
---=::=~:
:!:~:!TE: /Technical Newsletter

u

u

This Newsletter No. SN28-1293

Date February 10, 1989

Base Publication No. SC28-1883-0

File No. S370-39

Prerequisite Newsletters/ None
Supplements

TSO Extensions Version 2 REXX Reference

©Copyright IBM Corp. 1988

TSO Extensions Version 2, Program Number 5685-025

This newsletter contains replacement pages for TSO Extensions Version 2 REXX Reference in support of
TSO Extensions Version 2, Program Number 5685-025.

Before inserting any of the attached pages into TSO Extensions Version 2 REXX Reference read
carefully the instructions on this cover. They indicate when and how you should insert pages.

Pages to
be Removed

Cover - Edition Notice
iii - xiv
51 - 52
247 - 248
271 - 272
425 - 426
431 - 448

Attached Pages
to be Inserted*

Cover - Edition Notice
iii - xiv
51 - 52
247 - 248
271 - 272.2
425 - 426
431 - 448

*If you are inserting pages from different Newsletters/Supplements and identical page numbers are
involved, always use the page with the latest date (shown in the slug at the top of the page). The page
with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This newsletter documents the following new and changed information for TSO/E Version 2 support of
the REXX programming language:

• New information about how to initialize a language processor environment if you use a user-written
terminal monitor program (TMP)

• New values returned by the PARSE VERSION instruction, for example, the language level
description and language processor release date. The new values support APAR OYI 7590 and are
returned only if you install the PTF that supports the AP AR.

This newsletter also includes minor technical changes.

Note: Please file this cover letter at the back of the publication to provide a record of changes.

IBM Corporation, Information Development, Dept. D58, Building 921-2,
P.O. Box 950, Poughkeepsie, New York 12602

©Copyright IBM Corp. 1988 All Rights Reserved Printed in U.S.A.

n

r

--------- ----- - -- - ---- -- -----------·-
TSO Extensions Version 2
REXX Reference

SC28-1883-0

SN28-l293 (February IO, 1989) to SC28-1883-0

First Edition (December 1988)

This edition with Technical Newsletter SN28-1293 applies to the TSO Extensions (TSO/E) Version 2 Licensed
Program, Program Number 5685-025, and to all subsequent releases until otherwise indicated in new editions
or Technical Newsletters. Changes are made periodically to the information herein; before using this
publication with the operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001,
for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM's product may be used. Any functionally equivalent product may
be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building 921,
PO Box 950, Poughkeepsie, New York 12602. IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1988
All Rights Reserved

u

u

u

SN28-1293 (February 10, 1989) to SC28-1883-0

Before Using the Information in This Book --------------......

Before you use the information in this book, please read "Summary of Changes"
on page 425. This topic lists the instructions, functions, and services described in
this book that support various AP ARs.

iii

SN28-1293 (February l 0, 1989) to SC28-1883-0

iv TSO/E Version 2 REXX Reference

~\
J

SN28- l 293 (February 10, 1989) to SC28- l 883-0

Contents

Chapter 1. Introduction 1
Who This Book Is For 1
What Systems Application Architecture Is 2

Supported Environments 2
Common Programming Interface 3

How to Use This Book 4
How to Read the Syntax Diagrams 5

For Further REXX Information 6

Chapter 2. General Concepts 7
Brief Description of the Restructured Extended Executor Language 7
Where to Find More Information 8

Structure and General Syntax 8
Tokens 9
Implied Semicolons 12
Continuations 12

Expressions and Operators 13
Expressions 13
Operators 13

String Concatenation 13
Arithmetic 14
Comparison 14
Logical (Boolean) 15

I

_,/
Parentheses and Operator Precedence 16

Examples 17
Clauses and Instructions 17

Null Clauses 17
Labels 17
Assignments 18
Keyword Instructions 18
Commands 18

Assignments and Symbols 18

u Constant Symbols 19

Simple Symbols 19
Compound Symbols 19

Stems 20
Notes 21

Commands to External Environments 22
Environment 22
Commands 22
Host Commands and Host Command Environments 23

The TSO Environment 24
The ISPEXEC and ISREDIT Environments 24
The MVS Environment 24
The LINK and ATTACH Environments 25

Chapter 3. Keyword Instructions 27
ADDRESS 28

u ARG 30 ·
CALL 32
DO 35

Simple DO Group 35

Contents V

SN28-1293 (February 10, 1989) to SC28-1883-0

Simple Repetitive Loops 36
Controlled Repetitive Loops 36
Conditional Phrases (WHILE and UNTIL) 38

DROP 39
EXIT 40
IF 41
INTERPRET 42
ITERATE 44
LEAVE 45
NOP 46
NUMERIC 47
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59 n
SELECT 60
SIGNAL 62
TRACE 64

Alphabetic Character (Word) Options 65
Prefix Options 65
Numeric Options 66
Tracing Tips 66

A Typical Example 67
Format of TRACE Output 67

UPPER 69

Chapter 4. Functions 71
Syntax 71
Calls to Functions and Subroutines 72

Search Order 73
Errors during Execution 76

Built-in Functions 77
ABBREV 78
ABS 78

,!)
ADDRESS 78
ARG 79
BITAND 80
BITOR 80
BITXOR 81
CENTRE/CENTER 81
COMPARE 82
CONDITION 82
COPIES 83
C2D 83
C2X 84
DATATYPE 84
DATE 85
DBCS 86
DELSTR 87
DELWORD 87
DIGITS 87
D2C 88

vi TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

D2X 88

\\.._..) ERROR TEXT 89
EXTERNALS 89
FIND 90
FORM 90
FORMAT 90
FUZZ 91
INDEX 92
INSERT 92
JUSTIFY 93
LASTPOS 93
LEFT 94
LENGTH 94
LINE SIZE 94
LIS TD SI 95
MAX 95
MIN 95

u MSG 95
OUTTRAP 95
OVERLAY 96
POS 96
PROMPT 96
QUEUED 97
RANDOM 97
REVERSE 98
RIGHT 98

f SIGN 98 u SOURCELINE 99
SPACE 99
STORAGE 99
STRIP 100
SUBSTR 100
SUBWORD 101
SYMBOL 101
SYSDSN 101
SYSVAR 102

u TIME 102
TRACE 103
TRANSLATE 104
TRUNC 104
USE RID 105
VALUE 105
VERIFY 106
WORD 106
WORD INDEX 107
WORD LENGTH 107
WORDPOS 107
WORDS 108
XRANGE 108
X2C 108
X2D 109

TSO/E Functions 110
LISTDSI 110

Specifying Data Set Names 112
Variables Set by LISTDSI 113
Messages 115

Contents vii

SN28- l 293 (February 10, 1989) to SC28-l 883-0

Function Codes 115
Reason Codes 116
Error Codes 117
Examples 117

MSG 118
Example 119

OUTTRAP 119
Additional Variables Available 121
Examples 122

PROMPT 123
Interaction of Three Ways to Affect Prompting 124
Examples 125

STORAGE 126
Examples 126

SYSDSN 127
Examples 128

SYSVAR 128
Control Variables Not Supported by SYSV AR 130
Examples 130

Chapter 5. Parsing for PARSE, ARG, and PULL 131
Introduction 131

Parsing Words 131
Parsing Using String Patterns 132
Parsing Using Numeric Patterns 132
Parsing Arguments 133

Definition 133
Parsing with Literal Patterns 134
Parsing with Variable Patterns 135
Use of the Period as a Placeholder 136
Parsing with Positional Patterns and Relative Patterns 136
Parsing Multiple Strings 138

Chapter 6. Numerics and Arithmetic 139
Introduction 139
Definition 140

Numbers 140
Precision 140
Arithmetic Operators 141
Arithmetic Operation Rules Basic Operators 141

Addition and Subtraction 142
Multiplication 142
Division 142

Arithmetic Operators Additional Operators 143
Power 143
Integer Division 144
Remainder 144

Comparison Operators 145
Exponential Notation 146
Numeric Information 147
Whole Numbers 147
Numbers Used Directly by REXX 147
Errors 148

Chapter 7. Conditions and Condition Traps 149
Action Taken When a Condition is Trapped 150

viii TSO/E Version 2 REXX Reference

,~\
J

SN28-1293 (February 10, 1989) to SC28-1883-0

Condition Information 152

Chapter 8. Using REXX in Different Address Spaces 155
Additional TSO/E REXX Support 155

TSO/E REXX Programming Services 155
TSO/E REXX Customizing Services 156

Writing Execs That Execute in Non-TSO/E Address Spaces 157
Executing an Exec in a Non-TSO/E Address Space 158

Writing Execs That Execute in the TSO/E Address Space 159
Executing an Exec in the TSO/E Address Space 161

Chapter 9. Reserved Keywords, Special Variables, and Command Names 163
Reserved Keywords 163
Special Variables 164
Reserved Command Names 165

Chapter 10. TSO /E REXX Commands 167

u DELSTACK 168
DROPBUF 169
EXECIO 171
EXECUTIL 178
HI 185
HT 186
Immediate Commands 187
MAKEBUF 188
NEWSTACK 190
QBUF 192
QELEM 194
QSTACK 196

u
RT 198
SUBCOM 199
TE 201
TS 202

Chapter 11. Debug Aids 203
Interactive Debugging of Programs 203
Interrupting Execution and Controlling Tracing 206

Chapter 12. TSO /E REXX Programming Services 209
General Considerations for Calling TSO/E REXX Routines 212
IRXJCL and IRXEXEC Routines 214

The IRXJCL Routine 214
Using IRXJCL to Execute a REXX Exec in MVS Batch 214 ,
Invoking IRXJCL From a REXX Exec or a Program 215
Return Codes 21 7

The IRXEXEC Routine 217
Entry Specifications 218
Parameters 218
The Exec Block (EXECBLK) 220
Format of Argument List 222
The In-Storage Control Block (INSTBLK) 222
The Evaluation Block (EVALBLOCK) 225

u Return Specifications 227
Return Codes 227

Function Packages 229
Interface for Writing Function and Subroutine Code 231

Contents ix

SN28-1293 (February 10, 1989) to SC28-1883-0

Entry Specifications 231
Parameters 231 ,~
Argument List 232
Evaluation Block 232

