 

Button Notification 

Chapter 9-Panels 167 

Messages are the simplest of the item types. Their only visible component is 

their label. They have no value or menu. 

Message items, like buttons, are selectable and can have notify procedures. The 

selection behavior of messages differs from that of buttons in that no feedback is 

given to the user when a message is selected. 

In the following example, two message items are used together to give a warning 

message: 

~~ This act1on w111 cause unsaved edits to be lost. 

static short stop_array[] 
!include "stopsign. image" 

} ; 
mpr_static(stopsign, 64, 64, 1, stop_array); 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_IMAGE, &stopsign, 
0); 

panel_create_item(panel, PANEL_MESSAGE, 

PANEL_LABEL_STRING, 
"This action will cause unsaved edits to be lost.", 

0); 

You may change the label for a message item (as for any type of item) via 

PANEL LABEL STRINGorPANEL LABEL IMAGE. 

Button items have a label and a menu, but no value. 

When the left mouse button is pressed over a button item, the item's rectangle is 

inverted. When the mouse button is released over a button item, the item's rec­

tangle is painted with a grey background, indicating that the item has been 

selected and the command is being executed. The grey background is cleared 

upon return from the notify procedure. 

The procedure specified via the attribute PANEL_ NOTIFY_ PROC will be called 

when the item is selected. The form of the notify procedure for a button is: 

button_notify_proc(item, event) 
Panel_item item; 
Event *event 

Revision A, of May 9, 1988 



168 SllllYiew 1 Programmer's Guide 

Button Image Creation Utility 

Examples 

Figure 9-1 

A routine is provided to create a standardized, button-like image from a string: 

Pixrect * 
panel_button_image(panel, string, width, font) 

Panel panel; 
char *string; 
int width; 
Pixfont *font; 

where width indicates the width of the button, in character units. The value 
returned is a pointer to a pixrect showing the string with a border drawn around 
it If width is greater than the length of string, the string will be centered in 
the wider border; otherwise the border will be just wide enough to contain the 
entire string (i.e., the string will not be clipped). The font is given by font- if 
NULL, the font for panel is used. 

The first example renders the string in the default system font, found in 
/usr/lib/fonts/fixedwidthfonts/screen.r.13: 

(Reset) 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_NOTIFY_PROC, quit_proc, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "Reset", 0, 0), 
0); 

The button below has a bold font and a seven character wide border: 

( Reset ) 

bold= pf_open("/usr/lib/fonts/fixedwidthfonts/screen.b.12"); 
panel_create_item(panel, PANEL_BUTTON, 

PANEL_NOTIFY_PROC, quit_proc, 
PANEL_LABEL_IMAGE, panel_button_image(panel,"Reset",7,bold), 
0); 

It is often useful to associate a menu with a button. Figure 9-1 illustrates a but­
ton representing an online manual. The menu over the button allows the user to 
bring up the text for the different chapters: 

AssociatinR aM enu With a Button 

Introduction Pixwins Cursors 
SunView Model Text Subwindows Icons 
Windows -+llifldj@ Scroll bars 
Canvases TTY Subwindows Selection Service 

Sun Input Menus Notifier 
View 
Manual 

sun 
microsystems 

Revision A, of May 9, 1988 

( 



c 

C' 

Chapter 9-Panels 169 

To do this, you must write your own event procedure, as described in Section 
9 .13, Event Handling. On receiving a right mouse button down event, display 
the menu and take the appropriate action depending on which menu item the user 
selects. For all other events, call the panel's default event procedure. 

Here is the code to create the menu and the button, and the event procedure to 

display the menu: 

static short book_array[] 
4tinclude "book.image" 
} ; 
mpr static(book, 64, 64, 1, book_array); 

Menu menu = menu_ create ( MENU NCOLS, 3, MENU_ STRINGS, 

"Introduction", 
"SunView Model", 
"Windows", 
"Canvases", 
"Input", 
0); 

"Pixwins", 
"Text Subwindows", 
"Panels", 
"TTY Subwindows", 
"Menus", 

"Cursors", 
"Icons", 
"Scrollbars", 
"Selection Service", 
"Notifier", 0, 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, &book, 

PANEL_EVENT_PROC, handle_panel_event, 

0); 

handle_panel_event(item, event) 
Panel_item item; 
Event *event; 

if (event_action(event) 
MS_RIGHT && event_is_down(event)) 

int chapter= menu_show(book_menu, panel, event, 0); 

switch (chapter) { 

else 

case 1: I* Introduction *I break; 

case 2: I* Pixwins *I break; 

case 15: I* Notifier *I break; 

panel_default_handle_event(item, event); 

Revision A, of May 9, 1988 



170 Sllll View 1 Programmer's Guide 

9.6. Choices 

Displaying Choice Items 

Choice items are the most flexible - and complex - item types. 57 Besides the 
label, they are composed of: 

o a list of either image or string choices (specified via the attributes 

PANEL_CHOICE_IMAGESorPANEL_CHOICE_STRINGS). 

o a list of mark-images- images to be displayed when the corresponding 
choice is _selected ( PANEL_ MARK_ IMAGES ). The default mark is a push­
button with the center inverted. 

o a list of nomark-images- images to be displayed when the corresponding 
choice is not selected ( PANEL_ NO MARK_ IMAGEs ). The default nom ark 
image is a non-inverted push-button. 

The choices are numbered beginning with zero, and there is no restriction on the 
number of choices a single choice item may have. 

The attribute l? ANEL DISPLAY LEVEL detennines which of an item's choices 
are actually displayed on the screen. The display level may be set to: 

o PANEL_ ALL, (the default) all choices are shown; 

o PANEL_ CURRENT, only the current choice is shown; 

o PANEL_ NONE, no choices are shown. Since the only way of selecting a 
choice is through the menu, this becomes a label with an associated pop up 
menu. 

If the display level is PANEL_CURRENT or PANEL_ALL, the choices are placed 
by default horizontally after the label. You can lay them out vertically below the 
label by setting PANEL_LAYOUT to PANEL_ VERTICAL. If you want to place 
the choices or marks more precisely- in order to model a switch or some other 
special fonn - you can do so by setting the appropriate attribute, such as 
PANEL_CHOICE_XS,PANEL_CHOICE_YS,PANEL_MARK_XS, 
PANEL_MARK_YS, etc. 

A few words about using the various lists in choice items. The list you give for 
PANEL CHOICE STRINGS (or PANEL CHOICE IMAGES) detennines the 
item's Choices. 58 - - -

57 For a complete list of the attributes applicable to choice items, see the Choice Item Attributes table in are 
in Chapter 19, Sun View Interface Summary. 

n "'-.._/ 

I~ 
' I 
I j 
"-..._ / 

58 You must specify at least one choice, so the least you can specify is a single choice consisting of the null 
string. ~~ 

\ ' '--' 

~\sun ,~ microsystems 
Revision A, of May 9, 1988 



c 

Chapter 9 -Panels 171 

The parallel lists PANEL_CHOICE_FONTS, PANEL_MARK_IMAGES, 

PANEL_NOMARK_IMAGES,PANEL_MARK_XS,PANEL_MARK_YS, 

PANEL_ CHOICE_ XS, and PANEL_ CHOICE_ YS are interpreted with respect to 

the list of choices. For example, the first font given for 

PANEL_CHOICE_FONTS will be used to print the first string given for 

PANEL_CHOICE_STRINGS, the second font will be used for the second string, 

and so on. 

The item below, taken from iconedit, shows how parallel lists can be abbrevi­

ated: 

panel_create_item(iced_panel, PANEL_CHOICE, 

PANEL_MARK_IMAGES, &down_triangle,O, 

PANEL_NOMARK_IMAGES, 
PANEL_CHOICE_IMAGES, 

PANEL_VALUE, 
PANEL_CHOICE_XS, 
PANEL_ MARK_ XS, 
PANEL_CHOICE_YS, 
PANEL_ MARK_ YS, 
PANEL_NOTIFY_PROC, 
0); 

0, 
&square_white, 
&square_root, 
&square_75, 
2, 

&square_25, 
&square_50, 
&square_black, 0, 

30, 60, 90, 120, 150, 180, 0, 
184, 0, 34, 64, 94, 124, 154, 

345, 0, 
363, 0, 
proof_background_proc, 

The item has six choices, representing the six available background patterns for 

the proof area. Note, however, that three of the lists,­

PANEL_MARK_IMAGES, PANEL_CHOICE_YS and PANEL_MARK_YS all 

have only one element. When any of the parallel lists are abbreviated in this 

way, the last element given will be used for the remainder of the choices. So, the 

3 4 5, 0 in the example above serves as shorthand for 3 4 5, 3 4 5, 3 4 5, 

3 4 5, 3 4 5 , 3 4 5 , 0. All the choice images will appear at y coordinate 3 4 5, 

all the mark images will appear at y coordinate 3 6 3, and all the choices will have 

down_ triangle as their mark image. 

NOTE You can't specify that a choice or mark-image appear at x = 0 or y = 0 by using 

the attributes PANEL_CHOICE_XS, PANEL_CHOICE_YS, 

PANEL MARK XS or PANEL MARK YS. Since these attributes take null­

tenninated lists as values, the zero would be interpreted as the tenninator for the 

list. You may achieve the desired effect by setting the positions individually, 

with the attributes PANEL_CHOICE_X, PANEL_CHOICE_Y, 

PANEL_MARK_X, or PANEL_MARK_Y, which take as values the numberofthe 

choice or mark, followed by the desired position. 

Revision A, of May 9, 1988 



172 Sun View 1 Programmer's Guide 

Choice Selection 

Choice Notification 

Choice Value 

Choice Menus 

The user can make a selection from a choice item either by selecting the desired 
choice directly, by selecting from the associated menu, or by selecting the label, 
which causes the current choice to advance to the next choice (or backup to the 
previous choice if the shift key is pressed while selecting); 

Feedback for choice items comes in two flavors - inverted, in which the current 
choice is shown in reverse video, and marked, in which the current choice is indi­
cated by the presence of a distinguishing mark, such as a check-mark or arrow. 
Specified the type of feedback you want by setting PANEL_FEEDBACK to either 
PANEL INVERTED or PANEL MARKED. 

You may also disable feedback entirely, by setting PANEL_FEEDBACK to 
PANEL NONE. 

The default feedback is PANEL_MARKED, unless the item's display level is 
current, in which case the feedback is PANEL_ NONE. 

The procedure specified via the attribute PANEL_NOTIFY_PROC will be called 
when the item is selected. Choice notify procedures are passed the item, the 
current value of the item, and the event which caused notification: 

choice_notify_proc(item, value, event) 
Panel item item; 
int 
Event 

value; 
*event; 

The value passed to the notify procedure is the ordinal number corresponding to 
the current choice (the choice which the user has just selected). The first choice 
has ordinal number zero. 

Choice and Toggle items are the only item types for which a menu appears by 
default. To disable the menu for a particular item, set PANEL_ SHOW_ MENU for 
that item to FALSE. 

Choice item menus may be used to represent either a simple menu or a checklist. 
The former is a menu of commands, which gives no indication of which com­
mand was executed last; the latter is a menu of choices with a check-mark indi­
cating the current choice. Set PANEL_ SHOW_ MENU_ MARK to FALSE to obtain 
a simple menu, or TRUE to get a checklist. 

NOTE Thenumberofmenu choices, if set by PANEL_MENU_CHOICE_STRINGS or 
PANEL_MENU_ CHOICE_IMAGES, must be equal to the number of choices for 
the item. 

Revision A, of May 9, 1988 

0 



Examples 

c 

Chapter 9- Panels 173 

As a basis for our examples we'll take the item in iconedi t which allows the 
user to select the drawing mode. The item could have been presented in several 

different forms. 

The simplest call would specify the label and choices as strings, and take the 

defaults for all other attributes. All the choices will be displayed, and the feed­
back will be marked, with push-buttons for the mark images: 

Drawing Mode: (g Points (iJ Line Ill Rectangle (g Circle Ill Text 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LABEL_STRING, "Drawing Mode:", 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 

"Circle", "Text", 0, 

0); 

You can specify a custom mark, such as this small pointer, to indicate the current 

choice: 

Drawing Mode: Points • Li ne 

static short pointer_array[] 
#include "pointer.pr" 
} ; 

Rectangle 

mpr_static(pointer, 16, 16, 1, pointer_array); 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LABEL_STRING, "Drawing Mode:", 

PANEL_MARK_IMAGES, &pointer, 0, 
PANEL_NOMARK_IMAGES·, 0, 

Circle 

PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 
"Circle", "Text", 0, 

0); 

Setting PANEL_FEEDBACK to PANEL_INVERTED produces: 

Drawing Mode: Points ~ Rectangle Circle Text 

Text 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



174 Sun View 1 Programmer's Guide 

Often space on the panel is limited, and it is appropriate to save space by only 
showing the currently selected choice. You can do that by disabling feedback 
and displaying only the current choice: 

Drawing Mode: Line 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LABEL_STRING, "Drawing Mode:", 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 

"Circle", "Text", 0, 
PANEL_DISPLAY_LEVEL, 
PANEL_FEEDBACK, 
0); 

PANEL_CURRENT, 
PANEL_NONE, 

Such an item has the drawback oflooking to the user like a text item. One solu­
tion to this problem is to provide a distinguishing mark which clearly indicates 
the item's type, as in: 

Drawing Mode: C Line 

The double-arrow image suggests a cycling motion, indicating to the user that the 
item is a choice item with more choices available. To get the cycle image, use 
the special item type PANEL CYCLE:59 

panel_create_item(panel, PANEL_CYCLE, 
PANEL_LABEL_STRING, "Drawing Mode:", 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 

"Circle", "Text", 0, 
0); 

59 Note that a cycle item is simply a choice item with some attributes initialized -the display level is set to 
current and the on -mark is set to the cycle image. Once created, cycle items behave in exactly the same way as 
choice items. 

sun Revision A, of May 9, 1988 
microsystems 

(~ 
' 1 
'"-.) 



c 

Figure 9-2 

Figure 9-3 

Chapter 9- Panels 175 

With some effort, you can use a choice item to model a dial, as in Figure 9-2. 

A Dial-Like Choice Item 

Rect 
Line~. Circle 

Points ~ Text 

Drawing Mode 

The way to make a such a dial is to make an image for each dial setting, and use 
these images as the on-marks. Place the on-marks and the choices explicitly­
the on-marks in the center, forming the dial, and the choices around the dial's 
perimeter: 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rect", 

"Circle", "Text", 0, 
PANEL_MARK_IMAGES, &dial_1, &dial_2, &dial_3, 

&dial_4, &dial_5, 0, 
PANEL_NOMARK_IMAGES, 
PANEL_CHOICE_XS, 
PANEL_CHOICE_YS, 
PANEL_MARK_XS, 
PANEL_MARK_YS, 
PANEL_LABEL_STRING, 
PANEL_LABEL_X, 
PANEL_ LABEL_ Y, 
PANEL_LABEL_FONT, 

0, 
7, 34, 82, 133, 145, 0, 
53, 33, 20, 33, 53, 0, 
66, 0, 
40, 0, 
"Drawing Mode", 
30, 
65, 

pf_open("/usr/lib/fonts/fixedwidthfonts/gallant.r.19"), 
0); 

The form which is actually used in showniconedi tis Figure 9-3. It employs 
vertical layout, images for the choices, and strings for the menu: 

iconedi t 's Drawing Mode Choice Item 

~:_ 
D 
0 
abc 

Points 
:.../ Une 

Rectangle 
Circle 
Text 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



17 6 Sun View 1 Programmer's Guide 

9.7. Toggles 

Displaying Toggles 

Toggle Selection 

Toggle Notification 

Toggle Value 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_CHOICE_IMAGES, &points, &line, &rectangle, 

PANEL~MENU_CHOICE_STRINGS, 

PANEL_MARK_IMAGES, 
PANEL_NOMARK_IMAGES, 
0); 

&circle, &text, 0, 
"Points", "Line", "Rectangle", 
"Circle", "Text", 0, 
&drawing_hand, 0, 
0, 

Toggle items are identical in structure to choice items - they have a label and 
parallel lists of choices, on-marks and off-marks. They differ from choice items 
in certain aspects of their display options, their selection behavior and the 
interpretation of their value. These differences are highlighted below. 

Toggle items may have aPANEL_DISPLAY_LEVEL of either PANEL_ALL­
all choices visible, or PANEL _NONE -no choices visible. The default is 
PANEL ALL. 

Since there is no notion of the current choice for a toggle item, a display level of 
PANEL CURRENT is not allowed. 

Toggle items, like choice items, may have either inverted or marked feedback, 
depending on the value ofPANEL_FEEDBACK. The default is 
PANEL _MARKED. For inverted feedback, specify PANEL_ INVERTED. 
PANEL NONE is not allowed. 

Toggle items may be selected by clicking on the desired choice or through the 
menu. Selecting a choice causes that choice to toggle on or off (change state); 
other choices are not affected. 

If there is only one choice, it may be toggled by selecting the label; if there is 
more than one choice, selecting the label has no effect 

The parameters for the notify procedure are the same as for choice items except 
that the value passed is a bit mask instead of an integer: 

toggle_notify_proc(item, value, event) 
Panel item item; 
unsigned int value; 
Event *event; 

The value passed to the notify procedure is a bit mask representing the state of 
the first 32 choices - if a bit is one, then the corresponding choice is on, if a bit 
is zero, then the corresponding choice is off. (The least significant bit is bit zero, 
which maps to choice zero.) 

Revision A. of May 9, 1988 

0 



C Example 

Figure 9-4 

Chapter 9 -Panels 177 

Figure 9-4 illustrates an item which lets you set the -1, -r, or -a flags for the Is 
command: 

A Toggle Item 

Format Options: 

!if Long 

D Reverse 

!if Show all files 

format_item = panel_create_item(panel, PANEL_TOGGLE, 
PANEL_LABEL_STRING, "Format Options:", 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_CHOICE_STRINGS, "Long", 

PANEL_TOGGLE_VALUE, 
PANEL_TOGGLE_VALUE, 
PANEL_NOTIFY_PROC, 
0); 

"Reverse", 
"Show all files", 
0, 
0, TRUE, 
2, TRUE, 
format_notify_proc, 

You can get or set the value of a particular choice - including choices beyond 
the first 32 -with PANEL_TOGGLE_ VALUE. When used to set the value, this 
attribute takes two values: the index of the choice to set, and the desired value. 
In the above example, PANEL_ TOGGLE_ VALUE is used to initialize the first and 
third choices to TRUE. To find out the value of the third choice, you would call: 

value= (int) panel_get(format_item, PANEL_TOGGLE_VALUE, 2); 

You can also use the attribute PANEL_ VALUE to set and get the state of a 
toggle's choices. As mentioned on the previous page, a toggle's value is a bit 
mask representing the state of the first 32 choices. To facilitate working with the 
value, you might first define names corresponding to each choices, and a macro 
to test for the corresponding bit in the value, like this: 

#define LONG 0 
#define REVERSE 1 
#define SHOW ALL 2 

#define toggle_bit_on(value, bit) ((value) & (1 << (bit))) 

You can then use the value in the notify procedure, as in: 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



178 SunView 1 Programmer's Guide 

Toggle Menus 

9.8. Text 

Displaying Text Items 

l format_notify_proc(format_item, value, event) 
Panel_item format_item; 
unsigned int value; 
Event *event; 

if (toggle_bit_on(value, LONG)) { 

if (toggle_bit_on(value, REVERSE)) { 

if (toggle_bit_on(value, SHOW_ALL)) 

Or you can retrieve the value outside of the notify procedure, as in: 

unsigned value; 
value= panel_get_value(format_item); 
if (toggle_bit_on(value, LONG)) { 

The menu has as many lines as choices, and each line toggles when selected. In 
other words, the mark indicating "on" (PANEL_ MENU_ MARK_ IMAGE) is alter­
nated with the mark signifying "off' (PANEL_ MENU ....:.NOMARK _IMAGE) each 
time the user selects a given line. 

To disable the menu, set PANEL_SHOW_MENU to FALSE. 

The value component of a text item is the stririg which the user enters and edits. 
It is drawn on the screen just after the label, as in: 

Name: Edward G. Robinson 

panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, "Name:", 
PANEL_VALUE, "Edward G. Robinson", 
0); 

IfPANEL_LAYOUT is set to PANEL_VERTICAL, overriding the default of 
PANEL_ HORIZONTAL, the value will be placed below the label. 

The number of characters of the text item's value which are displayable on the 

I~ 
' 1 \ __ ) 

screen is set via PANEL_VALUE_DISPLAY_LENGTH, which defaults to 80 0 , 
characters. When characters are entered beyond this length, the value string is \.__J 
scrolled one character to the left, so that the most recently entered character is 

Revision A, of May 9, 1988 



Text Selection 

c 

Chapter 9 -Panels 179 

always visible. As the string scrolls to the left, the leftmost characters move out 
of the visible display area. The presence of these temporarily hidden characters 
is indicated by a small left-pointing triangle. So setting the display length to 12 
in the above call would produce: 

Name: •G. Robinson 

As excess characters are deleted, the string is scrolled back to the right, until the 
actual length becomes equal to the displayed length, and the entire string is visi­
ble. 

It is sometimes desirable to have a protected field where the user can enter 
confidential information. The attribute PANEL_ MASK_ CHAR is provided for 
this purpose. When the user enters a character, the character you have specified 
as the value of PANEL_ MASK_ CHAR will be displayed in place of the character 
the user has typed. So setting PANEL_ MASK_ CHAR to "' * ' " would produce: 

Password: ******** 
If you want to disable character echo entirely, so that the caret does not advance 
and it is impossible to tell how many characters have been entered, use the space 
character as the mask. You can remove the mask and display the actual value 
string at any time by setting the mask to the null character. 

The maximum number of characters which can be typed into a text item 
(independently of how many are displayable) is set via the attribute 
PANEL_ VALUE_ STORED_ LENGTH. Attempting to enter a character beyond 
this limit causes the field to overflow, and the character is lost. The value string 
is blinked to indicate to the user that the text item is not accepting any more char­
acters. 

The stored length, like the displayed length, defaults to 80 characters. 

A panel may have several text items, exactly one of which is current at any given 
time. The current text item is the one to which keyboard input is directed, and is 
indicated by a caret at the end ofthe item's value. (IfPANEL_BLINK_CARET 
is TRUE, the caret will blink as long as the cursor is in the panel.) Selection of a 
text item (i.e. pressing and releasing the left mouse button anywhere within the 
item's rectangle) causes that item to become current. A text item also becomes 
current if it is displayed after being hidden- i.e. if PANEL_ SHOW_ ITEM is set 
to.TRUE. 

You can find out which text item has the caret, or give the caret to a specified text 
item, by means ofthe panel attribute PANEL_CARET_ITEM. The call 

window_set(panel, PANEL_CARET_ITEM, name_item, 0}; 

moves the caret to name_ i tern, while 

4}~sun 
~ microsystems 

Revision A, of May 9, 1988 



180 Sun View 1 Programmer's Guide 

Text Notification 

Table 9-1 

(Panel_itern)window_get(panel, PANEL_CARET_ITEM); 

retrieves the item with the caret. 

You can rotate the caret through the text items with the following two routines: 

panel_advance_caret(panel) 
Panel panel; 

panel_backup_caret(panel) 
Panel panel; 

Advancing past the last text item places the caret at the first text item; backing up 
past the first text item places the caret at the last text item. 

The notification behavior of text items is rather more complex than that of the 
other item types. You can control whether your notify procedure is called on 
each input character or only on selected characters. If your notify procedure is 
called, then the value it returns tells the panel package what to do - whether to 
insert the character, advance to the next text item, etc. 

When your notify procedure will be called is detennined by the value of 
PANEL_ NOTIFY _LEVEL. Possible values are given in the following table. 

Text Item Notification 

Notification Level 
PANEL NONE 

PANEL NON PRINTABLE 

PANEL SPECIFIED 

PANEL ALL 

Causes Notify Procedure to be Called 
Never 
On each non-printable input character 
If the input char is found in the string 
given for the attribute 
PANEL NOTIFY STRING 
On each input character 

PANEL_ NOTIFY_ LEVEL defaults to PANEL_SPECIFIED, and 
PANEL_NOTIFY_STRING defaults to \n \r\ t (i.e., notification on line-feed, 
carriage-return and tab). 

What happens when the user types a character? The panel package treats some 
characters specially. I Meta-C 1,60 I Meta-VI, and I Meta-X I are mapped to the Sun­
View functions CQWYJ, I Paste I, and (Cut I, respectively. When the user types 
these characters, the panel package notices them and perfonns the appropriate 
operation, without passing them on to your notify procedure. 

The user's editing characters- erase, erase-word and kill- are also treated 
specially. If you have asked for the character by including it in 
PANEL_ NOTIFY_ STRING, the panel package will call your notify procedure. 

60 The Meta key is (Left I or Clliiiii] on the Sun-2 and Sun-3 keyboards. On the type 4 keyboard, the (Meta I 
keys are marked with diamonds W. 

sun 
microsystems 

Revision A, of May 9, 1988 



c 

c 

Chapter 9 - Panels 181 

After the notify procedure returns, the appropriate editing operation will be 
applied to the value string. (Note: the editing characters are never appended to 
the value string, regardless of the return value of the notify procedure.) 

Characters other than the special characters described above are treated as fol­
lows. If your notify procedure is not called, then the character, if it is printable, 
is appended to the value string. If it is not printable, it is ignored. If your notify 
procedure is called, what happens to the value string, and whether the caret 
moves to another text item, is determined by the notify procedure's return value. 
The following table shows the possible return values: 

Table 9-2 Return Values for Text Item Notify Procedures 

Writing Your Own Notify 
Procedure 

Value Returned Action Caused 

PANEL INSERT 
PANEL NEXT 
PANEL PREVIOUS 
PANEL NONE 

Character is appended to item's value 
Caret moves to next text item 
Caret moves to previous text item 
Ignore the input character 

If a non-printable character is inserted, it is appended to the value string, but 
nothing is shown on the screen. 

If you don't specify your own notify procedure, the default procedure 
panel_ text_ notify () will be called at the appropriate time, as determined 
by the setting of PANEL _NOTIFY_ LEVEL. The procedure is shown below: 

Panel_setting 
panel_text_notify(item, event) 
Panel item item 
Event *event 

This procedure returns a panel setting enumeration which causes: 1) the caret to 
move to the next text item on I RETURN I or (IAID; 2) the caret to move to the 
previous text item on I SHIFT I I RETURN I or I SHIFt II TAB: I 3) printable char­
acters to be inserted; and 4) all other characters to be discarded. 

By writing your own notify procedure, you can tailor the notification behavior of 
a given text item to support a variety of interface styles. On one extreme, you 
may want to process each character as the user types it in .. For a different appli­
cation you may not care about the characters as they are typed in, and only want 
to look at the value string in response to some other button. A typical example is 
getting the value of a filename field when the user presses the Load button. 

Text item notify procedures are passed the item and the event which caused 
notification: 

Panel_setting 
text_notify_proc(item, event) 

Panel item item; 
Event *event; 

The input character is referenced by event_action (event). 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



182 Sun View 1 Programmer's Guide 

Text Value 

For example, suppose you want to be notified only when the user types I Esc I or 
( Control-C I into an item, but you still want them to be able to move to the next 
item, tab, or select I RETURN. I Create the item as shown below. 

name_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, "Enter Name Here:", 
PANEL_NOTIFY_LEVEL, PANEL_SPECIFIED, 
PANEL_NOTIFY_STRING, "\n\r\t\033\03", 
PANEL_NOTIFY_PROC, name_proc, 
0} i 

Note that you must remember to return the appropriate value from your notify 
procedure. The easiest way to do this is to simply call the default text notify pro­
cedure, and return what it returns: 

Panel_setting 
name_proc(item, event} 

Panel item item; 
Event *event; 

switch (event_action(event}} 
case ' 33': /* user pressed [Esc] */ 

I* special processing of escape *I 
return (PANEL_NONE); 

case' 03': I* user pressed [Ctrl-C] */ 
I* special processing of 'C *I 
return (PANEL_NONE); 

default: 
return (panel_text_notify(item, event}}; 

As shown in the example under Displaying Text Items, you can set the value of a 
text item at any time via PANEL_ VALUE. You can also use the 
panel_ set_ value () macro, as in: 

panel_set_value(name_item, "Millard Fillmore"}; 

The following call retrieves the value ofname_item into name: 

Panel_item name_item; 
char name[NAME_ITEM_MAX_LENGTH]; 

strcpy (name, (char *} panel_get_value (name_item}); 

Note that name item should have been created with a 
PANEL_VALUE_STORED_LENGTH not greater than 
NAME_ITEM_MAX_LENGTH, so the buffer name will not overflow. 

~\sun ~~ microsystems 
Revision A, of May 9, 1988 



c Text Menus 

Example 

Figure 9-5 

(' 

"'"""" 

Chapter 9 '- Panels 183 

A menu may be associated with a text item by setting PANEL_ sHOW_ MENU to 
TRUE. 

One use of text item menus is to make any item-specific "accelerators", or char­
acters which cause special behavior, visible to the user. This usage of accelera­
tors may be seen in Figure 9-5 which is taken from iconedit. The item 
labelled File: holds the name of the file being edited. In addition to typing print­
able characters, which are appended to the value of the item, the user can type 
~ for filename completion, I Contrai-L I to load an image from the file, 
I Control-S I to store an image to the file, or I Control-B I to browse the images in a 
directory. 

A Text Menu 

File: derv1sh.1mage 

#define ESC 27 
#define CTRL L 12 
#define CTRL_S 19 
#define CTRL_Q 17 
!define CTRL_B 2 

ESC - Filename completion 
~L- Load image from file 
~s- Store image to file 
~B - Browse directory 
~Q Quit 

filename_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_ST~ING, "File:", 
PANEL_NOTIFY_LEVEL, PANEL_ALL, 
PANEL_NOTIFY_PROC, filename_proc, 
PANEL VALUE DISPLAY_LENGTH, 18, 
PANEL_SHOW_MENU, TRUE, 
PANEL_MENU_CHOICE_STRINGS, "ESC - Filename completion", 

" AL- Load image from file", 
" AS - Store image to file", 
" AB- Browse Directory", 
" AQ- Quit", 
0, 

PANEL_MENU_CHOICE_VALUES, ESC,CTRL_L,CTRL_S, 
CTRL_B,CTRL_Q, 0, 

0}; 

The last two attributes specify the menu. PANEL_ MENU_ CHOICE_ STRINGS is 
a null-terminated array of strings to appear as the selectable lines of the menu. 
The value that the menu returns for each of its lines is specified via 
PANEL_MENU_CHOICE_VALUES. So if the menu line 'AL-Load image from 
file' is selected, the menu will return the value CTRL _ L. The value returned by 
the menu is passed directly to the text item, just as if it had been typed at the key­
board. 

sun 
microsystems 

Revision A, of May 9, 1988 



184 SliD View 1 Programmer's Guide 

9.9. Sliders 

Displaying Sliders 

Slider Selection 

Slider Notification 

A slider has four displayable components: the label, the current value, the slider 
bar, and the minimum and maximum allowable integral values (the range). 
When PANEL_SHOW_VALUE is TRUE, the current value is shown in brackets 
after the label. The font used to render the value is PANEL VALUE FONT. 

The slider bar width in pixels is set with PANEL_SLIDER_WIDTH.61 The 
minimum and maximum allowable values are set with PANEL MIN VALUE - -
and PANEL_ MAX_ VALUE. The width of the slider bar corresponding to the 
current value is filled with grey. The slider bar is always displayed, unless the 
item is hidden (i.e., PANEL_SHOW_ITEM is FALSE). When 
PANEL_SHOW_RANGE is TRUE, the minimum value of the slider 
(PANEL_MIN_VALUE) is shown to the left of the slider bar and the maximum 
value (PANEL_ MAX_ VALUE) is shown to the right of the slider bar. 

Only the slider bar of a slider may be selected. When the left mouse button is 
pressed within the slider bar or the mouse is dragged into the slider bar with the 
left mouse button pressed, the grey shaded area of the bar will advance or retreat 
to the position of the cursor. If the mouse is dragged left or right within the 
slider bar, the grey area will be updated appropriately. If the cursor is dragged 
outside of the slider bar, the original value of the slider (i.e., the value before the 
left button was pressed) will be restored. 

Slider notify procedures are passed the item, the item's value at time of 
notification, and the event which caused notification: 

slider_notify_proc(item, value, event) 
Panel_item item; 
int 
Event 

value; 
*event; 

The notification behavior of a slider is controlled by PANEL _NOTIFY_ LEVEL. 
When PANEL_NOTIFY_LEVEL is set to PANEL_DONE, the notify procedure 
will be called only when the select button is released within the slider bar. When 
PANEL_NOTIFY_LEVEL is set to PANEL_ALL, the notify procedure will be 
called whenever the value of the slider is changed. This includes: 

o when the select button is first pressed within or dragged into the slider bar, 

o each time the mouse is dragged within the slider bar, 

o when the mouse is dragged outside the slider bar, 

o when the select button is released. 

