MVS/ESA .
JCL User’s Guide

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1830-0

MVS/ESA GC28-1830-0

JCL User’s Guide

MVS/System Product:
JES2 Version 3
JES3 Version 3

This edition applies to the following program products:
* MYVS/System Broduct - JES2 Version 3 Release 1.0 (program number 5685-001)
. MVS/System Broduct - JES3 Version 3 Release 1.0 (program number 5685-002)

¢ MVS/Extended Architecture Data Facility Product (DFP) Version 2 Release 3.0 (program number 5665-XA2) and
MVS/Data Facility Product (MVS/DFP™) Version 3 Release 1.0 (program number 5665-XA3)

* Resource Accesé Control Facility (RACF) Version 1 Release 8 and later (program number 5740-XXH)

Do not replace your existing documentation until your system consists of the above releases (1) of the base
control program w1th JES2 or JES3 and (2) of DFP.

First Edition (July, 1988)

This edition applies to the program releases listed in the box above and to all subsequent releases until
otherwise indicatéd in new editions or Technical Newsletters.

Changes are made periodically to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that
are applicable and current.

References in th1s publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM’s product may be used. Any functionally equivalent product may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publlcatlons should be made to
your IBM representatlve or to the IBM branch office serving your locality.

A form for readex}"s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building
921-2, PO Box 390 Poughkeepsie, New York, U.S.A. 12602. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

|

© Copyright International Business Machines Corporation 1988

N

-

Changes for Version 3

This book contains information also presented in M VS/XA™ JCL User's Guide, GC28-1351-3,
which supports MVS/System Product Version 2 Release 2.0.

New Information in MVS/System Product Version 3.1.0
MVS/SP™ supports MVS/Data Facility Product (MVS/DFP™) Version 3 Release 1.0, which

introduces the Storage Management Subsystem (SMS). SMS provides new functions for data
and storage management.

In this book, “with SMS” indicates information that applies when SMS is installed and active;
“without SMS” indicates SMS is not installed or is not active.

For JCL, the following DD statement parameters are added for defining new data sets with
SMS. Note that the system ignores these DD parameters when SMS is not installed or is not
active.

The new DD parameters are:

* AVGREC - average record

* DATACLAS - data class

* KEYOFF - key offset

¢ LIKE - like dsname

* MGMTCLAS - management class
* RECORG - record organization
* REFDD - reference ddname

* SECMODEL - security model

¢ STORCLAS - storage class *

* When a storage class is assigned to a data set, the data set is referred to as an
“SMS-managed data set”.

There are also changes to:

* The SPACE and VOLUME DD parameters for defining data sets with SMS.
* The defining and disposition of VSAM data sets with SMS.

There is a new appendix (Appendix D, “Data Sets with SMS?”) that contains a summary of
SMS information.

Changes for Version 3 1il

iV JCL User's Guide

About This Book

This book describes the job control tasks needed to enter jobs into the operating system, control
the system’s processing of jobs, and request the resources needed to run jobs. To perform the

tasks, programmers code job control statements. This book describes how to use these
statements, which consist of:

¢ Job control language (JCL) statements
¢ Job entry subsystem 2 (JES2) control statements
¢ Job entry subsystem 3 (JES3) control statements

This book is designed as a user’s guide, to be used when deciding how to perform job control
tasks. It does not describe how to code the statements. For an introduction to the statements
and for coding information, see the companion book, JCL Reference, GC28-1829.

Trademarks

The following are trademarks of International Business Machines Corporation.

MVS/DFP™
MVS/ESA™
MVS/SP™
MVS/XA™

Who This Book Is For

This book is needed by system and application programmers who enter programs into the
operating system. Those using this book should understand the concepts of job management
and data management.

How This Book Is Organized

This book has 6 parts with 30 chapters and 4 appendixes:

Part 1. Introduction
Chapter 1. Job Control Statements: This chapter introduces the job control statements.

Chapter 2. Job Control: This chapter defines jobs, steps, input streams, and cataloged and
in-stream procedures. It gives an overview of entering and processing jobs and requesting
resources.

Chapter 3. Job Control Tasks: This chapter contains charts of job control tasks and the
statements and parameters that can be used to perform the tasks. These charts indicate the
organization for this book; the listed tasks are described in the rest of the book in the same
order as in the charts.

About This Book Vv

Part 2. Tasks for Entering Jobs ,
This part discusses the tasks for entering jobs into the system. Each chapter in this part
describes a major task. The chapters are:

Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.

Entering Jobs - Identification
Entering Jobs - Execution
Entering Jobs - Job Input Control
Entering Jobs - Communication
Entering Jobs - Protection
Entering Jobs - Resource Control

Part 3. Tasks for Processing Jobs
This part discusses the tasks for controlling the processing of jobs in the system. The chapters
are:

¢ Chapter 10. Processing Jobs - Processing Control
* Chapter 11. Processing Jobs - Performance Control

Part 4. Tasks for Requesting Data Set Resources

This part discusses the tasks for requesting data set resources. The chapters are:

Chapter 12.
Chapter 13.
Chapter 14.
Chapter 15.
Chapter 16.
Chapter 17.

Data Set Resources - Identification
Data Set Resources - Description

Data Set Resources - Protection

Data Set Resources - Allocation

Data Set Resources - Processing Control
Data Set Resources - End Processing

Part 5. Tasks for Requesting Sysout Data Set Resources
This part discusses the tasks for requesting sysout data set resources. The sysout data sets are
the output data sets that are processed by JES2 or JES3. The chapters are:

Chapter 18.
Chapter 19.
Chapter 20.
Chapter 21.
Chapter 22.
Chapter 23.
Chapter 24.
Chapter 25.

Part 6. Examples

Sysout Resources - Identification

Sysout Resources - Description

Sysout Resources - Performance Control
Sysout Resources - Processing Control
Sysout Resources - End Processing
Sysout Resources - Qutput Destination
Sysout Resources - Output Formatting
Sysout Resources - Output Limiting

This part contains examples to show how to use JCL.

Appendixes
The book contains the following appendixes that detail the use of several types of data sets that
have special requirements. The appendixes are:

* Appendix A. Indexed Sequential Data Sets
¢ Appendix B. Generation Data Sets

¢ Appendix C. VSAM Data Sets

* Appendix D. Data Sets with SMS

vi JCL User’s Guide

Related Information

Corequisite Book
You need the following book to have complete JCL information.

MVS/ESA™ JCL Reference,GC28-1829.

Referenced Books

The following books are referenced in the text and you may need them for additional
information.

MVS/System Product Version 3 - Base Control Program
MVS/ESA Application Development Guide, GC28-1821.
MVS|ESA Application Development Macro Reference, GC28-1822.
MVS|ESA Operations: System Commands, GC28-1826.
MVS|ESA System Generation, GC28-1825.
MVS/|ESA System Programming Library: System Modifications, GC28-1831.
MYVS/|ESA System Programming Library: Initialization and Tuning, GC28-1828.
MVS|ESA System Programming Library: Application Development Guide, GC28-1852.
MVS/ESA System Programming Library: Application Development Macro Reference,
GC28-1857.
MVS/ESA System Programming Library: User Exits, GC28-1836.
MVS/|ESA System Programming Library: Service Aids, GC28-1844.
MVS|ESA System Programming Library: System Management Facilities (SMF),
GC28-1819. :
MYVS|ESA Diagnosis: Special Analysis Techniques, LY28-1840.
MVS/|ESA Diagnosis: Using Dumps and Traces, LY28-1843.
MVS|ESA Interactive Problem Control System (IPCS) User's Guide, GC28-1833.

MVS/XA Data Facility Product - Version 2
MYVS|Extended Architecture System-Data Administration, GC26-4149.
MYVS|Extended Architecture Data Administration Guide, GC26-4140.
MYVS|Extended Architecture Integrated Catalog Administration: Access Method Services
Reference, GC26-4135.
MVS|Extended Architecture VSAM Catalog Administration: Access Method Services
Reference, GC26-4136.
MYVS|Extended Architecture Checkpoint/Restart User's Guide, GC26-4139.
MYVS|Extended Architecture Data Administration: Utilities, GC26-4150.
MV S|Extended Architecture Magnetic Tape Labels and File Structure Administration,
GC26-4145.
MYVS|Extended Architecture VSAM Administration Guide, GC26-4151.
MYV S|/Extended Architecture VSAM Administration: Macro Instruction Reference,
GC26-4152.
MV S|Extended Architecture Interactive Storage Management Facility User's Guide,
GC26-4266.

JES2
MVS|Extended Architecture System Programming Library: JES2 Initialization and Tuning,
SC23-0065. .
MVS|Extended Architecture Operations: JES2 Commands, SC23-0064.

About This Book Vil

JES3
MYVS|Extended Architecture System Programming Library: JES3 itialization and Tuning,
SC23-0059.
MYVS|Extended Architecture Operations: JES3 Commands, SC23-0063.
MYVS|Extended Architecture JES3 Diagnosis, LC28-1034.
MV S|Extented Architecture System Programming Library: JES3 User Modifications and
Macros, LC28-1033.

Programs
Advanced Communications Function for VTAM Version 2 Programming, SC27-0611.
Advanced Communications Function for TCAM, Version 2 Installation Reference, SC30-3133.
OS/VS Mass Storage System (MSS) Services General Information, GC35-0016.
Resource Access Control Facility (RACF) General Information Manual, GC28-0722.
Resource Access Control Facility (RACF) Security Administrator's Guide, SC28-1340.
Resource Access Control Facility (RACF) Command Language Reference, SC28-0733.

Hardware
IBM 3800 Printing Subsystem Models 3 and 8 Programmer’s Guide, SH35-0061.
IBM 3800 Printing Subsystem Programmer’s Guide, GC26-3846.
Forms Design Reference Guide for the IBM 3800 Printing Subsystem, GA26-1633.
IBM 2821 Control Unit Component Description, GA24-3312.
OS and OS/|V'S Programming Support for the IBM 3505 Card Reader and IBM 3525 Card
Punch, GC21-5097.
OS/VS2 IBM 3540 Programmer’s Reference, GC24-5111.
Print Management Facility User’s Guide and Reference, SH35-0059.
Print Services Facility User’s Programming Guide for MV'S, S544-3084.
Print Services Facility System Programmer’s Guide for MV'S, SH35-0091.

viii JCL User’s Guide

Contents

Part 1. Introduction
Chapter 1. Introduction - Job Control Statements 1-1
Chapter 2. Introduction - Job Control 2-1
Entering Jobs 2-1
Processing Jobs 2-4

Requesting Resources 2-4

Chapter 3. Introduction - Job Control Tasks 3-1

Part 2. Tasks for Entering Jobs

Chapter 4. Entering Jobs - Identification 4-1
Identification of Job 4-2

Identification of Step 4-2

Identification of Procedure 4-3
Identification of Account 4-4

Identification of Programmer 4-5

Chapter 5. Entering Jobs - Execution 5-1

Execution of Program 5-1

Execution of Procedure 5-2

Execution when Restarting and with Checkpointing - 5-2
Deadline or Periodic Execution in a JES3 System 5-3

Execution when Dependent on Other Jobs in a JES3 System 5-4
Execution at Remote Node 5-6

Chapter 6. Entering Jobs - Job Input Control 6-1

Job Input Control by Holding Job Entrance 6-1

Job Input Control by Holding Local Input Reader in a JES3 System
Job Input Control by Copying Input Stream in a JES2 System 6-2
Job Input Control from Remote Work Station 6-3

Chapter 7. Entering Jobs - Communication 7-1

Communication from JCL to System 7-2

Communication from JCL to Operator 7-2

Communication from JCL to Programmer 7-2

Communication from JCL to Program 7-3

Communication from System to Operator 7-3

Communication from System to Time Sharing Userid 7-4

Communication from Time Sharing Userid to a JES3 System 7-5
. Communication from Functional Subsystem to Programmer 7-5

Communication through Job Log 7-5

Chapter 8. Entering Jobs - Protection 8-1
Protection through RACF 8-1

Chapter 9. Entering Jobs - Resource Control ~ 9-1

Clantente

ix

Resource Control of Program Library = 9-1

Resource Control of Procedure Library 9-4

Resource Control of Address Space 9-6

Resource Control of the Processor 9-8

Resource Control of Spool Partitions in a JES3 System 9-10

Part 3. Tasks for Processing Jobs

Chapter 10. Processing Jobs - Processing Control 10-1
Processing Control by Terminating Execution 10-2
Processing Control by Timing Execution 10-9
Processing Control for Testing 10-11

Chapter 11. Processing Jobs - Performance Control 11-1

Performance Control by Job Class Assignment 11-2

Performance Control by Selection Priority 11-3

Performance Control by Dispatching Priority 11-4

Performance Control by Performance Group Assignment 11-4
Performance Control by I/O-to-Processing Ratio in a JES3 System 11-5

Part 4. Tasks for Requesting Data Set Resources

Chapter 12. Data Set Resources - Identification 12-1

Identification of Data Set 12-2

Identification of In-Stream Data Set - 12-6

Identification of Data Set on 3540 Diskette Input/Output Unit 12-7
Identification through Catalog 12-7

Identification through Label 12-8

Identification by Location on Tape 12-10

Identification as TCAM Message Data Set 12-10

Identification as Data Set from or to Terminal 12-10

Chapter 13. Data Set Resources - Description 13-1
Description of Status 13-1

Description of Data Attributes 13-5

Migration and Backup (with SMS) 13-7

Chapter 14. Data Set Resources - Protection 14-1
Protection through RACF 14-1

Protection for ISO/ANSI/FIPS Version 3 Tapes 14-2
Protection by Passwords 14-3

Protection of Access to BSAM or BDAM Data Sets 14-4

Chapter 15. Data Set Resources - Allocation 15-1

Allocation of Device 15-1

Allocation of Volume 15-16

Allocation of Direct Access Space 15-23

Allocation of Virtual [/O 15-27

Allocation with Deferred Volume Mounting ~ 15-30

Allocation with Volume Premounting in a JES2 System 15-30
Dynamic Allocation 15-30

Chapter 16. Data Set Resources - Processing Control 16-1
Processing Control by Suppressing Processing ~ 16-1

X JCL User’s Guide

Processing Control by Postponing Specification 16-2
Processing Control with Checkpointing 16-4
Processing Control by Subsystem 16-4

Processing Control by TCAM Job or Task 16-5

Chapter 17. Data Set Resources - End Processing 17-1
Deallocation End Processing 17-1

Disposition End Processing of Data Set 17-1

Release of Unused Direct Access Space in End Processing 17-8
Disposition End Processing of Volume 17-9

Part 5. Tasks for Requesting Sysout Data Set Resources

Chapter 18. Sysout Resources - Identification ~ 18-1

Identification as a Sysout Data Set 18-1

Identification of Output Class 18-2

Identification of Data Set on 3540 Diskette Input/Output Unit 18-2

Chapter 19. Sysout Resources - Description 19-1
Description of Data Attributes 19-1

Chapter 20. Sysout Resources - Performance Control 20-1
Performance Control by Queue Selection 20-1

Chapter 21. Sysout Resources - Processing Control 21-1
Processing Control with Additional Parameters 21-1
Processing Control with Other Data Sets 21-4
Processing Control by External Writer 21-6

Processing Control by Mode 21-6

Processing Control by Holding 21-7

Processing Control by Suppressing Output ~ 21-8
Processing Control with Checkpointing 21-9°
Processing Control by Print Services Facility —21-9

Chapter 22, Sysout Resources - End Processing 22-1
Deallocation End Processing 22-1

Chapter 23. Sysout Resources - Destination Control = 23-1

Destination Control to Local or Remote Device or to Another Node 23-1
Destination Control to Another Processor in a JES3 System 23-4
Destination Control to Internal Reader 23-4

Destination Control to Terminal 23-5

Chapter 24. Sysout Resources - Qutput Formatting 24-1

Output Formatting to Any Printer 24-2

Output Formatting to 3800 Printing Subsystem 24-3

Output Formatting to 3211 Printer with Indexing Feature in a JES2 System 24-4
Output Formatting to Punch 24-5

Output Formatting of Dumps on 3800 Printing Subsystem 24-5

Chapter 25. Sysout Resources - Output Limiting 25-1
Output Limiting = 25-1

Part 6. Examples

Contents

xi

Chapter 26. Example - Assemble, Linkedit, and Go 26-1
Chapter 27. Example - Multiple Output 27-1

Chapter 28. Example - Obtaining Output in a JES2 System
Chapter 29. Example - Obtaining Output in a JES3 System

Chapter 30. Example - Identifying Data Sets to the System

28-1

29-1

30-1

Appendixes

xii

Appendix A. Indexed Sequential Data Sets A-1
Appendix B. Generation Data Sets B-1
Appendix C. VSAM Data Sets C-1

VSAM Data Sets - With SMS C-2

VSAM Data Sets - Without SMS C-6
Appendix D. Data Sets with SMS D-1

Index X-1

JCL User’s Guide

Figures

1-1.
2-1.
2-2.
2-3.
2-4.
3-1.
3-2.
3-3.
3-4.
4-1.
5-1.
6-1.
7-1.
8-1.
9-1.
10-1.
11-1.
12-1.
13-1.
13-2.
14-1.
14-2.
15-1.
15-2.
15-3.
15-4.
16-1.
17-1.
18-1.
19-1.
20-1.
21-1.
22-1.
23-1.
24-1.
25-1.
A-1.
A-2.
C-1.
C-2.
C-3.
C4.