Directory for Function Packages 234
Format of Entries in the Directory 235
Example of a Function Package Directory 236

Specifying Directory Names in the Function Package Table 238
Variable Access (IRXEXCOM) 240

Entry Specifications 241
Parameters 241

The Shared Variable (Request) Block - SHVBLOCK 241
Function Codes (SHVCODE) 243

Return Specifications 245
Return Codes 246

Maintain Entries in the Host Command Environment Table (IRXSUBCM) 247
Entry Specifications 248
Parameters 248

Functions 248
Format of a Host Command Environment Table Entry 249

Return Specifications 249
Return Codes 250

Trace and Execution Control Routine (IRXIC) 251
Entry Specifications 251
Parameters 251
Return Specifications 252
Return Codes 252

The IRXRLT (Get Result) Routine 253
Entry Specifications 253
Parameters 254
Return Specifications 256
Return Codes 256

Chapter 13. TSO /E REXX Customizing Services 259
Flow of REXX Exec Processing 260

Initialization and Termination of a Language Processor Environment 260
Types Of Language Processor Environments 263

Loading and Freeing a REXX Exec 263
Processing of the REXX Exec 263

Overview of Replaceable Routines 264
Exit Routines 265

Chapter 14. Language Processor Environments 267
Overview of Language Processor Environments 268
Using the Environment Block 271
When Environments are Automatically Initialized in TSO/E 272

Initializing Environments for User-Written TMPs 272.1
When Environments are Automatically Initialized in MYS 273
Types of Environments - Integrated and Not Integrated Into TSO/E 274
Characteristics of a Language Processor Environment 275
Flags and Corresponding Masks 281
Module Name Table 286
Host Command Environment Table 291
Function Package Table 295
Values Provided in the Three Default Parameters Modules 299
How IRXINIT Determines What Values to Use for the Environment 302

X TSO /E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

/ u
Values IRXINIT Uses to Initialize Environments 302

Chains of Environments and How Environments Are Located 304
Locating a Language Processor Environment 307

Changing the Default Values for Initializing an Environment 310
Providing Your Own Parameters Modules 311

Changing Values for ISPF 311
Changing Values for TSO/E 311
Changing Values for TSO/E and ISPF 312
Changing Values for Non-TSO/E 313

Considerations for Providing Parameters Modules 314
Specifying Values for Different Environments 315

Parameters You Cannot Change 315
Parameters You Can Use in Any Language Processor Environment 315
Parameters You Can Use for Environments That Are Integrated Into

TSO/E 318
Parameters You Can Use in Environments That Are Not Integrated Into

TSO/E 318
Flag Settings for Environments Initialized for TSO/E and ISPF 320
Using SYSPROC and SYSEXEC for REXX Execs 321

Control Blocks Created for a Language Processor Environment 323
Format of the Environment Block (ENVBLOCK) 323
Format of the Parameter Block (PARMBLOCK) 324
Format of the Work Block Extension 326
Format of the REXX Vector of External Entry Points 328

Changing the Maximum Number of Environments in an Address Space 332
Using the Data Stack in Different Environments 334

Chapter 15. Initialization and Termination Routines 339
Initialization Routine - IRXINIT 340

Entry Specifications 340
Parameters 341
How IRXINIT Determines What Values to Use for the Environment 342
Parameters Module and In-Storage Parameter List 343
Specifying Values for the New Environment 345
Return Specifications 346
Output Parameters 347

i Return Codes 350
_) Termination Routine - IRXTERM 352

Entry Specifications 353
Parameters 353
Return Specifications 353
Return Codes 3 54

Chapter 16. Replaceable Routines and Exits 355
Replaceable Routines 356

General Considerations 356
Installing Replaceable Routines 357

Exec Load Routine 358
Entry Specifications 359
Parameters 359
Format of the Exec Block 361
Format of the In-Storage Control Block 363

u Return Specifications 365
Return Codes 365

Input/Output Routine 366
Entry Specifications 367

Contents xi

SN28-1293 (February 10, 1989) to SC28-1883-0

Parameters 367
Functions Supported for the I/O Routine 368 t)
Buffer and Buffer Length Parameters 370
Line Number Parameter 372
Data Set Information Block 372
Return Specifications 375
Return Codes 375

Host Command Environment Routine 377
Entry Specifications 377
Parameters 377
Error Recovery 3 79
Return Specifications 379
Return Codes 380

Data Stack Routine 381
Entry Specifications 382
Parameters 382
Functions Supported for the Data Stack Routine 383
Return Specifications 385
Return Codes 385

Storage Management Routine 386
Entry Specifications 386
Parameters 386
Return Specifications 388
Return Codes 388

User ID Routine 389
Entry Specifications 389
Parameters 389
Return Specifications 390
Return Codes 390

Message Identifier Routine 391
Entry Specifications 391
Parameters 391
Return Specifications 391
Return Codes 391

REXX Exit Routines 392
Exits for Language Processor Environment Initialization and Termination 392
Exec Initialization and Termination Exits 393 r!\

J
IRXEXEC Exit Routine 393
Attention Handling Exit Routine 394

Appendix A. Error Numbers and Messages 395

Appendix B. Double Byte Character Set (DBCS) 405
General Description 405

DBCS Enabling Data 406
Mixed String Validation 406
Instruction Examples 407

PARSE 407
PUSH and QUEUE 408
SAY and TRACE 408

DBCS Function Handling 408
Built-in Function Examples 410

ABBREV 410
COMPARE 410
COPIES 410
DATATYPE 411

xii TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

FIND 411
(I v INDEX, POS, and LASTPOS 411

INSERT and OVERLAY 411
JUSTIFY 411
LEFT, RIGHT, and CENTER 412
LENGTH 412
REVERSE 412
SPACE 412
STRIP 412
SUBSTR and DELSTR 412
SUBWORD and DELWORD 413
TRANSLATE 413
VERIFY 413
WORD, WORDINDEX, and WORDLENGTH 413
WORDS 413
WORDPOS 414

External Functions 414
Counting Option 414
Function Descriptions 414 u
D BADJUST 414
DBBRACKET 415
DBCENTER 415
DBCJUSTIFY 416
DBLEFT 416
DBRIGHT 417
DBRLEFT 417
DBRRIGHT 418
DBTODBCS 418
DBTOSBCS 419
DBUNBRACKET 419
DBVALIDATE 419
DBWIDTH 420

Appendix C. IRXTERMA and RXSECT 421
RXSECT Environment Control Macro 421
IRXTERMA Routine 422

u Parameters 423
Return Specifications 423
Return Codes 424

Summary of Changes 425

Bibliography 427
Related Publications 427

Index 431

Contents xiii

SN28-l 293 (February l 0, 1989) to SC28-l 883-0

(~

n

xiv TSO/E Version 2 REXX Reference

(i

~

(I
~

SN28-1293 (February 10, 1989) to SC28-1883-0 PARSE

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction, see page 47)
are made available. These controls are in the order DIGITS FUZZ FORM.

Example:

After: Parse Numeric Varl
Varl would be equal to: 9 0 SCIENTIFIC

See Numeric instruction on page 47. Also refer to the built-in functions
DIGITS, FORM, and FUZZ found on pages 87, 90, 91, respectively.

PARSE PULL

The next string from the queue is parsed. If the queue is empty, lines will be
read from the default input (typically the user's terminal). Data can be added to
the head or tail of the queue by using the PUSH and QUEUE instructions
respectively. The number of lines currently in the queue can be found by using
the QUEUED built-in function, described on page 97. The queue will remain
active as long as the language processor is active. The queue can be altered by
other programs in the system and can be used as a means of communication
between these programs and programs written in REXX.

Note: PULL and PARSE PULL read from the data stack. If that is empty,
they read from the terminal (TSO/E address space) or from the data set that
represents the input stream (non-TSO/E address space). See the PULL
instruction on page 55 for further details.

PARSE SOURCE

The data parsed describes the source of the program being executed.

The source string contains the following tokens:

1. The characters TSO

2. The string COMMAND, FUNCTION, or SUBROUTINE depending on
whether the program was invoked as some kind of host command (for
example, as an exec from TSO/E READY mode), or from a function call in
an expression, or via the CALL instruction.

3. Name of the exec in uppercase. If the name is not known, this token is a
question mark (?).

4. Name of the DD from which the exec was loaded. If the name is not
known, this token is a question mark (?).

5. Name of the data set from which the exec was loaded. If the name is not
known, this token is a question mark (?).

6. Name of the exec as it was invoked, that is, the name is not folded to
uppercase. If the name is not known, this token is a question mark (?).

7. Initial (default) host command environment in uppercase. For example, this
token may be TSO, MVS, or ISPEXEC.

8. Name of the address space in uppercase. For example, the value may be
MVS (non-TSO/E) or TSO/E or ISPF. If the exec was invoked from ISPF,
the address space name is ISPF.

The value is taken from the parameter block (see page 280). Note that the
initialization exit routines may change the name specified in the parameters
module. If the name of the address space is not known, this token is a
question mark(?).

Chapter 3. Keyword Instructions 51

PARSE SN28-1293 (February 10, 1989) to SC28-1883-0

9. Eight character user token. This is the token that is specified in the
PARSETOK field in the parameters module (see page 277).

For example, the string parsed might look like one of the following:

TSO COMMAND PROGA SYSXR07 EGGERS.ECE.EXEC ? TSO TSO/E ?

TSO SUBROUTINE PROGSUB SYSEXEC ? ? TSO !SPF ?

PARSE VALUE

expression is evaluated, and the result is the data that is parsed. Note that
WITH is a subkeyword in this context and so cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

will get the current time and split it up into its constituent parts.

PARSE VAR name

The value of the variable specified by name is parsed. name must be a symbol
that is valid as a variable name (that is, it can not start with a period or a digit).
Note that the variable name may be included in the template, so that for
example:

PARSE VAR string wordl string

will remove the first word from string and put it in the variable word], and

PARSE UPPER VAR string wordl string

will also translate the data from string to uppercase before it is parsed.

