Systems

GC20-1753-1
File No. S/370-20

OS/Virtual Storage 2
Single Virtual Storage (SVS)
Features Supplement

Release 1.7

This supplement discusses OS/Virtual Storage 2 (OS/VS2)
SVS features and organization. Only concepts and functions
of OS/VS2 SVS that are new to and significantly different
from those of OS MVT are presented in detail. Transition
from OS MVT to OS/VS2 SVS is discussed also.

This supplement is an optional section designed to be inserted
in its entirety in any one of the following base publications,
each of which contains the conceptual and System/370
hardware information required to-understand the OS/VS2
discussion presented: A Guide to the IBM System/370
Model 145 (GC20-1734), A Guide to the IBM System/370
Model 158 for System/370 Model 155 Users (GC20-1754),
A Guide to the IBM System/370 Model 158 for System/360
Users (GC20-1781), A Guide to the IBM System/370 Model
168 for System/370 Model 165 Users (GC20-1755), or A
Guide to the IBM System/370 Model 168 for System/360
Users (GC20-1787).

Readers who possess more than one of the above base
publications need add this supplement to only one of the
documents, as the OS/VS2 information presented applies to
System/370 Models 145, 158, and 168 unless otherwise
indicated in the text.

The contents of this supplement are designed to acquaint the

OS MVT knowledgeable reader with the new facilities and
the advantages of OS/VS2 SVS.

BV

Front Cover (both sides) of GC20-1753-1
Revised September 13, 1976
By TNL GN20-3589

PREFACE

This supplement is stocked in the IBM Distribution Center,
Mechanicsburg, as a separate form-numbered item and is not distributed
as part of any other publication. Subsequent updates to the supplement
must also be ordered separately. Those who are familiar with a

System/370 model and OS MVT and who req:ire information about 0S/VS2 SVS
as of Release 1.7 should obtain this supplement and insert it as Section

100 of one of the appropriate base publications 1listed below.
Base publications for the 0S/VS2 SVS supplement are:

e A Guide to the IBM System/370 Model 145 (GC20-1734-2 or later
editions)

e A Guide to the IBM System/370 Model 158 for System/370 Model 155
Users (GC20-1754)

e A Guide to the IBM System/370 Model 158 for System/360 Users (GC20-
1781)

e A Guide to the IBM System/370 Model 168 for System/370 Model 165
Users (GC20-1755)

e A Guide to the IBM Systemv/370 Model 168 for System/360 Users (GC20-
1782)

This supplement is self-contained. It begins with page 1 and
includes its own table of contents and index. The title of the
supplement is printed at the bottom of each page as a means of
identifying the optional supplement to which the page belongs.
Knowledge of information contained in other optional supplements that
can be added to the base publications listed above is not required in

| order to understand the 0S/VS2 SVS features as they are presented.
However, comprehension of virtual storage concepts and dynamic address
translation hardware and terminology, as described in any one of the
base publications, is assumed.

Second Edition (March 1974)

This is a major revision obsoleting GC20-1753-0. The text and illustrations have been
updated to reflect changes to OS/VS2 SVS since its announcement. These changes are
indicated by a vertical line to the left of the change.

This edition applies to Release 1.7 of OS/VS2.

This publication is intended for planning purposes only. 1t will be updated from time to
time; however, the reader should remember that the authoritative sources of system
information are the systems library publications for OS/VS2 Release 1.7. These publications
will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

A form for readers’ comments has been provided at the back of this publication. If the

form has been removed, address comments concerning this publication to: IBM Corporation,
Technical Publications/Systems, Dept. 824, 1133 Westchester Avenue, White Plains, New York
10604. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1974

Page of GC20-1753-1

Revised September 13, 1976

By TNL GN20-3589

CONTENTS (Section 100)

Section 100: OS/Virtual Storage 2 Single Virtual Storage (SVS)

100: 05
100:10

100:15
100: 20

100:25

100:30

100: 35

100: 40

100:45

100: 50
100:55

Features. . '« '« - e o e o @ @ e e e @ @' s e o ®
Functions and Hardware Supported © e o o o o Wwie = e @
Organization and Initialization of Storage. «

Virtual Storace Organization. « « « o« o« o' a @ o o o =
Real Storage Organizacion . « v « o o o o o o o o = =
External Page Storage Organization. . . « « o o o« « «
System Initialization . o ¢ ¢ o o 4 c'a a « o o o o =
Major COmponentS. « « ¢ o o o o o« 2 « o o eia o s a o =
Job Management. . . . ¢ 4 cd 4 e 4 e o o 8 = o e e « @
Master Scheduler. . « ¢« o ¢ & o o « o « o o o =« o o =
Reader Interpreters and Output Writers.
Job Scheduler . . ¢« ¢ o« o « o 2 o « s o« o s « o o «
HASP II Version B ¢ & ¢ ¢ ¢ o o o o « a « « =«
Time Sharing Option . « <« & & ¢ ¢ ¢ o o o o « o o o @
Task Management .« . o« o o 2 o« 2 o o a = o « o o « « o «
Interruption SUpPErvisSOr . . ¢« « ¢ ¢ ¢« « o o« o o o o @
Task SUPETVISOY .« .« ¢ 4o o o o o o o « o« o o o o o «
Virtual Storage SUPEXIVISOTr. « « « « o o o « « « o o @
Contents SUPEXVISOT <« ¢ o « o o o o o o o o « o « o« o
Timer SUPEYVISOr. « o« 2 o o o o o « o « s« o o« « o « =
Data Management .« . . ¢ « ¢ o o o o o o a o o = a o o =
Input/Output Supervisor . e e e 4 s e o o o o o @
Virtual Storage Access Method e e = s s a2 % s e s = =
Page Management . . . ¢ o ¢ o o o o o o o o « o o o o «
Real Storage Administration . . e o o ® o e & e o =
External Page Storage Admlnlstratlon. « e e e e e e e
Page Administration . . . ¢ o o« ¢ ¢ ¢ o o « o o o o @
Recovery Management . . ¢ « o o« « o o o o @ s o o o« o =
Recovery Management SUppoOrt . . ¢« o« « ¢ « o « o o o =
OLTEP « « «c « ¢ e e o o o« o o o « s o« o o« s a s o o
Problem Determination Facilities. . . . « ¢« ¢ ¢« « ¢
Ilanquage Translators, Service Programs, and Emulators .
System Assembler. . . . ¢ ¢ 2 « e ¢ e o o e @ o o « @
Linkage EQitOr. . . o« ¢ o o « o o« o o « o o o « o o« =
UtilitiesS ¢ ¢ o o o o o ¢ o o o e o o o 2 o o o o o =
Sort/Merge ProgramS « « o« o o o o « o o o o o o = o
Integrated Emulators. . « « « ¢ ¢ ¢ o« ¢ o o o o o o «
OS MVT to OS/VS2 SVS Transition . ¢« ¢ ¢« ¢ ¢ ¢ & o « o &
Summary of Advantages . . « ¢ ¢ « o o ¢ o o o o o o o o

Index (Section 100) . . & ¢ o o ¢ « @ =« o = « s o s o« o s « a = o

100.10.1
100.10.2
100.20.1
100.20.2
100.25.1
100.30.1
100.30.2
100.30.3

100.35.1
100.35.2

0S/Virtual Storage 2 Single Virtual torage (SVS) Features Supplement

FIGURES (Section 100)

Virtual storage organization in OS/VS2 SVvs
Real storage organization in OS/VS2 SVS. . . « « « . .
Division of external page storage when TSO is used . .
Virtual storage organization when TSO is used.
Task queue containing an automatic priority group. . .
Organization of a control area for a VSAM data set . .
Relationships among VSAM control and request macros.
Structure of the primary index for a VSAM key-sequenced
data set . . . ¢ ¢ ¢ 4 e e o o . e o e o o e e « o =
Flow of the real storage allocatlon procedure.
Operation of the page replacement algorithm.

15
34
36
40
51
57

60
71
75

TABLES (Section 100)

100.05.1
100.05.2
100.05.3
100.10.1
100.15.1
100.25.1
100.30.1
100.30.2

100.30.3

Standard features of 0S/VS2 SVS.

Optional features of 0S/VS2 SVS.

I/0 devices, consoles, and terminals supported by
0s/Vs2 SVs
Organization and capacity of paging devices in OS/Vsz

SvVs.

0S/Vs2 SVS control and processing program components .
Task switching rules for APG tasks

Types of processing supported for VSAM key-sequenced

data sets.

Types of processing supported for VSAM entry-sequenced

data sets.

Comparison table of VSAM and ISAM fac111t1es for OS/VS2

SVs.

17
24
41
65
67

67.7

OS/Virtual Storage 2 Single Virtual Storage (SVS) Features Supplement

Page of GC20-1753-1
Revised September 13, 1976
By TNL GN20-3589

SECTION 100: OS/VIRTUAL STORAGE 2 SINGLE VIRTUAL STCRAGE (SVS) FEATURES

100:05. FUNCTIONS AND HARDWARE SUPPORTED

0OS/VS2 Single Virtual Storage (SVS) is a growth operating system for
OS MVT, large OS MFT, and 0S/VSl installations. O0S/VS2 SVS includes
features equivalent to and compatible with those of 0S5 MVT and offers
major new functions and feature enhancements. The most significant new
items of 0S/VS2 SVS are:

e Support of one virtual storage of 16,777,216 bytes using dynamic
address translation hardware

e Enhancements to job scheduling and the time sharing option, and new
functions designed to increase system performance

e An additional access method, called Virtual Storage Access Method
(vsaM), that is designed to provide more functions and to be more
suitable to online and data base environments than ISAM

e Operational enhancements
e Additional system integrity, reliability, and data security features

0S/VS2 SVS supports one regionalized virtual storage of 16,777,216
bytes with segments of 64K and pages of UK. O0S/VS2 SVS support consists
of Releases 1, 1.6, and 1.7 of 0S/VS2. Support of multiple virtual
storages (MVS) and loosely and tightly coupled multiprocessing
configurations is provided in 0S/VS2 MVS, which consists of 0S/VS2
Releases 2 and up. OS/VS2 MVS is not discussed in this publication.

The organization of virtual storage in 0S/VS2 SVS is very similar to
that of main storage in MVT. The management of virtual, real, and
external page storage and the paging activity of the system are handled
entirely by the 0S/VS2 control program and are transparent to the
programmer .

0S MVT is upward compatible with 0S/VS2 SVS to the extent that moving
from MVT to 0S/VS2 SVS resembles moving from one release of MVT to
another that contains significant new features. (See Section 100:50 for
a discussion of MVT to 0S/VS2 SVS tramnsition.) 0S/VS1l (except for the
JES and RES facilities) and MFT are upward compatible with 0S/VS2 SVS .in
the same way that OS MFT is upward compatible with OS MVT.

0S/VS2 SVS, classified as system control programming (SCP) and
referred to hereafter as VS2 as well as 0OS/VS2 with or without the SVS
or Release 1 designation, supports System/370 Models 145, 155 II, 158,
165 II, and 168 operating in EC and translation modes. VS2 does not
support System/370 models operating in FC mode without dynamic address
translation specified, System/370 models operating in BC mode, or any
System/360 models.

The following minimum system configuration and hardware features are
used by VS2 SVS:

® 512K of real storage. (This supports concurrent batched jok and TSO
operations or dedicated TSO. A minimum batched job system with one
reader and one writer operating concurrently with batch job
processing can operate in 384K.)

0S/Virtual Storage 2 Single Virtual Storage (SVS) Features Supplement 1

Page of GC20-1753-1
Revised September 13, 1976
By TNL GN20-3589

e Byte multiplexer channel with associated I/0 devices, including one
reader, one punch, one printer, and one console

e One selector or block multiplexer channel with associated I/O
devices, including three 3330-series (any models) or four 2314/2319
direct access devices. BAt least one tape unit (nine-track) and one
additional 3330-series drive are required for system generation.

e Dynamic address translation and channel indirect data addressing
e Floating-point arithmetic

e Store and fetch protection

e Time of day clock, CPU timer, and clock comparator

* Monitoring facility

e Program event recording

Tables 100.05.1 and 100.05.2 list the standard and optional features
of 0S/VS2 SVS, and Table 100.05.3 lists the I/0 devices and terminals
suppor ted. Just as for an 0OS MVT operating system, the desired
installation-tailored 0S/VS2 SVS control program must ke generated, at
which time user-selected optional features are included in the resulting
system. More features are standard in VS2 SVS than in MVI. This can
reduce the number of options from which a choice must be made and,
thereby, reduce system generation preparation and execution time.

HASP II Version U4 is specifically designed to interface with VS2.
Previous versions of HASP II will not operate with VS22, and HASP II
Version 4 will not operate with other 0S5 systems (PCP, MFT, MVT, or
VvSl). Although HASP II Version 4 is not classified as SCP, it has Class
A programming service. Optionally, HASP II Version 4 can be used in a
VS2 environment to provide data transcription (spooling) and job
management functions as well as a remote job emtry facility, which is
not supported by VS2. When used, HASP II Version 4 supplants VS2 reader
interpreter, output writer, and job scheduling facilities.