Job Control Statements 1-1

Jobs and Job Steps 2-1

Job Boundaries in the Input Stream 2-2

In-Stream and Cataloged Procedures 2-3

JES Control Statements in Jobs 2-4

Tasks for Entering Jobs . 3-2

Tasks for Processing Jobs 3-5

Tasks for Requesting Data Set Resources 3-6

Tasks for Requesting Sysout Data Set Resources 3-9

Identification Task for Entering Jobs 4-1

Execution Task for Entering Jobs 5-1

Input Control Task for Entering Jobs 6-1

Communication Task for Entering Jobs 7-1

Protection Task for Entering Jobs 8-1

Resource Control Task for Entering Jobs 9-1

Processing Control Task for Processing Jobs 10-1

Performance Control Task for Processing Jobs 11-1

Identification Task for Requesting Data Set Resources 12-1

Description Task for Requesting Data Set Resources 13-1

Data Set Integrity Processing 13-4

Protection Task for Requesting Data Set Resources 14-1

Processing with DD LABEL Subparameter IN or OUT 14-4

Allocation Task for Requesting Data Set Resources 15-1

Effect of Device Status on Allocation 15-3

Unit and Volume Affinity (Non-SMS-Managed Data Sets) 15-8

Types of JES3 Setup 15-15

Processing Control Task for Requesting Data Set Resources 16-1

End Processing Task for Requesting Data Set Resources 17-1
Identification Task for Requesting Sysout Data Set Resources 18-1
Description Task for Requesting Sysout Data Set Resources 19-1
Performance Control Task for Requesting Sysout Data Set Resources 20-1
Processing Control Task for Requesting Sysout Data Set Resources 21-1
End Processing Task for Requesting Sysout Data Set Resources 22-1
Destination Control Task for Requesting Sysout Data Set Resources 23-1
Output Formatting Task for Requesting Sysout Data Set Resources 24-1
Output Limiting Task for Requesting Sysout Data Set Resources 25-1
Area Arrangement of ISAM Data Sets A-5

DD Parameters for Retrieving or Extending an ISAM Data Set A-6

With SMS, DD Parameters to Use when Processing VSAM Data Sets C-3
With SMS, DD Parameters to Avoid when Processing VSAM Data Sets C-5
Without SMS, DD Parameters to Use when Processing VSAM Data Sets C-7
Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets C-8

Figures

xiii

XiV JCL User’s Guide

Part 1. Introduction

“
Part 1. Introduction

For your program to execute on the computer and perform the work you designed it to do,
your program must be processed by your operating system. Your operating system consists of
a base control program (BCP) and the job entry subsystem (JES2 or JES3) installed with it.

For the operating system to process a program, programmers must perform certain job control
tasks. These tasks are performed through the job control statements, which are introduced in
the first chapter. The job control tasks are introduced in the second chapter. The charts in the
third chapter divide these tasks into detailed subtasks. The tasks are:

¢ Entering jobs
* Processing jobs
* Requesting resources

Part 1 Contents
Chapter 1. Introduction - Job Control Statements 1-1

Chapter 2. Introduction - Job Control 2-1
Entering Jobs 2-1

Processing Jobs 2-4

Requesting Resources 2-4

Chapter 3. Introduction - Job Control Tasks 3-1
Task Charts 3-1

Part 1. Introduction

JCL User’s Guide

L

Introduction - Statements

N\ Chapter 1. Introduction - Job Control Statements

This chapter lists in Figure 1-1 all the job control statements and gives the purpose of each

statement.
Statement Name Purpose
JCL Statements
// command JCL command Enters an MVS system operator command through the input stream.
The command statement is used primarily by the operator.
Note: JES3 ignores the JCL command statement.
//* comment comment Contains comments. The comment statement is used primarily to
document a program and its resource requirements.
L/ // CNTL control Marks the beginning of one or more program control statements.
// DD data definition Identifies and describes a data set.
1* delimiter Indicates the end of data placed in the input stream.
Note: Any two characters can be designated by the user to be the
delimiter. i
// ENDCNTL end control Marks the end of one or more program control statements.
RN // EXEC execute Marks the beginning of a job step; assigns a name to the step; identifies
\‘ ; the program or the cataloged or in-stream procedure to be executed in
" this step. E
// JOB job Marks the beginning of a job; assigns a name to the job.
/] null Marks the end of a job.
// OUTPUT output JCL Specifies the processing options that the job entry subsystem is to use for
printing a sysout data set.
// PEND procedure end Marks the end of an in-stream procedure.
o // PROC procedure Marks the beginning of an in-stream procedure and may mark the
\g\// beginning of a cataloged procedure; assigns default values to parameters
defined in the procedure.
// XMIT transmit Transmits input stream records from one node to another.
Note: The XMIT JCL statement is supported only on JES3 systems.
Figure 1-1 (Part 1 of 2). Job Control Statements

Chapter 1. Introduction - Job Control Statements 1-1

Introduction - Statements

Statement

Purpose

JES2 Control Statements

/*$command
/[*JOBPARM
/*MESSAGE
/*NETACCT
/[*NOTIFY
[*OUTPUT
[*PRIORITY
/*ROUTE
/*SETUP
/*SIGNOFF
/*SIGNON
/*XEQ

[*XMIT

Enters JES2 operator commands through the input stream.
Specifies certain job-related parameters at input time.
Sends messages to the operator via the operator console.
Specifies an account number for a network job.

Specifies the destination of notification messages.

Specifies processing options for sysout data set(s).

Assigns a job queue selection priority.

Specifies the output destination or the execution node for the job.
Requests mounting of volumes needed for the job.

Ends a remote job stream processing session.

Begins a remote job stream processing session.

Specifies the execution node for a job.

Indicates a job or data stream to be transmitted to another JES2 node
or eligible non-JES2 node.

JES3 Control Statements

//**command

//*DATASET
//*ENDDATASET
//*ENDPROCESS

/[*FORMAT

//*MAIN

//*NET

//*NETACCT
//*OPERATOR
//**PAUSE
//*PROCESS
//*ROUTE
/*SIGNOFF

/*SIGNON

Enters JES3 operator commands, except *DUMP and *RETURN, through
the input stream.

Begins an input data set in the input stream.
Ends the input data set that began with a //*DATASET statement.

Ends a series of //*PROCESS statements.

Specifies the processing options for a sysout or JES3-managed print or

punch data set.
Defines selected processing parameters for a job.

Identifies relationships between predecessor and successor jobsin a
dependent job control net.

S]ﬁeciﬁes an account number for a network job.
Sends messages to the operator.

Halts the input reader.

Identifies a nonstandard job.

Specifies the execution node for the job.

Ends a remote job stream processing session.

Begins a remote job stream processing session.

Figure 1-1 (Part 2 of 2). Job Control Statements

1-2 JCL User's Guide

Chapter 2. Introduction - Job Control

Introduction - Job Control

Entering Jobs

Job Steps: You enter a program into the operating system as a job step. A job step consists of

the job control statements that request and control execution of a program and request the
resources needed to run the program. A job step is identified by an EXEC statement. The job
step can also contain data needed by the program. The operating system distinguishes job
control statements from data by the contents of the records.

Jobs: A job is a collection of related job steps. A job is identified by a JOB statement.

Job with One Step

Step
1

//J0BL JOB ACCT28, 'MAE BIRD'
//STEP1 EXEC PGM=A
//ODL DD *

(data)

//DD2 DD SYSOUT=H

Job with Three Steps

Step
1

Step

Step

//JOBB JOB ACCT32,'NICK TULVE'
//STEP1 EXEC PGM=RDR
//DDINL DD *

idata)

//DDWRK DD DSNAME=A.B.C,
DISP=(MOD, PASS)

//STEP2 EXEC PGM=WRTR

//DDIN2 DD DSNAME=*.STEP1.DDWRK,

// DISP=(OLD, PASS)

//DDOUT DD SYSOUT=D

//STEP3 EXEC PGM=REPT

//DDATA DD DSNAME=*.STEP2.DDINZ,
DISP=0LD

//DDREP DD SYSOUT=C

Identifies job
Identifies step, executes program
Defines in-stream data set

Defines output data set

Identifies job
Identifies first step, executes program RDR
Defines in-stream data set

Requests cataloged data set to be updated

Identifies second step, executes program WRTR
Requests data set updated in STEP1

Defines sysout data set
Identifies third step, executes program REPT

Requests data set read in STEP2

Defines sysout data set

Figure 2-1. Jobs and Job Steps

Chapter 2. Introduction - Job Control 2-1

Introduction - Job Control

Input Streams: Jobs placed in a series and entered through one input device form an input
stream. The operating system reads an input stream into the computer from an input/output
(I/O) device or an internal reader. The input device can be a card reader, a magnetic tape
device, a terminal, or a direct access device. An internal reader is a buffer that is read from a
program into the system as though it were an input stream (such as from a TSO SUBMIT

command).

Input Stream
Job 1 //J0B1 JOB AT45,'GARY HILL'
//STEP1 EXEC PGM=A33

//DDB DD SYSOUT=A

Job2 //J0B2 JOB AT87,'JAN BUSKIRK'
//STEPA EXEC PGM=REP
//DDL DD *

idata)

//bD2 DD SYSOUT=C

Job3 //JOB3 JOB 1726, 'JOYCE GRIFFIN'
//STL EXEC PGM=ADDER
//DDIN DD DATA

idata)
ro

//DDOUT DD SYSOUT=A

//DDA DD DSNAME=CATDS ,DISP=0LD

First job

Second job

Third job

Figure 2-2. Job Boundaries in the Input Stream

2-2 ICL User’s Guide

C

Introduction - Job Control

Cataloged and In-Stream Procedures: You often use the same set of job control statements
repeatedly with little or no change, for example, to compile, assemble, link-edit, and execute a
program. To save time and prevent errors, you can prepare sets of job control statements and
place, or catalog, them in a partitioned data set known as a procedure library. Such a set of
job control statements in the system procedure library, SYS1.PROCLIB (or an
installation-defined procedure library), is called a cataloged procedure.

To test a procedure before placing it in the catalog, place it in an input stream and execute it;
a procedure in an input stream is called an in-stream procedure. The maximum number of

in-stream procedures you can code in any job is 15.

In-Stream Procedure
//J0Bl JOB CT1492,'DAVE HANS'
//PTEST PROC
//PSTA EXEC PGM=CALC

//DDA DD DSNAME=D.E.F,DISP=0LD

//DDB DD DSNAME=DATAL,
DISP=(MOD, PASS)

//DDOUT DD SYSOUT=*

//PSTB EXEC PGM=PRNT

//DDC DD DSNAME=*.PSTA.DDB,

// DISP=0LD

//DDREP DD SYSOUT=A

// PEND

//STEP1 EXEC PROC=PTEST
//PSTA.IN DD *

idata)

/*

Cataloged Procedure: Member MYPROC in SYSI.PROCLIB

// PROC

//MY1 EXEC PGM=WORK1

J//MYDDA DD SYSOUT=A

//MYDDB DD SYSOUT=*

//MY2 EXEC PGM=TEXT5

//MYDDC DD DSNAME=F.G.H,DISP=0LD
//MYDDE DD SYSOUT=*

Input-Stream Job that Executes Cataloged Procedure
//30B2 JOB ,'BETH MORRISON'
//STEPA EXEC PROC=MYPROC
//MY2 .MYDDC DD DISP=(OLD,DELETE)

Starts job

Starts in-stream procedure

Identifies first step in procedure

Request 3 data sets for first procedure step

Identifies second step in procedure
Request 2 data sets for second procedure step

Ends in-stream procedure
First step in JOB1, executes procedure

Adds in-stream data set to procedure step
PSTA

Starts cataloged procedure (optional)
Identifies first step in procedure
Request 2 data sets for first procedure step

Identifies second step in procedure
Request 2 data sets for second procedure step

Starts job
First step in JOB2, executes procedure

Modifies DD statement MYDDC in procedure
step MY2

Figure 2-3. In-Stream and Cataloged Procedures

Chapter 2. Introduction - Job Control ~ 2-3

Introduction - Job Control

Steps in a Job: A job can be simple or complex; it can consist of one step or of many steps
that call many in-stream and cataloged procedures. A job can consist of up to 255 job steps,
including all steps in any procedures that the job calls. Specification of a greater number of
steps produces a JCL error.

Jobs with JES2 or JES3 Control Statements: The JES2 or JES3 control statements are placed
in input-stream jobs. These statements cannot appear in cataloged or in-stream procedures.

Input Stream Job with JES2 Statements

/*PRIORITY 9 JES2 statement
//J0BH JOB AT45,'MIKE COLLINS'
/*JOBPARM BYTES=100,COPIES=5 JES2 statement

//STEP1 EXEC PGM=REPORT1
//DDA DD DSNAME=DATA2,DISP=0LD
//DDB DD SYSOUT=A

Input Stream Job with JES3 Statements
//JOBH JOB AT45,'MIKE COLLINS'

//*MAIN BYTES=100 JES3 statements
//*FORMAT PR,DDNAME=,COPIES=5

//STEP1 EXEC PGM=REPORT1

//DDA - DD DSNAME=DATA2,DISP=0LD

//0DB DD SYSOUT=A

Figure 2-4. JES Control Statements in Jobs

Processing Jobs

The operating system performs many job control tasks automatically. You can influence the
way your job is processed by the JCL and JES2 or JES3 parameters you code. For example,
the job entry subsystem selects jobs for execution, but you can speed up or delay selection of
your job by the parameters you code.

Requesting Resources

Data Set Resources: To execute a program, you must request the data sets needed to supply
data to the program and to receive output records from the program.,

Sysout Data Set Resources: A sysout data set is a system-handled output data set. This data
set is placed temporarily on direct access storage. Later, at the convenience of the system, the
system prints it, punches it, or sends it to a specified location. Because sysout data sets are
processed by the system, the programmer can specify many parameters to control that pro-
cessing.

2-4 JCL User’s Guide

f,-l%

Introduction - Tasks

Chapter 3. Introduction - Job Control Tasks

Task Charts

The following charts list the job control tasks in four groups:

* Entering jobs in Figure 3-1 on page 3-2

* Processing jobs in Figure 3-2 on page 3-5

* Requesting data set resources in Figure 3-3 on page 3-6

* Requesting sysout data set resources in Figure 3-4 on page 3-9

For each task, the charts list the parameters and statements that can be used to perform it. In
many cases, the same task can be performed using different parameters on different statements.
Where a parameter can appear on both a JOB and EXEC statement, it applies to the entire job
when coded on the JOB statement but only to a step when coded on an EXEC statement.

The system is designed to enable users to perform many types of job control in many ways. To
allow this flexibility, only two job entry tasks are required:

e Identification: The job must be identified in the jobname field of a JOB statement.

e Execution: The program or procedure to be executed must be named in a PGM or PROC

parameter on an EXEC statement.