PARSE VERSION

Information describing the language level and the date of the language processor
is parsed. This consists of five words:

• A word describing the language, which is the string "REXX370"

• The language level description, for example, "3.45" or "3.46"

• Three tokens describing the language processor release date in the format as
the default for the DATE() function (see page 85), for example, "20 Oct
1987" or "30 Jun 1988".

The values returned for the language level description and the language
processor release date depend on whether or not your installation has installed
the PTF for APAR OYl 7590. If the PTF is installed, the values returned are
"3.46" and "30 Jun 1988". If the PTF is not installed, the values returned are
"3.45" and "20 Oct 1987".

Note: PARSE VERSION information should be parsed on a word basis rather
than on an absolute column position.

52 TSO/E Version 2 REXX Reference

()

I~

u

u

SN28-1293 (February IO, 1989) to SC28- l 883-0 IRXSUBCM Routine

Maintain Entries in the Host Command Environment Table
(IRXSUBCM)

Use the IRXSUBCM routine to maintain entries in the host command environment
table. The table contains the names of the valid host command environments that
REXX execs can use to execute host commands. In an exec, you can use the
ADDRESS instruction to direct a host command to a specific environment for
execution. The host command environment table also contains the name of the
routine that is invoked to handle the execution of commands for each specific
environment. "Host Command Environment Table" on page 291 describes the table
in more detail.

Note: To permit FORTRAN programs to call IRXSUBCM, TSO/E provides an
alternate entry point for the IRXSUBCM routine. The alternate entry point name is
I RX SUB.

Using IRXSUBCM, you can add, delete, update, or query entries in the table. You
can also use IRXSUBCM to dynamically update the host command environment
table while a REXX exec is executing.

A program can access IRXSUBCM using either the CALL or LINK macro
instructions, specifying IRXSUBCM as the entry point name. You can obtain the
address of the IRXSUBCM routine from the REXX vector of external entry points.
"Format of the REXX Vector of External Entry Points" on page 328 describes the
vector.

If a program uses IRXSUBCM, it must create a parameter list and pass the address
of the parameter list in register 1.

IRXSUBCM changes or queries the host command environment table for the
current language processor environment, that is, for the environment in which it
executes (see "General Considerations for Calling TSO/E REXX Routines" on
page 212 for information). IRXSUBCM affects only the environment in which it
executes. Changes to the table take effect immediately and remain in effect until the
language processor environment is terminated.

Environment Customization Considerations -----------------,

If you use the initialization routine to initialize environments, on the call to
IRXSUBCM, you can optionally pass the address of an environment block in
register 0. If the environment block is valid, IRXSUBCM will execute in the
environment represented by that environment block. If register 0 does not point
to a valid environment block, IRXSUBCM will locate the current environment.

If the environment in which IRXSUBCM executes is part of a chain of
environments and you use IRXSUBCM to change the host command
environment table, the following applies:

• The changes do not affect the environments that are higher in the chain or
existing environments that are lower in the chain.

• The changes are propagated to any language processor environment that is
created on the chain after IRXSUBCM updates the table.

Chapter 12. TSO/E REXX Programming Services 247

IRXSUBCM Routine SN28-1293 (February 10, 1989) to SC28-l883-0

Entry Specifications

Parameters

Functions

For the IRXSUBCM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 29 describes the parameters for IRXSUBCM.

Figure 29. Parameters for IRXSUBCM

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The name of the
function must be left justified and padded to the
right with blanks. The valid functions are:

• ADD

• DELETE

• UPDATE

• QUERY

Each function is described after the table in
"Functions."

Parameter 2 4 The address of a string. On both input and output,
the string has the same format as an entry in the
host command environment table. "Format of a
Host Command Environment Table Entry" on
page 249 describes the entry in more detail.

Parameter 3 4 The length of the string (entry) that is pointed to by
parameter 2.

Parameter 4 8 The name of the host command environment. The
name must be left justified and padded to the right
with blanks.

Parameter 1 contains the name of the function IRXSUBCM is to perform. The
functions are:

ADD
Adds an entry to the table using the values specified on the call. IRXSUBCM
does not check for duplicate entries. If a duplicate entry is added and then
IRXSUBCM is called to delete the entry, IRXSUBCM will delete the duplicate
entry and leave the original one.

248 TSO/E Version 2 REXX Reference

()

()
I

(l v

u

,,

SN28-1293 (February IO, 1989) to SC28-1883-0 Using the Environment Block

Using the Environment Block
The main control block that is created for a language processor environment is the
environment block. The environment block represents the language processor
environment and points to other control blocks that contain information about the
environment.

The environment block is known as the anchor that is used by all callable interfaces
to REXX. All REXX routines, except for the IRXINIT initialization routine,
cannot execute unless an environment block exists, that is, a language processor
environment must exist. When IRXINIT initializes a new language processor
environment, it always returns the address of the environment block in register 0. (If
you explicitly call IRXINIT, it also returns the address of the environment block in
the parameter list.) You can also use the IRXINIT routine to obtain the address of
the environment block for the current non-reentrant environment (see page 340).
IRXINIT returns the address in register 0 and also in a parameter in the parameter
list.

The address of the environment block is useful for calling a REXX routine or for
obtaining information from the control blocks that were created for the
environment. If you call any of the REXX routines (for example, IRXEXEC to
execute an exec or the variable access routine IRXEXCOM), you can optionally pass
the address of an environment block to the routine in register 0. By passing the
address of an environment block, you can specify in which specific environment you
want either the exec or the service to execute. This is particularly useful if you use
the IRXINIT routine to initialize several environments on a chain and then want to
execute a REXX routine in a specific environment. When you call the routine, you
can pass the address of the environment block in register 0.

If you call a REXX routine and do not pass the address of an environment block in
register 0, the routine will execute:

• In the last environment on the chain under the current task (non-TSO/E address
space)

• In the last environment on the chain under the current task or a parent task
(TSO /E address space).

If you call IRXEXEC or IRXJCL and an environment does not exist, IRXINIT is
invoked to initialize an environment in which the exec will execute. When the exec
completes processing, the newly created environment is terminated.

The environment block points to several other control blocks that contain the
parameters used to define the environment and the addresses of REXX routines,
such as IRXINIT, IRXEXEC, and IRXTERM, and replaceable routines. You can
access these control blocks to obtain this information. The control blocks are
described in "Control Blocks Created for a Language Processor Environment" on
page 323.

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Chapter 14. Language Processor Environments 271

Environments Initialized in SN28-1293 (February 10, 1989) to SC28-1883-0

When Environments are Automatically Initialized in TSO/E
The initialization routine IRXINIT initializes a language processor environment.
The system calls IRXINIT to automatically initialize a default environment when a
user logs on to TSO/E and when ISPF is invoked.

When a user logs on to TSO/E, IRXINIT is called as part of the logon process to
automatically initialize a language processor environment for the TSO/E session.
The initialization of a language processor environment is transparent to the user.
After users log on to TSO/E, they can simply invoke a RE:XX exec without
performing any other tasks.

Note: If your installation uses a user-written terminal monitor program (TMP)
instead of the TMP provided by TSO/E, a language processor environment is not
automatically initialized. See "Initializing Environments for User-Written TMPs" on
page 272.1 for information about the tasks you must perform to initialize a language
processor environment in order to execute RE:XX execs.

Similarly, when a user invokes ISPF from TSO/E, the IRXINIT routine is called and
automatically initializes a language processor environment for ISPF, that is, for the
ISPF screen. The second language processor environment is separate from the
environment that was initialized for the TSO/E session. If the user enters split screen
in ISPF, IRXINIT initializes a third language processor environment for the second
ISPF screen. At this point, three separate language processor environments exist. If
the user executes a REXX exec from the second ISPF screen, the exec executes
under the third language processor environment, that is, the environment IRXINIT
initialized for the second ISPF screen. If the user executes the exec from the first
ISPF screen, it runs under the second language processor environment.

The termination routine, IRXTERM, terminates a language processor environment.
Continuing the above example, when the user returns to one screen in ISPF, the
IRXTERM routine is called. IRXTERM terminates the third language processor
environment that was initialized for the second ISPF screen. Similarly, when the
user exits from ISPF and returns to TSO/E READY mode, IRXTERM terminates
the language processor environment for the first ISPF screen. In TSO/E READY
mode, the first language processor environment still exists. At this point, if the user
executes a REXX exec from READY mode, the exec executes under the
environment that was initialized at TSO/E logon. When the user logs off,
IRXTERM terminates the language processor environment for the TSO/E session.

To summarize, the IRXINIT routine automatically initializes a language processor
environment when a user logs on to TSO/E and whenever an ISPF screen is
initialized. Each environment that is initialized is separate from another
environment. The IRXTERM routine automatically terminates the language
processor environment for an ISPF screen when the screen session ends and
terminates the environment created at TSO/E logon when the user logs off.

You can also call the IRXINIT routine to initialize a language processor
environment. On the call to IRXINIT, you specify values you want defined for the
new environment. Using IRXINIT gives you the ability to define a language
processor environment and customize how REXX execs execute and how system
services are accessed and used. This is particularly important in non-TSO/E address
spaces where you may want to provide replaceable routines to handle system
services.

272 TSO/E Version 2 REXX Reference

/~
)

1"\
r I

(I

\,._;
I

/ v

u

SN28-1293 (February 10, 1989) to SC28-1883-0 Environments Initialized in TSO /E

However, you may want to use IRXINIT in TSO/E in order to create an
environment that is similar to a non-TSO/E address space to test any replaceable
routines or REXX execs you have developed for non-TSO/E.

If you explicitly call IRXINIT to initialize a language processor environment, you
must call the IRXTERM routine to terminate the environment. The system does
not terminate language processor environments that you initialized by calling
IRXINIT. Information about IRXINIT and IRXTERM is described later in this
chapter. Chapter 15, "Initialization and Termination Routines" provides reference
information about the parameters and return codes for IRXINIT and IRXTERM.

Initializing Environments for User-Written TMPs
If your installation uses a user-written terminal monitor program (TMP) instead of
the TMP provided by TSO/E, a language processor environment is not automatically
initialized in the TSO/E address space when a user logs on to TSO/E. That is, a
language processor environment is not initialized for TSO/E READY mode. A
language processor environment is required for executing REXX execs. To allow
users to execute REXX execs from TSO/E READY mode, your user-written TMP
must invoke the initialization routine IRXINIT to initialize a language processor
environment. To initialize the environment, the TMP must do the following:

• Invoke the initialization routine IRXINIT to initialize a language processor
environment. The environment must be integrated into TSO/E, that is, the
TSOFL flag must be on. On the ~all to IRXINIT, you can provide parameters
that are equivalent to the default values that TSO/E provides in the IRXTSPRM
default parameters module.

