Systems Reference Library

IBM System/360 Operating System
PL/1 Language Specifications

This manual is a description of the full
facilities of PL/I to be implemented under the
System/360 Operating System. However, the reader
should not assume that all facilities will be
available at initial release. Manuals for speci-
fic System/360 implementations will be released
later.

Another publication will be issued specifying a
subset of the facilities of the language descrikbed
in this manual. This subset 1is planned for
implementation under the System/360 Disk and Tape
Operating System. ’

File No. S360-29
Form C28-6571-3

<

a1 1 11 3

PREFACE

This publication is a reference manual
for the entire PL/I Language. All of the

features to be implemented under the
System/360 Operating System are described
herein.

However, this manual does not approach

PL/I from a tutorial point of view. There
are other IBM publications that perform
this function. These publications and

their intended audience are as follows:

1. A PL/I Primer, Student Text, Form
C28-6808, is intended for the novice
programmer who has little or no knowl-
edge of data processing, as well as
for the experienced programmer who
wants to learn PL/I.

2. A Guide to PL/I for FORTRAN Users,

directed toward the programmer who has
a working knowledge of FORTRAN.

3. A Guide to PL/I for cCommerical Pro-
grammers, Student Text, Form C20-1651,
is intended for the programmer who has
experience in commercial applications.
Comparisons between PL/I and COBOL
(COmmon Business Oriented Language)
are included in this guide.

Introductory information about PL/I may
also be found in the Student Text, An
Introduction to PL/I, Form C20-1632.

A familiarity with the contents of A
PL/I Primer is recormended for the users of

Student Text, Form c20-1637, is

MAJOR REVISION (JULY, 1966)

This publication, Form C28-6571-3, obsoletes
the previous edition, Form C28-6571-2. New tex-
tual information and significant changes are iden-
tified by vertical lines to the left of the added
and changed text.

Among the additions and significant changes are
(1) the complete respecification of compile-time
facilities (Chapter 9), (2) the new attributes
REDUCIBLE and IRREDUCIBLE, and (3) the new data
type called cell (and its corresponding CELL
attribute).

Because Chapter 9 has been completely
rewritten, vertical bars have not been used to
indicate changes; this chapter should be re-read
in its entirety.

this reference manual.

Copies of this and other IBM publications can be obtained through IBM Branch

Offices.

A form for readers' comments appears at the back of this publication.
Address any additional comments

be mailed directly to IBM.

It may
concerning this

publication to the IBM Corporation, Programming Systems Publications, Department

D39, 1271 Avenue of the Americas, New York, N. Y., 10020.

© 1965 by International Business Machines Corporation

ol

Qo ool

j.\/

o BN

INTRODUCTION « « <« s & =
Goals of the Language. .
Basic Characteristics of

SALIENT FEATURES. . .
Block Structure. .

® ® @ e W =

PL/I. . . .

Description of Data.
Storage Allocation.

Data Conversion. .
Data Organization.
Input/Output . . .

e ®» e ® e e

Multi-Task Operations.
Compile-Time Facilities. . . .

List Processing. .

Syntax Notation in This Manual . . .

-~

CHAPTER 1. PROGRAM ELEMENTS

Basic Language Structure

Language Character Sets

60-Character Set .
48-Character Set .
DelimiterS. « « « « «
OperatorsS. « « =

Arithmetic Operators« =«
Comparison Operators
Bit-String Operators

String Operator. .
Parentheses. . . .

Separators and Other Delimiters

Data Character Set. .
Collating Sequence. .
Identifiers

Length of Identifiers.

Keywords. . .« . « . .

Sstatement Identifiers.

Attributes

Separating Keywords.
Built-in Function Names. . . .

OptionSe « « « o
Conditions
The Use Of Blanks . .
CommentsS. « « « « o« =

Basic Program Structure.
Simple Statements . .
Compound Statements .
Prefixes. . « <« « . .

Label Prefixes . .
Condition Prefixes
GXOUpPSs « = « @ '« =
BlockS: w w © @ = = s

e o e e ° e

Use of the END Statement.

ProgramsS. « « « « « «
CHAPTER 2: DATA ELEMENTS

DATA Organization. . . .

e o e © o e

CONTENTS

Scalar IEEMS. « « = « « & % & & @
Constants. « = = &« s s & s » =
Scalar Variakles . . . « . . .

Data Aggregates ¢ ¢« o . .
DAYTAVE o « o & % © % & % % & @
Structures « s s« = & 5 & % 5 @
Arrays of Structures

Naming « = = s % s % s « « « » & = @
Simple Nam€Se « « o ¢ = = « o o
Subscripted NamesS . . « &« « « « «

Cross Secticns of Arrays . . .
Qualified Names . . N Drlel T a " als
Subscripted Quallfled Names . . .

Data TYEES « o o o « o o o o o o = =
Proklem Datd@. « o« o « w o « o « =
Arithmetic Data. « « « « « « =«
Real Arithretic Constants. . .
Imaginary Arithmetic Constants
Arithmetic Variakles - « .« « «
String Datde « o « o o = « =
Character-String Data. . « . -
Bit-String Pata. « « « « « « «
String Variakles
Program—-Contrcl Data. « « « « « =
Label Data « « ¢« ¢ o o « o o« =
Statement-Lakel Constants. . .
Statement-Lakel Variables. . .
Task Dat@e = =« = s s « s = = =
Eveht Dat@. « o = o o 9 o = «
Pointer Data « « « o o « o« « =
Pointer Qualification.
Area Dat@e « o « o « © o o o =
Cell Dat@e « « o « =« o o« o o =

CHAPTER 3: DATA MANIPULATION

EXPYeSSioNnSs « « o « s s o =" = = o =
Scalar EXpresSiCnsS. . « « « « « =
Arithmetic Orerations
Mixed Characteristics.

Results of Arithmetic Operations

Arithmetic Conversions
Bit-String CperationS. . . <« «
Comparison Orerations.
Concatenation Cperations . . .
Type COnversion. - .
Bit String to Character Strlng
Character String to Bit String
Character String to Arithmetic
Bit String tc Arithmetic . . .
Arithmetic to Character String
Arithmetic to Bit String . . .
Array Expressions . . <« « < <« . .
Prefix Operators and Arrays. .
Infix Operators and Arrays . -
Scalar - Array Operations. . .
Array - Array Cperations . . .

Array Expressions Involving

StructuresS. « « o« o o o a o « o
Structure EXpressions . : « « « o =
EVALUATION OF EXPRESSIONS. ¢« o« « o « =«

Order of the Evaluation of
EXPresSSiONSe « « = s /s « = s « » =
CHAPTER 4: DATA DESCRIPTION. <« @« <« - =
Attributes . . . < ¢ ¢ ¢ ¢ ¢ ¢ e o o .

Declarations « .« .m .« = = /s & = @« & & @

Explicit Declarations . . .«
The DECLARE Statement.
Factoring of Attributes.

Multiple Declarations and
Ambiguous References. . « . « .
Label PrefixXxesS « ¢ o« o « o « o« «
Parameters « « « o o « a o o « =
Contextual Declarations =«
Implicit Declarations . . « . « . =«
Scope of Declarations « . .
Scope of External Names.
Basic Rule on Use of Names . . .

The Attributes . . ¢ &« ¢« ¢ o o o o« « «
Data Attributes « < . .
Arithmetic Datae = s & » = & = =
Base Attributes.
Scale Attributes -« . .
Mode Attributes. ¢ @ @& & @ @ &
Precision Attrlbute. s @ & ® @
Default Conditions for
Arithmetic Data « « o« « = o « =
The PICTURE Attribute.
String Attributes.
The LABEL Attribute. . « - . . .
The TASK Attribute
The EVENT Attribute. . « « « . =«
The DIMENSION Attribute
The SECONDARY Attribute . « « . . «
The ABNORMAL and NORMAL Attributes.
Default for Abnormality of Data.
The REDUCIBLE and IRRECUCIBLE
Attributes « s & & % & ® @ ® % 5 @
Default for Irreducibility of
ProcedureS. « « s « « o s s « =
The USES and SETS Attributes. . . .
Entry Name Attributes
The ENTRY Attribute.
The GENERIC Attribute.
The BUILTIN Attribute.
The RETURNS Attribute.
Scope Attributes. . . s g zds S
Storage Class Attrlbutes. -
The ALIGNED and PACKED Attrlbutes -
The DEFINED Attribute . . . « . . .
Correspondence Defining.
Overlay Defining
Order of Evaluation.
Examples of Defining
The CELL Attribute. « « « « o« « « &
The INITIAL Attribute « « «
The LIKE Attribute. . . . “« o ® =
File Description Attrlbutes « % = =

36
36

36

37

38

The FILE Attrikute
The File Usage Attributes. . . .
The Function Attributes.
The PRINT Attribute.
The Access Attrikutes.
The Buffering Attributes
The BACKWARDS Attribute.
The EXCLUSIVE Attribute. T
The ENVIRONMENT Attrlbute. o —
The KEYED Attrikute.
List Processing Attrikutes.
The AREA Attrikute
The POINTER Attrikute.
Assignment Of Attributes To

ITAEntificrS. w w w w » = % « » @ 8
Arplication cf Default
AttribiteS,. w o o 2 o o a = # =

Structure Declarations and Attributes.
Lievel Number.: « « « & @ s & @ @ & =
Structures and the Dimension

Attributes s « & # = % & @ & & &
STRUCTURES AND DATA ATTRIEUTES. W
STRUCTURES AND SCCPE ATTRIBUTES . .
STRUCTURES AND STCRAGE CLASS

ATTRIBUTES < & % @ & & @ & & /a &

CHAPTER 5: PROCEDURES, FUNCTICNS, AND
SUBROUTINES 2« o « « « = o« =« o = @« o @

Formal ParameterS. o« « « o 2 « « « o =
Procedure References . « o« o« 2 = « = =

Function References and Function

Procedures: = @ & m» & & & & & & % & @
Generic Functicns . . . <« ¢ o o« <«
Built-in FunctionsS. « « « o « o « o

Subroutine References and Subrocutine
ProceduteSs =« w & @ & % & & @ & & & %

The Arguments in a Procedure Reference
The Use of the ENTRY Attribute. . .
Passing Argumwents to the Entry

Pointe o = & o w % % ® & @ @ % @

The Special Procedure Attribute
RECURSIVE 5 % & o % © & @ = & @ 4 @

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE.

Program Control. . . ¢« ¢ ¢ ¢ o« o o o =«

Activation and Termination of Rlocks .
Dynamic Descendance . . . « « « « =
Dynamic Encompassing. « « « « « o« «

Allocation of Data and Storage Classes
Definitions and Rules . . . « « < =
Storage ClaSSes w « « « @« « = = @

The Static Storage Class
The Automatic Storage Class. . .
The Controlled Storage Class . .

Asynchronous Operations And Tasks. . .

65
65

66
66

67
67

67

68
68

68

69

69

70

71

72

73
74

T4

Synchronous and Asynchronous
OPEXations w w = s ¢ = @ « = &bk, s
Synchronizing Two Asynchronous
Operations « « « & o « » & « & & &
Task and Events . . . ¢ ¢ o o « <« .
The Creation of Tasks . . . <« . . .
Termination of Tasks.
Allocation of Data in Tasks

Interrupt Operations . . « « « « « . .
Purpose of the Condition Prefix . .
Scope of the Condition Prefix . . .
Use of the ON Statement
System Interrupt Action
Use of the REVERT Statement
Programmer-Defined ON-Conditions. .
Facilities for Program Checkout . .

CHAPTER 7. INPUT/OUTPUT . . o « 2 o« =«
File Opening And File Attributes . . .
Explicit Opening « « « « « = =« =
Implicit Opening « « « o = o o =
Merging of Attributes.

Data Stream Transmission . . « « « . .
List-Directed Transmission.
Data-Directed Transmission. . . . =
Edit-Directed Transmission. . . . «

Data Stream Data Specifications. . . .
Datad LAiSESe o « o » = © ® @ @ @& = @
Repetitive Specification
Transmission of Data-List
ElementSes « » & o i o o« @ @ & #
List-Directed Data Specification. .
List-Directed Input Format . . .
List-Directed Output Format. . .
Data-Directed Data Specification. .
Data-Directed Data in the Stream
Length of Data-Directed Data
FieldS. o o« o o o o o o o o « =
EDIT-DIRECTED DATA SPECIFICATION. .
Format LiStSe « o o o o o = o o « =
Data Format Items. « . .
Control Format Items . . « « « «
Spacing Format Item.
Printing Format Items. . . <« . .
Remote Format Item . « « « « «
Data Stream Transmission Statements

Record TransmiSsSiON. « « « o o « « « =
Record Transmission Statements. . .
RECORD Transmission Operations. . .

standard PL1eS « « o w o = @« i o s o
CHAPTER 8: STATEMENTS <« o o« « o« o o o

Relationship Of Statements
Classification. . . . v & & & @ @
Assignment Statement a s % e @& @
Control Statements . « « < « «
Data Declaration Statement . . .

Error Control and Debug
Statements. . . < ¢ ¢ < @ o o e

.101

.101
.101
.101
.101
.101

«101

Input/Output Statements.
File Preparation Statemrents. .
Record Status Statements
Data Specification Statemrents.
Data Transmission Statements .
Program Structure Statements .
Storage Allocation Staterents.
Sequence of Control

Pseudo-Variables . . . w el
Alphabetic List of Statements

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

CHAPTER 9:

ALLOCATE Statement .
Assignment Statement
BEGIN Statement. .
CALL Statement . .
CLOSE Statement. . .
DECLARE Statement.
DELAY Statement. .
DELETE Statement . .
DISPLAY Statement.
DO Statement
END Statement. . . .
ENTRY Statement. . .
EXIT Statement . .
FORMAT Statement .
FREE Statement . .
GET Statement. . . .
GO TO Statement .
IF Statement
LOCATE Statement . .
Null Staterent . . .
ON Statement
OPEN Statement . .
PROCEDURE Statement
PUT Statement. . . .
READ Statement . . .
RETURN Statement . .
REVERT Statement . .
REWRITE Statement. .
SIGNAL Statement . .
STOP Statement . . .
UNLOCK Statement . .
WAIT Statement . .
WRITE Statement. . .

e =

COMPILE-TIME FACILITIES .

Introduction « o « o « « « « =«

The ProCeSSOY. « « = o © o « o
Processor Input and Output.
The Processor Scan. . . « -«

Rescanning and Replacement

Compile-Time Statements,

ProcedUr€S. « o« « o o o o o =
The DECLARE Statement . . .
The Assignment Statement. .
The ACTIVATE And DEACTIVATE

Statements . < < < o o o .

The GO

TO Statement

The NULL Statement.

The IF
The DO

Statement.
group. « « o s @ =

The INCLUDE Statement ¢ = =
The Compile-Time Procedure.

Groups,

-

-.101
«101
.101
.101
.101
.102
.102
<102

-103
.103
.103
.106
-110
.110
.111
.112
.112
.112
.113
»113
.115
.116

-116
.116
.117
.118
.118
119
«120
.120
-120
.123
.124
.125
.126
<127
.128
.129
«129
«130
-130
.130
.131

.132
-132

«132
.132
.132
.133

.134
.134
« 135

.136
-136
<137
.137
-137
137
.138

The Compile-Time Built-In Function
SUBSTR: « « o « @ « o o s o« « o o o =

CHAPTER 10: SPECIAL TOPICS. « <« « « -«
Relationship of Arguments and
ParameterS. « o« « o « o o o « = o o @
Evaluation of Argument Subscripts .
Use of Dummy ArgumentsS. . « . « . .
Use of the Entry Attribute.
Correspondence Of Parameters And
ArgumentsSe 5 s e ow w0 om0 e w o e @ e
Allocation of Parameters. . . « .
Parameters, Bounds and Length. .
Asterisk Notation for Bounds or
Lengths = 5 @ & 574 & % = % % ®
Expressions as Bounds or Length.

Data Known To Invocations Of Recursive
ProcedUures.: « s s « & & & &, @ & @ & a

PrologueS. « « « = « o o = « « o = o @

Data Allocation Across Tasks « « « « =«
Allocation of Task and Event
Names « « o o o « o o o o o = =

Abnormality and Irreducibility

List Processinge « « « « « o « « « o «
Bagic CONCEPLtS. o o o o @, o = = o ‘o
Additional Considerations

Structures Used as Based
Variables « « ¢« ¢ o o o o o o =
Pointer Value - Based Variable
Relations « « o « « « o « = o =
Data Chaining Precautions. . . .

APPENDIX 1: BUILT-IN FUNCTIONS. . « =«
Arithmetic Generic Functions
Float Arithmetic Generic Functions . .

String Generic Functions . . «

«139

-140

.140
-.140
.140
.40
L1441
142
142

.142
-143

.1u3
.14y
.14y
.14
.145
.145
.145
.148
.1u8

.1u48
.149

.150
150
.152

«153

Generic Functions For Manipulation Of
AYYAQYSe o « o o a o s @« a =« = o « o o

Array And Structure Built-In Functions
Condition Built-In Functions
List Processing Built-In Functions . .
Other Built-In Functions

APPENDIX 2: PICTURE SPECIFICATICN
TABLES. « @ « o o « o o « s « = « a =

Digit Point and Sukfield Delimiting
CharacterS. « o o ¢« ¢« o e o o = = o =

Zero Suppression Characters.

Drifting Editing Symkols
Drifting Characters . . « « « « o =«
Editing Character . . « « . <« <« « .
conditional Editing Characters. . .
Sign Characters « « « « « « « o « o«
Scaling Factor Specification. . . .

Sterling PictureS. « « « ¢ « o« « o o
Pictures for Character Strings. . .
APPENDIX 3: ON-CONDITIONS. « <« o « < =
Classification of Conditions
Computational Ccnditions. . « .« . <
Input/Output Conditions
Program Checkout Conditions
List Processing Conditions.

Programmer-Named Conditions
System Action Conditions. « « . . «

APPENDIX 4: PERMISSIELE KEYWORD
ABBREVIATIONS 2 2 o o o o o = = « o =

APPENDIX 5: THE 48-CHARACTER SET . . .

APPENDIX 6: ANNOTATED EXAMPLES. . . .

INDEXe o o o o o o o o o o o a o o o o

-154
.155
«155
155

+156

«157

-157
.157

157
.158
.158
-.158
«159
«159

«159
«~159

.160
.160
.160
.161
<162
-164
.164
.164
.165
.166
.167

«171

Table 1. Arithmetic Base and Scale
CONVErsioNe « « « « « « « =« o« « o o« « « 33
Table 2. Scope and Use of Names in

Example 1, for "Scope of External

Names™. « & = & s« & « s @ @ @ @ @ & « « 42
Figure 1. General Format for

Repetitive Specification. « « « 87

FIGURES

Figure 2. List-directed Input
Cconversion.

Figure 3.

e = = 89
Example of Data-Directed

Transmission, both Input and Output .

Figure 4. General Fcrmat for the DO
Statement .

- 92

<114

GOALS OF THE LANGUAGE

Throughout the relatively brief history
of electronic data processing, certain com-
puters have been identified with a particu-
lar field of activity, either commercial or
scientific.

Programmers have generally specialized
in one field or the other. High-level
languages, of course, have emphasized this
divergence, going in one direction for
commercial programming and in another
direction for scientific programming.

Until recently, this difference present-
ed few problems. Each language was ade-
quate for its use; the commercial program-
mer dealt with relatively few computations
performed upon great amounts of data; the
scientific programmer performed complex
calculations using small amounts of data.

Now, however, the situation is changing.

Business and industry have discovered new
uses for the computer, and the commercial
programmer finds himself concerned with
more involved computations in statistical

forecasting and in linear programming for
operations research.

In science and engineering, the program-

mer needs a language to simplify the pre-
paration of reports, to sort and edit
technical data; he finds more need for

input and output operations. The engineer
specifically wants the ability +to handle
data at the bit level for applications such
as circuit analysis.

Today's new computing systems have been
designed to cope with all of these comput-
ing problems. They handle commercial and
scientific programs with equal ease, with
new power and new speed; they provide
facilities for such new techniques as
shared data processing, asynchronous pro-
gram execution, and real-time processing.

of the traditional high-level lan-
can be used with efficien-
ability of

None
guages, however,
cy across the entire range of
these new computers.

That is the reason for PL/I, a multipur-
pose programming language for use not only
by commercial and scientific programmers
but by the real-time programmer and the
systems programmer as well. It is a lan-
guage designed for efficiency, a language
that enables the programmer to use virtual-
ly all the power of his computer.

INTRODUCTION

PL/I is organized so that any program-
mer, no matter how extensive his experi-
ence, can use it easily at his own level.

This manual, because it is a reference
manual of the entire language, shows the
range and power of PL/I, its ability to
handle the most complex computing problems.

Actually, however, PL/I need be no more
complex than the program for which it is
used.

One of the primary aims in the design of
the language was modularity, that is, pro-
viding different levels of the language for
different applications and different
degrees of complexity. A programmer using
one level need not even know about the
unused facilities.

Although PL/I is relatively machine
independent, +this modularity might be com-
pared to a completely equipped data proc-
essing center. A novice programmer would
use only a small part of the system; he can
ignore the rest of the equipment. More
complex programs, of course, would require
more equipment. Some programs would use
certain modules of equipment; other pro-
grams, other modules. Rarely, if ever,
would a program require use of all the
facilities.

In PL/I, every attribute -- or descrip-
tion -- of a variable, every option, and
every specification has been given a
"default" interpretation. Wherever the
language provides for one or more alterna-
tives, a "default" interpretation -- or
assumption -- is made by the compiler if no
choice is stated by the programmer. And in
each case, the assumption that was chosen
in the design of the language is the one
most likely to be required by the program-

mer who need not know that alternatives
exist.

The "modularity" and the "default"
aspects are the bases upon which the sim-
plicity of PL/I has been built. They are

also part of its power.

Introduction 9

BASIC CHARACTERISTICS OF PL/I

The overall aim in the design of the
language was to give the programmer freedom
in handling his computing system.

Freedom of expression: If
combination of symbols has a wuseful mean-
ing, that meaning is allowed. Although
actual statements in the language must be
written using a specified character set,
data may be composed of any character
allowed by the configuration of the indivi-
dual computer. PL/I is written in a free-
field format; the programmer is free to
design his own format for listings.

a particular

Full access to machine and operating system
facilities: the PL/I programmer rarely, if
ever, will need to resort to assembly
language coding.

SALIENT FEATURES

Part of the 1language 1is, of course,
based on earlier programming languages.
Certain aspects are expansions of ideas
used previously. Other portions are
exclusively a part of PL/I. The following
paragraphs briefly describe some of these
features. All of them are discussed more
fully within the text.

Block Structure

The statements of a PL/I program are
organized into program sections called
"blocks. " A program may be made up of one

block or many blocks. Blocks may be separ-
ate from one another, with no common state-
ments, or they may be nested, one within
another.

Blocks provide two important logical
functions: (1) they define the scope of
applicability of data variables and other
kinds of names, so that the same name may
be used for different purposes in different
blocks without ambiguity, and (2) they
allow storage for data variables to be
assigned only during execution of the block
and freed for other uses at the termination
of the block.

Certain blocks, called "procedure"
blocks, may be invoked (i.e., called into
execution) remotely from different places

in the program, and they provide means to
handle arguments and to return values.

10

Description of Data

data is described as
called
data
DECIMAL
either

In the language,
having certain characteristics
attributes. For example, numeric
would have a BINARY attribute or a
attribute; string data would be
CHARACTER string or BIT string.

Storage Allocation

The computer storage for any data varia-
ble in a PL/I program may be assigned
statically, for the entire execution of the
program, or dynamically, during execution.

Two classes of dynamic storage are avai-
lable to the PL/I programmer, automatic and
controlled. When a variable has the con-
trolled storage attribute, the programmer
may allocate or free storage for that
variable at any time he wishes. Storage
for a variable having the automatic storage
attribute is allocated upon entry to the
block and freed upon exit.

Data Conversion

In keeping with the
mixed expressions are allowed. In the
following example, F is declared to be a
fixed-point number, G a floating-point num-
ber, and H a character string that is ten
characters in length.

freedom of PL/I,

DECLARE F FIXED, G FLOAT, H CHARACTER

(10);
H=F + G;
In the evaluation of the second state-
ment of the above example, F will be
converted to a floating-point value,

floating-point addition will be performed,
and the result will be converted to a
character string of ten characters and
assigned as a value to H.

Data Organization

Data variables can be grouped into eith-
er arrays or structures. An array is
composed of elements of the same charac-
teristics. A structure is a collection of
variables and arrays, not necessarily alike
in characteristics. Structures may also
contain other structures. Individual items
of an array are referred to by subscripted
names; individual items of a structure are
referred to by names that may sometimes
have to be qualified to avoid ambiguity.

v

In PL/I, arrays and structures are
treated as variables in their own right.
Either of them may be used as the operand
of an expression. The expression is then
an array expression or a structure expres-
sion, and it returns an array or structure
result.

Input/Output

The modularity of PL/I is particularly
apparent in the input/output facilities.
wWith PL/I, a programmer may control
input/output activity to whatever degree he
requires. He may handle normal transmis-
sion and conversion simply, or he may use
the full capability of the language for
control of more complex problems of input
and output.

Multi-Task Operations

In PL/I, a collection of procedures is
called a program; the execution of a pro-
gram (or many programs or a part of a
program) to perform a particular Jjob is
called a task.

PL/I provides facilities for handling
two or more tasks concurrently. This
facility, of course, is extremely important
in the use of any computer system with
multiprocessing. capabilities. It also is
valuable for a single processor system with
facilities for real-time operations.

During execution of a procedure, the
executing task might specify that a subor-

dinate task begin execution upon certain
data (i.e., the executing task invokes
another task); the new task, called an

attached task, might also invoke another
task. All tasks then proceed concurrently
and, in effect, simultaneously.

The multi-task facilities of PL/I allow
a subordinate task to communicate with its
originating, or attaching, task through
arguments, and through data allocated in
the attaching task. The originating task
also may, at any time, test to see 1if a
subordinate task is completed and may, if
necessary, delay its own execution to wait
for the completion.

Compile-Time Facilities

Most programming languages are written
on one level only, as statements to the

computer to perform certain operations
using the supplied data. PL/I not only
directs the computer to operate upon the
data, but with a macro facility, it directs
the compiler +to operate upon the program
itself.

The programmer can include in his pro-
gram information that will aid the compiler
to produce more efficient code, documenta-
tion, and diagnostics.

List Processing

PL/I provides facilities for list proc-
essing. These facilities are unusually
flexible in that the introduction of poin-
ter and based variables enables the pro-

grammer to combine arrays, structures, and
scalars into a single list.

A complete enumeration of PL/I 1list
processing facilities may be found under

the heading "List Processing™ in the Index
(also see "List Processing™ in Chapter 10).

SYNTAX NOTATION IN THIS MANUAL

Throughout this manual, wherever a PL/I
statement -- or some other combination of
elements -- is discussed, the manner of
writing that statement or phrase is illus-

trated with a uniform system of notation.

This notation is not a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction
-- of any programming language. It pro-
vides a brief but precise explanation of
the general patterns that the language

permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order

in which the elements may (or must) appear,
punctuation that is required, and options
that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
PL/I:

1. A notation variable is the name of a
general class of elements in the pro-
gramming language. A notation varia-
ble must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

and

b. A combination of lower-case

Introduction 11

2.

12

upper-case letters. There must be
one portion in all lower-case let-
ters and one portion in all upper-
case letters, and the two portions
must be separated by a hyphen.

All such variables used are
defined in the manual either formally,
using this notation, or are defined in
prose.

Examples:

a. digit. This denotes the occur-
rence of a digit, which may be 0
through 9 inclusive.

b. filename. This denotes the occur-
rence of the notation variable
named filename . An explanation
of filename is given elsewhere in
the manual.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are wused for
emphasis.

A notation constant denotes the liter-
al occurrence of the characters rep-
resented. A notation constant con-
sists either of all capital letters or
of a special character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence
of the word DECLARE followed by the
variable "identifier," which is
defined elsewhere, followed by the
literal occurrence of the word
FIXED followed by the literal
occurrence of the semicolon (;).

The term "syntactical unit,"™ which is
used in subsequent rules, is defined
as one of the following:

a. a single variable or constant, or

b. any collection of variables, con-
stants, syntax-language symbols,
and reserved words surrounded by
braces or brackets.

Braces { } are used to denote
ing.

group-

Example:

FIXED
identifier

FLOAT

The vertical stacking of syntacti-

5.

cal units indicates that a choice
is to be made. The above example
indicates that the variable
"identifier" must be followed by
the literal occurrence of either
the word FIXED or the word FLOAT.

The vertical stroke | indicates that a

choice is to be made.

Example:

identifier {FIXED{|FLOAT}

This has exactly the same meaning
as the above example. Both methods
are used in this manual to display
alternatives.

Square brackets [1 denote options.
Anything enclosed in brackets may
appear one time or may not appear at
all.

Example:

CHARACTER (length) [VARYING]

This denotes the literal occurrence
of +the word CHARACTER followed by
the variable "length" enclosed in
parentheses and optionally followed
by the 1literal occurrence of the
word VARYING. If, in rule 4, the
two alternatives also were option-
al, the vertical stacking would be
within brackets, and there would be
no need for braces.

Three dots ... denote the occurrence
of the immediately preceding syntacti-
cal unit one or more times in succes-
sion.

Example:

{digit] ...

The variable, "digit," may or may
not occur since it is surrounded by
brackets. If it does occur, it may
be repeated one or more times.

Underlining is used to denote an ele-
ment in +the language being described
when there is conflict between this
element and one in the syntax lan-
guage.

Example:

operand {&|]} operand

This denotes that the variables
"operand" are separated by either
an "and" (&) or an "or" (]). The
constant | 1is underlined in order
to distinguish the "or" symbol in

the PL/I 1language from the "or" b. min 5 {digit|letter?}
symbols in the syntax language.

min max. The combination of these two The variables "digit" or "letter"™
words with associated numeric values intermixed in any combination must
specifies the minimum and maximum num- occur at least five times, but
ber of times a syntactical unit may there is no limit on the number of
occur. When min is used without max, times over -five that they may
the implied max is infinity. When max occur.

is wused without min, the implied min

is zero.

c. max 3 label
Examples:

a. min 2 max 6 {digit|letter!?
The variable "label" may not occur

This denotes that either "digit" more than three times in succes-
or "letter" intermixed in any com- sion. It may not be present at
bination must occur at least two all, or it may occur one, two, Or
times, but no more than six. three times.

Introduction 13

CHAPTER 1. PROGRAM ELEMENTS

BASIC LANGUAGE_ STRUCTURE

PL/I allows the programmer to write the
statements of his program in a free-field
format. A statement, which is a string of
characters, is always terminated by the
special character, semicolon. A program
which is, in turn, a sequence of state-
ments, can thus be regarded simply as a
single string of characters, with no spe-
cial internal grouping. Hence, a PL/I
program can be physically represented and
transmitted to a computer in a natural way
by means of almost any input medium,
including a typewriter at a remote termi-
nal.

Input conventions, depending upon the
machine configuration or the compiler, can,
of course, be set up so that the program
string may be presented to the computer
through the familiar medium of fixed-length
records, e.g., punched cards. This can be
accomplished by using certain predetermined
fields of the records for the program
string, and other fields for arbitrary
purposes.

LANGUAGE CHARACTER SETS

One of two character sets may be used to
write a source program: either a
60-character set or a L48-character set. No
assumptions are made in the language about
external or internal codes for the
characters. For a given program, the
choice between the two sets 1is optional.
(In practice, this choice will depend upon
the available equipment.)

60-Character Set

The 60-character set 1is composed of
digits, special characters, and English
language alphabetic characters.

There are 29 alphabetic characters, let-
ters A through Z and three additional
characters that are defined as and treated
as alphabetic characters. These characters
and the graphics by which they are rep-
resented are as follows:

14

Currency symbol
Commercial At-sign
Number sign

3* W\

There are ten digits. Decimal digits
are the digits 0 through 9. A binary digit

(bit) is either a 0 or a 1.

An alphameric character is

alphabetic character or a digit.

either an

There are 21 special characters. The

names and graphics by which they

resented are:
Name
Blank
Equal or Assignment symbol
Plus
Minus
Asterisk or Multiply symbol
Slash or Divide symbol
Left Parenthesis
Right Parenthesis
Comma
Decimal Point or Period
Quotation mark
Percent symbol
Semicolon
colon
Not symbol
And symbol
Or symbol
Greater Than symbol
Less Than symbol

Break_character
(used as shown)

Question mark

are rep-

Graphic

V]

Note that the quotation mark used in
PL/I is the single quotation mark (also
known as an apostrophe or prime).

Two consecutive special characters may
be used to create operators, e.g., >=,
denoting "greater than or equal to"; ||,

denoting concatenation.

48-Character Set

The characters making up the
48-character set are identical to those of
the 60-character set, with restrictions and
changes as described in Appendix 5.

DELIMITERS
Certain characters are used as
delimiters and fall into three classes:
operators

parentheses
separators and other delimiters

Operators

Operators used by the
divided into four types:

language are

arithmetic operators
comparison operators
bit-string operators
string operators

Arithmetic Operators

The arithmetic operators are:

+ denoting addition or prefix plus

- dengting subtraction or prefix
minus

* denoting multiplication

/ denoting division

*% denoting exponentiation

Comparison Operators

The comparison operators are:

> denoting greater than

1> denoting not greater than

>= denoting greater than or equal
to

= denoting equal to

1= denoting not equal to

<= denoting less than or equal to

< denoting less than
1< denoting not less than
Bit-String Operators

The bit-string operators are:

1 denoting not
& denoting and
| denoting or

String Operator

The string operator is:

11 denoting concatenation

Parentheses

Parentheses are used in expressions, for
enclosing 1lists, and for specifying infor-
mation associated with various keywords.

(left parenthesis
) right parenthesis

Separators and Other Delimiters

Name Graphic Use

comma . separates elements of a
list

semicolon : terminates statements

assignment = used in assignment

symbol statement and DO
statement

colon : follows labels and con-
dition prefixes; also
used with dimension
specifications

blank used as a separator

quotation ' encloses string con-

mark stants and picture
specifications

Chapter 1: Program Elements 15

Name Graphic Use
period = separates items in
qualified names; used
as a decimal or
binary point in con-
stants
percent % precedes macro state-
ment
pointer -> qualifies a reference
qualification to a based variable
symbol

DATA CHARACTER SET

Although the language character set is a
fixed set defined for +the language, the
data character set has not been limited.
Data may be represented by characters from
the language set plus any other characters

permitted by the particular machine con-
figuration.
Any character that will result in a

unique bit pattern is a valid character in
the data character set, and may be used in

source programs to construct character-
string constants and comments.
COLLATING SEQUENCE

In the execution of PL/I programs,
comparisons of character data will observe

the collating sequence resulting from the
representations of involved characters in

bytes of System/360 storage, in extended
binary coded decimal interchange code
(EBCDIC).

IDENTIFIERS

An identifier is a string of alphameric
and break characters, not contained in a
comment or constant, preceded and followed
by a delimiter; the initial character must
always be alphabetic.

Identifiers in the language are used for
the following:

scalar variable names
array names
structure names

statement labels

16

entry names

file names

keywords

condition names
Examples:

VARA

BCD320

FILEU42

XR20A

STARTA

RATE_OF_PAY

#32_45

$L32

Xa_52

2531

AB12#

Length of Identifiers

Identifiers that a programmer constructs
in writing a PL/I program must be composed
of not more than 31 characters.

KEYWORDS

A keyword is an identifier which is

part of the 1language. Keywords are not
reserved words. They may be classified as
follows:

statement identifiers
attributes

separating keywords
built-in function names
options

conditions

a u

Statement Identifiers

A statement identifier is a sequence of
one or more keywords used to define the
function of a statement (see "Simple
Statements").

Examples:
GO TO

DECLARE
READ

Attributes

Attributes are keywords that specify the
characteristics of data, procedures, and
other elements of the language.

Example:
FLOAT

RECURSIVE
SEQUENTIAL

Separating Keywords

The five separating keywords are used to
separate parts of the IF and DO statements.
They are THEN, ELSE, BY, TO, WHILE.

Built-in Function Names

A built-in function name is a keyword
that is the name of an algorithm provided
by the language and accessible to the
programmer (see "Function References and
Function Procedures" in Chapter 5).

Examples:

DATE
EXP

Options

An option is a specification that may be
used by the programmer to influence the
execution of a statement.

Examples:

TASK
BY NAME

Comments are normally used for

Conditions

A condition is a keyword used in the ON,

SIGNAL, and REVERT statements, and as a
prefix to other statements (see
"Prefixes"). The programmer may specify

special action on occurrence of the
tion (see "Interrupt Operations").

condi-

Examples:

OVERFLOW
ZERODIVIDE

THE USE OF BLANKS

Identifiers, constants, picture specifi-
cations, composite operators (e.g., 1=),
and the class of dummy variables iSUB (see
"The DEFINED Attribute" in Chapter 4) may
not contain blanks. Blanks are permitted
within a character-string constant.