Therefore, the following statements are the minimum needed to perform a job control task:

//3jobname JOB
// EXEC |PGM=program-name
PROC=procedure-name

Chapter 3. Introduction - Job Control Tasks 3-1-

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Identification
of job jobname field null statement
. (JES3 only)
of step stepname field
of procedure PROC
PEND
of account accounting ACCT /*NETACCT //*NETACCT
information or
pano in JOB JES2
accounting
information
of programmer programmer’s- ROOM PNAME, BLDG,
name and on /*JOBPARM DEPT, ROOM,
room in JOB and USERID
JES2 accounting on //*NETACCT
information
USER
Execution
of program PGM
of procedure PROC
when restarting and JRESTART SYSCHK DD RESTART FAILURE and
with checkpointing |RD RD on /*JOBPARM JOURNAL
on /[*MAIN
deadline or periodic DEADLINE
on //*MAIN
when dependent on /[*NET
other jobs
at remote node XMIT JCL /[*ROUTE XEQ //*ROUTE XEQ
(JES3 only) /*XEQ
[¥XMIT

Figure 3-1 (Part 1 of 3). Tasks for Entering Jobs

3-2

JCL User’s Guide

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Job input control
by holding job en- TYPRUN HOLD, UPDATE, or
trance CLASS CLASS on //*MAIN
//*NET
by holding local //*PAUSE
input reader
by copying input TYPRUN
stream (JES2 only) JCLASS
from remote work [*SIGNON [*SIGNON
station [*SIGNOFF [*SIGNOFF
Communication
from JCL to system Command [*$command //**command
from JCL to operator /*MESSAGE /[*OPERATOR
from JCL to pro- Comment field Comment field //*comment, Comment field on
grammer unless no also comment //*ENDPROCESS
parameter field field on all state- and //*PAUSE
ments but null
from JCL to program PARM
from system to oper- FETCH on //*MAIN
ator WARNING on
BYTES, CARDS,
LINES, and PAGES
on //*MAIN
from system to TSO {NOTIFY [*NOTIFY ACMAIN
userid on //*MAIN with
JOB NOTIFY

from TSO userid to
system

USER on //*MAIN

from functional sub- PIMSG on
system to pro- OUTPUT JCL
grammer
Figure 3-1 (Part 2 of 3). Tasks for Entering Jobs

Chapter 3. Introduction - Job Control Tasks

3-3

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
|ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
through job log MSGCLASS JESDS on NOLOG
MSGLEVEL OUTPUT JCL on /[*JOBPARM
log in JOB
JES2 accounting
information
Protection
through RACF GROUP
PASSWORD
USER
Resource control
of program library JOBLIB DD
STEPLIB DD
DD defining
PDS member
of procedure library PROCLIB PROC and UPDATE
on [*JOBPARM on //*MAIN
of address space REGION REGION LREGION
ADDRSPC ADDRSPC on /[*MAIN
of processor SYSAFF SYSTEM
on /*JOBPARM on /[*MAIN
of spool partition SPART and
TRKGRPS
on //*MAIN

Figure 3-1 (Part 3 of 3). Tasks for Entering Jobs

3-4 JCL User’s Guide

.

Introduction - Tasks

group assignment

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
PROCESSING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
| Processing control
by terminating exe- JCOND COND CANCEL in BYTES,
cution CARDS, LINES,
and PAGES
on //*MAIN
by timing execution |TIME TIME TIME
or time in JOB on /*JOBPARM
JES2 accounting
information
for testing: TYPRUN PGM =1EFBR14 //*PROCESS
(1) by altering CLASS //[*ENDPROCESS
usual processing PGM =JCLTEST
PGM =JSTTEST
(JES3 only)
(2) by dumping SYSABEND DD DUMP in BYTES,
after error SYSMDUMP DD CARDS, LINES,
SYSUDUMP DD and PAGES
on //*MAIN
To format dump
on 3800 Print-
ing Subsystem,
FCB=STD3 and
CHARS =DUMP
on dump DD
‘ Performance control
by job class assign- JCLASS CLASS on /[*MAIN
ment
by selection priority [PRTY /*PRIORITY
by dispatching prior- DPRTY
ity
by performance PERFORM

by 1/O-to-processing
ratio

IORATE
on //*MAIN

Figure 3-2. Tasks for Processing Jobs

Chapter 3. Introduction - Job Control Tasks

35

Introduction - Tasks

STATEMENTS AND PARAMETERS FOR TASK

TASKS FOR
REQUESTING DATA |JCL Statements JES2 Statements JES3 Statements
SET RESOURCES DD OUTPUT JCL Other JCL
Identification
of data set DSNAME UPDATE
on /[*MAIN
of in-stream data set |* or DATA //[*DATASET
SYSIN DD
DLM /* or xx delimiter /[*ENDDATASET
of data set on 3540 |DSID
Diskette Input/Out-
put Unit
through catalog JOBCAT DD
STEPCAT DD
through label label-type
on LABEL
by location on tape |data-set-
sequence-number
on LABEL
as TCAM message QNAME
- data set
from or to terminal |TERM
Description
of status DISP
of data atfributes DCB
AMP
DATACLAS
KEYLEN
KEYOFF
LRECL
RECFM
RECORG
- by modeling LIKE
REFDD
of migration and MGMTCLAS

backup

Figure 3-3 (Part 1 of 3). Tasks for Requesting Data Set Resources

3-6

JCL User’s Guide

\\—/4

Introduction - Tasks

porary data set

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING DATA |JCL Statements JES2 Statements JES3 Statements
SET RESOURCES DD OUTPUT JCL Other JCL
Protection
through RACF PROTECT
SECMODEL
for ISO/ANSI/FIPS {ACCODE
Version 3 tapes
by passwords PASSWORD and
NOPWREAD
on LABEL
of access to BSAM JIN and OUT
and BDAM data on LABEL
sets
Allocation
of device UNIT CLASS SETUP, MSS,
STORCLAS on JOB and CLASS
(JES3 only) on //[*MAIN
of tape or direct VOLUME EXPDTCHK
access volume MSVGP and RINGCHK
STORCLAS on //*MAIN
of direct access space |SPACE
AVGREC
DATACLAS
of virtual I/O UNIT
DSNAME = tem-

with deferred vol-
ume mounting

DEFER
on UNIT

with volume pre- /*SETUP
mounting
dynamic DYNAMNBR
on EXEC

Figure 3-3 (Part 2 of 3). Tasks for Requesting Data Set Resources

Chapter 3. Introduction - Job Control Tasks

3-7

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING DATA |JCL Statements JES2 Statements JES3 Statements
SET RESOURCES DD OUTPUT JCL Other JCL
Processing control
by suppressing pro- JDUMMY
cessing NULLFILE
on DSNAME
by postponing speci- [DDNAME
fication
with checkpointing |CHKPT
SYSCKEOV DD
by subsystem SUBSYS
CNTL CNTL
ENDCNTL
by TCAM job or task [QNAME
End processing
deallocation FREE
disposition of DISP
data set
RETPD
EXPDT
release of unused RLSE
direct access space on SPACE
disposition of RETAIN and
volume PRIVATE

on VOLUME

Figure 3-3 (Part 3 of 3). Tasks for Requesting Data Set Resources

3-8 ICL User’s Guide

17

4

AN /

Introduction - Tasks

STATEMENTS AND PARAMETERS FOR TASK

TASKS FOR
REQUESTING JCL Statements JES2 Statements JES3 Statements
SYSOUT RESOURCES |DD OUTPUT JCL Other JCL
Identification
as a sysout data set JSYSOUT
of output class class CLASS MSGCLASS
on SYSOUT on JOB with
SYSOUT=* or
CLASS=* and
SYSOUT=¢(,)
of data set on 3540 |DSID
Diskette Input/Out-
put Unit
Description
of data attributes DCB
Performance control
by queue selection PRTY

Figure 3-4 (Part 1 of 4). Tasks for Requesting Sysout Data Set Resources

Chapter 3. Introduction - Job Control Tasks

39

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 Statements JES3 Statements
SYSOUT RESOURCES |DD OUTPUT JCL Other JCL
Processing control
with additional OUTPUT DEFAULT
parameters code-name
on SYSOUT
with other data sets fclass THRESHLD
on SYSOUT (JES3 only)
GROUPID
(JES2 only)
by external writer writer-name WRITER
on SYSOUT
by mode PRMODE
by holding HOLD CLASS
class
on SYSOUT
by suppressing out- |DUMMY
put class
on SYSOUT
with checkpointing CKPTLINE
CKPTPAGE
CKPTSEC
by Print Services FORMDEF
Facility (PSF) PAGEDEF

Figure 3-4 (Part 2 of 4). Tasks for Requesting Sysout Data Set Resources

3-10 JCL User's Guide

Introduction - Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 Statements JES3 Statements
SYSOUT RESOURCES |DD OUTPUT JCL Other JCL

End processing

deallocation FREE

Destination control

to local or remote DEST DEST /*ROUTE PRINT ORG on //*MAIN
device or to class COMPACT /* ROUTE PUNCH
another node on SYSOUT
to another processor ACMAIN
on //*MAIN
to internal reader INTRDR /*EOF
as writer-name /*DEL
on SYSOUT /*PURGE
/*SCAN
to terminal TERM

Figure 3-4 (Part 3 of 4). Tasks for Requesting Sysout Data Set Resources

Chapter 3. Introduction - Job Control Tasks 3-11

Introduction - Tasks

o

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 Statements JES3 Statements
SYSOUT RESOURCES |DD OUTPUT JCL Other JCL
Output formatting
to any printer COPIES COPIES forms, copies, COPIES, FORMS,
FCB FCB and linect on JOB |and LINECT
form-name FORMS JES2 accounting on /[*JOBPARM
on SYSOUT LINECT information
(JES2 only)
UCS ucCs
CONTROL
to 3800 Printing Sub- { BURST BURST BURST
system, in addition JCHARS CHARS on /[*JOBPARM
to most of printer |JFLASH FLASH
parameters MODIFY MODIFY
DCB=0OPTCD=]J |TRC
to 3211 Printer with INDEX (JES2
indexing feature LINDEX only)
to punch COPIES COPIES
FCB FCB
form-name FORMS
on SYSOUT
DCB=FUNC=1I
of dumps on 3800 CHARS=DUMP |CHARS=DUMP
Printing Subsys- FCB=STD3 FCB=STD3
tem
Output limiting OUTLIM lines and cards BYTES, CARDS, BYTES, CARDS,
on JOB LINES, and PAGES |LINES, and PAGES
JES2 accounting | on /*JOBPARM on //*MAIN
information

Figure 3-4 (Part 4 of 4). Tasks for Requesting Sysout Data Set Resources

3-12 ICL User’s Guide

I/AW\

(N

Part 2. Tasks for Entering Jobs

Part 2 Co

S

Part 2. Tasks for Entering Jobs

This part describes how to enter jobs into the system. The tasks required to enter a job are:

¢ Identification
¢ Execution

Other tasks can optionally be performed:

¢ Job input control
¢ Communication
* Protection

¢ Resource control

ntents
Chapter 4. Entering Jobs - Identification 4-1
Identification of Job 4-2
Identification of Step 4-2
Identification of Procedure 4-3
Identification of Account 4-4

For Local Execution 4-4

For Remote Execution 4-4
Identification of Programmer 4-5

Chapter 5. Entering Jobs - Execution 5-1
Execution of Program 5-1
Execution of Procedure 5-2
Execution when Restarting and with Checkpointing ~ 5-2
Restarting after Abnormal Termination 5-2
Restarting When the System Failed in a JES2 System 5-3
Restarting When the System Failed in a JES3 System 5-3
Deadline or Periodic Execution in a JES3 System 5-3
Use of Deadline Scheduling 5-4
Use of Periodic Scheduling 5-4
Execution when Dependent on Other Jobs in a JES3 System 5-4
Execution at Remote Node 5-6
Considerations when Submitting a Remote Job 5-7
Examples 5-7

Chapter 6. Entering Jobs - Job Input Control 6-1
Job Input Control by Holding Job Entrance 6-1
Job Input Control by Holding Local Input Reader in a JES3 System
Job Input Control by Copying Input Stream in a JES2 System 6-2
Job Input Control from Remote Work Station 6-3

JES2 Remote Job Entry 6-3

JES3 Remote Job Processing 6-3

Chapter 7. Entering Jobs - Communication 7-1
Communication from JCL to System 7-2
Communication from JCL to Operator 7-2
Communication from JCL to Programmer 7-2
Communication from JCL to Program 7-3

PARM Values for IBM-Supplied Programs 7-3
Communication from System to Operator 7-3

Part 2. Tasks for Entering Jobs

6-2

Part 2. Tasks for Entering Jobs

Messages during Volume Mounting 7-3

Messages when Job Exceeds Output Limit 7-4
Communication from System to Time Sharing Userid 7-4
Communication from Time Sharing Userid to a JES3 System
Communication from Functional Subsystem to Programmer
Communication through Job Log 7-5

Printing Job Log and Sysout Data Sets Together 7-6

Chapter 8. Entering Jobs - Protection 8-1
Protection through RACF 8-1

Chapter 9. Entering Jobs - Resource Control 9-1
Resource Control of Program Library 9-1
System Library 9-1
Private Library 9-2
Temporary Library 9-4
Resource Control of Procedure Library 9-4
Resource Control of Address Space 9-6
Types of Storage 9-6
Requesting Amount and Type of Storage 9-6
Requesting Amount of Logical Storage in a JES3 System
Resource Control of the Processor 9-8
Selecting a Processor in JES2 9-8
Selecting a Processor in JES3 9-9
Resource Control of Spool Partitions in a JES3 System 9-10

JCL User’s Guide

7-5
7-5

9-8

Entering Jobs - Identification

I

b‘] Chapter 4. Entering Jobs - Identification

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Identification
of job jobname field null statement
(JES3 only) -
of step stepname field
A of procedure PROC
PEND
of account accounting ACCT /*NETACCT //*NETACCT
information or
pano in JOB JES2
accounting
information
A of programmer programmer’s- ROOM PNAME, BLDG,
L name and on /*JOBPARM DEPT, ROOM,
S~ room in JOB and USERID
JES2 accounting on //[*NETACCT
information
USER
Figure 4-1. Identification Task for Entering Jobs
4 ‘
A

Chapter 4. Entering Jobs - Identification

Entering Jobs - Identification

Identification of Job

Each job must be identified in the jobname field of the JOB statement. This identification is
required and is coded:

~//jobname JOB

The next JOB statement or the end of the input stream identifies the end of a job. A null
statement can identify the end of a job or input stream.

Examples

//MYJOB JOB
//MCS167 JOB
//R#123 J0B

//85AB JOB

/!

This fifth statement is a null statement.

Identification of Step

A step name is required on only certain EXEC statements. In practice, name all steps. The
system uses the step name in messages. If you omit the step name, the system leaves this field
blank in messages, making it difficult to decide what step caused each message. A step name is
coded:

//stepname EXEC

Examples

//STEP1 EXEC PGM=A
//CHECK ~ EXEC PROC=MHB15

//A$9 EXEC PGM=RPTWRT

//MYPROGRM EXEC PGM=CALC

4-2 JCL User’s Guide

Entering Jobs - Identification

—

Identification of Procedure

For an in-stream procedure, identify the beginning with a PROC statement and the end with a
PEND statement. Code a name on the PROC statement. The name for a TSO logon
procedure should not be the same as the name of any subsystem.

For a cataloged procedure, a PROC statement is optional and a PEND statement is invalid. A
PROC statement does not identify a cataloged procedure; the procedure is called by its
member name or alias in the procedure library. However, use the PROC statement to assign
default values for all symbolic parameters in the procedure. Then, if the calling EXEC
statement fails to assign a value to all symbolic parameters, the step will not fail.

Examples

For in-stream procedures:

//PAYROLL PROC

// PEND

//DESK3 ~ PROC A=NEWYORK,F=3350,C=(0LD,CATLG,DELETE)
//ENDING PEND THIS STATEMENT ENDS IN-STREAM PROCEDURE DESK3.

