

International Business Machines Corporation Armonk, New York 10504

IBM Program License Agreement

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THIS PACKAGE.
OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT
AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE UNOPENED AND YOUR MONEY WILL BE
REFUNDED.

IBM provides this program and licenses its use in the
United States and Puerto Rico. Title to the media on which
this copy of the program is recorded and to the enclosed
copy of the documentation is transferred to you, but title to
the copy of the program is retained by IBM 6r its supplier,
as applicable. You assume responsibility for the selection of
the program to achieve your intended results, and for the
installation, use and results obtained from the program.

LICENSE
You may:
a. use the program on only one machine at any one time

except as otherwise specified by IBM in the enclosed
Program Specifications (available for your inspection
prior to your acceptance of this Agreement);

b. copy the program into machine readable or printed
form for backup or modification purposes only in
support of such use. (Certain programs, however, may
include mechanisms to limit or inhibit copying. They
are marked "copy protected");

c. modify the program and/or merge it into another
program for your use on the single machine. (Any
portion of this program merged into another program
will continue to be subject to the terms and conditions
of this Agreement.): and,

d. transfer the program with a copy of this Agreement to
another party only if the other party agrees to accept
from IBM the terms and conditions of this Agreement.
If you transfer the program, you must at the same time
either transfer all copies whether in printed or machine
readable form to the same party or destroy any copies
not transferred: this includes all modifications and
portions of the program contained or merged into other
programs. IBM will grant a license to such other party
under this Agreement and the other party will accept
such license by its initial use of the program. If you
transfer possession of any copy, modification or merged
portion of the program, in whole or in part, to another
party, your license is automatically terminated.

You must reproduce and include the copyright notice on
any copy, modification, or portion merged into another
program.

You mav not reverse assemble or reverse compile the
program without IBM's prior written consent.

You may not use, copy, modify, or transfer the program, or
any copy, modification or merged portion, in whole or in
part, except as expressly provided for in this Agreement.

You may not sublicense, assign, rent or lease this program.

TERM
The license is effective until terminated. You may terminate
it at any other time by destroying the program together with
all copies, modifications and merged portions in any form.
It will also terminate upon conditions set forth elsewhere in
this Agreement or if you fail to comply with any term or
condition of this Agreement. You agree upon such termi
nation to destroy the program together with all copies, mod
ifications and merged portions in any form.

LIMITED WARRANTY AND DISCLAIMER OF
WARRANTY
IBM warrants the media on which the program is furnished
to be free from defects in materials and workmanship under
normal use for a period of 90 days from the date of IBM's
delivery to you as evidenced by a copy of your receipt.

IBM warrants that each program which is designated by
IBM as warranted in its Program Specifications, supplied
with the program, will conform to such specifications pro
vided that the program is properly used on the IBM machine
for which it was designed. If you believe that there is a
defect in a warranted program such that it does not meet its
specifications, you must notify IBM within the warranty
period set forth in the Program Specifications.

ALL OTHER PROGRAMS ARE PROVIDED "AS IS''
WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFEC
TIVE, YOU (AND NOT IBM OR AN IBM AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF
ALL NECESSARY SERVICING, REPAIR OR COR
RECTION.

IBM does not warrant that the functions contained in any
program will meet your requirements or that the operation
of the program will be uninterrupted or error free or that all
program defects will be corrected.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL
OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY GIVES
YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY FROM STATE TO
STATE.

LIMITATIONS OF REMEDIES
IBM's entire liability and your exclusive remedy shall be as
follows:
1. With respect to defective media during the warranty

period:
a. IBM will replace media not meeting IBM's "Limited

Warranty" which is returned to IBM or an IBM
authorized representative with a copy of your receipt.

b. In the alternative, if IBM or such IBM authorized rep
resentative is unable to deliver replacement media
which is free of defects in materials and workmanship,
you may terminate this Agreement by returning the
program and your money will be refunded.

2. With respect to warranted programs, in all situations
involving performance or nonperformance during the
warranty period, your remedy is (a) the correction by
IBM of program defects, or (b) if, after repeated efforts,
IBM is unable to make the program operate as war
ranted, you shall be entitled to a refund of the money
paid or to recover actual damages to the limits set forth
in this section.

For any other claim concerning performance or nonper
formance by IBM pursuant to, or in any other way
related to, the warranted programs under this Agree
ment, you shall be entitled to recover actual damages to
the limits set forth in this section.

IBM's liability to you for actual damages for any cause
whatsoever, and regardless of the form of action, shall be

Z125-3301-X

limited to the greater of $5,000 or the money paid for the
program that caused the damages or that is the subject
matter of, or is directly related to, the cause of action.

In no event will IBM be liable to you for any lost profits,
lost savings or other incidental or consequential damages
arising out of the use of or inability to use such program
even if IBM or an IBM authorized representative has been
advised of the possibility of such damages, or for any claim
by any other party.

SOME STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CON
SEQUENTIAL DAMAGES SO THE ABOVE LIMITATION
OR EXCLUSION MAY NOT APPLY TO YOU.

SERVICE
Service from IBM, if any, will be described in Program Spec
ifications or in the statement of service, supplied with the
program, if there are no Program Specifications.

IBM may also offer separate services under separate agree
ment for a fee.

GENERAL
Any attempt to sublicense, assign, rent or lease, or, except
as expressly provided for in this Agreement, to transfer any
of the rights, duties or obligations hereunder is void.

This Agreement will be construed under the Uniform Com
mercial Code of the State of New York.

---...- -------- ~ - - - ~ -----.... -~-=-=-== '9'::: Program Specification
® IBM RT Personal Computer Graphics Development Toolkit Licensed Program

(55X8921)

Statement of Limited Warranty

The IBM RT Personal Computer1 Graphics
Development Toolkit Licensed Program is
warranted to conform to this Program Specification
when properly used in its designated operating
environments.

Any other documentation with respect to this
licensed program is provided for information
purposes only and does not extend or modify this
IBM RT PC Graphics Development Toolkit Licensed
Program Program Specification.

The IBM RT PC Graphics Development Toolkit
Licensed Program Program Specification may be
updated from time to time. Such updates may
constitute a change to these specifications.

It is possible that this material may contain
reference to, or information about, IBM products
(machines and programs), programming, or
services that are not announced in your country.
Such references or information must not be
construed to mean that IBM intends to announce
such IBM products, programming, or services in
your country.

This limited warranty and the 90-day program media
warranty are contained in the IBM Program License
Agreement supplied with this product. These
warranties are available to all licensees of the IBM
RT PC Graphics Development Toolkit Licensed
Program. The limited warranty period is until
February 1, 1988, or until six months after written
notice by IBM that the warranty period has been
terminated, whichever is sooner.

Statement of Function Warranted

The IBM RT Personal Computer Graphics
Development Toolkit Licensed Program (55X8921)
provides tools for programmers who develop
graphics applications. The Toolkit includes a set of
graphics primitives that can be called by high level
languages to perform functions such as displaying
pie slices and drawing lines, polygons, and circles,
using the Virtual Device Interface (VOi).

The highlights of this licensed program are:

• Supports the IBM RT PC Virtual Device Interface
(VOi) between devices and programs

• Helps provide device independence for
programs

• Provides graphic and text functions via graphic
subroutines that include:

Circle, arc, pie slice, and bar charts
Multiple colors and fill patterns
Polyline, polymarker
Multiple font cursor text
Rotatable , scalable, multiple font graphic
text
Raster operations
Input operations.

• Provides a program interface via language
bindings to IBM RT PC FORTRAN 77, IBM RT PC
BASIC Interpreter and Compiler (compiled
only), IBM RT PC Pascal, and the C compiler

RT, RT PC, and RT Personal Computer are trademarks of IBM

provided with the IBM RT PC AIX2 Operating
System.

Specified Operating Environment

Machine Requirements

The minimum machine requirements are:

• An IBM RT PC with a display (for example, the
IBM RT PC Advanced Color Graphics Display,
IBM RT PC Advanced Monochrome Graphics
Display, the IBM Personal Computer Display, or
an equivalent display).

Note: The number of users on the IBM RT PC AIX
Operating System Licensed Program, Version 1.1.,
(74X9995), the number and type of tasks, and the
application requirements may expand the
requirements beyond these minimums.

Programming Requirements

The IBM RT PC AIX Operating System Licensed
Program, Version 1.1., (74X9995) is a prerequisite
for program execution.

Statement of Service

Program service for valid program-related defects
in the IBM RT PC Graphics Development Toolkit
Licensed Program is available to all IBM RT PC
Graphics Development Toolkit Licensed Program
licensees until February 1, 1988, or until six months
after written notice by IBM that the warranty period
has been terminated, whichever is sooner.
However, service will be provided only for the
current update level and for the prior release for
ninety (90) days following release of the current
level of update.

Each licensee's access to program service is
determined by the marketing channel through which
the license was obtained. For example, in the

2 AIX is a trademark of IBM

United States and Puerto Rico, if the IBM RT PC
Graphics Development Toolkit Licensed Program
license was obtained through:

• An authorized IBM Personal Computer dealer.

Requests for program service should be made
through your dealer.

• The IBM North-Central Marketing Division or the
IBM South-West Marketing Division.

Your company will have established a technical
support location to interface to IBM central
service through an IBM Support Center, and
your request for program service should be
made through your company's technical support
location.

If the IBM RT PC Graphics Development Toolkit
Licensed Program is obtained through transfer of
I icense from another party under the conditions of
the IBM Program License Agreement supplied with
this product, the new licensee may obtain program
service through the access arrangement provided
for the original licensee.

When a license is transferred, if the original license
was obtained through the IBM North-Central
Marketing Division or the IBM South-West Marketing
Division, the old licensee is responsible for
contacting their IBM marketing representative to
make arrangements to transfer service entitlement
to the new licensee; the new licensee must also
establish a qua I ified technical support location to
interface to IBM central service.

IBM does not guarantee service results or that the
program will be error free, or that all program
defects will be corrected.

IBM will respond to a reported defect in an
unaltered portion of a supported release of the
licensed program by issuing: defect correction
information such as correction documentation,
corrected code, or notice of availability of corrected
code; a restriction; or a bypass.

Corrected code is provided on a cumulative basis
on diskettes; no source code is provided. Only one
copy of the corrections with supporting
documentation will be issued to the licensee, or the
agent of the licensee, reporting the defect. IBM will
authorize various agents such as the IBM Personal
Computer dealers and the IBM North-Central
Marketing Division or IBM South-West Marketing
Division customer's technical support locations to
make and distribute a copy of the corrections if
needed, to each IBM RT PC Graphics Development
Toolkit Licensed Program licensee which they
serve.

IBM will notify authorized IBM Personal Computer
dealers, IBM marketing and service
representatives, and IBM North-Central Marketing
Division and IBM South-West Marketing Division
customer's technical support locations if and when
an update is made available. Program updates
contain all currently available changes for the
licensed program.

Licensees may request available updates to this
licensed program, if any, prior to the program
service termination date. As with defect
corrections, IBM will authorize various agents such
as IBM Personal Computer dealers and the IBM

June 1986 Printed in U.S.A.
(GC23-0955-1)

North-Central Marketing Division and IBM
South-West Marketing Division customer's technical
support locations to distribute a copy of the update,
if needed, to each IBM RT PC Graphics
Development Toolkit Licensed Program licensee
which they serve.

The total number of copies of an update distributed
to IBM RT PC Graphics Development Toolkit
Licensed Program licensees within a customer's
location may not exceed the number of copies of the
IBM RT PC Graphics Development Toolkit Licensed
Program licensed to the customer.

IBM does not plan to release updates of IBM RT PC
Graphics Development Toolkit Licensed Program
code on a routine basis for preventative service
purposes. However, should IBM determine that
there is a general need for a preventative service
update, it will be made available to all licensees
through the same process that is utilized to
distribute general IBM RT PC Graphics
Development Toolkit Licensed Program updates, as
described above.

Following the discontinuance of all program
services, this program will be distributed on an "As
Is" basis without warranty of any kind either
express or implied.

IBM Corporation
Industry Systems Products
472 Wheelers Farms Road
Milford, Connecticut 06460

Professional Graphics Series

IBM RT PC Graphics
Development Toolkit

Programming Family

------------ - - --- - -- -. ---- - - ------ ---~-·-
Personal
Computer
Software

First Edition (July 1986)

Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is,"
without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this
product and for technical information about the system should be made to your
authorized &ibm. dealer.

A reader's comment form is provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, Department 997, 11400
Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any
obligation to you.

©Copyright International Business Machines Corporation 1984, 1986
©Copyright Graphic Software Systems Incorporated 1984, 1986

About This Book

This book explains how to use the IBM RT Personal Computer Graphics
Development Toolkit, a graphics software package that supports the Virtual
Device Interface (VDI). The intent of this book is to provide you with an
overview of Toolkit operation and with specific information about how to
incorporate Toolkit routines into your graphics application program.

Who Should Read This Book

This book is written for people who write graphics application programs. To use
this product, you should be familiar with the IBM RT PC AIX 1 Operating
System and with the general use of graphics software. In addition, you should
know how to program in one or more of the following languages:

• Pascal
• C
• BASIC
• FORTRAN.

1 AIX is a trademark of IBM.

About This Book iii

Before You Begin

Before you begin using Graphics Development Toolkit, ensure that you have the
minimum requirements for both hardware and software.

Hardware Requirements

The minimum hardware required to use Graphics Development Toolkit is one of
the supported graphics output devices such as a display, printer, or plotter. For a
list of the supported devices, see the table at the beginning of Appendix C,
"Graphics Drivers", in this manual.

Software Requirements

The IBM RT PC Graphics Development Toolkit device drivers are provided as
part of the IBM RT PC Multi-User programs.

The IBM RT PC Graphics Development Toolkit provides language bindings for
the BASIC, C, Pascal, and FORTRAN languages. The IBM RT PC C Compiler
is included with the IBM RT PC AIX Operating System. In order to use
BASIC, Pascal, or FORTRAN, you must have the appropriate language
compiler, as follows:

• IBM RT PC BASIC Interpreter and Compiler
• IBM RT PC Pascal
• IBM RT PC FORTRAN 77.

How to Use this Book

The first two chapters are intended as an overview, to help you understand the
basic operation of the Graphics Development Toolkit. It is recommended that
you read these chapters first.

Chapter 3 is intended as a reference section, to obtain an understanding of the
purpose and operation of each individual routine. Use this chapter, and the
appropriate language reference booklet, to incorporate the Toolkit routines into
an application program.

iv Graphics Development Toolkit

Organization

This book is organized into three chapters, four appendixes, a glossary, and an
index, as follows:

• Chapter 1, "Introduction", describes this product and its advantages. A
description of Normalized Device Coordinates (NDC) and text capabilities
is also presented.

• Chapter 2, "Programming Considerations", contains information about
NDCs, aspect ratios, and helpful hints for programming applications.

• Chapter 3, "Toolkit Routines", describes the purpose and operation of each
routine. The routines are organized into the following functional groups:

- Workstation Control Routines
- Paging Routines
- Pel Routines
- Cursor Control Routines
- General Graphics Routines
- Graphics Primitives
- Graphics Text Routines
- Alpha Text Routines
- Input Routines
- Error Handling.

For the correct syntax of each routine, refer to the language reference booklets
that accompany this manual.

• Appendix A, "Installing the Graphics Development Toolkit", contains
information about installing the software for the Graphics Development
Toolkit and establishing the proper operating parameters within the system
environment.

• Appendix B, "Example Programs", contains sample programs and the
corresponding output created by these programs.

• Appendix C, "Graphics Drivers", contains information about capabilities
and limitations of specific graphic peripheral devices.

• Appendix D, "Error Codes", lists and describes the error codes that can be
returned by the Toolkit.

About This Book v

Highlighting

• The Glossary provides a definition of many of the technical terms that
appear in the documentation for the Graphics Development Toolkit.

• The Index shows where to find information about several of the topics that
are discussed within this manual.

Note: Language reference booklets are provided for each of the languages
supported by the Graphics Development Toolkit. Each booklet is a quick
reference to the syntax needed to include each routine in an application
program.

Throughout this manual, bold italics have been used to highlight the first
occurrence of new terms. In the descriptions of the Toolkit routines, parameter
names are italicized. Computer output and user input are shown in monospace
type and in color.

Related Information

The following books contain related information that you might find useful.

IBM RT PC Plotting System Programmer's Guide
This book provides information about installation procedures, plotting concepts,
and Plotting System routines. Included with the Plotting System guide are
language reference booklets that support the C, BASIC, FORTRAN, and Pascal
programming languages.

IBM RT PC Graphical File System Programmer's/User's Guide
This book is a guide to the installation and use of the Graphical File System. It
contains information about Metafile concepts and elements, interactive
interpretation of metafiles and programming with the Graphical File System.

IBM RT PC Graphics Terminal Emulator User's Guide
This book is a guide to the installation and use of the Graphics Terminal
Emulator. This book contains information about defining communications
protocol to allow communications with a host computer, transferring data to and
from a host computer, and redirecting graphics output from the host computer to
a plotter, printer, or other output device.

vi Graphics Development Toolkit

IBM RT PC C Language Guide and Reference
This book provides information for writing, compiling, and running C language
programs.

IBM RT PC BASIC Language Reference
This book is an encyclopedia-type manual. It contains syntax and format for
BASIC language commands, statements, and functions, arranged in alphabetical
order.

IBM RT PC BASIC Language Handbook
This book contains general information about using BASIC. Some sections of
the book provide help for those unfamiliar with BASIC. Other sections contain
information on advanced subjects for the experienced programmer.

IBM RT PC Pascal Compiler Fundamentals
This book presents the fundamentals of the IBM RT PC Pascal Compiler
Version 1. 00.

IBM RT PC Pascal Compiler Language Reference
This book is designed as a reference tool and contains information about specific
keywords, library routines, and metacommands used in writing programs.

IBM RT PC FORTRAN 77
This book is designed as a reference tool and discusses the implementation of
FORTRAN 77.

IBM RT PC Using and Managing the AIX Operating System
This manual contains information for using the IBM RT PC AIX Operating
System commands, working with the file system, developing shell procedures,
and performing such system management tasks as creating and mounting file
systems, backing up the system and repairing file system damage.

IBM RT PC AIX Operating System Commands Reference
This manual describes the IBM RT PC AIX Operating System commands,
including the following:

• The proper syntax for each command with the acceptable flags and
arguments

• Examples showing proper usage of the commands.

IBM RT PC Messages Reference
This manual lists the errors you may see on your display, and shows how to
respond to the messages.

About This Book vii

IBM RT PC AIX Operating System Technical Reference
This manual gives details about the IBM RT PC AIX Operating System, the file
system, files, special files, miscellaneous files, and writing device drivers.

IBM RT PC Installing and Customizing the AIX Operating System
This guide explains how to install the programs contained in the IBM RT PC
AIX Operating System Licensed Program Product, as well as how to install
other licensed program products. This guide also explains how to customize the
AIX Operating System.

IBM RT PC User Setup Guide
This guide contains information about identifying, unpacking, and connecting
devices and testing the system setup.

Ordering Additional Copies of This Book

To order additional copies of this publication (without the program diskettes),
use either of the following sources:

• To order from your IBM representative, use Order Number SV21-8058.

• To order from your IBM dealer, use Part Number 55X8922.

A binder and language reference booklets for C, BASIC, FORTRAN, and
Pascal are included with the order.

About the IBM RT PC Professional Graphics Series

The IBM RT PC Professional Graphics Series consists of several compatible
programs and libraries that provide you with a comprehensive graphics package.
Designed to run under the IBM RT PC AIX Operating System, the series
provides programmers with a versatile way to create, modify, store, and output
high-quality graphic images.

Using the series, you can develop custom graphics applications that meet the
needs of the business, scientific, engineering, and research environments.

viii Graphics Development Toolkit

The Series Components

The IBM RT PC Professional Graphics series includes:

• IBM RT PC Graphics Development Toolkit
• IBM RT PC Plotting System
• IBM RT PC Graphical File System
• IBM RT PC Graphics Terminal Emulator.

The following pages briefly describe the series components. See the individual
manuals for more information.

IBM RT PC Graphics Development Toolkit

At the heart of the Professional Graphics Series is the Graphics Development
Toolkit, including its device drivers. The device drivers, part of the IBM RT PC
Multi-User programs, must be installed in order to use any of the other graphics
products in the series. The Toolkit controls the exchange of information
(commands and data) between the high-level, device-independent applications
and the device-dependent drivers. These drivers, in tum, control the operation
of a variety of input and output devices, such as printers, plotters, and displays.

The Toolkit converts coordinates from a writing surface to the viewing surface
coordinate systems of individual graphics devices. In addition, it manages all
supported devices connected to the system and fulfills program requests for
device information.

A library of language bindings (interfaces) is also contained in the Graphics
Development Toolkit. Using this product, you can develop application programs
that access the Toolkit directly. Language Reference Booklets for C, Pascal,
FORTRAN 77, and BASIC are provided with the software.

Professional Graphics Series ix

The following illustration shows the interface between an application program
and the Graphics Development Toolkit.

IBM RT PC Plotting System

Application
Program

Toolkit

Plotting System consists of subroutines that allow you to create professional
quality charts. The types of charts available include area, bar, line, pie, scatter,
schedule, step and text-only charts.

Plotting System provides bindings to several major languages. The Toolkit,
although transparent to the programmer, is the foundation of Plotting System.

Because Plotting System provides a comprehensive set of default values, you
can create charts with a minimum number of steps. A built-in chart
dimensioning procedure ensures that the sizing and spacing of chart components
are consistent and proportional. Multiple charts or chart types can appear on a
single display surface.

Most chart attributes can be changed. These include:

• Line style for line and step charts
• Fill pattern for area, pie and bar charts

x Graphics Development Toolkit

• Color
• Text height and font
• Logarithmic axes
• Axis range
• Tick-spacing.

Plotting System includes facilities for both graphic and text annotation. In
addition, it contains device inquiry capabilities that allow you to use device
independent features. You can create interactive graphics applications by using
input capabilities, such as choice, locator and string.

The following illustration shows an application program interface with Plotting
System.

Application
Program

Plotting
System

Toolkit

Printer
Driver

When programming with Plotting System, include calls to Plotting System
routines in your application program. The external references are resolved when
the compiled program is linked to the subroutine library.

To use Plotting System, you should be an experienced programmer familiar with
the BASIC, C, FORTRAN or Pascal languages.

Professional Graphics Series xi

IBM RT PC Graphical File System

The Graphical File System allows you to retrieve and interpret metafiles that
have been generated by the Metafile Device Driver within the Graphics
Development Toolkit. Each metafile contains a series of pictures or graphics
images that have been stored in a special metafile format. This format promotes
standardization and portability between different kinds of graphics output
devices.

You can use the Graphical File System as a programming interface or an
interactive interface.

The programming interface consists of subroutines called by an application
program. These subroutines are in the form of functions that retrieve metafile
pictures and interpret individual elements within a picture. The programming
interface requires programming experience in BASIC, C, FORTRAN or Pascal.

A diagram of the programming interface is shown in the following illustration.

xii Graphics Development Toolkit

Programming
Interface

Graphical File

System

Toolkit

Application
Program

Display
Driver

The interactive interface, on the other hand, is an easy-to-use, icon-driven
program. By selecting icons, you can perform metafile interpretation functions.
To operate the interactive interface, you need no special knowledge of either
graphics or programming.

The interactive interface is diagrammed in the following illustration.

Interactive
Interface

Graphical File
System

Toolkit

Professional Graphics Series xiii

IBM RT PC Graphics Terminal Emulator

Graphics Terminal Emulator allows you to emulate most functions of the
Tektronix2 4014 graphics terminals, most functions of the Tektronix 4014 with
the Extended Graphics Module, and selected features of the Tektronix 4105.
Most functions of the Lear Siegler ADM3-3A are also supported.

Graphics Terminal Emulator allows you to access host-computer software, send
and receive files, and print both alphanumeric and graphic output. In addition, it
reproduces the effects of the many special function keys available on the
Tektronix family of supported terminals.

Because Graphics Terminal Emulator is an icon-driven system, no special
knowledge of programming is required to use it. Experience on the supported
terminals, however, is necessary to create graphics.

2 Tektronix is a trademark of Tektronix, Inc.
3 ADM is a trademark of Lear Siegler, Inc.

xiv Graphics Development Toolkit

The operation of Graphics Terminal Emulator involves an external host
computer, as shown in the following illustration.

Metafile
Driver

Host
Computer

Graphics
Terminal
Emulator

Toolkit

Professional Graphics Series xv

xvi Graphics Development Toolkit

Contents

Chapter 1. Introduction . 1-1
About this Chapter . 1-3
The Toolkit . 1-4
Toolkit Routines . 1-10
Workstations . 1-23

Chapter 2. Programming Considerations. 2-1
About this Chapter . 2-3
Programming with the Toolkit . 2-4
Helpful Hints . 2-10

Chapter 3. Toolkit Routines .
About this Chapter .
How Routines are Described .
Workstation Control Routines .
Paging Routines .
Pel Routines .
Cursor Control Routines .
General Graphics Routines .
Graphics Primitives

3-1
3-5
3-6
3-7

3-24
3-30
3-41
3-63
3-79

Graphics Text Routines .
Alpha Text Routines .
Input Routines .
Error Handling .

3-109
3-119
3-139
3-156

Appendix A. Installing the Graphics Development Toolkit A-1
Installation Procedure . A-1
Checking Distribution Files . A-3
Setting Environmental Parameters . A-4
Compiling and Running the Demo Program A-7

Appendix B. Example Programs . B-1
Example I-Bar Function . B-2
Example 2 - Graphic Text Function . B-18
Example 3 - Pie Slice Function . B-34
Example 4-Polyline Function . B-48
Example 5-Polymarker Function . B-59

Contents xvii

Appendix C. Graphics Drivers . C-1
Device Driver Management . C-2
The Toolkit Routines . C-3
Installation Procedures . C-3
Incorporating Graphics Into Application Programs C-3
Logical Device Name . C-4
Communications . C-4
How Device Drivers are Described . C-5
IBM 3812 Printer . C-6
IBM 4201 Printer . C-23
IBM 5152 Graphics Printer . C-31
IBM 5182 Color Printer . C-39
IBM 6180 Color Plotter . C-48
IBM 7371 Color Plotter . C-56
IBM 7372 Color Plotter . C-63
IBM 7374, 7375-1, 7375-2 Plotters . C-70
IBM Advanced Monochrome Graphics Display C-80
IBM Advanced Color Graphics Display . C-88
IBM Extended Monochrome Graphics Display C-96
IBM Enhanced Graphics Adapter . C-104
IBM Virtual Device Metafile (VDM) Driver C-114
IBM RT PC Grafstation Driver . C-120

Appendix D. Error Codes . D-1
Determining Toolkit Errors . D-1
General Toolkit Error Codes . D-2
Specific Toolkit Error Codes . D-3
Special Toolkit Error Codes. D-7
Advanced Programming Notes . D-8
Special Error Handling Messages . D-9

Glossary . X-1

Index . X-5

xviii Graphics Development Toolkit

Figures

1-1. VDI Software Overview . 1-5
1-2. Polylines . 1-15
1-3. Polymarkers. 1-16
1-4. Fill Areas . 1-1 7
2-1. Aspect Ratio, Not Preserved . 2-5
2-2. Aspect Ratio, Preserved . 2-6
2-3. Software Relationships . 2-10
2-4. Character Grid Cell . 2-15
2-5. Character Alignment Points . 2-16
2-6. Clipping . 2-16
2-7. Circle, Non-Preserved Ratio . 2-17
2-8. Circle, Preserved Ratio . 2-18
3-1. Default Color Table . 3-21
3-2. Color Table . 3-71
3-3. Boolean Operation Chart . 3-77
3-4. Writing Mode Color Results . 3-78
3-5. Hatch Styles . 3-102
B-1. Bar Function, Part One . B-2
B-2. Bar Function, Part Two . B-3
B-3. Graphic Text Function, Height . B-18
B-4. Graphic Text Function, Rotation . B-19
B-5. Graphic Text Function, Alignment B-20
B-6. Pie Slice, Part One . B-34
B-7. Pie Slice, Part Two. B-35
B-8. Polyline Function, Part One . B-45
B-9. Polyline Function, Part Two . B-49
B-10. Polymarker Function, Part One . B-59
B-11. Polymarker Function, Part Two . B-60
B-12. Polymarker Function, Part Three B-61

Figures xix

xx Graphics Development Toolkit

Chapter 1. Introduction

Introduction 1-1

CONTENTS

About this Chapter
The Toolkit

Virtual Device Interface
Graphics Devices
Device Drivers
Graphics/Cursor Mode .

Toolkit Routines
Workstation Control Routines .
Paging Routines
Pel Routines
Cursor Control Routines
General Graphics Routines .
Graphics Primitives
Text Routines
Graphics Text Routines . . .
Alpha Text Routines
Input Routines
Error Handling

Workstations
What are Workstations
Workstation Control Routines

1-2 Graphics Development Toolkit

1-3
1-4
1-4
1-7
1-8
1-8

1-10
1-10
1-11
1-11
1-11
1-13
1-14
1-18
1-20
1-20
1-21
1-22
1-23
1-23
1-23

About this Chapter

This chapter contains an overview of the Graphics Development Toolkit. It
includes information about the Virtual Device Interface (VDI) and the following
Toolkit concepts:

• Drawing Primitives
• Workstations
• Graphics Coordinates
• Aspect Ratio
• Device Drivers
• The Toolkit Routines.

Introduction 1-3

The Toolkit

The Graphics Development Toolkit provides the means for writing device
independent graphics software. Device-independent means you can direct your
application program output to any supported workstation (an input and/or output
graphics device) without having to modify the application.

With the Toolkit, graphics can be made an integral part of an accounting
program, a word processor, a building layout, or an educational program. Since
device drivers now exist for a large number of workstations, system
configuration tasks become a smaller part of the programmer's concern.

The Toolkit consists of:

• A set of device drivers (for displays, printers, plotters, and metafiles)

• A library of routines that perform various graphics and text functions

• Language reference booklets containing the specific language syntax for
each routine.

Virtual Device Interface

The Virtual Device Interface (VDI) is based upon the concept of a virtual
device; a device without physical form that can be used as a reference model
during the development of both device drivers and application programs. With
the VDI, application programs can be written independent of specific hardware
devices. Only the device driver need be specific to the selected device.

1-4 Graphics Development Toolkit

Toolkit

Application
Program

(C Language)

I -------------------I I C FORTRAN BASIC Pascal
I Language Language Language Language I
I Binding Binding Binding Binding I

I Virtual Device Interface :

I ~--,--~-.---~ I
I _ _.__ ___________ ~----------- I
: Device Device Device Device I

Driver Driver Driver Driver I
L_ _____________________ _J

Figure 1-1. VDI Software Overview

The VDI defines a common language (protocol) which allows device
independent software and the device-dependent drivers to communicate. This
protocol consists of predefined functional capabilities, accessing methods, and
parameter-passing conventions that enable the software to produce the required
results.

The Graphics Development Toolkit contains a list of graphics and text routines
associated with the VDI. The implementation of these routines makes all
workstations appear as "identical" virtual devices.

Introduction 1-5

Drawing Primitives

Drawing primitives include polylines, polymarkers, and text. The polyline
primitive draws vectors between sequences of end points, which are specified as
an array. The polymarker is similar to the polyline, except it places a marker
symbol (such as a star, asterisk, or square) at each point in the array. The text
primitive displays text strings at any position with any orientation.

Three types of text (alpha, graphics, and cursor text) facilitate the integration of
text and graphics, as well as design-efficient menu-oriented interfaces (see
Chapter 3, "Toolkit Routines", for the specifics).

The VDI also supports raster devices, fill and cell array primitives, and raster
operations (known as Pel routines). The fill operation paints the interior of a
polygon with a specified color or pattern. The cell array primitive allows a two
dimensional array of pels (pixels) of different colors to be defined. Cell
replication over a specified area is accomplished by specifying desired boundary
conditions.

The Pel routines move one or more pels by either copying them from one
location on the display screen to another or storing them for later use (see
Chapter 3, "Toolkit Routines", for the specifics).

Special Workstation Capabilities

Some workstations have special capabilities, such as the ability to draw circles,
arcs, or bars. The VDI provides access to these capabilities through a special
graphics mechanism called the Generalized Drawing Primitive (GDP).

The VDI manages the attributes associated with each output primitive. For
example, polylines have line type (such as solid, dash, or dotted), width, and
color attributes. Polymarkers are associated with attributes of type, size, and
color. Text primitive attributes include size, color, and orientation. In addition,
fonts (multiple character sets) can be accessed if they are available in the
workstation being addressed (see Chapter 3, "Toolkit Routines", for the
specifics).

1-6 Graphics Development Toolkit

VDI Input Operations

Graphics Devices

Graphics Coordinates

Most workstations cannot perform every graphics function. However, device
drivers, in conjunction with the VDI, can be made to emulate additional
functions, as part of their task of making all workstations appear the same. To
aid programmers, the VDI also provides for inquiry operations. The inquiry
operations allow the application programmer to determine workstation
capabilities as well as primitive attribute status and viewing operations.

The VDI supports a set of input operations that present several different types of
information to the application program. These operations include Input Locator,
Input Valuator, Input Choice, Input String, and Read Cursor Keys.

• Input Locator enables the user to position a graphics cursor at a particular
point on the workstation, and return that location to the application
program.

• Input Valuator indicates the current value of a continuous input device such
as those that are potentiometer-based.

• Input Choice returns an integer value that represents one of a set of
choices. An example might be one of the function keys. See Chapter 3,
"Toolkit Routines", for more specific information.

• Input String accepts a string of characters from the keyboard.

• Read Cursor Keys determines whether a cursor movement key was struck
and returns the resulting direction in integer form.

The VDI allows graphics and alphanumeric application programs to operate
with IBM graphics devices such as printers, plotters, and displays.

The VDI can produce similar kinds of graphics output on workstations of
different sizes and shapes. This is done by converting a Normalized Device
Coordinate (NDC) associated with the VD I into a Device Coordinate (DC) that
is specific to the selected workstation.

Introduction 1-7

Aspect Ratio

Device Drivers

There are two ways that NDC conversion can take place. In the first way, NDC
units range from 0-32767 and are mapped (transformed) to the full extent of the
physical workstation surface on each axis. In the second way, NDC units are
mapped to equal physical distances on both axes. For more information on NDC
units, refer to Chapter 2, "Programming Considerations."

The aspect ratio is a ratio of the horizontal and vertical dimensions of an image.
The ability to maintain or control this ratio is important in the transfer and
reproduction of an image on various types of display screens or hardcopy
devices. This is done by converting Normalized Device Coordinates (NDC)
used by an application into actual device coordinates for each workstation. If the
actual device coordinates do not match the NDC coordinates, aspect ratio must
be taken into account.

Output can maintain its originally designed proportions or take advantage of the
full device coordinates. As a result, circles will always be circles. For more
information on aspect ratio, refer to Chapter 2, "Programming Considerations."

Device drivers communicate directly with a graphics device. These drivers are
installed when the Toolkit software is installed. However, certain environmental
parameters must be set in order for them to be used. Once installed, and
configured properly, the drivers are referenced by the application program,
allowing your application to run like any other program.

Each workstation is controlled by a device driver. For your application program
to use a variety of workstations, each device driver must translate the
information that passes between its workstation and the application program.
The device driver will be different for each unique workstation, because the
translation process is device-specific.

Graphics/Cursor Mode

The Enter Cursor Addressing Mode and Exit Cursor Addressing Mode routines
allow you to select between the all-points-addressable (APA) graphics mode and
the alphanumeric (A/N) cursor mode. You select the mode best suited for each
portion of your application. The default is the graphics mode.

1-8 Graphics Development Toolkit

Graphics Mode

Cursor Mode

A workstation opens in the graphics mode. To enter the graphics mode when in
cursor mode, use the Exit Cursor Addressing Mode routine.

You must be in the graphics mode to:

• Use general graphics input/ output routines
• Set graphics attributes
• Draw generalized drawing primitives
• Format alpha text
• Control graphics text.

You cannot use any of the cursor control routines while in the graphics mode.

Select the cursor mode by using the Enter Cursor Addressing Mode routine. To
exit the cursor mode and enter the graphics mode, use the Exit Cursor
Addressing Mode routine. The cursor mode is only applicable to Cathode Ray
Tube (CRT) devices.

You must be in the cursor mode to:

• Erase a full page, line, or part of a line

• Position output in any character cell

• Control video attributes such as blinking, boldface, underline, and reverse
video.

You cannot use the graphics routines while in the cursor mode.

Introduction 1-9

Toolkit Routines

The Toolkit routines are divided into the following functional groups:

• Workstation Control Routines
• Paging Routines
• Pel Routines
• Cursor Control Routines
• General Graphics Routines
• Graphics Primitives
• Graphics Text Routines
• Alpha Text Routines
• Input Routines.
• Error Handling.

Workstation Control Routines

The Workstation control routines control the flow of information to and from
workstations. A workstation is an input and/or output graphics device. You need
to open a workstation at the beginning and close a workstation at the end of a
program that operates a workstation. The Control routines are:

• Application Data. Allows the Metafile Device Driver to place application
specific data into the metafile (disk file containing graphics).

• Clear Workstation. Removes or erases information from a display, prompts
for new paper on a plotter, and prints all pending graphics on a printer.

• Close Workstation. Prints all pending graphics or text, and then halts the
flow of workstation information.

• Hardcopy. Generates a hardcopy (printout), if supported.

• Message. Places a text string in the metafile to be displayed by the
Graphical File System as an operator message.

• Open Workstation. Prepares a workstation to receive or output
information.

1-10 Graphics Development Toolkit

Paging Routines

Pel Routines

• Set Pen Speed. Sets the speed of the plotter pen.

• Update Workstation. Displays all pending text or graphics on the
workstation.

The Paging Routines govern the operation of pages. They are:

• Copy Page. Allows the application program to copy the contents of one
page (active or nonactive) into another page.

• Inquire Page. Allows the application program to determine which page
routine attributes are set.

• Set Page. Allows the application program to write to the specified page.

The Pel routines move one or more pels (pixels) from one area on a display
screen to another area or to memory. These routines work only in graphics
mode. The Pel routines are:

• Copy Pels. Copies one or more pels from one position to another on the
same display screen.

• Get Pels. Moves the pels into a storage array.

• Put Pels. Sends stored pels to the currently selected page.

Cursor Control Routines

The cursor control routines position the standard alphanumeric cursor, as well
as place cursor text on the display screen. You can position the cursor on a
display screen cell grid of rows and columns. A typical display screen measures
24 rows by 80 columns. The cursor control routines affect only CRT devices.

Introduction 1-11

The cursor control routines are:

• Cursor Down. Moves the cursor down one row on the cursor cell grid.

• Cursor Home. Moves the cursor to the upper left corner (row 1,
column 1).

• Cursor Left. Moves the cursor one column to the left.

• Cursor Right. Moves the cursor right one column.

• Cursor Up. Moves the cursor up one row on the cursor cell grid.

• Direct Cursor Address. Moves the cursor to a specified position on the
display screen.

• Enter Cursor Addressing Mode. Prepares the display screen for cursor
routines and places the cursor at home position.

• Erase to End of Line. Erases all text to the end of the line (row).

• Erase to End of Screen. Erases all text from the cursor position to the end
of the display screen.

• Exit Cursor Addressing Mode. Exits the cursor-addressing mode if not in
graphics mode.

• Reverse Video Off. Puts foreground color into the foreground and
background color into the background.

• Reverse Video On. Puts foreground color into the background and
background color into the foreground.

• Set Cursor Text Attributes. Sets the attributes of blink, bold, reverse
video, and underline for subsequent cursor-addressable text.

• Set Cursor Text Color Index. Sets the foreground and background colors
for the cursor-addressable text.

• Set Cursor T~xt Mode. Sets the mode to be used when the next Enter
Cursor Addressing Mode routine call is received.

1-12 Graphics Development Toolkit

The following routines can be used to inquire about cursor control attributes or
to write cursor text:

• Inquire Addressable Character Cells. Returns the particular format of a
display screen to your program.

• Inquire Current Cursor Text Address. Returns the current cursor position
to your program.

• Inquire Cursor Text Mode. Returns the mode to be used when the next
Enter Cursor Addressing Mode routine call is received.

• Output Cursor Addressable Text. Writes text at the current cursor position
and moves the cursor one space to the right.

General Graphics Routines

The general graphics routines are used to set color and writing modes, and to
display or remove the graphics cursor, which is usually a crosshair. The general
graphics routines are:

• Display Graphic Input Cursor. Displays the graphics cursor at a specified
location on the workstation.

• Remove Graphic Input Cursor. Removes the graphics input cursor from
the workstation.

• Set Background Color Index. Sets the background color on a workstation.

• Set Color Representation. Changes the color representation of a color
index.

• Set Graphic Color Burst Mode. Sets the mode that the workstation uses
when the next Exit Cursor Addressing Mode routine is received.

• Set Writing Mode. Controls how output writes over pending graphics in a
print buffer or on the display screen.

Introduction 1-13

Graphics Primitives

The following routines can be used to inquire about the attributes set by general
graphics routines:

• Inquire Color Representation. Returns information about the color table.

• Inquire Graphic Color Burst Mode. Returns the mode the workstation
will use when the next Exit Cursor Addressing Mode routine is used.

The VDI graphics routines cause graphics images, called primitives, to be
displayed on workstation surfaces. These primitives are modified by attributes.
Attributes are associated with:

• Workstations. Workstation attributes are specific to a workstation. They can
be changed at any time and affect all displayed primitives.

• Primitives. Each type of primitive has its own set of attributes. For
example, some attributes, such as line style, have meaning for the primitive
polylines but not for filled areas. Other general attributes, such as color, can
be set for all primitives.

Primitive attributes can be changed under program control.

1-14 Graphics Development Toolkit

Polyline Primitive and Attributes

A polyline primitive is a series of connected line segments. It is specified by
giving the point coordinates of each of its vertexes.

Figure 1-2. Polylines

Polyline attributes are:

• Set Polyline Color Index. Selects polyline color from current indexes.

• Set Polyline Line 'Iype. Selects a line type from among those shown in
Figure 1-2 or from a larger set, if additional types are supported by the
selected device.

• Set Polyline Line Width. Controls the width of poly lines.

The following routines can be used to inquire about the attributes of the polyline
or to output the currently selected polyline:

• Inquire Current Polyline Attributes. Returns all current polyline features
to your application program.

• Output Polyline. Draws a line (one or more line segments) on a
workstation.

Introduction 1-15

Polymarker Primitive and Attributes

A polymarker is a series of marker symbols drawn at specified points.

•
+++++++++++++++++++++++

□□□□□□□□□□□□□□□□□□□□□□□ xxxxxxxxxxxxxxxxxxxxxxx
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Figure 1-3. Polymarkers

Polymarker attributes are:

• Set Polymarker Color Index. Selects polymarker color from current
indexes.

• Set Polymarker Height. Controls the height of polymarkers.

• Set Polymarker 'Iype. Selects a polymarker type from among those shown
in Figure 1-3 or from a larger set, if additional types are supported by the
selected device.

Use these routines to inquire about polymarker attributes or to draw
polymarkers:

• Inquire Current Polymarker Attributes. Returns the current polymarker
features to your application program.

• Output Polymarker. Displays markers on a workstation.

1-16 Graphics Development Toolkit

Fill Area Primitive and Attributes

A fill area primitive is the interior of an arbitrary polygon, circle, pie slice, or
bar that is painted with a color or pattern. It is specified by the vertexes of the
shape that encloses it.

Figure 1-4. Fill Areas

Fill Area attributes are:

• Set Fill Color Index. Specifies the fill color by selecting a color index.