VS2 SVS support is based on that provided in MVT as of Release 21.8.
However, the following MVT features are not available in VS2 SVS:

e Rollout/rollin (function not required in a virtual storage
environment)

e SVC and I/0 transient areas (all type 3 and 4 SVC's and ERP's are
resident in virtual storage)

e Automatic SYSIN batch (ASB) reader and direct SYSOUT (DSO) writers
{the functions provided by these facilities are available in HASP II
Version 4)

e Scatter loading (function provided automatically)

e Storage hierarchies (2361 Core Storage cannot be attached to any
System/ 370 model)

e Multiprocessing (that is, shared storage multiprocessing support
like that provided for System/360 Model 65 multiprocessing
confiqurations)

e TESTRAN

e OTAM (function provided by TCAM), Graphic Job Processor (GJF), ard
Satellite Graphic Job Processor (SGJP)

2 Os/virtual Storage 2 Single Virtual Storage (SVS) Features Supplement

Page of GC20-1753-1
Added September 13, 1976
By TNL GN20-3589

RJE (function provided by HASP II Version 4)
e CRJE (function provided by TSO0)
e SFRO and SER1 (replaced by MCH and CCH)

¢ TEBUPDAT wutility (replaced by IEBUPDTE)

0S/Virtual Storage 2 Single Virtual Storage (SVS) Features Supplement 2.1

Page of GC20-1753-1
Added September 13, 1976
By TNL GN20-3589

This page intentionally blank

2.2 OS/Virtual Storage 2 Single Virtual Storage (SVS) Features Supplement

e IEHIOSUP (function no longer required because of the new location of
SVC routines in VS2)

e TMCJQODMP (replaced by IMCOSJQD)

Table 100.05.1. sStandard features of 0S/VS2 Release 1 (automatically
included during system generation)

e One virtual storage of 16,777,216 bytes with 64K segments and 4K
pages#* :
e Demand paging for allocation of real storage#*
Execution of programs in paged mode* and nonpaged (virtual equals
real) mode
Capability of starting up to 63 initiators#
I/0 load balancing#*
Fetch* and store protection
Direct access volume serial number verification
DEB validity checking
Authorized Program Facility (APF)*
Multitasking
PCI fetch .
Advanced overlay supervisor
Timing facilities
Extended SVC routing
Pageable SVC's and ERP's (in the link pack area)
Pageable modules from SYS1.LPALIB (in the link pack area)
Pageable BLDL table (in the link pack area)
Quickcells for faster allocation of certain virtual storage areas#%
Operator communication at IPL
Multiple Console Support (MCS)
Hardcopy log
System log
Missing interruption checker
Checkpoint/restart and warm start
Access methods: QSAM, BSAM, BDAM, BPAM
System Management Facilities (SMF)
Error Statistics by Volume (ESV)
Recovery management: MCH, CCH, APR (when alternate channel paths
are specified), DDR
Dynamic Support System (DSS)#*
Online Test Executive Program (OLTEP)
Emulator interface (SVC 88)
System Assembler and Linkage Editor/Loader
System utilities: IEHDASDR, IEHLIST, IEHMOVE, IEHPROGM, IEHINITT,
IEHATLAS, IFHSTATR
e Data set utilities: IEBCOPY, IEBGENER, IEBUPDTE, IEBEDIT, IEBPTPCH,
IEBTCRIN, IEBCOMPR, IEBISAM, IEBDG, Access Method Services for VSAM#*
e Service aids: AMPTFLE, AMBLIST, AMASPZAP, AMDSADMP, AMDPRDMP,
> IMCOSJQD, IFCDIP00, IFCEREPO, Generalized Trace Facility (GTF),
| System Modification Program
e Independent utilities: IBCDMPRS, IBCDASDI, ICAPRTBL

p,

et

*Facility not available in MVT

Os/Virtual Storage 2 Release 1 Features Supplement 3

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

Table 100.05.2. Optional features of 0S/VS2 Release 1 (must be
requested during system generation or added afterward)

e Fixed BLDL table
Zeroing of a page frame the first time it is allocated to a virtual
storage page¥
Automatic Priority Group (APG)*
Tracing facilities (system trace table and tracing routines)
Track stacking#*#*
Automatic Volume Recognition (AVR)
Device Independent Display Operator Console Support (DIDOCS)
Expanded device status testing during IPL (DEVSTAT option)
Time slicing
Time Sharing Option (TSO)
Access methods: ISAM, VSAM#*, BTAM, TCAM Level 5
Graphic Programming Services
Error Volume Analysis (EVA)
Shared Direct Access Storage Devices (DASD): 2314,/2319, 3330-
series (all models), and 2305 Models 1 and 2
e Integrated emulators
1401/1440/1460 for Models 158, 155 II, and 145
1410/7010 for Models 158, 155 II, and 145
7070/7074 for Models 168, 165 II, 158, and 155 II
7080 for Models 168 and 165 II
709/7090/7094/70941I1 for Models 168 and 165 II
DOS Emulator for Models 158, 155 II, and 145
e Reduced error recovery for magnetic tape
Reliability Data Extractor (RDE)
e Support of the power warning feature for Models 158 and 168

*Facility not available in MVT

**Note that track stacking should not be included in a VS2 Release
1.6 or 1.7 system that contains VSAM when user catalogs are to
be utilized as a problem occurs when a user catalog specified
in a JOBCAT or STEPCAT statement is opened.

Table 100.05.3. I/O devices, consoles, and terminals supported by
05/VS2 Release 1

Readers and Punches

2501 card Reader, Models Bl and B2

2520 Ccard Read Punch, Models B1, B2, B3
2540 Card Read Punch

3505 Card Reader, Models Bl and B2

3525 Ccard Punch, Models P1, P2, P3

Printers

1403 Printer, Models N1, 2, 7
1443 Printer, Model N1

3211 Printer

Magnetic and Paper Tape

2401 and 2420 Magnetic Tape Units (and 2816 Switching Units)
341073411 Magnetic Tape Units

3420 Magnetic Tape Units, all models

2495 Tape Cartridge Reader

2671 Paper Tape Reader

4 0S/Virtual Storage 2 Release 1 Features Supplement

e

rage or-UUZu-1753-1
Revised July 18,1975
By TNL GN20-3481

Table 100.05.3. <(continued)

Direct Access Storage (All are supported for system residence, as paging
devices, and for SYSIN and SYSOUT data sets, as well as for disk data
sets. All channel switching and string switching features for the
devices below are supported for alternate channel paths and alternate
control unit paths. The rotational position sensing and 32 Drive
Expansion features are also supported.)

2314 Direct Access Storage Facility, Models 1, A, and B, and 2844
Auxiliary Storage Control

2319 Disk Storage, A and B models

3330-series Disk Storage, all models

2305 Fixed Head Storage, Models 1 and 2

Optical and Magnetic Character Readers

1287 Optical Reader

1288 Optical Page Reader

1419 Magnetic Character Reader (Dual Address Adapter and Extended
Capability feature required}

Display Units (locally attached)

2250 ‘-Display Unit
2260 Display Station
3270 Information Display System

consoles

3210 and 3215 Console Printer-Keyboards

Display console for Model 158

3066 System Consoles for Models 168 and 165 II

2150 console with 1052 Printer-Keyboard Model 7

2260 Display Station, Model 1 and 2250 Display Unit, Models 1 and 3
2740 Communication Terminal

3277 Display Station

3213 Printer (for hard-copy output for Model 158 display console only)
Composite console (card reader and printer)

Texrminals (Start/Stop)#*

1030 Data Collection System

1050 and 1060 Data Communication Systems

2260, 2265 Display Stations

2721 Portable Audio Terminal V
2740, Models 1 and 2, and 2741, Model 1 Communication Terminals
2760 Optical Image Unit

83B3 ATET Terminal

WU115A Teletype

TWX-33/35 ATET Teletype Terminal)
Systens/7 Sensor-Based Information System (as a 2740 Communication
Terminal with checking)

*Terminals that are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products on programs may have on such
terminals.

0S/Virtual Storage 2 Release 1 Features Supplement 5

Page of GC20-1753-1
Revised July 18,1975
By TNL GN20-3481

Table 100.05.3. (continued)

Terminals (Binary Synchronous)

2770 Data Communication System

2780 Data Transmission Terminal

2790 Data Communication System

2792, Models 8 and 11 General Banking Stations
3270 Information Display System

3670 Brokerage Communication System

3735 Programmable Buffered Terminal

3740 Data Entry System

3780 Data Communications Terminal

1130 System (as a processor station)

1800 System (as a processor station - BTAM only)
System/3 (as a processor station)

System/360 Models 20 and up (as a processor station)
System/370 models (as a processor station)

Transmission Control Units

2701 Data Adapter Unit and 2702, 2703 Transmission Controls

2715 Transmission Control Unit

3704, 3705 communications Controllers (NCP/VS support)

7770-3 Audio Response Unit (TCAM support only, including 2721 Portable
Audio Terminal and 2730 Transaction Validation Terminal Model 1 support)

The following I/O devices, some of which are supported by MVT, are
not supported by VS2 Release 1:

101771018 Paper Tape Reader/Punch
1255 and 1259 Magnetic Character Readers
1442 card Read Punch, Model N1

1442 Punch, Model N2

2245 Printer

2301 and 2303 Drum Storage

2311 Disk Storage Drive

2321 Data Cell Drive

2402, 2403, 2404 Magnetic Tape Units
2415 Magnetic Tape Unit and Control
2596 card Read Punch

3881 Optical Mark Reader

100:10 ORGANIZATION AND INITIALIZATION OF STORAGE
@

VIRTUAL STORAGE ORGANIZATION

The size of virtual storage in a VS2 environment is always 16,777,216
bytes. The organization of virtual storage is reflected in tables and
control blocks, similar to those used in MVT, that are established at
system initialization and maintained throughout system operation by the
control program. Virtual storage is organized, allocated, and freed in
VS2 in much the same way as main storage is in MVT. However, in VS2 the
virtual storage allocated to pageable programs does not require the
allocation of real storage or external page storage until the virtual
storage is actually referenced by an executing program.

Virtual storage in VS2, like main storage in MVT, is divided into two
main areas: a nondynamic area in lowest- and highest-addressed virtual
storage (corresponding to the fixed area in MVT) and a dynamic area
between the two nondynamic areas, as shown in Figure 100.10.1. The
nondynamic virtual storage area in lowest-addressed virtual storage is

6 0OS/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Added July 18, 1975
By TNL GN20-3481

nonpageable. The virtual storage in this area is mapped on a virtual-
equals-real (V=R) basis with real storage. That is, each virtual
storage page has a page frame assigned so that virtual and real storage
addresses are equal. The nondynamic area in lowest-addressed virtual

storage contains the resident (nonpageable) control program and is a
multiple of 4K in size.

0OS/Virtual Storage 2 Release 1 Features Supplement 6.1

Page of GC20-1753-1
Added July 18,1975
By TNL GN20-3481

"This page intentionally blank.®

OS/Virtual Storage 2 Release 1 Features Supplement

[

Dynamic Area

Nondynamic Area

Virtual Storage M\\\\

Nondynamic Area

juswerddng seimiess | aseafsy ¢ 25030318 TEUIXATA/SO

Non- Non- /Non» Non-
Nonpageable pageable Pageable pageable / pageable Pageable pageable
i,
N NN
e Pageable Link
. Pack A
Fixed Fixed V=R Master o i :322 3a0d 4SVC's |
Nucleus Link BLDL Dynamic Writer Reader {nitiator initiator Reader | Writer | MS Scheduler o Al transient ERP's saa
aﬂd. Pack Tabie Area Region Region Region LsQA LSQA LSQA | LSQA Region o Reentrant LINKLIB
optionally | Area {if not modules
trace - Routines -| pageable} | 64K 64K 84K 64K 64K 84K 84K 64K 1128K . ﬁﬁimum
. 0y oy J L ltiple minimum e BLDL Table if not
tabis minimum minimum | msErum | minimum muitip fixed
Optional Optional Monpagesble e LPA directory multiple
regions @ LPA modifications
1280K to 1792K minimum
Key 0 Key O Key O Keys 2 to 15 Key O Key O Key 0 31 Key 0 Key O Key O jKey G | Key O Key O Key O
(¢ /
e .
Resident V=R line on a Pageable Dynamic Area—begins on a 64K boundary Virtual
Caontro! Program. 4K boundary (with regions on a 84K boundary} Address
Ends on a 4K Reader regions 16,777,215
boundary Writer regions

Figure 100.10.1.

@ ® 6 o0

Ll

{nitiator regions

Qperator command regions

Pageable problem program regions of 64K
multiples with key 1

LSQA for all regions including nonpageable regions

Virtual storage organization in 0S/VS2 Release 1

Inciuded in the resident control program are the generated nucleus
and, optionally, a trace table, fixed link pack area, and fixed BLDL
table. Typical nucleus storage requirements for a Model 145, for
example, range from 138K to 150K depending the system configuration.
{This is the nucleus requirement only and does not include trace table,
fixed link pack area, and fixed BLDL takle requirements, if any.) The
fixed limk pack area (LPA) is an cptional extemsion of the standarxd
pageable link pack area, which is located in the high-order portion of
the nondynamic area. The fixed LPA can contain reentrant load modules
from S¥S1.SVCLIB, SY¥S1.LINRLIB, and a new library called S¥S1.LPALIB.
If a fixed LPA is present, it is searched before the pageable LPA.

A fixed LPA can be defined to enhance system performance or to
satisfy time dependencies of modules. Similarly, a f£ixed instead of a
pageable BLDL table may improve system performance. In VS2, the BLDL
table is either a fixed part of the resident control program area or is
contained in the pageable LPR {(ome oxr the other).

The nondynamic area in highest-addressed virtual storage contains the
system queune area {(SQA), pageable link pack area and its directory,
master scheduler region, and master scheduler local system gueue area
(LSQA). Optionally, it also contains a modified limk pack area and a
pageable BLDL table. SQA is defined in highest—addressed virtual
storage in the upper nondynamic area. SQA consists of one or more 64K
segments, as defined at system gemeration or specified during system
initialization. When a virtual storage page within SQA is obtained, the
control program ensures that a page frame is assigned to the virtual
storage page and that the page frame is fixed.

SQ& is used primarily for comtrol blocks and areas that are not job
or job-step related, such as the two segment tables, page tables for
virtual storage below the V=R line, page tables for the master scheduler
region and virtual storage above this region, ENQ/DEQ control bloccks,
and CDE ({(contents directory emntry) chains. However, space within SQA is
allocated for functions associated with problem programs when necessary.