For cataloged procedures:

// PROC UT=3800,FM=J287,DT=LOCAL

Chapter 4. Entering Jobs - Identification 4=3

Entering Jobs - Identification

Identification of Account

For Local Execution
In JES initialization parameters, the installation specifies whether or not accounting
information is required in the accounting information parameter on the JOB statement and/or
the ACCT parameter on the EXEC statement. The installation decides what accounting
information is needed and the format for the information.

Examples

//J28 JOB (12A75,DEPTD58,921)

//XYZ JOB '12A75,DEPTD58,921"
If a subparameter contains special characters:

//GHI JOB (12A75,'DEPT/D58',921)

//JKL JOB '12A75,DEPT/D58,921'
If only an account number is coded:

//MNO JOB 12A75

//PQR JOB '12A.75'
If the account number is omitted:

//STU JOB (,DEPTD58,921)

For Remote Execution
The JES2 /*NETACCT statement and the JES3 /[*NETACCT statement supply accounting
information for jobs sent to remote nodes for execution.

Examples

For remote execution in a JES2 system:
/*NETACCT 27FD16
For remote execution in a JES3 system:

//*NETACCT PNAME=FKRUPA,ACCT=27FD16,BLDG=921,DEPT=D58,

//*NETACCT ROOM=2T13,USERID=DDFKPGMR

4-4 JCL User’s Guide

T

N

Entering Jobs - Identification

L/ Identification of Programmer

In JES initialization parameters, the installation specifies if a programmer’s-name parameter is
required on the JOB statement. The installation decides what the parameter must contain.

Examples

//ABC JOB ,L.GORDON
//DEF JOB 'L GORDON'
//GHI JOB ,'SP/4 L. GORDON'

P //JKL JOB ,'DEPT. 7202

\“‘\//
The USER parameter can be coded on the JOB statement to identify the person submitting the
job. Normally, this parameter is used by the Resource Access Control Facility (RACF);
however, it is also used by other system components, including the system resources manager
(SRM).
Example

"”?‘ } //MNO JOB ACCT15,'DON PIZZUTO',USER=ID32DBP

‘.

N

A

Chapter 4. Entering Jobs - Identification 4-5

4-6

JCL User’s Guide

Foaun N

p

Chapter 5. Entering Jobs - Execution

Entering Jobs - Execution

/*XMIT

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Execution
of program PGM
of procedure PROC
when restarting and |RESTART SYSCHK DD RESTART FAILURE and
with checkpointing JRD RD on [*JOBPARM JOURNAL
: on //[*MAIN
deadline or periodic DEADLINE
on /[*MAIN
when dependent on /[*NET
other jobs
at remote node XMIT JCL /*ROUTE XEQ /[*ROUTE XEQ
(JES3 only) [*XEQ

Figure 5-1. Execution Task for Entering Jobs

Execution of Program

All programs to be executed must reside in a library, which is a partitioned data set. ‘The
installation should maintain a list of programs available in its libraries. Libraries are of three

types:

¢ System libraries: such as SYS1.LINKLIB

¢ Private libraries: specified in a JOBLIB or STEPLIB DD statement.

* Temporary libraries: created in a previous step of the job.

For information about libraries, see “Resource Control of Program Library” on page 9-1.

Chapter 5. Entering Jobs - Execution

5-1

Entering Jobs - Execution

Execute a program in a system or private library by coding:

//stepname EXEC PGM=program-name

Execute a program in a temporary library by coding:

//stepname EXEC PGM=*,stepname.ddname
//stepname EXEC PGM=*.stepname. procstepname.ddname

Examples

//STL EXEC PGM=MYPROG
//DSPROG DD DSNAME=PDS1(MEMP) ,DISP=SHR
//ST2 EXEC PGM=*.ST1.DSPROG

Execution of Procedure
A procedure to be executed must be a:
* In-stream procedure, located in the input stream before the EXEC statement that calls it.

¢ Cataloged procedure, located in the system catalog: SYSI1.PROCLIB (or an
installation-defined procedure library).

Execute an in-stream or cataloged procedure by coding:

//stepname EXEC PROC=procedure-name
//stepname EXEC procedure-name

Examples

//STL EXEC PROC=PROCA
//STEP9 EXEC PROC=DAILY

Execution when Restarting and with Checkpointing

Restarting after Abnormal Termination
If a job terminates abnormally, the checkpoint/restart facilities allow you to restart the job, as
follows:

* Automatic step restart, that is, restart by the system from the beginning of a job step.

* Automatic checkpoint restart, that is, restart by the system from a checkpoint within a job
step.

* Deferred step restart, that is, restart at a later time from the beginning of a job step.

¢ Deferred checkpoint restart, that is, restart at a later time from a checkpoint within a job
step.

Restarts are controlled by:
* RD parameters on JOB and EXEC statements.

* Checkpoints, if written. Each time a CHKPT macro is executed, a checkpoint is written.

5-2 JCL User’s Guide

£

Entering Jobs - Execution

* The job journal, which is required for a restart. In a JES3 system, the programmer can
code a JOURNAL parameter on the JES3 //*MAIN statement to control whether JES3
creates a journal for the job.

* In deferred restarts, a RESTART parameter on the JOB statement for the restarting job
and a SYSCHK DD statement to identify the data set containing the checkpoint written in
response to the CHKPT macro.

Use of Restart: Either form of restart saves having to execute the job from its beginning. If
the job is long, restarting can save a lot of time and computer resources.

Examples

//31 ~ JOB ,'B. MORRISON',RD=RNC

//32 JOB ,'H. MORRILL'
//S1 EXEC PGM=TESTING,RD=R
//S2 EXEC PGM=TESTED,RD=NC_

Restarting When the System Failed in a JES2 System
If (1) the job was executing when the system failed and the operator re-IPLs the system with a
JES2 warm start and (2) the job cannot restart from a step or a checkpoint, JES2 requeues the
job for execution if RESTART =Y is in the JES2 /*JOBPARM statement. Re-execution is
from the beginning of the job.

Examples

//33 JOB ,'J. BUSKIRK'
/*JOBPARM RESTART=Y

Restarting When the System Failed in a JES3 System
If the job was executing when the system failed, the FAILURE parameter on the JES3
/[*MAIN statement tells JES3 how to handle the job. The job can be restarted, cancelled, held,
or printed and then held for restart.

Examples

//34 JOB ,'G. HILL',RD=NC
//*MAIN FAILURE=RESTART

Deadline or Periodic Execution in a JES3 System

Use the DEADLINE parameter on the JES3 //*MAIN statement to execute your job by a
certain time or periodically every week, month, or year. As the deadline approaches, JES3
increases the job’s priority until it is executed. The priority is increased according to the
installation-defined algorithm requested in the second subparameter.

Chapter 5. Entering Jobs - Execution 5-3

Entering Jobs - Execution

Use of Deadline Scheduling
The purpose of deadline scheduling is to help JES3 use available resources best. For example,
if you work first shift and submit a job at the end of the day, you do not need output until the
next morning. Specify 7 a.m. of the next day in the DEADLINE parameter and assign the job
a low priority.. JES3 can schedule the job any time during the night when the resources are
available. But, if the job has not been scheduled by several hours before 7 a.m., JES3 increases
its priority. JES3 will increase the job’s priority periodically until it is selected for execution by
7 a.m.

Examples

To execute a job by 7 a.m. on January 20, 1986, code:

//*MAIN DEADLINE=(0700,B,012086)

Use of Periodic Scheduling

The purpose of periodic scheduling is to run certain weekly, monthly, or yearly programs
automatically.

Examples

To execute a job by 2 p.m. every Friday, code:

//*MAIN DEADLINE=(1400,A,6,WEEKLY)

Execution when Dependent on Other Jobs in a JES3 System

Use dependent job control (DJC) when jobs must be executed in a specific order. The group of
jobs that depend on each other form a dependent job control (DJC) network. To indicate to
JES3 the relationship of jobs to each other in a DJC network, code a JES3 //*NET statement in
each job. Jobs in a network are of two types:

* Predecessor jobs, which must be completed before anothér job.
* Successor jobs, which must not be executed until one or more jobs are completed.

Using parameters on the //*NET statement, you can make execution of a job depend on how a
predecessor terminated: normally or abnormally. When a predecessor job completes, a
successor job:

¢ Can have the count of predecessor jobs it is waiting for decreased by one. When the count
reaches zero, the successor job is queued for execution.

* Can be flushed from the system. The successor job and all of its successors are canceled,
printed, and flushed from the system.

* Can be retained until the operator releases it. The successor job and all of its successors
are kept from being scheduled. The job is released only when its immediate predecessor is
resubmitted or the operator decreases the predecessor job number.

External Dependencies: If your job depends on external events, you can specify a count of
predecessor jobs that is one greater than needed. The system will hold the job because the
count cannot reach zero. When the external event occurs, the operator can issue a
*MODIFY,N command to reduce the number so that the job will execute.

5-4 JCL User’s Guide

C

Entering Jobs - Execution

Testing a Network: To test a network without executing the programs, substitute the following
for each actual EXEC statement:

//stepname EXEC PGM=IEFBR14

Examples

To set up a DJC network, first draw a diagram of the dependencies:
JOBA JOBB

JOBC
JOBD JOBE
Give the network a name: XMP1. This is the //*NET statement NETID parameter.

Then list each job and its predecessors and successors:

jobname Predecessors Successors
//*NET NHOLD //*NET RELEASE

JOBA 0 JOBC

JOBB 0 JOBC

JOBC 2 JOBD, JOBE

JOBD 1 none

JOBE 1 none

Finally, code a //*NET statement to appear in each job:

//J0BA JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
//S1 EXEC ...

//J0BB JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
//SA EXEC ...

//J0BC JOB ...
//*NET NETID=XMP1,NHOLD=2,RELEASE=(JOBD,JOBE)
//S1 EXEC ...

//30BD JOB ...
//*NET NETID=XMP1,NHOLD=1
//SA EXEC ...

//30BE JOB ...
//*NET NETID=XMP1,NHOLD=1
//S1 EXEC ...

Chapter 5. Entering Jobs - Execution 5-5

Entering Jobs - Execution

This example shows two networks. JOB3 in network XMP3 depends on JOBC in network

XMP2.
XMP2

JOBA

JOBC

JOBD
Jjobname

JOBA
JOBB
JOBC
JOBD

JOB1
JOB2
JOB3

The //*NET statements for each job are:

For JOBA:
For JOBB:
For JOBC:
For JOBD:
For JOB1:
For JOB2:
For JOB3:

JOBB

//*NET
//*NET

//*NET
//*NET
//*NET
//*NET

L

>

XMP3
JOTI

JoB2

JOB3

Predecessors
//*NET NHOLD

N o

(]

1
2

Successors
//*NET RELEASE

JOBC
JOBC
JOB3
none

JOB2
JOB3
none

NETID=XMP2 ,RELEASE=(JOBC)
NETID=XMP2 ,RELEASE=(JOBC)
//*NET NETID=XMP2,NHOLD=2 ,NETREL=(XMP3,J0B3) ,RELEASE (JOBD)

NETID=XMP2,NHOLD=1

NETID=XMP3,RELEASE=(J0B2)
NETID=XMP3,NHOLD=1,RELEASE=(JOB3)

NETID=XMP3,NHOLD=2

Execution at Remote Node

You can enter a job through your system to execute on another system by coding one of the
following statements. The job can be entered through an input reader, an internal reader, a
TSO terminal, or an RJE (remote job entry) or RJP (remote job processing) terminal or work

station.

When Entered through a JES2 System:

* And received by a JES2 system, code one of the following:

/*ROUTE XEQ node

/*XEQ

node

¢ And received by a JES2 system or a JES3 system, code:

/*XMIT node

¢ And received by a VM system with an MVS system running as a guest, code one of the
following:

/*ROUTE XEQ node.vmguestid
/*XEQ node.vmguestid
/*XMIT node.vmguestid

5-6 JCL User’s Guide

N

-

Entering Jobs - Execution

When Entered through a JES3 System:

° And received by a system other than a VM system, code:
//name XMIT DEST=node,DLM=xx

* And received by a VM system with another system running as a guest, code:
//name XMIT DEST=node.vmuserid,DLM=xx

Use of XMIT JCL Statement in a JES3 System: A //*ROUTE XEQ statement can also be used
to transmit records from a JES3 node. Because an XMIT JCL statement allows transmission of
records that the //*ROUTE XEQ statement does not allow, use XMIT JCL statements rather
than //*ROUTE XEQ statements.

For example, a JOB statement for the receiving node must immediately follow a //*ROUTE
XEQ statement. This requirement means that a //*ROUTE XEQ statement cannot be used to
transmit records beginning with $8 POWER control statements to a VSE node; however, an
XMIT JCL statement can transmit such records.

Considerations when Submitting a Remote Job

When submitting a job for remote execution, find out the installation-determined attributes of
the executing system. Code these values in your JCL for the job.

The content and format of the JOB statement: Code the executing system’s parameters on
the JOB statements that the executing system will process.

The JES of the executing system: Code your JES control statements and JCL parameters
for the executing system’s JES.

The content of SYSI.PROCLIB in the executing system: Call only procedures available in
the executing system. '

The data sets at the executing system: Use only data sets that are available at the executing
system, with the DD parameters that the executing system requires.

Installation-specific device names: Code only UNIT names used by the executing system.

The sysout classes at the executing system: Specify the executing system’s sysout classes that
have the attributes you need.

The job classes at the executing system: Specify the executing system'’s job class that has the
attributes you need.

Examples

//MYJOB JOB 27D15,'DON SMITH' Processed by submitting JES3 location
//TRANS XMIT DEST=FARSYS Sends the following job to FARSYS
//THEIRJOB JOB (DLD1,2E44),'POK LAB' Sent as JOB statement; processed by FARSYS

//*MAIN JOURNAL=YES
//SL EXEC PROC=RR23,A=3350,

/l (=25,

/*

DP=0LD

Chapter 5. Entering Jobs - Execution 5-7

Entering Jobs - Execution

5-8 IJCL User's Guide

Ehtering Jobs - Job Input Control

Chapter 6. Entering Jobs - Job Input Contro

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Job input control
by holding job TYPRUN HOLD, UPDATE, or
entrance CLASS CLASS on /[*MAIN
//*NET
by holding local /[*PAUSE
input reader
by copying input TYPRUN
stream (JES2 only) JCLASS
from remote work /*SIGNON /*SIGNON
station /*SIGNOFF /*SIGNOFF

Figure 6-1. Input Control Task for Entering Jobs

Job Input Control by Holding Job Entrance

If a job must wait for an external event before it can execute, use one of the following. JES
holds the job until the system operator releases it or until an event occurs.

In a JES2 system

¢ TYPRUN=HOLD or TYPRUN=JCLHOLD on the JOB statement. The operator
must release the job.

¢ A JOB statement CLASS that requests a job class defined during JES2 initialization as
held. The operator must release the job.

In a JES3 system

o TYPRUN=HOLD or CLASS on the JOB statement or HOLD=YES or CLASS on
the //*MAIN statement. The operator must release the job.

e A jobin a dependent job net; see “Execution when Dependent on Other Jobs in a JES3
System” on page 5-4. JES3 releases the job when the other job(s) complete execution,
or the operator releases the job.

¢ UPDATE on the //*MAIN statement of another job, if this job would use the
procedure library being updated or any library concatenated to it. JES3 releases the
job when the updating job completes execution.

Use of Job Holding: You may need to delay execution of a job for several reasons. For
example:

¢ If one job is updating a data set that another job must use.

¢ If the resources a job requires may not be available until an external event occurs.

Chapter 6. Entering Jobs - Job Input Control 6-1

Entering Jobs - Job Input Control

Note: You cannot depend on job priorities to control the order in which jobs execute. The
priority specified in the JOB statement PRTY parameter or in the JES2 /*PRIORITY statement
affects the selection order. It does not guarantee that a job with a higher priority will complete
execution before a job with a lower priority is started.