• Set Fill Interior Style. Determines the fill style (hollow, solid, pattern, or
hatch).

• Set Fill Style Index. Selects one of the available patterns or hatches
(ignored when a hollow or solid interior style has been specified).

Use the following routines to inquire about fill area attributes or output a fill
area.

• Inquire Current Fill Area Attributes. Returns the current fill area
attributes.

• Output Filled Area. Produces a filled area on the workstation.

Introduction 1-17

Generalized Drawing Primitives

Text Routines

The VDI provides drawing capabilities that produce arcs, circles, bars, and
other graphics objects. Use the following routines to inquire about Generalized
Drawing Primitives or produce primitives:

• Inquire Cell Array. Returns the color indexes used to produce a specific
cell array.

• Output Arc. Draws an arc on a workstation.

• Output Bar. Produces a rectangular area on a workstation using fill area
attributes.

• Output Cell Array. Produces a rectangular area divided into one or more
cells of equal size and shape. Each cell can have a unique color.

• Output Circle. Draws a circle on a workstation using fill area attributes.

• Output Pie Slice. Draws a pie slice on a workstation using fill area
attributes.

The VDI routines enable you to output three kinds of text, as follows:

• Alpha text. High quality text suitable for letters and documents (typically
used on high quality printers). This text is available only in graphics mode.

• Graphics text. Text usually used to label charts and diagrams or whenever
large size text is needed. This text is available only in graphics mode.

• Cursor text. This text is available only in cursor mode. Refer to "Cursor
Control Routines" in this chapter for a list of cursor text routines.

1-18 Graphics Development Toolkit

The following table shows the features available with the three types of text
supported by the VDI:

Text Capabilities

Alpha Graphics Cursor
Text Text Text Text
Attributes Routines Routines Routines

Addressability OnNDC OnNDC On characters,
units units rows, and columns

Superscripting Yes No No

Subscripting Yes No No

Scaling No Yes No

Rotation No Yes No

Color Yes Yes Yes

Reverse Video No No Yes

Underlining Yes No

Blinking No No Yes

Bold Font Yes No Yes

Variable Line Yes Yes
No Spacing

Overstriking Yes No No

Pass-through Yes No
No Mode

Selectable Yes No
No Quality

Variable Text Yes Yes No
Height

Text Alignment No Yes No

Introduction 1-19

Graphics Text Routines

Alpha Text Routines

The graphics text routines set the height, alignment, and other text conditions
used in your application program. The graphics text routines are:

• Set Character Height. Sets the height of graphics text characters.

• Set Graphic Text Alignment. Sets graphics text horizontal and vertical
alignment.

• Set Graphic Text Color Index. Sets the graphics text color index.

• Set Graphic Text Font. Selects the text font for graphics text.

• Set Graphic Text String Baseline Rotation. Sets the baseline rotation of a
string of graphics text characters.

Use the following routines to inquire about current graphics text attributes and
to output graphics text.

• Inquire Current Graphic Text Attributes. Returns all current attributes
that affect graphics text to your application program.

• Output Graphic Text. Writes graphics text on a workstation.

The Alpha text routines write document-quality text on a workstation, such as a
printer. Alpha text is displayed according to the resolution and accuracy of the
device. Alpha Text routines are:

• Set Alpha Text Color Index. Selects the color of subsequent alpha text.

• Set Alpha Text Font and Size. Sets the hardware font and size for
subsequent alpha text output.

• Set Alpha Text Line Spacing. Sets the vertical spacing between lines of
alpha text.

• Set Alpha Text Overstrike Mode. Turns overstriking on or off.

• Set Alpha Text Pass Through Mode. Turns pass-through mode on or off.

1-20 Graphics Development Toolkit

Input Routines

• Set Alpha Text Position. Sets the position of a string of alpha text
characters on the workstation.

• Set Alpha Text Quality. Sets the alpha text quality level.

• Set Alpha Text Subscript/Superscript Mode. Causes alpha text to be offset
below or above the text line.

• Set Alpha Text Underline Mode. Turns alpha text underlining on or off.

Use the following routines to inquire about current alpha text attributes and to
output alpha text.

• Inquire Alpha Text Capabilities. Returns information regarding the alpha
text features of the workstation used.

• Inquire Alpha Text Cell Location. Returns the location of the requested
alpha text character cell.

• Inquire Alpha Text Font Capability. Returns features of a particular alpha
text font and size.

• Inquire Alpha Text Position. Returns the current alpha text position to your
program.

• Inquire Alpha Text String Length. Returns the length of the alpha text
string, based on the current font in use.

• Output Alpha Text. Writes the alpha text string at the current alpha text
position.

The input routines supply graphics information to your application program.
Input routines operate in the following modes:

• Request mode. The application program user must signal when the data is
ready to be entered by pressing a key or button.

• Sample mode. Pending input is returned to the application program
immediately.

Introduction 1-21

Error Handling

The Input routines are:

• Input Choice (request mode). Activates the choice device (such as function
keys) and waits for a selection before returning to the program.

• Input Choice (sample mode). Polls the choice device. If a choice is
pending, it is returned.

• Input Locator (request mode). Causes the graphics cursor to be displayed
on a workstation until some operator interaction has taken place.

• Input Locator (sample mode). Returns the current position of the graphics
input cursor without waiting for operator interaction.

• Input String (request mode). Accepts character input from the keyboard
and waits for the input before proceeding with the application.

• Input String (sample mode). Polls the keyboard of the system.

• Input Valuator (request mode). Activates the valuator (potentiometer)
device; the user sets it to the desired value.

• Input Valuator (sample mode). Returns the current value of the valuator
device without waiting for operator interaction.

• Read Cursor Movement Keys. Determines if a cursor movement key was
struck.

• Set Line Edit Characters. Sets the current line editing characters.

There is only one routine associated with error handling. This routine, Inquire
Error, must be used to acquire the actual error code, after some other routine
has returned a status of -1, indicating that an error has occurred. Refer to
Appendix D, "Error Codes", for more information about error codes.

1-22 Graphics Development Toolkit

Workstations

The following text contains a brief description of a workstation and lists the
Toolkit routines that are associated with workstation control.

What are Workstations

A workstation is a computer peripheral that is connected to a host system. When
the host "opens" a workstation, that workstation is assigned a unique ID number
and a type identifier. After this point, the VDI software running on the host
accesses a workstation via this unique ID number. Note that more than one
workstation can be open simultaneously.

The VDI supports the following four types of workstations:

• Input
• Output
• Input and Output
• Metafile output.

Workstation Control Routines

Open Workstation

The Workstation control routines are a set of routines that perform several
important system and workstation functions, including the following:

• Open Workstation
• Update Workstation
• Clear Workstation
• Close Workstation
• Escape Routines.

The Open Workstation routine must be the first Toolkit routine called by an
application program. This routine establishes several essential parameters for
the workstation and loads the required device driver into memory.

Introduction 1-23

Update Workstation

Clear Workstation

Close Workstation

Escape Routines

A workstation can be updated with the Update Workstation routine. This causes
all buffered output to be sent to the workstation's display area.

A workstation is cleared with the Clear Workstation routine. This clears or
erases the display surface, if not already empty. It also prints pending graphics
on a printer, clears the printer buffer, and advances the paper. On a plotter, all
pending graphics are printed and the user is prompted for a paper change.

A workstation is closed with the Close Workstation routine. This prints all
pending graphics or text, and then halts the flow of workstation information.

The Close Workstation routine must be called prior to program termination to
avoid unpredictable results.

Escape routines are VDI routines that allow the programmer to perform non
standard graphics routines with the workstation. Use these routines to take
advantage of special capabilities of workstations.

Escape routines are device-specific routines that do not work on all
workstations. For example, the Set Pen Speed routine only affects a plotter, and
the Cursor Right routine only affects a CRT device.

1-24 Graphics Development Toolkit

Chapter 2. Programming Considerations

Programming Considerations 2-1

CONTENTS

About this Chapter . 2-3
Programming with the Toolkit . 2-4

Before Writing Your Program . 2-4
Writing Applications . 2-7

Helpful Hints . 2-10
Control Hints . 2-11
Attribute Setting Hints . 2-14
Graphics Primitive Output Hints . 2-15
Input and Inquiry Hints . 2-18
Invalid Value Hints . 2-19
Error Handling Hints . 2-19

2-2 Graphics Development Toolkit

About this Chapter

This chapter describes some programming considerations for the Graphics
Development Toolkit. The chapter includes a discussion of the following topics:

• Programming with the Toolkit
• Helpful Hints.

For information on programming considerations that involve specific languages,
refer to the language reference booklets that accompany the Toolkit.

Programming Considerations 2-3

Programming with the Toolkit

The Graphics Development Toolkit is used to write graphics programs. You
need to understand certain graphics programming concepts before you begin.

Before Writing Your Program

Before you begin writing your program, you need to understand the concepts of
Normalized Device Coordinates (NDC) and the Aspect Ratio of coordinates.

Normalized Device Coordinates (NDC)

The following contains both a description of NDC Coordinates and a brief
explanation of how to use them.

What are NDC Coordinates

Each point (NDC coordinate) on a workstation is individually addressable in
your application program. When your program runs, VDI maps the Normalized
Device Coordinates (NDC) to pels (pixels) or device units of the workstation,
rounding off where needed.

Using NDC Units

When you write your program, think of NDC units as percentages of the actual
device coordinates for each workstation. Ten percent of the actual device
coordinates represent 10 % of the NDC coordinates used by the application. For
example, in a 32K X 32K NDC space, an NDC coordinate of x = 16348 and
y =0 is located on the workstation in the middle (the x axis) at the bottom (they
axis).

Also, a horizontal line 3276 NDC units long (used by the application) is
represented by a line that is 10 % of the length of the x axis on the workstation.
If the workstation has 100 pels on its x axis, the line will be 10 pels long. If the
x axis has 250 pels, the line will be 25 pels long.

2-4 Graphics Development Toolkit

Aspect Ratio

The following contains both a description of Aspect Ratio and a brief
explanation of how to control it.

What is Aspect Ratio

The aspect ratio is the ratio of the horizontal to vertical dimensions of an image.
In the VD I you can preserve that ratio on all surfaces.

Controlling Aspect Ratio

There are two user-selectable modes in which NDC units to device coordinate
transformation can take place.

In the first mode, (aspect ratio not preserved) the NDC range of 0-32767 is
mapped to the full extent of the physical workstation surface on each axis. Using
this mode insures that all the graphics information will appear on the
workstation surface since all NDC points are displayable.

The following example shows an arrow with a height of 8192 NDC units, and
aspect ratio not preserved:

32767

200 Pels

320 Pels 32767

Figure 2-1. Aspect Ratio, Not Preserved

Programming Considerations 2-5

Distortion can occur if the workstation does not map NDC units to equal
physical distances in both directions (this happens on workstations with non
unity device units). The result is that squares turn into rectangles.

To avoid this situation, use the second mode (aspect ratio preserved). This mode
preserves the aspect ratio of the image by mapping NDC units to equal physical
distances on both axes. To do this, the full NDC space is mapped into the
longest axis of the workstation. The other axis displays as much of the NDC
space as possible, but some information at one edge is lost.

The following example shows an arrow with the same NDC coordinates as the
first arrow, but with aspect ratio preserved (the arrow is now elongated):

20479

200 Pels

320 Pels 32767

Figure 2-2. Aspect Ratio, Preserved

Compensation is provided in VDI for workstations with non-square pels so that
circles appear as circles and squares look like squares. The application program
is responsible in this case for sending only displayable NDC units to the system.
However, device drivers automatically take workstation dependencies into
account when using the bar, pie slice, arc, and circle primitives.

2-6 Graphics Development Toolkit

The non-preserved mode unburdens the application from doing a specific
workstation-dependent transform. The advantage of using the preserved mode is
that pictures can be easily transported between workstations with the assumption
that unity (square) aspect ratio is used. VDI will make the adjustment for the
actual aspect ratio of the workstation.

The aspect ratio is controlled by the value you choose for the first element of the
Open Workstation workin array (see the "Open Workstation" routine in Chapter
3 of this manual).

Writing Applications

You can install VDI on your system before or after you write your application,
but you must install it before your application program is compiled. Refer to
Appendix A, "Installing the Graphics Development Toolkit," for information
about installing the Toolkit.

Write your application program to include calls to the VDI routines. Refer to
the language reference booklets for the routine's syntax and parameter sequences
of your particular programming language.

An application program usually consists of the following steps:

Step 1. Open Workstation

The Open Workstation routine is the first VDI routine invoked in an application
program. It defines the type of workstation used, loads the device driver into
memory, and returns information regarding the capabilities of the workstation
requested. This information includes:

• Device type
• Number of colors available
• Number of text sizes available
• Number of line styles available.

Programming Considerations 2-7

Step 2. Set Graphics Primitive Attributes

The appearance of the graphics primitives can be modified by setting their
attributes. The attributes that can be set include:

• Polyline and polymarker types
• Polyline width
• Polymarker and text height
• Fill area styles
• Color
• Text font and alignment.

For additional information on setting attributes, refer to "Attribute Setting Hints"
in this chapter.

Step 3. Output Graphics Primitives

The output graphics primitives can be displayed on workstation surfaces. Output
graphics primitive options include:

• Polyline and polymarker types
• Fill area styles
• Graphics text
• Generalized drawing primitives.

Step 4. Input Graphics Primitives

A user can input information to an application program through the following
logical devices:

• Locator. Selects a position on the display surface by moving a graphics
input cursor or crosshairs to the desired position.

• Valuator. Returns a logical value that is a number corresponding to the
condition of the physical input device, such as, the position of a dial.

• Choice. Provides values that are integers between O and a workstation
dependent maximum. This typically happens when the operator presses a
button or function key.

• String. Returns a character string, typically from a keyboard.

2-8 Graphics Development Toolkit

Step 5. Inquiry Routines

Step 6. Error Handling

The VDI includes inquiry routines that can inform your application program
about the current state of the system, including:

• Current attribute settings
• Device capabilities
• Workstations.

VDI provides an Inquire Error routine to use after other Toolkit routines return
errors. Device drivers also return errors when the workstation is not capable of
performing a routine.

Step 7. Close Workstation

Prints all pending graphics or text, and then halts the flow of workstation
information.

Step 8. Set the Environment

Refer to Appendix A, "Installing the Graphics Development Toolkit", for
information on setting the environment for the device that you are going to use
for your application. Refer to Appendix C, "Graphics Drivers", for information
about device options that must be set via the environment.

Step 9. Compile and Run Your Program

After you have incorporated all necessary VDI routines, compile and link your
application program. For specific compiling and linking information, refer to
the language reference booklets.

Programming Considerations 2-9

Helpful Hints

Your graphics application program is now ready to run.

Language
Libraries

VDI
Functions

Figure 2-3. Software Relationships

Compiler
Linker

VDI Graphics
Application

Program

Application
Program

The helpful programming hints are divided into groups. Each group contains
hints related to that group. These hints should help you to learn and understand
this product.

2-10 Graphics Development Toolkit

Control Hints

• Certain routines, if used in an application, make that application device
dependent. These routines are marked with a double asterisk(**) within
Chapter 3, 'Toolkit Routines.' Avoid using these routines, if your application
program must remain device-independent.

• When displaying graphics to a plotter, the application should set the prompt
flag when opening the workstation so that a "change paper" prompt is
presented to the user.

• The background color of a CRT is not changed after a Set Background
Color Index routine until a Clear Workstation routine is executed.

• Background color cannot be redefined on printers and plotters.

• An application can divide the actual device coordinates up into its own units
by using the two NDC values returned by the Open Workstation routine.
The two values are the 52nd and 53rd elements of the Open Workstation
workout array (see "Open Workstation" in Chapter 3).

The following example uses workout(51) and workout(52), corresponding to the
52nd and 53rd elements of the workout array, to divide a display surface into
percentages. This C language program contains two code segments. The first
code segment defines two routines that convert percentages to NDC units for
both the x and y-axis. The second code segment uses the routines defined in the
first code segment.

I*

define functions that convert from percentages
to NDC 'J.nits

*I

#define UNIT 100

Programming Considerations 2-11

short fnxper(a)
short a;
I*
this will convert the X coordinates from percentages
to NDC units
*I
{

extern short workout[];
return((a / UNIT) * workout[51]);

}

short fnyper(a)
short a;
I*
this will convert the Y coordinates from percentages
to NDC units
*I
{

}

extern short workout[];
return((a / UNIT) * workout[52]);

templ
temp2
I*

fnxper (10) ;
fnyper(80);

output graphics text at location (templ, temp2)

*I
v_gtext(device_handle,

templ,
temp2,
"Graphic text string");

2-12 Graphics Development Toolkit

I*

The preceding call to 'Output Graphic Text'
will start displaying the text string
with an indentation of 10% from the left
margin and 80% from the bottom of the device.

*I

Note: Application programmers must use only those units that are applicable to
their product.

One advantage of the previous technique is that the aspect ratio can be changed
without affecting an application, if the routines are used to convert from
application coordinates to NDC units. The reason for this is that the array
(workout) returned when a workstation is opened has its value calculated with
the aspect ratio .

This technique could have the disadvantage of slowing the application execution
speed, because coordinate conversion must be performed each time NDC units
are needed.

• Cursor addressing has no effect on printers. It does not return errors but
rather the routines are ignored. The Inquire Cursor Addressable Text
routine indicates that the cursor text is not available.

• To find out what mode (graphics or cursor) an application last set, call an
Inquire Current Cursor Text Address routine. If a -3095 error is returned,
the workstation is in graphics mode.

• Cursor-addressable text is mutually exclusive with graphics text and alpha
text. Graphics text and alpha text are compatible and can be displayed
simultaneously on the same workstation.

• Graphics text pages and cursor text pages are not always in separate buffers.
With the IBM Enhanced Graphics Adapter, the cursor text pages and the
graphics pages share the same buffer area . When entering cursor mode, the
active cursor text page is cleared to blank spaces. When entering graphics
mode, the active graphics page is cleared to the workstation's background
color.

Programming Considerations 2-13

When cursor mode is entered, either the active cursor page or all cursor pages
will be cleared, depending upon the features of a specific workstation. When
graphics mode is entered, either the active graphics page or all graphics pages
will be cleared, depending upon the features of a specific workstation. You
should use the Clear Workstation routine, when changing the active page, to
ensure that a page is cleared properly.

• If graphics text, graphics primitives, or alpha text is sent to a printer, the
Update Workstation routine must be executed, before anything is actually
printed (see the "Update Workstation" routine in Chapter 3). In addition, the
Clear Workstation routine presents any pending graphics, to a printer,
before clearing the workstation (see "Clear Workstation" in Chapter 3). The
Close Workstation routine displays all pending graphics, before closing a
printer workstation (see "Close Workstation" in Chapter 3).

• The Clear Workstation routine removes all pending graphics from a printer
buffer after printing the graphics. The Update Workstation routine prints
pending graphics, but does not remove the pending graphics from the
printer buffer.

Note: Pending graphics are graphics written to printer devices that have not
been Updated, Cleared, or Closed.

Attribute Setting Hints

• Attribute setting routines always return the attribute value selected. This is
either the closest value to the one requested, or the specified default in cases
where the requested value is out of range. For example, default line style is
index 1 (solid)-out of range line types are mapped to 1.

• Color index attribute setting routines select the closest index to the one
requested. This can have interesting side effects. If a negative color index is
requested, the closest index selected is zero (0). However, the default value
for color index O is black. This causes all subsequent primitives that are
drawn using that color index to be invisible on the display screen, if the
display background color is set to black.

2-14 Graphics Development Toolkit

Graphics Primitive Output Hints

• When using the aspect ratio preservation mode, scaling primitives may be
partially or totally clipped, and therefore, not visible.

• Due to the mode of specification for circles and arcs (center point/radius), it
is not possible to display a circle or arc whose center point is not on the
workstation surface.

• Graphics text characters are aligned on the left top corner of the character
cell grid, as shown in Figure 2-4.

Descender f
Space l

Figure 2-4. Character Grid Cell

lntercharacter
Space

• Filled areas are not outlined unless the fill interior style is hollow. To display
a filled area (polygon, bar, circle, or pie slice) with an outline, first fill the
area with the fill style of solid, pattern or hatch. Then fill the same area with
fill interior style of hollow.

• The Set Graphic Text Alignment routine aligns the text on the character, not
on the cell grid, as shown in Figure 2-5.

Programming Considerations 2-15

Left
Top

Left
Center

Left
Bottom

Center
Top

Center
Bottom

Right
Top

Right
Center

Right
Bottom

Figure 2-5. Character Alignment Points

• Graphics and alpha text characters are entirely clipped if any part of the
character cell is not in the valid NDC range, as shown in Figure 2-6.

32767

K
(0,0) 32767

Output graphic character "K"
at NDC (0,0) Left Bottom alignment

Figure 2-6. Clipping

2-16 Graphics Development Toolkit

Notice in the above example that part of the cell is below the alignment point.
For example, if this character is output at the NDC location (0,0) with left
bottom alignment, the text is not displayed because part of the cell grid is out of
the display region.

• The radius of a circle, arc, and pie slice is computed along the x-axis. All
circles, arcs, and pie slices drawn look round on the workstation surface if
aspect ratio is on or off. When the aspect ratio is not preserved, the radius
does not stay the same NDC units, when drawing from the start angle to the
end angle.

The following example shows a circle drawn at the coordinates (16384, 16384)
with aspect ratio not preserved:

32767 2000 NOC

~I

200 Pels

t 2670 NDC

320 Pels 32767

Figure 2-7. Circle, Non-Preserved Ratio

Programming Considerations 2-17

For a workstation with the maximum x value of 32767 and y value of 20479, the
radius in NDC units stays the same when a circle is drawn with aspect ratio
preserved. Figure 2-8 shows a circle drawn with aspect ratio preserved.

32767 2000 NDC

H

200 Pels

t 2000 NDC

320 Pels 32767

Figure 2-8. Circle, Preserved Ratio

Input and Inquiry Hints

• Routines that return arrays of data have the potential to write over
application data if the amount of space allocated is smaller than the size
given to the VDI. Make the input string as large as possible to avoid writing
over your data area.

• When working with alpha text that will be displayed to a printer, an
application developer should be aware that the following modes have no
inquire routines:

• Overstrike Mode ON/OFF
• Pass-Through Mode ON/OFF
• Quality Mode ON/OFF.

2-18 Graphics Development Toolkit

Invalid Value Hints

This should be a concern when writing alpha text to a printer; an application
could run slower if it is required to set attributes of a printer many times. If an
application needs to inquire about the above modes , it should keep its own
inquire table for them.

• You can set the pen speed for a plotter, but you cannot inquire about it. The
Set Pen Speed routine returns the actual pen speed set on the plotter. The
Set Pen Speed routine affects a pen's speed only when your output is text or
polylines. Fill areas are drawn at a constant speed set by VDI.

• The current writing mode can be found by using: the Inquire Current Fill
Area Attributes routine , the Inquire Current Polyline Attributes routine, the
Inquire Current Polymarker Attributes routine, or the Set Writing Mode
routine.

• Values passed to VDI routines should be range checked (ensuring the value
is in the valid range) in some cases to avoid unpredictable application
program failures. If an x/y-coordinate is specified out of the valid NDC
range, unpredictable program results occur. The NDC range changes
depending on whether aspect ratio is preserved or not.

VDI does not provide range checking for the Open Workstation routine. If an
invalid value is input into the workin array, the workstation might not open.

Error Handling Hints

• An error routine should be called after each VDI call. An example of an
error would be "Illegal device handle" which would be returned if the
workstation is already open. A C language example that calls "Output
Graphic Text" follows:

/* percentage conversion functions*/
extern short fnyper(), fnxper();
static char out_string[J = "Graphic text string";
short templ, temp2;

templ
temp2

fnxper(15);
fnyper(SO);

Programming Considerations 2-19

I*

output graphics text at location (templ, temp2)

*/

if(v_gtext(device_handle,
templ,
temp2,
out_string) < 0)

vqerror();

/*

this function will display an error

*I
vqerror()
{

extern short vq_error();

printf("Error number %d\n\r", vq_error());

2-20 Graphics Development Toolkit

Chapter 3. Toolkit Routines

Toolkit Routines 3-1

CONTENTS

About this Chapter
How Routines are Described .
Workstation Control Routines

Application Data
Clear Workstation .
Close Workstation .
Hardcopy
Message
Open Workstation
Set Pen Speed . .
Update Workstation

Paging Routines . .
Copy Page .
Inquire Page
Set Page ..

Pel Routines .
Copy Pels .
Get Pels ..
Put Pels

Cursor Control Routines
Cursor Down .
Cursor Home .
Cursor Left .
Cursor Right .
Cursor Up ..
Direct Cursor Address
Enter Cursor Addressing Mode .
Erase to End of Line
Erase to End of Screen
Exit Cursor Addressing Mode
Inquire Addressable Character Cells . . .
Inquire Current Cursor Text Address
Inquire Cursor Text Mode
Output Cursor Addressable Text
Reverse Video Off
Reverse Video On
Set Cursor Text Attributes . .
Set Cursor Text Color Index .
Set Cursor Text Mode

3-2 Graphics Development Toolkit

3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-22
3-23
3-24
3-25
3-26
3-28
3-30
3-31
3-33
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-61
3-62

General Graphics Routines .
Display Graphic Input Cursor .
Inquire Color Representation .
Inquire Graphic Color Burst Mode .
Remove Graphic Input Cursor .
Set Background Color Index .
Set Color Representation .
Set Graphic Color Burst Mode .
Set Writing Mode .

Graphics Primitives
Inquire Cell Array .
Inquire Current Fill Area Attributes
Inquire Current Polyline Attributes
Inquire Current Polymarker Attributes
Output Arc
Output Bar
Output Cell Array .
Output Circle .
Output Filled Area .. .
Output Pie Slice .
Output Polyline .
Output Polymarker .
Set Fill Color Index .
Set Fill Interior Style
Set Fill Style Index .. .
Set Polyline Color Index
Set Polyline Line Type .. .
Set Polyline Line Width
Set Polymarker Color Index .
Set Polymarker Height .
Set Polymarker Type

Graphics Text Routines .
Inquire Current Graphic Text Attributes .
Output Graphic Text .
Set Character Height .
Set Graphic Text Alignment .
Set Graphic Text Color Index .
Set Graphic Text Font .
Set Graphic Text String Baseline Rotation .

Alpha Text Routines .
Inquire Alpha Text Capabilities .
Inquire Alpha Text Cell Location .

3-63
3-64
3-65
3-67
3-68
3-69
3-70
3-75
3-76
3-79
3-80
3-82
3-83
3-84
3-85
3-87
3-88
3-90
3-91
3-93
3-95
3-97
3-99

3-100
3-101
3-103
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-112
3-113
3-114
3-116
3-117
3-118
3-119
3-120
3-123

Toolkit Routines 3-3

Inquire Alpha Text Font Capability . 3-124
Inquire Alpha Text Position . 3-126
Inquire Alpha Text String Length . 3-127
Output Alpha Text . 3-128
Set Alpha Text Color Index . 3-129
Set Alpha Text Font and Size . 3-130
Set Alpha Text Line Spacing . 3-132
Set Alpha Text Overstrike Mode . 3-133
Set Alpha Text Pass Through Mode . 3-134
Set Alpha Text Position . 3-135
Set Alpha Text Quality . 3-136
Set Alpha Text Subscript/Superscript Mode . 3-137
Set Alpha Text Underline Mode . 3-138

Input Routines . 3-139
Input Choice (request mode) . 3-140
Input Choice (sample mode) . 3-141
Input Locator (request mode) . 3-142
Input Locator (sample mode) . 3-145
Input String (request mode) . 3-147
Input String (sample mode) . 3-149
Input Valuator (request mode) ... 3-151
Input Valuator (sample mode) . 3-152
Read Cursor Movement Keys . 3-153
Set Line Edit Characters . 3-155

Error Handling . 3-156
Inquire Error . 3-157

3-4 Graphics Development Toolkit

About this Chapter

This chapter contains a description of each routine that is available with the
IBM RT PC Graphics Development Toolkit. The descriptions are intended to
provide you with information about the purpose and general operation of a
routine; they do not contain information about specific language syntax. You
must refer to the language reference booklets, that are a part of the Toolkit, for
information about the actual syntax of a routine.

The chapter is divided into several sections. Each section contains a group of
routines that are associated with some general purpose or area of functionality.
Within a section, the routines appear in alphabetical order. The sections are:

• Workstation Control Routines
• Paging Routines
• Pel Routines
• Cursor Control Routines
• General Graphics Routines
• Graphics Primitives
• Graphics Text Routines
• Alpha Text Routines
• Input Routines
• Error Handling.

Note: The routines shown in the language reference booklets are presented in
alphabetical order; not divided into functional groups as they are in this chapter.

Toolkit Routines 3-5

How Routines are Described

Purpose:

Format:

Input:

Output:

Status:

Remarks:

For each routine, information has been organized into six topics, as follows:

The "Purpose:" entry for a routine describes the function or purpose of that routine.

The "Format:" entry for a routine shows the name of that routine followed by both its input
and output parameters, in parentheses.

Inquire Current Cursor Text Address**
(handle, row, column)

In the above example, "Inquire Current Cursor Text Address" is the name of the routine,
handle is an input parameter, and both row and column are output parameters.

Note: If a double asterisk(**) follows the name of a routine, as in the above example, the
operation of that routine is device-dependent. Using these routines in an application
program makes that application device-dependent. Thus, you must use these routines only
during program development, or in an application that does not require device
independence.

The Input parameters are arrays or variables to which you must assign values, before
calling the VDI routines. These parameters are shown first within the entry for the
"Format:" of a routine.

Output parameters are arrays or variables that receive values from the VDI routine that is
called by your application program. These parameters are listed after the input parameters
within the "Format:" entry for a routine.

Each routine returns a status or error code, to the application program, when that routine
is completed.

The "Remarks:" entry for a routine contains information which is particularly important to
understanding the operation of a routine. It includes qualifications and notes about the
effects the routine being described has on other routines, the VD I, and the general
operation of the Graphics Development Toolkit.

Note: Variables that are arrays are described in this book as having a given number of
elements. In the language reference booklets, there is a definition of array data types for
each array.

3-6 Graphics Development Toolkit

Workstation Control Routines

This section describes the device control routines of the VDI. These routines
control the flow of information to and from a workstation (an input and/or
output graphics device). You must include the Open Workstation routine at the
beginning and the Close Workstation routine at the end of any application
program that operates a workstation.

Routines included in this section are:

• Application Data
• Clear Workstation
• Close Workstation
• Hardcopy
• Message
• Open Workstation
• Set Pen Speed
• Update Workstation.

Toolkit Routines 3-7

Application Data

Purpose:

Format:

Input:

Output:

Status:

Remarks:

This routine allows the Virtual Device Metafile driver to place application-specific data in
the metafile (disk file containing graphics).

Application Data**
(handle, routine name, length, data)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

routine name
A text string.

length
Number of elements of application data.

data
An array containing application data.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine places application data in a metafile. The information is available to an
application program via the Get Metafile Item routine in the IBM RT PC Graphical File
System. The routine name is a user-defined title for whatever the application data element
represents.

For information on the IBM RT PC Graphical File System or the Get Metafile Item
routine, refer to the IBM RT PC Graphical File System Programmer's/User's Guide.

3-8 Graphics Development Toolkit

Clear Workstation

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Removes or erases graphics information from the workstation.

Clear Workstation
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when one or more workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine has different effects on different types of devices:

Printers: All pending graphics are printed, paper is advanced to a new sheet, and the print
buff er is cleared.

Plotters: All pending graphics are displayed and a prompt appears on the screen to change
the paper. You can control the display of prompts in the 11th element of the Open
Workstation workin array (see "Open Workstation").

CRT Screens: The screen is cleared (to the current background color). On color screens
this routine must be called after the Set Background Color Index routine if the color is to
change. The background color is not changed until a Clear Workstation routine is
executed.

Toolkit Routines 3-9

Close Workstation

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Prints all pending graphics or text, and then halts the flow of workstation information.

Close Workstation
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The Close Workstation routine must be the last IBM RT PC Graphics Development Toolkit
routine called by an application program.

3-10 Graphics Development Toolkit

Hardcopy

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Generates a hardcopy (printout).

Hardcopy**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is device-specific and can involve copying the display screen to a printer.

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

Toolkit Routines 3-11

Message

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Places a text string in the metafile to be displayed by the IBM RT PC Graphical File
System as an operator message.

Message**
(handle, message, pause indicator)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

message
A text string.

pause indicator
Determines whether the IBM RT PC Graphical File System will pause for a response from
the user, when the Interpret Metafile Item routine is used.

0 = No response required

1 = Pause after issuing message and wait for a response

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine causes the "message" to appear on a workstation's display area in some device
dependent position when the metafile is interpreted. A specific display may be selected by
the MESSAGEPORT environmental parameter. Refer to Appendix A, "Installing the
Graphics Development Toolkit", for information about setting the MESSAGEPORT
environmental parameter.

For information on the IBM RT PC Graphical File System, refer to the IBM RT PC
Graphical File System Programmer's/User's Guide.

3-12 Graphics Development Toolkit

Open Workstation

Purpose:

Format:

Input:

Prepares a workstation to receive information.

Open Workstation
(workin, handle, workout)

workin
A 19-element array containing the identification of the workstation, font styles, color
indexes, and sty le indexes.

All nineteen elements must be assigned initial values before the Open Workstation routine
can open a device successfully. Assign values to each element using the values found in
Appendix C, "Graphics Drivers."

workin(l)
Coordinates transformation mode flag. Determines how to transform NDC units to
device coordinates:

0 = Map NDC units to the full extent of each axis. This does not preserve the aspect
ratio. Picture will fill entire display screen.

1 = Map NDC units to the full extent of the longest axis only; map subset of NDC to
shorter axis. This mode preserves the unity aspect ratio. Using this technique and
the proper scaling factor results in a picture with the same aspect ratio.

workin(2)
Polyline line type.

workin(3)
Polyline color index.

workin(4)
Polymarker type.

workin(S)
Polymarker color index.

workin(6)
Graphics text font.

Toolkit Routines 3-13

Open Workstation

Output:

workin(7)
Graphics text color index.

workin(8)
Fill interior style.

workin(9)
Fill style index.

workin(lO)
Fill color index.

workin(ll)
Prompting flag for controlling the screen prompts (for paper and pen changes on
plotters):

0 = Do not display device-dependent prompts to the logical message device.

1 = Display device-dependent prompts to the logical message device.

workin(12-19)
Device driver logical name. This is an ADE (ASCII Decimal Equivalency) form that
is used to determine which environmental parameter is used to locate the device
driver. Programming examples included in the language reference booklets show how
to code the logical name in ADE into the workin array. See "Setting Environmental
Parameters" in Appendix A for a description of how to assign the logical device name
to the actual device driver name.

handle
The device ID associated with the workstation identifier (workin(12) through workin(l9)).
Give this variable a descriptive name for the device you are opening. Use the variable
name to identify the device you want to be affected by a routine. Always choose a different
variable name for each device you open.

workout
A 66-element array in which the Open Workstation routine returns device information.

workout(l)
Maximum addressable width of screen/plotter in rasters/steps assuming a O starting
point (for example, a resolution of 640 implies an addressable area of 0-639, so
workout(]) would be 639).

3-14 Graphics Development Toolkit

Open Workstation

workout(2)
Maximum addressable height of screen/plotter in rasters/ steps assuming a 0 start
point (for example, a resolution of 480 implies an area of 0-479, so workout(2) would
be 479).

workout(3)
Device coordinate units flag:

0 = Device capable of producing a precisely scaled image (typically plotters and
printers).

1 =Device not capable of a precisely scaled image (CRTs).

workout(4)
Width of one pel (plotter step) in micrometers.

workout(5)
Height of one pel (plotter step) in micrometers'.

workout(6)
Number of character heights (0 = continuous scaling).

workout(7)
Number of line types (0 = device is not capable of graphics).

workout(8)
Number of line widths.

workout(9)
Number of marker types.

workout(lO)
Number of marker sizes (0 = continuous scaling).

workout(ll)
Number of graphics text fonts.

workout(12)
Number of patterns.

workout(13)
Number of hatch styles.

workout(14)
Number of predefined colors (at least 2 even for monochrome device). This is the
number of colors that can be displayed on the device simultaneously.

Toolkit Routines 3-15

Open Workstation

workout(15)
Number of Generalized Drawing Primitives (GDP).

workout(16-25)
List of GDPs (up to 10 allowed):

-1 =No GDP
l=bar
2=arc
3 =pie slice
4=circle

workout(26-35)
Attribute set associated with each GDP:

-1 = GDP does not exist
0=Polyline
1 = Polymarker
2=Text
3 =Fill area
4=None
5=Other

workout(36)
Color capability flag:

0=No
l=Yes

workout(37)
Text rotation capability flag:

0=No
l=Yes

workout(38)
Fill area capability flag:

0=No
l=Yes

3-16 Graphics Development Toolkit

Open Workstation

workout(39)
Pel operation capability flag:

0=No
l=Yes

workout(40)
Total number of colors the workstation can display. This may be larger than the
number of colors the device can display simultaneously:

0 = Continuous device
2 = Monochrome (black and white)

) 2 = Number of colors available

workout(41)
Locator capability flag:

0=No
l=Yes

workout(42)
Valuator capability flag:

0=No
l=Yes

workout(43)
Number of choices available (1 to n).

workout(44)
String input capability flag:

0=No
l=Yes

workout(45)
Workstation type:

0=Output only
1 =Input only
2 = Input/Output
3 = Device-independent segment storage
4 = Metafile output
5=Other

Toolkit Routines 3-17

Open Workstation

workout(46)
Device type:

0=CRT
1 =Plotter
2=Printer
3=reserved
4 = Metafile output
5=Other

workout(47)
Number of writing modes available.

workout(48)
Highest level of input mode available:

0=None
1 =Request
2=Sample

workout(49)
Text alignment capability flag:

0=No
l=Yes

workout(50)
Inking capability flag as output echo device:

0=No
l=Yes

workout(51)
Rubberbanding capability flag as an output echo device:

0 = No rubberband capability
1 = Capable of rubberband lines
2 = Capable of rubberband lines and rectangles

workout(52)
Maximum addressable NDC unit coordinate on x-axis. This value is filled in based
on the coordinate transformation mode selected.

3-18 Graphics Development Toolkit

Open Workstation

Status:

Remarks:

workout(53)
Maximum addressable NDC unit coordinate on y-axis. This value is filled in based on
the coordinate transformation mode selected.

workout(54-58)
Version of the driver. This is an ADE character string that represents the version of
the driver in the following form: vv.11 where vv is the actual version and 11 is the
level.

workout(59-60)
Reserved.

workout(61)
Minimum graphics character height in NDC units.

workout(62)
Maximum graphics character width in NDC units.

workout(63)
Minimum line width in NDC units.

workout(64)
Maximum line width in NDC units.

workout(65)
Minimum marker height in NDC units.

workout(66)
Maximum marker height in NDC units.

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine initializes a workstation. It sets all defaults and returns device information.
Both the alpha and graphics display surfaces are cleared by this routine. You can change
default values set by using individual routines.

Toolkit Routines 3-19

Open Workstation

All 19 elements of the workin array must be assigned initial values before the Open
Workstation routine can open a device successfully. Assign values to each element using
the values found in Appendix C, "Graphics Drivers."

You can open multiple workstations at any time.

A device driver must be assigned to the logical name used when the open occurs. See
"Setting Environmental Parameters" in Appendix A.

Open Workstation Default Values

The default values set by the Open Workstation routine are given in the following list:

• Graphics mode is on. In this mode, you can use any routine except cursor-addressing
routines.

• Graphics character size is the largest that can fit on a cell grid of 24 by 80 characters.

• Character baseline rotation= 0 degrees. To change this, see "Set Graphic Text String
Baseline Rotation."

• Line width= 1 device unit.

• Marker height= minimum device height.

• Writing mode=4 (replace) for all devices except plotters.

• Writing mode=8 (overstrike) for plotters only.

• Input mode= request for all inputs.

• Graphics text alignment= bottom for vertical text and left for horizontal text.

• Cursor-addressing mode is off.

• Alpha text position=upper left corner of a workstation.

• Alpha text line spacing= single.

• Alpha text font= standard font for a 24 by 80 character cell grid.

3-20 Graphics Development Toolkit

Open Workstation

• Alpha text subscripting and superscripting= off.

• Alpha text underlining= off.

• Alpha text overstriking= off.

• Alpha text pass-through= off.

• Alpha text quality= highest (100 %) .

• Alpha text color= white for screens and black for printers.

• Line delete character is CtrLU or ASCII NAK (ASCII value 21).

• Character delete character is CtrLH or ASCII Backspace (ASCII value 8).

• Color. All colors are set by using the default color tables shown in Figure 3-1. Each
color has an associated color index (number). The color associated with an index can
be changed by using a Set Color Representation routine (see "Set Color
Representation"). For device specific color information, see Appendix C, "Graphics
Drivers."

Default Color Table

Index Color

0 Black for screens, white for printers and plotters

1 White for screens, black for printers and plotters

2 Red

3 Green

4 Blue

5 Yellow

6 Cyan (blue-green)

7 Magenta (blue-red)

)7 White

Figure 3-1. Default Color Tobie

Toolkit Routines 3-21

Set Pen Speed

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the speed of the plotter pen.

Set Pen Speed**
(handle, speed)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

speed
Pen speed as a percentage of maximum speed (1-100).

None.

The status is a value that the routine returns to indicate its successful completion.

)0 = Realized pen speed.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine affects only plotter devices. The routine can be used to cause a plotter to print
polylines or text more slowly, when you are using nonstandard inks or media. Fill areas are
filled at a constant speed.

3-22 Graphics Development Toolkit

Update Workstation

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Displays all pending text or graphics on the workstation.

Update Workstation
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine has different effects on different types of devices:

• Printers. All pending graphics are displayed and paper is advanced to top of form.
• Plotters. Has no effect on plotters.
• CRT Screens. Has no effect on CRT screens.

Toolkit Routines 3-23

Paging Routines

This section describes the VDI routines that copy, write, and determine the
aspects of the active or nonactive pages. The paging routines apply only to CRT
device drivers.

If the video adapter does not support separate buffer areas for cursor text and
graphics, data in one mode is destroyed when exiting to the other mode. When
entering cursor text mode, the active cursor text page is cleared to blank spaces.
When entering graphics mode, the active graphics page is cleared to the
workstation's background color.

Whether the active cursor page is cleared, or all cursor pages are cleared when
entering cursor text mode is device-dependent. It is also device-dependent
whether the active graphics page is cleared or all graphics pages are cleared
when entering graphics mode. To ensure that all pages are cleared upon
changing the active page, issue a Clear Workstation command.

Routines included in this section are:

• Copy Page
• Inquire Page
• Set Page.

3-24 Graphics Development Toolkit

Copy Page

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Allows the application to copy the contents of one page (active or nonactive) into another
page.

Copy Page**
(handle, source, destination)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

source
The source page number to be copied.

destination
The destination page number.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Note: If the Inquire Error routine returns an error code of -3095, an invalid page number
was specified in source or destination. No copy was performed.

The copy is done on pages in the current displaying mode. If the display is in cursor text
mode, cursor text pages are copied; if the display is in graphics mode, graphics pages are
copied. If either or both of the pages specified in source and destination are not available
on a device, no copy is done.

Toolkit Routines 3-25

Inquire Page

Purpose:

Format:

Input:

Output:

Allows the application to determine which page is the active page, the number of available
pages, the existence of paging capability, and the visual page (page being displayed).