The virtual storage allocated to SQA during IPL cannot be extended
during system operation. Hemnce, system operations are terminated when a
request is made for SQA space and no more virtual storage is available
in SQA. Two page frames are held in reserve for allocation to S0QB (and
LSQA, as discussed later) when no other page frames are available.
Whenever cne of these reserve page frames is allocated, an attempt is
made to replace it when page frames become available. When these two
reserve page frames have been used and no page frames are available to
assign to an SQA virtual storage page, the system is placed in the
enabled wait state.

In a VS2 environment, SQA size can be overestimated without
pexformance loss in order to prevent a situation in which SQA is
depleted, since the virtual storage allocated to SQA does not require
the allocation of real storage until it is actually used. The amount of
real storage allocated tc SQA increases and decreases as required.

The pageable link pack area is created adjacent to SQA during system
initialization. It contains reemtrant load modules that can be shared
by concurrently executing tasks and the BLDL table, if this table is not
made fixed in the lower nondymamic area. All Load modules that are to
be placed in the pageable LPA are kept in a new library called
SYS1.LPALIB. This library contains all transient {(type 3 and 43 SVC
routines, all transient ERP’s, all but one of the standard access
methods (BPAM is in SY¥YS1.SVCLIB), and certaim other contrcl program
routines. Any reentrant user-written lcad modules ox additional
reentrant control program load modules that are to be placed in the
pageable link pack area must reside in SY¥S{1.LPALIB also. This library

| can be placed on a disk volume that is demountable. The minimum size of

8 Os/Virtual Storage 2 Release 1 Features Supplement

the pageable link pack area varies from 20 segments (1280K) to 28
segments (1792K) depending on the options included in the system.

The following reentrant modules are contained im SYS1.LPALIB and are
always loaded into the link pack area (pageable or fixed portion):

Master scheduler

Reader interpreter
Initiator/allocation

Terminator

Qutput writer

Queue manager

SMF

System 1og

System task control

System. restart

Asynchronous overlay supervisor
GETPQOL

BSAM, QSAM, BDAM

All type.3 and 4 SVC's

Certain TS0 modules ({(when TSO is included in the VS2 system)

The following reentrant modules can be made resident in the link pack
areaa:

o Loader

e All graphics modules and their OPEN/CLOSE routines
BISAM, QISAM, BTAM, TCAM, VSAM, and OPEN/CLOSE routines for these access
methods

e ERP°s for BTAM and QTAM

A detailed list of the reeantrant modules that cam be placed in the
link pack area, which also includes their storage requirements, -is
contained in 0S/VS2 Storage Estimates {(GC28-0604).

Each load module present in SYS1.LPALIB becomes part of the LPA. 2R
module contained in SYS1.LPALIB is placed in either the pageable or the
fixed portion of the LPA. Hence, all transient SVC routines that are
not made part of the fixed control program are made resident in virtual
storage, and the transient SVC areas used in MVT are not implemented in
VS2. The I0S transient area of MVT is also eliminated in VS2 because
all ERP°'s are resident in the LPA in VS2,

Implementation of a link pack area that is pageable and that contains
the load modules described offers the following advantages:

e Contention for transient areas, which can occur frequently in MVT,
is eliminated without having to specifically reserve additicmnal real
storage. Each SVC and ERP routine is allocated its own virtual
storage in the LPA. When required, an SVC or an ERP module not
currently present in real storage is automatically paged into real
storage without the necessity of waiting for a transient area to
become available. Also eliminated is CPU time for address constant
relocation that the program fetch routine performs when a module is
loaded, since these routines are paged in.

e The most frequently used LPA modules in any given time period will
tend to remain in real storage because page management is designed
to keep the most active pages resident. This eliminates the problem
of using the resident reentrant modules option of MVT efficiently,
since. the VS2 comtrol program is designed to keep the most active
modules resident when required without the necessity of measurement
and preplanning activities on the part of the system designer. When
required, modules that are knmown to be very heavily used can still
be made fixed in real storage by using the fixed LPA option of VS2.

OS/Virtual Storage 2 Release 1 Features Supplement 9

¢ Less control program time is reguired to load type 3 and & SVC
routines into real storage im VSZ2 than into a tramsient area in MVT,
since transient SVC routines are paged in rather than fetched.
Further, routines in the pageable LPA that do not modify themselves
{refreshable modules) need not be paged out when they become
inactive, and paging I/0 time, which is not regquired in MVT, is mot
incurred in VS22 for this purpose.

e It becomes more practical to have more user-written code that can be
shared resident in the VS2 pageable link pack area than in the MVT
link pack area.

The pageable LPA alsc contains a pageable LPA directory that is
created during system imitialization. The LPA directory is used to
determine where a module resides in LPA virtual storage. A specialized
routine is performed (hashing technigue using module name) which
determines the location of a module name within the LPA directoxy. This
avoids a sequential search and reduces directory search time.

A fixed LPA is also supported. Reentrant modules that are to be
placed in the fixed rather than the pageable portion of the LPA are
specified in a new parameter list (IEAFIX} that is contained in
SYS1.PARMLIB. An IBM-supplied standard list is used unless the operator
specifies a user-supplied alternate list during IPL wia the new FIX
parameter oxr cancels the fixed LPA facility. Modules placed in the
fizxed LPA should be those that are heavily enough used that making them
fixed instead of pageable results in a significant increase in
performance.

The master scheduler regior is established ipn wirtual storage below
the pageable LPA. It is a minimum of 128K and pageable. BAdjacent to
this region is the master scheduler LSQA, which is 64K. In V52, control
blocks (such as TCB's), gueues, etc., related to a job or a job step are
kept in a local system queue area instead of within the region
associated with the task. In MVT, LSQA is used only for TSO regioms.

In VS2, the master scheduler region, each reader region, each writerxr
region, and each initiator started has an LSQA asscciated with it. LSQA
is obtained for an initiator whem it is started and released when the
initiator is stopped. LSQA also contains the program fetch work area
and the CLOSE routines work area that are part of 2 problem program
region in MVT. 1In VS2, the page tables and extermal page tables
associated with a region are kept in the LSQA for the regiomn.

LSQA is allocated from highest-addressed available virtual storage
within the pageable dynamic area. An LSQA must be a multiple of 64K im
size. Space within LSQA is obtained on a virtual storage page basis.
Whenever a virtual storage page within LSQA is allocated, a page frame
is allocated to it and fixed. If a task requires virtual space in LSQA
and none is available, or if no real storage is available for allocation
to an LSQA virtual storage page, the requesting task is abnormally
~erminated. If there are two page frames reserved for allocaticn to
SQ4, ome of them cam be allocated to LSQR when no other page frames are
available. LSQA will not be allocated the last resexved page frame.
The control block space reguired for the task terminmation procedure is
obtained from SQA. The allocated SQa and ISQA pages for a regiom are
dumped when the SNAP macro includes a request to dump the nucleus.

The advantage of using separate LSQA for each initiator is that the
possibility of using all available SQA is significantly reduced, since
the control blocks for each individual region are isclated from one
ancther. If a problem program region runs out of LSQR, only that job
step need be terminated and system operation continues. In addition,
the allocation of real storage for control blocks is more efficient in
¥S2 than in MVT because, in VS22, only the SQA amd LSQR pages actually
allocated have real storage assigned. (Note that a minimum of six pages

10 0ss/Virtuwal Storage 2 Release 1 Peatures Supplement

of S0A and three pages of master scheduler LSQA are always fixed in real
storage in V82.3} In MVT, when SQA is expanded to meet a large control
block space requirement, the expanded SCA area remains allocated even
though this larger amount of space may not be reguired at a later time.

The dynamic area of virtual storage comsists of a nonpageable (V=R)
area and a pageable area, which are divided by the V=R line. The
location of the V=R line is established during system initialization.
The address of the V=R line im virtual storage must be a multiple of 4K
and can be egual to or less than the address of the end of real storage
minus 64K. A minimum V=R -dynamic area of 64K is required (to enable
OLTEP, a standard facility of VS22, to be executed). A larger V=R
dynamic area can be specified at system generation, and this size can be
overridden during IPL. The maximum size of the V=R dynawic area cannoct
exceed real storage size minus 64K bytes.

The V=R dynamic area is used for the execution of nonpageable job
steps. A request for a nonpageakle region is made using the new ADDRSPC
parameter for the JCB and EXEC job contrxol statements. When
ADDRSPC=REAL is specified, the REGION parameter indicates the amount of
virtual and real storage that is to be allocated to the job step. The
virtual and the real storage addresses in a nonpageable region are the
same. A job camn contain both pageable (ADDRSPC=VIRT) and nonpageable
job steps. ‘The default for the ADDRSPC parameter is VIRT.

A nonpageable region is allocated on a 4K boundary. It must be a
maltiple of #K and a minimum of 12K in size, plus track stacking
requirements, if any. The initiator adds the track stacking requirement
to the REGION request. REGION requests for nonpageable regions are
rounded to the next 4K boundary when necessary. The maximum size of a
nonpageakle region is deterwined by the size of the user-defined V=R
dynamic area.

HWhen & nomnpageable job step is initiated, enough contiguous virtual
and real storage must be available within the V=R dynamic area at that
time to. satisfy the REGION parameter request. If there is not encugh
contiguous real storage available because long-term fixed pages axe
allocated in the V=R dynawic area, scheduling of the nonpageable -job
step is terminated.: Otherwise, the nonpageable job step waits for the
required resources to become available. More than one nonpageable job
step can be active concurrentiy {(up to a maximum of 1% if storage
protect keys 2 to 15 are available}, subject to the availability of the
contiguous virtual and real storage areas required within the V=R
dynamic area.

Jebs that contain one or more nonpageable job steps are initiated
using a pageable region in the pageable dynamic area. That is, the
initiator uses a pageable region for a work area even though the
nonpageable job steps it schedules operate in a nonpageable region in

the V=R dynamic area. Nonpageable job steps are terminated using the
nonpageable region in which the job step executed.

Nonpageable job steps operate with translation mode specified. This
is done because they reference virtual storage addressesy such as. those
in the pageable LPA, contained cutside their nonpageable region. Page
tables are established for a nompageable xegion so that the real storage
address that results from any translation of an address in the prxogram
in the nonpageable region is equal to the virtual storage address.
Channel program translation is mot performed on CCH's contained within a
nonpageable region. Checkpoint/restart routines ensure that a
nonpageahble job step is restarted in the same area within the V=R
dynamic area that was used for the checkpoints.

Whenever a LOAD macro is issued by a nonpageable job step, the
control program causes the specified routine to be loaded into real

Os/Virtual Storage 2 Release 1 Features Supplement 1t

storage (if it is not already present), and the module is long-term
fixed because a nonpageable job step cannot encounter a page fault. The
module remains fixed until a DELETE macro is issued. Since access
methods are loaded using a LOAD macro, any access methcds used by a
nonpageable job step will be long-term fixed during execution of the
nonpageable job step and will reduce the amount of real storage
available for paging. In addition, when a nonpageable job step issues a
LOAD macro, the comtrol program checks to see whether fixing the
specified module will cause the limit for fiwed real storage to be
exceeded. If it will, the nompageable job step is placed in the wait
state until such time as the specified module can be fixed withcut
exceeding the fixed real storage limit.

OLTEP is the only VS2 SCP component that is not part of the resident
(fixed) comtrol program and that must operate in nonpaged mode. In
addition, in VS2, a program must operate in ncnpaged mode if it:

o Contains a channel program that is modified while the channel
program is active

e Is highly time dependent (involves time-dependent I/0 operations,
for -example)

» Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

o Must use the chained scheduling facility of BSAM or (SAM

e Uses the EXCP macro and executes user-written I/0 appendages that
can encounter a disabled page fault (Section 100:25 discusses
disabled page faults.)

Existing user-written programs that are operating under MVT control
and that must operate in nonpaged mode under VS2 control need nct be
modified to emable them to rum in nonpaged mode. Sectionm 100:50
discusses the job contreol statement changes that may be required.

The pageable dynamic area comsists of all the virtual storage between
the V=R line and the nondynamic area in highest-addressed virtual
storage. The pageable dynamic area begins on a 64K boundary.

Therefore, if the V=R line is not on a 64K boundary, there is unused
virtual storage between the V=R line and the beginning of the pageable
dynamic area. Reader interpreter regioms, initiatoxr regioms, output
writer regions, pageable problem program regions, operator command
regions, and LSQA required for these regions are allocated from the
pageable dynamic area. Reader, initiator, and writer regions are a
minimum of 64K bytes in size. They are allocated from lowest addressed
available virtual storage in the pageable dynamic area. Each reader,
| each initiator, and each writer is assigned its own LSQA of 6UE, which
is allocated from highest-addressed available virtual storage in the
nageable dynamic area. The START command requires a region of 648K until
the started task is initiated. The MOUNT command requires a 64K region
until the mounting function has been performed.

Regions for pageable job steps are allccated from the lowest-
_addressed available virtual storage in the pageable dynamic area that is
large enough to satisfy the region space request. If a request for a
region larger than the entire pageable dynamic area is received, the job
is canceled and the operator is motified. A pageable region is
allocated contiguous virtuwal storage and must be a multiple of 64K in
size. It is allocated on a 64K virtual storage boundary. Storage
requests on job control statements for pageable regiomns are rounded up
to the next 64K multiple when necessary, which can permit existing job
control statements to be used. A pageable region uses the LSQA assigned
to the initiator that schedules job steps in the region.

12 0S/Virtual Storage 2 Release 1 Features Supplement

Pageable job steps (as well as nonpageable job steps) are initiated
by an initiator operating in a pageable region in the lowest-addressed
available virtual storage in the pageable dynamic area. Pageable job
steps operate with instruction address translation performed by DAT
hardware and channel program translation performed by the control
program.