Examples

//31 JOB ,'J. COLE',TYPRUN=HOLD
//32 JO0B ACCT1734,'T. CURATOLO',CLASS=H

//*MAIN HOLD=YES
//*MAIN UPDATE=DS3

Job Input Control by Holding Local Input Reader in a JES3 System

Use a //*PAUSE statement to halt an input reader. JES3 issues a message and waits for the

operator to issue a *START command or for a remote work station with console level 15 to
send a start message.

Example

//*PAUSE
//FIRST JOB ,'D. SCHOFER'

Job Input Control by Copying Input Stream in a JES2 System

Code one of the following on the JOB statement to copy an input job, without executing any
steps. While copying the input stream, JES2 scans the JCL for syntax errors.

* TYPRUN=COPY

* A CLASS job class defined during JES2 initialization as containing jobs to be copied
without execution.

In both cases, JES2 places the copy of the input stream in a sysout data set. The sysout data
set is in the class specified in the JOB statement MSGCLASS parameter. Pick the MSGCLASS
class to control how the copied input stream is to be processed, as follows:

¢ By JES2 or by an external writer.

* Scheduled for immediate output or held because the message class is held. If held, the
sysout data set is available to the TSO OUTPUT command.

Examples

//CPYJ1 JOB 1589D10,'J. PERLMAN',TYPRUN=COPY

//CPYJ2 JOB ,'C. SARDO',CLASS=P

6-2 JCL User’s Guide

s N
]
b/

Entering Jobs - Job Input Control

Job Input Control from Remote Work Station

JES2 Remote Job Entry

JES2 remote job entry (RJE) allows a remote work station to submit a job to a distant system
and have the job processed by the system’s JES2. The output can be retained at the host
system, sent to the work station, or sent to another location. JES2 processes a remote job as if
it had been submitted locally. The remote station becomes a logical extension of the computer
system that processes its jobs.

JES2 supports two ways of communicating with RJE remote stations:

* Through systems network architecture synchronous data link control (SNA/SDLC) protocol.
"SNA stations gain access to JES2 through VTAM.

¢ Through binary synchronous communication (BSC) protocol. Communication between the
local processor and a BSC RJE station uses a JES2 facility called multi-leaving.
Multi-leaving allows transmission of multiple print and punch streams at the same time and
allows JES2 to receive multiple console messages and input streams.

For more information, see remote job entry in SPL: JES?2 Initialization and Tuning and SPL:
VTAM.

JES2 expects the remote station to be under the control of a remote operator. The RJE
stations can consist of two types of devices:

¢ Remote terminal, which does not have a processor. A remote terminal, for example a 2780
or 2770, can be used to enter jobs into and receive data from JES2.

* Remote work station, which has a processor. A processor, for example a System/3 or
System/370, executes a JES2-generated program that allows the processor to send jobs to
and receive data from JES2. The remote work station also includes printers, punches, card
readers, and a console.

Remote Job Entry Stations: During JES2 initialization, installations can configure remote lines
as dedicated or nondedicated. For nondedicated remote lines, use the following to notify JES2
that you wish to begin and end a remote job stream processing session:

¢ For SNA remote work stations: the LOGON command to begin and either the LOGOFF
command or the JES2 /*SIGNOFF control statement to end.

¢ For BSC remote work stations: the JES2 /*SIGNON control statement to begin and the
JES2 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to SPL: JES2 Initialization
and Tuning and SPL: VTAM.

JES3 Remote Job Processing

JES3 remote job processing (RJP) allows a remote work station to submit a job through a data
link to a distant global processor and have the job processed by the system’s JES3. The output
can be retained at the host system, sent to the work station, or sent to another location. JES3
processes a remote job as if it had been submitted locally.

Devices attached to a processor by channels are local devices; devices attached to a processor by
a data link are remote devices.

Chapter 6. Entering Jobs - Job Input Control 6-3

Entering Jobs - Job Input Control

JES3 supports two ways of communicating with RJP remote devices: ﬁ\

* Through systems network architecture synchronous data link control (SNA/SDLC) protocol.
* Through binary synchronous communications (BSC) protocol.

Remote Work Stations: During JES3 initialization, installations can configure remote lines as
dedicated or nondedicated. For nondedicated remote lines, use the following to notify JES3
that you wish to begin and end a remote job stream processing session:

* For SNA remote work stations: the LOGON command to begin and either the LOGOFF
command or the JES3 /*SIGNOFF control statement to end.

* For BSC remote work stations: the JES3 /*SIGNON control statement to begin and the
JES3 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to SPL: JES3 Initialization
and Tuning and SPL: VTAM.

I

6-4 JCL User’s Guide

Entering Jobs - Communication

“
Chapter 7. Entering Jobs - Communication

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Communication
from JCL to system Command /*$command //**command
from JCL to operator /*MESSAGE /[*OPERATOR
from JCL to pro- Comment field Comment field //¥comment, Comment field on
grammer unless no also comment //*ENDPROCESS
parameter field field on all state- and //*PAUSE
ments but null
from JCL to program PARM
from system to oper- FETCH on //*MAIN
ator WARNING on
BYTES, CARDS,
LINES, and PAGES
on /[*MAIN
from system to TSO [NOTIFY /*NOTIFY ACMAIN
userid on //*MAIN with
JOB NOTIFY
from TSO userid to USER on //*MAIN
system
from functional sub- PIMSG on
system to pro- OUTPUT JCL
grammer
through job log MSGCLASS JESDS on NOLOG
MSGLEVEL OUTPUT JCL on /*JOBPARM
log in JOB
JES2 accounting
information

Figure 7-1. Communication Task for Entering Jobs

Chapter 7. Entering Jobs - Communication

7-1

Entering Jobs - Communication

Communication from JCL to System

Use the following to communicate from your JCL to the system:

* In a JES2 system, the JCL command statement to enter system operator commands and the
JES2 [*$command statement to enter JES2 commands.

* Ina JES3 system, the JES3 //**command statement to enter JES3 commands.

The system executes any in-stream command as soon as it is read. Therefore, the command
will not be synchronized with the execution of any job or step.

Examples

In a JES2 system:
/*$S13-5

In a JES3 system:
//**START

Communication from JCL to Operator

Use a /*MESSAGE control statement in a JES2 system or a //*OPERATOR control statement
in a JES3 system to send a message to the operator when JES reads the job from the input
stream. Note that the message is not synchronized with the execution of any job or step.

Examples

In a JES2 system:
/*MESSAGE JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

In a JES3 system:
//*OPERATOR JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

Communication from JCL to Programmer

To communicate from your JCL to programmers, use comments fields or JCL //¥*comment
statements. The comments appear in the job log output listing if the JOB statement
MSGLEVEL parameter requests that the statements be printed.

Use comments primarily to document your job and its resource requirements.

Exampies

//* JOB J67 IS HELD UNTIL THE OPERATOR RELEASES IT.
//* THE OPERATOR SHOULD RELEASE J67 WHEN DISK 398
//* 1S AVAILABLE.

7-2 ICL User’s Guide

Entering Jobs - Communication

i |
/

Communication from JCL to Program

A processing program can require information that can vary from execution to execution. For
example, the assembler and the linkage editor require that the programmer supply options and
module attributes at execution. To provide information to a program, code the PARM
parameter on the EXEC statement that executes the program.

To use the information, the processing program must contain instructions to retrieve the
information. Retrieval of the PARM information is detailed in Supervisor Services and Macro

Instructions.

Examples

//FIRST EXEC PGM=IEV90,PARM=(0BJECT,NODECK, 'LINECOUNT=50")
//LATER EXEC PGM=HEWL,PARM='XREF,LIST,LET' '

PARM Values for IBM-Supplied Programs

Some IBM-supplied programs allow you to select options from a set of alternatives. The
PARM values are listed in the publication for the program. For many IBM-supplied programs,
default values can be assigned to PARM values during system generation. That is, the
installation can select an alternative or assign a fixed value. The system uses this default unless
you specify another value in the PARM parameter when you execute the IBM-supplied
program.

The installation should maintain a list of default values assigned during system generation.

Communication from System to Operator

The system sends to the operator console messages deemed to be needed by the operator.

Messages during Volume Mounting

In a JES3 system, the programmer can control the fetch messages that JES3 issues to the
operator console for disk and tape volumes for a job. Code the FETCH parameter of the JES3
//*MAIN statement to request one of the following:

s All fetch messages for all volumes to be mounted on JES3 setup devices.

¢ Fetch messages for volumes specified in DD statements that are named in the SETUP
parameter on the JES3 //*MAIN statement.

¢ Fetch messages for volumes on named DD statements.
¢ No fetch messages.

¢ No fetch messages for volumes on named DD statements.
Regardless of the FETCH parameter, JES3 sends all the fetch messages to the job log.

Examples

//*MAIN FETCH=ALL
//*MAIN FETCH=NONE
//*MAIN FETCH=SETUP
//*MAIN FETCH=(DDA, INDS,DD7)
//*MAIN FETCH=/MYDS

Chapter 7. Entering Jobs - Communication 7-3

Entering Jobs - Communication

Messages when Job Exceeds Output Limit - O
JES3 sends the operator a warning message when the maximum output from the job exceeds a o
limit specified in the JES3 //*MAIN statement. The limit can be expressed in:

Bytes to be spooled in the BYTES parameter
Cards to be punched in the CARDS parameter
Lines to be printed in the LINES parameter

¢ Pages to be printed in the PAGES parameter

If no limits are given on the //*MAIN statement, the system uses the installation default value
for the job class.

Use of Warning Messages: One use for these parameters is during program testing. The
warning message tells the operator that the the program is producing more output than
expected. Perhaps the program is'in an endless loop that contains instructions sending records
to a printer or punch. The operator can halt the program’s execution.

Examples

//*MAIN BYTES=(50,WARNING)
//*MAIN CARDS=(120,WARNING)
//*MAIN LINES=(200,WARNING)
//*MAIN PAGES=(,WARNING)

Communication from System to Time Sharing Userid)

When you execute a background or batch job, you can ask the system to notify your time
sharing userid or another userid when the job completes. Under the time sharing option (TSO),
a background job is one that is entered from a terminal by a SUBMIT command or by
executing a step to run TSO in the background. For more information, see OS/VS2 TSO
Command Language Reference. A batch job is one that is entered through an input stream.

To request automatic notification, code in your JCL for the job one of the following:
* Ina TSO background job in a JES2 or JES3 system, specify a userid in the JOB statement ”“f‘
NOTIFY parameter. This userid must be attached to the system on which the job executes. R

* Ina TSO background job or a batch job in a JES2 system, specify a userid in a JES2
[*NOTIFY statement and, if the userid is attached to another node, a node.

* Ina batch job in a JES3 system, specify a userid in the JOB statement NOTIFY parameter
and the processor for the userid in the ACMAIN parameter of the JES3 //*MAIN
statement.

Examples

In a JES2 or JES3 system:
//MYJOB JOB ,'P. SECOR',NOTIFY=DN62PSS
In a JES2 system:

/*NOTIFY DN62PSS4
/*NOTIFY FARNODE.DN62PSS

In a JES3 system: ‘ FN
//MYJOB JOB ,'P. SECOR' ,NOTIFY=DN62PSS k ’
//*MAIN ACMAIN=2

7-4 JCL User’s Guide

P

Entering Jobs - Communication

Communication from Time Sharing Userid to a JES3 System

In a JES3 system, the USER parameter on the JES3 //*MAIN statement identifies the job with
a TSO user. The job can be submitted through any input source, other than the internal reader,

provided the installation does not force job naming conventions. USER allows the TSO userid
to:

* Issue a TSO OUTPUT command to access sysout data sets from the job.
* Inquire about the status of the job or cancel it.

If the job executes on one processor and the TSO userid is attached to another processor, the
ACMAIN parameter must identify the processor for the TSO userid.

Examples

//*MAIN USER=J63ET91
//*MAIN USER=JEN38TW,ACMAIN=2

Communication from Functional Subsystem to Programmer

The programmer can control whether a functional subsystem prints its messages in the output
listing following the sysout data set it creates. For this control, code the PIMSG parameter on
the OUTPUT JCL statement.

Example

//0DS3 OUTPUT PAGEDEF=IMAG4,PIMSG=YES

Communication through Job Log

The system produces three system-managed data sets about a job. The system managed-data
sets consist of ‘

* The job log, which is a record of job-related information for the programmer. The job log
consists of:

— The job control statements in the input stream, that is, the JCL statements and JES2 or
JES3 statements. '

— Cataloged procedure statements for any procedure a job step calls.
— Messages about job control statements.

* The job’s hard-copy log, which is a record of all message traffic for the job to and from the
operator console. These messages describe allocation of devices and volumes, execution
and termination of job steps and the job, and disposition of data sets.

¢ System messages for the job.
The output class for the job log is set by the MSGCLASS parameter on the JOB statement -or,
if a job-level OUTPUT JCL statement contains a JESDS parameter, by the class that applies to

the OUTPUT JCL statement. If no class is specified, the system uses the default class based on
the input source of the job; the default is specified at JES initialization.

Chapter 7. Entering Jobs - Communication 7-5

~ Entering Jobs - Communication

Printing of the job log is controlled by the following parameters: }/’“\

* MSGLEVEL parameter of JOB statement.
* All parameters on an OUTPUT JCL statement that contains a JESDS parameter.

To prevent the job log from being printed, code one of the following:

* log subparameter in the JOB statement JES2 accounting information parameter
* NOLOG parameter on the JES3 /*JOBPARM statement

Examples

//J0BC JOB »'V. ST PIERRE',MSGLEVEL=(1,1)
//SMDS OUTPUT ~ JESDS=ALL,CLASS=D,COPIES=2,BURST=YES,

//JOBF JOB (SQQSQ’SN)
/*JOBPARM NOLOG , N

//d1 J0B 1518, 'SECT. E98'

//01 OUTPUT JESDS=ALL

//02 OUTPUT JESDS=ALL,WRITER=JCLOGGER
//S1 EXEC PGM=REPORT

This example requests that the three system-managed data sets be printed normally and that a
copy of each be routed to an external writer named JCLOGGER.

//MYEX JOB » 'DEPT. 28H' ,MSGCLASS=A Do)
//SYSPROG OUTPUT JESDS=ALL,GROUPID=SYSPROG J
//OPER OUTPUT JESDS=ALL,GROUPID=0PER

//USER OUTPUT JESDS=ALL,GROUPID=USER,DEFAULT=YES

//REMOTE OUTPUT JESDS=ALL,DEST=REMOTE,DEFAULT=YES

//S1 EXEC PGM=REPORT

//SYSPRINT DD SYSOUT=A

This example creates four different output groups. Group SYSPROG will contain a copy of all

three system-managed data sets. Group OPER will also contain a copy of all three

system-managed data sets. Group USER will contain a copy of all three system-managed data /ﬁ\
sets plus a copy of the data set for DD statement SYSPRINT: group USER is processed i
locally.

The system creates a fourth group with a system-generated group name. This group contains a
copy of the three system-managed data sets plus a copy of the data set for DD statement
SYSPRINT; this group is processed remotely at destination REMOTE.

Printing Job Log and Sysout Data Sets Together
To print the job log and the sysout data sets from a job on the same output listing, place them
in the same output class. Specify one of the following:

e SYSOUT=* on the DD statement.
¢ CLASS=* on the OUTPUT JCL statement.

* The same output class in the DD SYSOUT parameter or OUTPUT JCL CLASS parameter N
as specified in the JOB MSGCLASS parameter. Y

7-6 JCL User’s Guide

Entering Jobs - Communication

Or, use an OUTPUT JCL statement with a JESDS parameter to control printing of the
system-managed data sets. Note that care is needed in specifying the OUTPUT JESDS

statement and the sysout DD statement because:

* Any values on the sysout DD statement override those on the OUTPUT JCL statement.

* The values on the OUTPUT JCL statement always apply to the system-managed data sets.

Therefore, the output parameters used to process the system-managed output data sets and

sysout data sets can be different, even when the data sets all reference the same OUTPUT JCL
statement. For example, if the sysout DD statement specifies one output class and the JESDS
statement specifies another output class, the sysout data set and system-managed data sets are

placed in different subgroups and each is printed in its own output class.