Inquire Page**
(handle, graphics mode, cursor mode)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

graphics mode
A three-element array containing information about the graphics mode pages.

graphics mode(l)
Graphics mode page currently selected for display.

graphics mode(2)
Graphics mode page currently selected for reading and writing.

graphics mode(3)
Number of graphics mode pages available (numbered O through graphics mode(3)
minus 1).

cursor mode
A three-element array containing information about the cursor mode pages.

cursor mode(l)
Cursor text mode page currently selected for display. The default is page 0.

cursor mode(2)
Cursor text mode page currently selected for reading and writing.

cursor mode(3)
Number of cursor text mode pages available (numbered O through cursor mode(3)
minus 1).

3-26 Graphics Development Toolkit

Status:

Remarks:

Inquire Page

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The number of pages available in cursor text mode can vary depending upon the mode. If
the display is in cursor text mode, the number of pages available corresponds to the
current cursor text mode. If the display is in graphics mode, the number of pages available
corresponds to the mode that takes effect on the next Enter Cursor Addressing Mode
routine (see "Enter Cursor Addressing Mode").

Toolkit Routines 3-27

Set Page

Purpose:

Format:

Input:

Output:

Allows the application to write to the specified page (may be the same page as visual
page).

Set Page**
(handle, graphics mode in, cursor mode in, graphics mode out, cursor mode out)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

graphics mode in
A two-element array of the graphics mode page requested.

graphics mode in(l)
Graphics mode page requested for display.

graphics mode in(2)
Graphics mode page requested for reading and writing.

cursor mode in
A two-element array of the cursor text mode page requested.

cursor mode in(l)
Cursor text mode page requested for display. Default is page O.

cursor mode in(2)
Cursor text mode page requested for reading and writing. Default is page O.

graphics mode out
A two-element array containing information about graphics mode pages.

graphics mode out(l)
Graphics mode page currently selected for display.

graphics mode out(2)
Graphics mode page currently selected for reading and writing.

3-28 Graphics Development Toolkit

Status:

Remarks:

Set Page

cursor mode out
A two-element array containing information about cursor text mode pages.

cursor mode out(l)
Cursor text mode page currently selected for display.

cursor mode out(2)
Cursor text mode page currently selected for reading and writing.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The Open Workstation routine sets both pages to 0. The current cursor text mode
referenced above is the current mode if the display is in cursor text mode, not that which
takes effect at the next Enter Cursor Addressing Mode routine.

Note: Valid page numbers for both graphics mode and cursor mode are determined by the
Inquire Page routine. If an invalid page number is requested for the Set Page routine, the
corresponding current page does not change. Since no error is indicated for an invalid
request, you may want to include a comparison of the graphics/cursor mode in parameter
to the graphics/cursor mode out parameter, within your application program.

Toolkit Routines 3-29

Pel Routines

This section describes the VD I routines and their parameters used to move one
or more pels (pixels) on the display screen.

There are two methods of moving pels:

• Copying pels from one location on the display screen to another location on
the display screen.

• Getting pels from the current page, putting them in temporary storage (a
user defined array), and then moving them to the display screen (which may
or may not be a new page).

Routines included in this section are:

• Copy Pels
• Get Pels
• Put Pels.

3-30 Graphics Development Toolkit

Copy Pels

Purpose:

Format:

Input:

Output:

Copies one or more pels from one position (source rectangle) to another position
(destination or target rectangle) on the same display page. This routine works in the
graphics mode.

Copy Pels**
(handle, xy)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A six-element array containing the diagonal coordinates of the source rectangle (which
contains the pels) on the display screen and the coordinates of the lower left-hand corner of
the destination rectangle on the same display screen.

xy(l)
The x-coordinate of the lower left-hand corner of the source rectangle in NDC units.

xy(2)
The y-coordinate of the lower left-hand corner of the source rectangle in NDC units.

xy(3)
The x-coordinate of the upper right-hand corner of the source rectangle in NDC
units.

xy(4)
They-coordinate of the upper right-hand corner of the source rectangle in NDC
units.

xy(S)
The x-coordinate of the lower left-hand corner of the target (destination) rectangle in
NDC units.

xy(6)
The y-coordinate of the lower left-hand corner of the target rectangle in NDC units.

None.

Toolkit Routines 3-31

Copy Pels

Status:

Remarks:

The status is a value the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The target or destination rectangle is clipped as necessary at the top and right edges of the
screen. The writing modes in Pel routines operate on the hardware (bit map) color indexes,
not VDI color indexes.

The writing of the pels at the target rectangle is performed according to the current writing
mode as set by the Set Writing Mode routine (see "Set Writing Mode").

3-32 Graphics Development Toolkit

Get Pels

Purpose:

Format:

Input:

Output:

Status:

Moves the pels from the display page into an array where they are stored in anticipation of
moving them to the display (which may or may not be a new page). This routine works in
the graphics mode.

Get Pels**
(handle, xy, destination)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A four-element array containing the diagonal coordinates of the rectangle containing the
pels.

xy(l)
The x-coordinate of the lower left-hand corner of the rectangle in NDC units.

xy(2)
The y-coordinate of the lower left-hand corner of the rectangle in NDC units.

xy(3)
The x-coordinate of the upper right-hand corner of the rectangle in NDC units.

xy(4)
The y-coordinate of the upper right-hand corner of the rectangle in NDC units.

destination
Name of the array where you are going to store the pels until you move them to the display
screen.

The status is a value that the routine returns to indicate its successful completion.

)0 = Indicates the number of 16-bit words in source required to hold the pels.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Toolkit Routines 3-33

Get Pels

Remarks: The following C language example computes the number of bytes required in the array for
the Get Pels routine:

#include <stdio.h>

main()
{
/**/
I* *I
/* Compute the number of bytes required */
/* in the array for the Get Pels routine. */
I* *I
/**/
short paspect;
char response;

long bytes, xdll, ydll, xdur, ydur, xpix, ypix, xll, yll;
long xur, yur, xmul, ymul, xsurf, ysurf, xmax, ymax;
int bits, planes, screen, legal_coords;

static struct {
long x.__dev;
long y_dev;
long xpix.__size;
long ypix.__size;
long bits_pixel;
long clr_planes;

} screen_info[J = {

{720, 512, 285, 285, 1,
{720, 512, 285, 285, 1,
{1024,768, 285, 285, 1,
{640, 350, 328, 508, 1,
{640, 350, 328, 508, 1,

} ;

1}, /* vdiamg display*/
4}, /* vdiacg display*/
1}, /* vdiemg display*/
2}, /* vdiega display, 4 color*/
4}/* vdiega display, 16 color*/

3-34 Graphics Development Toolkit

printf(
"This Program computes the size required (in bytes)\n\r"
) ;
printf(
"for the array into which the Get Pels routine\n\r"
) ;
printf(
"puts the pel image from the screen\n\r\n\r"
) ;

I*

find out whether preserve aspect ratio mode is used
*I

printf(
"Workstation opened with preserved aspect ratio? (Y/N):"
) ;
scanf("%c%*c", &response);
response I= Ox20; /* ignore case*/
while (!((response== 'n') I I (response 'y'))){

printf("Please answer Y or N: ");
scanf("%c%*c", &response);
response I= Ox20; /* ignore case*/

}

if (response 'y')
paspect 1;

else
paspect O;

I*

find out screen in use

*I

Get Pels

Toolkit Routines 3-35

Get Pels

do{

printf(
"\n\rl) vdiamg\n\r2) vdiacg\n\rJ) vdiemg\n\r"
) j

printf(
"4) vdiega 4 color\n\r5) vdiega 16 color\n\r\n\r"
) ;
printf(
"Please enter one of the selections shown: "
) ;
scanf("%d%*c", &screen);

if((screen < 1) I I (screen> 5))
printf("Incorrect selection\n\r");

} while((screen < 1) I I (screen> 5));

screen--;/* compute the info table index*/
I*

*I

compute tranform multiplier and
maximum J2k space values

xmul screen_info[screen].x_dev;
ymul screen_info[screen].y_dev;

if(paspect){

}

/* X surface size in microns*/
xsurf = screen__info[screen].x_dev *

screen__info[screen].xpix_size;
/* Y surface size in microns*/
ysurf = screen__info[screen].y_dev *

screen__info[screen].ypix_size;

if (xsurf <= ysurf)
xmul ysurf / screen_info[screen].xpix_size

else
ymul xsurf / screen__info[screen].ypix_size

3-36 Graphics Development Toolkit

I*

compute maximum 32k space x and y

*I
xmax ((screen_info[screen].x_dev * 32768)/ xmul - 1;
ymax ((screen_info[screen].y_dev * 32768)/ ymul - 1;

I*

*I
do{

do{

get rectangle corners

legal_coords = 1; /* assume legal coords. */
printf(
"Enter coordinates of lower left corner (x,y): "
) ;
scanf("%ld %ld%*c", &xll, &yll);
if((xll < 0) I I (xll > xmax)){

legal_coords = O;
printf ("\n\rX ranges from O •• %d\n\r", xmax);

}
if((yll < 0) I I (yll > ymax)){

legal_coords = O;
printf("\n\rY ranges from O .. %d\n\r", ymax);

}
}while(!legal_coords);

do{
legal_coords = 1; /* assume legal coords. */
printf(
"Enter coordinates of upper right corner (x,y): "
) ;
scanf("%ld %ld%*c", &xur, &yur);

Get Pels

Toolkit Routines 3-37

Get Pels

if((xur < 0) I I (xur > xmax))[
legal_coords = 0;
printf("\n\rX ranges from 0 .. %d\n\r", xrnax);

}
if((yur < 0) I I (yur > yrnax))[

legal_coords = 0;
printf ("\n\rY ranges from 0 .. %d\n\r", ymax);

}
}while(!legal_coords);

if ((xll > xur) I I (yll > yur))[
legal_coords = 0;

}

printf("\n\rLower left corner must be");
printf("below upper right corner.");
printf(" Please renter both.\n\r");

}while(!legaLcoords);

I*

*I

Transform rectangle corners.
The coordinates, (xdll,ydll) and (xdur,ydur),
are pixel-space corners.

xdll (int)((long)(xll * xrnul) / 32768);
ydll (int)((long)(yll * yrnul) / 32768);
xdur (int)((long)(xur * xrnul) / 32768);
ydur (int)((long)(yur * yrnul) / 32768);
I*

compute bytes required in array

*I

3-38 Graphics Development Toolkit

bits= screen_info[screen].bits_pixel;
planes= screen_info[screen].clr_planes;
xpix = xdur - xdll + 1;
ypix = ydur - ydll + 1;
bytes (int)((long)(xpix *bits+ 7)/8);
bytes= 4 +(bytes* planes* ypix);

printf("%ld bytes are required to", bytes);
printf("hold your pixels.\n\r");

}

Get Pels

Toolkit Routines 3-39

Put Pels

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Displays pels that were stored with the Get Pels routine on the current page. This routine
works in the graphics mode.

Put Pels**
(handle, xy, source)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A two-element array containing the coordinates (on the display screen) of the target or
destination rectangle.

xy(l)
The x-coordinate of the lower left-hand corner of the target rectangle in NDC units.

xy(2)
They-coordinate of the lower left-hand corner of the target rectangle in NDC units.

source
The name of the array used in a Get Pels routine to store the pels prior to moving them
(see "Get Pels").

None.

The status is a value the routine returns to indicate its successful completion.

0=No error.

-1 = An error occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The destination rectangle is clipped as necessary at the top and right edges of the screen.
Writing modes in Pel routines operate on the hardware (bit map) color indexes, not on the
VDI color indexes.

3-40 Graphics Development Toolkit

Cursor Control Routines

Cursor Control routines are used to position the standard alphanumeric cursor,
as well as cursor text on the display screen. This is important to applications
that present a fill-in-the-form operation.

You can position the cursor on a display screen cell grid of rows and columns. A
typical display screen measures 24 rows by 80 columns. The position (row 1,
column 1) in the top left corner of the display screen is the home position.

The cursor routines affect only CRT devices. The CRT devices open in the
default graphics mode. You must call the Enter Cursor Addressing Mode
routine to use other cursor routines.

All routines in this section are escape routines. In using them, your application
program becomes device-dependent.

Routines included in this section are:

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen
• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Inquire Cursor Text Mode
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index
• Set Cursor Text Mode.

Toolkit Routines 3-41

Cursor Down

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves down one row on the cursor cell grid without moving horizontally, when
in cursor mode.

Cursor Down**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. As the cursor moves down, displayed text is
scrolled upward after the bottom of the screen is reached.

3-42 Graphics Development Toolkit

Cursor Home

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves to the upper left comer (row 1, column 1) of the display screen, when in
the cursor mode.

Cursor Home**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. No action occurs if the cursor is already in the
home position.

Toolkit Routines 3-43

Cursor Left

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves to the left one column without changing its vertical position, when in
cursor mode.

Cursor Left**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. No action occurs if the cursor is already in
column 1.

3-44 Graphics Development Toolkit

Cursor Right

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves right one column without changing its vertical position, when in cursor
mode.

Cursor Right**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. No action occurs if the cursor is already in the
far right column.

Toolkit Routines 3-45

Cursor Up

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves up one row on the cursor cell grid without moving horizontally, when in
cursor mode.

Cursor Up**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. No action occurs if the cursor is already on the
top row.

3-46 Graphics Development Toolkit

Direct Cursor Address

Purpose:

Format:

Input:

Output:

Status:

Remarks:

The cursor moves to a specified position on the display screen.

Direct Cursor Address**
(handle, row, column)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

row
The row number of a new cursor location.

column
The column number of a new cursor location.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. Specify the position by row and column. If you
specify a position off the screen, the cursor moves to the closest possible position.

Toolkit Routines 3-47

Enter Cursor Addressing Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Prepares the display screen for future cursor-addressing routines and places the cursor at
the top left position on the display screen, or "home."

Enter Cursor Addressing Mode**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is applicable only to CRT devices. Use this routine to exit the graphics mode
and enter the cursor mode.

The display screen is cleared when the graphics mode is exited.

You must use this routine before you can use any of the routines affecting the cursor.

When entering cursor mode, all cursor text pages are cleared to blank spaces.

3-48 Graphics Development Toolkit

Erase to End of Line

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Erases all text from the current cursor-address to the end of the line (row). The cursor
remains at the current address when the routine is complete.

Erase to End Of Line**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices.

Toolkit Routines 3-49

Erase to End of Screen

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Erases all text from the cursor position to the end of the display screen. No action occurs if
no text extends below or to the right of the cursor.

Erase to End of Screen**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. The routine erases all the lines from the cursor
position to the end of the screen. If the cursor is in the upper left position of the screen, the
routine erases the entire screen. If the cursor is in a central position on the screen, the
routine erases the rest of the line the cursor is on, and all following lines to the end of the
screen.

The cursor remains at the current address upon completion of this routine.

3-50 Graphics Development Toolkit

Exit Cursor Addressing Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Exits the cursor mode if not in graphics mode.

Exit Cursor Addressing Mode**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

To do graphics after entering cursor mode, you must use this routine to enter the graphics
mode from the cursor-addressing mode. It is necessary to be in graphics mode for any
graphics, alpha text, or graphics text processing operation.

The graphics mode is the open workstation default condition.

When exiting a cursor page, the new graphics page is cleared to the current background
color.

Toolkit Routines 3-51

Inquire Addressable Character Cells

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the number of addressable columns and rows.

Inquire Addressable Character Cells
(handle, rows, columns)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

rows
Number of addressable rows (-1 means cursor-addressing not possible).

columns
Number of addressable columns (-1 means cursor-addressing not possible).

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

3-52 Graphics Development Toolkit

Inquire Current Cursor Text Address

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the current cursor position to the application program.

Inquire Current Cursor Text Address**
(handle, row, column)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

row
Row number of the current cursor position.

column
Column number of the current cursor position.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices.

Note: Since error -3095 will be returned if this routine is called while the cursor is in
graphics mode, this routine can be used to determine the current mode (cursor text or
graphics).

Toolkit Routines 3-53

Inquire Cursor Text Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the mode the workstation is put in when the next Enter Cursor Addressing Mode
routine call is received.

Inquire Cursor Text Mode**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=Currently selected mode.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

3-54 Graphics Development Toolkit

Output Cursor Addressable Text

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Writes text at the current cursor position, and then moves the cursor one space to the right
for each character in the text string.

Output Cursor Addressable Text**
(handle, char string)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

char string
A string of characters to be displayed on the output device.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

To use this routine, you must be in cursor mode. The text is placed on the cursor
addressable cell grid (usually 24 rows by 80 columns). New text writes over the text in the
same location.

You can place only one line of text with this routine if the device does not have character
wraparound. To begin a new line, use the Direct Cursor Address routine to place the
cursor on the next line at the far left column (see "Direct Cursor Address"). The Output
Cursor Addressable Text routine can then be repeated.

The CRT devices supported by the IBM RT PC Graphics Development Toolkit do not have
character wraparound.

Toolkit Routines 3-55

Reverse Video Off

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Puts foreground color into the foreground and background color into the background.

Reverse Video Off**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The routine affects only cursor text. This routine is ignored if reverse video is already off.

3-56 Graphics Development Toolkit

Reverse Video On

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Puts foreground color into the background and background color into the foreground.

Reverse Video On**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The routine affects only cursor text. Note that this routine is ignored if reverse video is
already on.

Toolkit Routines 3-57

Set Cursor Text Attributes

Purpose:

Format:

Input:

Sets the attributes of blink, bold, reverse video, and underline for subsequent cursor
addressable text.

Set Cursor Text Attributes**
(handle, reg att, sel att)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

req att
A four-element array that contains the requested cursor text attributes.

req att(l)
Requested reverse video mode:

0 = Disable reverse video
1 = Enable reverse video
2 = Do not change current state
3 = Toggle reverse video attributes

req att(2)
Requested underline cursor text mode:

0 = Disable underline cursor text
1 = Enable underline cursor text
2 = Do not change current state
3 = Toggle underline cursor text attributes

req att(3)
Requested blink text mode:

0=Disable blink cursor text
1 = Enable blink cursor text
2 = Do not change current state
3 = Toggle blink cursor text attributes

3-58 Graphics Development Toolkit

Output:

Status:

Set Cursor Text Attributes

req att(4)
Requested bold cursor text mode:

0 = Disable bold cursor text
1 = Enable bold cursor text
2 = Do not change current state
3 = Toggle bold cursor text attributes

sel att
A four-element array that contains the selected cursor text attributes.

sel att(l)
Selected reverse video mode:

O=Disabled
1 =Enabled

sel att(2)
Selected underline cursor text mode:

O=Disabled
1 =Enabled

sel att(3)
Selected blink cursor text mode:

O=Disabled
1 =Enabled

sel att(4)
Selected bold cursor text mode:

O=Disabled
1 =Enabled

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Toolkit Routines 3-59

Set Cursor Text Attributes

Remarks: This routine can set reverse video mode, underline cursor text mode, blink cursor text
mode, and bold cursor text mode, or inquire about these attributes.

Note: You can use this routine to do an inquiry of the current attributes by setting all
modes to not change the current state (2). The current state is then returned in the sel att
array.

3-60 Graphics Development Toolkit

Set Cursor Text Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the foreground and background colors for the cursor-addressable text.

Set Cursor Text Color Index**
(handle, fore requested, back requested, fore selected, back selected)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

fore requested
The color index of the foreground of subsequent output cursor text (default 1).

back requested
The color index of the background of subsequent output cursor text (default 0).

fore selected
Color index selected for cursor text foreground.

back selected
Color index selected for cursor text background.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

If an invalid color index is selected, the closest valid color index is chosen. The
background color (cursor cell background) is changed immediately.

Toolkit Routines 3-61

Set Cursor Text Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the mode to be used when the next Enter Cursor Addressing Mode routine call is
received.

Set Cursor Text Mode**
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
The type of screen mode that is requested.

None.

The status is a value that the routine returns to indicate its successful completion.

0 = mode requested.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

3-62 Graphics Development Toolkit

General Graphics Routines

This group of graphics routines is general in nature. They involve the setting of
color modes, writing modes, and displaying or removing the graphics cursor.
You must be in graphics mode, and not cursor mode, to use these routines.

General Graphics Routines included in this part of the Graphics Routines
section are:

• Display Graphic Input Cursor
• Inquire Color Representation
• Inquire Graphic Color Burst Mode
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Graphic Color Burst Mode
• Set Writing Mode.

Toolkit Routines 3-63

Display Graphic Input Cursor

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Displays a graphics input cursor at a specified location on the workstation.

Display Graphic Input Cursor**
(handle, x, y)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X

x-coordinate of new cursor location in NDC units.

y
y-coordinate of new cursor location in NDC units.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine works only on CRT devices. To use this routine you must be in the graphics
mode.

The graphics cursor is the same as the one used for feedback by the Input Locator routine
(for example, crosshairs or arrow). The Input Locator routine automatically displays a
cursor when it needs one (see "Input Locator (request mode)"). You do not have to
reference this routine when using Input Locator.

3-64 Graphics Development Toolkit

Inquire Color Representation

Purpose:

Format:

Input:

Output:

Returns information about the color table.

Inquire Color Representation
(handle, index requested, set flag, rgb)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The color index you are asking about (0 to a device maximum).

set flag
If you make this flag= 0, the RGB color intensities for the color index requested are
returned in the rgb array.

If you make this flag= 1, the RGB color intensities of the actual color index used by the
device driver are returned in the rgb array. These realized intensities reflect the color index
chosen by the driver if a color is not supported by the device.

rgb
A three-element array of color intensities (in tenths of a percent, 0-1000).

rgb(l)
Red intensity, (in tenths of a percent, 0-1000).

rgb(2)
Green intensity, (in tenths of a percent, 0-1000).

rgb(3)
Blue intensity, (in tenths of a percent, 0-1000).

Toolkit Routines 3-65

Inquire Color Representation

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Color index selected.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Use this routine to ask what intensities of red, green, and blue are associated with a color
index (see "Set Color Representation"). You have a choice to ask about the intensities in the
table or the actual intensities realized on a device.

Inquiring about a color not offered by a device returns values for the closest index in the
table. The values chosen will be available if set flag= 1. Inquiring about a color index not
found in the table returns values for the color index closest to the requested index.

3-66 Graphics Development Toolkit

Inquire Graphic Color Burst Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the mode that the workstation (when the workstation is in graphics mode) is going
to use when the next Exit Cursor Addressing Mode routine is used.

Inquire Graphic Color Burst Mode**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

Toolkit Routines 3-67

Remove Graphic Input Cursor

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Removes the graphics input cursor from its current location on the workstation.

Remove Graphic Input Cursor**
(handle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine affects only CRT devices. Use this routine to remove the graphics input cursor
displayed by Display Graphic Input Cursor (see "Display Graphic Input Cursor"). You do
not have to reference this routine when performing Locator Input.

3-68 Graphics Development Toolkit

Set Background Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the background color on the workstation.

Set Background Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
A color index selected from the color table.

None.

The status is a value that the routine returns to indicate its successful completion.

2:::0=Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The color change will not appear until the next Clear Workstation routine is called (see
"Clear Workstation"). If the color index is not valid, the background color does not
change.

Background color cannot be set on printers and plotters.

Toolkit Routines 3-69

Set Color Representation

Purpose:

Format:

Input:

Output:

Changes the color representation of a color index.

Set Color Representation
(handle, index requested, rgb requested, rgb realized)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The color index you select from the color table (0 to device maximum).

rgb requested
A three-element array of color intensities (in tenths of a percent, 0-1000).

rgb requested(l)
Red intensity, (in tenths of a percent, 0-1000).

rgb requested(2)
Green intensity, (in tenths of a percent, 0-1000).

rgb requested(3)
Blue intensity, (in tenths of a percent, 0-1000).

rgb realized
A three-element array of color intensities selected (in tenths of a percent, 0-1000).

rgb realized(l)
Red intensity, (in tenths of a percent, 0-1000).

rgb realized(2)
Green intensity, (in tenths of a percent, 0-1000).

rgb realized(3)
Blue intensity, (in tenths of a percent, 0-1000).

3-70 Graphics Development Toolkit

Status:

Remarks:

Set Color Representation

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Use this routine to change or add colors to the default color table. See Figure 3-2.

The maximum number of colors in a color representation table is the number of colors that
a workstation can display at one time.

The number of colors that can be displayed on a workstation simultaneously is returned in
the 14th element of the Open Workstation workout array (see "Open Workstation"). A zero
is returned in the 36th element of the same workout array, if the device is not capable of
color.

Color Tobie

Color Color Red Green Blue Binary
Index Number

0 Black 0 0 0 0000

1 White 1000 1000 1000 0001

2 Red 1000 0 0 0010

3 Green 0 1000 0 0011

4 Blue 0 0 1000 0100

5 Yellow 1000 1000 0 0101

6 Cyan 0 1000 1000 0110

7 Magenta 1000 0 1000 0111

)7 White 1000 1000 1000 xxxx

Figure 3-2. Color Tobie

Note: All intensities in the table are in tenths of a percent.

Toolkit Routines 3-71

Set Color Representation

The maximum color index allowed is one less than the maximum number of colors in the
color table, because the color index starts at zero and continues ton - 1 (the workout(40)
array contains the number of colors allowed).

You can select individual colors if the device allows individual color selections. With a
palette oriented device , palettes are selected.

Changing a Color

You can change a color in the table by changing the percentages of red, green , and blue
intensities associated with a color index. To do this , assign new values to the rgb requested
array in this routine.

The percentages are expressed in tenths of a percent. Multiply the percent value you intend
to use by 10 and use that value in the rgb requested array. For example, to get a display of
75 % of the total red color available in the pels on a device, use a value of 750 for red in
the rgb requested array.

The following example is a segment of C code that sets the color representation for color
indexes 8-15 on the IBM Enhanced Graphics Adapter device driver. When this device
driver is first opened , indexes 8-15 are defined as white, or RGB values of (1000, 1000,
1000) . In the device driver for the IBM Enhanced Graphics Adapter, each RGB component
can support four levels: 0 , 333 , 666, and 1000. The example defines color indexes 8-15 as
one more level of blue than its corresponding element for the indexes 0-7.

#define RED 0
#define GREEN 1
#define BLUE 2

struct{
short requested[JJ;
short selected[J];

} rgb;

short device_handle,
i,
set_flag,
req_index,
sel_index;

3-72 Graphics Development Toolkit

I*

*I

I*

*I

I*

*I

I*

*I

set index Oto light grey

req_index = O;
rgb.requested[REDJ = 666;
rgb.requested[GREENJ = 666;
rgb.requested[BLUEJ = 666;

sel_index = vs_color(device_handle,
req_index,
rgb.requested,
rgb.selected);

set color index one to light green

req_index = 1;
rgb.requested[REDJ = 333;
rgb.requested[GREENJ = 1000;
rgb.requested[BLUEJ = 333;

sel_index = vs_color(device_handle,
req_index,
rgb.requested,
rgb.selected);

set realized flag to 1

set_flag = 1;

Set Color Representation

for (req_index 7 req_index < 16 req_index++){

inquire color representation of index i

Toolkit Routines 3-73

Set Color Representation

/*

*I

}

sel_index = vq_color(device_handle,
req_index,
set_flag,
rgb.selected);

if(rgb.selected[BLUEJ < 1000){
rgb.requested[BLUEJ += 333;

}

set new color representation

sel_index vs_color(device_handle,
req_index,
rgb.requested,
rgb.selected);

3-74 Graphics Development Toolkit

Set Graphic Color Burst Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the mode that the workstation uses when the next Exit Cursor Addressing Mode
routine is received.

Set Graphic Color Burst Mode**
(handle, mode)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode
Condition of color burst:

0 = Color burst off
1 = Color burst on

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

Toolkit Routines 3-75

Set Writing Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Controls how output writes over pending graphics in a print buffer or on a display screen.

Set Writing Mode
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
This is a number you choose from the Boolean Operation Chart located in this routine
under "Remarks:."

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Set Writing Mode allows you to mix colors. When one area (source) is moved or written to
overlap another area (destination) a new color is formed at the destination.

You can calculate the new color of the destination by performing a Boolean operation on
the source and destination binary color numbers. See Figures 3-3 and 3-4. The binary
color numbers are shown in the Set Color Representation routine (see "Set Color
Representation").

Convert the regular color index from the base 10 to the base 2, to get binary numbers not
listed in the color table.

Figure 3-3 shows the Boolean operation associated with each mode number. In the table, D
is the binary color number of the destination area to be overlapped. Sis the binary color
number of the source area to be moved or written to the destination. If you are unfamiliar
with Boolean algebra, consult a computer math book for more information.

3-76 Graphics Development Toolkit

Set Writing Mode

Mode Boolean Operation

1 D = 0 (all color bits oft)

2 D=(D ANDS)

3 D=(NOT D) ANDS

4 D = S (replace)

5 D=D AND (NOTS)

6 D=D

7 D=DXORS

8 D=D ORS (overstrike)

9 D=NOT (DOR S)

10 D=NOT (D XOR S)

11 D=NOTD

12 D=(NOT D) ORS

13 D=NOT S

14 D=D OR (NOTS)

15 D=NOT (D ANDS)

16 D=l (white)

Figure 3-3. Boolean Operation Chart

Toolkit Routines 3-77

Set Writing Mode

Remarks:

The following table shows the color result of some operations. The binary color number is
0010 for red and 0011 for green.

Mode Operation Destination (D) Source (S) Result

1 D=0 0010 (2) 0011 (3) 0000 (0)
(RED) (GREEN) (BLACK)

2 D=DAND S 0010 (2) 0011 (3) 0010 (2)
(RED) (GREEN) (RED)

4 D=S 0010 (2) 0011 (3) 0011 (3)
(RED) (GREEN) (GREEN)

6 D=D 0010 (2) 0011 (3) 0010 (2)
(RED) (GREEN) (RED)

7 D=DXORS 0010 (2) 0011 (3) 0001 (1)
(RED) (GREEN) (WHITE)

8 D=D ORS 0000 (0) 0001 (1) 0001 (1)
(BLACK) (WHITE) (WHITE)

Figure 3-4. Writing Mode Color Results

The default writing mode is 4 when a workstation is opened. When a Boolean operation
results in a color index that has no assignment in the color table, the destination becomes
white.

3-78 Graphics Development Toolkit

Graphics Primitives

The Graphics Primitives routines are used to output lines, markers, text strings,
and other graphics primitives. Note that you must be in Graphics mode, and not
Cursor mode, to use these routines. The following list shows the Graphics
Primitives Routines:

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Toolkit Routines 3-79

Inquire Cell Array

Purpose:

Format:

Input:

Output:

Returns the color indexes used to produce a specific cell array.

Inquire Cell Array
(handle, xy, row length, number rows, elements per row, rows used, value flag, colors)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A four-element array that contains the lower left corner and upper right corner coordinates
of the cell array.

xy(l)
x-coordinate of the lower left corner.

xy(2)
y-coordinate of the lower left corner.

xy(3)
x-coordinate of the upper right corner.

xy(4)
y-coordinate of the upper right corner.

row length
Length of each row in the colors array.

number rows
Number of rows in the colors array.

elements per row
Number of elements actually used in row length.

rows used
Number of rows used in the colors array.

3-80 Graphics Development Toolkit

Status:

Remarks:

Inquire Cell Array

value flag
This flag is set to 0 if there are no errors. It is set to 1 if a color value could not be
determined for some pel.

colors
Color indexes for each cell are returned to this array. The size of the array needs to be
(number rows multiplied by row length) long.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine returns color indexes, one row at a time, starting from the top left corner of
the rectangular area, proceeding downward. See "Output Cell Array" for information
regarding how the rectangular area is divided.

Toolkit Routines 3-81

Inquire Current Fill Area Attributes

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the current fill area attributes for polygons, circles, pie slices, and bars.

Inquire Current Fill Area Attributes
(handle, attributes)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

attributes
A four-element array indicating current fill area attributes.

attributes(l)
Interior fill style, (1 to 3, see "Set Fill Interior Style").

attributes(2)
Current fill area color index.

attributes(3)
Current fill area style index, (1 to device maximum, see Set Fill Style Index routine).

attributes(4)
Current writing mode.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

3-82 Graphics Development Toolkit

Inquire Current Polyline Attributes

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns all current polyline features that affect lines, arcs, and current writing mode to
your application program.

Inquire Current Polyline Attributes
(handle, attributes)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

attributes
A four-element array containing the attributes of the current line such as type, color,
writing mode, width.

attributes(l)
Current polyline type index, (1 to device maximum, see "Set Polyline Line Type"
routine).

attributes(2)
Current polyline color index.

attributes(3)
Current writing mode (see "Set Writing Mode" routine).

attributes(4)
Current line width in NDC units.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-83

Inquire Current Polymarker Attributes

Purpose:

Format:

Input:

Output:

Status:

Returns the current polymarker features to your application program.

Inquire Current Polymarker Attributes
(handle, attributes)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

attributes
A four-element array containing the current marker characteristics.

attributes(l)
Current polymarker type, (1 to device maximum, see "Set Polymarker Type" routine).

attributes(2)
Current polymarker color index.

attributes(3)
Current writing mode (see "Set Writing Mode" routine).

attributes(4)
Current polymarker height in NDC units.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Remarks: None

3-84 Graphics Development Toolkit

Output Arc

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Draws an arc on a workstation.

Output Arc
(handle, x, y, radius, start angle, end angle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X

x -coordinate of the arc center point in NDC units.

y
y-coordinate of the arc center point in NDC units.

radius
The length of the radius of the arc, measured on the x axis in NDC units.

start angle
Starting angle of the arc in tenths of degrees, (0-3600).

end angle
Ending angle of the arc in tenths of degrees, (0-3600).

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine draws arcs using current polyline attributes. Define an arc by giving its center
point, two end points and the radius. The radius is measured along the x-axis (horizontal).
The start and end angles are measured on the circle where zero degrees is located 90
degrees (at 3 o'clock) to the right of vertical. Degree values increase in a counterclockwise
direction.

Toolkit Routines 3-85

Output Arc

For an arc, the radius specified is assumed to be along the x-axis, and takes priority over
the radius that is determined by the center point and an arbitrary point of the arc. For an
example of arc, refer to "Graphics Primitive Output Hints" in Chapter 2.

3-86 Graphics Development Toolkit

Output Bar

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Produces a rectangular area on a workstation using fill area attributes.

Output Bar
(handle, xy)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A four-element array containing the coordinates of the lower left and the upper right
corners of the bar.

xy(l)
x -coordinate of the lower left corner in NDC units.

xy(2)
y-coordinate of the lower left corner in NDC units.

xy(3)
x-coordinate of the upper right corner in NDC units.

xy(4)
y-coordinate of the upper right corner in NDC units.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Use this routine to draw a rectangular area on a workstation. The bar will have the current
features of fill area color, interior type, and fill style. "Hollow" bars are outlined with a
solid border.

Toolkit Routines 3-87

Output Cell Array

Purpose:

Format:

Input:

Produces a rectangular or square area divided into color cells of equal size and shape.

Output Cell Array
(handle, xy, row length, elements per row, number rows, writing mode, colors)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xy
A four-element array containing the x and y coordinates of the lower left and upper right
corner of a rectangle or square.

xy(l)
x -coordinate of the lower left corner in NDC units.

xy(2)
y-coordinate of the lower left corner in NDC units.

xy(3)
x-coordinate of the upper right corner in NDC units.

xy(4)
y-coordinate of the upper right corner in NDC units.

row length
Length of each row in the colors array.

elements per row
Number of elements actually used in row length.

number rows
Number of rows in the colors array.

writing mode
Pel operation to be performed.

3-88 Graphics Development Toolkit

Output:

Status:

Remarks:

Output Cell Array

colors
An array of color indexes you choose from the color table. The size of the array needs to
be number rows times row length (rows multiplied by columns) long.

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

A cell array is a rectangular or square area divided into color cells of equal size and shape.
Each cell can display an individual color (any valid color defined in the color table).

The color index for each cell is set in the colors array. The number of elements in this
array is the product of row length and number rows. Color indexes are stored by rows, and
each row has a length of elements per row (number of columns).

When the Output Cell Array routine is called, the number of rows displayed in the cell
array is number rows. The number of columns displayed is elements per row.

Some of the color indexes stored in the colors array are not used when displaying the cell
array. The number of color indexes not used is the difference between row length and
elements per row. For example, if a colors array was defined to have a row length of five,
three elements per row, and one number rows, the cell array would have three columns by
one row. The color indexes used to display the three cells are: colors(]), colors(2), and
colors(3).

With a colors array defined to have a row length of five, three elements per row, and two
number rows, the cell array would have three columns by two rows. The color indexes
used to display the six cells are: colors(]), colors(2), and colors(3) in row one, and
colors(6), colors(7), and colors(8) in row two for the respective columns.

If the workstation is capable of the Output Cell Array routine, it is returned in the 39th
element of the Open Workstation workout array (see "Open Workstation").

Toolkit Routines 3-89

Output Circle

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Draws a circle on a workstation using fill area attributes.

Output Circle
(handle, x, y, radius)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X

x -coordinate of circle center in NOC units.

y
y-coordinate of circle center in NOC units.

radius
The radius of the circle as measured on the x-axis in NOC units.

None.

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Use this routine to draw a circle on a workstation. The circle will have the currently
selected features of fill area color, fill style, and fill interior style.

The circle is specified by length of radius and the x and y coordinates of the center of the
circle. The length of the radius is measured as if it were laid out on the x-axis.

For a circle, the radius specified is assumed to be along the x-axis and takes priority over
the radius that is determined by the center point and an arbitrary point of the circle. For an
example of circle, refer to "Graphics Primitive Output Hints" in Chapter 2.

3-90 Graphics Development Toolkit

Output Filled Area

Purpose:

Format:

Input:

Output:

Produces a filled area on a workstation.

Output Filled Area
(handle, count, xy)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

count
Number of vertexes in polygon.

xy
An array of the x and y coordinates of the corners of the polygon. The number of elements
in this array must be twice the value of count.

xy(l)
x-coordinate of first polygon corner in NDC units.

xy(2)
y-coordinate of first polygon corner in NDC units.

xy(3)
x-coordinate of second polygon corner in NDC units.

xy(4)
y-coordinate of second polygon corner in NDC units.

xy(n-1)
x-coordinate of n/2 corner of polygon in NDC units.

xy(n)
y-coordinate of n/2 corner of polygon in NDC units.

None.

Toolkit Routines 3-91

Output Filled Area

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Use this routine to draw a polygon on a graphics device. The polygon will have corners at
the points you determine in the coordinate array. The polygon will have the current
features of fill style, fill color, and fill interior style. Hollow filled polygons are outlined
with a solid border.

Make sure the count and the size of the xy coordinate array correspond. The number of
elements in this array must be twice the value of count. For example, to output a fill area
with 6 points, you need a count of 6 and an array size of 12.

3-92 Graphics Development Toolkit

Output Pie Slice

Purpose:

Format:

Input:

Output:
Status:

Remarks:

Draws a pie slice on a workstation using fill area attributes.

Output Pie Slice
(handle, x, y, radius, start angle, end angle)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X

x-coordinate of pie slice center point in NDC units.

y
y-coordinate of pie slice center point in NDC units.

radius
The radius of the pie slice as measured on the x-axis in NDC units.

start angle
The place on the circle where the pie slice is to start in tenths of degrees (0-3600).

end angle
The place on the circle where the pie slice is to end in tenths of degrees (0-3600).

None.
The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Use this routine to draw a pie slice on a workstation. The pie slice is drawn
counterclockwise from the start angle to the end angle. The pie slice is affected by the
current features of fill color, fill style, and fill interior style.

Toolkit Routines 3-93

Output Pie Slice

A pie slice is specified by the coordinates of the center point, the radius, and the start and
end angles. The radius is measured along the x- (horizontal) axis. The start and end angles
are measured on the circle where zero degrees is located 90 degrees (at 3 o'clock) to the
right of vertical. Degree values increase in a counterclockwise direction.

For a pie slice, the radius specified is assumed to be along the x-axis and takes priority
over the radius that is determined by the center point and an arbitrary point of the arc.

3-94 Graphics Development Toolkit

Output Polyline

Purpose:

Format:

Input:

Draws one or more line segments on a workstation.

Output Polyline
(handle, count, xy)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

count
Number of points through which lines are to be drawn.

xy
An array of coordinates of the line to be drawn. The number of elements in this array must
be twice the value of count.

xy(l)
x-coordinate of the starting point in NDC units.

xy(2)
y-coordinate of the starting point in NDC units.

xy(3)
x-coordinate of the second point in NDC units.

xy(4)
y-coordinate of the second point in NDC units.

xy(S)
x -coordinate of the third point in NDC units.

xy(6)
y-coordinate of the third point in NDC units.

xy(n-1)
x-coordinate of the n/2 point in NDC units.

xy(n)
y-coordinate of the n/2 point in NDC units.

Toolkit Routines 3-95

Output Polyline

Output:

Status:

Remarks:

None.

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine draws a line that begins with coordinates of the first position in the array, and
passes through the positions of each successive set of coordinates in the array.

Make sure the count and the size of the xy coordinate array correspond. The number of
elements in this array must be twice the value of count. For example, to output polylines
connecting 6 points, you need a count of 6 and an array size of 12.

This routine draws polylines using current polyline attributes.

3-96 Graphics Development Toolkit

Output Polymarker

Purpose:

Format:

Input:

Output:

Displays markers on a workstation.

Output Polymarker
(handle, count, xy)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

count
This is the number of markers to be placed on the device.

xy
An array containing the x and y coordinates of each marker. The number of elements in
this array must be twice the value of count.

xy(l)
x-coordinate of first marker in NDC units.

xy(2)
y-coordinate of first marker in NDC units.

xy(3)
x-coordinate of second marker in NDC units.

xy(4)
y-coordinate of second marker in NDC units.

xy(n-1)
x-coordinate of n/2 marker in NDC units.

xy(n)
y-coordinate of n/2 marker in NDC units.

None.

Toolkit Routines 3-97

Output Polymarker

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine draws polymarkers using current polymarker attributes. It is important that
you ensure that the count and the size of the xy coordinate array correspond. The number
of elements in this array must be twice the value of count. For example, to output 6
polymarkers, you need a count of 6 and an array size of 12.

3-98 Graphics Development Toolkit

Set Fill Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the color of subsequent filled areas. These include fill areas, circles, pie slices, and
bars.

Set Fill Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The fill color index you request (0 to device maximum).

None.

The status is a value that the routine returns to indicate its successful completion.

~0=Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

At least two colors are provided, foreground and background. The color index ranges from
0 to some device-dependent maximum. If the color specified is invalid, the closest value
within the range is selected.

Toolkit Routines 3-99

Set Fill Interior Style

Purpose:

Format:

Input:

Output:
Status:

Remarks:

Sets the style of interior for subsequent circles, polygons, pie slices, and bars.

Set Fill Interior Style
(handle, style requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

style requested
One of four styles requested. The styles available are:

0=Hollow
1 =Solid
2=Pattern
3=Hatch

Note: The pattern and hatch styles are the same if the device does not support native
patterns.

None.
The status is a value that the routine returns to indicate its successful completion.

~0=Style selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Choose from four styles of interiors. Use the number that is associated with a particular
style for the style requested variable in the routine call. The capability of a device to fill a
polygon is returned in the 38th element of the Open Workstation workout array (see "Open
Workstation"). The number of patterns offered by a device is returned in the 12th element.
The number of hatch styles offered by a device is returned in the 13th element.

3-100 Graphics Development Toolkit

Set Fill Style Index

Purpose:

Format:

Input:

Output:

Status:

Selects a fill style based on the fill interior style.

Set Fill Style Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
Requested fill sty le index for pattern or hatch fill.

None.

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Toolkit Routines 3-101

Set Fill Style Index

Remarks: The index references a hatch style if the fill interior style is Hatch, or a pattern if the fill
interior style is Pattern. At least six hatch styles are available. The hatch styles are defined
in Figure 3-5.