61 If you want to specify the width in characters, use the "column units" macro ATTR _ COLS () described in 
Chapter 18, Attribute Utilities. 

~~~sun ~~ microsystems 
Revision A, of May 9, 1988

--·--------·--------------------------

Chapter 9 -Panels 185

C Slider Value The value of a slider is an integer in the range PANEL_ MIN_ VALUE to

c

PANEL MAX VALUE. You can retrieve or ~t a slider's value with the attribute
PANEL VALUE.

Example Figure 9-6 illustrates a typical slider, which might be used to control the bright­
ness of a screen:

Figure 9-6 A Typical Slider

9.10. Painting Panels and
Individual Items

&rightness: [75] 8 ___ _. 188

panel_create~item(panel, PANEL_SLIDER,
PANEL_LABEL_STRING, "Brightness: ",
PANEL_VALUE, 75,
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 100,
PANEL_SLIDER_WIDTH, 300,
PANEL_NOTIFY_PROC, brightness_proc,
0);

To repaint either an individual item or an entire panel, use:

panel_paint(panel_object, paint_behavior)
<Panel_item or Panel> panel_ object;
Panel_setting paint_behavior;

paint_behavior should be either PANEL_CLEAR, which causes the rectan­
gle occupied by the panel or item to be cleared prior to repainting, or
PANEL_ NO_ CLEAR, which causes repainting to be done without any prior clear­
ing.

You don't have to call panel _paint () for items which you create at the same
time as you create the panel- when the panel is initially displayed, each of its
items will be painted. Note, however, that simply creating a panel item does not
cause it to be painted. So items which you create after the panel has been ini­
tially displayed will not appear until you call panel_paint ().

The special attribute PANEL_PAINT is provided to allow you to control the
"repaint behavior" of an item when one of its attributes is set. PANEL _PAINT

has three possible values:

o PANEL_ CLEAR- the item will be automatically cleared and repainted
after each call to panel_set ().

o PANEL_ NO_ CLEAR- the item will be automatically repainted (without
any prior clearing) after each pane 1_ set () call.

o PANEL_ NONE -no automatic repainting will be done.

The default value for PANEL_ PAINT is PANEL_ CLEAR. Thus, in the default
case, you do not need to call panel _paint () after calling panel_ set ().

Revision A, ofMay 9, 1988

186 Sun View 1 Programmer's Guide

Example 1:

You can set the repaint behavior for an item when the item is created, or for all
items in the panel when the panel is created. The item's repaint behavior may
not be reset after the item is created. However, you may temporarily override an
item's repaint behavior on any call to panel_ set {) by giving a different set­
ting for PANEL_ PAINT. The examples which follow show two possible repaint
policies.

item1 = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Enter Name:",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_PAINT, PANEL_NONE,
0);

(begin processing events, etc ...)

panel_set(item1, PANEL_ITEM_X, 10, PANEL_ITEM_Y, 50, 0);
panel_set(item1, PANEL_LABEL_IMAGE, &pixrect1, 0);
panel_set(item1, PANEL_VALUE_DISPLAY_LENGTH, 30, 0);
panel_paint(item1, PANEL_CLEAR);

Revision A, of May 9, 1988

c Example2:

Chapter 9-Panels 187

item2 = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Enter Name:",
PANEL_VALUE_DISPLAY_LENGTH, 10,
0);

(begin processing events, etc ...)

~ panel_set (item2,
PANEL_ITEM_X," 10,
PANEL_ITEM_Y, 50,
PANEL_PAINT, PANEL_NONE,
0);

panel_set(item2,
PANEL LABEL_IMAGE, &pixrectl,
PANEL_PAINT, PANEL_NONE,
0~) ;

panel_set(item2,
PANEL VALUE DISPLAY LENGTH, 30,
0);

- - ! -

The above two examples each produce the same effect. In the first example, the
item's repaint behavior is set to PANEL_ NONE at creation time, so it is not
repainted automatically after the panel_ set () calls, and no repainting occurs
until the call to panel _paint (). In the second example, the item's repaint
behavior is the default, PANEL_ CLEAR. This is overridden in the first two
panel_ set () calls, so no repainting occurs. However, it is not overridden in
the third call to panel_ set () , so repainting occurs before that call returns.

As mentioned above, the repaint behavior for all items in a panel can be set when
the panel is created, e.g.:

window_create(frame, PANEL, PANEL_PAINT, PANEL_NONE, 0);

All items created in the above panel will have a repaint behavior of
PANEL NONE.

sun
microsysterns

Revision A, of May 9, 1988

188 SrmView 1 Programmer's Guide

9.11. Iterating Over a
Panel's Items

NOTE

9.12. Panel Item Client
Data

You can iterate over each item in a panel with the two attributes
PANEL_FIRST_ITEM and PANEL_NEXT_ITEM. Apairofmacros,
panel_each_item () and panel_end_each are also provided for this
purpose. For example, to destroy each item in a panel you would call:

Panel_item) item;

panel_each_item(browser, item)
panel_destroy_item(item);

panel_end_each

Parentheses are not required around the statements to be executed on each itera­
tion. Also, a semicolon is not required after panel_ end_ each.

One attribute applicable to items of all types which should be mentioned is
PANEL_ CLIENT_ DATA. You can use this attribute in a variety of ways.

Perhaps the most common use is to associate a unique identifier with each item.
This is convenient in the case where you have many items, or where you are
creating and destroying items dynamically. If you need to pick one item out of
all the items, you can store an identifier (or a class) with it via
PANEL_ CLIENT_ DATA, and then query the item directly to find out its
identifier or class.

The dctool program in Appendix A, Example Programs, demonstrates this use of
PANEL_ CLIENT_ DATA. The panel buttons for its number keys 0--9 share the
same notify procedure. Each button's PANEL_CLIENT_DATA holds the ASCIT
digit displayed on the button; when a button is pushed, the
PANEL_ CLIENT _DATA is retrieved and displayed on the "screen" of the calcu­
lator. This saves having a different notify procedure for every button.

You can also use PAl~EL_CtiENT_DATA to associate a pointer to a private
structure with an item. For one example of this usage, see the example in the
next section under Writing Your Own Event Handler. Another application would
be to link several items together into a list which is completely under your con­
trol.

~~sun 'f/ii$ microsystems
Revision A, of May 9, 1988

; I cl
I
I
I
I
I

c

9.13. Event Handling

Default Event Handling

Writing Your Own Event
Handler

Table 9-3

Chapter 9-Panels 189

This section describes how the panel package handles events. 62 If you require a
behavior not provided by default, you can write your own event handling pro­
cedure for either an individual item or the panel as a whole.

Using the default event handling mechanism, events are handled for all the panel
items in a uniform way. A single routine reads the events, updates an internal
state machine, and maps the event to an action to be taken by the item. Actions
fall into two categories: previewing and accepting. The previewing action gives
the user visual feedback indicating what will happen when he releases the mouse
button. The accepting action causes the item's value to be changed and/or its
notify procedure to be called, with the event passed as the last argument.

The default event-to-action mapping is given in the following table:

Event
Left button down or drag in w/left button down

Drag with left button down

Drag out of item rectangle with left button down

Left button up

Right button down

Keystroke

Action
Begin previewing

Update previewing

Cancel preview

Accept

Display menu & accept user's selection

Accept keystroke if text item

What actually happens when an item is told to perform one of the above actions
depends on the type of the item. For example, when asked to begin previewing,
a button item inverts its label, a message item does nothing, a slider item redraws
the shaded area of its slider bar, etc. 63

You may want to handle events in a way which is not supported by this default
scheme. For example, there is no way to take any action on middle mouse button
events. To do so you must extend the event handling functionality by replacing
the default evenHo-action mapping function for a panel or panel item. Three
attributes have been defined for this purpose:

Panel Event Handling Attributes

Attribute Argument Type Default Value
PANEL EVENT PROC int (*) () panel_default_handle_event()

PANEL BACKGROUND PROC int (*) ()

PANEL AGCEPT KEYSTROKE boolean

panel_default_handle_event()

FALSE

An item's PANEL EVENT PROC is called when an event falls over the item. - -
The event procedure for an item defaults to that for the panel. Thus you can
change the event procedure for all the items in a panel by specifying your own
PANEL_ EVENT_ PROC for the panel before the panel items are created. The
arguments passed to the event procedure are the item (or panel) and the event.

62 The general Sun View input paradigm, including details on the various events, is covered in Chapter 6,

Handling Input.

63 For particulars, see the Selection subsection under each item type.

Revision A, of May 9, 1988

190 Sun View 1 Programmer's Guide

~\
The default event procedure, which implements the default event-to-action map- _)
ping described on the previous page, is:

panel_default_handle_event(object, event)
<Panel_item or Panel> object;
Event *event;

The panel's PANEL_BACKGROUND_PROC is called when an event falls on the
background of the panel (i.e. an event whose locator position does not fall over
any item). The default panel background procedure is also
panel_default_handle_event ();however, the various actions are no­
ops for the panel. Note that this attribute only applies to a panel; it has no mean­
ing for an individual panel item.

The attribute PANEL ACCEPT KEYSTROKE determines whether or not an item
or panel is interested in keystroke events. If this is TRUE, the item or panel
under the cursor is given keystroke events as they are generated. The default
behavior sends all keystroke events to the text item with the caret, independent of
the cursor position.

In addition to the three event related attributes, three event codes have been
defined:

o PANEL_ EVENT_ DRAG_ IN- the item or panel was entered for the first
time with one or more buttons down.

o PANEL_ EVENT_ MOVE_ IN- the item or panel was entered for the first
time with no mouse buttons down.

o PANEL_ EVENT_ CANCEL- the item or panel is no longer "current" so any
operations in progress should be canceled (e.g. cancel previewing).

The panel package will generate these events as appropriate and pass them to the
item's event procedure or the panel's background procedure.

The event-to-action mapping is performed by means of a set of action functions.
If you haven't specified an event procedure for the item,
panel_ default_ handle_ event () will map events to the appropriate
actions by calling one of the action functions. These action functions have been
made public so that, if you replace the event procedure for an item, you can ask
the panel package to perform one of the default actions by calling the
corresponding action function from your new event procedure.

The action functions are given in the table on the following page.

Revision A, of May 9, 1988

c

Example

Table 9-4

Chapter 9 - Panels 191

Panel Action Functions

Definition Description
panel_accept_key(object, event) Tells a text item to accept a keyboard

<Panel or Panel_item> object; event. Currently ignored by non-text

Event *event; panel items.

panel_accept_menu(object, event) Tells an item to display its menu

<Panel or Panel_item> object; and process the user's selection.

Event *event;

panel_accept_preview(object, event) Tells an item to do what it is supposed

<Panel or Panel_ item> object; to do when selected, including completing

Event *event; any previewing feedback.

panel_begin_preview(object, event) Tells an item to begin any feedback

<Panel or Panel_item> object; which indicates tentative selection.

Event *event;

panel_cancel_preview(object, event) Tells an item to cancel any previewing

<Panel or Panel_item> object; feedback.

Event *event;

panel_update_preview(object, event) Tells an item to update its previewing

<Panel or Panel item> object; feedback (e.g. redraw the -
Event *event; slider bar for a slider item).

In most of the action routines, only the event's location and shift state are of
interest. When previewing, choices, toggles and sliders use the event's location
to determine the current value. Choices use the shift state to determine whether
to advance or backup the current choice. panel_accept_key () is the only
action function to make use of the actual event code.

Suppose you are implementing dbxtool and want to have the buttons in the com­
mand panel execute different commands depending on whether they were
selected with the left or middle mouse button. For example, the button labeled
next might behave as the step button if activated with the middle button. When
the middle button is depressed, you want to preview an alternate label, and when
it is released, you want to execute the dbx command corresponding to the pre­
viewed label.

You can get get this functionality by replacing the event procedure for each of
the button items in the command panel. This could be done either by specifying
a default event procedure for all the items when the panel is created:

panel = window_create(frame, PANEL,
PANEL_EVENT_PROC, dbx_event_proc,
0);

or by specifying a the event procedure as each panel item is created:

panel_create_item(panel, PANEL_BUTTON,
PANEL_EVENT_PROC, dbx_event_proc,
0);

~) S ll fl Revision A, of May 9, 1988
~ microsystems

192 Sun View 1 Programmer's Guide

Whenever one of the buttons gets an event, dbx_event_proc () will be
called and can then map the events to actions as it sees fit. The code for the new
event procedure is given below. Note the use ofPANEL_CLIENT_DATA to
store the images for the two labels for each item.

dbx_event_proc(item, event)
Panel item item;
Event *event;

struct dbx data *dbx_data; I* data stored with each' item *I
Panel panel;

I* First get my private data for this item. *I
panel= (Panel) panel_get(item, PANEL_PARENT_PANEL);
dbx_data = (struct dbx_data *) panel_get(item, PANEL_CLIENT DATA);

I* See if this is an event of interest. *I
switch (event_action(event)) {

I* middle button went up or down *I
case MS MIDDLE:

if (event_is_down(event))
I* middle button went down, so change the button's label

* image to reflect its middle button action.

*I
panel_set(item, PANEL_LABEL_IMAGE, dbx_data->middle_pr, 0);

I* now begin the normal previewing *I
panel_begin_preview(item, event);

else {
I* middle_button went up, so accept the previewing *I
panel_accept_preview(item, event);

I* now change the image back *I
panel_set(item, PANEL_LABEL_IMAGE, dbx_data->left_pr, 0);

break;

I* drag into item with button down *I
case PANEL EVENT DRAG IN:

else

if (window_get(panel, WIN_EVENT_STATE, MS_MIDDLE)) {

I* middle button is down, so treat this as begin preview.

*I
panel_set(item, PANEL_LABEL_IMAGE, dbx_data->rniddle_pr, 0);

panel_begin_preview(item, event);

I* we weren't previewing, so
* let the default event proc handle it.

*I
panel_default_handle_event(item, event);

break;

sun
microsystems

Revision A, of May 9, 1988

(~
I ' _)

Chapter 9-Panels 193

I* cancel for some reason *I
case PANEL EVENT CANCEL: - -

if (panel_get(item, PANEL_LABEL_IMAGE)
dbx_data->middle_pr) {
I* we were previewing -- cancel it.
*I
panel_cancel_preview(item, event);
panel_set(item, PANEL_LABEL_IMAGE, dbx_data->left_pr, 0);

else
I* we weren't previewing, so
* let the default event proc handle it.
*I
panel_default_handle_event(item, event);

break;

I* some other event *I
default:

I* we don't care about this event -- let the default
* event proc handle it.
*I
panel_default_handle_event(item, event);

Translating Events from
Panel to Window Space

The final step is to modify the notify procedure for each button to perfonn dif­
ferent actions depending on which mouse button was released. The notify pro­
cedure for the step/next button, for example, would look like:

next_step_notify_proc(item, event)
Panel_item item;
Event *event;

if (event_action(event) == MS_MIDDLE)
I* do middle button command, "step" *I

else
I* do left button command, "next" *I

In the case of a scrollable panel, the panel is larger than the subwindow in at least
one dimension. If the panel has been scrolled, each point within the subwindow
will have one location in the coordinate space of the panel and a different loca­
tion in the coordinate space of the subwindow. Two functions are provided to
translate event coordinates from panel space to window space, and vice versa.

If you read your own events with window_read_event () ,64 you must
translate the events from window space to panel space with:

64 window_ read_ event () is described in Chapter 6, Handling Input.

Revision A, of May 9, 1988

194 Sun View 1 Programmer's Guide

Example

Figure 9-7

Event *
panel_event(panel, event)

Panel panel;
Event *event;

To go from panel space to window space, use:

Event *
panel_window_event(panel, event)

Panel panel;
Event *event;

Figure 9-7 illustrates the image browser from iconedi t. It serves as an exam­
ple ofwhen to use panel_window_event (). If the user presses the menu
button over an image, then he gets a menu showing the name of the file contain­
ing the image:

Image Browser Subframe Using panel_ window_ event ()

In order for the menu to be displayed in the correct place in a panel which has
been scrolled, the menu's location must be specified in the coordinates of the
subwindow, not of the panel.

sun Revision A, of May 9, 1988
microsystems

Chapter 9- Panels 195

The browser is implemented as a panel containing buttons having the images as
their labels. The buttons are created each time the user wants to browse a dif­
ferent set of images. When each button is created, the name of the file containing
the image is stored as the value ofthe button's PANEL_CLIENT_DATA.

Listed below is the event procedure shared by each button. There is a global
menu containing a single menu item, image_menu_item. If the event is a
right mouse button, the display string for this menu item is set to the file name
which was previously stored as the button's PANEL_CLIENT_DATA.

Then the event is adjusted from panel space to window space, and the menu is
displayed at the proper coordinates. If the user selects from the menu, the
button's notify procedure, browser_items_notify_proc (),is called, so
the effect is the same whether the item is selected through the menu or directly.

browser_items_event_proc(item, event)
Panel_item item;
Event *event;

if (event_action(event) == MS_RIGHT)

Event *adjusted_event;

menu_set(image_menu_item,
MENU_STRING, panel_get(item, PANEL_CLIENT_DATA), 0);

adjusted_event = panel_window_event(browser, event);

if (menu_show(image_menu, browser, adjusted_event, 0))
browser_items_notify_proc(item);
return;

panel_default_handle_event(item, event);

Note that for all events other than the right mouse button, the panel's default
event procedure is called.

Revision A, of May 9, 1988

c
10

Alerts

Alerts ... ,.. 199

10.1. Introduction to Alerts ... 199

Uses of Alerts.. 201

10.2. The Components of an Alert .. 201

Alert Arrow.. 201

Multiple-Line Text Message.. 201

Buttons .. 201

Positioning .. 202

Beeping ... 202

10.3. alert _prompt () ... 202

10.4. Building an Alert... 202

Example 1 -·Messages and Simple Buttons ... 203

Yes and No Buttons... 204

Example 2 -Changing Fonts .. 206

Example 3 -Using Triggers .. 206

0

0

c

10.1. Introduction to Alerts

Summary Listing and Tables

c

10
Alerts

This chapter describes the alerts package, which you can use by including the file
<suntool/alert. h> in your program.

This chapter is divided into three logical sections. Section 1 provides a brief
introduction to alerts. ·Section 2 explains the components that make up alerts.
Sections 3 gives program fragments that introduce most of the alert attributes.

An alert is a pop-up frame that contains a panel to notify a user of problems or
changes that require their attention. An alert is easily identified visually by a
large black arrow that sweeps into the alert window from the left. A Sun View
application can use alerts to notify a user that an event has taken place or to ver­
ify that a user requested some action. Each alert that pops up has full screen
access. That is, the screen is frozen until the user responds to the alert.

Alerts are a replacement for the menu _prompt () facility. Some programs will
use menu prompts instead of alerts if the user disables alerts in
defaults edit. Menu prompts offer a simple box with text, and a maximum
of two choices.

Alerts, on the other hand, have a better user interface. Alerts provide an
attention-getting alert arrow, buttons, fonts, beeps, a 3-D shadow, and so on.
Using alerts, you can offer a user more than two choices of action.

To give you a feeling for what you can do with alerts, the following page con­
tains a list of the available alert attributes and functions. Many of these are dis­
cussed in the rest of this chapter as they occur in the examples and elsewhere
(use the Index to check). All are briefly described with their arguments in the
alert summary tables in Chapter 19, Sun View Interface Summary:

o the Alert Attributes table begins on page 316;

o the Alert Functions and Macros table begins on page 318;

sun 199 Revision A, of May 9, 1988
microsystems

200 Sun View 1 Programmer's Guide

ALERT BUTTON
ALERT BUTTON FONT
ALERT BUTTON NO
ALERT BUTTON YES

ALERT MESSAGE FONT
ALERT MESSAGE STRINGS

Alert Attributes

Alert Functions

ALERT MESSAGE STRINGS ARRAY PTR - - -
ALERT NO BEEPING
ALERT OPTIONAL
ALERT POSITION

ALERT POSITION
ALERT TRIGGER

alert_prompt(client frame, event, attributes)

sun
microsystems

Revision A~ of May 9, 1988

0

0

("· Uses of Alerts

10.2. The Components of
~an Alert

Figure 10-1

Alert Arrow

Multiple-Line Text Message

Do you really want to exit SunView?

Buttons

[cancel)

Chapter 10 - Alerts 201

A Sun View application uses alerts to display messages to the user, who can then
either continue, cancel, or choose a different course of action. Possible uses of
alerts include the following:

o Querying whether an action was intended: "Are you sure you want to Quit?"

o Notifying a user of a current state: "Unrecognized file name. No files match
specified pattern."

Figure 10-1 illustrates the visible components that make up an alert. Each com­
ponent is described below.

An Alert

Are you sure you want to Cancel window? ---111- Text Message

Ihttons

Each alert window is identifiable as an alert by the large black arrow that sweeps
into the window from the left.

A multiple-line text message describes why an alert appeared and what to do in
order to continue. For example, if the user tries to quit Sun View, an alert with
the message, "Do you really want to exit Sun View?", will pop up.

Buttons make it possible to give the user a choice of actions when warning them
that an event has taken place. Each button is associated with a string that
specifies an action.

Many alerts have a default button which is indicated by a double outline (as in
the Confirm button above). If an alert has a default button, then the pointer will
jump to this button when the alert appears, so that clicking LEFf will take the
default action. The pointer is moved back to its original position when the alert
goes away. The user can disable pointer jumping by setting
SunView!Alert_Jump_Cursorto disabled in defaultsedit.

Revision A, of May 9, 1988

202 Sun View 1 Programmer's Guide

Positioning

Beeping

10.3. alert _prompt ()

10.4. Building an Alert

. You have three choices for alert placement. The alert may be screen-centered,
client-centered, or client-offset.

An alert may be specified to pop up with or without a beep. The defallit is to
come up beeping the number of times that is specified in defaul tsedit. You
may set your alert to come up without a beep even if the user's default
SunView!Alert_Bell entry in defaultsedi tis to come up beeping.

There is only one function in the alert package, alert _prompt,(); it creates
an alert, pops it up on the screen, handles user interaction, then takes down the
alert and returns a value.

int
alert_prompt(client_frame, event, attributes)

Frame client_frame;
Event *event
<attribute-list> attributes ;

alert _prompt () displays an alert whose appearance and behavior is
specified by the attribute value list attributes. It does not return a value
until the user pushes a button in the alert or the default trigger event or its
accelerator is seen. By default the alert is positioned over the center of
client frame.

0

If you supply a pointer to an event as event, it will be filled in with the user n
event which dismissed the alert. For example, if the users pushes a button by '---"
clicking LEFT, event_action (event) will beMS_LEFT.65

The possible status values which alert _prompt () returns are:

o ALERT_ YES -the user pushed the "yes" alert button

o ALERT _NO -the user pushed the "no" alert button

o ALERT _FAILED- the alert _prompt () failed for some reason

o ALERT_ TRIGGERED -a triggered response occurred

o Some other integer- the user pushed some other button than "yes" or "no."

This section contains code fragments that illustrate most of the attributes for the
alerts package. For a complete list and explanation of the alert attributes, see
Chapter 19, SunView Interface Summary. Each code fragment described below
is organized as follows:

o Attributes introduced in the code are described

o An illustration of the alert box is given

o The code is listed and described.

65 See Chapter 6, Handling Input for an explanation of the Events.

Revision A, of May 9, 1988

c

Example 1 - Messages and
Simple Buttons

Figure 10-2

Chapter 10- Alerts 203

For a complete program example using alerts, see filer in Appendix A, Example
Programs.

This section gives two code fragments in order to illustrate the different button
attributes. The buttons allow the user to choose an action. Each alert may contain
one or more buttons; the default is for no buttons.

Each button has a name and an associated value. When a user pushes a button,
the value associated with the button is returned.

The following attributes are used in the first code fragment. STRINGS 1111

ALERT MESSAGE STRINGS

TheALERT_MESSAGE_STRINGS attribute specifies a string or strings to be
displayed in the message area of the alert panel.

An example of the syntax for a message is:

ALERT _MESSAGE_ STRINGS,
"The text has been edited.",
"Empty Document will discard these edits. Please confirm",
0,

The ALERT _BUTTON attribute displays a string in a button and associates a
value to it. The value specified with the string is returned when the button is
pushed. The value may be any integer, but should not be one of the values
predefined by the alerts package (ALERT_YES, ALERT_NO, ALERT_FAILED,
or ALERT TRIGGERED). Figure 10-2 illustrates an alert that was built using
the attributes ALERT_ BUTTON. It contains four buttons and one text string.
This example asks the user what part of the country they are from. The program
fragment is listed below.

A Simple Alert

What part of the country are you from?

[south)

result = alert_prompt(
(Frame) client_frame,
(Event*) NULL

ALERT MESSAGE STRINGS
"What part of the country are you from?",

0,
ALERT_BUTTON,
ALERT_BUTTON,
ALERT_BUTTON,
ALERT_BUTTON,

sun
microsystems

"North",
"East",
"West",
"South",

101,
102,

. 103,
104,

Revision A, of May 9, 1988

204 SunView 1 Programmer's Guide

Yes and No Buttons

0) ;

switch (result)
case 101:

} ;

/*handle case for someone from the North*/

break;
case 102:

/*handle case for someone from the East*/

break;
case 103:

/*handle case for someone from the West*/

break;
case 104:

/*handle case for someone from the South*/

break;
case ALERT FAILED:

I*
* Possibly out of memory or fds;
* attempt to get information another way

*I
break;

Usually you will want to map your buttons to ''yes" and "no" actions. To make n. :
this possible, two special buttons are triggered by predefined keyboard accelera- "---"'

tors. Yes (confirm, do it) is mapped to the (Return I key. No (cancel, don't do it)

is mapped to the CS!QQJ key (usually W]).

The SunView event name for yes is ACTION_DO_IT. The SunView event

name for no is ACTION STOP.

The following attributes are used in this example:

The ALERT_ BUTTON_ YES attribute associates a string with the accelerated

YES button. The value ALERT_ YES is returned by alert _prompt () if the

user pushes this button, or types [Return]. Only one instance of this attribute is

allowed; subsequent instances are ignored.

The YES button image will have a different button image than the other buttons.

It will appear as a regular button image with a double outline.

An example of the syntax is:

ALERT_BUTTON_YES, "Confirm, discard edits",

The ALERT BUTTON NO attribute associates a string with the accelerated NO

button. The value returned if the user pushes this button, or types CS1Qll) ' will be

ALERT NO. Only one instance of this attribute is allowed; subsequent instances

are ignored.

~~sun ~ microsystems

Revision A, of May 9, 1988

c

c

c

Figure 10-3

Chapter 10- Alerts 205

An example of the syntax is:

ALERT_BUTTON_NO, "Cancel",

Figure 10-3 illustrates the alert that is generated by the following code. It con­
tains two buttons and two text strings. The buttons give the user two choices: to
empty a document, discarding any edits they may have made, or to cancel the
operation completely.

A YES/NO Alert

The text has been edited.
Empty Document will discard these edits. Please confirm.

(confirm, discard edits)

int result;
result= alert_prompt(

(Frame)window, (Event*)NULL,
ALERT_MESSAGE_STRINGS,

"The text has been edited.",
"Empty Document will discard these edits.\
Please confirm.",

0,
ALERT_BUTTON_YES, "Confirm, discard edits",
ALERT_BUTTON_NO, "Cancel",
0);

switch(result) {

} ;

case ALERT YES:
/*discard edits*/
break;

case ALERT NO:
/*cancel the Empty Document request */
break;

case ALERT FAILED:
break;

sun
microsysterns

Revision A, of May 9, 1988

206 Sun View 1 Programmer's Guide

Example 2- Changing Fonts The default font used for alert message text is the Qient Frame's font, if one has 0
been specified; or else it is the same as Sun View/Font. The default font for alert
buttons is the same as that specified for menus in Menus/Font in defaultsedit, or

screen.b.l4, if no default is specified.

You may prefer to use different fonts within alerts. For example, you might want

to set off the text in an alert box from the text in the Client's frame by using the
bold version of the Client Frame's default font.

The ALERT_MESSAGE_FONT and ALERT_BUTTON_FONT attributes con­

trol the font setting for the alert message text and alert buttons, respectively.

Figure 10-4 illustrates an alert in which the message string is printed in
courier.b.l6. The code fragment shewn below it illustrates how to set the
attribute's value using the font library. It also illustrates the use of multiple mes­
sage strings.

Figure 10-4 An Alert with Boldface Message Strings

Example 3 - Using Triggers

Xt 1 s crackers to slip a rozzer
the dropsy in snide 1

with a fuzzy udder.
--Daimon Runyon

[,-:.C::-a.-n-c e....,l:"'o)

Event alert_event;
int result= alert_prompt(base_frame, &alert_event,

ALERT_MESSAGE_STRINGS,
"It's crackers to slip a rozzer",
"the dropsy in snide,",
"with a fuzzy udder.",

" --Daimon Runyon",

0,
ALERT_BUTTON_YES, "Confirm",

ALERT_BUTTON_NO, "Cancel",
ALERT_MESSAGE_FONT,
pf-'--open("/usr/lib/fonts/fixedwidthfonts/cour.b.l6),

ALERT_POSITION, ALERT_CLIENT_CENTERED,

0);

Often you will want to give the user the choice of using mouse buttons or key­
board accelerators instead of push buttons to respond to an alert. Triggers give
you this option by making it possible to specify an accelerator or mouse action

for a choice.

For example, the text window uses an alert to ask the user where to split a win­
dow. A left mouse button click is the trigger that responds to this alert.

sun Revision A, of May 9, 1988
microsystems

0

c

Figure 10-5

c

Chapter 10-Alerts 207

The following attribute is used when specifying a trigger:

The ALERT TRIGGER attribute allows the application to specify a Sun View
event which should cause the alert to return. The default is not to return a value
unless a button has been pushed or the other YES/NO accelerators are seen.
When an event is triggered, the value returned will be ALERT_ TRIGGER. An
example of the message syntax is as follows.

ALERT_TRIGGER, event,

Figure 10-5 illustrates the alert that is generated by the following code. This alert
contains one button and a triggered response. When this alert comes up, the user
may split the existing window into two windows, or can dismiss the alert by
pushing the Cancel New Window button. This example also shows how alerts
can effectively use ail event to collect information about the way a user reacted to
an alert. See Chapter 6, Handling Input, for a full explanation and list of all pos-
sible events. ~

An Alert Using Triggers and Events

Move pointer to where new view should
begin, then click the left mouse button.

Otherwise, push "Cancel Split View".

Revision A, of May 9, 1988

208 Sun View 1 Programmer's Guide

Event event;
int result;

result= alert_prompt(
(Frame)windbw,
&event,
ALERT_NO_BEEPING, '1,

ALERT_MESSAGE_STRINGS,
"Move pointer to where new window should",
"appear, then click the left mouse button.",

"Otherwise, push \"Cancel New Window."\,

0,
ALERT_BUTTON_NO,
ALERT_TRIGGER,
0);

switch (result) {
case ALERT TRIGGERED:

"Cancel New Window",
MS_LEFT,

(void) create_new_window_at_pos(event_x(&event),
event_y(&event)),

break;
case ALERT NO:

break; /* don't create new window */
case ALERT FAILED:

I* alert failed, possibly out of memory or fds */

You may specify in your code to have an alert pop up without a beep as shown
above. Generally, beeping is reserved for any event which occurs unexpectedly.
If the alert is in response to a user request, it should not beep.

The following attribute is used to specify no beeping for an alert.

The ALERT_ NO_ BEEPING attribute allows the Sun View application to specify
that no beeping should take place regardless of defaultsedit setting. The
default for this option is FALSE; that is, beep as many times as the defaults data­
base specifies.

sun Revision A, of May 9, 1988
microsystems

0

11
TTY Subwindows

TIY Subwindows ... 211

11.1. Creating a TIY Subwindow .. 213

11.2. Driving aTTY Subwindow ..•..................... 213

ttysw_input () ... 213

ttysw_input () ... 214

Example: tty _io .. 214
11.3. TTY Subwindow Escape Sequences .. 214

Standard ANSI Escape Sequences.. 214

Special Escape Sequences ... 215

Example: tty_io .. 215
11.4. Reading and Writing to a TTY Subwindow ... 215

11.5. The Program in the TTY Subwindow .. 215

TTY_PID .. 215

Talking Directly to the TTY Subwindow .. 216

An Example ... _... 216

()

0

Header Files

Summary Listing and Tables

c

11
TTY Subwindows

The tty (or terminal emulator) subwindow emulates a standard Sun tenninal, the
principal difference be~ng that the row and column dimensions of a tty subwin­
dow can vary. You can run arbitrary programs in a tty subwindow; perhaps its
main use is to run a shell within a window.

To see tty subwindows in use, run the standard tools shelltool(l) and
gfxtool(l).

Programs using tty subwindows must include the file <suntool/tty. h>.

To give you a feeling for what you can do with tty subwindows, the following
page contains lists of the available tty subwindow attributes, functions and mac­
ros. Many of these are discussed in the rest of this chapter and elsewhere (use the
Index to check). All are briefly described with their arguments in the tty subwin­
dow summary tables in Chapter 19, Sun View Interface Summary:

o the TTY Subwindow Attributes table begins on page 376;

o the TTY Subwindow Functions table begins on page 376;

o the TTY Subwindow Special Escape Sequences table begins on page 377.

211 Revision A, of May 9, 1988

212 Sun View 1 Programmer's Guide

TTY ARGV

TTY CONSOLE

ttysw input(tty, buf, len)

ITY Subwindow Attributes

TTY PAGE MODE - -
TTY QUIT_ON CHILD DEATH

TTY Subwindow Functions

ttysw output(tty, buf, len)

0
Revision A, of May 9, 1988

0
\, 11.1. Creating a TTY

Subwindow

11.2. Driving a TTY
Subwindow

ttysw_input ()

NOTE

Chapter 11 - TIY Subwindows 213

Like all SunView windows, you create a tty subwindow by calling
window_ create () with the appropriate type parameter, as in:

Tty tty;
tty= window_create(frame, TTY, 0);

By default, the tty subwindow will fork a shell. If you want to start the tty
subwindow with another program, say vi, you can do so by specifying the name
of the program to run via the TTY _ARGV attribute:

#include <suntool/sunview.h>
#include <suntool/tty.h>

char *my_argv[] = { "vi", 0 };

main(}
{

Tty tty;
Frame frame;

frame= window_create(O, FRAME, 0);
tty= window_create(frame, TTY, TTY_ARGV, my_argv, 0);
window_main_loop(frame);

You can only have one tty subwindow per process.

You can drive the tenninal emulator programmatically. There are procedures
both to send input to the tenninal emulator (as if the user had typed it in the tty
subwindow) and to send output (as if a program running in the tty subwindow
had output it). The two effects are similar to the rna pi I mapo functions in
-I. ttyswrc that pennit a user to bind a character sequence to a function
key.66

You can send input to a tty subwindow programmatically with the function:

int
ttysw_input(tty, buf, len)

Tty tty;
char *buf;
int len;

ttysw_input (} appends the character sequence in buf that is len charac­
ters long onto tty's input queue. It returns the number of characters accepted.
The characters are treated as if they were typed from the keyboard.
ttysw_input () provides a simple way for a window program to send input to
a program running in its ttysubwindow.

66 See shelltool(l) in theSunOS Reference Manual.

Revision A, of May 9, 1988

214 SunView 1 Programmer's Guide

ttysw_input ()

Example: tty _io

11.3. TTY Subwindow
Escape Sequences

Standard ANSI Escape
Sequences

Use ttysw_output () to output to a tty subwir~.dow.

int
ttysw_output(tty, buf, len)

Tty tty;
char *buf;
int len;

ttysw output () runs the character sequence in buf that is len characters

long through the terminal emulator of tty. It returns the number of characters
accepted. The effect is similar to executing

where t t yN is the pseudo-tty associated with the tty subwindow. One use of

tty s w _output () is to send the escape sequences listed in the next section to

the tty subwindow.

Appendix A, Example Programs, gives the listing for tty_io, a program which

uses tty_ output () to output strings of characters to a tty subwindow.

The tty subwindow accepts the same ANSI escape sequences as the raw Sun con­
sole,67 with the following few exceptions:

o The effect of the bell control character CTRL-G (OxO 7) in a tty subwindow
depends on how the user has set the two options Audible _Bell and
Visible_Bell in the SunView category in defaultsedit(l). If

Audible_Bell is Enabled, the bell will ring. IfVisible_Bell is Enabled, the

window will flash.

o The graphics rendition sequences ESC [4m (underline) and ESC [lm (bold
"extra-bright") operate correctly. On the Sun console, these sequence
always invert subsequent characters, whereas the tty subwindow only inverts
when sent ESC [7m (stand-out).

o The effect of the bold "extra-bright" graphics rendition sequence ESC [lm in
a tty subwindow depends on the user's setting for the Bold_style option in
the Tty category of defaultsedit.

o Unsupported graphics rendition mode escape sequences have the same effect
as that chosen for bold "extra-bright". On the Sun console, everything
inverts.

o The Set Scrolling sequence ESC [Or, which enables vertical wrap mode on
the Sun terminal, has no effect in a tty subwindow.

67 See the console(4s) manual page in the SunOS Reference Manual for a full list of escape sequences. ,

Revision A, of May 9, 1988

~·
' I

\..._)

0

_C

c

Special Escape Sequences

Example: tty _io

11.4. Reading and Writing
to a TTY Subwindow

11.5. The Program in the
TTY Subwindow

TTY PID

Chapter 11 - ITY Subwindows 215

o You can modify termcap (5) if you need further control over what gets
displayed in the different modes. The two-character termcap symbols for
each of the modes are:

so standout
us underline
md bold (extra bright)

Escape sequences have been defined by which the user can get and set attributes
of both the tty subwindow and the frame which contains it For example, the
user can type an escape sequence to open, close, move or resize the frame,
change the label of the frame or the frame's icon, etc. These escape sequences
are described in Table 19-33, TIT Subwindow Special Escape Sequences, in
Chapter 19, Sun View Interface Summary.

For an example of setting the frame's label via a tty subwindow escape sequence,
see the program tty _io, listed in Appendix A, Example Programs.

You cannot use the tty subwindow's file descriptor returned by WIN_ FD to read
and write characters to it. You can use TTY_ TTY_ FD attribute to get the file
descriptor of the pseudo-tty associated with the tty subwindow. You can then
use this to read and write to the pseudo-tty using standard UNIX l/0 routines.
Note that TTY_TTY_FD is the file descriptor of the pseudo-tty, not the file
descriptor of the ttysubwindow returned by WIN _FD. The latter is used for
low-level window manipulation procedures.

You use the TTY_ARGV attribute to pass the name ofthe program to run to the
tty subwindow. The program runs as a forked child in the tty subwindow.

You can use TTY_ P ID to monitor the state of the child process running in the tty
window via the Notifierusing L notify_intetpOse_wait3_funcO. The client's
wait3 () function gets called when the state of the process in the tty subwin­
dow changes. The setup is something like this:

#include <sys/wait.h>
static Notify_value my_wait3();

ttysw = window_create(base_frame,
TTY_QUIT_ON_CHILD_DEATH,
TTY_ARGV,
0);

TTY,
FALSE,

my_argv,

child_pid = (int)window_get(ttysw, TTY_PID);
notify_interpose_wait3_func(ttysw, my_wait3, child_pid);

The wait3 () function can then do something useful, such as destroying the
tty window or starting up another process in the tty subwindow. Here is a code
fragment that detects the death of its tty subwindow' s child. It turns off the
default behavior of a tty subwindow, which is to quit when the child process dies.

Revision A, of May 9, 1988

1
!

216 Sun View 1 Programmer's Guide

Talking Directly to the TTY
Subwindow

An Example

#define BUFSIZE 1000
static int my_done;

static Notify_value
my_wait3(ttysw, pid, status, rusage)

Tty ttysw;
int pid;
union wait *status;
struct rusage *rusage;

int child_pid;

notify_next_wait3_func(ttysw, pid, status, rusage);

if (! (WIFSTOPPED (*status))) {
window_set(ttysw,

TTY_QUIT_ON_CHILD_DEATH,
TTY_ARGV,
0);

FALSE,
my_argv,

child_pid = (int)window_get(ttysw, TTY_PID);

notify_interpose_wait3_func(ttysw, my_wait3, child_pid);

return NOTIFY_DONE;

You can set TTY_ P ID as well as get it, but if you set it then you are responsible

for setting the notify_interpose_wait3_func {} to catch the child's

death, and for making the standard input and standard output of the child go to

the pseudo-tty.

If you set TTY _ARGV to TTY_ ARGV _DO_ NOT_ FORK, this tells the system not

to fork a child in the tty subwindow. In combination with TTY FD, this allows

the tool to use standard 1/0 routines to read and write to the tty subwindow. 68

This simplifies porting terminal-oriented graphics programs, which interact with

the user on the model of write a prompt ... read a reply, to Sun View. However,

in most cases you should redesign programs to use a real windowing interface

made up of Sun View components.

The typein program in Appendix A, Example Programs reads and writes directly

to its tty subwindow, using Sun View's window_ main_ loop () control struc­

ture.

The following example preserves the flow of control of a typical UNIX applica­

tion, using notify_do_dispatch () to ensure that the Notifier gets called.

Read Section 17.6, Porting Programs to Sun View, for more information on using

the Notifier in this way.

static Notify_value
my_notice_destroy(frame, status)

Frame frame;
Destroy_status status;

68 This capability makes obsolete the wmk-around required in the 3.0 and 3.2 releases of Sun View if you

tt\ sun
~ microsystems

Revision A, of May 9, 1988

0

c

c

c

Chapter 11 - ITY Subwindows 217

if (status != DESTROY_CHECKING)
my_done = 1;
(void)notify_stop();
}

return (notify_next_destroy_func(frame, status));

main(argc, argv)
int argc;
char *argv[];

Frame
Tty
int
char

base_frame;
ttysw;
tty_fd;
buf[BUFSIZE];

my_done = 0;
base_frame =window create(NULL, FRAME,
FRAME_ARGC_PTR_ARGV, &argc, argv,
0);

ttysw window_create(base_frame, TTYSW,
TTY_ARGV, TTY_ARGV_DO_NOT_FORK,
0);

tty_fd = (int)window_get(ttysw, TTY_TTY_FD);
dup2(tty_fd, 0);
dup2(tty_fd, 1);

(void)notify_interpose_destroy_func(base_frame, my_notice_destroy);
window_set(base_frame, WIN_SHOW, TRUE, 0);
(void)notify_do_dispatch();

puts (prompt_to_user);
while (gets(buf))

if (my_done) I* continue until destroyed *I
break;
I*

* This is where the meat of the program
* would be if this were a real program.
*I

puts(buf);

exit(O);

wanted a window program to read and write from its own tty subwindow.

Revision A, of May 9, 1988

0

c

c

12
Menus

Menus .. 221

12.1. Basic Menu Usage.. 224
12.2. Components of Menus & Menu Items .. 228

Menus.. 228
Visual Components .. 228
Generate Procedures .. 228
Notify Procedures .. 228
Client Data .. 228
Menu Items ... 228

Menu Items ... 228
Representation on the Screen ... 228
Item Values ... 229
Item Generate Procedures ... 229
Item Action Procedures ... 229
Client Data .. 229
Item Margins .. 230

12.3. Examples ... 230
12.4. Item Creation Attributes ... 237
12.5. Destroying Menus .. 238
12.6. Searching for a Menu Item.. 239
12.7. Callback Procedures.. 240

Flow of Control in menu_ show (} .. 240
Generate Procedures .. 242

Menu Item Generate Procedure ; 243

Menu Generate Procedure

Pull-right Generate Procedure

244 ,0
246 u

Notify/Action Procedures 247

12.8. Interaction with Previously Defined Sun View Menus 248

Using an Existing Menu as a Pull-right 248

12.9. Initial and Default Selections .. . 249

12.10. User Customizable Attribute,s 250

c

Summary Listing and Tables

12
Menus

The Sun View menu package allows you to chain individual menus together into
a collection known as a walking menu. A menu contains menu items, some of
which may have a small arrow pointing to the right. This indicates to the user
that if he or she slides the mouse to the right of that item, a pull-right menu will
appear. Menus can be strung together in this fashion, so that the user "walks" to
the right down the chain of menus in order to make a selection.

The definitions necessary to use walking menus are found in the file
<suntool/walkmenu. h>, which is included by default when you include
the file <suntool/ sunview. h>.

The most useful sections to read first are the first three. Section 12.1, Basic
Menu Usage, introduces the basic routines and gives some simple examples.
Section 12.2, Components of Menus & Menu Items, outlines the components of
menus and menu items and introduces common terms. Section 12.3, Examples,
gives more examples of using menus. Section 12.7, Callback Procedures, is for
advanced users who need to understand the subtleties of the callback mechanism.

The listing for font_ menu, a program which builds on some of the examples
given throughout the chapter, is given in Appendix A, Example Programs.

To give you a feeling for whatyou can do with menus, the following two pages
list the available menu attributes, functions and macros. Many of these are dis­
cussed in the rest of this chapter and elsewhere (use the Index to check). All are
briefly described with their arguments in the menu summary tables in Chapter
19, Sun View Interface Summary:

o the Menu Attributes table pegins on page 335;

o theM enu Item Attributes table begins on page 339;

o the Menu Functions table begins on page 341.

221 Revision A, of May 9, 1988

222 Sun View 1 Programmer's Guide

MENU ACTION IMAGE

MENU ACTION ITEM

MENU APPEND ITEM

MENU BOXED

MENU CENTER

MENU CLIENT DATA

MENU COLUMN MAJOR - -
MENU CLIENT DATA

MENU DESCEND FIRST

MENU DEFAULT

MENU DEFAULT ITEM

MENU DEFAULT SELECTION

MENU FIRST EVENT

MENU FONT

MENU GEN PROC

MENU GEN PULLRIGHT IMAGE - - -
MENU GEN PULLRIGHT ITEM - - -
MENU IMAGE ITEM

MENU IMAGES

MENU INITIAL SELECTION - -
MENU INITIAL SELECTION EXPANDED - - -
MENU INITIAL SELECTION SELECTED

MENU INSERT

MENU INSERT ITEM

MENU ITEM

MENU JUMP AFTER NO SELECTION

MENU JUMP AFTER SELECTION

MENU_ACTION_IMAGEt

MENU_ACTION_ITEMt

MENU ACTION PROC - -
MENU_APPEND_ITEMt

MENU_BOXEDt

MENU_CENTERt

MENU_CLIENT_DATAt

MENU FEEDBACK

MENU_FONTt
MENU_GEN_PROCt

MENU GEN PROC IMAGE

MENU GEN PROC ITEM

MENU GEN PULLRIGHT

MENU GEN PULLRIGHT_IMAGEt

MENU_GEN_PULLRIGHT_ITEMt

MENU IMAGE
MENU IMAGE ITEMt

Menu Attributes

Menu Item Attributes

MENU LAST EVENT

MENU LEFT MARGIN

MENU MARGIN

MENU NCOLS

MENU NITEMS

MENU NROWS

MENU NOTIFY PROC - -
MENU NTH ITEM

MENU PARENT

MENU PULLRIGHT DELTA

MENU PULLRIGHT IMAGE - -
MENU PULLRIGHT ITEM

MENU REMOVE

MENU REMOVE ITEM

MENU REPLACE

MENU REPLACE ITEM

MENU RIGHT MARGIN

MENU SELECTED

MENU SELECTED ITEM - -
MENU SHADOW

MENU STAY UP

MENU STRINGS

MENU STRING ITEM

MENU TITLE IMAGE

MENU TITLE ITEM

MENU. TYPE

MENU VALID RESULT

MENU INACTIVE

MENU INVERT

MENU_LEFT_MARGINt

MENU_ MARGINt

MENU_PARENTt

MENU PULLRIGHT

MENU PULLRIGHT_IMAGEt

MENU_PULLRIGHT_ITEMt

MENU RELEASE

MENU_RELEASE_IMAGE

MENU_RIGHT_MARGINt

MENU_SELECTEDt

MENU_STRINGt

MENU_STRING_ITEMt

MENU_TYPEt
MENU VALUE

Revision A, of May 9, 1988

0

c

c

Menu Functions
menu_create(attributes)
menu_create_item(attributes)
menu_destroy(menu_object)
menu_destroy_with_proc(menu_object, destroy_proc)

void (*destroy_proc) ();
menu_find(menu, attributes)
menu_set (menu_object_, attributes)
menu_show(menu, window, event, 0)
menu_return_item(menu, menu_item)
menu return value(menu, menu item)

sun
microsystems

Chapter 12-Menus 223

Revision A, of May 9, 1988

224 Sun View 1 Programmer's Guide

12.1. Basic Menu Usage The basic usage of menus is to first create the menu with menu_create (),

then display it when desired with menu_ show () :

Menu
menu_create(attributes)

<attribute-list> attributes;

caddr t
menu_show(menu, window, event, 0)

Menu
Window
Event

menu;
window;

*event;

Like the creation routines for other Sun View objects, menu_ create () takes a

null.,.teiminated attribute list and returns an opaque handle. menu_ show ()

displays the menu, gets a selection from the user, and, by default, returns the

value of the menu item the user has selected. window is the handle of the win­

dow over which the menu is displayed; event 69 is the event which causes the

menu to come up. The final argument is provided so that attributes may be

passed in the future; at present it is ignored.

Use the routines menu_ set () and menu _get () to modify and retrieve the

values of attributes for both menus and menu items:

int
menu_set(menu_object, attributes)

<Menu orMenu_item> menu_object;

<attribute-list> attributes;

caddr t
menu_get(menu_object, attribute[, optional_arg])

<Menu or Menu_item> menu_object;

Menu_attribute attribute;

caddr t optional_arg;

All the attributes applying to menus and menu items are listed in the two

corresponding tables Menu Attributes and Menu Item Attributes in in Chapter 19,

Sun View Interface Summary. Common attributes applying to both menus and

menu items appear in both tables.

The pages which follow contain three examples of basic menu usage.

0

6!1 Canvases and panels have their own coordinate spaces separate from the window's coordinate space.

Note that event is in the coordinate space of the window, not of the canvas or panel. ,f""\,
\._~//

Revision A, of May 9, 1988

C Example 1:

c

~
Lm!:J

CAUTION

Chapter 12-Menus 225

Let's take a very simple example- a menu with two selectable items
represented by the strings 'On' and 'Off':

on_off_menu = menu_create(MENU_STRINGS, "On", "Off", 0,
0);

The attribute MENU_ STRINGS takes a list of strings and creates an item for each
string. Note that the first zero in the above call terminates the list of strings, and
the second zero terminates the entire attribute list.

The menu package, in contrast to the panel package, does not save strings
which you pass in. So you should either pass in the address of a constant, as in
the example above, or static storage, or storage which you have dynamically allo­
cated.

Typically you call menu_ show {) from an event procedure,70 upon receiving
the event which is to cause display of the menu. In the code fragment below, we
display the menu on right button down:

case MS RIGHT:
menu_show(on_off menu, window, event, 0);
break;

menu_show {),by default, returns the value of the item which was selected. If
the item was created with MENU STRINGS its value defaults to its ordinal posi­
tion in the menu, starting with 171 So in the above example, selecting 'On'
would cause 1 to be returned, while selecting 'Off' would cause 2 to be returned.

You can specify that menu_ show {) return the item itself, rather than return the
value of the selected item. Do this by setting MENU NOTIFY PROC to the
predefined notify procedure72 menu_return_it;m{), as ill:

menu_set(on_off_menu,
MENU_NOTIFY_PROC, menu_return_item,
0);

70 See Chapter 6, Handling Input, for a discussion of event procedures.
71 The value of menu items not created with MENU_STRINGS defaults to zero. You can explicitly specify

the values for menu items via the attributes MENU_ IMAGE_ ITEM, MENU_ STRING_ ITEM, or MENU_ VALUE.
72 Notify procedures are covered in detail in Section 12.7, Callback Procedures.

Revision A, of May 9, 1988

226 Sun View 1 Programmer's Guide

Example 2:

Example 3:

It's easy to build up more complex menus out of simple ones. The next example

creates a menu with two items, 'Bold' and 'Italic', each of which shares the on­

off menu from the previous example as a pull-right:

menu = menu_create(MENU_ITEM,
MENU_STRING, "Bold",
MENU_PULLRIGHT, on_off_menu,

0,
MENU_ITEM,

MENU_STRING, "Italic",
MENU_PULLRIGHT, on_off_menu,

0,
0},

The most flexible way to create a menu item in-line in a menu_ create () call

is by using MENU_ITEM. In contrast to MENU_STRINGS, which allows you to

specify only the display strings of the items, MENU ITEM takes as its value a

null-terminated attribute list which may contain any attributes applying to menu

items.73

The value of MENU_ STRING is the item's display string; the value of

MENU PULLRIGHT is the handle of the item's pull-right menu. (Note that you

must already have created the menu before giving it as the value for

MENU_PULLRIGHT.)

The menu package can accommodate images as well as strings. The example

below creates a menu with a single item labelled 'tools'. When the user pulls

right, he brings up a menu showing the icons of three Sun View tools -

defaultsedit, iconedit, and fontedit.

73 For a complete list of such attributes, see the Menu Item Attributes table in in Chapter 19, Sun View

Interface Summary.

Revision A, of May 9, 1988

0

c

c

Chapter 12-Menus 227

In order to pass an image into the menu package you need a pointer to a memory
pixrect containing the image. One common way to create such an image is by
first using iconedit to create the image and save it to a file. You then include the
file in your program, and use the mp r _static {) macro to create a memory
pixrect:

static short d_defaults[] = {
iinclude <images/defaultsedit.icon>
} ;

mpr_static(defaults_pr, 64, 64, 1, d_defaults);

static short d_icon[] =
iinclude <images/iconedit.icon>
} ;
mpr_static(icon_pr, 64, 64, 1, d_icon);

static short d_font[] =
iinclude <images/fontedit.icon>
} ;

mpr_static(font_pr, 64, 64, 1, d_font);

tool menu= menu_create(MENU_IMAGES,
&defaults_pr, &icon_pr, &font_pr, 0,
0);

menu= menu_create(MENU_ITEM,
MENU_STRING, "tools",
MENU_PULLRIGHT, tool_menu,
0,

0);

The attribute MENU IMAGES is analogous to MENU STRINGS. It takes a list of
images (pointers to pixreds) and creates a menu item for each image.

~~sun ~({'~' microsystems
Revision A, of May 9, 1988

228 Sun View 1 Programmer's Guide

12.2. Components of
· Menus & Menu Items

Menus

Visual Components

Generate Procedures

Notify Procedures

Client Data

Menu Items

CAUTION

Menu Items

Representation on the Screen

This section gives an overview of the most important components of menus and

menu items. Detailed discussion and examples follow later in the chapter.

The text for a menu is rendered in the menu's font, which you may specify via

MENU_FONT. A menu has a shadow; you can specify the shadow's pattern, or

disable the shadow entirely, via MENU_SHADOW. You can give a title to a menu

viaMENU TITLE IMAGEorMENU TITLE ITEM.74 Bydefault,amenu's
- - - -

items are laid out vertically; you can specify that the items be laid out horizon-

tally or in a two-dimensional matrix via MENU_ NCOLS and MENU_ NROWS.

You may specify a generate procedure for a menu, which will be called just

before the menu is displayed. This allows you to implement context-sensitive

menus by dynamically modifying the menu, or even replacing it entirely.75

The menu's notify procedure is called after the user makes a selection. By using

a notify procedure, you can perform an action or alter the resultor alter the result

to be returned by menu show (} 76.

The menu's client data field, accessible through MENU_ CLIENT_ DATA, is

reserved for the application's use. You can use this attribute to associate a

unique identifier, or a pointer to a private structure, with a menu.

A menu contains an array of items. To retrieve a menu's nth item, use

MENU NTH ITEM. 'To retrieve the total number of items in a menu use
- -

MENU NITEMS.

The same menu item can appear in more than one menu.

Menu items, unlike panel items, are counted starting with one.

A menu item is either displayed as a string or an image (a pointer to a pixrect). If

the item has another menu associated with it using the MENU _PULLRIGHT attri­

bute, then it is a pull-right item.

74 The title is nothing more than an inverted, non-selectable item. It does not automatically appear at the top

of the menu -it is your responsibility to position it where you want it.

75 See example 8 in Section 12.7, Callback Procedures, later in the chapter.

76 Notify procedures are discussed in detail in Section 12.7, Callback Procedures.

Revision A, of May 9, 1988

0

0

0

c Item Values

Item Generate Procedures

Item Action Procedures

Client Data

Chapter 12-Menus 229

Each menu item has a value. By default an item's value is the initial ordinal
position of the item if it was created with MENU_ sTRINGS; otherwise the
default value is zero. You can set an item's value explicitly when you create the
item with MENU_ STRING_ ITEM or MENU_ IMAGE_ ITEM. You can also expli­
citly set an item's value with MENU_ VALUE. However, if an item is a pull-right,
then its MENU_ VALUE is the value of its pull-right menu. This means that only
"leaf' menu items without submenus have a true value. -

As mentioned in Section 12.1, Basic Menu Usage, menu_ show () by default
returns the value of the item the user has selected. Since menu items are counted
starting from one, a return value of zero from menu show () would represent
the null selection.77 However, you may explicitly set the value of a menu item to
zero. If you do, then a return value of zero could represent either a legal value
for the selected item or an error. To tell whether or not the result was valid, call
menu_get () with the booleanMENU_VALID_RESULT. A return value of
TRUE means that the result was valid; FALSE means that the value is invalid.

As with the menu as a whole, you may specify a generate procedure for each
menu item, to be called just before the item is displayed.

The action procedure of a menu item is analogous to the notify procedure of a
menu. This is your chance to do something immediately based on the user's
selection.

Menu notify procedures and item action procedures differ in when they are
called. If the user chooses an item in a pull-right menu, the notify procedures (if
any) for the menus higher up in the chain leading to the pull-right will be called,
whereas the action procedures (if any) for the chosen menu item and menu items
under it ("to its right") will be called. 78

Each menu item has a client data field, accessible through
MENU_ CLIENT_ DATA, which is reserved for the application's use. You can use
this attribute to associate a unique identifier, or a pointer to a private structure,
with each menu item.

71 This is why menu items are counted starting with one, rather than zero: so that a zero return value would
represent the null selection whether the menu_show () was returning the value of the selected item or the item
itself.

78 Action procedures are discussed in detail in Section 12.7, Callback Procedures.

~~sun ~ microsystems
Revision A, of May 9, 1988

230 Sun View 1 Programmer's Guide

Item Margins

12.3. Examples
Example4:

8
18
12
14
16
18

Figure 12-1

The diagram below illustrates the layout of a menu item:

Layout of a Menu Item

margin

left
pull-right

right

margin
string arrow

margin
(if any)

margin margin

margin

MENU_ MARGIN represents the margin, in pixels, around an item in a menu. Its

default value is 1.

You can set an individual item's margin by setting the menu item. To set the

margins for all items in a menu, set the menu's margin.

You can adjust the horizontal placement of text in menu items with

MENU LEFT MARGIN and MENU RIGHT MARGIN.79

As with MENU_ MARGIN, the left and right margins can be set either for an indi­

vidual menu item or for the menu itself, in which case the settings will apply to

all the items in the menu. (The attributes MENU_ FONT and MENU_ BOXED also

work this way.)

Our next example will show several variations on a simple menu that could be

used for selecting font point sizes. The default form is shown to the left.

You could create the items with MENU_ sTRINGS, as in the previous example.

Alternately, you could create the menu with no items, then use menu_set (} to

append the items to the menu:80

m = menu_create(O);
for (i = 8; i <= 18; i += 2)

menu_set(m, MENU_STRING ITEM, int_to_str(i), i, 0);

79 The placement of images is currently not affected by the settings of the left and right margins.

so Note that using MENU_ STRING_ ITEM with menu_ set () has tl!e effect of an implicit append Several

attributes are provided to explicitly add items to a menu- see Table 12-1, Attributes to Add Pre-Existing Menu

Items, later in this section.

~~sun ~ microsystems
Revision A, of May 9, 1988

0

c

c

c I
it:

8
14

8
18
12
14
i E~

iH

8
18
12
14
16
18

8

18

12

14

16

18

18
16

Chapter 12-Menus 231

MENU_STRING_ITEM takes as values the item's string and its value.

Now let's see some of the ways in which the appearance of this basic menu can

be altered.

By setting MENU_ INACTIVE to TRUE for an item, you can "gray out" the item

to indicate to the user that it is not currently selectable.

The menu to the left could be produced by:

for (i = 4; i <= 6; i++) {
item= menu_get(m, MENU_NTH_ITEM, i);

menu_set(item, MENU_INACTIVE, TRUE, 0);

Inactive items do not invert when the cursor passes over them.

The call menu_ set (m, MENU_ BOXED, TRUE, 0) will cause a single­

pixel box to be drawn around each item. With the default margin of 1 pixel, this

will result in two-pixel lines between each item.

Increasing the margin, by setting MENU_ MARGIN to 5, will cause the items to

spread out evenly, and the boxes to appear as individual boxes rather than divid­

ing lines.

You can control the layout of the items within a menu with the attributes

MENU NCOLS and MENU NROWS. Suppose you wanted the menu to be laid out

horizontally instead of vertically:

8 18 12 14 16 18

All you need do is specify at create time that the menu will have 6 columns with

acallsuchas menu_set(m, MENU_NCOLS, 6, 0).

You can use MENU_NCOLS orMENU_NROWS to create two-dimensional menus,

as well. The call menu_set (m, MENU_NCOLS, 3, 0) will cause the

menu package to begin a second row after the first three columns have been filled

with items:

~~sun ~~ microsystems
Revision A, of May 9, 1988

232 Sun View 1 Programmer's Guide

8
14

Example 5:

18
16

8
18
12
14
16
18

12
18

The previous example specified that the menu have 3 columns. Specifying that it
have 2 rows via MENU NROWS would have the same effect. Items are laid out
from upper left to lower right, in "reading order," regardless of how the layout is
specified.

The only time you need to specify both the number of rows and the number of
columns is when you want to fix the size of the menu, regardless of how many
items it contains. Setting MENU_ NCOLS to 3 and MENU_ NROWS to 3 would pro­
duce:

If both dimensions of the menu are fixed and more items are given than will fit,
the excess items will not appear.

You can remove the menu's shadow by setting MENU_SHADOW to null:

The menu package provides three predefined pixrects for the menu shadow. The
call menu_set (m, MENU_SHADOW, &menu_gray25_pr) produces the
25 percent gray pattern shown on first menu below. Note that these are pixrects,
not pixrect pointers. The other two patterns are produced by using
menu_graySO_pr and menu_gray75_pr:

8

18
12
14
16
18

'
' ' ' ' '

,. ,. ,. ,. ,.
..: ... ,. ,. ,. ,. ,.
..: ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. ,.

.,_,_,_,_,,_,_,_,_.,_, ~:

8
18
12
14
16
18

' ' ' ' ' ' ' ,
' , , ,
' , ,
' ' ' ' ' ' ' ,
' , ,

.: ,. ,. ,.
..: ,. ,. ,.
...
..:
..:
.:
.: ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. ,.
.: ,. ,. , ,_,_,_.,,_,,_ , " il'. -.:

Let's take the size menu from the previous example and use it to create the more
complex menu shown below, which the user could use to select both a font fam­
ily and a point size within the family. This illustrates the multiple usage of a sin­
gle menu. Pulling right over any of the items in the family menu will bring up
the menu for selecting point size, as shown on the left.

Revision A, of May 9, 1988

~' I .

_j

)

0

c
Courier
Serif

CMI.
Screen

8
18
12
14
16
18

Chapter 12-Menus 233

By using MENU_ ITEM, we can give each item in the font family menu its string,
the font in which to render the string, and the size menu as a pull-right:

family_menu = menu_create(
MENU ITEM<

MENU_STRING, "Courier",
MENU_PULLRIGHT, size_menu,

"Serif",
size_menu,

MENU_FONT, cour,
0,

MENU_FONT, serif,
0,

MENU_ITEM,
MENU_STRING,
MENU_PULLRIGHT,

MENU_ITEM,
MENU_STRING,
MENU_PULLRIGHT,

"aplAPLGIJ", MENU_FONT, apl,
size_menu, 0,

0);

MENU ITEM,
MENU_STRING,
MENU_PULLRIGHT,

MENU_ITEM,
MENU_STRING,
MENU_PULLRIGHT,

"CMR",
size_menu,

~·screen",

size_menu,

MENU_FONT,
0,

MENU_FONT,
0,

cmr,

screen,

Suppose the font family menu had already been created, and we wanted to add
the size menu as a pull-right to each item of the existing menu. We could do this
using the attributes MENU_ NI TEMS and MENU_ NTH_ ITEM. The loop below
iterates over each item in the menu, retrieving the item's handle and setting the
pull-right for the item:

for (i = (int)menu_get(family_menu, MENU_NITEMS); i > 0; --i)

menu_set(menu_get(family_menu, MENU_NTH_ITEM, i),

MENU_PULLRIGHT, size_menu, 0);

Revision A, of May 9, 1988

234 Sun View 1 Programmer's Guide

Example 6:

Courier
Serif

C.MI.

Screen

You can insert new items into an existing menu with MENU_INSERT. For
example, suppose you want to insert blank lines into the font family menu, to
indicate grouping:

You can do this by inserting non-selectable items into the menu:

menu_set(family_menu,
MENU_INSERT,

2,
menu create_item(MENU_STRING, "",

0);

menu_set(family_menu,
MENU_INSERT,

5,

MENU_FEEDBACK, FALSE,
0) ,

menu_get(family_menu, MENU_NTH_ITEM, 3),
0);

MENU_INSERT takes two values: the number of the item to insert after, and the
new item to insert. Disabling MENU_FEEDBACK makes the item non-selectable.

The above example uses menu_ create_ i tern () to explicitly create the item
to be inserted. Usually menu items are created implicitly, using the attributes
described in Table 12-2, Menu Item Creation Attributes, in the next section. Q

NOTE menu create i tern () does not set the MENU RELEASE attribute by
defauil, so that the resulting item will not be automatically destroyed when its
parent menu is destroyed. This is in contrast to implicitly created menu items -
see Section 12.5, Destroying Menus.

Revision A, of May 9, 1988

(\
_j

c
Table 12-1

c

/

c

Chapter 12-Menus 235

In addition to MENU INSERT, there are several other attributes you can use to

add pre-existing menu items to a menu.81 They are summarized in the following

table.

Attributes to Add Pre-Existing Menu Items

Attribute Value Type

MENU APPEND ITEM Menu item

MENU INSERT int, Menu_ i tern

MENU INSERT ITEM Menu_item(old),

Description

Append item to end of menu.

Insert new item after nth item
(use n=O to prepend). , -

Menu_item (new) Insert new item after old item.

MENU REPLACE int, Menu_ i tern Replace nth item with specified item.

MENU_REPLACE_ITEM Menu_item(old),

Menu_item(new) Replace old item with new item
in the menu (old item is not replaced
in any other menus it may appear in).

81 To delete items from a menu, use MENU_ REMOVE or MENU _REMOVE_ ITEM, described in the Menu

Attributes table in in Chapter 19, SrmView Interface Summary.

Revision A, of May 9, 1988

236 Sun View 1 Programmer's Guide

Example 7:

Frame *
Family*
Size * ,.....-_.....,___,

On
Off

For the next example we will attach the on-off, family and size menus of the pre­
vious examples as pull-rights to a higher-level menu for selecting fonts:

font menu= menu_create(
MENU PULLRIGHT_ITEM,
MENU_PULLRIGHT_ITEM,
MENU_PULLRIGHT_ITEM,
MENU_PULLRIGHT_ITEM,
MENU_PULLRIGHT_ITEM,
0);

"Frame",
"Family",
"Size",
"Bold",

frame_menu,
family_ menu,
size_menu,
on_off_menu,

"Italic", on_off_menu,

MENU_PULLRIGHT_ITEM takes a string and a menu as values. It creates an
item represented by the string and with the menu as a pull-right.

Note that on_ off_ menu is used as a pull-right for both the bold and the italic
menu items, and that the size_ menu appears both as a pull-right from main
level font_menu and from each item in family_menu. This demonstrates
that a menu may have more than one parent. However, recursive menus are not
allowed -ifMl is a parent ofM2, M2 (or any of its children) may not have Ml
as a child. Displaying such a recursive menu will probably result in a segmenta­
tion fault.

The 'Frame' item takes as its pull-right the menu which has been retrieved from
the frame using WIN_ MENU.

The programfont_menu, printed in Appendix A, Example Programs, builds
further on the above examples.

~~sun ~ microsystems
Revision A, of May 9, 1988

0

c

c

12.4. Item Creation
Attributes

Chapter 12-Menus 237

The attribute MENU_ ITEM, introduced in Example 2, suffices to create any type
of menu item. However, several attributes are provided for convenience as a
shorthand way to create items with common attributes. These attributes, along
with the types of values they take and the type of item they create, are summar­
ized in the following table:

Table 12-2 Menu Item Creation Attributes

Attribute Value Type Type of Item Created
MENU ACTION IMAGE image, action proc Image item w/action proc.

MENU ACTION ITEM char*, action proc String item w/action proc.

MENU GEN PULLRIGHT IMAGE Pixrect *, proc Image item with
generate proc for pull-right.

MENU GEN PULLRIGHT ITEM char *, proc String item with
generate proc for pull-right.

MENU IMAGE ITEM Pixrect *, value Image item w/value.

MENU IMAGES list of Pixrect * Multiple image items.

MENU PULLRIGHT IMAGE Pixrect *, Menu Image item w!pull-right.

MENU PULLRIGHT ITEM char*, Menu String item w!pull-right.

MENU STRING ITEM char *, value String item w/value.

MENU STRINGS list of char * Multiple string items.

We could now create the menu in Example 2 more compactly by using
MENU PULLRIGHT ITEM instead of MENU ITEM:

m = menu_create(MENU_PULLRIGHT_ITEM, "Bold", on_off_menu,
MENU_PULLRIGHT_ITEM, "Italic", on_off_menu,
0),

Revision A, of May 9, 1988

238 Sun View 1 Programmer's Guide

12.5. Destroying Menus Both menus and menu items are destroyed with the function:

void
menu_destroy(menu_object)

<Menu or Menu_item> menu_object;

CAUTION Watch out for dangling pointers when using a menu item in multiple menus. The
attribute MENU RELEASE (which takes no value) controls whether or not a
menu item is aUtomatically destroyed when its parent menu is destroyed.
MENU_ RELEASE is set to TRUE by default for menu items created in-line via
the menu item creation attributes. This can lead to dangling pointers, if the same
menu item appears multiple times, because calling menu_ destroy () can lead
to items being destroyed multiple times. This warning also applies to pull-rights
which are used multiple times. To prevent this error, remove multiple
occurrences of an item or pull-right before destroying a menu.

Calling menu_destroy_with_proc () instead ofmenu_destroy ()
when you want to destroy a menu lets you specify a procedure to be called as the
menu or menu item is destroyed. lets you specify a procedure to be called every
time a particular menu or menu item is about to be destroyed:

void
menu_destroy_with_proc(menu_object, destroy_proc)

<Menu or Menu_item> menu_object;
void (*destroy_proc) ();

Your destroy procedure should be of the form:

void
destroy_proc(menu_object, type)

<Menu or Menu_item> menu_object;
Menu attribute type;

For menus, menu_object is the menu and the type parameter is
MENU_ MENU; for menu items, menu_ object is the item and the type param­
eter is MENU ITEM.

Revision A, of May 9, 1988

CJ
'

--------------------~-------------------~'--

C 12.6. Searching for a Menu
Item

c Table 12-3

Chapter 12-Menus 239

The function menu find {) lets you search through a menu (and its children)
to find a menu item meeting certain criteria:

Menu item
menu_find(menu, attributes);

Menu menu;
<attribute-list> attributes;

For example, the following call searches for the menu item whose string was
"Load New File". menu_ find {) will return itNULLif

(whose string was "Load New File":

By default, menu_ find {) uses a "deferred" search- searching all the items
in a menu before descending into any pull-rights which may be present. By set­
ting MENU_DESCEND_FIRST (which takes no value), you can force a depth­
first search.

If multiple attributes are given, menu_ find {) will find the first item matching
all the attributes.

The following attributes are recognized by menu_ find {) :

Menu Attributes Recognized by menu_ find {)

MENU ACTION

MENU CLIENT DATA
MENU FEEDBACK
MENU FONT
MENU GEN PROC
MENU GEN PULLRIGHT

MENU IMAGE
MENU INACTIVE

MENU INVERT
MENU LEFT MARGIN
MENU MARGIN
MENU PARENT
MENU PULLRIGHT

MENU RIGHT MARGIN

MENU STRING
MENU VALUE

)

sun
microsystems

Revision A, of May 9, 1988

240 Sun View 1 Programmer's Guide

12.7. Callback Procedures

Flow of Control in
menu_ show ()

When you call menu_ show () , the menu package displays the menu, gets a
selection from the user, and undisplays the menu. The menu package allows you
to specify callback procedures which will be called at various points during the
invocation of the menu. These let you create and modify menus or respond to
the user's actions, on the fly, at the time the user brings up the menu. There are
three types of callback procedures: generate procedures (so named because they
are called before the menu or item is displayed, allowing the application to gen­
erate or modify the menu on the fly), notify procedures (for menus) and action
procedures (for menu items) which are called after the user has made a selection.

The callback mechanism gives you a great deal of flexibility in creating, combin­
ing and modifying menus and menu items. This flexibility comes at the price of
some complexity, however. To take advantage of it, it is necessary to understand
when the callback procedures are called after you invoke menu_ show () .

For purposes of explanation, the diagrams below divide the process of displaying
a menu and getting the user's selection into two stages, the display stage and the
notification stage.

Revision A, of May 9, 1988

0

0

Chapter 12-Menus 241

c Figure 12-2 Display Stage of Menu Processing

Start menu_show ()

~
\

gen_proc()

(menu, MENU_DISPLAY)

J
gen_proc ()

for each item

(item, MENU DISPLAY)

L
'f

display

Active
pull-right

yes gen_pullright_proc()

?
(item, MENU_DISPLAY)

c ' no menu_ show ()

User makes for pullright (recursive)

Selection ' l Selection gen_pullright_proc() No Selection
'f (item, MENU_DISPLAY_DONE)

gen_proc ()

for each item

(item, MENU DISPLAY DONE)

~ r

gen_proc ()

(menu, MENU_DISPLAY_DONE)

+
To Notification Stage

Revision A, of May 9, 1988

242 SilllView 1 Programmer's Guide

Figure 12-3 Notification Stage of Menu Processing

From Display Stage

~
gen_proc()

(menu, MENU_ NOTIFY)

~
gen_proc()

(item, MENU_NOTIFY)

- ~
action proc () menu notify_proc() default notify_proc()

.~ ----gen_proc()

(item, MENU_NOTIFY_DONE)

~
gen_proc ()

(menu, MENU_NOTIFY_DONE)

+
Return from menu_ show ()

Generate Procedures The first argument to a generate procedure is either a menu or menu item depend­
ingon whetherit's aMENU_GEN_PROC oraMENU_GEN_PROC_ITEM. Also
passed in is an operation indicating at 'Yhich point in the processing of the menu
the generate procedure is being called. The operation parameter is of type
Menu generate, and may be MENU DISPLAY, MENU DISPLAY DONE,
MENU-NOTIFYorMENU NOTIFY DONE.82 - -

NOTE The menu package uses thefullscreen access mechanism when displaying the
menu. Writing to the screen while under fullscreen access will probably cause
your program to deadlock, so your generate procedure should not access the
screen when called with an operation ojMENU_DISPLAY or
MENU DISPLAY DONE.

82 For a detailed explanation of when the generate procedures are called in relation to the other callback
procedures, see the diagrams in the next subsection, Flow of Control in menu_ show ().

Revision A, of May 9, 1988

c
Menu Item Generate Procedure

Example 8:

c

c

Chapter 12-Menus 243

There are three types of generate procedures- menu item generate procedures,
menu generate procedureS, and pull-right generate procedures. A description
and example of each is given below.

A generate procedure attached to a menu item has the form:

Menu item
menu_item_gen_proc(item, operation)

Menu item item;
Menu_generate operation;

You can specify a menu item generate procedure via MENU_ GEN _ P ROC.

The most common use of menu item generate procedures is to modify the item's
display string. The program listed below registers a generate procedure,
toggle_proc (). If it has been called from the MENU_DISPLAY stage of
processing, it toggles the text of the 'Redisplay' item on the frame menu.

iinclude <suntool/sunview.h>

Menu_item toggle_proc();
int toggle = 0;

main()
{

Window frame = window_create(NULL, FRAME, 0);
Menu menu = window_get(frame, WIN_MENU);
Menu item item= menu_find(menu,

MENU_STRING, "Redisplay", 0);

menu_set(item, MENU_GEN PROC, toggle_proc, 0);
window_main_loop(frame);

Menu item
toggle_proc(mi, op)

Menu item mi;
Menu_generate op;

switch (op) {
case MENU DISPLAY:

if (toggle) {
menu_set(mi,

MENU_STRING, "Redisplay has been seen",
0);

else {
menu_set(mi,

MENU_STRING, "Redisplay",
0);

toggle
break;

!toggle;

case MENU DISPLAY DONE:
case MENU NOTIFY:

Revision A, of May 9, 1988

244 Sun View 1 Programmer's Guide

Menu Generate Procedure

Example 9:

case MENU NOTIFY DONE: - -
break;

return mi; I* item handle always returned */

The 'Zoom'/'Unzoom' item in the Sun View frame menu also uses this technique
to toggle its display string. Note that since this item knows how to modify itself,
you could put it in other menus and get the same behavior. A generate procedure
for a menu item allows the application to be called even when it has no
knowledge of or control over the call to menu_ show ().

A generate procedure attached to a menu has the form:

Menu
menu_gen_proc(m, operation)

Menu m;
Menu_generate operation;

You can specify a menu generate procedure via the attribute MENU_GEN_PROC.

We will take as an example a menu allowing the user to list different groups of
files. When the user makes a selection, we generate a menu containing the
correct set of files:

clock
shelltool
iconedit

The relevant functions are listed on the next page. The first,
initialize_menu (),creates the three menu items, giving each ofthem the
generate procedure list_files (),and a unique identifier as
MENU CLIENT DATA.

Remember that list files () is called in four different situations by
menu_show () :83 · -

o When the operation is MENU_DISPLAY, the pull-right is being asked to
display its menu, so list_files () calls the function
get_ file_ names () (not shown) to get the appropriate list of file names,

83 See the diagrams in the earlier subsection, Flow of Control in menu_ show ().

~~sun ~ microsystems
Revision A, of May 9, 1988

0

0

0

c
0

0

Chapter 12-Menus 245

and adds each name in the list to the menu.

When list_files () is called with operation set to
MENU _DISPLAY _DONE, the menu of generated file names is no longer
being displayed. list_files () cleans up by destroying the old menu of
file names, replacing it with a fresh menu with the same generate procedure.
It returns the handle of this new menu.

When list_files () is called with an operation ofMENU_NOTIFY
orMENU_NOTIFY_DONE, the menu is returned unaltered.

#define DOT 0
#define BIN 1
#define ALL 2

static void
initialize_menu(menu)

Menu menu;

m = menu_create(MENU_GEN PROC, list_files,
MENU_CLIENT_DATA, DOT,
0);

menu_set(menu,
MENU PULLRIGHT_ITEM, "List dot files", m,
0);

m = menu_create(MENU_GEN_PROC, list_files,
MENU_CLIENT_DATA, BIN,
0);

menu_set(menu,
MENU PULLRIGHT_ITEM, "List bin dir", m,
0);

m = menu_create(MENU_GEN_PROC, list_files,
MENU_CLIENT_DATA, ALL,
0);

menu_set(menu,
MENU PULLRIGHT_ITEM, "List all files", m,
0);

static Menu
list_files(m, operation)

Menu m;
Menu_generate operation;

char **list;
int directory;
int i = 0;

switch (operation)
case MENU DISPLAY:

directory= (int)menu_get(m, MENU_CLIENT_DATA);
list= get_file_names(directory);
while (*list)

menu_set(m,

break;

MENU_STRING_ITEM, *list++, i++,
0);

sun Revision A, of May 9, 1988
microsystems

246 Sun View 1 Programmer's Guide

Pull-right Generate Procedure

case MENU DISPLAY DONE:
I*
* Destroy old menu and all its entries.
* Replace it with a new menu.
*I

directory= (int)menu_get(m, MENU_CLIENT_DATA);
menu_destroy(m);
m = menu_create(MENU_GEN_PROC, list_files,

break;

case MENU NOTIFY:

MENU_CLIENT_DATA, directory,
0);

case MENU NOTIFY DONE:
break;

I* The current or newly-created menu is returned *I
return m;

You can postpone the generation of a pull-right menu until the user actually pulls
right by specifying a pull-right generate procedure. A pull-right generate pro­
cedure has the fonn:

Menu
pullright_gen_proc(mi, operation)

Menu item mi;
Menu_generate operation;

Note that the pull-right generate procedure is passed the item, and returns the
menu to be displayed.

You can specify a menu item's pull-right generate procedure with a call such as

menu_set(menu_item, MENU_GEN_PULLRIGHT, my_pullright_gen, 0);

Alternatively, you can use the attributes MENU_GEN _PULLRIGHT_IMAGE or
MENU_GEN_PULLRIGHT_ITEM to give a menu both an item and the item's
generate procedure.

If you want to get the existing menu for an item which has a pull~ right generate
procedure, retrieve the value of the item, as in:

[
menu= menu_get(item, MENU_VALUE); J
----------~

Revision A, of May 9, 1988

0

0

0

c\

c

Notify/ Action Procedures

Chapter 12-Menus 247

When the user selects a menu item by releasing the mouse button, the menu
package calls back to any notify procedures or action procedures you have
specified. Notify procedures and action procedures have the form:

caddr t
notify_proc(m, mi)

Menu m;
Menu_item mi;

The most common usage is to have action procedures for the items at the leaf
nodes of the walking menu. The general mechanism described below is provided
to allow your procedures to be called for non-leaf nodes as well.

Imagine a chain of menus expanded out. Lookup of the notify/action procedures

starts with the "oldest" menu, the one passed to menu_ show (} . If it has a
notify procedure, that notify procedure is called, otherwise the default notify pro­
cedure, menu_return_ value (},is called. Likewise, for each menu down
the chain, until the menu with the selected item is reached. If the selected item
has an action procedure, that action procedure is called. If the selected item is
not on a leaf node, then action procedures for any items farther down the chain

are also called.

Let's see what happens in the example to the left (assume that 'On' is the default
item for the first menu):

If 'Italic' was selected:

o no callback to the first menu's notify procedure since an item in it is
selected,

o callback to the action procedure for the 'Italic' item,

o no callback to the second menu's notify procedure since it is further down
the chain than the selected item,

o callback to the action procedure for the 'On' item.

If 'Off' was selected:

o callback to the notify procedure for the first menu, since an item in a menu
further down the chain than it is selected,

o no callback to the action procedure for the 'Italic' item, since it is above the
selected item in the chain,

o no callback to the second menu's notify procedure since an item in it is
selected,

o callback to the action procedure for the 'Off' item.

NOTE If you specify a notify procedure, it is your responsibility to propagate the
notification to any menus further down in the chain., You can do this by calling
menu _get (mi, MENU_ VALUE} from your notify procedure. This gets the
value of the selected menu item, and since the value of a pull-right item is the

~~sun ~~ microsystems
Revision A, of May 9, 1988

248 Sun View 1 Programmer's Guide

12.8. Interaction with
Previously Defined
Sun View Menus

NOTE

Using an Existing Menu as a
Pull-right

value of its pull-right menu, this will make notify/action procedures further down
the chain get called.

Walking Menus for frames and tty subwindows can be customized.84 All menu
items in these menus are "position-independent"- in other words the menus do
not count on a given item having a certain position or being located in a particu­
lar menu. This makes it possible for you to safely add new items (including
pull-right submenus) to an existing menu.

You should not use the client data field of items created by Sun View packages,
because the packages have pre-empted it for their own use.

The programjont_menu, listed in Appendix A, shows how you can replace an
existing menu with your own menu which has the original menu as a pull-right.
Making use of several of the examples given earlier in the chapter, it creates a
font menu which allows the user to select the font family, point size, and whether
or not the font is bold or italic. Meanwhile, the first item, labelled 'Frame',
brings up the original frame menu:

Frame
Famil
Size
Bold
Itali

Close
Move ~

Resize ~

Expose
Hide
Redisplay
Quit

84 Remember that in order to have these packages use walking menus the user must have enabled the
Walking_ Menus option in Sun View category of defaultsedit(l); in SunOS Release 4.0, this is the default.

sun
mlcrosysterns

Revision A, of May 9, 1988

0

0

C 12.9. Initial and Default
Selections

c

Chapter 12-Menus 249

Two special menu items are the default item (MENU _DEFAULT _ITEM) and the
selected item (MENU_ SELECTED_ ITEM). The default item is simply a dis­
tinguished item. The selected item is the item which was last selected.

Two attributes are provided to control the behavior of a menu in regard to its ini­

tial selection. IfMENU_INITIAL_SELECTION_SELECTED is TRUE, the
menu comes up with its initial selection selected - that is the selection is
inverted and the cursor is positioned over it. If FALSE, the menu comes up with

the cursor "standing off' to the left and no selection highlighted. If

MENU_INITIAL_SELECTION_EXPANDED is TRUE, when the menu comes

up, it automatically expands any pull-rights which are necessary to bring the ini­

tial selection up on the screen.

Each menu also has an initial selection (MENU_INITIAL_SELECTION) and a
default selection. (MENU _DEFAULT_ SELECTION).

The distinction between the initial selection and the default selection is subtle.

Suppose MENU_INITIAL_SELECTION_EXPANDED was TRUE, and the ini­
tial selection was an item in a pull-right. When the menu comes up, it will be
expanded to show the initial item as selected. However, if the user moves the
cursor to the left, backing out of the pull-right, and then moves back to the right,
bringing the pull-right up again, the item selected will be the default selection
rather than the initial selection.

When the user selects a pull-right item without bringing up the associated menu,
it is as if he had brought the pull-right up and selected the default item.

You can set the initial selection and the default selection independently - either

can be set to the default item or the selected item.

Revision A, of May 9, 1988

250 Sun View 1 Programmer's Guide

12.10. User Customizable
Attributes

Table 12-4

Attribute

MENU BOXED

MENU DEFAULT SELECTION

MENU FONT

MENU INITIAL SELECTION

The user can specify the values of certain menu attributes in the Menu category
of defaultsedit(l). When a menu is created, for attributes not explicitly
specified by the application program, the menu package retrieves the values set
by the user from the defaults database maintained by defaultsedit. This
allows the user the ability to tailor, to some extent, the appearance and behavior
of menus across different applications. For example, he may want to change the
type of shadow, or expand the menu margin, and so on.

The attributes under default sedi t control are listed in the following table.

User Customizable Menu Attributes

Default

FALSE

MENU DEFAULT

screen.b.12

MENU DEFAULT

Description

If TRUE, a single-pixel box will be
~drawn around each menu item.

/

MENU SELECTED or MENU DEFAULT.

Menu's font.

)

MENU SELECTED or MENU DEFAULT.

MENU INITIAL SELECTION SELECTED FALSE If TRUE, menu comes up with its initial
selection highlighted. If FALSE, menu comes
up with the cursor "standing off' to the left.

MENU INITIAL SELECTION EXPANDED TRUE

MENU JUMP AFTER NO SELECTION FALSE

MENU JUMP AFTER SELECTION FALSE

MENU MARGIN 1

MENU LEFT MARGIN 16

MENU PULLRIGHT DELTA 9999

MENU RIGHT MARGIN 6

MENU SHADOW 50% grey

~~sun ~ microsystems

If TRUE, when the menu pops up, it auto­
matically expands to select the initial selection.

If TRUE, cursor jumps back to its
original position after no selection made.

If TRUE, cursor jumps back to its
original position after selection made.

The margin around each item.

For each string item, margin in addition to
MENU MARGIN on left
between menu's border and text.

of pixels the user must move the cursor to
the right to cause a pull-right menu to pop up.

For each string item, margin in addition to
MENU_MARGIN on right
between menu's border and text.

Pattern for menu's shadow.

Revision A, of May 9, 1988

c
13

Cursors

Cursors .. 253

13.1. Creating and Modifying Cursors ... 255

13.2. Copying and Destroying Cursors... 255

13.3. Crosshairs .. 256

13.4. Some Cursor Attributes... 257

c

c

0

0

c

Header Files

c
Summary Listing and Tables

13
Cursors

This chapter describes how to create and manipulate cursors. 85 A cursor is an
image that tracks the mouse on the display. Each window in Sun View has its
own cursor, which you can change with the cursor package.

If it is installed on your system, you can run the demo
/usr I demo/ cursor_demo to see the effects of various cursor attributes.
The source for this is in
/usr/src/share/sun/suntool/cursor_demo.c.

The definitions necessary to use cursors are found in the include file
<sunwindow/win_cursor. h>, which is included by default when you
include the file <suntool/ sunview. h>.

To give you a feeling for what you can do with cursors, the following page con­
tains a list of-the available cursor attributes and functions. Many of these are dis­
cussed in the rest of this chapter and elsewhere (use the Index to .check). All are
briefly described with their arguments in the cursor summary tables in Chapter
19, SunView Interface Summary:

o the Cursor Attributes table begin's on page 321;

o the Cursor Functions table begins on page 323.

c· 85 The cursor is called the "pointer" in user-level documentation.

~~sun ~~ microsystems
253 Revision A, of May 9, 1988

254 Sun View 1 Programmer's Guide

CURSOR CROSSHAIR BORDER GRAVITY

CURSOR CROSSHAIR COLOR

CURSOR CROSSHAIR GAP

CURSOR CROSSHAIR LENGTH

CURSOR CROSSHAIR OP

CURSOR CROSSHAIR THICKNESS

CURSOR FULLSCREEN

CURSOR HORIZ HAIR BORDER GRAVITY

CURSOR HORIZ HAIR COLOR

CURSOR HORIZ HAIR GAP

CURSOR HORIZ HAIR LENGTH - -
CURSOR HORIZ HAIR OP

CURSOR HORIZ HAIR THICKNESS

CURSOR IMAGE

cursor_copy(src_cursor)
cursor_create(attributes)
cursor destroy(cursor)

Cursor Attributes

Cursor Functions

CURSOR OP

CURSOR SHOW CROSSHAIRS - -
CURSOR SHOW CURSOR

CURSOR SHOW HORIZ HAIR - - -
CURSOR SHOW VERT HAIR

CURSOR VERT HAIR BORDER GRAVITY

CURSOR VERT HAIR COLOR - - -
CURSOR VERT HAIR GAP

CURSOR VERT HAIR LENGTH

CURSOR VERT HAIR OP

CURSOR VERT HAIR THICKNESS

CURSOR XHOT

CURSOR\YHOT

cursor_get(cursor, attribute)
cursor_set(cursor, attributes)

Revision A, of May 9, 1988

0

0

0

C 13.1. Creating and
Modifying Cursors

c 13.2. Copying and
Destroying Cursors

Example 1: Creating a Window
with a Custom Cursor

Chapter 13-Cursors 255

The basic usage of the cursor package is to first create a cursor with
cursor_create (),and then use this cursor as the value of the
WIN_ CURSOR attribute in your call to window_ create ().

Cursor
cursor_create(attributes)

<attribute-list> attributes;

Once you have created a cursor, you can alter its attributes with
cursor_ set () and read back its attributes with cursor _get () :

void
cursor_set(cursor, attributes)

Cursor cursor;
<attribute-list> attributes;

caddr t
cursor_get(cursor, attribute)

Cursor cursor;
Cursor_attribute attribute;

If you want to change the cursor of a window that has already been created, you
can first get the cursor from the window using window _get () of
WIN_CURSOR, then use cursor_set () to change the cursor, and then use
window_ set () of WIN_ CURSOR to re-attach the cursor to the window.

A copy of an existing cursor can be made with curs or_ copy () :

Cursor
cursor_copy(src_cursor)

Cursor src_cursor;

A cursor can be destroyed and its resources freed with cursor_ destroy.() :
"··

void
cursor_destroy(cursor)

Cursor cursor;

A common use for cursors might be to create a canvas subwindow and have it
use the cursor of your choice, rather than the default arrow cursor:

sun
microsystems

Revision A, of May 9, 1988

256 Sun View 1 Programmer's Guide

short my_pixrect_data[] =
finclude "file :from_ iconedit"
};
mpr_static(my_pixrect, 16, 16, 1, my_pixrect_data);

Canvas canvas;

init_my_canvas ()
{

canvas = window_create(frame, CANVAS,
WIN_CURSOR, cursor_create(CURSOR_IMAGE, &my_pixrect,

0) ,

0);

This example creates a cursor "on the fly" and passes it into the
window_ create () routine for use with the canvas. The attribute
CURSOR IMAGE is set to the a pointer to the pixrect we want to use (a diamond
or bullseye, for example). All of the other cursor attributes default to the value
shown in the attribute table.

Example 2: Changing the
Cursor of an Existing Window

Suppose you have already created a window and you want to change its cursor.
Let's say you want to change the drawing op to PIX_ SRC:

13.3. Crosshairs

Cursor cursor;

cursor= window_get(my_window, WIN_CURSOR);
cursor_set(cursor, CURSOR_OP, PIX_SRC, 0);
window_set(my_window, WIN_CURSOR, cursor, 0);

CAUTION The cursor returned by window _get () is a pointer to a static cursor that
is shared by all the windows in your application. So, for example, saving the
cursor returned by window get () and then making other window system calls
might result in the saved cursor being overwritten. 86

It is safe to get the cursor, modify it with cursor set () and then put the cur­
sor back. If there is any chance that the static cursor will be overwritten, you
should use cursor_ copy () to make a copy of the cursor, then use

- cursor_ destroy () when you are done.

Crosshairs are horizontal and vertical lines whose intersection tracks the location
of the mouse. You can control the appearance of both the horizontal and vertical
crosshairs along with the cursor image. For example, you can create a cursor that
only shows the cursor image, or only the horizontal crosshair, or both the hor­
izontal and vertical crosshairs and the cursor image. By default both the
crosshairs are turned off and only the cursor image is displayed.

86 Note that this would happen if one of the routines you call happens to call window _get() of
WIN CURSOR.

Revision A, of May 9, 1988

0

0

c

c

Example 3: Turning on the
Crosshairs

13.4. Some Cursor
Attributes

CURSOR_IMAGE

CURSOR_XHOT and CURSOR_YHOT

CURSOR_OP

Chapter 13 -Cursors 257

Suppose you have a canvas window in which you want to tum on both the hor­
izontal and vertical crosshairs. This can be done by getting the cursor from the
window and setting the CURSOR_ SHOW_ CROSS HAIRS attribute:

Cursor cursor;

cursor= window_get(my_canvas, WIN_CURSOR);
cursor_set(cursor, CURSOR_SHOW_CROSSHAIRS, TRUE, 0);
window_set(my_canvas, WIN_CURSOR, cursor, 0);

When the crosshairs are turned on, they are displayed according to the current
value of their other attributes (e.g. thickness and drawing op).

This section describes some of the cursor attributes in more detail. Note that for
the crosshair attributes, you can control the individual crosshairs as well as both
crosshairs by using the appropriate attribute. For example, you can set the length
for both crosshairs with CURSOR_ CROSS HAIR_ LENGTH or the length of only
the horizontal crosshair with CURSOR HORI Z HAIR LENGTH. - -

The cursor image is the memory pixrect that is drawn on the screen as the mouse
moves. Usethempr_static ()macro, as shown in Example 1, to create the
memory.pixrect. The image is represented as an array of 16 shorts, each of
which represents a 16-pixel wide scan line. The scan lines are usually arranged
in a single column, yielding a 16 x 16 pixel image. Other arrangements, such as
32 pixels wide x 8 pixels deep, are also possible. The maximum size of a cursor
in Sun View 1 is 32 bytes; the minimum width is 16, the width of one scan line.

The "hot spot" defined by (CURSOR_ XHOT, CURSOR_ YHOT) associates the
cursor image, which has height and width, with the mouse position, which is a
single point on the screen. The hot spot gives the mouse position an offset from
the upper-left comer of the cursor image. For example, if the upper left comer of
the cursor image is at location (50, 40) and the cursor hot spot has been set to (8,
8), the reported mouse position will be at (58, 48).

Most cursors have a hot spot whose position is obvious from the image shape:
the tip of an arrow, the center of a bullseye, the center of a cross-hair. Cursors
can also be used to give status feedback- an hourglass to indicate that the pro­
gram is not responding to user input is a typical example. This type of cursor
should have the hot spot located in the middle of its image so the user has a
definite spot for pointing and does not have to guess where the hot spot is.

The value given for this attribute is the rasterop which will be used to paint the
cursor.87 PIX_SRC 1 PIX_DST is generally effective on light backgrounds­
in text, for example- but invisible over solid black. PIX_ SRC A PIX_ DS T
is a reasonable compromise over many different backgrounds, although it does
poorly over a gray pattern.

lfl Rasterops are described fully in the Pixrect Reference Manual.

Revision A, of May 9, 1988

258 Sun View 1 Programmer's Guide

CURSOR_FULLSCREEN

CURSOR_CROSSHAIR_LENGTH

The cursor crosshairs can be clipped to either the cursor's window or the entire
screen. If you want the crosshairs to extend past the edge of the window, set
CURSOR FULLSCREEN to TRUE.

If you don't want the crosshairs to cover the entire window (or screen), you can
set the length of both crosshairs with CURSOR CROSSHAIR LENGTH. The - -
value ofthis attribute is actually half the total crosshairlength. For example, if
you want the crosshairs to be 400 pixels wide and high, set the
CURSOR_ CROSSHAIR _LENGTH to 200. You can restore the extend-to-edge
length by giving a value of CURSOR TO EDGE for
CURSOR CROSSHAIR LENGTH.

cuRsoR_CRossHAIR_BORDER_GRAVITY If the crosshairborder gravity is enabled, the crosshairs will "stick" to the edge of
the window (or screen). This is only interesting if the

CURSOR_CROSSHAIR_GAP

CURSOR CROSSHAIR LENGTH is not set to CURSOR TO EDGE. With - - - -
border gravity turned on, each half of each crosshair will be attached to the edge
of the window. With the cursor image displayed, this feature might be useful to
help the user line up the cursor to a grid drawn on the edges of the window.

If you don't want the halves of each crosshair to touch, you can set the
CURSOR_ CROS SHAIR _GAP to the half-length of space to leave between each
crosshairhalf. If you set CURSOR_CROSSHAIR_GAP to CURSOR_TO_EDGE,
the crosshairs will back off to the edge of the CURSOR_ IMAGE rectangle.

~\sun ~ microsystems
Revision A, of May 9, 1988

0

0

0

14
Icons

Icons ... 261

14.1. UsingimagesGeneratedWith iconedit ... 262

14.2. Modifying the Icon's Image ... 263

14.3. Loading Icon Images At Run Time.. 263

c

c

0

0

0

c

Header Files

Summary Listing and Tables

c

14
Icons

An icon is a small (usually 64 by 64 pixel) picture representing a base frame in

its closed state. The icon is typically a picture indicating the function of the

underlying application.

The definitions necessary to use icons are found in the file
<sun tool/ icon. h>, which is included by default when you include the file

<suntool/sunview.h>.

To give you a feeling for what you can do with icons, the following page lists the

available icon attributes, functions and macros. Many of these are discussed in

the rest of this chapter and elsewhere (use the Index to check). All are briefly

described with their arguments in the menu summary tables in Chapter 19, Sun­
View Interface Summary:

o the Icon Attributes table begins on page 328;

o the Icon Functions and Macros table begins on page 329.

~~sun ~if' microsystems
261 Revision A, of May 9, 1988

262 Sun View 1 Programmer's Guide

ICON FONT

ICON HEIGHT

ICON IMAGE

Icon Attributes

ICON IMAGE RECT

ICON LABEL

·. I CON LABEL RECT

Icon Functions and Attributes

ICON WIDTH

icon_create(attributes).
icon_destroy(icon)

icon_set(icon, attributes)
DEFINE_ICON_FROM_IMAGE(name, image)

icon get(icon, attribute)

14.1. Using Images
Generated With
iconedit

You can create and edit images easily using the program iconedit(l). The
output of iconedi t is a file containing an array of shorts representing the
image. In order to use the image in a program, you must first define a static
memory pixrect containing this data. The mpr_static () macro is provided
for this purpose.

C1
'

The first argument to mpr _static () is the name of the pixrect to be defined.
Next come the width, height and depth of the image, typically 64,64 and 1. The
last argument is the array of shorts containing the bit pattern of the icon image.
For example: Q

static short icon_image[] = {
iinclude "file_generated_by_iconedit"
} ;

mpr_static(icon_pixrect, 64, 64, 1, icon_image);

The statically defined image is passed in to icon_ create () at run time:

my_icon = icon_create(ICON_IMAGE, &icon_pixrect, 0);

Once you have created an icon, you can retrieve and modify its attributes with
icon_get () and icon_set (),and destroy it with icon_destroy ().

Instead of creating the icon dynamically with icon create (),you can use
the DEFINE_ I CON_ FROM_ IMAGE () macro to generate a static icon. 88

static short icon_image[] = {
iinclude "file_generated_by_iconedit"
} ;

DEFINE_ICON_FROM_IMAGE(icon, icon_image);

This macro statically allocates a structure representing an icon. Note that you

88 The structure generated is actually an extern.

Revision A, of May 9, 1988

0

c

c

Chapter 14-Icons 263

must pass the address of this structure- &icon in the example above- into

icon_get (), icon_set (),and icon_destroy ().

WARNING The DEFINE_ ICON_ FROM_ IMAGE (} macro may not be supported in future
releases. We reccommend that you use icon_create (} instead.

14.2. Modifying the Icon's
Image

14.3. Loading Icon Images
At Run Time

It is often useful to change the icon's image dynamically, rather than simply

using the icon as a static placeholder. When mailtool receives new mail, for

example, it lets the user know by modifying its icon to show a letter arrived in

the mailbox. clocktool uses its icon to represent a moving clock face.

The steps to follow in modifying an icon's image are:

o get the frame's icon (attribute FRAME ICON);

o get the icon's pixrect (attribute ICON_ IMAGE);

o modify the pixrect as desired, or substitute a new pixrect;

o give the pixrect with the new image back to the icon;

o give the new icon back to the frame.

For example:

modify_icon(frame);
Frame frame;

Icon icon;
Pixrect *pr;

icon= (Icon) window_get(frame, FRAME_ICON);

pr = (Pixrect *) icon_get(icon, ICON_IMAGE);

(modify prJ

icon_set(icon, ICON_IMAGE, pr, 0);
window_set(frame, FRAME_ICON, icon, 0);

Often it is sufficient to define the image for a program's icon at compile time,
with mpr_ static (} . However, you may want to allow the user to create his

own icon images, and give the names of the files containing the images to your

program as command-line arguments. Then you can load the images from the
files the user has specified. Routines to load icon images from files at run time
are described in Chapter 11 of the Sun View 1 System Programmer's Guide.

~~sun ~ microsystems
Revision A, of May 9, 1988

0

0

c
15

Scrollbars

Scrollbars .. 267

15.1. Scrolling Model ... 269

15.2. Scrollbar User Interface .. 271

Types of Scrolling Motion ... 271

Undoing a Scroll.. 271

15.3. Creating, Destroying and Modifying Scrollbars ... 272

15.4. Programmatic Scrolling .. 275

c

c

0

0

--~.

c
Header Files

Summary Listing and Tables

c

15
Scroll bars

The canvas, text and panel subwindows have been designed to work with
scrollbars. The text subwindow automatically creates its own vertical scrollbar.
For canvases and panels, it is your responsibility to create the scrollbar and pass
it in with the attributes WIN VERTICAL SCROLLBAR or
WIN HORIZONTAL SCROLLBAR.

Section 15.2, Scrollbar User Interface, describes how the user interacts with
scrollbars. Basic scrollbar usage is covered in Section 15.3, Creating, Destroy­
ing and Modifying Scrollbars, and programmatic scrolling is covered in Section

- 15.4, Programmatic Scrolling.

You may want to use scrollbars in an application not based on canvases, text
subwindows or panels, in which case you must manage the interaction with the
scrollbar directly. For an explanation of how to do this, see the Scrollbars
chapter in the Sun View 1 System Programmer's Guide.

The definitions necessary to use scrollbars are found in the header file
<suntool/scrollbar.h>

To give you a feeling for what you can do with scrollbars, the following page
contains a list of the available scrollbar attributes, functions and macros. Many
of these are discussed in the rest of this chapter and elsewhere (use the Index to
check). All are briefly described with their arguments in the scrollbar summary
tables in Chapter 19, Sun View Interface Summary:

o the Scrollbar Attributes table begins on page 362;

o the Scrollbar Functions table begins on page 365.

267 Revision A, of May 9, 1988

268 Sun View 1 Programmer's Guide

SCROLL ABSOLUTE CURSOR

SCROLL ACTIVE CURSOR - -
SCROLL ADVANCED MODE

SCROLL BACKWARD CURSOR

SCROLL BAR COLOR

SCROLL BAR DISPLAY LEVEL

SCROLL BORDER

SCROLL BUBBLE COLOR

SCROLL BUBBLE DISPLAY LEVEL

SCROLL BUBBLE MARGIN

SCROLL DIRECTION

SCROLL END POINT AREA

SCROLL FORWARD CURSOR

SCROLL GAP

SCROLL HEIGHT

SCROLL LAST VIEW START

SCROLL LEFT

SCROLL LINE HEIGHT

SCROLL MARGIN

SCROLL MARK

Scrollbar Attributes
SCROLL NOTIFY CLIENT

SCROLL NORMALIZE

SCROLL OBJECT

SCROLL OBJECT LENGTH

SCROLL PAGE BUTTONS

SCROLL PAGE BUTTON LENGTH

SCROLL PAINT BUTTONS PROC - - -
SCROLL PIXWIN

SCROLL PLACEMENT

SCROLL RECT

SCROLL REPEAT TIME

SCROLL_REQUEST_MOTION

SCROLL_REQUEST_OFFSET

SCROLL THICKNESS

SCROLL TO GRID

SCROLL TOP

SCROLL VIEW LENGTH

SCROLL VIEW START

SCROLL WIDTH

Scrollbar Functions and Macros
scrollbar_create{attributes)
scrollbar_destroy{scrollbar)
scrollbar_get{scrollbar, attribute)
scrollbar_set{scrollbar, attributes)
scrollbar scroll to{scrollbar, new view start)

~~sun ~ microsystems

scrollbar_paint{scrollbar)
scrollbar_paint_clear{scrollbar)
scrollbar_clear_bubble{scrollbar)
scrollbar_paint_bubble(scrollbar)

Revision A, of May 9, 1988

0

0

0

c 15.1. Scrolling Model

c

Chapter 15 - Scrollbars 269

Scrollbars allow the user to control which portion of an object is visible when the
object is larger than the window it is displayed in. Within the scroll bar is a
darker area called the bubble. The size and position of the bubble within the bar
tell the user where he is in the object and how much of the object is visible. By
moving the bubble within the bar, the user brings different portions of the object
into view.

The length of the object, the length of the visible portion of the object, and the
offset of the visible portion within the object are given by the attributes
SCROLL_OBJECT_LENGTH,SCROLL_VIEW_LENGTH,and
SCROLL_ VIEW_ START. The relationship between these three view-space
metrics is shown in the figure on the next page.

Revision A, of May 9, 1988

270 . Sun View 1 Programmer's Guide

Figure 15-1 Scrolling Model

Fld ratz

...
Theodnfo ufdlcjhf a
jfi fjdi sosa; jfi i c Cl)

Bali diwd ieul' eat a: 1
Jl1
H >,
~

n~
Cl)

Theodnfo ufdkjhf
jfi fjdi sosa; jfi i c
Bali diufd ieuf COt