Identifiers, constants, or picture
specifications may not be immediately adja-
cent. They must be separated by an opera-
tor, assignment symbol (i.e., =), parenthe-
sis, colon, semicolon, comma, period,
blank, or comment. Moreover, additional
intervening blanks or comments are always
permitted. Blanks are optional between
keywords of a statement identifier (e.g.,
GO TO), and between a level number and its

following identifier (see "Structures" in
Chapter 2).

Examples:

CALLA is not equivalent to CALL A

A TO B BY C 1is not equivalent to ATOBBYC

AB+BC is equivalent to AB + BC

COMMENTS

General format:
/* character-string */

documenta-
tion and do not participate in the execu-
tion of a program. A comment may be wused
wherever a blank is permitted (except in a
character-string constant). The character
string in a comment must not contain the
character combination */ in that sequence.

Chapter 1: Program Elements 17

Example:
LABEL: /* THE BLOCK OF CODING BETWEEN
BEGIN-END IS USED FOR PAYROLL CALCULA-
TIONS */
BEGIN;
END;

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements.

Statements are grouped into larger
program—-elements, the group and the block.

There are two types of statements: simple
and compound.

SIMPLE STATEMENTS

A simple statement is defined as:

[[statement-identifier]
statement-bodyl ;

The "statement identifier," if it appears,
is a keyword , characterizing the kind of
statement. If it does not appear, and the
statement body does appear, then the state-
ment is an assignment statement. If only
the semicolon appears, the statement is
called a null_statement.

Examples:

DO I =J TO
10;

(DO is the keyword)

A =B+ C; (assignment statement)

3 (null statement)

COMPOUND STATEMENTS

A compound statement is a statement that
contains other program-elements. There are
two of them:

The IF compound statement
The ON compound statement

The final contained statement of a com-
pound statement is a simple statement and
thus has a terminal semicolon. " Hence, the
compound statement will automatically be
terminated by this semicolon.

18

Examples:
IF A=B THEN GO TO S1; ELSE A=C;
ON OVERFLOW GO TO OVFIX;

Each PL/I statement is described in the

alphabetic list of statements in Chapter 8.

PREFIXES

There are two types of prefixes: label

prefixes and condition prefixes.

Label Prefixes

Statements
reference to them.
the following form:

may be 1labeled to permit
A labeled statement has

identifier:[identifier:]...statement

The one or more "identifiers" are
called 1labels and may be used inter-
changeably to refer to that statement.

Labels appearing before PROCEDURE and
ENTRY statements are special cases and are
known as entry names (see "Procedure
References"). All other labels are called
statement labels.

A label appearing before a statement is
said to be declared, by virtue of its
appearance as a label.

Statement labels
DECLARE are ignored.

appearing before

Condition Prefixes

A condition prefix specifies whether or
not a program interrupt will result upon
the occurrence of the specified condition.
(For information regarding the use of the
condition prefix see the section "Interrupt
Operations" in Chapter 6.)

One or more condition prefixes
attached to a statement.

may be

Each condition prefix is followed by a
colon to separate it from the rest of the
statement or from other prefixes; condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement.

£

1N

A condition prefix is a list of condi-
tion names, separated by commas and
enclosed in parentheses. Thus, a statement
with a set of prefixes has the following
general form:

{ (condition-name [,condition-
namel...):}...[label:]...
statement

The condition names are chosen from the
following fixed set:

UNDERFLOW

OVERFLOW

ZERODIVIDE
FIXEDOVERFLOW
CONVERSION

SIZE

SUBSCRIPTRANGE

CHECK (identifier-1list)

Note: CHECK (identifier list) may be used
as a prefix only with the PROCEDURE and
BEGIN statements.

The meanings of these conditions are
explained in "The ON Statement,"™ in Chapter
8.

Any of these condition
preceded by the word NO.
there can be no intervening

names may be
If NO is used,
blank between

NO and the condition. For example, NOCON-
VERSION can be specified in the prefix
list.
GROUPS

A group 1is a collection of one or more

statements and is used for control purpos-
es.
A group has one of two forms. The first
form, called a DO-group, is:
[label:] . . . DO-statement
program-element-1
program-element-2

END [labell;

The 1label following END is one of the
labels of the DO statement (see "Use of the
END Statement™ in this chapter).

The DO statement is called the heading
statement of the DO-group, and may specify
iteration. Each program element represents
one or more statements.

The second form of a group is
single statement, as follows:

simply a

[label:] . . . statement

The "statement" is any statement except DO,
END, PROCEDURE, BEGIN, DECLARE, FORMAT,
ENTRY, or any compile-time statement.

Example of the first form:

ALPHA: DO;
A=B*C;
IF A < 0 THEN DO; B=1; C=0; END;
END ALPHA;
In the example above, any of the single
statements -- except the DO and END state-

ments -- is an example of the
of a group.

second form

BLOCKS

A Dblock 1is a collection of statements
that defines the program region -- or scope
-- throughout which an identifier is esta-
blished as a name. It also is used for
control purposes.

There are two kinds of blocks,

begin
blocks and procedure blocks.

A begin block has the general form:

[label:] . . . BEGIN-statement
program-element-1
program-element-2

END [labell;

The 1label following END 1is one of the
labels of the BEGIN statement (see "Use of
the END Statement"™ in this chapter).

A procedure block, or procedure, has the
general form:

label: [label:] . . . PROCEDURE-statement
rrogram—-element-1
program-element-2
END [lakell;

The 1label following END is one of the

labels of the PROCEDURE statement (see "Use

of the END Statement"™ in this chapter).

The BEGIN statement and the PROCEDURE
statement in the above forms are called
heading statements.

Chapter 1: Program Elements 19

While the labels of the BEGIN statement
are optional, the PROCEDURE statement must
have at least one label.

Although the begin block and the proce-
dure have a physical resemblance and play
the same role in delimiting scope of names
(see "Scope of Declarations," in Chapter 4)
and defining allocation and freeing of
storage (see "Allocation of Data and Stor-
age Classes," in Chapter 6), they differ in
an important functional sense. A begin
block, like a single statement, is activat-
ed by normal sequential flow, and it can
appear wherever a single statement can
appear. A procedure can only be activated
remotely by CALL statements, by statements
in which a CALL option appears, Or by
function references. When a program con-—
taining a procedure is executed, control
passes around the procedure, from the
statement before the PROCEDURE statement to
the statement after the END statement of
the procedure.

Since a procedure can be activated only
by a reference to it, every procedure must
have a name. The label required for the
heading statement of a procedure serves as
the procedure name. More than one label
provides more than one procedure name.

The procedure name gives a means of
activating the procedure at its primary
entry point. Secondary entry points can

also be defined for a procedure by use of
the ENTRY statement. The labels preceding
all ENTRY statements in a given procedure
and the heading statement of the procedure
are collectively called entry names for the
procedure.

As the above definition of Dblock
implies, any block A can include another
block B, but partial overlap is not possi-
ble; block B must be completely included in
block A. Such nesting may be specified to
any depth.

A procedure that is not included in any
other block is called an external proce-
dure. A procedure included in some other
block is called an internal procedure.

Every begin block must be included in
some other block. Hence, the only external
blocks are external procedures.

All of the text of a begin block except
the labels preceding the heading statement
of the block is said to be contained in the
block.

All of the text of a procedure except

the entry names of the procedure is said to
be contained in the procedure.

20

That part of the text of a block B that
is contained in block B, but not contained
in any other block contained in B, is said
to be internal to block B.

The entry names of an external procedure
are not internal to any procedure and are
called external names.

The notion of internal to is wvital in

the definition of scope (see "Scope of
Declarations" in Chapter 4).
Example:
A PROCEDURE ; T
statement 1
B: BEGIN;
statement 2
statement 3
END B;
statement 4
C: PROCEDURE; T
statement 5
X: ENTRY;
D: BEGIN;
statement 6
statement 7
END D;
statement 8
END C; |
statement 9
END A; .

In this example, statements 1 through 9 are
labeled or unlabeled simple statements.

As the brackets on the right indicate,

block A contains block B and block C, and
block C contains klock D.
Block A is an external procedure. The

procedure name is A, which is an external
name, and the only entry name for the
procedure.

X 1is an entry name corresponding to a
secondary entry point for procedure C.

Blocks B and D are begin blocks.
Block C is an internal procedure.
The text intermnal to block A consists of

PROCEDURE ;
statement 1
B:
statement 4
C

X:
statement 9
END A;

»

9D

The text internal to block B consists of

BEGIN;
statement 2
statement 3
END B;

The text internal to block C consists of

PROCEDURE ;
statement 5
ENTRY;

D:
statement 8
END C;

The text internal to block D consists of

BEGIN;
statement 6
statement 7
END D;

USE OF THE END STATEMENT

As the examples above the END

statement has the form:

imply,

END [labell;

and is wused to terminate a

block.

group or a

If the optional label following END is
not used, the END statement terminates that
unterminated group or block headed by the
DO, BEGIN, or PROCEDURE statement that
physically precedes, and appears closest
to, the END statement.

If, however, a label (e.g., L) is used
following END, the statement terminates
that unclosed group or block headed by the
DO, BEGIN, or PROCEDURE statement with the

label L that physically precedes, and
appears closest to, the END statement. Any
groups or blocks headed by DO, BEGIN, or

PROCEDURE statements contained in the ter-
minated block L are also automatically
terminated by the END statement END L.

This feature eliminates the necessity of
writing the intermediate END statements to
terminate the contained blocks and groups.

The statement labeled L, which heads the
group or block terminated by the END state-
ment END L, is internal to a certain block

in the program (see "Blocks," for a defini-
tion of internal to). The terminating
statement END L, together with its own
possible statement-labels, is also consid-
ered to be internal to the same block. (If

the statement 1labeled I is a BEGIN or
PROCEDURE statement, this block 1is, of
course, the block L.)

The END statement may itself be labeled,

and a reference to this label can be made
from any part of the program where the
label is known. (For a definition of

known, see "Basic Rule on Use of Names"™ in
Chapter 4).

Example:
A: PROCEDURE; A: PROCEDURE;
B: BEGIN; B: BEGIN;
A PROCEDURE; Az PROCEDURE;
& DO; C DO;
X: END B; END;
END A; END;
Xz END B;
END A;
In the example on the left above, the

statement X:END B terminates the DO group,
the internal procedure A, and the block B.
The statement END A terminates the external
procedure A.

The example on the right is
to the example on the left.

equivalent

The statement X:END B is internal to

block B.

PROGRAMS

A program is composed of one or more
external procedures. Thus, by definition,
a program is a set of procedure blocks,
each of which is completely nested, and

separate from the others.

Chapter 1: Program Elements 21

CHAPTER 2: DATA ELEMENTS

Information that is operated on in a
PL/I object program during execution is
called data. Each data item has a definite
type and representation.

The aim of this chapter is to present a
discussion of (1) the various organizations
that data may have, (2) the methods by
which data can be referred to, and (3) the
types of data allowed.

DATA ORGANIZATION

Data may be organized as scalar items
(i.e., single data items) or aggregates of
data items (i.e., arrays and structures).

SCALAR ITEMS

A data item may be either a constant or

the value of a scalar variable. Constants
and scalar variables are called scalar
items.

constants

A constant is a data item that denotes
itself, i.e., 1its representation is both
its name and its wvalue; thus, it cannot
change during the execution of a program.
Each constant has a type, as described
below. A signed constant is an arithmetic
constant preceded by one of the prefix
operators + or -. Wherever the word
"constant" appears alone, and refers to an
arithmetic constant, it is to be assumed to
refer to an unsigned constant.

Scalar Variables

A scalar like a constant,
denotes a data item. This data item is
called the value of the scalar variable.
Unlike a constant, however, a variable may
take on more than one value during the
execution of a program. The set of values
that a variable may take on is the range of
the variable. The range of a variable is
always restricted to one data type (and, if
the type is arithmetic, to one base, scale,

22

mode, and precision - see "Arithmetic Data"
in this chapter). If there are no further
restrictions declared for the range, the
variable may assume values over the entire
set of data of that type.

Reference is made to a scalar variable
by a name, which may be a simple name, a
subscripted name, a qualified name, or a
subscripted qualified name (see "Naming" in
this chapter).

DATA AGGREGATES

In PL/I, variable data items may be
grouped into arrays or structures. Rules
for this grouping are given below. (For
the method of referring to an array or
structure or a particular item of an array
or structure, see "Naming"” in this
chapter.)

Arrays
An array is an n-dimensional, ordered

collection of elements, all of which have
identical data declaration. (If arithmet-
ic, all of the elements of the array must
have the same base, scale, mode, and preci-
sion or the same picture. If character-
string or bit-string, all of the elements
must have the same actual length, if fixed
length, or the same maximum length, if
varying length.) The number of dimensions
of an array, and the upper and lower bounds
of each dimension, are specified by the use
of the dimension attribute.

Example:
DECLARE A(3,4);

This statement defines A as an array
with 2 dimensions: 3 rows and U4 columns.
The matrix given below illustrates the
array A.

A(1,1) A(1,2) A(1,3) A,
A(2,1) A(2,2) A(2,3) A(2,W)
A(3,1) A(3,2) A(3,3) A@3,4)
The elements of an array may be

structures (see "Arrays of Structures").

A

Structures

A structure is a hierarchical collection
of scalar variables, arrays, and struc-
tures. These need not be of the same data
type nor have the same attributes.

Structures may contain structures. The
outermost structure is the major structure,
and contained structures are minor struc-
tures. A major structure must be at level
one. Contained structures must always have
a level number numerically greater than the
structure in which they are contained.
Identifiers preceded by level numbers but

having no components are not considered to
be structures. The 1level number may be
followed by one or more blanks.

(Additional information on structures can
be found in the section "Structure Declara-
tions and Attributes" in Chapter 4.)

Examples:

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3
REGULAR, 3 OVERTIME, 2 RATE;

takes the form:

1 PAYROLL

2NAME

2HOURS
3REGULAR
30VERTIME

2RATE

In the above example PAYROLL is defined
as the major structure containing the sca-
lar variables NAME and RATE and the struc-
ture HOURS. The structure HOURS contains
the scalar variables REGULAR and OVERTIME.

2. DECLARE 1 A, 2 B, 2 C,
F;

3D (2), 3 E, 2

This takes the form:

A
B
c
D(1)
D(2)
E
F

The decimal integers before the iden-
tifiers specify the levels; the decimal
integer in parentheses specifies the bounds
of the one-dimensional array. A is defined
as the major structure and contains the
minor structure C and the scalar variables
B and F. C contains D, a one-dimensional
array with two scalar variables, and the
scalar variable E.

3. DECLARE 1 A, 3 B, 2 C;

This takes the form:

A
B
C
Note that B and C are at the same
level although their level numbers
differ.
Arrays of Structures
An array_ _of structures is formed by
giving the dimension attribute to a struc-

ture.

Examples:

1. DECLARE 1 CARDIN(3), 2 NAME, 2 WAGES,

3 NORMAL, 3 OVERTIME;

The decimal integers before the iden-
tifiers specify the level. The name,
CARDIN, represents an array of struc-

tures. Because CARDIN has a dimension
specified, NAME, NORMAL, and OVERTIME
are arrays, and their elements are
referred to by subscripted names.

The form of the data is as follows:

CARDIN (1) NAME (1)
WAGES (1) NORMAL (1)
OVERTIME (1)

CARDIN (2) NAME (2)
WAGES (2) NORMAL (2)
OVERTIME (2)

CARDIN (3) NAME (3)
WAGES (3) NORMAL (3)

OVERTIME (3)

2. DECLARE 1 X, 2Y%Y,
30, 2R;

2z (2, 3P (2,2),

X is an undimensioned major structure
containing scalar variables, arrays,
and a structure.

is a scalar variable

is an array of structures

is a three-dimensional array

is a one-dimensional array

is a scalar variable

IO TN

Chapter 2: Data Elements 23

The form of the data is as follows:

- i
P (1,1,
P (1,1,2)
Z (L] P (1,2,1)
P (1,2,2)
o (1)
. L
P (2,1,1)
P (2,1,2)
Z (2| P (2,2,1)
P (2,2,2)
L0 (2)
R
NAMING
This section describes the rules for

referring to a particular data item, groups
of items, arrays, and structures. The
permitted types of data names are simple,

gqualified, subscripted, and subscripted
gualified.
SIMPLE NAMES

A simple name 1is an identifier (see

"Identifiers," in Chapter 1) that refers to
a scalar, an array, or a structure.

SUBSCRIPTED NAMES

A subscripted name is used to refer to
an element of an array. It is a simple
name that has been declared to be the name
of an array followed by a 1list of sub-
scripts. The subscripts are separated by
commas and are enclosed in parentheses. A
subscript is an expression that is evaluat-
ed and converted to an integer before use
(see "Evaluation of Expressions," in Chap-
ter 3). The number of subscripts must be
equal to the number of dimensions of the
array, and the value of a specified sub-
script must fall within the bounds declared
for that dimension of the array.

A subscripted name takes the form:

identifier
s

(subscript [, subscriptl

Examples:

A (3)

FIELD (B,C)

PRODUCT (SCOPE #* UNIT + VALUE, PERIOD)
ALPHA (1,2,3,4)

24

Cross_Sections of Arrays

The concept of cross sections is a
logical extension of the subscripting nota-
tion. A cross section of an array is
referred +to by the array name, followed by
a list of subscripts, at least one of which
is an asterisk. The subscripts are sepa-
rated by commas, and the entire list is
enclosed in parentheses. The number of
items in the 1list must be equal to the
number of dimensions of the array. If the
array 1is of dimensionality n, then an
asterisk may appear in k < n positions. If
the jth list position is occupied by an
asterisk, the «cross section of the array
includes elements covered by varying the
jth subscript between its bounds. The
dimensionality of the cross section is
equal to the number of asterisks, k, in the
subscript list. If all subscript positions
are occupied by asterisks, then this ref-
erence to the cross section 1is equivalent
to a reference to the entire array.

A cross section may be used anywhere
that the name of an array of dimensionality
k is required. Subsequent references to
the word ™"array" in this document should
therefore be taken to include cross sec-
tions of arrays.

Examples:

1. A (3,%)
array A.

denotes the third row of the

2. B (¥, ¥, 2) is a two-dimensional cross
section and denotes the second plane
of the array B.

3. If MATRIX is the array:

1 2 3

4 5 6

7 8 9

MATRIX (*, 2) is the vector:
2
5
8

QUALIFIED NAMES

A simple name usually refers uniquely to
a scalar variable, an array, or a struc-
ture. However, it is possible for a name
to refer to more than one variable, array,
or structure if the identically named items
are themselves parts of different struc-
tures. In order to avoid any ambiguity in
referring to these similarly named items,
it 1is necessary to create a unique name;
this is done by forming a gqualified name.
This means that the name common to more
than one item is preceded by the name of

the structure in which it is contained.
This, in turn, can be preceded by the name
of its containing structure, and so on,
until the qualified name refers uniquely to
the required item. The section "Multiple
Declarations and Ambiguous References" in
Chapter 4, contains further information on
this subject.

Thus, the gualified name is a sequence
of names specified left to right in order
of increasing level numbers; the names are
separated by periods, and blanks may be
placed as desired around the periods. The
sequence of names need not include all of
the containing structures, but it must
include sufficient names to resolve any
ambiguity.

The qualified
itself a name.

name, once composed, is
Subsequently, in this pub-

lication, when the terms scalar variable
name, array name, or sStructure name are
used they should also be taken to include

gualified names.
A qualified name takes the form:
identifier {. identifier?} ...
Examples:
1. A program may contain the structures:
DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRIP-
TION, 2 PRICE;

DECLARE 1 CARDOUT, 2
CRIPTION, 2 PRICE;

PARTNO, 2 DES-

Elements are then referred to as:
CARDIN. PARTNO
CARDOUT.PARTNO
CARDIN.PRICE

2. A program may contain the structure:

DECLARE 1 MARRIAGE, 2 MAN, 3 NAME, 3
DATE, 2 WOMAN, 3 NAME, 3 DATE;

Elements are then referred to as:

MAN. NAME
or MARRIAGE.MAN.NAME

WOMAN. NAME
or MARRIAGE.WOMAN.NAME

3. If the same program also contains the
structure:

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME,
3 DATE, 2 ADDRESS;

Elements are then referred to as:

MAN.NAME
or MARRIAGE.MAN.NAME

MARRIAGE.WOMAN. NAME

BIRTH.NAME
or BIRTH.WOMAN.NAME

ADDRESS

and the minor

as:

structures referred to

MARRIAGE . WOMAN

BIRTH . WOMAN

SUBSCRIPTED QUALIFIED NAMES

The elements of an array contained in a
structure and requiring name qualification
for identification are referred to by sub-
scripted qualified names. A subscripted
qualified name is a sequence of names and
subscripted names separated by periods.
The order of names is as given for any
qualified name. The subscript list follow-
ing each name refers to the dimensions
associated with the name if the name is
declared to be the name of an array in the
structure description.

As long as the order of the subscripts
remains unchanged, subscripts may be moved
to the right or left and attached to names
at a 1lower or higher level, respectively.
Unless all of the subscripts are moved to
the lowest or highest level, the qualified
name is said to have interleaved sub-
scripts.

Provided that sufficient structure names
are used to make the name wunique, as
described for qualified names, and that the
total number of subscripts is the same as
the total dimensionality of the array,

unsubscripted structure names may be omit-
ted in references. Ambiguity of names,
however, cannot be resolved by subscript-

ing. A subscripted qualified name takes
the general form:

identifier [(subscript [, subscriptl
eee)]
{. identifier [(subscript [, sub-
scriptl...)] }...

If any subscripts are given in a ref-
erence to a qualified name, all those
subscripts which apply to dimensions of
containing structures must be given.

A subscripted qualified name must have
at least one subscript.

Example 1:

A is an array of structures with the

following description:

Chapter 2: Data Elements 25

DECLARE 1 A (10,12), 2 B (5), 3 Cc (7),
3 D;

The following subscripted qualified
names refer to the same element, which is
the seventh element of C contained in the
fifth element of B contained in tenth row
and twelfth column of A:

(1)
(2) a
(3) A
() A
(5) A
(6) A .
A
A
A
A

>

(10,12) . B (5) .
(10) . B (12,5) .
(10) . B (12) .

. B (10,12,5) . c (7
. B (10,12) . cC (5,7
B (10) . ¢ (12,5,7
w Be € €10312:547)

(10,12) . B . C (5,7)
(10 . B . C (12,5,7)
(10,12,5,7) « B . <C

c N
c (7
c (5,7

7
(8)
(9)
(10)

If structure B, but not structure A, is
necessary for unique identification of this
use of C, any of forms (4), (5), (6), or
(7) may be used without including the A.

If structure A, but not B, is necessary
for identification of ¢, forms (7), (8),
(9), or (10) may be used without including
the B..

Except for forms (7) and (10), all of
the qualified names in the above example
have interleaved subscripts.

Example 2:
If FIELD is the array of structures:

DECLARE 1 FIELD(3),
2 STATUS,
2 VALUE;

then FIELD(*).STATUS is the vector:

FIELD(1) .STATUS
FIELD(2).STATUS
FIELD(3).STATUS

DATA_ TYPES

The types of data allowed by PL/I can be
categorized as
control_ data.

PROBLEM DATA

that can be
arithmetic or type

Problem data is any data
classified as type
string.

26

Arithmetic Data

An arithmetic data item is one that has
a numeric value with characteristics of
base, scale, mode, and precision. The data
item may be represented either as a numeric
field or in a coded form, that is, in an
internal representation that is implementa-
tion dependent. A numeric field is a
string of characters that is given a numer-
ic interpretation by means of the PICTURE
attribute (see Chapter 4). The base,
scale, and precision are all specified in
the picture of the numeric field. A data
item in coded_ form does not have a PICTURE
attribute, but has its characteristics
given by the attributes specifying base,
scale, mode, and precision.

Base (decimal or binary), scale
(fixed-point or floating-point), and
precision have reference to internal rep-

resentation of the data described and to
the internal arithmetic that is to be used.

BASE: Arithmetic data may be specified as
having either decimal or binary base.
SCALE: Arithmetic data may be specified as
having either fixed-point or floating-point
scale. Fixed-point data items are rational
numbers for which the number of decimal or
binary digits is specified; the position of
the decimal or binary point may also be
specified by a scale factor. Floating-
point data items are rational numbers in
the form of a fractional part and an
exponent part.

MODE: Arithmetic data may be
in either the real or complex mode. In the
complex mode, a data item is considered to
consist of a number pair, the first member

of the pair representing the real part of

operated on

the complex number and the second, the
imaginary part.
PRECISION: The precision of fixed-point

data (w,d) is specified by giving the total
number of binary or decimal digits, w, to
be maintained and a scale factor, d. The
precision of floating-point data is
specified by giving the effective number,
w, of binary or decimal digits to be
maintained in the fractional part (for an
implementation, the actual number of digits
maintained internally may be greater than
w). Note that w must be greater than zero.

Real Arithmetic Constants

A real arithmetic constant is either

binary or decimal.

DECIMAL FIXED-POINT CONSTANTS: A decimal
fixed-point constant is represented by one
or more decimal digits with an optional

e

decimal point.
specified,

If a decimal point is not
the constant is a decimal_ inte-

Examples:

12192
.308
255.
158

BINARY FIXED-POINT CONSTANTS: A binary

followed by the letter B. The exponent is
a string of decimal digits specifying an
integral power of two.

Examples:

1.1011E3B
-11011E-27B

PRECISION OF_ REAL ARITHMETIC CONSTANTS:

fixed-point constant is represented by one
or more binary digits with an optional
binary point followed by the letter B.

Examples:

11011B
11.1101B
.001B

STERLING FIXED-POINT CONSTANTS: Sterling
quantities may be specified and will be
interpreted as decimal fixed-point pence.
A sterling fixed-point constant consists of
the following concatenated fields:

a pounds field that is a decimal
integer

a decimal point

a shillings field that is a decimal

integer less than 20
a decimal point

a pence field that 3is one or more
decimal digits with an optional
decimal point (the integral part
must be less than 12.)

an L

Examples:

101.13.8L

1.10.0L

0.0.2,5L

DECIMAL FLOATING-POINT CONSTANTS: A deci-
mal floating-point constant is represented
by one or more decimal digits with an

optional decimal point, followed by the
letter E, followed by an optionally signed
exponent. The exponent is a string of
decimal digits specifying an integral power
of ten.

Examples:

12.E23
317.5E-16
0.1E+3
<U2E+73
32E-5

BINARY FLOATING-POINT CONSTANTS: A binary
floating-point constant is represented by
one oOr more binary digits with an optional
binary point, followed by the 1letter E,

| followed by an optionally signed exponent,

Forr purposes of expression evaluation, an
apparent precision 1is defined for real
arithmetic constants.

Real fixed-point constants have an
apparent precision (w,d) where w is the
total number of digits in the constant and
d is the number of digits specified to the
right of the decimal point.

The precision of a sterling-constant is
equivalent to the precision of its corres-

ponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add

the product of 12 and the value of the
shillings field; add the value of the pence
field. The precision of the result (with
leading 2zeros removed) is the precision of
the corresponding sterling constant.

The precision of a floating-point con-
stant 1is (p) where p 1is the number of
digits of the constant left of the E.

Examples:

3.14 has precision (3,2)
0.012E5 has precision (4)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

Imaginary Arithmetic Constants

An imaginary constant represents a com-
plex value of which the real part is zero
and the imaginary part is the value speci-
fied.

It is represented by a real arithmetic
constant, other than a sterling constant,
folXlowed by the letter I. PL/I does not
define complex constants with non-zero real
parts, but provides the facility to specify
such data through an expression, e.g.,
10.1+9.21I.

Examples:
271
3.968E10TI

Chapter 2: Data Elements 27

Arithmetic Variables

Arithmetic variables are names of arith-
metic data items. These names have been
given the characteristics (i.e.,
attributes) of base, scale, mode, and pre-
cision (see Chapter u4).

String_ Data

String data can be classified as
character-string or bit-string. The length
of a string data item is equivalent to the
number of characters (for a charac-
ter-string) or the number of binary digits
(for a bit-string) in the item. A string
data item of length zero is known as the

Character-sString Data

Character-string data consists of a
string of zero or more characters in the
data character set (see "Data Character
Set," in Chapter 1). The string may be
fixed or varying in length. The actual
number of characters must be specified if
it is of fixed 1length, and the maximum
length must be specified if it is of
varying length.

CHARACTER-STRING CONSTANTS: A
string

character-
constant is zero or more characters
in the data character set enclosed in
gquotation marks. If it 1is desired to
represent a quotation mark, it must appear
as two immediately adjacent quotation
marks. The constant may optionally be
preceded by a decimal-integer constant in
parentheses to specify repetition. If the
constant specifying repetition is zero, the
result is the null string.

In a string replication factor, blanks
may optionally surround the decimal integer
constant, or they may separate the right
parentheses and leading quote.

A character string constant may contain
a string of characters which syntactically
constitute a comment ; however, these
characters are treated as part of the
string value rather than as a comment.

Examples:
'S 123.45"
* JOHN JONES’
L] ITI L] s-l
(3)*TOM"

The latter is exactly equivalent to

* TOMTOMTOM"

28

Bit-String Data

Bit-string data consists of a string of
zero or more binary digits (0 and 1). The
string may be fixed or varying in length.
The actual length of the field must be
specified if it is of fixed length, and the
maximum length must be specified if it is
of varying length.

BIT-STRING CONSTANTS: A Dbit-string con-

stant is zero or more binary digits
enclosed in quotation marks, followed by
the letter B. The constant may optionally
be preceded by a decimal-integer constant
in parentheses, to specify repetition. If
the constant specifying repetition is zero,
the result is the null string.

Examples:

‘0100'B
(10)'1'B

The latter is exactly equivalent to
©1111111111°'B
String Variables
String variables are
data items. These names

the characteristics of
Chapter u4).

names of string
have been given
string data (see

PROGRAM~CONTROL DATA

Program-control data is any data that
can be classified as type 1label, task,
event, pointer, area, or cell.

Label Data

Statement-label data is wused only in
connection with statement labels. State-
ment label data may be constants or varia-
bles, and the variables may be elements of
structures or arrays.

Statement-Label Constants

A statement-label constant is an
tifier that appears in the program as a
statement label. It permits references to
be made to statements.

iden-

e,

Example:

ROUTINEl1: IF X > 5 THEN GO TO EXIT;

GO TO ROUTINEL;

EXIT: RETURN;

ROUTINE1 is a statement-label constant.
EXIT is also a statement-label.

Statement-Label Variables

A statement-label variable is a variable
that has as values statement-label con-
stants. These variables can be grouped
into arrays or structures.

Example:

DECLARE X LABEL;
X = POSROUTINE;

POSROUTINE: -
X = NEGROUTINE;
GO TO X;
NEGROUTINE: .

The label variable X may have the value
of either POSROUTINE or NEGROUTINE, both
labels in the procedure. In the above
example, GO TO X transfers control to

NEGROUTINE.

A statement-label constant or a scalar
label variable is called a statement-label
designator.

A task variable is the name of a task
(see "Asynchronous Operations and Tasks" in
Chapter 6, and "The TASK Attribute" in
Chapter 4). A task variable may be an
element of an array or of a structure. The
priority associated with a task variable
may be assigned in the CALL statement, or
in an assignment statement via the PRIORITY
pseudo-variable (see Chapter 8).

Event Data

An event wvariable is +the name of an

event (see T"Asynchronous Operations and
Tasks"™ in Chapter 6, and "The EVENT
Attribute" in Chapter 4). An event varia-

ble may be an element of an array or of a
structure.

An event variable has an
completion status.
by *0'B. for

associated
This status is denoted
"not completed" and '1'B for
"completed."” If the event variable has
been associated with a given task via the
use of the EVENT option in a CALL statement
(see Chapter 8), the completion status of
the event variable will reflect the comple-
tion status of the task itself. The com-
pletion status of an event variable may
also be set explicitly by the execution of
an assignment statement using the EVENT
pseudo-variable (see Chapter 8).

Pointer Data

A pointer variable is the name of a
pointer (see "The CONTROLLED Attribute" and
"The POINTER Attribute" in Chapter 4, and
"The Pointer Qualifier" in this chapter).
It is used only in connection with 1list
processing and RECORD transmission. A
pointer variable may be an element of a
structure or of an arraye.

Pointer Qualification
Pointer qualification is used to iden-

tify a generation of a based variable.
This generation may also be identified by

the pointer variable declared with the
based variable (see "The CONTROLLED
Attribute" in Chapter 4 and "The ALLOCATE

Statement" in Chapter 8).
Format:
{scalar-pointer-variable|ADDR (variable) }->
[{scalar-pointer-variable]|
ADDR(variable) }->]...based-variable

Note: See the ADDR built-in function for a
discussion of ADDR.

General rules:

1. Pointer qualification is used to
replace the pointer which was declared
with the based variable.

2. More than one pointer qualifier may be
specified in a reference. In this
case, they are read left to right and
define a chain of pointers qualifying
the reference.

Chapter 2: Data Elements 29

Examples:
P -> VALUE
P -> G -> VALUE

An area data item is the name of an area
of storage. Such an area may be used for
collecting and referring to based data
items (see "The ALLOCATE Statement" in
Chapter 8).

A cell is a wunit of storage that may
contain any number of alternative declara-
tions. However, only one declaration can
be active at any one time.

Cells are organized in the same way that
structures are organized; the name of the
cell must be at a higher level than its
alternatives. For example, the following
statement specifies that the storage allo-

30

cated for the cell named ALPHA may contain
either of the two alternatives, ALT1 (a bit
string) or ALT2 (a structure), but not both
at the same time.

DECLARE 1 ALPHA CELL,
2 ALT1 BIT (60),
2 ALT2,
3 BETA FLOAT,
3 GAMMA FIXED;

A cell provides storage equivalence and
not data equivalence. In other words,
since only one alternative can be active at
one time, the value of that alternative
cannot be retrieved by a reference to
another alternative. The assignment of a
value to an alternative deactivates the
previously active alternative and in effect
strips it of its value.

Thus, the wvalue of an alternative can
only be retrieved by a reference to that
alternative. The cell name may be used to

qualify the reference but a reference to
the cell name alone will retrieve no value.

See "The CELL Attribute" in Chapter 4
for rules regarding cell usage.

EXPRESSIONS

An expression is an algorithm used for
computing a value. Expressions are of the
three types: scalar, array, and structure,
depending upon the types of the operands
involved. The type of the result is also
the same as that of the operands. An array
(or structure) expression is simply an
array (or structure) evaluated by expansion
of the expression into a collection of
scalar expressions (see "Array Expressions"

and "Structure Expressions"). Syntactical-
ly, a scalar expression consists of a
constant, a scalar variable, a function

reference, a scalar expression enclosed in
parentheses, a scalar expression preceded
by a prefix operator, or two scalar expres-
sions connected by an infix operator.
Operands in a scalar expression need not
have the same data attributes. If they
differ, conversion will be performed before
the operation.

SCALAR EXPRESSIONS

A scalar expression returns a scalar
value. The type of the value is the type
of the expression. The type of the expres-
sion is dependent upon the class of opera-
tors -- arithmetic, comparison, bit string,
and concatenation (see "Operators").
Statement label designators, area varia-
bles, task variables, and event variables
are not allowed in scalar expressions
except as function arguments. Only the
comparison operators = and = may appear
with pointer data.

If A and B are expressions, then the
operators + and - used in expressions of
the form +A or -A, are called prefix
operators. When these operators are used

in expressions of the form A+B or A-B they
are called infix operators.

Arithmetic Operations

An arithmetic expression of any complex-
ity is composed of a set of elementary
arithmetic operations.
has

An elementary arithmetic operation

the following general format:

CHAPTER 3: DATA MANIPULATION

{{+|-} operand} | {operand
{+] - | * | / | **} operand}

The general format specifies the prefix
operations of plus and minus and the infix
operations -of addition, subtraction, multi-
plication, division, and exponentiation.
Operations are performed only with coded
arithmetic data. If necessary, the data
will be converted to coded arithmetic type

before the operation is performed.

Mixed Characteristics

The two operands of an arithmetic opera-
tion may differ in form, base, scale, mode,
and precision. When they differ, conver-
sion takes place according to the following
rules:

FORM: Numeric field operands of arithmetic
operations will be converted to coded form.
The result of an arithmetic operation is
always in coded form.

BASE: If bases differ, the decimal operand
is converted to binary.

SCALE: If the scales of the operands
differ, the fixed-point operand will be
converted to floating-point, except in the
case of exponentiation in which the first
operand is floating-point and the second is
fixed-point with precision (p,0). In the

latter case, the second operand is not
converted.
MODE: If the modes differ, the real oper-

and is converted to complex mode (by
acquiring an imaginary part of zero with
the same base, scale, and precision as the
real part). However, when the operation is
exponentiation and the second operand is
fixed-point with precision (p,0), then the
second operand is not converted.

PRECISION: If precisions differ, no
version is done.

con-

Results of Arithmetic Operations

After the conversions specified above
have taken place, the arithmetic operation
is performed. Any necessary truncations
will be made towards =zero, regardless of
the base or scale of the operands.