Hatch Styles

Style Number Description

1 Narrow spaced 45 degree lines.

2 Medium spaced 45 degree lines.

3 Wide spaced 45 degree lines.

4 Narrow spaced 45 degree lines
crossed with -45 degree lines.

5 Medium spaced 45 degree lines
crossed with -45 degree lines.

6 Wide spaced 45 degree lines
crossed with -45 degree lines.

Figure 3-5. Hatch Styles

More than six patterns may be available from a particular device. If you ask for a style that
is out of range, style index 1 is selected by the device driver.

The number of hatch styles available is returned in the 13th element of the Open
Workstation workout array (see "Open Workstation").

3-102 Graphics Development Toolkit

Set Polyline Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the color of all lines and arcs that follow this routine.

Set Polyline Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The polyline color index you want to use (0 to device maximum).

None.

The status is a value that the routine returns to indicate its successful completion.

~0=Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

This routine sets the color index in which subsequent lines are displayed. At least two
colors are provided, foreground and background. Color indexes range from Oto a device
dependent maximum. If the color specified is invalid, the closest value in range is chosen.

Toolkit Routines 3-103

Set Polyline Line Type

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the line sty le of subsequent lines and arcs.

Set Poly line Line Type
(handle, type requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

type requested
A line type chosen from 1 to some device-dependent maximum.

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Line type selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The number of line types available is returned in the 7th element of the Open Workstation
workout array (see "Open Workstation"). If you request a line type that is out of range, the
workstation uses line style number 1 (solid style).

3-104 Graphics Development Toolkit

Set Polyline Line Width

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the width for all subsequent lines and arcs.

Set Polyline Line Width
(handle, width requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

width requested
The line width you want in NDC units.

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Line width selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The default is a line width of one pel. The number of line widths available on a device is
returned in the 8th element of the Open Workstation workout array (see "Open
Workstation"). The minimum and maximum line widths are returned in the 63rd and 64th
elements, respectively.

Toolkit Routines 3-105

Set Polymarker Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the color of markers to be drawn on the workstation.

Set Polymarker Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
An index you select from the color table (0 to device maximum).

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Use this routine to set the color of markers to be drawn by the Polymarkers routine.
Choose a color index as described in "Set Color Representation."

The polymarker color is affected by the current writing mode. If you are using a mode
other than replace, the color you get may be different from the color you request.

Color indexes range from O to a device-dependent maximum. If the color specified is
invalid, the closest value in range is chosen.

3-106 Graphics Development Toolkit

Set Polymarker Height

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the height of subsequent markers displayed on a workstation.

Set Polymarker Height
(handle, height requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

height requested
Requested marker height in NDC units.

None.

The status is a value that the routine returns to indicate its successful completion.

;::: 0 = Height selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Use this routine to set the size of subsequent markers displayed on a workstation. The
smallest size allowed for a particular device is returned in the 65th element of the Open
Workstation workout array (see "Open Workstation"). The largest size is returned in the
66th element. The number of distinct sizes available is returned in the 10th element of that
same workout array.

If you request a size that is outside the capabilities of the device, the closest available size
is returned. If the requested size is not an exact size offered by a device, the next smallest
size is returned.

Toolkit Routines 3-107

Set Polymarker Type

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Selects the type of marker to be displayed on the workstation.

Set Polymarker Type
(handle, type requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

type requested
Type of marker chosen from the following marker types:

l=Dot
2=Cross
3 =Star
4=Square
5=X
6=Diamond

)6 = Device-dependent

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Marker type selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Six marker types are guaranteed. Use the numbers for the type requested parameter in the
routine call. More than six marker types may be available. The number of types available
is device-dependent and is returned in the 9th element of the Open Workstation workout
array (see "Open Workstation"). If the requested type is out ofrange, type 3 is used.

3-108 Graphics Development Toolkit

Graphics Text Routines

This group of VDI routines determines the type of text to be used. The routines
set the height, alignment, font, and other text conditions. Note that you must be
in Graphics mode, and not Cursor mode, to use these routines.

Graphics Text Routines included in this part of the Graphics Routines section
are:

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Toolkit Routines 3-109

Inquire Current Graphic Text Attributes

Purpose:

Format:

Input:

Output:

Returns all current attributes that affect graphic text, such as text size, text color, text font,
and text rotation.

Inquire Current Graphic Text Attributes
(handle, attributes)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

attributes
A 10-element array containing information about current graphics text characteristics.

attributes(l)
Current graphics text font.

attributes(2)
Current graphics text color index.

attributes(3)
Current angle of rotation of text baseline (in tenths of degrees 0-3600).

attributes(4)
Current horizontal alignment:

0 = Left justified (default)
1 = Center justified
2 = Right justified

attributes(5)
Current vertical alignment:

0 = Bottom justified (default)
1 = Center justified
2 = Top justified

3-110 Graphics Development Toolkit

Status:

Remarks:

Inquire Current Graphic Text Attributes

attributes(6)
Current writing mode. See Boolean operation chart in the Set Writing Mode routine.

attributes(7)
Current character width in NDC units.

attributes(8)
Current character height in NDC units.

attributes(9)
Current character cell width in NDC units.

attributes(l 0)
Current character cell height in NDC units.

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-111

Output Graphic Text

Purpose:

Format:

Input:

Output:
Status:

Remarks:

Writes graphics text on a workstation.

Output Graphic Text
(handle, x, y, char string)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X

x -coordinate of alignment point of text in NDC units.

y
y-coordinate of alignment point of text in NDC units.

char string
A string of characters to be displayed on the output device.

Note: Characters must be printable characters (between ASCII 032 and ASCII 126). All
others are ignored.

None.
The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The text is aligned to the position you specify in the parameters in the routine call, and has
the current selections for color, font, height, alignment, and rotation (see "Set Graphic Text
Alignment").

Any graphics text character outside the actual device coordinates is not displayed.

3-112 Graphics Development Toolkit

Set Character Height

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the height of graphics text.

Set Character Height
(handle, height requested, char width, cell width, cell height)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

height requested
The character height you requested in NDC units.

char width
Actual character width used by the driver in NDC units.

cell width
Character cell width in NDC units.

cell height
Character cell height in NDC units.
The status is a value that the routine returns to indicate its successful completion.

2:: 0 = Height selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The height of the text is defined as the height of the tallest (baseline to top) character in the
font. You select the height in NDC units; VDI selects the width of the characters, and the
cell width and height. This maintains the correct proportions for the graphics font.

The next smaller size is used when the requested size is not offered by a device. The
default size is one that permits a device to display 24 characters vertically and 80
characters horizontally. The number of text sizes available on a device is returned in the
6th element of the Open Workstation workout array (see "Open Workstation").

Toolkit Routines 3-113

Set Graphic Text Alignment

Purpose:

Format:

Input:

Output:

Sets graphics text horizontal and vertical alignment.

Set Graphic Text Alignment
(handle, horizontal requested, vertical requested, horizontal realized, vertical realized)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

horizontal requested
Horizontal alignment requested (applies to the character body width not the cell width):

0 = Left justified (default)
1 = Center justified
2 = Right justified

Note: If an invalid horizontal alignment is requested, the horizontal requested parameter is
reset to its default.

vertical requested
Vertical alignment requested:

0 = Bottom justified (default)
1 = Center justified
2 = Top justified

Note: If an invalid vertical alignment is requested, the vertical requested parameter is reset
to its default.

horizontal realized
Horizontal alignment selected by the driver.

vertical realized
Vertical alignment selected by the driver.

3-114 Graphics Development Toolkit

Status:

Remarks:

Set Graphic Text Alignment

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The default alignment places the bottom left corner of the first character (not the character
cell) in the string at the graphics text position.

Toolkit Routines 3-115

Set Graphic Text Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the graphics text color index.

Set Graphic Text Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The color index you request (0 to device maximum).

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Color indexes range from Oto a device-dependent maximum. If a color index requested is
not valid, the closest color index in range is selected. However, the routine always returns
the color index selected.

3-116 Graphics Development Toolkit

Set Graphic Text Font

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Selects the hardware text font for graphics text.

Set Graphic Text Font
(handle, font requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

font requested
Requested hardware graphics text font number.

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Font selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Availability of graphics text fonts is device-dependent. At least one is available on any
device. If you request a font outside the capability of the device, font number one is
selected.

The number of graphics text fonts available on a device is returned in the 11th element of
the Open Workstation workout array (see "Open Workstation").

Toolkit Routines 3-117

Set Graphic Text String Baseline Rotation

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the baseline rotation of a string of graphics text characters.

Set Graphic Text String Baseline Rotation
(handle, angle requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

angle requested
Requested angle of rotation of the character string baseline, in tenths of degrees (0-3600).

None.

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Angle selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The entire string (rather than the individual character) is rotated to the angle you specify in
the angle requested parameter. Angles are determined on the unit circle, and increase in a
counterclockwise direction. When the angle requested is out of range, a character baseline
of O degrees is used. When text is rotated some of it may disappear from the workstation.

The ability of a device to rotate text is returned in the 37th element of the Open
Workstation workout array (see "Open Workstation").

3-118 Graphics Development Toolkit

Alpha Text Routines

The Toolkit includes many VDI routines that control the placement of document
quality text on a workstation. This type of quality text is available in graphics
mode, and is called alpha text.

You can control multiple fonts, interline spacing, underlining, placement,
superscripting, subscripting, and other features by using alpha text routines.

Alpha text is displayed to the best resolution and accuracy of the workstation. It
is defined in NDC units. All numeric sizes and locations are in NDC units.

Routines included in this section are:

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript/Superscript Mode
• Set Alpha Text Underline Mode.

Toolkit Routines 3-119

Inquire Alpha Text Capabilities

Purpose:

Format:

Input:

Output:

Returns information regarding the alpha text features of the workstation.

Inquire Alpha Text Capabilities
(handle, capabilities)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

capabilities
A 15-element array containing returned information regarding the alpha text capabilities of
the device.

capabilities(l)
Superscript capability:

0=No
l=Yes

capabilities(2)
Subscript capability:

0=No
l=Yes

capabilities(3)
Underline capability:

0=No
l=Yes

capabilities(4)
Overstrike capability:

0=No
l=Yes

3-120 Graphics Development Toolkit

Inquire Alpha Text Capabilities

capabilities(S)
Number of discrete alpha text sizes (1 to device maximum).

capabilities(6)
Discrete size of the default font.

capabilities(7)
Character positioning capability flag:

0 = Characters positioned on cell boundaries.

1 = Characters positioned on a finer grid than a character cell, not necessarily the
same grid as graphics.

capabilities(8)
The number of horizontal character cell positions across the workstation in the default
font. For a typical display or printer that can place text only on cell boundaries, this
is 80.

capabilities(9)
The number of vertical character cell positions down the workstation in the default
font. This is 24 for a typical display and 66 for a typical printer that can place text
only on cell boundaries.

capabilities(l 0)
The number of horizontal character cell positions represented by the distance
specified in capabilities(l4). Use capabilities(14) divided by capabilities(JO) to
determine the width of a character cell.

capabilities(l 1)
The number of vertical character cell positions represented by the distance specified
in capabilities(15). Use capabilities(l5) divided by capabilities(ll) to determine the
height of a character cell.

capabilities(12)
The number of horizontal alpha text grids represented by the distance specified in
capabilities(14). Use capabilities(14) divided by capabilities(12) to determine the
width of an alpha text grid.

Toolkit Routines 3-121

Inquire Alpha Text Capabilities

Status:

Remarks:

capabilities(13)
The number of vertical alpha text grids represented by the distance specified in
capabilities(15). Use capabilities(15) divided by capabilities(13) to determine the
height of an alpha text grid.

capabilities(l 4)
The width in NDC units of the number of character cells (in the default font)
specified in capabilities(JO). Use capabilities(14) divided by capabilities(JO) to
determine the width of a character cell.

capabilities(15)
The height in NDC units of the number of character cells (in the default font)
specified in capabilities(ll). Use capabilities(15) divided by capabilities(ll) to
determine the height of a character cell.

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

3-122 Graphics Development Toolkit

Inquire Alpha Text Cell Location

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the location of an alpha text character cell to your application program.

Inquire Alpha Text Cell Location
(handle, row, column, prop flag, xout, yout)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

row
Row number of character cell.

column
Column number of character cell.

prop flag
Proportional spacing flag:

0 = No proportional spacing
1 = Proportional spacing

If this value is 1, then the position represented by the x and y coordinates may not be
accurate.

xout
x-coordinate of lower left corner of character cell in NDC units.

yout
y-coordinate of lower left corner of character cell in NDC units.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-123

Inquire Alpha Text Font Capability

Purpose:

Format:

Input:

Output:

Returns features of a particular alpha text font and size.

Inquire Alpha Text Font Capability
(handle, font requested, size requested, capabilities)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

font requested
A font index.

size requested
Size of text in the desired font ranging from 1 to a device maximum.

capabilities
A seven-element array containing returned information regarding the alpha text font
capabilities.

capabilities(l)
The number of default horizontal character cells across the display surface.

0 = Requested font not available
-1 = Proportional font

capabilities(2)
The number of vertical character cells down the workstation in the font (0 = font not
available).

capabilities(3)
The number of horizontal character cell positions represented by the distance
specified in capabilities(6). Use capabilities(6) divided by capabilities(3) to determine
the width of a character cell (0 = font not available).

capabilities(4)
The number of vertical character cell positions represented by the distance specified
in capabilities(7). Use capabilities(7) divided by capabilities(4) to determine the
height of the character cell.

3-124 Graphics Development Toolkit

Status:

Remarks:

capabilities(5)
Proportional spacing flag:

0=No
l=Yes

capabilities(6)

Inquire Alpha Text Font Capability

The width, in NDC units, of the number of character cells (in the selected font)
specified in capabilities(]). Use capabilities(6) divided by capabilities(]) to determine
the width of a character cell, including any round off error. This value is not accurate
if the proportional spacing flag is set to 1, since the character cell size is not constant
(0 = font not available).

capabilities(7)
The height, in NDC units, of the number of character cells (in the selected font)
specified in capabilities(4). Use capabilities(7) divided by capabilities(4) to determine
the height of a character cell (0 = font not available).

The status is a value that the routine returns to indicate its successful completion.

0 = Not available.

)0 = Font availability.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-125

Inquire Alpha Text Position

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the current alpha text position to your application program.

Inquire Alpha Text Position
(handle, x out, y out)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

x out
x-coordinate of text position in NDC units.

y out
y-coordinate of text position in NDC units.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The alpha text position is returned in NDC units (from 0 to device maximum). The
workout(52) parameter contains the maximum NDC units for the x-axis and the
workout(53) parameter contains the maximum NDC units for the y-axis. The position of
(0,0) is the lower left corner of the display.

3-126 Graphics Development Toolkit

Inquire Alpha Text String Length

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the length of the text string, based on the current font in use.

Inquire Alpha Text String Length
(handle, char string)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

char string
A string of characters to be displayed on the output device.

None.

The status is a value that the routine returns to indicate its successful completion.

2:':: 0 = Length of text string in NDC units.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

If a control character (ASCII values 0-31 or) 126) appears in the string, it terminates the
string, and the string length up to that point is returned. This routine is useful when using
proportional fonts, since each character is not the same width. It is also useful for
adjusting the space between words, 'since multiplication of the width of a character cell in
NDC units may produce inaccurate results due to the inherent round off error in the
character cell size reported back to your program.

Toolkit Routines 3-127

Output Alpha Text

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Writes the text string at the current alpha text position.

Output Alpha Text
(handle, char string, x out, y out)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

char string
A string of characters to be displayed on the output device.

x out
The x -coordinate of the text position after the text string has been written. This is the same
value that would be returned if Inquire Alpha Text Position were invoked (see "Inquire
Alpha Text Position").

y out
They-coordinate of the text position after the text string has been written. This is the same
value that would be returned if Inquire Alpha Text Position were invoked (see "Inquire
Alpha Text Position").

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

All current alpha text features are honored. The first text position must be defined in the
Set Alpha Text Position routine (see "Set Alpha Text Position"). This routine changes the
alpha text position to the end of the text string after it writes the text.

Placement of the carriage return ASCII character in the string causes the alpha text
position to be set to the beginning of the line. Placement of a line feed control character
causes the alpha text position to be advanced by the current line spacing.

All other control characters (ASCII values 0-31 or) 126) are not written. Attempting to
display characters in a position past the x or y maximum of the display produces device
dependent results.

3-128 Graphics Development Toolkit

Set Alpha Text Color Index

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Selects the color of subsequent alpha text.

Set Alpha Text Color Index
(handle, index requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

index requested
The color index you select from the color table (0 to a device maximum).

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Color index selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Color indexes range from Oto a device-dependent maximum. If the color specified is
invalid, the closest value in range is chosen.

Toolkit Routines 3-129

Set Alpha Text Font and Size

Purpose:

Format:

Input:

Output:

Sets the hardware alpha text font and size for subsequent writing of alpha text.

Set Alpha Text Font and Size
(handle, font requested, size requested, capabilities)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

font requested
A number from the list below. If the desired font is not available, the standard font (1), is
used:

1 =Normal/standard font (the default)
2 = Bold--always provided for printers
3=Italics
4 = Proportionally spaced normal font
5 = Proportionally spaced bold
6 = Proportionally spaced italics

) 6 = Device-dependent

size requested
Size of the text wanted. The size number ranges from 1 to a device maximum. See
Appendix C for device-dependent information.

capabilities
An eight-element array containing returned information regarding the alpha text font
capabilities of the device.

capabilities(!)
Font size selected.

capabilities(2)
The number of horizontal character cell positions across the workstation in this font.
This is -1 if a proportional font is selected, since the character cell size is not
constant.

3-130 Graphics Development Toolkit

Status:

Remarks:

Set Alpha Text Font and Size

capabilities(3)
Default number of vertical character cells down the workstation in this font.

capabilities(4)
Number of horizontal character cell positions represented by the distance specified in
capabilities(7). Use capabilities(7) divided by capabilities(4) to determine the width
of a character cell.

capabilities(S)
Number of vertical character cell positions represented by the distance specified in
capabilities(8). Use capabilities(8) divided by capabilities(5) to determine the height
of a character cell.

capabilities(6)
Proportional spacing flag:

O=No
l=Yes

If this value is 1, then the size represented by capabilities (7) and capabilities (8) may
not represent the selected font.

capabilities(7)
The width in NDC units of the number of character cells (in the selected font)
specified in capabilities(4) Use capabilities(7) divided by capabilities(4) to determine
the width of a character cell (not accurate with proportional spacing).

capabilities(8)
The height in NDC units of the number of character cells (in the selected font)
specified in capabilities(5). Use capabilities(8) divided by capabilities(5) to determine
the height of character cell.

The status is a value that the routine returns to indicate its successful completion.

0 = Font unavailable

)0 = Font available

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-131

Set Alpha Text Line Spacing

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the vertical spacing between lines of alpha text.

Set Alpha Text Line Spacing
(handle, spacing requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

spacing requested
Line spacing requested (a positive value in NDC units).

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Line spacing selected in NDC units.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Vertical spacing is the amount of movement down the page when a line feed control
character is received in a string of alpha text. The default is the amount of space between
the lines of alpha text equal to the default character cell height.

Line spacing must always be a positive value. It changes the y-coordinate of the alpha text
position when a line feed is encountered. You need to update the line spacing to the
character cell height of a new font whenever fonts are changed.

3-132 Graphics Development Toolkit

Set Alpha Text Overstrike Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Turns overstriking on or off.

Set Alpha Text Overstrike Mode
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
Overstrike mode wanted:

0=Overstrike mode off (default)
1 = Overstrike mode on

None.

The status is a value that the routine returns to indicate its successful completion.

2: 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

The default is overstriking off. When overstriking is on, the alpha text position is not
automatically advanced after each character. You must change the position using the Set
Alpha Text Position routine (see "Set Alpha Text Position"). Carriage return and line feed
characters can still modify the current alpha text position.

Toolkit Routines 3-133

Set Alpha Text Pass Through Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Turns pass-through mode on or off.

Set Alpha Text Pass Through Mode
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
Pass-through mode wanted:

0=Pass-through mode off (default)
1 = Pass-through mode on

None.

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

Pass-through mode enables you to pass all characters to a workstation using the Output
Alpha Text routine (see "Output Alpha Text"). Control characters are ignored, except in
pass-through mode wherein they are sent to the workstation.

When this mode is in effect, the alpha text position is not automatically updated. All alpha
text features may not be honored. This routine can be used to send device-dependent setup
strings to a particular device.

3-134 Graphics Development Toolkit

Set Alpha Text Position

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the position of a string of alpha text characters on the workstation.

Set Alpha Text Position
(handle, x in, yin, x out, y out)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

X in
The x-coordinate of the lower left corner of the alpha text string location selected in NDC
units.

yin
The y-coordinate of the lower left corner of the alpha text string location selected in NDC
units.

x out
Actual x-coordinate of text position location that was selected by the driver in NDC units.

y out
Actual y-coordinate of text position location that was selected by the driver in NDC units.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine only sets the position of the text. Use the Output Alpha Text routine to write it
(see "Output Alpha Text"). The lower left corner of the first character (not the character
cell) in the string will be at the alpha text position.

Toolkit Routines 3-135

Set Alpha Text Quality

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the alpha text quality level.

Set Alpha Text Quality
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
Text quality requested (0-100 %) (Default= 100, highest quality).

None.

The status is a value that the routine returns to indicate its successful completion.

2::: 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

If an invalid mode is requested, the default (100) is selected. In draft quality mode (0),
small imperfections due to bidirectional printing or print head speeds are accepted. In high
quality range, the output is the highest quality possible using the device hardware.

3-136 Graphics Development Toolkit

Set Alpha Text Subscript/Superscript Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Causes alpha text to be offset below or above the text line.

Set Alpha Text Subscript/Superscript Mode
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
A mode number from the following list:

0 = Subscripting and superscripting off (default)
1 = Subscripting on
2 = Superscripting on

None.

The status is a value that the routine returns to indicate its successful completion.

~ 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

None.

Toolkit Routines 3-137

Set Alpha Text Underline Mode

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Turns alpha text underlining on or off.

Set Alpha Text Underline Mode
(handle, mode requested)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

mode requested
Underline mode requested:

0 = Underlining off (default)
1 = Underlining on

None.

The status is a value that the routine returns to indicate its successful completion.

2:: 0 = Mode selected.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

None.

3-138 Graphics Development Toolkit

Input Routines

This section describes the VDI input routines that supply graphic information to
the application program.

Input routines operate in two modes, request and sample. In request mode, the
input device is activated and waits for the application user to present a device
specific signal when the data is ready to be entered. The signal may be pressing
the enter key, a function key, or a switch to return the value. In the sample
mode, the pending input is returned to the application program immediately.
There are four types of graphics input, as follows:

• Choice. The choice input routines return the choice selection that has been
pressed.

• Locator. The locator input routines return to the application program the
point coordinates in NDC units of the locator device. A locator device may
be a mouse, crosshair, joystick, trackball, or set of cursor keys.

• String. String input routines return text strings entered on the keyboard.

• Valuator. The Valuator input routines return a scalar value between O and
32767 corresponding to the status code of a valuator device. A valuator
device may be a potentiometer or slide control.

Routines included in this section are:

• Input Choice (request mode)
• Input Choice (sample mode)
• Input Locator (request mode)
• Input Locator (sample mode)
• Input String (request mode)
• Input String (sample mode)
• Input Valuator (request mode)
• Input Valuator (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Toolkit Routines 3-139

Input Choice (request mode)

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Activates the choice device (the most common are function keys) and waits for a selection
before returning to the application program.

Input Choice
(handle, initial choice, final choice)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

initial choice
Any choice number from 1 to a device-dependent maximum (see Open Workstation). Use
this in conjunction with the status code to evaluate the final choice.

final choice
A choice number returned to the program indicating which function key was pressed by
the application user.

The status is a value that the routine returns to indicate its successful completion.

0 = Request unsuccessful, but no error occurred.

)0 = Request successful.

-1 =An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

3-140 Graphics Development Toolkit

Input Choice (sample mode)

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Polls the choice device. If a choice is pending, it is returned.

Input Choice
(handle, final choice)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

final choice
The choice number is returned to this variable when the sample is taken. A zero is
returned if a choice has not been made at the time of the sample.

The status is a value that the routine returns to indicate its successful completion.

0 = Sample unsuccessful, but no error occurred.

)0=Sample successful.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

None.

Toolkit Routines 3-141

Input Locator (request mode)

Purpose:

Format:

Input:

Causes the graphics cursor to be displayed on a workstation until a selection is made.

Input Locator
(handle, initial xy, ink, rubberband, echo handle, final xy, terminator)

handle
The unique device ID returned by the Open Workstation routine for the input device when
the workstation is opened. Refers to a specific graphics device when multiple workstations
are open.

initial xy
A two-element array containing the initial locator coordinates.

initial xy(l)
x-coordinate of locator initial position in NDC units.

initial xy(2)
y-coordinate of locator initial position in NDC units.

ink
The method of movement of the cursor is device-dependent. If ink is on, a line is drawn
between the initial locator position and the final locator position. The line has the current
polyline attributes, such as color and line type. The inking mode choices available are:

0=Off
l=On

rubberband
If a rubberband line is chosen, a movable line is drawn between the initial locator position
and the current position of the locator device.

The line changes dynamically as the input device changes position. When the locator is
terminated, the last rubberband line is removed from the display surface. See "Remarks:"
for more information on rubberbanding. The rubberbanding mode numbers are:

0 = Rubberbanding off
1 = Rubberband line
2 = Rubberband rectangle

3-142 Graphics Development Toolkit

Output:

Status:

Remarks:

Input Locator (request mode)

echo handle
Device ID for the output device that displays the tracking cross (graphics cursor). This ID
is returned when the workstation is opened. The handle and the echo handle may be the
same, indicating that there is only one device for both input and output.

final xy
A two-element array containing the final locator coordinates.

final xy(l)
x-coordinate oflocator final position in NDC units.

final xy(2)
y-coordinate of locator final position in NDC units.

terminator
An ASCII value from the input device is returned to this variable. For keyboard terminated
locator input, this is the ASCII value of the key struck to terminate input. For non
keyboard terminated input (for example, tablet or mouse) the valid locator terminators
begin with ASCII value 032 (space) and increase from there.

The status is a value that the routine returns to indicate its successful completion.

0 = Request unsuccessful.

)0 = Request successful.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

Note: If this routine returns an error code of -2692, the specified echo handle is not valid.

If rubberband rectangle is specified, a rectangle is drawn using the initial locator position
as one corner, and the current position of the locator device as the opposite corner. The
rectangle changes dynamically as the input device changes position. When the locator is
terminated, the last rubberband rectangle is removed from the workstation. If an invalid
mode is specified, then rubberbanding is turned off.

Note: The rubberbanding function is device-dependent and may not be available with all
devices supported by this routine.

Toolkit Routines 3-143

Input Locator (request mode)

When locator is invoked, a tracking cross appears on the screen at the initial locator
position. The cross is moved with some graphics input device (such as a mouse) or by
pressing one of the cursor movement keys (up, down, left, right).

Initially, the graphics cursor moves in large increments. Pressing the Insert key decreases
the size of the movements for cursor keys. Pressing the Insert key again, causes the
increments of movement to toggle back to the previous size.

When the cross is at a desired location, the point is entered by pressing either a button on
the graphics input device or by pressing any alpha key. When a point is entered, its
coordinates are returned to the application program.

3-144 Graphics Development Toolkit

Input Locator (sample mode)

Purpose:

Format:

Input:

Output:

Returns the current position of the graphics input cursor without waiting for operator
interaction.

Input Locator
(handle, xyin, xyout, pressed, released, keystate)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

xyin
The initial locator position in NDC units.

xyin(l)
Initial x position of locator.

xyin(2)
Initial y position of locator.

xyout
The current locator position in NDC units.

xyout(l)
Current x position of locator.

xyout(2)
Current y position of locator.

pressed
An integer that represents those buttons that have changed state from released to pressed
since the last input request.

released
An integer representing those buttons that have changed state from pressed to release since
the last input request.

keystate
This is the current button state for the input device.

Toolkit Routines 3-145

Input Locator (sample mode)

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

0 = Sample unsuccessful.

~ 1 = Sample successful.

-1 = An error has occurred. The actual ertor can be retrieved by invoking the Inquire
Error routine (see "Inquire Error").

None.

3-146 Graphics Development Toolkit

Input String (request mode)

Purpose:

Format:

Input:

Output:

Accepts character input from the keyboard and waits for the input before proceeding with
the application.

Input String
(handle, max length, echo mode, echo xy, char string)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

max length
Maximum string length.

echo mode
An integer indicating whether the string will be displayed or not (cannot be used in cursor
mode):

0 = Do not display input characters
1 = Display input characters

echo xy
A two-element array containing the position of the characters if they are displayed.

echo xy(l)
x-coordinate of the text display position in NDC units.

echo xy(2)
y-coordinate of the text display position in NDC units.

char string
Output string passed from the keyboard to the application program. The char string will be
less than or equal to the max length parameter.

Toolkit Routines 3-147

Input String (request mode)

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

0 = Request unsuccessful.

)0 = Request successful.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine activates the keyboard and any characters up to a Return terminator or line
feed are returned. The Return terminator or line feed is not included in the characters
returned.

Line editing characters have their normal effect and can be used if errors are made. For the
default editing characters, see "Set Line Edit Characters." The maximum string length
must be ~ 1. This routine terminates when the maximum length is reached or a line
terminator has been entered.

3-148 Graphics Development Toolkit

Input String (sample mode)

Purpose:

Format:

Input:

Output:

Polls the keyboard of the system.

Input string
(handle, max length, echo mode, echo xy, char string)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

max length
Maximum string length.

Note: char string is the length of the string returned or the length of max length
(whichever is smaller).

echo mode
An integer indicating whether the string will be displayed or not (cannot be used in cursor
mode):

0 = Do not display input characters
1 = Display input characters

echo xy
A two-element array containing the position of the characters if they are displayed.

echo xy(l)
x-coordinate of the text display position in NDC units.

echo xy(2)
y-coordinate of the text display position in NDC units.

char string
Output string passed from the keyboard to the application program. char string is less than
or equal to the max length parameter.

Toolkit Routines 3-149

Input String (sample mode)

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

0 = Sample unsuccessful (characters not available).

)0 = Sample successful (value returned equals number of characters returned).

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

The line editing characters affect the input to this routine. For information on editing
characters, see "Set Line Edit Characters." If there is any pending input, it is returned. The
input is stopped when the queue is empty, if a line terminator is encountered, or if the
maximum string length is exceeded. See Appendix C, "Graphics Drivers", for information
on the string device for the workstation.

3-150 Graphics Development Toolkit

Input Valuator (request mode)

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Activates the valuator (potentiometer) device and the user sets it to the desired value.

Input Valuator
(handle, initial value, echo handle, final value)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

initial value
An initial value for valuator to start from, in NDC units. When the valuator device is
moved, the final value is calculated from this.

echo handle
Device ID for the output device that displays the tracking cross (graphics cursor). This ID
is returned when the workstation is ·opened.

final value
The value on the device after this routine has run. This value is returned in a 0-32767
range to indicate the valuator position.

The status is a value that the routine returns to indicate its successful completion.

0 = Request unsuccessful.

)0 = Request successful.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

Toolkit Routines 3-151

Input Valuator (sample mode)

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the current value of the valuator device without waiting for operator interaction.

Input Valuator
(handle, final value)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

final value
The current valuator value if the sample was successful. This value is returned in a
0-32767 range to indicate the valuator position.

The status is a value that the routine returns to indicate its successful completion.

0 = Sample unsuccessful.

)0 = Sample successful.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine is not supported by any of the device drivers in the IBM RT PC Graphics
Development Toolkit.

3-152 Graphics Development Toolkit

Read Cursor Movement Keys

Purpose:

Format:

Input:

Output:

Determines if a cursor movement key was struck and returns the resultant direction in
integer form.

Read Cursor Movement Keys**
(handle, input mode, direction, key)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

input mode
Input mode:

1 =Request
2=Sample

direction
A number indicating the direction key pressed is returned to this variable. The following
list describes the values returned to the direction variable:

-1 =No keystroke occurred (sample mode only)
0 = A keystroke besides a cursor movement key was struck
1 = Down and left
2=Down
3 = Down and right
4=Left
5 = Value not defined
6=Right
7 = Up and left
8=Up
9 = Up and right

key
If a cursor movement key was struck, the ASCII decimal equivalent value of the key (1 to
9) is returned to this variable.

Toolkit Routines 3-153

Read Cursor Movement Keys

Status:

Remarks:

The status is a value that the routine returns to indicate its successful completion.

O=No error.

-1 = An error has occurred. The actual error can be retrieved by involdng the Inquire Error
routine (see "Inquire Error").

This routine can be used in either the graphics or cursor mode.

3-154 Graphics Development Toolkit

Set Line Edit Characters

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Sets the current line editing character.

Set Line Edit Characters
(handle, line del, char del)

handle
The unique device ID returned by the Open Workstation routine when the workstation is
opened. Refers to a specific graphics device when multiple workstations are open.

line del
Character to use to delete the current line (the CtrLU or ASCII NAK (ASCII value 21) is
the default).

char del
Character to use to delete previous character (the CtrLH or ASCII Backspace (ASCII
value 8) is the default).

None.

The status is a value that the routine returns to indicate its successful completion.

0=No error.

-1 = An error has occurred. The actual error can be retrieved by invoking the Inquire Error
routine (see "Inquire Error").

This routine applies to input string routines only.

Toolkit Routines 3-155

Error Handling

This section describes the error handling feature when the routines return an
error code. The Inquire Error routine is the only Toolkit routine call described
in this section.

3-156 Graphics Development Toolkit

Inquire Error

Purpose:

Format:

Input:

Output:

Status:

Remarks:

Returns the last error that has occurred.

Inquire Error

None.

None.

The status is a value that the routine returns to indicate the type of error that has occurred.

2::: 0 = No error.

(0 = The error code. Refer to Appendix D, "Error Codes", for an explanation of each
error code.

This routine returns the actual last error encountered. You call this routine after another
VDI routine returns a -1 status.

Note: Refer to Appendix D, "Error Codes", for information about error handling and for
the cause of error conditions.

Toolkit Routines 3-157

3-158 Graphics Development Toolkit

Appendix A. Installing the Graphics Development Toolkit

The Graphics Development Toolkit is a library of software routines that enables
you to develop device-independent application programs. This appendix
explains how to install the IBM RT PC Graphics Development Toolkit product.
Before you install the Toolkit on your system, the AIX Operating System and
the Toolkit device drivers must be installed. These device drivers are provided
as part of the IBM RT PC Multi-User programs.

The / etc/master file of the AIX Operating System contains the default size for
shared memory areas. This default is 512K bytes. The Graphics Development
Toolkit requires that this size remain at least 512K bytes.

Installation Procedure

This section describes the installation procedure. If any error messages occur
during the procedure, see the IBM RT PC Messages Reference.

The Graphics Development Toolkit product includes a single diskette. Remove
this diskette from the plastic envelope at the back of the binder.

1 . Make sure that no one else is using the system and that no user programs
are running. If the system is not in a quiet state, problems may occur as you
install the various files for your licensed product.

2. Log in as super-user or as a member of the system group. You must have
super-user authority, or be a member of the system group, to install a
licensed program product. See the IBM RT PC Using and Managing the
AIX Operating System for more information.

After you log in, you will see the# prompt.

3. Type installp then press Enter.

Installing the Graphics Development Toolkit A-1

4. The following message appears to remind you to make sure that the system
is quiet:

000-123 Before you continue, you must make sure there
is no other activity on the system. You
should have just restarted the system, and no
other users should be logged on. Refer to
your messages reference book for more
information.

Do you want to continue with this command?
(y or n)

Type y and press Enter to continue with the installp command.

5. Insert the program diskette in response to the prompt. Then press Enter.

Insert the program diskette into diskette drive
"/dev/rfd0" and then press Enter.

6. In response to the prompt, type y to indicate that you wish to continue with
the installation. Then, press Enter.

The program "Graphics Development Toolkit"
will be installed.

Do you want to do this? (y/n)

7. If a current version of this program has already been installed on your
system, a message explains that the version of the program you are about to
install is the same as or older than the version you already have installed on
your system. Indicate whether you wish to go ahead with the installation.

You are about to install version "xx.xx.xxxx" of this
program. This version is the same as or older than
the version currently on your system.
Do you want to do this? (y/n)

If you type y and press Enter, the installation process begins.

Please insert the diskette in /dev/rfd0.

A-2 Graphics Development Toolkit

Your program diskette should already be in diskette drive /dev/rfd0. 1ype
Return is the same as Press Enter. As installation continues, various files
are listed on the screen as they are copied to the fixed disk.

8. When installation is complete, remove the program diskette from the
diskette drive and replace it in its protective envelope in the binder.

The installation process has completed.

9. Log off as super-user or as a member of the system group.

You may now begin using the Graphics Development Toolkit.

Checking Distribution Files

Following is a list of the files on the Graphics Development Toolkit diskette.
These files will be transferred by the installation procedure to the directories
indicated.

Graphics Development Toolkit requires approximately 800 blocks on the /usr
minidisk. See IBM RT PC Installing and Customizing the AIX Operating System
for additional information concerning minidisk size requirements and planning.

The language libraries reside in the directory /usr/lpp/vdi/lib. They are:

basvdi.a
cvdi.a
f77vdi.a
pasvdi.a

The following are include files for Pascal and BASIC programs. They reside in
the /usr/include directory.

pasvdi.int
extrnvdi. bas

Installing the Graphics Development Toolkit A-3

The demonstration program and its source file reside in /usr/lpp/vdi/bin. They
are:

vdidemo.c
vdidemo

Additionally, the device driver files are loaded into the directory
/usr/lpp/vdi/drivers by the Multi-User programs install. They are:

vdi3812
vdi4201
vdi5152
vdi5182
vdi6180
vdi7371
vdi7372
vdi7375
vdiacg
vdiamg
vdiega
vdiemg
vdigst
vdimeta

Setting Environmental Parameters

To use the Graphics Development Toolkit, you must export certain
environmental parameters to the AIX Operating System. This can be done from
the operating system, in either the "sh" or "csh" shell. Refer to the IBM RT PC
AIX Operating System Commands Reference for a description of the "sh" and
"csh" commands. The environmental commands can also be included in
".profile" (sh) or ".login" (csh) files which are executed each time a user logs in.

A-4 Graphics Development Toolkit

Your program diskette should already be in diskette drive /dev/rfd0. 1ype
Return is the same as Press Enter. As installation continues, various files
are listed on the screen as they are copied to the fixed disk.

8. When installation is complete, remove the program diskette from the
diskette drive and replace it in its protective envelope in the binder.

The installation process has completed.

9. Log off as super-user or as a member of the system group.

You may now begin using the Graphics Development Toolkit.

Checking Distribution Files

Following is a list of the files on the Graphics Development Toolkit diskette.
These files will be transferred by the installation procedure to the directories
indicated.

Graphics Development Toolkit requires approximately 800 blocks on the /usr
minidisk. See IBM RT PC Installing and Customizing the AIX Operating System
for additional information concerning minidisk size requirements and planning.

The language libraries reside in the directory /usr/lpp/vdi/lib. They are:

basvdi.a
cvdi.a
f77vdi.a
pasvdi.a

The following are include files for Pascal and BASIC programs. They reside in
the /usr/include directory.

pasvdi.int
extrnvdi. bas

Installing the Graphics Development Toolkit A-3

The demonstration program and its source file reside in /usr/lpp/vdi/bin. They
are:

vdidemo.c
vdidemo

Additionally, the device driver files are loaded into the directory
/usr/lpp/vdi/drivers by the Multi-User programs install. They are:

vdi3812
vdi4201
vdi5152
vdi5182
vdi6180
vdi7371
vdi7372
vdi7375
vdiacg
vdiamg
vdiega
vdiemg
vdigst
vdimeta

Setting Environmental Parameters

To use the Graphics Development Toolkit, you must export certain
environmental parameters to the AIX Operating System. This can be done from
the operating system, in either the "sh" or "csh" shell. Refer to the IBM RT PC
AIX Operating System Commands Reference for a description of the "sh" and
"csh" commands. The environmental commands can also be included in
".profile" (sh) or ".login" (csh) files which are executed each time a user logs in.

A-4 Graphics Development Toolkit

1. Set the VDIPATH parameter. This parameter provides a path to the
directory where the IBM RT PC Graphics Development Toolkit device
driver files reside. The installation procedure for the IBM RT PC Multi
User programs places the device driver files in /usr/lpp/vdi/drivers.
VDIPATH is set as follows:

VDIPATH=/usr/lpp/vdi/drivers
export VDIPATH

(or)

setenv VDIPATH /usr/lpp/vdi/drivers

(sh shell)

(csh shell)

2. Any Logical Device Names (device driver logical names) which will be
referenced in the Open Workstation command must be assigned to the
appropriate device driver file names. These logical names are user
selectable; the Graphics Development Toolkit has no pre-assigned logical
names . The device driver files must be located in the directory specified by
VDIPATH.

The logical device name is assigned as follows:

PRINTERA=vdi5182
export PRINTERA

(or)

setenv PRINTERA vdi5182

(sh shell)

(csh shell)

3. The device driver file names referenced in step 2 must be assigned to the
system's physical devices.

For example:

vdi5182=/dev/ttyJ
export vdi5182

(or)

(sh shell)

setenv vdi5182 /dev/ttyJ (csh shell)

Installing the Graphics Development Toolkit A-5

Note: The devices program must be executed from the shell to establish tty
ports for your graphics output devices. This program is native to the IBM AIX
Operating System, but you must be a super-user to access it. The program
prompts you for the required information. Refer to the IBM RT PC Installing
and Customizing the AIX Operating System for information about how to run the
devices program.

4. If you select a printer, you may also want to pipe the output through the
system's spooler. To do this, enter the following in place of step 3.

vdi5182=' I print -plot lpn'
export vdi5182

(or)

setenv vdi5182 'I print -plot lpn'

Where lpn is the printer device name.

(sh shell)

(csh shell)

5. If you intend to send output to a plotter from a console display driver that is
open, you must set a special environmental parameter called
MESSAGEPORT. The MESSAGEPORT parameter may also be used to
select a display device for the metafile "message" output.

The default for this parameter is /dev/tty. If you do not set this parameter to
/dev/hft, prompts from the plotter (such as those to change paper and pens)
will not appear on the console. The commands to set MESSAGEPORT are:

MESSAGEPORT=/dev/hft
export MESSAGEPORT

(or)

setenv MESSAGEPORT /dev/hft

A-6 Graphics Development Tool1u"

(sh shell)

(csh shell)

6. If you send output to a metafile (device driver fi le vdimeta), you may want
to assign the output metafile file name to be used instead of the default,
METAFILE.DAT.

The commands to do this are:

METAOUTPUT=filename
export METAOUTPUT

(or)

setenv METAOUTPUT filename

Compiling and Running the Demo Program

(sh shell)

(csh shell)

A demonstration program has been included with the IBM RT PC Graphics
Development Toolkit. To run this program:

1. Ensure that the VDIPATH parameter is set correctly, as noted in step 1 of
the procedure to set environmental parameters .

2. Select a graphics output device. The demonstration program uses logical
device name DISPLAY Ensure that the proper environmental parameters
for this device have been set, as noted in steps 2 and 3 of the procedure to
set environmental parameters .

3. Refer to Appendix C for a description of the device driver for the device
you have selected. Set any specific environmental parameters required for
this device.

4 . To move to the appropriate directory, type:

cd /usr/lpp/vdi/bin

and press the Enter key.

5. To compile the demonstration program, type:

cc -0 vdidemo.c /usr/lpp/vdi/lib/cvdi.a -o vdidemo

and press the Enter key.