~~~.-,-~ ~.~_ 

. ...... 

Bo dki jty rz: 1 

uirh odhf odhf odhjf p jfpdUfj sdijf ofj pdfj jc 

difj odj oqoiw djid! Fal matz dihf idyf oaiel 

afwod fudo fudi fuodod idu: 

4: Wortltd bJtlta 

= E-1 
lt 
z 
Jl1 
~ 

Ditb odhf odhf odhjf p jfpdUfj sdijf ofj pdfj jc 1 
difj odj oqoiw djid! Fal matz dihf idyf oaiel E-1 

afufod fudo fudi fuodod idu: u 

Bodkljty 

Ditb odhf odbf odhjf p jfpdufj ldijf 

difj odj oqoiwdjid! Fal matz 

afufod fudo fudi fuodod idu: 

S: Wortlld katlta 

rz: 

~ 
Ill 
0 

~' 
~ 

~ 
u 
Cl) 

~r~~~~~m-~~~~~mM~~~~~~~r 

Bali diufd ieuf cowowpiud fuf dofurod f'udo fudi fuodod idu: 

Figure 15-1 shows a two-page document being viewed within a window roughly 

half the size of the document. The three view-space attributes 

SCROLL_OBJECT_LENGTH,SCROLL_VIEW_LENGTH,and 

0 

SCROLL VIEW START are shown superimposed on the document. Note the 

relative size and position of the bubble within the scroll bar- it is roughly half 

the size of the window and positioned near the bottom. 0 
Revision A, of May 9, 1988 



---------------------------------------------·-------------------------------~~" 

Chapter 15- Scrollbars 271 

0 
~ 15.2. Scroll bar User 

c 

Interface 

Types of Scrolling Motion The default scrollbar is vertical, with page buttons at the top and bottom. To 
scroll, the user moves the cursor into the scrollbar (either the bar itself or one of 
the page buttons) and clicks one of the mouse buttons. The following table 
describes the available scrolling actions and how they are generated: 

Undoing a-Scroll 

Table 15-1 Scrolling Motions 

Mouse Button 
LEFT 
RIGHT 
MIDDLE 
MIDDLE (shifted) 
LEFT 
RIGHT 
LEFT (shifted) 
RIGHT (shifted) 
MIDDLE 

Cursor Location 
page button 
page button 
page button 
page button 
bar 
bar 
bar 
bar 
bar 

Scrolling Action 
Line forward_ 
Line backward 
Page forward 
Page backward 
Line opposite cursor goes to top 
Top line comes to cursor 
Bottom line comes to cursor 
Line opposite cursor goes to bottom 
The line whose offset into the 
scrolling object approximates that 
of the cursor into the scrollbar is 
positioned at top ("thumbing"). 

Holding the button down within the scrollbar causes the cursor to change, pre­
viewing the scrolling action for that button. Releasing the button causes the 
scrolling action to be performed, or, if the user holds down the mouse button, the 
scrolling motion will start in repeating mode. 

I Shift I-MIDDLE mouse button positions the viewing window to the most recent 
position which was left by an absolute motion (thumbing or undoing). The undo­
ing position is initialized to the beginning of the scrollable object. 

sun 
microsystems 

Revision A, of May 9, 1988 



272 Sun View 1 Programmer's Guide 

15.3. Creating, Destroying 
and Modifying 
Scroll bars 

Scrollbars are created and destroyed with scrollbar _create (} and 
s crollbar _destroy (}. To take the simplest possible example, you get a 
default scrollbar (vertical, on the left edge of the subwindow, etc.) by calling: 

Scrollba.r bar; 

bar= scrollbar_create(O); 

You would destroy the scrollbar with the call: 

( scrollbar_destroy(bar); 

The appearance and behavior of a given scrollbar is determined by the values o{ 
its attributes. Here's an example of a non-default scrollbar: 

bar 1 scrollbar_create( 
SCROLL_PLACEMENT, 
SCROLL_BUBBLE_COLOR, 
SCROLL_BAR_DISPLAY_LEVEL, 

SCROLL_EAST, 
SCROLL_BLACK, 
SCROLL_ACTIVE, 

SCROLL_BUBBLE_DISPLAY_LEVEL, SCROLL_ACTIVE, 
SCROLL_DIRECTION, SCROLL_VERTICAL, 
SCROLL_THICKNESS, 
SCROLL_BUBBLE_MARGIN, 
0), 

20, 
4, 

) 

In the above call, setting SCROLL_PLACEMENT to SCROLL_EAST will cause 
the scrollbar to appear on the right edge of the subwindow. The scrollbar will be 
20 pixels wide with a black bubble 4 pixels from each edge of the bar. The bar 
and bubble will be shown only when the cursor is in the scrollbar. 

You can modify and retrieve the attributes of a scrollbar with the two routines: 

scrollbar_set(scrollbar, attributes) 
Scrollbar scrollbar; 
<attribute-list> attributes; 

caddr t 
scrollbar_get(scrollbar, attribute) 

Scrollbar scrollbar; 
Scrollbar attribute attributes; 

If the scrollbar parameter is NULL, scrollbar_get (} returns 0. 

SCROLL_RECT,SCROLL_THICKNESS,SCROLL_HEIGHTand 

SCROLL_ WIDTH do not have valid values until the scrollbar is passed into the 
subwindow. As a work-around for this problem, the special symbol 
SCROLLBAR has been provided. You can determine the default thickness of a 
scrollbar before it has been attached to a subwindow with the call: 

Revision A, of May 9, 1988 

0 

0 



c 

c 

Chapter 15 - Scrollbars 273 

thickness = (int) scrollbar_get(SCROLLBAR, SCROLL_THICKNESS); 

\ 

This convention is currently only implemented for SCROLL_ THICKNESS. 

If you set the SCROLL_THICKNESS attribute then you must also set the 
SCROLL _DIRECTION of the scrollbar, since the dimension of the scrollbarthat 
is altered by SCROLL_ THICKNESS depends on the orientation of the scrollbar. 

The figures on the next page show some of the attributes controlling the visual 
appearance of a scrollbar.89 Figure 15-2 illustrates the attributes that control the 
scrollbar appearance. Figure 15-3 illustrates the attributes that control the 
scrollbar placement 

89 For a complete list of the scrollbar attributes see the Scrollbar Attributes table in Chapter 19, Sun View 

Interface Summary. 

sun 
microsYsterns 

Revision A, of May 9, 1988 



274 Sun View 1 Programmer's Guide 

Figure 15-2 

Figure 15-3 

Attributes Controlling Scrollbar Appearance 

Scrollbar Attributes: 

SCROLL_RIGHT -----! 
SCROLL_ THICKNESS ---+-­
SCROLL_BAR_COLOR 

• SCROLLBLACK 
D SCROLL'viHITE 

Scrollbar Placement Attributes 

age Button Attributes 
SCROLL_PAGE_BUTTONS: TRUE or FALSE 
SCROLL_PAGE_BUTTOILLENGTH 

Bubble Attributes: 

SCROLLBUBBLE_MARGIN 

SCROLL_BUBBLE_COLOR 

• SCROLLBLACK 
• SCROLL_GREV 

SCROLL DIRECTION: 

SCROLL VERTICAL SCROLL HORIZONTAL 

; 
o~~JEE .. · !lili~~~~~o 

~ ~. SCROLL PLACEMENT: , ... 

SCROLL NORTH 

SCROLL EAST • 

B~~--------scROLL WEST 

SCROLL SOUTH 

r 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

15.4. Programmatic 
Scrolling 

Chapter 15-Scrollbars 275 

To scroll to a given location from your program, call: 

scrollbar_scroll_to(scrollbar, new view_start) 
Scrollbar scrollbar; 
long new_view_start; 

This routine saves the current value of SCROLL VIEW START as - -
SCROLL_LAST_VIEW_START, sets SCROLL_VIEW_START to the value 
passed in as new_ view_start, and posts a scroll event to the scrollbar's 
client (i.e. the canvas, panel or text subwindow) using the Notifier. This has the 
same effect as if the user had requested a scroll to new_ view_ start. 

~ .. sun ~ microsystems 
Revision A, of May 9, 1988 



0 

0 



c 
16 

The Selection Service 

The Selection Service ................................................................................................................ 279 

16.1. Getting the Primary Selection ............................................................................... 280 

16.2. Setting the Primary Selection ................................................................................ 280 

c 

c 



0 



----------------------------------~·-----------------------------· ----~----~ 

c 

c· 

16 
The Selection Service 

The Selection Service provides for flexible communication among window appli­

cations. You can use the Selection Service to query and manipulate the selec­

tions the user has made. 

This chapter gives only the simplest example of using the Selection Service. To 

find out more about the Selection Service and the other functionality it provides, 

refer to Chapter 9 of the Sun View 1 System Programmer's Guide. 

The definitions necessary to use the Selection Service are found in the include 

file <suntool/ seln. h>. 

sun 279 Revision A, of May 9, 1988 
microsystems 



280 Sun View 1 Programmer's Guide 

16.1. Getting the Primary 
Selection 

16.2. Setting the Primary 
Selection 

The primary selection is the selection made by the user without holding down 
any of the function keys, and is indicated with reverse-video highlighting on the 
screen. 

The routine below is taken from the program filer, listed in Appendix A. It 
retrieves the primary selection by first asking the Selection Service which win­
dow has the primary selection, then asking that window for the characters that 
are in the selection, saving them in a static buffer, and returning a pointer to that 
buffer: 

fdefine <suntool/seln.h> 

fdefine MAX_FILENAME_LEN 256 

char * 
get_ selection() 
{ 

static char filename[MAX_FILENAME_LEN]; 
Seln holder holder; 
Seln_request *buffer; 

holder= seln_inquire(SELN_PRIMARY); 
buffer= seln_ask(&holder, SELN_REQ_CONTENTS_ASCII, 0, 0); 

strncpy(filename, 
buffer->data + sizeof(Seln attribute), 
MAX_FILENAME_LEN); 

return (filename); 

This example has been kept simple by removing error checking. The code relies 
on the fact that if there is no primary selection, or the Selection Service process is 
not running, or the holder of the primary selection failed to returned the selection 
string, then the buffer returned by seln_ask () will have an empty string for 
the selection characters. 

The routine also assumes that the selection will be no more than 256 characters 
long. seln _ask () will handle selections of up to about 2000 characters. To 
find out how to handle arbitrarily large selections, or selections other than the pri­
mary selection, refer to the Sun View 1 System Programmer's Guide. 

For an example of a program which sets, and responds to queries about, the 
selection, see seln _demo, in Chapter 9 of the Sun View 1 System Programmer's 
Guide. 

sun Revision A. of May 9, 1988 
mlcrosystems 

0 

0 



c 
17 

The N otifier 

The N otifier ············································································································~··························· 283 

Header Files ................................................................................................................ 283 

Related Documentation....................................................................................... 283 

17.1. When to Use the Notifier .......................................................................................... 285 

17 .2. Restrictions ....................................................................................................................... 285 

Don't Call... .................................................................................................................... 285 

Don't Catch ....................... ~............................................................................................ 286 

c 17.3. Overview............................................................................................................................ 287 

How the NotifierWorks ............................................................................................ 287 

Client Handles ................................................................................................................ 287 

Types of Interaction .............................................................. :...................................... 287 

17 .4. Event Handling .............................................................................................................. 288 

Child Process Control Events ................................................................................ 288 

"Reaping" Dead Processes................................................................................. 288 

Results from a Process ......................................................................................... 289 

Input-Pending Events (pipes)................................................................................. 290 

Example: Reading a Pipe .................................................................................. 290 

Closing the Pipe ....................................................................................................... 291 

Signal Events................................................................................................................... 291 

A signal () Replacement for Notifier Compatibility ................. 291 

Example: Writing to a Pipe .............................................................................. 292 

Asynchronous Event Handling ........................................................................ 293 

Timeout Events .............................................................................................................. 294 

c\ 



Example: Periodic Feedback ........................................................................... 294 

Polling ............................................................................................................................ 295 

Checking the Interval Timer ............................................................................. 296 0 
Turning the Interval Timer Off ....................................................................... 296 

17.5. Interposition ..................................................................................................................... 296 

How Interposition Works......................................................................................... 296 

Monitoring a Frame;s State .................................................................................... 297 

Example: Interposing on Open/Close ........................................................ 297 

Discarding the Default Action ......................................................................... 299 

Interposing on Resize Events ................................................................................. 299 

Example: resize_ demo .......................................................................................... 299 

Modifying a Frame's Destruction ....................................................................... 299 

Destroy Events .......................................................................................................... 300 

Checking ....................................................................................................................... 300 

Destruction .................................................................................................................. 300 

A Typical Destroy Handler ................................................................................ 300 

Example: Interposing a Client Destroy Handler .................................. 301 · 

17 .6. Porting Programs to Sun View ............................................................................... 303 

Explicit Dispatching .................................................................................................... 303 

Implicit Dispatching .................................................................................................... 303 

Getting Out ....................................................................................................................... 304 

17.7. Error Handling................................................................................................................ 305 

Error Codes ...................................................................................................................... 305 

Handling Errors .............................................................................................................. 305 

Debugging ......................................................................................................................... 306 

NOTIFY_ERROR_ABORT .............................................................................. 306 

Stop in notify_perror () or fprintf(3S) ............................. 306 

notify_dump ..................................................................................................... 306 

0 



c 

c 

Header Files 

Related Documentation 

Summary Listing and Table 

17 
The N otifier 

The Notifier is a general-purpose mechanism for distributing events to a collec­

tion of clients within a process. It detects events in which its clients have 

expressed an interest, and dispatches these events to the proper clients, queuing 

client processing so that clients respond to events in a predictable order. 

An overview of the notification-based model is given in Chapter 2, The Sun View 
Model. · 

To encourage the porting of existing applications, the Notifier has provisions to 

allow programs to run in the Notifier environment without inverting their control 

structure. See Section 17.6, Porting Programs to SunView. 

The definitions for the Notifier are contained in the file 
<sunwindow/notify. h>, which will be included indirectly when you 

include <suntool/ sunview. h>.90 

This chapter will suffice for the majority of Sun View applications. See the 

chapters titled Advanced Notifier Usage and The Agent and Tiles in the Sun­
View 1 System Programmer's Guide for more information on the Notifier and 

Sun View's usage of it. When looking up Notifier-related information, look first 

in the index to this book, then in the index to the Sun View 1 System 
Programmer's Guide. 

To give you a feeling for what you can do with the Notifier, the following page 

contains a list of the available Notifier functions. Many of these are discussed in 

the rest of this chapter and elsewhere (use the Index to check). All are briefly 

described with their arguments in the Notifier Functions table beginning on page 

343 in Chapter 19, Sun View Interface Summary. 

90 For those programmers utilizing the Notifier outside of Sun View (a perfectly reasonable thing to do), the 

code that implements the Notifieris found in /usr/lib/libsunwindow. a. 

283 Revision A, of May 9, 1988 



284 Sun View 1 Programmer's Guide 

Notifier Functions 
notify~default_wait3(client, pid, status, rusage) 
notify_dispatch() 
notify_do_dispatch() 
notify_interpose_destroy_func(client, destroy_func) 
notify_interpose_event_func(client, event_func, type) 
notify_itimer_value(client, which, value) 
notify_next_destroy_func(client, status) 
notify_no_dispatch() 
notify_perror(s) 
notify_set_destroy_func(client, de~troy_func) 
notify_set_exception_func(client, exception_func, fd) 
notify_set_input_func(client, input_func, fd) 
notify_set_itimer_func(client, itimer func, which, value, ovalue) 
notify_set_signal_func(client, signal_func, signal, when) 
notify_start () 
notify_stop () 
notify_set_output_func(client, output_func, fd) 
notify_set_wait3_func(client, wait3_func, pid) 
notify veto destroy(client) 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



c 

c 

17 .1. When to Use the 
Notifier 

17 .2. Restrictions 

Don't Call •.. 

signal(3) 

sigvec(2) 

setitimer(2) 

alarm(3) 

getitimer(2) 

wait3(2) 

Chapter 17-The Notifi.er 285 

Since the Notifier is used by the Sun View libraries, any program that uses Sun­
View implicitly uses the Notifier. You will have to use the Notifier explicitly if 
you want to do any of the following: 

o Catch signals, e.g., SIGCONT. 

o Notice state changes in processes that your process has spawned, e.g., a child 
process has died. 

o Read and write through file descriptors, e.g., using pipes. 

o Receive notification of the expiration of an interval timer, e.g., so that you 
can provide some blinking user feedback. 

o Extend, modify or monitor Sun View Notifier clients, e.g., noticing when a 
frame is opened, closed or about to be destroyed. 

o Use a non-notification-based control structure while running under Sun­
View, e.g., porting programs to Sun View. 

The Notifier imposes some restrictions on its clients which designers should be 
aware of when developing software to work in the Notifier environment. These 
restrictions exist so that the application and the Notifier don't interfere with each 
other. More precisely, since the Notifier is multiplexing access to user process 
resources, the application needs to respect this effort so as not to violate the shar­
ing mechanism. 

Assuming an environment with multiple clients with an unknown notifier usage 
pattern, you should not use any of the following system calls or C library rou­
tines:91 

The Notifier is catching signals on the behalf of its clients. If you set up your 
own signal handler over the one that the Notifier has set up then the Notifier will 
never notice the signal. 

The same applies for s±gvec(2) as does for signal(3), above. 

The Notifier is managing two of the process's interval timers on the behalf of its 
many clients. If you access an interval timer directly, the Notifier could miss a 
timeout. Use notify_set_itimer_func () instead of setitimer(2). 

Because alarm(3) sets the process's interval timer directly, the same applies for 
alarm(3) as does for setitimer(2), above. 

When using a notifier-managed interval timer, you should call 
notify_ it imer _value ( ) to get its current status. Otherwise, you can get 
inaccurate results. 

The Notifier notices child process state changes on behalf of its clients. If you do 
your own wai t3(2), then the notifier may never notice the change in a child 

9! A future release may provide modified versions of some of these forbidden routines that will allow their 
use without restriction. However, the restrictions described in Don't Catch . .. , below, will continue to be 
germane. A signal () Replacement for Notifier Compatibility, in Section 17.4, provides a code patch for 
programs that catch signals. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 



286 Sun View 1 Programmer's Guide 

wait(2) 

ioctl(2) ( ... , FIONBIO, ... ) 

process or you may get a change of state for a child process in which you have no 
interest. Use notify_set_wait3_func (} instead ofwait3(2). 

The same applies for wait(2) as does forwait3(2), above. 

This call sets the blocking status of a file descriptor. The Notifier needs to know 
the blocking status of a file descriptor in order to detennine if there is activity on 
it. fcntl(2) has an analogous request that should be used instead of ioctl(2). 

ioctl(2) ( ... , FIOASYNC, ... ) This call controls a file descriptor's asynchronous io mode setting. The Notifier 
needs to know this mode in order to detennine if there is activity on it. 
fcntl(2) has an analogous request that should be used instead of ioctl(2). 

system(3) In the SunOS, this function calls signal(3) and wai t(2). Hence you should 
avoid using this for the reasons mentioned above. Calls to system(3) should be 
replaced with something like the following. 

if((pid = vfork()) == 0) { 
(void) execl("/bin/sh", "sh", "-c", str, (char *)0); 
_exit(127); 

notify_set wait3 func(me, my_handler, pid); 

0 

Don't Catch .•. Clients should not have to catch any of the following signals. If you are, then 
,you are probably also making one of the forbidden calls described above. You 0 
might also be utilizing the Notifier inappropriately if you think that you have to 
catch any of these signals. The Notifier catches these signals itself under a 
variety of circumstances: 

s I GALRM Caught by the Notifier's interval timer manager. Use 
notify_set_itimer_func () instead. 

SIGVTALRM The same applies for SIGVTALRM as does for SIGALRM above. 

s I GTERM Caught by the Notifier so that it can tell its clients that the process is going away. 
Use notify_set_destroy_func () if that is why you are catching 
SIGTERM. 

SIGCHLD Caught by the Notifier so that it can do child process management. Use 
notify_set_wait3_£U.nc () instead. 

SIGIO Caught by the Notifier so that it can manage its file descriptors that are running in 
asynchronous io .mode. Use notify_set_input_func () 92 or 
notify_set_output_func () if you wantto know when there is activity 
on your file descriptor. 

s IGURG Caught by the Notifier so that it can dispatch exception activity on a file descrip­
tor to its clients. Use notify_set_exception_func () if you are looking 
for out-of-band communications when using a socket. 

92 Do not use a NULL client handle when you use notify_ set_ input_ func () or the Notifier will go 0 
into an infinite loop. . .. 

sun 
microsystems 

Revision A, of May 9, 1988 



c 
17 .3. Overview 

How the Notifier Works 

Figure 17-1 

c 
Client Handles 

Types of Interaction 

c 

Chapter 17 -The Notifier 287 

If you think you have to catch one of these signals, then be sure to use 
notify_set_signal_func(). 

Before it can receive events, a client must advise the Notifier of the types of 
events in which it is interested. It does this by registering an event handler func­
tion (which it must supply) for each type of event in which it is interested. When 
an event occurs, the Notifier calls the event handler appropriate to the type of 
event 

Figure 17-1 shows an overview of how the notification mechanism works. 

Overview of Notification 

Notifier 

~ r,. 
I I 
I I 
I I 
I I 

Qient 1 . . . . . Client N 

--- .;> Client registers event proc at initialization time 
----;;.. Notifier calls back to client when event received 

The Notifier uses a client handle as the unique identifier for a given client. The 
Notifier, without interpreting the client handle in any way, uses it to associate 
each event with the event handler for a given client. 

The only requirement for a client handle is that it must be unique (within a pro­
cess). Since a program text address or the address of an allocated data block are 
guaranteed to be unique, they can be used. Since stack addresses are not in gen­
eral guaranteed to be unique they should not be used. Internally, Sun View uses 
the object handles returned from window_create () as notifier client handles. 

Client interaction with the Notifier falls into the following functional areas: 

o Event handling - A client may receive events and respond to them via 
event handlers. Event handlers do the bulk of the work in the Notifier 
environment. The various types of events are in Section 17.4, Event Han­
dling. 

o Interposition- A client may request that the Notifier install a special type 
of event handler (supplied by the client) to be inserted (or interposed) ahead 
of the current event handler for a given type of event and client. This allows 
clients to screen incoming events and redirect them, and to monitor and 
change the status of other clients. Examples of interposition may be found 
below under Monitoring a Frame's State. 

Revision A, of May 9, 1988 



288 SnnView 1 Programmer's Guide 

17 .4. Event Handling 

Child Process Control Events 

"Reaping" Dead Processes 

o Notifier control- A client may exercise control over when dispatching of 
events occurs. See Section 17.6, Porting Programs to SunView. 

This section describes how to be notified of UNIX-related events and notifier sup­
ported destroy events (see Chapter 6, Handling Input, for a description of 
Sun View-defined events). UNIX events are low-level occurrences that are mean­
ingful at the level of the operating system. These include signals (software inter­
rupts), input pending on a file descriptor, output completed on a file descriptor, 
tasks associated with managing child processes, and tasks associated with 
managing interval timers. 

A client establishes an interest in a certain type of event by registering an event 
handler procedure to respond to it. The event handler for a given type of event 
has a mandatory calling sequence, as described below. All event handlers return 
a value of either NOTIFY _DONE or NOTIFY_ IGNORED depending on whether 
the event was acted on in some' way or failed to provoke any action, respectively. 

When registering an event handler, the registration procedure returns a pointer to 
the function that was in place previous to the current call. On initialization, the 
Notifier sets up its internal tables by registering "dummy" functions as place­
holders. These dummy functions are no-op'functions with no harmful side­
effects. The first time a client registers a given type of event handler, it will 
receive a pointer to a "dummy" function. 

The following sections describe common usages of various types of events. 

Let's say that you want to fork a process to perform some processing on your 
behalf. UNIX requires that you perform some housekeeping of that process. The 
minimum housekeeping required is to notice when that process dies and "reap" 
it. You can register a wait3 event handler,93 which the Notifier will call when­
ever a child process changes state (e.g. dies), by calling: 

Notify_func 
notify_set_wait3_func(client, wait3_func, pid) 

static Notify_client client; 
Notify_func wait3_func; 
int pid; 

Clients using child process control which simply need to perform the required 
reaping after a child process dies can use the predefined 
notify_default_wait3 () astheirwait3 event handler. Forexample: 

93 The name wait3 even/originates from the wait3{2) system call. 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

NOTE 

Results from a Process 

c 

c 

Chapter 17-The Notifier 289 

#include <sunwindowlnotify.h> 

int my_client_object; static 
static Notify_client *me = &my_client_object; 

int pid; 

if ( (pid my_fork ())) 
(void) notify_set_wait3_func(me, notify_default_wait3, 

pid); 
I* Start dispatching events *I 
(void) notify_start(); 

This is sufficient to have your child process reaped on its death. The Notifier 
automatically removes a dead process's wait3 event handler from its internal data 
structures. 

The use of me as a client handle is arbitrary, but illustrates one method of gen­
erating a unique client handle. 

A more interesting application might actually receive some results from the pro­
cess it forked. In this case, the application would supply its own wait3 event 
handler94. For example: 

#include <sunwindowlnotify.h> 
#include <syslwait.h> 
#include <sys/time.h> 
#include <syslresource.h> 
static Notify_value my_wait3_handler(); 

I* Register a wait3 event handler *I 
(void) notify_set_wait3_func(me, my_wait3_handler, pid); 
I* Start dispatching events *I 
(void) notify_start(); 

static Notify_value 
my_wait3_handler(me, pid, status, rusage) 

Notify_client me; 
int pid; 
union wait *status; 
struct rusage *rusage; 

if (WIFEXITED(*status)) 
I* Child process exited with return code *I 
my_return_code_handler(me, status->w_retcode); 
I* Tell the notifier that you handled this event *I 
return (NOTIFY_DONE); 

I* Tell the notifier that you ignored this event *I 
return (NOTIFY_IGNORED); 

94 Seethewait(2)manualpagefordetailsof union wait and struct rusage. 

Revision A, of May 9, 1988 



290 Sun View 1 Programmer's Guide 

Input-Pending Events (pipes) 

Example: Reading a Pipe 

A program may need to know when there is input pending on a file descriptor­
for instance, on one end of a pipe. Let's extend our previous example a bit to 
include reading data from a pipe connected to a process that we have forked. 
You can register an input-pending event handler which the Notifier will call 
whenever whenever there is input pending on a file descriptor95 by calling: 

Notify_func 
notify_set_input_func(client, input_func, fd) 

Notify_client client; 
Notify_func input_func; 
int fd; 

The calling sequence for the input_ func () you supply is as follows: 

Notify_ value 
input_func(client, fd) 

Notify_client client; 
int fd; 

#include <sunwindowlnotify.h> 

static Notify_value my_pipe_reader(); 

int fildes[2]; 
I* Create a pipe *I 
if (pipe(fildes) -1) { 

perror("pipe"); 
exit(l); 

I* Register an input-pending event handler *I 
(void) notify_set_input_func(me, my_pipe_reader, fildes[O]); 
... do fork and dispatching from wait3 event example .. . 
... do fork and dispatching from wait3 event example .. . 

static Notify_value 
my_pipe_reader(me, fd) 

Notify_client me; 
int fd; 
I* Read the pipe (fd) *I 

I* Tell the notifier that the input event is handled *I 
return (NOTIFY_DONE); 

In the above example, the application uses the Notifier to read from the pipe 
because it doesn't want to block on input pending on the pipe. In the case of a 
Sun View program, the program wants to return back to the Notifier's central 
dispatching loop so that the user can interact with the window while waiting for 
input to become available on the pipe. 

95 The file descriptor can be in blocking or non-blocking mode, or in asynchronous mode; the Notifier 
handles both as long as you have used fen t 1(2) to set the modes. 

Revision A, of May 9, 1988 

0 

0 

0 



Chapter 17-The Notifier 291 

c\ Closing the Pipe When you close any file descriptor that has been registered with the Notifier you 
should unregister it. To do this, call notify set input func () with a 

c 

c 

Signal Events 

notify_func ofNOTIFY_FUNC_NULL.96 - -

Signals are UNIX software interrupts. The Notifier multiplexes access to the 
UNIX signal mechanism. A client may ask to be notified that a UNIX signal 
occurred either when it is received (asynchronously) and/or later during normal 
processing (synchronously). 

Clients may define and register a signal event handler to respond to any UNIX 
signal desired. However, many of the signals that you might catch in a tradi­
tional UNIX program may be being caught for you by the Notifier (see Don't 
catch above). 

CAUTION Clients of the Notifier must not directly catch any UNIX signals using s ig­
nal(3) or sigvec(2). Regardless of whether clients choose synchronous or 
asynchronous signal notification, they must use the signal event mechanism 
described in this section. See Section 17.2, Restrictions. 

You can register a signal event handler which the Notifier will call whenever a 
signal has been caught by calling: 

Notify_func 
notify_set_signal_func(client, signal_func, signal, when) 

Notify_client client; 
Notify_func signal_func; 
int signal; 
Notify_signal_mode when; 

when can be either NOTIFY SYNC or NOTIFY ASYNC. NOTIFY SYNC - -
causes notification during normal processing, that is, the delivering of the signal 
is delayed, so that your program doesn't receive it at an arbitrary time. 
NOTIFY _ASYNC causes notification~immediately as the signal is received,­
this mode mimics the UNIX signal(3) semantics. 

A signal () Replacement for 
Notifier Compatibility 

You should rewrite applications to use notify_set_signal_func (). 
However, theNotifierroutine notify_set_signal_func ()does not fully 
emulate the signal(3) function. It does not handle errors the same way sig­
nal(3) does. Errors from signal(3) are indicated by a -1 return value, and 
the value of errno is set to EINVAL. 

The errors for notify_set_signal_func () are not communicated back to 
the caller, but error messages are printed. For example, if the signal number is 
not valid, the Notifier prints 

but its return value indicates success; the signal(3) system call does not print a 
message, but returns -1 and sets errno to EINVAL. As another example, if 

96 This method of passing in a NOTIFY _FUNC _NULL to unregister an event handler from the Notifier 
works for any type of event. 

6sun ~ microsystems 
Revision A, of May 9, 1988 



292 Sun View 1 Programmer's Guide 

Example: Writing to a Pipe 

SIGKILL or SIGSTOP are ignored or a handler supplied, the Notifier prints 

but its return value indicates success, while signal(3) does not print a message, 
returns value of -1, and sets errno to EINVAL. 

The work-around is to use the following replacement function for the C library 
version of signal(3). This code converts signal () calls into 
notify_set_signal_func () calls. Explicitly loading this code will over­
ride the loading of the C library's version of signal (). This approach works 
only if all the signal handlers registered by signal () only look at the first 
argument passed to them when a signal is received. Also, no Notifier client han­
dle may be a small integer. 

#include <sunwindow/notify.h> 
#include <errno.h> 

int (* 
signal (sig, func)) () 
int sig, (*func) (); 

if ( (sig < 1 I I sig > NSIG) I I 
(sig == SIGKILL I I sig == SIGSTOP) ) { 

errno = EINVAL; 
return(BADSIG); 

if (sig == SIGCONT && func 
errno = EINVAL; 
return(BADSIG); 

SIG_IGN) 

return ((int(*) ())notify_set_signal_func(sig, func, 
sig, NOTIFY_ASYNC)); 

Let's extend our on-going example by writing on the pipe. Writing to a pipe that 
has no process at the other end to receive the message causes a SIGPIPE to be 
generated by UNIX. By default, an uncaught SIGPIPE causes a premature pro­
cess termination. So, we are going to catch SIGPIPE so that our process 
doesn't get killed· if we start a process that dies. 97 

97 We are glossing over the part about actually writing to the pipe. If we wanted to write something to the 
pipe and then get some notification about when the write had actually completed (i.e., the other process had read 

0 

it) we would use the not ify_set _output_ func () call. The calling sequences for this routine and its ~ 

event handler are exactly the same as those for notify_ set_ input_ func () (previously described). u 

Revision A, of May 9, 1988 



c 

c 

c 

Asynchronous Event Handling 

#include <sunwindowlnotify.h> 
#include <signal.h> 

Chapter 17-The Notifier 293 

static Notify_value my_sigpipe_handler(); 

... do pipe from input-pending example ... 

... do notify_set_input_funcfrom input-pending example ... 

... do fork from wait3 event example ... 

I* Register a signal event handler *I 
(void) notify_set_signal_func(me, my_sigpipe_handler, 

SIGPIPE, NOTIFY_ASYNC); 

I* Write a message on the pipe *I 

I* Start dispatching events *I 
(void) notify_start(); 

static Notify_value 
my_sigpipe_handler(me, signal, when) 

Notify_client me; 
int signal; 
Notify_signal_mode when; 

I* 
* This is a no-op function meant only to prevent us from 
*being killed,because we didn't have a SIGPIPE handler. 

*I 
return (NOTIFY_IGNORED); 

This example wouldn't actually show my_sigpipe_handler () being called 
unless you set up the child process to die right away. 

An asynchronous signal notification can come at any time (unless blocked using 
sigblock(2)). This means that the client can be executing code at any arbi­
trary place. Great care must be exercised during asynchronous processing. 

It is rarely safe to do much of anything in response to an asynchronous signal. 
Unless your program has taken steps to protect its data from asynchronous 
access, the only safe thing to do is to set a flag indicating that the signal has been 
received. 

When in an asynchronous signal event handler, the signal context and signal code 
is available from the follow routines: 

int 
notify_get_signal_code() 

struct sigcontext * 
notify_get_signal_context() 

The return values of these routines are undefined if called from a synchronous 
signal event handler. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



294 Sun View 1 Programmer's Guide 

Timeout Events 

Example: Periodic Feedback 

\ 

A client may require notification of an expired timer based on real time (approxi­
mate elapsed wall clock time; I TIMER REAL) or on process virtual time (CPU 
time used by this process; IT IMER _VIRTUAL). To receive this type of 
notification, the client must define and register a timeout event handler. 

Notify_func 
notify_set_itimer_func(client, itimer_func, which, value, 

ovalue) 
Notify_client 
Notify_func 
int 

client; 
itimer_func; 
which; 

struct itimerval *value, *ovalue; 

The semantics of which, value and ovalue parallel the arguments to seti­
timer(2) (see the getitimer(2) manual page). which is either 
ITIMER REAL or ITIMER VIRTUAL. 

As an example, we want to provide some form of blinking feedback. We do this 
by setting up an interval timer when we want to blink. We tum the internal timer 
off when we no longer need the blinking.98 

98 This code segment should be wrapped in, say, a panel notify procedure, in order to be actually run. 

Revision A, of May 9, 1988 

0 

0 



c 

c 

Polling 

c 

Chapter 17-The Notifier 295 

#include <sunwindowlnotify.h> 
#include <sysltime.h> 

static int blinking_required; I* blinking desired *I 
static int blinking; I* blinking enabled *I 
#define ITIMER NULL ( (struct itimerval *) 0) 
static Notify_value my_blinker(); 

if (blinking_required && !blinking) 

struct itimerval blink_timer; 

I* Set up interval with which to RELOAD the timer *I 
blink_timer.it_interval.tv_usec = 0; 
blink_timer.it_interval.tv_sec = 1; 

I* Set up INITIAL value with which to SET the timer *I 
blink_timer.it_value.tv_usec = 0; 
blink_timer.it value.tv_sec = 1; 

I* Turn on interval timer for client *I 
(void) notify_set_itimer_func(me, my_blinker, 

ITIMER_REAL, &blink_timer, ITIMER_NULL); 
blinking = 1; 

else if ( !blinking_required && blinking) { 

I* Turn off interval timer for client *I 
(void) notify_set_itimer_func(me, my_blinker, 
ITIMER_REAL, ITIMER_NULL, ITIMER_NULL); 
blinking = 0; 

static Notify_value 
my_blinker(me, which) 

Notify_client me; 
int which; 
I* Do the blink *I 

return (NOTIFY_DONE); 

Interval timers can be used to set up a polling situation. There is a special 
value argument to notify_set_itimer_func () thattells the Notifierto 
call you as often and as quickly as possible. This value is the address of the 
following constant: 

struct itimerval NOTIFY_POLLING_ITIMER; /*{{0,1},{0,1}}*/ 

This high speed polling can consume all of your machine's available CPU time, 
but may be appropriate for high speed animation. It is used in the program 
spheres, which shows one way to convert and old Sun Windows gfx subwindow­
based program to Sun View. spheres is explained in Appendix C, Converting 
SunWindows Programs to Sun View, and is listed in full in in Appendix A, Exam­
ple Programs. 

Revision A, of May 9, 1988 



296 SnnView 1 Programmer's Guide 

Checking the Interval Timer 

Turning the Interval Timer Off 

17.5. Interposition 

How Interposition Works 

The following function checks on the state of an interval timer by returning its 
current state in the structure pointed to by value. 

Notify_error 
notify_itimer_value(client, which, value) 

Notify_client client; 
int which; 
struct itimerval *value; 

If you specify an interval timer with its it interval structure set to 
{ 0, 0 } , the Notifier flushes any knowledge of the interval timer after it delivers 
the timeout notification. Otherwise, supplying a NULL interval timer pointer to 
notify_ set_ i timer_ func () will tum the timer off. 

Sun View window objects utilize the Notifier for much of their communication 
and cooperation. The Notifier provides a mechanism called interposition, with 
which you can intercept control of the internal communications within Sun View. 
Interposition is a powerful way to both monitor and modify window behavior in 
ways that extend the functionality of a window object. 

Interposition allows a client to intercept an event before it reaches the base event 
handler. The base event handler is the one set originally by a client. The client 
can call the base event handler before or after its own handling of the event, or 0 
not at all. Clients may use interposition to monitor and filter events coming in to 
an event handler and/or to modify a series of actions based on the results of some 
calculation. 

A client requests that the Notifier install an interposer function, supplied by the 
client, for a specified client and type of event. When an event arrives, the 
Notifier calls the function at the top of the wait list for that client and that type of 
event. An interposed routine may (indirectly) call the next function in the inter­
position sequence and receive its results. 

Figure 17-2 illustrates the flow of control with interposition. Note that the inter­
poser could have stopped the flow of control to the base event handler. 

0 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



--------------------------------------------------------~------------·-------~~&~mm-~~~~~~ 

c 

c 

c 

Chapter 17 -The Notifier 297 

Figure 17-2 Flow of Control in Interposition 

Notifier 

I 
Event 

Dispatched 

~· ; ,-

Interposer Base Event Handler 

Monitoring a Frame's State You can notice when a frame opens or closes by interposing in front of the 
frame's client event handler. The client event handler is a Sun View specific 
event handler which is built on top of the Notifier's general client event mechan­
ism.99 To install an interposer call the following routine: 

Example: Interposing on 
Open/Close 

Notify_error 
notify_interpose_event_func(client, event_func, type) 

Notify_client client; 
' Notify_func event_func; 

Notify_event_type type; 

client must be the handle of the Notifier client in front of which you are inter­
posing. In SunView, this is the handle returned from window_create () .100 

type is always NOTIFY_SAFE for Sun View clients. 

Let's say that the application is displaying some animation, and wants to do the 
necessary computation only when the frame is open. It can use interposition to 
notice when the frame opens or closes. 

The program spheres (which shows one way to convert an old Sun Windows gfx 
subwindow-based program to Sun View) uses this technique to stop shading an 
image when its frame is closed. It is explained in Appendix C, Converting 
Sun Windows Programs to Sun View, and is listed in full in in Appendix A, Exam­
ple Programs. 

Another example appears on the following page. Note the the call to 
notify_next_event_func (),which transfers control to the frame's client 
event handler through the Notifier. notify_ next_ event_ func () takes the 
same arguments as the interposer. 

99 The stream of events sent to a client event handler is described in in Chapter 6, Handling Input. 

100 It could also be the handle returned from the call to scrollbar_ create(). 

Revision A, of May 9, 1988 



298 Sun View 1 Progranuner's Guide 

#include <suntoollsunview.h> 

static Notify_value my frame_interposer(}; 

0}; 

Frame frame; 

I* Create the frame *I 
frame= window_create(O, FRAME, 

I* Interpose in front of the frame's event handler *I 
(void} notify_interpose_event_func(frame, 

my_frame_interposer, NOTIFY_SAFE}; 

I* Show frame and start dispatching events *I 
window_main_loop(frame}; 

static Notify_value 
my_frame_interposer(frame, event, arg, type} 

Frame 
Event 
Notify_arg 
Notify_event_type 

frame; 
*event; 
arg; 
type; 

int closed_initial, closed_current; 
Notify_value value; 

I* Determine initial state of frame *I 
closed_initial = (int} window_get(frame, FRAME_CLOSED}; 

I* Let frame operate on the event *I 
value= notify_next_event_func(frame, event, arg, type}; 

I* Determine current state of frame *I 
closed_current = (int} window_get(frame, FRAME_CLOSED}; 

I* Change animation if states differ *I 
if (closed_initial != closed_current} { 

if (closed_current} { 
I* Turn off animation because closed *I 
(void} notify_set_itimer_func(me, my_animation, 

ITIMER_REAL, ITIMER_NULL, ITIMER_NULL}; 
else { 

I* Turn on animation because opened *I 
(void} notify_set_itimer_func(me, my_animation, 

ITIMER_REAL, &NOTIFY_POLLING_ITIMER, 
ITIMER_NULL}; 

return (value}; 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



---------------------------------------------------------------------- ---------~~.~~---

c 

c 

c 

Chapter 17-The Notifier 299 

Discarding the Default Action In the example on the preceding page, you wanted the base event handler to han­
dle the event (so that the frame gets closed/opened). If the interposed function 
replaces the base event handler, and you don't want the base event handler to be 
called at all, your interposed procedure should not call 
notify next event (). For example, your interposed function might han-- -
die scroll events itself, so you would not want the base event handler to perfonn 
an additional scroll. 

Interposing on Resize Events Another common use of interposition is to give your application more control 
over the layout of its subwindows. The code is very similar. You call 
notify_interpose_event_func () to interpose your event handler. In 
the event handler, the following fragment could be used: 

Example: resize _demo 

Modifying a Frame's 
Destruction 

value= notify_next_event_func(frame, event, arg, type); 
if (event_action(event) == WIN_RESIZE) 

resize(frame); 
return(value); 

Let the default event handler handle the event, then check if the event is a resize 
event. If so, call your own resize () procedure to lay out the subwindows. 

NOTE A WIN RESIZE event is not generated until the frame is resized. Ifyou want 
your resize procedure to be called when the window first appears you must do so 
yourself. This is different from a canvas with the CANVAS RESIZE attribute 
set, whose resize procedure is called the first time the canvas is displayed. 

If the user manually adjusts subwindow sizes using I Con troll-middle mouse but­
ton, no WIN _RESIZE event is generated. You can disallow subwindow resizing 
by setting the FRAME_SUBWINDOWS_ADJUSTABLE attribute to FALSE. 

The program resize_demo shows how to achieve'more complex window layouts 
than possible using window layout attributes. It is listed in Appendix A, Exam­
ple Programs. 

Suppose an application must detect when the user selects the 'Quit' menu item in 
the frame menu, in order to perform some application-specific confirmation. We 
have to interpose in front of the frame's client destroy event handler using the 
following routine. 

Notify_error 
notify_interpose_destroy_func(client, destroy_func) 

Notify_client client; 
Notify_func destroy_func; 

First, however, you need to understand client destroy events. 

Revision A, of May 9, 1988 



300 Sun View 1 Programmer's Guide 

Destroy Events 

Checking 

Destruction 

A Typical Destroy Handler 

The Notifier can tell each client to destroy itself. It is possible for a destroy event 
handler to receive two calls concerning client destruction: one call may be a 
status inquiry and the other a demand for tennination. Destroy event handlers 
use a status code to detennine whether the caller demands actual tennination 
(DESTROY CLEANUP or DESTROY PROCESS DEATH), or simply requires an - - -
indication if it is feasible for the client to tenninate at present 
DESTROY_ CHECKING). 

If the status argument indicates an inquiry and the client cannot tenninate at 
present, the destroy event handler should call notify_ veto_destroy (), 

indicating that tennination would not be advisable at this time, and return nor­
mally. If the status argument indicates an inquiry and the client can tenninate 
at present, then the destroy handler should do nothing; a subsequent call will tell 
the client to actually destroy itself. 

This veto option is used, for example, to give a text subwindow the chance to ask 
the user to confinn the saving of any editing changes when quitting a tool. 

If the status argument is not DESTROY_CHECKING then the client is being 
told to destroy itself. If status is DESTROY_PROCESS_DEATH then the 
client can count on the entire process dying and so should do whatever it needs to 
do to cleanup its outside entanglements, e.g., update a file used by other 
processes. Since the entire process is dying, one might choose to not release all Q 
the resources used within the process, e.g., dynamically allocated memory. 
However, if stat us is DESTROY_ CLEANUP then the client is being asked to 
destroy itself and be very tidy about cleaning up all the process internal resources 
that it is using, as well as its outside entanglements. 

A typical destroy handler looks like the following: 

Notify_value 
common_destroy_func(client, status) 

Notify_client client; 
Destroy_status status; 
if (status == DESTROY_CHECKING) 

if (I* Don't want to go away now *I) 
notify_veto_destroy(client); 

else { 
I* Always release external commitments *I 
if (status == DESTROY_CLEANUP) 
I* Conditionally release internal resources *I 

return (NOTIFY_DONE); 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 



----------------------------------- ------ -~~'-""-=~~·~~~==·~ 

c\ 

Example: Interposing a Client 
Destroy Handler 

Chapter 17-The Notifier 301 

Now we can present the example of interposing in front of the frame's client des­
troy event handler. In addition to doing our own confiimation, we prevent dou­
ble confirmation by suppressing the frame's default confiimation. 

Note that after having the destroy OK'd by the user, we call 
notify_next_destroy_func () before returning. This allows other 
subwindows to request confiimation. 

The code appears on the following page. 

sun 
microsystems 

Revision A, of May 9, 1988 



302 Sun View 1 Programmer's Guide 

iinclude <suntoollsunview.h> 

static Notify_value my_frame_destroyer(); 

I* 
* Interpose in front of the frame's destroy event handler 
*I 

(void) notify_interpose_destroy_func(frame, 
my_frame_destroyer); 

I* Show frame and start dispatching events *I 
window_main_loop(frame); 

static Notify_value 
my_frame_destroyer(frame, status) 

sun 
microsystems 

Frame frame; 
Destroy_status status; 

if (status == DESTROY_CHECKING) 
if (my internal state requires confirmation) 

I* 
* Request confirmation from the user 
* (see window_loop() in the index). 
*I 

if (destroy OK' d by user) { 

else 

I* Tell frame not to do confirmation *I 
window_set(frame, FRAME_NO_CONFIRM, TRUE, 0); 

else { 
I* 
* Tell the Notifier that the destroy has 
* been vetoed. 
*I 

(void) notify_veto_destroy(frame); 

I* 
* Return now so that the destroy event 
* never reaches the frame's destroy handler. 
*I 

return (NOTIFY_DONE); 

I* Let frame do normal confirmation *I 
window_set(frame, FRAME_NO_CONFIRM, FALSE, 0); 

I* Let frame get destroy event *I 
return (notify_next_destroy_func(frame, status)); 

Revision A, of May 9, 1988 

0 

0 



c 

c 

C' 

17 .6. Porting Programs to 
Sun View 

Explicit Dispatching 

Implicit Dispatching 

Chapter 17 -The Notifier 303 

Most programs that are ported to Sun View are not notification-based. They are 
traditional programs that maintain strict control over the inner control loop. 
Much of the state of such programs is preserved on the stack in the form of local 
variables. The Notifier supports this form of programming so that you can use 
Sun View packages without inverting the control structure of your program to be 
notification-based. 

The simplest way to convert a program to coexist with the Notifier is called 
explicit dispatching. This approach replaces the call to 
window_ main _loop (),which usually doesn't return until the application ter­
minates, with the following bit of code: 

#include <suntoollsunview.h> 

static int my_done; 

extern Notify_error notify_dispatch(); 

I* Make the frame visible on the screen *I 
window_set(frame, WIN_SHOW, TRUE, 0); 
while ( !my_done) { 

I* Dispatch events managed by the Notifier *I 
(void) notify_dispatch(); 

notify_dispatch () goes once around the Notifier's internal loop, 
dispatches any pending events, and returns. You should try to have 
notify_dispatch () called at least once every l/4 second so that good 
interactive response with Sun View windows can be maintained. 

The program bounce (which shows one way to convert an old Sun Windows gfx 
subwindow-based program to Sun View) uses explicit dispatching. It is 
explained in Appendix C, Converting Sun Windows Programs to Sun View, and is 
given in full in in Appendix A, Example Programs. 

Explicit dispatching is good when you are performing some computationally 
intensive processing and you want to occasionally give the user a chance to 
interact with your program. There is another method of interacting with the 
Notifier that is useful when you simply want the Notifier to take care of its clients 
and block until there is something of interest to you. This is called implicit 
dispatching. 

This time, we replace the call to window_main_loop () with the following 
bit of code: 

~~sun ~ microsysterns 
Revision A, of May 9, 1988 



304 Sun View 1 Programmer's Guide 

Getting Out 

iinclude <suntoollsunview.h> 

static int my_done; 

window_set(frame, WIN_SHOW, TRUE, 0); 
I* Enable implicit dispatching *I 
(void) notify_do_dispatch(); 
while ( !my_done) · { 

char c; 

I* read allows implicit dispatching by Notifier *I 
if ((n = read(OI*stdin*l, &c, 1)) < 0) 
perror ("my_program"); 

notify_do_dispatch () allows the Notifierto dispatch events from within 
the calls to read(2) or select(2). The Notifier's versions of read(2) and 
select(2) won't return until the nonnal versions would. They can block 
exactly like the nonnal versions. 

notify no dispatch() (ittakes no arguments) prevents the Notifier from 
dispatching events from within the call to read(2) or select(2). 

0 

When you use either of these dispatching approaches, you will need to find out 0 
when the frame is 'Quit' by the user, in order to know when to tenninate your 
program. To do so, interpose in front of the frame's destroy event handler, as in 
the previous section, so that you can notice when the frame goes away. At this 
point you can call notify stop () to break the read(2) or select(2) out 
of a blocking state. 

0 
. Revision A, of May 9, 1988 



----------------------------------------------------------------------·~--------~------~ 

c 

c 

17.7. Error Handling 

Error Codes 

Handling Errors 

Chapter 17-The Notifier 305 

#include <suntoollsunview.h> 

static int my_done; 

static Notify_value my_notice_destroy(); 

I* 
*Interpose in front of the frame's destroy event handler 

*I 
(void) notify_interpose_destroy_func(frame, 

my_notice_destroy); 

static Notify_value 
my_notice_destroy(frame, status) 

Frame frame; 
Destroy_status status; 

if (status != DESTROY_CHECKING) 
I* Set my flag so that I terminate my loop soon *I 
my_done = 1; 
I* Stop the notifier if blocked on read or select *I 
(void) notify_stop(); 

I* Let frame get destroy event *I 
return (notify_next_destroy_func(frame, status)); 

Every call to a notifier routine returns a value that indicates success or failure. 
Routines that return an enumerated type called Notify_ error deliver 
NOTIFY OK (zero) to indicate a successful operation, while any other value 
indicates failure. Routines that return function pointers deliver a non-null value 
to indicate success, while a value of NOTIFY_ FUNC _NULL indicates an error 
condition. 

When an error occurs, the global variable notify_ err no describes the failure. 
The Notifier sets notify_ errno much like UNIX system calls set the global 
errno; that is, the Notifier only sets notify_errno when it detects an error 
and does not reset it to NOTIFY_ OK on a successful operation. A table in the 
Sun View 1 System Programmer's Guide lists each possible value of 
notify_errno and its meaning. 

Most of the errors returned from the Notifier indicate a programmer error, e.g., 
the arguments are not valid. Often the best approach for the client is to print a 
message if the return value is non-zero and exit. The procedure 
notify_perror () takes a string which is printed to stderr, followed by a 
colon, followed by a terse description of notify_ errno. This is done in a 
manner analogous to the UNIX perror(3) call. 

Revision A, of May 9, 1988 



306 Sun View 1 Programmer's Guide 

Debugging 

NOTIFY ERROR ABORT 

Stop in notify_perror () 
or fprintf(3S) 

notify_dump 

Here are some debugging hints that may prove useful when programming: 

Setting the environment variable NOTIFY_ ERROR_ ABORT to YES will cause 
the Notifier to abort with a core dump when the Notifier detects an error. This is 
useful if there is some race condition that produces notifier error messages that 
you are having a hard time tracking down. 

If you are getting notifier error messages, but don't know from where, try putting 
a break point on the entry to either notify_perror () or fprintf(3S). 
Trace the stack to see what provoked the message. 

The following call can be made. from the debugger or your program to dump a 
printout of the state of the Notifier: 

void 
notify_dump(client, type, file) 

Notify_client client; 
int type; 
FILE *file; 

0 

The state of client is dumped to file based on the value of type. If 
client is 0 then all clients are dumped. If type is 1 then all the registered 
event handlers are dumped. If type is 2 then all the events pending for delivery 
are dumped. If type is 3 then both the registered event handlers and the events 
pending for delivery are dumped. Iff ile is 1 then stdout is assumed. Iff ile {) 
is 2 thenstderris assumed. To be able to call notify_ dump() you need to '-.......-/ 
reference it from some place in your program so that it gets loaded into your 
binary. 

0 
~~sun ~~ microsystems 

Revision A, of May 9, 1988 



c 
18 

Attribute Utilities 

Attribute Utilities .......................................................................................................................... 309 

18.1. Character Unit Macros............................................................................................... 309 

18.2. Creating Reusable Attribute Lists ....................................................................... 310 

Default Attributes ......................................................................................................... 311· 

18.3. Maximum Attribute List Size ................................................................................ 311 

c 

c 



0 

0 



c 

c 

c\ 

18.1. Character Unit 
Macros 

18 
Attribute Utilities 

This chapter describes macros and functions that are provided as utilities to be 

used with attributes. 

By default in SunView,-coordinate specification attributes interpret their values 

in pixel units. For applications that don't make heavy use of images, it is usually 

more convenient to specify positions in character units - columns and rows 

rather than xs and ys. To this end two macros ATTR _ROW ( ) and ATTR _COL () 

are provided, which interpret their arguments as rows or columns, respectively, 

and convert the value to the corresponding number of pixels, based on the 

subwindow's font, as specified by WIN_FONT. ATTR_ROW () and 

ATTR _COL () take as arguments any expression yielding an integer. The use of 

these macros as an operand in an expression is restricted to adding a pixel offset 

(e.g., ATTR ROW(5) + 2). Examples oflegal and illegal usage are given in the 

table below. 