• The initialization routine IRXINIT returns the address of the environment block
for the new language processor environment in register 0. You must store the
address of the environment block in the ECTENVBK field of the environment
control block (ECT).

• You must ensure that the ECTEXTPR field in the ECT is set to zeroes.

• When all user-written TMP processing is completed, you must invoke the
termination routine IRXTERM to terminate the language processor
environment that was initialized by IRXINIT. The system does not
automatically terminate the environment.

The following topics in this chapter describe the characteristics of a language
processor environment, the different types of environments, and the default
parameters modules that TSO/E provides. Chapter 15, "Initialization and
Termination Routines" describes the initialization and termination routines
IRXINIT and IRXTERM.

Chapter 14. Language Processor Environments 272.1

SN28-1293 (February 10, 1989) to SC28-1883-0

/~
I

272.2 TSO/E Version 2 REXX Reference

u

u

u

SN28-1293 (February 10, 1989) to SC28- l 883-0

Summary of Changes

Summary of Changes
for SC28-1883-0
as Updated February 10, 1989
by Technical Newsletter SN28-1293

This Technical Newsletter, which supports TSO Extensions (TSO/E) Version 2, contains the
following changes for TSO/E support of the REXX programming language. The newsletter
also contains minor technical changes.

• New information about how to initialize a language processor environment if you use a
user-written terminal monitor program (TMP)

• New values returned by the PARSE VERSION instruction for the language level
description (3.46) and the language processor release date (30 Jun 1988). The new
values support AP AR OY 17 590 and are returned if you install the PTF that supports
the APAR. If the PTF is not installed, the values returned are "3.45" and "20 Oct
1987."

Summary of Changes
for SC28-1883-0
TSO Extensions Version 2

This book is a new book in the TSO/E Version 2 library. It contains reference information
about TSO/E REXX.

AP AR Information

The following APARs provide TSO/E REXX instructions, functions, and services that are
described in this book. The instructions, functions, and services listed below can be used
only if your installation installs the PTF that supports the particular APAR.

• APAR OYl 7498 provides the TSO/E function MSG, which is described on page 118.

• APAR OYl 7590 provides the:

Ability to enable and disable condition traps using the CALL instruction f CALL
ON and CALL OFF). The CALL instruction is described on page 32. Chapter 7,
"Conditions and Condition Traps" describes how to enable and disable condition
traps.

Ability to specify NAME trapname using the SIGNAL ON instruction. The
SIGNAL instruction is described on page 62. Chapter 7, "Conditions and
Condition Traps" describes how to enable and disable condition traps.

CONDITION built-in function, which is described on page 82.

Ability to specify up to 20 expressions on the CALL instruction and on function
calls, such as MAX and MIN. If the PTF for the APAR is not installed, the
maximum number of expressions you can specify is 10.

Exit routines for exec initialization and exec termination. The exits are described in
"REXX Exit Routines" on page 392.

• APAR OYl 7558 provides the SYSl.SAMPLIB members for coding the parameters
modules IRXPARMS, IRXTSPRM, and IRXISPRM. The SAMPLIB members are:

TSOREXXl (for IRXPARMS)
- TSOREXX2 (for IRXTSPRM)
- TSOREXX3 (for IRXISPRM)

• APAR OYl 7979 provides alternate entry point names for the TSO/E REXX external
entry points. The alternate entry point names are less than six characters and allow
FORTRAN programs to call the TSO/E REXX external entry points.

Summary of Changes 425

SN28- l 293 (February l 0, 1989) to SC28- t 883-0

/~
i I

(~
)

,!)
/

~l
j

426 TSO/E Version 2 REXX Reference

u

SN28-1293 (February 10, 1989) to SC28-1883-0

Index:

A
ABBREV function

description 78
using to select a default 78

abbreviation:s
looking for one in a string 137
testing with ABBREV function 78

abnormal change in flow of control 149
ABS function 78
absolute value

finding using ABS function 78
used with power 143

abuttal 13
accessing REXX variables 240
active loops 44
addition

definition 141
operator 14

ADDRESS
function 78
instruction 28
settings saved during subroutine calls 34

address of environment block, obtaining 340
address of environment block, passing to REXX routines 213,
271, 307
address spaces

executing execs in non-TSO/E 158
executing execs in TSO/E 161
name of for language processor environment 280
using REXX in different 155
using REXX in non-TSO /E 157
using REXX in TSO /E 159

algebraic precedence 16
allocation information

about a data set 110
retrieving with LISTDSI 110

alphabetics
checking with DATATYPE 84
used as symbols 10

alphanumeric checking with DAT A TYPE 84
altering

flow within a repetitive DO loop 44
REXX variables 22

alternate entry point names 328
alternate exec libraries 8
alternate messages flag 284
ALTLIB command 8
ALTMSGS flag 284
AND operator 15
AND'ing character strings together 80
AND, logical 15
ARG function 79
ARG instruction 30
ARG option of PARSE instruction 50
argument list for function package 232

arguments
checking with ARG function 79
of functions 30, 71
of subroutines 30, 32
passing to functions 71
retrieving with ARG function 79
retrieving with ARG instruction 30
retrieving with the PARSE ARG instruction 50

arithmetic
combination rules 141
comparisons 144
errors 147
NUMERIC settings 47
operators 14, 139, 141
overflow 14 7
precision 140
underflow 147

array
initialization of 20
setting up 19

assigning data to variables 50
assignment

description of 18
of compound variables 19, 20

assignment in di ca tor (=) 18
associative storage 19
ATTACH host command environment 25
attaching programs 25
ATTNROUT field (module name table) 289
automatic initialization of language processor environments

in non-TSO/E address space 273
in TSO/E address space 272

B
backslash, use of 15
BASEDATE option of DATE function 85
BIT AND function 80
BITOR function 80
bits checked using DATATYPE 84
BITXOR function 81
blank removal with STRIP function I 00
blanks

adjacent to special character 8
as concatenation operator 13

boolean operations 15
bottom of program reached during execution 40
bracketed DBCS strings

DBBRACKET function 415
DBUNBRACKET function 419
distinguishing from SBCS data 406

built-in function invoking 32
built-in functions

ABBREV 78
ABS 78
ADDRESS 78
ARG 79

Index 431

built-in functions (continued)
BITAND 80
BITOR 80
BITXOR 81
CENTER 81
CENTRE 81
COMPARE 82
CONDITION 82
COPIES 83
C2D 83
C2X 84
DATATYPE 84
DATE 85
DELSTR 87
DELWORD 87
description of 72
DIGITS 87
D2C 88
D2X 88
ERRORTEXT 89
EXTERNALS 89
FIND 90
FORM 90
FORMAT 90
FUZZ 91
INDEX 92
INSERT 92
JUSTIFY 93
LASTPOS 93
LEFT 94
LENGTH 94
LINESIZE 94
MAX 95
MIN 95
OVERLAY 96
POS 96
QUEUED 97
RANDOM 97
REVERSE 98
RIGHT 98
SIGN 98
SOURCELINE 99
SPACE 99
STRIP 100
SUBSTR 100
SUBWORD 101
SYMBOL 101
TIME 102
TRACE 103
TRANS LA TE 104
TRUNC 104
USERID 105
VALUE 105
VERIFY 106
WORD 106
WORDINDEX 107
WORDLENGTH 107
WORDPOS 107

432 TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

built-in functions (continued)
WORDS 108
XRANGE 108
X2C 108
X2D 109

BY phrase of DO instruction 35

c
CALL instruction 32
calling REXX routines, general considerations 212
CENTER function 81
centering a string using CENTER function 81
centering a string using CENTRE function 81
CENTRE function 81
CENTURY option of DATE function 85
chains of environments 269, 304
changing defaults for initializing language processor
environments 310
changing destination of commands 28
changing maximum number of language processor
environments 332
changing value in specific storage address 126
character position of a string 93
character position using INDEX 92
character removal with STRIP function 100
character to decimal conversion 83
character to hexadecimal conversion 84
characteristics of language processor environment 259, 275
check existence of a data set 127
clause

as labels 17
assignment 18
continuation of 12
description of 8
null 17

close data set flag 283
CLOSEXFL flag 283
CMDSOFL flag 281
collating sequence using XRANGE 108
colon

as a special character 11
in a label 17

colon as label terminators 17
combination, arithmetic 141
comma

as continuation character 12
in CALL instruction 33
in function calls 71
separator of arguments 33, 71
within a parsing template 30, 132, 133, 138

command errors, trapping 149
command inhibition

See TRACE instruction
command processor parameter list

See CPPL
command search order flag 281
commands

alternative destinations 22
destination of 28
host, definition of 23
inhibiting with TRACE instruction 66

(\,
}

(~
. /

/
_)

u

(;
~

SN28-1293 (February to, 1989) to SC28-1883-0

commands (continued)
issuing to host 22
obtaining name of last command executed 128
reserved names 165
set prompting on/off 123
trap lines of output 119
TSO/E REXX 167

comments
description of 9
REXX exec identifier 8

COMPARE function 82
comparisons

of numbers 14, 144
of strings 14

using COMPARE 82
compound symbols 19
compound variable

description of 19
setting new value 20

concatenation of strings 13
concatenation operator

abuttal 13
blank 13
11 13

CONDITION function 82
condition trap info using CONDITION 82
conditional loops 35
conditions

ERROR 149
FAILURE 149
HALT 149
NOVALUE 149
saved during subroutine calls 34
SYNTAX 149

conditions, trapping of 149
considerations for calling REXX routines 212
console

See terminals
constant symbols 19
content addressable storage 19
continuation

ch!:J.racter 12
of clauses 12
of data for display 59

control blocks
environment block (ENVBLOCK) 271, 323
evaluation (EV ALBLOCK) 225, 232
exec block (EXECBLK) 220
for language processor environment 270, 323