In VS2, up to 63 initiators can be started. The MVT limit of 15 can
be extended because of the new method of storage protection implemented
in VS2. Protection is accomplished using store and fetch protection
hardware and two segment tables instead of one, as follows.

Storage protect keys are associated with virtual storage areas in
VS2. When a 4K page frame is allocated to a virtual storage page, its
two storage protect keys (one for each 2K block of real storage in the
page frame) are set equal to the protect key value associated with that
virtual storage page. . In VS2, a zero storage protect key value is
assigned to all control program areas (resident control program, SQA,
LPA, master scheduler region, time sharing control region, reader
regions, initiator regions, writer regions, and LSQA). Normally, all
pageable background regions have the same protect key value,
specifically, protect key value 1. All TSO foreground regions, which
must be pageable, are assigned protect key value 1 also. Each
nonpageable region is assigned a unique protect key value within the
range of 2 to 15. A unique key value should be assigned to a TCAM
region to ensure system integrity and security (this is a user
responsibility).

If a nonzero protect key is not available for allocation to a job
when the initiator attempts to obtain a key, the job is placed in the
hold queue:and a message is issued to the operator. (If any step within
a job is to operate in nonpageable mode, ‘a nonzero protect key is
obtained when the job is initiated for assignment to the nonpageable job
steps.) If a task requiring a unique protect key is initiated with a
START command and no key is available, the START command is rejected.
The fetch protect bits in the storage protect keys associated with each
type of region are turned on for all assigned nonzero key areas within
the region. The fetch protect bit is off in the keys for areas with a

protect. key of zero.

The program properties table {(module IEFSDPPT) can be used to cause
assignment of a unique storage protect key to the job steps of a job
that is to operate in a pageable region. The names of programs that are
to be assigned a unique key must be defined in the program properties
table and identified as requiring a unique protect key. (The: program
properties table can also contain the names of programs that cannot be
canceled.) The first step of a job must specify one of these names in
order to have a unique protect key assigned to the job. This facility
can be used to ensure that a unique key is assigned to a TCAM message
control program region. A TCAM program name mast be defined in the
program properties table. This name must be the program name assigned
to the first step of any job that initiates a TCAM message control
program in order to acquire a unique key for the TCAM region. The TCAM
job step need not be the first step of the job.

There is a system segment table and a user segment table. Both
segment tables define the same 16-million-byte virtual storage and both
address the same set of page tables. The system segment table has the
invalid bit off 'in all segment entries that define an allocated virtual
storage segment. Invalid bits are on for all unallocated virtual
storage segments. When a task with a protect key value of zero or a
nonpageable job step task is dispatched, the segment table origin
control register points to the system segment table. - Therefore, a task
with a zero protect key has read/write access to all allocated virtual
storage. - A nonpageable job step task can modify only those areas that

OSs/Virtual Storage 2 Release 1 Features Supplement i3

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

are assigned its unique four-bit protect key, (that is, areas within its
own region) and can access only its region and all key zero areas
(including those in pageable and other nonpageable regions).

The segment table origin control register points to the user segment
table whenever a pageable job step task is dispatched. The user segment
table has the invalid bit off only for virtual storage segments
allocated to the pageable region of the task being dispatched and to the
segments allocated to shared control program routines (nucleus, SQA,
LSQA, LPA, and the time sharing control region, if TSO is active). The
segment table entries for other pageable and nonpageable regions are all
marked invalid. Thus, a pageable job step task has reads/write access
only to its own region (a segment translation exception occurs if
another region is addressed) and read-only access to shared control
program areas. Storage protection within a region is the same as in
MVT. The protection scheme implemented in V52 provides both fetch and
store protection among all regions (except for the fact that nonpageable
regions can access key zero areas in both nonpageable and pageable
regions). MVT does not support fetch protection.

The organization of space within a region is basically the same in
VS2 and MVT. However, subpools are allocated in 4K multiples in VS2,
instead of in 2K multiples as in MVT. This increase may have no effect
on the region size required by existing MVT programs, since work areas
within the region have been restructured and LSQA contains certain areas
that are contained in the region in MVT.

REAL STORAGE ORGANIZATION

Real storage in VS2 is also divided into a nondynamic and a dynamic
area, as shown in Figure 100.10.2. VS2 Release 1 supports a maximum of
8192K bytes of real storage. The nondynamic area in lowest-addressed
real storage is allocated to the lower nondynamic area of virtual
storage on a V=R basis. It contains the nonpaged resident control
program (nucleus and, optionally, the fixed LPA, fixed BLDL table, and
trace table). With a few exceptions, resident control program routines
operate with translation mode specified even though they are not paged.
This approach is taken because the resident control program addresses
other virtual storage areas, such as SQA, at various times during its
execution and address errors would occur at these times if translation
were not operative.

Page frames in the dynamic real storage area are allocated to both
pageable and fixed virtual storage pages. An attempt is made to
allocate page frames that are located above the address of the V=R line
to LSQA, SQA, and other long-term fixed pages. This is done to maintain
the capability of executing nonpageable job steps. However, if real
storage above the address of the V=R line is not available, an available
page frame contained within real storage below the address of the V=R
line is allocated to a fixed page. Real storage in the dynamic area is
shared by all routines contained in the pageable dynamic area and the
upper nondynamic area of virtual storage.

A minimum number of page frames must always be available for paging,
and, therefore, cannot be long- or short-term fixed at any given time.
The minimum number of page frames that must be available for paging can
be specified by the operator during IPL using the PAL parameter (NFX
subparameter). This value cannot be specified during system generation.
The NFX subparameter can specify a minimum value of 8 and a maximum
value of 9999. The default NFX value, which is used if the operator
does not supply the NFX subparameter, is 25 percent of the number of
page frames between the end of the fixed resident control program in
lower real storage and the end of real storage. (There must always be a
minimum of 128K of real storage between the resident control program and
the end of real storage.) If a fix request is made and the control

14 0OS/Virtual Storage 2 Release 1 Features Supplement

program determines that honoring the request would cause the fixed real
storage limit to be exceeded, the request is not satisfied.

Real Storage

Dynamic Area

Nondynamic Area Nonfixed and Fixed
Fixed Must be a minimum of 128K
r N ™
]
Fixed Allocated]
Trace Link Fixed to nonpaged | Page frames
Nucleus Table Pack BLDL regions ! can be allocated S
Area Table and anything { for anything LSOA SQA
optional | Routines if not else, if | except a nonpaged
pageable necessary] region
optional - |
|
l

. BG\ V=R line on 4K boundary
Fixed control program mapped 1:1 4K boundary

with virtual storage
Figure 100.10.2. Real storage organizatiom in 0S/V52 Release 1

The implementation of virtuwal storage in VS2 eliminates the kind of
real storage fragmentation problems encountered in an MVT envircnment,
since it is virtual rather than real stcrage that is divided into
regions. (Real storage fragmentation in VS2 can be caused, however, by
the location of long- and short-term fized pages, which camn delay or
prevent execution of nonpageable programs.) Fragmentation of virtual
storage that may occur in VS2 will not delay system cperations until the
amount of virtual storage used begins approaching 16 million bytes. In
addition, virtual storage that is unused because of fragmentaticn or
that has not been allocated does not cause external page storage to be
used inefficiently, since unallocated virtual storage does not have
external page storage assigned to it.

As a result of the crganization of virtual and real storage in VS2,
it should be possible in some envircmments to start more initiators and
to maintain a higher level of multiprogramming {assuming other required
hardware resources are available) in a VS2 environment than in a
comparable MVT enviroament.

EXTERNAL PAGE STORAGE ORGANIZATIOHN

External page storage is used to contain the pageable portion of the
contents of virtual storage. FEach virtual storage page actually used
can be written on external page storage during processing, excert for
the virtual storage pages allocated to the nucleus, SQA, LSQA for non-
TSO regions, and the V=R dynamic area. While the contrcl program
assumes a virtual storage 16 million bytes in size, the amount of
virtual storage that can actually be used is determimed by the amount of
external page storage provided. TS0 swap data sets are part of extermal
page storage in VS2 instead of being separate data sets as in MVT.

The direct access devices supported as paging devices are the
231472319, 3330-series (all models), and 2305 Models 1 and 2 (all the
direct access devices supported by 05/VS2 Release 1}. Paging devices
are specified at system generation and/or during IPL. The direct access
storage allocated as external page storage is called the page file
(SYS1.PAGE data sets). The page file can consist of up to 16 page data
sets, each of which must be a single extent only and totally contained

0S/Virtual Storage 2 Release 1 Features Supplement 15

on one direct access volume. The paging volume that is to contain the
contents of the pageable link pack area can be specified at system
generation or during IPL. If no such specification is made, the
operator is requested to specify a volume using the PAGE parameter. The
size of the page data set that is to contain the pageable LPA must be
equal to or larger than the sum of the following: size of the rageable
LPA (including the LPA directoxy) and one-half the size of the real
storage in the system.

The page file can be contained on any mixture of the direct access
device types supported as paging devices. Direct access devices that
contain a page data set need not be dedicated to paging. However, for
performance reasons, active data sets should not be placed on page file
volumes. Page file volumes must be permanently residemt. The IOS
priority gueuing option should be specified for direct access devices
that contain page data sets to ensure that paging I/0 requests receive
the highest priority on their associated channels.

During system operation, the control program monitors the amcunt of
external page storage available and takes steps to prevent it from
becoming depleted. Prior to imitiating a non~TSO pageable region, the
control program determines whether there is enough extermal page storage
available to contain the entire contents of the requested region size
(one slot available for each virtual storage page im the region). The
operator is imformed if not emough external page storage is available.
The operator can cancel the job or allow the initiator to wait until the
required amount of extermal page storage becomes available. A TSO user
is not logged on unless external page storage equal to a user-specified
percentage of the TS0 region size is available. & message is issued to
indicate that the TSO user has been rejected.

An option of dividing paging devices into those that are primary
devices and those that are secondary is provided. At least one paging
device must be identified as a primary device to contain the contents of
the pageable LPA and its directory. When such a division is made, space
on the primary paging devices is used for all paging operations until
the amount of space remaining on these primary devices falls below a
threshold amcunt. At this time, a migration procedure is entered to
make more space available on the primary devices by moving pages from
primary paging devices to secondary paging devices.

A region migration selection rouvtine is contained in the task
dispatcher. The function of this routine is to identify the pageable
region with the lowest dispatching priority so that this region can be
migrated. Page management performs the migration procedure, which, for
a non-TSO (batch} region, comsists of moving all the pages of the
selected region that are curremtly contained on a primary paging device
to a secondary device. Once a batch region has beem migrated, all
paging operations for the regiom are performed using a secondary paging
device until the region terminates.

If a TSO region is selected for migration, the currently executing
user is migrated until all the pages on primary paging devices belonging
to the TSO user are moved to a secondary device or until a swap-out
occurs for the TSO user. Thus, the process of migrating a TS0 user can
last only as long as one time slice. That portion of the TSO usexr’s
region that has been migrated remains on secondary external page storage
until the user logs off. Future swap-outs for that TSO user are ,
performed using primary or secondary devices, as imndicated in the swap
request. If the page device configuration includes a mixture of: direct
access device types and the slower—speed paging devices are designated
as secondary, use of the migration procedure ensures that the faster
paging devices are allocated to the higher-priority tasks.

16 Os/sVirtual Storage 2 Release 1 Features Supplement

Slot records contained in the page file are 4K bytes in size, and

page file tracks are formatted using the track overflow feature.
Alternate tracks that have been assigned to defective tracks within page
file extents are not used. The space within a page data set on a paging
device is divided into a number of groups. There is a given number of
tracks within a group, depending on the direct access device tyre.
There is also a given number of slots within each group based on device
type. The address of any slot is composed of a paging device number, a
group number (within the page data set), and a slot number (within the
group) .

Regardless of the direct access device type used, page data set
tracks are formatted with a space record written after each 4K slot.
The size of the space record varies depending on the paging device type.
The space records are added to increase paging performance by allowing
time for electromic head switchimng while accessing multiple slots
contained within the same cylinder using a command-chained channel
program. The organization and capacity of the devices supported for
paging in VS2 are shown in Table 100.10.1.

Table 100.10.1. Organization amnd capacity of paging devices in 0S/VS2
Release 1

3330-series

Device « 2305 2305 3330-series|Models 1 2314

Model 1 Model 2 Model 11 and 2 2319
Tracks per group 1 4 1 1 5
Slots per group 3 i3 3 3 8
Groups per cylinder | 8 2 19 19)
Capacity per cyl- 93,304 | 106,496 233, 492 233,472 131,072
inder in bytes
Maximum capacity 4,694,016 10,?70g36§ 188,399,616 94,076,928 26,181,632
per device in ’
bytes (VTOC on
tracks 1 and 2
of cylinder 0)
Maximum number of 1,146 2,483 45,996 22,968 6,329
pages per device '
Maximum number of 382 ' 191 15¢ 332 7,656 799
groups per device ‘

SYSTEM INITIALIZATION

System'Parameter Specification

During the imnitialization of a VS2 operating system, more system
parameters can be specified or varied than during am MVT initialization.
In addition, a new method by which the operator can supply system
parameters during initialization is implemented that reduces the amount
of data an operator must enter to provide system parameters. The
contents of the SYS1.PARMLIB data set has been modified in VS2.