Table 18-1 Example uses of the ATTR_ROW () and ATTR_COL () macros 

Attribute/Value Interpretation 

PANEL_ITEM_X, 5 5 pixels from left 

PANEL_ITEM_Y, 10 10 pixels from top 

PANEL_ITEM_X, ATTR_COL (5) columnS 

PANEL_ITEM_X, ATTR _COL ( -5) column-5 

PANEL_ITEM_X, ATTR_COL (5+2) column 7 

PANEL_ITEM_X, ATTR_COL(5)+2 2 pixels to right of col5 

PANEL_ITEM_X, ATTR_COL(5)-1 1 pixel to left of col 5 

PANEL_ITEM_Y, ATTR_ROW(10) row 10 

PANEL_ITEM_Y, ATTR_ROW (-10) row -10 

PANEL_ITEM_Y, ATTR_ROW(10+2) row 12 

PANEL_ITEM_Y, ATTR_ROW (10) +2 2 pixels down from row 10 

PANEL_ITEM_Y, ATTR_ROW(10)-1 1 pixel up from row 10 

PANEL_ ITEM_ X, ATTR_COL(10)+ATTR_COL(2) illegal 

PANEL ITEM X, 2*ATTR COL(10) illegal 

NOTE ATTR _ROW () and ATTR _COL () treat their arguments as character positions 

rather than lengths. In other words, when you use ATTR _ ROW(5), the pixel 

value that is computed includes the top margin. Similarly, the pixel value com­

puted using ATTR _ COL(5) includes the left margin. 

309 Revision A, of May 9, 1988 



310 Sun View 1 Programmer's Guide 

Table 18-2 

18.2. Creating Reusable 
Attribute Lists 

These macros can be used with the panel attributes or the window attributes such 
as WIN_X, WIN_HEIGHT, etc. 

Both the attributes and the ATTR_ROW (} and ATTR_COL (} macros are zero­
based - that is, the first row is row zero. 

If you want to use lengths rather than positions, you can use the alternate macros 
ATTR_ROWS (} and ATTR_COLS (}. Examples ofthe differences between the 
character position and length macros are given in the table below. 

Example uses ofthe ATTR_ROWS (} and ATTR_COLS () macros 

Attribute/Value 
WIN_WIDTH, ATTR_COL(SO) 
WIN_WIDTH, ATTR_COLS(SO) 
WIN_HEIGHT, ATTR_ROW(24) 
WIN_HEIGHT, ATTR_ROWS(24) 
PANEL_ITEM_X, ATTR_COL(S) 
PANEL_ITEM_X, ATTR_COLS(S) 
PANEL_ITEM_Y, ATTR_ROW(S) 
PANEL ITEM Y, ATTR ROWS(S) 

Interpretation 
80 characters wide + left margin 
exactly 80 characters wide 

24 Jines high + top margin 

exactly 24 lines high 

col5 (left margin+ 5 character widths) 

5 character widths from the left edge 

row 5 (top margin+ 5 row heights) 

5 row heights from the top edge 

You may want to create an attribute list that can be passed to different routines. 
You can do this either by creating the list explicitly, or by using the routine 
attr_create_list(). 

To create an attribute list explicitly, define a static array of char *,which is 
initialized (or later filled in with) the desired attribute/value pairs. Note that 
non-string values must be coerced to type char *" 

static char *attributes[] = 
(char*)PANEL_LABEL_STRING, 
(char*)PANEL_VALUE, 
(char*)PANEL_NOTIFY_PROC, 
0 } 

To make an attribute list dynamically, use: 

Attr avlist 
attr_create_list(attributes) 

<attribute-list> attributes; 

"Name: ", 
"Goofy ", 
(char *)name_item_proc, 

attr_create_list (} allocates storage for the list it returns. It is up to you 
to free this storage when no longer needed, as in: 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



c 

Default Attributes 

18.3. Maximum Attribute 
List Size 

Chapter 18 - Attribute Utilities 311 

Attr avlist list; 

list attr create_list(PANEL_LABEL_BOLD, TRUE, 0); 

free(list); 

The free () procedure is the standard UNIX free(3) routine. 

The code below shows how to use attr _create_list () in conjunction 
with the attribute ATTR _LIsT to support default attributes in a panel. 

int 
Panel item 
Pixfont 
Attr avlist 

defaults = 

text_proc(), name_proc(); 
name_item, address_item; 

*big_font, *small_font; 
defaults; 

attr create_list( 
PANEL SHOW_ITEM, 
PANEL_LABEL_FONT, 
PANEL_VALUE_FONT, 

FALSE, 
big_ font, 
small_font, 

PANEL_NOTIFY_PROC, text_proc, 
0); 

name item= panel_create_item(PANEL_TEXT, 
ATTR_LIST, defaults, 
PANEL_NOTIFY_PROC, name_proc, 
0); 

address_item = panel_create_item(PANEL_TEXT, 
ATTR_LIST, 
PANEL_SHOW_ITEM, 
PANEL_VALUE_FONT, 
0); 

defaults, 
TRUE, 
big_ font, 

The special attribute ATTR _LIST takes as its value an attribute list. In the 
above example, first an attribute list called defaults is created. Then, by 

mentioning de fa u 1 t s first in the attribute lists for subsequent item creation 

calls, each item takes on those default attributes. Subsequent references to an 
attribute override the setting in defaults since the last value mentioned for an 
attribute is the one which takes effect. 

The maximum length of attribute-value lists supported by the Sun View packages 

(see ATTR_STANDARD_SIZE in <sunwindow/attr .h>) is 250. Ifthe 

number of attributes in a list you pass to Sun View exceeds this size, the attribute 
package prints 

on standard output and exits with exit Status 1. 

sun 
microsystems 

Revision A, ofMay 9, 1988 



~--L----------------~ .. ----" 

0 

0 



19 
Sun View Interface Summary 

Sun View Interface Summary ······································:······················································· 315 

Alert Tables...................................................................................................................... 316 

Attributes ...................................................................................................................... 316 

Functions ...................................................................................................................... 318 

Canvas Tables ................................................................................................................. 319 

Attributes ...................................................................................................................... 319 

Functions and Macros ........................................................................................... 320 

Cursor Tables .................................................................................................................. 321 

Attributes ...................................................................................................................... 321 

Functions ...................................................................................................................... 3 23 

Data Types ........................................................................................................................ 324 

Icon Tables ....................................................................................................................... 328 

Attributes ...................................................................................................................... 328 

Functions and Macros ........................................................................................... 329 

Input Event Tables ....................................................................................................... 330 

Event Codes ................................................................................................................ 330 

Event Descriptors .................................................................................................... 333 

Input-Related Window Attributes.................................................................. 334 

Menu Tables .................................................................................................................... 335 

Attributes ...................................................................................................................... 335 

Item Attributes .......................................................................................................... 339 

Functions ...................................................................................................................... 341 

Notifier Functions Table ........................................................................................... 343 



Noti:fier Functions Table ........................................................................................... 343 

Panel Tables ..................................................................................................................... 346 

Attributes ...................................................................................................................... 346 

Generic Panel Item Attributes .......................................................................... 347 

Choice and Toggle Item Attributes ·······················'······································· 349 

Slider Item Attributes ....................................................................................... :.... 351 

Text Item Attributes ............................................................................................... 352 

Functions and Macros ........................................................................................... 353 

Pixwin Tables ................................................................................................................. 356 

Pixwin Drawing Functions and Macros Table ....................................... 356 

Pixwin Color Manipulation Functions Table .......................................... 360 

Attributes ...................................................................................................................... 362 

Functions and Macros........................................................................................... 365 

Text Subwindow Tables ........................................................................................... 366 

Attributes ...................................................................................................................... 366 

Textsw_action Attributes......................................................................... 370 

Textsw_status Values ...... ,......................................................................... 371 

Functions ...................................................................................................................... 372 

TTY Subwindow Tables............................................................................................ 376 

Attributes ...................................................................................................................... 376 

Functions ...................................................................................................................... 376 

Special Escape Sequences ............................................ :..................................... 377 

Window Tables .............................................................................................................. 379 

Attributes ...................................................................................................................... 379 

Frame Attributes ...................................................................................................... 382 

Functions and Macros ........................................................................................... 384 

Command Line Frame Arguments ................................................................ 386 

(\ 
v 



c 

c 

19 
Sun View Interface Summary 

This chapter contains tables summarizing the data types, functions and attributes 

which comprise the Sun View programmatic interface.lOl 

The tables correspond to the chapters in this book, but are in alphabetical order: 

Alerts, Canvases, Cursors, Data Types, Icons, Input (including events and input­

related window atttributes), Menus, the Notifier, Panels, Pixwins, Scrollbars, 

Text Subwindows, TIY Subwindows and Windows (including frames and frame 

command line arguments). 

Note that the order of the chapters is different than the order of the tables; The 

chapter on windows (including frames) comes first, followed by canvases, input, 

pixwins, text subwindows, panels, alerts, tty subwindows, menus, cursors, icons, 

scrollbars, the Selection Service, and the Notifier. 

Within each topic, the attribute tables come first, then the functions and macros, 

then miscellaneous tables. 

To help distinguish where one table ends and another begins, the start of each 

table is marked with a horizontal grey bar. 

101 This chapter does not include a table for the Selection Service functions; see the Sun View System 

Programmer's Guide for a complete discussion of the Selecti_on Service interface. \ 

315 Revision A, of May 9, 1988 



316 Sun View 1 Programmer's Guide 

Table 19-1 Alert Attributes 

Attribute Type 
ALERT BUTTON char*, int 

ALERT BUTTON FONT Pixfont * 

ALERT BUTTON NO char* 

ALERT BUTTON YES char* 

ALERT MESSAGE FONT Pixfont * 

ALERT MESSAGE STRINGS list char* 

ALERT MESSAGE STRINGS ARRAY PTR - - array char* 

ALERT NO BEEPING int 

Description 
A string to be displayed in a button and a value to associate with it. The 
value specified with the string will be returned when the button is 
selected. The value may be any integer, but should not be a value 
predefined by the alerts package; that is, not ALERT_ YES, ALERT_ NO, 
ALERT_FAILED, or ALERT_DEFAULT_TRIGGERED). 
See the values given in the Alert Functions table. 

Font used for buttons. Default is the font specified for menus, which is 
Menu/Font in defaultsedit or screen. b. 14 if no default is specified. 

A string that is associated with the accelerated 
NO (cancel, don't do it) button which is triggered via a 
keyboard accelerator. The value returned if this button is selected 
(or the accelerator is triggered) will be ALERT_NO. Only one instance 
of this attribute is allowed. 

A string to associate with the accelerated 
YES (ie. confirm, continue, do it) button which is also triggered via a 
keyboard accelerator. The value returned when this button is selected 
(or the accelerator is triggered) will be ALERT_ YES. Only one instance 
of this attribute is allowed. 

Font used for message strings. 
The default is the same as Client Frame (if specified) otherwise it is the 
same as SunView!Font. 

Strings to be displayed in the message 

area of the alert panel. The default is to be determined. 

Same as ALERT_MESSAGE_STRINGS 

except the client need not know the actual strings being passed, just 
that the value is pointer to first of null terminated array of strings. 
The alerts package will cast the value into a type char * *. 

Allows the client to specify that no beeping should 
take place reguardless of defaults database setting. The default for this 
option is FALSE; that is, beep however many times database specifies. 

Revision A, of May 9, 1988 

0 

0 



c\ Table 19-1 

Attribute 
ALERT OPTIONAL 

ALERT POSITION 

ALERT TRIGGER 

c 

c 

Chapter 19- Sun View Interface Summary (Alert Attributes) 317 

Alert Attribute~ Continued 

Type 
boolean 

int 

int 

Description 

Specifies whether an optional alert will be enabled 

or disabled. You make an alert a 

courtesy alert by specifing the ALERT_ OPTIONAL 

attribute in the attribute list passed to 

alert _prompt (}. 

Specifies the position of the alert. 

Default is ALERT_CLIENT_CENTERED unless client_frame =NULL 

NULL causes the alert to default to ALERT_SCREEN_CENTERED 

regardless of this setting. 

Possible values that may be passed are: ALERT_ SCREEN_ CENTERED, 

ALERT_CLIENT_CENTERED, and ALERT_CLIENT_OFFSET. 

Use WIN_X and WIN_ Y for the offset attributes. This position describes 

where the "center" of an alert should be. 

This special attribute allows the client to 

specify a Sun View event which should cause the alert to return. The 

default is not to return unless an actual button has been selected 

or the other YES/NO accelerators are seen. When this event is triggered, 

the value returned will be ALERT TRIGGERED. 

Revision A, of May 9, 1988 



318 Sun View 1 Programmer's Guide 

Table 19-2 Alert Functions 

.; . 

Definition 
int 

alert_prompt(client_frame, event, attributes) 

Frame 

Event 

client_frame; 

*event; 

<attribute-list> at tributes; 

Displays alert and doesn't return until the user pushes a 
button, or its trigger or the default has been seen. A value 
of ALERT_FAILED is returned if alert _prompt () 
failed for any reason, otherwise equivalent to ordinal value 
of button which caused return (ie. button actually selected, 
or default button if default action triggered return). The 
cli~t_frame may be NULL (see ALERT _POSITION for 
consequences). The event will be completely filled in at 
the time the alert _prompt () returns. 

The possible status values that may be returned from this 
function are: the (int) value passed with every 
ALERT_ BUTTON attribute; ALERT_ YES, if a confirm but­
ton or trigger was pushed; ALERT _NO, if a cancel button or 
trigger was pushed; ALERT _FAILED, if the alert failed to 
pop up; and ALERT_ TRIGGERED, if a keyboard accelera­
tor was used. 

Revision A, of May 9, 1988 

0 

0 



----------------------------------------------------------~ 

c 

c 

Chapter 19- Sun View Interface Summary (Canvas Attributes) 319 

Table 19-3 Canvas Attributes 

Attribute Type 
CANVAS AUTO CLEAR boolean 

CANVAS AUTO EXPAND boolean 

CANVAS AUTO SHRINK boolean 

CANVAS FAST MONO boolean 

CANVAS FIXED IMAGE boolean 

CANVAS HEIGHT int 

CANVAS MARGIN int 

CANVAS PIXWIN Pixwin * 

CANVAS REPAINT PROC (procedure) 

CANVAS RESIZE PROC (procedure) 

CANVAS RETAINED boolean 

CANVAS WIDTH int 

sun 
microsystems 

Description 
If TRUE, repaint area of canvas pixwin is cleared before. 

repaint proc is called. Default: TRUE unless the canvas is retained. 

If TRUE, canvas width and height are never allowed to be 

less than the edges of the canvas pix win. Default: TRUE. 

If TRUE, canvas width and height are never allowed to be 

greater than the edges of the canvas pix win. Default: TRUE. 

If TRUE, tells canvases and graphics subwindows to use 

the monochrome overlay plane of the Sun-3/110 display. Default: FALSE. 

If TRUE, canvas package assumes that client is drawing a fixed-size image 

whose rendering does not depend on the size of the canvas. Default: TRUE. 

Height of object being drawn. Default: height of usable window, which is 

WIN_HEIGHT-(SCROLL_THICKNESSofWIN_HORIZONTAL_SCROLLBAR)­

CANVAS MARG IN*2. 

Margin to leave around the canvas pixwin from inside of window. Default: 0. 

Pixwin for drawing. Get only. 

Called when repaint needed, even if retained. Default: NULL. Form: 

repaint_proc(canvas, pixwin, repaint_area) 

Canvas canvas; 

Pixwin *pixwin; 

Rectlist *repaint_area; 

Called when canvas width or height changes. Default: NULL. Form: 

resize_proc(canvas, width, height) 

Canvas canvas; 

int width; 

int height; 

If TRUE, image is backed up for repaint. Default: TRUE. 

Width of object being drawn. Default: width of usable window, which is 

WIN_WIDTH-(SCROLL_THICKNESSofWIN_VERTICAL_SCROLLBAR)­

CANVAS MARGIN*2. 

Revision A, of May 9, 1988 



320 Sun View 1 Programmer's Guide 

Table 19-4 Canvas Functions and Macros 

Definition 
Event * 

canvas_event(canvas, event) 

Canvas canvas; 

Event *event; 

Pixwin * 

canvas_pixwin(canvas) 

Canvas canvas; 

Event * 

canvas window_event(canvas, event) 

Canvas canvas; 

Event *event; 

Translates the coordinates of event from the space of the 

canvas subwindow to the space of the logical 

canvas (which may be larger and scrollable). That is, 

the client passes in a pointer to an event, then the 

function does an event_ set_ x (event, translated_ x) 

and an event_set_y (event, translated_y). 

It then returns the same pointer that was 

passed in. 

Returns the pixwin to use when drawing into 

the canvas with the pw _ * () routines. 

Translates the coordinates of event to the space of the 

canvas subwindow from the space of the logical 

canvas. 

Revision A, of May 9, 1988 

(\\ u 

0 

0 



-----------------------------------------------------------------~~~. 

c Table 19-5 Cursor Attributes 

Attribute Value Type 

CURSOR CROSSHAIR BORDER GRAVITY boolean 

CURSOR CROSSHAIR COLOR int 

CURSOR CROSSHAIR GAP int - -

CURSOR CROSSHAIR LENGTH int - -

CURSOR CROSSHAIR OP int 

CURSOR CROSSHAIR THICKNESS int 

CURSOR FULLSCREEN boolean 

c CURSOR HORIZ HAIR BORDER GRAVITY boolean 

CURSOR HORIZ HAIR COLOR int - - -

CURSOR HORIZ HAIR GAP int 

CURSOR HORIZ HAIR LENGTH int 

CURSOR HORIZ HAIR OP int 

CURSOR HORIZ HAIR THICKNESS int 

CURSOR IMAGE Pixrect * 

CURSOR OP int 

CURSOR SHOW CROSSHAIRS boolean 

CURSOR SHOW CURSOR boolean 

CURSOR_SHOW_HORIZ_HAIR boolean 

CURSOR SHOW VERT HAIR boolean - - -

Chapter 19- Sun View Interface Summary (Cursor Attributes) 321 

Description 
Crosshairs stick to borders. Default: FALSE. 

Color for crosshairs. Default: 1. (Note: the color displayed 

depends on the settings in your colormap segment). 

Half-length of space to leave untouched from intersection of 
crosshairs. Value of CURSOR_ TO_ EDGE extends crosshairs to 
edge of cursor rect. Default: 0. 

Half-length of crosshairs. Default: CURSOR TO EDGE. 

Raster op for drawing crosshairs. Default: PIX_ SRC. 

Thickness of crosshairs. Maximum value is 

CURSOR_MAX_HAIR_THICKNESS (5). Default: 1! 

Clip crosshairs to edge of screen not window. Default: FALSE. 

Horizontal crosshair sticks to borders. Default: FALSE. 

SeeCURSOR HORIZ HAIR COLOR 

See CURSOR CROSSHAIR GAP. 

See CURSOR CROSSHAIR LENGTH. 

Raster op for drawing horizontal crosshair. Default: PIX SRC. 

See CURSOR CROSSHAIR THICKNESS. 

Cursor's image. Default: 16 x 16 x 1 blankpixrect 

Raster op for drawing cursor image. 

Default: PIX_SRC I PIX_DST. 

Show or don't show crosshairs. Default: FALSE. 

Show or don't show cursor image. Default: TRUE. 

Show or don't show horizontal crosshair. Default: FALSE. 

Show or don't show vertical crosshair. Default: FALSE. 

Revision A, of May 9, 1988 



322 Sun View 1 Programmer's Guide 

Table 19-5 Cursor Attributes- Continued 

Attribute Value Type Description 
CURSOR VERT HAIR BORDER GRAVITY boolean Vertical crosshair sticks to borders. Default: FALSE. 

CURSOR VERT HAIR COLOR int SeeCURSOR CROSSHAIR COLOR 

CURSOR VERT HAIR GAP int SeeCURSOR CROSSHAIR GAP. 

CURSOR VERT HAIR LENGTH int See CURSOR CROSSHAIR LENGTH. 

CURSOR VERT HAIR OP int Raster op for drawing vertical crosshair. Default: PIX_ SRC. 

CURSOR VERT HAIR THICKNESS int See CURSOR CROSSHAIR THICKNESS. 

CURSOR XHOT int Hot spot x coordinate. Default: 0. 

CURSOR YHOT int Hot spot y coordinate. Default: 0. 

0 

0 
Revision A, of May 9, 1988 



c 

c 

Table 19-6 

Definition 

Cursor 

cursor_copy(src_cursor) 

Cursor src_cursor; 

Cursor Functions 

Cursor 

cursor_create(attributes) 

<attribute-list> attributes; 

void 

cursor_destroy(cur~or) 

Cursor cursor; 

caddr t 

cursor_get(cursor, attribute) 

Cursor cursor; 

Cursor attribute attribute; 

void P 

cursor_set(cursor, attributes) 

Cursor cursor; 

<attribute-list> attributes; 

Chapter 19-Sun View Interface Summary (Cursor Functions) 323 

Description 

Creates and returns a copy of src _cursor. 

Creates and returns the opaque handle to a cursor. 

Destroys cursor. 

Retrieves the value for an attribute of cursor. 

Sets the value: for one or more attributes of cursor. 

attributes is a null-terminated attribute list. 

Revision A, of May 9, 1988 



324 Sun View 1 Programmer's Guide 

Table 19-7 

Data Type 

Canvas 

Cursor 

Destroy_status 

Event 

Frame 

Icon 

Inputmask 

Menu 

Menu attribute 

Menu_generate 

Menu item 

Notify_arg 

Notify_destroy 

Notify_event 

Data Types 

Description 

Pointer to an opaque structure which describes a canvas. 

Pointer to an opaque structure which describes a cursor. 

Enumeration: DESTROY_ PROCESS_ DEATH, 
DESTROY_CHECKIN~orDESTROY_CLEANUP. 

The structure which describes an input event: 

typedef struct inputevent 
short ie_code; 

short ie_flags; 

short ie_shiftmask; 

short ie_locx; 

short ie_locy; 

struct timeval ie_time; 

Event; 

Pointer to an opaque structure which describes a frame. 

Pointer to an opaque structure which describes a icon. 

Mask specifying which input events a window will receive. 

Pointer to an opaque structure which describes a menu. 

One of the menu attributes (MENU_*). 

Enumerated type of the operation parameter passed to generate procs: 
MENU_CREATE,MENU_DESTRO~MENU_NOTIFY_CREATEorMENU_NOTIFY_DESTROY. 

Pointer to an opaque structure which describes a menu item. 

Opaque client optional argument. 

Enumeration:NOTIFY_SAFE,NOTIFY_IMMEDIATE. 
(See also Notify_event_type). 

Opaque client event. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 



c Table 19-7 

Data Type 

Notify_error 

Notify_event_type 

Notify_func 

Notify_signal_mode 

Notify_value 

Panel 

Panel attribute 

c Panel item 

Panel_setting 

Pixfont 

Pixrect 

Pixwin 

Rect 

Chapter 19- Sun View Interface Summary (Data Types) 325 

Data Types- Continued 

Description 

Enumeration of errors for notifier functions: 

NOTIFY_OK,NOTIFY_UNKNOWN_CLIENT,NOTIFY_NO_CONDITION, 

NOTIFY_BAD_ITIMER,NOTIFY_BAD_SIGNAL,NOTIFY_NOT_STARTED, 

NOTIFY_DESTROY_VETOED,NOTIFY_INTERNAL_ERROR,NOTIFY_SRCH, 

NOTIFY_BADF,NOTIFY_NOME~NOTIFY_INVAL,orNOTIFY_FUNC_LIMIT. 

Enumeration:NOTIFY_SAFE,NOTIFY_IMMEDIATE. 

Notifier function. 

Enumeration: NOTIFY_ SYNC, NOTIFY _ASYNC. 

Enumeration of possible return values for client notify procs: 

NOTIFY_DONE,NOTIFY_IGNORED,orNOTIFY_UNEXPECTED. 

Pointer to an opaque structure which describes a panel. 

One of the panel attributes (PANEL_*). 

Pointer to an opaque structure which describes a panel item. 

Enumerated type returned by panel_ text_ notify (} ; 

also type of repaint argument to panel _paint(}. 

See the Panels chapter and <suntool /panel. h>. 

The structure representing a font (for definition see the Pixrect Reference Manual). 

The basic object of pixel manipulation in the Sun View window system. Pixrects 

include both a rectangular array of pixels and the means of accessing operations 

for manipulating those pixels (for definition see the Pixrect Reference Manual). 

The basic imaging element of the Sun View window system. While, for 

historical reasons, its fields are public, clients should treat it as an opaque handle. 

The structure describing a rectangle: 

typedef struct rect 

short r_left; 

short r_top; 

short r_width; 

short r_height; 

Rect; 

Revision A, of May 9, 1988 



326 Sun View 1 Programmer's Guide 

Table 19-7 

Data Type 
Rectlist 

Scroll motion 

Scrollbar 

Scrollbar attribute 

Scrollbar_setting 

Textsw 

Textsw index 

Textsw enum 

Textsw status 

Tty 

Window 

Data Types- Continued 

A list of rectangles: 

typedef struct rectlist 

short rl_x, rl_y; 

Rectnode *rl_head; 

Rectnode *rl_tail; 

Rect rl_bound; 

} Rectlist; 

typedef struct rectnode 
Rectnode *rn_next; 

Rect rn_rect; 

} Rectnode; 

Description 

Enumerated type representing possible scrolling motions: 
SCROLL_ABSOLUTE,SCROLL_FORWARD,SCROLL_MAX_TO_POINT, 
SCROLL_PAGE_FORWARD,SCROLL_LINE_FORWARD, 
SCROLL_BACKWARD,SCROLL_POINT_TO_MAX, 
SCROLL_PAGE_BACKWARD,orSCROLL_LINE_BACKWARD. 

The opaque handle for a scrollbar. 

One of the scrollbar attributes (SCROLL_*). 

The value of an enumerated type scrollbar attribute. 

Pointer to an opaque structure which describes a text subwindow. 

An index for a character within a text subwindow. 

Enumerated type for various text subwindow attribute values: 
TEXTSW_ALWAYS, TEXTSW_NEVER, TEXTSW_ONLY, 
TEXTSW_IF_AUTO_SCROLL,TEXTSW_CLIP, 

TEXTSW _WRAP_ AT_ CHAR, TEXTSW_ WRAP_ AT_ WORD. 

Enumeration describing the status of text subwindow' operations: 
TEXTSW_STATUS_OKAY,TEXTSW_STATUS_BAD_ATTR, 
TEXTSW_STATUS_BAD_ATTR_VALUE,TEXTSW_STATUS_CANNOT_ALLOCATE, 
TEXTSW_STATUS_CANNOT_OPEN_INPUT,orTEXTSW_STATUS_OTHER_ERROR, 

Pointer to an opaque structure which describes a tty subwindow. 

Pointer to an opaque structure which describes a window. 

Revision A, of May 9, 1988 

0 

0 



--------------------------------------------------~------~-------~----------·------------~--~-~----------=-.M~.M~ 

Chapter 19-Sun View Interface Summary (Data Types) 327 

c Table 19-7 Data Types- Continued 

Data Type Description 

Window attribute One of the window attributes (WIN_*). 

Window_type Type of window, retrieved via the WIN_ TYPE attribute. One of: 

FRAME TYPE,PANEL TYPE,CANVAS TYPE,TEXTSW TYPE,orTTY TYPE. 

c 

Revision A, of May 9, 1988 



328 Sun View 1 Programmer's Guide 

Table 19-8 Icon Attributes 

Attribute Type Description 
ICON FONT Pixfont * Font for icon's label. 

ICON HEIGHT int Icon's height in pixels. Default: 64. 

ICON IMAGE Pixrect * Memory pixrect for icon's image. 

ICON IMAGE RECT Rect * Rect for icon's image. Default: origin (0, 0), width 64, height 64. 

ICON LABEL char* Icon's label. 

ICON LABEL RECT Rect* Rect for icon's label. Default: origin (0, 0), width 0, height 0. 

ICON WIDTH int Icon's width in pixels. Default: 64. 

0 

0 
Revision A, of May 9, 1988 



c 
Chapter 19- SW1 View Interface Summary (Icon Functions and Macros) 329 

Table 19-9 Icon Functions and Macros 

Definition 

Icon 

icon_create(attributes) 

<attribute-list> attributes; 

int 

icon_destroy(icon) 

Icon icon; 

caddr t 

icon_get(icon, attribute) 

Icon icon; 

Icon attribute attribute; 

int 

icon_set(icon, attributes) 

Icon icon; 

<attribute-list> attributes; 

extern static struct mpr_data 

DEFINE_ICON_FROM_IMAGE(name, image) 

static short icon_image[]; 

Description 

Creates and returns the opaque handle to an icon. 

Destroys icon. 

Retrieves the value for an attribute of icon. 

Sets the value for one or more attributes of icon. 

attributes is a null-terminated attribute list. 

Macro that creates a static memory pixrect 
icon from image; the latter typically is gen­
erated by including a file created by i conedi t. 
Note: you must pass the address of icon to the 

icon routines, since the I con object is a pointer. 

Revision A, of May 9, 1988 



330 Sun View 1 Programmer's Guide 

Table 19-10 Event Codes 0 
Event Code Description Value (for debugging) 

) 

ASCII FIRST Marks beginning of ASCII range 0 
ASCII LAST Marks end of ASCII range 127 
META FIRST Marks beginning of MET A range 128 
META LAST Marks end of MET A range 255 

ACTION ERASE CHAR BACKWARD Erase char to the left of caret 31744 
ACTION ERASE CHAR FORWARD Erase char to the right of caret 31745 
ACTION_ERASE_WORD_BACKWARD Erase word to the left of caret 31746 
ACTION_ERASE_WORD_FORWARD Erase word to the right of caret 31747 
ACTION ERASE LINE BACKWARD Erase to the beginning of the line 31748 
ACTION ERASE LINE END Erase to the end of the line 31749 

ACTION GO CHAR BACKWARD Move the caret one character to the left 31752 
ACTION GO CHAR FORWARD Move the caret one character to the right 31753 
ACTION GO WORD BACKWARD Move the caret one word to the left 31754 
ACTION GO WORD END Move the caret to the end of the word 31756 
ACTION GO WORD FORWARD Move the caret one word to the right 31755 
ACTION GO LINE BACKWARD Move the caret to the start-of the line 31757 
ACTION GO LINE END Move the caret to the end of the line 31759 
ACTION GO LINE FORWARD Move the caret to the start of the next line 31758 0 ACTION GO COLUMN BACKWARD Move the caret up one line, 31761 

maintaining colunm position 

ACTION GO COLUMN FORWARD Move the caret down one line, 31762 
maintaining colunm position 

ACTION GO DOCUMENT START Move the caret to the beginning of the text 31763 
ACTION GO DOCUMENT END Move the caret to the end of the text 31764 

ACTION STOP Stop the operation 31767 
ACTION AGAIN Repeat previous operation 31768 
ACTION PROPS Show property sheet window 31769 
ACTION UNDO Undo previous operation 31770 
ACTION FRONT Bring window to the front of the desktop 31772 
ACTION BACK Put the window at the back of _the desktop 31773 
ACTION OPEN Open a window from its icon form or close 31775 

if already open) 

ACTION CLOSE Close a window to an icon 31776 
ACTION COPY Copy the selection to the clipboard 31774 
ACTION PASTE Copy clipboard contents to the insertion point 31777 
ACTION CUT Delete the selection, put on clipboard 31781 
ACTION COPY THEN PASTE Copies then pastes text 31784 
ACTION FIND FORWARD Find the text selection to the right of the caret 31779 - -
ACTION FIND BACKWARD Find the text selection to the left of the caret 31778 
ACTION FIND AND REPLACE Show find and replace window 31780 0 - - -
ACTION SELECT FIELD FORWARD Select the next delimited field 31783 - - -

sun Revision A~ of May 9, 1988 
microsystems 



c 

c 

c 

Table 19-10 

Event Code 

ACTION SELECT FIELD BACKWARD 

ACTION MATCH DELIMITER - -
ACTION_QUOTE 

ACTION EMPTY 

ACTION STORE 

ACTION LOAD 

ACTION GET FILENAME 

ACTION SET DIRECTORY 

ACTION INCLUDE FILE 

ACTION CAPS LOCK 

PANEL EVENT CANCEL 

PANEL EVENT MOVE IN 

PANEL EVENT DRAG IN 

SCROLL_REQUEST 

SCROLL ENTER 

SCROLL EXIT 

LOC MOVE 

LOC STILL 

LOC WINENTER 

LOC WINEXIT 

LOC DRAG 

LOC RGNENTER 

LOC RGNEXIT 

LOC TRAJECTORY 

WIN REPAINT 
/ -

WIN RESIZE 

WIN STOP 

KBD_REQUEST 

KBD USE 

KBD DONE 

SHIFT LEFT 

SHIFT RIGHT 

SHIFT CTRL 

SHIFT META 

SHIFT LOCK 

Chapter 19- Sun View Interface Summary (Input Event Codes) 331 

Event Codes- Continued 

Description 

Select the previous delimited field 

Selects text up to a matching delimiter 

Causes next event in the input stream to 

pass untranslated by the keymapping system 

Causes the subwindow to be emptied 

Stores the specified selection as a new file 

Loads the specified selection as a new file 

Gets the selected filename 

Sets the directory to the selection 

Selects the current line (in pending-delete mode) 

and attempts to insert the file described by that selection 

Toggle caps lock state 

The panel or panel item is no longer "current" 

The panel or panel item was entered 

with no mouse buttons down 

The panel or panel item was entered with one or more 

mouse buttons down 

Scrolling has been requested 

Locator (mouse) has moved into the scrollbar 

Locator (mouse) has moved out of the scrollbar 

Locator (mouse) has moved 

Locator (mouse) has been still for 1/5 second 

Locator (mouse) has entered window 

Locator (mouse) has exited window 

Locator (mouse) has moved while a button was down 

Locator (mouse) has entered a region of the window 

Locator (mouse) has exited a region of the window 

Inhibits the collapse of mouse motions; clients receive 

LOC _TRAJECTORY. events for every locator motion 

the window system detects. 

Some portion of window requires repainting 

Window has been resized 

User has pressed the stop key 

Window is about to become the focus of keyboard input 

Window is now the focus of keyboard input 

Window is no longer the focus of keyboard input 

Left shift key changed state 

Right shift key changed state 

Controlkeychangedstate 

Meta key changed state 

Shift lock key changed state 

Value (for debugging) 

31782 

31894 

31898 

31899 

31785 

31786 

31788 

31788 

31891 

31895 

32000 

32001 

32002 

32256 

32257 

32258 

32512 

32513 

32514 

32515 

32516 

32519 

32520 

32523 

32517 

32518 

32522 

32526 

32524 

32525 

32530 

32531 

32532 

32534 

32529 

Revision A, of May 9, 1988 



332 Sun View 1 Programmer's Guide 

Table 19-10 

Event Code 
SHIFT CAPSLOCK 

BUT (i} 

MS LEFT 

MS MIDDLE 

MS RIGHT 

KEY_LEFT (i} 

KEY_RIGHT(i} 

KEY_TOP (i} 

Event Codes- Continued 

Description 
Caps lock key changed state 

Locator (mouse) buttons 1-10 
Left mouse button 

Middle mouse button 

Right mouse button 

Left function keys 1-15 

Right function keys 1-15 
Top function keys 1-15 

Value (for debugging) 
32528 

BUT(1) is 32544 

32544 

32545 

32546 

KEY_LEFT (1} is 32554 
KEY_ RIGHT (1} is 32570 

KEY_TOP (1} is 32586 

Revision A, of May 9, 1988 

0 

0 

0 



~-------------------------rl--~----------------~~~==::.'_~~·-

c 

c 

Chapter 19- Sun View Interface Summary (Input Event Descriptors) 333 

Table 19-11 Event Descriptors 

Event Descriptor 
WIN NO EVENTS 

WIN ASCII EVENTS 

WIN IN TRANSIT EVENTS 

WIN LEFT KEYS 

WIN MOUSE BUTTONS 

WIN RIGHT KEYS 

WIN TOP KEYS 

WIN UP ASCII EVENTS 

WIN UP EVENTS 

~~sun ~ microsystems 

Explanation 
Clears input mask- no events will be accepted. Note: the 

effect is the same whether used with a consume or an 

ignore attribute. A new window has a cleared input mask. 

All ASCII events. ASCII events that occur while the MET A 

key is depressed are reported with codes in the MET A range. 

In addition, cursor control keys and function keys are 

r~rted as ANSI escape sequences: a sequence of events 

whose codes are ASCII characters, beginning with <ESC>. 

Enables immediate LOC _MOVE, LOC _ WINENTER, and 

LOC _ WINEXIT events. Pick mask only. Off by default. 

The left function keys, KEY_LEFI'(l) -KEY_LEFI'(15}. 

Shorthand for MS_RIGHT, MS_MIDDLE andMS_LEFT. 

Also sets or resets WIN UP EVENTS. 

The right function keys, KEY_RIGHT(l)- KEY_RIGHT(l5). 

The top function keys, KEY_TOP(l)- KEY_TOP(15). 

Causes the matching up transitions to normal 

ASCII events to be reported - if you see an 'a' 

go down, you'll eventually see the matching 'a' up. 

Causes up transitions to be reported for button 

and function key events being consumed. 

Revision A, of May 9, 1988 



334 Sun View 1 Programmer's Guide 

Table 19-12 Input-Related Window Attributes 0 

Attribute Value Type Description 
WIN INPUT DESIGNEE int Window which gets events this window doesn't consume. 

(Note that the value must be the designee's WIN_DEVICE_NUMBER). 

WIN GRAB ALL INPUT boolean Window will get all events regardless of location. 

WIN KBD FOCUS boolean Whether or not the window has the keyboard focus. 

WIN KBD INPUT MASK Inputmask* Window's keyboard inputnlask. 

WIN PICK INPUT MASK Inputmask * Window's pick inputmask. 

WIN CONSUME KBD EVENT short Window will receive this event. 

WIN IGNORE KBD EVENT short Window will not receive this event 

WIN CONSUME KBD EVENTS short list Null terminated list of events window will receive. 

WIN IGNORE KBD EVENTS short list 

WIN CONSUME PICK EVENT short 

Null terminated list of events window will not receive. 

Window will receive this pick event. 0 
WIN IGNORE PICK EVENT short Window will not receive this pick event 

WIN CONSUME PICK EVENTS short list Null terminated list of pick events window will receive. 

WIN IGNORE PICK EVENTS short list Null terminated list of pick events window will not receive. 

0 
Revision A, of May 9, 1988 



c, 

c 

c 

Table 19-13 

Attribute 
ACTION IMAGE 

ACTION ITEM 

APPEND ITEM 

BOXED 

MENU CENTER 

MENU CLIENT DATA 

MENU COLUMN MAJOR 

CLIENT DATA 

DESCEND FIRST 

DEFAULT 

DEFAULT ITEM 

DEFAULT SELECTION 

MENU FIRST EVENT 

MENU FONT 

MENU GEN PROC 

GEN PULLRIGHT IMAGE 

GEN PULLRIGHT ITEM 

IMAGE ITEM 

Chapt:er 19-Sun View Interface Summary (Menu Attributes) 335 

Menu Attributes 

':•: .: .. , 

Pixrect *, action proc Create image menu item with action proc. Set only. 

char *, action proc Create string menu item with action proc. Set only. 

Menu_item Append item to end of menu. Set only. 

boolean If TRUE, a single-pixel box will be drawn around 

every menu item. 

boolean 

caddr_t 

boolean 

caddr_t 

(no value) 

int 

Menu_item 

en urn 

Event* 

Pixfont * 

(procedure) 

Pixrect *, gen proc 

char *, gen proc 

Pixrect *,value 

If TRUE, all string items in the menu will be centered. Default: 

For client's use. 

If TRUE, string items in the menu will be sorted in column-major 
order (like ls(1)) instead of row-major order. Default: FALSE 

For client's use. 

For menu_ find () . If given, search will 

be depth first, else search will be "deferred". 

Default menu item as a position. 

Default menu item as opaque handle. 

Either MENU SELECTED or MENU DEFAULT. 

The event which was initially passed into 

menu_show (). Get only. 

(Note that the event's contents can be modified.) 

Menu's font. 

Client's function called to generate the menu. 

Menu gen_proc(m, op) 

Menu m; 

Menu_generate op; 

Create image menu item with 

generate proc for pullright. Set only. 

Create string menu item with 

generate proc for pullright. Set only. 

Create image menu item with value. Set only. 

Revision A, of May 9, 1988 



336 Sun View 1 Programmer's Guide 

Table 19-13 Menu Attributes- Continued 

Attribute Value Type Description 

MENU IMAGES list of Pixrect * Create multiple image menu items. Set only. 

MENU INITIAL SELECTION enum Either MENU SELECTED or MENU DEFAULT. 

MENU INITIAL SELECTION EXPANDED boolean If TRUE, when the menu pops up, it 

automatically expands to select the initial selection. 

MENU INITIAL SELECTION SELECTED boolean If TRUE, menu comes up with its initial 

selection highlighted. If FALSE, menu comes 

up with the cursor "standing off' to the left 

MENU INSERT 

MENU INSERT ITEM 

.MENU ITEM 

MENU JUMP AFTER NO SELECTION 

MENU JUMP AFTER SELECTION 

MENU LAST EVENT 

MENU LEFT MARGIN 

MENU MARGIN 

MENU NCOLS 

MENU NITEMS 

MENU NROWS 

MENU NOTIFY PROC 

int, Menu_item Insert new item after nth item. Set only. 

Menu_item, Menu_item The item given a8 the second value is inserted 

after the one given as the first value. Set only. 

avlist 

boolean 

boolean 

Event* 

int 

int 

int 

int 

int 

(procedure) 

sun 
mlcrosystems 

Create a menu item inline - avlist same as for 

menu_create_item(}. Set only. 

If TRUE, cursor jumps back to its 

original position after no selection made. 

If TRUE, cursor jumps back to its 

original position after selection made. 

The last event read by the menu. Get only. 

Note that the event's contents can be modified. 

For each string item, margin in addition to 

MENU MARGIN on left between menu's 

border and text Default: 16. 

Margin in pixels around menu items. Default: 1. 

Number of columns in menu. 

Get only; returns the # of items in the menu. 

Number of rows in menu. 

Client's function called when the user selects 

a menu item. 

caddr_t notify_proc{m, mi) 

Menu m; 

Menu item mi; 

Revision A, of May 9, 1988 

0 

0 

0 



Table 19-13 

Attribute 

MENU NTH ITEM 

MENU PARENT 

MENU PULLRIGHT DELTA - -

MENU PULLRIGHT IMAGE 

MENU PULLRIGHT ITEM 

MENU REMOVE 

MENU REMOVE ITEM 

MENU REPLACE 

c MENU REPLACE ITEM 

MENU RIGHT MARGIN - -

MENU SELECTED 

MENU SELECTED ITEM 

MENU SHADOW 

MENU STAY UP 

MENU STRINGS 

c MENU STRING ITEM 

Chapter 19- Sun View Interface Summary (Menu Attributes) 

Menu Attributes- Continued 

Value Type 

int 

starting from 1. 

Menu_item 

int 

Pixrect *, Menu 

char*,Menu 

int 

Menu_item 

int, Menu_item 

Description 

Get only; returns nth menu item. n is counted 

The menu iteni for which the menu is a pullright. Get only. 

Number of pixels the user must move the cursor 

to the right to cause a pullright menu to pop up. 

Default: 9999. 

Create image menu item with pullright. Set only. 

Create string menu item with pullright Set only. 

Remove the nth item. Set only. 

Remove the specified item. Set only. 

Replace nth item with specified item. Set only. 

Menu_item, Menu_item The item given as first value is replaced 

with the one given as the second value 

in the menu (the old item is not replaced 

int 

int 

Menu_item 

Pixrect * 

in any other menus it may appear in). Set only. 

For each string item, margin in addition to 

MENU_ MARGIN on right 

between menu's border and text. 

Last selected item, as a position in menu. 

Last selected item, as the item's handle. 

Pattern for the shadow to be painted behind 

the menu. H 0, no shadow is painted. 

Predefined shadow pixrects you can use: 

menu_gray25_pr, menu_graySO_pr, 

and menu _gray? 5 _pr. 

337 

boolean If TRUE the first click of the Menu button puts up the menu, the 
second takes it down; in between, the menu stays up. Default: FALSE 

list of char * Create multiple string menu items. Set only. 

char *, value Create string menu item with value. Set only. 

Revision A, of May 9, 1988 



338 Sun View 1 Programmer's Guide 

Table 19-13 Menu Attributes- Continued 

Attribute Value Type Description 
MENU TITLE IMAGE Pixrect * Create image title item. Set only. 

MENU TITLE ITEM char* Create string title item. Set only. 

MENU TYPE en urn Get only; returns MENU_ MENU. 

MENU VALID RESULT boolean Tells whether a zero return value represents a legitimate value. 

0 

0 

Revision A, of May 9, 1988 



c 

C' 

Table 19-14 

Attribute 
MENU_ACTION_IMAGEt 

MENU_ACTION_ITEMt 

MENU ACTION PROC 

MENU_APPEND_ITEMt 

MENU_BOXEDt 

MENU_CENTERt 

MENU_CLIENT_DATAt 

MENU FEEDBACK 

MENU_FONTt 

MENU_GEN_PROCt 

MENU GEN PROC IMAGE 

MENU GEN PROC ITEM 

MENU GEN PULLRIGHT 

MENU GEN PULLRIGHT IMAGEt -

MENU_GEN_PULLRIGHT_ITEMt 

MENU IMAGE 

MENU IMAGE_ITEMt 

MENU INACTIVE 

Chapter 19-Sun View Interface Summary (Menu Item Attributes) 339 

Menu Item Attributes 

Value Type 
Pixrect *, action proc 

char *, action proc 

(procedure) 

Menu_item 

boolean 

boolean 

caddr_t 

boolean 

Pixfont * 

(procedure) 

Pixrect *, (procedure) 

char *, (procedure) 

generate proc 

Pixrect *,(procedure) 

char *, gen proc 

Pixrect * 

char *, action proc 

boolean 

Description 
Modifies appropriate fields in item. Set only. 

Modifies appropriate fields in item. Set only. 

Client's function called after item has been selected: 

caddr_t action_proc(menu, menu_item) 
Menu menu 

Menu item menu item - -

Append item to end of menu. Set only. 

If TRUE, a single-pixel box will be drawn around the item. 

If TRUE, the menu item will be centered on its row in the menu. 
Only meaningful for menu strings. 

For use by the client. 

If FALSE, item is never inverted and is not selectable. 

Item's font. 

Client's procedure called to generate the item. 

Modifies appropriate fields in item. Set only. 

Modifies appropriate fields in item. Set only. 

Generate proc for the item's pullright. 

Modifies appropriate fields in item. Set only. 

Modifies appropriate fields in item. Set only. 

Item's image. 

Modifies appropriate fields in item. Set only. 

If TRUE, item is grayed out and not selectable. 

t Many of the attributes in this table appeared in the previous table. Menus a:nd menu items have many attributes in common. Attributes marlced with 
"t" are also valid for menus, although the effect of the attribute may differ. 

Revision A, of May 9, 1988 



340 Sun View 1 Programmer's Guide 

Table 19-14 

Attribute 

MENU INVERT 

MENU_LEFT_MARGINt 

MENU_MARGINt 

MENU_PARENTt 

MENU PULLRIGHT 

MENU PULLRIGHT_IMAGEt 

MENU_PULLRIGHT~ITEMt 

MENU RELEASE 

MENU RELEASE IMAGE 

MENU_RIGHT_MARGINt 

MENU_SELECTEDt 

MENU_STRINGt 

MENU_STRING_ITEMt 

MENU_TYPEt 

MENU VALUE 

Menu Item Attributes- Continued 

Value Type 

boolean 

int 

int 

Menu 

Menu 

Pixrect *, Menu 

char *,Menu 

(no value) 

(no value) 

int 

boolean 

char* 

char*, value 

en urn 

caddr_t 

Description 

If TRUE, item's display is inverted. 

Margin in addition of MENU _MARGIN on left between 

menu's border and text. 

Margin in pixels around the item. 

The menu containing the item. 

Item's pullright menu. 

Modifies appropriate fields in item. Set only. 

Modifies appropriate fields in item. Set only. 

The item will be automatically destroyed when its parent 

menu is destroyed (default for items created inline). 

The string or pixrect associated with the item will be 

freed when the item is destroyed. 

Margin in addition of MENU_ MARGIN on right between 

menu's border and text. 

If TRUE, the item is currently selected 

Item's string. 

Modifies appropriate fields in item. Set only. 

Get only, returns MENU_ ITEM. 

Item's value. 

Revision A, of May 9, 1988 

0 

0 

0 



______________________________ , .. ____ , ___ -J ____ _,. - ~=c, __ 

Chapter 19 - Sun View Interface Summary (Menu Functions) 341 

c Table 19-15 Menu Functions 

:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~:;:;:;:;:;:;>,:;:;:;:;:, ;:;:;:;:;:;:;:::::::;:;:;:;:;.;:;:;:;:;:;:~·:;:;:;:;:::::;:;:;:;:;:;:;:;:;:::::::;:;:::::::::::;:;:;:;:·:;:·:~;:;:;:;:;:;:;:::::::;:~;:;:;:;:;:;:;:;:;:~::::::::::·:;:;:;:;:;:;:·:;:;:;:;:;:;:;:;:::::;:;:•.;:;:·:;:;:;:;:;:;:;.;:;:·:::::;:;:;:;:;:; ,:;:;:;:;:;:;:;:;:;::··:;.·:·:··.:;:;:;:;:;:;:;:::::;::::::.;:;:;:;:;:;:;:;::::•:o.:::::·:·:;:;:>>,:;;o;;:;:;:·:;:;:;:·:-:-:·:;:-:·:;:·:::::·:;:·:;:;:;.•.;:;:;:;:::·::::::::: •• ;~:;:;:;:;:;:·:;:;:·:;:;:;:::::::::::::-

Definition Description 
Menu 

menu _create(attributes) Creates and returns the opaque handle for a walking menu. 

<attribute-list> attributes; ; 

Menu item Creates and returns the opaque handle for a single item -
menu - create - item(attributes) within a walking menu. 

<attribute-list> attributes; 

void 

menu_destroy(menu_object) Destroys a menu or menu item. 

<Menu or Menu item> menu_ object; -

void The function supplied as destroy_proc is called before 

menu_destroy_with_proc(menu_object, destroy_proc) the menu or menu item is destroyed. Arguments: 

<Menu or Menu item> menu_object; destroy_proc(menu_object, type) -
void (*destroy_proc) (); <Menu or Menu_item> menu_object; c Menu attribute type; 

type is MENU_ MENU for menus, MENU_ ITEM for items. 

Menu item -
menu find(menu, attributes) Returns the first menu item in menu meeting the criteria 

Menu menu; specified in attributes. 

<attribute-list> attributes; 

caddr t -
menu_get(menu_object, attribute [, optional_arg]) 

<Menu or Menu item> menu_object; Retrieves the value for an attribute of a menu or menu item. -
Menu attribute attributes; 

caddr t optional_arg; -

int 

menu_set(menu_object, attributes) Sets the value of one or more attributes for a menu or menu. 

<Menu or Menu item> menu_object; item. at tributes is a null-terminated attribute list. 

<attribute-list> attributes; 

caddr t Displays the menu, gets a selection from the user, and, by -
menu show (menu, window, event, 0) default, returns the value of the item the user has selected. 

Menu menu; window is the handle of the window over which the menu 

Window window; is displayed; event is the event which causes the menu to 

c Event *event; come up. The final argument is currently ignored. 

Revision A, of May 9, 1988 



I 

342 Sun View 1 Programmer's Guide 

Table 19-15 Menu Functions- Continued 

Definition 
caddr t menu_show_using_fd(menu, fd, event} 

Menu menu; 

int fd; 

Event *event; 

caddr t 

menu_return_item(menu, menu item} 

Menu menu; 

Menu item menu_item; 

caddr t 
menu_return_value(menu, menu item} 

Menu menu; 
Menu i tern menu i tern; 

Description 

Provided for compatibility with Sun Windows 2.0. Allows 

you to display a menu within a window using the windowfd. 

Predefined notify proc which; if given as the value for 

MENU_NOTIFY_PROC, causes menu_show (}to return 

the handle of the selected item, rather than its value. 

Default notify proc for menus. Causes menu_ show (} 

to return the value of the selected item. 

Revision A, of May 9, 1988 

0 

0 



~----------------------------..--------------... ""-----...1~~~;;~,~~ 

c 

c 

c\ 

Chapter 19 -Sun View Interface Summary (Notifter Functions) 34 3 

Table 19-16 

Notify_client client; 

int pid; 

union wait *status; 

struct rusage *rusage; 

Notify_error 

notify_do_dispatch() 

Notify_error 

Notifier Functions 

pid, status, rusage) 

ify_interpose_destroy_func(client, destroy_func) 
Notify_client client; 

destroy_func; 

error 

fy_interpose_event_func(client, 

event_func, type) 

Notify_client 

Notify_func 

client; 

event_func; 

Notify_event_type type; 

fy_error 

notify_itimer_value(client, which, value) 

Notify_client client; 

int which; 

struct itimerval *value; 

fy_value 

ify_next_destroy_func(client, status) 
Notify_client client; 

Destroy_status status; 

~~sun ~ microsysterns 

Predefined function you can register with the Notifier via the 

notify_set_wait3_func () call. Causes the required 

housekeeping to be performed on the process identified by pid 

when it dies. See the wai t(2) man page for details of the 
wait and rusage structures. 

Provided to allow programs which are not notification-based to 

run in the Sun View environment. Called regularly from within 

the application's main loop to allow the Notifier to go once 

around its internal loop and dispatch any pending events. 

Called once, before the application's main loop. Enables 

"implicit dispatching," in which the Notifier dispatches 
events from within calls to read(2) or select(2). 

Interposes destroy_ func () in front of 

client's destroy 11vent handler. 

Interposes event_ func () in front of 

client's event handler. 

Returns the current state of an interval timer for client in the 

structure pointed to by value. The which parameter 

is either I TIMER REAL or !TIMER VIRTUAL. 

Calls the next destroy event handler for client. 
status returns DESTROY_PROCESS_DEATH, 

DESTROY_CHECKIN~orDESTROY_CLEANUP. 

Revision A, of May 9, 1988 



344 Sun View 1 Programmer's Guide 

Table 19-16 Notifier Functions- Continued 

Definition 
Notify_value 

notify_next_event_func(client, event, arg, type) 

Notify_client client; 

Event 

Notify_arg 

*event; 

arg; 

Notify_event_type type; 

Notify_error 

notify_no_dispatch() 

void 

notify_perror(s) 

char *s; 

Notify_func 

notify_set_destroy_func(client, destroy_func) 

Notify_client client; 

Notify_func destroy_func; 

Description 

Calls the next event handler for client. 

Prevents the Notifier from dispatching events from within the 
call to read(2) or select(2). 

Analogous to the UNIX perror(3) system call. 
s is printed to stderr, followed by a terse description of 
notify_errno (). 

Registers destroy_func () with the Notifier. 

destroy_ func () will be called when a 

destroy event is posted to client or when the process 

receives a S I GTERM signal. 

Notify _func Registers the exception handler exception_ func () 

notify_set_exception_func (client, exception_func, fd) with theNotifier. The only known devices that generate 

Notify_ client client; exceptions at this time are stream-based socket 

Notify_ func exception_ func; connections when an out-of-band byte is available. 

int fd; 

Notify_func 

notify_set_input_func(client, input_func, fd) 

Notify_client client; 

Notify_func input_func; 

int fd; 

Notify_func 

notify_set_itimer_func(client, itimer_func, which, 

value, ovalue) 

Notify_client 

Notify_func 

int 

client; 

itimer_func; 

which; 

struct itimerval *value, *ovalue; 

Registers input_func () with the Notifier. 

input_ func () will be called wheneve! 

there is input pending on f d. 

Registers the timeout event handler i timer_ func () 

with the Notifier. The semantics of which, value 

and ovalue parallel the arguments to setitimer 

(see the geti timer manual page). 

which is either I TIMER REAL or !TIMER VIRTUAL. - -

Revision A, of May 9, 1988 

0 

0 



Chapter 19 -Sun View Interface Sununary (Notifier Functions) 345 

c Table 19-16 Notifier Functions- Continued 

Definition Description 
Notify_func 

notify_set_signal_func(client, signal_ func, 

signal, when) Registers the signal event handler signal_func () with 
Notify_client client; theNotifier. signal_func () will be called whenever 
Notify_func signal_ func; signal is caught by the Notifier. when can be either 
int signal; NOTIFY SYNC or NOTIFY ASYNC. -
Notify_signal_mode when; 

Calling notify_set_signal_func () with a NULL in the 

place of the signal_func () turns off checking for that 

signal for that client. 

Notify_error 

notify_ start() Begins dispatching of events by the Notifier. 

Notify_error 

notify_stop () Terminates dispatching of events by the Notifier. 

Notify_func 

c notify_set_output_func(client, output_ func, fd) Registers output_ func () with the Notifier. 

Notify_client client; output_func () will be called whenever 

Notify_func output_func; output has been completed on f d. 

int fd; 

Notify_func Registers the function wai t3 _ func () with the Notifier. 
notify_set_wait3_func(client, wait3 func, pi d) The registered function will be called after the child 

Notify_client client; process identified by pid dies. To do the minimum 

Notify_func wait3 - func; processing, register the predefined function 

int pid; notify_default_wait3(). 

Notify_error Called from within a destroy event handler when status 

notify_veto_destroy(client) is DESTROY_ CHECKING and the application does not 

Notify_client client; want to be destroyed. 

c 
Revision A, of May 9, 1988 



346 Sun View 1 Progranuner's Guide 

Table 19-17 Panel Attributes 

Attribute Value Type 

PANEL ACCEPT KEYSTROKE boolean - -

PANEL BACKGROUND PROC (procedure) 

PANEL BLINK CARET boolean 

PANEL CARET ITEM Panel_ item 

PANEL EVENT PROC (procedure) 

PANEL FIRST ITEM Panel_item 

PANEL ITEM X GAP int 

PANEL ITEM Y GAP int 

PANEL LABEL BOLD boolean 

PANEL LAYOUT Panel_setting 

PANEL SHOW MENU boolean 

Description 

H TRUE, keystroke events are passed 

to the panel's PANEL_ BACKGROUND _PROC. Default: FALSE. 

Event hanqling procedure called when an 

event falls on the background of the panel. Fonn: 

background_proc(panel, event) 

Panel panel 

Event *event 

H TRUE, the caret blinks. Default: setting of Blink_ caret in the Text 

category of defaultsedit. 

Text item which currently has the caret. 

Default: first text item. 

Event handling procedure for panel items. 

Sets the default for subsequent items created in panel. Fonn: 

event_proc(item, event) 

Panel item item 

Event *event 

First item in the panel. Get only. 

Nqmber of x-pixels between items. Default: 10. 

Number of y-pixels between items. Default: 5. 

H TRUE, item's label is rendered in bold. 

Sets the default for subsequent items created in panel. Default: FALSE. 

Layout of item's value relative to the label. 

PANEL_ HORIZONTAL (default) or PANEL_ VERTICAL. 

H TRUE, the menu for the item is enabled. 

Sets the default for subsequent items created in panel. 

Revision A, of May 9, 1988 

0 

0 

0 



c Table 19-18 

PANEL ACCEPT KEYSTROKE 

PANEL CLIENT DATA 

PANEL EVENT PROC 

PANEL ITEM RECT 

PANEL ITEM X 

PANEL ITEM Y 

PANEL LABEL X 

PANEL LABEL Y 

PANEL LABEL BOLD 

PANEL LABEL FONT 

PANEL_LABEL_IMAGE 

PANEL LABEL STRING 

PANEL LAYOUT 

PANEL MENU CHOICE FONTS 

PANEL MENU CHOICE IMAGES 

PANEL MENU CHOICE STRINGS 

c 
PANEL MENU CHOICE VALUES 

Chapter 19- Sun View Interface Summary (Panel Generic Item Attributes) 347 

Generic Panel Item Attributes 

boolean 

caddr_t 

(procedure) 

Rect* 

int 

int 

int 

int 

boolean 

Pixfont * 

Pixrect * 

ch3.r * 

Panel_setting 

list of Pixfont * 

list of Pixrect * 

list of char * 

list of caddr_t 

sun 
microsystems 

If TRUE, keystroke events are passed to the item's EVENT PROC. 

For application's use. 

Event handling procedure for the item. 

Enclosing rectangle for the item. Get only. 

Left edge of item rectangle. If unspecified and label or value positions are 
fixed, thensettominof PANEL_LABEL_Xand PANEL_VALUE X. 
Default: after lowest, rightmost item 

top edge of item rectangle. If unspecified and label or value positions are 
fixed, then set to min of PANEL_ LABEL_ Y and PANEL_ VALUE_ Y. 
Default: previous item's PANEL_ITEM_Y. 

Left edge of label. If unspecified and value position is fixed, then set to 
left of PANEL_VALUE_X for horizontal layout, or at PANEL_VALUE X 
forverticallayout Default: PANEL_ITEM_X. 

Top edge of label. If unspecified and value position is fixed, then set to 
PANEL_ VALUE_ Y for horizontal layout, or above PANEL VALUE Y 
for vertical layout Default: PANEL_ ITEM_ Y. 

If TRUE, item's label is rendered in bold. Default: FALSE. 

Fontfor PANEL LABEL STRING. Default: WIN_FONT. 

Image for item's label. 

String for item's label. 

Layout of item's value relative to the label. PANEL HORIZONTAL 
(default) or PANEL_ VERTICAL. 

Font for each menu choice string. Create, set. Default: WIN FONT. 

Image for each menu choice. Create, set. Default: 
PANEL_ CHOICE_ IMAGES for choice items, PANEL LABEL IMAGE 
for button items, NULL for other items. 

String for each menu choice. Create, set. Default: 

PANEL_ CHOICE_ STRINGS for choice items, NULL for other items. 

The values returned from the item's menu. Create, set 

Revision A, of May 9, 1988 



348 Sun View 1 Programmer's Guide 

Table 19-18 Generic Panel Item Attributes- Continued 

Attribute Value Type 

PANEL MENU TITLE FONT Pixfont * 

PANEL MENU TITLE IMAGE Pixrect * - '-

PANEL MENU TITLE STRING char* 

PANEL NEXT ITEM Panel_ item 

PANEL NOTIFY PROC (procedure) 

PANEL PAINT Panel_setting 

PANEL PARENT PANEL Panel 

PANEL SHOW ITEM boolean 

PANEL SHOW MENU boolean 

PANEL VALUE X int 

PANEL VALUE Y int 

·It~ sun 
, microsystems 

Description 

FontforPANEL MENU TITLE STRING. 

Image for the menu title. 

String for the menu title. 

Next item in the panel. Get only. 

Function to call when item is selected. Form for button and text items: 

notify_proc(item, event) 

Panel item item 

Event *event 

Choice and slider items have an additional parameter for the current value: 

notify_proc(item, value, event) 

Panel item item 

int value 

Event *event 

For toggle items, the value parameter is of type unsigned int. 

The type for a text item notify _proc is Panel_ setting. 

Item's painting behaviorfor panel_ set() calls. One of: 

PANEL_NONE,PANEL_CLE~orPANEL_NO_CLEAR 

The panel which contains the item. 

Whether or not to show the item. Default: TRUE. 

If TRUE, the menu for the item is enabled. 

Left edge of value. If unspecified and label position is fixed, 

then set to right of PANEL_ LABEL_ X for horizontal layout, or 

at PANEL_ LABEL_ X for vertical layout. Default: after the label. 

Top edge of value. If unspecified and label position is fixed, then set 

to PANEL_ LABEL_ Y for horizontal layout, or below 

PANEL LABEL Y for vertical layout. Default: PANEL LABEL Y. 

Revision A, of May 9, 1988 

0 

0 

0 



c Table 19-19 

Attribute 
PANEL CHOICE FONTS 

PANEL CHOICE IMAGE 

PANEL CHOICE IMAGES 

PANEL CHOICE STRING 

PANEL CHOICE STRINGS 

PANEL CHOICE X 

PANEL CHOICE XS 

c PANEL CHOICE Y - -

PANEL CHOICE YS 

PANEL CHOICES BOLD 

PANEL DISPLAY LEVEL 

PANEL FEEDBACK 

PANEL LAYOUT 

PANEL MARK IMAGE 

c 

Chapter 19- Sun View Interface Summary (Panel Choice and Toggle Item Attributes) 349 

Choice and Toggle Item Attributes 

Value Type 
list of Pixfont * 

int, pixrect * 

list of Pixrect * 

int, char* 

list of char * 

int, int 

list of int 

int, int 

list of int 

boolean 

Panel_setting 

Panel_setting 

Panel_setting 

int, Pixrect * 

Description 
Font to use for each choice string. Create, set. 

Image for choice specified by the first argument. 

Image for each choice. Create, set. 

String for choice specified by first argument 

String for each choice. Note that you must specify at 
least one choice- the least you can specify is a single 
null string (PANEL_CHOICE_STRINGS, "", 0). 
Create, set 

Second argument is left edge of choice specified by first 
argument. 

Left edge of each choice. Create, set. 

Second argument is top edge of choice specified by first 
argument 

Top edge of each choice. Create, set. 

If TRUE, choices strings are in bold. Default: FALSE. 

How many choices to display. One of PANEL_NONE, 
PANEL_ CURRENT, or PANEL ALL. Default: 
PANEL ALL. 

Feedback to give when a choice is selected. One of 
PANEL_NONE, PANEL_MARKED, 
PANEL INVERTED. If PANEL DISPLAY LEVEL is 
PANEL_ CURRENT, default is PANEL_ NONE, otherwise 
PANEL MARKED. 

Layout of the.choices: PANEL_ HORIZONTAL (default) 
or PANEL VERT I CAL. 

Image to mark choice specified by the first argument 
when it is selected. Default is push-button image: 
<images/panel_choice_on.pr>. 