• in.storage (INSTBLK) 222
parameter block (PARMBLOCK) 275, 325
request (SHVBLOCK) 242
return result from exec 225
shared variable (Sf!IVBLOCK) 242
SHVBLOCK 242
vector of external entry points 328
work block extension 326

control variable 36
controlled loops 36

controlling display of TSO/E messages 118, 119
controlling prompting from interactive commands 123
controlling search order for REXX execs 284
conversion

character to decimal 83
character to hexadecimal 84
decimal to character 88
decimal to hexadecimal 88
formatting numbers 90
hexadecimal to character 108
hexadecimal to decimal 109

conversion functions 77-109
COPIES function 83
copying a string using COPIES 83
copying information to and from data sets 171
counting words in a string 108
CPPL

in work block extension 327
passing on call to IRXEXEC 220

creating
buffer on the data stack 188
new data stack 190, 337
non-reentrant environment 340
reentrant environment 340

current non-reentrant environment, locating 340
current terminal line width 94
customizing services

description 259
environment characteristics 259
exit routines 259
general considerations for calling routines 212
language processor environments 267
replaceable routines 259, 264, 265
summary of 156

customizing TSO/E REXX
See customizing services

C2D function 83
C2X function 84

D
Data Facility Hierarchical Storage Manager (DFHSM), status
of 128
data length 13
data set

check existence of 127
copying information to and from 171
obtain allocation, protection, directory

information 110
data stack

counting lines in 97
creating 190, 337
creating a buffer 188
deleting 168
DELSTACK command 168
discarding a buff er 169
DROPBUF command 169
dropping a buff er 169
MAKEBUF command 188
NEWSTACK command 190, 337
number of buffers 192

Index 433

data stack (continued)
number of elements on 194
primary 337
QBUF command 192
Q ELEM command 194
QSTACK command 196
querying number of elements on 194
querying the number of 196
querying the number of buffers 192
reading from with PULL 55
replaceable routine 380
secondary 337
sharing between environments 334
use in different environments 334
writing to with PUSH 56
writing to with QUEUE 57

data stack flag 281
data terms l3
DAT A TYPE function 84
date and version of the language processor 52
DA TE function 85
DBADJUST function 414
DBBRACKET function 415
DBCENTER function 415
DBCJUSTIFY function 416
DBCS functions

D BADJUST 414
DBBRACKET 415
D BCENTER 415
DBCJUSTIFY 416
DBLEFT 416
DBRIGHT 417
DBRLEFT 417
DBRRIGHT 418
DBTODBCS 418
DBTOSBCS 419
DBUNBRACKET 419
DBVALIDATE 419
DBWIDTH 420

DBCS handling 405
DBCS strings 49, 405
DBCS (Double-Byte Character Set) characters 405
DBLEFT function 416
DBRIGHT function 417
DBRLEFT function 417
DBRRIGHT function 418
DBTODBCS function 418
DBTOSBCS function 419
DBUNBRACKET function 419
DBVALIDATE function 419
DBWIDTH function 420
DD from which execs are loaded 287
debugging programs

See interactive debug
See TRACE instruction

debug, interactive 64, 203
decimal arithmetic 139-148
decimal to character conversion 88
decimal to hexadecimal conversion 88
default environment 22

See also language processor environment

434 TSO/E Version 2 REXX Reference

SN28-l293 (February IO, 1989) to SC28-l883-0

defaults for initializing language processor environments 299
defaults provided for parameters modules 299
deleting a data stack 168
deleting part of a string 87
deleting words from a string 87
delimiters in a clause

See colon
See semicolons

DELSTACK command 168
DELSTR function 87
DELWORD function 87
derived name 19
derived names of variables 19
DFHSM, status of 128
DIGITS function 87
DIGITS option of NUMERIC instruction 47, 140
direct interface to variables (IRXEXCOM) 240
directory names, function packages

IRXFLOC 230, 234
IRXFUSER 230, 234

directory, function package 234
example of 236
format 234
format of entries 235
specifying in function package table 238

discarding a buffer on the data stack 169
displaying data

See SAY instruction
displaying message IDs 390
division

definition 141
operator 14

DO instruction 35-38
See also loops

Double-Byte Character Set (DBCS) strings 49, 405
DROP instruction 39
DROPBUF command 169
dropping a buffer on the data stack 169
dummy instruction

See NOP instruction
D2C function 88
D2X function 88

E
EFPL (external function parameter list) 231
elapsed time saved during subroutine ca11s 34
elapsed-time calculator 102
ELSE keyword

See IF instruction
enabled exec for variable access (IRXEXCOM) 240
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 36

engineering notation 146
entry point names 328
ENVBLOCK

See environment block
environment block

description 271, 307, 323
format 323
obtaining address of 340

(~
I

u

SN28-1293 (February 10, 1989) to SC28-1883-0

environment block (continued)
overview for calling REXX routines 213
passing on call to REXX routines 213, 271, 307

environment table for number of language processor
environments 332
environments

See also host command environment
See also language processor environment
addressing of 28
default 29, 51
determining current using ADDRESS function 78
host command 22
language processor 260, 267
temporary change of 28

equal operator 14
equality, testing of 14
error codes

set by LISTDSI 11 7
syntax errors 395

ERROR condition of SIGNAL and CALL instructions 149
error messages

and codes 395
control display of TSO/E messages 118, 119
displaying the message ID 390
replaceable routine for message ID 390
retrieving with ERRORTEXT 89
syntax errors 395

errors
during execution of functions 76
from host commands 22
messages 395
syntax 395
traceback after 68

errors, trapping 149
ERRORTEXT function 89
EST AE, recovery 283
EUROPEAN option of DA TE function 85
EVALBLOCK

See evaluation block
evaluation block

for function packages 231, 232
for IRXEXEC routine 225
obtaining a larger one 253

evaluation of expressions 13
exception conditions saved during subroutine calls 34
exclusive OR operator 15
exclusive ORing character strings together 81
exec block (EXECBLK) 220
exec identifier 8
exec information, obtaining

availability of ISPF dialog manager services 128
exec invocation 128
last command executed 128
last subcommand executed 128
name used to invoke exec 128
whether exec is running in

foreground/background 128
exec initialization exit 392
exec libraries

defining alternate using ALTLIB 7
storing REXX execs 7

exec load replaceable routine 358
exec processing routines

IRXEXEC 217
IRXJCL 214

exec termination exit 392
EXECINIT field (module name table) 289
EXEC I 0 command 171
execs

description of
executing in MVS batch 158, 214
executing in non-TSO/E 158, 214
executing in TSO/E 161, 214
loading of 358
overview of writing 155
preloading 358
writing for non-TSO/E 157
writing for TSO/E 159

EXECTERM field (module name table) 290
EXECUTIL command 178
executing a REXX exec

from MVS batch 214
in non-TSO/E 158
in TSO/E 161
using IRXEXEC routine 217
using IRXJCL routine 214

execution by language processor 8
execution of data 42
EXIT instruction 40
exit routines 265, 391

attention handling 393
exec initialization 392
exec termination 392
for exec processing 392
for IRXEXEC 392
IRXINITX 391
IRXITMV 391
IRXITTS 391
IRXTERMX 391
language processor environment initialization 391
language processor environment termination 391

exponential notation
definition 146
description of 139
usage 10

exponentiation
definition 143
operator 14

EXPOSE option of PROCEDURE instruction 53
expressions

evaluation 13
examples 16
parsing of 52
results of 13
tracing results of 64

EXROUT field (module name table) 288
external entry points

alternate names 328
IRXEXCOM 240
IRXEXEC 217
IRXIC 251

Index 435

external entry points (continued)
IRXINIT 340
IRXINOUT 366
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 247
IRXTERM 352
IRXUID 388

external function parameter list (EFPL) 231
external functions

description of 72
LISTDSI 110
MSG 118
OUTTRAP 119
PROMPT 123
providing in function packages 229
search order 73
STORAGE 126
SYSDSN 127
SYSVAR 128
writing 229

EXTERNAL option of PARSE instruction 50
external routine invoking 32
external subroutines

description of 72
providing in function packages 229
search order 73
writing 229

EXTERNALS function 89
extracting a substring l 00
extracting words from a string 101

F
FAILURE condition of SIGNAL and CALL instructions 149
FIFO (first-in/first-out) stacking 57
FIND function 90
finding a mismatch using COMPARE 82
finding a string in another string 92, 96
finding the length of a string 94
flags for language processor environment 277, 281

ALTMSGS 284
CLOSEXFL 283
CMDSOFL 281
defaults provided 299
FUNCSOFL 281
LOCPKFL 283
NEWSCFL 283
NEWSTKFL 282
NOESTAE 283
NOLOADDD 284
NOMSGIO 285
NOMSGWTO 285
NOPMSGS 284
NOREADFL 282
NOSTKFL 281
NOWRTFL 282

436 TSO/E Version 2 REXX Reference

SN28-l293 (February 10, 1989) to SC28-l883-0

flags for language processor environment (continued)
RENTRANT 284
restrictions on settings 316, 320
SPSHARE 284
STORFL 284
SYSPKFL 283
TSOFL 274, 281
USERPKFL 282

flow control
abnormal, with CALL 149
abnormal, with SIGNAL 149
with CALL/RETURN 32
with DO construct 35
with IF construct 41
with SELECT construct 60

flow of REXX exec processing 260
FOR phrase of DO instruction 35
FOREVER repctitor on DO instruction 35
FORM function 90
FORM option of NUMERIC instruction 47, 146
FORMAT function 90
formatting

DBCS blank adjustments 414
D BCS bracket adding 415
DBCS bracket stripping 419
DBCS DBCS strings to SBCS 419
DBCS EBCDIC to DBCS 418
DBCS string width 420
DBCS text justification 416
numbers for display 90
numbers with TRUNC 104
of output during tracing 67
text centering 81
text justification 93
text left justification 94, 416
text left remainder justification 417
text right justification 98, 415, 417
text right remainder justification 418
text spacing 99
text validation function 419

FORTRAN programs, alternate entry points for external entry
points 328
FUNCSOFL flag 281
function codes

set by LISTDSI 115
function package flags 282
function package table 238, 275, 295

defaults provided 299
function packages

add entries in directory 178, 182
change entries in directory 178, 182
description 229
directory 234
directory names 230, 234

IRXFLOC 230, 234
IRXFUSER 230, 234
specifying in function package table 238
system-supplied 230, 234

example of directory 236
external function parameter list 231

1!)