0S/Virtual Storage 2 Release 1 Peatures Supplement 17

The following specifications can be supplied during a VS2
initialization in additiom to those that can be supplied during an MVT
initialization:

e Number of segments in SQA in addition to the one required segment
{overrides SQA size gpecified at system generation) - SQA parameter.
If an existing pageable LPA is to be used for this IPL and the size
of SQA is increased, the operator is asked to cancel the increase orx
specify that the existing pageable LPAR is not to be used.

e Quickcell area definitions for LSQA andsor SQA (overrides
specifications indicated at system generation) - LSCACEL and SQACEL
parametexrs ‘

o Number of master scheduler region segments above the minimum of two
{in the majority of systems, the two required segments are
sufficient) - MPA parameter

‘e Indication that an existing pageable LPA is not to be used - CLPA
parameter. A new pageable LPAR is created, and if an existing LPA is
found, it is logically deleted from the page file.

e Amount of virtual storage to be added to the minimum V=R dynamic
area of 64K ({(overrides the system generation specification) - REAL
parameter. If NIP determines that the system does not have enough
real storage to support the amount of V=R space indicated at system
generation or at IPL, the operator is asked to respecify the V=R
dynamic area amount.

e BLDL table iist that is to be used and whether it is fixed or
pageable ({overrides the standard IEABLDOO 1list) ~ BLDLF or BLDL
parameter. The option to have a BLDL table can be canceled.

e Fixed LPA lists (IEAFIXxx) that are to be used {(overxides the
standard IEAFIX00 list) -~ FIX parameter. The option to have a fixed
LPA can be canceled.

e Modified LPA lists (IEALPAxx) that are to be used (creates a
modified LPA) - MLPA parameter

e Page file (external page storagel parameters that specify paging
devices or volumes, primary and secondary designations, amount of
page file space, and formatting requirements {(overrides the system
generation specification} -~ PAGE parameter. The specifications in
the PAGE parameter do not totally replace the specifications in :
SYS1.PARMLIB. If a unit is specified in the PAGE parameter that is
not present in SYS1.PARMLIB, the unit is added to the set of paging
devices defined in SYS1.PARMLIB. If the unit specified in the page
parameter is also defined in S¥S1.PARMLIB, the PAGE specifications
override the existing specifications. A paging device defined in
SYS1.PARMLIB can be deleted using the latter technique. If no
paging devices are specified in SYS1.PARMLIB and the operatcr does
not enter a PAGE parameter, a message is issued to request
specification of the paging devices.

o Number of channel programs that are to be available for paging I/0
operations in addition to the minimum requirement - CPQE parameter.
A minimom of 10 is required for one page data set and a minimum of
15 for two or more page data sets. When TSC is present im the
system, 80 channel programs in addition to the minimum are made
available.

e System parameter lists (IEASYSxx) that are to be used in additiomn to

the standard list {(IEASYS00) -~ SYSP parameter. The standard list
cannot be canceled.

18 08/Virtual Storage 2 Release 1 Features Supplement

e Number of entries in the trace table (nonzerc value overrides the
value specified at system generation) - TRACE parameter. A zZero
‘value cancels the tracing facility.

ce putomatic priority group parameters for the dymamic dispatching
- function (each parameter stated overrides the corresponding
‘parameter stated at system generatiomn) - APG parameter

e Two parameters associated with the time sharing optior. The AUXLIST
parameter is used to cause certain TSO allccatioms to be displayed
during IPL. The TSOAUX parameter is used to alter omne of these
specifications.

e Minimum number of page frames that cannct be fixed at any time,
certain values used by the page replacement algorithm, and certain
threshold values used by the system to determine when task
deactivaticn should occur -~ PAL parameter. The values specified

. .override system-supplied defaults that cannot be user specified
"during - system generation.

Instead of specifying during processing a tape that is to contain the
SYS1.DUMP data set, the operator can specify during system
initialization via the DUMP parameter either a tape or a disk unit that
is to be used for dumps.

The operator can request that the following be writtem on the console
during system imitializations:

e Certain external page storage specifications for TSO
o Page file definitions that exist in SYS1.PARMLIB

e Current page fix limit, page replacement values, and task disable
values (that can be modified via the PAL parameter?

¢ BLDL lists (IEABLD modules)

e Modified iPA lists (IFALPA modules}

] Fixed LPA lists (IEAFIX modules)

e System parameter lists (IEASYS modules)

~ In VS2, system parameters definmed during system gemeration that can
be altered during system initialization are contained in a new member of
SYS1.PARMLIB called IEASYS00. SYS1.PARMLIB can contain multiple
IEASYSxx members that define different combinations of system
parameters, just as this library can contain multiple members that
define different BLDL table lists.

In response to the "SPECIFY SYSTEM PARAMETERS®™ message, the operator
can indicate that the parameters specified at system generation are to
be used, by pressing the END key, as for MVT. Parameters contained in
IEASYS00 (those specified at system generation plus any subsequent
modifications) are then used for this IPL. Altermatively, the operator
can enter system parameters and/or the new SYSP parameter to specify one
or more IEASYSxx members. The system parameters found in the. IEASYSxx
members indicated are merged with those in the default system parameter
list member (IEASYS00) in ascending priority sequence so that pavameters
in each IEASYSxx member indicated can be overridden by parameters in
successive IEASYSxx members specified by the operator. Merging means
that the operator-supplied parameter xeplaces the corresponding
parameter as it exists in SYS1.PARMLIB.

OS)Virtual‘Storage 2 Release 1 Peatures Supplement 19

Another new parameter that can be included in a system parameter list
member (IEASYSxx) is OPI=YES/NO, which indicates whether the operator
can override an individual system parameter during system
initialization. Any system parameter can be modified by the operator
unless OPI=NO has been specified for it. The OPI parameter is effective
during the merge of system parameters. The operator cam also indicate
that one or more parameters in SYS1.PARMLIB are to be canceled for this
IPL.

For example, assume the operator enters S¥SP=(01,02), BLDL=02,
TRACE=, during IPL and the system parameter members contain the
following: .

IEASYS00: BLDL=00, SQa=2, TRACE=50, TMSL (10,20,0PI=N0O)
IEASYS01: MLPA=(00,01), BLDL=01
IEASYS02: MLPA=02, TRACE=10, TMSL (5,20)

Tracing is canceled for this IPL, and the effective system parameters
are: ;

SQA=2, MLPA=02, BLDL=02, TMSI=(10,20)

This new approach also allows the operator to press the END key and
have the system use an altered standard parameter list since the
IEASYS00 member can be modified after system generatiom. In MVT, the
system parameter used when the cperator dces not enter a different
parameter is the system-generation-defined parameter. Redefinition of
standard parameters for an MVT system requires another system
generation.

The contents of SYS1.PARMLIB are different im MVYT and VS2.
SYS1.PARMLIB does not contain the resident error recovery procedures
list (IEAIGEQO), resident access method list (IEAIGG00), or resident SVC
list (IEARSV00), which are included in the MVT SYST1.PRRMLIE data set. In
VS2, SYS1.PARMLIB contains the resident BLDL list (IEABLDOO} and link
library list {(LNELST00) that are present in MVT as well as several new
IBM-supplied standard lists. New user-supplied lists can be added to
the VS2 SYS1.PARMLIB data set using the IEBUPDTE utility program.

In addition to the system parameter lists already described (IBM~
supplied IEASYS00 list and any user—supplied IEASYSxx lists), the VS2
SYS1.PARMLIB data set contains the following new IBM-supplied stamndard
lists and, optionally, new user—-supplied lists:

e IEAFIX00 - This IBM~supplied standard list defimes the reentrant
modules in SYST1.LINKIB, SYS1.LPALIB, and SY¥S1.SVCLIB that are to be
placed in the fixed (nonpageable) LPA. It contains the names of two
modules that handle direct access volume serial number verification
for page data set volumes. Cptionally, user-supplied alternate
(IEAFIXxx) lists can be added to SYS1.PARMLIB that specify reentrant
modules from SYS1.LINRLIB, S¥S1.LPALIB, SY¥S1.SVCLIB, and other
libraries that are to be placed in the fixed LPR. The standard list
(IEAFIX00) is used unless the operator specifies an alternate list
during system initializaticon via the FIX parameter or cancels this
facility.

e IEAPAKOO - This IBM-supplied standaxd list is used during the
creation of a pageable LPA when the system is initialized. It
identifies the standard modules in S¥S1.LPALIB that can be packed
together within a UK page. Each entry in this list identifies a
group of two or more modules whose total storage reguirement does
not exceed 4K bytes. Modules that are most likely to be used
together are placed in the same group. This packing list is
designed to reduce the amount of virtual storage required fcor the
pageable LPA and reduce paging activity for the modules that are

20 Os/Virtual Storage 2 Release 1 Features Supplement

resident in the pageable LPA. User-supplied alternate packing lists
are not supported. However, user~defined groups can be added to the
IEAPRKOO list. Aliases for module nawmes cannot be specified in this
list.

e IEALODOO - This LPA directory load list indicates freguently used
modules in the pageable LPA whose contents supeyvision directory
control block data is to be fixed in real storage during system
initialization. Implementation of this load list eliminates a
search of the pageable LPA directory for the specified modules,
which eliminates the page~in operation that is reguired if the
pageable LPA dirxectory is mnot present in real storage at the time a
mocdule in the pageable LPA is referenced. User-supplied alternate
lists are not supported. Modules can be added to the IEALOLOO list.

o IEALPAXx - This optional user-supplied list is used to create the
modified LPA. An IEALPAxx list specifies the names of reentrant
modules in SYS1.LINRLIB, SY51.SVCLIB, SY¥S1.LPALIB, and any usexr
libraries concatenated to S¥S1.LINEKLIE that are to be made resident
in the pageable LPA on a temporary basis, that is, for the duration
of this IPL. The specific IEALPAxx list to be used is indicated by
the operator during system imitialization via the MLPA parameter.

e IEABLDxx - This opticnal user-supplied alterpate list specifies the
names of modules in SYST.LINKLIB, or any data set comncatenated to
SY¥S1.LINKLIB, whose directory entries are to be made paxt of the
pageable orxr fixed BLDL table. If the coperator does not specify an
IEABLDxx list during system initialization via the BLDL or EBLDLF
parameter and does not cancel this facility, the IBM-supplied
standard list (IEABLD0O) is wused.

The format ©of the VS2 SYS51.PARMLIB parameter lists is different from
the format used in MVT. The new format affords better direct access
space utilization within parameter records and allows more flexibility
in parameter definition. In cazes in which a parameter list applies to
both MVT and VS2 (such as the BLDL table list), both parameter list
formats ‘are accepted by VS2 initialization routines. However, the Vg2
format for the lists that are common to VS2 and MVT is not valid input
to ‘MVT initialization routimes.

Initialization of Storage

At the completion of system imitialization processing, EC and
translation modes are operative. Duxing system initialization, virtual,
real, and external page storage are initialized as follows.

Control blocks and tables similar to those used in MYT are built to
define a f16-million~byte virtual storadge with areas as shown in Figure
100.10.1. Control program modules that are to be made resident in the
pageable LPA are allocated virtual storage, fetched imto real storage
from the appropriate load module libraxries, and paged out to the user-
specified or default page data set for the pageable LPA. Modules that
are part of the mcodified LPA can be placed om any paging device. The
LPA directory is paged out as well. This is the only time the control
program forces the page-out of a load medule while it is being fetched.
When a program is loaded at amy other time, it is paged out under the
same page replacement algorithm xules that govern page-outs of executing
programs. {(See the discussion of program fetch in Section 100:25.) The
segment tables are initialized to reflect the virtual storage allocated,
and page tables ave constructed as required for allocated virtual
storage segments.

Load modules that are to be made resident in the pageable LPA are
fetched from SYS$1.LPALIB and placed in the pageable LPA using the

0s/Virtuwal Storage 2 Release 1 Features Supplement 21

| standard packing list (IEAPAKGO}. Modules that are not included in the
packing list, such as those larger than 4K in size and those that have
been link-edited using the page alignment option, will begin on a page
boundary. A pageable LPA directory is kuilt to contain the beginning
virtual storage address of each load module. The load list of
frequently used routines is also built and placed in real storage, using
the IEARLODOO list.

During system imitializatiom, rveal storage is loaded with the fixed
portion of the control program. Load modules from SYS1.SVCLIB,
SYS1.LINKLIB, and SYS1.LPALIB that are placed in the fized LPA are
packed in real storage without respect to page boundaries since they
will not be paged.

The external page storage configuration is established during system -
initialization and auvtomatically formatted with slot records, if
necessary. If a specified page data set is found to be unavailable ox
not usable, the operator can respecify a volume or cancel the
definition. Once external page storage has been formatted, it need not ®
be reformatted unless a new unformatted volume 1s used orx unless the
amount of space allocated to a previously formatted volume is extended.
The operator can specifically request formatting. At the completion of
system initialization, external page storage contains the contents of
the pageable link pack area and its directory. The volumes containing
external page storage and the paging devices on which these volumes
reside cannot be changed without a re~IPL.

IPL Without Creation of a Pageable Link Pack Area

In an MVT environment, an IPL can be performed with or without
formatiting the job gueue, and the time required to initialize the system
is reduced if job queue formatting is not performed. In a V52
envivonment, an IPL can be performed with or without formatting the job
queue and with or without creating the pageable link pack area in
external page storage.

When previously formatted external page storage with an existing
usable LPA is available, IPL's can be performed without the necessity of
re-creating the pageable LPA in external page storage during each IPL.
However, the fixed LPA, the modified pageable LPA, if specified, and the
BLDL table (whether fixed oxr pageable) are re-created during every IPL.
A record describing the pageable LPA is created and placed in external
page storage whenever the LPA is created in external page storage during
system initialization. This record is used during IPL's when LFA
creation is not performed. System initialization is performed without
LPA creation whenever a previcusly created LPR is found in external page
storage unless the operator specifically reguests creation of the LPA
{via the CLPA parameter), the record that describes the existing LPA
cannot be read, the operator specified the paging wolume that is to
contain the LPA and it is different from the one that currently contains
the CPA, or the size of S5QA has been increased by the operatcr so that
it overlaps the high end of the previously defined pageable LPA
location.