The base, scale, mode,
the result depend on the operands
operator in the following ways:

and precision of
and the

Chapter 3: Data Manipulation 31

32

Prefix operations: The prefix opera-
tions of plus and minus yield a result
having the base, scale, mode, and
precision of the operand.

Floating-point:
an infix operation are
the result is floating-point, and the
base and mode of the result are the
common base and mode of the operands.
The precision of the result is the
greater of the precisions of the two
operands.

If +the operands of
floating-point

Fixed-point:
an infix operation is
the operation is not exponentiation,
the result is fixed, and the base and
mode of the result are the common base
and mode of the operands. If the
operation is exponentiation, the sec-
ond operand is converted to floating
point if its scale factor is not zero;
and the first operand is converted to
floating-point unless the second oper-
and 1is an unsigned integer constant
meeting the conditions of item 4
below; in these cases, the rules for
floating-point apply.

If the first operand of
fixed, and if

The precision of a fixed-point
result depends on the operation and
the precisions of the operands,
according to rules given below. The
following symbols are used:

N the 1length of the largest number
in the implementation

m the total number of positions in
the result

the scale factor of the result

the total number of positions in
operand one

the scale factor of operand one

the total number of positions in
operand two

the scale factor of operand two

value of operand two, if it is an
unsigned integer constant

HQa T3

L I0)]

a. Addition and subtraction:

m
n

min (N, max (p-q,r-s) +max(qg,s) +1)
max (g, s)

b. Multiplication:

m
n

min (N, p+r+1)
q+s

c. Division:

N
N-p+g-s

m
n

d. Exponentiation: if the second
operand is an unsigned non-zero

Note:

real fixed-point constant of pre-
cision (r,0),

m = (p+l) *y - 1
n= g *y
If m>N, however, oOr y is not an

unsigned non-zero real fixed-point

constant of precision (r,0), the
first operand is converted to
floating-point and rules for
floating-point

exponentiation
apply. :

e. The above rules hold for both real
and complex mode.

Some special cases of exponentiation

are defined as follows:

1.

Real Mode, x4**x,:

a. If x;=0 and x,>0, the result is 0.

b. If x4=0 and x,<0, the ERROR condi-
tion is raised.

c. If x,#0 and x,=0, the result is 1.

d. If x4<0 and x, is not
with precision (p,0),
condition is raised.

fixed-point
the ERROR

Complex Mode, z,**z,

a. If z,=0 and z, has its real part
>0 and its imaginary part equal to
0, the result is 0.

b. If z,=0 and the real part of z, is
not greater than 0 or the imag-
inary part of z, is not equal to
0, the ERROR condition is raised.

Arithmetic Conversions

1.

Arithmetic Mode Conversion

If a complex value is converted to
a real value, the result is the real
part of the complex value.

If a real value is converted to a
complex value, the result is a complex
value that has the real value as the
real part and zero as the imaginary
part.

Integer conversion

If conversion to integer is speci-
fied, as in the evaluation of sub-
script expressions, the conversion
will be to fixed-point binary (x,0).
Here x is the total number of posi-
tions in the field and depends upon
the implementation. The scale factor

Table 1.

Arithmetic Base and Scale Conversion

Before Conversion

r T
After | Binary Fixed | Decimal T Binary i Decimal]
l (pe Q) | Fixed(p,q) | Float(p) | Float(p)

r A T % ‘TL + {
Binary	(.	(MIN(CEIL(p*3.32)	1	
Fixed		+1,N) ,CEIL(ABS(q)		
		*3.32)*SIGN(q))]	
% + ol us 4 4
B T T T |

| Decimal| (CEIL(p/3.32)+1, | (peq) | |]
| Fixed | CEIL(ABS(q)/3.32)] | |]
| | *¥SIGN (q)) | | |]
F t + t ‘g {
| Binary | (p) | (MIN(CEIL | (p) | (MIN(CEIL]
| Float | | (p*3.32),N)) | | (p*3.32),N)) |
pomm—mm—t et . ¥ 4
| Decimal| (CEIL(p/3.32)) | (p) | (CEIL(p/3.32)) | (p)]
| Float | I | | |
L ' K 1 L 3

is zero. Truncation, if necessary, The result is of varying length if either

will be toward zero.
3. Arithmetic Base and Scale Conversion

Table 1 defines the precision
resulting from base and scale conver-
sion. CEIL refers to the ceiling of
the expression. (The "ceiling" of a
number is the smallest integer equal
to or greater than the number.)

Conversion from floating-point scale to
fixed-point scale will occur only when a
destination precision is known, as in an
assignment to a fixed-point variable. If
the destination precision is incapable of
holding the floating point value, trunca-
tion on both left and right will occur, and
the SIZE error condition will be raised
(unless disabled) if significant order
digits are lost.

Bit-String Operations

Bit-string operations have the following
general forms:

1 operand
operand § operand
operand | operand

The prefix operation "not" and the infix

operations "and" and "or" are specified
above. The operands will be converted to
bit-string type before the operation is
performed. The result will be of bit-
string type. If the operands are of
different 1lengths after conversion, the

shorter is extended on the right with zeros
to the length of the longer. The length of
the result will be of this extended length.

operand 1is of wvarying length or is a
reference to the SUBSTR built-in function.
Otherwise, the result is of fixed length.

The operations are performed on a bit-
by-bit basis. As a result of the
operations, each bit position has the value
defined in the following table:

L} T i) 1 m T 1
	I	I A	A		
		not	not	and	or
A	B	A	B	.B	B
o e = it					
1+ 1 11 0	0	12	1]		
L A X 1 i i] 4					
r 1 T T T T 1					
	o o	1	o	1	
-+ o } -1					
o	12	12	o	o	1
L 1 1 o il it i 1 4					
LB ¥] 1 I I L]					
o	o} 2] 1} 0o	O			
L L 4 L 4 L J

Examples:

If field A is '010111'B, field B is

*111111'B, and field C is '101'B, then

A yields '101000'B

.
C & B yields '101000'B

A | ; C yields '010111'B
1 (C[+1B) yields '101111°'B

For a discussion of how these expres-
sions are evaluated, see "Evaluation of
Expressions, " in this chapter.

Comparison Operations

Comparison operations have the general

form:

Chapter 3: Data Manipulation 33

operand {<|1<|<=|=|1=|>=|>|1>} operand

There are three types of comparisons:

1. Algebraic, which involves the compari-
son of signed numeric values in coded
arithmetic form. Conversion of numer-
ic fields will be performed.

involves left-to-

2. cCharacter, which

right, pair-by-pair comparisons of
characters according to a collating
sequence. If the operands are of
different 1length, the shorter is

extended to the right with blanks.

3. Bit, which involves the left-to-right
comparison of binary digits. If the
strings are of different lengths, the
shorter is extended on the right with
Zeros.

The result of a comparison is a bit
string of length one; the value is '1'B if
the relationship is true or "0'B if it is
false.

If the operands of a comparison are of
different types, the operand of the lower
type is converted to the operand of the
higher type. The priority of types is (1)
arithmetic (highest), (2) character string,
(3) bit string.

As a result of the conversion, both
operands will then be arithmetic or charac-
ter string, and algebraic or character
comparison will be performed.

Only the operations = and = are defined
when either operand is complex.

Only the operators = and ;= may be used
with pointer variables. In this case, each
operand must be either a pointer variable
or a function that defines a pointer value.

Concatenation Operations

Concatenation operations have the fol-

lowing general form:
operand | | operand

If both operands are of bit-string type,
no conversion is performed, and the result
is of bit type. In all other cases, the
operands are converted where necessary to
character-string type before the concatena-
tion is performed, and the result is of

character type. The length of the result
is the sum of the 1lengths of the two
operands.

34

Examples:

If A is
'XY,Z' and D is

‘010111'B, B is *101'B, C is
‘AA/BB', then

'010111101*B
010111010111101"B
'XY, ZAA/BB"
‘AA/BBXY, 2"

Al |B yields
A||A{|B yields
C||D yields
D{|C yields

Type Conversion

Bit String to Character String

The bit 1 becomes the character 1, and
the bit 0, the character 0. The length is
unchanged. The null bit string becomes the
null character string.

Character String to Bit String

The characters 1 and 0 become the bits 1

and 0. The conversion is illegal if the
character string contains characters other
than 0 and 1. The null character string

becomes the null bit string.

Character String to Arithmetic

The string for conversion must contain
one of the following:

1. [+]-]1 arithmetic-constant

2. [+]-] real constant {+|-} imaginary-
constant

The optionally signed constant or

complex expression may be surrounded by an

arbitrary number of blanks.

The arithmetic value of the constant is
converted to the Dbase, scale, mode, and
precision that a REAL FIXED DECIMAL value
of default precision would have been con-
verted to if this had appeared in place of
the character string value. A null string
gives the value zero.

Bit String to Arithmetic

The bit string is interpreted as an
unsigned binary integer, and converted to
fixed-point binary, precision (S,0), where
S depends upon the implementation. The
null string is converted to the value zero.

Arithmetic to Character String

The arithmetic value is converted to a
character string according to the rules of

list-directed output specified
7. See Appendix 1 also.

in Chapter

Arithmetic to Bit String

The arithmetic value is converted to
real then to fixed-point binary, precision
(ps0), where p is related to the precision
before conversion as follows (with ceilings
of expressions used):

BINARY FIXED (r,s) p
BINARY FLOAT (r) p
DECIMAL FIXED (r,s) p

min(N,max(xr-s,0))

min(N, r)

min(N,max(CEIL
((r-s)*3.32),0))

P = min(N,CEIL(r#*3.32))

DECIMAL FLOAT (r)

The resulting binary fixed-point value
is interpreted as a bit string of length p.

The result of a conversion to fixed-

point binary with precision (0,0) is
implementation-defined.
ARRAY EXPRESSIONS

An array expression is an expression

consisting of array operands in possible
combination with scalars and/or structures.
Note that if a structure appears in an
array expression, the array operands must
be arrays of structures.

An array expression returns an array
result. That is, all operations performed
on arrays are performed on an element-by-
element Dbasis. Therefore, all arrays
referred to in an array expression must be
of identical bounds.

Note: Array expressions are not always
expressions of conventional matrix algebra.

The appearance of a function reference
(other than a built-in function) will imply
a scalar result. For example, if A is an
array, CALC(A) may be a scalar function
with an array argument.

The built-in functions 1listed under
"Arithmetic Generic Functions,"™ "Float
Arithmetic Generic Functions," and "String

Generic Functions," in Appendix 1 may part-
icipate in array expressions with array
results. An array may be substituted for
any of the arguments of these functions
except those arguments which are required
to ‘be integer constants, or those which
must be converted to integers.

Prefix Operators and Arrays

The result of the operation of a prefix
operator or a built-in function upon. an
array is an array of identical bounds, each
element of which is the result of the
operation having been performed upon each
of the corresponding elements of the origi-
nal array.

Example:
If A is the array 5 3 -9
1 -2 7
6 3 -4
then -A is the array ~5 =3 9
-1 2 =7
-6 -3 i

Infix Operators and Arrays

Scalar - Array Operations

The result of an operation in which a
scalar and an array are connected by an
infix operator is an array of bounds ident-
ical to the original, each element of which
is the result of the operation performed

upen the scalar and wupon each of the
corresponding elements of the original
array.
Example:
If A is the array 5 10 8
12 11 3

then 3*A is the array 15 30 24
36 33 9

Array - Array Operations

The result of an operation in which two
arrays of identical bounds are connected by
an infix operator is an array of bounds

identical to the original arrays, each
element of which is the result of the
operation performed upon the corresponding

elements of the two original arrays by the
infix operator.

Example:

If A is the array

ERPWN
[coBEN e W —

and if B is the array

AWNBR
wrFEoou

Chapter 3: Data Manipulation 35

then A + B is the array 3 9

10 14

4 11

10 11

A*B is the array 2 20
21 u8

3 .28

24 24

and MAX (A+B,A*B) is the array

3 20
21 u8
4 28
24 24

Array Expressions Involving Structures

If an array expression contains struc-
ture operands, then all array operands in
the expression must be arrays of structures
and all involved structures must have the
same structuring.

Example:

In the following declaration, A is an
array of structures and C is a structure.

DECLARE 1A(10),2B,2D,

1C,2H,21;
Then the expression A+C is a valid
expression that will result in the struc-

ture C being added to each structure in the
array A. The above expression is equival-
ent to the following:

A(1).B + C.H
A(1).D + C.I
A(2).B + C.H

-

A(10).D + C.I

STRUCTURE EXPRESSIONS

The operands of a structure expression
are structures, or a combination of struc-
tures and scalars. A structure expression
returns a structure result. Array operands
are not allowed in structure expressions.

All operations performed on
are performed on an element-by-element
basis. Thus, all structures appearing in a
structure expression must have identical
structuring. This means that the structure
must have the same number of contained
scalars and arrays. The positioning of the
scalars and arrays within the structure
must be the same, and arrays similarly

structures

36

positioned must have identical dimensions
and bounds. The data types need not be the
same.

When an operation has one structure and
one scalar operand, it is interpreted as
many operations, one for each scalar ele-
ment in the structure. Each sub-operation
involves a structure element and the scalar
operand.

shorthand
an expression to each

A structure expression is a
method of applying
item of a structure.
Note: A scalar expression is a valid form
of a structure expression.

Example:

If there are two structures:

1A 1B
2 PART1 2 PART1
3 SUBPART1 3 SUBPART1
3 SUBPART2 3 ALPHA
3 SUBPART3 3 SUBPART2
2 PART2 2 PART2
3 SUBPARTU4 3 ALPHA
3 BETA 3 SUBPARTU

3 SUBPARTS5 (3) 3 SUBPART5 (3)

Then the expression A-2*B is shorthand for
the following expressions:

A . SUBPART1 - 2*%B . SUBPART1

A . SUBPART2 - 2%#B . PART1 . ALPHA
A . SUBPART3 - 2*B . SUBPART2

A . SUBPART4 - 2%B . PART2 . ALPHA
A . BETA - 2%¥B . SUBPARTY

A . SUBPARTS - 2%B . SUBPARTS

Note that the last expression is an
expression.

array

EVALUATION OF EXPRESSIONS

In the evaluation of an expression, the
priority of operations is as follows:

1« **, prefix +, prefix - highest
*, /

infix +, infix -

>=, >, 1>. 1=, <, 1<,, <=, =

&

|

I lowest

Operations within an expression are per-
formed in the order of decreasing priority.
For: example, 1in the expression A+B**3,
exponentiation 1is performed before addi-
tion. If an expression involves operations
of the same priority, the operations 4, **,

prefix +, and prefix - are performed from
right to left and all other operations are
performed from left to right.

If an expression is enclosed in paren-
theses, it is treated as a single operand.
The parenthesized expression is evaluated
before its associated operation is per-
formed. For example, in the expression
(A+B**3)/(C*D| |E), A will be added to B#*#*3,
C*¥D will be concatenated with E, and then

the first of these results will be divided
by the second.
Thus, parentheses modify the normal

rules of priority.

The operators + and * are commutative,
but not associative, as low-order rounding
errors will depend on the order of evalua-
tion of an expression. Thus, A+B+C is not
necessarily equal to A+(B+C).

The rules relating to abnormal functions
and abnormal data should be noted (see
"Abnormality and Irreducibility," in Chap-
ter 10).

ORDER OF THE EVALUATION OF EXPRESSIONS

The operands of an expression are not
accessed in a specific order. A program
must not depend on a specific order of

access for its successful operation.

Array expressions are evaluated by per-
forming, in turn, a complete scalar evalua-
tion of the expression for each position of
the array. The evaluations proceed in
row-major order (final subscript varying
most rapidly). The result of an evaluation
for an earlier position can alter the
values of scalar elements for the evalua-
tion of a later position (see Example 1,
for "The Assignment Statement," in Chapter
8).

Structure expressions are evaluated by
performing a complete scalar evaluation of
the expression for each eligible field, in
the order in which the fields in the
structures are declared. The results of an
evaluation for an earlier position can
alter the result for the evaluation of a
later position.

Chapter 3: Data Manipulation 37

CHAPTER 4: DATA DESCRIPTION

ATTRIBUTES

An identifier
gram may refer to one of many

appearing in a PL/I pro-
classes of

objects. It may, for example, represent a
variable referring to a complex number
expressed 1in fixed-point form with decimal

base; it may refer to a file; it may
represent a variable referring to a charac-
ter string; it may represent a statement
label or represent a variable referring to
a statement 1label; it may be a variable
referring to a pointer or area, etc.

Those properties that characterize the
object represented by the identifier, and
other properties of the identifier itself
(such as scope, storage class, etc.),
together make up the set of attributes
which can be associated with an identifier.

There are a number of classes of attri-
butes. These classes and the attributes in
each class are described further on in this
chapter.

When an identifier is used in a given
context in a program, attributes from cer-
tain of these attribute-classes must be
known in order to assign a unique meaning
to the identifier. For example, if an
identifier is used as a data variable, the
data type must be known; if the data type
is arithmetic, the base, scale, mode, and
precision must be known.

Examples of Attributes:

(50)--Association of this attri-
bute with an identifier defines the
identifier as representing a variable
referring to a string 50 characters in
length.

CHARACTER

FLOAT--Association of this attribute with
an identifier defines the identifier
as representing a variable referring
to arithmetic data, where the data is
represented internally in floating-
point form.

EXTERNAL--Association of this attribute
with an identifier defines the
identifier as a name with a certain
special scope.

38

DECLARATIONS

A given identifier is established as a
name, which holds throughout a certain
scope in the program (see "Scope of
Declarations" in this chapter), and a set
of attributes may be associated with the
identifier by means of a declaration.

If a declaration is internal to a cer-
tain block, then the declared identifier is
said to be declared in that block.

In a given program, an identifier may
represent more than one name. In this
case, each different name represented by
the identifier is said to be a different
use of the identifier. For example, an
identifier may represent an arithmetic
variable in one part of a program and an
entry mname in another part. These two
parts, of course, cannot overlap.

Each different use of the identifier is
established by a different declaration.
References to different uses are distingu-
ished by the rules of scope (see "Scope of
Declarations™).

Declarations may be contex-

tual, or implicit.

explicit,

EXPLICIT DECLARATIONS

Explicit declarations are made through
use of the DECLARE statement, label prefix-
es, and specification in a formal parameter
list; by this means, an identifier can be
established as a name and can be given a
certain set (possibly empty) of attributes.

Only one DECLARE statement can be used
to establish a given use of a given iden-
tifier. However, complementary sets of
explicit declarations are permitted:

a. One explicit declaration of an entry
name as a statement prefix may be
combined with an explicit declaration
in a DECLARE statement.

b. One or more explicit declarations in

parameter 1lists may be combined with
an explicit declaration in a DECLARE
statement.

All declarations of a complementary set
must be internal to the same block.

The DECLARE Statement

Function:

The DECLARE statement is a non-
executable statement used for the
specification of attributes of simple
names.

General Format:

DECLARE [levell name [attributel ...
[, [levell name [attribute] ...] ...:

Syntax rules:

1. Any number of
declared as
statement
commas.

identifiers may be
names in one DECLARE
and must be separated by

2. Attributes must follow the names to
which they refer. (Note that the
above format does not show factoring
of attributes, which is allowable as
explained later).

3. "Level" is a non-zero decimal
constant. If it is not specified,
level 1 is assumed. A blank space is
not required to separate a level num-
ber from the name following it.

integer

General Rules:

1. All of the attributes given explicitly
for a particular name must be declared
together in one DECLARE statement.

(Note that for FILE, certain attri-
butes may be specified in an OPEN
statement. See Chapter 7, "File Open-

ing and File Attributes.")

2. Attributes of EXTERNAL names, declared
in separate blocks and compilations,
must not conflict or supply explicit
information that was not explicit or
implicit in other declarations.

Example:

DECLARE JOE FLOAT, JIM FIXED (5,3),
JACK BIT (10);

JOE is declared to be a floating-point

scalar variable, JIM a five-position,
fixed-point scalar variable with three
places to the right of the decimal, and

JACK a scalar variable of ten bits.

Factoring of Attributes

name dec-
eliminate

Attributes common to several
larations can be factored to

repeated specification of the same attri-
bute for many identifiers. This factoring
is achieved by enclosing the name declara-
tions in parentheses, and following this by
the set of attributes which are to apply.
In the case of a factored level number, the
level number precedes the parenthesized
list of name declarations.

Examples:

1. DECLARE ((A FIXED, B FLOAT) STATIC,
C CONTROLLED) EXTERNAL;

This declaration is
following:

equivalent to the

DECLARE A FIXED STATIC EXTERNAL,
B FLOAT STATIC EXTERNAL,
C CONTROLLED EXTERNAL;

2. DECLARE 1A AUTOMATIC,2(B FIXED, C
FLOAT, D CHAR(10));

This declaration is
following:

equivalent +to the

DECLARE 1 A AUTOMATIC,
2 B FIXED,
2 C FLOAT,
2 D CHAR(10);

Multiple Declarations and Ambigquous
References

Two or more declarations of the same
identifier, internal to +the same block,
constitute a multiple declaration of that
identifier only if they have identical

qualification (including the case of two or
more declarations of an identifier at level
1, i.e., scalars or major structures).
Multiple declarations are in error.

Reference to a qualified name is always
taken to apply to the identifier (for which
the reference is wvalid) declared in the
innermost block containing the reference.
Within this block, the reference is unam-
biguous if either of the following is true:

1. The reference gives a valid qualifica-
tion for one and only one declaration
of the identifier.

2. The reference represents the complete
qualification of only one declaration
of the identifier. The reference is
then taken to apply to this identifi-
er.

Otherwise, the
in error.

reference is ambiguous and

Chapter 4: Data Description 39

Examples:

14 DECLARE 1A, 2C, 2D, 3E;
BEGIN;
DECLARE 1A, 2B, 3C, 3E;
A.C=D.E;
A.C refers to C in the inner block.
D.E refers to E in the outer block.

2. DECLARE 1A, 2B, 2B, 2C, 3D, 2D;

B has been multiply declared.

A.D refers to the second D, since A.D
is a complete qualification of only
the second D; the first D would
have to be referred to as A.C.D.

3. DECLARE 1A, 2B, 3C, 2D, 3C;
A.C is ambiguous because neither C is
completely qualified by this ref-
erence.

u. DECLARE 1A, 2A, 3A;
A refers to the first A.
A.A refers to the second A.
A.A.A refers to the third A.

5. DECLARE X; DECLARE 1Y, 2X, 3%, 33, 2Y,

32, 3A;
X refers to the first DECLARE
Y.Z is ambiguous
Y.Y.Z refers to the second 2
Y.X.Z refers to the first Z

Label Prefixes

A label acting as a prefix to a PROCE-
DURE or ENTRY statement explicitly declares
the identifier as ENTRY. If the PROCEDURE
or ENTRY statement applies to the outermost
procedure of a compilation, the attribute
EXTERNAL is given. If all other cases, the
attribute INTERNAL is given and the dec-
laration is said to Dbe internal to the
block containing the procedure.

A label acting as a prefix to any other
statement is an explicit declaration of the
identifier as a statement label constant.
The declaration is said to be internal to
the block containing the statement.

Parameters

The appearance of an identifier in a
parameter 1list of a PROCEDURE or ENTRY
Statement is an explicit declaration of the
identifier as a parameter.

40

CONTEXTUAL DECLARATIONS

The syntax of PL/I allows identifiers
appearing in certain contexts to be recog-
nized without an explicit declaration. The
various cases are described below.

1. An identifier may occur in a context
where only a file name may appear. In
some of these cases, the identifier is
said to be declared as a file name
(see "File Opening and File
Attributes" in Chapter 7).

Example:
GET FILE (INFILE) DATA;

Here, INFILE is declared contex-
tually with the attribute FILE.

2. An identifier may occur in a context
where only a task (or event) name (see
"The CALL Statement" in Chapter 8 and
"Asynchronous Operations and Tasks" in
Chapter 6) may appear. In some of
these cases, the identifier is said to
be declared as a task (or event) name

(see "Application of Default
Attributes").
Example:
WAIT (EVENT2);
Here, EVENT2 is declared contex-

tually as an event identifier.

3. An identifier may occur in a context
where only a programmer-specified con-
dition name (see Appendix 3) may
appear. In this case, the identifier
is said to be declared as a condition
name, with the attribute EXTERNAL.

Example:
ON CONDITION (TEST1) GO TO CHECK;

Here, TEST1 is declared contextual-
ly as a condition name.

4. An identifier may appear within a
statement in a context where only an
entry name may appear. That 1is, an
identifier is contextually declared as
an entry name if it appears as a label
to a PROCEDURE or ENTRY statement or
if it appears following the keyword
CALL or as the function name in a
function reference whose argument list
is non-empty. If the occurrence of
the identifier does not lie within the

scope of the same identifier used to
label a PROCEDURE or ENTRY statement,
the identifier is given a default

attribute of EXTERNAL.

o’

Example:

CALL EXPRI;

5. An identifier may appear in a
in which only a pointer name may be
used. In this case, the identifier is
contextually declared to be a pointer.

context

Example:

DECLARE A(10,10) CONTROLLED (P);
ALLOCATE A SET (P);
P ->Aa(1,1) =P -> A(5,5);

The variable P is declared
tually as a pointer
above statements.

contex-
in each of the

6. An identifier may appear in a
where only an area name may be used.
In this case, the identifier is con-
textually declared to be an area.

context

Example:
ALLOCATE A IN (TREE) SET(P);

In this example TREE is contextually
declared to be an area.

Note: Arithmetic or string attributes of
constants are determined contextually.

IMPLICIT DECLARATIONS

An identifier may be wused in a block
without being explicitly declared or con-
textually declared. In this case the iden-
tifier is said to be implicitly declared in
the containing external procedure. As will
be seen in the discussion of scope, this
implicit declaration will then apply to the
entire external procedure block except for
any contained blocks where the identifier
might be explicitly re-declared.

Example:

Bl: PROCEDURE (Z1,%2);
TEMP1=ABS (Z1**2+Z2%%*2);
B2: BEGIN;
TEMP2= 1/ (TEMP1+Z2) **2;
IF TEMP2>TEMP1 THEN RETURN
(TEMP2) ;
END B2;
RETURN
END B1;

(TEMP1) ;

In this example, TEMP1 and TEMP2 are

both implicitly declared in block Bl.

SCOPE OF DECLARATIONS

When a declaration of an identifier is
made in a program, there is a certain
well-defined region of +the program over

which this declaration is applicable.
region is called the scope of the declara-
tion or the scope of the name established
by the declaration.

This

The scope of a declaration of an iden-
tifier is defined as that block B to which
the declaration is internal, but excluding
from block B all contained blocks to which
another declaration of the same identifier
is internal.

This definition of scope can be applied
to all identifier declarations except the

declaration of entry names of external
procedures (see "Declarations," in this
chapter). The appearance of an identifier

as the entry name of an external procedure
is regarded as an explicit declaration of

the identifier as an entry name with the
EXTERNAL attribute. The scope of such a
declaration is defined to be the entire

external procedure, excluding all contained
blocks to which another declaration of the
same identifier is internal.

Scope of External Names

In general, distinct declarations of the

same identifier imply distinct names with
distinct non-overlapping scopes. It is
possible, however, to establish the same

name for distinct declarations of the same
identifier by means of the EXTERNAL attri-
bute. The EXTERNAL attribute is defined as
follows:

An explicit or contextual declaration of
an identifier that declares the iden-
tifier as EXTERNAL is called an external
declaration for the identifier. All
external declarations for the same iden-
tifier in a program will be linked and
considered as establishing the same
name. The scope of this name will be
the union of the scopes of all the
external declarations for this identifi-
er.

In all of the external declarations for
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.
For example, it would be an error if the
identifier ID were used as an EXTERNAL file
name in some READ statement in a program,
and in the same program to declare ID as
EXTERNAL ENTRY.

Chapter 4: Data Description 41

The EXTERNAL attribute can be wused to 4 DECLARE Y BIT (6);
communicate between different external pro- 5 C: BEGIN;
cedures or to obtain non-continuous scopes 6 DECLARE (A,X) FIXED;
for a name within an external procedure. %
An external name is a name that has the &
scope attribute EXTERNAL. If a name is not 7 Y: RETURN;
external, it is said to be an internal name END C;
and has the scope attribute INTERNAL. END B;
8 D: PROCEDURE;
The following examples illustrate scope 9 DECLARE X FILE;
of declarations. The numbers on the left 10 Y = Z;
are for reference only, and are not part of .
the procedure. See Table 2 for an explana- .
tion of the scope and use of each name. -
END D;
Example 1: END A;
1 A: PROCEDURE;
2 DECLARE (X,Z) FLOAT; Since entry names of external procedures
- and file names have the attribute EXTERNAL,
. the scope of the entry name A and of the
- file name X above may include parts of
3 B: PROCEDURE (Y); other external procedures of the program.
Table 2. Scope and Use of Names in Example 1, for "Scope of External Names"
. i
| Reference Line Name Use Scope_(by block names) |
| |
| 1 A external entry name all of A except C |
I |
| 2 X floating-point wvariable all of A except C and D |
| I
| 2 Z floating-point variable all of A
| |
| 3 B internal entry name all of A |
| |
| 4 Y. bit string all of B except C |
| |
| 5 C statement label all of B |
| |
| 6 A fixed-point variable all of C |
| |
| 6 X fixed-point variable all of C |
| |
| 7 Y statement label all of C |
| |
| 8 D internal entry name all of A
| |
| 9 X file name all of D |
| !
| 10 ' floating-point variable all of A except B |
| I
L J

42

Example 2:

A: PROCEDURE;
1 DECLARE X EXTERNAL;

B: PROCEDURE;
2 DECLARE X FIXED;

C: BEGIN;
3 DECLARE X EXTERNAL;

END C;
END B;
END A;
D: PROCEDURE;
4 DECLARE X FIXED;

E: PROCEDURE;
5 DECLARE X EXTERNAL;

-

END E;
END D;

In example 2,
tions for the identifier X.

Declaration 2 declares X as a fixed-
point variable name; its scope is all of
block B except block C.

Declaration 4 declares X as another
fixed-point variable name, distinct from
that of declaration 2; its scope is all of
block D except block E.

Declarations 1,3,5 all establish X as a
single name; its scope is all of the
program except the scopes of declarations 2
and 4.

Basic Rule on Use of Names

A name is said to be known only within
its scope. This definition suggests a
basic -- and almost self-evident -- rule on
the use of names:

All appearances of an identifier which
are intended to represent a given name
in a program must lie within the scope
of that name.

There are many implications to the above
rule. One of the most important is the
limitation of transfer of control by the

there are five declara-

statement GO TO A, where A is a
label.

statement

The statement GO TO A, internal to a
block B, can cause a transfer of control to
another statement internal to block B or to
a statement in a block containing B, and to
no other statement. In particular, it
cannot transfer control to any point within
a block contained in B.

THE ATTRIBUTES

Attributes are used to give
characteristics to their associated iden-
tifiers. The attributes of +the language

are divided into the following classes:

Data attributes

Dimension attribute

SECONDARY attribute

REDUCIBLE and IRREDUCIBLE attributes
ABNORMAL and NORMAL attributes
USES and SETS attributes

Entry name attributes

Scope attributes

Storage Class attributes
ALIGNED and PACKED attributes
DEFINED attribute

CELL attribute

INITIAL attribute

Structure attributes

LIKE attribute

File description attributes
List processing attributes

DATA ATTRIBUTES

Arithmetic Data

Variables are declared to be of arith-
metic type if they are given any of the
attributes base, scale, mode, or numeric
picture.

Base Attributes
Function:
The base attribute specifies that the
data is in binary or decimal form.
General format:
BINARY|DECIMAL
General rules:
These attributes may not be specified

in combination with the PICTURE attri-
bute.

Chapter 4: Data Description 43

Default:

See "Default Conditions for Arithmetic

Data" in this chapter.

Examples:

DECLARE A DECIMAL, B BINARY;

Scale Attributes

Function:

The scale attribute specifies that the
data is in fixed-point or floating-point
form.

General format:

FIXED|FLOAT

General rules:

These attributes may not be given in
combination with the PICTURE attri-
bute.

Default:

See "Default Conditions for Arithmetic
Data."

Examples:
DECLARE A FIXED, B FLOAT;
Mode Attributes
Function:

The mode attribute specifies that the
mode of the data is real or complex.

General format:
REAL| COMPLEX

General rules:
The COMPLEX attribute may be given in
combination with the PICTURE attri-
bute, to specify a complex numeric
field.

Default:

See "Default Conditions for Arithmetic

Data."
Example:

DECLARE A COMPLEX, B REAL;

by

Precision Attribute

Function:

The precision attribute specifies the
number of significant binary or decimal
digits to be maintained for both fixed-
point and floating-point data, as well as
the scale of the data.

General format:

(number-of-digits(,scale-factorl)

General rules:

attribute must
a scale, base, or
same factoring

1. The precision
immediately follow
mode attribute at the
level.

2. "Number-of-digits" is a positive deci-
mal integer constant specifying the
number of binary or decimal digits to
be maintained and is used with both
fixed-point and floating-point data.

3. The "scale-factor"™ 1is an optionally
signed decimal integer constant that
defines the position of the point with
respect to an integer data item of the
specified number of digits. The scale
factor is used only with fixed-point
data.

4. When the scale is fixed and no scale
factor is given, it is assumed to be
Zero.

5. The
it may be larger than the
digits.

scale factor may be negative, and
number of

6. The scale factor
plies the integer

effectively multi-
data by the base
raised to the power of the scale
factor with the sign reversed. For
example, decimal data of precision
(5,2) represents numbers from .01 to
999.99 or zero in magnitude: decimal
data of precision (5,-2) represents
numbers from 100 to 9999900 or zero in

magnitude.

7. This attribute may not be given in
combination with the PICTURE attri-
bute.

Examples:

DECLARE A FLOAT (3%, B REAL (10)
FLOAT, X FIXED (5,2);

The following table shows the meaning of
the scaling for fixed-point variables:

e,

3

r T T T

| Integer | Scale |Precision |Value |
| | | | I
00123	FIXED	(5,2)	1.23
00123	FIXED	(5,-2) 12300	
123	FIXED	(3,4)	.0123
123	FIXED	(3,-4) (1230000	
L [i L]

Default Conditions for Arithmetic Data

If the base, scale, and mode are not
specified, the arithmetic default attri-
butes are dependent upon the first letter
of the name. If the first 1letter of the
name is I through N, FIXED REAL BINARY is
assumed; otherwise, FLOAT REAL DECIMAL is
assumed.

If arithmetic data attributes are partly
specified, the remaining attributes are
assumed as follows:

Base: DECIMAL
Scale: FLOAT
Mode: REAL

If precision is not specified, the
assumed precision is that which is defined
for the particular implementation of the
language that is being used, where the
definition depends on the scale and base.

The PICTURE Attribute

Function:

The PICTURE attribute is used to define
the internal and external formats of numer-
ic and character-string data fields and to
specify the editing of data. This discus-
sion is limited to the use of the PICTURE
attribute with numeric data. The use of
the PICTURE attribute with character-string
data is described in "String Attributes."
The picture characters are described in
Appendix 2.

General format:

PICTURE 'numeric-picture-specifica-
tions'

General rules:

1. PICTURE may not be specified in combi-
nation with the base, scale, or preci-
sion attributes.

Numeric fields have mode, Dbase,
scale, and precision; these are speci-
fied by the picture characters used in
describing the field, and by the use
of the mode attribute if COMPLEX.
Note the exception that sterling pic-

2.

tures are treated as a separate
gory, although they
point decimal fields.

cate-
are real fixed-

A "picture specification" is composed
of a string of picture characters. It
must be enclosed in guotation marks.
Individual picture characters may be
preceded by an iteration factor, which
is a decimal integer constant, n,
enclosed in parentheses, to indicate
repetition of the character n times.
If n is =zero, the character is
omitted. This iteration factor speci-
fication may not follow the picture
character F.

Numeric picture specifications must
include at least one digit position.

The following paragraphs indicate the
combination of picture characters that
show mode, scale, base, and precision.
In this discussion, a fixed-point
field has one field, and a floating-
point field has two subfields.

a. Real binary fixed-point fields
take the following general forms:

PICTURE 'I[s]I[1] ... vl
(11 ... [F([+|-] integer) 1°
PICTURE "[21...[V1{2]...[F([+]|-]

integer) 1’
PICTURE *[3]...[V] [3]...[F([+|-1]
integer)1"
Only one V, representing a point,
may be present in a picture

specification, but it may be in
any position. When a sign charac-
ter (S) is specified, the field
will contain a binary 1, if the
value is negative, or a zero, if
the value is positive.

b. Real binary floating-point fields
take the following general forms:

PICTURE '[s]1(11 ... (V] (11 ...
K[sl1(1]1 ...°

PICTURE "[21sas vl
K212]..."

PICTURE *[3aws vl
K3(3]..."

[21...

[3)aus

The mantissa and exponent must
each contain at 1least one digit
position. The sign character
allowed to the right of the K in
the first form represents the sign
of the exponent.

c. Real decimal fixed-point fields
take the following general form:

PICTURE '[9]... [V] [9]...
[F([+]-] integer)]’

Chapter 4: Data Description 45

46

Sign, editing, and zZero-
suppression picture characters, as
explained in Appendix 2, may be
included (only one sign character
per subfield is allowed). The V
may not appear more that once in a
picture specification. If no V is
given, the decimal point will be
assumed to appear to the right of
the last digit. No attempt has
been made to show the use of all
valid picture characters in the
general format above. These are
explained in Appendix 2.