Revision A, of May 9, 1988 



350 Sun View 1 Programmer's Guide 

Table 19-19 

Attribute 

PANEL MARK IMAGES 

PANEL MARK X 

PANEL MARK XS - -

PANEL MARK Y 

PANEL MARK YS - -

PANEL MENU MARK IMAGE - - -

PANEL MENU NOMARK IMAGE 

PANEL NOMARK IMAGE 

PANEL NOMARK IMAGES 

PANEL SHOW MENU MARK - - -

PANEL TOGGLE VALUE 

PANEL VALUE 

Choice and Toggle Item Attributes- Continued 

Value Type 

list of Pixrect * 

int, int 

list of int 

int, int 

list of int 

Pixrect * 

Pixrect * 

int, Pixrect * 

list of Pixrect * 

boolean 

int, int 

int or unsigned 

Description 

Image to mark each choice with when selected. Create, 

set only. Default is push-button image: 
<images/panel_choice_on.pr>. 

Second argument is left edge of choice mark specified by 

first argument. 
) 

Left edge of each choice mark. Create, set. 

Second argument is top edge of choice mark specified by 

first argument. 

Top edge of each choice mark. Create, set. 

Image to mark each menu choice with when selected. 

Image to mark each menu choice with when not selected. 

Image to mark choice specified by the first argument 

when it is not selected. Default is push-button image: 

<images/panel_choice_off.pr>. 

Image to mark each choice with when not selected. 

Create, set. Default is push-button image: 
<images/panel_choice_off.pr>. 

Show or don't show the menu mark for each selected 

choice. Default: TRUE. 

Value of a particular toggle choice. Second argument is 

value of choice specified by first argument. 

If item is a choice, value is ordinal position (from 0) of 

current choice. If item is a toggle, value is a bi1mask 

indicating currently selected choices (e.g., bit 5 is 1 if 
5th choice selected). 

Revision A, of May 9, 1988 

0 

0 



Chapter 19-Sun View Interface Summary (Panel Slider Item Attributes) 351 

c Table 19-20 Slider Item Attributes 

Attribute Value Type Description 
PANEL MIN VALUE int Minimum value of slider. Default: 0. 

PANEL MAX VALUE int Maximum value of the slider. Default: 100. 

PANEL NOTIFY LEVEL Panel... setting When to call the notify function: PANEL_ DONE notifies when the 
select button is released, PANEL_ ALL notifies continuously as the 
select button is dragged. Default: PANEL DONE. 

PANEL SHOW RANGE boolean Show or don't show the min and max slider values. Default: TRUE. 

PANEL SHOW VALUE boolean Show or don't show integer value of slider. Default: TRUE. 

PANEL SLIDER WIDTH int Width of the slider bar in pixels. Default: 100. 

PANEL VALUE int Initial or new value for the item, in the range 
PANEL MIN VALUE to PANEL MAX VALUE. Default: 
PANEL MIN VALUE. 

c PANEL VALUE FONT Pixfont * Font to use when displaying the value. 

c 
Revision A, of May 9, 1988 



352 S1mView 1 Programmer's Guide 

Table 19-21 Text Item Attributes 

Attribute Value Type 

PANEL MASK CHAR char 

PANEL_ NOTIFY _LEVEL Panel_setting 

PANEL NOTIFY STRING char* - -

PANEL VALUE STORED LENGTH mt 

PANEL VALUE DISPLAY LENGTH mt - - -

PANEL VALUE char* 

PANEL VALUE FONT Pixfont* 

Description 

Character used to mask type-m characters. Use the space character 

for no character echo (caret does not advance). Use the null char­

acter to disable maskffig. 

When tO call the notify function. One of PANEL _NONE, 

PANEL_NON_PRINTABLE, PANEL_SPECIFIE~or 

PANEL_ALL. Default: PANEL_SPECIFIED (see Text 

Notification). 

Strmg of characters which trigger notification when typed. 

Applies only when PANEL_ NOTIFY_ LEVEL is 

PANEL_SPECIFIED. Default: \n\r\t (newlme, carriage return 

and tab). 

Max number of characters to store in the value strmg. Default: 80. 

Max number of characters to display m the panel. Default: 80. 

Initial or new strmg value for the item. 

Font to use for the value strmg. 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Chapter 19- Sun View Interface Summary (Panel Functions and Macros) 353 

Table 19-22 Panel Functions and Macros 

panel_accept_key(object, event) 
<PanelorPanel item> object; 
Event *event; 

panel_accept_menu(object, event} 
<PanelorPanel item> object; 
Event *event; 

panel_accept_preview(object, event} 
<Panel or Panel item> object; 
Event *event; 

Panel item 

panel_advance_caret(panel} 
Panel panel; 

Panel item 

panel_backup_caret(panel} 
Panel panel; 

panel_begin_preview(object, event} 
<Panel or Panel item> object; 
Event *event; 

Pixrect * 

panel_button_image(panel, string, width, font} 
Panel panel; 

char *string; 

int width; 

Pixfont *font; 

panel_cancel_preview(object, event} 
<Panel or Panel item> object; 
Event *event; 

Panel item 
panel_create_item(panel, item_type, attributes) 

Panel panel; 
<item type> item_type; 
<attribute-list> at tributes; 

Action function which tells a text item to accept a keyboard event. 
Currently ignored by non-text panel items. 

Action function which tells an item to display its menu and process 
the user's selection. 

Action function which tells an item to do what it is supposed to do 
when it is selected. This may include completing feedback 
initiated by panel_begin_preview (}. 

Advance the caret to the next text item. If on the last 
text item, rotate back to the first. Returns the new 
caret item, or NULL if there are no text items. 

Backup the caret to the previous text item. If on the 
first text item, rotate back to the first. Returns the 
new caret item, or NULL if there are no text items. 

Action function which tells an item to begin any feedback which 
indicates tentative selection. 

Creates a standard, button-like image from a string. The string is 
rendered in font, centered within a double-pixel border width 
characters wide. If width is too narrow for the string, the border 
will be expanded to contain the entire string. If font is 0, 
panel's font is used. 

Action function which tells an item to cancel the feedback initiated 
by panel_begin_preview (}. 

Creates and returns the opaque handle to a panel item. i tern_ type 
is one.of: PANEL_MESSAGE, PANEL_BUTTON, PANEL_ CHOICE, 
PANEL_CYCLE,PANEL_TOGGLE,PANEL_TEXTor 
PANEL SLIDER attributes is a null-terminated attribute list. 

Revision A, of May 9, 1988 



354 Sun View 1 Programmer's Guide 

Table 19-22 
' 

Panel Functions and Macros- Continued 0 
Definition Description 

panel_default_handle_event(object, event) The default event proc for panel items (PANEL_ EVENT_ PROC) 

<Panel or Panel item> object; and for the panel's background (PANEL_ BACKGROUND _PROC). 
-

Event *event; Implements the standard event-to-action mapping for the item types. 

panel_destroy_item(item) Destroys item. 

Panel item item; 

panel_each_item(panel, item) Macro to iterate over each item in a panel. The corresponding macro 

Panel panel; panel_ end_ each closes the loop opened by 

Panel - item item; panel_each_item(). 

Event * Translates the coordinates of event from the space of the panel 

panel _event(panel, event) subwindow to the space of the logical panel 

Panel panel; (which may be larger and scrollable). 

Event *event; 

caddr t Retrieve the value of an attribute for i tern. optional_arg is 
-

panel_get(item, attribute [, optional_arg]) used for a few attributes which require additional information, 

Panel _item item; such as PANEL CHOICE IMAGE, PANEL_CHOICE_STRING, - -
Panel attribute attribute; PANEL_CHOICE_X, PANEL_CHOICE_Y, 

Panel attribute optional_arg; PANEL _MARK _X, PANEL_ MARK_ Y, PANEL_ TOGGLE_ VALUE. 0 
caddr t A macro, defined as: 

-
panel_get_value(item) panel_get (item, PANEL_VALUE) 

Panel item item; 

panel_paint(panel_object, paint_behavior) Paints an item or an entire panel. paint_ behavior can be either 

<Panel_ item or Panel> panel_object; PANEL CLEAR or PANEL NO CLEAR. PANEL CLEAR causes 
- - -

Panel_setting paint_behavior; the area occupied by the panel or item to be cleared prior to painting. 
~ 

panel_ set(item, attributes) Sets the value of one or more panel attributes. 

Panel _item item; attributes is a null-terminated attribute list. 

<attribute-list> attributes; 

panel_ set_value(item, value) A macro, defined as: 

Panel item item; panel_ set (item, PANEL_VALUE, value, 0) 

caddr t value; 

Panel_setting Default notify procedure for panel text items. Causes caret 

panel_text_notify(item, event) to advance on CR or tab, caret to backup on shift-CR or shift-tab, 

Panel - item item printable characters to be inserted into i tern' s value, 

Event *,event and all other characters to be discarded. 

sun 
microsystems 

Revision A, of May 9, 1988 



Chapter 19- Sun View Interface Summary (Panel Functions and Macros) 355 

c Table 19-22 Panel Functions and Macros- Continued 

Definition Description 
panel_update_preview(object,- event) Action function which tells the item to update its previewing 

<Panel or Panel item> object; feedback (e.g. redraw the slider bar for a slider item). 
Event *event; 

panel_update_scrolling_size(panel) Updates the scrollbar's notion of the panel's size, 
Panel panel; so the scrollbar's bubble will be the correct size. 

Event * Translates the coordinates of event to the space of the panel 
panel_window_event(panel, event) subwindow from the space of the logical panel 

Panel panel; (which may be larger and scrollable). 
Event *event; 

c 
~~sun ~ microsystems 

Revision A, of May 9, 1988 



356 Sun View 1 Programmer's Guide 

Table 19-23 Pixwin Drawing Functions and Macros 

Definition 

pw_batch(pw, n) 

Pixwin 

Pw_batch_type 

pw_batch_off(pw) 

Pixwin *pw; 

pw_batch_on(pw) 

Pixwin *pw; 

*pw; 

n; 

pw_batchrop(pw, dx, dy, op, items, n) 

Pixwin *pw; 

int dx, dy, op, n; 

struct pr_prpos items[]; 

pw_char(pw, x, y, 

Pixwin *pw; 

int x, y, 

Pixfont *font; 

char c; 

pw_close(pw) 

Pixwin *pw; 

op, font, 

op; 

pw_copy(dpw, dx, dy, dw, dh, 

op, spw, sx, sy) 

Pixwin *dpw, *spw; 

c) 

int op, dx, dy, dw, dh, sx, sy; 

int 

pw_get(pw, x, y) 

Pixwin *pw; 

int x, y; 

int 

pw_get_region_rect(pw, r) 

Pixwin *pw; 

Rect *r; 

Description 

Tells the hatching mechanism to refresh the screen every 

n display operations. 

A macro to turn hatching off in pw. 

A macro to turn hatching on in pw. 

See the Pixrect Reference Manual for a full explanation 

of this function. 

Writes character c into pw using the rasterop op. 

The left edge and baseline of c will be written at 

location (x, y). 

Frees any dynamic storage associated with pw, 

including its retained memory pixrect, if any. 

Copies pixels from spw to dpw. Currently spw and 

dpw must be the same. This routine will cause problems if 

spw is obscured. 

Returns the value of the pixel at (x, y) in pw. 

Retrieves the rectangle occupied by the region pw 

into the rect pointed to by r. 

RevisionA, of May 9, 1988 

0 

0 

0 



c 

C' 

c 

Chapter 19 - Srin View Interface Summary (Pixwin Drawing Functions and Macros) 357 

Table 19-23 Pixwin Drawing Functions and Macros- Continued 

Definition 
pw_line(pw, xO, yO, xl, yl, brush, tex, op) 

*pw; Pixwin 

int 
struct pr_brush 

xO, yO, xl, yl, op; 
*brush; 

struct pr_texture *tex; 

pw_lock(pw, r) 
Pixwin *pw; 
Rect *r; 

pw_pfsysclose () 

Pixfont * 
pw_pfsysopen () 

pw_polygon_2(pw, dx, dy, nbds, npts, 
vlist, op, spr, sx, sy) 

Pixwin *pw; 
int dx, dy, nbds, op, 
int npts []; 
struct pr_pos *vlist; 
Pixrect *spr; 

pw_polyline(pw, dx, dy, npts, 

sx, sy; 

ptlist, mvlist, brush, tex, op) 
Pixwin 
int 
struct pr_pos 

u char 
struct pr_brush 

*pw; 
dx, dy, npts, op; 

*ptlist; 

*mvlist; 
*brush; 

struct pr_texture *tex; 

pw_polypoint(pw, dx, dy, npts, ptlist, op) 
Pixwin *pw; 
int dx, dy, npts, op; 
struct pr_pos *ptlist; 

pw_put(pw, x, y, value) 
Pixwin *pw; 
int x, y, value; 

sun 
microsystems 

Description 

Draws a solid or textured line between two points with a 
"brush" of a specified width. 

Acquires a lock for the user process making the call. 
r is the rectangle in pw 's coordinate system 
that bounds the area to be affected. 

Closes the system font opened with pw _pf sysopen (). 

Opens the system font. 

Draws a polygon in pw. 

Draws multiple lines of a specified width and texture in 
pw. 

Draws an array of npts points in the pixwin pw 

Drawsapixelofvalueat(x, y)inpw. 

Revision A, of May 9, 1988 



358 Sun View 1 Programmer's Guide 

Table 19-23 Pixwin Drawing Functions and Macro~ Continued 0 
Definition Description 

pw_read(pr, dx, dy, dw, dh, op, pw, sx, sy) 
Reads pixels frotnthe pixwin pw starting at offset (sx, 

Pixwin *pw; 

int dx, dy, dw, dh, 
sy), using rasterop op. The pixels are stored in the rec-

op, sx, sy; tangle (dx, dy, dw, dh) in the pixrect pointed to by pr. 
Pixrect *pr; 

Pixwin * 

pw_region(pw, x, y, width, height) 
Creates a new pixwin refering to an area within the existing 
pix win pw. The origin of the new region is given by (x, 

Pixwin *pw; y), the dimensions by width and height. 
int x, y, w, h; 

pw_replrop(pw, dx, dy, dw, dh, 

op, pr, sx, sy) Replicates a pattern from a pixrect into a pixwin. 

Pixwin *pw; 

int dx, dy, dw, dh, op, sx, sy; 

Pixrect *pr; 

pw_reset(pw) Macro which sets pw's lock count to 0 and releases its lock. 

Pixwin *pw; 

pw_rop(pw, dx, dy, dw, dh, 

op, sp, sx, sy) Performs the rasterop op from the source pixrect 0 
Pixwin *pw; sp to the destination pixwin pw. 

Pixrect *sp; 

int dx, dy, dw, dh, op, sx, sy; 

int 

pw_set_region_rect(pw, r, use_same_pr) The position and size of the region pw are set to the rect 

Pixwin *pw; 
*r. 
If use_same_pr is 0 anew retained pixrect is allocated 

Rect *r; for the region. 
unsigned int use_ same _pr; 

pw_show(pw) Macro to refresh the screen while hatching, without affect-

Pixwin *pw; ing the hatching mode. 

pw_stencil(dpw, dx, dy, dw, dh, op, Like pw _write () , except that the source pixrect spr is 
stpr, stx, sty, spr, sx, sy) written through the stencil pixrect stpr, which functions 

Pixwin *dpw; as a spatial write enable mask. The raster operation op is 

int dx, dy, dw, dh, op, stx, - sty, sx, sy; only applied to destination pixels where the st pr is non-

Pixrect *stpr, *spr; 
zero; other destination pixels remain unchanged. 

pw_text(pw, x, y, op, font, s) 

Pixwin *pw; Writes the string s into pw using the rasterop op. 

int x, y, op; The left edge and baseline of the first character in s will 

Pixfont *1font; appear at coordinates (x, y). 0 
char *s; 

Revision A, of May 9, 1988 



Chapter 19-Sun View Interface Summary (Pixwin Drawing Functions and Macros) 359 

c Table 19-23 Pixwin Drawing Functions and Macros- Continued 

Definition Description 
pw_traprop(pw, dx, dy, t, op, pr, sx, sy) 

Pixwin *pw; 

struct pr_trap t; 
Like pw _ rop () , but operating on a trapezon rather than a 

Pixrect *pr; 
rectangle. 

int dx, dy, op, sx, sy; 

pw_ttext(pw, x, y, op, font, s) 

Pixwin *pw; Like pw _text () except that it writes "transparent" text, 
int x, y, op; i.e. it writes the shape of the letters without disturbing the 

Pixfont *font; background behind the letters. 

char *s; 

pw_unlock(pw) Decrements the lock count for pw. IT the lock count goes 
Pixwin *pw; to 0, the lock is released. 

pw_vector(pw, xO, yO, xl, yl, op, value) Draws a vector of pixel value from (xO, yO) to (xl, 
Pixwin *pw; yl) in pw using rasterop op. 

int op, xO, yO, xl, yl, value; 

pw_write(pw, dx, dy, dw, dh, Writes pixels to pw in the rectangle defined by dx, dy, 
' op, pr, sx, sy) dw, dh, using rasterop op. Pixels to write are taken from 

Pixwin *pw; the rectangle with its origin at sx, sy in the source pix-

int dx, dy, dw, dh, op, sx, sy; rect pointed to by pr. 

Pixrect *pr; Note: this is an alternative form of pw _ rop. 

pw_writebackground(pw, dx, dy, dw, dh, op) Writes pixels with value zero into pw using the rasterop op. 

Pixwin *pw; xd, yd, width and height specify the rectangle in 

int dx, dy, dw, dh, op; pw which is affected. 

c 
Revision A, of May 9, 1988 



360 Sun View 1 Programmer's Guide 

Table 19-24 Pixwin Color Manipulation Functions 0 

Definition Description 
pw_blackonwhite(pw, min, max) Sets the foreground to black, the background to white, for pixwin 

Pixwin *pw; pw. min and max should be the first and last entries, respectively, 

int min, max;, in pw's colormap segment. 

pw_cyclecolormap(pw, cycles, index, count) Rotates the portion of pw's colormap segment starting at index 
Pixwin *pw; for count entries, rotating those entries among themselves 

int cycles, index, count; cycles times. 

pw_dbl_access(pw) Resets the window's data structure so that the first frame will be ren-

Pixwin *pw; dered to the background. 

pw_dbl_flip (pw) Allows you to flip the display. 

Pixwin *pw; 

pw_dbl_get(pw, attribute) Retrieves the value of the specified attribute. 

Pixwin *pw; 

Pw_dbl_attribute attribute; 0 
pw_dbl_ release() Signifies the end of double-buffering by the window associated with 

Pixwin *pw; thepixwin. 

pw_dbl_set(pw, attributes) 
Sets the pixwin hardware double-buffering attributes in attri-

Pixwin *pw; 
butes. 

<attribute-list> attributes; 

pw_getattributes(pw, planes) Retrieves the value of pw 's access enable mask 

Pixwin *pw; into the integer addressed by planes. 

int *planes; 

pw_getcmsname(pw, cmsname) Copies the colormap segment name of pw into cmsname. 

Pixwin *pw; 

char cmsname[CMS_NAMESIZE]; 

pw_getcolormap(pw, index, count, Retrieves the state of pw' s colormap. The count elements 

red, green, blue) of the pixwin's colormap segment starting at index 

Pixwin *pw; (0 origin) are loaded into the first count values in the 

int index, count; three arrays. 

unsigned char red[], green[], blue[]; 

0 
Revision A, of May 9, 1988 



------------------------------------------------------------------------~······~. 

Chapter 19 -Sun View Interface Summary (Pixwin Color Manipulation Functions) 361 

c Table 19-24 Pixwin Color Manipulation Functions- Continued 

Definition Description 

pw_getdefaultcms(cms, map) Copies the data in the default colormap segment into 

struct colormapseg *ems; the data pointed to by ems and map. Before the call, the byte pointers 

struct cms_map *map; in map should be initialized to arrays of size 256. 

pw_putattributes(pw, planes) Sets the access enable mask of pw. Only those bits of the pixel 

Pixwin *pw; corresponding to a 1 in the same bit position of *planes will be 

int *planes; affected by pixwin operations. 

pw_putcolormap(pw, index, count, 

red, green, blue) Sets the state of pw's colormap. The count elements of the 

Pixwin *pw; pixwin's colormap segment starting at index (0 origin) are loaded 

int index, count; from the first count values in the three arrays. 

unsigned char red[], green[], blue[]; 

pw_reversevideo(pw, min, max) Reverses the foreground and background colors of pw 

Pixwin *pw; min and max should be the first and last entries, 

int min, max; respectively, in the colormap segment 

pw_setcmsname(pw, cmsname) cmsname is the name that pw will call
1

its window's 

c Pixwin *pw; colormap segment. This call resets the colormap segment to NULL. 

char cmsname[CMS_NAMESIZE]; 

pw_whiteonblack(pw, min, max) Sets the foreground to white, the background to black, for pw. 

Pixwin *pw; min .and max should be the first and last entries, respectively, in the 

int min, max; colormap segment. 

c\ 
Revision A, of May 9, 1988 



362 Sun View 1 Programmer's Guide 

Table 19-25 Scrollbar Attributes 

SCROLL ABSOLUTE CURSOR Cursor 

SCROLL ACTIVE CURSOR Cursor 

SCROLL ADVANCED MODE boolean 

SCROLL BACKWARD CURSOR Cursor 

SCROLL BAR COLOR Scrollbar_setting 

SCROLL BAR DISPLAY LEVEL Scrollbar_setting 

SCROLL BORDER boolean 

SCROLL BUBBLE COLOR Scrollbar_setting 

SCROLL BUBBLE DISPLAY LEVEL - - Scrollbar_setting 

SCROLL BUBBLE MARGIN int 

SCROLL DIRECTION Scrollbar_setting 

SCROLL END POINT AREA int - - -

SCROLL FORWARD CURSOR Cursor 

SCROLL GAP int 

Cursor to display on middle button down. 

Default: Right triangle if vert., down triangle if horiz. 

Cursor to display when cursor is in bar rect. 

Default: Right arrow if vertical, down arrow if horiz. 

Whether notify proc reports all nine motions. Default: FALSE. 

Cursor to display on right button down. 

Default: up arrow if vertical, left arrow if horiz. 

Color of bar, SCROLL_ GREY (default) or SCROLL_ WHITE. 

When bar is displayed. 

SCROLL_ALWAYS: always displayed 

SCROLL_ ACTIVE: only displayed when cursor is in bar rect 

SCROLL_ NEVER: never displayed 

Default: SCROLL ALWAYS. 

Whether the scrollbar has a border. 

Color of bubble, SCROLL_ GREY (default) or SCROLL_ BLACK. 

When bubble is displayed. 

SCROLL_ ALWAYS: always displayed 

SCROLL_ ACTIVE: only displayed when cursor is in bar rect 

SCROLL_ NEVER: never displayed 

Default: SCROLL ALWAYS. 

Margin on each side of bubble in bar. Default: 0. 

Orientation of bar, 

SC~OLL _VERTICAL (default) or SCROLL_ HORIZONTAL. 

The distance, in pixels, from the end of the scrollbar 

that forces a scroll to the beginning (or end) of the file. 

Default: 6. 

Cursor to display on left button down. 

Default: down arrow if vertical, right arrow if horiz. 

Gap between lines. Default: current value of SCROLL_ MARGIN. 

Revision A, of May 9, 1988 

0 

0 

0 



-----------------------------------·-----·-----~~~---~-~~" 

c Table 19-25 

Attribute 

SCROLL HEIGHT 

SCROLL LAST VIEW START 

SCROLL LEFT 

SCROLL LINE HEIGHT 

SCROLL MARGIN 

SCROLL MARK 

SCROLL NOTIFY CLIENT 

SCROLL NORMALIZE 

SCROLL OBJECT 

c SCROLL OBJECT LENGTH 

SCROLL PAGE BUTTONS 

SCROLL PAGE BUTTON LENGTH 

SCROLL PAINT BUTTONS PROC - -

SCROLL PIXWIN 

SCROLL PLACEMENT 

SCROLL RECT 

Chapter 19 -Sun View Interface Summary (Scrollbar Attributes) 363 

Scrollbar Attributes- Continued 

Value Type 

int 

int 

int 

int 

int 

int 

caddr_t 

boolean 

caddr_t 

int 

boolean 

int 

(procedure) 

Pixwin * 

Scrollbar_setting 

Rect* 

sun 
microsystems 

Description 

r_height for scrollbar's rect. 

Offset of view into object prior to scroll. Get only. 

r left for scrollbar's rect. 

Number of pixels from one line to the next. 

Default: 0. 

Top margin after scroll, if SCROLL_ NORMAL! ZE TRUE. 

Default: 4. 

Position (in client units) undo will go to. Initial value: 0. 

Used by Notifier. 

Whether the client wants normalized scrolling. Default: TRUE. 

Pointer to the scrollable object. 

Length of scrollable object, in client units. Default: 0. 

(Value must be > 0). 

Whether the scrollbar has page buttons. Default: TRUE. 

Length in pixels of page buttons. Default: 15. 

Procedure which paints page buttons: 

paint_buttons_proc(scrollbar) 

Scrollbar scrollbar; 

Setting the value to NULL resets it to the default button painting 

procedure. 

Pixwin for scrollbar to write to. 

Placement of the bar. 

SCROLL_ WEST: vertical bar on left edge 

SCROLL_ EAST: vertical bar on right edge 

SCROLL_ NORTH: horizontal bar on top edge 

SCROLL_ SOUTH: horizontal bar on bottom edge 

Default: SCROLL_ WEST or SCROLL_ NORTH. 

Rect for scrollbar, including buttons. 

Revision A, of May 9, 1988 



364 SW1View 1 Programmer's Guide 

Table 19-25 

Attribute 
SCROLL REPEAT TIME 

SCROLL_REQUEST_MOTION 

SCROLL_REQUEST_OFFSET 

SCROLL THICKNESS 

SCROLL TO GRID 

SCROLL TOP 

SCROLL VIEW LENGTH 

SCROLL VIEW START 

SCROLL WIDTH 

Scrollbar Attributes- Continued 

Value Type 
int 

Scroll_motion 

int 

int 

boolean 

int 

int 

int 

int 

Description 
The interval, in tenths of a second, that scrolling 

repeats in. This attribute is used only for the initial pressing down 

of the mouse. A value of 0 disables repeat scrolling. Default: 10. 

Scrolling motion requested by user. 

Pixel offset of scrolling request into scrollbar. Default: 0. 

Thickness of bar. Default: 14. 

Whether the client wants scrolling aligned to multiples 

of SCROLL LINE HEIGHT. Default: FALSE. 

r _top for scroll bar's rect. 

Length of viewing window, in client units. Default: 0. 

Current offset into scrollable object (client units). 

(Value must be > 0). Default: 0. 

r width for scrollbar's reel 

Revision A, of May 9, 1988 

0 

0 

0 



Chapter 19 - Sun View Interface Summary (Scrollbar Functions) 365 

c Table 19-26 Scrollbar Functions 

·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·!•!•!•!•!·!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•'•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•.•!•!•!•!•!•'•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•'•!•!•!•!•'•'•!•!•'•!•!•!•!•!•!•!•!·!·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:•!•!•'•!•'•!•!•!•!·!•!•'•!•!•!•'•!•!•'•!•'•!•'•!•!•!•!•!•!•!•'•!•'•'•!•!•!•!•!•!•!•!•!•!•!•!•'•!•!•!•!•!•!•!•'•' .. '•!•:>!•!•!•!•!•!•'•!•'•!•'•!•!•!•!•!•!•!·!·:=:-::;.•:::·:-:::::::::::•.••!•:::::·:::::::·:::::::·:·:::":!•!•!•:::::·:::;.;!::::::::::::::::::::~:::::.::.~ 

Definition Description 
Scrollbar 

scrollbar _create(attributes) Creates and returns the opaque handle to a scrollbar. 

<attribute-list> attributes; 

int 

scrollbar_destroy(scrollbar) Destroys scrollbar. 

Scrollbar scrollbar; 

caddr t -
scrollbar_get(scrollbar, attribute) Retrieves the value for an attribute of scrollbar. 

Scrollbar scrollbar; 

Scrollbar attribute attribute; -

int 

scrollbar set(scrollbar, attributes) Sets the value for one or more attributes of scrollbar. -
Scrollbar scrollbar; attributes is a null-terminated attribute list. 

c <attribute-list> attributes; 

void For programmatic scrolling. Effect is as if the user had 
scrollbar scroll _to(scrollbar, new_view_start) requested a scroll to new view start in the subwin-- - -

Scrollbar scrollbar; dow to which scrollbar is attached. 

long new view start; - -

int Paints those portions of scrollbar 

scrollbar_paint(scrollbar) (page buttons, bar proper, and bubble) 

Scrollbar scrollbar; which have been modified since they were last painted. 

int 

scrollbar_paint_ clear(scrollbar) Clears and repaints all portions of scrollbar. 

Scrollbar scrollbar; 

int 

scrollbar clear_bubble(scrollbar) Clears the bubble in scrollbar. -
Scrollbar scrollbar; 

int 

scrollbar_paint_bubble(scrollbar) Paints the bubble in scrollbar. 

Scrollbar scrollbar; 

c 
Revision A, of May 9, 1988 



366 Sun View 1 Programmer's Guide 

Table 19-27 Text Subwindow Attributes 

Attribute Value Type 

TEXTSW ADJUST IS PENDING DELETE boolean - - -

TEXTSW AGAIN RECORDING boolean 

TEXTSW AUTO INDENT boolean 

TEXTSW AUTO SCROLL BY int 

TEXTSW BLINK CARET boolean 

TEXTSW BROWSING boolean 

TEXTSW_CHECKPOINT_FREQUENCY int 

TEXTSW CLIENT DATA char* 

TEXTSW CONFIRM OVERWRITE boolean 

TEXTSW CONTENTS char* 

TEXTSW CONTROL CHARS USE FONT boolean - -

TEXTSW_DISABLE_CD boolean 

Description 
When TRUE, adjusting a selection causes the selection to be 

pending-delete. Default: FALSE. 

When FALSE, changes made to the textsw are not repeated when user 
invokes AGAIN. By disabling when not needed (e.g. for program­

driven error logs) you can reduce memory overhead. Default: TRUE. 

When TRUE, a new line is automatically indented to match 

the previous line. Default: FALSE. 

Number of lines to scroll when type-in moves insert point 

below the view. Default: 1. Create, get. 

Determines whether the caret blinks. Default: TRUE. 

When TRUE, prevents editing of the displayed text. If another 

file is loaded in, browsing stays on. Default: FALSE. 

Number of edits between checkpoints. Set to 0 to 

disable checkpointing. Default: 0. 

Pointer to arbitrary client data. Default: NULL. 

A request to write to an existing file will require user 

confirmation. Default: TRUE. 

Contents of text subwindow. Default: NULL. 

For create and set, specifies the initial contents for non-file textsw. 

Get needs additional parameters: 

window_get (textsw, TEXTSW_CONTENTS, pos, buf, buf_len) 

Return value is next position to read at. 

buf [O ... buf_len-1] is filled with the characters from textsw 

beginning at index pos, and is null-terminated only if there 

were too few characters to fill the buffer. 

If FALSE, control characters always display as an 

up arrow followed by a character, instead of whatever 

glyph is in the current font. Default: FALSE. 

Stops textsw from changing current working directory 

(and grays out the associated items in the menu). 

Default: FALSE. 

Revision A, of May 9, 1988 

0 

0 

0 



----------------------------11!!-------------------~'~r-=~~'~'"'='""'''~· 

Table 19-27 

Attribute 
TEXTSW DISABLE LOAD 

TEXTSW EDIT COUNT 

TEXTSW FILE 

TEXTSW FILE CONTENTS 

TEXTSW FIRST 

TEXTSW FIRST LINE 

TEXTSW HISTORY LIMIT 

TEXTSW IGNORE LIMIT 

c 
TEXTSW INSERT FROM FILE 

TEXTSW INSERT MAKES VISIBLE 

TEXTSW INSERTION POINT 

TEXTSW LEFT MARGIN 

TEXTSW LENGTH 

TEXTSW LINE BREAK ACTION 

TEXTSW LOWER CONTEXT 

c 

Chapter 19-Sun View Interface Swnmary (Text Subwindow Attributes) 367 

Text Subwindow Attributes- Continued 

Value Type 
boolean 

int 

char* 

char* 

int 

int 

int 

int 

string 

Textsw_enum 

Textsw _index 

int 

int 

Textsw_enum 

int 

sun 
microsystems 

Description 
Prevents files being loaded into the textsw (and grays out 

the associated items in the menu). Default: FALSE. 

Monotonically incrementing count of the number of edits 

made to the textsw. Get. 

File to load. Default: NULL. Create, set. 

initializes the text subwindow contents 

from a file yet still edits the contents in memory. 

Zero-based index of first displayed character. 

Zero-based index of first displayed line. 

Number of user action sequences that can be undone. 

Default: 50. Create, get. 

Number of edits textsw allows before vetoing destroy. Valid values 
are 0, meaning destroy will be vetoed if any edits have been done, and 
TEXTSW_INFINITY, meaning destroy will never be vetoed. Default: 
0. 

inserts the contents of a file into 

a text subwindow at the current insertion point 

Controls whether insertion causes repositioning to make 

inserted text visible. Possible values are TEXT SW _ALWAYS, 

TEXTSW NEVER and TEXTSW IF AUTO SCROLL. 

Default: TEXTSW IF AUTO SCROLL. 

Index of the current insertion point Get, set. 

Number of pixels in the margin on left. Default: 4. Create, get. 

Length of the textsw's contents. Get only. 

Determines how the textsw treats file lines too big 

to fit on one display line. Possible values are either 

TEXTSW CLIP or TEXTSW WRAP AT CHAR. 

Default: TEXTSW_WRAP_AT_CHAR. Create, set. 

Minimum # of lines to maintain between insertion point 

and the bottom of view. Used by auto scrolling when type-in 

would disappear off bottom of view. 

-1 means defeat auto scrolling. Default: 2. 

Revision A, of May 9, 1988 



368 Sun View 1 Programmer's Guide 

Table 19-27 

Attribute 
TEXTSW MEMORY MAXIMUM 

TEXTSW MENU 

TEXTSW MODIFIED 

TEXTSW MULTI CLICK SPACE - -

TEXTSW MULTI CLICK TIMEOUT 

TEXTSW NOTIFY PROC 

TEXTSW READ ONLY 

TEXTSW SCROLLBAR 

TEXTSW STATUS 

TEXTSW STORE CHANGES FILE - - -

TEXTSW STORE SELF IS SAVE - - -

Text Subwindow Attributes-- Continued 

Value Type 
int 

Menu 

boolean 

int 

int 

(procedure) 

boolean 

Scrollbar 

Description 
How much memory to use when not editing files. This attribute only 
takes effect at textsw window creation time or after the window has 
been reset via textsw _reset(). The lower bound of the attribute is 1000 
bytes which is silently enforced. Default: 20,000 bytes. (If a great 
deal of text will be inserted into the text subwindow, either by the pro­
gram or the user, you may need to increase this.) 

The text subwindow's menu. Get, set. 

Whether or not the textsw has been modified. Get only. 

Max # of pixels that can be between successive mouse clicks 

and still have the clicks be considered a multi-click. Default: 3. 

Max# of milliseconds that can be between successive 

mouse clicks and still have the clicks be considered 

a multi-click. Default: 390. 

Notify procedure. Form is: 

void 

notify_proc(textsw, avlist) 

Textsw textsw 

Attr avlist avlist 

Default: NULL, meaning standard procedure. 

When TRUE, prevents editing of the displayed text. If another file 

is loaded in, READ_ ONLY is turned off again. Default: FALSE. 

Scrollbar to use for text subwindow scrolling. 

NULL means no scrollbar. 

Default: A scrollbar with default attributes. 

Note: text subwindow has a scrollbar by default, so you would 

only use this to get no scrollbar, or to get the scrollbar handle. 

Textsw_status * If set, specifies the address of a variable of type 

boolean 

boolean 

Textsw status into which a value is written that reflects 

what happened during the call to window _create(). 

(For possible values, see the Textsw _status Values table). 

If TRUE, Store changes the file being edited to that named 

as the target of the Store. If FALSE, Store does not affect 

which file is being edited. Default: TRUE. 

Causes textsw to interpret a Store to the name of the current file 

as a Save. Default: FALSE. Create, get. 

Revision A, of May 9, 1988 

0 



c Table 19-27 

Attribute 
TEXTSW UPDATE SCROLLBAR 

TEXTSW UPPER CONTEXT 

c 

c 

Chapter 19- Sun View Interface Summary (Text Subwindow Attributes) 369 

Text Subwindow Attributes- Continued 

Value Type 
(no value) 

int 

Description 
Causes text subwindow to update the bubble in the scrollbar. 

Set only - get returns NULL. 

Min # of lines to maintain between the start of the selection and 

top of view. -1 means to defeat the normal actions. Default 2. 

Revision A, of May 9, 1988 



370 Stn1View 1 Programmer's Guide 

Table 19-28 Textsw action Attributes 

Attribute 
TEXTSW ACTION CAPS LOCK 

TEXTSW ACTION CHANGED DIRECTORY 

TEXTSW ACTION EDITED FILE - -

TEXTSW ACTION EDITED MEMORY 

TEXTSW ACTION FILE IS READONLY - - - -

TEXTSW ACTION LOADED FILE - - -

TEXTSW ACTION TOOL CLOSE 

TEXTSW ACTION TOOL DESTROY - - -

TEXTSW_ACTION_TOOL_QUIT 

TEXTSW ACTION TOOL MGR 

TEXTSW ACTION USING MEMORY 

Value Type 
boolean 

char* 

char* 

none 

char* 

char* 

(no value) 

Event* 

Event* 

Event* 

(no value) 

Description 

The user pressed the CAPS-lock function key to change the 

setting of the CAPS-lock (it is initially 0, meaning off). 

The current working directory for the process has been 

changed to the directory named by the provided string value. 

The file named by the provided string value has been edited. 

Appears once per session of edits (see below). 

monitors whether an empty text subwindow has been edited. 

The file named by the provided string value does not have 

write permission. 

The text subwindow is being used to view the file named 

by the provided string value. 

The frame containing the text subwindow should become 

iconic. 

The tool containing the text subwindow should exit, 

without checking for a veto from other subwindows. 

The value is the user action that caused the destroy. 

The tool containing the text subwindow should exit 

normally. The value is the user action that caused 

the exit. 

The tool containing the text subwindow should do the 

window manager operation associated with the 

provided event value. 

The text subwindow is being used to edit a string stored in 

primary memory, not a file. 

Revision A, of May 9, 1988 

0 

0 



c 

c 

c 

Chapter 19-StmView Interface Summary (Textsw status Values) 371 

Table 19-29 Textsw status Values 

Value 
TEXTSW STATUS OKAY 

TEXTSW STATUS BAD ATTR 

TEXTSW STATUS BAD ATTR VALUE 

TEXTSW STATUS CANNOT ALLOCATE 

TEXTSW STATUS CANNOT OPEN INPUT - -

TEXTSW STATUS CANNOT INSERT FROM FILE 

TEXTSW STATUS OUT OF MEMORY - - -

TEXTSW STATUS OTHER ERROR 

sun 
microsystems 

Description 
The operation encotmtered no problems. 

The attribute list contained im illegal or unrecognized attribute. 

The attribute list contained an illegal value for an attribute, 
usually an out of range value for an enumeration. 

A call to calloc(2) or malloc(2) failed. 

The specified input file does not exist or cannot be accessed. 

The operation encountered a problem when trying 

to insert from file. 

The operation ran out of memory while editing in memory. 

The operation encotmtered a problem not covered by any of 
the other error indications. 

Revision A, of May 9, 1988 



372 Sun View 1 Programmer's Guide 

Table 19-30 Text Suhwindow Functions 

Definition 

Textsw mark 

textsw_add_mark(textsw, position, flags) 

Textsw textsw; 

Textsw index position; 

unsigned flags; 

int 

textsw_append_file_name(textsw, name) 

Textsw textsw; 

char *name; 

Textsw index 

textsw_delete(textsw, first, last_plus_one) 

Textsw textsw; 

Textsw index first, last_plus_one; 

Textsw index 

textsw_edit(textsw, unit, count, direction) 

Textsw textsw; 

unsigned unit, count, direction; 

Textsw index 

textsw_erase(textsw, first, last_plus_one) 

Textsw textsw; 

Textsw index first, last_plus_one; 

void 

textsw_file_lines_visible(textsw, top, bottom) 

Textsw textsw; 

int *top, *bottom; 

int 

textsw_find_bytes(textsw, first, last_p~us_one, 

buf, buf_len, flags) 

Textsw textsw; 

Textsw index *first, *last_plus_one; 

char 

unsigned 

*buf; 

buf_len, flags; 

Description 

Adds a new mark at position. 

flags can be either TEXTSW_MARK_DEFAULTS or 

TEXTSW MARK MOVE AT INSERT. 

Returns 0 iftextsw is editing a file, 

and if so appends the name of the file at the end of name. 

Returns 0 if the operation fails. 

Removes the span of characters beginning with first, 

and ending one before last _plus_ one. 

Returns 0 if the operation fails. Erases a character, word or 

line, depending on whether unit is SELN_LEVEL_FIRST, 

SELN_LEVEL_FIRST+l, or SELN_LEVEL_LINE. If 
direction is 0, characters after the insertion point are 
affected, otherwise characters before the insertion point are 

affected. The operation will be done count times. 

Returns 0 if the operation fails. 

Equivalent to text sw _delete (),but does not 

affect the global shelf. 

Fills in top and bottom with the file line indices of 

the first and last file lines being displayed in textsw. 

Beginning at the position addressed by first, searches for the 

pattern specified by buf of length buf _len. Searches 

forwards if flags is 0, else searches backwards. 

Returns -1 if no match, else matching span placed in 

indices addressed by first and last_plus_one. 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Chapter 19-Sun View Interface Summary (Text Subwindow Functions) 373 

Table 19-30 Text Subwindow Functions:- Continued 

Definition 
Textsw index 

textsw find_mark(textsw, mark) 

Textsw textsw; 

Textsw mark mark; 

Textsw 

textsw_first(textsw) 

Textsw textsw; 

Textsw index 

textsw_index_for_file_line(textsw, line) 

Textsw textsw; 

int line; 

Textsw index 

textsw_insert(textsw, buf, buf_len) 

Textsw textsw; 

char 

int 

*buf; 

buf_len; 

Description 

Returns the current position of mark. If 

this operation fails, it will return TEXTSW _1NFINITY. 

Returns the first view into textsw. 

Returns the character Index for the first 

character in the line given by line. If this operation 

fails, it will return TEXTSW _CANNOT_SET. 

Inserts characters in buf into textsw 

at the current insertion point. 

The number of characters actually inserted 

is returned- this will equal bu f _len 

unless there was a memory allocation failure. 

If there was a failure, it will return 0. 

textsw_match_bytes (textsw, first, last_plus_one, Searches for a block of text in the textsw's contents 

start_ sym, start_ sym _len, which starts with characters matching start_ sym and 

end_sym, end_sym_len, field_flag) ends with characters matching end_sym. 

Textsw textsw; 

Textsw index *first, *last_plus_one; 

char *start_sym, *end_sym; 

int start_sym_len, end_sym_len; 

unsigned field_flag; 

Textsw 

textsw_next(textsw) 

Textsw textsw; 

void 

textsw_normalize_view(textsw, position) 

Textsw textsw; 

Textsw index position; 

void 

textsw_possibly_normalize(textsw, position) 

Textsw textsw; 

Textsw_index position; 

sun 
microsystems 

This function places the starting index of the matching block in 

first and its ending index in last. 

Returns the next view in the set of views into text sw. 

Repositions the text so that the character 

at position is visible and at the top of the subwindow. 

If the character at pas it ion is already visible, this function 

does nothing. If it is not visible, it repositions the text 

so that it is visible and at the top of the subwindow. 

Revision A, of May 9, 1988 



374 S1mView 1 Programmer's Guide 

Table 19-30 Text Subwindow Functions- Continued 

Definition 
void 

textsw_remove_mark(textsw, mark) 

Textsw textsw; 

Textsw mark mark; 

Textsw index 

textsw_replace_bytes(textsw, first, 

last _plus_ one, 

buf, buf len) 

Textsw textsw; 

Textsw index first; 

char *buf; 

unsigned buf len; 

void 

textsw_reset(textsw, x, y) 

Textsw textsw; 

int x, y; 

unsigned 

textsw save(textsw, x,. y) 

Textsw textsw; 

int x, y; 

int 

textsw_screen line_count(textsw) 

Textsw textsw; 

void 

textsw_scroll_lines(textsw, count) 

Textsw textsw; 

int count; 

void 

textsw_set selection(textsw, first, last_plus_one, 

type) 

Textsw 

Textsw index 

unsigned 

textsw; 

first, last_plus_one; 

type; 

sun 
microsystems 

Description 

Removes an existing mark from textsw. 

Replaces the character span from first to ·· 

last_plus_one by the characters in buf. 

last_plus_one. The return value is the net 

number of bytes inserted. The number is negative if the 

original string is longer than the one that replaces it. If 

this operation fails, it will return a value of 0. 

Discards edits performed on the contents of text sw. 

If needed, a message box will be displayed at x, y. 

Saves any edits made to the file currently 

loaded into textsw.lf needed, a message box 

will be displayed at x, y. 

Returns the number of screen lines in textsw. 

Moves the text up or down by count lines. If count 

is positive, then the text is scrolled up on the screen, 

(forward in the file); if negative, the text is scrolled down, 

(backward in the file). 

Sets the selection to begin at first and include all 

characters up to last_plus_one. 

Revision A, of May 9, 1988 

0 

0 



------------------------------------------------~A ___ f~.~"'"'"""''~'"t~·~!~~-

c 

c 

Chapter 19- Sun View Interface Summary (Text Subwindow Functions) 375 

Table 19-30 Text Subwindow Functions- Continued 

Definition 

unsigned 

textsw store_file(textsw, filename, x, y) 

Textsw textsw; 

char *filename; 

int x, y; 

Description 

Stores the contents of text sw 

to the file named by f i 1 ename. If needed, a 

message box will be displayed atx, y. 

Revision A, of May 9, 1988 



376 SilllView 1 Programmer's Guide 

Table 19-31 TTY Subwindow Attributes 

Attribute Type 
TTY ARGV char** 

TTY CONSOLE boolean 

TTY PAGE MODE boolean 

TTY_QUIT_ON_CHILD_DEATH boolean 

Table 19-32 TTY Subwindow Functions 

Definition 
int 

ttysw_input(tty, buf, len} 

Tty tty; 

char *buf; 

int len; 

int 

ttysw_output(tty, buf, len) 

Tty tty; 

char *buf; 

int len; 

Description 
Argument vector: name of the pro­
gram filllning in the tty subwindow, 
followed by arguments for that pro­
gram. 

If TRUE, tty subwindow is con­
sole. Set only. Default: FALSE. 

If TRUE, output will stop after 
each page. Default: FALSE. 

If TRUE, window_ done (} is 
called on the subwindow when its 
child terminates. Set only. Default: 
FALSE. 

Description 

Appends len number of characters from buf 
onto tty's input queue. It returns the number 
of characters accepted. 

Appends len number of characters from buf 
onto tty's output queue, i.e. they are sent 
through the terminal emulator to the TTY. It 
returns the number of characters accepted. 

Revision A, of May 9, 1988 

0 

0 

0 



-----------------------------------------------~~=--00~~'""'= 

Chapter 19 - Sun View Interface Summary (TIY Subwindow Special Escape Sequences) 377 

c Table 19-33 1TY Subwindow Special Escape Sequences 

Escape Sequencel03 Description 
\E [lt open frame. 

\E[2t close frame. 

\E[3t move frame with interactive feedback. 

\E[3;TOP;LEFTt move frame to location specified by (TOP ,LEFT). 

\E[4t resize frame with interactive feedback. 

\E[4;WIDTH;HEIGHTt resize frame to WIDTH and HEIGHT. 

\E[St expose. 

\E[6t hide. 

\E[7t redisplay. 

\E[8;ROWS;COLSt resize frame so its width and height are ROWS and COLS. 

\E [llt report if frame is open or closed by sending \ [ 1 tor\ [2t, respectively. 

\E [13t report frame's position by sending the \E [3;TOP;LEFJ't sequence. 

\E[l4t report frame's size in pixels by sending the \E [3; WIDTH ;HEIGHTt sequence. 

\E [18t report frame's size in characters by sending the \E [ 8; ROWS; COLS t sequence. 

\E [20t report the frame icon's label by sending the \E [Llabel\E\ sequence. 

\E[2lt report frame's label by sending the \E]llabel\E\ sequence. 

\E ]ltext\E\ set frame's label to text. 

\E) Ifile\E\ set frame's icon to the icon contained in file. 

\E) Llabel\E \ set icon's label to label. 

\E [>OPTJ; .OPTnh turn requested options on. The only currently defined option is 1, for TTY_ PAGE_ MODE. 

c \E [>OPTJ; .OPTnk turn requested options off. 

Revision A, of May 9, 1988 



378 Sun View 1 Programmer's Guide 

Table 19-33 TIT Subwindow Special Escape Sequences- Continued 0 
Escape Sequence103 Description 
\E[>OPTJ; .. . OPTnl report current option settings by sending \E [>OPTxl or \E>OP1b for each optionx. 

0 

103 In this table "\E" denotes the <ESC> character, as it does in termcap. 0 
sun Revision A, of May 9, 1988 
microsystems 



c Table 19-34 Window Attributes 

Attribute Value Type 
WIN BELOW Window 

WIN BOTTOM MARGIN int 

WIN CLIENT DATA caddr_t 

WIN COLUMNS int 

WIN COLUMN GAP int 

WIN COLUMN WIDTH int 

WIN CONSUME KBD EVENT short 

WIN CONSUME KBD EVENTS list of short 

WIN CONSUME PICK EVENT short 

c WIN CONSUME PICK EVENTS list of short 

WIN CURSOR Cursor 

WIN DEVICE NAME char* 

WIN DEVICE NUMBER int 

WIN ERROR MSG char* 

WIN EVENT PROC (procedure) 

WIN EVENT STATE short 

WIN FD int~ 

WIN FIT HEIGHT int 

sun 
microsystems 

Chapter 19-Sun View Interface Summary (Window Attributes) 379 

Description 
Causes the window to be laid out below window given as the value. 

Margin at bottom of window. 

Client's private data- for your use. 

Window's width (including left and right margins) in columns. 

Gap between columns in the window. 

Width of a column in the window. 

Window will receive this event. 

Null terminated list of events window will receive. Create, set. 

Window will receive this pick event. 

Null terminated list of pick events window will receive. Create, set. 

The window's cursor. Note: the pointer returned by 

win dow_ get ( ) points to per -process static storage. 

UNIX device name associated with window, consisting of a string and 
numeric part, e.g. winlO. Get only. 

Numeric component of device name. Get only. 

Error message to print before exi t(1). Create only. 

Client's callback procedure which receives input events: 

Notify_value 

event_proc(window, event, arg) 

Window window; 

Event *event; 

caddr_t arg; 

Gets the state of the specified event code. For buttons and keys, 

zero means "up," non-zero means "down." Get only. 
/ 

The UNIX file descriptor for the window. Get only. 

Causes window to fit its contents in the height dimension, 

leaving a margin specified by the value given. 

Revision A, of May 9, 1988 



380 Sun View 1 Programmer's Guide 

Table 19-34 Window Attributes- Continued 

Attribute Value Type 
WIN FIT WIDTH int 

WIN FONT Pixfont * 

WIN GRAB ALL INPUT boolean 

WIN HEIGHT int 

WIN HORIZONTAL SCROLLBAR Scrollbar 

WIN IGNORE KBD EVENT short 

WIN IGNORE KBD EVENTS list of short 

WIN IGNORE PICK EVENT short 

WIN IGNORE PICK EVENTS list of short - -

WIN INPUT DESIGNEE int 

WIN KBD FOCUS boolean 

WIN KBD INPUT MASK Inputmask* 

WIN LEFT MARGIN int 

WIN MENU Menu 

WIN MOUSE XY int, int 

WIN NAME char* 

WIN OWNER Window 

WIN PERCENT HEIGHT int 

~\sun ~ microsystems 

Description 
Causes window to fit its contents in the width dimension, 

leaving a margin specified by the value given. 

The window's font. Notes for the current release: 

tty subwindows don't use WIN _FONT. Frames don't use WIN _FONT 
to render their labels; however, they do use WIN _FONT 
in calculating WIN_ COLUMNS and WIN_ ROWS. Setting WIN _FONT 
does not cause the default system font to be set. 

Window will get all events regardless of location. 

Window's height in pixels. Value of WIN_ EXTEND _TO_ EDGE 
causes subwindow to extend to bottom edge of frame. 

Default: WIN EXTEND TO EDGE. 

Horizontal scrollbar. 

Window will not receive this event. 

Null terminated list of events window will not receive. Create, set. 

Window will not receive this pick event. 

Null terminated list of pick events window will not receive. Create, set. 

Window which gets events this window doesn't consume. (Note that 
the value must be the WIN_DEVICE_NUMBER of the designee). 

Whether or not the window has the keyboard focus. 

Window's keyboard inputmask. Note: the pointer returned by 

window_get () points to per-process static storage. 

Margin at left of window. 

Window's menu. Note: In the currentrelease this doesn't work for 
panels or tty subwindows. 

Mouse's position within the window. Set only. 

Name of window (currently unused by Sun View). 

Owner of window. Get only. 

Sets a subwindow's height as a percentage of the frame's height. 

Revision A, of May 9, 1988 

0 

0 

0 



c Table 19-34 

Attribute 
WIN PERCENT WIDTH 

WIN PICK INPUT MASK 

WIN PIXWIN 

WIN RECT 

WIN RIGHT MARGIN 

WIN RIGHT OF 

WIN ROW GAP 

WIN ROW HEIGHT 

c WIN ROWS 

WIN SCREEN RECT 

WIN SHOW 

WIN TOP MARGIN 

WIN TYPE 

WIN VERTICAL SCROLLBAR 

WIN WIDTH 

WIN X 

WIN Y 

c 

Chapter 19-Sun View Interface Summary (Window Attributes) 381 

Window Attributes- Continued 

Value Type 

int 

Inputmask* 

Pixwin * 

Rect* 

int 

Window 

int 

int 

int 

Rect* 

boolean 

int 

Window _type 

Scrollbar 

int 

int 

int 

Description 
Sets a subwindow's width as a percentage of the frame's width. 

Window's pick inputmask. Note: the pointer returned by 

window _get () points to per-process static storage. 

The window's pix win. Get only. 

Rect of the window. For frames, same as FRAME OPEN RECT. 
Note: the pointer returned by window _get () for this attribute 
points to per-process static storage. 

Margin at right of window. 

Causes the window to be laid out just to the 

right of the window given as the value. 

Gap between rows in the window. 

Height of a row in the window. 

Window's height (including top and bottom margins) in rows. 

Rect of the screen containing the window. Get only. 

Note: the pointer returned by window_get () for this attribute 

points to per-process static storage. 

Causes the window to be displayed or undisplayed. 

Margin at top of window. 

Type of window. One ofFRAME_TYPE, PANEL_TYPE, 

CANVAS_ TYPE, TEXTSW _TYPE or TTY_ TYPE. Get only. 

Vertical scrollbar. 

Window's width in pixels. Value ofWIN_EXTEND_TO_EDGE 

causes subwindow to extend to right edge of frame. 

Default: WIN EXTEND TO EDGE. 

x position of window, relative to owner. 

y position of window, relative to owner. 

Revision A, of May 9, 1988 



382 Sun View 1 Programmer's Guide 

Table 19-35 Frame Attributes 

Attribute Value Type 

FRAME ARGS int, char** 

FRAME ARGC PTR ARGV int *,char** 

FRAME BACKGROUND COLOR struct singlecolor * 

FRAME CLOSED boolean 

FRAME CLOSED RECT Rect * 

FRAME CMDLINE HELP PROC (procedure) 

FRAME CURRENT RECT Rect * 

FRAME DEFAULT DONE PROC (procedure) 

FRAME DONE PROC (procedure) 

FRAME EMBOLDEN LABEL boolean 

FRAME FOREGROUND COLOR struct singlecolor * 

FRAME ICON Icon 

FRAME INHERIT COLORS boolean 

FRAME LABEL char* 

FRAME NO CONFIRM boolean 

FRAME NTH SUBFRAME int 

Description 

Interpret command line arguments. Strips -W command-line frame 
arguments out of argv. Create only. 

Interpret command line args. Strips -W command-line frame argu­
ments out of argv, and decrements argc accordingly. Create only. 

Background color. 

Whether frame is currently closed. 

Frame's rect when closed. 

Called when user types the command-line argument -WH. Default: 

frame_cmdline_help(program_name) 

char *program_name; 

Returns either FRAME_ OPEN_ RECTor FRAME_ CLOSED RECT, 

depending on the value of FRAME_ CLOSED. 

Note: in the current release, there is a bug in the behavior 

of FRAME CURRENT RECT for subframes. It is set relative 

to the owner frame, but it is retrieved relative to the screen. 

Default ~alue of FRAME_ DONE _PROC. Get only. 

The default procedure is to set the subframe to WIN_ SHOW, FALSE. 

Client's proc called when user chooses 'Done' from subframe's menu: 

done_proc(frame) 

Frame frame; 

If TRUE, frame's label is rendered in bold. 

Foreground color. 

The frame's icon. 

If TRUE, colormap of frame is inherited by subwindows. 

The frame's label. 

Set to TRUE before destroying a frame 

to defeat confirmation. Set only. 

Returns frame's nth (from 0) subframe. Get only. 

Revision A, of May 9, 1988 

0 

0 

0 



Table 19-35 

Attribute 

FRAME NTH SUBWINDOW 

FRAME NTH WINDOW 

FRAME OPEN RECT 

FRAME SHOW LABEL 

FRAME SUBWINDOWS ADJUSTABLE 

c 

c 

Chapter 19- Sun View Interface Summary (Frame Attributes) 383 

Frame Attributes- Continued 

Value Type 

int 

int 

Rect * 

boolean 

boolean 

sun 
microsystems 

Description 

Returns frame's nth (from 0) subwindow. Get only. 

Returns frame's nth (from 0) window, regardless of whether 

the window is a frame or a subwindow. Get only. 

Frame's rect when open. 

Whether the label is shown. Default: 

TRUE for base frames, FALSE for subframes. 

User can move subwindow boundaries. Default: TRUE. 

Revision A, of May 9, 1988 



384 Sun View 1 Programmer's Guide 

Table 19-36 Window Functions and Macros 0 

::::~:(' 

Definition Description 

void Queries the user defaults database 

window _bell(win} to see if the user wants the bell to be 

Window win; sounded, the window to be flashed, or both. 

Window 

window create(owner, type, attributes} Creates a window and returns its handle. -
Window owner; typeisoneofFRAME,PANEL 

<window type> type; TEXTSW, TTY, or CANVAS. 

<attribute-list> attributes; 

void 

window_default_event_proc(window, event, arg} Calls the default event procedure. 

Window window; The arguments passed in are the window (canvas or panel), 

Event *event; the event, and an optional argument pertaining to the event. 

caddr t arg; 

window_destroy(win} Destroys win, and any subwindows or 

Window win; subframes owned by win. 0 
window_done(win} Destroys the entire hierarchy to which win belongs. 

Window win; 

window fit(win} Causes win to fit its contents 

Window win; in both dimensions. A macro, defined as: 

window set (win, WIN_FIT, 0, 0}. 

window_fit_height(win} Causes win to fit its contents 

Window win; in the vertical dimension. A macro, defined as: 

window set(win, WIN_FIT_HEIGHT, 0, 0}. 
~ 

window fit _width(win} Causes l"in to fit its contents 

Window win; in the horizontal dimension. A macro, defined as: 

window set(win, WIN_FIT_WIDTH, 0, 0}. 

caddr t -
window_get(win, attribute} Retrieves the value of an attribute for win. 

Window win; 

Window attribute attribute; 

0 
Revision A, of May 9, 1988 



-------------------------------------------------------------- ~~-

Chapter 19- Sun View Interface Summary (Window Functions and Macros) 385 

c Table 19-36 Window Functions and Macros-- Continued 

Definition Description 

caddr t -
Causes subframe to be displayed, and receive all 

window_loop(subframe) input. The call will not return until window_ ret urn () 

Frame subframe; is called from one of the application's notify procs. 

void 

window_main_loop(base_ frame) Displays base_frame on the screen and begins the 

Frame base_frame; processing of events by passing control to the Noti:fier. 

int 

window read_event(window, event) Reads the next input event for window. -
Window window; In case of error, sets the global variable errno 

Event *event; and returns -1. 

void When your event handler receives a KBD _REQUEST 

window - refuse_kbd_focus(window) event, call this function if you do not want your 

Window window; window to become the keyboard focus. 

· .. 1\f~"s~;} 
void 

window release event _lock(window) Releases the event lock, allowing other processes to receive input. - -c\ Window window; 

void Usually called from one of the application's panel item 

window return(value) notify procs. Causes window _loop () to return. 
-

caddr t value; -

window set(win, attributes) Sets the value of one or more of win's attributes. -
Window win; attributes is a null-terminated attribute list 

<attribute-list> attributes; 

c 
Revision A, of May 9, 1988 



386 Sun View 1 Programmer's Guide 

Table 19-37 Command Line Frame Arguments 

Flag Long Flag Arguments Corresponding Attributes 
-Wb -background_co1or red green blue FRAME BACKGROUND COLOR 

-Wh -height lines WIN ROWS 

-WH -he1p (Causes FRAME_ CMDLINE _HELP_ PROC to be called.) 

-Wf -foreground_co1or red green blue FRAME FOREGROUND COLOR 

-Wg -set defau1t co1or FRAME_INHERIT_COLORS, TRUE 

-Wi -iconic FRAME_CLOSED, TRUE 

-WI -icon_image filename ICON IMAGE of frame's iconlOS 

-W1 -1abe1 label FRAME LABEL 

-WL -icon 1abe1 

-Wn -no 1abe1 

label ICON LABEL of frame's icon 

FRAME SHOW_LABEL, FALSE 0 
-Wp -position xy WIN_X, WIN Y 

-WP -icon_position xy FRAME CLOSED RECT 

-Ws -size xy WIN_WIDTH, WIN_HEIGHT 

-Wt -font filename (Sets system default font) 

-WT -icon font filename ICON FONT of frame's icon 

-Ww -width columns WIN COLUMNS 

105 The -WI option will not work if the application's code does not already specify its icon. 

~\sun ,~ microsystems 
Revision A, of May 9, 1988 



c 
A 

Example Programs 

Example Programs ...................................................................................................................... 389 

Source A vail able ........................................................................................................... 389 

A.1. filer.......................................................................................................................................... 389 

A.2. image_browser _1 ........................................................................................................... 401 

A.3. image_browser_2 ........................................................................................................... 406 

A.4. tty_io ...................................................................................................................................... 412 

A.5. font_menu ........................................................................................................................... 416 

A.6. resize_demo ....................................................................................................................... 425 

A.7. dctool ..................................................................................................................................... 430 

A.8. typein ..................................................................................................................................... 437 

A.9. Programs that Manipulate Color............................................................................ 441 

coloredit ............................................................................................................................. 441 

animatecolor .................................................................................................................... 447 

A.10. Two gfx subwindow-based programs converted to use 
Sun View ............................................................................................................................ 454 

bounce................................................................................................................................. 454 

spheres ................................................................................................................................ 461 

c 



() 

0 



c 

Source Available 

c 
A.l. filer 

c 

A 
Example Programs 

If the appropriate optional software category has been installed or mounted on 
your system, the source code for some of these examples programs is available 
on-line in /usr I share/ src/ sun/ suntool/ examples. In addition, the 
directory above this (/usr I share/ src/ sun/ suntool) contains the source 
for many of the Sun View 1 programs in the SunOS, such as textedi t, 

perfmeter, and iconedit. 

This program is discussed in Chapter 4, Using Windows. It displays a listing in a 
tty subwindow, which the user manipulates through panel items. 

If the user presses the I Props I key in the panel, or chooses 'Props' from the frame 
menu, or pushes the Set Is flags button, a pop-up subframe appears. filer uses the 
Selection SeiVice to determine what file name the user has selected, and creates a 
pop-up text subwindow where that file is displayed. 

filer uses the alerts package to ask the user for confirmation and put up messages. 
It also includes old code which mimics alerts by using window _loop () to put 
up a subframe, but programs written for SunOS Release 4.0 and beyond in gen­
eral will have no need for this. 