I~
I

·~ 1. I

/ u

u

SN28-1293 (February 10, 1989) to SC28-l883-0

function packages (continued)
format of entries in directory 235
function package table 238
getting larger area to store result 253
getting larger evaluation block 253
interface for writing code 231
IRXFLOC 230, 234
IRXFUSER 230, 234
link editing the code 235
overview 209
parameters code receives 231
rename entries in directory 178, 182
summary of 156
system-supplied directory names 230, 234
types of

local 229
system 229
user 229

writing 229
function search order flag 281
functions

built-in 72, 78
description of 71
external 72
forcing built-in or external reference 73
internal 72
invocation of 71
numeric arguments of 147
providing in function packages 229
return from 58
search order 73
TSO/E external 110
variables in 53
writing external 229

function, built-in
See built-in functions

FUZZ
controlling numeric comparison
option of NUMERIC instruction

FUZZ function 91

G

145
47, 145

general considerations for calling REXX routines 212
get result routine (IRXRL T) 253
GETFREER field (module name table) 288
getting a larger evaluation block 253
GOTO, abnormal 149
greater than operator 14
greater than or equal operator 14
greater than or less than operator (> <) 14
grouping instructions to execute repetitively 35
group, DO 35

H
HALT condition of SIGNAL and CALL instructions 149
Halt Interpretation (HI) immediate command 185, 203, 251
Halt Typing (HT) immediate command 186, 251

halting a looping program 206
from a program 251
HI immediate command 185
using the IRXIC routine 251
with EXECUTIL command 178

halt, trapping 149
hexadecimal

See also conversion
checking with DAT A TYPE 84

hexadecimal digits 9
hexadecimal strings 9
HI (Halt Interpretation) immediate command 185, 206, 251
host command environment

ATTACH 25
change entries in SUBCOMTB table 247
check existence of 199
description 22
IRXSUBCM routine 247
ISPEXEC 24, 160
ISREDIT 24, 160
LINK 25
MVS 24
replaceable routine 376
TSO 24

host command environment table 275, 291
defaults provided 299

host commands 22
definition of 23
TSO /E REXX 167
using in non-TSO /E 157
using in TSO /E 159, 160

hours calculated from midnight 102
HT (Halt Typing) immediate command 186, 251

identifier, exec 8
identifier, REXX exec 8
identifying users 87, 90, 91, 105
IDROUT field (module name table)
IF instruction 41
IKJCT441 240
immediate commands 187

289

HI (Halt Interpretation) 185, 206, 251
HT (Halt Typing) 186, 251
issuing from program 251
RT (Resume Typing) 198, 251
TE (Trace End) 201, 206, 251
TS (Trace Start) 202, 206, 251

implied semicolons 12
imprecise numeric comparison 145
in-storage control block (INSTBLK) 222
iii-storage parameter list 343
inclusive OR operator 15
INDD field (module name table) 287
indefinite loops 35

See also looping program
indentation during tracing 67
INDEX function 92
indirect evaluation of data 42

Index 437

inequality, testing of 14
infinite loops 35

See also looping program
inhibition of commands with TRACE instruction 66
ini tializa ti on

of arrays 20
of compound variables 20
of language processor environments 269, 340

for user-written TMP 272.1
in non-TSO/E address space 273
in TSO/E address space 272

routine (IRXINIT) 272, 340
initialization routine (IRXINIT)

description 340
how environment values are determined 302
how values are determined 342
in-storage parameter list 343
output parameters 34 7
overview 272
parameters module 343
reason codes 34 7
restrictions on values 345
specifying values 345
to initialize an environment 340
to locate an environment 340
user-written TMP 272.1
values used to initialize environment 302

input/output
replaceable routine 366
to and from data sets 171

INSERT function 92
inserting a string into another 92
INSTBLK 222
instructions

ADDRESS 28
ARG 30
CALL 32
DO 35
DROP 39
EXIT 40
IF 41
INTERPRET 42
ITERATE 44
LEAVE 45
NOP 46
NUMERIC 47
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59
SELECT 60
SIGNAL 62
TRACE 64
UPPER 69

438 TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

integer arithmetic 139-148
integer division

definition 143
description of 139
operator 14

integrated language processor environments (into TSO/E) 263,
274
interactive debug 64, 203

See also TRACE instruction
Interactive System Productivity Facility

See ISPF
interface for writing functions and subroutines 231
interface to variables (IRXEXCOM) 240
internal functions

description of 72
return from 58
variables in 53

internal routine invoking 32
INTERPRET instruction 42
interpretive execution of data 42
interrupting program execution 181, 185, 206, 251
invoking

built-in functions 32
REXX execs 158, 161
routines 32

IOROUT field (module name table) 288
IRXANCHR 332
IRXARGTB mapping macro 222, 232
IRXDSIB mapping macro 366, 371
IRXEFMVS 230
IRXEFPCK 230
IRXEFPL mapping macro 231
IRXENVB mapping macro 323
IRXENVT mapping macro 332
IRXEV ALB mapping macro 226, 232
IRXEXCOM 240
IRXEXEC

argument list 222
description 214,217
evaluation block 225
exec block 220
getting larger area to store result 253
getting larger evaluation block 253
in-storage control block 222
overview 209
parameters 218
return codes 227
returning result from exec 225

IRXEXECB mapping macro 220, 361
IRXEXECX field (module name table) 289
IRXEXTE mapping macro 328
IRXFLOC 230, 234
IRXFPDIR mapping macro 234
IRXFUSER 230, 234
IRXIC 251
IRXINIT 272, 340
IRXINITX 391
IRXINOUT 366
IRXINSTB mapping macro 223, 363
IRXISPRM parameters module 275, 299
IRXITMV 391

I ' v

u

SN28-1293 (February IO, 1989) to SC28-1883-0

IRXITTS 391
IRXJCL

description 214
invoking 215
overview 209
parameters 215
return codes 21 7

IRXLOAD 358
IRXMODNT mapping macro 286
IRXMSGID 390
IRXPACKT mapping macro 295
IRXPARMB mapping macro 278, 325
IRXPARMS parameters module 275, 299
IRXRLT 253
IRXSHVB mapping macro 242
IRXSTK 380
IRXSUBCM 247
IRXSUBCT mapping macro 249, 291
IRXTERM 272, 352
IRXTERMX 391
IRXTSPRM parameters module 275, 299
IRXUID 388
IRXWORKB mapping macro 326
ISPEXEC host command environment 24
ISPF

determining availability of dialog manager
services 128

host command environments 24
using ISPF services 24, 160

ISREDIT host command environment 24
issuing host commands 22
ITERATE instruction

See also DO instruction
description 44
use of variable on 44

1/0

J

replaceable routine 366
to and from data sets 171

JULIAN option of DATE function 86
JUSTIFY function 93

K
keyword instructions 27

See also instructions
keywords

L

conflict with commands 163
mixed case 27
reservation of 163

label
as targets of CALL 32
as targets of SIGNAL 62
description of 17
duplicate 62
in INTERPRET instruction 42
search algorithm 62

language code for REXX messages 276
language processor date and version 52
language processor environment

automatic initialization in non-TSO/E 273
automatic initialization in TSO/E 272
chains of 269, 304
changing the defaults for initializing 310
characteristics 27 5
considerations for calling REXX routines 213
control blocks for 270, 323
data stack in 334
description 260, 267
flags and masks 281
how environments are located 307
initializing for user-written TMP 272.1
integrated into TSO/E 274
maximum number of 269, 332
non-reentrant 340
not integrated into TSO/E 274
obtaining address of environment block 340
overview for calling REXX routines 213
reentrant 340
restrictions on values for 315
sharing data stack 334
terminating 352
types of 263, 274
user-written TMP 272. l

language structure and syntax 8
LASTPOS function 93
leading blank removal with STRIP function 100
leading zeros

adding with the RIGHT function 98
removal with STRIP function 100

LEA VE instruction
See also DO instruction
description of 45
use of variable on 45

leaving your program 40
LEFT function 94
LENGTH function 94
less than operator 14
less than or equal operator 14
less than or greater than operator (< >) 14
level of RACF installed 128
level of TSO/E installed 128
LIFO (last-in/first-out) stacking 56
line length of terminal 94
line width of terminal 94
lines from a program retrieved with SOURCELINE 99
LINESIZE function 94
LINK host command environment 25
linking to programs 25
list 19
LISTDSI function 110

error codes 117
function codes 115
messages 115
reason codes 116
variables set by 113

literal patterns, parsing with 134

Index 439

literal strings 9
LOADDD field (module name table) 287
loading a REXX exec 358
local function packages 229
locating a phrase in a string 90
locating a string in another string 92, 96
locating current non-reentrant environment 340
LOCPKFL flag 283
logical bit operations

BITAND 80
BITOR 80
BITXOR 81

logical operations 15
logon procedure

obtain name of for current session 128
looping program

halting 206, 251
tracing 179, 181, 206, 251

loops
See also DO instruction
See also looping program
active 44
execution model 38
modification of 44
repetitive 35
termination of 45

lower case symbols 10

M
macros

See mapping macros
MAKEBUF command 188
managing storage 385
mapping macros

IRXARGTB (argument list for function
packages) 232

IRXARGTB (argument list for IRXEXEC) 222
IRXDSIB (data set information block) 366, 371
IRXEFPL (external function parameter list) 231
IRXENVB (environment block) 323
IRXENVT (environment table) 332
IRXEVALB (evaluation block) 226, 232
IRXEXECB (exec block) 220, 361
IRXEXTE (vector of external entry points) 328
IRXFPDIR (function package directory) 234
IRXINSTB (in-storage control block) 223, 363
IRXMODNT (module name table) 286
IRXPACKT (function package table) 295
IRXPARMB (parameter block) 278, 325
IRXSHVB (SHVBLOCK) 242
IRXSUBCT (host command environment

table) 249, 291
IRXWORKB (work block extension) 326

mask settings '279
masks for language processor environment 279, 281
MAX function 95
maximum number of language processor environments 269, 332
message identifier replaceable routine 390
message IDs, displaying 390