Real decimal floating-point fields
take the following general form:

PICTURE " [9]...
9..._'

[v1(91...{E|K}

The mantissa and
each contain at 1least one digit
position. Sign, editing, and
zero-suppression picture charac-
ters may be included. Sign char-
acters refer to the subfield in
which they appear, except a CR or
a DB, which refers +to the first
subfield. Only one sign character
per subfield is allowed.

exponent must

Complex fields may contain those
picture characters that are valid
for real fields as described
above. They take the general
form:

real-picture

The "real-picture" represents both
portions of the complex number.
The attribute COMPLEX must also be
specified. The real-picture may
not specify a sterling field.

Sterling fields are considered to
be real fixed-point decimal
fields. When involved in arith-
metic operations, they will be
converted to a value representing
fixed-point pence. Sterling pic-
tures have the general form:

PICTURE

*Gl[editing-character-1]...

M pounds-field

M [separator-1l...
shillings-field

M [separator-2]...
pence-field

[editing-character-2l..."

"Editing character 1" may be one
or more of the following static
picture characters:

$+-5

The "pounds field"™ may contain the
following picture characters:

ZY*9TIR, $+ -8

The 1last four characters (i.e., $
+ - S) must be drifting charac-
ters. The comma may be used as a
break character.

more

"Separator 1" may be one or ‘

of the following picture charac-
ters:
/ . B

The "shillings field" may be:
{99|YY|2Z|Y9|29|ZzY|8}

The nines may be replaced by T, I,
or R.

"Separator 2" may be one or
of the picture characters:

more
/ -« BH
The "pence field" takes the form:

£99|YY|2Z|Y9|7|29|2Y|6} [V|V.|.V
[9|%|Y}...

Any of the nines may be replaced
by one of the following:

T IR

"Editing character 2" may be one
or more of the static picture
characters $§ + - S and one oOr mor
of B P CR DB.

The pounds, shillings, and pence
subfields must each contain at
least one digit position. ‘
Zero suppression in sterling pic#
tures is performed on the total
field, not separately on each oﬁ
the pounds, shillings, and pence
subfields. 1In sterling pictures,
the subfield separator characters
/ « B and H are never suppressed.

The precision of picture specifij
cations is described below. In this
discussion, the following picture
characters, actual and conditional,

are defined as digit positions:

12392Z**YTTIR
and the drifting
TEE

The precision of a fixed-point
numeric field is (m,n), where m is the
total number of digit positions in thﬁ

&

field and n is the number of digit

positions following the V. if a
drifting string contains n drifting
characters, this specifies n-1 digit

positions. For sterling pictures, m
is 3 + the number of digits in the
pounds field + the number of fraction-
al digits in the pence field.

The precision of a floating-point
field is (p), where p is the total
number of digit positions before the E
or K.

Decimal or binary fixed-point pic-
tures may have a scaling factor. This
may be achieved by placing the follow-
ing at the extreme right of the pic-
ture subfield:

F ([+]|-] integer)

with the "integer" value represented
by g, this specifies that the decimal
or binary point should be assumed to
be g places to the right (or left, if
negative) of the position assumed in
the absence of the scaling factor.
The precision of the numeric field is
then (m,n-g).

These precisions may not exceed the
limits for decimal or binary fixed-
point values, as defined for the
particular implementation of PL/I.

6. Only one sign position is permitted in
a PICTURE subfield. This may be spec-
ified by a static sign picture charac-
ter or by a drifting string for a sign
character.

String Attributes

Function:

The string attributes specify string
data to be either in bit-string form or in
character-string form with a specified
length. The form of character-string data
may also be specified.

General format:

BIT

z(length) [VARYING]
CHARACTER

PICTURE 'character-picture-
specifications’
General rules:

1. BIT specifies bit-string data, CHARAC-
TER specifies character-string data,

and PICTURE specifies character-string
data in picture form.

2. The "length" attribute specifies the
actual length of fixed-length strings
and the maximum length of varying-
length strings, in which case the
attribute VARYING is given. If
VARYING is specified, then either BIT
or. CHARACTER must also be specified.
The attribute VARYING may appear prior
to the BIT or CHARACTER attribute in a
string attribute specification; that
is, 1t may appear anywhere in the
declaration of a string. VARYING may
be factored.

3. The length specification may be an
expression or an asterisk. It must
immediately follow a CHARACTER or BIT
attribute at the same factoring level.

4. If the 1length specification is an
expression, it will be converted to an

integer at the point of allocation or
upon entry to the declaring block for
parameters.

5. An asterisk may be wused when the

length is to be taken from a previous
allocation for parameters or nonbased
CONTROLLED variables or if it is to be
specified in a subsequent ALLOCATE
statement for nonbased CONTROLLED
variables.

6. The 1length of strings declared STATIC
must be a decimal integer constant.

7. Since PICTURE is an attribute that
also may apply to arithmetic data, a
separate explanation is in the section
entitled "The PICTURE Attribute."
Additional picture characters are pro-
vided when the PICTURE attribute is
used to declare character-string data.
These may be found in Appendix 2.

8. BIT, CHARACTER, or VARYING may not be
specified if PICTURE is specified.

Example:

DECLARE A BIT (10), B CHARACTER (5), C
PICTURE ‘'XAA9AA', D BIT(*)VARYING;

A is a field of ten bits; B is a field
of five characters; C is a field of charac-
ters, letters, and a decimal digit; and D
is a field of bits with a maximum length to
be taken from a previous allocation or to
be specified in a subsequent ALLOCATE
statement.

Chapter 4: Data Description 47

The LABEL Attribute

Function:

The LABEL attribute specifies that the
associated variable will have statement
labels as values. To aid optimization of
the object program, it may also specify the
values a label variable may have during
execution of the program.

General format:

LABEL [(statement-label-constant
[, statement-label-constantl...)]

General rules:

1. If the variable is a parameter, the
value can also be any statement 1label
that could be passed as an argument,
or any value permitted for any 1label
variable that may be specified as an
argument.

2, If a list of statement-label constants
is specified, the variable may have as
values only members of the list. The

label constants in the list must be
known in the Dblock containing the
declaration.

3. An entry name cannot be a value of a

label variable.

4. A subscripted label that is an element
of a label array may appear as a
statement prefix but may not appear in

an END statement after the keyword
END.

Example:
DECLARE START LABEL (LABELl1, LABEL2,

LABEL3) ;

The TASK Attribute

Function:

The TASK attribute specifies that the
associated identifier is wused as a task
name (see "Asynchronous Operations and

Tasks," in Chapter 6, the general rules
under "The CALL Statement,"™ in Chapter 8,
and "Task Data" in Chapter 2).
General format:
TASK
General rules:
l. An

identifier may be explicitly

u8

declared with the TASK attribute in a
DECLARE statement. It may be contex-
tually declared by its appearance in a
TASK option appended to a CALL state-
ment (see Chapter 8).

2. Task names may also have the following
attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)
Storage class attribute (the

default is AUTOMATIC)

DEFINED attribute (task
only be defined on
names)

ABNORMAL attribute (all task names
are ABNORMAL)

SECONDARY attribute

names may
other task

3. A task name can appear in a TASK
option (see "The CALL Statement,"™ in
Chapter 8), as the argument in the
PRIORITY built-in function, or in the
PRIORITY pseudo-variable. Task names
also may be passed as procedure param-
eters.

The EVENT Attribute

Function:

The EVENT attribute specifies that the
associated identifier is used as an event
name (see "Asynchronous Operations and
Tasks," in Chapter 6, the general rules
under "The CALL Statement," in Chapter 8,
and "Event Data"™ in Chapter 2).

General format:
EVENT
General rules:

1. An identifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be contex-
tually declared by its appearance in
an EVENT option appended to a CALL
statement, in a WAIT statement, in a

DISPLAY statement, or in various
input/output statements (see Chapter
8).

2. Event names may also have the follow-

ing attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)
Storage class attribute (the

default is AUTOMATIC)
DEFINED attribute (event names may

&

only be
names)

defined on other event

ABNORMAL attribute (all event names

are ABNORMAL)
SECONDARY attribute

3. An event name can appear in an EVENT
option, a WAIT statement (see Chapter
8), or as the argument in +the EVENT
built-in function or in the EVENT
pseudo-variable. Event names also may
be passed as procedure parameters.
THE DIMENSION ATTRIBUTE
Function:
The dimension attribute defines the
bounds of an array.
General format:
(bound [, boundl] ...)
where "bound" is
{[lower-bound :lupper-bound} |*
Syntax rule:
Lower bound and upper bound are scalar
expressions.
General rules:
1. The number of "bounds" specifies the

number of dimensions in an array.

2. Bounds that are expressions are evalu-

ated and converted to integer data
when storage 1is allocated for the
array or when linkage 1is established

for parameters.

3. The bounds are indicated as follows:

a. If only the upper bound is given,
the lower bound is assumed to be
one.

b. When the actual bounds for each

dimension are to be taken from

a

previous allocation for that iden-
tifier or are to be specified in a
subsequent ALLOCATE statement for
nonbased variables, an asterisk
must be used to represent each of
the dimension bounds. Thus,
asterisks may be used only for
parameters and CONTROLLED varia-
bles.

c. The lower bound must be less than
or equal to the upper bound.

The

bounds of arrays declared static

1.

2.

must be optionally
integer constants.

signed decimal

If an attribute list contains a dimen-
sion attribute, +that attribute must
come first in the list.

If any bound of a dimension attribute
in a structure declaration is an
asterisk, then all dimension bounds
for the major structure and for all
other structure elements must also be
asterisks.

The asterisk notation may not be used
for based variables.

Examples:

DECLARE TABLEA(5,8), TABLEB(-5:5,10);

TABLEA is a two-dimensional array with
5 rows and 8 columns (subscripts
1 to 5 and 1 to 8). TABLEB is a
two-dimensional array with 11
rows and 10 columns (subscripts
=5¢ =l =3, =24 =1; 0y 1y 2, 3.
4, 5 for the rows and 1 through
10 for the colummns).

DECLARE MATRIX (*,%);

MATRIX is a two-dimensional array.
The bounds are to be taken from a
previous allocation for MATRIX or
are to be subsequently specified
in an ALLOCATE statement.

THE SECONDARY ATTRIBUTE

Function:

The SECONDARY attribute is used to spec-
ify that

certain data normally does not

require efficient storage.

1.

General format:

SECONDARY

General rules:

This attribute may be declared only
for major structures, arrays, and
variables not contained in structures
or arrays, i.e., for variables at
level 1.

The attribute specifies that where
possible and necessary, less than nor-
mally efficient storage may be allo-
cated to the wvariable.

Chapter 4: Data Description 49

THE ABNORMAL AND NORMAL ATTRIBUTES

Function:

The ABNORMAL and NORMAL attributes are
used to specify data as being either normal
or abnormal.

General format:
ABNORMAL | NORMAL
General rules:

1. The ABNORMAL attribute may be declared
for any variable.

2. The ABNORMAL attribute specifies that
a variable may be altered or otherwise
accessed at an unpredictable time dur-
ing the execution of a program. This
situation might occur, for example,
during the execution of an ON-unit as
described in "The ON Statement," in
Chapter 8.

3. Every time ABNORMAL data is referred

to, its associated storage contains
its current value.
Default for Abnormality of Data
Variables are assumed to be NORMAL,

except structures containing ABNORMAL ele-
ments; such structures may not be declared
NORMAL.

THE REDUCIBLE AND IRREDUCIBLE ATTRIBUTES

Function:

The REDUCIBLE and IRREDUCIBLE attributes
are used to specify entry names as being
either reducible or irreducible. The IRRE-
DUCIBLE attribute specifies that invoca-
tions of the specified entry may not not be
reduced to a smaller number of invocations.

General format:
REDUCIBLE | IRREDUCIBLE

General rules:

1. Reducibility is a property of both
external and internal procedures.
Blocks invoking procedures that are

irreducible must be within the scope
of an IRREDUCIBLE, USES, or SETS dec-
laration for the invoked entry name.
However, the invocation of an irredu-
cible procedure does not make the
invoking procedure itself irreducible.
These attributes enable program optim-
ization to be performed.

50

external procedure is irreducible
if it or any procedures invoked by it:
a. Access, modify, allocate or free
external data.

b. Modify, allocate, or free their
arguments.

c. Return inconsistent function
values for the same argument
values.

d. Maintain any kind of history.
e. Perform input/output operations.

f. Return control from the procedure
by means of a GO TO statement.

3. An internal procedure is irreducible:

a. Under any of the conditions listed
above for external procedures.

b. If it, or any procedures called by
it, access, modify, allocate, or
free variables declared in an
outer block.

4, Irreducible external procedures
invoked as functions must be declared
with at least one of the attributes,
IRREDUCIBLE, USES, or SETS. The scope
of this declaration must include the
invoking block.

5. IRREDUCIBLE used alone specifies that
all possible types of irreducibility
should be assumed. It is unnecessary
to specify IRREDUCIBLE for the built-
in functions, TIME and DATE.

6. The REDUCIBLE attribute specifies that
the entry name is for a procedure that
is not irreducible.

Default for Irreducibility of Procedures

If an external entry name appears only
as a function reference, the entry name is
assumed to have the REDUCIBLE attribute.
Entry mnames of all internal procedures and
entry names of external procedures invoked
in CALL statements are assumed to have the
IRREDUCIBLE attribute.

THE USES AND SETS ATTRIBUTES

Function:

The USES and SETS attributes are used to
specify, for an entry name, the nature of
its irreducibility due to data
manipulation.

—

1.

General format:

USES (item[,item]...)
SETS (iteml[,item]...)

General rules:

The items of the list following a USES
or SETS attribute may be as follows:

a. A decimal integer n, specifying
the nth argument of any invocation
of the procedure at the declared
entry name.

b. An unsubscripted data name known
to both the block containing the
declaration and the invoked proce-
dure.

C. An asterisk indicating all iden-
tifiers described in b.

An item in the USES list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it access that
item.

b. That neither the invoked procedure
nor procedures invoked by it reas-
sign that item unless it is also
specified in a SETS attribute.

c. That neither the invoked procedure
nor procedures invoked by it
access any other data known to the
block, except data designated by
explicit arguments in either a
CALL statement, a statement with a
CALL option, or a function ref-
erence.

An item in the SETS list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it reassign,
allocate, or free that item.

b. That neither the invoked procedure

nor procedures invoked by it
access that item other than to
reassign, allocate, or free it,

unless it is also specified in a
USES attribute, or it is an argu-
ment.

c. That neither the invoked procedure
nor procedures invoked by it reas-
sign, allocate, or free any other
data known in the block.

k. The USES and SETS attributes may be
declared for any entry name used to
invoke a procedure. The scope of this
declaration must include the invoking
block. If the ENTRY attribute is not
declared, ENTRY is implied. If either
USES or SETS is declared in the invok-
ing procedure, complete information
must be given about the data that is
used and/or set by the invoked proce-
dure.

5. If an item in a USES or SETS list, as
described in 1b above is defined on a
base (see "The DEFINED Attribute") and
if the base and any other items

defined on it are known both to the
invoking and invoked blocks, the base
and the other items must also be

specified in the list.

6. A structure or array name appearing in
a USES or SETS list implies that the
names of all items contained in the
structure or array also are on the
list. It does not imply that items
defined on elements of the structure
are in the 1list; these must be
declared as in rule 5, above.

7. If the USES or SETS attribute is
specified and the invoked procedure is
irreducible in any other way, the
IRREDUCIBLE attribute must still be
specified (unless it is given by
default). If the USES or SETS attri-
bute 1is specified and the invoked
procedure 1is not otherwise irreduci-
ble, the IRREDUCIBLE attribute should
not be specified.

ENTRY NAME ATTRIBUTES

An identifier may be declared to be an
entry name by giving it the ENTRY attri-
bute. It may be declared to have any of
the attributes SETS, USES, BUILTIN, and
RETURNS. These attributes all imply ENTRY
and thus ENTRY need not be specified. The
entry name also may have the attributes
IRREDUCIBLE or REDUCIBLE.

An explicit declaration of an internal
entry name and the procedure block having
the entry name must both be internal to the
same block.

An identifier may be declared as rep-
resenting a family of entry names, by using
the GENERIC attribute.

Chapter U4: Data Description 51

The ENTRY Attribute

Function:

The ENTRY attribute is used to declare,
within a procedure, entry names that are
referred to in that procedure.

General format:

ENTRY[(parameter-attribute-list
[,parameter-attribute-listl]...)]

General rules:

1. When ENTRY is used, it specifies that
the identifier being declared is an
entry name. An entry name must be
declared with the ENTRY attribute
unless the entry label is known in the
same block, or unless a reference is
made to the entry name in a CALL
statement or in a function reference
with arguments, or if it is declared
to have any of the attributes SETS,
USES, GENERIC, BUILTIN, and RETURNS.
INTERNAL entries may only be declared
in the block to which the procedure is
internal. ENTRY without a parameter
attribute list specifies nothing about

the number or nature of the paramet-
ers.
2. When ENTRY is wused with parameter

attribute lists, each parameter attri-
bute list is a succession of attri-
butes describing a parameter of the
entry point. Permitted attributes are

those allowed for parameters.

3. The number of parameter attribute
lists must be the same as the number
of parameters required by the entry

point. If a parameter attribute 1list
is null, its place must be kept by a
comma.

4. Parameter attribute lists are not nec-
essary if the parameters of the entry
name are not to be described.

5. The dimension attribute may be speci-
fied for array parameters. It must be
the first attribute specified for the
parameter.

6. The structuring for a structure param-
eter is specified by a structure des-
cription using level numbers without
identifiers, the 1level number being
immediately followed by the 1list of
attributes for that 1level of the
structure. The first item in the
description of the structure parameter
must be at level one.

7. Expressions occurring in ENTRY attri-

52

butes for 1length or dimension bounds
are evaluated upon entering the block
to which the declaration of the ENTRY
attribute is internal. If an argument
position specifies an entry with no
data attributes, no default data
attributes are provided.

Default:

If no attributes or level numbers are
given for a parameter, no assumptions are
made about it. When any attributes are
specified, the remaining required attri-
butes are deduced according to the default
rules given in "Assignment of Attributes to
Identifiers." Note that if the partially
specified attributes imply data elements
without specifying the type, arithmetic
REAL FLOAT DECIMAL is assumed.

The GENERIC Attribute

Function:

The GENERIC attribute is used to define
a name as a family of entry names, each of
which is referred to by +the name being

declared. When the generic name is
referred to, the proper entry name is
selected, based wupon the arguments speci-

fied for the generic name in the
reference.

procedure

General format:

GENERIC (entry-name-declaration
[,entry-name-declarationl...)

General rules:

1. No other attributes may be specified
for the name being given the GENERIC
attribute.

2. Each "entry name declaration" follow-

ing the GENERIC attribute corresponds
to one member of the family, and has
the form:

entry-name attribute-list

3. Each entry name declaration must have
the ENTRY attribute. It may optional-
ly have IRREDUCIBLE, REDUCIBLE, USES,
SETS, and RETURNS attributes. No
entry name declaration may have the
GENERIC attribute.

4. Each entry name declaration must spec-
ify attributes or 1level numbers for
every parameter of the associated
entry name. Attributes unspecified
but required for full definition will
be deduced from default rules.

5. When a generic name is referred to,
the attributes of the arguments must
match exactly the 1list following the
entry name declaration of one and only
one member of the family. The ref-

erence is then interpreted as a ref-
erence to that member. Thus, the
selection of a particular entry name

is based wupon the arguments of the
reference to the generic name.

6. The selection of a particular entry
name is first based on the number of
arguments in the reference to the
name. The following attributes are
then considered in choice of generic
members:

Base
Scale
Mode
Precision
PICTURE
LABEL (but not range list)
Dimensionality (but not bounds)
CHARACTER (but not length)
BIT (but not length)
VARYING
TASK
EVENT
POINTER
AREA
ENTRY (but not parameter descrip-
tion or other attributes of entry
names)
FILE (but no other FILE attributes)
Structuring, including only the
attributes listed above for the
structure members.
If precision is specified Dby FLOAT
(¥), then the precision is not taken
into account in the matching process.

7. Generic entry names (as opposed to
references) may be specified as argu-
ments to non-generic procedures if the
invoked entry name is declared with
the ENTRY attribute (explicit or
implicit for internal procedures).
This ENTRY attribute must specify that
the appropriate parameter is an entry
name and specify by means of a further
ENTRY attribute the attributes of all
its parameters. This enables a choice

to be made of which family member is
to be passed.
Example:
DECLARE

CALCULATE GENERIC (FIXCALC ENTRY (FIXED),
FLTCALC ENTRY (FLOAT)), Y FLOAT

INITIAL (50);

X=Y + CALCULATE (Y);

The assignment statement results in the
invocation of the procedure FLTCALC, since

the argument Y matches the entry attribute
of the FLTCALC member of the family.

The BUILTIN Attribute

Function:

The BUILTIN attribute specifies that the
reference to the associated identifier
within the scope of +the declaration is
interpreted as a reference to the built-in
function or pseudo-variable of the same
name.

General format:
BUILTIN
General rules:

1. BUILTIN is used to refer to a built-in
function or pseudo-variable in a block
that is contained in another block in
which this name has been declared to
have another use.

2. 1If the BUILTIN attribute is declared
for an entry name, the entry name may
have no other attributes.

3. The BUILTIN attribute may not be

declared for formal parameters.

functions see

For a list of Dbuilt-in

Appendix 1.

The RETURNS Attribute

Function:

The RETURNS attribute is specified with
an explicitly declared entry name in order
to define the data attributes of the value
to be returned by that entry.

General Format:
RETURNS [(attribute ...)]
General Rule:

The attributes specify the data charac-
teristics of the wvalue returned by the
entry when it is invoked as a function. If
data attributes are not specified, defaults
will be applied (see "Assignment of Attri-
butes to Identifiers"™ in +this chapter).
Only string, arithmetic, and pointer attri-
butes may be specified. Note that the
attributes of the value returned by the
function should agree with the attributes
specified with RETURNS; if they do not

Chapter 4: Data Description 53

agree, it is an error since no conversion

will be performed.
SCOPE ATTRIBUTES

Function:

The scope attributes are used to specify
the scopes in which declared identifiers
are known.

General format:

{ INTERNAL }

EXTERNAL
For a full discussion of the INTERNAL
and EXTERNAL attributes, see "Scope of

Declarations".
Default:

If the scope is unspecified for variable
names, INTERNAL is assumed.

STORAGE CLASS ATTRIBUTES

Function:

Storage class attributes are wused to
allocate and/or describe a particular class
of storage to variables.

General format:

STATIC|AUTOMATIC|CONTROLLED | CONTROLLED
(pointer-variable)

General rules:

1. STATIC specifies that storage is allo-
cated at the start of execution of the
program and is mnot released until
program execution has been completed.

2. AUTOMATIC specifies that
allocated on each entry to*
to which the

storage is
the Dblock
storage declaration is
internal. The storage is released on
leaving the block. If the block is a
procedure that is invoked recursively,
the previously allocated storage is
"pushed down" on entry, and the latest
allocation of storage is "popped up"
on termination. (For a discussion of
"pushed down" and "popped up" storage,
see "Allocation of Data and Storage
Classes" in Chapter 6.)

3. CONTROLLED specifies that full control
will be maintained over the allocation
and freeing of storage by means of the
statements ALLOCATE and FREE.

54

10.

11.

AUTOMATIC variables may have INTERNAL
scope only. STATIC and CONTROLLED
variables may have INTERNAL or EXTER-
NAL scope.

Storage class attributes may not be
specified for entry names, file names,

members of structures, or DEFINED
data.
STATIC and AUTOMATIC attributes may

not be specified for parameters.

Variables declared with
lengths and dimensions
the STATIC attribute.

adjustable
may not have

If a procedure involving static stor-
age 1is invoked from within or as a
separate task, the static storage is
common to all invocations.

If, during execution of a statement,
controlled data is allocated or freed
(by an irreducible function, for
example), any reference in the state-
ment to that data produces an unde-
fined result.
Storage class attributes may only be
given for variables at level 1. The
storage class applies to all elements
of a structure or array of structures.
If a structure is controlled, only the
major structure, and not the elements,
may be allocated and freed.

The CONTROLLED (pointer-variable)
attribute 1is wused in connection with
list processing and RECORD transmis-
sion. The variable declared with this
form of the attribute is called a
based variable. The following rules
govern the wuse of pointer and based
variables with the CONTROLLED
(pointer-variable) attribute.

a. The pointer variable may be given
additional attributes, but such
attributes must be declared separ-
ately. If additional attributes
are not declared, the default
attribute AUTOMATIC applies.

based
attributes
of the based

b. When reference is made to a
variable, the data
assumed are those
variable, while +the associated
pointer variable identifies the
generation of data. If the ref-
erence is to a component of a
based structure, a second, tem-
porary pointer variable is created
to determine the location of the
component in relation to the
beginning of the structure (that
is, the offset of the component
within the structure).

C. Array dimensions and string
lengths declared with the based
variable are evaluated dynamically
with each reference to the based
variable. Therefore, the asterisk
notation for dimensions and
lengths is not permitted. A ref-
erence to a component of a based
structure causes evaluation of
sufficient elements of the struc-
ture to determine the position of
the component.

d. A based variable may be used to
identify and describe data exist-
ing in any storage class, or to
obtain storage (via the ALLOCATE
statement) which has the charac-
teristics of the based variable.

e. The scope of a based variable is
internal to the block in which it
is declared; therefore, the attri-
bute EXTERNAL may not appear with
a based variable declaration.

f. The attribute VARYING may not be
specified for a based variable.

g. The INITIAL attribute may be spec-
ified for based variables. The
values are assigned only upon
explicit allocation of the based
variable in an ALLOCATE statement.

h. Based variables may not be speci-
fied in the CHECK condition.

i. When a based variable incorporat-
ing arrays or character strings is
an argument for a procedure invo-
cation, its dimensions and/orxr
lengths are evaluated and then
fixed for the duration of the
invocation.

Default:

1. If storage class is unspecified and
the scope is EXTERNAL, STATIC is
assumed.

2. 1If storage class is unspecified and
the scope is INTERNAL, AUTOMATIC is
assumed.

3. If neither storage class nor scope 1is
specified, AUTOMATIC is assumed.

1.

Examples:

EXAMPLE: PROCEDURE;
DECLARE A STATIC INITIAL
(0), B CONTROLLED, C(10);
ALLOCATE B;
A=A+ 1;

FREE B;
PUT LIST(A);
END EXAMPLE;

The variable A is of the static stor-
age class and is used to count the
number of times the procedure is
invoked. The variable B is of the
controlled storage class, and storage
is allocated and freed by use of the
ALLOCATE and FREE statements. The
variable C is of the automatic storage
class by default.

DECLARE VALUE CONTROLLED (P);

The variable VALUE is a based variable
in which the pointer P is used to
locate the generation of VALUE when
reference is made to it. The scope of
VALUE is internal, and the pointer
variable P is of the automatic storage
class by default.

DECLARE STRINGS (I,J) CHARACTER (K)
CONTROLLED (Q),

Q STATIC EXTERNAL;

The variable STRINGS is an array of
character strings based upon the poin-
ter Q. The values of I and J will be
evaluated dynamically at each ref-
erence to STRINGS to determine the
dimensions of STRINGS, and the wvalue K
will be dynamically evaluated to
determine the length of each element.
The pointer variable Q will appear in
static external storage.

THE ALIGNED AND PACKED ATTRIBUTES

Function:

The ALIGNED and PACKED attributes are
used to specify in storage the arrangement
of string or numeric field data elements
within data aggregates.

General format:

ALIGNED | PACKED

Chapter U4: Data Description 55

General rules:

1. These attributes may be specified for
the following:

a. Names of major structures.

b. Names of arrays that are not them-
selves part of a structure.

2. PACKED specifies that each string or
numeric field element is packed in
storage contiguous with the string or
numeric field elements that surround
it. There should be no unused storage
between two adjacent elements, provid-
ed all data elements of the aggregates
are string or numeric field variables
of the same type. In other cases,
some unused space may appear but stor-
age is to be conserved when possible.

3. ALIGNED specifies that each string
data element within the aggregate may
start at a storage boundary to be
defined individually for each implem-
entation of PL/I. This implies that
two adjacent string or numerical field
elements of a homogeneous aggregate
may not necessarily occupy contiguous
storage, if a more efficient program
is possible.

4. Arguments to the STRING generic func-
tion must be PACKED structures.

Default:
1. The default for major structures is
PACKED.
2. The default for arrays that are not
part of structures is ALIGNED.
Examples:
DECLARE
1 A (10) PACKED, 2 B BIT
(200), 2 Cc BIT (500), 2 D BIT

(300), E (10,15) ALIGNED BIT (15);

All elements of A, an array of struc-
tures, will occupy a continuous area of
storage. Each element of the array E will
start at a storage boundary defined for
that implementation of PL/I. There may be
unused storage between the elements of the
latter array.

THE DEFINED ATTRIBUTE

Function:
The DEFINED attribute specifies that
scalar, array, or structure data is to

56

occupy the same storage area as that

assigned to other data.

General format:

DEFINED base-identifier [subscript
list]
Rules for defining:
1. The INITIAL, the storage class, and

the scope attributes must not be spec-
ified for the defined item. The VARY-
ING attribute must not be specified
for either the defined item or the
base identifier. It should be noted
that although the base may have the
EXTERNAL attribute, the defined item
always has the INTERNAL attribute. If
the base is declared external, its
name will be known in all blocks in
which it is declared external, but the
name of the defined item will not.
However, the value of the defined item

will be changed if the value of the
base item is changed in an external
block.

2. The Dbase identifier must always be
known within the block where the
defined item has been declared; the
base identifier must not have the

DEFINED attribute, nor it be a

based variable.

may

There are two types of defining, corres-
pondence defining and overlay defining.

If iSUB variables are involved, or if
both the defined item and base identifier
are arrays with the same number of dimen-
sions and the POSITION attribute is not
specified, correspondence defining is in
effect. In all other cases, overlay defin-
ing is in effect.

In correspondence defining, the elements
of the base identifier and the elements of
the defined item must have the same des-
cription.

Correspondence Defining

When correspondence defining has been
specified, a reference to an element of the
defined item is interpreted as a reference
to the corresponding element of +the base
identifier. A reference to the defined
array is interpreted as a reference to the
aggregate of all of the base elements that
correspond to some element of the defined
arraye. Note that the base array must not
be a cross section of a larger aggregate.

If there is no subscript list following
the base identifier, then the correspon-
dence is direct. In such a case, the
arrays must have the same number of dimen-
sions, and a reference to an element of the
defined item would be interpreted as a
reference to an element of the base with
the same subscripts.

If a subscript 1list follows the base
identifier, each subscript may be an
expression and each expression may contain
references to the dummy variables indicated
by iSUB.

In the dummy variable 3isUB, i is a
decimal integer constant in the range 1 to
n, where n is the dimension of the defined
item.

At least one reference +to iSUB must
appear in the subscript list. An array
defined by wusing iSUB variables in the

subscript 1list cannot be

argument.

passed as an

The base element
defined element is
each iSUB in the
integer value of the ith subscript
defined element.

corresponding to a
obtained by replacing

subscript 1list by the
of the

Reference may not be made to any element
of the defined item that does not have a
corresponding element in the base identifi-
er.

Overlay Defining

Overlay defining specifies that the
defined item is to occupy part or all of
the storage allocated to the base. In this

way, changes to the value of either varia-
ble may be reflected in the wvalue of the
other. Overlay defining is permitted

between the following:

Defined Item Base Identifier

1. A scalar coded
arithmetic
variable

A subscripted or un-
subscripted coded
arithmetic scalar of
the same base, scale,
mode, and precision

2. A scalar label
variable

A subscripted or un-
subscripted scalar
label variable

A subscripted or un-
subscripted scalar
pointer variable

3. A scalar point-
er variable

A scalar area
variable

4L, An area
variable

5.

Note:

Note:

9.

A scalar event A subscripted or un-

variable subscripted scalar
event variable

A scalar task A subscripted or un-

variable subscripted scalar

task variable

A bit class
variable

Bit class data that
is not a cross section
either of an array or
of an array within an
array of structures

The bit class consists of:
a. Numeric binary fields
b. Fixed-length bit strings

c. Packed structures
items a, b, and d

consisting of

d. Packed arrays consisting of items

a, b, and ¢

Character class data
that is not a cross
section either of an
array or of an array
within an array of
structures

A character
class variable

The character class consists of:
a. Numeric picture fields
b. Fixed-length character strings

c. Packed structures
items a, b, and d

consisting of

d. Packed arrays consisting of items

a, b, and ¢

An identical structure
whose makeup is such
that matching pairs of
items from the struc-
tures are valid ex-
amples for overlay de-
fining of the types
described in items 1
through 6 above

A structure

Rules for overlay defining:

1.

the POSITION
the

In items 7 and 8 above,
attribute may be specified for

defined item. If POSITION is speci-
fied, the DEFINED attribute must also
be specified. POSITION need not

necessarily follow the appearance of
DEFINED; it may precede it in the same
declaration, if so desired. The gen-
eral format of the POSITION attribute
is as follows:

Chapter W4: Data Description 57

POSITION (decimal-integer-constant)

This specifies the position, in rela-
tion to the start of the base, at
which the defined item is to begin.
If this attribute is omitted, POSITION
(1) is assumed; i.e., the defined item
is to begin at the first position of
the base.

2. In items 7 and 8 above, the extent of
the defined item must not be larger
than the extent of the base. Extent
is calculated by summing the lengths
of the parts of the data, including
all individual elements of arrays,
and, in the case of the defined item,
adding n-1 (where n is the position in
relation to the start of the base).

Order of Evaluation

Evaluation proceeds as follows:

1. Expressions specified in all attri-
butes of the defined item (other than
the DEFINED attribute) are evaluated
on entry to the declaring block.

2. Subscripts of the base identifier
evaluated when a reference to
defined item is made.

are
the

3. Data defined on a CONTROLLED base
normally refers to the most recent
generation of base data. However, if
a defined item appears as an argument
to an invoked procedure, and the base
is reallocated, the value of the argu-
‘ment will be based on the generation
current at the time of invocation.

Examples of Defining

1. DECLARE A(20,20), B(10) DEFINED
A(2%¥1SUB, 2*1SUB);
In the first example, B 1is a vector

consisting of every even element in the
diagonal of matrix A. In other words,
B(1) corresponds to A(2,2), B(2) corres-
ponds to A(4,4), etc.
2. DECLARE 1 P, 2 Q CHARACTER (10),
2 R CHARACTER (100),
PSTRING1 CHARACTER
DEFINED P;

(110)

58

3. DECLARE LIST CHARACTER (40),
ALIST CHARACTER (10) DEFINED
LIST,
BLIST CHARACTER (20) DEFINED
LIST POSITION (21),
CLIST CHARACTER (10) DEFINED
LIST POSITION (11);

In the third example, ALIST corresponds
to the first ten characters of LIST,
BLIST corresponds to the twenty-first
through fortieth characters of LIST, and
CLIST corresponds to the eleventh
through twentieth characters of LIST.

THE CELL ATTRIBUTE

Function:

The CELL attribute establishes the asso-
ciated identifier as a cell and specifies
that each alternative declaration in the
alternative list will occupy the same stor-
age as the other alternative declarations
in the list. It differs from the DEFINED
attribute in that it provides storage equi-
valence (i.e., different data declarations
occupying the same storage), whereas the
DEFINED attribute provides data equivalence
(i.e., different ways of referring to the
same data).

General format:
CELL alternative-list
Syntax rules:

1. The alternative list should contain at
least two data declarations.

2. Each alternative declaration must be
preceded by a level number, which must
be numerically greater than the level
number of the cell identifier.

3. The cell identifier may be given other
attributes. These attributes may be
specified either Dbefore or after the
keyword CELL but not after the alter-
native 1list. The only other attri-
butes that a cell identifier may have
are as follows:

a. The dimension attribute

b. ABNORMAL or NORMAL

c. Any of the storage class attri-
butes

d. EXTERNAL or INTERNAL

e. SECONDARY

Note that ¢, d, and e may be

e given
only for a cell at level 1.

General rules:

1. Each alternative may have any of the
attributes that a structure component
may have.

2. Each alternative is qualified by the
name of the cell to which it belongs
and may be referred to as such.

3. Any dimension that a cell identifier
has been given is inherited by the
alternatives of that cell.

4. Only one alternative may be active at
one time. In other words, at any one
point in time, only one alternative of
a cell can contain a value. An
assignment to one alternative effec-
tively deactivates the previously
active alternative.