Exampl

es

//d1
//81
//ouT

/132

//S1
//0uT

//33
//51
//0T1
//Ds1

//34
//51
//0T1
//Ds1

JOB DF16,MSGCLASS=B
EXEC PGM=ABC
DD SYSOUT=*

JOB ,'V. FOTI',MSGCLASS=C
EXEC PGM=DEF
DD SYSOUT=C

JOB ,'G. ROY',MSGCLASS=D
EXEC PGM=GHI

OUTPUT CLASS=*

DD SYSOUT=(,),0UTPUT=*,0T1

JOB ,'T. POLAKOWSKI',MSGCLASS=E

EXEC PGM=JKL
OUTPUT DEFAULT=YES,CLASS=E
DD SYSOUT=(,)

//SYSDS
//0UT1
//STEP1

JOB ,'J. HIGGINS', MSGCLASS=A

OUTPUT JESDS=ALL,GROUPID=JOINT,DEFAULT=YES

EXEC PGM=REPORT

//REQPRT DD SYSOUT=A

This example shows how to combine sysout data sets and system-managed output data sets in
one output group. The system prints sysout data set REQPRT and all three system-managed
data sets in the same group.

Chapter 7. Entering Jobs - Communication

7-7

7-8 JCL User’s Guide

Entering Jobs - Protection

Chapter 8. Entering Jobs - Protection

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Protection
through RACF GROUP
PASSWORD
USER

Figure 8-1. Protection Task for Entering Jobs

Protection through RACF

The IBM Resource Access Control Facility (RACF) is a program product that helps
installations achieve data security by controlling access to data sets. For more information
about RACF, see Resource Access Control Facility (RACF) Security Administrator’s Guide.

For RACF protection, the user must supply to RACF a userid, a password, and, optionally, a
group name. If RACF Early Verification is installed and depending on the installation’s RACF
options, they can be supplied in the USER, PASSWORD, and GROUP parameters on the JOB
statement or, for jobs submitted by a TSO user, they can be obtained from the TSO logon.

In any RACEF installation, the USER, the PASSWORD, and, optionally, the GROUP
parameters are always required on JOB statements for the following:

¢ Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACEF identification.

* Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user’s userid and password. The group id is optional.

¢ Jobs that execute at another network node that uses RACF protection.

Examples

//MYJOB JOB D58,SUE,USER=D58STW,PASSWORD=41168X
//YOURS JOB D58,DON,USER=DSCHOF ,PASSWORD=404632 ,GROUP=D58DISK

Chapter 8. Entering Jobs - Protection 8-1

8-2 JCL User’s Guide

\KM/;

P —

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Resource control
of program library JOBLIB DD
STEPLIB DD
DD defining
PDS member
of procedure library PROCLIB PROC and UPDATE
on /*JOBPARM on //[*MAIN
of address space REGION REGION LREGION
ADDRSPC ADDRSPC on //*MAIN
of processor SYSAFF- SYSTEM
on /*JOBPARM on /[*MAIN
of spool partition SPART and
TRKGRPS
on /[*MAIN

Figure 9-1. Resource Control Task for Entering Jobs

Resource Control of Program Library

To be executed, a program must be in one of the following libraries:

System library
Private library
Temporary library

A library is a partitioned data set (PDS) on direct access storage. A PDS is divided into
partitions, called members. In a library PDS, each member contains a program or part of a
program. A PDS contains a list of its members, called a directory. The system uses the
directory to locate a program in the library.

For details on creating and on adding members to and deleting members from a partitioned
data set, see Data Administration Guide.

System Library

Unless a job or step specifies a private library, the system searches for a program in the system
libraries when you code:

//stepname EXEC PGM=program-name

Chapter 9. Entering Jobs - Resource Control 9-1

Entering Jobs - Resource Control

The system looks in the libraries for a member with a name or alias that is the same as the
specified program-name. The most used system library is SYSI.LINKLIB, which contains
executable programs that have been processed by the linkage editor.

If an earlier DD statement in the job defines the program as a member of a system library, refer
to that DD statement to execute the program:

//stepname EXEC PGM=*,stepname.ddname

Private Library ,
In a private library, each member is an executable, user-written program. To tell the system
that a program is in a private library, code a DD statement defining that library as follows:

* To define a private library to be used throughout a job, place a DD statement with the
ddname JOBLIB after the JOB statement and before the first EXEC statement in the job.

* To define a library to be used in only one step, place a DD statement with the ddname
STEPLIB in the step. :

Note: With SMS, do not use the JOBCAT DD statement in a job that references an
SMS-managed data set and the STEPCAT DD statement in a job step that references an
SMS-managed data set. SMS only accesses SMS-managed data sets that are cataloged in a
system catalog. :

To execute a program from a private library, code:

//stepname EXEC PGM=program-name

The system searches for the program to be executed in the library defined by the JOBLIB or
STEPLIB DD statement before searching in the system libraries.

If an earlier DD statement in the job defines the program as a member of a private library,
refer to that DD statement to execute the program:

//stepname EXEC PGM=*,stepname.ddname

Use of Private Libraries: Private libraries are particularly useful for programs used too seldom
to be needed in a system library. For example, programs that prepare quarterly sales tax
reports are good candidates for a private library.

Creating a Private Library: To create a private library, code a JOBLIB or STEPLIB DD
statement and add one or more members to it in the job. The JOBLIB library is more
convenient than the STEPLIB, because the JOBLIB is available to every step in the job in order
to add members or to execute already added members. The STEPLIB DD must be passed or
redefined in each step that uses it.

Adding Members to a Private Library: To add members to a library, code a DD statement
that defines the library and names the member to be added to the library.

9-2 JCL User’s Guide

.

Entering Jobs - Resource Control

Example of Creating and Adding to a Private Library

//EG JOB 5328, 'MARGARET NONNSEN'

//30BLIB DD DSNAME=GROUPLIB,DISP=(NEW,CATLG),
// UNIT=3350,VOL=SER=727104,

// SPACE=(CYL, (50,3,4))

//STEP1 EXEC PGM=FIND

//ADDPGMD DD DSNAME=GROUPLIB(RATE),DISP=MOD,
// VOL=REF=*.JOBLIB

//STEP2 EXEC PGM=RATE

In this example, the JOBLIB DD statement creates a library named GROUPLIB. Program
FIND in STEP1 adds the program RATE to the library. STEP2 calls the program RATE.

In STEPI, the system looks for the program named FIND in SYS1.LINKLIB, because the
private library created on the JOBLIB DD statement does not actually exist until a member is
added to it. In STEP2, the system looks for the program named RATE first in the JOBLIB
library.

Retrieving an Existing Private Library: If several programs for a job are in the same private
library, identify the library on a JOBLIB DD statement. The library is available in every step
of the job for which you do not code a STEPLIB DD statement.

To make a library available to a single step, identify the library on a STEPLIB DD statement.
The STEPLIB library is available only to the step that contains the STEPLIB DD statement,
unless you pass the library and retrieve it in a subsequent step.

The system searches for a program in the private library you identify. If a job contains a
JOBLIB DD statement and a step contains a STEPLIB DD statement, the system searches for
the step’s program first in the STEPLIB library and then in the system libraries. The system
ignores the JOBLIB library for that step. -

For a step in a job using a JOBLIB library, if you want the system libraries searched rather
than the JOBLIB, code a STEPLIB DD statement that identifies a system library:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

Example of Retrieving Job and Step Libraries

//MYJOB JOB MSGLEVEL=1

//JOBLIB DD DSNAME=LIB5.GRP4,DISP=SHR
//STEP1 EXEC PGM=FIND

//STEP2 EXEC PGM=GATHER

//STEPLIB DD DSNAME=ACCOUNTS ,DISP=(SHR,KEEP),
// UNIT=3350,VOL=SER=727104

¢ In STEPI, the system searches the library named LIB5.GRP4, defined on the JOBLIB DD
statement, for the program named FIND.

¢ In STEP2, the system searches the library named ACCOUNTS, defined on the STEPLIB
DD statement, for the program named GATHER.

Concatenating Private Libraries: If a job uses programs from several libraries, you can
concatenate these libraries to a JOBLIB DD statement or a STEPLIB DD statement; all the
libraries being concatenated must be existing libraries. Omit the ddname from all the DD
statements for the libraries, except the first.

Chapter 9. Entering Jobs - Resource Control 9-3

Entering Jobs - Resource Control

The system searches the libraries for the program in the same order as the DD statements.

T
Example of Concatenated Libraries R
//JOBLIB DD DSNAME=D58.LIB12,DISP=(SHR,PASS)
// DD DSNAME=D90.BROWN,DISP=(SHR,PASS),
// UNIT=3330,VOL=SER=411731
// DD DSNAME=A03.EDUC,DISP=(SHR,PASS)
Temporary Library
Temporary libraries are partitioned data sets created to store a program until it is used in a
later step of the same job. A temporary library is created and deleted within a job.
When testing a newly written program, a temporary library is particularly useful for storing the
load module from the linkage editor until it is executed by a later job step. Because the module
will not be needed by other jobs until it is fully tested, it should not be stored in a system o

library. ooy

While the system assigns the module a name in the temporary library, the name cannot be
predicted. Therefore, use the PGM parameter to identify the program by location rather than
by name. Code a backward reference to the DD statement that defines the temporary library:

//stepname EXEC PGM=*.stepname.ddname

Creating a Temporary Library: In the step that produces the program, code a DD statement
that creates a partitioned data set and place the program in it. A later step can then retrieve
this program. Alternatively, you can use the virtual I/O (VIO) facilities to define a temporary /ﬂ
library. See “Allocation of Virtual I/O” on page 15-27 for details. RN

Example

//STEP2 EXEC PGM=TEWL

//SYSLMOD DD DSNAME=8&PARTDS (PROG) ,UNIT=3350,
// DISP=(NEW,PASS) ,SPACE=(1024, (50,20,1)) Y
//STEP3 EXEC PGM=*.STEP2.SYSLMOD : C

STEP2 calls the program IEWL, which link edits object modules to form a load module that
can be executed. STEP2 places the module in the library defined in the SYSLMOD DD
statement.

STEP3 calls the program by naming the step that created the library and the DD statement that
defines the program as a member of a library. If STEP2 had called a procedure and the DD
statement named SYSLMOD was included in PROCSTEP3 of the procedure, you would code
PGM =*.STEP2.PROCSTEP3.SYSLMOD. '

Resource Control of Procedure Library

Procedure libraries are partitioned data sets consisting of members that contain procedures. To ~
call and execute a procedure cataloged in a library, code: ’)

//stepname EXEC PROC=procedure-name

9-4 JCL User’s Guide

N/

Entering Jobs - Resource Control

The name of the cataloged procedure is its member name or alias in the library.

If a job does not specify a procedure library, the system retrieves all cataloged procedures called
by EXEC statements from the procedure libraries defined by the installation for the job’s job
class. :

If a job’s cataloged procedures are contained in another procedure library, use the following
parameters to direct the system to that library. The parameters must specify procedure libraries
defined during JES initialization.

* In a JES2 system, code a PROCLIB parameter on the JES2 /*JOBPARM statement.
¢ In a JES3 system, code a PROC parameter on the JES3 //*MAIN statement.

Updating Procedure Library: To add a procedure to an installation-defined procedure library
or to modify permanently a procedure in a library, use the IEBUPDTE utility program. If
modifying, tell the system operator to delay any jobs that would use the procedure during
modification.

In a JES3 system, you can specify UPDATE on the JES3 //*MAIN statement to update a
procedure library. This parameter causes all jobs using the identified data set and any

concatenated data sets to be held until the update is complete.

Examples

In a JES2 system:

//J0B87 JOB ,'S. WIESENTHAL'
/*JOBPARM PROCLIB=PROC15

//s1 EXEC PROC=ALEG
//INDS DD *

(éata)

/*
In a JES3 system:

//J0B87 JOB ,'S. WIESENTHAL'
//*MAIN PROC=15

//s1 EXEC PROC=ALEG
//INDS DD *

(&ata)

/*

In these examples, the system obtains the procedure ALEG from the procedure library
PROCI5.

Chapter 9. Entering Jobs - Resource Control 9-5

Entering Jobs - Resource Control

Resource Control of Address Space

Types of Storage

In MVS, the storage available for a program is virtual or real:

* Virtual storage is addressable space that appears to the user as real storage. Instructions
and data are mapped from virtual storage into real storage locations, where they are
executed.

* Real storage is the storage from which the processor can directly obtain instructions and
data and to which it can directly return results.

Virtual Storage: The virtual storage address space is 2 billion bytes. The address space
contains the commonly addressable system storage, the nucleus, and the private address space,
which includes the user’s region.

When a program is selected, the system brings it into virtual storage and divides it into pages of
4K bytes. The system transfers the pages of a program into real storage for execution and out
to auxiliary storage when not needed. Paging is done automatically; to the programmer, the
entire program appears to occupy contiguous space in real storage at all times. Actually, not
all pages of a program are necessarily in real storage at one time. Also, the pages that are in
real storage do not necessarily occupy contiguous space.

Real Storage: Certain programs must have all their pages in contiguous real storage while they
are executing. They cannot be paged. These programs must be put into an area of virtual
storage called the nonpageable dynamic area, whose virtual addresses are identical to real
addresses.

Such programs include:

* Programs that modify a channel program while it is active.
* Programs that are highly dependent on time.

Such programs are the only ones for which you should request real storage. To request real
storage, code ADDRSPC=REAL on the JOB or EXEC statement and request the amount of
real storage needed in a REGION parameter.

Requesting Amount and Type of Storage
The amount of space needed by a job or step can be specified in the REGION parameter of the
JOB or EXEC statement. If REGION is on the JOB statement, each step of the job executes in
the requested amount of space. If on the EXEC statements in a job, each step executes in its
own amount of space. Use the EXEC statement REGION parameters when different steps
need greatly different amounts of space. '

The REGION parameter differs depending on whether the program uses virtual or real storage.

9-6 JCL User’s Guide

Entering Jobs - Resource Control

Region Size for Virtual Storage: When ADDRSPC = VIRT is coded or implied, the system
establishes two values from the REGION parameter or the installation-defined default. These
values are:

* An upper boundary to limit region size for variable-length GETMAINS.

* A second limiting value set by the IBM- or installation-supplied routine IEALIMIT or
IEFUSI. The system uses this second value to limit:

— Fixed-length GETMAINS.

— Variable-length GETMAINSs when the space remaining in the region is less than the
requested minimum.

When the minimum requested length for a variable-length GETMAIN or the amount
requested for a fixed-length GETMAIN exceeds this second value, the job or step
abnormally terminates. See SPL: System Modifications and Supervisor Services and Macro
Instructions.

The amount of space requested must include the following:
¢ Space for all programs to be executed.

* All additional space the programs request with GETMAIN macro instructions during
execution.

¢ Enough unallocated space for task termination. Task termination invokes certain system
components that can issue GETMAIN macro instructions for space in the user’s region.

Region Size for Real Storage: When ADDRSPC=REAL is coded, the system establishes one
value from the REGION parameter or the installation-defined default. The value is used as an
upper boundary to limit region size for all GETMAINGs.

The minimum region size must be:
* 8K if the program to be executed is reenterable and resides in an authorized library.

* 12K for all other programs.

Note that this is the minimum region for successful execution, but not necessarily the minimum
region size for successful job completion. Programs executed in real storage should perform as
much clean-up as possible before terminating.

Examples

//J28 JOB ,'F. GOLAZESKI',CLASS=D

//S1 EXEC PGM=PROGREAL,REGION=20K,ADDRSPC=REAL
//bD1 DD DSNAME=A.B.C,DISP=0LD

//S2 EXEC PGM=PROGVIRT,REGION=75K,ADDRSPC=VIRT
//bD2 DD =~ DSNAME=MYDS2,DISP=0LD

This example shows how to request storage for a program that must not be paged and for a
program that can be paged. Step Sl executes in real storage, without paging, while step S2
executes in virtual storage, with paging.

//STEPA EXEC PROC=MYPROCS,REGION.FIRST=750K,
// REGION.SECOND=700K

This EXEC statement assigns space requests to two procedure steps, FIRST and SECOND, of
a procedure named MYPROCS.