440 TSO /E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

messages
control display of TSO/E messages 118, 119
language code for 276
set by LISTDSI function 115
syntax errors 395

MIN function 95
minutes calculated from midnight 102
mixed DBCS string 85, 406
module name table

ATTNROUT field 289
defaults provided 299
description 286
EXECINIT field 289
EXECTERM field 290
EXROUT field 288
format 286
GETFREER field 288
IDROUT field 289
in parameter block 275
IND D field 287
IOROUT field 288
IRXEXECX field 289
LOADDD field 287
MSGIDRT field 289
OUTDD field 287
part of parameters module 275
STACKRT field 289

MONTH option of DATE function 85
MSG function 118
MSGIDRT field (module name table) 289
multiple

string parsing 138
multiplication

definition 141
operator 14

MVS batch
executing exec in 214

MVS host command environment 24

N
names

of functions 72
of programs 51
of subroutines 32
of TSO/E REXX external entry points 328
of variables 10
reserved command names 165

negation
of logical values 15
of numbers 14

nesting of control strqctures 34
new data stack flag 282
new data stack, creating 190
new host command environment flag 283
NEWSCFL flag 283
NEWSTACK command 190, 337
NEWSTKFL flag 282
NOEST AB flag 283
NOLOADDD flag 284

(~
J

!
\._,/

SN28-1293 (February 10, 1989) to SC28-1883-0

NOMSGIO flag 285
NOMSGWTO flag 285
non-reentrant environment 284, 340
non-TSO/E address spaces

host command environments 23
initialization of language processor

environment 273
overview of executing an exec 158
writing execs for 157

NOP instruction 46
NOPMSGS flag 284
NOREADFL flag 282
Normal option of DATE function 86
NOSTKFL flag 281
not equal operator 14
not greater than operator 14
not less than operator 14
NOT operator 15
notation

engineering 146
scientific 146

NOV ALUE condition
on SIGNAL instruction 149
use of 163

NOVALUE condition of SIGNAL instruction 149
NOWRTFL flag 282
null clauses 17
null instruction

See NOP instruction
null strings 9, 13
number of language processor environments, changing
maximum 332
numbers

arithmetic on 14, 139, 141
checking with DATATYPE 84
comparison of 14, 144
definition 140
description of 10, 139
formatting for display 90
in DO instruction 35
truncating 104
use in the language 14 7

NUMERIC
DIGITS option 47
FORM option 47
FUZZ option 47
instruction 47
option of PARSE instruction 50, 147
settings saved during subroutine calls 34

numeric patterns, parsing with 132

0
obtaining a larger evaluation block 253
operation tracing results 64
operator

arithmetic 14, 139, 141
as special characters 11
comparison 14, 144
concatenation 13
logical 15

operator (continued)
precedence (priorities) of 16

OPTIONS instruction 49
ORDERED option of DATE function 85
ORing character strings together 80
OR, logical

exclusive 15
inclusive 15

OTHERWISE clause
See SELECT instruction

OUTDD field (module name table) 287
output trapping 119
OUTTRAP function 119
overflow, arithmetic 147
OVERLAY function 96
overlaying a string onto another 96
overview of REXX processing in different address spaces 155

p
packages, function

See function packages
packing a string with X2C I 08
parameter block 275

format 275, 325
relationship to parameters modules 275

parameters modules
changing the defaults 310
default values for 299
defaults 269, 275, 299

IRXISPRM 275, 299
IRXPARMS 275, 299
IRXTSPRM 275, 299

for IRXINIT 343
format of 275
providing you own 310
relationship to parameter block 27 5
restrictions on values for 315

parentheses
adjacent to blanks 11
in expressions 13
in function calls 71
in parsing templates 135

PARM BLOCK
See parameter block

PARSE instruction 50
PARSE SOURCE token 277
parsing 131-138

definition 133
general rules 131, 133
introduction 131
literal patterns 134
multiple strings 138
patterns 134
positional patterns 136
selecting words 134
variable patterns 135

parsing templates
in ARO instruction 30
in PARSE instruction 50
in PULL instruction 55

Index 441

passing address of environment block to REXX routines 213,
307
patterns in parsing 134
period

causing substitution in variable names 19
in numbers 140

period as placeholder in parsing 136
permanent command destination change 28
POS function 96
position

last occurrence of a string 93
of character using INDEX 92

positional patterns, parsing with 136
powers of ten in numbers l 0
precedence of operators 16
precision of arithmetic 140
prefix

as used in examples in book 4, 110, 167
defined in user profile, obtaining 128

prefix operators 14, 15
preloading a REXX exec 358
primary data stack 337
primary messages flag 284
PROCEDURE instruction 53
profile

See user profile
programming restrictions 7
programming services

description 209
function packages 229
general considerations for calling routines 212
IKJCT441 (variable access) 240
IRXEXCOM (variable access) 240
IRXIC (trace and execution control) 251
IRXRL T (get result) 253
IRXSUBCM (host command environment

table) 247
passing address of environment block to

routines 213
summary of 155
writing external functions and subroutines 229

programs
attaching 25
linking to 25
retrieving lines with SOURCELINE 99

PROMPT function 123
protecting variables 53
pseudo random number function of RANDOM 97
PULL instruction 55
PULL option of PARSE instruction 51
pure DBCS string 85, 406
PUSH instruction 56

Q
QBUF command 192
QELEM command 194
QSTACK command 196
query

data set information 110
existence of host command environment 199
number of buffers on data stack 192

442 TSO/E Version 2 REXX Reference

SN28-1293 (February IO, 1989) to SC28-1883-0

query (continued)
number of data stacks 196
number of elements on data stack 194

queue
See also data stack
counting lines in 97
reading from with PULL 55
writing to with PUSH 56
writing to with QUEUE 57

QUEUE instruction 57
QUEUED function 97

R
RACF

level installed 128
status of 128

RANDOM function 97
random number function of RANDOM 97
RC (return code)

not set during interactive debug 204
set by host commands 22
set to 0 if commands inhibited 66
special variable 164

reading from the data stack 55
reads from input file 282
reason codes

for IRXINIT routine 347
set by LISTDSI 116

recovery EST AE 283
reentrant environment 284, 340
remainder

definition 143
description of 139
operator 14

RENTRANT flag 284
reordering data with TRANSLATE function 104
repeating a string with COPIES 83
repetitive loops

altering flow 45
controlled repetitive loops ~()

exiting 45
simple do group 36
simple repetitive loops 36

replaceable routines 259, 264, 355
data stack 380
exec load 358
host command environment 376
input/output (I/O) 366
message identifier 390
storage management 385
user ID 388

request (shared variable) block (SHVBLOCK) 242
reservation of keywords 163
reserved command names 165
restoring variables 39
restrictions

embedded blanks in numbers 11
first character of variable name 18
maximum length of results 13

l,

I~
)

_,,J

,' '·,

U·

SN28-l 293 (February 10, 1989) to SC28- l 883-0

restrictions in programming 7
restrictions on values for language processor environments 315
Restructured Extended Executor language (REXX)

built-in functions 71
description 1
keyword instructions 27

RESULT

set by RETURN instruction 33, 58
special variable 164

results
length of 13

Resume Typing (RT) immediate command 198, 251
retrieving argument strings with ARG 30
return codes

as set by host commands 22
setting on exit 40

RETURN instruction 58
return string

setting on exit 40
returning control from REXX program 58
REVERSE function 98
REXX built-in functions

See built-in functions
REXX commands

See TSO/E REXX commands
REXX customizing services

See customizing services
REXX exec identifier 8
REXX exit routines

See exit routines
REXX external entry points 328

IRXEXCOM 240
IRXEXEC 217
IRXIC 251
IRXINIT 340
IRXINOUT 366
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 247
IRXTERM 352
IRXUID 388

REXX instructions
See instructions

REXX processing in different address spaces 155
REXX programming services

See programming services
REXX replaceable routines

See replaceable routines
REXX vector of external entry points 328
REXX (Restructured Extended Executor) language
REXX, using in different address spaces 155
RIGHT function 98
rounding

definition 141
using a character string as a number 10

routines
See also functions
See also subroutines

routines (continued)
exit 391
for customizing services 259
for programming services 209
general considerations for TSO/E REXX 212
replaceable 355

RT (Resume Typing) immediate command 198, 251
running off the end of a program 40

s
SAMPLIB

samples for parameters modules 310
SAY instruction 59
scientific notation 146
search order

controlling for REXX execs 284
for external functions 73
for external subroutines 73
for functions 73
for subroutines 33

searching a string for a phrase 90
secondary data stack 337
seconds calculated from midnight 102
seconds of CPU time used 128
SELECT instruction 60
semicolons

implied 12
omission of 27
within a clause 8

service units used (system resource manager) 128
shared variable (request) block (SHVBLOCK) 242
sharing of data stack between environments 334
sharing subpools 284
Shift-in (SI) characters 405, 410
Shift-out (SO) characters 405, 410
SHVBLOCK 242
SIGL

set by CALL instruction 33
special variable 164

SIGN function 98
SIGNAL

execution of in subroutines 34
in INTERPRET instruction 42

SIGNAL instruction 62
significant digits in arithmetic 140
simple number

See numbers
simple symbols 19
single stepping

See interactive debug
SORTED option of DA TE function 85
source of the program and retrieval of information 51
SOURCE option of PARSE instruction 51
SOURCELINE function 99
SPACE function 99
special characters 11
special variables

RC 164
RESULT 164
SIGL 164

Index 443

SPSHARE flag 284
stack

See data stack
STACKRT field (module name table) 289
status of Data Facility Hierarchical Storage Manager
(DFHSM) 128
status of RACF 128
stem of a variable

assignment to 20
description of 19
used in DROP instruction 39
used in PROCEDURE instruction 53

stepping through programs
See interactive debug

storage
change value in specific storage address 126
management replaceable routine 385
managing 385
obtain value in specific storage address 126