Installing the Graphics Development Toolkit A-7

6. To execute the demonstration program, type:

vdidemo

and press the Enter key.

A-8 Graphics Development Toolkit

Appendix B. Example Programs

The Graphics Development Toolkit distribution diskette contains both the source
and executable files for a demonstration program written in the C language.
This program is intended to demonstrate some of the capabilities of the Toolkit.

The executable demonstration program is:

/usr/lpp/vdi/bin/vdidemo

The demonstration's source file is:

/usr /lpp/vdi/bin/vdidemo.c

Use one of the IBM RT PC AIX Operating System editing products to view the
source file for the example program. To compile and run the example program,
refer to the procedure at the end of Appendix A, "Installing the Graphics
Development Toolkit."

This appendix contains some example programs that are not provided with the
distribution diskette. The text of these examples must be entered with one of the
editing products. The example programs use logical device name DISPLAY

Throughout this appendix, each section begins with one or more figures that
illustrate the output of some example program. Then, the code for that example
program is listed.

Example Programs B-1

Example 1-Bar Function

BAR

NOTE: (Coordinates in NDC units)
Left lower (xJy) : (9830J 9320)
Right upper (XJ y) : C 16383J 13980)

Figure B-1. Bar Function, Part One

B-2 Graphics Development Toolkit

Average Residential ~ilowatt Usage I--Jun ~

May

Apr

Mar

Feb

Jan

500 600 700 800 900 1000
KWH

Figure B-2. Bar Function, Part 1\vo

#include <stdio.h>

main()
/**/
/* *I
I* *I
/* Example Program - Use of Bar Function */
I* *I
I* *I
/**/
{
#define BLACK 0
#define WHITE 1

#define SOLID 1
#define HATCH 2

#define NO_ECHO 0
#define ECHO 1

Example Programs B-3

#define NARROW_X 4
#define NARROW_DIAG 1

#define LEFT 0
#define CENTER 1
#define BOTTOM 0

extern short v_opnwk(), v_clrwk(), vst_height();
extern short vsf_interior(), vsf_style(),vsf_color();
extern short v_bar(), vsrn_height(), v_pmarker();
extern short v_gtext(),vst_color(), vrq_string();
extern short vsf_color(), v_fillarea(), vsl_color();
extern short v_pline(), vrq_string(), v_enter_cur();
extern short vst_alignment(), v_clswk(), vq_error();

short savary[66J, dev_handle;
static short savin[J={ 1,

1,
1,
3,
1,
1,
1,
o,
0,
1,
1,

'D' 'I'' 1 S1
' 'P'' 'L'' 'A'' 'Y'' I '};

static char *months[] = { "Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun" } ;

short next_line, xwid, cwid, chgt, tx, ty, count;

B-4 Graphics Development Toolkit

short pc15y, pc22y, pc27y,
short pcJ5y, pc40y, pc4Jy,
short pc51y, pc59y, pc67y;
short pc72y, pc75y, pc80y,

short pclOx, pc20x, pc25x,
short pc42x, pc4Jx, pc44x,
short pc50x, pc55x, pc65x,
short pc78x, pc90x;

short echo_xy[2], xy[12];
short horz_out, vert_out,
char tstr[6];
char label[81];

echo_xy[OJ O;
echo_xy[l] O;

pcJOy;
pc48y;

pc85y, pc95y;

pcJ7x, pc40x;
pc47x, pc48x;
pc70x, pc7Jx;

tmp, xaxis, yaxis,

/* Open the Workstation*/

i;

if(v_opnwk(savin, &dev_handle, savary) < 0){
error_handler();
exit(O);

}

if (savary[14] != 0){ /* GDP's Available*/
for (i = savary[14] ; i >= 0; i--){

if (savary[i + 15] == 1) break;
}

/* If bar gdp not available,
/* close the workstation.
if (i >= 0) {

/* savary[51] = max. NDC
/* savary[52] = max. NDC
xaxis savary[51];
yaxis = savary[52];

*I
*I

space - X

space - y
axis
axis

*I
*I

Example Programs B-5

/*setup tags as %'s of max. x and y axes*/
pc15y (yaxis / 100) * 15
pc22y = (yaxis / 100) * 22
pc27y = (yaxis / 100) * 27
pc30y (yaxis / 100) * 30
pc35y (yaxis / 100) * 35
pc40y (yaxis / 100) * 40
pc43y (yaxis / 100) * 43
pc48y (yaxis / 100) * 48
pc51y = (yaxis / 100) * 51
pc59y = (yaxis / 100) * 59
pc67y = (yaxis I 100) * 67
pc72y (yaxis / 100) * 72
pc75y (yaxis / 100) * 75
pc80y (yaxis I 100) * 80
pc85y (yaxis / 100) * 85
pc95y (yaxis I 100) * 95

pcl0x (xaxis / 100) * 10
pc20x (xaxis / 100) * 20
pc25x (xaxis I 100) * 25
pc37x (xaxis / 100) * 37
pc40x (xaxis / 100) * 40
pc42x (xaxis / 100) * 42
pc43x (xaxis / 100) * 43
pc44x (xaxis I 100) * 44
pc47x (xaxis / 100) * 47
pc48x (xaxis I 100) * 48
pc50x (xaxis / 100) * 50
pc55x (xaxis / 100) * 55
pc65x (xaxis / 100) * 65
pc70x (xaxis / 100) * 70
pc73x (xaxis / 100) * 73
pc78x (xaxis / 100) * 78
pc90x (xaxis / 100) * 90

B-6 Graphics Development Toolkit

/* first display= bar primitive*/
if (v_clrwk(dev_handle) < 0)

error_handler();

/* set requested text height 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid,
&chgt) <0)

error_handler() ;

/* set requested fill interior= hatch */
if(vsf_interior(dev_handle, HATCH)< 0

error_handler();

/* set fill color*/
if(vsf_color(dev_handle, WHITE)< 0)

error_handler();

for (i = 1; i <= 11 i++){

}

/* set hatch index*/
if(vsf_style(dev_handle, (i + 4) % 6) < 0)

error_handler();

xy[0J =

(short)((0.5 - ((float)(i - 1) * 0.02)) *
(float) xaxis);
xy[l] =

(short)((0.6 - ((float)(i - 1) * 0.02)) *
(float)yaxis);
xy[2] =
(short)((0.7 - ((float)(i - 1) * 0.02)) *
(float)xaxis);
xy[3] =

(short)((0.8 - ((float)(i - 1) * 0.02)) *
(float) yaxis);

/* output bar*/
if(v_bar(dev_handle, xy) < 0)

error_handler();

Example Programs B-7

B-8 Graphics Development Toolkit

/* output 2 polymarkers (stars) to */
/* mark bar corners */
/* set marker height to 800 NDC units*/
if(vsm_height(dev_handle, 800) < 0)

error_handler();
if(v_pmarker(dev_handle, 2, xy) < 0)

error_handler();

/* label drawing with text*/
if (vst_alignment(dev_handle,

CENTER,
BOTTOM,
&horz_out,
&vert_out) < 0)

error_handler();

if (v_gtext(dev_handle,
pc50x,
pc85y,
"BAR") < 0)

error_handler();

if (vst_alignment(dev_handle,
:.,EFT,
BOTTOM,
&horz_out,
&vert_out) < 0)

error_handler();

next_line = pcJOy;
if (v_gtext(

dev_handle,
pclOx,
next_line,
"NOTE: (Coordinates in NDC units)")< 0)

error_handler();

/* build label strings and output it*/
sprintf(label,

"Left lower (x,y) : (%d, %d)",
xy[OJ,
xy[l]);

next_line -=chgt;
if (v_gtext(dev_handle,

pclOx,
next_lir.e,
label) < 0

error_handler();

sprintf(label,
"Right upper (x,y)
xy[2],
xy[JJ);

next_line -=chgt;
if (v_gtext(dev_handle,

pclOx,
next_line,
label) < 0

error_handler();

(%d, %d)",

/* wait for keystroke to continue*/
if(vrq_string(dev_handle,

1,
NO_ECHO,
echo_xy,
tstr) < 0

error_handler();

/* 2nd display - bar graph*/
if (v_clrwk(dev_handle) < 0)

error_handler();

Example Programs B-9

/* label x axis of graph with KWH values*/
for (i = 0; i <= 5; i++){

}

tx =
(short)((0.22 + ((float)i * 0.1)) *
(float)xaxis);

tmp = (i + 5) * 100;
sprintf(label,"%d", tmp);
if(v_gtext(dev_handle,

tx,
pc22y,
label)< 0)

error_handler();

/* label they axis of graph with months*/
for (i = 0; i < 6; i++){

}

ty =

(short)((O.J + ((float)i * 0.08)) *
(float)yaxis);

if(v_gtext(dev_handle,
pclOx,
ty,
months[i]) < 0)

error_handler();

/* set fill interior style to solid*/
/* and color to magenta */
if(vsf_interior(dev_handle, SOLID)< 0

error_handler();

/* output the bars to graph*/
xy[OJ = pc20x; /* doesnt change*/

xy[l] pc67y;
xy[2] pc7Jx;
xy [J] pc75y;
if(v_bar(dev_handle, xy) < 0)

error_handler();

B-10 Graphics Development Toolkit

xy[l] pc59y;
xy[2] pc65x;
xy [3 J pc67y;
if(v_bar(dev_handle, xy) < 0)

error_handler();

xy[l] pc51y;
xy[2] pc4Jx;
xy[JJ pc59y;
if(v_bar(dev_handle, xy) < 0)

error_handler();

xy[l] pc4Jy;
xy[2] pcJ7x;
xy[JJ pc51y;
if(v_bar(dev_handle, xy) < 0)

error_handler();

xy[l] pcJ5y;
xy[2] pc50x;
xy[JJ pc4Jy;
if(v_bar(dev_handle, xy) < 0)

error_handler();

xy[l] pc27y;
xy[2] pc44x;
xy[J] pcJ5y;
if(v_bar(dev_handle, xy) < 0)

error_handler();

/* change fill= hatch, narrow diagonal */
if(vsf_interior(dev_handle, HATCH)< 0)

error_handler();
if (vsf_style(dev_handle, NARR0W_DIAG) < 0)

error_handler();

Example Programs B-11

/* output filled areas */
/* area has 4 corners*/
count 4;
xy[OJ pc20x;
xy[l] pc75y;
xy[2] pc25x;
xy[JJ pc80y;
xy[4] pc78x;
xy[5] pc80y;
xy[6] pc7Jx;
xy[7] pc75y;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

xy[OJ pcJ7x;
xy[l] pc4Jy;
xy[2] pc40x;
xy [3 J pc48y;
xy[4] pc55x;
xy[5] pc48y;
xy[6] pc50x;
xy[7] pc4Jy;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

xy[OJ pc7Jx;
xy[l] pc67y;
xy[2] pc7Jx;
xy[J] pc75y;
xy[4] pc78x;
xy[5] pc80y;
xy[6] pc78x;
xy[7] pc72y;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

B-12 Graphics Development Toolkit

/* next set of areas have J corners*/
count J;

xy[OJ pc65x;
xy[l] pc67y;
xy[2] pc65x;
xy [J] pc59y;
xy[4] pc70x;
xy[5] pc67y;
if(v_fillarea(dev_handle, count, xy) < 0

error_handler();

xy[OJ pc4Jx;
xy[l] pc~9y;
xy[2] pc4Jx;
xy [J] p C 5 ly;
xy[4] pc48x;
xy[5] pc59y;
if(v_fillarea(dev_handle, count, xy) < 0

error_handler();

xy[OJ pcJ7x;
xy[l] pc51y;
xy[2] pcJ7x;
xy[JJ pc4Jy;
xy[4] pc42x;
xy[5] pc51y;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

Example Programs B-13

/* count goes back to 4 */
count 4;

xy[OJ pc50x;
xy[l] pc4Jy;
xy [2] pc55x;
xy[JJ pc48y;
xy [4 J pc55x;
xy[5] pc40y;
xy[6] pc50x;
xy[7] pcJ5y;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

/* three sided once more*/
count J;

xy[OJ pc44x;
xy[l] pcJ5y;
xy[2] pc44x;
xy[JJ pc27y;
xy[4] pc50x;
xy[5] pcJ5y;
if(v_fillarea(dev_handle, count, xy) < 0)

error_handler();

/* set the color to background*/
if (vsl_color(dev_handle, BLACK)< 0)

error_handler();

B-14 Graphics Development Toolkit

/* output polylines to delineate bars*/
count 2;

xy[OJ pc20x; /* remains same for awhile*/

xy[l] pc75y;
xy[2] pc7Jx;
xy[JJ pc75y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

xy[l] pc67y;
xy[2] pc7Jx;
xy [J J pc67y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

xy[l] pc59y;
xy[2] pc65x;
xy [3] pc59y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

xy[l] pc51y;
xy[2] pc4Jx;
xy[JJ pc51y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

xy[l] pc4Jy;
xy[2] pc50x;
xy[JJ pc4Jy;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

Example Programs B-15

xy[l] pcJ5y;
xy[2] pc50x;
xy[JJ pcJ5y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

xy[l] pc27y;
xy[2] pc44x;
xy[JJ pc27y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

if (v_gtext(dev_handle,
pclOx,
pc85y,
"Average Residential Kilowatt Usage")
< 0)

error_handler();

if (v_gtext(dev_handle,
pc47x,
pc15y,
"KWH") < 0

error_handler();

/* reset line color*/
if (vsLcolor(dev_handle, WHITE)< 0)

error_handler();

/* output polylines for graph axes*/
count 3;

xy[OJ pc20x;
xy[l] pc80y;
xy[2] pc20x;
xy [3 J pc27y;
xy[4] pc90x;
xy[5] = pc27y;
if(v_pline(dev_handle, count, xy) < 0)

error_handler();

B-16 Graphics Development Toolkit

}

}

}

/* wait for keystroke to continue*/
if(vrq_string(dev_handle,

1,
NO_ECHO,
echo_xy,
tstr) < 0

error_handler();

else
printf(

"Bar GDP not available on this device\n\r"
) ;

else{
printf(" No GDP's available on this device\n\r");

}

/* close the workstation*/
if (v_enter_cur(dev_handle) < 0)

error_handler();
if (v_clswk(dev_handle) < 0

error_handler();

/**/
I* *I

error_handler()
I* *I
/**/
{

extern short vq_error();

printf(" GDT error, number %d\n\r", vq_error());
}

Example Programs B-17

Example 2-Graphic Text Function

GRAPHIC TEXT HEIGHT

IBM

IBM

Figure B-3. Graphic Text Function, Height

B-18 Graphics Development Toolkit

Minimum height
592 NDC units

Maximum height
3414 NDC units

GRAPHIC TEXT ROTATION

1800 0

2700

NOTE: Text string has been rotated
0, 900, 1800, and 2700
tenth's of degrees

Figure B-4. Graphic Text Function, Rotation

Example Programs B-19

GRAPHIC TEXT ALIGNMENT
-IBrjl 11.!ltJ~
Top Left Top Center

-~ -•.u;:,p •• ~tj

Center Left Center

El Si:111
Bottom Left Bottom Center

Figure B-5. Graphic Text Function, Alignment

#include <stdio.h>

#define NO_ECHO 0
#define ECHO 1

#define BLACK 0
#define WHITE 1
#define CYAN 6
#define MAGENTA 7

#define SOLID 1

#define CENTER 1
#define LEFT 0
#define RIGHT 2

B-20 Graphics Development Toolkit

...
IIBM-
Top Right

~-■ 1.un-

Center Right

l1eM----Bottom Right

#define BOTTOM 0
#define TOP 2

short dev_handle;

main()
/**/
I* *I
I* *I
/* Example Program - Use of Graphic Text */
I* *I
I* *I
/**/
{
extern short v_opnwk(), v_clrwk(), vst_height();
extern short v_gtext(), vst_color();
extern short vsf_color(), vsf_interior();
extern short v_circle(), vst_rotation();
extern short vsl_color(), v_bar(), v_pline();
extern short v_enter_cur(), v_clswk();
extern short vst_alignrnent();

short savary[66J;
static short savin[J { 1,

1,
1,
3,
1,
1,
1,
0,
0,
1,
1,

ID','IJ,1s1,1pr,111,1A',1Y1,, I};

static char *halign[J = { "Left", "Center", "Rightn};
static char *valign[J = { "Bottom", "Center", "Top"};
short rninhgt, rnaxhgt, xwid, cwid, chgt, tx, ty;

Example Programs B-21

short savxy2, savxy0, savxyl, savxyJ, hreq, vreq, hsel;
short hgt, centerx, centery, vsel,

short pc05y, pc07y, pc20y,
short pc60y, pc70y, pc75y,
short pcl0x, pc15x, pcJ5x,

short xy[12];
short xaxis, yaxis, i, j;
char *ptr;
char label[81];

pc25y,
pc85y,
pc40x,

/* open the workstation*/

radius2, radius;

pc28y, pc50y;
pc90y, pc95y;
pc50x;

if(v_opnwk(savin, &dev_handle, savary) >= 0){

/* savary[51] = max. NDC space - x axis*/
/* savary[52] = max. NDC space - y axis*/
xaxis savary[51];
yaxis = savary[52];

minhgt savary[60];
maxhgt savary[61J;

/* set up tags as %1 s of max. x and y axes*/
pc05y (yaxis I 100) * 5;
pc07y (yaxis I 100) * 7;
pc20y (yaxis / 100) * 20;
pc25y (yaxis I 100) * 25;
pc28y (yaxis / 100) * 28;
pc50y (yaxis / 100) * 50;
pc60y (yaxis / 100) * 60;
pc70y (yaxis / 100) * 70;
pc75y (yaxis / 100) * 75;
pc85y (yaxis / 100) * 85;
pc90y (yaxis / 100) * 90;
pc95y (yaxis I 100) * 95;

pclOx (xaxis I 100) * 10;
pc15x (xaxis I 100) * 15;
pcJ5x (xaxis I 100) * 35;
pc40x (xaxis I 100) * 40;
pc50x (xaxis I 100) * 50;

B-22 Graphics Development Toolkit

!***************************/
I* *I
/* demonstrate text height*/
I* *I
/***************************/

if (v_clrwk(dev_handle) < 0)
error_handler();

/* set the text alignment*/
if(vst_alignment(dev_handle,

RIGHT,
CENTER,
&hsel,
&vsel) < 0)

error_handler();

/* set maximum height*/
if(vst_height(dev_handle,

maxhgt,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

if(v_gtext(dev_handle, pcJ5x, pc50y, "IBM")< 0)
error_handler();

/* set minimum height*/
if(vst_height(dev_handle,

minhgt,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

if(v_gtext(dev_handle, pcJ5x, pc70y, "IBM")< 0)
error_handler();

Example Programs B-23

/* set text height to 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

/* set the text alignment*/
if(vst_alignrnent(dev_handle,

CENTER,
TOP,
&hsel,
&vsel) < 0)

error_handler();

/* output label*/
if(v_gtext(dev_handle,

pc50x,
pc90y,
"GRAPHIC TEXT HEIGHT")< 0)

error_handler();

/* set the text alignment*/
if(vst_alignment(dev_handle,

LEFT,
CENTER,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
pc40x,
pc70y,
11 - Minimum height")< 0)

error_handler();

sprintf(label," %d NDC units", minhgt);
if(v_gtext(dev_handle,

pc40x,
pc70y - chgt,
label)< 0)

error_handler();

B-24 Graphics Development Toolkit

if(v_gtext(dev_handle,
pc40x,
pc50y,
" - Maximum height") < 0)

error_handler();

sprintf(label," %d NDC units"~ maxhgt);
if(v_gtext(dev_handle,

pc40x,
pc50y - chgt,
label)< 0)

error_handler();

wait_kybrd();

/******************************/
I* *I
/* demonstrate text rotation */
I* *I
/******************************/

if (v_clrwk(dev_handle) < 0)
error_handler();

/* if graphic text rotation not available*/
/* on device then skip */
if (savary[J6]){

/* set text color*/
if(vst_color(dev_handle, WHITE)< 0)

error_handler();

/* set text height to 1595 NDC units*/
if(vst_height(dev_handle,

1595,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

/* filled circle radius is 4 text cells wide*/
radius= (4 * cwid);

Example Programs B-25

/* set the text alignment*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&hsel,
&vsel) < 0)

error_handler();

/* set text height to 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

/* position labels two cell widths */
/* beyond circle */
radius2 =radius+ (2 * cwid) ;

if(v_gtext(dev_handle,
pc50x,
pc95y,
"GRAPHIC TEXT ROTATION") < 0)

error_handler();

/* set the text alignment*/
if(vst_alignment(dev_handle,

CENTER,
BOTTOM,
&hsel,
&vsel) < 0)

error_handler();

hgt= pc60y - (radius2 + (2 * chgt));

if(v_gtext(
dev_handle,
pc50x,
hgt,
"NOTE: Text string has been rotated")< 0)

error_handler();

hgt-= chgt;

B-26 Graphics Development Toolkit

if(v_gtext(
dev_handle,
pc50x,
hgt,
" 0, 900, 1800, and 2700
error_handler();

hgt-= chgt;
if(v_gtext(dev_handle,

pc50x,
hgt,
" tenth's of degrees
error_handler();

") < 0)

II) < 0)

/* set fill interior*/
if(vsf_interior(dev_handle, SOLID) < 0)

error_handler();

/* output background circle*/
centerx = pc50x;
centery = pc60y;
if(v_circle(dev_handle,

centerx,
centery,
radius)< 0

error_handler() ;

/* label 0, 900, 1800, 2700 tenth's of*/
/* degree positions on circle */
/* set the text alignment */
if(vst_alignrnent(dev_handle,

LEFT,
CENTER,
&hse l ,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
centerx + radius2,
centery,"0") < 0)

error_handler() ;

Example Programs B-27

/* set the text alignment*/
if(vst_alignment(dev_handle,

CENTER,
BOTTOM,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
centerx,
centery + radius +cwid,
"900 11

) < 0)
error_handler();

/* set the text alignment*/
if(vst_alignw.ent(dev_handle,

RIGHT,
CENTER,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
centerx - radius2,
centery,
11 1800 11) < 0)

error_handler();

/* set the text alignment*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
centerx,

B-28 Graphics Development Toolkit

centery - (radius+ cwid),
"2700") < 0)

error_handler();

}

/* set the text alignment*/
if(vst_alignment(dev_handle,

LEFT,
BOTTOM,
&hsel,
&vsel) < 0)

error_handler();

/* set text height to 1595 NDC units*/
if(vst_height(dev_handle,

1595,
&xwid,
&cwid,
&chgt) < 0

error_handler();

/* rotate nrnM" 0, 900, 1800, 2700 */
/* tenth's of degrees */
for (i = 0; i <= 2700; i+=900){

}

if(vst_rotation(dev_handle,i) < 0)
error_handler();

if(v_gtext(dev_handle,
centerx,
centery,
n IBM n) < 0)

error_handler();

/* reset rotation back to O */
if(vst_rotation(dev_handle,0) < 0

error_handler();

else{
printf("Graphic Text cannot be rotated");
printf(" on this device\n\r");
printf("Press any key\n\I'");

wait_kybrd();

Example Programs B-29

/*******************************/
I* *I
/* demonstrate text alignment */
I* *I
/*******************************/
if (v_clrwk(dev_handle) < 0)

error_handler();

/* set text height to 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid, &chgt) < 0)

error_handler();

/* set the text alignment*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
pc95y,
"GRAPHIC TEXT ALIGNMENT") < 0)

error_handler();

/* set fill interior*/
if(vsf_interior(dev_handle, SOLID)< 0)

error_handler();

/* set line color*/
if(vsl_color(dev_handle, BLACK)< 0)

error_handler();

/* show nine cases of text alignment*/
for (i = 0; i < J ; i++){

ty = pc75y - (i * pc28y);
savxyl ty pc07y;
savxyJ = ty + pc07y;

B-30 Graphics Development Toolkit

for (j = 0 ; j < J ; j ++) {
tx = (j * pcJ5x) + pc15x;
xy[OJ = tx - pclOx;
xy[2] = tx + pclOx;
savxyO = xy[OJ
savxy2 = xy[2]
xy[l] savxyl
xy[JJ = savxyJ

/* output bars*/
if(v_bar(dev_handle, xy) < 0)

error_handler();

hreq j;
if(i -- 2) vreq = O;
else if(i -- 0) vreq 2;
else vreq = i;

/* set the text alignment*/
if(vst_alignrnent(dev_handle,

hreq,
vreq,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle, tx, ty, "IBM")< 0)
error_handler();

/* output crossed polylines */
xy[OJ = xy[2] = tx;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ == savxyO;
xy[2] savxy2;
xy[l] xy[JJ = ty;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

Example Programs B-31

}

}

}
}

/* label cases for alignment*/
if((hreq == 1) && (vreq == 1)){

ptr "Center";
}
else{

ptr = label;
sprintf(label,

"%s %s",
valign[vreq],
halign[hreq]);

if(vst_alignment(dev_handle,
1,
0,
&hsel,
&vsel) < 0)

error_handler();

if(v_gtext(dev_handle,
tx,
savxyl-pc07y,
ptr) < 0)

error_handl er();

wait_kybrd();

/* close the workstation*/
if (v_enter_cur(dev_handle) < 0)

error_handler();
if (v_clswk(dev_handle) < 0

error_handler();

else
error_handler();

B-32 Graphics Development Toolkit

/**/
I* *I

wai t_kybrd ()
I* *I
/**/
{

extern short vrq_string();
short xy[2];
char ch;

if(vrq_string(dev_handle, 1, NO_ECHO, xy, &ch)< 0
error_handler();

}

/**/
I* *I

error_handler()
I* *I
/**/
{

extern short vq_error();
printf(11 GDT error, number %d\n\r 11

, vq_error());
}

Example Programs B-33

Example 3-Pie Slice Function

Wide

NOTE:

PIE SLICE

Diag.

Diag.

Cen·ter = (16516, 12641) Nl)C uni ts

Figure B-6. Pie Slice, Part One

B-34 Graphics Development Toolkit

EXAMPLE - USE OF JPIEJ FUNCTION

Inner core

EARTH
CROSS-SECTION

Figure B-7. Pie Slice, Part lwo

#include <stdio.h>
#include <rnath.h>

#define NO_ECHO 0
#define ECHO 1

#define BLACK 0
#define WHITE 1

#define SOLID 1
#define HATCH 3

#define WIDE_X 6
#define MED_x 5
#define NARRow_x 4

Example Programs B-35

#define LEFT 0
#define RIGHT 2
#define BOTTOM 0
#define TOP 2
#define CENTER 1

short dev_handle, xaxis, yaxis, max_index;
short align, thgt, strt_ang, end_ang;

short pc02y, pc05y, pclOy, pc15y, pc17y, pc40y;
short pc50y, pc54y, pc55y, pc65y, pc70y;
short pc80y, pc85y, pc90y, pc95y;
short pc02x, pc05x, pclOx, pc12x, pcl2_5x;
short pc15x, pc17x, pc22_5x, pc24x, pc25x, pc40x;
short pc47_5x, pc49x, pc50x, pc55x, pc60x, pc65x;
short pc70x, pc72_5x, pc7Jx, pc75x, pc80x;

main()
/**/
I* *I
I* *I
/* Example Program - Use of Pie Slice Function*/
I* *I
I* *I
/**/
{
extern short v_opnwk(), v_clrwk(), vst_height();
extern short vsf_interior(), vsf_style();
extern short v_circle(),vsf_color(),v_bar();
extern short vsm_height(),v_pmarker(), v_gtext();
extern short vst_color(), v_pieslice(), vsf_color();
extern short v_fillarea(), vsl_color();
extern short v_pline(), vrq_string(), v_enter_cur();
extern short v_clswk(), vq_error();

short savary[66J;

B-36 Graphics Development Toolkit

static short savin[J={ 1,
1,
1,
3,
1,
1,
1,
0,
o,
1,
1,
'D'' 'I'' 1S1

' 'P', 'L'' 'A', 'Y', I '};

short xwid, cwid, chgt;
short centerx, centery, radius;

short xy[14];
short i;
char label[81];

/* open the workstation*/
if(v_opnwk(savin, &dev_handle, savary) >= 0){

if (savary[14] != 0){ /* gdp's available?*/

/* see if pie slices supported*/
for (i = savary[14] ; i >= 0; i--){

if (savary[i + 15] == J) break;
}
/* if pie slices not supported */
/*goto close workstation */
if (i >= 0) {

/* savary[51] = max. NDC space - x axis*/
/* savary[52] = max. NDC space - y axis*/
xaxis = savary[51];
yaxis = savary[52];
/*setup tags as %'s of */
/* max. x and y axes */
pc02y (yaxis / 100
pc05y (yaxis / 100
pcl0y (yaxis / 100
pc15y (yaxis / 100
pc17y (yaxis / 100
pc40y (yaxis / 100

* 2;
* 5;
* 10;
* 15;
* 17;
* 40;

Example Programs B-37

B-38 Graphics Development Toolkit

pc50y = (yaxis I 100 * 50;
pc54y = (yaxis I 100 * 54;
pc55y = (yaxis I 100 * 55;
pc65y = (yaxis I 100 * 65;
pc70y = (yaxis I 100 * 70;
pc80y = (yaxis I 100 * 80;
pc85y (yaxis / 100 * 85;
pc90y (yaxis / 100 * 90;
pc95y (yaxis I 100 * 95;

pc02x (xaxis / 100) * 2;
pc05x (xaxis / 100) * 5;
pcl0x (xaxis / 100) * 10;
pc12x (xaxis / 100) * 12;
pcl2_5x = (xaxis / 1000) * 125;
pc15x = (xaxis / 100) * 15;
pc17x = (xaxis / 100) * 17;
pc22_5x = (xaxis / 1000) * 225;
pc24x (xaxis / 100) * 24;
pc25x = (xaxis / 100) * 25;
pc40x = (xaxis / 100) * 40;
pc47_5x = (xaxis / 1000) * 475;
pc49x (xaxis / 100) * 49;
pc50x (xaxis / 100) * 50;
pc55x (xaxis / 100) * 55;
pc60x (xaxis / 100) * 60;
pc65x (xaxis / 100) * 65;
pc70x (xaxis / 100) * 70;
pc72_5x = (xaxis / 1000) * 725;
pc7Jx = (xaxis / 100) * 73;
pc75x = (xaxis / 100) * 75;
pc80x = (xaxis / 100) * 80;

/* output 8 sets of pie slices with*/
/* varying interior styles */
if (v_clrwk(dev_handle) < 0)

error_handler();

if(vst_height(dev_handle,
1600,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

/*setup device max. color index*/
max_index = savary[J9] - 1;

/* output pie slice*/
centerx = pc50x + cwid - pc02x;
centery = pc50y + chgt - pc02y;
pie_slice(centerx, centery);

/* set alignment*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
yaxis,
"PIE SLICE")< 0)

error_handler();

/* set alignment*/
if(vst_alignment(dev_handle,

LEFT,
BOTTOM,
&align,
&align < 0)

error_handler();

/* label drawings*/
thgt = 2 * chgt;
if(v_gtext(dev_handle,

pc05x,
thgt,
"NOTE:")< 0)

error_handler();

sprintf(label,
"Center= (%d, %d) NDC units",
centerx,
centery);

thgt chgt;

Example Programs B-39

B-40 Graphics Development Toolkit

if(v_gtext(dev_handle,
pc05x,
thgt,
label) < 0)

error_handler();

wai t_kybrd ();

/************************************/
I* *I
/* use pie slice function to draw */
/* cross-section of the earth */
I* *I
/************************************/
if (v_clrwk(dev_handle) < 0)

error_handler();

/* draw earth (outer circle */
/* set fill to solid */
if(vsf_interior(dev_handle, SOLID)< 0)

error_handler();

radius= pc25x;
centerx pc50x;
centery = pc50y;

if(v_circle(dev_handle,
centerx,
centery,
radius) < 0)

error_handler();

/* set fill to hatch */
if(vsf_interior(dev_handle, HATCH)< 0)

error_handler();

/* draw mantle - pie with interior*/
/* of wide cross hatch */
if(vsf_style(dev_handle, WIDE_X) < 0

error_handler();

/* output pie slice (mantle)*/
if(v_pieslice(dev_handle,

centerx,
centery,
pc24x,
2700,
1800) < 0)

error_handler();

/* draw outer core - pie with interior*/
/* of medium cross hatch */
/* outer core is cyan*/
if(vsf_style(dev_handle, MED_X) < 0)

error_handler();

/* output pie slice (outer core) */
if(v_pieslice(dev_handle,

centerx,
centery,
pcl2_5x,
2700,
1800) < 0

error_handler();

/* draw inner core - pie with interior */
/* of narrow cross hatch */
/* outer core is magenta*/
if(vsf_style(dev_handle, NARROW_X) < 0)

error_handler();

/* output pie slice (outer core) */
if(v_pieslice(dev_handle,

centerx,
centery,
pc05x,
2700,
1800) < 0)

error_handler();

/* draw earth section - solid pie*/
if(vsf_interior(dev_handle, SOLID)< 0)

error_handler();

centerx
centery

pc60x;
pc40y;

Example Programs B-41

B-42 Graphics Development Toolkit

radius= pc25x;
strt_ang = 2700;
end_ang = 3600;

/* output earth section*/
if(v_pieslice(dev_handle,

centerx,
centery,
radius,
strt_ang,
end_ang) < 0)

error_handler();

/* draw lines to point to the sections*/

xy[OJ pc60x;
xy[l] pc65y;
xy[2] pc80x;
xy[J] pc80y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ pc55x;
xy[l] pc55y;
xy[2] pc80x;
xy[JJ pc65y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ = pc49x;
xy[l] = pc54y;
xy[2] = pc10x;
xy[J] = pc65y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

/* set alignment*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&align,
&align)< 0)

error_handler();

if(v_gtext(
dev_handle,
pc50x,
yaxis,
"EXAMPLE - USE OF 'PIE' FUNCTION"

) < 0)
error_handler();

/* label sections*/
/* set alignment*/
if(vst_alignment(dev_handle,

LEFT,
BOTTOM,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc75x,
pc80y,
"Mantle") < 0)

error_handler();

if(v_gtext(dev_handle,
pc7Jx,
pc65y,
"Outer core") < 0)

error_handler();

if(v_gtext(dev_handle,
pc02x,
pc65y,
"Inner core") < 0)

error_handler();

if(v_gtext(dev_handle,
pc02x,
pc15y,
"EARTH" < 0)

error_handler();

if(v_gtext(dev_handle,
pc02x,
pc15y - chgt,
"CROSS-SECTION") < 0)

error_handler();

Example Programs B-43

}

}

}

/* pause to view the frame*/
wait_kybrd();

else
printf(
"Pie slices not supported in this device\n\r"
) ;

else
printf(
"No GDP's available on this device\n\r"
\ .
) '

/* close the workstation*/
if (v_enter_cur(dev_handle) < 0)

error_handler();
if (v_clswk(dev_handle) < 0

error_handler();

else
error_handler();

/**/
I* *I

pie_slice(x, y)
I* *I
/**/
short x, y;
{

extern short vsf_color(), v_pieslice(), v_gtext();
#define NUMBER_SLICES 8
#define SWEEP (3600 / NUMBER_SLICES)
#define PI J.1416

short centerx, centery, sangle, eangle, radius, i;
short distance, align, labeLx, label_y;
double amplitude;
extern short dev_handle, max__index, xaxis;
extern double sin(), cos();

B-44 Graphics Development Toolkit

/* define a label type*/
typedef struct {

short horz;
short vert;
char *label;

} LABEL;

static LABEL label_list[] = {

{LEFT, BOTTOM, "Nar. Diag."},
{LEFT, BOTTOM, "Med. Diag."},
{RIGHT,BOTTOM, "Wide Diag."},
{RIGHT,BOTTOM, "Nar. Cross."},
{RIGHT,TOP , "Med. Cross."},
{RIGHT,TOP , "Wide Cross."},
{LEFT, TOP , "Hollow"},
{LEFT, TOP , "Solid" }

} ;

/* set the size of pie slices*/
sangle O;
eangle SWEEP - 1;
radius pc25x;
distance= pc17x;
centerx x;
centery = y;

if(vsf_interior(dev_handle, HATCH)< 0)
error_handler();

for(i = 0; i < NUMBER_SLICES; i++){

I* The first six pie slices are filled
I* with hatch interiors.
I* The last two pie slices are hollow
I* and solid interiors.

*I
*I
*I
*I

if (i < 6){/*fill interior is hatch*/
if(vsf_style(dev_handle, i + 1) < 0)

error_handler();
}
else{/* fill interior is solid or hollow*/

if(vsf_interior(dev_handle, i % 6) < 0)
error_handler();

}

Example Programs B-45

}

/* output pie slice*/
if(v_pieslice(dev_handle,

centerx,
centery,
radius,
sangle,
eangle) < 0)

error_handler();

sangle += SWEEP;
eangle += SWEEP;

/* set the size of pie slices*/
sangle O;
eangle SWEEP - 1;

/* label the pie*/
for(i O; i < NUMBER.__SLICES i++){

/* label slice*/
/* set alignment*/
if(vst_alignment(dev_handle,

labeLlist[i].horz,
labeLlist[i].vert,
&align,
&align) < 0)

error_handler();

/* set label position by using */
/* polar coordinate conversion */
amplitude=

(double)(sangle +(SWEEP/ 2)) *
(2.0 *PI)/ 3600.0;

labeLx
(short)((double)distance * cos(arnplitude));

label_y =
(short)((double)distance * sin(amplitude));

/* output text label for pie interior*/
if(v_gtext(dev_handle,

centerx + label_x,
centery + label_y,
label_list[i].label) < 0)

error_handler();

B-46 Graphics Development Toolkit

}

}

sangle += SWEEP;
eangle += SWEEP;

/* reset alignment*/
if(vst_alignment(dev_handle,

LEFT,
BOTTOM,
&align,
&align)< 0)

error_handler();

/**/
I* *I

wai t_kybrd ()
I* *I
/**/
{

extern short vrq_string();
short xy[2];
char ch;

if(vrq_string(dev_handle, 1, NO_ECHO, xy, &ch)< 0)
error_handler();

}

/**/
I* *I

error_handler()
I* *I
/**/
{

extern short vq_error();
printf(" GDT error, number %d\n\r", vq_error());

}

Example Programs B-47

Example 4-Polyline Function

POLYLINES

2

1 3 Sol id 4

NOTE: Vertex 11 (x,y) =
(8175, 16310) NDC units

Long Dash

Dotted

Dash Dotted

Medium Dash

Dash with Two Dots

Figure B-8. Polyline Function, Part One

B-48 Graphics Development Toolkit

I I

I\

POLYLINES

it1
·~

\ \ \

Polar Coordinate System

Figure B-9. Polyline Function, Part 1\vo

#include <stdio.h>

#define NO_ECHO 0
#define ECHO 1

#define BLACK 0
#define WHITE 1
#define CYAN 6
#define MAGENTA 7

#define SOLID 1

#define CENTER 1
#define LEFT 0
#define RIGHT 2
#define TOP 2
#define BOTTOM 0

short dev_handle;

Example Programs B-49

main()
/**/
I* *I
I* */
/* Example Program - Use of Polyline Function */
I* *I
I* *I
/**/
{

extern short v_opnwk(), v_clrwk(), vst_height();
extern short vsl_type(), vst_color();
extern short v_gtext(), v_pline(), vsl_color();
extern short v_enter_cur(), v_clswk();

extern double cos(), sin();

short savary[66J;
static short savin[J={ 1,

1,
1,
3,
1,
1,
1,
0,
0,
1,
1,
'D'' 'I'' 1 S 1

' 'P'' 'L'' 'A'' 'Y'' I '};

static char *lstyles[J = { "",
"Solid",
"Long Dash",
"Dotted",
"Dash Dotted",
"Medium Dash",
"Dash with Two Dots"};

short align, xwid, cwid, chgt, tx, ty;

short pc08y, pcl0y, pc60y;
short pc6Jy, pc70y, pc80y, pc95y;
short pc02y, pc20x, pcJ0x;
short pc25x, pc45x, pc75x;
short pcJ5x, pc40x, pc50x, pc65x;

B-50 Graphics Development Toolkit

short tmp, ltype, xhalf, yhalf, angle;
float factor2, radians, R;
short xy[12], color, max_index;
short xaxis, yaxis, i;
char label[81];

/* open the workstation*/
if(v_opnwk(savin, &dev_handle, savary) >= 0){

/*if# of line widths= 0, close workstation*/
if(savary[6J){

/* savary[51] = max. NDC space - x axis*/
/* savary[52] = max. NDC space - y axis*/
xaxis savary[51];
yaxis = savary[52];

/*setup tags as %1 s of max. x and y axes*/
pc02y (yaxis I 100) * 2;
pc08y (yaxis / 100) * 8;
pc10y (yaxis I 100) * 10;
pc60y (yaxis I 100) * 60;
pc63y (yaxis I 100) * 63;
pc70y (yaxis I 100) * 70;
pc80y (yaxis I 100) * 80;
pc95y (yaxis I 100) * 95;

pc20x (xaxis I 100) * 20;
pc25x (xaxis I 100) * 25;
pc30x (xaxis I 100) * 30;
pc35x (xaxis I 100) * 35;
pc40x (xaxis I 100) * 40;
pc45x (xaxis I 100) * 45;
pc50x (xaxis I 100) * 50;
pc65x = (xaxis I 100) * 65;
pc75x (xaxis I 100) * 75;

/* lrst drawing= polyline primitive*/
/* clear workstation*/
if(v_clrwk(dev_handle) < 0

error_handler();

Example Programs B-51

/* set text height to 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

/* set line type= solid*/
if(vsl_type(dev_handle, SOLID)< 0)

error_handler();

/* set line color*/
if(vst_color(dev_handle, MAGENTA)< 0)

error_handler();

if(vst_alignrnent(dev_handle,
CENTER,
TOP,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
yaxis,
"POLYLINES") < 0)

error_handler();

/* draw solid 4 point polyline*/
xy[OJ pc25x;
xy[l] pc70y;
xy[2] pcJ5x;
xy[J] pc80y;
xy[4] pc40x;
xy[5] ;:; pc70y;
xy[6] pc75x;
xy[7] pc70y;
if(v_pline(dev_handle, 4, xy) < 0)

error_handler();

/* set line color*/
if(vsLcolor(dev_handle, CYAN)< 0)

error_handler();

B-52 Graphics Development Toolkit

if(vst_alignrnent(dev_handle,
LEFT,
CENTER,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
pc70y + chgt,
"Solid") < 0)

error_handler();

/*setup increment on y axis*/
/* label vertices of solid polyline*/
for (i = 0; i < 7; i+=2){

trnp = (i/2) + 1;
sprintf(label, "%d", trnp);
tx = xy[i] ;
ty = xy[i + 1] + pc08y;
if(v_gtext(dev_handle, tx, ty, label)< 0)

error_handler();
}

/* set text color*/
if(vst_color(dev_handle, MAGENTA)< 0)

error_handler();

if(vst_aligrunent(dev_handle,
CENTER,
CENTER,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
pc6Jy,
"NOTE: Vertex #1 (x,y)

error_handler();

sprintf(label,
"(%d, %d) NDC units",
xy[OJ,
xy[l]);

") < 0)

Example Programs B-53

if(v_gtext(dev_handle,
pc50x,
pc6Jy - chgt,
label)< 0)

error_handler();

/* set maximum device color index*/
rnax_index = savary[J9] - 1;

if(vst_alignrnent(dev_handle,
LEFT,
CENTER,
&align,
&align)< 0)

error_handler();