5. Only one alternative of a
have the INITIAL attribute.

cell may

6. A cell identifier
only in DECLARE, ALLOCATE, and FREE
statements, as well as in the context
of arguments and parameters.

itself may appear

Examples:

1. DECLARE 1 AAA,
2 BBB CELL,
3 U POINTER,
3 V FLOAT (12),
3 W CELL,
4 XX CHARACTER (20),
4 YY BIT (100),
2 CCC CHARACTER (5),
2 DDD (20) CELL,
3 EE BIT (5),
3 FF CHARACTER (1);

struc-
components are as fol-

The above example describes a
ture A whose
lows:

a. BBB, a cell whose alternatives are
the pointer variable U, the
floating-point variable V, and
another cell, W. The cell W, in
turn, contains two alternatives:
the character string XX and the
bit string YY.

b. C©€CC, a character string.

c. DDD, an array of 20 elements, each

of which is a cell having two
alternatives: bit string EE and
character string FF. Note that

DDD(10) .EE and EE(10) are referen-
ces to the same alternative; name-
ly, the bit string alternative for
the tenth cell in DDD.

2. DECLARE 1 A CELL CONTROLLED,
2 B FLOAT (8,3),
2 C FIXED (10);

ALLOCATE A;

FREE A;

In this example, A is a cell whose
storage 1is allocated and freed by the
use of the ALLOCATE and FREE state-
ments. During the time that A remains
allocated, its alternatives, B and C,
are available for use.

THE INITIAL ATTRIBUTE

Function:

The INITIAL attribute either specifies
constant values to be assigned to data when
storage 1is allocated to it, or it speci-
fies, through the CALL option, a procedure
to be invoked to perform initialization at
allocation.

General format:
1. INITIAL (item [, iteml...)

2. INITIAL CALL entry-name
[argument-list]

Rules for form 1:

1. In this discussion, the term
"constant" denotes one of the follow-
ing:

[+]-]1 arithmetic-constant
character-string-constant
bit-string-constant
[+|-] real-constant
constant

{+|-} imaginary-

2. Only one constant
specified for a
given for an array.

value may be
scalar; more may be

3. Constant values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

4. If too many constant values are speci-

fied for an array, excess ones are
ignored; if not enough are specified,
the remainder of the array is not

initialized.

Chapter 4: Data Description 59

10.

11.

12a

13.

60

Each item in the list may be a con-
stant, an asterisk denoting no ini-
tialization for a particular element,
or an iteration specification.

The iteration specification has one of
the following general forms:

(iteration-factor) constant

(iteration-factor) (item [, item] ...)
(iteration-factor)*

The "iteration factor"™ may be any
expression that satisfies the rules

stated in the section on "Prologues"
in Chapter 10. When storage is allo-
cated, the expression is evaluated to
give an integer that specifies the
number of repetitions.

Only unsigned decimal integer con-
stants are permissible as iteration
factors for STATIC data.

A negative or zero iteration factor
yields no initialization.

Iterations may be nested.

Label constants given as initial
values for 1label variables must be
known within the Dblock in which the

label variable declarations occur.

An alternate method of initialization

is available for elements of arrays of

non-STATIC statement label variables:
An element of a

label array can

appear as a statement prefix, pro-
vided that all subscripts are
optionally signed decimal integer
constants. (Such a statement prefix
may not be pointer qualified.) The
effect of this appearance is the

initialization of that array element
to a constructed label constant for

the statement carrying the sub-
scripted reference. This statement
must be internal to the block con-
taining the declaration of the

array.
tion

Only one form of initializa-
may be used for a given label
array. (See the sixth example at
the end of this section for an
illustration.)

The INITIAL attribute may not be given
for the following:

entry names
file names
DEFINED data
structures
parameters
TASK data

14,

1.

1.

EVENT data
AREA data

Notes: The INITIAL attribute may be
given for base elements of structures.

General rule 13 also applies to form
2s

If only one parenthesized scalar
expression precedes a string initial
value, it is interpreted as a replica-
tion factor for the string. If two
appear, the first is taken to be an
initialization iteration factor, the
second, a string replication factor.
For example:

((2)'A") is equivalent to ('AA')
«(2) 'a" is equivalent to
(*a*,'A")

Rules for form 2:

The entry name and arguments passed

must satisfy the conditions stated in

"Prologues."

This form may not be used to initial-

ize STATIC data.

Examples:

DECLARE SWITCH BIT(1) INITIAL ('1'B);

DECLARE MAXVALUE INITIAL (99),
MINVALUE INITIAL (-99);

DECLARE A (100,10) INITIAL ((920)0,
(20) ((3)5,9));

DECLARE TABLE (20,20) INITIAL CALL
INITIALIZE (X,Y);

DECLARE PTS(5) POINTER INITIAL
((5)NULL) ;

DECLARE Z(3) LABEL;

Z(1): IF X>Y THEN GO TO EXIT;

Z(2;: A=A + B + C * D;
Z(3;: A=A + 10;

GO %O Z2(1);

EXI%: RETURN;

The +third example results in the
following: each of the first 920 ele-
ments of A is set to 0, the next 80
elements consist of 20 repetitions of
the sequence 5,5,5,9.

In the fourth example, INITIALIZE
is the name of a procedure +that sets
the initial values of elements in
TABLE. X and Y are arguments passed
to INITIALIZE.

In the last example, transfer is
made to a particular element of the
array 2 by giving I a value of 1, 2,

or 3.

THE LIKE ATTRIBUTE

name
structuring as

Function:
The LIKE attribute specifies that the
being declared 1is given the same

the name following the

attribute LIKE.

C

1.
2.
Y
. 4o
b
5.

General format:

LIKE structure-name

General rules:

The "structure name™ may be
fied or qualified,
subscripted.

unquali-
but it may not be

The structure must be known +to the
block containing the LIKE attribute.

Neither the structure name nor any of
its substructures can be declared with
the LIKE attribute.

The LIKE attribute specifies that the
name being declared is a structure
with a substructure having elements
with attributes and names identical to
the names and attributes of the ele-
ments of the named structure. cCon-
tained dimension and length attributes

are recomputed. Attributes of the
structure name itself do not carry
over, only its elements enter into

this process.

If the structure description of the
named structure has been declared, and
if a direct application of the des-
cription to the structure being
declared LIKE would cause an incorrect
discontinuity in level numbers, then
the 1level numbers will be modified by
a constant before application.

6.

1.

2.

The number that immediately follows
the member that has the LIKE attribute
must be a level-number that is equal

to or less than that of the member
that has the LIKE attribute.

Examples:

DECLARE 1 A(10),
2 FIELD1,
3 DTL1 PIC'$%ZZ.99',
3 DTL2 CHAR (10),
2 FIELD2 BIT (50),
1 X,
2 FIELD1,
3 SUBFLD1 (20) LIKE A.FIELD1,
3 TABLE (3),

2 FIELD2 LIKE A . FIELD1;

The above is equivalent to:

DECLARE 1 A(10),
2 FIELD1,
3 DTL1 PIC *$%2%.99°',
3 DTL2 CHAR (10),
2 FIELD2 BIT (50),
1 %,
2 FIELD1,
3 SUBFLD1 (20),
4 DTL1 PIC '$%Z%Z.99',
4 DTL2 CHAR (10),
3 TABLE (3),
2 FIELD2,
3 DTL1 PIC '$Z%Z.99',
3 DTL2 CHAR (10);
DECLARE 1 A EXTERNAL, 1E
. LIKE A;

2(B,C,D),

The above is equivalent to :

DECLARE 1 A EXTERNAL,
2(B,C,D);

2(B,Cc,D), 1 E,

FILE DESCRIPTION ATTRIBUTES

The

File
describe data files.
same
dure must not
discussion of data
attributes,

description attributes are used to
Declarations of the
file in more than one external proce-
conflict (for a complete
files and the default
see Chapter 7).

FILE Attribute

The FILE attribute

Function:

specifies that the

associated identifier is a file name.

General format:

FILE

Chapter 4: Data Description 61

Note that the FILE attribute is implied by
every one of the file description attri-
butes described in this section and thus
need not be specified in a context in which
at least one of these attributes 1is given
for a filename. However, if such a context
contained only an INTERNAL or EXTERNAL
attribute, FILE would have to be specified
to establish the filename.

The File Usage Attributes

Function:

The file wusage attributes specify the
method of treatment of data in the file.

General format:
STREAM| RECORD
Rules:

1. A file with the STREAM attribute may
be wused only in the OPEN, CLOSE, GET,
and PUT statements. A file with the
RECORD attribute may be used only in
the OPEN, CLOSE, READ, WRITE, REWRITE,
LOCATE, DELETE, and UNLOCK statements.

2. A file with the STREAM attribute can-
not have any of the following attri-
butes: RECORD, UPDATE, DIRECT,
SEQUENTIAL, BACKWARDS, BUFFERED,
UNBUFFERED, EXCLUSIVE, KEYED.

The Function Attributes

Function:

The function attributes
function of a file.

specify the

General format:
INPUT|OUTPUT | UPDATE
Rules:

1. INPUT specifies that the data will be
transmitted only from the data set to
the program. A file with the INPUT
attribute cannot have the attributes
EXCLUSIVE or PRINT.

2. OUTPUT specifies that the data will be

transmitted only from the program to
the data set. A file with the OUTPUT
attribute cannot have the attributes

EXCLUSIVE or BACKWARDS.

3. UPDATE specifies that the file is to

62

be used for both input and output. A
declaration of UPDATE for a file with
SEQUENTIAL access denotes the update-
in-place mode. Ssuch files must be
accessed in the sequence READ, then
REWRITE. A file with the UPDATE
attribute cannot have the attributes
STREAM, BACKWARDS, or PRINT.

The PRINT Attribute

Function:

The PRINT
ultimate disposition of the data is
the printed page.

attribute specifies that the
to Dbe
Several special options

are permitted on PUT statements that refer
to files having the PRINT attribute.
General format:
PRINT
Rules:
1. A file with the PRINT attribute

implies the OUTPUT and STREAM attri-

butes.

2. This attribute cannot be specified for
a RECORD file.

The Access Attributes

Function:

The access attributes specify the manner
in which the records within a RECORD file
are accessed.

General format:

SEQUENTIAL|DIRECT

Rules:
1. If a file is DIRECT, each record
transmission must specify a key. A

record written with a particular key
can be retrieved by reading with that
value of key specified. Files with
the DIRECT attribute must also have
the KEYED attribute.

2. SEQUENTIAL normally specifies that the
next record to be accessed is deter-
mined by the physical organization of
the data set.

The Buffering Attributes

Function:

The Dbuffering attributes apply to
SEQUENTIAL RECORD files only, and specify
whether or not the records must pass
through intermediate storage during trans-
mission to and from the data set. If there
is such buffering, the intermediate storage
can be accessed by associating it with a
pointer variable, and using the pointer to
identify a based variable that describes
the record in the buffer (see the discus-
sion of "RECORD Transmission"™ in Chapter
.

General format:

BUFFERED | UNBUFFERED
General rule:

A file with STREAM or DIRECT attributes
cannot have a buffering attribute.

The BACKWARDS Attribute

Function:

The BACKWARDS attribute specifies that a
SEQUENTIAL INPUT file is to be accessed in
reverse order, i.e., from the 1last member
to the first member.

General format:

BACKWARDS

The EXCLUSIVE Attribute

Function:

The EXCLUSIVE attribute specifies that a
DIRECT UPDATE file will be used in such a
way as to prevent one task reading, delet-
ing, or rewriting a record while another
task is in the process of reading, delet-
ing, or rewriting that record (see "The
READ Statement,"™ in Chapter 8).

General format:

EXCLUSIVE

The ENVIRONMENT Attribute

Function:
The ENVIRONMENT attribute is an
implementation-defined attribute which

specifies various characteristics of a file
which are not a part of the PL/I language.

General format:
ENVIRONMENT (option-list)

General rules:

1. The option list will be defined indi-
vidually for each implementation of
PL/I.

2. The options must be separated by one

or more blanks.

The KEYED Attribute

Function:

The KEYED attribute specifies that each
record in the file has a key associated
with it.

General format:

KEYED (decimal-integer-constant)

General rules:

1. A KEYED file cannot have the
butes STREAM or PRINT.

attri-

2. The "decimal integer constant" gives
the length of the key in characters.
3. The KEYED attribute must be specified

for every file containing keys, even
if records are read sequentially.

LIST PROCESSING ATTRIBUTES

The AREA Attribute

Function:

The AREA attribute is used to define an

area of storage which may be wused for
collecting and referring to based data
items.

Chapter 4: Data Description 63

64

General format:
Option 1:

AREA

Option 2:

AREA (dy, ds¢ <<, dn)

(where each d represents a data declara-
tion without identifiers)

General rules:

An area variable may be explicitly
declared with the AREA attribute in a
DECLARE statement. It may be declared
contextually by its appearance in the
IN clause of an ALLOCATE statement. A
contextual declaration implies that
Option 1 will be used.

Option 1 specifies that an
implementation-defined amount of
storage will be allocated for the area
variable.

Option 2 provides programmer control
of the amount of storage allocated for
an area variable. The data declara-
tions in this option are dummy dec-
larations; their sole purpose 1is to
specify the amount of storage to be
allocated. It is not required or
expected that the data variables
actually allocated into the storage
area will match the data declarations
in number, order, or attributes. How-
ever, if the allocations do not con-
form to the attributes and their
order, there may not be sufficient
storage to contain all allocations.

The individual data declarations in
Option 2 are similar to parameter
descriptions of an ENTRY attribute.
Since they are dummy declarations,
they may not specify identifiers. If
dimensions are given in the declara-
tion, they must appear first.

Area variables are not valid operands
for any operators in the language,
including assignment. Conversions to
and from area variables are not
defined.

Area variables may not be transmitted
in input/output operations.

Area variables may not appear in the
CHECK condition.

Area variables may be elements of
arrays and components of structures.

9.

Entry points may not return a value of
type area.

Example 1:
DECLARE TABLE_1 AREA STATIC EXTERNAL;
TABLE_1 is a static external area of
implementation-defined size.

Example 2:

DECLARE TABLE_2 AUTOMATIC
AREA ((100) POINTER, (50) CHARACTER
(30), 1(50), 2 FIXED, 2 POINTER);

TABLE_2 1is an automatic area that is
large enough to contain an array of
100 pointers, an array of 50 character
strings of length 30, and an array of
50 structures, each consisting of a
fixed-point value followed by a poin-
ter. However, the area need not be
used in this way (see Rule 4 above).

The POINTER Attribute

Function:

The POINTER attribute specifies that the

associated identifier may be used to iden-
tify data values existing in any storage
class.

1«

General format:

POINTER

General rules:

An identifier may be explicitly
declared with the POINTER attribute in
a DECLARE statement. It may be con-
textually declared by (a) its appear-
ance with a CONTROLLED attribute, (b)
its appearance in the SET option of an
ATLLOCATE, READ, or LOCATE statement,
or (c) its use as a pointer qualifier.

The value of a pointer may be esta-
blished by (a) assignment, (b) the SET
clause in an ALLOCATE, LOCATE, or READ
statement, or (c) use of +the INITIAL
attribute.

Pointer data may not be used directly
as an operand in an arithmetic expres-
sion, nor may conversions be performed
between pointer data and other data
types.

The only operators that may be applied
directly to pointer data are the com-
parison operators = and 4=.

5. Pointer data may not be read or writ-
ten in STREAM input/output.

6. Pointers may be initialized only to
the NULL value or to the wvalue of
another pointer variable.

7. Entry points may return a value the
data type of which is pointer.

Examples:

1. DECLARE P POINTER STATIC;
The pointer P is declared explicitly.
2. DECLARE VALUES CONTROLLED (PT1);
The pointer PT1 is declared contex-
tually. It will reside in the AUTO-
MATIC storage class by default.

3. ALLOCATE VALUES SET (PT3);

The data type of PT3 is pointer by
contextual declaration in the SET
clause.

ASSIGNMENT OF ATTRIBUTES TO IDENTIFIERS

Identifiers can be
explicitly through DECLARE statements, by
occurrences 1in certain recognizable con-
texts, and by default rules for identifiers
incompletely described by the programmer.

given attributes

Within an external procedure, statement
label constants, internal entry labels,
parameters, and identifiers appearing in
DECLARE statements are qualified by the
respective blocks in which their declara-
tions (contextual or explicit) occur. Thus
they serve as a means of redeclaring iden-
tifiers declared explicitly, contextually,
or implicitly in containing blocks. For an
identifier occurring as a parameter, the
characteristic, "parameter,"™ is combined
with any explicitly declared attributes for
the identifier. Default attributes are
added as described below. An identifier
occurring as an internal entry label is
given the attributes INTERNAL ENTRY, which
then are also combined with any declared
attributes for that identifier, after which
defaults are applied.

attributes, assigned
recognized in the

The following
through context, are
indicated ways:

1. ENTRY (subroutine): CALL statement or
CALL option

2. ENTRY (function): identifier followed
by parenthesized list, in any context
where an expression is expected.

"File and File

3. FILE: See Opening

Attributes" in Chapter 7--in addition,
by its appearance in an ON, REVERT, or
SIGNAL statement associated with data
transmission conditions.

4. TASK: TASK option

5. EVENT: EVENT option or WAIT statement

6. (Programmer named condition): ON CON-
DITION, SIGNAL. CONDITION, or REVERT
CONDITION

7. POINTER: CONTROLLED (pointer-variable)
declaration, SET option, or pointer
qualifier

8. AREA: IN option

Recognition of one of these attributes
through context does not redeclare the
identifier that is internal to the block in
which the contextual reference appeared.
If a reference lies within the scope of a

declaration (explicit, implicit, or
contextual) of the same identifier, the
attributes given through the previous dec-

laration and applied defaults must match
the attributes given through the contextual
reference and applied defaults there. 1In
such a case, the contextually declared
identifier is taken to be the same name as
that previously declared. Thus, the above
contextually determined attributes cannot
add to attributes given to the same iden-
tifier in a previous declaration.

found in one of the
above contexts has not been previously
declared in a containing block, then a
declaration is made for it, internal to the
containing external procedure, and the
indicated attribute is given. Defaults are
then added.

If an identifier

If an identifier appears in a context
that furnishes a contextual declaration of
this identifier, and if the contextual
reference occurs in the scope of a DECLARE
statement declaring the identifier, then
the context may not add any attributes that
are not given explicitly or by default in
the DECLARE statement.

For example, the following is illegal:

DECLARE F EXTERNAL;
GET FILE(F) LIST(R);

Application of Default Attributes

Default assumptions are as follows, for
the identifier classes indicated:

ENTRY type: EXTERNAL is assumed. If

Chapter 4: Data Description 65

66

the entry is EXTERNAL and is not
a subroutine, then REDUCIBLE is
assumed. Otherwise, IRREDUCIBLE
is assumed. Scale, base, mode
and precision defaults for the
value returned are the same as
for Arithmetic type given below.

If a procedure has multiple entry
names and no data attributes, there is
potential ambiguity in the charac-
teristics of the value to be returned.
In order to avoid this ambiguity,
succeeding labels are interpreted as
if they were entry names for succes-
sive ENTRY statements. For example,
in the following, statement a is
interpreted as if both statement b and
statement ¢ had been written.

a. A: B: ENTRY;
bs - A: ENTRY:
c. B: ENTRY;

FILE type: A summary of file default
attributes appears in "File Open-
ing and File Attributes" in Chap-
ter 7.

TASK type: ABNORMAL is assumed.
Scope and storage class defaults
are the same as for Arithmetic
type given below. ALIGNED is
assumed for arrays not in struc-
tures.

EVENT type: Defaults are the same as
for TASK type.

LABEL type: Range is assumed to be
all labels which could be assigned
to the variable. NORMAL is
assumed. Scope and storage class
defaults are the same as for
Arithmetic type given below.
ALIGNED is assumed for arrays not
in structures.

POINTER type: NORMAL is assumed.
ALIGNED is assumed for arrays not
in structures. Scope and storage
class defaults are the same as
those for arithmetic type given
below.

AREA type: NORMAL is assumed. ALIGNED
is assumed for arrays not in
structures. Scope and storage
class defaults are the same as
those for arithmetic type given
below.

Condition type: EXTERNAL scope is
assumed.

String type: NORMAL is assumed. Scope

and storage class defaults are the
same as for Arithmetic type given
below. ALIGNED is assumed for
arrays not in structures.

Major Structure type: PACKED is
assumed. NORMAL is assumed.
Scope and storage class defaults
are the same as for Arithmetic
type given below.

Minor Structure type: NORMAL is
assumed. INTERNAL is assumed.

Elementary Structure Element type:
NORMAL is assumed. INTERNAL is
assumed. If Arithmetic type has
been indicated, then scale, base,
mode, and precision defaults are
the same as for Arithmetic type
given below.

Arithmetic type: If none of scale,
base, and mode has been given,
then if the identifier starts with
any of the letters I - N, FIXED
BINARY REAL is assumed; otherwise
FLOAT DECIMAL REAL is assumed. If
at least one of these has been
given, then the remaining defaults
are FLOAT, DECIMAL and REAL.
Default precision is implementa-
tion defined, dependent on scale
and base. ALIGNED is assumed for
arrays not in structures. NORMAL
is assumed. INTERNAL is assumed.
If no storage class is given, then
AUTOMATIC is associated with
INTERNAL and STATIC with EXTERNAL.

STRUCTURE DECLARATIONS AND_ATTRIBUTES

This section is a summarization of data
declarations and attributes as they apply
specifically to structures.

LEVEL NUMBER

The outermost structure is a major
structure, and all contained structures are
minor structures.

A structure 1is specified by declaring
the major structure name and following it
with the names of all contained elements.
Each name is preceded by a 1level number,
which 1is a non-zero decimal integer con-
stant. A major structure is always at
level one and all elements contained in a
structure (at level n) have a level number
that is numerically greater than n, but
they need not necessarily be at level n+1,

nor need they
number.

all have the same level

A minor structure at level n contains
all following items declared with level
numbers greater than n up to but not
including the next item with a level number
less than or equal to n. A major structure

description is terminated by the declara-

tion of another item at level one, by the
declaration of an item having no level
number, or by the end of a DECLARE state-

ment.

STRUCTURES AND THE DIMENSION ATTRIBUTE

When a structure name is
dimension attribute, it is an array of
structures, and all contained items are
arrays (see "Arrays of Structures,"™ in
Chapter 2). Contained scalar items, con-
tained structure elements, and cross sec-
tions of contained arrays are referred to,
respectively, by subscripted names, sub-
scripted qualified names, and the asterisk
notation (see "Naming," in Chapter 2).

given the

STRUCTURES AND DATA ATTRIBUTES

Structures and arrays of structures are
not given data attributes. These can be
given only to structure base elements.

STRUCTURES AND SCOPE ATTRIBUTES

Major structure names may be declared
with the EXTERNAL attribute. Items con-
tained in structures may not be declared
with the EXTERNAL attribute, and even if
INTERNAL is unspecified, they are assumed
to be INTERNAL.

STRUCTURES AND STORAGE CLASS ATTRIBUTES

All items in the same structure must be
of the same storage class, since only the

major structure may be given a storage-
class attribute. The storage class of the
major structure applies to all elements of

the structure. If a structure has either
form of the CONTROLLED attribute, only the
major structure, not its_elements, may be
allocated and freed.

Chapter 4: Data Description 67

CHAPTER 5:

PROCEDURES, FUNCTIONS, AND SUBROUTINES

FORMAL_PARAMETERS

The PROCEDURE statement heading a given
procedure and defining the primary entry

Z), or at its secondary entry point SBSEC,
where the formal parameter list is (X, 2Z).

PROCEDURE REFERENCES

point to the procedure may specify a list
of formal parameters. (For syntax and
details of the PROCEDURE statement, see

Chapter 8.)

One or more ENTRY statements may also be

used in the procedure to define secondary
entry points. Like the heading statement
of the procedure, each of the ENTRY

statements must have at least one label to
serve as an entry name for that point, and
each may specify a list of formal paramet-
ers. Formal parameter lists for different
entry points to a procedure need not be the
same. (For syntax and details see "The
ENTRY Statement.")

The formal parameters are identifiers
and may appear in statements of the proce-
dure in the context of scalar variable
names, array names, structure names, state-
ment label designators, entry names, file
names, task names, event names, area names,
pointer names, or cell names.

The appearance of an identifier in a
formal parameter list for a procedure con-
stitutes a declaration of the identifier as
a parameter. This declaration can be com-
bined with an explicit declaration or con-
textual declarations in the procedure that
will associate required attributes with the
parameter. Required attributes not
declared explicitly or contextually will be
assigned by default.

No declarations of the parameter can
appear outside the procedure. (For further
details about the restrictions on attri-
butes of parameters see "Arguments and
Parameters, "™ in Chapter 10.)

Example:
SBPRIM: PROCEDURE (X, ¥, Z);
DECLARE (X, Y, A, B) FIXED, %
FLOAT;
A = X-1; B = Y+1;
GO TO COMMON;
SBSEC: ENTRY (X, Z);

A = X-2; B = X-3;
COMMON: Z = A¥*2+A*B+B*%*2;
END SBPRIM;

In this example, the procedure may be

entered at its primary entry point SBPRIM,
where the formal parameter list is (X, Y,

68

At any point in a program where an entry
name for a given procedure is known, the
procedure may be invoked by a procedure
reference, which has the form:

entry-name [(argument [,argument] ...)]

The number of arguments (possibly zero)
in the procedure reference must be equal to
the number of formal parameters in the list
for the entry point denoted by the entry
name.

The procedure invoked by the procedure
reference may be an external or an internal
procedure. If it is an internal procedure,
the Dblock to which the entry name is
internal must be active at the time of
invocation of the procedure (for a defini-
tion of "active," see "Activation and Ter-
mination of Blocks" in Chapter 6).

When a procedure reference invokes a
procedure, each argument specified in the
reference is associated with its corres-
ponding formal parameter in the list for
the denoted entry point, and control is
passed to the procedure at the entry point.
The conditions the arguments must satisfy,
and the manner of association of each
argument with its matching parameter are
discussed in "The Arguments in a Procedure
Reference."

When a procedure becomes inactive, the
association between arguments and paramet-
ers is terminated.

There are two distinctly different uses
for procedures, determined by one of two
contexts in which a procedure reference may
appear:

1. A procedure reference may appear as an
operand in an expression. (For a
complete description of expression,
see "Expressions," in Chapter 3). In
this case, the reference is said to be
a function reference, and the proce-
dure is invoked as a function proce-
dure, or simply a function.

fol=
keyword CALL, either in a

2. A procedure reference may appear
lowing the

CALL statement or in a statement using
a CALL option. In this case, the
reference is said to be a subroutine
reference and the procedure is
invoked as a subroutine procedure, or
simply a subroutine.

(Ordinarily a given procedure will be
used exclusively as a function procedure or
exclusively as a subroutine procedure.)

FUNCTION REFERENCES AND FUNCTION PROCEDURES

When a function reference appears in an
expression, the function procedure is
invoked. The procedure is then executed,
using the arguments, if any, specified in
the function reference. The result of this
execution 1is the required value, which is
passed with return of control back to the
point of invocation. This returned value
is then used, in place of the function
reference, to evaluate the expression.

The procedure invoked by a function
reference normally will terminate execution
with a statement of the form
RETURN (expression), where expression is a
scalar expression of arithmetic, character-
string, bit-string, or pointer type (see
"The RETURN Statement"). (A GO TO
statement may also be used to terminate
execution of a procedure invoked by a
function reference.) It is the value of
this expression that will be returned as
the function value. The PROCEDURE or ENTRY
statement at the invoked entry point may
specify data attributes for the function
value (see "The PROCEDURE Statement" and
"The ENTRY Statement,™ in Chapter 8). Just
prior to return, the expression is evaluat-
ed, and, before being passed back, the
value 1is converted, if necessary, to con-
form to these attributes, or, if the attri-
butes are not specified, to the default
attributes implied by the entry name.

If the invoked function procedure is
terminated by a GO TO statement, the evalu-
ation of the expression that invoked the
function will not be completed and control
will go to the designated statement.

GENERIC FUNCTIONS

A generic function is a family of func-
tions with a single name. A function
reference to a generic function causes the
selection of a certain member of the fami-
ly, depending upon the attributes of the
arguments. The characteristics of the
value returned depend upon the member that
is selected.

Generic functions may be built-in (see

below) or specified by the programmer, who
may, by means of +the attribute GENERIC,
define a name to be a generic function
name. An entry name may be explicitly

declared with the GENERIC attribute. The
GENERIC attribute requires a list of all of
the entry names of the family and the
attributes of all of the arguments for each
member (different members must have differ-
ent argument attribute patterns). Then any
reference appearing in the scope of this
declaration and using the declared generic
name as an entry name will result in the
use of that member of the declared family
that has the same argument attribute pat-
tern as the pattern in the argument list of
the reference. For complete details see
"Entry Name Attributes"™ in Chapter 4.

Subroutine procedures may also be gener-
ic. The method of selecting a particular
subroutine corresponds exactly to that of
selecting a particular function.

BUILT-IN FUNCTIONS

Besides function procedures written by
the programmer, a function reference may
invoke one of a comprehensive set of built-
in functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also functions for manipulating strings
and arrays, as well as other necessary or
useful functions related to special
facilities provided in the language. The
complete 1list of these functions and their
descriptions can be found in Appendix 1.

A large number of the built-in functions
are generic., The built-in generic func-
tions are of considerable convenience to
the programmer. He may, for example,
always use the same name EXP for the
exponential function, regardless of whether
the argument is of REAL or COMPLEX mode,
regardless of the precision of the argu-
ment, etc., and automatically he will
obtain that one of the EXP family that fits
the requirements.

Each built-in
it is generic, has a
arguments given.

function, whether or not

specified number of
For some built-in func-
tions only a minimum is specified; addi-
tional arguments are optional. For others,
a maximum is specified; only one argument
is required.

Each of the built-in functions that are
not generic has only a single member. When
a reference 1is made to one of these func-

Chapter 5: Procedures, Functions, and Subroutines 69

tions, any arguments whose attributes do
not match the attributes required by that
function are converted to the appropriate
form before the function is invoked. The
characteristics of the value returned are
determined by the function.

Unlike programmer-specified functions,
which always return a scalar value, there
are many built-in functions that may return
an array or structure value when array or
structure expressions are used in certain
of their argument positions. This facility
is useful in array or structure expres-
sions.

The fixed set of names for the built-in
functions is part of the language of PL/I.
However, the identifiers corresponding to
these names are not reserved; any such
identifier can be used by the programmer
for other purposes. If the identifier is
declared explicitly for some other use, any
appearance of the identifier in the scope
of this declaration will refer +to that
other use. The built-in function cannot,
of course, be used in this scope. If the
identifier appears, but not in the scope of
a declaration establishing the identifier
for another use, the identifier will be
regarded as implicitly declared in the
containing external procedure with the
attribute BUILTIN, and this appearance will
refer to the built-in function.

If an identifier corresponding to a
built-in function name is declared to have
a use other than as the built-in function
in some block, the built-in function can be
used in contained blocks by declaring the
identifier with the attribute BUILTIN.

SUBROUTINE REFERENCES AND SUBROUTINE
PROCEDURES

When a procedure is invoked as a subrou-

tine by the execution of a CALL statement
or a statement with a CALL option, the
initial action is the same as if the
procedure were invoked as a function: the

arguments 1in the procedure reference, if
any, are associated with the formal param-
eters and control is passed to the proce-
dure at the denoted entry point. (If the
invocation involves a task option, the
procedure will not necessarily be activated
immediately; see "Asynchronous Operations
and Tasks" in Chapter 6.)

Unlike the function procedure, the sub-
routine procedure does not return an expli-
citly specified value to the point of
invocation. The procedure may terminate in
the following ways:

70

1. Control reaches a RETURN statement for
the procedure. When executed, this
statement returns control to the first
executable statement logically follow-
ing the invoking statement, unless the
invocation specified a task option or
the procedure was invoked by a state-
ment with a CALL option. If a task
option has been used, control is sim-
ply terminated for this task. If the
procedure was invoked by a statement
having a CALL option, control is
returned to that statement at the
point immediately following the CALL
option.

2. Control reaches an END statement for
the procedure, which in this case is
treated as a RETURN statement. The
effect is as in case 1.

3. Control reaches a GO TO statement in

the procedure that transfers control
out of the procedure. (This is not
permitted if the procedure has been

invoked by a statement with a CALL
option or in a CALL statement with a
task option.) In this case, control
will go to the designated statement
(see "The GO TO Statement"). The
statement label designator of the GO
TO statement may be a parameter of
type LABEL, which is associated with a
label argument passed from the invok-
ing procedure.

4, cControl reaches an EXIT or STOP state-
ment.

Example of Function Reference:

COMP: PROCEDURE;

S1l: P10=Q5%POLY5(R0O, VAL1);

POLY5: PROCEDURE (C, X);
RETURN(C+X* (1+X* (2+X* (3+X* (4
+5%X)))));
END POLY5;
END COMP;

In this example, the external procedure
COMP contains the function procedure POLY5,
which is invoked when the expression
O5*%POLY5(R0, VAL1l) is being evaluated dur-
ing execution of the assignment statement
labeled S1. When POLY5 is invoked, the
arguments RO and VALl will be associated
with the parameters C and X, respectively.

The returned value for POLY5 (RO, VAL1)
will be the value of the expression:

RO+VAL1* (1+VAL1* (2+VAL1* (3+VAL1* (4+5%
VAL1))))

Examples of Subroutine Reference:

1. COMP: PROCEDURE;

-

S1l: CALL POLY5 (RO, VAL1l);

S2: P10 = Q5*TEMP;

POLY5: PROCEDURE (C, X);
TEMP=C+X* (1+X* (2+X* (3+X*
(4+5%X))));

RETURN;
END POLY5;
END COMP;

In the above example, the effect is the
same as in the previous example using the
function reference. The subroutine proce-
dure POLY5 is invoked by the CALL statement
labeled sl. The arguments and parameters
are associated as in the previous example,
but here, the value of the expression (the
same as in the previous example) is
assigned within the subroutine to the vari-
able TEMP, which is used by the statement
labeled S2, after +the RETURN statement
passes control back to that statement.
Thus, communication of the wvalue is by
means of the shared variable TEMP, which,
of course, remains available for use fol-
lowing the execution of S2.

In some cases the invoked and the invok-
ing procedure may be separated in such a
way that sharing a name in the above simple
manner 1is not possible (see "Scope of
Declarations"). Another more general meth-
od of communicating values from the invoked
procedure, which may be applied in these
cases, is illustrated in the following
alternative example:

2. COMP: PROCEDURE;

CALL POLY5 (RO, VALl, TEMP);
P10=Q5*TEMP;

Si:
S22

PROCEDURE (C,X,Z);

Z=C+X* (1L+X* (2+X* (3+X*
(4+5*%X))));

POLY5:

Chapter

RETURN;
END POLYS5;

END COMP;

Here, the invocation of POLY5 by the
CALL statement will associate the variable
TEMP with the parameter Z, and the action
will be exactly as in the previous example:
the parameter 2 will effectively be
replaced by the name TEMP in the assignment
statement for Z, and TEMP will be assigned
the value of the expression on the right-
hand side, with RO replacing C and VALl
replacing X, before return to statement S2.
In this case, the value has been
communicated from the subroutine through a
parameter.

The above two examples illustrate how a
single value obtained in a subroutine can
be communicated back to the invoking proce-
dure. The action of a subroutine will
generally be more complex than this; many
communicated variables may be involved,
whether scalar, array, structure, or
statement-label variables; input/output
operations may be specified, etc. 1In con-
trast, the usual purpose of a function
procedure is to return a scalar value.

THE_ARGUMENTS IN A PROCEDURE_ REFERENCE

In general, the arguments in a procedure
reference may be any of the following:

1. Expressions
2. Data elements
3. Entry names (programmer-defined)

4., Built-in Float Arithmetic Generic

Function names (see Appendix 1)
5. Filenames

The attributes of each argument 1in a
procedure reference must, in general, match
the attributes of the corresponding param-
eter at the named entry point. (An excep-
tion in case of string arithmetic data
arguments is described below.)

For example, assume that the procedure
SUB in a program is defined by:
SUB: PROCEDURE (X, Y, Z);
DECLARE X FIXED, Y ENTRY, Z LABEL;
END SUB;
Procedures, Functions, and Subroutines 71

This implies that the formal parameter X
is used as a fixed-point variable with

certain default data attributes, Y is wused
as an entry name, and Z is a statement
label variable in the body of the proce-

dure. Then if SUB is invoked in the

program by the statement:
CALL SUB (R*S, CALC, L5);
it is then necessary that:

1. The expression R*S have all the data
attributes of the parameter X (unless
SUB is described by an ENTRY attri-
bute; see below).

2. CALC be an entry name.
3. L5 be a statement-label designator.

If an argument is an entry name with no
argument list, the entry name (rather than
the function value) is always passed, inde-
pendent of whether the entry name requires
‘parameters.

Example:

DECLARE RANDOM ENTRY RETURNS
(FLOAT) ;

L1l: CALL SUB(RANDOM) ;

L2: CALL SUB1(Y*RANDOM) ;

In statement L1, the entry name RANDOM
is passed. However, in statement L2, the
value of the function RANDOM 1is required,
and this value, multiplied by Y, is passed.