Chapter 9. Entering Jobs - Resource Control 9-7

Entering Jobs - Resource Control

Requesting Amount of Logical Storage in a JES3 System
The LREGION parameter of the JES3 //*MAIN statement allows you to specify the
approximate size of the largest step’s working set in real storage. JES3 uses the LREGION
value to improve job scheduling. For more information, see JES3 SPL: Initialization and
Tuning.

Use LREGION carefully. If the values selected for LREGION are too small, the job may take
longer to run.

Example

//*MAIN LREGION=100K

Resource Control of the Processor

Selecting a Processor in JES2
In a JES2 multi-access spool configuration, jobs enter from local input streams, from remote
work stations, and from processors at other network nodes. If an entering job does not specify
a system, JES2 can assign the job to execute on any system in the configuration.

In a multi-access spool configuration, a job can request execution on specific systems. This
request is made by coding:

/*JOBPARM SYSAFF=cccc

/*JOBPARM SYSAFF=(cccc,cccc,ccec)
/*JOBPARM SYSAFF=*

/*JOBPARM SYSAFF=ANY

A specified system processes the job’s JCL and executes the job. The output from the job can
be processed by any system in the multi-access spool configuration.

You should request a specific system when a job has special processing requirements not
available on all systems in the configuration. For example, an emulation job might need to run
on a particular system.

For more information on the JES2 multi-access spool configuration, see SPL: JES2
Initialization and Tuning.

Independent Mode: If the job needs to be processed by a system in independent mode, code:

/*JOBPARM SYSAFF=(cccc,IND)
/*JOBPARM SYSAFF=(, IND)
/*JOBPARM SYSAFF=(ANY,IND)

A specified system, provided it is operating in independent mode, processes the job’s JCL and
executes the job. The same system processes the job’s output.

Independent mode is useful for testing new components with selected jobs while in a shared
configuration.

9-8 JCL User’s Guide

Entering Jobs - Resource Control

Examples

/*JOBPARM SYSAFF=SYS2
/*JOBPARM SYSAFF=(5333, IND)
/*JOBPARM SYSAFF=(*,IND)

Selecting a Processor in JES3

JES3 automatically selects a processor for a job based on the resources that JES3 knows the job
needs in order to execute. These resources are:

Devices
Volumes
Data sets

Processor features, such as an emulator, a nonstandard catalog, or a connection to a
particular system-managed device.

~If a job must have resources that JES3 does not control or that JES3 cannot infer from the job
control statements, name the processor(s) that should or should not execute the job by coding:

//*MAIN SYSTEM=ANY

//*MAIN SYSTEM=JGLOBAL

//*MAIN SYSTEM=JLOCAL

//*MAIN SYSTEM=(main-name,main-name,...)
//*MAIN SYSTEM=/(main-name,main-name,...)

Relationship to Other Parameters: The requested processor must be consistent with other
parameters specified in the job control statements:

CLASS parameter on the JOB statement or //*MAIN statement. A processor or processors
are defined for each valid job class during JES3 initialization. If the SYSTEM parameter
specifies a processor that does not execute jobs of the specified class, JES3 abnormally
terminates the job.

DD statement UNIT parameter that specifies a device-number for a device that is
JES3-managed or jointly JES3/MVS managed. The specified device must be attached to
the requested processor. Also, because a specific device is requested, the SYSTEM
parameter is required.

The TYPE parameter on the //*MAIN statement must specify the system running on the
requested processor.

The processing requests made in JES3 //*PROCESS statements. Any dynamic support
programs called in //*PROCESS statements must be able to be executed on the requested
processor.

Examples

//*MAIN SYSTEM=(PRS1,PRS3)

Chapter 9. Entering Jobs - Resource Control 9-9

Entering Jobs - Resource Control

Resource Control of Spool Partitions in a JES3 System

When JES3 reads a job, it initially places the job on a spool volume or volumes. The spool
volumes can be divided by the installation into groups, known as partitions. During JES3
initialization, partitions are defined and associated with output classes, job classes, and
processors. See SPL: JES3 Initialization and Tuning for details.

During job processing, JES3 allocates spool data sets to a partition, as follows, in override
order:

1. The spool partition for the output class of the sysout data set.
2. The spool partition for the job’s class.

3. The spool partition for the processor executing the job.

4. The default spool partition.

You can use the //*MAIN statement to override the JES3 partition allocations, except for
allocation of partitions for sysout data sets and SYSIN data sets. A sysout data set is always
placed in the partition used for its output class; a SYSIN data set is always placed in the
default spool partition. Depending on how the installation defines the partitions, you can make
JES3 allocate all the spool data for a job or all the spool data of a particular type, such as
output, to a specified spool partition. Thus, you can limit the number of spool volumes that
JES3 uses for a job’s spool data sets. To control the spool partition, code:

//*MAIN SPART=partition-name

Examples

//ONE JOB ,'PAT EGAN'
//*MAIN SYSTEM=SY2

//S1 EXEC PGM=ABC
//OUTL DD SYSQUT=N
//0UT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as follows:

* PARTD is assigned to output class S.
PARTC is assigned to processor SY?2.
PARTA is the default partition.

* No partition is assigned to output class N.

The job’s input spool data sets are allocated to the default spool partition, PARTA.

Because the job executes on processor SY2 and no partition is assigned for output class N, the
sysout data set OUTT1 is allocated to partition PARTC.

Sysout data set OUT? is allocated to PARTD.

9-10 JCL User’s Guide

C

Entering Jobs - Resource Control

//TWO JOB ,'LEE BURKET'
//*MAIN CLASS=IMSBATCH,SYSTEM=SY2
//S1 EXEC PGM=DEF

//OUTL DD SYSOUT=N

//OUT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as for job ONE, with the
following addition:
* PARTB is assigned to job class IMSBATCH.

The sysout data set OUT1 is allocated to partition PARTB, the job class’s partition. Note that
the job class’s partition overrides the processor’s partition.

//THREE JOB ,'T. POLAKOWSKI'

//*MAIN CLASS=IMSBATCH,SPART=PARTE,SYSTEM=SY2
//STEP1 EXEC ~ PGM=GHI

//OUT DD SYSOUT=N

//0UT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as for job TWO.
The sysout data set OUT1 is allocated to partition PARTE, as specified in the SPART

parameter. Note that the SPART parameter overrides the processor’s partition and the job
class’s partition. :

Chapter 9. Entering Jobs - Resource Control 9-11

9-12

JCL User’s Guide

Part 3. Tasks for Processing Jobs

. Part 3. Tasks for Processing Jobs

This part describes how to process jobs that have been entered into the system. These tasks are
all optional. They are:

¢ Processing control
¢ Performance control

Part 3 Contents
Chapter 10. Processing Jobs - Processing Control 10-1
Processing Control by Terminating Execution 10-2
Bypassing or Executing Steps Based on Return Codes 10-2
Uses of Return Code Tests 10-2
Relationship of the COND Parameters on JOB and EXEC Statements 10-2
) Step Execution after a Preceding Step Abnormally Terminates 10-3
N’ Compatible Return Code Tests 10-4
Examples of JOB Statement Return Code Tests 10-4
Examples of EXEC Statement Return Code Tests 10-5
Examples of EXEC COND Parameters with EVEN and ONLY 10-5
Examples of COND Return Code Testing in a Job 10-6
Examples of COND Parameters in Procedures 10-8
Examples of COND Parameters that Force Step Execution 10-9
Cancelling Job that Exceeds Output Limit 10-9
S Examples 10-9
N _#/5 Processing Control by Timing Execution 10-9
JOB and EXEC TIME Parameter 10-9
JES2 Time Parameters 10-10
Processing Control for Testing 10-11
Altering Usual Processing for Testing 10-11
Scanning JCL for Errors 10-11
Using IEFBR14 Program for Testing 10-11
Using Nonstandard Processing 10-12
Dumping after Error 10-13

N’ Chapter 11. Processing Jobs - Performance Control 11-1
Performance Control by Job Class Assignment 11-2
Performance Control by Selection Priority 11-3
Priority for JES2 Jobs 11-3
Priority for JES3 Jobs 11-3
Priority Aging 11-3
Performance Control by Dispatching Priority 11-4
Performance Control by Performance Group Assignment 11-4
Performance Control by I/O-to-Processing Ratio in a JES3 System 11-5

Part 3. Tasks for Processing Jobs

JCL User’s Guide

~

Processing Jobs - Processing Control

Chapter 10. Processing Jobs -

Proces-sing Control

usual processing

(2) by dumping
after error

PGM =JCLTEST
PGM =JSTTEST
(JES3 only)

SYSABEND DD
SYSMDUMP DD
SYSUDUMP DD

To format dump
on 3800 Print-
ing Subsystem,
FCB=STD3 and
CHARS =DUMP
on dump DD

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
PROCESSING JCL Statements JES2 Statements JES3 Statements
JOBS JOB EXEC Other JCL
Processing control
by terminating COND COND CANCEL in BYTES,
execution CARDS, LINES,
and PAGES
on /[*MAIN
by timing execution |TIME TIME TIME
or time in JOB on /[*JOBPARM
JES2 accounting
information
for testing: TYPRUN PGM =I1EFBR14 //*PROCESS
(1) by altering CLASS //*ENDPROCESS

DUMP in BYTES,
CARDS, LINES,
and PAGES

on //[*MAIN

Figure 10-1. Processing Control Task for Processing Jobs

Chapter 10. Processing Jobs - Processing Control 10-1

Processing Jobs - Processing Control

Processing Control by Terminating Execution

Bypassing or Executing Steps Based on Return Codes
Depending on the results of a job step, you may need to bypass or execute later steps. To
indicate the results of its execution, a program can issue a return code. Using a COND
parameter, you can test the return code and, based on the test, either bypass or execute a step.
The COND parameter can be specified on either a JOB or EXEC statement by coding:

//3jobname JOB acct,progname,COND=(code, operator)
//iobname JOB acct,progname, COND=((code,operator), (code,operator))

//stepname EXEC PGM=x,COND=(code,operator)
//stepname EXEC PGM=x ,COND=(code,operator, stepname)
//stepname EXEC PROC=x,COND=((code,operator,stepname.procstepname))

//stepname EXEC PGM=x,COND=EVEN

//stepname EXEC PGM=x,COND=ONLY

//stepname EXEC PGM=x,COND=((code,operator) ,EVEN)
//stepname EXEC PGM=x ,COND=((code,operator,stepname) ,ONLY)

If an EXEC statement COND parameter causes a step to be bypassed, only that step is not
executed; the following steps are executed or not, depending on their COND parameters. If a
JOB statement COND parameter causes a step to be bypassed, the system bypasses all
remaining job steps.

Bypassing a step because of an EXEC COND parameter is not the same as abnormally
terminating the step. Bypassing permits the following steps to be executed; abnormally
terminating causes all following steps to be bypassed, unless they contain EVEN or ONLY in
their EXEC COND parameters.

Uses of Return Code Tests
Certain IBM programs produce standard return codes. For example, a compiler or linkage
editor returns a code of 8 to indicate serious errors in the compiled or link-edited program; the
program may not execute correctly. Before executing a newly compiled or link-edited program
test the return code from the compiler or linkage editor; if it is 8, bypass execution of the
program.

?

In user-written programs, assign a return code to signify a certain condition. For example,
STEP1 of a job reads accounts that subsequent steps process. STEP1 sets a return code of 10 if
delinquent accounts are found. STEP3 processes only delinquent accounts. Before STEP3
executes, test the return code from STEPI:

* If the return code from STEPI is 10, indicating delinquent accounts, execute STEP3.
* If the return code from STEPI is not 10, bypass STEP3.

Relationship of the COND Parameters on JOB and EXEC Statements
The effect of return code tests on the different statements is:

* The JOB statement COND parameter performs the same return code tests for every step in
a job. If a JOB statement return code test is satisfied, the job terminates.

* An EXEC statement COND parameter performs return code tests for only its step in a job.
Using EXEC COND parameters, different tests can be performed for each step. Thus,
EXEC COND parameters are useful if the same return code has different meanings in
different job steps, or if you want to take different actions according to which job step
produced a return code.

10-2 cL User’s Guide

&\J

Processing Jobs - Processing Control

A COND parameter on the first EXEC statement in a job is meaningless and is ignored by
the system. ‘ ‘ '

¢ The JOB COND parameter, when EXEC statements also contain COND parameters,
performs the same return code tests for every step in the job.

— If the JOB statement return code test is satisfied, the job terminates. The job
terminates regardless of whether or not any EXEC statements contain COND
parameters and whether or not an EXEC return code test would be satisfied.

— If the JOB statement return code test is not satisfied, the system then checks the COND
parameter on the EXEC statement for the next step. If the EXEC statement return
code test is satisfied, the system bypasses that siep and begins processing of the
following step, including return code testing.

The COND parameter on both the JOB and EXEC statements is useful to set some
conditions for all steps in the job and other conditions for particular steps.

s No COND parameters on JOB or EXEC statements means the system does not perform any
return code tests, but tries to execute each step in. the job.

Step Execution after a Preceding Step Abnormally Terminates
Abnormal termination of a step usually causes the system to bypass subsequent steps and to
terminate the job. However, the EXEC statement COND parameter lets you request execution
of a step by coding: :

//stepname EXEC PGM=x,COND=EVEN

The step is to be executed even if one or more of the preceding steps abnormally
terminates. That is, the step will always be executed, whether or not a preceding step
abnormally terminates.

//stepname EXEC PGM=x,COND=ONLY

The step is to be executed only if one or more of the preceding steps abnormally
terminates. That is, the step will not be executed, unless a preceding step abnormally
terminates.

If a step abnormally terminates, the system scans the EXEC COND parameter for the next step
for an EVEN or ONLY subparameter. If neither is present, the system bypasses the step. If
EVEN or ONLY is specified, the system makes any requested return code tests against the
return codes from previous steps that executed and did not abnormally terminate. The step is
bypassed if any test is satisfied. Otherwise, the step is executed.

Note:

* EVEN and ONLY are ignored if a step is abnormally terminated because it exceeded the
time limit for the job.

e When a job step that contains the EVEN or ONLY subparameter references a data set that
was to be created or cataloged in a preceding step, the data set (1) will not exist if the step
creating it was bypassed, or (2) may be incomplete if the step creating it abnormally
terminated.

¢ For the system to act on the COND parameter, the step must abnormally terminate while
the program has control. If a step abnormally terminates during scheduling, due to failures
such as JCL errors or inability to allocate space, the system bypasses the remaining steps,
no matter what the COND parameter requests.

Chapter 10. Processing Jobs - Processing Control 10-3

Processing Jobs - Processing Control

Compatible Return Code Tests R ST
‘ The system applies the return code tests on the JOB COND parameter against the return code, o
if any, produced by each step in the job. To take advantage of this parameter, the return codes
for each step should have compatible meanings. For example, the COBOL compiler and the
linkage editor have compatible return codes:

4 Minor errors were found, but a compiled program or load module was produced. Execution may be successful.

8 Major errors were found, but a compiled program or load module was produced. Execution will probably not be
successful.

12 Serious errors were found. A compiled program or load module was not produced.
Code the return code as follows:

COND =(4,LT) if you want to continue processing despite the small errors. The job
terminates only if the return code of any step is greater than 4.

COND=(4,LE) if you want to continue processing only if no errors occur. The job ;
terminates if the return code of any step is greater than or equal to 4. N

Examples of JOB Statement Return Code Tests

//31 JOB ,'LEE BURKET" ,COND=((10,GT), (20,LT))

This example asks “Is 10 greater than the return code or is 20 less than the return code?” If
either is true, the system skips all remaining job steps. If both are false after each step executes,
the system executes all job steps.

For example, if a step returns a code of 12, neither test is satisfied. The next step is executed. O
However, if a step returns a code of 25, the first test is false, but the second test is satisfied: 20
is less than 25. The system bypasses all remaining job steps.

//92 JOB ,'D WEISKOPF' ,COND=((50,GE), (60,LT))

This example says “If 50 is greater than or equal to a return code, or 60 is less than a return
code, bypass the remaining job steps.” In other words, the job continues as long as the return
codes are 51 through 60.