/* draw remaining line styles*/
xy[OJ = pc20x;
xy[2] = pcJ5x;
tx = pc40x;
color= WHITE;

for (ltype = 2; ltype < 7 ltype++){

B-54 Graphics Development Toolkit

xy [J J = xy [1 J =
(short)
((0.5 - ((float)(ltype - 1) * 0.09)) *
(float)yaxis);

/* set text color*/
if(vst_color(dev_handle, color)< 0)

error_handler();

if(v_gtext(dev_handle,
tx,
xy[JJ'
lstyles[ltype]) < 0)

error_handler();

/* set line type*/
if(vsl_type(dev_handle, ltype) < 0)

error_handler();

/* set line color*/
if(vsl_color(dev_handle, color)< 0

error_handler();

/* output 2 point polyline*/
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

if (++color> max_index) color WHITE;
}

wait_kybrd();
if(v_clrwk(dev_handle) < 0)

error_handler();

/***/
I* *I
/* Draw graph using polylines and */
/* polar coordinates (distance, angle). */
I* *I
/***/

/* set text color*/
if(vst_color(dev_nandle, MAGENTA)< 0)

error_handler();

if(vst_alignment(dev_handle,
CENTER,
TOP,
&align,
&align)< 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
pc95y,
"POLYLINES") < 0)

error_handler();

factor2 = J.14 / 180.0;
xhalf xaxis / 2;
yhalf yaxis / 2;
color WHITE;

Example Programs B-55

/* set line color*/
if(vsl_color(dev_handle, color)< 0)

error_handler();

B-56 Graphics Development Toolkit

/* set line type*/
if(vsl_type(dev_handle, SOLID)< 0)

error_handler();

/* use the equation I R = 6cos4A ' */
/* where A= angle and */
/* R = distance from origin */
/* calculate x coord. x RcosA */
/* calculate y coord. : y = RsinA */
radians factor2;
R

(6.0 *
(float)cos((double)(4.0 * radians))) /
10.0;

xy[OJ =
(short)(R *

(float)cos((double)radians) *
(float)xaxis);

xy[OJ (xy[OJ/2) + xhalf;

xy[l]
(short)(R *

(float)sin((double)radians) *
(float)yaxis);

xy[l] = (xy[l]/2) + yhalf;

/* output graph in polar coord. system */
for (angle 2; angle<= 360; angle++){

radians (float)angle * factor2;
R

(6.0 *
(float)cos((double)(4.0 * radians))) /
10.0;

xy[2] =
(short)(R *

(float)cos((double)radians) *
(float)xaxis);

}

xy[2] = (xy[2]/2) + xhalf;
xy[JJ =

(short)(R *
(float)sin((double)radians) *
(float)yaxis);

xy[JJ = (xy[J]/2) + yhalf;

if(v_pline(dev_handle,2,xy) < 0)
error_handler();

/* set next line color*/
if (++color> max_index
if(vsl_color(dev_handle,

error_handler();
xy[OJ = xy[2];

color= WHITE
color)< 0)

/* set text color*/
if(vst_color(dev_handle, CYAN) < 0)

error_har.dler();

/* label graph*/
if(vst_alignment(dev_handle,

CENTER,
BOTTOM,
&align,
&align)< 0

error_handler();

if(v_gtext(dev_handle,
pc50x,
pclOy,
"Polar Coordinate System") < 0)

error_handler();

wait_kybrd();

else{
printf("Device not capable of graphics\n\r");

}

Example Programs B-57

}

}

/* close the workstation*/
if (v_enter_cur(dev_handle) < 0)

error_handler();
if (v_clswk(dev_handle) < 0

error_handler();

else
error_handler();

/**/
I* *I

wait_kybrd()
I* *I
/**/
{

}

extern short vrq_string();
short xy[2J;
char ch;

if(vrq_string(dev_handle, 1, NO_ECHO, xy, &ch) < 0)
error_handler();

/**/
I* *I

error_handler()
I* *I
/**/
{

extern short vq_error();
printf("GDT error, number %d\n\r 11

, vq_error());
}

B-58 Graphics Development Toolkit

Example 5-Polymarker Function

POLYMARJ<ER

Dot
+ Plus
* Star
D Square

X
~' Diamond

NOTE: (Coordinates in NDC units)
Diamond CxJy) = (12442J 11063)
Marker height= 319 NDC units

Figure B-10. Polymarker Function, Part One

Example Programs B-59

POLVMAR](ER

D Dot Diamond

+ Plus X

* ,,,,/ ·,,, Star □ Square

NOTE: (Coordinates in NDC units)
Diamond (x,y) = (19620, 13457)
Marker height= 1411 NDC units

Figure B-11. Polymarker Function, Part 1\vo

B-60 Graphics Development Toolkit

MINERALOGICAL 3-COMPONENT DIAGRAM

Component Z
+ Mineral A /\ ◊ (Mineral C)

* Mineral :I/ \\ = 401/. X,
◊ Mineral Cl. \\ 80:.1. V,

+ \<\ 201/. Z, etc.
\\

* \ \
/ ' ~

Component { C· \ Component
X --------c> V

NOTE : Vertices of triangle= 1001/.
of corresponding components

Figure B-12. Polymarker Function, Part Three

#include <stdio.h>

#define NO_ECHO 0
#define ECHO 1

#define DIAMOND_MARKER
#define STAILMARKER 3
#define CROSS_MARKER 2

#define LEFT 0
#define RIGHT 2
#define CENTER 1
#define BOTTOM 0
#define TOP 2

#define BLACK 0

6

Example Programs B-61

#define WHITE 1
#define CYAN 6
#define MAGENTA 7

#define SOLID 1

short dev_handle;

main()
/**/
I* *I
I* *I
/* Example Program - Use of Polymarker Function*/
I* *I
I* *I
/**/
{

extern short v_opnwk(), v_clrwk(), vst_height();
extern short vsm.__height(), v_gtext();
extern short vsm_type(), v_pmarker(), vsm.__color();
extern short vst_color(), v_fillarea();
extern short vst_alignment(), v_pline(), vsLcolor();
extern short v_enter_cur(),

short savary[66J;
static short savin[J={ 1,

1,
1,
3,
1,
1,
1,
o,
o,
1,
1,

v_clswk();

'D','I','S','P','L','A','Y',' '};

static char *mark_title[J

B-62 Graphics Development Toolkit

{"Dot",
"Plus",
"Star",
"Square",
"X"'
"Diamond"};

short xwid, cwid, chgt, tx, ty;

short xy[12], color, max_index;
short deltay, xaxis, yaxis, i, tmph, tmpv;
char label[81];

short thgt, mtyp, imhgt;
short pc02_5x;
short pcOlx, pc02x, pc05x, pc07x, pclOx;
short pc15x, pc20x, pc2Jx, pc24x, pc25x;
short pc26x, pcJOx, pcJ8x, pc40x, pc45x, pc47x;
short pc50x, pc55x, pc56x, pc60x, pc65x, pc68x;
short pc69x, pc70x, pc75x, pc76x, pc77x, pc80x;

short pc05y, pclOy, pc15y;
short pc26y, pc27y, pc28y, pcJOy;
short pcJly, pcJ2y, pcJ5y, pcJ6y, pc40y;
short pc50y, pc55y, pc60y, pc65y, pc66y;
short pc7Jy, pc74y, pc75y, pc80y, pc8Jy;
short pc85y, pc88y, pc95y;

/* open the workstation *I
if(v_opnwk(savin, &dev_handle, savary) >= 0){

I* savary[51] = max. NDC space - X axis *I
I* savary[52] = max. NDC space - y axis *I
xaxis savary[51];
yaxis = savary[52];

/*setup tags as %'s of max. x and y axes*/
pc02_5x = (xaxis / 1000) * 25;
pcOlx (xaxis / 100) * 1;
pc02x (xaxis / 100) * 2;
pc05x (xaxis / 100) * 5;
pc07x (xaxis / 100) * 7;
pclOx (xaxis / 100) * 10;
pc15x (xaxis / 100) * 15;
pc20x (xaxis / 100) * 20;
pc2Jx (xaxis / 100) * 23;
pc24x (xaxis / 100) * 24;
pc25x (xaxis / 100) * 25;
pc26x (xaxis / 100) * 26;
pcJOx (xaxis / 100) * JO;
pcJ8x (xaxis / 100) * 38;

Example Programs B-63

pc40x =

pc45x =

pc47x =

pc50x =
pc55x =
pc56x
pc60x =
pc65x
pc68x
pc69x
pc70x
pc75x =
pc76x =
pc77x =
pc80x =

pc05y =

pclOy =

pc15y =
pc26y =
pc27y =
pc28y =
pcJOy =
pcJly =
pcJ2y =
pcJ5y =
pcJ6y =
pc40y =

pc50y =
pc55y =
pc60y =
pc65y =

pc66y =

pc7Jy =

pc74y =

pc75y =
pc80y =
pc8Jy =
pc85y =
pc88y =
pc95y =

(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)
(xaxis / 100)

(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)
(yaxis / 100)

* 40;
* 45;
* 47;
* 50;
* 55;
* 56;
* 60;
* 65;
* 68;
* 69;
* 70;
* 75;
* 76;
* 77;
* 80;

* 5;
* 10;
* 15;
* 26;
* 27;
* 28;
* JO;
* Jl;
* 32;
* 35;
* 36;
* 40;
* 50;
* 55;
* 60;
* 65;
* 66;
* 73;
* 74;
* 75;
* 80;
* 83;
* 85;
* 88;
* 95;

/* max. device color index*/
max_index = savary[J9] - 1;

B-64 Graphics Development Toolkit

/* show polymarkers with height minimum*/
if(v_clrwk(dev_handle) < 0)

error_handler();

/* set requested text height to 1600 NDC units*/
if(vst_height(dev_handle,

1600,
&xwid,
&cwid,
&chgt) < 0)

error_handler();

if(vst_alignment(dev_handle,
CENTER,
TOP,
&tmph,
&tmpv) < 0)

error_handler();

/* set polymarker height to minimum*/
imhgt = savary[64J;
if(vsm_height(dev_handle, imhgt) < 0)

error_handler();

if(v_gtext(dev_handle,
pc47x,
pc95y,
"POLYMARKER") < 0)

error_handler();

if(vst_alignment(dev_handle,
LEFT,
CENTER,
&tmph,
&tmpv) < 0)

error_handler();

color= WHITE;
/* center the text and marker output*/
tx = pc40x;
xy[OJ = tx - (imhgt * 2);

Example Programs B-65

/* determine the amount to step down*/
/* for each output line */
deltay = imhgt < chgt? chgt: imhgt * 2;
for (i = 0; i < 6 ; i ++) {

xy[l] = pc85y - ((i+l) * deltay);

/* set the marker type*/
if(vsm_type(dev_handle, i + 1) < 0)

error_handler();

/* output one marker*/
if(v_pmarker(dev_handle,1, xy) < 0)

error_handler();

/* write text*/
if(v_gtext(dev_handle,

tx + pc05x,
xy[l],
mark_title[i]) < 0)

error_handler();

if(++color> max_index) color= WHITE;
if(vsm_color(dev_handle, color < 0)

error_handler();
if(vst_color(dev_handle, color < 0)

error_handler();

if(vst_alignment(dev_handle,
CENTER,
TOP,
&tmph,
&tmpv) < 0)

error_handler();

thgt = xy[l] - pclOy;
/* describe graphics drawing*/
if(v_gtext(

dev_handle,
pc50x,
thgt,
"NOTE: (Coordinates in NDC units)") < 0)

error_handler();

B-66 Graphics Development Toolkit

/* output position*/
sprintf(label,

"Diamond (x,y)
xy[OJ,
xy[l]);

thgt chgt;

(%d, %d)",

if(v_gtext(dev_handle, pc50x, thgt, label)< 0)
error_handler();

/* output marker height*/
sprintf(label,

"Marker height= %d NDC units",
imhgt);

thgt chgt;
if(v_gtext(dev_handle, pc50x, thgt, label)< 0)

error_handler();

wait_kybrd();
if(v_clrwk(dev_handle) < 0) error_handler();

/* show polymarkers with height= maximum*/
imhgt = savary[65];
if(vsrn_height(dev_handle, imhgt) < 0)

error_handler();

/* set text color*/
color= WHITE;
if(vst_color(dev_handle, color)< 0)

error~~andler();

/* set marker color*/
if(vsIILcolor(dev_handle, color)< 0)

error_handler();

/* output label*/
if(vst_alignment(dev_handle,

CENTER,
TOP,
&tmph,
&tmpv) < 0)

error_handler();

Example Programs B-67

if(v_gtext(dev_handle,
pc50x,
pc95y,
"P0LYMARKER") < 0)

error_handler();

if(vst_alignrnent(dev_handle,
LEFT,
CENTER,
&tmph,
&trnpv) < 0)

error_handler();

xy[l] = pc85y;
for (i = 0; i < 3; i++){

xy[OJ = pcJOx;
xy[l] -= (imhgt + (imhgt /2));

/* set polymarker type*/
if(vsm_type(dev_handle, i + 1) < 0)

error_handler();

/* output a single marker*/
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output label*/
tx = xy[OJ + (imhgt + (imhgt/2));
ty = xy[l];
if(v_gtext(dev_handle,

tx,
ty,
rnark_title[i]) < 0)

error_handler();

/* set marker color and text color*/
if(++color> max_index) color= WHITE;
if(vsm_color(dev_handle, color)< 0)

error_handler();
if(vst_colcr(dev_handle, color) < 0)

error_handler();

xy[OJ = pc60x;
mtyp = 6 - i;

B-68 Graphics Development Toolkit

/* set polymarker type*/
if(vsrn_type(dev_handle, mtyp) < 0)

error_handler();

/* output a single marker*/
if(v_pmarker(dev_handle, 1, xy) < 0)

error_bandler();

/* output label*/
tx = xy[OJ + (imhgt + (imhgt/2));
if(v_gtext(dev_handle,

tx,
ty,
mark_title[5 - i]) < 0)

error_handler();

/* set marker color and text color*/
if(++color> max_index) color= WHITE;
if(vsrn_color(dev_handle, color)< 0)

}

error_handler();
if(vst_color(dev_handle, color)< 0)

error_handler();

/* describe graphics drawing*/
if(vst_color(dev_handle, CYAN)< 0)

error_handler();

if(vst_alignment(dev_handle,
CENTER,
TOP,
&tmph,
&tmpv) < 0)

error_handler();

thgt = xy[l] - pcl0x;

if(v_gtext(dev_handle,
pc50x,
thgt,
"NOTE: (Coordinates in NDC units)")< 0)

error_handler();

Example Programs B-69

/* output position*/
sprintf(label,

"Diamond (x,y)
xy[OJ,
xy[l]);

thgt chgt;

(%d, %d)",

if(v_gtext(dev_handle, pc50x, thgt, label)< 0)
error_handler();

/* output marker height*/
sprintf(label,

"Marker height= %d NDC units",
imhgt);

thgt chgt;
if(v_gtext(dev_handle, pc50x, thgt, label)< 0)

error_handler();

wait_kybrd();
if(v_clrwk(dev_handle) < 0)

error_handler();

/* show polymarkers use */
/* (Mineralogical diagram) */

/* output title*/
if(vst_alignrnent(dev_handle,

CENTER,
TOP,
&tmph,
&tmpv) < 0)

error_handler();

if(v_gtext(
dev_handle,
pc50x,
yaxis,
"MINERALOGICAL J-COMPONENT DIAGRAM")< 0)

error_handler();

/* draw triangle*/
xy[OJ = pc25x;

B-70 Graphics Development Toolkit

xy[l] pcJ0y;
xy[2] pc50x;
xy[JJ pc80y;
xy[4] pc75x;
xy[5] pcJ0y;
if(v_fillarea(dev_handle, J, xy) < 0)

error_handler();

/* label corners of the triangle*/
if(vst_alignment(dev_handle,

LEFT,
BOTTOM,
&tmph,
&tmpv) < 0)

error_handler();

if(v_gtext(dev_handle,
pc76x,
pcJ2y,
"Component")< 0)

error_handler();

if(v_gtext(dev_handle,
pc76x,
pcJ2y - chgt,
"Y") < 0)

error_handler();

if(vst_alignment(dev_handle,
RIGHT,
BOTTOM,
&tmph,
&tmpv) < 0)

error_handler();

if(v_gtext(dev_handle,
pc24x,
pcJ2y
, "Component")< 0)

error_handler();

Example Programs B-71

if(v_gtext(dev_handle,
pc24x,
pcJ2y - chgt,
"X") < 0)

error_handler();

if(vst_alignment(dev_handle,
CENTER,
BOTTOM,
&tmph,
&tmpv) < 0)

error_handler();

if(v_gtext(dev_handle,
pc50x,
pc8Jy,
"Component Z") < 0)

error_handler();

if(vst_alignment(dev_handle,
LEFT,
CENTER,
&tmph,
&tmpv) < 0)

error_handler();

/* place percent lines on triangle*/
xy[OJ pc75x;
xy[l] = pcJOy;

for(i = 1; i < 10; i++){
xy[OJ -= pc02_5x;

}

xy[l] += pc05y;
xy[2] = xy[OJ - pcOlx;
xy [3 J = xy [1 J ;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ = pc25x;
xy[l] = pcJOy;
for(i = 1; i < 10; i++){

xy[OJ += pc02_5x;
xy[l] += pc05y;
xy[2] = xy[OJ + pcOlx;

B-72 Graphics Development Toolkit

}

xy [3 J = xy [1 J ;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[0J
xy[l]
xy[JJ

pc25x;
pcJ0y;
pcJly;

for(i = 1; i < 10 i++){

}

xy[0J += pc05x;
xy[2] = xy[0J;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[0J pcJ0x;
xy[l] pc27y;
xy[2] pc70x;
xy[J] pc27y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[0J = pc69x;
xy[l] = pc28y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[l] = pc26y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[0J pc75x;
xy[l] pcJ5y;
xy[2] pc55x;
xy [J J pc75y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[0J = xy[2];
xy[l] = pc74y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

Example Programs B-73

xy[OJ = pc56x;
xy[l] = xy[JJ;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ pc45x;
xy[l] pc75y;
xy[2] pc25x;
xy[JJ pcJ5y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ = pc26x;
xy[l] = xy[JJ;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

xy[OJ = xy[2];
xy[l] = pcJ6y;
if(v_pline(dev_handle, 2, xy) < 0)

error_handler();

/* set marker height to 800 NDC units*/
if(vsm_height(dev_handle, 800) < 0)

error_handler();

/* output polymarkers on diagram*/

/* output a '+'marker*/
if(vsm_type(dev_handle, CROSS__MARKER) < 0)

error_handler();

/* set marker color*/
if(vsm_color(dev_handle, WHITE)< 0)

error_handler();

/* output the marker*/
xy[OJ = pc50x;
xy[l] = pc60y;
if(v_prnarker(dev_handle, 1, xy) < 0)

error_handler();

B-74 Graphics Development Toolkit

/* set text color*/
if(vst_color(dev_handle, WHITE)< 0)

error_handler();

/* output marker*/
xy[0J = pc05x;
xy[l] = pc80y;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output label*/
if(v_gtext(dev_handle,

pc10x,
xy[l],
"Mineral A")< 0)

error_handler();

/* output a'*' marker*/
if(vsm_type(dev_handle, STAR_MARKER) < 0)

error_handler();

/* output marker*/
xy[0] = pc45x;
xy[l] = pc50y;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output marker*/
xy[0J = pc05x;
xy[l] = pc7Jy;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output label*/
if(v_gtext(dev_handle,

pc10x,
xy[l],
"Mineral B") < 0)

error_handler();

/* output a diamond marker*/
if(vsm_type(dev_handle, DIAMOND_MARKER) < 0)

error_handler();

Example Programs B-75

/* output marker*/
xy[0J = pc55x;
xy[l] = pc40y;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output marker*/
xy[0J = pc05x;
xy[l] = pc66y;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output label*/
if(v_gtext(dev_handle,

pcl0x,
xy[l],
"Mineral C") < 0)

error_handler();

/* explain the polymarker positioning*/

xy[0J = pc65x;
xy[l] = pc80y;
if(v_pmarker(dev_handle, 1, xy) < 0)

error_handler();

/* output label*/
if(v_gtext(dev_handle,

pc68x,
xy[l],
"(Mineral C)") < 0)

error_handler();

xy[l] -= chgt;
if(v_gtext(dev_handle,

pc70x,
xy[l],

B-76 Graphics Development Toolkit

"= 40% X,") < 0)
error_handler();

xy[l] -= chgt;
if(v_gtext(dev_handle,

pc70x,
xy[l],
" 80% Y, ") < 0)

error_handler();

xy[l] -= chgt;
if(v_gtext(dev_handle,

pc70x,
xy[l],
" 20% Z,etc.") < 0)

error_handler();

thgt = pclOy;

if(vst_alignment(dev_handle,
CENTER,
BOTTOM,
&tmph,
&tmpv) < 0)

error_handler();

if(v_gtext(
dev_handle,
pc50x,
thgt,
"NOTE: Vertices of triangle

error_handler();

thgt -= chgt;
if(v_gtext(

dev_handle,
pc50x,
thgt,

100%") < 0)

" of corresponding components")< 0)
error_handler();

wait_kybrd();

Example Programs B-77

}

/* close the workstation*/
if (v_enter_cur(dev_handle) < 0)

error_handler();
if (v_clswk(dev_handle) < 0

error_handler();

else
error_handler();

/**/
I* *I

wait_kybrd()
I* *I
/**/
{

extern short vrq_string();
short xy[2];
char ch;

if(vrq_string(dev_handle, 1, NO_ECHO, xy, &ch)< 0)
error_handler();

/**/
I* *I

error_handler()
I* *I
/**/
{

extern short vq_error() ;
printf("GDT error, number %d\n\r", vq_error());

}

B-78 Graphics Development Toolkit

Appendix C. Graphics Drivers

This appendix contains information about the device drivers for those peripheral
devices that are supported by the Graphics Development Toolkit. It describes the
capabilities and limitations of the devices, the index numbers used to select
functions (such as marker types, line styles, and colors), and other special
information.

The Graphics Development Toolkit supports two program modes: Graphics and
Cursor Text. It is important to remember that only one of these modes can be
active at one time. By default, the "Open Workstation" routine places a program
in Graphics mode. The program can be switched to Cursor Text mode by calling
the "Enter Cursor Text Mode" routine. A program must be switched back into
Graphics mode by invoking the "Exit Cursor Text Mode" routine.

Four of the device drivers described in this appendix support the operation of
the IBM RT PC Mouse, as well as cursor movement keys on a keyboard. These
device drivers are:

• IBM Advanced Monochrome Graphics Display
• IBM Advanced Color Graphics Display
• IBM Extended Monochrome Graphics Display
• IBM Enhanced Graphics Adapter.

Graphics Drivers C-1

The following table lists the device drivers described in this appendix and gives
the page number where each description begins.

Graphics Development Toolkit Device Drivers Page

IBM 3812 Printer C-6

IBM 4201 Printer C-23

IBM 5152 Graphics Printer C-31

IBM 5182 Color Printer C-39

IBM 6180 Color Plotter C-48

IBM 7371 Color Plotter C-56

IBM 7372 Color Plotter C-63

IBM 7374, 7375-1, 7375-2 Plotters C-70

IBM Advanced Monochrome Graphics Display C-80

IBM Advanced Color Graphics Display C-88

IBM Extended Monochrome Graphics Display C-96

IBM Enhanced Graphics Adapter C-104

IBM Virtual Device Metafile (VDM) Driver C-114

IBM RT PC Grafstation Driver C-120

Device Driver Management

A system can have many graphics input and output peripherals attached, each
requiring a separate device driver to interface to the system. The Graphics
Development Toolkit receives requests for graphics devices from the application
program, and ensures that the proper device driver is loaded in memory. When
required, a device driver is loaded dynamically.

Because capabilities vary among graphics devices, the Graphics Development
Toolkit emulates certain device capabilities. The Toolkit also provides feedback
to the caller about the actual capabilities of the currently open device.

C-2 Graphics Development Toolkit

The Toolkit Routines

The Graphics Development Toolkit provides routines for:

• Device driver management
• Coordinate transformation
• Emulation of certain graphics primitives
• Error reporting.

Installation Procedures

For a step-by-step procedure to install the Graphics Development Toolkit on
your system, refer to Appendix A, "Installing the Graphics Development
Toolkit."

Incorporating Graphics Into Application Programs

You can incorporate graphics operations into your application programs by
including calls to the Graphics Development Toolkit routines in your source
code. The operations and parameters for the Graphics Development Toolkit
graphics routines are detailed in Chapter 3, "Toolkit Routines."

The code that implements the interface between the Graphics Development
Toolkit and your programming language is contained in a language library that
is included on the distribution diskette. After your program is compiled, it must
be linked with this language library and any other required modules and
libraries. To link your program, follow the procedure shown in the Language
Reference Booklet that supports the programming language you are using. In
general, the language library should be linked after your application code and
before any language support libraries.

Graphics Drivers C-3

The executable program module is executed and debugged in the usual manner
with the tools provided by the operating system. Since the Graphics
Development Toolkit routines always return status information to the calling
program rather than displaying error messages, we recommend that you include
a very simple status-checking routine in your program to be called after each
graphics routine. The purpose of this status-checking routine is to display any
error codes that arise before you have finished debugging your application's
error handling routines.

Note: Terminating an application program without using Close Workstation may
cause unpredictable results. Refer to the hardware documentation of the
individual device to reset the device.

Logical Device Name

Communications

The logical device name is a user-selectable string, up to eight characters long,
that represents the workstation identifier for a device. This string must be
included in the call to the Open Workstation routine that initializes the device. In
addition, this string must be exported to the system environment to configure
the device.

Refer to Appendix A, "Installing the Graphics Development Toolkit", for
information about exporting parameters to the system environment.

There are some devices that require a communications interface between the
device and the system. For additional information about these drivers, refer to
the IBM RT PC User Setup Guide or individual device manuals.

C-4 Graphics Development Toolkit

How Device Drivers are Described

Each description of a device driver begins with the device driver's Filename.
This is a single word that represents the only legal name for the device driver
file. The remainder of each description is organized into three information
categories:

Features Supported

This information category lists and describes the features that are supported by
the device driver. Each feature is shown under a sub-heading that follows the
general heading of "Features Supported."

Device Specific Information

This information category describes any special operating considerations that
are specific to a device or device driver.

Routine Summary

This information category lists the name of each Graphics Development Toolkit
routine that is supported by the device driver.

Graphics Drivers C-5

IBM 3812 Printer

Features Supported

Polylines

Filename: vdi3812

The following text describes each of the IBM 3812 Printer features that are
supported by this device driver.

Lines and arcs can be drawn on the IBM 3812 Printer with one of eight line
styles, selected with style indexes 1 thru 8:

1 =Solid (round ends)

2=Long Dash - - - - - - - - - - - -

3 = Dotted • · · · · • · · · · • · · · · · · · · · · · ·

4 = Dash Dotted - • - • - • - • - • - • - • - • - • - • - • -

5 = Medium Dash • - ,

6 = Dash With Two Dots - •· - •· - •· - •· - •· - •· - •· - •· - •· - •· - •· -

7 = Short Dash • -

8 = Solid (square ends)

C-6 Graphics Development Toolkit

Graphics Markers

The IBM 3812 Printer supports six Graphics Marker types, selected with type
indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square D
5=X X
6=Diamond ◊

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following tables show the NOC units for the five size
indexes for eight possible combinations of printer options (legal or letter,
portrait or landscape, and margin or no margin). Refer to the later discussion of
"Device Specific Information" for a description of the printer options.

Graphics Marker Sizes
Letter Portrait Non-Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 236 236

2 460 460

3 683 683

4 907 907

5 1130 1130

Graphics Drivers C-7

Graphics Marker Sizes
Letter Landscape Non-Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 311 402

2 609 788

3 907 1173

4 1204 1559

5 1502 1944

Graphics Marker Sizes
Legal Portrait Non-Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 186 186

2 361 361

3 537 537

4 712 712

5 888 888

Graphics Marker Sizes
Legal Landscape Non-Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 303 498

2 595 980

3 888 1462

4 1181 1944

5 1473 2426

C-8 Graphics Development Toolkit

Graphics Marker Sizes
Letter Portrait Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 248 248

2 482 482

3 716 716

4 950 950

5 1184 1184

Graphics Marker Sizes
Letter Landscape Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 326 427

2 638 837

3 950 1246

4 1262 1656

5 1574 2066

Graphics Drivers C-9

Graphics Text

Graphics Marker Sizes
Legal Portrait Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 193 193

2 375 375

3 557 557

4 739 739

5 921 921

Graphics Marker Sizes
Legal Landscape Margin

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 314 530

2 617 1042

3 921 1554

4 1224 2066

5 1528 2578

The IBM 3812 Printer supports continuous character scaling for the size of
Graphics Text. This text can be rotated on 0, 90, 180, and 270 degree baselines.

C-10 Graphics Development Toolkit

Filled Areas

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. There are six Pattern interior styles (index
numbers one thru six) that are mapped to six Hatch interior styles. However,
these six and an additional twenty-nine (thirty-five total) Hatch patterns can be
used for GDPs only, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

7 = Left narrow diagonal

8 = Left medium diagonal

9 = Narrow fencing

10 = Wide fencing

11 = Narrow vertical lines

12 = Medium vertical lines

11

111111111111111111111111111111

Graphics Drivers C-11

13 = Narrow horizontal lines

14 = Medium horizontal

15 = Horz/Vert crosshatch 1

16 = Horz/Vert crosshatch 2

17 = Horz/Vert crosshatch 3

18 = Horz/Vert crosshatch 4

19 = Horz/Vert crosshatch 5

20 = Horz/Vert crosshatch 6

21 = Horz/Vert crosshatch 7

22 = Horz/Vert crosshatch 8

23 = Little checkerboard

24 = Big checkerboard

25 = Little diamonds

26 = Big diamonds

27 = Little triangles

C-12 Graphics Development Toolkit

-111111111lllr8

--
111111111111111111111111111111

I I I I I 111111111111111

~w1~1Jnt111~·11i··t•i-1·1 ·1

I I I I I I I I

J-tLI llJ I

-
lllllllllllllllllllllllllillllllllllllllllllll

111111111111111111111111111111

-

Colors

Alpha Text

28 = Big triangles

29 = Little bricks

30 = Big bricks

31 = Honeycomb

32=Zigzag

33 = Fishscale

34=Clovers

35=Maze

The IBM 3812 Printer supports two colors. Index 1 is black and index O is not
displayed. These colors cannot be redefined.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available:

Fonts: 1 = Courier. 10. PO
2 =Courier.bold. IO.PO
3 =Courier.italic. 10. PO
4 = Document.PSM.MLP
5 = Document. PSM .PO

Graphics Drivers C-13

6 = Boldface.PSM.MLP
7 = Boldface.PSM.PO
8 = Boldface.italic.PSM.MLP
9 =Boldface. italic .PSM. PO

lO=Document.PSM.Pl
11 = Document. PSM. P2
12 = Boldface.PSM.Pl
13 = Boldface.PSM.P2
14=Boldface.italic.PSM.Pl
15 =Boldface.italic. PSM. P2
16 = Essay.PSM. MLP
17 = Essay. PSM. PO
18=Essay.PSM.Pl
19=Essay.PSM.P2
20 =Essay.bold. PSM .MLP
21 =Essay.bold.PSM.PO
22 = Essay. bold.PSM.Pl
23 =Essay.bold. PSM. P2
24 =Essay.italic. PSM. MLP
25 =Essay.italic.PSM.PO
26 = Essay.italic.PSM.Pl
27 =Essay.italic.PSM.P2
28 = Essay.light. PSM. MLP
29 = Essay.light. PSM. PO
30 = Essay.light.PSM.Pl
31 = Essay.light. PSM. P2
32 = Sonoran-serif.8pt.MLP
33 =Sonoran-serif.8pt.PO
34 = Sonoran-serif. 8pt. P 1
35 = Sonoran-serif. 8pt. P2
36 = Sonoran-serif. 1 Opt. MLP
3 7 = Sonoran-serif. 1 Opt. PO
38 = Sonoran-serif. lOpt.Pl
39=Sonoran-serif.10pt.P2
40 = Sonoran-serif. 12pt. MLP
41 =Sonoran-serif.12pt.PO
42 = Sonoran-serif.12pt.Pl
43 =Sonoran-serif.12pt.P2
44=Sonoran-serif.bold.10pt.MLP
45 =Sonoran-serif.bold. lOpt.PO
46=Sonoran-serif.bold.10pt.Pl
47 =Sonoran-serif.bold.10pt.P2

C-14 Graphics Development Toolkit

48 = Sonoran-serif. bold. l 6pt. MLP
49=Sonoran-serif.bold.16pt.PO
50=Sonoran-serif.bold.16pt.Pl
51 =Sonoran-serif.bold.16pt.P2
52 = Sonoran-serif. bold. 18pt. MLP
53 =Sonoran-serif.bold.18pt.PO
54 = Sonoran-serif. bold. l 8pt.Pl
55 =Sonoran-serif.bold.18pt.P2
56 = Sonoran-serif.bold.24pt.MLP
57 =Sonoran-serif.bold.24pt.PO
58 = Sonoran-serif. bold.24pt.Pl
59 = Sonoran-serif. bold.24pt.P2
60=Sonoran-serif.italic.10pt.MLP
61 = Sonoran-serif.italic. lOpt.PO
62 = Sonoran-serif.italic. lOpt.Pl
63 = Sonoran-serif. italic. 1 Opt. P2
64 = Courier. 5 .ASCII
65 = Courier. 5. PO
66 = Courier. l O. ASCII
67 = Courier. 10. MLP
68 =Courier.10.Pl
69 = Courier. IO. P2
70=Courier.12.MLP
71 =Courier.12.PO
72 =Courier.12.Pl
73 =Courier.12.P2
74 = Courier.17 .ASCII
75 =Courier.17 .PO
7 6 = Courier. 17 ss. ASCII
77 = Courier. 17 ss. PO
78 =Courier.bold. 5. ASCII
79 = Courier.bold.5 .PO
80 =Courier.bold. 10. ASCII
81 =Courier.bold. 17. ASCII
82 =Courier.bold .17. PO
83 =Courier.italic.10.MLP
84 =Courier.italic.10.Pl
85 =Courier.italic. 10. P2
86 = Gothic-text. 10. MLP
87 =Gothic-text.10.PO
88 =Gothic-text.10.Pl
89=Gothic-text.12.MLP

Graphics Drivers C-15

90=Gothic-text.12.PO
91 =Gothic-text.12.Pl
92=Gothic-text.13.MLP
93 = Gothic-text.13. PO
94 = Gothic-text.13. P 1
95 = Gothic-text.15. MLP
96=Gothic-text.15.PO
97 =Gothic-text.15.Pl
98 = Gothic-text.20.MLP
99 = Gothic-text.20. PO

100 = Gothic-text. 20. P 1
101 =Gothic-text.27.MLP
102 = Gothic-text.27 .PO
103 =Gothic-text.27 .Pl
104=Gothic-text.bold.10.MLP
105 =Gothic-text.bold. IO.PO
106=Gothic-text.bold.10.Pl
107 =Gothic-text.bold.12.MLP
108=Gothic-text.bold.12.PO
109=Gothic-text.bold.12.Pl
1 lO=Gothic-text.italic.12.MLP
111 =Gothic-text.italic.12.PO
112=Gothic-text.italic.12.Pl
113 =Letter-gothic.12.MLP
114=Letter-gothic.12.PO
115 =Letter-gothic.12.Pl
116=Letter-gothic.12.P2
117 =Letter-gothic.bold.12.MLP
118 =Letter-gothic.bold.12.PO
119=Letter-gothic.bold.12.Pl
120 = Letter-gothic. bold.12.P2
121 =Serif-text.10.MLP
122 = Serif-text.10.PO
123 = Serif-text.10.Pl
124=Serif-text.12.MLP
125 =Serif-text.12.PO
126=Serif-text.12.Pl
127 = Serif-text.15 .MLP
128 = Serif-text.15 .PO
129=Serif-text.15.Pl
130=Serif-text.bold.12.MLP
131 =Serif-text.bold.12.PO

C-16 Graphics Development Toolkit

132 =Serif-text.bold.12.Pl
133 =Serif-text.italic. IO.MLP
134 =Serif-text.italic.IO.PO
135 =Serif-text.italic.IO.Pl
136 = Serif-text.italic.12.MLP
137 = Serif-text.italic.12.P0
138 =Serif-text.italic.12.Pl
139=Prestige. IO.MLP
140=Prestige.10.P0
141 =Prestige. IO.Pl
142 = Prestige. IO.P2
143 =Prestige.12.MLP
144=Prestige.12.P0
145 = Prestige.12.Pl
146=Prestige.12.P2
147 =Prestige.bold.12.MLP
148 =Prestige.bold.12.P0
149 =Prestige.bold.12.Pl
150=Prestige.bold.12.P2
151 =Prestige.italic.12.MLP
152 = Prestige.italic.12.P0
153 = Prestige.italic.12.Pl
154 =Prestige. italic. 12. P2
155 =Orator.10.MLP
156=Orator.10.P0
157 =Orator. IO.Pl
158=Orator. IO.P2
159=Orator.bold.10.MLP
160 =Orator.bold. 10. PO
161 =Orator.bold. IO.Pl
162 =Orator.bold. 10. P2
163 = Roman-text. IO. MLP
164=Roman-text. IO.P0
165 =Roman-text. IO.Pl
166=Script.12.MLP
167 = Script.12.P0
168=Script.12.Pl
169 =Script.12.P2
170 =APL.IO.PC/ APL
171 =APL.20.PC/APL
172=OCR-A. IO.P0
173 =OCR-A. IO.P2
174=OCR-B.10.P0

Graphics Drivers C-17

Sizes: Size is determined by font style.

Features: Underlining
Overstrike Mode
Superscript and Subscript

Device Specific Information

This driver supports a number of page options. Each option is selected via the
system environment. In the following text, the commands to set these
environmental parameters are shown for both the "sh" and "csh" shells. Refer to
Appendix A, "Installing the Graphics Development Toolkit", for more
information about setting environmental parameters. The options are:

Page Orientation Option
This option can be set to either LANDSCAPE or PORTRAIT. The default for
page orientation is PORTRAIT.

To set the page orientation option via the "sh" shell, enter:

ORIENTATION=LANDSCAPE;export ORIENTATION
(or)
ORIENTATION=PORTRAIT;export ORIENTATION

To set the page orientation option via the "csh" shell, enter:

setenv ORIENTATION LANDSCAPE
(or)
setenv ORIENTATION PORTRAIT

Page Size Option
This option can be set to either LETTER or LEGAL. The default for page size
is LETTER. To set the page size option via the "sh" shell , enter:

PAPER=LETTER;export PAPER
(or)
PAPER=LEGAL;export PAPER

To set the page size option via the "csh" shell, enter:

setenv PAPER LETTER
(or)
setenv PAPER LEGAL

C-18 Graphics Development Toolkit

'fray Selection Option
This option can be set to either LOWER or UPPER. The default for tray
selection is UPPER.

To set the tray selection option via the "sh" shell, enter:

TRAY=UPPER;export TRAY
(or)
TRAY=LOWER;export TRAY

To set the tray selection option via the "csh" shell, enter:

setenv TRAY UPPER
(or)
setenv TRAY LOWER

Number of Copies Option
This option can be set to any number between 1 and 999 (represented by "n"
below).

To set the number of copies via the "sh" shell, enter:

COPIES=n;export COPIES

To set the number of copies via the "csh" shell, enter:

setenv COPIES n

Overlay Option
This option can be set to either TRUE or FALSE. When overlay mode is
enabled, the picture generation command is suppressed. The default for overlay
is FALSE.

To set the overlay option via the "sh" shell, enter:

OVERLAY=TRUE;export OVERLAY
(or)
OVERLAY=FALSE;export OVERLAY

To set the overlay option via the "csh" shell , enter:

setenv OVERLAY TRUE
(or)
setenv OVERLAY FALSE

Graphics Drivers C-19

Routine Summary

Margins Option
This option can be set to either TRUE or FALSE. When margins are enabled, a
1/4 inch margin is given. The default for margins is FALSE.

To set the margins option via the "sh" shell, enter:

MARGIN=TRUE;export MARGIN
(or)
MARGIN=FALSE;export MARGIN

To set the margins option via the "csh" shell, enter:

setenv MARGIN TRUE
(or)
setenv MARGIN FALSE

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 3812 Printer. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode.

C-20 Graphics Development Toolkit

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text

Graphics Drivers C-21

• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Error Handling

• Inquire Error.

C-22 Graphics Development Toolkit

IBM 4201 Printer

Features Supported

Polylines

Filename: vdi4201

The following text describes each of the IBM 4201 Printer features that are
supported by this device driver.

Lines and arcs can be drawn on the IBM 4201 Printer with one of seven line
styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6 = Dash With Two Dots

7 = Short Dash

Graphics Drivers C-23

Graphics Markers

The IBM 4201 Printer supports six Graphics Marker types, selected with type
indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 306 306

2 568 568

3 830 830

4 1091 1091

5 1353 1353

C-24 Graphics Development Toolkit

Graphics Text

The IBM 4201 Printer supports twelve sizes of Graphics Text. This text can be
rotated on 0, 90, 180, and 270 degree baselines. The NDC units for each of the
twelve text size indexes, for both Preserve and Non-Preserve Aspect ratios, are
listed in the following tables:

Graphics Text Sizes
Preserve Aspect Ratio Mode

Character Character Cell Cell
Index Height Width Height Width

1 306 262 350 315

2 611 524 699 629

3 917 786 1048 943

4 1222 1047 1397 1257

5 1528 1309 1746 1571

6 1833 1571 2095 1885

7 2138 1833 2444 2199

8 2444 2094 2793 2513

9 2749 2356 3142 2827

10 3055 2618 3491 3141

11 3360 2879 3840 3455

12 3666 3141 4189 3769

Graphics Drivers C-25

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 306 342 350 410

2 611 683 699 820

3 917 1024 1048 1229

4 1222 1366 1397 1639

5 1528 1707 1746 2048

6 1833 2048 2095 2458

7 2138 2390 2444 2868

8 2444 2731 2793 3277

9 2749 3072 3142 3687

10 3055 3414 3491 4096

11 3360 3755 3840 4506

12 3666 4096 4189 4916

C-26 Graphics Development Toolkit

Filled Areas

Colors

Filled areas, bars, pie slices and circles are all displayed using the current fill
area attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

The IBM 4201 Printer supports 2 colors: Index 1 is displayed in black ink and
index O is not displayed. These colors cannot be redefined.

Graphics Drivers C-27

Alpha Text

Routine Summary

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available:

Fonts: 1 =Normal (default)
2=Bold

Sizes: 1 = 17 .6 characters per inch
2 = 12 characters per inch
3 = 10 characters per inch (default)
4 = 8. 3 characters per inch
5 = 6 characters per inch
6 = 5 characters per inch

Text Quality: 0-33 =dot matrix quality (default)
34-67 = correspondence quality
68-100 = near letter quality

Features: Underlining
Overstrike Mode
Pass Through Mode
Superscript and Subscript
Line Spacing
Text Position

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 4201 Printer. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

C-28 Graphics Development Toolkit

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Graphics Drivers C-29

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Error Handling

• Inquire Error.

C-30 Graphics Development Toolkit

IBM 5152 Graphics Printer

Features supported

Polylines

Graphics Markers

Filename: vdi5152

The following text describes each of the IBM Graphics Printer features that are
supported by this device driver.

Lines and arcs can be drawn on the IBM 5152 Graphics Printer with one of
seven line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6 = Dash With Two Dots

7 = Short Dash

The IBM 5152 Graphics Printer supports six Graphics Marker types, selected
with type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

Graphics Drivers C-31

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 306 306

2 568 568

3 830 830

4 1091 1091

5 1353 1353

C-32 Graphics Development Toolkit

Graphics Text

The IBM 5152 Graphics Printer supports 12 Graphics Text sizes. With this
printer, Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines.
In the following tables, the 12 sizes are listed (in NDC units) for both Preserve
and Non-Preserve Aspect Ratios.