_____ This rule also applies for arguments
to built-in functions.

THE USE OF THE ENTRY ATTRIBUTE

An identifier 1is contextually declared
to be an entry name in a block if it
1. appears as a label to a PROCEDURE or
ENTRY statement or

2. appears in the
keyword CALL or

block following the

name in a
contains an

function
that

3. appears as the
function reference
argument list.

If it is desired to use the identifier
as an entry name in a block where it is not
so declared, the identifier must be given
the ENTRY attribute explicitly in a DECLARE
statement for the block.

As an illustration, in the above
ple, the CALL statement:

exam-—

72

CALL SUB(R*S, CALC, LS5);

has the
argument.

entry name CALC as its second

This appearance of CALC 1is not
recognizable as an entry name by context.
It must previously have been declared
(either contextually, or explicitly in a
DECLARE statement) +to have the attribute
ENTRY.

A more general form of the ENTRY attri-
bute allows the programmer to enumerate the
attributes of the parameters for the named
entry point.

As an illustration, in the above CALL
statement example, the +three parameters
corresponding to the three arguments of the
CALL statement might be described in the
invoking procedure by the statement:

DECLARE SUB ENTRY
LABEL) ;

(FIXED, ENTRY,

This statement specifies that:
1. SUB is an entry name.

2. The entry point SUB has three paramet-

€rs.

3. The first parameter has the FIXED
attribute with certain default data
attributes.

4. The second _parameter has the ENTRY
attribute.

5. The +third parameter has the LABEL

attribute.

The number of parameters and the attri-
butes of each, as described in the ENTRY
attribute specification, must always agree
with the number of parameters and their
attributes, as defined for the described
entry point within the invoked procedure.

One of the applications of the extended
form of the ENTRY attribute is mentioned in
the immediately following description. (A
detailed discussion of the various uses for
the ENTRY attribute, including the IRREDU-
CIBLE, USES, SETS, and GENERIC attributes,
can be found in Chapter 4.)

PASSING ARGUMENTS TO THE ENTRY POINT

When a procedure is invoked at a given
entry point by a procedure reference and
each argument is associated with its cor-
responding formal parameter, the arguments
are said to be passed to the entry point.

The action involved in passing the argu-
ments generally will assume that the attri-
butes of each argument match the attributes
of its corresponding formal parameter, as
described above. However, if the argument
is an expression whose attributes do not
correspond to those declared for the param-
eter associated with that argument, the
expression will be evaluated and converted,
before the argument is passed, to conform
to the attributes described by the corres-
ponding member of the ENTRY attribute list.

As an illustration, in the preceding
example, the first argument in the CALL
statement, which invokes the procedure SUB,
is the expression R*S. Assume that R*S has
the FLOAT attribute with certain default
attributes. These do not match the attri-
butes of the first parameter at the entry
point SUB. Then the ENTRY attribute must
be used in the invoking procedure to speci-
fy the same attributes for the first param-
eter as specified in the invoked procedure
SUB. (The preceding illustration shows one
way of doing this.) Thus, on execution of
the CALL statement, the expression R*S is
evaluated, giving a floating-point result,
which is then converted to a fixed-point
value with the other required attributes,
before being passed to the entry point SUB.

(A detailed description of the action
involved in passing arguments to the
invoked entry point can be found in Chapter
10)

In certain circumstances, the prepara-
tory action includes the construction of a
dummy argument. For example, a dummy argu-
ment is constructed when the argument must
be converted, as in the example of R*S just
discussed, or when the argument is an
expression involving constants or operators
(R*S is again an example of this
circumstance).

In each of its appearances as a ref-
erence in the procedure, the formal param-
eter corresponding to the argument effec-

tively is replaced by the
Thus, all appearances of the parameter
during execution of the procedure are
treated as appearances of the argument
name. However, in the cases where a dummy
argument is constructed, it is the dummy
argument name that replaces the parameter.
Passing an argument does not always imply a
true logical substitution of the argument
name for the parameter in the procedure.
However, in the important case where the
argument is an arithmetic, string, or label
variable having identical attributes with
the corresponding parameter, a logical sub-
stitution does occur. Thus, parameters can

argument name.

be used to communicate values from the
invoked procedure back to the invoking
procedure. Example 2 of "Subroutine Ref-
erences," above, is an illustration of
this.

In the above example, the appearance of
CALC as the second argument when SUB is
called does not imply that the identifier
CALC 1is contextually declared as an entry
name, even though the above ENTRY attribute
for SUB has been given.

THE SPECIAL PROCEDURE ATTRIBUTE RECURSIVE

In the PROCEDURE statement for a given

procedure, certain special attributes that
characterize the procedure itself may be
specified. (For a complete discussion of

these attributes, see "The PROCEDURE State-
ment.") One of these, which has particular
significance, is the attribute RECURSIVE.

When a procedure of a program 1is re-
activated in a task while it is still
active in the same task (see "Activation

and Termination of Blocks"), the procedure
m i} said to be used recursively. Any
procedure used recursively during program
execution must be specified with the RECUR-
SIVE attribute. (See "Data Known to Invo-
cations of Recursive Procedures" in Chapter
10 for additional details.)

Chapter 5: Procedures, Functions, and Subroutines 73

CHAPTER_6: DYNAMIC PROGRAM STRUCTURE

PROGRAM CONTROL

Every program, when it is being execut-
ed, has a control that determines the order
of execution of the statements. For a
discussion of their order see "Sequence of
Control," in Chapter 8.

Execution of the program is initiated by
the operating system, which invokes the
initial procedure. This initial procedure
must be an external procedure that may be
specified with an attribute in the options
list of the OPTIONS attribute (see "The
PROCEDURE Statement"™ in Chapter 8). This
procedure cannot have CONTROLLED parameters
(see "Storage Classes" in this chapter).

ACTIVATION AND_TERMINATION OF_ BLOCKS

A Dbegin block is said to be activated
when control passes through the BEGIN
statement for the block. A procedure block
is said to be activated when the procedure

is invoked at any one of its entry points.

During certain time intervals of the
execution of a program, a block may be
active. A block is active if it has been

s S e

activated and is not yet terminated.

There are a number of ways in which a
block may be terminated. These are implied
by the following rules:

1. A begin block is terminated when con-
trol passes through the END statement
for the block.

block is terminated on
of a RETURN statement or an
(The END
statement;

2. A procedure
execution
END statement for the block.
statement implies a RETURN
see Chapter 8.)

3. A Dblock is terminated on execution of
a GO TO statement contained in the
block which transfers control to a
point not contained in the block.

4. The execution of a STOP statement
causes termination of the major task.
5. The execution of an EXIT statement
causes termination of the task con-
taining the statement and all tasks
attached by this task. Thus, all
blocks corresponding to these tasks

are terminated.

T4

6. When a block B is terminated, all of
the dynamic descendants of B also are
terminated.

DYNAMIC DESCENDANCE

If a block B is activated and control
stays at points internal to B until B is
terminated, no other blocks can be activat-
ed while B is active. (This discussion is

not applicable to the multi-task, or asyn-
chronous, mode of operation, which implies
more than a single control; see

"Asynchronous Operations and Tasks.")

However, another block, Bl, may be acti-
vated from a point internal to block B
while B still remains active. This is
possible only in the following cases:

1. Bl is a procedure block immediately
contained in B (the 1label of Bl is
internal to B) and reached through a
procedure reference.

2. Bl is a begin block internal to B and
reached through normal flow.

3. Bl is a procedure block not contained
in B and reached through a procedure
reference. (Bl1, in this case, may be
identical to B, i.e., a recursive
call. However, it is to be regarded
dynamically as a different block.)

4, Bl is a begin Dblock or a statement
specified by an ON statement (see "The
ON Statement"), and reached through an
interrupt. (For present purposes,
even if Bl is a statement, it can be
regarded as a block, and this case is
dynamically similar to case 1 or case
3 above.)

In any of the above cases, while B1 is
active, it is said to be an an immediate
dynamic descendant of B.

Block Bl may itself have an immediate
dynamic descendant B2, etc., so that a
chain of blocks (B, Bl, B2,...) 1is creat-
ed, where, by definition, all of the blocks
are active. In this chain, each of the
blocks Bl1, B2, etc., 1is said to be a
dynamic descendant of B.

It is important for the programmer to
note that the termination of a given block
may automatically imply the termination of

other blocks and that these blocks need not
necessarily be contained in the given
block; storage for all AUTOMATIC variables
declared in these blocks will be released
at the time of termination (see "Storage
Classes™).

DYNAMIC ENCOMEASSING

Block A dynamically encompasses block B,
or block B 1is dynamically encompassed by
block A, if B is a dynamic descendant of A.

ALLOCATION OF DATA_ AND STORAGE CLASSES

Because the internal storage of any
computer 1is limited in size, the efficient
use of this storage during the execution of
a program is frequently a crucial consider-
ation. The simple static process of data
allocation. used by many compilers -- the
assignment of a distinct storage region for
each distinct variable used in the source
program -- may be wasteful. Multiple use
of a storage region for different data
during program execution can reduce the
total amount of storage required.

Provisions are included in the language
to give the programmer virtually any degree
of control over the allocation of storage
for the data variables in a program. Oon
the other hand, the entire problem of
allocation can be ignored completely by the
programmer, if storage economization is of
little significance in his situation, and a
reasonably efficient use of storage usually
will still be obtained automatically.

DEFINITIONS AND RULES

Storage is said to be allocated for a
variable when a certain region of storage
is associated with the variable. Alloca-
tion for a given variable may take place
before execution of the pro-

Storage may be allocated dynamically for
a variable and subsequently released.
Thus, this storage is freed for possible
use 1in 1later allocations. If storage has
been allocated for a variable and not
subsequently released, the variable is said
to be in _an allocated state.

When a variable appears in a statement
of a source program, the appearance is
called a reference if it corresponds either

to the assignment of a value to the varia-
ble (e.g., an appearance on the left side
of an assignment statement) or to a use of
the value of the variable (e.g., appearance
in an expression to be evaluated).

At_any point where a variable appears as

a_reference, it must be in an allocated
state.
Note: An unallocated variable may appear

as an argument to a procedure with a
corresponding CONTROLLED parameter, as an
argument to the ALLOCATION function, or in
an ALLOCATE statement.

STORAGE CLASSES

Every variable in a program must have a
storage class, which specifies +the manner
of storage allocation.

There are three storage classes. The
storage class is specified by declaring the
variable with one of the three storage
class attributes STATIC, AUTOMATIC, or CON-

TROLLED (based or nonbased). -The storage
class may be declared explicitly or by
default.

The Static Storage Class

Storage for a variable with attribute
STATIC is allocated before execution of the
program and is never released during execu-
tion.

The scope attribute (see Chapter 4) of a
STATIC variable may be INTERNAL or EXTER-
NAL. An EXTERNAL variable with unspecified
storage class has, by default, the STATIC
storage class attribute.

The Automatic Storage Class

If a variable has the attribute AUTOMAT-
IC, the status of the block containing this
variable (see "Data Description") deter-
mines dynamic allocation for the variable.
Whenever this block 1is activated during
execution of a program, storage will be
allocated for the variable, and the varia-
ble will remain in an allocated state until
termination of the block. At the time of
termination, the storage will be released.

Chapter 6: Dynamic Program Structure 75

Thus, the time interval during which the
variable is in an allocated state will
necessarily include the intervals when the
variable is known (see "Scope of
Declarations").

Termination of a block by means of a GO
TO statement may imply simultaneous termi-
nation of other blocks and, consequently,
simultaneous release of storage for all

AUTOMATIC variables declared in these
blocks (see "The GO TO Statement").
If the block is a procedure and is

called recursively (reactivated one or more
times before return), previously allocated
storage for +the AUTOMATIC variable is
"pushed down" on each entrance and "popped

up" on each return to yield +the proper
generation of storage for the variable
after each return, until the final return

out of the procedure.
Note: The terms "pushed down" and "popped
up" refer to the notion of a push-down
stack. A push-down stack is a logical
device S, similar in behavior to a physical
stacking process. When an element is
placed in S, it is conceptually placed on
top of the elements already in S, which are
"pushed down." At any time, if S is not
empty, the top element -- the element most
recently placed in S -- can be removed from
S, and the remaining elements are "popped
up. "w

The scope attribute (see Chapter #) of
an AUTOMATIC variable must be INTERNAL. An
INTERNAL variable with unspecified storage
class has, by default, AUTOMATIC storage
class attribute.

The Controlled Storage Class

The ALLOCATE statement (see Chapter 8)
specifies one or more variables, each with
certain optional attributes. Execution of
the statement causes the allocation of
storage for the variable specified.

The following four paragraphs apply only
to nonbased controlled variables.

If a variable has the attribute CON-
TROLLED, storage allocation must be expli-
citly specified for the variable by the
ALLOCATE and FREE statements.

The FREE statement specifies one or more
variables, and execution of the statement
causes the storage most recently allocated
for the variables to be released.

76

At some point in a program,
be known whether a variable

it may not
X is in an

allocated state. The built-in function
ALLOCATION (see Appendix 1) is provided to
test this state. The function reference
ALLOCATION (X) will return the value '1°'B
if X is in an allocated state, and the
value *0°'B if not.

The scope attribute of a CONTROLLED

variable may be INTERNAL or EXTERNAL.
Example:

A: PROCEDURE;
DECLARE X STATIC;

B: PROCEDURE;
DECLARE Y (100) CONTROLLED, Z CHAR-
ACTER (1000);

ALLOCATE Y;

C: BEGIN;
DECLARE Z (100);

END A;

Assume in the above example that the
termination of procedure A occurs on the
return implied by END A, the termination of
procedure B occurs on the RETURN statement,
and the termination of block C occurs at
END C. Then in this example:

Storage for the static variable X is
allocated before execution and is never
released.

The character-string variable Z is AUTO-
MATIC by default. Storage is allocated
for this Z on entrance to procedure B
and is released on execution of the
RETURN statement.

The array-variable 2 is AUTOMATIC by
default. Storage is allocated for this
Z at the beginning of execution of block
C and is released at END C.

Storage for the CONTROLLED variable Y is
allocated on execution of the ALLOCATE
statement and is released on execution
of the FREE statement. After execution
of the FREE statement, the variable Y
presumably is not used, but the
character-string variable Z can be used,
since storage is not released for this
variable until the termination of proce-
dure B.

The allocation of based variables is
discussed in "The ALLOCATE Statement"
(Chapter 8) and in "List Processing"
(Chapter 10).

ASYNCHRONOUS OPERATIONS AND TASKS

PL/I allows tasks to be created by the
programmer and provides facilities for the
following:

1. Synchronizing tasks
task is

2. Testing whether or not a
complete

3. Changing the priority of tasks

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Unless the program specifies the crea-
tion of tasks, the execution of the state-
ments of the program will proceed serially
in time, according to the sequence desig-
nated by the order of the statements and
the control statements (see "Sequence of
Control"™ in Chapter 8). Such operation is
said to be synchronous.

In addition to full facilities for con-
ventional synchronous processing, means are
provided for performing operations asyn-

Some reasons for considering the use of
asynchronous operations are:

1. The programmer may wish to make use of
computer facilities which can operate
simultaneously, €.g., input/output
channels, multiple central processing
units. i

written in which
initiate or com-
at unpredictable

2. A program may be
input/output units
plete transmission

times,
nals.

e.g., disc operations, termi-

The following two diagrams distinguish
between synchronous and asynchronous opera-
tions. The first diagram depicts the seri-
al action of synchronous operations, and
the second diagram depicts the parallel
action of asynchronous operations. (The
circles represent statements.)

———0—-0 o o
time—->
r—O0———0——————— e
|
I
ro O O ceow
|
|
o0—-0-0+ [e} o o
time-->

In asynchronous operation, once a new
line has been started, the statements on
that 1line are executed in sequence, but
independently of the statements on any
other 1line. Statements on any two lines
need not necessarily be executed simultane-
ously -- whether this occurs depends on the
resources and state of the system.

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS

In order that the result of an asynchro-
nous operation may be made available to
other procedures, means are provided to
synchronize two or more asynchronous opera-
tions.

The following diagram illustrates this:

A B C D E F G
0——0——0——0 o o O——vew
|
time--> |
|
————eeeeO=—O= ¢ 2aeasee—0 e} o
L M N (0] P
Wait

Assume that before statement N can be
executed, both M and E must have been
executed. M therefore issues a WAIT state-
ment which will suspend operation on that
line until E has completed. After N, the
statements 0, P,..., are executed synchro-
nously, as are the statements Fy Greooy-

Chapter 6. Dynamic Program Structure 77

TASK AND EVENTS

In PL/I, asynchronous operations result
from the creation, by the programmer, of
tasks. The synchronizing of operations is
obtained by waiting on events.

A task is an identifiable execution of a
set of instructions. A task is dynamic,
and only exists during the execution of a
program or part of a program.

A task is not a set of instructions, but
an execution of a set of instructions. The
instructions themselves, as written by the
programmer, may in fact be executed several
times in different tasks.

It is necessary for at least one task to
exist when a PL/I program is executed.
Thus when an external procedure is first
entered, its execution is part of a task.
This particular task is called the major
task; it is created by the operating envi-
ronment and its creation does not necessar-
ily concern the PL/I programmer. If the
programmer 1is concerned with only synchro-
nous operations, then the major task will
be the program itself.

In order to initiate asynchronous opera-
tions, the programmer has to create new

tasks, as described below. All tasks
created by the programmer are called sub-
tasks.

With each task, except the major task,

it is possible to associate a task name.
The task name may be used to refer to and
set the priority of the task.

A task may be suspended by the
programmer until some point in the execu-
tion of another task has been reached. The
specified point is known as an event and
the record of its completion 1is contained
in an event name. (See the EVENT built-in
function and the EVENT pseudo-variable.)

An event name may be associated with the
completion of a task. It is necessary to
specify such an event name if the program-
mer wishes to synchronize a point in one
task with the completion of another task,
by means of the WAIT statement.

Other event names may be defined by the
programmer and used in WAIT statements. In
this way, the programmer can synchronize a
task with events other than the completion
of another task. Event names may be set by
referring to them in assignment statement
by means of the EVENT pseudo-variable.

78

THE CREATION OF TASKS

In PL/I tasks are created by writing:

A TASK option
An EVENT option
A PRIORITY option

or any combination of these options in a
CALL statement (see "The CALL Statement" in
Chapter 8). The called procedure will then
be executed asynchronously with the calling
procedure. The CALL statement itself is
not part of the newly-created task. The
execution of the calling procedure is known
as the attaching task. The execution of
the called procedure is known as the
attached task.

The TASK option is given 1in order to
name the task created by the CALL. This is
necessary if the programmer wishes to exam-

ine or change the priority of the called
procedure, since the PRIORITY function and
pseudo-variable have a task name as an
argument.

The EVENT option is given if the pro-
grammer wishes to issue a WAIT statement
which will wait on the completion of the

task created by the: CALL.

The task created by the CALL statement
must be given a priority. This priority
may be given in either of two ways:

1. through the PRIORITY option in the
CALL statement, or

2. by assignment to the PRIORITY pseudo-
variable prior to the execution of the
CALL statement that creates the task.

The term "task option"™ will be wused in
all 1later discussions to denote any one of
the three options TASK, EVENT, or PRIORITY,
or any part of these options, or all three.

TERMINATION OF TASKS

A task may be terminated
completed) in one of the four
ways:

(i.e.,
following

1. Control for the task reaches an EXIT
statement (see Chapter 8 for a
discussion of each of the statements
mentioned here).

2. Control for
statement.

any task reaches a STOP

3. Control for the task reaches a
statement for the
with a task option.

RETURN
procedure invoked

4. control for the task reaches
statement for the
with a task option.

an END
procedure invoked

ALLOCATION OF DATA IN TASKS

The rules of scope and storage
tion hold across task boundaries. If stor-
age 1is allocated for a variable in the
attaching task, this allocation may apply
to the attached task, so that the variable
may appear as a reference in the attached
task. It 1is the responsibility of the
programmer to be certain that storage for

alloca-

such a variable is not released too early
in the attaching task. (Normally, this is
done by synchronizing by use of the WAIT

statement.)

(Further details concerning tasks as
related to storage allocation and other
special considerations can be found in
Chapter 10; also see "The WAIT Statement"™
for additional information and examples.)

INTERRUPT OPERATIONS

During the course of program execution
any one of a certain set of conditions may
occur that can result in an interrupt. An
interrupt operation causes the suspension
of normal program activities, in order to
perform a special action; after the special
action, program activities may or may not
resume at the point where they were sus-
pended. The time point of an interrupt is,
in general, unpredictable.

For most conditions that can cause an
interrupt, the special action to be taken
may be specified by the programmer. To do
this, he may specify the condition in an ON
statement; therefore these conditions are
known as the ON-conditions. A complete
list and description of the ON-conditions

can be found in Appendix 3. With two
exceptions (see "Programmer Defined ON-
Conditions,"” in this chapter), each ON-

condition is named with a unique identifier

suggestive of the condition (e.g.,
ZERODIVIDE names the condition obtaining
whenever an attempt is made to divide by

zero). This collection of names, like the
built-in function names, is an intrinsic
part of the language, but the names are not
reserved; the programmer may use them for
other purposes, so long as no ambiguity
exists.

PURPOSE OF THE CONDITION PREFIX

In general, during the execution of a
statement, an ON condition may be in either
an enabled or disabled state.

If a particular condition is enabled and
an interrupt occurs during execution of the
statement, the action specification for the
condition is executed. This action speci-
fication may either be standard system
action or it may have been specified by the
programmer through the use of an ON state-
ment.

If a particular condition is disabled
during execution of a statement, it is
assumed that the condition will not occur.
The result is usually unpredictable for a
statement in which a disabled condition
occurs. However, 1in certain cases the
results are defined (e.g., the CHECK
condition).

By means of condition prefixes, the
programmer can control the enabled/disabled
status of the following ON conditions:

CHECK SIZE
CONVERSION SUBSCRIPTRANGE
FIXEDOVERFLOW UNDERFLOW
OVERFLOW ZERODIVIDE

The appearance of any of the above
keywords in a prefix list causes the asso-
ciated condition to be enabled for the
scope of the prefix. The appearance of any
of the above preceded by a NO (with no
separating blank) causes the associated
condition to be disabled for the scope of
the prefix.

SCOPE OF THE CONDITION PREFIX

The scope of the prefix depends upon the
statement to which it is attached.

If the statement is a PROCEDURE or BEGIN
statement, the scope of the prefix is the
block defined by this statement, including
all nested blocks, except those blocks and

statements for which the condition is re-
specified. The scope does not include
procedures that 1lie outside the scope as
defined above but which may be invoked by

the execution of statements in this scope.

If the statement is an IF statement or
an ON statement, the scope of the prefix
does not include the blocks or groups that
are part of the statement. Any such block
may also have an attached prefix, whose
scope rules are implied by the other rules
given here.

Chapter 6. Dynamic Program Structure 79

For any other statement, the scope of
the prefix is that of the statement itself,
including any expressions evaluated during
the execution of the statement but not any
procedure explicitly called by the
statement.

USE OF THE ON STATEMENT

define the action to be
interrupt occurs, the pro-

In order to
taken when an

grammer may write an ON statement, which
has the general form:
ON condition-specification action-

specification

The "condition specification®™ either is
an ON-condition name or denotes a
programmer—-defined condition, and the
"action specification" is a single simple
statement or begin block, optionally
preceded by the keyword SNAP (see "The ON
Statement" for complete syntax and

details). If the single statement is null,
control 1is given back +to the point of
interrupt.

When an ON statement that is internal to
a given block (for example, a block B) is
executed, it causes a preparatory action
with the following effect:

If, during the execution of any state-
ment after the execution of the ON
statement and before the termination
of block B (including the execution of
statements in all dynamic descendants
of block B), the condition specified
in the ON statement ever occurs and an
interrupt results, the statement or
begin block specified in the ON state-
ment will be executed as though it
were invoked as a procedure Dblock.
(If SNAP also has been specified, a
standard action providing program
checkout information will precede this
pseudo-invocation.) Control normally
will Dbe returned to the activity fol-
lowing the one that was interrupted.

When an ON statement specifying a given
condition is executed, the action to be
taken is established by the execution. The
time interval during which this action
specification is effective is defined above
in the description of the effect of an ON
statement. There are two qualifications to
this description:

1. If, after a given action is esta-
blished by execution of an ON state-
ment, and while this action specifi-
cation is still effective, another ON
statement specifying the same condi-

80

tion 1is executed, then this latter ON
statement will take effect as des-

cribed above, so that its specified
action will determine the interrupt
action for the given condition. (The
effect of the o0ld ON statement is
either temporarily suspended or com-
pletely nullified, depending upon

whether or not the new ON statement is
in a block dynamically descendant from
the block to which the old ON state-
ment is internal; see "The ON
Statement"” and "The REVERT Statement"
for more details.)

2. There are eight ON-conditions whose
names (possibly preceded by the word
"NO") may appear in a prefix to a
statement. Even when one of these
conditions appears in an ON statement,
occurrence of the condition will not
necessarily result in an interrupt.
For an interrupt to occur, there are
certain additional requirements, which
are described in the following para-
graph.

There are three of these eight ON-
conditions, SIZE, SUBSCRIPTRANGE, and
CHECK (identifier 1list), for which an
interrupt will not take place when the
condition occurs unless the programmer
specifically designates that the
interrupt 1is to take place. He may
enable this condition by explicitly
specifying the condition in a prefix
whose scope will cover the calculation
where the condition may occur. If a
calculation resulting in the occur-
rence of either of these conditions
does not lie within the scope of such
a prefix, no interrupts will occur.
The other five of these eight special
ON-conditions, namely OVERFLOW, UNDER-
FLOW, ZERODIVIDE, CONVERSION, and FIX-
EDOVERFLOW, are always enabled, but
the programmer may specifically desig-

nate that an interrupt is not to take
place. An interrupt for any one of
these conditions will always take

place when the condition occurs unless
the occurrence is in a calculation
lying within the scope of a prefix
specifying NOOVERFLOW, NOUNDERFLOW,
NOZERODIVIDE, NOCONVERSION, or NOFIXE-
DOVERFLOW, respectively.

All other conditions, whose names cannot
be used in a prefix, are always enabled.

SYSTEM INTERRUPT ACTION

Each of the ON-conditions has a standard
action defined for it if an interrupt
should occur. If there has been no pre-

vious execution of an ON statement (in
which the programmer specifies the inter-
rupt action), any interrupt caused by the
occurrence of the condition during program
execution will result in a standard system
nature

of the condition. If the programmer does
not want the system action in the case
where one of these conditions may occur and
cause an interrupt, he must specify an
alternative action for the condition
through use of the ON statement.

In some situations, the programmer may
want to specify his own action for a given
condition, to have it hold for part of the
execution of the program, and then to have
this specification nullified and allow the
standard system action. In this case, he
may use the special action-specification
SYSTEM, as follows:

ON condition-name SYSTEM;
Example 1:

A: PROCEDURE;

ON OVERFLOW

BEGIN;

DECLARE NUMBOV STATIC
INITIAL (0);

NUMBOV=NUMBOV + 1;

IF NUMBOV = 100 THEN GO
TO OVERR;

END;

ON OVERFLOW;

ON OVERFLOW SYSTEM;

END A;

In the above example, assume that the
program consists only of procedure A, that
the three ON statements are the only ON
statements involving the OVERFLOW condi-
tion, that they are internal to procedure
A, and that they are executed in their
physical order.

When program execution begins, the OVER-
FLOW condition 1is enabled by the system;
any floating-point overflow condition that
occurs before the first ON OVERFLOW state-
ment is executed will result in an inter-
rupt, with standard system action. Howev-
er, the execution of the first ON OVERFLOW
statement establishes the action specified
in the BEGIN block. (The number of over-

flows is counted and if this number has not
reached 100, the action is finished.) Any
OVERFLOW interrupts will receive this
action until the second ON OVERFLOW state-
ment 1is executed. The action specified
here is a null statement; any subsequent
OVERFLOW interrupts will effectively be
ignored until control reaches the third ON
OVERFLOW statement, which reestablishes the
standard system action.

Example 2:

(SIZE): A: PROCEDURE;

ON SIZE GO TO AERR;

END A;

(SIZE, NOOVERFLOW): B:

PROCEDURE;

ON SIZE GO TO BERR;

RETURN;
END B;

In the above example, the prefix (SIZE)
enables that condition for procedure A and
specifies that if a SIZE error (see Appen-
dix 3) occurs during any calculation in
procedure A, an interrupt is to take place.
The prefix (SIZE, NOOVERFLOW) for procedure
B specifies the same requirement with res-
pect to a SIZE error for procedure B; in
addition, it specifies for procedure B that
any interrupt that might be caused by an
OVERFLOW condition is to be suppressed.

After the beginning of execution of
procedure A, and before the execution of
the first ON statement, any SIZE error will
result in an interrupt with standard system
action. After execution of this ON state-
ment, and before execution of the ON state-
ment in the invoked procedure B, any SIZE
error will result in an interrupt with the
action GO TO AERR. After execution of the
ON statement in procedure B, the action GO
TO BERR becomes established for the SIZE
condition, but the effect of the previous
ON statement is suspended only temporarily.
After the RETURN statement in procedure B
is executed, the effect of this previous ON
statement is reinstated, so that SIZE
errors occurring after this point again
result in the action GO TO AERR.

Chapter 6. Dynamic Program Structure 81

If any floating-point overflow condition
occurs during the execution of procedure A,
an interrupt will result with the standard
system action for the OVERFLOW condition.
However, for any occurrence of an OVERFLOW
condition during the execution of procedure
B, the interrupt will be suppressed.

Example 3:
(NOOVERFLOW): A: PROCEDURE;
(OVERFLOW) :B: BEéIN;
EN% B;
ENI:D A;

In the above example, interrupts will be
suppressed for OVERFLOW conditions occur-
ring during execution of that part of
procedure A that is not included in block
B. OVERFLOW conditions occurring during
execution of block B will result in an
interrupt.

USE OF THE REVERT STATEMENT

The REVERT statement may be used, fol-
lowing an ON statement, to reinstate an
action specification that existed in the
immediate, dynamically encompassing block
without having to return control to that

block (see "The REVERT Statement," in Chap-

ter 8 for format and rules).
Example:
(SIZE) : A: PROCEDURE;
ON SIZE GO TO AERR;
CALL B;
END A;
(SIZE): B: PROCEDURE;

ON SIZE GO TO BERR;

REVERT SIZE;

END B;

82

In the above example, if a SIZE error
occurs 1in procedure B after execution of
the ON statement, an interrupt will take
place with the resulting action GO TO BERR.
After execution of the REVERT statement,
the condition as specified by the ON state-
ment in procedure A is reinstated. Program
control remains in procedure B, but any
sulisequent SIZE error that occurs in proce-
dure B will cause an interrupt with the
action GO TO AERR.

PROGRAMMER-DEFINED ON-CONDITIONS

There are two kinds of ON-conditions the
programmer may construct:

1. An arbitrary identifier can be used to
create a condition name by means of
the keyword CONDITION used in the ON
statement, as follows:

ON CONDITION(identifier)
specification

action-

Such a statement contextually declares
the "identifier" +to be a condition-
name and the execution of the
statement provides an action specifi-
cation. The condition can be caused
to "occur" only by the execution of a
SIGNAL statement (see "The SIGNAL
Statement").

For example, if the
statement is executed:

following

ON CONDITION(KEY) block

and later
executed:

the following statement is

SIGNAL CONDITION (KEY) ;

then the latter execution will (by
definition of the SIGNAL statement)
cause an interrupt, with the action
defined by the block in the ON state-
ment.

2. The CHECK (identifier 1list), where
"identifier 1list" represents variables
or labels declared in the program, can
appear as the condition specification
in the ON statement. Whenever one of
the variables in the list is assigned
a value, or one of the procedures or
statements whose label appears in the
list is executed and if the condition
is enabled, the condition defined by
this specification is regarded as
occurring, and an interrupt will take
place. (For a precise explanation of
this kind of condition, see Appendix
3, "ON Conditions.")

FACILITIES FOR PROGRAM CHECKOUT

The programmer-specified condition des-
cribed above is a powerful tool for program
checkout. As an example of its use, sup-
pose that a block contains the prefix
(CHECK (A, SUB1,ST5)) and that the following
statement is executed:

ON CHECK (A, SUB1, ST5) SYSTEM;
In the example, A is a data variable,
SUB1 is a procedure name, and ST5 is a
statement label. Then, whenever a value is
assigned to A (or to any part of A, if A is
an array or structure name), an interrupt
occurs, and A is printed out on the stand-

ard output file (SYSPRINT) with its new
value. If the statement labeled ST5 or the

procedure SUB1l is executed,
printed out.

the label is

Another useful ON-condition is the con-
dition named SUBSCRIPTRANGE. Parts of the
program can be designated by the program-
mer, using the keyword SUBSCRIPTRANGE in
appropriate prefixes, to receive constant
monitoring of subscript values. Whenever
the value of some subscript in some array
goes out of its designated range, an inter-
rupt will occur, and action, specified by a
previously executed ON statement, may take
place to correct the error.

The SIGNAL statement also will be found
useful for checkout, since it can be wused
to simulate the occurrence of any ON-
condition (see "The SIGNAL Statement").

Chapter 6. Dynamic Program Structure 83

CHAPTER 7. INPUT/OUTPUT

A collection of data external to the
program constitutes a data set. Input
activity transmits data from a data set to
a program. Output activity transmits data
from a program to a data set. Input/output
statements refer to a filename declared in
the program.

In STREAM input/output, the data set is
regarded as a continuous stream of
characters. The GET and PUT statements are
used to transmit data values from and to
the data set. Conversions may occur during
transmission (see "Data Stream Transmis-
sion," below).

In RECORD input/output, the data set
consists of discrete records. The READ and
WRITE statements cause a single record to
be transmitted from or to +the data set.
Transmission is direct, without any conver-
sion, either directly to data variables or
to an intermediate, addressable buffer.
When transmission is to or from data wvaria-
bles, the attributes of the variables
should accurately describe the composition
of the record.

illustrations of
see Examples 1 and

For annotated
input/output operations,
2 in Appendix 6.

FILE OPENING AND FILE ATTRIBUTES

The file attributes are discussed in
Chapter 4. This section describes how
attributes are collected and become asso-

ciated with a file, as well as describing
how a file is opened.

The file attributes can be divided into
two categories, alternative attributes and
additive attributes. Alternative attri-
butes are those in which one of a group may
be selected. If there is no explicit or
implied declaration for one of the alterna-
tives, and if one of those alternatives is
required, a default attribute is selected.
Additive attributes are those that never
are applied by default and must always be
stated explicitly, either in a file dec-

laration or in the OPEN statement (the one
exception is that PRINT may be applied by
default for the SYSPRINT file, see

"Standard Files").

Following 1is a summary of the alterna-
tive attributes and their defaults:

8u

Attributes Default
STREAM | RECORD STREAM
INPUT|OUTPUT|UPDATE INPUT
SEQUENTIAL|DIRECT SEQUENTIAL
BUFFERED|UNBUFFERED BUFFERED
INTERNAL| EXTERNAL EXTERNAL
Following is a 1list of the additive
attributes:

PRINT

BACKWARDS

EXCLUSIVE

KEYED (decimal-integer-constant)
ENVIRONMENT (option-1list)

OPENING A FILE

The opening of a file is the means by
which a filename is associated with a
particular data set. The identity of the
data set can be specified through the TITLE
option of the OPEN statement; otherwise,
the filename will specify the identity of
the data set. A part of the opening
process 1is the completion of the set of
attributes that describe the composition of
the data set and the method in which the
individuwal records of the data set will be
acgessed. A file can be opened either
explicitly or implicitly.

Explicit Opening

A file is opened explicitly through

execution of an OPEN statement that speci-
fies the filename. The OPEN statement may
list any of the attributes given above

except the ENVIRONMENT, INTERNAL, or EXTER-
NAL attributes. Attributes 1listed in an
OPEN statement are merged with any attri-
butes listed in a file declaration for that
filename. In an explicit opening, the OPEN
statement must be executed prior to the
execution of any of the statements 1listed
below under "Implicit Opening" that refer
to that filename.

Implicit Opening

An implicit opening of a file may occur
if one of the statements listed below is
executed prior to the execution of an OPEN
statement specifying the same filename.
The statement type is used to determine the

usage and function attributes of the file.
The effect of an implicit opening, caused
by one of these statements, is as if the
statement were preceded by an OPEN state-
ment specifying the attributes deduced from
the statement type:

Following is a 1list of +the statement
identifiers and the attributes deduced from
each:

Statement Identifier Attributes Deduced

GET STREAM, INPUT
PUT STREAM, OUTPUT
READ RECORD, INPUT
WRITE RECORD, OUTPUT

REWRITE
LOCATE

RECORD, UPDATE
RECORD, OUTPUT,
SEQUENTIAL,

BUFFERED
RECORD, DIRECT,
UPDATE
RECORD, DIRECT,
UPDATE,
EXCLUSIVE

DELETE

UNLOCK

Merging of Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged--explicitly or

implicitly--as the result of the file open-
ing. For example, the attributes INPUT and
UPDATE are in conflict, as are the attri-
butes UPDATE and STREAM.