. 389 Revision A, of May 9, 1988 



390 Sun View 1 Programmer's Guide 

1*****************************************************************************1 
I* 4.0 filer.c *I 
I***************************************************************************** I 

#include <suntoollsunview.h> 
#include <suntoollpanel.h> 
#include <suntoolltty.h> 
#include <suntoolltextsw.h> 
#include <suntoollseln.h> 
#include <suntoollalert.h> 
#include <syslstat.h> I* stat call needed to verify existence of files *I 

I* these objects are global so their attributes can be modified or retrieved *I 
Frame base_frame, edit_frame, ls_flags_frame; 
Panel panel, ls_flags_panel; 
Tty ttysw; 

editsw; Textsw 
Panel item 
int 

dir_item, fname item, filing mode item, done_item; 
quit_confirmed_from_panel; 

#define 
#define 

char *getwd () ; 

main(argc, argv) 
int argc; 
char **argv; 

MAX FILENAME LEN - -
MAX PATH LEN 

256 
1024 

static Notify_value filer_destroy_func(); 
void ls_flags_proc(); 

base frame window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
FRAME_LABEL, "filer", 
FRAME_PROPS_ACTION_PROC, ls_flags_proc, 
FRAME_PROPS_ACTIVE, TRUE, 
FRAME_NO_CONFIRM, 
0); 

TRUE, 

(void) notify_interpose_destroy_func(base_frame, filer_destroy_func); 

create_panel_subwindow(); 
create_tty_subwindow(); 
create_edit_popup(); 
create_ls_flags_popup(); 
quit_confirmed_from_panel = 0; 

window_main_loop(base_frame); 
exit(O); 

create_tty_subwindow() 
{ 

ttysw =window create(base_frame, TTY, 0); 

create_edit_popup() 
{ 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

Appendix A- Example Programs (filer) 391 

edit frame window_create(base_frame, FRAME, 
FRAME_SHOW_LABEL, TRUE, 
0); 

editsw window_create(edit_frame, TEXTSW, 0); 

create_panel_subwindow() 
{ 

void ls_proc(), ls_flags_proc{), quit_proc(), edit_proc(), 

edit_sel_proc(), del_proc(); 

char current_dir[MAX_PATH LEN]; 

panel= window_create(base_frame, PANEL, 0); 

(void) panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_X, ATTR_COL(O), 

PANEL-LABEL-y I 

PANEL_LABEL_IMAGE, 
PANEL_NOTIFY_PROC, 
0); 

(void) panel_create_item(panel, 
PANEL_LABEL_IMAGE, 
PANEL_NOTIFY_PROC, 
0); 

ATTR_ROW(O) I 

panel_button_image(panel, 
ls_proc, 

PANEL_BUTTON, 
panel_button_image(panel, 
ls_flags_proc, 

(void) panel_create_item(panel, PANEL_BUTTON, 

"List Directory", 0, 0), 

"Set ls flags", 0, 0), 

PANEL_LABEL_IMAGE, panel_button_image (panel, "Edit", 0, 0), 

PANEL_NOTIFY_PROC, edit_proc, 
0); 

(void) panel_create_item(panel, 
PANEL_LABEL_IMAGE, 
PANEL_NOTIFY_PROC, 
0); 

PANEL_BUTTON, 
panel_button_image(panel, 
del_proc, 

(void) panel_create_item(panel, PANEL_BUTTON, 

"Delete", 0, 0), 

PANEL_LABEL_IMAGE, panel,....button_image (panel, "Quit", 0, 0), 

PANEL_NOTIFY_PROC, quit_proc, 
0); 

filing_mode_item 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 

panel_create_item(panel, PANEL_CYCLE, 
ATTR_COL(O), 
ATTR_ROW(l), 

PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 

0); 

(void) panel_create_item(panel, 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 
0); 

"Filing Mode:", 
"Use \"File:\" item", 
"Use Current Selection", 0, 

PANEL_MESSAGE, 
ATTR_COL(O), 
ATTR_ROW (2) I 

dir item = panel_create_item(panel, 
PANEL_LABEL_X, 

PANEL_TEXT, 
ATTR_COL(O), 
ATTR_ROW (3) I PANEL-LABEL-y I 

sun 
microsystems 

Revision A, of May 9, 1988 



392 S1mView 1 Programmer's Guide 

PANEL_VALUE_DISPLAY_LENGTH, 
PANEL_VALUE, 
PANEL_LABEL_STRING, 
0); 

60, 
getwd(current_dir), 
"Directory: ", 

fname_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(4), 
PANEL LABEL DISPLAY_LENGTH, 60, 
PANEL_LABEL_STRING, 
0); 

window_fit_height(panel); 

"File: " , 

window_set(panel, PANEL CARET_ITEM, fname_item, 0); 

create_ls_flags_popup() 
{ 

void done_proc(); 
ls_flags_frame window_create(base frame, FRAME, 0); 

ls_flags_panel window_create(ls_flags_frame, PANEL, 0); 

panel_create_item(ls_flags_panel, PANEL_MESSAGE, 
PANEL_ITEM_X, ATTR_COL(14), 
PANEL_ITEM_Y, 
PANEL_LABEL_STRING, 
PANEL_CLIENT_DATA, 
0); 

panel_create_item(ls_flags_panel, 
PANEL_ITEM_X, 
PANEL_ITEM_Y, 
PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_ CHOICE_ STRINGS, 
PANEL_CLIENT_DATA, 
0); 

panel_create_item(ls_flags_panel, 
PANEL_ITEM_X, 
PANEL_ITEM_Y, 
PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 
PANEL_CLIENT_DATA, 
0); 

ATTR_ROW (0), 
"Options for ls command", 

" , 

PANEL_CYCLE, 
ATTR_COL(O), 
ATTR_ROW(l), 
PANEL_ CURRENT, 
"Format: 
"Short", "Long", 0, 
" 1 ", 

PANEL_CYCLE, 
ATTR_COL (0), 
ATTR_ROW (2), 
PANEL_CURRENT, 
"Sort Order: 
"Descending", "Ascending", 0, 
" r ", 

panel_create_item(ls_flags_panel, PANEL_CYCLE, 
PANEL_ITEM_X, ATTR_COL (0), 
PANEL_ITEM_Y, ATTR_ROW(3), 
PANEL_DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_ CHOICE_ STRINGS, 

PANEL_CLIENT_DATA, 
0); 

sun 
microsystems 

PANEL_ CURRENT, 
"Sort criterion: 
"Name", "Modification Time", 
"Access Time", 0, 
" tu", 

" , 

" , 

" , 

Revision A, of May 9, 1988 

0 

0 

0 



~--------------------------------------------------------------------------~~----------~--------=~=re~~---~~ 

c 
Appendix A- Example Programs (filer) 393 

panel_create_item(ls_flags_panel, 
PANEL_ITEM_X, 
PANEL_ITEM_Y, 
PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_ CHOICE_ STRINGS, 
PANEL_CLIENT_DATA, 
0); 

PANEL_ CYCLE, 
ATTR_COL (0), 
ATTR_ROW (4), 
PANEL_CURRENT, 
"For directories, list: 
"Contents", "Name Only", 0, 

" d ", 

panel_create_item(ls_flags_panel, PANEL_CYCLE, 
PANEL_ITEM_X, ATTR_COL(O), 
PANEL_ITEM_Y, ATTR_ROW (5), 

PANEL_CURRENT, 

" , 

PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 
PANEL_CLIENT_DATA, 
0); 

"Recursively list subdirectories? ", 
"No", "Yes", 0, 
n R " 

panel_create_item(ls_flags_panel, PANEL_CYCLE, 
PANEL_ITEM_X, ATTR_COL(O), 
PANEL_ITEM_Y, 
PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 
PANEL_CLIENT_DATA, 
0); 

ATTR_ROW(6), 
PANEL_ CURRENT, 
"List'.' files? 
"No", "Yes", 0, 
" a ", 

panel_create_item(ls_flags_panel, 
PANEL_ITEM_X, 
PANEL_ITEM_Y, 

PANEL_CYCLE, 
ATTR_COL(O), 
ATTR_ROW (6), 
PANEL_ CURRENT, 

done item 

PANEL DISPLAY_LEVEL, 
PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 
PANEL_CLIENT_DATA, 
0); 

"Indicate type of file? 
"No", "Yes", 0, 
" F ", 

panel_create_item(ls_flags_panel, PANEL BUTTON, 
PANEL_ITEM_X, ATTR_COL(O), 
PANEL_ITEM_Y, ATTR_ROW(7), 

" , 

" , 

PANEL_LABEL_IMAGE, 
PANEL_NOTIFY_PROC, 
0); 

panel_button_image(panel, "Done", 0, 0), 
done_proc, 

window_fit(ls_flags_panel); /* fit panel around its items */ 

window_fit(ls_flags_frame); /* fit frame around its panel */ 

char * 
compose_ls_options() 
{ 

static char flags[20]; 
char *ptr; 
char flag; 
int first_fla~ = TRUE; 
Panel item item; -
char *client _data; 
int index; 

ptr flags; 

sun Revision A, of May 9, 1988 
microsystems 



394 Sun View 1 Programmer's Guide 

panel_each_item(ls_flags_panel, item) 
if (item != done_item) { 

client_data = panel_get(item, PANEL_CLIENT_DATA, 0}; 
index= (int)panel_get_value(item}; 
flag= client_data[index]; 
if (flag ! = ' '} { 

if (first_flag) { 
*ptr++ '-'; 
first_flag = FALSE; 

*ptr++ = flag; 

panel_end each 
*ptr = '\0'; 
return flags; 

void 
ls_proc (} 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 
char cmdstring[lOO]; /* dir_item's value can be 80, plus flags */ 

current_dir = (char *)panel_get_value(dir_item); 

if (strcmp(current_dir, previous_dir}} { 
chdir((char *}panel_get_value(dir_item}}; 
strcpy(previous_dir, current_dir}; 

sprintf(cmdstring, "ls %s %s/%s\n", 
compose_ls_options{}, 
current_dir, 
panel_get_value(fname_item}}; 

ttysw_input{ttysw, cmdstring, strlen{cmdstring}}; 

void 
ls_flags_proc (} 
{ 

window_set(ls_flags_frame, WIN_SHOW, TRUE, 0); 

void 
done _proc {} 
{ 

window set(ls_flags_frame, WIN_SHOW, FALSE, 0); 

I* return a pointer to the current selection */ 
char * 
get selection(} 
{ 

static char 
Seln holder 

filename[MAX_FILENAME_LEN]; 
holder; 

Seln_request *buffer; 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

Appendix A- Example Programs (filer) 395 

holder= seln_inquire(SELN_PRI~Y); 
buffer= seln_ask(&holder, SELN_REQ_CONTENTS_ASCII, 0, 0); 
strncpy( 

filename, buffer->data + sizeof(Seln_attribute), MAX FILENAME_LEN); 

return(filename); 

I* return 1 if file exists, else print error message and return 0 *I 
stat_file(filename) 

char *filename; 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 
char this_file[MAX_PATH_LEN]; 
struct stat statbuf; 

current dir = (char *)panel_get_value(dir_item); 

if (strcmp(current_dir, previous_dir)) { 
chdir((char *)panel_get_value(dir_item)); 
strcpy(previous_dir, current_dir); 

sprintf(this_file, "%sl%s", current_dir, filename); 

if (stat(this_file, &statbuf) < 0) { 
char buf[MAX_FILENAME_LEN+l1]; I* big enough for message *I 
sprintf(buf, "%s not found.", this_file); 
msg(buf, 1); 
return 0; 

return 1; 

void 
edit_proc () 
{ 

void edit_file_proc(), edit_sel_proc(); 
int file_mode = (int)panel_get_value(filing_mode_item); 

if (file_mode) { 
(void)edit_sel_proc(); 

else { 
(void)edit_file_proc(); 

void 
edit_file_proc 0 
{ 

char *filename; 

I* return if no selection *I 
if (!strlen(filename = (char *)panel_get_value(fname_item))) 

msg("Please enter a value for \"File:\".", 1); 
return; 

I* return if file not found *I 
if (!stat_file(filename)) 

sun 
microsystems 

Revision A, of May 9, 1988 



396 Sun View 1 Programmer's Guide 

return; 

window_set(editsw, TEXTSW_FILE, filename, 0); 

window_set(edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0); 

void 
edit_sel_proc () 
{ 

char *filename; 

I* return if no selection *I 
if (!strlen(filename = get_selection())) 

msg("Please select a file to edit.", 0); 
return; 

I* return if file not found *I 
if (!stat_file(filename)) 

return; 

window_set(editsw, TEXTSW_FILE, filename, 0); 

window_set(edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0); 

void 
del_proc () 

{ \ 

char 
char 
int 
Event 
int 

buf[300]; 
*filename; 
result; 
event; I* unused *I 
file mode= (int)panel_get_value(filing_mode_item); 

I* return if no selection *I 
if (file_mode) { 

if (!strlen(filename = get_selection())) { 
msg("Please select a file to delete.", 1); 
return; 

else 
if (!strlen(filename = (char *)panel_get_value(fname_item}}) 

msg("Please enter a file name to delete.", 1); 
return; 

I* return if file not found *I 
if (!stat_file(filename)) 

return; 

I* user must confirm the delete *I 
result= alert_prompt(bas~_frame, &event, 

ALERT_MESSAGE_STRINGS, 
"Ok to delete file:", 
filename, 

sun 
microsysterns 

0 

0 

0 
Revision A, of May 9, 1988 



--------------------------------------------------------------------------·--------~~--~"' 

c 

c 

Appendix A- Example Programs (filer) 397 

0, 
ALERT BUTTON~YES, 
ALERT_BUTTON~NO, 

0); 
switch (result) { 

case ALERT YES: 
unlink(filename); 

"Confirm, delete file", 
"Cancel", 

sprint£ (buf, :•%s deleted.", filename); 
msg(buf, 0); 
break; 

case ALERT NO: 
break; 

case ALERT FAILED: /* not likely to happen unless out of FDs *I 
sprintf(buf, "Ok to delete file %s?", filename); 
result= confirm_yes(buf); 
if (result) { 

unlink(filename); 
sprintf(buf, "%s deleted.", filename); 
msg(buf, 1); 

break; 

int 
confirm_quit () 

result; int 
Event 
char 

event; /* unused */ 
*msg = "Are you sure you want to Quit?"; 

result= alert_prompt(base_frame, &event, 
ALERT_MESSAGE_STRINGS, 

"Are you sure you want to Quit?", 
0, 

ALERT BUTTON_YES, 
ALERT_BUTTON_NO, 
0); 

switch (result) { 
case ALERT YES: 

break; 
case ALERT NO: 

return 0; 

"Confirm", 
"Cancel", 

case ALERT FAILED: /* not likely to happen unless out of FDs */ 
result= confirm_yes(msg); 
if (!result) { 

return 0; 

break; 

return 1; 

static Notify_value 
filer_destroy_func(client, status) 

Notify_client client; 
Destroy_status status; 

sun 
microsystems 

Revision A, of May 9, 1988 



398 Sun View 1 Programmer's Guide 

if (status == DESTROY_CHECKING) { 
if (quit_confirmed_from_panel) 

return(notify_next_destroy_func(client, status)); 
else if (confirm_quit() == 0) { 

(void) notify_veto_destroy((Notify_client) (LINT_CAST(client))); 
return(NOTIFY_DONE); 

return(notify_next_destroy_func(client, status)); 

void 
quit_proc () 
{ 

if (confirm_quit()) { 
quit_confirmed_from_panel 1; 
window_destroy(base_frame); 

msg(msg, beep) 
char *msg; 
int beep; 

char 
int 
Event 
char 

buf[300]; 
result; 
event; /* unused */ 
*contine_msg = "Press \"Continue\" to proceed."; 

result= alert_prompt(base_frame, &event, 
ALERT_MESSAGE_STRINGS, 

msg, 
contine_msg, 
0, 

ALERT_NO_BEEPING, (beep) ? 0:1, 
ALERT_BUTTON_YES, "Continue", 
ALERT_TRIGGER, ACTION_STOP, /* allow either YES or NO answer */ 
0); 

switch (result) { 
case ALERT YES: 
case ALERT TRIGGERED: /* result of ACTION_STOP trigger */ 

break; 
case ALERT_FAILED: /* not likely to happen unless out of FDs */ 

sprintf(buf, "%s Press \"Continue\" to proceed.", msg); 
result confirm_ok(buf); 
break; 

I* confirmer routines to be used if alert fails for any reason */ 

static Frame 
static int 
static void 

init_confirmer(); 
confirm(); 
yes_no_ok(); 

int 
confirm_yes(message) 

char *message; 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (filer) 399 

return confirm(message, FALSE); 

int 
confirm_ok(message) 

char *message; 

return confirm(message, TRUE); 

static int 
confirm(message, ok_only) 

char 
int 

*message; 
ok_only; 

Frame 
int 

confirmer; 
answer; 

I* create the confirmer */ 
confirmer = init_confirmer(message, ok_only); 
I* make the user answer */ 
answer= (int) window_loop(confirmer); 
I* destroy the confirmer */ 
window_set(confirmer, FRAME_NO_CONFIRM, TRUE, 0); 
window_destroy(confirmer); 
return answer; 

static Frame 
init_confirmer(message, ok_only) 

char *message; 
int ok_only; 

Frame 
Panel 
Panel item 
int 
Rect 
struct pixrect 

confirmer 
panel 
message_item 

if (ok_only) { 

confirmer; 
panel; 
message_item; 
left, top, width, height; 
*r; 
*pr; 

window_create(O, FRAME, FRAME_SHOW_LABEL, FALSE, 0); 
window_create(confirmer, PANEL, 0); 
panel_create_item(panel, PANEL_MESSAGE, 

PANEL_LABEL_STRING, message, 0); 

pr = panel_button_image(panel, "Continue", 8, 0); 
width = pr->pr_width; 

else { 
pr = panel_button_image(panel, "Cancel", 8, 0); 
width = 2 * pr->pr_width + 10; 

I* center the yes/no or ok buttons under the message */ 
r = (Rect *) panel_get(message_item, PANEL_ITEM_RECT); 
left = (r->r_width - width) I 2; 
if (left < 0) 

sun 
microsystems 

Revision A, of May 9, 1988 



400 S1U1View 1 Programmer's Guide 

left = 0; 
top = rect_bottom(r) + 5; 

if (ok_only) { 
panel_create_item(panel, PANEL_BUTTON, 

PANEL_ITEM_X, left, PANEL_ITEM_Y, top, 
PANEL_LABEL_IMAGE, pr, 
PANEL_CLIENT_DATA, 1, 
PANEL_NOTIFY_PROC, yes_no_ok, 
0); 

else { 
panel create_item(panel, PANEL_BUTTON, 

PANEL_ITEM_X, left, PANEL_ITEM_Y, top, 
PANEL_LABEL_IMAGE, pr, 
PANEL_CLIENT_DATA, 0, 
PANEL_NOTIFY_PROC; yes_no_ok, 
0); 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "Confirm", 8, 0), 
PANEL_CLIENT_DATA, 1, 
PANEL_NOTIFY_PROC, yes_no_ok, 
0); 

window_fit(panel); 
window_fit(confirmer); 

I* center the 
r 

width 
height 
left 
top 
if (left < 0) 

left 0; 
if (top < 0) 

top = 0; 

confirmer frame on the screen *I 
(Rect *) window_get(confirmer, WIN_SSREEN_RECT); 
(int) window_get(confirmer, WIN_WIDTH); 
(int) window_getJconfirmer, WIN_HEIGHT); 
(r->r_width - width) I 2; 
(r->r_height - height) I 2; 

window_set(confirmer, WIN_X, left, WIN_Y, top, 0); 

return confirmer; 

static void 
yes_no_ok(item, event) 

Panel item item; 
Event *event; 

window_return(panel_get(item, PANEL_CLIENT_DATA)); 

sun 
microsystems 

0 

0 

0 
Revision A, of May 9, 1988 



c A.2. image browser 1 - -

c 

c 

Appendix A- Example Programs (image browser 1) 401 

The following program is discussed in Chapter 4, Using Windows. It lets the 
user browse through icons and display them. It shows a more complex subwin­
dowlayout. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



402 Sun View 1 Programmer's Guide 

I*************************************************************************** I 
I* image_browser_l.c */ 
I*************************************************************************** I 

#include <suntool/sunview.h> 
#include <suntool/panel.h> 
#include <suntool/tty.h> 
#include <stdio.h> 
#include <suntool/icon_load.h> 
#include <suntool/seln.h> 

Frame 
Panel 
Tty 

frame; 
control _panel, 
tty; 

display _panel; 

Panel item dir_item, fname_item, image_item; 

ls_proc(), show_proc(), quit_proc(); 

char *get_selection(); 

#define MAX_PATH_LEN 1024 
#define MAX FILENAME LEN 256 

main(argc, argv) 
int argc; 
char **argv; 
{ 

frame = window_create(NULL, FRAME, 
FRAME_ ARGS, 
FRAME_ LABEL, 
0); 

init_tty (); 
init_control_panel(); 
init_display_panel(); 
window_fit(frame); 
window_main_loop(frame); 
exit(O); 

init_tty () 
{ 

argc, argv, 
"image_browser_l", 

tty= window_create(frame, TTY, 
WIN_COLUMNS, 30, 
WIN_ROWS, 20, 
0); 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

Appendix A- Example Programs (image browser 1) 403 

init_control_panel() 
{ 

char *getwd (); 
char current_dir[1024]; 

control_panel = window_create(frame, PANEL, 0); 

dir_item = panel_create_item(control_pane1, PANEL_TEXT, 
PANEL_VALUE_DISPLAY_LENGTH, 13, 
PANEL_LABEL_STRING, "Dir: ", 
PANEL_VALUE, 
0); 

getwd(current_dir), 

fname_item = panel_create_item(control_panel, PANEL_TEXT, 
PANEL_ITEM_X, ATTR_COL (0), 
PANEL_ITEM_Y, ATTR_ROW(1), 
PANEL VALUE DISPLAY_LENGTH, 13, 
PANEL_LABEL_STRING, 
0); 

"File:", 

panel_create_item(control_panel, PANEL BUTTON, 
PANEL_ITEM_X, ATTR_COL(O), 
PANEL_ITEM_Y, ATTR_ROW(2), 
PANEL_LABEL_IMAGE, 
PANEL_NOTIFY_PROC, 
0); 

panel_button_image(control_panel,"List",O,O), 
ls_proc, 

panel_create_item(control_panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(control_panel,"Show",O,O), 
PANEL_NOTIFY_PROC, show_proc, 
0); 

panel_create_item(control_panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(control_panel,"Quit",O,O), 
PANEL_NOTIFY_PROC, quit_proc, 
0}; 

window_fit(control_panel); 

sun 
microsystems 

Revision A, of May 9, 1988 



404 Sun View 1 Programmer's Guide 

ls_proc () 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 
char cmdstring[lOO]; 

current dir = (char *)panel_get_value(dir_item); 

if (strcmp(current_dir, previous_dir)) { 
chdir(current_dir); 
sprintf(cmdstring, "cd %s\n", current_dir); 
ttysw_input(tty, cmdstring, strlen(cmdstring)); 
strcpy(previous_dir, current_dir); 

sprintf(cmdstring, "ls -1 %s\n", panel_get_value(fname_item)}; 
ttysw_input(tty, cmdstring, strlen(cmdstring)); 

quit_proc () 
{ 

window_destroy(frame); 

show_proc () 
{ 

char *filename; 

if (!strlen(filename 
return; 

load_image(filename); 

load_image(filename) 
char *filename; 

Pixrect *image; 

get_selection())) 

char error_msg[IL_ERRORMSG_SIZE]; 

if (image= icon_load_mpr(filename, error_msg)) 
panel_set(image_item, 

PANEL_ITEM_X, ATTR_COL(S), 
PANEL_ITEM_Y, ATTR_ROW(4), 
PANEL_LABEL_IMAGE, image, 
0); 

• sun 
microsysterns 

0 

0 

0 
Revision A, of May 9, 1988 



c 

c 

Appendix A- Example Programs (image browser 1) 405 

init_display_panel() 
{ 

display_panel = window_create(frame, PANEL, 

image_item 

char * 
get_selection () 
{ 

static char 
Seln holder 
Seln_request 

WIN_BELOW, control_panel, 
WIN_RIGHT_OF, tty, 
0); 

panel_create_item(display_panel, PANEL_MESSAGE, 0); 

filename[MAX_FILENAME_LEN]; 
_b.older; 
*buffer; 

holder= seln_inquire(SELN_PRIMARY); 
buffer= seln_ask(&holder, SELN_REQ_CONTENTS_ASCII, 0, 0); 
strncpy(filename, buffer->data + sizeof(Seln_attribute), MAX_FILENAME_LEN); 
return (filename); 

Revision A, of May 9, 1988 



406 SilllView 1 Programmer's Guide 

A.3. image browser 2 - - The following program is discussed in Chapter 4, Using Windows. It is a more 
complex icon browser than the preyious example It illustrate how you can use 
row/column space to specify the size of a subwindow. 

~\sun "'~ microsystems 
Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (image browser 2) 407 

!***************************************************************************/ 
iifndef lint 
static char sccsid[] = "@(i)image_browser_2.c 1.3 86/09/15 Copyr 1986 Sun Micro"; 

iendif 
I*************************************************************************** I 

iinclude <suntool/sunview.h> 
iinclude <suntool/panel.h> 
iinclude <suntool/tty.h> 
iinclude <stdio.h> 
iinclude <suntool/icon_load.h> 
iinclude <suntool/seln.h> 
iinclude <suntool/expand_name.h> 
iinclude <suntool/scrollbar.h> 

static char namebuf[100]; 
static int file_count, image_count; 
static struct namelist *name_list; 
idefine get_name(i) name_list->names[(i)] 

frame; Frame 
Panel 
Tty 

control _panel, 
tty; 

display _panel; 

Panel item dir_item, fname_item, image_item; 

show_proc(), browse_proc(), quit_proc(); 

Pixrect *get_image(); 

char *get_selection(); 

idefine MAX_PATH_LEN 1024 
idefine MAX FILENAME LEN 256 

main(argc, argv) 
int argc; 
char **argv; 
{ 

frame= window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
FRAME_LABEL, "image_browser_2", 
0); 

init_control_panel(); 
init_display_panel(); 
window_set(control_panel, 

WIN_WIDTH, window_get(display_panei, WIN_WIDTH, 0), 

0); 
window_fit(frame); 
window_main_loop(frame); 
exit(O); 

sun 
microsystems 

Revision A, of May 9, 1988 



408 Sun View 1 Programmer's Guide 

init_control_panel() 
{ 

char current_dir[MAX_PATH LEN]; 

control_panel = window_create(frame, PANEL, 0); 

dir_item = panel_create_item(control_panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(O), 
PANEL VALUE DISPLAY_LENGTH, 23, 
PANEL_VALUE, 
PANEL_LABEL_STRING, 
0); 

getwd(current_dir), 
"Dir: " 

(void) panel_create_item(control_panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(control_panel,"Browse",O,O), 
PANEL_NOTIFY_PROC, browse_proc, 
0); 

fname item = panel_create_item(control_panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(l), 
PANEL_VALUE_DISPLAY_LENGTH, 23, 
PANEL_LABEL_STRING, 
0) ; 

"File:", 

(void) panel_create_item(control_panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(control_panel,"Quit",6,0), 
PANEL_NOTIFY_PROC, quit_proc, 
0); 

window_fit_height(control_panel); 

window_set(control_panel, PANEL CARET_ITEM, fname_item, 0); 

sun 
microsystems 

0 

0 
Revision A, of May 9, 1988 



c 

Appendix A- Example Programs (image browser 2) 409 

browse_proc () 
{ 

Panel item old_item; 
register int i; 
int len; 
Pixrect *image; 
int previous_image_count; 
register int row, col; 

set_directory(); 
match_files (); 

panel_each_item(display_panel, old_item) 
pr_destroy ((Pixrect *)panel_get(old_item, PANEL_LABEL_IMAGE)); 
panel_free(old_item); 

panel_end_each 

previous_image_count = image_count; 
for (row = 0, image_count = 0; image_count < file_count; row++) 

for (col = 0; col < 4 && image_count < file_count; col++) { 
if (image= get_image(image_count)) { 

panel_create_item(display_panel, PANEL_MESSAGE, 
PANEL_ITEM_Y, ATTR_ROW(row), 
PANEL_ITEM_x, ATTR_COL(col), 
PANEL_LABEL_IMAGE, image, 0); 

image_count++; 

if (image_count <= previous_image_count) 
panel_update_scrolling_size(display_panel); 

panel_paint(display_panel, PANEL_CLEAR); 

free_namelist(name_list); 

set_ directory () 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current~dir; 

current_dir = (char *)panel_get_value(dir_item); 

if (strcmp(current_dir, previous_dir)) 
chdir(current_dir); 
strcpy(previous_dir, current_dir); 

Pixrect * 
get_image(i) 
int i; 

char error_msg[IL_ERRORMSG_SIZE]; 
return (icon_load_mpr(get_name(i), error_msg)); 

sun 
microsystems 

Revision A, of May 9, 1988 



410 Sun View 1 Programmer's Guide 

match_files () 
{ 

char *val; 

val= (char *)panel_get_value(fname_item); 
strcpy(namebuf, val); 
name list 
file count 

expand_name(namebuf); 
name_list->count; 

quit_proc () 
{ 

window_destroy(frame); 

show _proc () 
{ 

char *filename; 

if (!strlen(filename 
return; 

load_image(filename); 

load_image(filename) 
char *filename; 

Pixrect *image; 

get_selection())) 

char error_msg[IL_ERRORMSG_SIZE]; 

if (image= icon_load_mpr(filename, error_msg)) 
panel_set(image_item, 

PANEL_ITEM_X, ATTR_COL(S), 
PANEL_ITEM_Y, ATTR_ROW(4), 
PANEL_LABEL_IMAGE, image, 
0); 

sun 
microsystems 

0 

c 

0 
Revision A, of May 9, 1988 



C' 

c 

C' 

Appendix A- Example Programs (image_ browser_ 2) 411 

init_display_panel() 
{ 

int width; 
Scrollbar sb = scrollbar_create(SCROLL MARGIN,10,0); 
width= (int)scrollbar_get(sb, SCROLL_THICKNESS, 0); 
display_panel = window_create(frame, PANEL, 

WIN_BELOW, control_panel, 
WIN_X, 0, 
WIN VERTICAL_SCROLLBAR, sb, 
WIN_ROW_HEIGHT, 64, 
WIN_COLUMN_WIDTH, 
WIN_ROW_GAP, 
WIN_COLUMN_GAP, 
WIN_LEFT_MARGIN, 
WIN_TOP_MARGIN, 
WIN_ROWS, 
WIN_COLUMNS, 
0); 

64, 
10, 
10, 
width + 10, 
10, 
4, 
4, 

window_set(display_panel, WIN LEFT_MARGIN, 10, 0); 

char * 
get_selection () 
{ 

static 1 char 
Seln holder 

filename[MAX_FILENAME_LEN]; 
holder; 

Seln_request *buffer; 

holder= seln_inquire(SELN~PRIMARY); 
buffer= seln_ask(&holder, SELN_REQ_CONTENTS_ASCII, 0, 0); 
strncpy(filename, buffer->data + sizeof(Seln_attribute), MAX_FILENAME_LEN); 

return (filename); 

Revision A, of May 9, 1988 



412 Sun View 1 Programmer's Guide 

A.4. tty_io The following program demonstrates the use oft t ysw_ input () , 
ttysw_output () and TTY escape sequences. These functions are explained 
in Chapter 11, TTY Subwindows. 

tty _io creates a panel and a tty subwindow. You can send arbitrary character 
sequences to the latter as input or output by manipulating panel items. There is 
also a button that sends the current time within the escape sequence to set the 
frame label. Try sending different sequences to the tty subwindow. Press 
CTRL-R to see the difference between what appears on the screen and what was 
input to the pseudo-tty. Also try starting the tool with a program such as vi as a 
command line argument. 

sun Revision A, of May 9, 1988 
microsystems 

0 

0 

0 



c 

c 

Appendix A- Example Programs (tty io) 413 

I***************************************************************************** I 
#ifndef lint 
static char sccsid[] = "@(#)tty_io.c 1.4 87/11/19 Copyr 1986 Sun Micro"; 
#endif 
!*****************************************************************************/ 

#include <stdio.h> 
#include <suntool/sunview.h> 
#include <suntool/tty.h> 
#include <suntool/panel.h> 

#define TEXT ITEM MAX LENGTH 25 

Tty tty; 
Panel item text item; -
char tmp _ buf [ 8 0] ; 

static void input -'text () ; 
static void output_text (); 
static void output_ time(); 

main(argc, argv) 
int argc; 

**argv; char 

Frame 
Panel 

frame 

frame; 
panel; 

window_create(NULL, FRAME, 
FRAME_ ARGS, 
WIN_ERROR_MSG, 
0); 

panel= window_create(frame, PANEL, 0); 

I* set up a simple panel subwindow */ 
panel_create_item(panel, PANEL_BUTTON, 

argc, argv, 
"Can't create tool frame", 

PANEL_LABEL_IMAGE, panel_button_image(panel, "Input text", 11, 0), 
PANEL_NOTIFY_PROC, input_text, 
0); 

panel create_item(panel, PANEL_BUTTON, 

text item 

PANEL_LABEL_IMAGE, panel_button_image(panel, "Output text", 11, 0), 
P.ANEL_NOTIFY_PROC, output_text, 
.0); 

panel~create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, "Text:", 
P~EL_VALUE, "Hello hello", 
PANEL VALUE DISPLAY_LENGTH, TEXT ITEM_MAX_LENGTH, 
0); 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "Show time", 11, 0), 
PANEL_NOTIFY_PROC, output_time, 
0); 

window fit_height(panel); 

• sun 
micros ystems 

Revision A, of May 9, 1988 



414 Sun View 1 Programmer's Guide 

I* Assume rest of arguments are for tty subwindow, except FRAME_ARGS leaves the 
* program_name as argv[O], and we don't want to pass this to the tty subwindow. 
*I 

argv++; 
tty= window_create(frame, TTY, 

TTY_ARGV, 

window_fit(frame); 

WIN_ROWS, I 

WIN_COLUMNS, 
0); 

argv, 
24, 
80, 

ttysw_input(tty, "echo my pseudo-tty is 'tty'\n", 28); 

window_main_loop(frame); 
exit(O); 

static void 
in~ut_text(item, event) 

Panel item item; 
Event *event; 

strcpy(tmp_buf, (char*) panel_get_value(text_item)); 
ttysw_input(tty, tmp_buf, strlen(tmp_buf)); 

static void 
output_text(item, event) 

Panel item item; 
Event *event; 

strcpy(tmp_buf, (char*) panel_get_value(text_item)); 
ttysw_output(tty, tmp_buf, strlen(tmp_buf)); 

• sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 



c 

c 

static void 
output_time(item, event) 

Panel item 
Event 

item; 
*event; 

#include <sys/time.h> 
#define ASCTIMELEN 26 

struct timeval tp; 

I* construct escape sequence to set frame label */ 
tmp_buf[O] '\033'; 
tmp_buf[l] = ']'; 
tmp_buf[2] = '1'; 
tmp_buf[2 + ASCTIMELEN + 1] '\033'; 
tmp_buf[2 + ASCTIMELEN + 2] '\\'; 
gettimeofday(&tp, NULL); 
strncpy(&tmp_buf[3], ctime(&tp.tv_sec), ASCTIMELEN); 
ttysw_output(tty, tmp_buf, ASCTIMELEN + 5); 

Appendix A-Example Programs (tty_io) 415 

Revision A, of May 9, 1988 



416 Sun View 1 Programmer's Guide 

A.S. font menu The next program,jont_menu, builds on several of the examples given in Chapter 
12, Menus. Examples of the font menu it creates are shown below: 

' Af'L Ci.*DV l "' 
'' ' 

C.MI. 

Screen 

Frame => 
Family=> 

r----=--. 

~~sun ~ microsysteins 

8 
18 
12 
14 
16 
18 

8 
18 
12 
14 
16 
18 

Revision A, of May 9, 1988 



c 

c 

Appendix A- Example Programs (font_ menu) 417 

I***************************************************************************** I 
#ifndef lint 
static char sccsid[] = "@(#)font_menu.c 1.2 86109115 Copyr 1986 Sun Micro"; 
#endif 
I***************************************************************************** I 

#include <suntoollsunview.h> 
#include <suntoollpanel.h> 
#include <suntoollwalkmenu.h> 

void set_family(), set_size(), set_on_off(), toggle_on_off(), open_fonts(); 
Menu new_menu(), initialize_on_off(); 
char *int_to_str(); 
extern char * sprintf(); 
extern char * malloc(); 

Panel_item feedback_item; 
char *family, *size, *bold, *italic; 
Pixfont *cour, *serif, *apl, *cmr, *screen; 

1*****************************************************************************1 
I* main *I 
I* First create the base frame, the feedback panel and feedback item. The *I 
I* feedback item is initialized to. "gallant 8". *I 
I* Then get the frame's menu, call new_menu() to create a new menu with the *I 
I* original frame menu as a pullright, and give the new menu to the frame. *I 
I***************************************************************************** I 

main(argc, argv) 
int argc; 
char *argv []; 

Frame frame; 
Panel panel; 
Menu menu; 
int defaults; 

frame= window_create(NULL, FRAME, FRAME_LABEL, "Menu Test-- Try frame menu.", 0); 
panel= window_create(frame, PANEL, WIN_ROWS, 1, 0); 
feedback_item = panel_create_item(panel, PANEL_MESSAGE, PANEL_LABEL_STRING, "", 0); 

family= "Gallant", size 
update_feedback(); 

"8", bold 

I* remember if user gave -d flag *I 

italic "". , 

if (argc >= 2) defaults= strcmp(argv[1], "-d") 0; 

menu= (Menu)window_get(frame, WIN_MENU); 
menu= new_menu(menu, defaults); 
window~set(frame, WIN_MENU, menu, 0); 

window_main_loop(frame); 

sun 
microsystems 

Revision A, of May 9, 1988 



418 Sun View 1 Programmer's Guide 

I***************************************************************************** I 
I* new_menu -- returns a new menu with 'original menu' as a pullright. *I 
I***************************************************************************** I 

Menu 
new_menu(original_menu, defaults} 

Menu original_menu; 
int defaults; 

Menu new_menu, family_menu, size_menu, on_off_menu; 
int i; 

I* create the on-off menu, which will be used as a ~ullright 
* for both the bold and italic items to the new menu. 

*I 
on off menu menu create(MENU STRING_ITEM, 

MENU_STRING_ITEM, 
MENU_ GEN _PROC, 
MENU_NOTIFY_PROC, 
0}; 

"On", 1, 
"Off", 0, 
initialize_on_off, 
set_ on_ off, 

I* create the new menu which will eventually be returned *I 

open_fonts(}; I* first open the needed fonts*/ 
new menu menu_create( 

MENU PULLRIGHT_ITEM, 
"Frame", 
original_ menu, 

MENU_PULLRIGHT_ITEM, 
"Family", 
family_menu = menu_create( 

MENU_ITEM, 
MENU_STRING, 
MENU_FONT, 
0, 

MENU_ITEM, 
MENU_STRING, 
MENU_FONT, 
0, 

MENU_ITEM, 
MENU_STRING, 
MENU_FONT, 
0, 

"Courier", 
cour, 

"Serif", 
serif, 

"aplAPLGIJ", 
apl, 

MENU_ITEM, 
MENU_STRING, "CMR", 
MENU _FONT, cmr, 
0, 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



--------------------------------------------
-----.. 1!~~_.& '.~-'!!!'~ 

c 

c 

Appendix A- Example Programs (font menu) 419 

MENU_ITEM, 
MENU_STRING, "Screen", 
MENU_FONT, screen, 
0, 

MENU_NOTIFY_PROC, set_family, 
0) , 

MENU_PULLRIGHT_ITEM, 
"Size", size_menu 

MENU_ITEM, 
MENU_STRING, 
MENU_PULLRIGHT, 
MENU_NOTIFY_PROC, 
MENU_CLIENT_DATA, 

0, " 
MENU_ITEM, 

MENU_STRING, 
MENU_PULLRIGHT, 
MENU_NOTIFY_PROC, 
MENU_CLIENT_DATA, 
0, 

0); 

menu_create (0), 

"Bold", 
on_off_menu, 
toggle_on_off, 
&bold, 

"Italic" I 
on_off_menu, 
toggle_ on_ off, 
&italic, 

I* give each item in the family menu the size menu as a pullright *I 
for (i = (int)menu_get(family_menu, MENU_NITEMS); i > 0; --i) 

menu_set(menu_get(family_menu, MENU_NTH_ITEM, i), 
MENU_PULLRIGHT, size_menu, 0); 

I* put non-selectable lines inbetween groups of items in family menu *I 
menu_set(farnily_menu, 

MENU_INSERT, 2, menu_create_item(MENU_STRING, 
MENU_INACTIVE, 
0) , 

0); 
menu_set(family_menu, 

,, _______ ,, 
TRUE, 

MENU_INSERT, 5, menu_get(farnily_menu, MENU_NTH_ITEM, 3), 
0); 

, 

I* The size menu was created with no items. Now give it items representing *I 
I* the point sizes 8, 10, 12, 14, 16, and 18. *I 
for (i = 8; i <= 18; i += 2) 

menu_set(size_menu, MENU STRING ITEM, int to_str(i), i, 0); 

I* give the size menu a notify proc to update the feedback *I 
menu_set(size_menu, MENU_NOTIFY_PROC, set_size, 0); 

sun 
microsystems 

Revision A, of May 9, 1988 



420 Sun View 1 Programmer's Guide 

I* if the user did not give the -d flag, make all the menus come 
* up with the initial and default selections the last selected 
* item, and the initial selection selected. 

*I 
if (!defaults) { 

menu_set(new_menu, 
MENU DEFAULT_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION_SELECTED, TRUE, 
0); 

menu set(family_menu, 
MENU DEFAULT_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION_SELECTED, TRUE, 
0) ; 

menu set(size_menu, 
MENU_DEFAULT_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION_SELECTED, TRUE, 
0); 

menu set(on_off_menu, 
MENU DEFAULT_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION, MENU_SELECTED, 
MENU_INITIAL_SELECTION_SELECTED, TRUE, 
0); 

return (new_menu); 

sun 
microsystems 

0 
Revision A, of May 9, 1988 



________________________________________________ ,. ______ .. lL£!l&£!2£S£LIUJ]j.,,->~~~-'---~~ 

c 

c 

AppendixA-ExamplePrograms(font menu) 421 

1********************************~********************************************1 

I* set_family -- notify proc for family menu. Get the current family and *I 
I* display it in the feedback panel. Note that we first get the value *I 
I* of the menu item. This has the side effect of causing any pullrights *I 
I* further to the right of mi to be evaluated. Specifically, the value of *I 
I* each family item is the value of its pullright -- namely the size menu. *I 
I* When the size menu is evaluated, the notify proc set_size(} is called, *I 
I* which updates the feedback for the size. *I 
1*********************************************************************~*******1 

I*ARGSUSED*I 
void 
set_family(m, mi} 

Menu m; 
Menu item mi; 

menu_get(mi, MENU_VALUE}; I* force pullrights to be evaluated *I 
family= menu_get(mi, MENU_STRING}; 
update_feedback(}; 

1*****************************************************************************1 
I* set_size -- notify proc for the size menu. *I 
1*****************************************************************************1 

I*ARGSUSED*I 
void 
set_size (m, mi} 

Menu m; 
Menu item mi; 

size menu_get(mi, MENU_STRING}; 
update_feedback(}; 

sun 
microsystems 

Revision A, of May 9, 1988 



422 Sun View 1 Programmer's Guide 

I**************************************************************************** I 
I* initialize_on_off -- generate proc for the on_off menu. *I 
I* The on-off menu is a pullright of both the bold and the italic menus. *I 
I* We want it to toggle -- if its parent was on, it should come up with *I 
I* "Off" selected, and vice-versa. We can do that by first getting the *I 
I* parent menu item, then, indirectly through its client data attribute, *I 
I* seeing if the string representing the bold or italic state is null. *I 
I* If the string was null, we set the first item ("On") to be selected, *I 
I* else we set the second item ("Off") to be selected. *I 
I***************************************************************************** I 

Menu 
initialize_on_off(m, op) 

Menu m; Menu_generate op; 

Menu_item parent_mi; 
char **name; 

if (op != MENU_CREATE) return (m); 

parent_mi = (Menu_item)menu_get(m, MENU_PARENT); 
name~ (char **)menu_get(parent_mi, MENU_CLIENT_DATA); 

if (**name == NULL) 
menu_set(m, MENU_SELECTED, 1, 0); 

else 
menu_set(m, MENU_SELECTED, 2, 0); 

return (m); 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (font menu) 423 

I***************************************************************************** I 
I* set_on_off -- notify proc for on-off menu. *I 
I* Set the feedback string -- italic or bold -- appropriately depending on *I 
I* the current setting. Note that the "On" item was created to return a *I 
I* value of 1, and the "Off" item will return a value of 0. *I 
1*****************************************************************************1 

void 
set on_off(m, mi) 

Menu m; Menu_item mi; 

Menu_item parent_mi; 
char **name; 

parent_mi = (Menu_item)menu_get(m, MENU_PARENT); 
name= (char **)menu_get(parent_mi, MENU_CLIENT_DATA); 
if (menu_get(mi, MENU_VALUE)) 

*name (char *)menu_get(parent_mi, MENU_STRING); 
else 

*name = ""; 

update_feedback(); 

I***************************************************************************** I 
I* toggle_on_off -- notify proc for the "Bold" and "Italic" menu items. *I 
I* Using a notify proc for the menu item allows toggling without bringing *I 
I* up the on-off pullright. *I 
I***************************************************************************** I 

I*ARGSUSED*I 
void 
toggle_on_off(m, mi) 

Menu m; 
Menu item mi; 

char **name; 

name= (char **)menu_get(mi, MENU_CLIENT_DATA); 

if (**name == NULL) 
*name 

else 
(char *)menu_get(mi, MENU_STRING); 

*name n" • 
I 

update_feedback(); 

• sun 
microsystems 

Revision A, of May 9, 1988 



424 Sun View 1 Programmer's Guide 

update_feedback() 
{ 

char buf[30]; 

sprintf(buf, "%s %s %s %s", bold, italic, family, size); 
panel_set(feedback_item, PANEL_LABEL_STRING, buf, 0); 

char * 
int to_str (n) 

} 

char *r = malloc(4); 
sprintf(r, "%d", n); 
return (r); 

void 
open_fonts () 
/{ 

cour = pf_open("/usr/lib/fonts/fixedwidthfonts/cour.r.lO"); 
serif= pf_open("/usr/lib/fonts/fixedwidthfonts/serif.r.lO"); 
apl = pf_open (" /usr/lib/fonts/fixedwidthfonts/apl.r.lO"); 
cmr = pf_open("/usr/lib/fonts/fixedwidthfonts/cmr.b.8"); 
screen= pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.ll"); 

~~sun ~ microsystems 

0 

0 

Revision A, of May 9, 1988 



--------------------------------------------------------------~-------- --------~~~~ 

c A.6. resize demo 

c 

c 

Appendix A- Example Programs (resize_ demo) 425 

This program demonstrates how to resize the subwindows of a frame yourself if 
you need to use a complicated topology. 

The particular subwindow layout used here has four subwindows. One has a 
fixed width and height in pixels, another has a fixed width in characters (using 
the user-set default font), and the other two fill up the empty space. One of the 
subwindows also has a scrollbar. 

This program interposes in front of the frame's client event handler. If the event 
is WIN_RESIZE, the program's own resize () procedure is called, which sets 
the subwindow positions explicitly. 

For a discussion of interposing and the Notifier, see Chapter 17, The Notifier. 
The simpler case of using window attributes to layout subwindows is described 
under Explicit Subwindow Layout in Chapter @NumberOf(window), 
@TitleOf(window ). 

Revision A, of May 9, 1988 



426 Sun View 1 Programmer's Guide 

I*************************************************************************** I 
#ifndef lint 
static char sccsid[] = "%Z%%M% %I% %E% Copyr 1986 Sun Micro"; 

#endif 
I*************************************************************************** I 

#include <suntoollsunview.h> 
#include <suntoollcanvas.h> 
#include <suntoollscrollbar.h> 

Canvas Canvas 1, Canvas 2, Canvas_3, Canvas_4; 
Pixwin *Pixwin_l, *Pixwin_2, *Pixwin_3, *Pixwin_4; 
Rect framerect; 
PIXFONT *font; 

extern char* sprint£(); 
I* 

* font macros: 
* font_offset(font) gives the vertical distance between 
* the font origin and the t:.op left corner 
* of the bounding box of the string displayed 
* (see Text Facilities for Pixrects in the 
* Pixrect Reference Manual) 
* font_height(font) gives the height of the font 

*I 

#define font_offset(font) 
#define font_height(font) 

I* 

(-font->pf_char['n'] .pc_home.y) 
(font->pf_defaultsize.y) 

* SunView-dependent size definitions 

*I 

#define LEFT MARGIN 5 I* margin on left side of frame *I 
#define RIGHT MARGIN 5 I* margin on right side of frame *I 
#define BOTTOM MARGIN 5 I* margin on bottom of frame *I 
#define SUBWINDOW SPACING 5 I* space in between adjacent 

subwindows *I 

I* 
* application-dependent size definitions 

*I 

I* width in pixels of canvas 1 *I 
I* height in pixels of canvas 1 *I 

#define CANVAS 1 WIDTH 320 
#define CANVAS 1 HEIGHT 160 
#define CANVAS 3 COLUMNS 30 I* width in characters of canvas 3 *I 

main(argc, argv) 
int argc; 
char **argv; 

Frame frame; 
static Notify_value catch_resize(); 
static void draw_canvas_1(), draw canvas_3(); 

I* 
* create the frame and subwindows, and open the font 

Revision A, of May 9, 1988 

0 

0 



--------------------------------------------------------------------------------·~------a.·---------------~------~==~~" 

c\ 

c 

Appendix A- Example Programs (resize demo) 427 

* no size attributes are given yet 
*I 

frame 

Canvas 1 

Canvas 2 

Canvas 3 

Canvas 4 

window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
WIN_ERROR_MSG, "Can't create tool frame", 
FRAME_LABEL, "Resize Demo", 
0); 

window_create(frame, CANVAS, 
CANVAS_RESIZE_PROC, draw_canvas 1, 
0); 

window_create(frame, CANVAS, 
0); 

window_create(frame, CANVAS, 
WIN_VERTICAL_SCROLLBAR, scrollbar_create( 

SCROLL_PLACEMENT, SCROLL_EAST, 
0), 

CANVAS_RESIZE_PROC, draw_canvas_3, 
0); 

w~ndow_create(frame, CANVAS, 
0); 

Pixwin 1 canvas_pixwin(Canvas_1); 
Pixwin 2 canvas_pixwin(Canvas_2); 
Pixwin 3 canvas_pixwin(Canvas_3); 
Pixwin_4 canvas_pixwin(Canvas_4); 
font= pf_default(); 

I* 
* now that the frame and font sizes are known, set the initial 
* subwindow sizes 
*I 

resize (frame); 

I* 
* insert an interposer so that whenever the window changes 
* size we will know about it and handle it ourselves 
*I 

(void) notify_interpose_event_func(frame, catch_resize, NOTIFY_SAFE); 

I* 

I* 
* start execution 
*I 

window_main_loop(frame); 
exit(O); 

* catch resize 

* 
* interposed function which check~ all input events passed to the frame 
* for resize events; if it finds one, resize() is called to refit 
* the subwindows; checking is done AFTER the frame processes the 
* event because if the frame changes its size due to this event (because 
* the window has been opened or closed for instance) we want to fit 
* the subwindows to the new size 

• sun 
microsystems 

Revision A, of May 9, 1988 



428 Sun View 1 Programmer's Guide 

*I 

static Notify_value 
catch_resize(frame, 

Frame frame; 
event, arg, type) 

Event *event; 
Notify_arg arg; 
Notify_event_type type; 

Notify_value value; 

value= notify_next_event_func(frame, event, arg, type); 
if (event_action(event) WIN_RESIZE) 

resize(frame); 
return (value); 

I* 
* resize 

* 
*fit the subwindows of the frame'to its new size 

*I 

resize(frame) 
Frame frame; 

Rect *r; 
I* the width in pixels of canvas 3 *I int canvas_3_width; 

int stripeheight; I* the height of the frame's name stripe *I 

I* if the window is iconic, don't do anything *I 

if ((int)window_get(frame, FRAME_CLOSED)) 
return; 

I* find out our new size parameters *I 

r = (Rect *) window_get (frame, WIN_RECT); 
framerect = *r; 
stripeheight = (int) window_get(frame, WIN_TOP_MARGIN); 

canvas 3 width = CANVAS 3 COLUMNS * font->pf defaultsize.x 
- + (int) scrollb~r=get(SCROLLBAR, SCROLL_THICKNESS); 

window_set(Canvas_2, 
WIN_X, 
WIN_Y, 
WIN_WIDTH, 

WIN_HEIGHT, 

0); 

window set(Canvas_l, 
WIN_X, 
WIN_Y, 

WIN_WIDTH, 

0, 
0, 
framerect.r width - canvas 3 width - --
- LEFT MARGIN - SUBWINDOW SPACING 
- RIGHT_MARGIN, 
framerect.r_height - CANVAS_l_HEIGHT 
- stripeheight - SUBWINDOW SPACING -
BOTTOM_MARGIN, 

0, 
framerect.r_height - CANVAS 1 HEIGHT -
SUBWINDOW SPACING - stripeheight, 
CANVAS_l_WIDTH, 

• sun 
microsystems 

Revision A, of May 9, 1988 

~0 

0 

0 



--------~------------------------,., _____ l!ll _____ om,.,..,~ ~~-~·-~·-·~~·c~~,~~~_,,,.,~ 

c 

Appendix A - Example Programs (resize_ deflUJ) 4 29 

I* 

WIN_HEIGHT, 
0); 

window_set(Canvas_4, 
WIN_X, 
WIN_Y, 

WIN_WIDTH, 

WIN_HEIGHT, 
0); 

window_set(Canvas_3, 
WIN_X, 

WIN_Y, 
WIN_WIDTH, 
WIN_HEIGHT, 

0); 

CANVAS_1_HEIGHT, 

CANVAS_1_WIDTH + SUBWINDOW_SPACING, 
framerect.r_height - CANVAS_1_HEIGHT 
- SUBWINDOW_SPACING - stripeheight, 
framerect.r width - canvas 3 width - --
- CANVAS 1 WIDTH - LEFT MARGIN 
- 2 * SUBWINDOW SPACING - RIGHT_MARGIN, 
CANVAS_1_HEIGHT, 

/ 

framerect.r width - canvas 3 width - --
- LEFT MARGIN - SUBWINDOW_SPACING, 
0, 
canvas_3_width, 
framerect.r_height - stripeheight 
- BOTTOM_MARGIN, 

* draw canvas 1 
* draw canvas 3 

* 
* draw simple messages in the canvases 
*I 

static void 
draw canvas_1 () 

char buf[64]; 

sprintf(buf, "%d by %d pixels", 
CANVAS_1_WIDTH, CANVAS_1_HEIGHT); 

pw_text(Pixwin_1, 5, font_offset(font), PIX_SRC, font, 
"This subwindow is always"); 

pw_text(Pixwin_1, 5, font_offset(font) + font_height(font), 
PIX_SRC, font, buf); 

static void 
draw canvas_3 () 

char buf[64]; 

sprintf (buf, "%d characters wide", 
CANVAS_3_COLUMNS); 

pw_text(Pixwin_3, 5, font_offset(font), PIX_SRC, font, 
"This ;ubwindow is always"); 

pw_text(Pixwin_3, 5, font~offset(font) + font_height(font), PIX_SRC, 
font, buf); 

~~sun ~~ microsystems 
Revision A, of May 9, 1988 



430 Sun View 1 Programmer's Guide 

A.7. dctool dctool is a simple reverse-polish notation calculator which demonstrates how to 
use pipes to write a Sun View-based front end for an existing non-Sun View pro­
gram. dctool consists of a panel with buttons for each digit, the four arithmetic 
operations, and an enter key. The digits you hit are displayed in a message item 
and are sent via a pipe to ,de(l) a UNIX desk calculator. When de computes an 
answer, it is sent back to dctool via a second pipe and it is displayed. 

Note also the use of a single notify procedure for all of the digit buttons. The 
actual digit associated with each button is stored as the client data for each panel 
item, so the notify procedure can determine which button was pressed by looking 
at the client data. This value is then passed directly to de. The operation buttons 
also all use a single notify procedure. 

When you run dctool, remember that it is a reverse-polish notation calculator. 
For instance, to compute 3 * 5 you must hit the buttons 3, Enter, 5, and *in that 
order. If you prefer infix notation, you could easily adapt dctool to use be(l) 
instead of de. 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (dctool) 431 

I**************************************************************** I 
#-ifndef lint 
static char sccsid[] = "@(#-}dctool.c 1.4 86109115 Copyr 1986 Sun Micro"; 
#-endif 
I**************************************************************** I 

#-include <stdio.h> 
#-include <suntoollsunview.h> 
#-include <suntoollpanel.h> 

static Frame frame; 
static Panel panel; 
static Panel item digit_item[lO], enter_item; 
static Panel item add_item, sub_item, mul_item, div_item; 
static Panel item display_item; 

static char display_buf[512] ""; I* storage for the 
* numbers currently on 
* the display (stored 
* a string} *I 

static FILE *fp_tochild; I* fp of pipe to child (write 
* data on it} *I 

static FILE *fp_fromchild; I* fp of pipe from child (read 
* data from it} *I 

static int tochild; I* associated file descriptors 
static int fromchild; 

static int childpid; I* pid of child process *I 

as 

*I 

static int dead = 6; I* set to 1 if child process has 

main(argc, argv} 
int 
char 

argc; 
**argv; 

* died *I 

static Notify_value pipe_reader(}; 
static Notify_value dead_child(}; 

frame= window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
WIN_ERROR_MSG, "Cannot create frame",, 
FRAME_LABEL, "dctool - RPN Calculator", 
0}; 

panel= window_create(frame, PANEL, 
0} ; c 

create_panel_items(panel}; 

window_fit(panel}; 
window_fit(frame}; 

I* start the child process and tell the notifier about it *I 
start_dc(); 
I* 

* note that notify_set_input_func takes a file descriptor, 
* not a file pointer used by the standard IIO library 

• sun 
microsystems 

Revision A, of May 9, 1988 



432 Sun View 1 Programmer's Guide 

*I 
(void) notify_set_input_func(frame, pipe_reader, fromchild); 

(void) notify_set_wait3_func(frame, dead_child, childpid); 

window_main_loop(frame); 
exit(O); 

static 
create_panel_items(panel) 

Panel panel; 

int 
char 

c; 
name[2]; 

static void 
static struct 

digit_proc(), op_proc(); 

int col, row; 
positions[10] 

0, 3 } , { 0, 0 
{ 0, 1 
{ 0, 2 

} ; 

name[1] = '\0'; 
for (c = 0; c < 10; c++) { 

name[O] = c + '0'; 

}, 6, 0 } , 
} , 6, 1 } , 
} , 6, 2 } , 

12, 0 } , 
12, 1 } , 
12, 2 } 

digit_item[c] = panel_create_item(panel, PANEL_BUTTON, 

PANEL_ LABEL_ IMAGE, 
PANEL_NOTIFY_PROC, 
PANEL_CLIENT_DATA, 
PANEL_ LABEL_ X, 
PANEL_LABEL_Y, 

panel button image(panel, name, 3, 
digityroc, - / 

0); 

(caddr_t) (c + '0'), 
ATTR_COL(positions[c].col), 
ATTR_ROW(positions[c] .row), 

add item = panel_create_item(panel, PANEL_BUTTON, 

PANEL_LABEL_IMAGE, panel_button_image(panel, "+", 3, 0), 

PANEL_NOTIFY_PROC, 
PANEL_CLIENT_DATA, 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 
0); 

op_proc, 
(caddr_t) '+', 

ATTR_COL(18), 
ATTR"'-ROW(O), 

sub_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "-", 

PANEL_NOTIFY_PROC, op_proc, 
PANEL_CLIENT_DATA, (caddr_t) '-', 
PANEL_LABEL_X, ATTR_COL(18), 
PANEL_LABEL_Y, ATTR_ROW(1), 
0); 

mul_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "*", 

PANEL_NOTIFY_PROC, 
PANEL_CLIENT_DATA, 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 
0); 

op_proc, 

(caddr_t) '*', 
ATTR_COL(18), 
ATTR_ROW(2), 

div_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "/", 

PANEL_NOTIFY_PROC, op_proc, 

sun 
microsystems 

3, 0), 

3, 0), 

3, 0), 

0 

0) , 0 

0 
Revision A, of May 9, 1988 



c 

c 

c 

Appendix A- Example Programs (dctool) 433 

PANEL_CLIENT_DATA, 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 
0); 

(caddr_t) 'I', 
ATTR_COL(l8), 
ATTR_ROW(3), 

enter_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image (panel, "Enter", 7, 0), 
PANEL_NOTIFY_PROC, op_proc, 
PANEL_CLIENT_DATA, (caddr_t) ' ', 
PANEL_LABEL_X, ATTR_COL(6), 
PANEL_LABEL_Y, 
0); 

ATTR_ROW(3), 

display_item = panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "0", 
PANEL_LABEL_X, 
PANEL_LABEL_Y, 
0); 

ATTR_COL(O), 
ATTR_ROW(4), 

I* callback procedure called whenever a digit button is pressed */ 

static void 
digit_proc(item, 

Panel_item 
Event 

int 

char 

event) 
item; 

*event; 

digit_name 

bu£[2]; 

(int) panel_get(item, 
PANEL CLIENT_DATA); 

buf[O] = digit_name; /* display digit *I 
buf[l] = '\0'; 
strcat(display_buf, buf); 
panel_set(display_item, PANEL_LABEL_STRING, display_buf, 0); 
send_to_dc(digit_name); I* send digit to de *I 

I* 
* callback procedure called whenever an operation button is 
* pressed 

*I 

static void 
op_proc(item, event) 

Panel item item; 
Event *event; 

int op_name 

display_buf[O] = '\0'; 

send_to_dc(op_name}; 
if (item != enter_item) 

send_to_dc (' p'); 

send_to_dc('\n'}; 

(int) panel_get(item, 
PANEL_CLIENT_DATA); 

I* don't erase display yet; wait 
* until the answer comes back *I 

I* send a p so the answer wi·ll be 
* printed by de *I 

sun 
microsystems 

Revision A, of May 9, 1988 



434 Sun View 1 Programmer's Guide 

I* 
* start the child process 

*I 

static 
start_dc (} 
{ 

int 
int 

pipeto[2], pipefrom[2]; 
c, numfds; 

if (pipe(pipeto} < 0 I I pipe(pipefrom} < 0} { 
perror("dctool"}; 
exit(1); 

switch (childpid fork(}} { 

case -1: 
perror ( "dctool") ; 
exit(1}; 

case 0: 
I* 

I* this is the child process *I 

*use dup2 to set the child's stdin and stdout to the 

* pipes 
*I 

dup2(pipeto[O], 0}; 
dup2(pipefrom[1], 1}; 

I* 
* close all other fds (except stderr} since the child 
* process doesn't know about or need them 

*I 

numfds = getdtablesize(}; 
for (c = 3; c < numfds; c++} 

close(c); 

I* exec the child process *I 

execl("lusrlbinldc", "de", 0); 
perror("dctool (child}"}; I* shouldn't get here *I 
exit(1}; 

default: I* this is the parent *I 
close(pipeto[O]}; 
close(pipefrom[l]}; 
tochild = pipeto[l]; 
fp_tochild = fdopen(tochild, "w"}; 
fromchild = pipefrom[O]; 
fp_fromchild = fdopen(fromchild, "r"}; 

I* 
* the pipe to de must be unbuffered or de will not get 
* any data until 1024 characters have been sent 

*I 

setbuf(fp_tochild, NULL); 

sun 
microsystems 

0 

0 

0 
Revision A, of May 9, 1988 



----------------------------------------------------------------------~~--------~~~---------------------

C' 

C, 

c 

Appendix A- Example Programs (dctool) 435 

break; 

I* 
* notify proc called whenever there is data to read on the pipe 
* from the child process; in this case it is an answer from de, 
* so we display it 
*I 

static Notify_value 
pipe_reader(frame, fd) 

Frame frame; 
int fd; 

char buf[512]; 

fgets(buf, 512, fp_fromchild); 
buf[strlen(buf) - 1] = '\0';1* remove newline *I 
panel_set(display_item, PANEL_LABEL_STRING, buf, 0); 
display_buf[O] = '\0'; 
return (NOTIFY_DONE); 

I* 
* notify proc called if the child dies 
*I 

static Notify_value 
dead_child(frame, pid, status, rusage) 

{ 

Frame frame; 
int pid; 
union wait *status; 
struct rusage *rusage; 

panel_set(display_item, PANEL_LABEL_STRING, "Child died!", 0); 
dead = 1; 

I* 
* tell the notifier to stop reading the pipe (since it is 
* invalid now) 
*I 

(void) notify_set_input_func(frame, NOTIFY_FUNC_NULL, 
fromchild) ; 

close(tochild); 
close(fromchild); 
return (NOTIFY_DONE); 

I* send a character over the pipe to de *I 

static 
send to_ de (c) 

char c; 

if (dead) 
panel_set(display_item, 

sun 
microsystems 

Revision A, of May 9, 1988 



436 Sun View 1 Programmer's Guide 

PANEL_LABEL_STRING, "Child is dead!", 0 
0); 

else 
putc(c, fp_tochild); 

0 

i 
;I 

1 

0 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



-------------------------------------------------------------~------.-u--------~~--b---·----------

c A.8. typein 

c 

Appendix A- Example Programs (typein) 437 

This program shows how to replace the functionality of the Graphics Tool and 
gfxsw package previously available under Sun Windows. typein provides a tty 
emulator for interaction with the user and a canvas to draw on. To demonstrate 
it, a simple application is included which allows the user to input coordinates in 
the tty emulator and then draws the vectors in the canvas. 

typein uses a tty subwindow and a canvas. Normally, the tty subwindow is used 
to allow a child process to run in a window; in this case, we would like the same 
process to write in that window. To accomplish this, we tell the tty subwindow 
not to fork a child process with the TTY_ ARGV _DO_ NOT_ FORK value for 
TTY_ARGV. typein uses dup2(2) to set its stdin and stdout to the TTY_FD. 
When the user types something in the tty subwindow, typein's read_input () 
routine is called. 