Graphics Text Sizes
Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 306 262 350 315

2 611 524 699 629

3 917 786 1048 943

4 1222 1047 1397 1257

5 1528 1309 1746 1571

6 1833 1571 2095 1885

7 2138 1833 2444 2199

8 2444 2094 2793 2513

9 2749 2356 3142 2827

10 3055 2618 3491 3141

11 3360 2879 3840 3455

12 3666 3141 4189 3769

Graphics Drivers C-33

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 306 342 350 410

2 611 683 699 820

3 917 1024 1048 1229

4 1222 1366 1397 1639

5 1528 1707 1746 2048

6 1833 2048 2095 2458

7 2138 2390 2444 2868

8 2444 2731 2793 3277

9 2749 3072 3142 3687

10 3055 3414 3491 4096

11 3360 3755 3840 4506

12 3666 4096 4189 4916

C-34 Graphics Development Toolkit

Filled Areas

Colors

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

The IBM 5152 Graphics Printer supports two colors. Number 1 is displayed
with the black ribbon and number O is not displayed. These colors cannot be
redefined.

Graphics Drivers C-35

Alpha Text

Routine Summary

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM 5152 Graphics Printer:

Fonts: 1 =Normal (default)
2=Bold

Sizes: 1 = 17. 16 characters per inch
2 = 10. 00 characters per inch (default)

Text Quality: ((50) = Bi-directional printing on
(2: 50) = Bi-directional printing off

Features: Underlining
Overstrike Mode
Pass Through Mode
Superscript and Subscript

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 5152 Printer. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode (supports all 16 modes).

C-36 Graphics Development Toolkit

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size

Graphics Drivers C-37

• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Error Handling

• Inquire Error.

C-38 Graphics Development Toolkit

IBM 5182 Color Printer

Features Supported

Polylines

Graphics Markers

Filename: vdi5182

The following text describes each of the IBM 5182 Color Printer features that
are supported by this device driver.

Lines and arcs can be drawn on the IBM 5182 Color Printer with one of seven
line styles, selected with sty le indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash - - - - - - - - - - - -

3 = Dotted • · • • • • · · · · · · · · · ·

4 = Dash Dotted - • - • - • - • - • - • - • - • - • - • - • -

5 = Medium Dash • - ,

6 = Dash With Two Dots - •· - •· - •· - •· - •· - •· - •· - •· - •· - •• - •• -

7 = Short Dash • -

The IBM 5182 Color Printer supports six Graphics Marker types, selected with
type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

Graphics Drivers C-39

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker size indexes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 268 268

2 497 497

3 726 726

4 955 955

5 1184 1184

C-40 Graphics Development Toolkit

Graphics Text

The IBM 5182 Color Printer supports 12 Graphics Text sizes. With this printer,
Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines. The 12
sizes are listed, in NDC units, for both Preserve Aspect Ratio and Non-Preserve
aspect ratio in the following tables.

Graphics Text Sizes
Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 268 191 306 230

2 535 382 612 459

3 803 573 917 688

4 1070 764 1223 917

5 1337 955 1528 1146

6 1605 1146 1834 1375

7 1872 1337 2139 1605

8 2139 1528 2445 1834

9 2407 1719 2750 2063

10 2674 1910 3056 2292

11 2941 2101 3361 2521

12 3209 2292 3667 2750

Graphics Drivers C-41

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 268 250 306 300

2 535 500 612 600

3 803 750 917 900

4 1070 1000 1223 1199

5 1337 1249 1528 1499

6 1605 1499 1834 1799

7 1872 1749 2139 2098

8 2139 1999 2445 2398

9 2407 2248 2750 2698

10 2674 2498 3056 2998

11 2941 2748 3361 3297

12 3209 2998 3667 3597

C-42 Graphics Development Toolkit

Filled Areas

Colors

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

The IBM 5182 Color Printer supports eight colors. These colors cannot be
redefined. Each color is associated with a color index, as follows:

0 = Background
1 =Black
2=Red
3=Green
4=Blue
5=Yellow
6=0range
7=Violet

Graphics Drivers C-43

Alpha Text

Alpha Text can be positioned anywhere on the output page. The following alpha
text capabilities are available on the IBM 5182 Color Printer:

Fonts: 1 =Normal (default)
2=Bold

Sizes: 1 = 1 7. 16 characters per inch
2 = 12 character per inch
3 = 10 characters per inch (default)
4 = 5 characters per inch

Text Quality: ((50) = Bi-directional printing on
(~ 50) = Bi-directional printing off

Features: Underlining
Overstrike Mode
Pass Through Mode
Superscript and Subscript

Device Specific Information

The IBM 5182 Color Printer driver allows the user to change the paper width
and ribbon selection independently of each other. The valid options for paper are
WIDE (13 inch output) and NARROW (8 inch output). The default is Narrow
paper. The ribbon has three options: BLACK (color number 0 and 1 are valid),
RGB (color numbers Oto 4 are valid), and the PROCESS ribbon (color numbers
0 to 7 are valid). The default ribbon is the PROCESS ribbon.

Note: To use the WIDE paper option, the appropriate printer DIP switch must
be set properly. For more information on setting printer DIP switches, refer to
your printer manual.

Some device options can be selected by exporting them to the operating system
environment.

C-44 Graphics Development Toolkit

Routine Summary

To select the paper size, with the "sh" shell, enter:

PAPER=WIDE;export PAPER
(or)
PAPER=NARROW;export PAPER

To select the paper size, with the "csh" shell, enter:

setenv PAPER WIDE
(or)
setenv PAPER NARROW

To select the ribbon, with the "sh" shell, enter:

RIBBON=BLACK;export RIBBON
(or)
RIBBON=RGB;export RIBBON
(or)
RIBBON=PROCESS;export RIBBON

To select the ribbon, with the "csh" shell, enter:

setenv RIBBON BLACK
(or)
setenv RIBBON RGB
(or)
setenv RIBBON PROCESS

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 5182 Printer. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Graphics Drivers C-45

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode (supports all 16 modes).

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

C-46 Graphics Development Toolkit

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Error Handling

• Inquire Error.

Graphics Drivers C-47

IBM 6180 Color Plotter

Features Supported

Polylines

Filename: vdi6180

The following text describes each of the IBM 6180 Color Plotter features that
are supported by this device driver.

Lines and arcs can be drawn on the IBM 6180 Color Plotter with one of seven
line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4=Dash Dotted

5 = Medium Dash

6 = Dash With Two Dots

7 = Short Dash

C-48 Graphics Development Toolkit

Graphics Markers

The IBM 6180 Color Plotter supports six Graphics Marker types, selected with
type indexes 1 thru 6:

l=Dot •
2=Cross +
3 =Star *
4=Square D
5=X X
6=Diamond ◊

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following tables show the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios and in two sizes
of paper.

Graphics Marker Sizes
"A" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 195 262

2 385 519

3 576 776

4 767 1033

5 958 1290

Graphics Drivers C-49

Graphics Text

Graphics Marker Sizes
"A4" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 184 262

2 364 519

3 545 776

4 725 1033

5 905 1290

The IBM 6180 Color Plotter supports continuous character scaling. Graphics
Text can be rotated from Oto 359.9 degrees, in increments of one tenth of a
degree. The following character sets are available as Graphics Text fonts on the
IBM 6180 Color Plotter:

1 = ANSI ASCII
2 = 9825 Character Set
3 = French/German
4 = Scandinavian
5 = Spanish/Latin American

If the Graphics Enhancement Cartridge is installed the following Graphics Text
fonts will also be available:

6=JIS ASCII
7 = Roman (8 Extensions)
8=Katakana
9 = International Version

lO=Swedish
11 = Swedish for names
12 = Norway (Version I)
13=German

C-50 Graphics Development Toolkit

Filled Areas

Colors

14=French
15 = United Kingdom
16=Italian
17=Spanish
18 = Portuguese
19 = Norway (Version II)

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

Color indexes 1 through 8 are mapped to pen stations 1 through 8 of the IBM
6180 Color Plotter. Color O is not displayed.

Graphics Drivers C-51

Alpha Text

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM 6180 Color Plotter:

Fonts: (See Alpha Text Font Index Table)

Sizes: Continuous character scaling, default is 66 characters down
page

Features: Underlining
Overstrike Mode
Superscript and Subscript
Color

Alpha Text Font Index

Description Normal Bold Italics

ANSI ASCII 1 2 3

Reserved for VD I 4 5 6

9825 Character Set 7 8 9

French/German 10 11 12

Scandinavian 13 14 15

Spanish/Latin American 16 17 18

C-52 Graphics Development Toolkit

Request Locator

If the Graphics Enhancement Cartridge is installed, the following fonts are also
available:

Alpha Text Font Index

Description Normal Bold Italics

JIS ASCII 19 20 21

Roman - 8 Extensions 22 23 24

Katakana 25 26 27

International Version 28 29 30

Swedish 31 32 33

Swedish for names 34 35 36

Norway (Version I) 37 38 39

German 40 41 42

French 43 44 45

United Kingdom 46 47 48

Italian 49 50 51

Spanish 52 53 54

Portuguese 55 56 57

Norway (Version II) 58 59 60

The pen holder location is used to indicate the plotter pen's coordinates to VDI.
The pen holder is moved by pressing the position keys on the plotter's front
panel. When the pen holder is at the desired location, the point can be selected
by pressing the plotter's Enter button. This causes the coordinates of the point
to be transmitted back to the user program.

Device Specific Information

This driver will drive the plotter in both A and A4 size modes. The paper size
can be selected by setting the rear DIP switch. This should be done before
running your application.

Graphics Drivers C-53

Routine Summary

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 6180 Plotter. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Set Pen Speed
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode (overstrike mode only).

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index

C-54 Graphics Development Toolkit

• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Locator (request mode).

Error Handling

• Inquire Error.

Graphics Drivers C-55

IBM 7371 Color Plotter

Features Supported

Polylines

Graphics Markers

Filename: vdi7371

The following text describes each of the IBM 7371 Color Plotter features that
are supported by this device driver.

Lines and arcs can be drawn on the IBM 73 71 Color Plotter with one of six line
styles, selected with style indexes 1 thru 6:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6=Dash With Two Dots

The IBM 7371 Color Plotter supports six Graphics Marker types, selected with
type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

C-56 Graphics Development Toolkit

Graphics Text

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 195 262

2 385 519

3 576 776

4 767 1033

5 958 1290

The IBM 7371 Color Plotter supports continuous character scaling. Graphics
Text can be rotated from O to 359. 9 degrees, in increments of one tenth of a
degree. There are five character fonts available for Graphics Text on the IBM
7371 Color Plotter, as follows:

1 = ANSI ASCII
2 = 9825 Character Set
3 = French/German
4 = Scandinavian
5 = Spanish/Latin American

Graphics Drivers C-57

Filled Areas

Colors

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

Color 1 always is located in pen station 1. It is assumed to be a black pen. By
default, color index 2 is located in pen station 2. If the user program requests a
color index other than what is currently in pen stations 1 and 2, the user is sent
a prompt to insert the requested pen into pen station 2. Color O is not displayed.

C-58 Graphics Development Toolkit

Alpha Text

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM 7371 Color Plotter:

Fonts:

Sizes:

(See Alpha Text Font Index Table)

Continuous character scaling,
default is 66 characters down page

Features: Under lining
Overstrike Mode
Superscript and Subscript
Color

Alpha Text Font Index

Description Normal Bold Italics

ANSI ASCII 1 2 3

Reserved for VDI 4 5 6

9825 Character Set 7 8 9

French/German 10 11 12

Scandinavian 13 14 15

Spanish/Latin American 16 17 18

Graphics Drivers C-59

Request Locator

The pen holder location is used to indicate the plotter pen's coordinates to VDI.
The pen holder is moved by pressing the position keys on the plotter's front
panel. When the pen holder is at the desired location, the point can be selected
by pressing the plotter's Enter button. This causes the coordinates of the point
to be transmitted back to the user program.

Device Specific Information

Routine Summary

This driver drives the plotter in small paper (8 ½ X 11) mode only.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 7371 Plotter. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Set Pen Speed
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode (overstrike mode only).

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes

C-60 Graphics Development Toolkit

• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position

Graphics Drivers C-61

• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Locator (request mode).

Error Handling

• Inquire Error.

C-62 Graphics Development Toolkit

IBM 7372 Color Plotter

Features Supported

Polylines

Graphics Markers

Filename: vdi7372

The following text describes each of the IBM 7372 Color Plotter features that
are supported by this device driver.

Lines and arcs can be drawn on the IBM 7372 Color Plotter with one of seven
line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 =Medium Dash

6 = Dash With Two Dots

7 = Short Dash

The IBM 7372 Color Plotter supports six Graphics Marker types, selected with
type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

Graphics Drivers C-63

Graphics Text

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following tables show the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios and in two sizes
of paper.

Graphics Marker Sizes
"A" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 121 193

2 239 383

3 357 573

4 475 762

5 593 952

Graphics Marker Sizes
"B" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 193 252

2 383 498

3 573 745

4 762 992

5 952 1239

The IBM 7372 Color Plotter supports continuous character scaling. Graphics
Text can be rotated from Oto 359.9 degrees, in increments of one tenth of a
degree. There are 19 character sets available as Graphics Text fonts on the IBM
7372 Color Plotter, as follows:

1 = ANSI ASCII
2 = 9825 Character Set
3 = French/German
4 = Scandinavian
5 = Spanish/Latin American

C-64 Graphics Development Toolkit

Filled Areas

6=JIS ASCII
7 = Roman (8 Extensions)
8=Katakana
9 = International Version

lO=Swedish
11 = Swedish for names
12 = Norway (Version I)
13=German
14=French
15 = United Kingdom
16=1talian
17=Spanish
18 = Portuguese
19 = Norway (Version II)

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

Graphics Drivers C-65

Colors

Alpha Text

Color indexes 1 through 6 are mapped to pen stations 1 through 6 of the IBM
7372 Color Plotter. Color O is not displayed.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM 7372 Color Plotter:

Fonts:

Sizes:

(See Alpha Text Font Index Table)

Continuous character scaling,
default is 66 characters down page

Features: Underlining
Overstrike Mode
Superscript and Subscript
Color

Alpha Text Font Index

Description Normal Bold Italics

ANSI ASCII 1 2 3

Reserved for VDI 4 5 6

9825 Character Set 7 8 9

French/German 10 11 12

Scandinavian 13 14 15

Spanish/Latin American 16 17 18

JIS ASCII 19 20 21

Roman - 8 Extensions 22 23 24

Katakana 25 26 27

International Version 28 29 30

C-66 Graphics Development Toolkit

Request Locator

Alpha Text Font Index

Description Normal Bold Italics

Swedish 31 32 33

Swedish for names 34 35 36

Norway (Version I) 37 38 39

German 40 41 42

French 43 44 45

United Kingdom 46 47 48

Italian 49 50 51

Spanish 52 53 54

Portuguese 55 56 57

Norway (Version II) 58 59 60

The pen holder location is used to indicate the plotter pen's coordinates to VDI.
The pen holder is moved by pressing the position keys on the plotter's front
panel. When the pen holder is at the desired location, the point can be selected
by pressing the plotter's Enter button. This causes the coordinates of the point
to be transmitted back to the user program.

Device Specific Information

This driver will drive the plotter in both A and B size modes. The paper size
can be selected by setting the rear DIP switch or by pressing the plotter's SIZE
button simultaneously with the plotter's Enter button. This should be done
before running your application.

Graphics Drivers C-67

Routine Summary

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 7372 Plotter. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Set Pen Speed
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode (overstrike mode only).

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style

C-68 Graphics Development Toolkit

• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Locator (request mode).

Error Handling

• Inquire Error.

Graphics Drivers C-69

IBM 7374, 7375-1, 7375-2 Plotters

Features Supported

Polylines

Graphics Markers

Filename: vdi7375

The following text describes each of the IBM 7374, 7375-1, or 7375-2 Plotter
features that are supported by this device driver.

Lines and arcs can be drawn on the IBM 7374, 7375-1, and 7375-2 Plotters
with one of seven line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6=Dash With Two Dots

7 = Short Dash

The IBM 7374, 7375-1, and 7375-2 Plotters support six Graphics Marker types,
selected with type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square □
5=X X
6=Diamond ◊

C-70 Graphics Development Toolkit

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following tables show the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios, for each of the
available paper size options.

Graphics Markers
"A" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 177 177

2 351 351

3 524 524

4 697 697

5 870 870

Graphics Markers
"B" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 315 481

2 627 957

3 938 1433

4 1250 1910

5 1562 2386

Graphics Drivers C-71

Graphics Markers
"C" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 217 217

2 433 433

3 648 648

4 863 863

5 1079 1079

Graphics Markers
"D1" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 323 501

2 644 1000

3 964 1500

4 1285 1998

5 1606 2498

Graphics Markers
"D2" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 190 190

2 379 379

3 568 568

4 757 757

5 946 946

C-72 Graphics Development Toolkit

Graphics Markers
"E" Size Paper

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 325 416

2 649 829

3 973 1243

4 1297 1657

5 1621 2071

Dimensions of Paper Sizes

Paper Paper Paper
Size Width Length Orientation

A 8.5" 11" (length along platen)

B 11" 17" (width along platen)

C 17" 22" (length along platen)

D1 22" 34" (width along platen)

D2 22" 34" (length along platen)

E 34" 44" (width along platen)

Note: For roll paper, use sheet paper values of the paper size with the same
width as the roll.

Graphics Drivers C-73

Graphics Text

These plotters support continuous character scaling. Graphics Text can be
rotated from Oto 359.9 degrees, in increments of one tenth of a degree. There
are 19 character sets available as Graphics Text fonts on these plotters, as
follows:

1 = ANSI ASCII
2 = 9825 Character set
3 = French/German
4 = Scandanavian
5 = Spanish/Latin American
6 = Special Symbols
7=JIS ASCII
8 = Roman, 8 Extensions
9=Katakana

lO=ISO IRV
11 = ISO Swedish
12=ISO Swedish (names)
13=ISO Norway Vl
14 = ISO German
15 = ISO French
16 = ISO United Kingdom
1 7 = ISO Italian
18 = ISO Spanish
19 = ISO Portuguese

C-74 Graphics Development Toolkit

Filled Areas

Colors

Alpha Text

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

Color indices 1 through 8 are mapped to pen stations 1 through 8 of the plotter.
Color O is not displayed.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the plotter:

Fonts:

Sizes:

(See Alpha Text Font Index Table)

One size can be selected,
default is 66 characters down page

Graphics Drivers C-75

Features: Underlining
Overstrike Mode
Superscript and Subscript
Color

Alpha Text Font Index

Font Normal

ANSI ASCII 1

Reserved for VDI 4

9825 Character Set 7

French/German 10

Scandanavian 13

Spanish/Latin American 16

Special Symbols 19

JIS ASCII 22

Roman, 8 Extensions 25

Katakana 28

ISO IRV 31

ISO Swedish 34

ISO Swedish (for names) 37

ISO Norway V 1 40

ISO German 43

ISO French 46

ISO United Kingdom 49

ISO Italian 52

ISO Spanish 55

ISO Portuguese 58

C-76 Graphics Development Toolkit

Bold Italics

2 3

5 6

8 9

11 12

14 15

17 18

20 21

23 24

26 27

29 30

32 33

35 36

38 39

41 42

44 45

47 48

50 51

53 54

56 57

59 60

Request Locator

When request locator is invoked, the LED on the Enter button is lit. The
joystick is used to indicate the point to be input. When the pen holder is at the
desired location, the point can be selected by pressing the Enter button. This
causes the coordinates of the point to be transmitted to the user program.

Device Specific Information

Routine Summary

Only one paper size may be used during any individual workstation session. The
workstation must be closed and reopened when changing the paper size.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM 7374 and 7375 Plotters. If your application calls a routine
that is not supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Set Pen Speed
• Update Workstation.

Cursor Control Routines

• Inquire Addressable Character Cells
• Output Cursor Addressable Text.

General Graphics Routines

• Inquire Color Representation
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes

Graphics Drivers C-77

• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position

C-78 Graphics Development Toolkit

• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Locator (request mode).

Error Handling

• Inquire Error.

Graphics Drivers C-79

IBM Advanced Monochrome Graphics Display

Features Supported

Polylines

Graphics Markers

Filename: vdiamg

The following text describes each of the IBM Advanced Monochrome Graphics
Display features that are supported by this device driver.

Lines and arcs can be drawn on the IBM Advanced Monochrome Graphics
Display with one of seven line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6=Dash With Two Dots

7 = Short Dash

The IBM Advanced Monochrome Graphics Display supports six Graphics
Marker types, selected with type indexes 1 thru 6:

l=Dot •
2=Cross +
3 =Star *
4=Square D
5=X X
6=Diamond ◊

C-80 Graphics Development Toolkit

Graphics Text

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 319 448

2 592 832

3 865 1216

4 1138 1600

5 1411 1984

Graphics Text fonts are selected by index number. Index number 1 is reserved
for the default font. All other index numbers are derived from an alphabetical
list of font files that end with the . 9X20 extension and reside in /etc/vtm. For
example, the first file in the alphabetical list would be index number 2, the
second would be index number 3 and so on.

Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines. The IBM
Advanced Monochrome Graphics Display supports five sizes in each different
display mode. These sizes are listed below in NDC units for each of the modes:

Graphics Text Sizes
Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 729 365 911 410

2 1457 729 1821 820

3 2185 1093 2731 1229

4 2913 1457 3641 1639

5 3641 1821 4552 2048

Graphics Drivers C-81

Filled Areas

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 1024 365 1280 410

2 2048 729 2560 820

3 3072 1093 3840 1229

4 4096 1457 5120 1639

5 5120 1821 6400 2048

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

C-82 Graphics Development Toolkit

Colors

Alpha Text

Request Locator

In graphics mode, there are two available colors that can be used to display
graphics primitives. Color index O is displayed as black, and color index 1 is
displayed as white. These colors cannot be redefined.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available:

Fonts:

Sizes:

Features:

Font index 1 is the standard device font, fonts 2 through 6 are
reserved for VD I, and font indexes 7 and upwards are taken
from an alphabetical list of files that end with the . 9X20
extension and reside in / etc/vtm.

One Size

Underlining
Overstrike Mode
Superscript and Subscript
Line Spacing

When locator is invoked, a tracking cross appears on the display at the initial
locator position. The cross can be moved with the IBM RT PC Mouse or by
pressing one of the four arrow keys on the keyboard.

Initially, the cross moves in large increments. Pressing the Insert key toggles
the distance between large movements and small movements. When the cross is
at the desired location, the point can be selected by pressing any alpha key on
the keyboard. This causes the coordinates of the point to be transmitted back to
the user program. If desired, the device will perform an inking function. When
the locator is terminated, a line from the initial position to the desired position is
drawn honoring the current line attributes such as color and line style.

Graphics Drivers C-83

Request Choice

Request String

Also the device performs rubberbanding if desired. There are two types of
rubberbanding supported, lines and boxes. If rubberbanding lines are desired,
then a line will be drawn from the initial locator position to the current position
of the graphics cursor. The line changes dynamically as the cursor is moved.
When the locator is terminated, the line is removed. If rubberband rectangle is
specified, a rectangle is displayed with one corner at the initial locator position
and the opposite at the current position of the graphics cursor. The rectangle
changes dynamically as the cursor is moved. When the locator is terminated,
the rectangle is removed from the display.

The function keys Fl thru Fl2 on the keyboard, in conjunction with the SHIFT,
CTRL, and ALT keys, are used to enter choice input. Thus, a total of 48
different inputs can be generated. Pressing keys Fl thru Fl2 alone will generate
inputs 1 thru 12, respectively. If the SHIFT key is held down, while pressing
keys Fl thru Fl2, inputs 13 thru 24 will be generated. If the CTRL key is held
down, and the twelve keys are pressed, inputs 25 thru 36 will be generated. If
the ALT key is held down, and the twelve keys are pressed, inputs 37 thru 48
will be generated.

The keyboard is used to enter strings. The string is terminated by the Enter key.

Cursor Addressable Text

Routine Summary

Cursor addressable text is supported. The device must be in Cursor Addressing
Mode before it can perform any cursor control functions. To display graphics
primitives, the device must be removed from Cursor Addressing Mode. The
Reverse Video attribute is supported.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM Advanced Monochrome Graphics Display. If your
application calls a routine that is not supported, an error will occur (error code
-5000).

C-84 Graphics Development Toolkit

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Paging Routines

• Copy Page
• Inquire Page
• Set Page.

Pel Routines

• Copy Pels
• Get Pels
• Put Pels.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen
• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

Graphics Drivers C-85

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Sty le Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font ·
• Set Graphic Text String Baseline Rotation.

C-86 Graphics Development Toolkit

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Locator (request mode)
• Input String (request mode)
• Input String (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-87

IBM Advanced Color Graphics Display

Features Supported

Polylines

Graphics Markers

Filename: vdiacg

The following text describes each of the IBM Advanced Color Graphics Display
features that are supported by this device driver.

Lines and arcs can be drawn on the IBM Advanced Color Graphics Display
with one of seven line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6 = Dash With Two Dots

7 = Short Dash

The IBM Advanced Color Graphics Display supports six Graphics Marker
types, selected with type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square D
5=X X
6=Diamond ◊

C-88 Graphics Development Toolkit

Graphics Text

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 319 448

2 592 832

3 865 1216

4 1138 1600

5 1411 1984

Graphics Text fonts are selected by index number. Index number 1 is reserved
for the default font. All other index numbers are derived from an alphabetical
list of font files that end with the .9X20 extension and reside in /etc/vtm. For
example, the first file in the alphabetical list would be index number 2, the
second would be index number 3 and so on.

Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines. The IBM
Advanced Color Graphics Display supports five sizes in each different display
mode. These sizes are listed below in NDC units for each of the modes:

Graphics Text Sizes
Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 729 365 911 410

2 1457 729 1821 820

3 2185 1093 2731 1229

4 2913 1457 3641 1639

5 3641 1821 4552 2048

Graphics Drivers C-89

Filled Areas

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 1024 365 1280 410

2 2048 729 2560 820

3 3072 1093 3840 1229

4 4096 1457 5120 1639

5 5120 1821 6400 2048

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

C-90 Graphics Development Toolkit

Colors

Alpha Text

Request Locator

In graphics mode, there are 16 available colors that can be used to display
graphics primitives. They are defined as follows:

0=Black
1 =White
2=Red
3=Green
4=Blue
5=Yellow
6=Cyan
7=Magenta

8-15=White

These indices can be redefined into a color chosen from a palette of 64 available
colors, using the Set Color Representation function. Each of the Red, Green,
and Blue components can have values of 0, 250, 500, 750, or 1000.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available:

Fonts:

Sizes:

Features:

Font index 1 is the standard device font, fonts 2 through 6 are
reserved for VD I, and font indexes 7 and upwards are taken
from an alphabetical list of files that end with the . 9X20
extension and reside in /etc/vtm.

One Size

Underlining
Overstrike Mode
Superscript and Subscript
Line Spacing

When locator is invoked, a tracking cross appears on the display at the initial
locator position. The cross can be moved with the IBM RT PC Mouse or by
pressing one of the four arrow keys on the keyboard.

Graphics Drivers C-91

Request Choice

Request String

Initially, the cross moves in large increments. Pressing the Insert key toggles
the distance between large movements and small movements. When the cross is
at the desired location, the point can be selected by pressing any alpha key on
the keyboard. This causes the coordinates of the point to be transmitted back to
the user program.

If desired, the device will perform an inking function. When the locator is
terminated, a line from the initial position to the desired position is drawn
honoring the current line attributes such as color and line style.

Also the device performs rubberbanding if desired. There are two types of
rubberbanding supported, lines and boxes. If rubberbanding lines are desired,
then a line will be drawn from the initial locator position to the current position
of the graphics cursor. The line changes dynamically as the cursor is moved.
When the locator is terminated, the line is removed. If rubberband rectangle is
specified, a rectangle is displayed with one corner at the initial locator position
and the opposite at the current position of the graphics cursor. The rectangle
changes dynamically as the cursor is moved. When the locator is terminated,
the rectangle is removed from the display.

The function keys Fl thru Fl2 on the keyboard, in conjunction with the SHIFT,
CTRL, and ALT keys, are used to enter choice input. Thus, a total of 48
different inputs can be generated. Pressing keys Fl thru Fl2 alone will generate
inputs 1 thru 12, respectively. If the SHIFT key is held down, while pressing
keys Fl thru Fl2, inputs 13 thru 24 will be generated. If the CTRL key is held
down, and the twelve keys are pressed, inputs 25 thru 36 will be generated. If
the ALT key is held down, and the twelve keys are pressed, inputs 37 thru 48
will be generated.

The keyboard is used to enter strings. The string is terminated by the Enter key.

C-92 Graphics Development Toolkit

Cursor Addressable Text

Routine Summary

Cursor addressable text is supported. The device must be in Cursor Addressing
Mode before it can perform any cursor control functions. To display graphics
primitives, the device must be removed from Cursor Addressing Mode. The
Reverse Video attribute is supported.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM Advanced Color Graphics Display. If your application calls a
routine that is not supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Paging Routines

• Copy Page
• Inquire Page
• Set Page.

Pel Routines

• Copy Pels
• Get Pels
• Put Pels.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen

Graphics Drivers C-93

• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

C-94 Graphics Development Toolkit

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Locator (request mode)
• Input String (request mode)
• Input String (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-95

IBM Extended Monochrome Graphics Display

Features Supported

Poly lines

Graphics Markers

Filename: vdiemg

The following text describes each of the IBM Extended Monochrome Graphics
Display features that are supported by this device driver.

Lines and arcs can be drawn on the IBM Extended Monochrome Graphics
Display with one of seven line styles, selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5 = Medium Dash

6 = Dash With Two Dots

7 = Short Dash

The IBM Extended Monochrome Graphics Display device driver supports six
Graphics Marker types, selected with type indexes 1 thru 6:

1 =Dot ■

2=Cross +
3 =Star *
4=Square D
5=X X
6=Diamond ◊

C-96 Graphics Development Toolkit

Graphics Text

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 224 299

2 416 555

3 608 811

4 800 1067

5 992 1323

Graphics Text fonts are selected by index number. Index number 1 is reserved
for the default font. All other index numbers are derived from an alphabetical
list of font files that end with the .9X20 extension and reside in /etc/vtm. For
example, the first file in the alphabetical list would be index number 2, the
second would be index number 3 and so on.

Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines. The IBM
Extended Monochrome Graphics Display device driver supports five Graphics
Text sizes. These sizes are listed below in NDC units:

Graphics Text Sizes
Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 512 256 640 288

2 1024 512 1280 576

3 1536 768 1920 864

4 2048 1024 2560 1152

5 2560 1280 3200 1440

Graphics Drivers C-97

Filled Areas

Graphics Text Sizes
Non-Preserve Aspect Ratio

Character Character Cell Cell
Index Height Width Height Width

1 683 256 854 288

2 1366 512 1707 576

3 2048 768 2560 864

4 2731 1024 3414 1152

5 3414 1280 4267 1440

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

C-98 Graphics Development Toolkit

Colors

Alpha Text

Request Locator

In graphics mode, there are two available colors that can be used to display
graphics primitives. Color index O is displayed as black and color index 1 is
displayed as white. These colors cannot be redefined.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM Extended Monochrome Graphics Display
device driver:

Fonts:

Sizes:

Features:

Font index 1 is the standard device font, fonts 2 through 6 are
reserved for VDI, and font indexes 7 and upwards are taken
from an alphabetical list of files that end with the . 9X20
extension and reside in /etc/vtm.

One Size

Underlining
Overstrike Mode
Superscript and Subscript
Line Spacing

When locator is invoked, a tracking cross appears on the display at the initial
locator position. The cross can be moved with the IBM RT PC Mouse or by
pressing one of the four arrow keys on the keyboard.

Initially, the cross moves in large increments. Pressing the Insert key toggles
the distance between large movements and small movements. When the cross is
at the desired location, the point can be selected by pressing any alpha key on
the keyboard. This causes the coordinates of the point to be transmitted back to
the user program.

If desired, the device will perform an inking function. When the locator is
terminated, a line from the initial position to the desired position is drawn
honoring the current line attributes of the output echo device, such as color and
line style. Also, the output echo device performs rubberbanding if desired.

Graphics Drivers C-99

Request Choice

Request String

Two types of rubberbanding are supported, lines and boxes. If rubberbanding
lines are desired, then a line will be drawn from the initial locator position to
the current position of the graphics cursor. The line changes dynamically as the
cursor is moved. When the locator is terminated, the line is removed.

If rubberband rectangle is specified, a rectangle is displayed with one corner at
the initial locator position and the opposite at the current position of the graphics
cursor. The rectangle changes dynamically as the cursor is moved. When the
locator is terminated, the rectangle is removed from the display.

The function keys Fl thru Fl2 on the keyboard, in conjunction with the SHIFT,
CTRL, and ALT keys, are used to enter choice input. Thus, a total of 48
different inputs can be generated. Pressing keys Fl thru Fl2 alone will generate
inputs 1 thru 12, respectively. If the SHIFT key is held down, while pressing
keys Fl thru Fl2, inputs 13 thru 24 will be generated. If the CTRL key is held
down, and the twelve keys are pressed, inputs 25 thru 36 will be generated. If
the ALT key is held down, and the twelve keys are pressed, inputs 37 thru 48
will be generated.

The keyboard is used to enter strings. The string is terminated by the Enter key.

Cursor Addressable Text

Routine Summary

Cursor addressable text is supported. The device must be in Cursor Addressing
Mode before it can perform any cursor control functions. To display graphics
primitives, the device must be removed from Cursor Addressing Mode. The
Reverse Video attribute is supported.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM Extended Monochrome Graphics Display. If your application
calls a routine that is not supported, an error will occur (error code -5000).

C-100 Graphics Development Toolkit

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Paging Routines

• Copy Page
• Inquire Page
• Set Page.

Pel Routines

• Copy Pels
• Get Pels
• Put Pels.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen
• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor

Graphics Drivers C-101

• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability

C-102 Graphics Development Toolkit

• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Locator (request mode)
• Input String (request mode)
• Input String (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-103

IBM Enhanced Graphics Adapter

Features Supported

Polylines

Filename: vdiega

The following text describes each of the features of the IBM Enhanced Graphics
Adapter with an Enhanced Color Display or a Monochrome Monitor. These
features apply equally to both the display or monitor, except where noted in the
individual feature descriptions.

Lines and arcs can be drawn on the IBM Enhanced Graphics Adapter, with an
Enhanced Color Display or Monochrome Monitor, with one of seven line styles,
selected with style indexes 1 thru 7:

1 =Solid (round ends)

2=Long Dash

3=Dotted

4 = Dash Dotted

5=Medium Dash

6 = Dash With Two Dots

7 = Short Dash

C-104 Graphics Development Toolkit

Graphics Markers

Graphics Text

The IBM Enhanced Graphics Adapter, with either the Enhanced Color Display
or the Monochrome Monitor, supports six Graphics Marker types, selected with
type indexes 1 thru 6:

l=Dot •
2=Cross +
3=Star *
4=Square D
5=X X
6=Diamond ◊

Each type of marker can be drawn in one of five sizes, selected with size
indexes 1 thru 5. The following table shows the NDC units for the five Graphics
Marker sizes, in both Preserve and Non-Preserve Aspect Ratios.

Graphics Marker Sizes

Preserve Non-Preserve
Index Aspect Ratio Aspect Ratio

1 456 656

2 846 1218

3 1236 1779

4 1626 2341

5 2016 2903

Graphics Text fonts are selected by index number. Index number 1 is reserved
for the default font. All other index numbers are derived from an alphabetical
list of font files that end with the . 9X20 extension and reside in /etc/vtm. For
example, the first file in the alphabetical list would be index number 2, the
second would be index number 3 and so on.

Graphics Drivers C-105

Graphics Text can be rotated on 0, 90, 180, and 270 degree baselines. The IBM
Enhanced Graphics Adapter device driver supports five Graphics Text sizes.
These sizes are listed below in NDC units:

Graphics Text Sizes
Preserve Aspect Ratio Mode

Character Character Cell Cell
Index Height Width Height Width

1 716 359 911 410

2 1431 717 1821 820

3 2146 1076 2731 1229

4 2861 1434 3641 1639

5 3576 1792 4552 2048

Graphics Text Sizes
Non-Preserve Aspect Ratio Mode

Character Character Cell Cell
Index Height Width Height Width

1 1030 359 1311 410

2 2060 717 2622 820

3 3090 1076 3933 1229

4 4120 1434 5243 1639

5 5150 1792 6554 2048

C-106 Graphics Development Toolkit

Filled Areas

Colors

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. Hollow, Solid, and Hatch
interior styles are supported. The Pattern interior style is mapped to the Hatch
interior style. There are six Hatch interior styles, as follows:

1 = Right narrow diagonal

2 = Right medium diagonal

3 = Right wide diagonal

4 = Narrow diagonal crosshatch

5 = Medium diagonal crosshatch

6 = Wide diagonal crosshatch

The device driver for the IBM Enhanced Graphics Adapter with a Monochrome
Monitor supports four color attributes. They are:

0 = Background
1 =Video
2 = Video Blink
3 =Bold Video

The four color attributes for the Monochrome Monitor cannot be redefined.

Graphics Drivers C-107

Alpha Text

The device driver for the IBM Enhanced Graphics Adapter with Enhanced
Color Display supports either four or sixteen colors, depending on the amount
of memory available on the Enhanced Graphics Adapter card.

In Four Color Mode (with 64K of memory on the card) the Enhanced Color
Display will support the following color attributes:

0=Black
1 =White
2=Red
3=Green

In Sixteen Color Mode (with either 128K or 256K of memory on the card) the
Enhanced Color Display will support the following color attributes:

0=Black
1 =White
2=Red
3=Green
4=Blue
5=Yellow
6=Cyan
?=Magenta

8-15=White

The color indexes for the Enhanced Color Display can be redefined. Each of the
Red, Green, and Blue components can have 0, 333, 666, or 1000 values. This
enables you to have 64 colors. The Set Color Representation function will set
only an individual color index and not establish a palette.

Alpha Text can be positioned anywhere on the output page. The following text
capabilities are available on the IBM Enhanced Graphics Adapter with the
Monochrome Monitor or Enhanced Color Display:

Fonts:

Sizes:

Only one standard font called by index 1.

One Size

C-108 Graphics Development Toolkit

Request Locator

Request Choice

Features: Underlining
Overstrike Mode
Superscript and Subscript
Line Spacing
Color (Enhanced Color Display only)

When locator is invoked, a tracking cross appears on the display at the initial
locator position. The cross can be moved with the IBM RT PC Mouse or by
pressing one of the four arrow keys on the keyboard.

Initially, the cross moves in large increments. Pressing the Insert key toggles
the distance between large movements and small movements. When the cross is
at the desired location, the point can be selected by pressing any alpha key on
the keyboard. This causes the coordinates of the point to be transmitted back to
the user program.

If desired, the device will perform an inking function. When the locator is
terminated, a line from the initial position to the desired position is drawn
honoring the current line attributes of the output echo device, such as color and
line style. Also, the output echo device performs rubberbanding if desired.

Two types of rubberbanding are supported, lines and boxes. If rubberbanding
lines are desired, then a line will be drawn from the initial locator position to
the current position of the graphics cursor. The line changes dynamically as the
cursor is moved. When the locator is terminated, the line is removed.

If rubberband rectangle is specified, a rectangle is displayed with one corner at
the initial locator position and the opposite at the current position of the graphics
cursor. The rectangle changes dynamically as the cursor is moved. When the
locator is terminated, the rectangle is removed from the display.

The function keys Fl thru Fl2 on the keyboard, in conjunction with the SHIFT,
CTRL, and ALT keys, are used to enter choice input. Thus, a total of 48
different inputs can be generated. Pressing keys Fl thru Fl2 alone will generate
inputs 1 thru 12, respectively. If the SHIFT key is held down, while pressing
keys Fl thru Fl2, inputs 13 thru 24 will be generated. If the CTRL key is held
~own, and the twelve keys are pressed, inputs 25 thru 36 will be generated. If
the ALT key is held down, and the twelve keys are pressed, inputs 37 thru 48
will be generated.

Graphics Drivers C-109

Request String

The keyboard is used to enter strings. The string is terminated by the Enter key.

Cursor Addressable Text

Cursor addressable text is supported. The device must be in Cursor Addressing
Mode before it can perform any cursor control functions. To display graphics
primitives, the device must be removed from Cursor Addressing Mode. The
Reverse Video, Blink, and Bold intensity attributes are supported.

Device Specific Information

The following tables show the screen modes that are available for the Enhanced
Color Display and for the Monochrome Monitor.

Enhanced Color Display Screen Modes

Screen Mode Screen Size Number of Pages

Cursor Text 80X25 4 - 64K
8 - otherwise

Graphics Text 640X350 1 - 64K (4 color)
1 - 128K (16 color)
2 - 256K (16 color)

Monochrome Monitor Screen Modes

Screen Mode Screen Size Number of Pages

Cursor Text 80X25 4- 64K
8 - otherwise -

Graphics Text 640X350 1 - 64K (4 color)
1 - 128K (4 color)
2 - 256K (4 color)

C-110 Graphics Development Toolkit

Routine Summary

The following list shows the Toolkit routines that are supported by the device
driver for the IBM Enhanced Graphics Adapter, with Enhanced Color Display
or Monochrome Monitor. If your application calls a routine that is not
supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Open Workstation
• Update Workstation.

Paging Routines

• Copy Page
• Inquire Page
• Set Page.

Pel Routines

• Copy Pels
• Get Pels
• Put Pels.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen

Graphics Drivers C-111

• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line 1ype
• Set Polyline Line Width
• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

C-112 Graphics Development Toolkit

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Locator (request mode)
• Input String (request mode)
• Input String (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-113

IBM Virtual Device Metafile (VDM) Driver

Features Supported

Polylines

Graphics Markers

Graphics Text

Filled Areas

Colors

Filename: vdimeta

The following text describes each of the IBM Virtual Device Metafile features
that are supported by this device driver.

The IBM Virtual Device Metafile Driver supports 32,767 line styles.

The IBM Virtual Device Metafile Driver supports 32,767 types of Graphics
Markers.

The IBM Virtual Device Metafile Driver supports 32,767 character sizes and
32,767 character rotations.

Filled areas, bars, pie slices and circles are displayed using the current fill area
attributes of color, interior style, and style index. The interior style of Hollow,
Solid, and Hatch are all supported by this device driver.

The IBM Virtual Device Metafile Driver supports 256 color indexes. Each color
index represents some combination of the three primary colors. That is, a color
is defined by setting the intensity levels for the R (red), G (green), and B (blue)
color components. Each intensity level must be set to some number from zero to
1000, inclusive.

C-114 Graphics Development Toolkit

Alpha Text

To assign another color to an index, re-define the R, G, and B color intensity
levels. You can then create both the more common or default colors and those
not usually found on graphics devices, such as brown or orange. All colors will,
however, be visible only on devices that allow color definition.

The Metafile Driver supports Alpha Text. The following text capabilities are
available.

Font:

Features:

Supports up to 32,767 font indexes.

Underlining
Overstrike Mode
Superscript and Subscript
Line Spacing

Cursor Addressable Tuxt

Raster Writing Modes

Cursor addressable text is supported. The device must be in Cursor Addressing
Mode before it can perform any cursor control functions. To display graphics
primitives, the device must be removed from Cursor Addressing Mode. The
Reverse Video, Blink, Color (expanded palette), and Bold intensity attributes
are supported.