After the attributes are merged, the
attribute implications, listed below, are
applied prior to the application of default
attributes discussed earlier in this sec-
tion. Implied attributes can also cause a
conflict. If a conflict in attributes
exists after the application of default

attributes, the UNDEFINEDFILE condition is
raised. ‘

Following is a list of attributes and
the other attributes that each implies

after merging:

Merged Attribute Implied Attributel(s)

UPDATE RECORD
SEQUENTIAL RECORD
DIRECT RECORD, KEYED
BUFFERED RECORD,
SEQUENTIAL
UNBUFFERED RECORD,
SEQUENTIAL
PRINT OUTPUT, STREAM
BACKWARDS RECORD,
SEQUENTIAL,
INPUT

EXCLUSIVE RECORD, KEYED,
DIRECT,
UPDATE
KEYED RECORD

The following two examples illustrate
attribute merging for an explicit opening
and for an implicit opening:

Explicit opening example

DECLARE LISTING FILE STREAM;

-

-

OPEN FILE (LISTING) PRINT;

Attributes after merge due to
cution of the
STREAM and PRINT.

exe-
OPEN statement are

Attributes after implication are
STREAM, PRINT, and OUTPUT.
Attributes after default applica-
tion are STREAM, PRINT, OUTPUT, and
EXTERNAL.

Implicit opening example

DECLARE MASTER FILE KEYED

INTERNAL;

(10)

READ FILE (MASTER) INTO
(MASTER_RECORD)
KEYTO (MASTER_KEY);

Attributes after merge due to the
opening caused by execution of the
READ statement are KEYED (10),
INTERNAL, RECORD, and INPUT.

Attributes after implication are
KEYED (10), INTERNAL, RECORD and
INPUT. There are no additional

attributes implied.

Attributes after default applica-
tion are KEYED (10), INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUF-
FERED.

DATA_STREAM TRANSMISSION

There are three modes of STREAM trans-
mission: 1list-directed, data-directed, and
edit-directed. All of these modes of
transmission utilize data specifications as
described in the next section. This sec-
tion discusses the general characteristics
of the transmission modes. The details of
these transmission modes are discussed
later in the chapter.

Chapter 7: Input/Output 85

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the
user to specify the storage area to which
data is assigned or from which data is
transmitted without specifying the format.

_____ The data in the stream is in the
form of optionally signed valid constants
or of expressions to represent complex
constants. The program storage areas to
which the data is to be assigned is speci-
fied by a data 1list.

Output: The data values to be transmitted
are specified by a data list. The form of
the data placed in the stream is a function
of the data value and precision.

DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the

user to read or write self-identifying
data.
Input: The data in the stream is in the

form of optionally signed valid constants
and includes information identifying the
program storage areas to which the data is
to be assigned.

Output: The data values to be transmitted
are specified by a data list. The data
placed in the stream has the form of

constants and includes the name of the data
being transmitted.

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission
user to specify the storage area to which
data is to be assigned or from which data
is to be transmitted and the form of data
fields in the stream.

permits the

_____ The form of the data in the stream
is defined by a format list. The program
storage areas to which the data is to be
assigned is specified by a data list.

Output: The data values to be
are defined by a data list. The form that
the data 1is to have in the stream is
defined by a format 1list.

transmitted

86

DATA STREAM DATA SPECIFICATIONS

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications cor-
respond to the modes of transmission.

DATA LISTS

List-directed, data-directed, and edit-
directed data specifications require a data

list to specify the data items to be
transmitted.
General format:
(element [, element] ...)

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules for each are as
follows:

1. On input, each data-list element for
edit-directed and 1list-directed data
may be one of the following: a scalar
name, an array name, a structure name,
a pseudo-variable, a pseudo-array, a
pseudo-structure, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, each data-list element
may be an unsubscripted scalar, array
or structure name.

each data-list element for
edit-directed and 1list-directed data
specifications may be one of the fol-
lowing: a scalar expression, an array
expression, a structure expression, or
a repetitive specification involving

2. On output,

any of these elements. For a data-
directed data specification, each
data-list element may be a scalar,

array, or structure name, or a repeti-
tive specification involving any of
these elements.

3. The elements of a data list must be of
arithmetic or string data type.

Repetitive Specification

General format is shown in Figure 1.

[o e e . e . e e, e e

expression-1 [

variable

(element [, elementl... DO
pseudo-variable

A specification has the following format:

TO expression-2

BY expression-3

[BY expression-3]

[TO expression-21]

; = specification
[, specificationl...)

e e e s e e o — — i —

] [WHILE (expression-4)]

Figure 1.

Syntax rules:

Each element in the element 1list of
the repetitive specification is des-
cribed for data-list elements above.

The expressions in the
are described as follows:

specification

a. Each expression in the specifi-
cation is a scalar expression.

b. In the specification, expression 1
represents the starting value of
the control variable or pseudo-
variable. Expression 3 represents
the increment to be added to the
control variable after each
repetition of data-list elements
in the repetitive specification.
Expression 2 represents the termi-
nating value of the control varia-
ble. The exact meaning of the
specification is identical to that

of a DO statement with the same
specification. When the 1last
specification is completed, con-

trol passes to the next element in
the data list.

Repetitive specification may be nested
to a depth whose maximum is
implementation-defined. That is, each
element in the element list may be a

repetitive specification. A
repetitive specification involving m
elements repeated n times is equival-

ent to m*n elements. For example,
consider the following statement:

GET LIST ((A(I,J) DO I =1 TO 2)

DO J = 3 TO W4);

This is equivalent to:

DO J = 3 TO 4;
DO I =1 TO 2;
GET LIST (A(I,Jd));
END;

END;

General Format for Repetitive Specification.

It gives the elements of the array A in
the following order:

a(1,3), a(2,3), A(1,4), A(2,4)

Note: The DO keyword is used in the repet-
itive specification to indicate iteration

in a manner similar to a DO statement. A
corresponding END statement is not
required.

Transmission of Data-List Elements

If a data-list element
mode, the real part is
the imaginary part.

is of complex
transmitted before

If a data-list element is an array name,

the elements of the array are transmitted
in row-major order, that is, with the
rightmost subscript of the array varying

most frequently.

If a data-list element 1is a structure
name, the elements of the structure are
transmitted in the order specified in the
structure declaration. For example, if the
structure declaration was:

DECLARE 1A(10), 2B, 2C;
then the statement
PUT FILE (X) LIST (R);

would result in the output being ordered as
follows:

A.B(1)
A.C(3)

A.C(1)
etc.

A.B(2) A.c(2) A.B(3)

ew e e

I1f, however, the declaration had been:

DECLARE 1A, 2B(10), 2C(10);

then the same PUT statement would produce:

A.B(1) A.B(2) A.B(10)

A.C(1) A.c(2) A.C(3)

A.B(3)

A.Cc(10).

Chapter 7: Input/Output 87

If, within a data list used in an input
statement, a variable is assigned a value,
this new value is used in all later ref-
erences in the data list, and the format

list, if present.
Example:
In the following statement, B is a

structure, XSTRING is a character

and C is an array:

string,

DECLARE A FLOAT, 1B, 2P, 2E, 3F,
XSTRING
CHARACTER (6), C(10) FIXED;

The following data list, involving these
data items, and the scalar variable A, may
be used for input or output:

(A,B, SUBSTR (XSTRING, 2),

(C(I) DO I =2 TO 7))
The data-list elements are transmitted
in the following order:

A -The scalar variable is trans-
mitted.

P,F-The elements of the
B are transmitted.

structure

SUBSTR (XSTRING, 2)-The second through

sixth characters of the string
XSTRING are transmitted.

C(2)y, C(3)geeaey C(7). The six speci-
fied elements of the array are

transmitted.

LIST-DIRECTED DATA SPECIFICATION

General format:
LIST data-list
Syntax rules:

The "data 1list" is
preceding discussion.

described in the

List-Directed Input Format

When the data item is an array name and
the data consists of constants, the first
constant is assigned to the first element
of the array, the following constant to the
second element, etc., in row-major order.

A structure name in the data 1list rep-
resents a list of the contained scalar
variables and arrays in the order specified
in the structure description.

88

Data in the stream has one of the

following general forms:

[+|-]1 arithmetic-constant
character-string-constant
bit-string-constant
[(+|-]lreal-constant{+|-}imaginary-constant

Sterling constants may not be wused. A
string constant must be one of the two
permitted forms 1listed above. Iteration
and string repetition factors are not

allowed.

Redundant blanks are permitted as in
PL/I programs. However, no blanks may
precede the central + or - in complex
expressions.

Data items in the stream must be sepa-
rated either by a blank or by a comma.
This separator may be surrounded by an
arbitrary number of blanks. A null £field
in the stream is indicated either by the
very first non-blank character in the
stream being a comma, or by two adjacent

commas separated by an arbitrary number of
blanks. A null field specifies that the
value of the associated item in the data

list specification is to remain unchanged.

The transmission of the 1list of con-
stants on input is terminated by expiration
of the list or by the end-of-file condi-
tion. In the former case, positioning is
always at the character following the first
blank or comma following the data item.
More than one blank can separate two data
items, and a comma separator may be preced-
ed or followed by one or more blanks. In
such cases, a subsequent 1list- or data-
directed GET will ignore intervening blanks
and the comma (if present), and will access
the next data item. However, if an edit-
directed GET should follow, the first
character accessed will be the character to
which the file has been positioned (in
other words, the next data item will begin
with +the first character following the
blank or comma that separated it from the
previous data item).

If the data is a character-string con-
stant, the surrounding quotation marks are
deleted and the enclosed characters inter-
preted as a character string.

If the data is a bit-string constant, it
is interpreted as a bit string.

If the data is an arithmetic constant or

complex expression, it is converted to
coded arithmetic with +the base, scale,
mode, and precision implied by the con-
stant.

r) . LR T
| String Value | List item | Conversion }
k + + i
| | _ _ | |
| | Arithmetic | Character to Arithmetic
| Character | Character String | Character string assignment
: string | Bit String | Character to bit string

| | |
| : | Arithmetic | Bit string to Arithmetic
| Bit string | Character String | Bit string to Character string |
| | Bit String | Bit string assignment |
I I | |
| . | Arithmetic | Arithmetic type conversion
| Arithmetic | Character String | Arithmetic to Character string
| | Bit string | Arithmetic to Bit string
L L L 4
Figure 2. List-directed Input Conversion.

The 1list
interpreted string value is assigned to
as shown in Figure 2.

item is then examined and the
it

The type conversions are described in

Chapter 3.

List-Directed Output Format

The values of the scalar variables in
the data list are converted to a character
representation of the data value, as des-
cribed below, and transmitted to the data

stream.

A blank is used to separate data items
transmitted.

The 1length of the data field placed in

the data set is a function of the internal
precision and value of the data item.

CODED ARITHMETIC DATA: The external form
of coded arithmetic data 1is a possibly
signed valid decimal constant whose field
width, w, is a function of the internal
precision declared for the data item and
the value of the data item. In the discus-
sion below, the following symbols are used:

1. The 1letter w represents the field
width, which is defined as the length
of the data field.

2. The letter d represents the number of
positions in the external data field
to the right of the decimal point.

3. The letter p represents the total
number of significant digits in the
data field.

4, The letter g represents the number of
digits to the right of the decimal
point.

The letter s represents a scale factor
as described for floating-point data.

The letters yyy represent a scale
factor for fixed-point data. The let-
ter F actually appears in the output
stream to indicate the presence of a
scaling factor. Its value is similar
to the value of E in a floating-point

number.

The letter x
digit.

represents any decimal

The symbol b represents a blank posi-
tion in the output.

There are five kinds of coded arithmetic
data to consider: coded real fixed-point
decimal data, coded real fixed-point binary
data, coded real floating-point decimal
data, coded real floating-point binary
data, and coded complex data.

Coded Real Fixed-Point Decimal Data: The
data item is converted to precision (p,q),
plus a possible scaling field. It is
transmitted to a field of width w, plus the
scaling field if it is present.

If g 1is greater than or equal to zero
and less than or equal to p, then w = p+3,
and d=q; for example:

bbxxxx.xxxx (p=8,g=4)
bbbxxxxxxxx (p=8,9=0)
If g 1is less than zero or greater than

p, then w pt+3+n, where n is the number of
digits required to express g; for example:
bxxxxxXXXF-yyy (p=8, g=100, yyy=-q9)
Zero suppression is performed to the
left of the field, and if the value is less
than zero, a minus sign will immediately
precede the first significant digit.

Chapter 7: Input/Output 89

Coded Real Fixed-Point Binary Data: The
data item is converted to fixed-point deci-
mal and is transmitted as coded real fixed-
point decimal data.

Coded Real Floating-Point Decimal Data:
The data item is converted according to the
rules for floating-point format items, E(w,
d, s). For E-conversion, w =p + 6, d = p
- 1 and s = p.

Coded Real Floating-Point Binary Data: The

data item 1is converted to floating-point
decimal with a precision (p) and
transmitted as coded real floating-point

decimal data.

Coded Complex Data: The data is externally
represented as two immediately adjacent
real data fields, the left hand field being
the real part of the data and the right-
hand field being the imaginary part of the
data.

A sign always precedes
part. If the value of the imaginary part
is greater than, or -equal to, zero, the
sign is plus; if the value of the imaginary
part is less than zero, the sign is minus.
The imaginary part 1is always followed by
the letter I. The field width of the

the imaginary

external representation is 2w + 1, where w
is as defined above for fixed-point or
floating-point output.

NUMERIC FIELD DATA: The base of numeric

field data is either decimal or binary.

Numeric Decimal Data: The external format
and field width of the numeric decimal data
item 1is that described by the associated
picture specification.

Numeric Binary Data: The external format
and field width of the numeric binary data
item is that described by the associated
picture specification. The binary digits 0

and 1 are represented by the characters 0
and 1.
Complex Numeric Data: The real and

imaginary parts are output as above and the
external representation is the concatena-
tion of the real and imaginary parts. The
field width is 2w, where w is the number of
bytes (or bits, if binary) allocated to the
real part of the numeric data; no I is
appended.

CHARACTER-STRING DATA: The contents of the
character string are written out. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and con-
tained quotation marks are unmodified. The
field width is the current 1length of the
string. If the file does not have the
attribute PRINT, enclosing quotation marks
are supplied, and contained quotation marks

90

are replaced by two quotation marks. The
field width is the current 1length of the
string plus the added quotation marks.

BIT-STRING DATA: The format of the data on
the external medium is that of a bit-string
constant, that is, the value is enclosed in
quotation marks and followed by the letter
B. The binary bits are represented by the
characters 0 and 1. The field width is
p+3, where p is the current length of the
string, and the three additional positions
are for the two quotation marks and the
letter B.

Examples
cations:

of list-directed data specifi-

1. LIST (CARD.RATE, DYNAMIC_FLOW)

2. LIST ((THICKNESS (DISTANCE)
TANCE = 1 TO 1000))

DO DIS-

3. LIsT (P,Z,M,R)

4. LIST (A*B/C, (X+Y)*%*2)
The specification in example 4 may only
be used for output.

DATA-DIRECTED DATA SPECIFICATION

General format:
Option 1
DATA
Option 2
DATA data-list
General rules:

1. The data list is described in "Data
Lists", in this chapter. It may not
include formal parameters, based or
defined variables. Names of structure
elements need only have enough quali-
fication to resolve any ambiguity;
full qualification is not required.

2. Option 1 implies that all of the data
items to be transmitted are known to
the Dblock containing the GET state-
ment. Option 1 may be used for data-
directed input only.

3. Option 2 may be used for both data-
directed input and output.

4. Recognition of a semicolon in the
stream on input causes transmission to
cease. On output a semicolon is
written into the stream after the last
data item transmitted.

—

Data-Directed Data in the Stream

of

The
data-directed transmission is in the

data in the stream associated with

form

a list of scalar assignments having the

following general format:

i,

General rules for

scalar-variable = constant
[{b],} scalar-variable = constantl...;

General rules:

The "scalar variable™ may be a sub-
scripted name with decimal integer
constant subscripts.

On input, the scalar assignments may

be separated by either a blank (b in
the above format) or a comma. On
output, the assignments are separated
by blanks.

The constant in the general format
above has one of the forms as des-
cribed for list-directed transmission.

data specifications of

data-directed input:

1.

If the data specification in option 1
is used, the names in the stream may
be any fully qualified name known at
the point of transmission.

If option 2 is used, each element of
the data list must be an unsubscripted
scalar, array, or structure name. The
names in the stream must appear in the

data 1list; however, the order of the
names need not be the same and the
data 1list may include names that do

not appear in the stream.

For example, consider the
data 1list, where A, B,
names of scalar variables:

following
C, and D are

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:
A=2.5, B=.00476, D=125, Z="ABC';

Note that C appears in the data list
but not in the stream and that Z, not
in the data list, will raise the NAME

condition.
If the data list in Option 2 includes
the name of an array, subscripted

references to that array may appear in
the stream. The entire array need not
appear.

Let X be the name of a two dimen-
sional array declared as follows:

Data List
DATA (CARDIN.PARTNO)

DECLARE X (2, 3);

Consider the following data list and
input data stream:

Data List
DATA (X)

Input Data Stream
X(1,1) = 7.95, Xx(1,2) =
8085, X(1,3) = 73;

Although the data 1list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array.

If the data list includes the names of
structure elements, then fully quali-
fied names of identical form must
appear in the stream. Consider the
following structures:
DECLARE 1 CARDIN,
2 PRICE,
1 CARDOUT,
2 PRICE;

2 PARTNO, 2 DESCRP,

2 PARTNO, 2 DESCRP,

If it is desired to read a value for
CARDIN.PARTNO, then the data list and
input data stream have the following
forms:

Input Data Stream
CARDIN.PARTNO =
737314;

General rules for data-directed output:

1.

3.

The elements of the data list may be a
scalar name, an array name, a struc-
ture name, a repetitive specification
involving any of these elements or
further repetitive specifications.
The data with names appearing in the
data list is transmitted in the form
of a list of scalar assignments sepa-
rated by blanks and terminated by a
semicolon.

Array names 1in the data 1list are
treated as a 1list of the contained
subscripted elements in row-major
order.

Let X be an array declared as follows:

DECLARE X (2,4);

Let X appear in a data list as fol-
lows:

DATA (X)

Then, on output, the output data

stream is as follows:

X(1,1)=1 x(1,2)= 2 x(1,3)= 3 X(1,4)= 14
X(2,1)=5 X(2,2)= 6 X(2,3)= 7 X(2,4)= 8;

Subscript expressions in a data name

Chapter 7: Input/Output 91

are evaluated and replaced by integer
constants.

Length of Data-Directed Data Fields

The length of +the data field on the

4. Items that are part of a structure external medium is a function of the inter-
appearing in the data list are trans- nal precision, the value of the data item
mitted with the £full qualification, being written, and the length of the data
but subscripts follow the qualified identifier and its associated subscript
names rather than being interleaved. list. The field length for coded arithmet-
If a data 1list 1is specified for a ic data, numeric field data, and bit-string
structure element transmitted under data is the same as described for 1list-
data-directed output as follows: directed output (see "“Format of List-

Directed Output Fields").

DATA (Y(1,3).0) For character-string data the contents
of the character string are written out
enclosed in quotation marks. Each

then the associated data field in the quotation mark contained within the charac-

output stream is as follows: ter string is represented by two successive
quotation marks.

Y.0(1,3) = 3.756; Example:

Assume that A 1is declared as a one-

5. Structure names in the data 1list are dimensional array of six elements; B is a
interpreted as a list of the contained one-dimensional array of seven elements.
scalar or array elements, and arrays If it 1is desired to calculate values, the
are treated as above. procedure in Figure 3 calculates and writes

out values for A(I) = B(I+1l) + B(I).

Consider the following structure:

1A, 2B, 2€, 3D

If a data list for data-directed out- EDIT-DIRECTED DATA SPECIFICATION

put is as follows:

DATA (2)

General format:

then, if the values of B and D were 2

and 17 respectively, the associated EDIT data-list format-list

data fields in the output stream would [data-1list format-listl...

be as follows:

General rules:

A.B= 2 A.C.D= 17;

1. The data list is described in "Data

6. When p<g or g<0, data-directed output Lists," the format 1list in "Format
of FIXED data of precision (p,g) is Lists." This form of transmission can
not suitable for data-directed input. be used for sterling data.

r 1
| AB: PROCEDURE; |
| Input Stream |
| DECLARE A(6), B(7); |
| B(1)=1, B(2)=2, B(3)=3, |
| GET FILE (X) .DATA (B); |
| B(4)=1, B(5)=2, B(6)=3, B(7)=4; |
| DO I =1 TO 6; I
| I
| A (I) =B (I+1) + B (I); |
| Output Stream |
| END; |
| A(1)= 3 A(2)= 5 A(3)= 4 A(4)= 3 |
| PUT FILE (Y) DATA (A); |
| A(5)= 5 A(6)= T7; |
| END AB; |
| R,]
Figure 3. Example of Data-Directed Transmission, both Input and Output

92

2. On output, the value of each data item
in the data list 1is converted to a
format specified by the associated
format item in the format 1list. The
first scalar data item is associated
with the first format item, the second
scalar data item with the second
format item, etc. Suppose the format
list effectively contains j format
items, and the data 1list effectively
contains k data items. Then, if j<k
after j scalar data items have been
transmitted, the format 1list is re-
used, the (j+1)th scalar item being
associated with the first format item,
etc. This re-use 1is performed as many
times as required. If j>k, excessive
format items are ignored.

3. An array or a structure in a data list
is equivalent to n data items, where n
is the number of scalar elements in
the array or structure.

4., If a data list item is associated with
a control format item, that control
action is executed and the data 1list
item is paired with the next format
item.

5. The specified transmission is complete

when the last data item has been
processed using its corresponding
format item. Subsequent format items,
including control format items, are
ignored.

Examples:

The first of the following examples is
an edit-directed input specification, and
the second is an output specification.

i. EDIT (NAME, DATE, SALARY)
(A(COLA-COLB), X(2), A(6), F(M +2,2))

2. EDIT ('INVENTORY-' |[]
(a, F(5))

INUM, INVCODE)

FORMAT LISTS

The edit-directed data specification
requires an associated format list.

General format of a format list:

item ¢ item
(n item , N item T——
n format-list ., n format-list

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses, or a decimal
integer constant. The iteration fac-
tor specifies that the associated for-
mat item is to be used 1n successive
times. A zero or negative iteration
factor specifies that +the associated
format item 1is to be skipped and not
used (the data 1list item will Dbe
associated with the next format item).
If an expression is used to represent
the iteration factor, it is evaluated
and converted to an integer once for
each set of iterations. The associat-
ed format item is that item or list of

items to the right of the iteration
factor.

General rule:

There are two types of format items:

data format items and control format
items. Data format items specify the
form of data fields in the stream.
Control format items specify page, line,
and spacing operations.
Data Format Items
Data format items describe data rep-
resentation in the data stream.
The discussion of format items requires

the following definitions:

1. The letter w represents the length of
the data field, in characters, used by
the external representation (including
signs, decimal points, blanks, and the
letter E as used in the representation
of constants).

2. The letter d represents the number of

positions after the decimal point.

3. The letter s represents the number of

significant digits to appear.

4. The letter p represents a scale fac-
tor, which may be positive or nega-
tive.

The quantities w, d, S«
specified by an expression.

and p may be
wWhen the for-

mat item is used, the expression is evalu-
ated and converted to an integer. If w<0
in a format specification, then, on input,

the associated data and format list items
are skipped, unless it is a string, in
which case the data value is taken as the
null string. On output, the format 1list
item is skipped if w is less than or equal
to zero. The quantity 4 must be less than
or equal to s, and s must be less than or
equal to w.

Chapter 7: Input/Output 93

On input, the data item in the external
data field is converted to the charac-
teristics of the list item. Rules for the
conversion are given in Chapter 3.

There are six format items associated

with data: fixed-point (F), floating-point
(E), complex (C), picture specification
(P), character string (A), and bit string

(B).

FIXED-POINT FORMAT ITEMS: Decimal numeric
data may be described by a fixed-point
format item.

General format:

Option 1
F(w)

Option 2
F(w,d)

Option 3
F(w, d, p)

General rules:

1. On input, the data item in the exter-
nal data field is the character rep-
resentation of a decimal fixed-point
number anywhere in a field of width w.

In option 2, if no decimal point
appears in the number, it is assumed
to appear immediately before the last
d digits (trailing blanks are
ignored). If a decimal point does
appear, it overrides the d specifi-
cation. Option 1 is treated as Option
2, with d equal to zero.

In Option 3, the scale factor
effectively multiplies the external
data value by 10 raised to the value
of p. If p is positive, the number is
treated as though the decimal point
appeared p places to the right of its
given position. If p is negative, the
data is treated as though the decimal
point appeared p places to the left of

its given position. The given posi-
tion of the decimal point is that
indicated either by an actual point,
if it 1is given, or by d, 1in the

absence of an actual point.

2. On output, the external data is a

decimal fixed-point number, right-
adjusted in a field of width w.
In Option 1, only the integer

portion of +the number is written; no
decimal point appears.

In Option 2, both the
fractional parts of the
written. If d is greater

integer and
number are
than 0, a

9y

decimal point is inserted before the
last d digits, and the value is
appropriately positioned. Trailing
zeros are supplied if the number of
fractional digits is 1less than d

(where d must be less than w).

In Option 3, the scale factor
effectively multiplies the internal
data value by ten raised to the power
of p, before it is edited into its
external character representation. If
d is zero, only the integer portion of
the number is considered.

For all options, if +the value of
the number is less than zero, a minus
sign will be prefixed to the external
character representation; if it is
greater than or equal to zero, no sign
will appear. Therefore, for negative
values, w must encompass both sign and
decimal point.

FLOATING-POINT FORMAT
numeric data may be
floating-point format item.

ITEMS: Decimal
described by a

General format:
E(w, 4, sl)
General rules:

1. On input, the data item in the exter-
nal data field is an optionally signed
character representation of a decimal
floating-point number anywhere within
a field of width w.

The external form of the number is
as follows:

[E]
[+] fixed—point—numberB’ } exponent]
E (]

(a) If there is no decimal point in
the data field, the decimal point
is assumed to be before the last d
digits of the fixed-point number.
If there is a decimal point in the
data field, it overrides the deci-
mal point placement specified by
d. Note that trailing blanks in
the data field are ignored.

(b) The "exponent" is a decimal inte-
ger. If the exponent and the
preceding E or sign are omitted, a
zero exponent is assumed.

2. On output, the data item in the data
field has the following general form:

[-] s-d digits.d digits E{*} exponent

(a) The "exponent" is a decimal inte-

ger of n digits, where n is
defined individually for each
implementation. The exponent is

adjusted so that the leading digit
of the fractional part is nonzero.

(b) If the above form does not f£ill
the field of width w, it is right-
adjusted, and blanks are inserted
on the left. If s is omitted it
is taken as equal to d + 1. The
field width w must be greater than
or equal to s + n + 3 for non-
negative values, and s + n + 4 for
negative values of the data item.
However, if d is zero, the decimal
point is not written, and w is
equal to s+n+2.

COMPLEX FORMAT ITEMS: Complex numeric data
may be described by a complex format item.

General format:

C(real-format-item
[, real-format-iteml)

General rules:

1. Each 'real format item' 1is specified
by F, E, or P formats. P can specify
a numeric field only; it cannot

specify a sterling or character field.

2. On input, the external data is the
real and imaginary parts of the com-
plex number in adjacent fields des-
cribed by the two contained format
items. If the second real format item
is omitted, it is assumed to be the
same as the first.

3. On output, the form of the real and
imaginary parts is specified by
enclosed real format items. If the
second is omitted, it is assumed to be
the same as the first.

PICTURE _FORMAT ITEM: Numeric data may be
described by a numeric picture using the P
format item. The picture format item
allows transmission of sterling data items.

General format:
P 'numeric-picture-specification'
The "numeric

described in "The
Chapter 4.

picture specification" is
PICTURE Attribute," in

On input, the picture specification des-
cribes the form of the data on the external
medium and how it is to be interpreted
numerically. The external representation
of binary numeric fields uses the charac-
ters 0 and 1.

On output, the value of the list item is
edited to the form specified by the picture
before it is transmitted. Binary numeric
fields will have a character representation
after transmission.

BIT-STRING _FORMAT ITEMS: The bit-string
item describes the data field representa-

tion of a bit string using the characters 0
and 1.

General format:
B (w)
General rules:

1. In the case of input, w is always
required. For output, if w is omit-
ted, it is taken to be the current
length of the associated bit-string
data-list element; w must be specified
if conversion is to be performed.

2. On input, the data field is a charac-
ter representation of bit string any-
where within the field of width w.

3. On output, the character representa-
tion of the bit string is 1left-
adjusted in the field of width w.
Truncation, if necessary, is performed
on the right. Blanks are used for
padding.

CHARACTER-STRING FORMAT ITEMS: Character
data may be described by a character-string
format item.

General format:

{A (w) }
P 'character-picture-specification’
General rules:

1. The “"character picture specification"
is described in "The String
Attributes", in Chapter 4.

2. The external representation is a
string of w characters.

3. On input, truncation, if necessary, is
performed on the right. If the asso-
ciated list element is too short, it
is extended on the right with blanks.
If the picture form is wused, w is
implied. Checking is performed.

4. On output, w can be omitted for string
list items, in which case w is taken
to be the current length of that
string. On input, w is always
required.

Chapter 7: Input/Output 95

Control Format Items

There are two types of control format
items, the spacing format item X and the
printing format items.

Spacing Format Item

The spacing format item specifies rela-
tive horizontal spacing.

General format:
X (w)

General rules:

1. On input, the format item specifies
that the next w characters of the
stream are to be ignored.

2. On output, the format item specifies
that w blank characters are to be

inserted into the stream.

3. If w is less than zero, it is taken as
Zero.

Printing Format Items

The printing format items can be used
only with STREAM PRINT files. There are
four of them.

General format:

PAGE

SKIP [(w)]
LINE (w)
COLUMN (w)

General rules:
1. The PAGE, SKIP, and LINE format items

operate in the same manner as the
corresponding options with the PUT

statement.
2. The COLUMN (w) format item specifies
that blank characters are to be

inserted into the stream so that the
next character will be the wth charac-
ter of the current line. If at least
w characters already have been written
on the current line, the current 1line
is completed, a new line is started,
and w-1 blanks are inserted in it so
that the new current line begins at
the wth character. If w is greater
than LINESIZE as specified in the OPEN
statement, or is less than 1, then w
is assumed to be 1.

Note that X and COLUMN specify,
tively, relative horizontal
absolute horizontal spacing.
SKIP and LINE specify

respec-
spacing and

Similarly,
relative vertical

96

positioning and absolute vertical position-
ing. The first line on any page is 1line
number one.

Remote Format Item

If it is desired to locate format items
remotely from a format 1list, the remote
format itemy, R, may be used.

General format:
R(statement-label-designator)
General rules:

1. The "statement label designator" is a
label constant or a 1label - variable
that has as its value the statement
label of a FORMAT statement. The
FORMAT s*tatement includes a format
list that is taken to replace the
format item.

2. The R format item and the specified
FORMAT statement must be internal to
the same block.

3. There can be no recursion. That is, a
remote FORMAT statement may not con-
tain an R format item which names
itself as a statement label designa-
tor, nor may it name another remote
FORMAT statement that will lead to the
naming of the original FORMAT state-
ment through a statement label desig-

nator. This is assured if the FORMAT
statement referred to by a remote
format item does not itself contain a

further remote format item.

4. Any conditions enabled for the GET or
PUT statement must be correspondingly
enabled for the remote FORMAT state-
ments utilized.

5. If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

DATA STREAM TRANSMISSION STATEMENTS

This section provides a summary of the
allowed STREAM transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8; the OPEN and
CLOSE statements, which may also be used in
STREAM transmission, are discussed earlier
in this chapter).

STREAM INPUT:

FILE (filename)
GET

STRING (character-string-variable)
data-specification [COPY];

STREAM_OUTPUT:

.| FILE (filename)
PUT

STRING (character-string-variable)
data-specification;

STREAM OUTPUT PRINT:

PUT [FILE (filename)]
[data-specificationl]
[PAGE [LINE (expression)]]

7

SKIP [(expression)]

LINE (expression)
Note: The "data specification" can be
omitted only if one of the printing options
appears.

The data specification can have one of
the following forms:

LIST data-list

DATA [data-list]

EDIT data-list format-list
[data-list format-listl...

Data 1lists and format 1lists are dis-
cussed earlier in this chapter. Format
lists may use any of the following format
items:

A,B,C,E,F,P,R,X which may be used
with any STREAM file

PAGE, SKIP [(w)],
LINE (w),
COLUMN (w)

which may be used
only with STREAM
OUTPUT PRINT files

RECORD_TRANSMISSION

Data sets that contain discrete records
or which are to be created as a collection
of discrete records may be manipulated with
record operation statements. The record
operation statements are READ, WRITE, REW-
RITE, LOCATE, DELETE, and UNLOCK. A gener-
al description of these statements is con-
tained in this chapter, and they are des-
cribed completely in Chapter 8. The
records obtained from data sets or dis-
patched to data sets are defined in terms
of the data attributes of a variable. For
input operations the record is obtained
from the data set and placed intact into
the variable. For output operations, the
variable is transmitted intact into the
data set.

The variables involved in record trans-
mission must be unsubscripted, of level 1

(scalar variables and array variables are
of level 1 by default), and of the storage
class, AUTOMATIC, STATIC or CONTROLLED.

The variables may not be formal parameters
or defined wvariables. In addition, they
must not contain VARYING length strings.
They may contain LABEL and POINTER varia-
bles, but such data may lose its validity
in transmission.

With RECORD transmission, it is possible
to operate wupon the record in a buffer if
the file has the BUFFERED attribute. Oper-
ation within the buffer can be accomplished
through the use of a based variable, which
describes the data attributes of the
record, and a pointer variable, which iden-
tifies the location of the record within
the buffer. A based variable and its
associated pointer variable are specified
by the following form of the CONTROLLED
storage class attribute specification:

CONTROLLED (pointer-variable)

The pointer variable, itself, may have any
storage class attribute; however, the
default is AUTOMATIC. The pointer variable
also may be given either INTERNAL or EXTER-
NAL scope attribute, with default being
INTERNAL; but the scope of the based varia-
ble is INTERNAL. The EXTERNAL attribute
cannot be specified.

consider the following declaration:

DECLARE 1 MASTER_RECORD CONTROLLED
(REC_IDENT),
2 IDENTIFICATION
CHARACTER (10),
2 NAME CHARACTER

(30),
2 ADDRESS,
3 STREET
CHARACTER
(15),
3 CITY
CHARACTER
(15),
3 STATE
CHARACTER
(15),
3 ZIP
CHARACTER

5);

The mname MASTER_RECORD is the based
variable which can be used to describe a
record in the buffer that conforms to the
attributes declared for MASTER_RECORD.
REC_IDENT is a pointer variable that iden-
tifies the position of MASTER_RECORD within
the buffer. The pointer variable has the
default storage attribute of AUTOMATIC.
The based variable, of course, is explicit-

Chapter 7: Input/Output 97

ly declared to have the CONTROLLED
class attribute.

storage

If any attributes other than AUTOMATIC
are to be declared for a pointer variable,
they must be explicitly declared. For
example, the following declaration speci-
fies the STATIC and EXTERNAL attributes for
the pointer variable REC_IDENT:

DECLARE REC_IDENT POINTER STATIC
EXTERNAL;

Note: In this declaration, the POINTER
attribute is declared explicitly. In the
previous example, the POINTER attribute was
declared contextually by the appearance of
the pointer variable name in the CONTROLLED
attribute specification.

For input/output operations specifying
based variables, the pointer value is set
by the SET option in the READ or LOCATE

statements.

RECORD TRANSMISSION STATEMENTS

This section provides a summary of the
allowed RECORD transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8; the OPEN .and
CLOSE statements, which also may be used in
RECORD transmission, are discussed earlier
in this chapter). A general discussion of
RECORD transmission follows this summary.