Temporary modifications to the contents of the pageable LPA can be
made during a system initialization that uses an existing LPA in
external page storage. Modules can be added or replaced but not
deleted. These modifications are effective only for the duraticm of one
IPL. and, hence, must be made after each IPL. (SQA size cannot ke
increased after an IPL for which an existing LPA is to be used.} LPA
modifications are specified in the IEALPAxx list in SYS1.PARMLIE. The
sequence of searching for a module in the link pack area is the {1}
fixed LPA, if any, (2} modified LPA, if any, and (3} pageable LPA. LPA
modification is useful, for example, for making effective APAR

22 08/Virtval Storage 2 Release | Features Supplement

corrections, SUPERZAP changes, and other modifications, such as the
addition of untested user modules, without baving to re-create the
pageable LPA by refetching all the required modules.

Device Availability Testing

In V52, device availability testing during system initialization has
been 1mpraved and a new DEVSTAT option replaces the non-Type I Smart-
NIP option of MVT. In an MVT system without Smart-NIP, only direct
access device availability is tested during system initializaticn. When
Smart-NIP is present in MVT, all system-generation-specified device
types are tested, and direct access devices without an available path orx
in unit check status are marked offline. In a VS2 system without the
DEVSTAT option, all device types are tested during system
initialization, and more precise tape testing is performed than for an
MVT system with Smart-NIP. Unexpected and unusuval I/0 exror conditions
encountered during availability testing of direct access devices results
in the printing of an interpretive I/0 error message, and the device is
placed in offline status. System operation continues in this case,
whereas in MVT such an error results in a system wait state. BAn online
but unlabeled disk volume or apm online nondirect access device with a
unit address designated for a direct access device type at system
generation can cause such errors during availability testing.

The DEVSTAT option essgsentially provides the same capability for
direct access devices as the Smart-Nip option. When it is included,
direct access devices with removable velumes and pluggable addresses
(2314/2319-3330-sexries) are set to offline status when a not-
operaticnal, unit-check-intervention-required, or other I/0 errcr
condition is detected. Without the DEVSTAT option, not-ready status is
set for a unit-check-intervention-required condition and ocffline status
is set for a not-operatiomal or other I/0 error condition on a
2314/2319/3330-geries direct access device,

Missing Interruption Checker

Another facility that is automatically initialized during the system
initialization procedure is a routine that checks for missing channel
and I/0 device end interruptions. The missing-interruption-checker
routine, which is standard in VS2, is available only as a program
temporary fix (PTF) in MVT. The same functicns are provided by this
routine in MVT and V¥S2. This checking feature is designed to lessen the
impact on system operation of missing I/0 interruptions that result from
a hardware malfunction. When the control program expects an 170
interruption that fails to occur, a task, or in some cases the system,
enters the wait state. A missing channel or device end interrurtion can
cause a job to be canceled because the allowable wait time for the job
is exceeded.

The CPU model~ and channel-independent missing-interruption-checkerx
routine operates as a pageable subtask of the master scheduler during
system operation. As soon as the master scheduler imitializati~cn
procedure is complete, the checking module is attached in the master
scheduler regiocn. The module performs a pulling function on ail active
nonteleprocessing I/0 devices to ensure that device and channel end
signals are received within a reasonable amount of time. The oreratoxy
ig notified if an I/0 interruption is not received within a time
interval that is established when the I/0 operation is initiated. The
operator is also notified if a MOUNT command is not satisfied in the
time interval. The IBM-supplied time interval of three wminutes can be
changed by the user via modification of the interruption checker module
if this interval is not acceptable.

0s/Virtual Storage 2 Release 1 Features Supplement 23

System operation continues after the operator is notified of a
missing interruption. The conrdition may be correctable by the cperator
{such as when a MOUNT was not satisfied) or a hardware malfunction may
have occurred that requires camncelation of the affected job.

100:15 MAJOR COMPONENTS

The major control and processing program components of VS2 Release 1
are shown im Table 100.15.1. Except for the integrated emulator
programs, components identified as SCP are distributed as part of VS2.
Integrated emulators are distributed separately. Type I programs and
program products are not distributed as part of VS2 and must be obtained
separately as desired.

The division of control program routines in VS2 and MVT is similar.
Both have job, task, data, and recovery management functions. However,
VS2 also has a page management fumction that is respomsible for managing
both real and extermal page storage. Virtual storage is allocated and
maintained by the virtual storage supervisor of task wanagement.

The new features of VS2 and the most significant functional
differences between VS2 and MVT components are presented in the
discussions that follow. VS2 uses the same system libraries and data
sets as are used in MVT. VS2 also uses two new required libraries and
one new regquired data set: SYS1.LPALIB (already discussed), SYS1.DSSVM,
which is described in Section 100:40, and SYS1.PAGE f{(page file data
set). Note that if the Shared DASD option is included in a V¥S2 system,
SYS1.LPALIER and SYS1.PAGE data sets cannot be shared. Im addition, in
VvS2, SYS1.SVCLIB contains only BPAM, transienmt MCH and CCH modules, TCAM
I/0 appendage routines, and SVC routines required by NIP. Other meodules
present in S¥S1.SVCLIB in MVYT (such as SVC and I/0 exrror routimes) and
many modules that in MVT are im SY¥S1.LINKLIB (access methods, etc.) are
contaipned in SY¥S1.LPALIB in VS2.

V52 supports all the primary operator conscle devices required forx
Models 185, 158, 155 II, 168, and 165 II. The DIDOCS option is required
to support display mode operations on the Model 158 display console and
the display console contained in the 3066 standalome comsole unit for
Models 168 and 165 II. The 3213 Printer is supported only as a hard-
copy output device for the Model 158 display console. It is not
supported for input operations. Functionally, the same console support
is provided by MCS and DIDOCS in VS2 and MVT.

Table 100.15.1. 0©08/VS2 Release 1 control and processing program
components

05/V¥52 RELEASE 1

CONTROL PROGRAM COMPONENTS (SCP) -

Job Management Task Management

s Master schedulerxr e Interruption supervisor
s Reader interpreters and output ¢ Task supervisor
writers e Virtual storage supervisor
¢ Job queuve management e Contents supervisor
¢ Job scheduler e Overlay supervisor
Initiator ¢ Time supervisor
Allocation
Terminator Page Management

® System Management Facilities {(SMF}
o Time sharing option

&

Real storage administration
External page storage administration
Page administration

@

24 . os/Virtual Storage 2 Release 1 Features Supplement

Table 100.15.1. (continued)

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

Data Management

e .Input/output supervisor
e -Access methods
+QSAM, BSAM, QISAM, BISAM,
.BPAM, BTAM, TCAM,
e -Catalog management
e Direct Access Device
-Space Management (DADSM)
e . OPEN/CLOSE/EQOV
e 3704/3705 System Support Programs
e 3540 Diskette Copy Programming

BDAM
GAM, VSAM

Recovery Management

Machine Check Handler (MCH)

Channel Check Handler (CCH)
Alternate Path Retry (APR)

Dynamic Device Reconfiguration (DDR)
Online Test Executive Program (OLTEP)
Problem determination facilities

PROBLEM PROGRAMS - SCP and PP

Language Translators

e System Assembler (SCP)
e Assembler H (PP)
e Full ANS COBOL V3, V4, and
Libraries (PP)
e PL/I Optimizing Compiler (PP)
e PL/I Checkout Compiler (PP)
e PL/I Resident and Transient
Libraries (PP)
e FORTRAN IV G (PP)
e FORTRAN IV H Extended (PP)
e FORTRAN IV Libraries-
Models 1 and 2 (PP)
Code and Go FORTRAN (PP)
ITF PL/I and BASIC (PP)
VS BASIC
System/7 FORTRAN IV
System/370 Host Compiler
and Library (PP)
e TSO Programs (PP)
COBOL Interactive Debug
FORTRAN Interactive Debug
Assembler, COBOL, and
FORTRAN Prompters
Data Utilities
ITF BASIC AND PL/I
VS BASIC

Service Programs

Linkage Editor (ScCP)

Loader (ScCP)

e Utilities ~
System and data set utilities (scP)
Data set utilities with ASCII (PP)

e Basic Unformatted Read System (PP)

OS Sort/Merge 5734-SM1 (PP)

® OS/V5 Sorts/Merge 5740-SM1 (PP)

Integrated Emulators

DOS Emulator (SCP)
1401/7144071460 (SCP)
1410/7010 (Scp)

"707077074 (SCP)

7080

709/7090/7094/7094IT (ScCP)

General

e Application-oriented program
products (some operate in paged
mode and some operate in nonpaged
mode) .

PROBLEM PROGRAMS

= TYPE I AND USER-WRITTEN

Language Translators

e COBOL F (360S-CB-524)

- COBOL F Library (360S-LM-525)

e COBOL F to ANS COBOL LCP

(360C-Ccv-713)

e ANS COBOL Version 2 (360S-CB-545)
ANS COBOL Version 2 Library
(360S-LM-546)

FORTRAN G (360S-F0O-520)

FORTRAN H (360S-F0-500)

FORTRAN Library (360-LM-501)
FORTRAN Syntax Checker (360-FO0-550)
PL/I F (360S-NL-511)

PL/I F Library (360S-LM-512)

-PL/I Syntax Checker (360-PL-552)

Service Programs

e Sort/Merge (360S-SM-023)

General

e User-written programs compiled
using the Type I language
translators listed

e User-written programs compiled
using program product language
translators ‘

OS/Virtual Storage 2 Release 1 Features Supplement 25

100:20 JOB MANAGEMENT

VS2 and MVT job management functions are logically the same and, ;
externally, the VS2 job management interface with the operator is ,
compatible with that of MVT. The internal organization of job
management in VS2 and MVT differs somewhat, however. VS2 job management
has been modified to operate in a paging environment, and it is designed
to offer improvements in performance, reduced real storage reguirements,
greater reliability, and new functions. Some 2f the significant new
items of VS2 job management are:

e Support of up to 63 initiators

e A new algorithm for allocating I/0 devices that is designed to
reduce I/0 contention within the system (I/0 load balancing) and
improve performance

e Improved system recovery after error conditions in scheduler tasks
(STAE/STAI/STAR processing)

MASTER SCHEDULER

The master scheduler in VS2 is reentrant and pageable. Therefore, it
resides in the pageable link pack area. The master scheduler region,
which is a minimum of 128K, and master scheduler LSQA of 64K are used
for ~the execution of subtasks of the master scheduler. 1In VS2, all
command processing tasks except START and MOUNT are attached as subtasks
of the master scheduler and operate in the master scheduler region.
(These commands are CANCEL, DISPLAY, DISPLAY USERS, HOLD, HOLD Q,
RELEASE, RELEASE Q, RESET, and SEND.) This reduces the serialization of
command processing that can occur in MVT. SMF, the missing interruption
checker routine, and system log tasks also operate in the master
scheduler region as job step subtasks of the master scheduler. More
than two segments can be allocated to the master scheduler region to
handle an environment in which concurrent execution of many operator
command tasks will occur frequently.

Functionally, the master scheduler in VS2 and MVT are the same. All
MVT operator commands and parameters and their formats are accepted in
VS2 except those associated with MVT features that are not supported in
VS2. No new commands have been added to VS2. The functions of the
following commands have been modified:

e CANCEL - A job waiting for a data set, virtual storage, or external
page storage can be canceled.

e DISPLAY ACTIVE and MONITOR ACTIVE - For an active job step, the
following is given: wvirtual rather than real storage utilization,
the number of LSQA pages allocated, and an indication of whether the
job step is operating in paged or nonpaged mode. The number of
tasks that a DISPLAY ACTIVE command can handle is increased to 255.

e DUMP - The contents of virtual instead of real storage are dumped,
and the ALL parameter is not supported.

e MODE - A simplified format is used that applies to all System/370 models.
¢ SET - A new parameter, GMT, is added to indicate that the time of
day specified in the CLOCK parameter is Greenwich Mean Time instead

of local time.

e START - This command can specify up to 15 job classes when an
initiator is started, and LSQA allocation can be specified.

26 0S/Virtual Storage 2 Release 1 Features Supplement

Extended environmental recovery is included in subcomponents of the
master scheduler to provide increased availability of these critical
routines. The master scheduler task, command processing tasks, SMF, and
system log task use the facilities of STAE (specify task abnormal exit),
STRI (system task ADEND intexceptl), and STAR (system task AREND
recoveryl) to effect recovery. More STAE exits are used in VS2 than in
MVT in an attempt to reduce abpnormal terminations of waster scheduler
components. The SYST1.DUMP data set is used by STAE exit routines to
recoxd diagnostic data pertaining to an error. Recowvery in YS2 is also
improved by the fact that SMP and the system log task operxate as job
step subtasks of the master scheduler. The impact of a failure in one
of these tasks is confined to the task itself.

READER INTERPRETERS AND OUTPUT WRITERS

The reader interpreter routine and the output writer routine in VS2
are reentrant and pageable. They opexrate in the pageable link pack
area. Each reader and each writer started has LSQA and a pageakle
region associated with it. The reader/uriter region is used for work
areas and buffers.

Functionally, the reader interpreter and the output writer im VS2 are
the same as theixr MVT counterparts. Automatic SYSIN batch readers and
direct SY¥SOUT writers are not supported. The fact that YS2 readers and
writers aré reentrant and pageable offers the advantage of imprcved real
storage utilization without operator intervention. Real storage is
automatically used only by active readers and writers.

~ The VS2 interpreter routine is pageable and reentrant and it operates
in the pageable link pack area. It accepts all job control statements
supported in MVT., New parameters have been added to the job control
1anguage for VSAM (see Section 100:30). The only other mew job control
parametexr in V82 is the ADDRSPC parameter, previously discussed.
Processing of the REGION parameter is modified because of the
elimination of hierarchy support. The regionm size allocated when
hierarchy parameters are encountered is the sum 0f that requested for
hierarchy 0 and 1, rounded tc the next 64K multiple for pageable job
steps, or to the next 4K multiple for nonpageable job steps.

The ROLL parameter is ignored. The regicon space reguested by
programs that use the rollout/rollin facility to obtain more region
space during execution in MVT may have to be increased when these
programs execute in a VS2 envircomment.