NOTE When using this mechanism, be careful of the following problems. First, you 
must use the Notifier (unlike the old gfxsw). Second, if you use the standard 1/0 
package, be sure to either use fflush carefully or to remove all buffering with 
setbuf because the package will think you are sending data to a file and not to 
a tty. Finally, be sure you never block on a read because the program will hang 
(either use non-blocking 1/0 or only read one line at a time). 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



438 Sun View 1 Programmer's Guide 

I********************************************************* I 
#ifndef lint 
static char sccsid[] = "@(41-)typein.c 1.5 87101107 Copyr 1986 Sun Micro"; 

41-endif 
I********************************~************************ I 

41-include <stdio.h> 
41-include <suntoollsunview.h> 
41-include <suntoollcanvas.h> 
41-include <suntoolltty.h> 
#include <ctype.h> 

static Frame frame; 
static Canvas canvas; 
static Tty tty; 
static Pixwin *pw; 

static Notify_client my_ client; 

41-define STDIN FD 0 
41-define STDOUT FD 1 
41-define BUFSIZE 1000 

main(argc, argv) 
int argc; 
char **argv; 

static Notify_value read_input(); 
int tty_fd; 

frame window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
WIN_ERROR_MSG, "Cannot create frame", 
FRAME_ LABEL, 
0); 

"typein", 

tty window_create(frame, TTY, 
WIN_PERCENT_HEIGHT, 
TTY_ARGV, 
0); 

50, 
TTY_ARGV_DO_NOT_FORK, 

tty fd = (int)window_get(tty, TTY_TTY_FD); 
dup2(tty_fd, STDOUT_FD); 
dup2(tty_fd, STDIN_FD); 

canvas = window_create(frame, CANVAS, 
0); 

pw = canvas~ixwin(canvas); 

I* 
* Set up a notify proc so that whenever there is input to read on 

* stdin (fd 0), we are called to rea~ it. 
* Notifier needs a unique handle: give it the address of tty. 

*I 
my_client = (Notify_client) &tty; 
notify_set_input_func(my_client, read_input, STDIN_FD); 

printf("Enter first coordinate:\nx? "); 

• sun 
microsystems 

0 

0 

0 
Revision A, of May 9, 1988 



c 

c\ 

c\ 

Appendix A- Example Programs (typein) 439 

I* 

window_main_loop(frame); 
exit (0); 

* This section implements a simple application which writes prompts to 
* stdin and reads coordinates from stdout, drawing vectors with the 
* supplied coordinates. It uses a state machine to keep track of what 
* number to read next. 
*I 

#define GET X 1 
#define GET Y 1 
#"define GET X 2 
#define GET Y 2 

0 
1 
2 
3 

int state = GET_X_1; 
int x1, y1, x2, y2; 

I* ARGSUSED *I 
static Notify_value 
read_input(client, in_fd) 
Notify_client client; I* unused since this must be from ttysw *I 

I* unused since this is stdin *I int in_fd; 

char 
char 

buf [BUFSIZE]; 
*ptr, *gets(); 

ptr = gets(buf); I* read one line per call so that we 
don't ever block *I 

I* AAAAA does this matter any more?? *I 
I* handle end of file *I 
if (ptr==NULL) { 

} else { 

I* Note: could have been a'read error *I 
window_set(frame, FRAME_NO_CONFIRM, TRUE, 0); 
window_done(tty); 

switch (state) { 
case GET X 1: 

if (sscanf(buf, "%d", &x1) != 1) { 
printf("Illegal value!\nx? "); 
fflush (stdout); 

} else { 

break; 
case GET Y 1: 

printf("y? "); 
fflush (stdout); 
state++; 

if (sscanf(buf, "%d", &y1) != 1) { 
printf("Illegal value!\ny? "); 
fflush (stdout); 

} else { 

break; 
case GET X 2: 

printf ("Enter second coordinate: \nx? ") ; 
fflush(stdout); 
state++; 

sun 
microsystems 

Revision A, of May 9, 1988 



440 Sun View 1 Programmer's Guide 

if (sscanf(buf, "%d", &x2) != 1) 
printf("I1legal value!\nx? "); 
fflush (stdout); 

} else { 

break; 
case GET Y 2: 

printf ("y? "); 
fflush(stdout); 
state++; 

if (sscanf(buf, "%d", &y2) != 1) { 
printf("Illegal value!\ny? "); 
fflush(stdout); 

} else { 
printf ("Vector from (%d, %d) to (%d, %d) \n", 

break; 

return(NOTIFY_DONE); 

x1, y1, x2, y2); 
pw_vector(pw, x1, y1, x2, y2, PIX_SET, 1); 
printf("\nEnter first coordinate:\nx? "); 
fflush (stdout); 
state = GET_X_1; 

Revision A, of May 9, 1988 

0 

0 

0 



------------------------------------------------------------~--------~--------~.-·-...----------

c\ 

A.9. Programs that 
Manipulate Color 

coloredit 

Appendix A- Example Programs (coloredit) 441 

The following two programs work with color. You can run them on a mono­
chrome workstation to no ill-effect, but you won't see much of interest. 

The techniques employed by these two programs are explained in the Color sec­
tion of Chapter 7, Imaging Facilities: Pixwins. 

When using these programs, try invoking them with different colors using the 
frame's command line arguments. Also, run showcolor (listed in the pixwin 
chapter) to see how the screen's colormap changes as different color programs 
are run simultaneously. 

The first program, coloredit, puts up sliders that let the user modify its colors. 

sun Revision A, of May 9, 1988 
microsystems 



-----~---------------

442 SnnView 1 Programmer's Guide 

I*************************************************************************** I 
#ifndef lint 
static char sccsid[] = "@(#)coloredit.c 1.4 86109115 Copyr 1986 Sun Micro"; 

#endif 
I*************************************************************************** I 

#include <suntoollsunview.h> 
#include <suntoollpanel.h> 
#include <suntoollcanvas.h> 

#define MYFRAME 
#define MYPANEL 
#define MYCANVAS 

0 
1 
2 

I* colorrnap sizes for the three windows. Canvas is still the biggest *I 

rnycrns_sizes[3] = { 
2, 2, 4 

} ; 

#define MYCMS SIZE 4 
I* color arrays; initialize them with the canvas colors *I 
unsigned char red[MYCMS_SIZE] = {0, 0, 255, 255}; 

unsigned char green[MYCMS_SIZE] = {0, 255, 0, 192}; 

unsigned char blue[MYCMS_SIZE] = {255, 0, 0, 192}; 

static void 
static void 
static void 
static void 
static void 
static void 

Panel item 
Panel item 
Panel item 

getcrns (); 
setcrns (); 
cycle(); 
editcrns(); 
set_color(); 
change_ value () ; 

text_ i tern; 
color_itern; 
red_itern, green_itern, blue_itern; 

Pixwin 
Pixwin 

*pixwins[3]; 
*pw; 

rnain(argc, argv) 
int 
char 

Frame 
Panel 
Canvas 

Attr avlist 

argc; 
**argv; 

base_frarne; 
panel; 
canvas; 

sliderdefaults; 

I* the crnsnarne is copied, so this array can be reused *I 
char crnsnarne[CMS_NAMESIZE]; 

int 
int 
char 

base frame 

counter; 
xposition; 
buf[40]; 

window_create(NULL, FRAME, 
FRAME_ LABEL, 

sun 
microsystems 

"coloredit", 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (coloredit) 443 

I* set up the panel *I 

FRAME_ARGS, 
0); 

panel = window_create(base_frame, PANEL, 
0); 

I* create a reusable attribute list for my 
sliderdefaults = attr_create_list( 

PANEL_SHOW_ITEM, 
PANEL_MIN_VALUE, 
PANEL_MAX_VALUE, 
PANEL_SLIDER_WIDTH, 
PANEL_SHOW_RANGE, 
PANEL_ SHOW_ VALUE, 
PANEL_ NOTIFY_ LEVEL, 
0); 

argc, argv, 

slider attributes *I 

TRUE, 
0, 
255, 
512, 
TRUE, 
TRUE, 
PANEL_ALL, 

panel_create_item(panel, PANEL_CYCLE, 
PANEL_LABEL_STRING, 
PANEL_VALUE, 
PANEL_CHOICE_STRINGS, 
PANEL_NOTIFY_PROC, 
0); 

"Edit colormap: ", 
MYCANVAS, 
"Frame", "Panel", 
editcms, 

"Canvas", 0, 

text item 

color item 

panel_create_item(panel, PANEL_TEXT, 
PANEL_VALUE_DISPLAY_LENGTH, 
PANEL_VALUE_STORED_LENGTH, 
0); 

pan.el_create_item (panel, PANEL_SLIDER, 
ATTR_LIST, 
PANEL_LABEL_STRING, 
PANEL_NOTIFY_PROC, 
0); 

red item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, 
PANEL_LABEL_STRING, 
PANEL_NOTIFY_PROC, 
0); 

green_item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, 

CMS_NAMESIZE, 
CMS_NAMESIZE, 

sliderdefaults, 
"color:", 
set_color, 

sliderdefaults, 
red:", 

change_value, 

sliderdefaul ts, 
PANEL_LABEL_STRING, "green:", 
PANEL_NOTIFY_PROC, change_value, 
0); 

blue item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, sliderdefaults, 
PANEL_LABEL_STRING, "blue:", 
PANEL_NOTIFY_PROC, change_value, 
0); 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_ LABEL_ IMAGE, 

sun 
microsysterns 

Revision A, of May 9, 1988 



--->---~-

444 Sun View 1 Programmer's Guide 

panel_button_image(panel, "Cycle colormap", 12, NULL), 

PANEL_NOTIFY_PROC, cycle, 
0); 

window_fit(panel); 
window_fit_width(base_frame); 

I* free the slider attribute list *I 
free(sliderdefaults); 

I* set up the canvas *I 
canvas= window_create(base_frame, CANVAS, 0); 

I* get pixwins *I 
pixwins[MYFRAME] = (Pixwin *) window_get(base_frame, WIN_PIXWIN); 

pixwins[MYPANEL] = (Pixwin *) window_get(panel, WIN_PIXWIN); 

pw = pixwins[MYCANVAS] = (Pixwin *) canvas_pixwin(canvas); 

I* set up the canvas' colormap *I 
sprintf (cmsname, "coloredit%0", getpid ()); 

pw_setcmsname(pw, cmsname); 
pw_putcolormap(pw, 0, mycms_sizes[MYCANVAS], red, green, blue); 

I* draw in the canvas *I 
I* don't draw color 0 it is the background *I 
for (counter= 1; counter< mycms_sizes[MYCANVAS]; counter++) { 

xposition = counter * 100; 
pw_rop(pw, xposition, 50, 50, 50, 

PIX_SRC I PIX_COLOR(counter), NULL, 0, 0); 

sprintf(buf, "%d", counter); 
pw_text(pw, xposition + 5, 70, PIX SRC A PIX_DST, 0, buf); 

pw_text(pw, 100, 150, 
PIX_SRC I PIX_COLOR(mycms sizes[MYCANVAS] - 1), 0, 

"This is written in the foreground color"); 

I* initialize to edit the first canvas color *I 
editcms(NULL, MYCANVAS, NULL); 

window_main_loop(base_frame); 
exit(O); 

static int cur ems -1; 

I* ARGSUSED *I 
static void 
editcms(item, value, event) 

Panel item item; 
unsigned int value; 
Event *event; 

int planes; 
struct colormapseg ems; 
char cmsname[CMS_NAMESIZE]; 

if (value cur_cms) 
return; 

• sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



----------------------------------.--------------------------------------------- ~*,-----------·----~--~~----~ 

c 

c 

Appendix A- Example Programs (coloredit) 445 

cur_cms = value; 
I* get the new cmsname *I 
pw_getcmsname(pixwins[cur_cms], cmsname); 
panel_set_value(text_item, cmsname); 

pw = pixwins[cur_cms]; 

I* get the new colormap *I 
I* 

* first have to get its size there is NO DOCUMENTED procedure to do 
* this. 
*I 

pw_getcmsdata(pw, &ems, &planes); 

pw_getcolormap(pw, 0, cms.cms_size, red, green, blue); 

panel_set(color_item, 
PANEL_VALUE, 0, 
PANEL_MAX_VALUE, cms.cms size - 1, 
0); 

I* call the proc to set the colors *I 
set_color(NULL, 0, NULL); 

int cur_color; 
I* ARGSUSED *I 
static void 
set_color(item, color, event) 

Panel item item; 
unsigned int color; 
struct inputevent *event; 

panel_set_value(red_item, red[color]); 
panel_set_value(green_item, green[color]); 
panel_set_value(blue_item, blue[color]); 
cur color = (unsigned char) color; 

I* ARGSUSED *I 
static void 
change_value(item, value, event) 

Panel item item; 
int value; 
struct inputevent *event; 

if (item == red_item) 
red[cur_color] (unsigned char) value; 

else if (item == green_item) 
green[cur_color] = (unsigned char) value; 

else 
blue[cur_color] = (unsigned char) value; 

I* 
* pw_putcolormap expects arrays of colors, but this only sets one 
* color 
*I 

pw_putcolormap(pw, cur_color, 1, 
&red[cur_color], &green[cur_color], &blue[cur~color]); 

• sun 
microsystems 

Revision A, of May 9, 1988 



446 Sun View 1 Programmer's Guide 

I* ARGSUSED */ 
static void 
cycle(item, event) 

Panel item 
Event 

item; 
*event; 

pw_cyclecolormap(pw, 1, 0, mycms_sizes[cur_cms]); 

0 

0 

0 

Revision A, of May 9, 1988 



c animate color 

c 

c 

Appendix A- Example Programs (animatecolor) 447 

This program demonstrates smooth animation via the technique of software 
double-buffering. Two colormaps for the canvas are set up so that while one is 
being written two, the other is being displayed. This allows smoother animation. 

The routines that set up the colormaps and swap them, doublebuff_init () 
and doublebuff _swap (),are general enough to be used in other programs 
that alternate two colormaps. You need only set up a similar colors tuff 
structure to use these routines in another program. 

The logic involved in creating the colormaps is complex. The colormaps created 
for animatecolor are given in the table Sample Colormap to Isolate Planes in the 
pixwin chapter, 

·~r!!t!! Revision A, of May 9, 1988 



448 Sun View 1 Programmer's Guide 

I*****************************************************~*******
** I 

#ifndef lint 
static char sccsid[] = "@(#)animatecolor.c 1.4 88103109 Copyr 1986 Sun Micro"; 

#endif 

I*************************************************************** I 

#include <suntoollsunview.h> 

#include <suntoollcanvas.h> 

I*************************************************************** I 

I* You set MYCOLORS & MYNBITS according to how many colors *I 
I* you are using; rest is just boilerplate, more or less; *I 
I* it you define your colors. *I 

I*************************************************************** I 

I* 
* define the colors I want in the canvas; max 16, must be a 

* power of 2 
*I 

#define MYCOLORS 

I* 
4 

* define the number of bits my colors take up -- MYCOLORS log 2; 

* maximum for animation to be possible is half screen's bits per 

* pixel -- 4 bits on current Sun color displays. 

*I 
#define MYNBITS 

I* 
2 

* to "hide" one set of planes while displaying another takes a 

* large ems -- the square of the number of colors 

*I 
#define MYCMS SIZE (MYCOLORS * MYCOLORS) 

I* 
* when you write out a color pixel, you must write the color in 

* the appropriate planes. This macro writes it in both sets 

*I 
#define usecolor(i) ( (i) ((i) << colorstuff.colorbits) 

struct colorstuff { 
I* desired colors *I 
unsigned char redcolors[MYCOLORS]; 

unsigned char greencolors[MYCOLORS]; 

unsigned char bluecolors[MYCOLORS]; 

I* number of bits the desired colors take up *I 
· int colorbits; 

I* colormap segment size *I 
int cms_size; 

I* 2 colormaps to support it *I 
unsigned char red[2] [MYCMS_SIZE]; 

unsigned char green[2] [MYCMS SIZE]; 

unsigned char blue[2] [MYCMS_SIZE]; 

I* 2 masks to support it *I 
int enable_O_mask; 

int enable_1_mask; 

I* current colormap -- 0 or 1 *I 
int cur_buff; 
I* plane mask to control which planes are written to *I 
int plane_mask; 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

'----------~~ 

Appendix A- Example Programs (animatecolor) 449 

} ; 

struct colorstuff colorstuff 
I* desired red colors *I 

{ 0, 0, 2 55, 2 55} , 
I* desired green colors *I 

{0, 255, 0, 192}, 
I* desired blue colors *I 

{255, 0, 0, 192}, 
I* number of planes these colors take up *I 

MYNBITS, 
I* colormap segment size *I 

MYCMS_SIZE, 
I* rest filled in later *I 
} ; 

static void resize_proc () ; 

I* stuff needed to do random numbers *I 
extern void srandom(); 
extern int getpid(); 
extern long random(); 
extern char *sprintf (); 

static Notify_value my_frame_interposer(); 
static Notify_value my_draw(); 

static Pixwin 
static int 

*pw; 
times_drawn; 

static int Xmax, Ymax; 

main(argc, argv) 
int argc; 
char **argv; 

Frame base_frame; 
Canvas canvas; 

base frame window_create(NULL, FRAME, 

canvas 

FRAME_LABEL, "animatecolor", 
FRAME_ARGS, argc, argv, 
0) ; 

window_create(base_frame, CANVAS, 
CANVAS_RETAINED, TRUE, 
CANVAS_RESIZE_PROC, resize_proc, 
0); 

pw = (Pixwin *) canvas_pixwin(canvas); 

I* set up the canvas' colormap *I 
doublebuff_init(&colorstuff); 

I* run the drawing routine as often as possible *I 
(void) notify_set_itimer_func(base_frame, my_draw, 

ITIMER_REAL, 
&NOTIFY_POLLING_ITIMER, 
((struct itimerval *) 0)); 

I* initialize the random function *I 

• sun 
microsystems 

Revision A, of May 9, 1988 



450 Sun View 1 Programmer's Guide 

srandom (getpid () ) ; 
window_main_loop(base_frame); 

exit(O); 

I* ARGSUSED *I 
static Notify_value 

my_draw(client, itimer_type) 

Notify_client client; 

int itimer_type; 

I* 
* draw the squares, then swap the colormap to animate them 

*I 
#define SQUARESIZE 
#define MAX VEL 

50 
(SQUARESIZE I 5) 

I* number of squares to animate *I 
#define NUMBER (MYCOLORS - 1) 

static int 
static int 
static int 
int 

posx[NUMBER], posy[NUMBER]; 

vx[NUMBEk], vy[NUMBER]; 
prevposx[NUMBER], prevposy[NUMBER]; 

i; 

I* set the plane mask to be that which we are not viewing *I 
pw_putattributes(pw, (colorstuff.cur_buff == 1) ? 

&(colorstuff.enable_1_mask): &(colorstuff.enable_O_mask)); 

I* write to invisible planes *I 
for (i = 0; i < NUMBER; i++) { 

if ( !times_drawn) { 
I* first time drawing *I 

posx[i] 
posy[i] 
vx[i] 
vy[i] = 

= (i + 1) * 100; 

= 50; 
r(-MAX_VEL, MAX_VEL); 
r(-MAX_VEL, MAX_VEL); 

if (abs(vx[i]) > MAX_VEL) { 

prin:tf("Weird value (%d) for vx[%d]\n", vx[i], i); 

vx[i] = r(-MAX_VEL, MAX_ VEL); 

posx[i] = posx[i] + vx[i]; 

if (posx[i] < 0) { 
I* Bounce off the left wall *I 
posx[i] = 0; 
vx[i] = -vx[i]; 

else if (posx[i] > Xmax - SQUARESIZE) 

I* Bounce off the right wall *I 
vx[i] = -vx[i]; 
posx[i] = posx[i] + vx[i]; 

posy[i] = posy[i] + vy[i]; 

if (posy[i] > Ymax - SQUARESIZE) 

I* Bounce off the top *I 
posy[i] = Ymax - SQUARESIZE; 

vy[i] = -vy[i]; 
else if (posy[i] < 0) { 

• sun 
microsystems 

0 

0 

0 
Revision A, of May 9, 1988 



c 

) 

c\ 

Appendix A- Example Programs (animatecolor) 451 

I* Bounce off the bottom *I 
posy[i] = 0; 
vy[i] = -vy[i]; 

I* draw the square you can't see *I 
pw_rop(pw, posx[i], posy[i], SQUARESIZE, SQUARESIZE, 

PIX_SRC I PIX_COLOR(usecolor(i + 1)), NULL, 0, 0); 

I* 
* swap the colormaps, and hey presto! should appear smoothly 
*I 

doublebuff_swap(&colorstuff); 
times_drawn++; 

I* set the plane mask to be that which we are not viewing *I 
pw_putattributes(pw, (colorstuff.cur buff== 1) ? 

&(colorstuff.enable_1_mask): &(col~rstuff.enable_O_mask)); 

I* erase now invisible planes *I 
for (i 0; i < NUMBER; i++) { 

I* 

if (times_drawn > 1) { 
I* squares have been drawn before *I 
I* erase in the one you can't see *I 
pw_rop(pw, prevposx[i], prevposy[i], 

SQUARESIZEL SQUARESIZE, PIX_CLR, ~ULL, 0, 0); 

I* remember so can erase later *I 
prevposx[i] posx[i]; 
prevposy[i] = posy[i]; 

* set the plane mask to be that which we are viewing, in 
* case screen has to be repaired between now an when we are 
* called again. 
*I 

pw_putattributes(pw, (colorstuff.cur_buff == 1) ? 
&(colorstuff.enable_O_mask): &(colorstuff.enable_1_mask)); 

I* random number calculator *I 
int 
r (minr, maxr) 

int 

int 

i = random() 
if (i < 0) 

return (i 
else 

,return (i 

% 

minr, maxr; 

i; 

(maxr - minr + 

+ maxr + 1); 

+ minr); 

sun 
microsystems 

1); 

Revision A, of May 9, 1988 



·!·· .. 

' 
! 

I 

452 Sun View 1 Programmer's Guide 

I* ARGSUNUSED *I 
static void 
resize_proc(canvas, width, height) 

{ 

I* 

times_drawn = 0; 
I* remember, pixels start at 0, not 1, in the pixwin *I 
Xmax width - 1; 
Ymax height - 1; 

* Do double buffering by changing the write enable planes and 

* the color maps. The application draws into a buffer which is 

* not visible and when the buffers are swapped the invisible one 

* become visible and the other become invis. 

* 
* Start out drawing into buffer 1 which is the low-order buffer; 

* ie. the low-order planes. Things would not work if this is not 

* done because the devices start out be drawing with color 1 

* which will only hit the low-order planes. 

* 
* !nit double buffering: Allocate color maps for both buffers. Fill 

* in color maps. 

*I 

doublebuff_init(colorstuff) 
struct colorstuff *colorstuff; 

I* 
* user has defined desired colors. Set them up in the two 

* colormap segments 

*I 
int 
int 
int 
char 

index_1; 
index_2; 
i; 
cmsname[CMS_NAMESIZE]; 

I* name colormap something unique *I 
sprint£ (cmsname, "animatecolor%0", getpid ()) ; 

pw_setcmsname(pw, cmsname); 

I* 
* for each index in each color table, figure out how it maps 

* into the original color table. 

*I 
for (i = 0; i < colorstuff->cms_size; i++) { 

I* 
* first colormap will show color X whenever low order 

* bits of color index are X 

*I 
index 1 
I* 

i & ((1 << colorstuff->colorbits) - 1); 

* second colormap will show color X whenever high order 

* bits of color index are X 

*I 
index 2 = i >> colorstuff->colorbits; 

• sun 
microsystems 

0 

0 

0 
Revision A, of May 9, 1988 



c 

c 

c 

Appendix A- Example Programs (animatecolor) 453 

I* 

colorstuff->red[O] [i] = colorstuff->redcolors[index_l]; 
colorstuff->green[O] [i] = colorstuff->greencolors[index_l]; 
colorstuff->blue[O] [i] = colorstuff->bluecolors[index_l]; 

colorstuff->red[l] [i] = colorstuff->redcolors[index_2]; 
colorstuff->green[l] [i] = colorstuff->greencolors[index_2]; 
colorstuff->blue[l] [i] = colorstuff->bluecolors[index_2]; 

colorstuff->enable_l_mask = ((1 << colorstuff->colorbits) - 1) 
<< colorstuff->colorbits; 

colorstuff->enable_O_mask = ((1 << colorstuff->colorbits) - 1); 

I* 
* doublebuff_swap sets up the colormap. We want the drawing 
* to start off drawing into the 1st buffer, so set the 
* current buffer to 1 so that when doublebuff_swap is called 
*it will set up the first ([0] ) colormap. 
*I 

colorstuff->cur_buff == 1; 
doublebuff_swap(colorstuff); 

* Routine to swap buffers by loading a color map that will show 
* the contents of the buffer that was not visible. Also, set the 
* write enable plane so that future writes will only effect the 
* planes which are not visible. 
*I 

doublebuff_swap(colorstuff) 
struct colorstuff *colorstuff; 

if (colorstuff->cur_buff == 0) 
I* display first buffer while writing to 2nd *I 
I* 

* Careful! pw_putcolormap() wants an array or pointer 
* passed, but the colormap arrays are 2-d 
*I 

pw_putcolormap(pw, 0, colorstuff->cms_size, 
colorstuff->red[O], 
colorstuff->green[O], 
colorstuff->blue[O]); 

I* set plane mask to write to second buffer *I 
colorstuff->plane_mask = colorstuff->enable_l_mask; 
colorstuff->cur_buff = 1; 

else { 
I* display second buffer while writing to first *I 
pw_putcolormap(pw, 0, colorstuff->cms_size, 

colorstuff->red[l], 
colorstuff->green[l], 
colorstuff->blue[l]); 

I* set plane mask to write to first buffer *I 
colorstuff->plane_mask = colorstuff->enable_O_mask; 
colorstuff->cur buff 0; 

Revision A, of May 9, 1988 



454 Sun View 1 Programmer's Guide 

A.lO. Two gfx 
subwindow-based 
programs converted 
to use Sun View 

bounce 

The following two programs are the Sun demo programs bouncedemo and 
spheresdemo converted from using gfxsw_init () to canvases in SunView. 

The code for the Sun Windows-based programs is in 
/usr/ share/ src/ sun/ suntool so you can contrast that code with the 
Sun View versions printed here. 

Techniques used to convert programs such as these to Sun View 1 are described 
in Appendix C, Converting Sun Windows Programs to Sun View. 

The first program is bouncedemo converted to draw in a canvas and to call 
notify_dispatch () periodically. Like the original bouncedemo, it restarts 
drawing after any damage (if not retained) or resizing. 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Appendix A- Example Programs (bounce) 455 

#ifndef lint 
static char sccsid[) 
#endif 

I* 

"@(#)bounce.c 1.5 88102126 Copyr 1986 Sun Micro"; 

* Ov.erview: 
* Converted 
*I 

Bouncing ball demo in window. 
to use SunView by simulating the gfxsubwindow structure. 

I* this replaces all includes *I 
#include <suntoollsunview.h> 
#include <suntoollcanvas.h> 

I* straight 
static void 
static void 

from the Canvas chapter *I 
repaint_proc(); 
resize_proc (); 

I* straight from the Notifier chapter *I 
static Notify_value-my_notice_destroy(); 
extern Notify_error notify_dispatch(); 

static int my_ done; 

I* define my own gfxsubwindow struct *I 
struct gfxsubwindow { 

int gfx_flags; 
#define GFX RESTART OxOl 
#define GFX DAMAGED Ox02 

int gfx_reps; 
struct pixwin *gfx_pixwin; 
struct rect gfx_rect; 

mygfx; 
struct gfxsubwindow *gfx = &mygfx; 

sun 
microsystems 

Revision A, of May 9, 1988 



----~~----------~ --------

456 Sun View 1 Programmer's Guide 

main(argc, argv) 
int 
char 

argc; 
**argv; 

short x, y, vx, vy, z, ylastcount, ylast; 
short Xmax, Ymax,- size; 
I* WIN_RECT attribute returns a pointer *I 
Rect *rect; 

I* have to handle this arg that gfxsw_init used to process *I 
int retained; 

I* 
* replace_this call if (gfx 
* with 

(struct gfxsubwindow *)0) exit(1); 

*I 

Frame 
Canvas 
Pixwin 

frame; 
canvas; 

*pw; 

I* this arg was also dealt with by gfxsw_init *I 
gfx->gfx_reps = 200000; 

frame= window_create(NULL, FRAME, 
FRAME_LABEL, "bounce", 
FRAME_ARGC_PTR_ARGV, &argc, argv, 
WIN_ERROR_MSG, "Can't create frame", 
0); 

for (--argc, ++argv; *argv; argv++) { 
I* 
*handle the arguments that gfxsw_init(O, argv) used to do 

* for you 
*I 

if (strcmp (*argv, "-r") 0) 
retained = 1; 

if (strcmp(*argv, "-n") 0) 
if (argc > 1) { 

(void) sscanf(*(++argv), "%hD", &gfx->gfx_reps); 
argc++; 

canvas window_create(frame, CANVAS, 
CANVAS_RETAINED, retained, 
CANVAS_RESIZE_PROC, resize_proc, 
CANVAS_FAST_MONO, TRUE, 
WIN_ERROR_MSG, "Can't create canvas", 
0); 

I* only need to define a repaint proc if not retained *I 
if (!retained) { 

pw 

window_set(canvas, 
CANVAS REPAINT_PROC, repaint_proc, 
0); 

canvas_pixwin(canvas); 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 



c 

c 

Appendix A- Example Programs (bounce) 457 

gfx->gfx_pixwin = canvas_pixwin(canvas}; 

I* Interpose my proc so I know that the tool is going away. *I 
(void} notify_interpose_destroy_func(frame, my_notice_destroy}; 

I* 
* Note: instead of window main_loop, just show the frame. The 
* drawing loop is in control, not the notifier. 

*I 
window_set(frame, WIN_SHOW, TRUE, 0}; 

sun 
microsystems 

Revision A, of May 9, 1988 



458 Sun View 1 Programmer's Guide 

,1\ 
Restart: \__) 

rect (Rect *) window_get(canvas, WIN_RECT); 
Xmax rect_right(rect); 
Ymax rect_bottom(rect); 
if (Xmax < Ymax) 

size Xmax I 29 + 1; 
else 

size Ymax I 29 + 1; 
I* 

* the following were always 
* is 
*I 

X 0; 
y = 0; 

confused 

vx = 4; 
vy = 0; 
ylast = 0; 
ylastcount = 0; 

on this point 
0 in a gfx subwindow (bouncedemo 

pw_writebackground(pw, 0, 0, rect->r_width, rect->r_height, 
PIX_SRC); 

I* 
* Call notify_dispatch() to dispatch events to the frame 
* regularly. This will call my resize and repaint procs and 
* interposed notify_destroy_func if necessary. The latter will 
* set my_done to TRUE if it's time to finish. 
*I 

while (gfx->gfx_reps) { 
(void) notify_dispatch(); 
if (my_done) 

break; 
I* 

* this program is not concerned with damage, because either 
* the canvas repairs the damage (if retained) or it just 
* restarts, which is handled by GFX RESTART 
*I 

I* 
*if (gfx->gfx_flags&GFX_DAMAGED) gfxsw_handlesigwinch(gfx); 
*I 

if (gfx->gfx_flags & GFX_RESTART) { 
gfx->gfx_flags &= -GFX_RESTART; 
goto Restart; 

if (y == ylast) { 

} else 

if (ylastcount++ > 5) 
goto Reset; 

ylast y; 
ylastcount = 0; 

pw_writebackground(pw, x, y, size, size, 
PIX_NOT(PIX_DST)); 

x = x + vx; 
if (x > (Xmax- size)) { 

I* 
* Bounce off the right edge 
*I 

x = 2 * (Xmax - size) - x; 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 



c 

Reset: 

c 

vx = -vx; 
} else if (x < 0) 

I* 
* bounce off the left edge 
*I 

x = -x; 
vx = -vx; 

vy = vy + 1; 
y = y + vy; 
if (y >= (Ymax- size)) { 

I* 
* bounce off the bottom edge 
*I 

y = Ymax - size; 
if (vy < size) 

vy 1 - vy; 
else 

vy vy I size - vy; 
if (vy == 0) 

goto Reset; 

for (z = 0; z <= 1000; z++); 
continue; 

if (--gfx->gfx_reps <= 0) 
break; 

X = 0; 
y = 0; 
vx = 4; 
vy = 0; 
ylast = 0; 
ylastcount 0; 

sun 
microsystems 

Appendix A- Example Programs (bounce) 459 

Revision A, of May 9, 1988 



460 Sun View 1 Programmer's Guide 

static void 
repaint_proc( I* Ignore args *I ) 
{ 

I* if repainting is required, just restart *I 
gfx->gfx_flags I= GFX_RESTART; 

static void 
resize_proc( I* Ignore args *I ) 
{ 

gfx->gfx_flags i= GFX_RESTART; 

I* this is straight from the Notifier chapter *I 
static Notify_value 
my_notice_destroy(frame, status) 

Frame 
Destroy_ status 

frame; 
status; 

if (status != DESTROY_CHECKING) 
I* set my flag so that I terminate my loop soon *I 
my_done = 1; 
I* Stop the notifier if blocked on read or select *I 
(void) notify_stop(); 

I* Let frame get destroy event *I 
return (notify_next_destroy_func(frame, status)); 

~~sun ''f$ microsystems 

0 

0 

0 

Revision A, of May 9, 1988 



-------------------------------------·~----'''""~-~~---~"""""'""""' ____ _ 

spheres 

c 

Appendix A- Example Programs (spheres) 461 

This is an example of a program that has been converted to use 
window_ main _loop (). It displays a fixed-sized image in a canvas that has 
scrollbars. It continues drawing its image when its window is damaged or 
resized. However, it stops drawing when it is iconic. 

You will have to create your own icon for this called spheres. icon. 

Revision A, of May 9, 1988 



462 Sun View 1 Programmer's Guide 

#ifndef lint 
static char sccsid[) 
#endif 
I* 

"@(#}spheres.c 1.4 88102105 Copyr 1986 Sun Micro"; 

* spheres -- draw a bunch of shaded spheres Algorithm was done 
*by Tom Duff, Lucasfilm Ltd., 1982 
* Revised to use SunView canvas instead of gfxsw. 

*I 

#include <suntoollsunview.h> 
#include <suntoollcanvas.h> 
#include <suntoollscrollbar.h> 
#include <sunwindowlcms_rainbow.h> 

static Notify_value my_frame_interposer(}; 
static Notify_value my_animation(}; 
static void sphere(}; 
static void demoflushbuf(}; 

#define ITIMER NULL ((struct itimerval *)0) 

I* 
* (NX, NY, NZ) is the light source vector -- length should be 
* 100 
*I 

#define NX 48 
#define NY -36 
#define NZ 80 

#define BUF BITWIDTH 16 

static struct pixrect *mpr; 
static int width; 
static int height; 
static int counter; 
static Frame frame; 
static Canvas canvas; 
static int cmssize; 
static Pixwin *pw; 

static short spheres_image[256] 
#include "spheres.icon" 
} ; 

mpr_stat~c(spheres_pixrect, 64, 64, 1, spheres_image); 

main(argc, argv) 
int 
char 

char 
int 
Icon 

argc; 
**argv; 

**args; 
usefullgray 
icon; 

0; 

icon icon_create(ICON_IMAGE, &spheres_pixrect, 0}; 
frame= window_create(NULL, FRAME, 

FRAME_LABEL, "spheres", 

sun 
microsysterns 

0 

0 

0 
Revision A, of May 9, 1988 



c 

c\ 

Appendix A -Example Programs (spheres) 463 

FRAME_ICON, 
FRAME ARGC PTR _ ARGV, 
0); 

canvas = window_create(frame, CANVAS, 
CANVAS_AUTO_EXPAND, 0, 
CANVAS_AUTO_SHRINK, 
CANVAS_AUTO_CLEAR, 
I* 

0, 
0, 

icon, 
&argc, argv, 

* Set SCROLL LINE HEIGHT to 1 so that clicking LEFT or RIGHT 
* in the scroll buttons scrolls the canvas by one pixel. 
*I 

WIN_VERTICAL_SCROLLBAR, scrollbar_create(SCROLL_LINE_HEIGHT, 1, 
0), 

WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(SCROLL_LINE_HEIGHT, 1, 

0); 

for (args = argv; *args; args++) { 
if (strcmp (*args, "-g") == 0) 

usefullgray = 1; 

0) , 

I* Interpose in front of the frame's client event handler *I 
(void) notify_interpose_event_func(frame, my_frame_interposer, 

NOTIFY_SAFE); 
(void) notify_set_itimer_func(frame, my_animation, 

ITIMER_REAL, &NOTIFY_POLLING_ITIMER, ITIMER_NULL); 

width= (int) window_get(canvas, CANVAS_WIDTH); 
height= (int) window_get(canvas, CANVAS_HEIGHT); 
pw = canvas_pixwin(canvas);~ 
cmssize = (usefullgray) ? setupfullgraycolormap(pw) 

setuprainbowcolormap(pw); 
mpr = mem_create(BUF_BITWIDTH, height, pw~>pw_pixrect->pr_depth); 
window_main_loop(frame); 
exit(O); 

static int radius; 
static int xO; I* X center *I 
static int yO; I* y center *I 
static int color; 
static int x; 
static int y; 
static int maxy; 
static int mark; 
static int xbuf; 

I* ARGSUSED *I 
static Notify_value 
my_animation(client, itimer_type} 

Notify_client client; 
int itimer_type; 

register i; 

if (x >= radius) { 
radius= r(O, min(width I 2, height I 2)); 
xO r(O, width); 
yO= r(O, height); 

sun 
microsystems 

Revision A, of May 9, 1988 



464 Sun View 1 Programmer's Guide 

color= r(O, cmssize + counter++) % cmssize; 
x = -radius; 
xbuf = 0; 

I* 
* Don't use background colored sphere. 
*I 

if (color == 0) 
color++; 

I* 
* Don't use tiny sphere. 
*I 
if (radius < 8) 

radius 8; 

for (i = 0; i < 5; i++) 
xbuf++; 
maxy = sqroot(radius * radius- x * x); 
pw_vector(pw, xO + x, yO - maxy, xO + x, yO+ maxy, 

PIX_CLR, 0); 
for- (y = -maxy; y <= maxy; y++) { 

mark= r(O, radius * 100) <= NX * x +NY * y 
+ NZ * sqroot(radius * radius- x * x- y * y); 

if (mark) 
pr_put(mpr, xbuf, y +yO, color); 

if (xbuf == (mpr->pr_width- 1)) { 
demoflushbuf(mpr, PIX_SRC I PIX_DST, 

x + xO- mpr->pr_width, pw); 

x++; 

xbuf = 0; 
x++; 
return (NOTIFY_DONE); 

if (x >= radius) 
demoflushbuf(mpr, PIX SRC 

pw); 
return (NOTIFY_DONE); 

static void 
demoflushbuf(mpr, op, x, pixwin) 

struct pixrect *mpr; 
int op; 
int x; 
struct pixwin *pixwin; 

register u_char *sptr, *end; 

PIX_DST, x + xO- (xbuf + 2), 

sptr = mprd8_addr(mpr_d(mpr), 0, 0, mpr->pr_depth); 
end mprd8_addr(mpr_d(mpr), mpr->pr_width- 1, 

mpr->pr_height- 1, mpr->pr_depth); 

I* 
* Flush the mpr to the pixwin. 

*I 
pw_write(pixwin, x, 0, mpr->pr_width, mpr->pr_height, op, 

sun 
microsystems 

0 

0 

Revision A, ofMay 9, 1988 



f"· 
\ . -

c 

Appendix A- Example Programs (spheres) 465 

mpr, 0, 0); 
I* 
*Clear mpr with O's 
*I 

while (sptr <= end) 
*sptr++ = 0; 

I* Let user interact with tool *I 
notify_dispatch(); 

static int 
setuprainbowcolormap(pw) 

Pixwin *pw; 

register u char red[CMS_RAINBOWSIZE]; 
register u char green[CMS_RAINBOWSIZE]; 
register u char blue[CMS_RAINBOWSIZE]; 

I* 
* Initialize to rainbow ems. 
*I 

pw_setcmsname(pw, CMS_RAINBOW); 
cms_rainbowsetup(red, green, blue); 
pw_putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue); 
return (CMS_RAINBOWSIZE); 

static int 
setupfullgraycolormap(pw) 

Pixwin *pw; 

#define CMS FULLGRAYSIZE 256 
#define CMS_FULLGRAY "fullgray" 

register u char red[CMS_FULLGRAYSIZE]; 
register u char green[CMS_FULLGRAYSIZE]; 
register u char blue[CMS_FULLGRAYSIZE]; 
register i; 

I* 
* Initialize to rainbow ems. 
*I 

pw_setcmsname(pw, CMS_FULLGRAY); 
for (i = 0; i < CMS_FULLGRAYSIZE; i++) 

red[i] = green[i] = blue[i] = i; 

pw_putcolormap(pw, 0, CMS_FULLGRAYSIZE, red, green, blue); 
return (CMS_FULLGRAYSIZE); 

static Notify_value 
my_frame_interposer(frame, event, arg, type) 

Frame frame; 
Event *event; 
Notify_arg arg; 
Notify_event_type type; 

sun 
microsystems 

Revision A, of May 9, 1988 



466 Sun View 1 Programmer's Guide 

int 
Notify_value 

closed_initial, closed_current; 
value; 

I* Determine initial state of frame *I 
closed_initial = (int) window_get(frame, FRAME_CLOSED); 
I* Let frame operate on the event *I 
value= notify_next_event_func(frame, event,. arg, type); 
I* Determine current state of frame *I 
closed_current = (int) window_get(frame, FRAME_CLOSED); 
I* Change animation if states differ *I 
if (closed_initial != closed_current) { 

if (closed_current) { 
I* Turn off animation because closed *I 
(void) notify_set_itimer_func(frame, my_animation, 

ITIMER_REAL, ITIMER_NULL, ITIMER_NULL); 
else { 

I* Turn on animation because opened *I 
(void) notify_set_itimer_func(frame, my_animation, 

ITIMER_REAL, &NOTIFY_POLLING_ITIMER, 
ITIMER_NULL); 

return (value); 

sun 
microsystems 

CJ 

0 

0 
Revision A, of May 9, 1988 



c 
B 

Sun User Interface Conventions 

Sun User Interface Conventions ....................................................................................... 469 

B.1. Program Names ............................................................................................................... 469 

B.2. Frame Headers.................................................................................................................. 469 

B.3. Menus ............ ~....................................................................................................................... 469 

Capitalization .................................................................................................................. 469 

Menus Showing Button Modifiers ...................................................................... 470 

Interaction with Standard Menus ......................................................................... 470 c Enable/Disable Menu Items .................................................................................... 470 

Multi-Column Menus ................................................................................................. 470 

B.4. Panels ..................................................................................................................................... 470 

Buttons ................................................................................................................................ 471 

List of Non-Exclusive Choices ............................................................................. 471 

List of Exclusive Choices ........................................................................................ 471 

Binary Choices ............................................................................................................... 472 

Text Items ......................................................................................................................... 472 

Allocation of Function Between Buttons and Menus .............................. 472 

B.S. Mouse Button Usage..................................................................................................... 473 

Allocation of Function Between Mouse Buttons ....................................... 473 

Using Mouse Buttons for Accelerators ............................................................ 473 

B.6. Cursors .................................................................................................................................. 473 

B. 7. Icons ....................................................................................................................................... 473 



0 

0 



c 

B.l. Program Names 

c 
B.2. Frame Headers 

B.3. Menus 

Capitalization 

c 

B 
Sun User Interface Conventions 

The window programs released by Sun follow some standard user interface con­
ventions. These conventions are described here so that, if you choose, you can 
design your interfaces with them in mind. 

Here are some guidelines for naming programs: 

o A window-based version of an existing tty-based program has tool appended 
to the end of the existing program. For example mail tool is a window­
based version of the tty-based program mail(l). 

o A program without a tty version should not end with tool. Thus the icon edi­
tor is called i cone di t and not icontool. 

o Since tools are normally invoked from command files or menus, descriptive 
names are better than short cryptic ones. Thus iconedit is better than ied. 

The frame header should contain the name of the program, optionally followed 
by a dash and additional information, as in: 

MAHW·''M4'9NN*' 

The words in menus should be capitalized as they would be in a chapter heading: 

Close 
Moye * 
Resize * 
EKpose 
H1de 
Redisplay 
Quit 

This convention can be bent when the names in the menu correspond to already 
existing, non-capitalized command names. 

I 

469 Revision A, of May 9, 1988 



470 Sun View 1 Programmer's Guide 

Menus Showing Button 
Modifiers 

Interaction with Standard 
Menus 

Enable/Disable Menu Items 

Multi-Column Menus 

B.4. Panels 

When the behavior of a panel button depends on whether the user holds down a 
shift key, the button should have a menu summarizing the different actions, as in 
this menu from the Reply button in mail tool: 

reply 
Reply (all) 
reply, include 
R~ply (all), include 

[Shift] 
[Ctrl] 
[Ctrll [Shift] 

Standard Sun View menus, such as the frame menu, should not be modified. 
When a user is used to seeing 'Quit' at the end of the frame menu, it is confusing 
to see a frame menu with a new item tacked on at the end. Equally confusing is a 
frame menu that comes up with an item other than 'Close' at the top. Thus, 
instead of deleting an item from a standard menu, applications should render the 
item inactive and "grayed-out." And instead of adding a new item to a standard 
menu, applications should make a new menu, with the name of the standard 
menu at the top, followed by the application-specific commands. The standard 
menu then becomes a pullright subordinate to the custom menu, as in the exam­
ole below: 

Dump Sere Move '* 
Dump Regi Resize '* 
Print Dum Expose 
Yi ew Dump Hi de 

Redisplay 
Quit 

Sometimes a menu has two different states, with different words appearing in the 
same position in a menu, depending on the current state. When the two states 
correspond to something being on or off, the words 'Enable' and 'Disable' 
should be used. Thus shell tool uses 'Enable Page Mode' and 'Disable Page 
Mode'. 

Overly long menus should be avoided. Use menus with more than one column 
instead. 

The defaults for panel items given in this section are intended to promote con­
sistency across applications and provide convenient building blocks for program­
mers who don't want to put a great deal of effort into designing fancy panels. 
The intent is not to rule out the use of non-default panel items. 

sun Revision A, of May 9, 1988 
microsysterns 

0 

0 

0 



c Buttons 

List of Non-Exclusive Choices 

List of Exclusive Choices 

Appendix B ,.-Sun User Interface Conventions 471 

The proper use of buttons is to allow the user to initiate commands. Button items 
should not be used to represent categories, modes or options -for these kinds of 
choices that imply a change of state, you should use toggle, choice or cycle 
items, as described in the next three sections. 

When creating a button, use the routine panel_ but ton_ image () to create a 
button-like image, as in: 

( Dump Screen ) 

As with menu entries, capitalize buttons unless the button name matches some­
thing else (for example, dbx(l) commands in dbxtool). If the button's mean­
ing can be modified by ( Control) or ( Shift I these modifiers should be indicated in 
the button's menu. (For an example, see the picture of the Reply menu from 
mail tool, at the top of the preceding page.) 

In most cases, a button will remain visible all the time. However, when a tool 
has different states, and a button can only be used in some of those states, it is 
usually best to make the button invisible when it can not be invoked. Thus in 
mail tool, the Cancel button only appears when a letter is being composed. 

A list of choices in which more than one choice can be selected at a time is best 
implemen~ed with the item type PANEL_ TOGGLE. The default for toggles is a 
list of check boxes: 

Optional Software: 

lif Database 

D Demos 

lifDocument Preparation Tools 

D Games 

lifProductivity Tools 

The example shows a vertical list; vertical or horizontal are both acceptable. 

A list of choices in which only one choice can be selected at a time can be 
displayed with all choices visible or with only the current choice visible. To 
show all the choices, use the item type PANEL_ CHOICE. The default for choice 
items is a list of square pushbuttons, with the current choice marked by a dark­
ened pushbutton: 

Drawing Mode: ~Point liJLine ~Rectangle ~Circle lilrext 

To show only the current choice, use PANEL_ CYCLE. This item type provides a 
symbol consisting of two circular arrows, which indicate to the user that he can 
cycle through choices, and serves to distinguish cycle items from text items: 

Category C Sun View 

sun Revision A, of May 9, 1988 
microsystems 



472 SmlView 1 Programmer's Guide 

Binary Choices 

Text Items 

Allocation of Function 
Between Buttons and Menus 

An item that is either on or off may be created using either PANEL_ TOGGLE, 
PANEL_ CYCLE or PANEL_CHOICE. The picture on the left below is a toggle, 
the two in the middle are cycles, and the one on the right is a choice: 

!if Grid Show Grid 0 Yes Grid 0 On Grid: liJ On I&J Off 

Text items should have a colon after the label. 

For text items, it is recommended to have one or more buttons which cause the 
text item's value to be acted on. In iconedi t, for example, the user first enters 
a filename into the File: field, then presses the Load, Store, or Browse button in 
order to act on that filename. 

iconedi t also allows the user to type (Contrai-L I, (Control-S I, or ( Control-B I 
into the File: field as accelerators for the buttons. Use of such accelerators 
(including carriage return to mean "enter") is not recommended, as it conflicts 
with future plans for the use of non-printable characters. 

For the sake of consistency, whenever a tool reads from and writes to a file, it 
should label these buttons with Load and Store . 

Selecting a menu item is normally the same as either selecting a button or pick­
ing from a choice item. boggletool(6), for example, has a menu for restart­
ing the game (as well as other things) but has no buttons. Each of the four menu 
items could have been represented by a button instead. life(6) does not have a 
choice item, but rather lets you choose a starting pattern with a menu. Thus the 
question of when to use a button (or choice) and when to use a menu arises. Here 
are some rules of thumb: 

o Items on the frame menu should not be duplicated as buttons, with the possi­
ble exception of a Quit button (see next paragraph). 

o Some tools typically run all the time, such as mail tool. Others are nor­
mally ir~.voked only long enough to do a job, such as iconedi t. Tools in 
the second category, if they have any other buttons, should also have a Quit 
button. 

o If a tool has a commit operation, then it may have a Done button, which is a 
combination of close 106 plus commit. Thus mai 1 too 1 has a Done button. 

o A tool should never have a Close button, since this operation is already 
available via both a menu and the keyboard. 

o If a custom menu is provided, the menu items should not all be duplicated as 
panel items (buttons or choices). boggletool and life are examples of 
programs that have functionality in custom menus that are not duplicated as 
panel items. 

o When a button and a menu item perform the same function, their labels 
should be identical. 

0 

0 

106 If the panel is in a subframe, the Done operation implies disappearing from the screen rather than f"'\. 
closing, since subframes can't become iconic. \_,) 

Revision A, of May 9, 1988 



C B.S. Mouse Button Usage 

Allocation of Function 
Between Mouse Buttons 

c Using Mouse Buttons for 
Accelerators 

B.6. Cursors 

B.7. Icons 

Appendix B- Sun User Interface Conventions 473 

Use of mouse buttons should be consistent with the rest of Sun View. The left 
button should only be used to make selections. The right button should only be 
used to bring up menus.107 

There is some discretion involved in the use of the middle button, however. In 
most of Sun View, the middle button is used to adjust a selection. In text and 
shell windows, for example, the left button is used to mark the starting point of a 
selection, and the middle button is used to extend the selection. Similarly, in a 
pixel editor that allowed you to select regions, clicking the left button on a region 
could select just that region, and clicking the middle button on another region 
could add that region to the selection. On the other hand, in a tool that allowed 
you to move objects, the middle button could move an object, and 
I Contrail-MIDDLE button could re-size it, which would be consistent with the 
way icons and frames are moved and re-sized. As a third alternative, in the 
iconedi t drawing program the left button draws pixels (which is a kind of 
selecting) and the middle button erases. 

The best use of the middle button is still being discussed. Future versions of this 
guideline may specify more exactly how the middle button should be used. For 
now, the most common use is to extend the selection, and the next-most common 
is to move a graphic object. 

It is acceptable to use the mouse buttons as accelerators for common operations. 
The only caveat is that any accelerators should also be available from a menu or 
panel item. Thus in Sun View clicking on a tool with the middle button moves 
the tool, but you can also move a tool using the frame menu. 

Some operations, on the other hand, cannot be invoked from a menu or panel 
button. In such cases the mouse is the only means of invoking the operation. For 
example, in iconedit you use the mouse for drawing, and the drawing opera­
tions are not available from a menu or button. 

An application program should not do anything other than change the shape of 
the cursor when the cursor is moved into a new window. textedi t presents a 
good example of using the cursor to alert the user that input is interpreted dif­
ferently in different regions: The cursor is a thin diagonal arrow in the 
textsubwindow, a fat horizontal arrow in the scrollbar, and a diamond in the 
scrollbar buttons. 

Tools should pack as much information as possible into their icons. clock and 
perfmeter are examples of tools that make good use of icon real estate. tex­
tedi t is an example of a tool that could make better use of its icon. For exam­
ple, it could contain a representation of the text being editing in a 1 point font. 
Small as that is, you can tell at a glance if you are editing C code or a mail mes­
sage. 

107 People who want to hold the mouse with their left hand can put the "menu button" on the left and the 
"select button" on the right by setting the Left_ Handed option in the Input category of de fault sedi t. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



474 Sun View 1 Programmer's Guide 

Some icons, like the round face used by clock and the page with the protruding 
pencil used by text edit, have images with non-square outlines. These icons 
have the area outside of the image outline filled in with the root grey pattern so 
that the icons will blend in with the default Sun View background. While this 
looks good when the background is in fact the default pattern, it is not recom­
mended, since users can choose an arbitrary background pattern for Sun View. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

c 
Converting Sun Windows Programs to 
Sun View 

Converting SunWindows Programs to Sun View ................................................. 477 

C.1. Converting Tools ............................................................................................................ 478 

General Comments ...................................................................................................... 478 

Programming Style Changes .................................................................................. 478 

Object typedefs ................................................................................................ 478 

Attribute Value Interface .................................................................................... 478 

New Objects ..................................................................................................................... 479 

Canvas Subwindows .............................................................................................. 479 

Text Subwindows ................................................................................ ..:;................ 479 

Scrollbars ..................................................................................................................... 479 

Objects in Common between Sun View and Sun Windows ................... 480 

Cursors ........................................................................................................................... 480 

Icons................................................................................................................................ 480 

Menus ............................................................................................................................. 481 

Input Events ................................................................................................................ 481 

Setting up Input Event Handling .................................................................... 482 

Sigwinch Handling ................................................................................................. 482 

Windows ....................................................................................................................... 482 

Panels ............................................................................................................................. 482 

Signals ........................................................................................................................... 483 

Prompts ......................................................................................................................... 483 

C.2. Converting Gfxsubwindow-Based Code.......................................................... 485 

Basic Steps ........................................................................................................................ 485 



Replacing Tool Interaction ...................................................................................... 485 

Styles of Damage Checking.............................................................................. 485 

Either the Notifier Takes Over ........................................................................ 485 0 
Or Your Code Stays in Control ....................................................................... 486 

Handling Damage .................................................... :.............................................. 486 

The gfxsw Structure ............................................................................................... 486 

Finishing Up .................................................................................................................... 487 

Miscellaneous ................................................................................................................. 487 

'Two Examples................................................................................................................ 488 

0 

0 



c 

c 

c 
Converting Sun Windows Programs to 

Sun View 

This appendix gives some guidelines for converting programs written using 
SunWindows to SunView. There are two classes of programs covered: those 
that create a tool and subwindows, and programs that call gfxsw _ ini t () to 
take over an existing window or the console. 

Programs that fall outside these classes are probably UNIX-style programs that do 
not use windows at all. The conversion of such programs is in effect the subject 
of this whole manual. If you want to convert such a program to Sun View, pay 
particular attention to Chapter 2, The Sun View Model, and the specific discussion 
ofNotifier interaction under Porting Programs to SunView in Chapter 17, The 
Notifier. You may also find some of the discussion later on in this appendix 
under Section C.2, Converting Gfxsubwindow-Based Code, helpful. 

sun 477 Revision A, ofMay 9, 1988 
microsystems 



478 Sun View 1 Programmer's Guide 

C.l. Converting Tools 

General Comments 

Programming Style Changes 

Object typedefs · 

Attribute Value Interface 

It is reasonably straightforward to convert tools that create windows in Sun Win­
dows to the Sun View interface because they should already have f!Ie appropriate 
architecture. Sun View programs, like Sun Windows programs, have three parts: 
initialization of static objects, starting up window system interaction, and the 
routines that are called after the tool is running in the window system. 

When porting to Sun View, you should look through all of your code for Sun Win­
dows function calls. If ybu see one, the odds are that you are going to have oth­
ers. Look for every occurrence of the call and then change it to the new format. 
Since the Sun View libraries are mixed in with the Sun Windows libraries, you 
can mix the two types of functions calls, and not get any compilation errors. But 
you will get some inconsistent results. 

The capitalized typedefs for window system objects (applied to Panels, 
Panel_items and Panel_settings in 2.0 SunWindows) have been 
extended to nearly all Sun View objects, including: 

Canvas Pixrect 
Cursor Pixwin 
Frame Rect 
Icon Rectlist 
Menu Scrollbar 
Panel Textsw 
Panel item Tty 
Pixfont Window 

You should convert to using these data types in the interests of future compatibil­
ity. See Object Handles in Chapter 3, Interface Outline, for more information on 
these types. 

In Sun View, the attribute value interface, introduced for panel subwindows in 2.0 
Sun Windows, has been extended to all types of windows. Attributes for all win­
dow types are set and obtained with the same two calls, window_ set () and 
window _get () . 

All window types are created with the same call, window_create (). 

CAUTION The most frequently used Sun View calls use attribute lists, and therefore 
must be null-terminated. Sun View will only complain about a malformed 
attribute list at run time. 

Revision A, of May 9, 1988 

0 

0 



c New Objects 

Canvas Subwindows 

Text Subwindows 

c 
Scrollbars 

Appendix C -Converting Sun Windows Programs to Sun View 4 79 

Most of the data types in the above list are objects new in Sun View. Many 
objects in Sun Windows correspond to objects in Sun View, for example: 

tool ~ 

ttysw ~ 

Frame 
Tty 

Some objects such as the graphics subwindow and empty subwindow are not 
supported in SunView108. There are new objects that partially take their place. 

The canvas sub window is a general-purpose drawing subwindow, which can 
replace gfx subwindows and empty subwindows. The size of the canvas you 
draw on need not be the same as the size of the window it is displayed in; you 
can create scrollbars to let the user adjust the visible part of the canvas. For a 
demonstration of the various canvas attributes, run the program 
/usr/demo/canvas demo 

These allow for the display and editing of text in a scrollable window. The user 
can perfonn various actions on the text, including saving the text, searching in 
the text, and editing the text without the programmer having to deal with these 
interactions. 

Since there was no such window in Sun Windows, your application may have had 
to use a gfx subwindow, a set of panel message items, or some strange technique 
involving ttysw _input {) or piping to a tty subwindow to display text; the 
text subwindow can replace all these uses. 

Scrollbars can be attached to windows. In particular, the use of scrollbars with 
retained canvases makes it very easy to draw a fixed-size image without regard 
for window size changes. 

108 You can still compile and run code that uses these, but Sun does not intend to develop them further. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



480 Sun View 1 Programmer's Guide 

Objects in Common between 
Sun View and Sun Windows 

Cursors 

Icons 

Cursors have changed. They are now type Cursor, and all calls relating to 
them have changed. Type Cursor should be looked at as a pointer to the struc­
ture containing the cursor information. Here is how you would define a cursor: 

static short int help_bits [] = { 
#include "help.curs" 
} ; 

mpr_static(help_pr, 16, 16, 1, help_bits); 

Once having created a cursor, you call window_set () to add it to a window, 
as in the following code fragment: 

Cursor help_cursor; 

main() 
{ 

/* make windows */ 

init_cursor () ; 

init_cursor () 

help_cursor cursor_create(CURSOR_IMAGE, &help_pr, 
CURSOR_ XHOT, 8, 
CURSOR_YHOT, 8, 
CURSOR_ OP, XOR, 
0) ; 

window_set (window, WIN_ CURSOR, help_cursor, 0); 

You now refer to all your cursors by the handle you get from 
cursor_create (). Cursors have their own create, destroy, copy, set, and get 
routines, as well as a number of attributes with no corresponding functionality in 
Sun Windows. 

Icons have changed. They follow the same pattern as cursors; you define the 
data, create a pixrect, and then call icon_ create () at run time. These also 
have their own create, destroy, set and get routines, although there are fewer attri­
butes associated with them. 

Revision A, of May 9, 1988 

0 

C: 
/ 

0 



c Menus 

Input Events 

c 

Appendix C -Converting Sun Windows Programs to Sun View 481 

The new walking menu package uses the attribute value interface. It has many 
more features than the old menu package. It does not support the stacking menu 
style of Sun Windows.109 

Menus also have their own routines and are created via function calls instead of 
being user-loaded data structures. They use the pointer type Menu for their han­
dles instead of struct menuptr. One way to create them is to write a spe­
cial menu_ ini t () proc which loads them into their structures correctly. In 
your menu_ ini t () , you have something like 

ml items= menu_create( 

0); 

MENU STRING_ITEM, "insert", 
MENU_STRING_ITEM, "copy", 
MENU_STRING_ITEM, "replace", 
MENU_STRING_ITEM, "move", 
MENU_STRING_ITEM, "delete", 
MENU_STRING_ITEM, "HELP", 

INSERT, 
COPY 
REPLACE, 
XLATE , 
DELETE, 
DRAW_HELP, 

Menu values from menu_get () ormenu_show () are returned as 
caddr _ t 's. Be sure your types match. 

NOTE The old menu_display () and the newmenu_show () routines have a dif­
ferent order for the arguments. 

The input event structure has not changed. However, you no longer have to 
generate events yourself in "selectedroutines via calls to · 
input reatlevent (} . Instead, windows now have event handlers that are 
passed pointers to Event structures. 

There are a nq.mber of macros for making input events easier to deal with in Sun­
View, so instead ofhaving something like ie->ie_code you have 
event_id (ie), resulting in more readable code. 

Event types are not pointers, so you have to distinguish between 

Event *ie; 

and 

Event ie; I 

in your code. You can use either, because the event functions don'tjust manipu­
late a handle as, for example, the cursor functions do. See Object Handles in 
Chapter 3, Interface Outline, for an explanation of when handles are pointers and 
when not. 

109 This is still ~vailable in the frame and root menus if you disable Sun View/Walking_ Menus in 
defaultsedit. : 

Revision A, of May 9, 1988 



482 Sun View 1 Programmer's Guide 

Setting up Input Event Handling All the input events can be set up from the window_ create () call or 
window _set () calls. Calls to win_ *inputmask () are all replaced by 
these window_set () and window_create () calls. 

The distinction between "pick" and "keyboard" events is new in Sun View, hav­
ing been added to support the notion of a split input focus. 

CAUTION Be careful that when you are setting mouse events, you are modifying the 
WIN_*_ PICK_ EVENTS and when you are setting keyboard events you 
modify WIN_*_KEYBOARD_EVENTS. You may get inconsistent results if 
you modify pick events on the keyboard mask. 

Sigwinch Handling Canvas event procedures no longer need all the gfx support for flag checking. 

Windows 

Resize and repaint events are separately handled by the procedures you supply 
via the CANVAS RESIZE PROC and CANVAS REPAINT PROC attributes. 
These procedures mean you should not try to catch sigwinch signals (and in fact, 
if you do, you will have problems; see below). 

Making windows is very straightforward in Sun View. Each window type has a 
handle -so instead of the inconsistent use of handles and fd's to describe a 
window and manipulate it, you only use the window handle. You need to go 
through your code and update all the reference to the old tool_ ... handle types 
in the code. After you find them, locate all the function calls referring to them 
and update them to Sun View window_ set () and window _get () calls. r~\ 

Almost every window operation is supported by the attribute value interface; U 
however, some low-level routines that are documented in the Sun View 1 System 
Programmer's Guide may still require window names or fd 's. 

window _get () is used to get an attribute of a window. It returns a caddr _ t 
back to you, which must be cast into the appropriate type. So loading something 
into a rect struct would involve something like: 

Rect win_size; 
Canvas canvas; 

canvas= window_create( base_frame, CANVAS, 0); 
win size= *((Rect *)window_get(canvas, WIN_RECT)); 

NOTE Be sure to cast values returned from get () routines to the correct type. 
The above * ( (Rect *) ... ) is needed otherwise you will get an 'incompatible 
type' message from the compiler. 

Panels Most of the panel interface was already using an attribute value interface in 2.0 
SunWindows. panel_create () panel_set () and panel_get () should 
be changed to window_create (), window_set () and window_get (). 

The PANEL_CU () macro was superseded by ATTR_COL () and 
ATTR_ROW (). 