;A.
//93 JOB ,'E. SASSMANN',COND=(8,NE) ; \
This example shows one return code test.
//34 J0B COND=((5,GT),(8,EQ),(12,EQ),(17,EQ),(19,EQ),(21,EQ),(23,LE))
This example shows seven return code tests. The job continues only if the returﬁ codes are: 5,
6,7,9,10, 11, 13, 14, 15, 16, 18, 20, or 22.

10-4 JCL User’s Guide

-

\ J

Ty

—

Processing Jobs - Processing Control

Examples of EXEC Statement Return Code Tests

//S3 EXEC PGM=U,COND=((20,GT,STEP1),(60,EQ,STEP2))

This example says “Bypass this step if 20 is greater than the return code STEP1 issues, or if
STEP? issues a return code of 60.”

//S4 EXEC PGM=V,COND=((20,GT,STEP1), (60,EQ))

This example says “Bypass this step if 20 is greater than the return code STEPI issues, or if any
preceding step issues a return code of 60.”

//T7 EXEC PGM=B15,COND=(10,LT)
//STEP8 EXEC PGM=MYPROG,COND=(15,NE,STEP5)

These examples show single return code tests.

//NEXT EXEC PGM=AFTERPRC,COND=(7,LT,STEP4.LINK)

This example says “Bypass this step if 7 is less than the return code issued by a procedure step
named LINK in the cataloged procedure called by the EXEC statement named STEP4.”

Examples of EXEC COND Parameters with EVEN and ONLY

//S5 EXEC PGM=R,COND=EVEN

//R8 EXEC PGM=S,COND=((5,LT),EVEN)

//S6 EXEC PGM=T,COND=ONLY

//CX EXEC PGM=U,COND=((4,GE,STEP3),(8,EQ, STEPZ) ONLY,(12,LT,BX))

//LATE EXEC PGM=CLEANUP,COND=EVEN

This example says “Execute program CLEANUP even if one or more of the precedmg steps
abnormally terminated.”

//LATER EXEC PGM=SCRUB,COND=((10,LT,STEPA),(20,EQ),ONLY)

This example says “Execute this step only if one of the preceding steps terminated abnormally;
but bypass it if 10 is less than the return code STEPA issues or if any of the steps that
terminated normally issued a return code of 20.”

//LATEST EXEC PGM=FIX,COND=((10,LT,STEPA),(20,EQ),EVEN)

This example says “Bypass this step if 10 is less than the return code STEPA issues, or if any of
the preceding steps issues a return code of 20; otherwise execute this step even if one of the
preceding steps terminated abnormally.”

//EXG EXEC PGM=A1,COND=(EVEN, (4,GT,STEP3))
//EXH EXEC PGM=A2,COND=((8,GE,STEP1),(16,GE),ONLY)
//EXI EXEC PGM=A3,COND=((15,GT,STEP4),EVEN, (30,EQ,STEP7))

Chapter 10. Processing Jobs - Processing Control ~ 10-5

Processing Jobs - Processing Control

Examples of COND Return Code Testing in a Job

Input Stream RC
//MYJOB JOB ,A.SMITH,COND=(10,LT)

//STEP1 EXEC PGM=A 6
//STEP2 EXEC PGM=B,COND=((2,EQ), (4,EQ)) 2

//STEP3 EXEC PGM=C,COND=ONLY -

//STEP4 EXEC PGM=D,]

// COND=((5,GT,STEP1), (2,EQ))

//STEP5 EXEC PGM=E 9
//STEP6 EXEC PGM=F, 10
// COND=((8,GT,STEP5) , EVEN)

//STEP7 EXEC PGM=G,COND=(4,GT,STEP4) 12

//STEP8 EXEC PGM=H -

//STEP9 EXEC PGM=I,COND=ONLY -

Tests Performed

Before STEP2:
1. Is 10 less than 6? No.
2. Is the return code 2 or 4?7 No. Execute STEP2

Before STEP3:

1. Is 10 less than 2 or 6? No.

2. Did one or more of the preceding steps .
terminate abnormally? No. Bypass STEP3.

Before STEP4:

1. Is 10 less than 2 or 6? No.

2. Is S greater than 67 No.

3. Is one of the preceding return codes equal to 2?
Yes. Bypass STEP4.

Before STEPS:
1. Is 10 less than 2 or 6? No. Execute STEPS5.

Before STEP6:

1. Is 10 less than 9, 2, or 6? No.

2. Is 8 greater than 97 No.

3. Did one of the preceding steps terminate
abnormally? No. Execute STEP6.

Before STEP7:

1. Is 10 less than 10, 9, 2, or 6? No.

2. Is 4 greater than return code of STEP4?

STEP4 was bypassed and did not produce a return
code so this test is ignored. Execute STEP7.

Before STEPS:
L. Is 10 less than 12, 10, 9, 2, or 67 Yes. Bypass
STEP8 and STEP9.

10-6 JCL User’s Guide

Processing Jobs - Processing Control

Input Stream
//ABC JOB 12345,COND=(5,EQ)
//STEP1 EXEC PGM=A

//STEP2 EXEC PGM=B,COND=(7,LT)

//STEP3 EXEC PGM=C,
// COND=((20,6T,STEP1) , EVEN)

//STEP4 EXEC PGM=D,COND=((3,EQ),ONLY)

//STEP5 EXEC PGM=E,COND=(2,LT,STEP3)

//STEP6 EXEC PGM=F

//STEP7 EXEC PGM=G,
// COND=((6,EQ,STEP5) ,ONLY)

//STEP8 EXEC PGM=H,COND=EVEN

//STEP9 EXEC PGM=I

ABEND

Tests Performed

Before STEP2:
1. Is 5 equal to 4? No.
2. Is 7 less than 4? No. Execute STEP2.

Before STEP3:

1. Is EVEN or ONLY specified in STEP3? Yes.
2. Is 5 equal to 47 No.

3. Is 20 greater than 4? Yes. Bypass STEP3.

Before STEP4:

1. Is EVEN or ONLY specified in STEP4? Yes.
2. Is 5 equal to 4? No.

3. Are any preceding return codes equal to 3?
No. Execute STEP4. :

Before STEPS:
1. Is EVEN or ONLY specified in STEP5? No.
Bypass STEPS.

Before STEP6:
1. Is EVEN or ONLY specified in STEP6? No.
Bypass STEP6.

Before STEP7:

1. Is EVEN or ONLY specified in STEP7? Yes.
2. Is S equal to 6 or 4? No.

3. Is 6 equal to the return code of STEP5? STEPS
was bypassed and did not produce a return code,
so this test is ignored. Execute STEP7.

Before STEPS:
1. Is Sequal to 5, 6, or 4? Yes. Bypass STEP8
and STEP9.

Chapter 10. Processing Jobs - Processing Control ~ 10-7

Processing Jobs - Processing Control

Examples of COND Parameters in Procedures

10-8

//TEST EXEC PROC=PROC4,COND.STEP4=((7,LT,STEP1),
// (5,EQ) ,EVEN) ,COND.STEP6=((2,EQ),
// (10,GT,STEP4))

In this example, the EXEC statement that calls procedure PROC4 passes COND parameters to
two steps, STEP4 and STEPS,

//TEST EXEC PROC=MYPROC,COND=((7,LT,STEP1),(5,EQ))

This EXEC statement establishes a COND parameter for all steps in the called procedure. It
overrides any COND parameters in the procedure, if coded.

//PS3 EXEC PGM=ADD3,COND=(5,EQ,STEP2)

In this EXEC statement in a procedure, STEP2 in the COND parameter can be the name of
either a preceding step in the procedure or of a preceding step in the job.

Your job contains

Cataloged Procedure

. PRA

//TWO EXEC PROC=PRA .

. //EDIT EXEC
Cataloged Procedure

. : PRB

//THREE EXEC PROC=PRB,COND.SP3=(10,LT,TWO.EDIT) .

. . //SP3 EXEC

This example shows a procedure EXEC statement COND parameter that tests the return code
from a step in another procedure called by a previous step in this job.

1. Step TWO calls cataloged procedure PRA, which contains pfocedure step EDIT. The
system is to test the return code from EDIT.

2. Step THREE calls cataloged procedure PRB, which contains procedure step SP3.
Execution of SP3 should depend on the return code from EDIT.

3. The COND parameter in EXEC statement THREE directs the system to bypass SP3 if 10
is less than the return code from procedure step EDIT.
The COND parameter could also have appeared on EXEC statement SP3:
//SP3 EXEC PGM=DEPEND,COND=(10,LT,TWO.EDIT)
To direct the system to bypass all steps in procedure PRB, code the COND parameter without
the SP3 qualifier, as follows:
//THREE EXEC PRB,COND=(10,LT,TWO.EDIT)

JCL User’s Guide

Processing Jobs - Processing Control

O Examples of COND Parameters that Force Step Execution

//S1 EXEC PGM=A

//CLEANUP EXEC PGM=FIX,COND=((12,LT,S1),(12,G6T,S1))

In this example, you force step CLEANUP to execute if step S1 executes but issues a return
code of 12 to indicate that data sets might contain invalid records. The program FIX would
clean up the invalid records.

Cancelling Job that Exceeds Output Limit
JES3 cancels a job when the maximum output from the job exceeds a limit specified in the JES3
[/*MAIN statement. The limit can be expressed in: -

Ny J’ * Bytes to be spooled in the BYTES parameter
* Cards to be punched in the CARDS parameter
* Lines to be printed in the LINES parameter

- *» Pages to be printed in the PAGES parameter

If no limits are given on the //*MAIN statement, the system uses the installation default value
for the job class. '

(Use in Testing: One use for these parameters is during program testing. These parameters can
{ ; cancel a program that is in an endless loop that contains instructions sending records to a

~ sysout data set.

Examples

//*MAIN BYTES=(50,CANCEL)
//*MAIN CARDS=(120,CANCEL)
//*MAIN LINES=(200,CANCEL)
//*MAIN PAGES=(,CANCEL)

Processing Control by Timing Execution

To control processing based on the processor time needed to execute a program, code one of
the following time parameters:

//jobname JOB acct,progname,TIME=value
//stepname EXEC PGM=x,TIME=value
//jobname JOB (,,time)

/*JOBPARM TIME=value

JOB and EXEC TIME Parameter
The TIME parameter on the JOB or EXEC statement specifies the maximum length of time a
- job or step is to use the processor. Two benefits of the TIME parameter are:

e The system prints the actual processor time used by the job or step in the messages in the
) job log.

e When a job or step exceeds the maximum time, the system abnormally terminates it or
gives control to a user exit routine established through System Management Facilities
(SMF). Thus, the TIME value limits the processor time wasted by a looping program.

Chapter 10. Processing Jobs - Processing Control 10-9

Processing Jobs - Processing Control

By coding TIME = 1440, the TIME parameter can instead be used to give a job or step an
unlimited amount of time. Specifically, the system allows a step to remain in a continuous wait
state for an unlimited time, rather than the time limit established through SMF.

Because the processor time-used field is checked at intervals of about 10.5 seconds, the actual
amount of time that a job or step uses the processor can exceed the time specified on the TIME
parameter by up to 10.5 seconds.

Examples

//FIRST J0B ,'E.D. WILLIAMSON',TIME=2
//STEP1 EXEC PGM=A,TIME=1
//STEP2 EXEC PGM=B,TIME=1

In this example, the job is allowed 2 minutes of execution time and each step is allowed 1
minute. Should either step try to execute beyond 1 minute, the job will terminate beginning
with that step.

//SECOND JOB ,'M. CARLO',TIME=3
//STEP1 EXEC PGM=C,TIME=2
//STEP2 EXEC PGM=D,TIME=2

In this example, the job is allowed 3 minutes of execution time. Each step is allowed 2 minutes
of execution time. Should either step try to execute beyond 2 minutes, the job will terminate
beginning with that step. If STEP1 executes in 1.74 minutes and if STEP?2 tries to execute
beyond 1.26 minutes, the job will be terminated because of the 3-minute time limit specified on
the JOB statement.

//AAA EXEC PROC=PROC5,TIME=20

This EXEC statement sets a time limit for an entire procedure. This specification overrides any
TIME parameters in the procedure, if coded. ‘

//AAA EXEC PROC=PROC5, TIME.ABC=20,TIME.DEF=(3,40)

This EXEC statement sets a time limit for two steps, ABC and DEF , of the called cataloged
procedure.

JES2 Time Parameters

In a JES2 system, you can code a time value in the JES2 format accounting information
parameter on the JOB statement or in a TIME parameter on the JES2 [*JOBPARM statement.
If the job execution time exceeds this value, JES2 sends a message to the operator.

Examples

//33 308 (,,3)
/*JOBPARM TIME=3

Both of these statements specify that the job cannot use the processor for more than 3 minutes.

. 10-10 JCL User’s Guide

N

Processing Jobs - Processing Control

Processing Control for Testing

Altering Usual Processing for Testing

Scanning JCL for Errors

Before using a new set of job control statements, you can ask the system to scan them for
syntax errors without executing any steps or allocating any devices. To do this scanning, code:

¢ For a job in a JES2 or JES3 system:
//jobname JOB acct,progname, TYPRUN=SCAN

* For a job in a JES2 system, where x is a class defined during JES2 initialization to force job
control statement scanning:

//jobname JOB acct,progname,CLASS=x
* For a step in a JES3 system:

//stepname EXEC PGM=JCLTEST
//stepname EXEC PGM=JSTTEST

The system scans for:
* Invalid spelling of parameter keywords and some subparameter keywords.
e Invalid characters.
¢ Unbalanced parentheses.
* Misplaced positional parameters on some statements.
* In a JES3 system only, parameter value errors or excessive parameters.

* Invalid syntax on JCL statements in cataloged procedures invoked by any scanned EXEC
statements.

The system does not check for misplaced statements, for invalid syntax in JCL subparameters,
or for parameters and/or subparameters that are inappropriate together.

Examples

//JB16 JOB ,*M. CARLO',TYPRUN=SCAN
//T6 JOB RK988,SMITH,CLASS=S
//S1 EXEC PGM=JCLTEST

//S2 EXEC PGM=JSTTEST

Using IEFBR14 Program for Testing
IEFBR14 is a two-line program that clears register 15, thus passing a return code of 0, and then
branches to the address in register 14, which returns control to the system. If a step requests
IEFBR14 instead of the program that the JCL actually supports, the system does the following:

¢ Checks all the job control statements in the step for syntax.
¢ Allocates direct access space for data sets.
¢ Performs data set dispositions.

To test with IEFBR 14, substitute IEFBR14 for the name of the program, as follows:
//stepname EXEC PGM=IEFBR14,...

Chapter 10. Processing Jobs - Processing Control 10-11

Processing Jobs - Processing Control

Considerations when Using IEFBR14: Although the system allocates space for data sets, it
does not initialize the data sets. Therefore, any attempt to read from one of these data sets will
produce unpredictable results. Also, IBM does not recommend allocation of multi-volume data
sets while executing IEFBR14.

If you created a data set when testing with IEFBR14, the data set’s status in the DD DISP
parameter is old when you execute the actual program.

Because IEFBR14 does not open any data sets, a DD DISP parameter of CATLG does not
make the system catalog a data set, if one of the following is true:

* The DD statement requested a nonspecific tape volume.
* The DD statement requested a tape volume with dual density options, but the DCB DEN
subparameter did not specify the density.

When executing IEFBR14, if a DD DISP parameter specifies CATLG or UNCATLG, the
system issues an operator message to mount the volume. If it is not necessary to mount the
volume, code DEFER on the UNIT parameter of the DD statement. »

Examples

For testing:
//STEPl EXEC PGM=IEFBR14,COND=(8,LE),TIME=2

For executing after testing:
//STEP1 EXEC PGM=WKLYRPT,COND=(8,LE) ,TIME=2

Using Nonstandard Processing

In a JES3 system, you can use nonstandard job processing in testing. Standard job processing
consists of the following standard scheduler functions:

Converter/interpreter service
Main service

Output service

Purge service

A nonstandard job uses one or more special processing functions in p