JOB SCHEDULER

The components of the job scheduler (initiator, allocation,
terminator}? are modified to operxate in a paging envizomment and to
provide functions not available in MVT. The total real storage
requirement. for these routines is reduced because they now are reentrant
{except for allocation) and they cperate im the pageable LPA. The job
queue (SYS1.SYSJOBQE)} in VSZ2 is identical in contents and foxrmat to the
MVT job gueue except that the ASB and the RJIE queuves are omitted.

Initiatoxr

The VS2 initiatox 1s xeentrant and pageable. It operates in the
pageable link pack area to perform its scheduling function and uses a
pageable region for a work area to schedule both pageable and
nonpageable job steps. Each imitiator has LSQR allocated to it that is
used by the job steps it initiates. A& VS2 initiator is functionally the

OS/VirtuaI;Storage 2 Release 1 Features Supplement ; 27

same as ap MVT initiator except that, in VS2, an initiator cam have up
to 15 job classes assigned to it instead of 8.

The operator has more opportunity im VS2 than im MVT to cancel a job
{either pageable or nonpageable} while it is being scheduled because
reguired resources are unavailable. Specifically, in VS2 the operator
can cancel a pageable job after receiving a message indicating that the
job is waiting for data sets, region space (virtual storaged, or
external page storage. (A check is made to determine whether enough
external page storage is available to contain the entire contents of the
region size reguested.) A nonpageable job step can be canceled if it is
waiting for data sets or for enough page frames for imitiation. In
addition, if one or more data sets reguired by a job are found to be
permanently unavailable, the job is canceled automatically by the
system.

Allocation

The allocation routine coperates as a subroutipe of the imitiator to
allocate I/0 devices to job steps, as in MVT. The ¥S82 allocaticn
routine is pageable and serially reusable. It coperates in the pageable
Link pack arxrea.

The channel load balancing algorithm for nomspecific device requests
used by the MVT allocation routime is replaced in V52 by a new I/0 load
balancing algorithm that is designed to winimize contention among I/0
devices. In MVT, the lcad on a direct access device is assumed to be
directly proportional to the number of data sets allocated to the
device. However, because data sets have different activity levels,
experience has shown that a count of the number ©f data sets present
does not accurately indicate the load on the device.

In VS2, a new algorithm is used for determining the activity on a
tape or a direct access device. The new /0 load balancing algcrithm is
called by the allocation routine to allocate devices for new tape and
disk data sets that do not have specific volume serial numbers indicated
in theix DD statements {(nonspecific device reguests). The SEP parameter
on DD statements is not effective for new nonspecific tape and disk
device requests since the load balancing algorithm is designed to
balance the load across the entire configuration. (The algerithm used
for allocating a device to an old data set without a specific device
reguest that has not been premounted is the same as that used in MVT.)

The utilization of a tape or a direct access device is determined in
VS22 by counting the number of I/0 requests (EXCP macros and PCI
interruptions) for the device in a given interval. The length of the
time interval varies by System/370 model. BAn exit is taken during I/0
supervisor processing in order to accumulate these counts {(EXCP rate perxr
devicel. wWhen I/0 devices must be selected for new tape and disk
nonspecific device reguests, current I/0 device and chamnel utilization
is calculated, taking into account the potential load that will be added
by the allocation of specifically reguested tape and disk devices for
the job step. Channel uwtilization is determined by taking into account
EXCP rate, number of allocated data sets, and average EXCP rate per data
set for the channel. Device utilization is based on the amount of
channel time used {taking into account the average data transfer rate of
the device) and, for disk, the number of standalone seeks issued (taking
into account average seek time for the device). The device determined
to be the best candidate for allocation to a given data set is then
selected. If the volume mounted om a selected direct access device does
not have encugh available tracks to satisfy the space request, the next
best candidate is selected. The new I/0 load balancing algorithm is
also inveoked when a nonspecific device request is made by a TSO user.

28 08/Virtual Storage 2 Release 1 Features Supplement

In oxrder to make most effective use of the new algoxrithm, the
following should be done:

e Public devices should be distributed evenly across channels.

e Public devices should be distributed evenly across control units on
the same channel.

e DD statements should be sequenced in the expected oxrder of data set
activity {(more active before less activel.

e Nonspecific volume requests should be made whenever possible.

Terminator

The terminator is pageable and reentrant. It operates in the
pageable link pack area. The terminator uses a pageable region as a
work area to terminate pageable steps and a nonpageable region to
terminate nonpageablie job steps. No other functioms different from
those of MVT are supported by VS2 terminators (except those related to
supporting a paging environment).

System Management Facilities (SMF)

SMF is a standard feature of VS2. SMF provides all the same
functions in VS2 as it dces in MVT and is expanded to include new exits
and new accounting data. SMF records (S¥S1.MANX and SYS1.MANY data
sets) can be written only on disk inm VS2., They cannot be written on
tape, as in MVT.

The following are the major differences between SMF support in VS2
and MVT:

o Two new exits have been added to SMF in VS2. One new exit (IEFU83)
is takem each time an SMF logical record is ready te be written
(after formatting has been performed}. The returm from this exit
can indicate the record is not to be written. The other new exit
(IEFUJP) is taken at job purge time only when HASPY II Versicn 4 is
included in the VS2 system. Omne SMF exit that is supported in MVT
{IEFUSO) is mnot supported im VS2.

e A new record type 26 (job purge record) is produced for VS2 systems
in which HASP II Version 4 is included, as axre the new HASP
subsystem records #3H, 45H, 47H, and 48H.

¢ New xecord types (62, 64, 68, and 69) have been added to VS2 for
VSAM accounting data

e Record type 38, produced imn MVT, is not produced in V52. Record
types 30 and 41 in VS2 contain the data that is placed im record
type 38 in MVT.

The SMF record types and formats produced by SMF routines in VS2 are
compatible with those produced im MVT for the most part. However,
additional accounting information is supplied im VS2, certain fields
have a different meaning, and minor changes to existing fields have been
made. For example, in the step termimation record the storage-requested
and storage-used fields reflect the virtual storage used. If the job
step was executed in nonpaged mode, these fields alsoc reflect the real
storage used. SMF records that are modified in VS2 are the IPL (type
0), system statistics (type 1}, step termination (type 4), job
termination (type 5}, output writer (type 6), end-of-day (type 12),
start time sharing (type 30}, ard modify time sharing (type 41).

Os/Virtual Storage 2 Release 1 Features Supplement 29

The page supervisor provides the following new data to SMF:

o Number of page-ins per job step {(including user and system page-ins}
and for the entire system (reclaimed pages are not included in this
count)

e Number of page-outs per job step (including user and system page-
outs}) and for the entire system

e Number of reclaimed pages for the entire system

e Number of swaps (swap-ins and swap~-outs) that occurred for all TSO
job steps

o Total number of pages swapped in for each TSCO job step and for all
TSO job steps because of time~slice-begins

o Total number of pages swapped out for each TSO job step and for ail
TSO job steps because of time-slice-ends

e Total number of page migrations frow a primary paging device to a
secondary paging device for the entixe system

e Total number of pages involved in migration from a primazry to a
secondary paging device per job ster and for the entire system

Note that the way in which job step time (CPU utilization} is
accumulated for batch (non-TS0} jobs is modified inm Release 1.6 of VS2
in corder to give more consistent times for the some job step. CPU
utilization is accumuvlated for a job step during the time (1) any userx
task assoclated with the job step is executing, (2} amy SVC routine
{(other the those for EXCP and EXCPVR requests) is executing to sexvice a
job step request, (3) a user-written SPIE routine is executimg, and (4}
the MCH routine is processing a machine check that occurs while the job
step haz CPU comtrol. CPU utilization is not accumulated for a job step
doring the processing of extermal intexrruptions, EXCP and EXCPVR
requests, page faults (unless processed by a user-written SPIE xoutine),
monitor call interruptions, and I/0 interruptions. The CPU time used by
the task dispatcher is not included in job step times either. Variances
in job step times can still be caused by hardware factors such as the
amount of channel interference or cycle stealing, the number of times
virtual storage address translations are found in the TLB, and for
Models 155 II to 168, the hit ratio for the high-speed buffer.

HASP II VERSION &

HASP II Version & provides the same spooling and job scheduling
functions as the MVT version. Imn addition, it has been significantly
enhanced. In V52, HASP operates as a system task in a pageable region.
Approximately 25% of the total storage required by the generated HASP
system is permanently fixed in the BASP region. The other 75% is
pageable. The minimum fixed requirement is 12¥ bytes. HASP II Version
4 code is reentrant.

The following unit record and direct access devices are suppcrted by
HASP II Version 4:

e 2501, 2540, and 3505 card readers {(80-column cards only) up to a
maximum of 99 readers in any combination of types. Column kinary
reading is supported.

» 2520, 2540, and 3525 card punches up to a maximum of 99 punches in
any combination of types

30 Os/Virtual Storage 2 Release | Features Supplement

e 1403 and 3211 printers up to a maximum of 99 printers in any
combination of types

o 2314/2319, 3330-series (all models), and 2305 Model 1 and 2 direct
. access devices up to a maximum of 36 devices in any combination of
types

The remote job entry facility of HASP II Version 4 supports up to 99
remote work stations on leased (point-tc-point) or dialed lines. The
following work stations are supported:

e 2770 Data Communication System

e 2780 Data Transmission Terminal

e 3780 Data Communicatioms Terminal

o Systems/360 Model 20 with BSC adapter (as a multileaving work
- station)

e System/360 Models 22, 25, 30, 40, 59, 65, 75, 85, and 195 with a BSC
adaptexr (as a multileaving work station)

o 1130 Computing System with a BSC adapter (as a multileaving work
station)

e System/3 Model 10 with BSC adapter (as a multileaving work statiom)

The following list highlights the enhancemwents that are provided in HASP II
Version #:

e The interface between HASP II and VS2Z2 is improved. Communication
between HASP II and VS22 is via a formal interface which, for
example, permits a consclidaticn of HASP II and V52 console support
that provides more cperator facilities. The HASP initialization SVC
is now unique to HASP.

e The TSO interface is improved. TSO-user control of submitted jobs,
including display status and cancel facilities, is now provided.

e SMF recorxding of HASP accounting information is provided

s Orientation of the print-punch processor is now on a data set basis.
For example, multiple copies of output may be requested on a data
set basis via a HASP control card, independent destination cf outrut
data sets is provided, and automatic control of FCB and UCS loading
is provided on a data set basis.

e Restrictions on the number of output data sets permitted for a job
are eliminated

e A four-digit job number is mnow standard
e Operator action reguests are saved for display by operator command.
Automatic deletion of operator requests from graphic consoles is

provided.

e More flexible formatting and redirection of HASP command responses
are now provided

¢ Normal WTO macros are novw time stamped and job numbered through the
HASP-VS2 comsole interface

e A more efficient psuedo device selection algorithm is implemented
that reduces the requirement for psuedo devices

OS/Virtual Storage 2 Release 1 Features Supplement 31

The following HASP functions have been withdrawn from HASP II Version U4:

e Direct control of local consoles by HASP. This function is replaced
by improved support of VS2 consoles

o Execution task monitor functions. These functions are performed by
the automatic priority group facility of VS2.

e Remote job entry support of STR (synchronous transmit receive)
devices .

e Direct tape SYSIN to HASP, which can be accomplished using the HASP
internal reader facility

TIME SHARING OPTION

General Description

The time sharing option (TS0} of VS2 provides the same facilities as
are offered by TSO in an MVT environment. TS0 im VS2 also offerxs
functional enhancements. Hence, TSO operations that are currently
performed using MVT can be performed using VS2 with little or no
conversion effort. (TSO system parameters may reguire modification.) &
significant advantage that TSO can offer in a VS22 environment is
increased performance potential using the same amount of real storage
used in an MVT environment. Performance gains may be realized through
better utilization of real storage, as is provided im a paging
environment, and through enhancements in the way region swapping is
handled.

Dedicated TSO operations (mo background regions) or concurrent
operation of background and foreground (TSO) regioms is supported in a
minimum of 512K of real storage. One of the new features of TSO in VS2
is support of up to 42 foreground regions, instead of a maximum of 14 as
in MVTI. A foreground regicnm can be a minimum of 68K in size.

The restrictions on foreground regions are the same in VS2 and MVT.
In VS2, the maximum virtual storage size of a foreground region is 896K.
Foreground and background regioms share the one 16-million-byte virtual
storage supported in VvS2. In addition, in VS2 a nonpageable job step
cannot be executed in a foreground region. Just as is true for
background regions in VS2, each foreground region has a separate LSQA
associated with it. However, LSQA for a TSO region can be a maximum of
64K in size, of which three or four pages are always fixed. LSCA is not
part of a foreground region, as it is in MVT. ALl foreground regions
are assigned protect key 1.

In VS2, multiple users can share concurrently a foreground region and
its LSOA, on a time-shared basis, just as in MVT. Prior to the
initiation of a time slice for a user, a swap-in is performed (the
contents of the user’s program are brought into real storage frcm direct
access storage). When the time slice has expired or a long wait
condition is encountered, a swap-out occurs {the active contents of the
foreground region and LSQA are writtem out to direct access storage).
Another user assigned to the region is then swapped in and given
control. 1In VS2, however, swapping is performed using paging devices,
instead of a separate set of swapping devices, and a user's program is
paged during its time slice. That is, foreground regions are paged as
well as time-shared. After a swap—in occurs, real storage is assigned
to the TSO user's program on a demand paged basis.

TCAM Level 5 supports TSO termimals attached to 3704/3705
communications controllers in network control program mode.