Revision A, of May 9, 1988 



--------------------------------------------------~--------aM~--------~~--------------------------

c Signals 

Prompts 

c 

Appendix C -Converting Sun Windows Programs to Sun View 483 

If you are catching signals, then you should read the documentation on signals in 
Section 17 .2, Restrictions, in the N otifier chapter. There are several that the 
Notifier now catches on your behalf. 

You should no longer be catching SIGWINCH signals. If you do, your program 
may never appear on the screen as it will start catching the signals and redrawing 
endlessly on the screen, which may not be visible. 

Instead of using the menu _prompt () facility of Sun Windows, you should use 
the alerts package to prompt the user, or if necessary use pop-up subframes and 
window _loop (popup_ frame) when prompting the user. The .filer example 
programs in Chapter 4, Windows, uses the alerts package to implement a pop-up 
confirmer. 

menu _prompt ( ) is documented here for completeness. The definitions used 
by menu _prompt () are: 

struct prompt { 
Rect prt_rect; 
Pixfont *prt_font; 
char *prt_text; 

menu_prompt(prompt, event, windowfd) 
struct prompt *prompt; 
struct inputevent *event; 
int windowfd; 

menu _prompt () displays the string addressed by prompt->prt_text 
using the font prompt->prt_font. prompt->prt_rect is relative to 
windowfd. If either the r_width or the r_height fields of 
prompt->prt_rect has the value PROMPT_FLEXIBLE, that dimension is 
chosen to accommodate all the characters in prompt->prt_text. 

The fullscreen access method is used to display the prompt.· After displaying the 
prompt, menu _prompt ( ) waits for any input event other than mouse motion. 
It then removes the prompt, and returns the event which caused the return in 
event. windowfd is the file descriptor of the window from which input is 
taken while the prompt is up. 

~\sun ~ microsystems 
Revision A, of May 9, 1988 



484 Sun View 1 Programmer's Guide 

Table C-1 

In SunWindows 
tool= tool_make{) 

tool_parse_all 

tool_install {) 
tool_select {) 
tool_ destroy {) 

or, individually, 

tool_install{) 

tool_ select {) 

tool_ destroy {) 

signal{SIGWINCH, sigwinch) 

TOOLSW EXTENDTOEDGE 

win _grabio {) 

struct tool io 

Sun Windows=> Sun View Equivalences 

In Sunview 
Frame frame = window_create {NULL, FRAME, ... , 0); 

FRAME ARGS orFRAME ARGC PTR ARGV - -
attributes to window_ create {NULL, FRAME, ... , 0) 

window main_loop{frame); 

WIN SHOW attribute 

window_main_loop{), notify_dispatch{) or notify_start{) 

window_destroy {baseframe) or window_done {any_window) 

RESIZE PROC and REPAINT PROC attribute 

WIN EXTEND TO EDGE 

WIN GRAB ALL INPUT attribute 

WIN_ EVENT _PROC for window events. Other events, timers, etc. 
handled by individual calls to the Notifier to set up or interpose specific procs. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 

0 

c 



-----------------------------------------------------------------------·~---------------------------

c C.2. Converting 
Gfxsubwindow-Based 
Code 

Basic Steps 

Replacing Tool Interaction 

Styles of Damage Checking 

Either the Notifier Takes Over 

Appendix C -Converting Sun Windows Programs to Sun View 485 

Programs that run in gfxsubwindows are designed to take over an existing win­
dow. In Sun View you must create a tool for such programs to run in. One limi­
tation of this approach is that the Sun View version of the application must run 
under suntools; the old gfxsw_init () call would create a Sun Windows 
environment if run on the "bare" Sun console. One major advantage gained by 
moving to Sun View is that your code can use scrollbars. 

o Include <suntool/ sun view. h> and <suntool/ canvas. h>. 

o Remove all window-related #include statements; these will probably be 
included by sun view. h. 

o Declare a Frame and a Canvas. 

o Replace gfxsw _ ini t () with calls to create the frame and canvas. 

Many gfx subwindow programs (and many of the Sun demos) call 
gfxsw_init () to take over a window, then run in a loop as they compute and 
draw an image in the gfx subwindow. At some point in the loop they check for 
damage to or alteration of the size of the gfx subwindow and handle it accord­
ingly. 

In Sun View, the coexistence of your program with the window system is less 
hidden from you. Read Chapter 2, The Sun View Model, to understand how this 
coexistence works. In converting programs, you must ensure the Notifier runs at 
regular intervals so that window events such as close, quit, etc. are handled 
appropriately. 

Consult Chapter 17, The Notifier, for more information. 

You can either (1) set up your program so that, after initialization, control passes 
to the Notifier, which you have set up to call your imaging/computation routine 
periodically, or (2) let control continue to pass to your code, and change the pro­
gram to call the Notifier at regular intervals. 

In the first case, you set up your imaging/computation routine as a function that 
is called when a timer expires. Do this by calling 
notify_ set _it imer _ func () . If you want your imaging/computation rou­
tine to blaze away non-stop (causing other programs to run more sluggishly), you 
request the timer function be called as soon as the Notifier has handled window 
events for you by giving the timer the special value 
&NOTIFY POLLING ITIMER. 

(void) notify_set_itimer_func(frame, my_animation, 
ITIMER_REAL, &NOTIFY_POLLING_ITIMER, ITIMER_NULL); 

If your code sleep () 'son a regular basis, then you should be able to modify it ' 
so that the Notifier calls your imaging/computation routine at the same interval. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



486 SilllView 1 Programmer's Guide 

Or Your Code Stays in Control 

-
The program spheres in Appendix A, Example Programs, is an example of this 
style of interaction. 

On the other hand, if your program just loop.s, perhaps while ( --gfx _reps) , 
then you could add to the loop a call to notify_dispatch (). This will han­
dle window system events and return. 

The program bounce in Appendix A, Example Programs, is an example of this 
style of interaction. 

If you do this then your program has to detect when the user has 'Quit' from the 
menu: see Finishing Up below. 

0 

NOTE gfx reps in a gfx subwindow program is set to a large number (200,000), but 
the user can change it through the command line argument 
-n number _of_repetitions. 

Handling Damage The Notifier will handle moving the window, resizing it, etc. However, resulting 
damage to your canvas may need to be repaired. In the gfx subwindow, 

The gfxsw Structure 

GFX DAMAGED is set whenever a SIGWINCH is received. In addition 
GFX RESTART is set if the size of the window has changed or if the window is 
not retained. GF X_ DAMAGED is set as a hint for you to call 
gfxsw_handlesigwinch (),which would clear up the damaged list and if 
the window was retained it would repaint the image for you. GFX _RESTART is 
set as a hint that the window had to be rebuilt, either because of damage and the Q 
window is not retained, or because of a resize. ) 

Many situations that you would need to handle yourself in a gfx subwindow are 
rendered superfluous by attributes of the canvas subwindow, such as 
CANVAS_ AUTO_ CLEAR, etc. For starters, canvases are retained by default; if 
your canvas has scrollbars and is retained, then you need not be concerned with 
resize events. Nevertheless, you may need to be aware when you must rebuild or 
repair your image. Read the Canvases chapter for more information. 

Rather than setting a flag, Sun View calls your own procedure if you specify one 
with the CANVAS REPAINT PROC and CANVAS RESIZE PROC attributes. 
These are called with useful parameters for their tasks. 

You can modify your code so that the repair activity that used to take place after 
noticing the flags have been set now takes place in the procs themselves, or you 
can write the procs so they set flags similar to the GFX _RESTART and 
GFX _REPAINT flags and return, and leave your repair code almost untouched. 
Or, depending on your application, you can set up your canvas so that the win­
dow system handles all damage. 

The gfxsw structure has fields in it that carry useful information. Comparable 
information is available in Sun View, so you can declare and setup a comparable 
structure in Sun View. The bounce program in Appendix A, Example Programs, 
does this. 

Gfx subwindow-based programs use the gfx->gfxsw_rect to determine the 0 
geometry of the window they are drawing in. Since the starting point of this was 

sun Revision A, of May 9, 1988 
microsystems 



c~ 

Finishing Up 

Miscellaneous 

Appendix C -Converting Sun Windows Programs to Sun View 487 

relative to the gfxsw, it was always 0.110 In Sun View the width and height of the 
canvas you draw in are available through the canvas attributes CANVAS_ WIDTH 
and CANVAS_HEIGHT. The fields of the gfx->gfxsw_rect correspond to 
these attributes as follows: 

coord 
short 

r_left, r_top; 
r_width, r_height; 

are both= 0 
are the CANVAS WIDTH and 

CANVAS HEIGHT attributes. 

As described above, you can use your own GFX _RESTART and GFX _REPAINT 
flags. 

-

If you care about the gfxsw command line arguments, insert code into your 
program's argv, argc parsing loop to handle the gfx options that used to be 
taken care of for you. The bounce program has reasonable code to do this. 

If your imaging routine is in control and periodically calls the Notifier, then when 
the window is quit your routine must know that this has occurred. Otherwise, the 
imaging routine will continue to draw in a window that has been destroyed, and 
you will see error messages like 

until you kill the program. 

What you must do is interpose in front of the frame's destroy event handler so 
that your program will know when the frame goes away. See the item on Getting 
Out in Porting Programs to Sun View in the Notifier chapter. 

If your program exits on its own, then it can call window_ done () to destroy 
its windows. This will invoke your interposed notice-destroy routine (which may 
or may not matter depending on what it does). It will also call the standard 

Are you sure you want to Quit? 

alert unless you set FRAME_ NO__:_ CONFIRM. 

gfxsw _getretained () is equivalent to the CANVAS_ RETAINED attribute. 
Canvases are retained by default. 

gfxsw_init () doesn't consume the gfxsw command line options -r, 
-n Number _of_repetitions, etc; your code may do strange things with its argu­
ments to deal with this. 

110 Many of the demos supplied by Sun are confused on this point and go through unnecessary steps. 

~~sun ~ microsystems 
Revision A, of May 9, 1988 



488 Sun View 1 Programmer's Guide 

Two Examples 

bounce 

spheres 

Detecting when the Program is 
Iconic 

Listings of two programs converted from Sun View are in Appendix A, Example 
Programs. 

The first is a new version ofbouncedemo(6). It now draws its bouncing square 
in a canvas. It has code to parse the standard gfx subwindow command line 
arguments. It preserves the original while ( gfx->gfx _reps) { ... } loop 
structure of bouncedemo by calling notify_dispatch () at the top of the 
loop. Because it is running in a loop it must detect when the user has 'Quit' the 
window, so it interposes before its frame's destroy routine using 
notify_interpose_destroy_func (). The routine that is called just 
sets a flag so the program knows to exit from the loop. 

The second is a version of spheresdemo(6). It now draws its shaded spheres 
in a canvas with scrollbars, so you can see all the image in a small window. It 
handles the notification of Sun View events by asking the Notifier to call the 
drawing routine (my_animation ())as often as possible, using 

(void) notify_set_itirner_func(frarne, rny_anirnation, 
ITIMER_REAL, &NOTIFY_POLLING_ITIMER, ITIMER_NULL); 

Since the drawing operation is under the control ofthe Notifier, the Notifiercan 
control the program, so the while ( gfx->gfx _reps} { ... } loop structure 
is replaced by a call to window_main_loop ();this will terminate the pro­
gram when the user chooses 'Quit' from the frame menu. 

spheres detects when it is made iconic by interposing in front of the frame's 
client event handler using notify_interpose_event_func (). The rou­
tine that is called calls the normal event_func, then checks to see if the frame 
has changed state: if it has been closed it turns the notify timer off altogether, so 
the drawing routine is no longer called; if it has been opened the timer is set back 
to immediate polling. 

bounce should do this also - there is little point in drawing when iconic unless 
you are drawing a single compute-intensive image. 

sun 
microsystems 

Revision A, of May 9, 1988 

0 

0 

0 



c 

c 

c 

Index 

A 
action procedure for menu item, 229 
alarm(3), 285 
alert, 199 

arrow, 201 
beeping, 202 
buttons,201 
components of, 201 
controlling beeping, 208 
creation, 202 
described, 199 
example program, 389 
interface summary, 316 
messages and simple buttons,. 203 
position of, 202 
table of attributes, 316 
table of functions, 318 
text message, 201 
types of buttons, 204 
use with blocking pop-ups, 47 
uses of, 201 
using trigger events, 206 

alert attributes, 316 
ALERT_BUTTON, 316 
ALERT BUTTON FONT, 3115 
ALERT-BUTTON-NO, 204, 316 
ALERT-BUTTON-YE~204,316 
ALERLMESSAGE_, 203 
ALERT MESSAGE FONT, 316 
ALER(~MESSAG()TRINGS, 316 
ALERT MESSAGE STRINGS ARRAY_PTR,316 
ALERT-NO BEEPING, 208, 3l6 
ALERT-OPTIONAL, 317 
ALERT-POSITION, 317 
ALERT~)RIGGER, 207,317 

alert functions, 318 
alert _prompt (), 202, 318 
possible status values, 202 

ASCIT events, 86 
asynchronous signal notification, 293 
ATTR_COL,54,16~309 

ATTR_COLS, 310 
ATTR_LIST, 311 
ATTR_ROW,54,16~309 

ATTR _ROWS, 310 
attribute functions 

attr create_list(),310 

-489-

attribute lists 
creating reusable lists, 310 
default attributes, 311 
maximum size, 29,311 
overview, 28 
utilities, 309 

attribute ordering, 55 
for canvases, 69 
in text subwindow, 132 

B 
base frame, 16 
boundary manager, 19 
button image constructor, 168 
button panel item, 158, 167 thru 169 
buttons with menus, 168 

c 
callback procs, 20 
callback style of programming, 20 
canvas, 61 

attribute order, 69 
automatic sizing, 69 
backing pixrect, 66 
canvas space vs. window space, 70, 98 
color in canvases, 72 
coordinate system, 65 
default input mask, 70 
definition of, 61 
handling input, 70 
interface summary, 319 
model, 65 
monochrome in multiple plane 
non-retained, 66 
pixwin, 63, 65 
repaint procedure, 66 
repainting, 66 
resize procedure, 67 
retained,66 
scrolling, 64 
table of attributes, 319 
table of functions and macros, 320 
tracking changes in size, 67 
writing your own event procedure, 70 

canvas attributes, 319 
CANVAS AUTO CLEAR, 66,319 
CANVAS-AUTO-EXPAND, 69,319 
CANVAS=AUTO=SHRINK,69,319 



Index - Continued 

canvas attributes, continued 
CANVAS FAST MONO, 319 
CANVAS-FIXED IMAGE, 67,319 
CANVAS-HEIGHT,65,319 
CANVAS-MARGIN, 65,319 
CANVAS-PIXWIN, 65, 103, 319 
CANVAS-REPAINT PROC, 66, 319 
CANVAS-RESIZE PROC, 319 
CANVAS-RETAINED, 66,319 
CANVAS:::~ WIDTH, 65, 69,319 

canvas functions and macros, 320 
canvas event (), 71, 98, 320 
canvas-pixwin (), 63, 65, 103, 320 
canvas=window_event (), 70,320 

CAPSMASK, 96, 97 
character unit macros 

ATTR COL, 54, 160, 309 
ATTR-COLS, 310 
ATTR-ROW, 54, 160, 309 
ATTR-ROWS, 310 

child proce-;s control using the Notifier, 288 
choice panel item, 158, 170 thru 176 
classes of windows, 16 
client handle used by the Notifier, 287 
clipping in a pixwin, 112 
code examples, see example programs 
color, 113 

advanced colormap manipulation example program, 441 
animation, 122,447 
background color of pixwin, 115 
color during fullscreen access, 119 
colormap, 113 
colormap access, 118 
colormap segment, 114 
cursors and menus, 119 
default colormap segment, 115 
determining if display is color, 119 
example programs, 441 
fast color change, 114 
foreground color of pix win, 115 
FRAME BACKGROUND COLOR,115 
FRAME-FOREGROUND-COLOR,115 
FRAME-INHERIT COLORS, 115 
grayscale compatibility, 120 
hardware double-buffering, 122 
in canvases, 72 
introduction, 113 
one colormap segment per window, 116 
showcolor, 116 
software double-buffering, 120, 122 
software double-buffering example program, 447 
table of color functions, 360 
using color, 119 

compiling Sun View programs, 27 
confirmation 

FRAME NO CONFIRM, 382 
control strucnrre hi Notifier-based programs, 21 
converting existing programs to use the Notifier, 303 
converting programs to Sun View 

attribute-value interface, 478 
cursors, 480 
equivalent Sun Windows routines, 484 

-490-

converting programs to Sun View, continued 
gfx subwindow-based, 485 
gfx subwindow-based examples, 454 
icons, 480 
input events, 481 
menus, 481 
new objects, 479 
non-window based programs, 477 
panels, 482 
prompts, 483 
signals, 483 
Sun Windows-based, 477 
typedefs, 478 
windows, 482 
write a prompt ... read a reply, 216 

CTRLMASK, 96, 97 
cursor, 253 

crosshair border gravity, 258 
crosshair gap, 258 
crosshair length, 258 
crosshairs, 256 
definition of, 253 
fullscreen crosshairs, 258 
hot spot, 257 
interface summary, 321 
rasterop, 257 
setting position of mouse cursor, 91 
table of attributes; 321 
table of functions, 323 

cursor attributes, 321 
CURSOR CROSSHAIR BORDER GRAVITY, 258, 321 
CURSOR-CROSSHAIR-COLOR, 321 
CURSOR-CROSSHAIR-GAP,258,321 
CURSOR-CROSSHAIR-LENGTH,258 
CURSOR-CROSSHAIR-OP,321 
CURSOR-CROSSHAIR-THICKNESS,321 
CURSOR-FULLSCREEN,258,321 
CURSOR-HORIZ HAIR BORDER GRAVITY,321 
CURSOR-HORIZ-HAIR-COLOR,321 
CURSOR-HORIZ-HAIR-GAP,321 
CURSOR-HORIZ-HAIR-OP,321 
CURSOR-HORIZ-HAIR-THICKNESS,321 
CURSOR-IMAGE~256, i57, 321 
CURSOR-OP, 257,321 
CURSOR-SHOW CROSSHAIRS,321 
CURSOR-SHOW-CURSOR,321 
CURSOR-SHOW-HORIZ HAIR, 321 
CURSOR-SHOW-VERT HAIR,321 
CURSOR-VERT-HAIR-BORDER GRAVITY,322 
CURSOR-VERT-HAIR-COLOR, 322 
CURSOR-VERT-HAIR-GAP,322 
CURSOR-VERT-HAIR-OP,322 
CURSOR-VERT-HAIR-THICKNESS,322 
CURSOR-XHOT~257, 322 
CURSOR=YHOT, 257,322 

cursor constants 
CURSOR_TO_EDGE,258 

cursor functions, 323 
cursor copy () , 255, 323 
cursor-create(), 255, 323 
cursor-destroy(), 255,323 
cursor-get (), 255, 323 
cursor= set (), 255, 323 

0 

0 

0 



'-----------------------------------------------------------------

c 

c 

CURSOR_TO_EDGE,258 
cycle panel item, 174 

D 
data types, 324 

caddr t, 28 
objecth~dles,28 
opaque,28 

default colonnap segment, 115 
default system font, 41 
DEFINE_ICON_FROM IMAGE(},40,262 
DESTROY_CHECKING~300 
DESTROY_CLEANUP,300 
DESTROY PROCESS DEATH 300 
destroying -windows - ' 

FRAME_NO_CONFIRM, 382 
destruction of objects, 300 
disable Quit confirmation 

FRAME_NO _CONFIRM, 41,382 
dispatching events 

calling the Notifier explicitly, 303 
calling the Notifier implicitly, 303 

display 
hatching, 110 
canvases and gfxsw's in multiple plane groups 125 
determining if in color, 119 ' 
enable plane, 124 
locking, 109 
locking and hatching interaction, 112 
overlay plane, 124 
plane group, 124 
software double-buffering, 120 
speed, 108 

distribution of input in a window, 90 

E 
event 

ASCII event codes, 86 
canvas space vs. window space, 70, 98 
definition of, 80 
function key event codes, 88 
keyboard focus event codes, 88 
META event codes, 86 
mouse button event codes, 86 
mouse motion event codes, 86 
panel space vs. window space, 193 
reading events explicitly, 97 
relationship to Notifier, 20 
repaint and resize event codes, 87 
shift key event codes, 89 
timeout, 294 
using an event with alerts, 206 
window entry and window exit event codes, 87 

eventcodes,330,82 
BUT(}, 86 
KBD _DONE, 88 
KBD REQUEST, 88 
KBD=USE, 88 
KEY _LEFT, 88 
KEY_RIGHT, 88 
KEY_TOP, 88 
LOC_DRAG, 70, 86 

-491-

event codes, continued 
LOC MOVE, 86 
LOC = RGNENTER, 87 
LOC RGNEXIT, 87 
LOC-STILL, 86 
LO()RAJECTORY, 86 
LOC _ WINENTER, 87 
LOC WINEXIT, 87 
MS_LEFT,86 
MS _MIDDLE, 86 
MS_RIGHT, 86 
PANEL EVENT CANCEL 190 
PANEL-EVENT-DRAG I~ 190 
PANEL-EVENT-MOVE-IN,190 
SCROLL REQUEST 80 ' 
SHIFT_CAPSLoci 89 
SHIFT CTRL, 89 
SHIFT= LEFT, 89 
SHIFT_ LOCK, 89 
SHIFT META, 89 
SHIFT=RIGHT, 89 
WIN_REPAINT,70,87 
WIN_RESIZE, 70, 87,299 
WIN_STOP, 88 

event descriptors, 333 
WIN_ASCII_EVENTS, 70, 90,333 
WIN_IN_TRANSIT EVENTS, 90,333 
WIN_MOUSE_BUTTONS,90,333 
WIN_ NO_ EVENTS, 90, 333 
WIN UP ASCII EVENTS 90 333 
WIN=UP=EVENTS, 90, 333' ' 

event handling 
at the Notifier level, 288 
in canvases, 70 
in panels, 189 

event procedure 
form of, 81 
writing your own for a canvas, 70 
writing your own for a panel item, 191 

event state retrieval macros 
event_action(},96 
event_ctrl_is_down(},96 
event_is_ascii(},96 
event_is_button(},96 
event_is_down(},96 
event_is_key_left(},96 
event_is_key_right(},96 
event_is_key_top(},96 
event is meta(}, 96 
event:=is:=up (}, 96 
event_meta_is_down(},96 
event_shift_is down(},96 

'event_shiftmask(},96 
event_time (}, 96 
event_ x (} , 96 
event_y (}, 96 

event state setting macros 
event_ set_ down (}, 97 
event_ set_ id (}, 97 
event_set_shiftmask(},97 
event_ set_ time(}, 97 
event_set_up (}, 97 
event_set_x (}, 97 

Index Continued 



Index- Continued 

event state setting macros, continued 
event_set_y (), 97 

event stream, 80 
example programs, 389 

animatecolor, 122,447 
bounce,454 
color manipulation, 441 
coloredit, 118, 441 
colormap manipulation, 441 
convertfug terminal-based programs, 216 
creating menus, 416 
dctool,430 
discussion of image browser I program, 50 
discussion of image-browser-2, 53 
discussion of simple file manager' 44 
filer, 44, 389 
font menu, 416 
gfx subwindow-based demos converted to Sun View, 454 
gfxsw init to Sun View, 454,461 
image browser I, 401 
bnage-browser-2,406 
list files in tty subwindow, 42 
minimal Sun View program, 37 
notify dispatch(), 216,454 
notify-set itimer func(),461 
resize demo, 52, 299, 425 
row/rolumn space in a window, 406 
showcolor, 116 
simple file manager, 389 
simple panel window, 39 
spheres, 461 
subwindow layout, 401 
tty subwindow escape sequences, 412 
tty subwindow 1/0, 412 
tty io, 412 
typ~in,437 

F 
fcntl(2), 286,290 
file descriptor usage, 57 
filer, 44 
flow of control in Notifier-based programs, 21 
font functions 

pf default(), 41, 106 
p(: open(), 41 

frame 
command line frame attributes, 386 
definition of, 16 
fitting around subwindows, 41 
frame header, 18 
layout of subwindows within a frame, 51, 52, 299, 425 
menus, 18 
modifying destruction using the Notifier, 299 
modifying open/close using the Notifier, 297 
table of attributes, 382 

frame attributes, 382 
FRAME ARGC PTR ARGV, 40, 382 
FRAME-ARGS-:--55, 3S2 
FRAME-BACKGROUND COLOR,ll5,382 
FRAME-CLOSED, 382 -
FRAME-CLOSED RECT,382 
FRAME-CMDLINE HELP PROC,382 
FRAME::: CURRENT::: RECT -:--382 

-492-

frame attributes, continued 
FRAME DEFAULT DONE PROC,382 
FRAME-DONE PROC, 382 
FRAME-EMBOLDEN LABEL,382 
FRAME-FOREGROUND COLOR, 115, 382 
FRAME-ICON, 40,382-
FRAME-INHERIT COLORS,ll5,382 
FRAME-LABEL, 40,382 
FRAME-NO CONFIRM,41,382 
FRAME-NTH SUBFRAME, 383 
FRAME-NTH-SUBWINDOW, 383 
FRAME-NTH-WINDOW, 383 
FRAME-OPEN RECT, 383 
FRAME-SHOW-LABEL, 40, 45, 383 
FRAME:::SUBWINDOWS_ADJUSTABLE,383 

free(3), 311 
function keys, 88 

G 
generate procedure 

for menu, 244 
for menu item, 243 
for pull-right, 246 

generate procedure operation parameter values 
MENU DISPLAY, 242 
MENU-DISPLAY DONE,242 
MENU-NOTIFY, 242 
MENU:::NOTIFY_DONE,242 

getitimer(2), 285 
gfx subwindow 

pw use fast monochrome(),125 
cmwerted demo programs, 454, 461 
converting to Sun View, 485 
demo programs converted to Sun View, 454 
monochrome in multiple plane groups, 125 

H 
head~r files 

overview, 27 
<suntool/canvas.h>,61 
<suntool/icon.h>,261 
<suntool/menu .h>, 221 
<suntool/panel. h>, 153 
<suntool/ scrollbar. h>, 165, 267 
<suntool/seln.h~279 
<suntool/sunview.h>,27 
<suntool/textsw.h>,129 
<suntool/tty.h>,211 
<sunwindow/attr.h>,311 
<sunwindow/cms mono.h>,115 
<sunwindow/pix;in.h>,lOl 
<sunwindow/rect.h>,52 
<sunwindow/win cursor.h>,253 
<sunwindow/win-input.h>,77 
<sunwindow/window_hs.h>,77,101 

I 
icon, 261 

definition of, 19 
interactive editor for icon images, 262 
interface summary, 328 
Loading Icon Images At Run Time, 263 
modifying the icon's image, 263 

0 

0 

0 



c 

c 

c 

icon, continued 
table of attributes, 328 
table of functions and macros, 329 

icon attributes, 328 
ICON FONT, 328 
ICON-HEIGHT, 328 
ICON-IMAGE, 328 
ICON-IMAGE RECT,328 
ICON-LABEL,-328 
ICON-LABEL RECT, 328 
I CON:::: WIDTH:-328 

icon functions and macros, 329 
DEFINE ICON FROM IMAGE (}, 40, 262, 329 
icon create(), 262-:-329 
icon-destroy (), 329 
icon-get (), 329 
icon:::: set(), 329 

image _browser _1, 50 
image_browser_2, 53 
images 

in icons, 262 
in menus, 227 
mpr static (), 227,262 
using images generated with iconedit, 227, 262 

include files -see "header files", 27 
initiating event processing, 35 
input, 77 

ASCII events, 90, 333 
designee, 92 
environment, 79 
event descriptors, 90 
eventmacros,96,97 
flow of control, 97 
focus, 91 
focus control, 91 
grabbing all input, 92 
in canvases, 70 
interface summary, 330 
keyboard focus, 88, 91 
keyboard mask, 91 
mask, 91 thru 95 
mouse motion, 86 
pick focus, 91 
pick mask, 91 
reading, 97 
recipient, 92 
refusing the keyboard focus, 88 
releasing, 92 
shift state, 97 
state, 96 
table of event codes, 82, 330 
table of event descriptors, 333 
table of input-related window attributes, 334 
Virtual User Input Device (VUJD), 80 

input event codes 
SCROLL_REQUEST, 83,331 

interposition, 287, 296 thru 302 
interval timers, 294 thru 296 
ioctl(2), 286 
it_interval struct, 296 

-493-

K 
KBD_DONE, 88 
KBD_REQUEST, 88 
KBD_USE, 88 
KEY_LEFT, 88 
KEY_RIGHT, 88 
KEY_TOP, 88 
keyboard focus, 88 

L 
layout of items within a panel, 160 
layout of subwindows within a frame, 51 
libraries used in Sun View, 27 
LOC_DRAG, 86 
LOC _MOVE, 86 
LOC _ RGNENTER, 87 
LOC_RGNEXIT, 87 
LOC~STILL, 86 
LOC_TRAJECTOR~86 

LOC_WINENTER, 87 
LOC_WINEXIT, 87 
locator, see mouse 
locator motion event codes, 86 

M 
Menu, 327 
menu 

Index- Continued 

attributes to add pre-existing menu items, 235 
basic usage, 224 
callback procedures, 240 
client data, 228 
default selection, 249 
destruction, 238 
display stage of menu processing, 241 
example program, 416 
for panel items, 158 
generate procedure, 242 
inactive items, 231 
initial selection, 249 
interface summary, 335 
notification stage of menu processing, 242 
notify procedure, 228, 247 
pull-right, 221 
searching for a menu item, 239 
shadow, 228 
table of attributes, 335 
table of functions, 341 
table of menu item attributes, 339 
user customizable attributes, 250 
walking, 221 

menu attributes, 335 
MENU ACTION IMAGE, 237,335,339 
MENU-ACTION-ITEM, 237, 335,339 
MENU-ACTION-PROC,339 
MENU-APPEND-ITEM, 235, 335, 339 
MENU-BOXED, 231, 250, 335, 339 
MENU-CENTER, 335, 339 
MENU-CLIENT DATA, 228, 335, 339 
MENU-COLUMN-MAJOR,335 
MENU-DEFAULT, 335 
MENU::::DEFAULT_ITEM, 249,335 



Index- Continued 

menu attributes, continued 
MENU DEFAULT SELECTION, 249, 250, 335 
MENU-DESCEND-FIRST, 239,335 
MENU-FEEDBACK, 234, 339 
MENU-FIRST EVENT, 335 
MENU-FONT, 228, 233, 250, 335, 339 
MENU-GEN PROC, 242, 243, 244, 335, 339 
MENU-GEN-PROC IMAGE, 339 
MENU-GEN-PROC-ITEM, 242, 339 
MENU-GEN-PULLRIGHT, 246, 339 
MENU-GEN.,-PULLRIGHT IMAGE, 237, 246, 335, 339 
MENU-GEN-PULLRIGHT-ITEM, 237, 246, 335, 339 
MENU-IMAGE,339 -
MENU-IMAGE ITEM, 225, 229, 237, 336, 339 
MENU-IMAGES, 227, 237, 336 
MENU-INACTIVE, 231, 339 
MENU-INITIAL SELECTION, 249, 250,336 
MENU-INITIAL-SELECTION EXPANDED,250,336 
MENU-INITIAL-SELECTION-SELECTED,25~336 
MENU-INSERT, 234, 235, 336 -
MENU-INSERT ITEM, 235, 336 
MENU-INVERT:-340 
MENU-ITEM, 226, 233, 237, 336 
MENU-JUMP AFTER NO SELECTION, 250,336 
MENU-JUMP-AFTER-SELECTION, 250, 336 
MENU-LAST-EVENT:336 
MENU-LEFT-MARGIN, 230, 250, 336, 340 
MENU-MARGIN, 230,231,250,336, 340 
MENU-NCOLS, 231,336 
MENU-NITEMS, 233, 336 
MENU-NOTIFY PROC, 337 
MENU-NROWS, 231,336 
MENU-NTH ITEM, 233, 337 
MENU-PARENT, 337, 340 
MENU-PULLRIGHT, 226, 233, 340 
MENU-PULLRIGHT DELTA, 250, 337 
MENU-PULLRIGHT-IMAGE, 237, 337, 340 
MENU-PULLRIGHT-ITEM, 236, 237, 337,340 
MENU-RELEASE, 234, 238, 340 
MENU-RELEASE IMAGE, 340 
MENU-REMOVE, 235, 337 
MENU-REMOVE ITEM, 235,337 
MENU-REPLACE, 235, 337 
MENU-REPLACE ITEM, 235, 337 
MENU-RIGHT MARGIN, 230,250,337, 340 
MENU-SELECTED, 337, 340 
MENU-SELECTED ITEM, 249, 337 
MENU-SHADOW, 228, 232, 250, 337 
MENU-STAY UP, 337 
MENU-STRING, 226, 233, 340 
MENU-STRING ITEM, 225,229,237,337,340 
MENU-STRINGS, 237, 337 
MENU-TITLE IMAGE, 228,338 
MENU-TITLE-ITEM, 228,338 
MENU-TYPE, TI8, 340 
MENU-VALID RESULT,338 
MENU-VALUE:225, 229,340 

menu callb~k procedures 
generate procedures, 242 
notify and action procedures, 247 

menu data types 
Menu,327 
Menu generate, 242, 327 
Menu=item, 327 

-494-

menu fimctions, 341 
menu create (), 224, 341 
menu-create i tern (), 234, 341 
menu-destroy(), 238, 341 
menu-destroy with _proc (), 238, 341 
menu-find(), 239,341 
menu-get(), 224,341 
menu-return item(),342 
menu-return-value(),342 
menu-set (), 224, 341 
menu-show(), 224, 229, 240, 244, 341 
menu=show_using_fd(),342 

menu item 
action procedure, 229, 247 
generate procedure, 229 
margins, 230 
table of attributes, 339 
value of, 229 

menu package, 221 thru 251 
menu processing 

display stage, 240 
notification stage, 240 

MENU DISPLAY,242 
MENU=DISPLAY_DONE,242 
Menu_generate, 242,327 
Menu_item, 327 
MENU_ NOTIFY, 242 
MENU_NOTIFY_DONE,242 
menu _prompt () , 483 
message panel item, 158, 167 
META events, 86 
META_SHIFT_MASK, 96,97 
mouse 

event codes for mouse buttons, 86 · 
setting position of mouse cursor, 91 
tracking, 86 

mpr_static (), 227,262 
MS LEFT, 86 
MS =MIDDLE, 86 
MS RIGHT, 86 
mtdtiple views in text subwindows, 147 

N 
namespaces reserved by Sun View, 30 
Notifier 

asynchronous signal notification, 293 
base event handler, 296 
child process control events, 288 
client handle, 287 
converting existing programs to use the Notifier, 303 
debugging, 306 
discarding the default action, 299 
error handling, 305 
event handler fimction, 287 
flow of control in Notifier-based programs, 21 
interposing on frame open/close, 297 
interposing on resize events, 299, 425 
interposition, 287 
overview, 20,287 
pipes, 290 
polling, 295 

0 

0 

0 



c 

c 

c 

Notifier, continued 
prohibited signals, 286 
prohibited system calls, 285 
registering an event handler, 288 
restrictions imposed 011 clients, 285 
signal events, 291 
table of functions, 343 
when to use, 285 

Notifier functions, 343 
notify default wait3 (), 288,343 
notify=dispatch (), 303,343 
notify do dispatch(), 216, 304, 343 
notify=dump o, 306 
notify interpose destroy func(),299,343 
notify-interpose-event iunc (), 297, 343 
notify-interpose-wait3-func(),215 
notify-i timer value (}, 285, 296, 343 
notify-next d;stroy func(),343 
notify-next-event iunc (), 297, 344 
notify-no dispatch(), 304, 344 
notifyyerror (}, 305,344 
notify set destroy func(),286,344 
notify-set-exception func () , 286, 344 
notify-set-input fun~ () , 286, 290, 292, 344 
notify-set-i timer func () , 285, 294, 295, 296, 344 
notify-set-output-func (), 286, 292, 345 
notify-set -signal-func (), 88,287,291,345 
notify-set-wai t3 func (), 286, 288, 345 
notify-start ()' 345 
notify-stop(}, 304, 345 
notify=veto_destroy (), 300,345 

notify procedure 
for menu, 228 
for panel button items, 167 
for panel choice items, 172 
for panel slider items, 184 
for panel text items, 180 
for panel toggle items, 176 

notify procs, 20 
NOTIFY _DONE, 288, 289, 290, 295, 300, 302 
notify_errno, 305 
Notify_error, 305 
NOTIFY_ERROR_ABORT,306 
NOTIFY_FUNC_NULL, 291,305 
NOTIFY_IGNORED, 288,289,293 
NOTIFY_ OK, 305 _ 
NOTIFY_POLLING_ITIMER,295 

0 
object 

definition of, 9 
destruction of, 300 
handle, 28 
non-window visual objects, 11 
window objects, 11 

opening a font, 41 

p 
painting panels and panel items, 185 
panel, 153, 327 

action functions, 190 
attributes, 346 

-495-

panel, continued 
attributes applying to all item types, 160 
caret, 179 
caret item, 179 
caret manipulation, 180 
creation, 159 
data types, 327 
default event-to-action mapping, 189 
definition of, 158 
event handling mechanism, 189 
interface summary, 346 
item label, 158 
item menu, 158 
iterating over all items in a panel, 188 
modifying attributes, 162 
painting, 185 
panel space vs. window space, 193 
panel-wide item attributes, 163 
positioning items within a panel, 160 
retrieving attributes, 163 
simple panel window example, 39 
table of attributes, 346 
table of functions and macros, 353 
table of generic panel item attributes, 347 
using scrollbars with, 165 

panel attribute settings 
PANEL ALL, 170, 176, 180, 184 
PANEL-CLEAR, 185 
PANEL-CURRENT, 170 
PANEL-DONE, 184 
PANEL-HORIZONTAL, 162,178 
PANEL-INVERTED, 172 
PANEL-MARKED, 172 
PANEL-NO CLEAR, 185 
PANEL-NON PRINTABLE,180 
PANEL-NONE, 170,172,176, 180,185 
PANEL-SPECIFIED,180 
PANEL=VERTICAL, 162, 170, 178 

panel attributes, 346 

Index- Continued 

PANEL ACCEPT KEYSTROKE, 189, 190, 346, 347 
PANEL-BACKGROUND PROC, 189, 190, 346 
PANEL-BLINK CARET, 164, 346 
PANEL-BUTTON, 160 
PANEL-CARET ITEM, 162,179,346 
PANEL-CHOICE, 160 
PANEL-CHOICE FONTS,349 
PANEL-CHOICE-IMAGE, 164,349 
PANEL-CHOICE-IMAGES, 170,349 
PANEL-CHOICE-STRING,349 
PANEL-CHOICE-STRINGS, 170, 349 
PANEL-CHOICE-X, 349 
PANEL-CHOICE-XS,17~349 
PANEL-CHOICE-Y, 349 
PANEL-CHOICE-YS,349 
PANEL-CHOICE-YS, 170 
PANEL-CHOICES BOLD,349 
PANEL-CLIENT DATA, 188, 347 
PANEL-CYCLE, l60 
PANEL-DISPLAY LEVEL, 170,176,349 
PANEL-EVENT PROC, 189, 191,346, 347 
PANEL-FEEDBACK, 172,349 
PANEL-FIRST ITEM, 188,346 
PANEL-ITEM RECT,347 
PANEL~)TEM=X, 160,347 



Index- Continued 

panel attributes, continued 
PANEL ITEM X GAP, 161; 346 
PANEL-ITEM-Y~160, 347 
PANEL-ITEM-Y GAP,161, 346 
PANEL-LABEL BOLD,163, 346,347 
PANEL-LABEL-FON~347 
PANEL-LABEL-IMAGE, 167, 347 
PANEL-LABEL-STRING, 167, 347 
PANEL-LABEL-X, 162,347 
PANEL-LABEL-Y, 162, 347 
PANEL-LAYOUT, 162, 163, 170, 178,346,347,349 
PANEL-MARK IMAGE, 349 
PANEL-MARK-IMAGES, 170, 350 
PANEL-MARK-X, 350 
PANEL-MARK-XS, 170, 350 
PANEL-MARK-Y,350 
PANEL-MARK-YS, 170, 350 
PANEL-MASK-C~352 
PANEL-MAX VALUE, 184, 185, 351 
PANEL-MENU CHOICE FONTS,347 
PANEL-MENU-CHOICE-IMAGES,347 
PANEL-MENU-CHOICE-STRINGS, 183, 347 
PANEL-MENU-CHOICE-VALUES, 183, 348 
PANEL-MENU-MARK IMAGE,178, 350 
PANEL-MENB-NOMARK IMAGE,178, 350 
PANEL-MENU-TITLE FONT,348 
PANEL-MENU-TITLE-IMAGE,348 
PANEL-MENU-TITLE-STRING,348 
PANEL-MESSAGE, 160 
PANEL-MIN VALUE,184,185, 351 
PANEL-NEXT ITEM, 188, 348 
PANEL-NOMARK IMAGE, 350 
PANEL-NOMARK-IMAGES, 170,350 
PANEL-NOTIFY-LEVEL, 180,184,351,352 
PANEL-NOTIFY-PROC,167,172,180, 348 
PANEL-NOTIFY-STRING,180, 352 
PANEL-PAINT, l63, 185,348 
PANEL-PARENT PANEL, 348 
PANEL-SHOW ITEM, 164,179,348 
PANEL-SHOW-MENU, 163, 346, 348 
PANEL-SHOWMENU MARK,172, 350 
PANEL-SHOW-RANGE, 184,351 
PANEL-SHOW-VALUE, 184,351 
PANEL-SLIDER WIDTH, 184, 351 
PANEL-TEXT, Hill 
PANEL-TOGGLE, 160 
PANEL-TOGGLE VALUE,350 
PANEL-VALUE, l62, 163,185,350,351,352 
PANEL-VALUE DISPLAY LENGTH,178,352 
PANEL-VALUE-FONT, 351,352 
PANEL-VALUE-STORED LENGTH,179, 352 
PANEL-VALUE-X, 162, 348 
PANEL=VALUE=Y, 162,348 

panel data types 
Panel, 327 
Panel attribute,327 
Panel-i tern, 327 
Panel=setting, 327 

panel functions and macros, 353 
panel accept key (), 191, 353 
panel-accept-menu () , 191, 353 
panel=accept yreview (), 191,353 
panel_advance_caret (), 180,353 
panel_backup_caret(),180,353 

-496-

panel functions and macros, continued 
panel_begin_preview () ,191, 353 
panel button image(), 168, 353 
panel=cancelyreview () ,191, 353 
panel create item(), 41, 160, 353 
panel-default handle event(),190,354 
panel-destroy-item() ~164, 354 
panel-each i t;m () , 354 
panel-event(), 194, 354 
panel -get () , 163, 354 
panel-get value(),164 
panel yaint (), 185, 354 
panel set () , 162, 354 
panel-set value(),162 
panel-text notify (), 181, 354 
panel-update preview(),191,355 
panel=update=scrolling_size(),165,355 
panel_window_event (), 194,355 

panel item 
a~;cepting selection, 189 
basic item types, 158 
button item, 158, 167 thru 169 
choice item, 158, 170 thru 176 
choice item "creep", 161 
creation, 160 
cycle item description, 174 
default positioning, 161 
destroying, 164 
explicit positioning, 160 
item types for creation routine, 160 
layout of components, 162 
message item, 158, 167 
modifying attributes, 162 
painting, 185 
positioning, 160 
previewing selection, 189 
retrieving attributes, 163 
slider item, 159, 184 thru 185 
table of choice and toggle item attributes, 349 
table of slider item attributes, 351 
table of text item attributes, 352 
text item, 159, 178 thru 183 
toggle item, 159, 176 thru 178 

Panel_attribute,327 
PANEL_EVENT_CANCEL,190 
PANEL_EVENT_DRAG_I~190 

PANEL_EVENT_MOVE_IN,190 
PANEL_INSERT,181 
Panel_item, 327 
PANEL_NEXT, 181 
PANEL_NONE, 181 
PANEL_PREVIOUS, 181 
Panel setting, 327 
perform~ce hints - locking and hatching, 108 
perror(3), 305 
pipes, 290 
pixels, 103 
pixrect, 103 
pixwin,lOl 

background color, 115 
hatching, 109, 110 
bitplane control, 120 

0 

0 

0 



c 

c 

pixwin, continued 
cgfour frame buffer, 124 
changing region size, 112 
clipping in a pixwin, 112 
clipping with regions, 112 
colormap, 118 
colormap manipulation, 113 
colormap name, 117 
destruction, 113 
determining region size, 112 
foreground color, 115 
interface summary, 356 
inverting colors, 119 
locking, 108, 109 
locking and hatching interaction, 112 
performance hints, 109, 110 
plane groups, 124 
positioning, 52 
rasterop function, 104 
regions, 112 
rendering speed, 108 
retained regions, 112 
table of color manipulation functions, 360 
table of drawing functions, 356 
what is a pix win?, 103 
write routines, 104 
writing text, 106 

pixwin functions and macros, 356 
pw use fast monochrome(),125 
pw-bat~h (), f11 
pw-batch off (), 111, 356 
pwbatch-on(), 111,356 
pw-batchrop(), 106,356 
pw -blackonwhite (), 119,360 
pw-char(), 105,356 
pw-close (), 113, 356 
pw-copy (), 108, 356 
pw-cyclecolormap (), 118, 360 
pw-dbl access (), 123, 360 
pw=dbl=flip (), 123,360 
pw _ dbl_get () , 124, 360 
pw_dbl_release (), 123,360 
pw dbl set (), 124, 360 
pw-get(), 108,356 
pw-get region rect (), 112, 356 
pw -get'ittributes (), 120,360 
pw-getcmsname (), 117,360 
pw-getcolormap (), 118, 360 
pw-getdefaultcms(),361 
pw-line (), 107,357 
pw-lock (), 109,357 
PW-OP COUNT, 111 
pwyisysclose (), 106,357 
pw pfsysopen (), 106,357 
pwyolygon_2 (), 107,357 
pw polyline(), 107, 357 
pw-polypoint (), 105, 357 
pw-put(), 104,357 
pwyutattributes (), 120,361 
pw _putcolormap (), 118, 121, 361 
pw read (), 108, 358 
pw-region (), 112, 358 
pw-replrop (), 105, 358 
pw=reset (), 110,358 

-497-

pixwin functions and macros, continued 
pw reversevideo (), 119, 361 
pw-rep () , 104, 358 
pw-set region rect (), 112, 358 
pw-set~msname (), 117, 361 
pw-show(), 111,358 
pw-stencil (), 106, 358 
pw-text(), 106,359 
pw-traprop (), 107,359 
pw-ttext (), 106, 359 
pw-unlock () , 109, 359 
pw-vector () , 105, 359 
pw-whi teonblack (), 119, 361 
pw-write(), 104,359 
pw-wri tebackground (), 104, 359 
textroutines, 105 

polling, 295 
pop-up windows, 16, 44 thru 49 

blocking, 47 
example program, 389 
non-blocking, 46 
restrictions, 49 

porting programs to Sun View, 303 

Index- Continued 

Sun Windows-based, 477, see converting programs to Sun-
View 

programmatic scrolling, 275 
pty (pseudo-tty), 57 
pw_batch, 111,356 

R 
reading events, 97 
Rect struct, 52 
refusing the keyboard input focus, 88 
regions of a pixwin, 112 
registering an event handler with the Notifier, 288 
releasing the event lock, 97 
rendering speed, 108 
reserved namespaces, 30 
restrictions on use of UNIX facilities by Sun View applications, 285 
row/column space in a window, 53 

example program, 406 

s 
sample programs, see example programs 
Scroll_motion,327 
scrollbar, 267, 327 

basic usage, 272 
model, 269 
programmatic scrolling, 275 
SCROLLBAR default symbol, 272 
table of attributes, 362 
table of functions, 365 
thumbing, 271 
use with canvases, 64 
use with panels, 165 
user interface, 271 

scrollbar attributes, 362 
SCROLL ABSOLUTE CURSOR,362 
SCROLL-ACTIVE CURSOR,362 
SCROLL-ADVANCED MODE,362 
SCROLL-BACKWARD-CURSOR, 362 
SCROLL=BAR_COL0~362 



Index- Continued 

scrollbar attributes, continued 
SCROLL BAR DISPLAY LEVEL,362 
SCROLL-BORDER, 362 -
SCROLL-BUBBLE COLOR,362 
SCROLL-BUBBLE-DISPLAY LEVEL,362 
SCROLL-BUBBLE-MARGIN,J62 
SCROLL-DIRECTION, 273, 362 
SCROLL-END POINT ~362 
SCROLL-FORWARD CURSOR, 362 
SCROLL-GAP, 362 -
SCROLL-HEIGHT, 272, 363 
SCROLL-LAST VIEW START, 275,363 
SCROLL-LEFT:-363 -
SCROLL-LINE HEIGHT,363 
SCROLL-MARGIN, 363 
SCROLL-MARK, 363 
SCROLL-NORMALIZE, 363 
SCROLL-NOTIFY CLIENT,363 
SCROLL-OBJECT:-363 
SCROLL-OBJECT LENGTH, 269, 363 
SCROLL-PAGE BUTTON LENGTH,363 
SCROLL-PAGE-BUTTONS,363 
SCROLL-PAINT BUTTONS PROC,363 
SCROLL-PIXWIN, 363 -
SCROLL-PLACEMENT, 272, 363 
SCROLL-RECT, 272, 363 
SCROLL-REPEAT TIME,364 
SCROLL-REQUEST MOTION,364 
SCROLL-REQUEST-OFFSET,364 
SCROLL-THICKNESS, 272, 273, 364 
SCROLL-TO GRID, 364 
SCROLL-TOP, 364 
SCROLL-VIEW LENGTH, 269, 364 
SCROLL-VIEW-START, 269,275,364 
SCROLL= WIDTH, 272, 364 

scrollbar data types 
Scroll motion, 327 
Scrollbar, 327 
Scrollbar attribute,327 
Scrollbar-attribute value,327 
Scrollbar=setting,327 

scrollbar functions, 365 
scrollbar clear bubble(),365 
scrollbar-creat; (), 165, 272, 365 
scrollbar-destroy(),272 
scrollbar-get(), 272 
scrollbar~aint(),365 
scrollbar_paint_bubble(),365 
scrollbar_paint_clear(),365 
scrollbar scroll to (), 275, 365 
scrollbar=set (), Tl2, 365 

Scrollbar_attribute,327 
Scrollbar_attribute_value,327 
Scrollbar_setting,327 
selection of panel items 

buttons, 167 
choices, 172 
sliders, 184 
text, 179 
toggles, 176 

Selection Service, 279 
setting position of mouse cursor, 91 
Setting the contents of a Text Subwindow 

-498-

Setting the contents of a Text Subwindow, continued 
Setting contents, 140 

SHIFT_CAPSLOCK, 89 
SHIFT_ CTRL, 89 
SHIFT_ LEFT, 89 
SHIFT_ LOCK, 89 
SHIFT_META, 89 
SHIFT_ RIGHT, 89 
SHIFTMASK, 96,97 
showcolor, 116 
S IGALRM, 286 
sigblock(2), 293 
SIGCHLD, 286 
SIGCONT, 285 
SIGIO, 286 
signal(3), 285, 291 

Notifier-compatible version, 291 
signals- use with Notifier, 291 
SIGPIPE, 292 
SIGTERM, 286 
SIGURG, 88, 286 
sigvec(2), 285 
SIGVTALRM, 286 
slider panel item, 159, 184 thru 185 
stop key, 88 
subframe, 16 
subwindow layout 

discussion of image browser 1 program, 50 
example program, 401 -

subwindows, 16 
changinglayoutdynamicruly,52 
definition of, 19 
specifying layout, 51, 52 
specifying size, 50 

<suntool/canvas.h>,61 
<suntool/icon .h>, 261 
<suntool/menu.h>, 221 
<suntool/panel.h>,153 
<suntool/scrollbar.h>,165,267 
<suntool/seln.h>,279 
<suntool/sunview.h>,27 
<suntool/textsw.h>,l29 
<suntool/tty. h>, 211 
Sun View 

changes in SunOS releases, 4 
code no longer supported, 5 
converting programs from Sun Windows, 477 
data types, 324 
file descriptor limits, 57 
frame header, 18 
graphics standards in windows, 3 
history,4 
interface outline, 27 
interface summary, 315 
libraries, 27 
model, 9 
objects, 9 
overview, 3 
plane groups, 126 
porting programs to, 303 

0 



c 

c 

c 

Sun View, continued 
reserved namespaces, 30 
restrictions on use of UNIX facilities by applications, 285 
source code of programs, 389 
standard functions for objects, 29 
sununary of object types, 11 

<sunwindow/cms_mono.h>,115 
<sunwindow/rect.h>,52 
<sunwindow/win_cursor.h>,253 
Sun Windows 

converting programs to Sun View, 477 
equivalent code in Sun View, Table C-1 

system(3), 286 
system calls not to be used under Sun View, 285 

T 
terminal emulator subwindow- see "tty subwindow", 211 
text notification procedure 

default, 181 
possible return values, 181 

text panel item, 159, 178 thru 183 
text subwindow, 129 

as a sequence of characters, 132 
attribute ordering, 132 
checking its status, 133 
concepts, 132 
creation, 132 
discarding edits, 139 
edit log, 138 
editing contents of, 136 
and the file system, 138 
finding text, 144 
getting a text selection, 132 
insertion point, 132, 135, 136, 137 
interface summary, 366 
manipulating the backing store, 136 
marking text, 145 
matching a span of characters, 144 
matching a specific pattern, 144 
multiple views, 147 
notification, 148 
overflow of edit log, 138 
positioning the caret, 135 
positioning the text, 141 
reading from, 135 
saving edits, 139 
setting selection, 14 7 
storing edits, 139 
table of attributes, 366 
table of functions, 372 
table of Textsw action attributes, 149, 370 
table of Textsw-status values, 134, 371 
writing to, 134 -

text subwindow attributes, 366 
TEXTSW ADJUST IS PENDING DELETE,366 
TEXTSW-AGAIN RECORDING,366 
TEXTSW-AUTO INDENT,366 
TEXTSW~AUTO-SCROLL BY,366 
TEXTSW-BLINK CARET~366 
TEXTSW~BROWSIN~366 
TEXTSW-CHECKPOINT FREQUENCY,366 
TEXTSW7 CLIENT DATA, 366 
TEXTSW =CONFIRM_ OVERWRITE, 366 

-499-

Index- Continued 

text subwindow attributes, continued 
TEXTSW CONTENTS, 135, 139, 366 
TEXTSW-CONTROL CHARS USE FONT,366 
TEXTSW-DISABLE-CD,366 -
TEXTSW-DISABLE-LOAD,367 
TEXTSW-EDIT COUNT, 367 
TEXTSW-FILE~46, 133, 367 
TEXTSW-FILE CONTENTS,367 
TEXTSW-FIRST, 133, 142, 367 
TEXTSW-FIRST LINE, 142, 367 
TEXTSW-HISTORY LIMIT,367 
TEXTSW-IGNORE LIMIT,367 
TEXTSW-INSERT-FROM FILE,367 
TEXTSW-INSERT-MAKES VISIBLE,367 
TEXTSW-INSERTION POINT, 135, 367 
TEXTSW-LEFT MARGIN,367 
TEXTSW-LENGTH, 132, 367 
TEXTSW-LINE BREAK ACTION,367 
TEXTSW-LOWER CONTEXT,367 
TEXTSW-MARK DEFAULTS,145 
TEXTSW-MARK-MOVE AT INSERT, 145 
TEXTSW-MEMORY MAXIMUM, 138, 368 
TEXTSW-MENU, 368 
TEXTSW-MODIFIED,133,368 
TEXTSW-MULTI CLICK SPACE,368 
TEXTSW-MULTI-CLICK-TIMEOUT,368 
TEXTSW-NOTIFY PROC~148, 368 
TEXTSW-READ ONLY,368 
TEXTSW-SCROLLBAR, 368 
TEXTSW-STATUS, 132, 133, 368 
TEXTSW-STORE CHANGES FILE,368 
TEXTSW-STORE-SELF IS-SAVE,368 
TEXTSW-UPDATE SCROLLBAR,369 
TEXTSW=UPPER_CONTEXT,369 

text subwindow constants 
TEXTSW INFINITY, 135, 136, 137 
TEXTSW-UNIT IS CHAR,136 
TEXTSW=UNIT=IS=LINE,136 

text subwindow data types 
Textsw,327 
Textsw index, 132, 327 
Textsw=status, 133,327 , 

text subwindow functions, 372 
textsw add mark (), 145, 372 
textsw-app;nd file name (), 138, 372 
textsw-delete(), 136-;-372 
textsw-edit(), 136,372 
textsw-erase (), 136, 372 
textsw-file lines visible(),143,372 
text sw-find-bytes () , 144, 372 
textsw-find-mark(), 146,373 
textsw-first (), 147, 373 
textsw -index for file line(), 142,373 
textsw-insert(), l34, 373 
textsw-match bytes(), 144, 373 
textsw-next(), 147,373 
textsw-normalize view (), 143,373 
textswyossibly_normalize (), 143, 373 
textsw remove mark (), 146, 374 
textsw-replac; bytes(),137,374 
textsw-reset() ~139, 150, 374 
textsw-save (), 139, 150, 374 
textsw-screen line count(), 143,374 
textsw=scroll=line; (), 142,374 



Index- Continued 

text subwindow functions, continued 
textsw_set_selection (), 147,374 
textsw_store(),150 
textsw_store_file (), 139,375 

Textsw,327 
Textsw_action, 148 
Textsw_action attributes, 370, 149 

TEXTSW ACTION CAPS LOCK, 149, 370 
TEXTSW=ACTION=CHANGED_DIRECTORY,l49,370 
TEXTSW ACTION EDITED FILE, 149, 370 
TEXTSW-ACTION-FILE IS READONLY 149 370 
TEXTSW-ACTION-LOADED FILE, 149, 3'-JO ' 
TEXTSW-ACTION-EDITED-FILE,l50 
TEXTSW-ACTION-LOADED-FILE,l50 
TEXTSW-ACTION-TOOL CLOSE,l49,370 
TEXTSW-ACTION-TOOL-DESTROY,l49,370 
TEXTSW-ACTION-TOOL-MGR, 149, 370 
TEXTSW-ACTION-TOOL-QUIT, 149, 370 
TEXTSW=ACTION=USING_MEMORY, 149,370 

Text sw _index, 132, 327 
TEXTSW _INFINITY, 135, 136, 137 
Textsw_status, 133,327 
Textsw_status values, 371, 134 

TEXTSW STATUS BAD ATTR, 134, 371 
TEXTSW-STATUS-BAD-ATTR VALUE,l34,371 
TEXTSW-STATUS-CANNOT ALLOCATE,l34,371 
TEXTSW-STATUS-CANNOT-INSERT FROM FILE 134 

-371 - - - - ' ' 

TEXTSW STATUS CANNOT OPEN INPUT, 134, 371 
TEXTSW-STATUS-OKAY, 134, 371-
TEXTSW-STATUS-OTHER ERROR, 134,371 
TEXTSW=STATUS=OUT_OF_MEMORY,l34,371 

TEXTSW_UNIT_IS_CHAR,l36 
TEXTSW UNIT IS LINE,l36 
tirneout~en~,294-
toggle panel item, 159, 176 thru 178 
translating even~ from canvas space to window space, 70, 98 
translating even~ from panel space to window space, 193 
tty subwindow 

creating, 213 
differences with Sun console, 214 
example program, 412 
example program to list files, 42 
file descriptor, 215 
input/output to tty subwindow, 213 
interface summary, 376 
monitoring, 215 
overview, 211 
reading and writing, 215 
special escape sequences, 215 
standard escape sequences, 214 
table of functions, 376 
table of special escape sequences, 377 

tty subwindow attributes 
TTY ARGV, 213, 215, 216, 376 
TTY= CONSOLE, 376 
TTY_PAGE_MODE,376 
TTY QUIT ON CHILD DEATH,376 

tty subw~dow f~cti~ns, 376-
example program, 412 
ttysw input(), 42, 213, 376 
ttysw =output (), 214, 376 

-500-

u 
UNIX system calls and Sun View 

alarrn(3), 285 
fcnt1(2), 286, 290 
free(3), 311 
getitirner(2), 285 
1/0 in a tty subwindow, 215 
ioctl(2), 286 
perror(3), 305 
sigblock(2), 293 
signal(3), 285,291 
sigvec(2), 285 
system calls not to be used, 285 
wai t(2), 286 
wai t3(2), 285, 288 

v 
views in text subwindows, 147 
Virtual User Input Device (VU/D), 80 

w 
wait(2), 286 
wait3(2), 285,288 
WIN_ASCII_EVENTS, 90,333 
WIN_ EXTEND_ TO_ EDGE, 50, 51 
WIN_IN_TRANSIT_EVENTS,90,333 
WIN_ LEFT_ KEYS, 90, 333 
WIN_MOUSE __ BUTTONS, 90,333 
WIN_ NO_ EVENTS, 90, 333 
WIN_REPAINT, 87 
WIN_RESIZE, 87 
WIN_RIGHT_KEYS, 90,333 
WIN_STOP, 88 
WIN_TOP_KEYS, 90,333 
WIN_UP_ASCII_EVENTS, 90,333 
WIN_UP_EVENTS,90,333 
window, 33 

classes of windows, 16 
creation, 35 
destruction, 36 
initiating event processing, 35 
interface summary, 379 
limit to number of windows, 57 
simplest Sun View program, 37 
table of attributes, 379 
table of functions and macros, 384 
table of input-related window attributes, 334 

window attributes, 379 
WIN BELOW, 379 
WIN=BOTTOM_MARGIN,53,379 
WIN CLIENT DATA, 379 
WIN-COLUMN-GAP, 53, 379 
WIN-COLUMN-WIDTH, 53, 379 
WIN= COLUMNS, 50, 159, 379 
WIN CONSUME KBD EVENT, 70,379 
WIN-CONSUME-KBD-EVENTS,379 
WIN-CONSUME-PICK EVENT,379 
WIN-CONSUME-PICK-EVENTS,379 
WIN= CURSOR, 255, 256, 379 
WIN_DEVICE_NAME,379 
WIN DEVICE NUMBER, 379 
WIN= ERROR_ MSG, 40, 379 

0 

0 

0 



c window attributes, continued 
WIN EVENT PROC, 70, 81, 379 
WIN-EVENT-STATE, 96, 379 
WIN-FD, 379-
WIN-FIT HEIGHT,41,379 
WIN-FIT-WIDTH, 41, 380 
WIN-FONT, 41, 160, 309, 380 
WIN -GRAB ALL INPUT, 92, 380 
WINHEIGHT,159, 380 
WIN-HORIZONTAL SCROLLBAR, 165, 267, 380 
WIN-IGNORE KBD-EVENT,380 
WIN-IGNORE-KBD-EVENTS,380 
WIN-IGNORE-PICK EVENT,380 
WIN-IGNORE-PICK-EVENTS,380 
WIN-INPUT DESIGNEE, 92, 380 
WIN-KBD FOCUS, 380 
WIN-KBD-INPUT MASK,380 
WIN-KEYBOARD FOCUS,91 
WIN-LEFT MARGIN, 53, 380 
WIN-MENU;-380 
WIN-MOUSE XY, 91, 380 
WIN-NAME, 380 
WIN-OWNER, 380 
WIN-PERCENT HEIGHT,380 
WIN-PERCENT-WIDTH,381 
WIN-PICK INPUT MASK,381 
WIN-PIXWIN, 65, i03, 381 
WIN-RECT, 52, 381 
WIN-RIGHT MARGIN, 53, 381 
WIN-RIGHT-OF, 381 
WIN-ROW GAP, 53, 381 
WIN-ROW-HEIGHT, 53, 381 
WIN-ROWS, 50, 159, 381 
WIN-SCREEN RECT,381 
WIN-SHOW, 46," 381 
WIN-TOP MARGIN, 53, 381 
WIN-TYPE, 381 
WIN-VERTICAL SCROLLBAR, 165,267,381 
WIN-WIDTH, 159-:-381 
WIN-X, 52, 381 
WIN=Y, 52,381 

window classes 
base frame, 16 
frame, 16 
pop-up,16 
subframe, 16 
subwindow, 16 

window functions and macros, 384 
window bell (), 384 
window-create(), 35, 63,297,384 
window=default_event_proc(),81,384 
window destroy(), 36, 384 
window-done (), 36, 384 
window-fit(), 384 
window-fit height(), 41, 
window-fit-width (), 41, 384 
win dow-get () , 35, 384 
win dow -loop () , 48, 385 
window-main loop () , 35, 303, 385 
window-read event (), 71, 97, 193, 385 
window-refuse kbd focus{), 88, 385 
window-releas; ev;nt lock(),97,385 
window-return(), 48,385 
window= set (), 35, 162, 385 

Index- Continued 

-501-


	Title Page

	Contents

	Tables

	Figures

	Preface

	1. Introduction

	2. The SunView Model

	3. Interface Outline

	4. Using Windows

	5. Canvases

	6. Handling Input

	7. Pixwins

	8. Text Subwindows

	9. Panels

	10. Alerts

	11. TTY Subwindows

	12. Menus

	13. Cursors

	14. Icons

	15. Scrollbars

	16. The Selection Service

	17. The Notifier

	18. Attribute Utilities

	19. SunView Interface Summary

	A. Example Programs

	B. Sun User Interface Coventions

	C. Converting SunWindows Programs to SunView

	Index