SEQUENTIAL BUFFERED INPUT:

READ FILE (filename)
INTO (variable) [KEYTO
(character-string-variable)];

READ FILE (filename)
SET (pointer-variable)
[KEYTO
(character-string-variable)];

READ FILE (filename)
[IGNORE (expression)l];

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

SEQUENTIAL BUFFERED OUTPUT:

WRITE FILE (filename)
FROM (variable)
[KEYFROM (expression)l];

98

LOCATE variable
SET (pointer-variable)
[KEYFROM (expression)];

SEQUENTIAL BUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[KEYTO

FILE (filename)

(character-string-variable)];

READ FILE (filename)
SET (pointer-variable)
[KEYTO

(character-string-variable)];

REWRITE FILE (filename);

REWRITE FILE (filename)
FROM (variable);

READ FILE (filename)
[IGNORE (expression)];

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

SEQUENTIAL UNBUFFERED INPUT:

READ FILE (filename)
INTO (wvariable)
[KEYTO

(character-string-variable
[EVENT (event-variable)l;

READ FILE (filename)
[IGNORE (expression)]
[EVENT (event-variable)l];

READ FILE (filename)
INTO (wvariable
KEY (expression)
[EVENT (event-variable)l;

SEQUENTIAL UNBUFFERED OUTPUT:

WRITE FILE (filename)
FROM (variable)
[KEYFROM (expression)]
[EVENT (event-variable)];

SEQUENTIAL UNBUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[RKEYTO

(character-string-variable
[EVENT (event-variable)l;

REWRITE FILE (filename)
FROM (variable)
[EVENT (event-variable)l;

READ FILE (filename) RECORD TRANSMISSION OPERATIONS
[IGNORE (expression)]
[EVENT (event-variable)l;

The following points cover the salient
environmental factors in the use of RECORD

READ FILE (filename) transmission:
INTO (variable)
KEY (expression) 1. A SEQUENTIAL file specifies that the
[EVENT (event-variable)l; accessing, creation, or modification
of the data set records is performed
DIRECT INPUT: in a particular order, that is, from
the first record of the data set to
READ FILE (filename) the last record of the data set.
INTO (variable)
KEY (expression) 2. A DIRECT file specifies that the
[EVENT (event-variable)]l; accessing, creation, or modification
of the data set records is performed
DIRECT OUTPUT: by indicating which particular record
of the data set 1is to be operated
WRITE FILE (filename) upon.
FROM (variable)
KEYFROM (expression) 3. A data set that is accessed, created,
[EVENT (event-variable)]; or modified in the SEQUENTIAL access
method may or may not be KEYED. If it
DIRECT UPDATE: is- KEYED, the keys may be ignored
while accessing sequentially, or they
READ FILE (filename) may be extracted from the data set or
INTO (variable) placed into the data set by the KEYTO
KEY (expression) and KEYFROM options. It is possible
[EVENT (event-variable)l; to create a KEYED data set as a
SEQUENTIAL OUTPUT file and later to
REWRITE FILE (filename) access that data set as a DIRECT file.
FROM (variable)
KEY (expression) 4. SEQUENTIAL INPUT and SEQUENTIAL UPDATE
[EVENT (event-variable)]; files may be positioned to a particu-
lar record within the data set by a
WRITE FILE (filename) READ operation that specifies the key
FROM (variable) of the desired record. Thereafter,
KEYFROM (expression) successive READ statements without the
[EVENT (event-variable)l; KEY option will access the records
sequentially. This kind of accessing
DELETE FILE (filename) may be used only if the data set
KEY (expression) contains keyed records and if the file
[EVENT (event-variable)l; has the KEYED attribute.
DIRECT UPDATE EXCLUSIVE: 5. Existing records of a data set in a
SEQUENTIAL UPDATE file can be rewrit-
READ FILE (filename) ten, modified, or ignored, but the
INTO (variable) number of records cannot be increased
KEY (expression) [NOLOCK] or decreased. Operation with a DIRECT
[EVENT (event-variable)]; UPDATE file, however, may specify that
records are to be added to the data
REWRITE FILE (filename) set, through use of the WRITE state-
FROM (variable) ment, or deleted from the data set,
KEY (expression) through use of the DELETE statement.
[EVENT (event-variable)l]; An existing record in an UPDATE file
can be replaced through use of a
WRITE FILE (filename) REWRITE statement.
FROM (variable)
KEYFROM (expression) 6. If the READ INTO option is used in
[EVENT (event-variable)l; referring to a SEQUENTIAL BUFFERED
UPDATE file and the next REWRITE
DELETE FILE (filename) statement does not make use of a FROM
KEY (expression) option, the record in the data set is
[EVENT (event-variable)l; replaced from the buffer and not from
the variable that had been specified
UNLOCK FILE (filename) in the INTO option of the READ state-
KEY (expressions); ment. The FROM option 1in a REWRITE

Chapter 7: Input/Output 99

100

statement must specifically name the
variable INTO which the data has been

read if that data is to be rewritten.
Operations upon a data set accessed
sequentially may lead to erroneous

results if the same data set or file
is being referred to asynchronously in
more than one task. The separate
tasks might use different <filenames,
but if the different file openings
identify the same data set, the tasks
would refer to the same set of
records.

A data set being accessed directly is
suitable for asynchronous operations
because the reference to the data set
does not imply any explicit ordering
of the records and because the records
are transmitted INTO and FROM varia-
bles that can be known only within the
individual tasks. This is true wheth-
er the data set is identified by more
than one file opening or is referred
to through use of the same filename.

When a file has the DIRECT UPDATE
EXCLUSIVE attributes, it is possible
to protect individual records that are
read from the data set. For an EXCLU-
SIVE file, any READ statement without
a NOLOCK option automatically locks
the record read. ©No other task oper-
ating wupon the same file can access a
locked record until it is unlocked by
the 1locking task. Any task referring
to a locked record will wait at that
point until the record is unlocked. A
record can be explicitly unlocked by
the locking task through execution of
a REWRITE, DELETE, UNLOCK, or CLOSE
statement. Records are unlocked auto-
matically upon completion of the lock-
ing task. The EXCLUSIVE attribute
applies only to the file and not to
the data set. Consequently, record
protection 1is provided only if all
tasks refer to the data set through
use of the same filename; if they

refer to the same data set wusing
different filenames, the protection
does not apply. In addition, the data
set to which reference is made by more
than one task through the same file-
name must be opened by the parent of

all these tasks. .

10. A WRITE statement adds records to a
data set, while a REWRITE statement
replaces records. Thus, a WRITE
statement may only be used with OUTPUT
files, and a REWRITE statement may
only be wused with UPDATE files.
Moreover, a WRITE statement uses the
KEYFROM option to indicate the actual
transference of the key from internal
storage to the data set; the REWRITE
statement uses the KEY option to iden-
tify the existent record to be
replaced.

STANDARD FILES

There are two standard system files that
are available for wuse by a PL/I program.
The first is a standard system input file
called SYSIN. The second is a standard
system print file called SYSPRINT. The
keywords GET and PUT without a file or
string name are equivalent to:

GET FILE(SYSIN)...;
PUT FILE(SYSPRINT)...;

The implicit reference to the standard
files applies only in the GET and PUT
statements. Any other reference to either

file must be stated explicitly.

The standard files may be given other
file attributes explicitly or contextually,
but unless SYSPRINT is explicitly declared
by the programmer to have the INTERNAL
scope attribute, +the PRINT attribute is
applied automatically.

This section includes a description of
each statement in the language. These
descriptions are presented in alphabetic
order.

To show the relationships
statements, they
logical groups.

among these
are also classified into

RELATIONSHIP OF STATEMENTS

CLASSIFICATION

Statements may be classified into the
following 1logical groups: assignment, con-
trol, data declaration, error control and
debug, input/output, program structure, and
storage allocation.

Assignment Statement

The assignment statement is used to
evaluate expressions and to assign values
to scalars, arrays, and structures.

Control Statements

The control statements affect the normal
sequential flow of control through a pro-
gram. The control statements are GO TO,
IF, DO, CALL, RETURN, WAIT, STOP, EXIT, and
DELAY.

Data Declaration Statement

The data declaration statement, DECLARE,
specifies attributes for identifiers. This
statement is described in Chapter 4.

Error Control and Debug Statements

When an interrupt occurs during program
execution, standard operating system action
is taken; however, the 1language provides
the facility to override system action on
these interrupts. By using the ON state-

CHAPTER 8: STATEMENTS

ment, a programmer may specify the action
to be taken when an interrupt occurs and
can record the status of the program at the
point of the interrupt. By using the
SIGNAL statement, the programmer may ini-

tiate programmed interrupts and may simu-
late machine interrupts +to facilitate
debugging.

Input/Output Statements

The input/output statements may be clas-
sified as follows: file preparation,
record status, data specification, and data
transmission.

File Preparation Statements

The OPEN statement associates a filename
with a data set and completes the specifi-
cation of the attributes of the file, in
preparation for input/output on a file.
The CLOSE statement dissociates the file-
name from the data set and thereby releases
the filename for use in connection with any
other data set.

Record Status Statements

The DELETE statement deletes a record
from an UPDATE file. The UNLOCK statement
makes accessible a record which would
otherwise be inaccessible as a result of
the READ statement accessing from an EXCLU-
SIVE file.

Data Specification Statements

The format of data fields to be trans-
mitted may be specified by the FORMAT
statement or in the GET or PUT data trans-
mission statements.

Data Transmission Statements

The GET and PUT statements cause values
to be transmitted between a data set and
specified variables in the program. The
READ and WRITE statements cause a single
record to be transmitted between a data set
and variables in the program. The REWRITE
statement specifies the wupdating of an
existing record of +the data set. The
LOCATE statement permits a record to be
created in the buffer storage and subse-
quently written. The DISPLAY statement
causes messages to be transmitted between
the program and the machine operator.

Chapter 8: Statements i {03 4

Program Structure Statements

The program structure statements are:
PROCEDURE, BEGIN, END, DO, and ENTRY. The
first three statements delimit the scope of
declarations within a program. The ENTRY
statement provides a secondary entry point
for a procedure.

Storage Allocation Statements

statements are
allo-

The storage allocation
ALLOCATE and FREE. These statements
cate and free storage for variables.

SEQUENCE OF CONTROL

Within a block, control normally passes
sequentially from one statement to the
next. If a DECLARE, FORMAT, or ENTRY is
encountered, control passes to the next
statement. If an internal PROCEDURE state-
ment 1is encountered, control passes to the
statement following the end of +the proce-
dure. Control passes to the statement
following an IF statement when control
reaches the end of the THEN-unit. Sequen-
tial operation is modified by the following
statements: CALL, END, EXIT, GO TO, PROCE-
DURE, RETURN, SIGNAL, and STOP.

A CALL statement passes control to the
specified entry point.

An END statement,
a procedure, acts

logically terminating
as a RETURN statement,

causing control to return to the invoking
procedure.

The EXIT statement causes control to
leave a task; the STOP statement causes

control to leave a program.

A GO TO statement causes control to
transfer to the specified statement label.

A PROCEDURE statement heads a procedure.
Procedures may be considered as independent
blocks and are placed anywhere within an

102

external procedure, consistent with desired
identifier scopes. However, a procedure
may be invoked only by a CALL statement, a
statement with a CALL option, or a function
reference. Thus, control passes around a
nested procedure, from the statement before
a PROCEDURE statement to the statement
after the appropriate END statement for the
procedure.

A RETURN statement returns control from
a procedure to the invoking procedure.

A SIGNAL statement specifying an enabled
condition causes control to pass to the
on-unit of the associated ON statement. If
there is no associated ON statement, con-
trol is passed to the appropriate system
routine.

The following conditions may
sequential operation to be modified:

cause

1. A function reference in any expression
causes control to pass to the speci-
fied function procedure.

2. The occurrence of an enabled condition
specified in an ON statement causes
control to pass to the associated
ON-unit. If there is no ON statement,
control 1is passed to the appropriate
system routine.

3. The flow of control through the IF and
ON statements and through a DO group
may or may not be sequential.

4. In an appropriate environment, the
asynchronous execution of several
operations may involve transfer of

control under the influence of exter-

nal occurrences.
The following illustrates
sequence of control:

example

A: PROCEDURE;

B: X =Y + Z;

C: CALL D;

E: W = P*Q;
D: PROCEDURE;
G: S = T/P;
H: RETURN;
I: END D;

J: U = V**W;

K: GO TO N;

N: END;

Control flows in the following order: A,
B, ¢ D, G, H, E, J, K, N.

PSEUDO-VARIABLES

The following built-in functions (see
Appendix 1 for a more complete description)
may be used as pseudo-variables on the left
side of an equal sign in an assignment
statement, or a DO statement, or in a data
list in a GET statement. In the defini-
tions below, the item in the data list of a
GET statement may be considered to corres-
pond to the item on the left side of the
equal sign in an assignment statement; the
value being transmitted may be considered
to correspond to the expression on the
right side.

COMPLEX (a,b) The letters a and b rep-
resent variables that mneed not have the
same characteristics. During execution of
an assignment statement, the real part of
the expression on the right is assigned to
a, the imaginary part to b.

REAL (¢c) The 1letter ¢ represents a
complex variable. During execution of an
assignment statement, the real value of the
expression 1is assigned to the real part of
Cw

IMAG (c) The 1letter c¢ represents a
complex variable. During execution of an
assignment statement, the real value of the
expression is assigned to the imaginary
part of c.

ONSOURCE (Used in the on-unit of an ON
CONVERSION statement) The expression on the
right of +the equal sign is evaluated,
converted to a character string, and
assigned to the string that caused the
conversion error. The string will be pad-
ded with blanks, if necessary, to the
length of the string that caused the error.

ONCHAR (Used in the on-unit of an ON
CONVERSION statement) The expression on the
right of the equal sign is evaluated,
converted to a character string of 1length
one, and assigned to the character that
caused the error.

SUBSTR (s,il,k]l) The letter s represents
a string. During execution of an assign-
ment statement, the expression is assigned
to the substring of s defined by the
built-in function SUBSTR (see Appendix 1).
This substring is always treated as a fixed

length string.

EVENT(v) The letter v represents a sca-
lar or array event name. When used in an
assignment statement, the expression on the
right-hand side is evaluated and converted
to a bit string of length 1. The value of
this bit string is used in an assignment to
the named event (see "Asynchronous Opera-
tions and Tasks" in Chapter 6).

PRIORITY[(v)] The letter v represents a
scalar or array task name. When used in an
assignment statement, the expression on the
right-hand side is evaluated and converted
to FIXED (m, 0) where m is
implementation-defined. The priority of v,
the named task, is adjusted to be n,

relative to that of the task in which the
assignment is performed, prior to that
assignment. If v is not specified, this is

the task in which the assignment statement
is executed (see "Asynchronous Operations
and Tasks"™ in Chapter 6).

UNSPEC (v) The 1letter v represents a
scalar variable of arithmetic, string, or
pointer type. The expression on the right
is evaluated and converted to a bit string
(whose length is an implementation defined
function of the characteristics of v), and
assigned - to v without conversion to the
type of v. If v is a string of varying
length, its 1length after the assignment
will be just large enough to hold the bit
string.

ALPHABETIC LIST OF STATEMENTS

The ALLOCATE Statement

Function:

The ALLOCATE statement causes storage to
be allocated for specified controlled data.

General format:
Option 1:

ALLOCATE [levell] identifier
[dimension] [attributel...
[,[level]l identifier [dimension]
[attributel...l...;

Option 2:

ALLOCATE based-variable-identifier
SET (pointer-variable)
[IN (area-variable)]
[, based-variable-identifier
SET (pointer-variable)
[IN (area-variable)ll...;

Syntax rules:

1. Based variables and nonbased
controlled variables may both be spec-
ified as identifiers in the same ALLO-
CATE statement.

Syntax rules

Option 1:

2 through 6 apply only to

2. Each identifier must represent data of

Chapter 8: Statements 103

the controlled storage class or be an
element of a controlled major struc-
ture.

"Dimension"™ indicates a dimension
attribute. "Attribute"™ indicates a
BIT, CHARACTER, or INITIAL attribute.
"Level" indicates a level number.

A dimension attribute, if present,
must specify the same number of dimen-
sions as that declared for the asso-
ciated identifier.

The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier.

A structure element name, other than
the major structure name, may appear
only if the relative structuring of
the entire structure appears as in the

DECLARE statement for that structure.

Syntax rules 7 and 8 apply only to
Option 2:

7. The based variable appearing in the

ALLOCATE statement may be a scalar
variable, an array, or a major struc-
ture. When it is a major structure,
only the major structure name is spec-
ified.

The SET clause may appear preceding or
following the IN clause.

General Rules:

Rules 1 through 6 apply only to Option 1:

1.

i04

When Option 1 is wused, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
be "pushed down" or stacked. This
pushing down creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREE statement, storage is
"popped up" or removed from the stack.

Bounds for arrays and lengths of
strings are fixed at the execution of
an ALLOCATE statement.

a. If a bound or length is explicitly
specified in an ALLOCATE state-
ment, that bound or 1length over-
rides any bound or length given in
the DECLARE statement.

b. If a bound or length is specified
by an asterisk in an ALLOCATE
statement, that bound or length is
taken from the most recent genera-
tion of data for the identifier in
a previous allocation. In case no

such generation exists, the bound
or length is undefined.

c. If a bound or length is not speci-
fied in an ALLOCATE statement, it
must be specified in the DECLARE
statement. The scope of this dec-
laration must include the ALLOCATE
statement. The expression from
the DECLARE statement is evaluated
at the point of allocation.

Upon allocation of an identifier, ini-
tial values are assigned to it if the
identifier has an INITIAL attribute in
either the ALLOCATE statement or
DECLARE statement. Expressions or a
CALL option in the INITIAL attribute
are executed at the point of alloca-
tion. If an INITIAL attribute appears
in both DECLARE and ALLOCATE state-
ments, only the INITIAL attribute in
the ALLOCATE statement is used. If
initialization involves reference to
the variable being allocated, the ref-
erence will be to the new generation
of the variable.

not

To determine whether or storage

has been allocated for an identifier
the built-in function ALLOCATION may
be used.

A parameter that is declared CON-
TROLLED may be specified in an ALLO-
CATE statement if the associated argu-
ment is given the CONTROLLED attribute
and no dummy is created. (see
"Relationship of Arguments and Param-
eters,"™ in Chapter 10).

The evaluations implied by the ALLO-
CATE statement are subject to the same
rules as the evaluations involved in
prologue activity (see "Prologues," in
Chapter 10).

Rules 7 through 15 apply only to Option 2:

7.

When Option 2 is used, storage is not
"pushed down" or stacked. In this
case, reference may be made to any

generation of a based variable through
a pointer variable.

A SET clause must appear with the
based variable in the ALLOCATE state-
ment. This clause indicates the poin-
ter variable that is to receive the
pointer value identifying the genera-
tion for which storage is to be allo-
cated. The SET clause need not name
the pointer variable which was
declared with the based variable.

If the IN clause appears in the ALLO-
CATE statement, storage will be allo-
cated in the area corresponding to the

[

10.

11.

12.

13.

14,

15.

1.

specified area variable for the gener-
ation of the based variable. If suf-
ficient storage does not exist within
this area, the AREA condition will be
raised.

If the IN clause 1is omitted, space
will be allocated in systems storage
for the generation of the based varia-
ble.

The amount of storage allocated for a
based variable depends on its attri-
butes, and on its dimensions and
length specifications if these are
applicable at the time of allocation.
These attributes are determined from
the declaration of the based variable,
and additional attributes may not be
specified in the ALLOCATE statement.
If the allocated variable is a struc-
ture whose elements are dimensioned
variables or variable length strings,
and the dimensions or 1lengths are
themselves defined as elements in the
structure, then the dimensions or
lengths are taken from that previous
generation of the structure defined by
the pointer variable named in the
DECLARE statement for that structure.
In subsequent references to such allo-
cated variables, calculation of dimen-
sions or string lengths will be made
by use of the generation identified by
the declared pointer. Note, however,
that the asterisk notation for bounds
and length is not permitted for based
variables (see “"The CONTROLLED
Attribute" in Chapter 4).

If the area variable is an array, the
subscripts must be specified with the
area variable.

A based variable transferred as an
argument to a procedure may not appear
in an ALLOCATE statement in the called
procedure.

The pointer value defined at the first
allocation into an area variable is
not necessarily equivalent to a poin-
ter value defined by the ADDR
(area-variable) function.

If the INITIAL attribute is specified
in the declaration of the based varia-
ble, the initialization occurs after
the allocation of the variable and
after the pointer variable has been
assigned a value.

Examples:

The following examples illustrate the
use of the ALLOCATE statement for a
nonbased identifier:

DECLARE A(N1,N2) CONTROLLED;
N1, N2 = 10;
ALLOCATE A; The bounds are 10 and
10
ALLOCATE A The bounds are K1 and
(K1,K2); K2 which override N1
and N2.
N1 = N1 + 1;
ALLOCATE A; The bounds are 11 and
10.
ALLOCATE A The bounds are 11 and
(*,%); 10.
ALLOCATE A The bounds are J1 and
(g1, J2); J2.
2. The following example illustrates the

DECLARE B BIT (%)

use of the ALLOCATE statement when the
DECLARE statement contains asterisks
for the 1length of a nonbased bit
string B:

VARYING CONTROLLED;

ALLOCATE B Illegal; violates rule
BIT (*); 2b.
ALLOCATE B; Illegal; violates rule
2b.
ALLOCATE B The maximum length is
BIT (N); N.

ALLOCATE B CHAR-

Illegal; violates syn-

ACTER (4); tax rule 5.

ALLOCATE B The maximum length is

BIT (8); 8«

3. The following example illustrates the
use of the built-in function ALLOCA-
TION and of the INITIAL attribute for
a nonbased identifier in an ALLOCATE
statement:

DECLARE A(N,N) CONTROLLED INITIAL

((N*N)O0) ;

.

IF 7 ALLOCATION (A) THEN ALLOCATE A
INITIAL (1,(N-1) ((M0,1));

-

ALLOCATE A;

The following example illustrates
three uses of Option 2 of the ALLOCATE
statement for based identifiers:

DECLARE VALUE CONTROLLED (P),
RATES (I) CONTROLLED (Q),
1 GROUP CONTROLLED (R),
2 PTs (J) POINTER,
2 VALUES (J) FIXED,
TABLE AREA STATIC EXTERNAL,
S POINTER;

ALLOCATE VALUE SET (P);
Allocates space in systems storage
for a generation of the based vari-

Chapter 8: Statements 105

able VALUE, and sets the pointer
variable P to identify the particu-
lar generation.

b. ALLOCATE GROUP SET (R);
Allocates space in systems storage
for a generation of the structure
GROUP, and sets the pointer varia-
ble R to identify the generation.
The dimensions of each of the com-
ponents PTS and VALUE are deter-
mined by the value of J.

c. ALLOCATE RATES SET(S) IN (TABLE);
Allocates space in the storage area
corresponding to the area variable
TABLE for a generation of the array
RATES. The pointer S 1is set to
identify the point within TABLE at
which RATES is allocated.

The Assignment Statement

Function:
The assignment statement is wused to
evaluate expressions and to assign values

to scalars, arrays, and structures.

General format:

Option 1. (Scalar Assignment)
scalar- ,Scalar-
variable variable | ...=scalar-
pseudo- «Pseudo- expression;
variable variable
Option 2. (Array Assignment)
{ array ,array
pseudo-array . pseudo-array #

=farray-expression [,BY NAME];
scalar-expression;
Option 3. (Structure Assignment)
{structure }Estructure]
pseudo-structuref|, pseudo-structure]... &
=structure-expression [,BY NAME];
Option 4. (Statement Label Assignment)
scalar-label-variable
[,scalar-label-variablel...=

label-constant;
scalar-label-variable;

106

Option 5.

array-label-variable [,array-label-
variablel...=
label-constant;
scalar-label-variable;
{array-label-variable; }

(Pointer Assignment)

pointer-variable
[,pointer-variablel...=
pointer-expression;

array-pointer-variable
[,array-pointer-variablel...=
pointer-expression }
{array—pointer-variable g

Syntax rules:

In Option 1, each variable on the left
of the equal sign may be of arithmet-
ic, bit, or character data type.

In Option 2, each array referred to on
the 1left of the equal sign may be an
array variable name or a pseudo-array.
If the BY NAME option is present,
those arrays must be arrays of struc-
tures. A pseudo-array is a pseudo-
variable whose arguments are array
variable names. (In the case of the
pseudo-variable SUBSTR (s,i,k), this
requirement applies only to the
argument s; see " Pseudo-Variables.")

All of the arrays on the 1left and
the arrays in the array expression
must have the same number of dimen-
sions and identical dimension bounds.

If a scalar expression appears to
the right of the equal sign, the value
of this expression is assigned to
every element of the array on the
left.

If the expression to the right of
the equal sign contains structure
operands, all arrays in the statement
must be arrays of structures. If the
BY NAME option is not used, the struc-
turing of the structure operands must
be equivalent to the structuring of
the structures in the arrays of struc-
tures.

In Option 3, in the absence of the BY
NAME option, the structure indicated
on the 1left must have structuring
identical to the structures indicated
in the structure expression. Actual
level numbers of the structures
involved need not be the same; only
the structuring described need be the
same.

L

1.

Ll:

General rules:

The assignment statement is evaluated
as follows:

a. In Options 1, 4, and 5, if any
expressions appear on the left of
the equal sign, either in sub-
scripts or in pseudo-variables,
these expressions are evaluated
exactly once from left to right.
The expression on the right of the

equal sign 1is evaluated. The
value of the expression on the
right of the equal sign is

assigned +to the variables on the
left of the equal sign, from left
to right.

b. In Options 2 and 3, the assignment
statement is treated as if it were
a sequence of scalar assignment
statements applied on an element-
by-element basis. See Rules 3 and
4 below for a discussion of the
evaluation of a structure or array
assignment BY NAME.

c. The definition of the order of
assignment for a statement of the
form

Ll: A,B=expression;

(where A and B are arrays of
dimensionality n) is as follows:

DO Il
DO I2

LBOUND (A,1) TO HBOUND (A,1);
LBOUND (A,2) TO HBOUND (A,2);

DO In = LBOUND (A,n) TO HBOUND (A,n);
A(I1l, I24<<-gIn), B(I1,I24...,INn) =
expression;

Subscripts (Ll u'e'sy In) are
inserted for the appropriate
arrays on the righthand side, thus
yielding a sequence of scalar
assignments.

The result of the evaluation for a
later position in an array oOr
structure may be affected by the
evaluation and assignment to an
earlier position (see Example 1,
below).

d. When necessary, the expression
value, or values, is converted to
the characteristics of the varia-
ble on the left according to the
rules in "Expressions," in Chapter
3, except when conversion of
arithmetic Dbase is involved (this
is converted directly to the pre-

cision of the variable to the left
of the equal sign).

€. Structure assignment, in the
absence of the BY NAME option, is
accomplished through the following
process:

Consider that each structure iden-
tifier designates a structure hav-
ing n elements at the next level.
The structure assignment statement
is transformed into n statements,
Sis Soy eeeg Spne wWith each state-
ment Sf involving the ith element
of each structure (see example i
below).

When a variable on the left is a bit
or character string or the UNSPEC
pseudo-variable, the expression is
evaluated as above, and the assignment
is performed from 1left to right,
starting with the leftmost position.

a. If the string has a fixed length
and the value of the expression is
longer than the string, the value
is truncated at the right.

b. If the string has a fixed 1length
and the value of the expression is
shorter than the string, the value
is extended on the right with
zeros for bit strings or with
blanks for character strings.

c. If the string has a varying length
and the value of the expression is
longer than the maximum length of
the string, the value is truncat-
ed; the assigned string is of the
maximum length.

d. If the string has a varying length
and the value of the expression is
shorter than the maximum length of
the string, the value is assigned;
the new length of the string is
the length of the value.

e. If the variable on the left is the
pseudo-variable SUBSTR with an
argument that is a varying-length
string, the assignment is per-
formed +to this substring in prec-
isely the same way as it would be
if the argument were of fixed
length, where this fixed length is
the length defined by the SUBSTR
pseudo-variable.

If the BY NAME option is used for
arrays of structures in Option 2, the
assignment statement is treated as a
sequence of BY NAME structure assign-
ments applied on an element-by-element
basis.

Chapter 8: Statements 107

108

If the BY NAME option is wused in
Option 3, the assignment statement is
evaluated as follows:

a. Every element at the next level of
each structure is extracted.

b. A subset of these elements is
selected. This subset consists of
those elements common to all of
the structures.

c. A corresponding assignment state-
ment is constructed for each of
the subset elements. The order of
the constructed statements corres-
ponds to the order in which the
elements appear in the leftmost
structure. The rules by which
such statements are constructed
are detailed in paragraphs d, e,
and £ below.

d. If all of the elements correspond-
ing to a subset element are struc-
tures or arrays of structures, an
assignment statement is construct-
ed and the BY NAME option is
appended to it. (Further state-
ments are generated from this con-
structed statement in accordance
with the rules given in paragraphs
4a through 4f.)

e. If none of the elements corres-
ponding to a subset element is a
structure or an array of struc-
tures, an assignment statement is
constructed but the BY NAME option
is not appended to it. ©No further
statements would be generated from
this constructed statement.

f. If the rules in paragraphs d and e
above do not pertain, no statement
is constructed.

Example:

Suppose that the following three

structures have been declared.

1 ONE 1 TWO
2 PART1 2 PART1
3 RED 3 RED
3 WHITE 3 GREEN
3 BLUE 3 WHITE
2 PART2 2 PART2
3 GREEN 3 BLUE
3 YELLOW 3 YELLOW
3 ORANGE(3) 3 ORANGE(3)
2 PART3
3 BLACK
3 WHITE
1 THREE
3 PART1
5 BLACK

Note: In
is unnecessary for the structuring of
participating
Names of variables
structures
take no part in name

5 WHITE

5 RED
3 PART2
YELLOW
5 WHITE
5 ORANGE(3)
5 PURPLE

wu

Note that
array names.

the structures contain

stated in
elements

According to the rule
paragraph La, the
extracted are as follows:

ONE. PART1
ONE.PART2
ONE.PART3

TWO: PART1
TWO.PART2

THREE. PART1
THREE. PART2

As indicated by the rule given in
paragraph 4b, a subset of those
elements common to all of the
structures is then selected. This
subset is

PART1
PART2

If the following
being evaluated,

statement were

ONE = TWO-2*THREE, BY NAME;

then the following statements
would be constructed (see Uc and
4d) :
ONE.PART1 = TWO.PART1-2%

THREE. PART1, BY NAME;
ONE.PART2 = TWO.PART2-2%

THREE. PART2, BY NAME;
Further statements are generated

in accordance with the rules in
paragraphs 4a through 4f until the
lowest level is reached.

BY NAME structure assignment, it
all
structures to be identical.
that are defined on
appearing in BY NAME assignment
matching (see "The

DEFINED Attribute").

54

In Option 4, the value of the label
constant or the label variable is
qualified by an identification of the
current invocation of the block con-
taining the 1label and by the current
task.

This qualification information is
used when a GO TO statement specifies

1.

the label variable to make the iden-
tified invocation current and to check
that control does not cross task boun-
daries.

Pointer variables may be components of
structures or arrays of structures, in
which case they are assigned values by
a statement as specified in Options 2
and 3. However, no conversions are
performed, and the value assigned to a
pointer structure component must be a
pointer variable. If the pointer
variables are array pointer variables,
the rules for array assignment given
in Rule 1 apply. In any event, the
pointer expression is limited to a
scalar pointer variable or a function
reference that returns a scalar poin-
ter value.

Examples:

The following example illustrates
array assignment (Option 2):

Given the array A

FRrWN
ONo &

and the array B

WP
wWweEooWwm

Consider the assignment statement:
A = (A+B)**2-A(1,1);

After execution, A has the value
7 74
93 189
9 114
93 114

Note that the new value for A(1,1),
which is 7, is used in evaluating the
expression for all other elements.

The following illustrates
string assignment:

example

Given:

A is a fixed-length
value is 'XZ/BQ°'.

string whose

B is a varying-length string of
maximum length 8 whose value is
"MAFY"'.

C is a fixed-length string of
length 3.

D is a varying-length string of

maximum length 5.
Then in the statement:

c=A, the value of C is "XZ/'.

5.

C='X", the value of C is 'Xbb'.
D=B, the wvalue of D is "MAFY'.
D=SUBSTR (A, 2,3) | | SUBSTR(A,2,3),
the value of D is 'Z/BZ/'.
SUBSTR(A,2,4)=B, the value of A is

*XMAFY'.

SUBSTR(B,2,2)='R', the value of B
is 'MRbY'.

SUBSTR(B,2)="'R*', the value of B is
'MRbb"'.

The following examples illustrate sca-
lar assignment (Option 1):

a. A,B,C = A+SIN(B) + C*%*2; provided
X has the characteristics of the
expression, this is the same as
X = A+SIN(B) + C**2;

A = X;
B = X;
C = X;

b. COMPLEX (U1, V1) = COMPLEX (U, V)
+ REAL (Q);

This is the same as

C=COMPLEX (U, V) +REAL(Q) ;
U1=REAL(C) ;
V1=IMAG(C) ;

The following examples illustrate
structure assignment (Option 3):

a. DECLARE 1X, 2Y, 2%, 2R, 3s, 3P,
ia, 2B, 2C¢, 2D, 3E, 30;
X = X*A;

The second statement is equivalent
to the following statements:

Y = Y*B;
7 = 7Z*C;
S = S*E;
P = P*Q;

b. DECLARE 1A, 2B, 2C, 3D, 3E;
A = A+B;

The second statement expands into
the following:

B = B+B;
C = C+B;
The last statement expands into
D = D+B;
E = E+B;

The following example illustrates
statement label assignment (Option 4);

DECLARE P LABEL;
P = A;
GO TO P;

A: X = Y*%2;

Chapter 8: Statements 109

This set of statements causes control
to transfer to A when the GO TO P
statement is executed.

6. The example below illustrates assign-
ment to an array of structures
(Options 2 and 3).

In the following statement, A is an
array of structures, and R is a struc-
ture:

DECLARE 1A(2,2), 2B, 2C, 2D, 3E, 3F,

ir, 3s, 3T, 30, 5V, 5W;

The following is an array assignment

statement:

A=R;

The above assignment statement is

equivalent to the following four

structure assignment statements:

A(lrl)zR;

A(1,2)=R;

A(2,1)=R;

A(2,2)=R;

The four statements above are, in

turn, equal to the following:

A(L,1) . B, A(1,2).B, A(2,1).B,
A(2,2). B=S;

A(1,1).c, A(1,2).c, A(2,1).C, A(2,2).
C =T;

A(1,1).E, A(1,2).E, A(2,1).E, A(2,2).
E = V;

a(1,1).r, a(1,2).7, A(2,1).F, A(2,2).F
:W;

(If R is ABNORMAL, 16 statements are
actually generated.)

7. The following example illustrates con-
version of data defined by a picture
description assigned to floating-point
data, and vice versa:

DECLARE A FLOAT, B PICTURE '999V99°';

A=B; (B is converted from fixed-point
to floating-point.)
B = A; (A is converted from floating-
point to fixed-point.)
8. The following example illustrates

pointer assignments (Option 5):

DECLARE (P, Q(5), R, T(5)) POINTER,
VALUE FIXED STATIC,
POINT ENTRY (FIXED) RETURNS
(POINTER) ;

P=R;

110

R=ADDR (VALUE) ;
0(3)=NULL;

T=Q;

Q=ADDR (R);
T(1)=POINT (VALUE):;

The BEGIN Statement

Function:

The BEGIN statement is the
statement of a begin block.

heading

General format:
BEGIN;
General rules:

1. A BEGIN statement is used in
tion with an END statement.

conjunc-

2. See Chapter 1 for a discussion of

blocks.
Examples:

1. ON OVERFLOW BEGIN;

END;

2. (SIZE): PROCEDURE;

(NOSIZE): A: BEGIN;

END;

The SIZE condition is enabled with the
prefix to the PROCEDURE statement. This
enabling is negated throughout the begin
block with the prefix NOSIZE. On exit from
the begin block, SIZE errors are again
enabled because statements again are in the
scope of the SIZE prefix.

The CALL Statement

Function:

The CALL statement invokes a procedure
and causes control to be transferred to a
specified entry point of the procedure.

_—

1.

General format:
CALL entry-name
[(argument [,argument] . . .)]

[TASK [(scalar-task-name)]]
[EVENT (scalar-event-name)]
[PRIORITY (expression)l];

Syntax rules:

The entry name represents the entry
point of the procedure invoked.

Each argument may be any of the fol-
lowing: any type of expression, a
statement label constant, a statement
label variable, a statement label
array, a label parameter, an entry
name, an entry parameter, a file name,
a file parameter, a task name, a task
parameter, an event name, an event
parameter, an area name, an area par-
ameter, a pointer name, a pointer
expression, Or a pointer parameter.
Note that a pointer expression must be
either a pointer variable or a pointer
function reference.

The TASK, EVENT, and PRIORITY options
can appear in any order. They are
separated from each other by blanks,
and they are separated from the ini-
tial part of the CALL statement by a
blank.

The scalar event and task names may be
subscripted references to event or
task arrays.

General rules:

The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed asyn-
chronously. Note that if either the
EVENT option or the PRIORITY option,
or both, are used without the TASK
option, the created task will have no
name (see "Asynchronous Operations and
Tasks" in Chapter 6).

When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of
the task to be controlled at some
other point by the use of the PRIORITY
pseudo-variable and built-in function.

When the EVENT option is used, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a

WAIT statement. The value of the
completion status for the event name
(i.e., the value of EVENT (event
name)) is set to "0'B on execution of
the CALL statement and to '1'B on
completion of the created task. (see
"Event Data" in Chapter 2 and "The
WAIT Statement" in this chapter.)

4. If the PRIORITY option is used, the
expression in the above form is evalu-
ated when the CALL statement is exe-
cuted. The result of this evaluation
is converted to FIXED (m,0) where m is
implementation-defined. The priority
of the named task is then made m
relative to the task in which the CALL
is executed. If the PRIORITY option
is not specified, a priority must have
been assigned at some earlier point
through the PRIORITY pseudo-variable.

5. See "Relationship of Arguments and
Parameters" for a detailed descripti