STORAGE function 126
restricting use of 284

storage management replaceable routine 385
STORFL flag 284
storing REXX execs 7, 321
strictly equal operator 14
strictly greater than operator 14, 15
strictly greater than or equal operator 15
strictly less than operator 14, 15
strictly less than or equal operator 15
strictly not equal operator 14
strictly not greater than operator 15
strictly not less than operator 15
string

as literal constants 9
as names of functions 9
as names of subroutines 34
comparison of 14
concatenation of 13
description of 9
hexadecimal specification of 9
interpretation of 42
length of 13
null 9, 13
quotes in 9
verifying contents of 106

string patterns, parsing with 132
STRIP function l 00
structure and syntax 8
SUBCOM command 199
subpool number 279
subpools, sharing 284
subroutines

calling of 32
external, search order 73
forcing built-in or external reference 33
naming of 34
passing back values from 58
providing in function packages 229
return from 58
use of labels 32
variables in 53

444 TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

subroutines (continued)
writing external 229

substitution
in expressions 13
in variable names 19

SUBSTR function 100
subtraction

definition 141
operator 14

SUBWORD function IOI
symbol

assigning values to 18
classifying 19
compound 19
constant 19
description of 10
simple 19
uppercase translation 10
use of 18
valid names 10

SYMBOL function 101
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 149
syntax diagrams 5
syntax error

messages 395
traceback after 68
trapping with SIGNAL instruction 149

syntax, general 8
SYSDSN function 127
SYSEXEC 321

controlling search of 284
overview of storing REXX execs 7

SYSPKFL flag 283
SYSPROC 321

controlling search of 284
overview of storing REXX execs 7

system files
overview of SYSPROC and SYSEXEC 7
storing REXX execs 7
SYSEXEC 321
SYSPROC 321

system function packages 229
IRXEFMVS 230
IRXEFPCK 230
TSO/E-supplied 230

system information, obtaining
CPU time used 128
RACF level installed 128
RACF status 128
SRM service units used 128
status of DFHSM 128
TSO/E level installed 128

system resource manager (SRM), number of service units
used 128
system-supplied routines

IKJCT441 240
IRXEXCOM 240
IRXEXEC 214

f~
/

1r'\
J

u

(~

I "
\~

SN28-1293 (February 10, 1989) to SC28-1883-0

system-supplied routines (continued)
IRXIC 251
IRXINIT 340
IRXINOUT 366
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 247
IRXTERM 352
IRXUID 388

Systems Application Architecture (SAA) 6
SYSTSIN 287
SYSTSPRT 287
SYSVAR function 128

T
TE (Trace End) immediate command 201, 206, 251
templates, parsing

general rules 131
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

temporary command destination change 28
ten, powers of 146
terminal information, obtaining

lines available on terminal screen 128
width of terminal screen 128

terminal monitor program
See TMP

terminals
finding number of lines with SYSVAR 128
finding width with LINESIZE 94
finding width with SYSVAR 128
reading from with PULL 55
writing to with SAY 59

terminating a language processor environment 352
termination routine (IRXTERM) 272, 352

user-written TMP 272.1
terms and data 13
text formatting

See formatting
See word

THEN
as free standing clause 27
following IF clause 41
following WHEN clause 60

TIME function 102
TMP

language processor environments for
user-written 272.1

user-written 272.1
TO phrase of DO instruction 35
token for PARSE SOURCE 277
tokens 9
trace and execution control (IRXIC routine) 251
Trace End (TE) immediate command 201, 203, 251
TRACE function 103

TRACE instruction 64
See also interactive debug

TRACE setting
altering with TRACE function 103
altering with TRACE instruction 64
querying 103

Trace Start (TS) immediate command 202, 203, 251
trace tags 67
traceback, on syntax error 68
tracing

action saved during subroutine calls 34
by interactive debug 203
data identifiers 67
execution of programs 64
external control of 206
looping programs 206

tracing flags

+ + + 67
- 67
>C> 67
>F> 67
>L> 67
>O> 68
>P> 68
>V> 68
> .> 67
> > > 67

trailing blank removed using STRIP function 100
trailing zeros 141
TRANSLATE function 104
translation

See also uppercase translation
with TRANSLATE function 104
with UPPER instruction 69

trap command output 119
trap conditions 82
trapping of conditions 149
TRUNC function 104
truncating numbers 104
TS (Trace Start) immediate command 202, 206, 251
TSO host command environment 24
TSOFL flag 274, 281
TSOREXXl (sample for IRXPARMS) 310
TSOREXX2 (sample for IRXTSPRM) 310
TSOREXX3 (sample for IRXISPRM) 310
TSO/E address space

host command environments 23
initialization of language processor

environment 272
overview of executing an exec 161
writing execs for 159

TSO/E external functions
LISTDSI 110
MSG 118
OUTTRAP 119
PROMPT 123
STORAGE 126
SYSDSN 127
SYSVAR 128

TSO/E level installed, obtaining 128

Index 445

TSO/E profile
See user profile

TSO/E REXX commands 167
DELSTACK 168
DROPBUF 169
EXECIO 171
EXECUTIL 178
immediate commands

HI 185
HT 186
RT 198
TE 201
TS 202

MAKEBUF 188
NEWST ACK 190
QBUF 192
QELEM 194
QSTACK 196
SUBCOM 199
valid in non-TSO/E 157
valid in TSO/E 159

TSO/E REXX customizing services
See customizing services

TSO/E REXX programming services
See programming services

TSO/E REXX replaceable routines
See replaceable routines

type of data checking with DAT A TYPE 84
types of function packages 229
types of language processor environments 263, 274
typing data

See SAY instruction

u
unassigning variables 39
unconditionally leaving your program 40
underflow, arithmetic 147
unpacking a string with C2X 84
UNTIL phrase of DO instruction 35
UPPER instruction 69
UPPER option of PARSE instruction 50
uppercase translation

during ARG instruction 30
during PULL instruction 55
of symbols 10
with PARSE UPPER 50
with TRANSLATE function 104
with UPPER instruction 69

USA option of DA TE function 85
user function packages 229
user ID

as used in examples in book
for current session 128
replaceable routine 388

user information, obtaining
logon procedure for session
prefix defined in user profile
user ID for session 128

4, 110, 167

128
128

446 TSO/E Version 2 REXX Reference

SN28-1293 (February 10, 1989) to SC28-1883-0

user profile
obtain prefix defined in 128
prompting considerations 123
prompting from interactive commands 123

user-written TMP
executing REXX execs 272.1
language processor environments for 272.1

USERID function 105
USERPKFL flag 282

v
VALUE function 105
VALUE option of PARSE instruction 52
values used to initialize language processor environment 302
VAR option of PARSE instruction 52
variable access (IRXEXCOM) 240
variable names 10
variable patterns, parsing with 135
variables

compound 19
controlling loops 36
description of 18
direct interface to 240
dropping of 39
exposing to caller 53
getting value with VALUE 105
in internal functions 53
in subroutines 53
new level of 53
parsing of 52
resetting of 39
set by LISTDSI 113
setting new value 18
simple 19
special

RC 164
RESULT 164
SIGL 164

testing for initialization 101
translation to uppercase 69
valid names 18
with the LISTDSI function 113

vector of external entry points 328
VERIFY function 106
VERSION option of PARSE instruction 52

w
WEEKDAY option of DA TE function 85
WHEN clause

See SELECT instruction
WHILE phrase of DO instruction 35
whole numbers

checking with DAT A TYPE
description of 11

word

108
87

84

counting in a string
deleting from a string
extracting from a string
finding in a string 90

101, 106

,!)
/

n
/

~)

(
_,)

SN28- l 293 (February IO, 1989) to SC28- l 883-0

word (continued)
finding length of 107
in parsing 134
locating in a string 107

WORD function 106
word processing

See formatting
See word

WORDINDEX function 107
WORDLENGTH function 107
WORDPOS function 107
WORDS function 108
work block extension 326
writes to output file 282
writing external functions and subroutines 229
writing REXX execs

for non-TSO/E 157
for TSO/E 159

writing to the stack

x

with PUSH 56
with QUEUE 57

XORing character string together 81
XOR, logical 15
XRANGE function 108
X2C function 108
X2D function I 09

z
zeros added on the left 98
zeros removal with STRIP function 100

Special Characters
(period)

as placeholder in parsing 136
causing substitution in variable names 19
in numbers 140

< (less than operator) 14
< < (strictly less than operator) 14, 15
< < (strictly less than or equal operator) 15
< > (less than or greater than operator) 14
< (less than or equal operator) 14
+ (addition operator) 14, 141
+ + + tracing flag 67
I (inclusive OR operator) 15
II (concatenation operator) 13
&& (exclusive OR operator) 15
& (AND operator) 15
! prefix on TRACE option 66
* (multiplication operator) 14, 141
- tracing flag 67
** (power operator) 14, 143
/(division operator) 14, 141
//(remainder operator) 14, 143
/ = (not equal operator) 14
/ = (not strictly equal operator) 14
, (comma)

as continuation character 12
in CALL instruction 33

, (comma) (continued)
in function calls 71
separator of arguments 33, 71
within a parsing template 30, 132, 133, 138

% (integer division operator) 14, 143
> (greater than operator) 14
> C > tracing flag 67
> F > tracing flag 67
> L > tracing flag 67
> 0 > tracing flag 68
> P > tracing flag 68
> V > tracing flag 68
> > tracing flag 67
> < (greater than or less than operator) 14
> > (strictly greater than operator) 14, 15
> > > tracing flag 67
> > = (strictly greater than or equal operator) 15
> = (greater than or equal operator) 14
? prefix on TRACE option 66
: (colon)

as a special character 11
in a label 17
(equal sign)
assignment indicator 18
equal operator 14
immediate debug command 203
in DO instruction 35

= = (strictly equal operator) 14
- (subtraction operator) 14, 141
\(NOT operator) 15
\ < (not less than operator) 15
\ < < (strictly not less than operator) 15
\ > (not greater than operator) 15
\ > > (strictly not greater than operator) 15
\ = (not equal operator) 14
\ = (strictly not equal operator) 14

Index 447

SN28-1293 (February IO, 1989) to SC28-I883-0

if)

,rj
/

448 TSO/E Version 2 REXX Reference

u

u

u

!~

Ir-\ I

u

u

~
/

()

1

SN28-1293-00