Raster writing modes define how pixels are set in the bit map. The Metafile
Driver supports all 16 raster writing modes (Boolean operations between source
and destination).

Graphics Drivers C-115

Device Specific Information

Routine Summary

If a filename is not specified, the output of an application program that uses this
device driver to generate a metafile will be directed to a default file called
METAFILE.DAT. To select an alternate filename, you must export the name of
the target file to the system environment, as follows:

METAOUTPUT=filename
export METAOUTPUT

(or)

setenv METAOUTPUT filename

(sh shell)

(csh shell)

Refer to the IBM RT PC Graphical File System Programmer's/User's Guide for
more information about setting environmental parameters associated with a
metafile.

The following list shows the Toolkit routines that are supported by the device
driver for the IBM Virtual Device Metafile. If your application calls a routine
that is not supported, an error will occur (error code -5000).

Workstation Control Routines

• Application Data
• Clear Workstation
• Close Workstation
• Hardcopy
• Message
• Open Workstation
• Update Workstation.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right
• Cursor Up
• Direct Cursor Address

C-116 Graphics Development Toolkit

• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen
• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width

Graphics Drivers C-117

• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Choice (sample mode)
• Input Locator (request mode)
• Input Locator (sample mode)
• Input String (request mode)
• Input String (sample mode)
• Input Valuator (request mode)

C-118 Graphics Development Toolkit

• Input Valuator (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-119

IBM RT PC Grafstation Driver

Features Supported

Filename: vdigst

The IBM RT PC Grafstation Driver forms an interface between the IBM RT PC
and the IBM PC, PC XT, and PC AT This interface is capable of passing
information about any of the features that are supported by the IBM RT PC
Graphics Development Toolkit. Thus, the features that are supported by this
device driver are limited only to the set of features supported by the IBM PC,
PC XT, and PC AT and their graphics peripherals.

Device Specific Information

Routine Summary

The IBM RT PC Grafstation Driver is a part of the IBM RT PC Graphics
Development Toolkit. However, in order for this device driver to operate
properly, additional software must be installed on your IBM PC, PC XT, or
PC AT

The following list shows the Toolkit routines that are supported by the device
driver for the IBM RT PC Grafstation Driver. If your application calls a routine
that is not supported, an error will occur (error code -5000).

Workstation Control Routines

• Clear Workstation
• Close Workstation
• Hardcopy
• Open Workstation
• Update Workstation.

Cursor Control Routines

• Cursor Down
• Cursor Home
• Cursor Left
• Cursor Right

C-120 Graphics Development Toolkit

• Cursor Up
• Direct Cursor Address
• Enter Cursor Addressing Mode
• Erase to End of Line
• Erase to End of Screen
• Exit Cursor Addressing Mode
• Inquire Addressable Character Cells
• Inquire Current Cursor Text Address
• Output Cursor Addressable Text
• Reverse Video Off
• Reverse Video On
• Set Cursor Text Attributes
• Set Cursor Text Color Index.

General Graphics Routines

• Display Graphic Input Cursor
• Inquire Color Representation
• Remove Graphic Input Cursor
• Set Background Color Index
• Set Color Representation
• Set Writing Mode.

Graphics Primitives

• Inquire Cell Array
• Inquire Current Fill Area Attributes
• Inquire Current Polyline Attributes
• Inquire Current Polymarker Attributes
• Output Arc
• Output Bar
• Output Cell Array
• Output Circle
• Output Filled Area
• Output Pie Slice
• Output Polyline
• Output Polymarker
• Set Fill Color Index
• Set Fill Interior Style
• Set Fill Style Index
• Set Polyline Color Index
• Set Polyline Line Type
• Set Polyline Line Width

Graphics Drivers C-121

• Set Polymarker Color Index
• Set Polymarker Height
• Set Polymarker Type.

Graphics Text Routines

• Inquire Current Graphic Text Attributes
• Output Graphic Text
• Set Character Height
• Set Graphic Text Alignment
• Set Graphic Text Color Index
• Set Graphic Text Font
• Set Graphic Text String Baseline Rotation.

Alpha Text Routines

• Inquire Alpha Text Capabilities
• Inquire Alpha Text Cell Location
• Inquire Alpha Text Font Capability
• Inquire Alpha Text Position
• Inquire Alpha Text String Length
• Output Alpha Text
• Set Alpha Text Color Index
• Set Alpha Text Font and Size
• Set Alpha Text Line Spacing
• Set Alpha Text Overstrike Mode
• Set Alpha Text Pass Through Mode
• Set Alpha Text Position
• Set Alpha Text Quality
• Set Alpha Text Subscript Superscript Mode
• Set Alpha Text Underline Mode.

Input Routines

• Input Choice (request mode)
• Input Choice (sample mode)
• Input Locator (request mode)
• Input Locator (sample mode)
• Input String (request mode)
• Input String (sample mode)
• Input Valuator (request mode)

C-122 Graphics Development Toolkit

• Input Valuator (sample mode)
• Read Cursor Movement Keys
• Set Line Edit Characters.

Error Handling

• Inquire Error.

Graphics Drivers C-123

C-124 Graphics Development Toolkit

Appendix D. Error Codes

This appendix lists the error codes that are generated by the Graphics
Development Toolkit.

The Graphics Development Toolkit routines always return a status code,
whether or not the requested operation was successful. If this status code is -1,
indicating that an error has occurred, the Inquire Error routine must be used to
obtain the actual error code.

Determining Toolkit Errors

The Graphics Development Toolkit error codes are separated into three types of
codes:

• General Toolkit error codes
• Specific Toolkit error codes
• Special Toolkit error codes.

To determine an error code, first locate the general error code. Then, add the
specific error code to it. For example, an error code of -508 means:

-500 Error while opening a file.
+

-8 Insufficient memory for requested operation.

-508 The actual error code.

Error Codes D-1

General Toolkit Error Codes

The following list contains a brief explanation of general Toolkit error codes that
may be returned by the Inquire Error routine.

Code

-200
-300
-400
-500
-600
-700
-800

-1200
-1400
-1800
-1900
-2000
-2100
-2200
-2300
-2400
-2500
-2600
-2700
-2800

D-2 Graphics Development Toolkit

Meaning

Error during the file connect operation.
Error during the file disconnect operation.
Error during the copy file descriptor operation.
Error while opening a file.
Error while closing a file.
Error while reading a file in wait mode.
Error while writing to a file wait mode.
Error during seek operation.
Error during file delete operation.
Error during dashed line output.
Error during marker output.
Error during text alignment output.
Error during polygon output.
Error during bar output.
Error during arc output.
Error during pie output.
Error during circle output.
Error initializing input device.
Error moving cursor during GIN.
Error terminating GIN function.

Specific Toolkit Error Codes

The following list contains a brief explanation of specific Toolkit error codes
that may be returned by the Inquire Error routine. This list is followed by
additional explanation and suggestions about how to respond to the error code.

Code Meaning

-5 Access denied.
-8 Insufficient memory for requested operation.

- 79 Device is busy.
-80 Device or hardware not present.
-81 All (driver) slots used.
-82 Toolkit can't start.
-84 Driver can't start.
-86 Slot (driver) already open.
-89 No driver file.
-90 Unknown driver, (driver file does not exist).
-92 Illegal device handle.

Error Codes D-3

-5 Access denied:

Cause: A request for Monitor Mode was denied. The requested driver is only accessible from
the system console.

Action: Check that you are requesting the correct device. Use the system console if necessary.

Cause: Unable to create lock file for device driver. When an application selects a device for
output, a lock file is created to prevent multiple applications from mixing their output on the
same device. The device driver was unable to create this lock file.

Action: Check the directory for permission to create a file for that port.

If the AIX Extended Services programs are installed on the system, lock files are located in
directory /usr/spool/uucp. If the Extended Services programs are not installed, lock files are
located in /usr/lpp/vdi/locks.

-8 Insufficient memory for requested operation:

Cause: This error means that you do not have enough system memory available to perform
the requested operation.

Action: Add more memory to the system.

- 79 Device is busy:

Cause: This error is generated when a lock file has been created for the device you are
attempting to use. A lock file is created each time you perform graphics to a device that is not
assigned to the logical device /dev/tty. The naming of the lock file has the form:

LCK .. ttyxx

Where xx is the identification of the logical device being requested.

If the AIX Extended Services programs have been installed on the system, the lock file is
located in directory /usr/spool/uucp. If the Extended Services programs have not been
installed on the system, the lock file will be located in directory /usr/lpp/vdi/locks.

Action: a) If the lock file was created by another graphics application, then you must wait for
that other graphics application to release control of the device.

b) If the file was a remnant of a previous program error, delete the lock file and run
your program again.

D-4 Graphics Development Toolkit

-80 Device or hardware not present:

Cause: The physical device is not attached to the IBM RT PC.

Action: Attach the physical device and restart your application.

-81 All (driver) slots used:

Cause: Each application is limited to having no more than eight graphics devices open
simultaneously.

Action: Close one of the open graphics devices.

-82 Toolkit can't start:

Cause: This error message is generated when the Inter Process Communication (IPC) of the
system is full. This occurs when you have exceeded the number of system shared memory
areas or semaphores configured for your system. Two shared memory areas and one semaphore
group are used for each graphics application. The shared memory areas are 512K and 362
bytes. The semaphore group contains eight semaphores.

Action: a) Make sure that shared memory areas are at least 512K in size.

b) Rebuild the AIX Operating System with more semaphores and/ or shared memory
areas.

c) Remove any unused shared memory areas with the ipcrm command.

d) Kill any unused running applications.

-84 Driver can't start:

Cause: The fork command, used to start the physical graphics device driver as a new process,
failed.

Action: a) Wait until the total number of executing processes is less than the system-imposed
process limit.

b) Wait until the total number of executing processes for a single user is less than the
system-imposed process limit.

c) Ensure that there is enough paging space or physical memory for the process. If
necessary, increase the paging area or add more physical memory.

Error Codes D-5

-86 Slot (driver) already open:

Cause: Trying to open a device that is already open - an application can only open a driver
once.

Action: a) Ensure that you are requesting the correct device. Refer to "Setting Environmental
Parameters" in Appendix A for information about assigning logical device names
to graphics devices.

b) Ensure that you have spelled the device name correctly.

c) Determine which is the existing device handle and either use this identifier or
close and re-open the device.

-89 No driver file:

Cause: The name of the logical device cannot be found.

Action: Ensure that the logical device name is defined in the current shell environment.

-90 Unknown driver, (driver file does not exist):

Cause: Within the Toolkit, graphics devices are referred to by logical device names, (e.g.
DISPLAY, PRINTER, PLOTTER, etc.). These names must be associated with physical
graphics device drivers.

Action: a) Check that you are requesting the correct device. Refer to "Setting Environmental
Parameters" in Appendix A for information about assigning logical device names
to graphics devices.

b) Check that you have spelled the device name correctly.

c) Check that the driver you are requesting is located in the VDIPATH specified.

-92 Illegal device handle:

Cause: An incorrect device handle has been used.

Action: Check the device handle value returned by the Open Workstation routine.

D-6 Graphics Development Toolkit

Special Toolkit Error Codes

The following list contains a brief explanation of special Toolkit error codes that may be returned by the
Inquire Error routine. This list is followed by additional explanation and suggestions about how to respond
to the error code.

Code Meaning

-3095 Invalid page.

-5000 Function not supported by current device driver.

(-24000 Communication port errors.

-3095 Invalid page.

-5000

Cause: When calling the Copy Page routine, an invalid page number was returned.

Action: Compare both input and output parameters for the Inquire Page routine.

Cause: When calling the Inquire Current Cursor Text Address, current page is in graphics
mode.

Action: No action required. This can be used to determine whether the current page is in
graphics or cursor text mode.

Function not supported by current device driver.

Cause: The function requested is not available on the specified device driver.

Action: a) Check that you have requested the correct function.

b) Check the device-dependent information pages to confirm that the requested
feature is supported.

c) Review the available functions list to determine if the desired information can be
obtained through the use of another function.

Error Codes D-7

(-24000 Communication port errors:

Cause: Device drivers require the use of communication ports. In attempting to open a
communication port for graphics output, an error may be generated if the device configuration
does not match the port configuration.

Action: a) Check the port configuration.

b) Confirm that the device matches the port configuration.

c) Ensure that the port is configured for read and write permission.

Advanced Programming Notes

The following text contains a few brief notes about possible error conditions that
can occur during the interaction between IBM RT PC Graphics Development
Toolkit and device drivers. This information is intended for the advanced
programmer and assumes a high degree of expertise with the IBM RT PC AIX
Operating System.

The Graphics Development Toolkit drivers support signal, the IBM RT PC AIX
Operating System error handling mechanism.

In certain software/hardware error conditions, such as an illegal memory
reference or an illegal CPU instruction, the AIX Operating System sends a
signal to a process to tell it that an error has occurred. By default, the operating
system terminates the process as a result of the error.

When an application that uses the Toolkit drivers receives the signal, the driver
system is shut down. Before exiting, the 1/0 channels that were being used are
reset.

If the application writer intercepts signals before the first Open Workstation call
to the Toolkit drivers, the application's signal handler will be called after the
Toolkit drivers signal handler has shut down the driver system. If the application
intercepts signals after an Open Workstation call to the Toolkit drivers, the
application's signal handler is called first. The application must call the Toolkit
drivers signal handler after it is through processing the signal. See the
description of the signal system call in the IBM RT PC A/X Operating System
Technical Reference.

D-8 Graphics Development Toolkit

Special Error Handling Messages

In the event of an abnormal termination of the Toolkit drivers, one of the
following error messages may be displayed.

SIGQUIT - Received quit signal: Application Terminated
SIGILL - Illegal Instruction: Application Terminated
SIGTRAP -Trace Trap: Application Terminated
SIG I OT - IOT Instruction: Application Terminated
SIGEMT -EMT Instruction: Application Terminated
SIGBUS - Bus Error: Application Terminated
SIGSEGV - Segmentation Violation: Application Terminated
SIGSYS - Bad Argument to System Call: Application Terminated

If abnormal termination is caused by any other signal, only the words
"Application Terminated" will appear on the screen.

Note: Floating Point Exceptions (SIGFPE) are caught by Toolkit and ignored.
The program will not terminate abnormally as a result of floating point
exceptions. The programmer may choose to set up a signal handler to handle
these exceptions if they are important to the application.

Error Codes D-9

D-10 Graphics Development Toolkit

ADE. ASCII decimal equivalents are decimal
numbers used in code to represent ASCII
characters. For example, the integer 65 represent
the letter "A" and the integer 66 represents the
letter "B".

argument. One of the independent variables that
the action or output of a routine depends on.
Arguments are enclosed in parentheses in the
routine call.

array. A set of related elements (data) arranged
in a specific pattern.

ASCII. ASCII stands for American Standard
Code for Information Interchange. This standard
for data transmission assigns individual 7-bit codes
to represent each of a specific set of 128 numerals,
letters, and special controls.

aspects of primitives. Ways in which the
appearance of a primitive can vary. Aspects are
controlled directly by primitive attributes.

attribute functions. Primitive attributes affect
the appearance of objects created with primitive
routines. (Examples: character height, line style)

binding. Language binding refers to the exact
calling syntax and data type specification for
arguments to be used when calling Toolkit routines
from a specific programming language.

Glossary

Cartesian coordinate system. Coordinate
system composed of an X-axis (horizontal)
increasing positively towards the right, and a
Y-axis (vertical) increasing positively upwards.
The axes are positioned at right angles, and the
point of intersection is the origin (0. ,0.). The
position of any point is defined by displacement
from the origin along first the X-axis and then the
Y-axis.

cell array. Toolkit output primitive consisting of
a rectangular grid of equal size rectangular cells,
each having a single color. These cells may not
change one-to-one with frame buffer pels.

clipping. When you set a window in the
Normalized Device Coordinate, part of an object
may lie outside the window. In this case, the part
lying outside the window will be clipped; that is, it
will not be displayed on the viewport.

color map. Table designed to provide a range of
colors by defining different mixtures of the color
components. A desired color is referenced by its
assigned number. The identifying numbers with
their assigned colors are called the color map.
Changing colors assigned to the identifying
number changes the map.

color table. Workstation-dependent table in
which the entries specify the values of the red,
green, and blue intensities defining a particular
color.

Glossary X-1

control functions. These facilities allow you to
exercise control over certain aspects of the system
and the display device. The Toolkit provides a
means to access the nonstandard capabilities of
your display device through an escape mechanism
invoked with the escape routines.

coordinate graphics. Computer graphic in
which display images are generated from display
commands and coordinate data.

coordinate scaling. Coordinate scaling
transforms points from one space to another. In the
Toolkit, all point coordinates must be specified in
Normalized Device Coordinates with values
between O and 32,767. These coordinates are then
scaled into values which are appropriate for your
graphics device.

default. A value assigned to a parameter by the
Toolkit, and used when you do not specify a value.

DC. See Device Coordinate.

DC unit. The Device Coordinate (DC) unit is a
unit of measure for the physical space represented
by the display surface. The Toolkit translates NDC
units into DC units and vice versa.

Device Coordinate. A coordinate expressed in a
coordinate system that is device-dependent.

device driver. Device-dependent software that
generates instructions specifying items to be
drawn on the display surface from the invocations
of the Toolkit.

device-independent. The ability to be used on
more than one type of graphics display device.

device space. The space defined by the
addressable points of a display device.

X-2 Glossary

display device. A device (for example, refresh
display, storage tube display, plotter) on which
display images can be represented.

display surface. In a display device, that
medium on which display images may appear.

echo. The immediate notification of the current
value provided by an input device to the operator
at the display console.

echo handle. The device handle used to display
the graphic cursor on an echo device.

escape. Routines within the Toolkit that are the
only access to implementation-dependent or
device-dependent support for nonstandard
Routines other than graphic output.

fill area. A Toolkit output primitive consisting of
a polygon (closed boundary) which can be hollow
or can be filled with a uniform color, a pattern, or
a hatch style.

GDP. See Generalized Drawing Primitive.

Generalized Drawing Primitive. The
Generalized Drawing Primitive (GDP) is a display
element (output primitive) used to address special
geometrical workstation capabilities such as curve
drawing.

graphics primitives. Graphics primitives are the
basic graphics operations performed by the
Toolkit; for example, drawing lines, markers, and
text strings.

handle. A number returned when the
workstation is opened. This number is unique for
each device that is open. Any Toolkit routine
directed at a workstation must use a unique
handle.

host-independent. Capable of running on a
number of operating systems.

input functions. The Toolkit allows you to
obtain the value of an NDC coordinate point from
an interactive graphics device. The method for
specifying the point is device-dependent.

inquiry functions. The Toolkit provides inquiry
facilities that allow your program to determine the
present state of the system. You may determine the
current value of the following:

• Primitive attributes
• Device capabilities
• Device state.

locator device. A Toolkit logical input device
providing a position in Normalized Device
Coordinates.

NDC. See Normalized Device Coordinates.

NDC unit. The Normalized Device Coordinate
(NDC) unit is a unit of measure for the virtual
space through which a graphics application
program passes graphics information to a device.
The Toolkit translates NDC units into DC units
and vice versa.

Normalized Device Coordinates. The Toolkit
introduces the concept of a Normalized Device
Coordinate (NDC) unit in which the full extent of
the device axes are assigned values between O and
32,767. This convention provides improved device
independence for a graphics system by allowing
the viewing operations to be carried out without
regard for device specifics. The NDC coordinates
are then converted to specific Device Coordinates.

null-terminated string. A string is a one
dimensional array or list of characters. The end of
a string is indicated by the ASCII NULL character
(ADE 0).

output primitives. The graphical world which
the programmer describes consists of one or more
objects. These are created and modified by
invocations of graphic primitive routines provided
by the Toolkit. These routines describe polylines,
polymarkers, text strings, pel arrays, fill areas,
and Generalized Drawing Primitives. The
appearance of output primitives is affected by the
values of primitive attributes.

pel. The term pel, also known as a pixel, refers
to a "picture element"; the smallest element of a
display surface that can be independently assigned
a color or intensity.

pixel. See pel.

polyline. A Toolkit output primitive consisting of
a set of connected lines.

polymarker. A Toolkit output primitive
consisting of a series of marker symbols drawn at
specified points.

raster. A field of closely spaced lines on the face
of a video terminal that defines an image. The
spacing between raster lines defines the resolution
of a display.

RGB. A method for defining one color in terms
of the intensity of each of the three primary
colors. With this method, percentages of red,
green, and blue are "added" to produce colors. For
example, a color intensity of 100% red plus 100%
green plus 100% blue equals white.

Glossary X-3

Toolkit. The Toolkit is a host-independent and
device-independent graphics subsystem that serves
as an environment for graphics applications as
well as application development.

transformation. The changing of objects from
one coordinate space to another.

X-4 Glossary

Virtual Device Interface. The Virtual Device
Interface (VDI) is a standard interface between
device-dependent and device-independent code in
a graphics environment. VDI makes all device
drivers appear identical to the calling program.

workstation. The Toolkit is based on the concept
of abstract graphical workstations which provide
the logical interface through which the
applications program controls physical devices.

ADE 3-14
Advanced Programming Notes D-8
Alpha Text routines 1-20, 3-119
Application Data routine 3-8
applications, how to write 2-7
aspect ratio 1-8, 2-5
attribute setting hints 2-14
attributes, fill area 1-1 7
attributes, polyline 1-15
attributes, polymarker 1-16
attributes, text 1-19

capabilities, special workstation 1-6
capabilities, text 1-19
changing a color 3-72
choice 3-139
Clear Workstation routine
Close Workstation routine
color table 3-71

1-23, 3-9
1-23, 3-10

compiling the demo program A-7
control hints 2-11
coordinates, graphics 1-7
coordinates, NDC 1-7, 2-4
Copy Page routine 3-25
Copy Pels routine 3-31
Cursor

Down routine 3-42
Home routine 3-43
Left routine 3-44

Right routine 3-45
Up routine 3-46

Cursor Control routines 1-11, 3-41
Cursor mode 1-8, 1-9
Cursor Text routines 1-18

default values, Open Workstation 3-20
demo program A-7
Determining Toolkit Errors D-1
Device Driver Management C-2
device drivers 1-8, C-1
device-independence 1-4

Index

Direct Cursor Address routine 3-4 7
Display Graphic Input Cursor routine 3-64
distribution files A-3
drawing primitives 1-6, 1-18

Enter Cursor Addressing Mode routine 3-48
environmental parameters A-4
Erase to End of Line routine 3-49
Erase to End of Screen routine 3-50
error codes D-1
error handling 1-22, 2-19, 3-156
Escape routines 1-24
example programs B-1
Exit Cursor Addressing Mode routine 3-51

Index X-5

fill area primitive and attributes 1-17
fill style chart 3-102

general graphics routines 1-13, 3-63
General Toolkit Error Codes D-2
Generalized Drawing Primitives 1-6, 1-18
Get Pels routine 3-33
graphics drivers C-1
graphics attributes 1-14
graphics devices 1-7
graphics mode 1-8
graphics primitive output hints 2-15
graphics primitives 1-14
graphics text routines 1-18, 1-20

[ill
Hardcopy routine 3-11
helpful programming hints 2-10
hints, attribute setting 2-14
hints, control 2-11
hints, error handling 2-19
hints, graphics primitive output 2-15
hints, input and inquiry 2-18
hints, invalid value 2-19

IBM 3812 Printer C-6
IBM 4201 Printer C-23
IBM 5152 Graphics Printer C-31
IBM 5182 Color Printer C-39
IBM 6180 Color Plotter C-48

X-6 Index

IBM 7371 Color Plotter C-56
IBM 7372 Color Plotter C-63
IBM 7374 Plotter C-70
IBM 7375-1 Plotter C-70
IBM 7375-2 Plotter C-70
IBM Advanced Color Graphics Display C-88
IBM Advanced Monochrome

Graphics Display C-80
IBM Enhanced Graphics Adapter C-104
IBM Grafstation Driver C-119
IBM Virtual Device Metafile (VDM)

Driver C-113
incorporating graphics into application

programs C-3
Input Choice (request mode) routine 3-140
Input Choice (sample mode) routine 3-141
Input Locator (request mode) routine 3-142
Input Locator (sample mode) routine 3-145
Input routines 3-139
Input String (request mode) routine 3-14 7
Input String (sample mode) routine 3-149
Input Valuator (request mode) routine 3-151
Input Valuator (sample mode) routine 3-152
input and inquiry hints 2-18
input/output workstations 1-23
Inquire Addressable Character Cells

routine 3-52
Inquire Alpha Text Capabilities routine 3-120
Inquire Alpha Text Cell Location routine 3-123
Inquire Alpha Text Font Capability routine 3-124
Inquire Alpha Text Position routine 3-126
Inquire Alpha Text String Length routine 3-127
Inquire Cell Array routine 3-80
Inquire Color Representation routine 3-65
Inquire Current Cursor Text Address

routine 3-53
Inquire Current Fill Area Attributes routine 3-82
Inquire Current Graphic Text Attributes

routine 3-110
Inquire Current Polyline Attributes routine 3-83
Inquire Current Polymarker Attributes

routine 3-84

Inquire Cursor Text Mode routine 3-54
Inquire Error routine 3-157
Inquire Graphic Color Burst Mode routine 3-67
Inquire Page routine 3-26
installation procedures A-1
invalid value hints 2-19

Locator 3-142

Message routine 3-12
methods of moving pels 3-30
mode, cursor 1-8
mode, graphics 1-8
mode selection, graphics or cursor 1-8

NDC (see Normalized Device Coordinates)
Normalized Device Coordinates (NDC) 1-7, 2-4

Open Workstation routine 1-23, 3-13
Open Workstation default values 3-20
operations, VDI input 1-7
Output Alpha Text routine 3-128
Output Arc routine 3-85
Output Bar routine 3-87
Output Cell Array routine 3-88
Output Circle routine 3-90
Output Cursor Addressable Text routine 3-55
Output Filled Area routine 3-91
Output Graphic Text routine 3-112

Output Pie Slice routine 3-93
Output Polyline routine 3-95
Output Polymarker routine 3-97

paging routines 1-11, 3-24
pel routines 1-11, 3-30
polyline primitive and attributes 1-15
polymarker primitive and attributes 1-16
primitive, fill area 1-17
primitive, polyline 1-15
primitive, polymarker 1-16
primitives, drawing 1-6, 1-18
primitives, graphics 1-14
programming considerations 2-3
programming hints, helpful 2-10
programming notes D-8
Put Pels routine 3-40

ratio, aspect 1-8, 2-5
Read Cursor Movement Keys routine 3-153
Remove Graphic Input Cursor routine 3-68
Reverse Video Off routine 3-56
Reverse Video On routine 3-57
routines, escape 1-24
rubberbanding 3-143
run your program 2-9
running the demo program A-7

Set Alpha Text Color Index routine 3-129
Set Alpha Text Font and Size routine 3-130
Set Alpha Text Line Spacing routine 3-132
Set Alpha Text Overstrike Mode routine 3-133

Index X-7

Set Alpha Text Pass Through Mode
routine 3-134

Set Alpha Text Position routine 3-135
Set Alpha Text Quality routine 3-136
Set Alpha Text Subscript/Superscript Mode

routine 3-137
Set Alpha Text Underline Mode routine 3-138
Set Background Color Index routine 3-69
Set Character Height routine 3-113
Set Color Representation routine 3-70
Set Cursor Text Attributes routine 3-58
Set Cursor Text Color Index routine 3-61
Set Cursor Text Mode routine 3-62
Set Fill Color Index routine 3-99
Set Fill Interior Style routine 3-100
Set Fill Sty le Index routine 3-101
Set Graphic Color Burst Mode routine 3-67
Set Graphic Text Alignment routine 3-114
Set Graphic Text Color Index routine 3-116
Set Graphic Text Font routine 3-117
Set Graphic Text String Baseline Rotation

routine 3-118
Set Line Edit Characters routine 3-155
Set Page routine 3-28
Set Pen Speed routine 3-22
Set Polyline Color Index routine 3-103
Set Polyline Line Type routine 3-104
Set Polyline Line Width routine 3-105
Set Polymarker Color Index routine 3-106
Set Polymarker Height routine 3-107
Set Polymarker Type routine 3-108
Set Writing Mode routine 3-76
set graphics primitive attributes 2-8
setting environmental parameters A-4
special error handling messages D-9
special Toolkit error codes D-7
special workstation capabilities 1-6
string, input 3-147, 3-149

X-8 Index

text routines, alpha 1-20, 3-119
text capabilities 1-19
text, cursor routines 1-12
text routines, graphics 1-20, 3-109
text types 1-18
Toolkit routines 1-10, 3-6
types of workstations used 1-23

Update Workstation routine 1-24, 3-23

valuator 3-151, 3-152
vdi3812 C-6
vdi4201 C-23
vdi5152 C-31
vdi5182 C-39
vdi6180 C-48
vdi7371 C-56
vdi7372 C-63
vdi7375 C-70
vdiacg C-88
vdiamg C-80
vdiega C-104
vdiemg C-96
vdigst C-119
vdimeta C-113
Virtual Device Interface (VDI) 1-4
Virtual Device Metafile (VDM) driver C-113

workstation
clearing 1-24
closing 1-24

opening 1-23
updating 1-24
control routines 1-10, 1-23, 3-7

workstations 1-23
writing applications 2-7

Index X-9

X-10 Index

Reader's Comment Form

IBM RT PC Graphics
Development Toolkit

The IBM RT PC
Family

SV21-8058

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L - - -

(l)

C

~
01
C
0
<(
u
0
LL

0 ...,
:::J
u

adBl puB PIO::J

ade1_

Ill 111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

a1deis lON oa asea1d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl puB PIO::J

ade1_

Reader's Comment Form

IBM RT PC Graphics
Development Toolkit

The IBM RT PC
Family

SV21-8058

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L - - -

<lJ
C

~
Ol
C
0

~
"D
0
LL

0
+-'
::J
u

adei pue PIO.::!

ade1_

11111 I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

a1de1s JON oa asea1d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adei pue PIO.::!

ade1_

IBM RT PC GRAPHICS DEVELOPMENT TOOLKIT SV21-8058
Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its organ
ization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as you become
familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may improve this book.

y N

y N

y N

y N

y N

y N

y N

y N

y N

y N

y N

ls the purpose of this book clear?

ls the table of contents helpful?

ls the index complete?

Are the chapter titles and other headings meaningful?

Is the information organized appropriately?

ls the information accurate?

ls the information complete?

ls only necessary information included?

Does the book refer you to the appropriate places for

more information?

Are terms defined clearly?

Are terms used consistently?

y N Are the abbreviations and acronyms understandable?

y N Are the examples clear?

y N Are examples provided where they are needed?

y N Are the illustrations clear?

y N ls the format of the book (shape, size, color) effective?

Other Comments

What could we do to make this book or the entire set of books for

this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L - - -

Q.)

C

~
Ol
C
0

<(
--0
0
LL

0
+-'
:::J
u

adei pue PIO=!

ade_1_

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

a1deis lON oa asea1d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adei pue PIO=!

ade_1_

© IBM Corp . 1985
All rights reserved .

International Business
Machines Corporation
Department 997 . Building 998
11400 Burnet Rd .
Austin, Texas 78758

Printed in the
United States of America

59X8554

---- ------- - --= -- ----- ---- - - ------- ------·

	_cover
	Scan-210130-0002
	Scan-210130-0003
	Scan-210130-0004
	Scan-210130-0005
	Scan-210130-0006
	Scan-210130-0007
	Scan-210130-0008
	Scan-210130-0009
	Scan-210130-0010
	Scan-210130-0011
	Scan-210130-0012
	Scan-210130-0013
	Scan-210130-0014
	Scan-210130-0015
	Scan-210130-0016
	Scan-210130-0017
	Scan-210130-0018
	Scan-210130-0019
	Scan-210130-0020
	Scan-210130-0021
	Scan-210130-0022
	Scan-210130-0023
	Scan-210130-0024
	Scan-210130-0025
	Scan-210130-0026
	Scan-210130-0027
	Scan-210130-0028
	Scan-210130-0029
	Scan-210130-0030
	Scan-210130-0031
	Scan-210130-0032
	Scan-210130-0033
	Scan-210130-0034
	Scan-210130-0035
	Scan-210130-0036
	Scan-210130-0037
	Scan-210130-0038
	Scan-210130-0039
	Scan-210130-0040
	Scan-210130-0041
	Scan-210130-0042
	Scan-210130-0043
	Scan-210130-0044
	Scan-210130-0045
	Scan-210130-0046
	Scan-210130-0047
	Scan-210130-0048
	Scan-210130-0049
	Scan-210130-0050
	Scan-210130-0051
	Scan-210130-0052
	Scan-210130-0053
	Scan-210130-0054
	Scan-210130-0055
	Scan-210130-0056
	Scan-210130-0057
	Scan-210130-0058
	Scan-210130-0059
	Scan-210130-0060
	Scan-210130-0061
	Scan-210130-0062
	Scan-210130-0063
	Scan-210130-0064
	Scan-210130-0065
	Scan-210130-0066
	Scan-210130-0067
	Scan-210130-0068
	Scan-210130-0069
	Scan-210130-0070
	Scan-210130-0071
	Scan-210130-0072
	Scan-210130-0073
	Scan-210130-0074
	Scan-210130-0075
	Scan-210130-0076
	Scan-210130-0077
	Scan-210130-0078
	Scan-210130-0079
	Scan-210130-0080
	Scan-210130-0081
	Scan-210130-0082
	Scan-210130-0083
	Scan-210130-0084
	Scan-210130-0085
	Scan-210130-0086
	Scan-210130-0087
	Scan-210130-0088
	Scan-210130-0089
	Scan-210130-0090
	Scan-210130-0091
	Scan-210130-0092
	Scan-210130-0093
	Scan-210130-0094
	Scan-210130-0095
	Scan-210130-0096
	Scan-210130-0097
	Scan-210130-0098
	Scan-210130-0099
	Scan-210130-0100
	Scan-210130-0101
	Scan-210130-0102
	Scan-210130-0103
	Scan-210130-0104
	Scan-210130-0105
	Scan-210130-0106
	Scan-210130-0107
	Scan-210130-0108
	Scan-210130-0109
	Scan-210130-0110
	Scan-210130-0111
	Scan-210130-0112
	Scan-210130-0113
	Scan-210130-0114
	Scan-210130-0115
	Scan-210130-0116
	Scan-210130-0117
	Scan-210130-0118
	Scan-210130-0119
	Scan-210130-0120
	Scan-210130-0121
	Scan-210130-0122
	Scan-210130-0123
	Scan-210130-0124
	Scan-210130-0125
	Scan-210130-0126
	Scan-210130-0127
	Scan-210130-0128
	Scan-210130-0129
	Scan-210130-0130
	Scan-210130-0131
	Scan-210130-0132
	Scan-210130-0133
	Scan-210130-0134
	Scan-210130-0135
	Scan-210130-0136
	Scan-210130-0137
	Scan-210130-0138
	Scan-210130-0139
	Scan-210130-0140
	Scan-210130-0141
	Scan-210130-0142
	Scan-210130-0143
	Scan-210130-0144
	Scan-210130-0145
	Scan-210130-0146
	Scan-210130-0147
	Scan-210130-0148
	Scan-210130-0149
	Scan-210130-0150
	Scan-210130-0151
	Scan-210130-0152
	Scan-210130-0153
	Scan-210130-0154
	Scan-210130-0155
	Scan-210130-0156
	Scan-210130-0157
	Scan-210130-0158
	Scan-210130-0159
	Scan-210130-0160
	Scan-210130-0161
	Scan-210130-0162
	Scan-210130-0163
	Scan-210130-0164
	Scan-210130-0165
	Scan-210130-0166
	Scan-210130-0167
	Scan-210130-0168
	Scan-210130-0169
	Scan-210130-0170
	Scan-210130-0171
	Scan-210130-0172
	Scan-210130-0173
	Scan-210130-0174
	Scan-210130-0175
	Scan-210130-0176
	Scan-210130-0177
	Scan-210130-0178
	Scan-210130-0179
	Scan-210130-0180
	Scan-210130-0181
	Scan-210130-0182
	Scan-210130-0183
	Scan-210130-0184
	Scan-210130-0185
	Scan-210130-0186
	Scan-210130-0187
	Scan-210130-0188
	Scan-210130-0189
	Scan-210130-0190
	Scan-210130-0191
	Scan-210130-0192
	Scan-210130-0193
	Scan-210130-0194
	Scan-210130-0195
	Scan-210130-0196
	Scan-210130-0197
	Scan-210130-0198
	Scan-210130-0199
	Scan-210130-0200
	Scan-210130-0201
	Scan-210130-0202
	Scan-210130-0203
	Scan-210130-0204
	Scan-210130-0205
	Scan-210130-0206
	Scan-210130-0207
	Scan-210130-0208
	Scan-210130-0209
	Scan-210130-0210
	Scan-210130-0211
	Scan-210130-0212
	Scan-210130-0213
	Scan-210130-0214
	Scan-210130-0215
	Scan-210130-0216
	Scan-210130-0217
	Scan-210130-0218
	Scan-210130-0219
	Scan-210130-0220
	Scan-210130-0221
	Scan-210130-0222
	Scan-210130-0223
	Scan-210130-0224
	Scan-210130-0225
	Scan-210130-0226
	Scan-210130-0227
	Scan-210130-0228
	Scan-210130-0229
	Scan-210130-0230
	Scan-210130-0231
	Scan-210130-0232
	Scan-210130-0233
	Scan-210130-0234
	Scan-210130-0235
	Scan-210130-0236
	Scan-210130-0237
	Scan-210130-0238
	Scan-210130-0239
	Scan-210130-0240
	Scan-210130-0241
	Scan-210130-0242
	Scan-210130-0243
	Scan-210130-0244
	Scan-210130-0245
	Scan-210130-0246
	Scan-210130-0247
	Scan-210130-0248
	Scan-210130-0249
	Scan-210130-0250
	Scan-210130-0251
	Scan-210130-0252
	Scan-210130-0253
	Scan-210130-0254
	Scan-210130-0255
	Scan-210130-0256
	Scan-210130-0257
	Scan-210130-0258
	Scan-210130-0259
	Scan-210130-0260
	Scan-210130-0261
	Scan-210130-0262
	Scan-210130-0263
	Scan-210130-0264
	Scan-210130-0265
	Scan-210130-0266
	Scan-210130-0267
	Scan-210130-0268
	Scan-210130-0269
	Scan-210130-0270
	Scan-210130-0271
	Scan-210130-0272
	Scan-210130-0273
	Scan-210130-0274
	Scan-210130-0275
	Scan-210130-0276
	Scan-210130-0277
	Scan-210130-0278
	Scan-210130-0279
	Scan-210130-0280
	Scan-210130-0281
	Scan-210130-0282
	Scan-210130-0283
	Scan-210130-0284
	Scan-210130-0285
	Scan-210130-0286
	Scan-210130-0287
	Scan-210130-0288
	Scan-210130-0289
	Scan-210130-0290
	Scan-210130-0291
	Scan-210130-0292
	Scan-210130-0293
	Scan-210130-0294
	Scan-210130-0295
	Scan-210130-0296
	Scan-210130-0297
	Scan-210130-0298
	Scan-210130-0299
	Scan-210130-0300
	Scan-210130-0301
	Scan-210130-0302
	Scan-210130-0303
	Scan-210130-0304
	Scan-210130-0305
	Scan-210130-0306
	Scan-210130-0307
	Scan-210130-0308
	Scan-210130-0309
	Scan-210130-0310
	Scan-210130-0311
	Scan-210130-0312
	Scan-210130-0313
	Scan-210130-0314
	Scan-210130-0315
	Scan-210130-0316
	Scan-210130-0317
	Scan-210130-0318
	Scan-210130-0319
	Scan-210130-0320
	Scan-210130-0321
	Scan-210130-0322
	Scan-210130-0323
	Scan-210130-0324
	Scan-210130-0325
	Scan-210130-0326
	Scan-210130-0327
	Scan-210130-0328
	Scan-210130-0329
	Scan-210130-0330
	Scan-210130-0331
	Scan-210130-0332
	Scan-210130-0333
	Scan-210130-0334
	Scan-210130-0335
	Scan-210130-0336
	Scan-210130-0337
	Scan-210130-0338
	Scan-210130-0339
	Scan-210130-0340
	Scan-210130-0341
	Scan-210130-0342
	Scan-210130-0343
	Scan-210130-0344
	Scan-210130-0345
	Scan-210130-0346
	Scan-210130-0347
	Scan-210130-0348
	Scan-210130-0349
	Scan-210130-0350
	Scan-210130-0351
	Scan-210130-0352
	Scan-210130-0353
	Scan-210130-0354
	Scan-210130-0355
	Scan-210130-0356
	Scan-210130-0357
	Scan-210130-0358
	Scan-210130-0359
	Scan-210130-0360
	Scan-210130-0361
	Scan-210130-0362
	Scan-210130-0363
	Scan-210130-0364
	Scan-210130-0365
	Scan-210130-0366
	Scan-210130-0367
	Scan-210130-0368
	Scan-210130-0369
	Scan-210130-0370
	Scan-210130-0371
	Scan-210130-0372
	Scan-210130-0373
	Scan-210130-0374
	Scan-210130-0375
	Scan-210130-0376
	Scan-210130-0377
	Scan-210130-0378
	Scan-210130-0379
	Scan-210130-0380
	Scan-210130-0381
	Scan-210130-0382
	Scan-210130-0383
	Scan-210130-0384
	Scan-210130-0385
	Scan-210130-0386
	Scan-210130-0387
	Scan-210130-0388
	Scan-210130-0389
	Scan-210130-0390
	Scan-210130-0391
	Scan-210130-0392
	Scan-210130-0393
	Scan-210130-0394
	Scan-210130-0395
	Scan-210130-0396
	Scan-210130-0397
	Scan-210130-0398
	Scan-210130-0399
	Scan-210130-0400
	Scan-210130-0401
	Scan-210130-0402
	Scan-210130-0403
	Scan-210130-0404
	Scan-210130-0405
	Scan-210130-0406
	Scan-210130-0407
	Scan-210130-0408
	Scan-210130-0409
	Scan-210130-0410
	Scan-210130-0411
	Scan-210130-0412
	Scan-210130-0413
	Scan-210130-0414
	Scan-210130-0415
	Scan-210130-0416
	Scan-210130-0417
	Scan-210130-0418
	Scan-210130-0419
	Scan-210130-0420
	Scan-210130-0421
	Scan-210130-0422
	Scan-210130-0423
	Scan-210130-0424
	Scan-210130-0425
	Scan-210130-0426
	Scan-210130-0427
	Scan-210130-0428
	Scan-210130-0429
	Scan-210130-0430
	Scan-210130-0431
	Scan-210130-0432
	Scan-210130-0433
	Scan-210130-0434
	Scan-210130-0435
	Scan-210130-0436
	Scan-210130-0437
	Scan-210130-0438
	Scan-210130-0439
	Scan-210130-0440
	Scan-210130-0441
	Scan-210130-0442
	Scan-210130-0443
	Scan-210130-0444
	Scan-210130-0445
	Scan-210130-0446
	Scan-210130-0447
	Scan-210130-0448
	Scan-210130-0449
	Scan-210130-0450
	Scan-210130-0451
	Scan-210130-0452
	Scan-210130-0453
	Scan-210130-0454
	Scan-210130-0455
	Scan-210130-0456
	Scan-210130-0457
	Scan-210130-0458
	Scan-210130-0459
	Scan-210130-0460
	Scan-210130-0461
	Scan-210130-0462
	Scan-210130-0463
	Scan-210130-0464
	Scan-210130-0465
	Scan-210130-0466
	Scan-210130-0467