3z O5/Virtuwal Storage 2 Release 1 Features Supplement

Allocation of Extexrnal Page Storage

External page storage is used for both paging and swapping operations
in order to provide more efficient use of auxiliary direct access
storage than the use of separate direct access storage for paging and
swapping. The allocation scheme used in VS2 permits TSO users to have
less external page storage reserved for their regions than is required
for background regions because it is assumed that most TSO users will
not always require the entire amount of virtual space allocated to the
foreground regiom they use for program execution.

New parameters (TSOAUX, TSOMAX, and BACKUP) have been added to the
START TSO and MODIFY TSCO commands that enable the operator to indicate
how extermal page storage is tc be shared by foreground and background
regions. A certain amount of external page storage is required to back
up (contain the contents of) the pageable dymamic area of virtual
storage (that area between the ¥=R line and the master scheduler LSQA,
as shown later in Figure 100.20.2).

The TSOAUX parameter, which also can be specified at system
generation or system initialization, can be used to indicate what
percentage of the amount of external page storage required to back up
the pageable dynamic area is to be reserved for TSO use only. In
effect, this parameter also defines the maximum amount cf the extermnal
page storage that is available to back up the pageable dynamic area that
background regions can use and, thus, limits background regiomn use of
virtual storage in the pageable dynamic area. There must be at least
500 slots available for background pageable regions. If the TSCARUX
pexrcentage specified would make fewer than 500 slots available, the
percentage is reduced. If fewexr than 500 slots are comtained in the
defined external page storage, the TSOAUX parameter is ignored and the
coperator is notified.

The TSOMAX parameter can be used to specify the maximum percentage of
the pageable dynamic area external page storage requiremwent that TSO
regions can use, which also indicates the minimum percentage of external
page storage (and, therefore, pageable dynamic area) available for
background regions. Any extermal page storage provided in the page file
in excess of the amount required tc back up the pageable dynamic area is
automatically reserved for TSO use only. The extermal page storage
reserved for TSO is used only for TSC foreground regions. External page
storage required to back up the TCAM and the time sharing contrcl
regions is taken from that available to background regiomns. Once the
TSOMAX percentage has been allocated to foreground regicns, no moxre
LOGON commands are accepted until a LOGCFF command is received and
processed. The TSOAUX and TSOMAX parameters guarantee that a minimum
amount of external page storage is exclusively available for background
region use and another minimum amount is exclusively available for TSO
region use. If these parameters are not user-specified, TSOAUX defaults
to zero and TSOMAX defaults to 100 percent.

The effect of these parameters is shown in Figure 100.20.1. The
total amount of external page storage available to be shared by TSC and
background regicms is the total amount of extermal page storage in the
page file less the requirement for the nondynamic area in highest-
addressed virtual storage. The amcunt of external page storage required
for this nondynamic area is 2 (pageable LPA size + LPA directory size) +
master scheduler region size ¢+ pageable BLDL size + modified LPA size.
The pageable LPA and its directory are backed up by extermnal page
storage equal to twice their size because they can contain routines that
are reentrant but that modify themselves (are not refreshable).

Modified pages are not written im the extermal page storage that
contains the pageable LPA because this would necessitate re-creation of
the pageable LPAR at the next IPL.

0S/Virtual Storage 2 Release 1 Features Supplement 33

Total external page storage (EPS) in page file less requirement for nandynamic area in highest virtual storage

EPS required for pageable dynamic area

Maximum EPS
available to back-
ground regions

T

i |
S |
| |
] |
| i |
i | ,
| | l
| | i
| z |

-
|
|
|
|
r«
!
!
Minimum EPS lag
available to back- |
ground regions E !
(500 slots or more) | |
| !
EPS reserved l [mem-——b! l
for TSO use ! ' f l !
| | ‘ |
Amount of EPS | | | e ;‘
always available i ' | ‘
to TSO ‘ I [‘ l
Maximum EPS | g } .|
available to TSO | : | ! !
|
Tsomax—®’ F——— Ts0AUX

percentage percentage
Figure 100.20.1. Division of extermnal page storage when TSO is used

The new BACKUP parameter specifies the percentage of the foreground
region size for which slots must be available at each LOGON. Whenever a
TS0 user attempts to log on to a foregrcound regiom, external page
storage is inspected to determine whether enough slots are available to
contain the BACKUP parameter percentage of the foreground region size.
If the required percentage of slots is not available, the TSO user is
not logged on. (Background regioms are always backed up 100 percent.)
If the BACKUP parameter specifies less than 100 percent, it does not
mean that TSO users cannot use more than this percentage of their region
size. However, the total number of pages actually used by all active
TSO regions at any time cannot exceed the total number of slots reserved
for allocation to foreground regions.

The new AUXLIST parameter can also be specified via START TSO and
MODIFY TSO commands. This parameter indicates what information
concerning the use and availability of extermal page storage is to be
listed. The AUXLIST parameter can also be specified during IPL. This
parameter causes the following to be listed:

e Total amount of extermal page storage available
s External page storage available for background regions

e External page storage available for TSO regioms

® Current wvalue of TSOAUX

34 0S/Virtuwal Storage 2 Release 1 Features Supplement

P

Swapping Procedure

In VS2, swapping is performed somewhat differently than it is in MVT
in oxder to make better use of real storage and to save swapping I/0
time. Swapping is also referred tc as block paging in VS2. Swapping
I/0 operations are scheduled and initiated by the page superviscr in
response Lo swapping requests made by the TSO supervisor using the new
BLKPAGE macro. There is no code in the VSZ TSO supervisor that handles
the actual swapping operation. In MVT, most of a TSO user's region is
swapped in and ocut during each time slice. 1In VS2, all or a portionm of
the working set for a region is swapped out. The working set is
determined by the addressing pattern of the program as indicated by the
reference and change bits at the time the region is to be swapped out.

The working set for a TSO region consists of the LSQA pages for the
region and all the pages inm real storage at time-slice-end time that
have been referenced or changed during the time slice (page frames with
a 1,0; 1,1; or 0,1 reference and change bit settimg). Page-ins in
progress, gqueued page-in requests, and gueued page-out requests for the
TSO region are not part of the working set and are purged at swap-out
time. The determination of whether to swap cut the entire or only a
portion of the working set is made based on the type of direct access
device, movable head or fixed head, that was used for the previous swap-
out. If a movable head device was used for the previous swap-out, the
entire working set is swapped out. The slots containing the referenced
but unchanged pages that are on the movable head device that was used
for the previous swap-out are made available for reassigonment. If a
fixed head device was used for the previous swap-out, only the changed
pages within the working set are swapped out. The referenced but
unchanged pages in the working set are left on the fixed head device
previously used for the swap-out.

SWAP is another new system parameter for the START TSO command that
can be used optionally to request parallel swapping. In VS2, parallel
swapping of a foreground region can be done using two, three, or four
paging devices. In MVT, only two devices are supported for parallel
swapping operations. The paging devices indicated in the SWAP parameter
are not dedicated to parallel swapping and are used for normal raging
operations as well. If a paging device that is used for parallel
swapping becomes full, a paging device is selected using the normal
algorithm for paging device selection. If the SWAP parameter is not
specified or if the NOSWAP parameter is issued to override a previously
specified SWAP parameter, swapping is done serially om ome device at a
time. If secondary paging devices are specified, the one with the most
available sliots is selected. If no secondary paging devices are
specified or if they are all full, the primary paging device with the
most available slots is selected. If a swap-out is to be performed and
not enough slots are available to contain the usexr®s working set, the
user is logged off and the operator is informed that the page data sets
are full.

Whenever a swap-in is to be performed, the paging supervisor
schedules LSQA pages to be read imto real storage first. If the working
set consists of more than 16 pages, the TSO user need not wait for the
swapping in of the total workimg set and is given control to begin
executing after the first 16 pages are read into real storage. If the
working set consists of fewer than 17 pages, it is completely swapped in
before the TSO user gains comntrol to begin executing. The entire
working set is always brought into real storage during a swap-in.

In Vs2, the region quiescing functions performed before a swap-out
occurs include unfixing pages that are currently long- or short-term
fixed and modifying the page tables as required. Similarly, during a
restore operation after a swap-in, pages must be refixed and page tables
must be updated. A TS0 user cannot assume that long-term fixed pages

0s/Virtual Storage 2 Release 1 Features Supplement 35

will always have the same page frames allocated since the fixed page
frames allocated can change from one time slice to the next.

TSQO Supervisor

Control of time sharing operaticns in V82 is provided by the TS0
supervisor, as in MVT. The TSO supervisor operates in the time sharing
control (TSC) region with a protect key of zero. The TSC region
contains the time sharing control task, time sharing driver, region
control task, several resident SVC routines, pageable TSO limnk pack
area, and various control blocks. The TISC region operates in paged mcde
but contains a certain number of long-term fixzed pages. The TSC region
and all foreground regions operate with dynamic address translation
operative.

The TSC region in VS2 has its own LSQR, which comtains a minimum of
two fixed pages. This LSQA also contains the TSC LPAR directory of
modules in the pageable TSO LPA. Frequently used TS0 commands or
service routines can be made resident in the TSO LPA oxr the system LPA.
The new LPAR parameter can be specified via a START TSO command to
indicate the modules that must be comntained in the TSO LPA. If the
modules indicated are not fcund in the TSC LPA or S¥S1.LINKLIE, the
START command is rejected. The LPAF parameter can alsc be specified via
a START TSO command that specifies the LPAR parametex. It indicates the
modules that are to be fixed in the TS0 LPA for as long as TSO is
active.

The functions performed by the TSO supervisor are the same in VS2 and
MVT, except that in VS2 the swapping function is handled by page
management and operations related to a paging eunvironment must ke
performed. The same IBM-supplied time sharing driver is provided for
both operating systems; however, changes have been made to the TSEVENT
Driver Entry Code. Dynamic allocation routines have been repackaged to
operate more efficiently in a virtual storage environment. Figure
100.20.2 shows the layout of virtual storage in V82 when TSO is used.

Virtual Storage

Nonpageable
Nondynamic Dynamic Nondynamic
Area Area Pageable Dynamic Area Area

e Ve Ve ‘ .
)3} ,
T{ 1¢ b 2
Resident V=R ;agf:'(abfe 5 A
Control Dynamic Reader | Writer | TCAM | TSC d:; groun TsC TCAM | Writer | Reader | MS MS and son

Program Area Region | Region | Region | Region LSQA LSOA LSGA LSQA LSQA Region | BLDL
Foreground Table

Regions
and
LSQA
3 b3
7 }'7 1!
Low v=r" N\ J High
Storage fine TSOAUX and TSOMAX percentages Starage

apply to external page storage

requirement for this virtual

storage area

~~

Figure 100.20.2. Virtual storage organization when TS0 is used

TSO Commands

The same commands are supported in VS2Z TSO as im MVT TSC. However,
several TSO commands have been enhanced in VS2. The following new
functions are available via enhanced TSC commands in VS2:

36 0S/virtual Storage 2 Release | Features Supplement

¢ The ALLOCATE command supports specification of space im tracks
(TRACK operand) or cylinders (CYLINDER operand), a request to

PN release unused space im a data set when it is closed (RELEASE

{ ‘ operand) , prompting of the user to free and allocate a file or

terminate the command when the specified filename is in use, and the

DUMMY operand to allocate a dummy data set.

e The ADD and CHANGE subcommands of the ACCOUNT command provide the
ability (via the USERDATA operand) to update installation data
fields in the user attribute data set.

o The SEND command ~an be specified as a subcommand of the EDIT
command. The SEND command oxr subcommand allows a user to execute
programs that reguire subroutines from private libraries (specified
via the LIB operand). The RUN command also prowides this capability
via the LIB operand. :

e The CPERATOR command supports (1) an option on the SEND subcommand
to have notices placed im the 5Y¥S1.BRODCAST data set without being
sent to the currently logged-on users, (2) the identifying keywoxd
OPER appended to SEND messages sent by the operator to a terminal
user, and (3) the ability to send a message from the SYS1.BRODCAST
data set to a user terminal.

e The PROFILE command can be used to list the profile of a user (via
the LIST operand).

e The SEND command allows a user to wait for each specified lcgged-on
user to receive the message sent (WAIT operand), allows a user to
indicate that a message is mot to be sent to logged-on users whose
terminals are busy (NOWAIT operand}, and permits a message to be
sent to the issuer of the SEND command (USER #* operand).

System Parameter Keywords

The operator keywords for TSO system parameters are the same in VS2
and MVT except for the following:

¢ New keywords have been added to the START command - TSOAUX, TSOMAX,
BACKUP, AUXLIST, LPAR, LPAF, DUMP (replaces DUMP=DUMP), and NODUMP
{replaces DUMP=NODUMP) .

o New keywords have been added to the MODIFY command - TSCAUX, TSOMAX,
AUXLIST, and BACKUP.

e Certain parameters have been changed. REGSIZE can specify a maximum
cf 896K and the LSQA parameter is deleted. REGNMBRX can specify a
maximam of 42. The LPA, DUMP, and NODUMP parameters can be
specified on START commands as well as in SYS1.PARMLIRBR. LIST is no
longer a positional parameter.

o Certain parameters are deleted — MAF, FORM, DUMP=DUMP, and
DUMP=NODUMP . :

All TSO operator keywords im VS2 alsc have a unique abbreviation,
which never contains more than six characters. These abbreviations are
not supported in MVT.

Performance in V52

Performance gains over what is achieved using TSC in an MVT
environment can sometimes be obtained in the same amount of real storage
in a V82 environment because more foreground regions can operate

0s/Virtual Storage 2 Release 1 Features Supplement 37

concurrently. For example, say an MVYT configuration supports a single
TSO region with some number of users. Using VS2 in the same
configuration, two TSO regions may be able to operate concurrently with
half the number of users assigned to each. Better response time nmight
be realized because certain cperations of the two TSO regions can be
overlapped and fewer users must be swappred in and out per region.
Alternatively, some percentage of additiconal users might be suprorted in
the two TSO regions in VS2 and the response time achieved in MVT could
be maintained.

These gains can result primarily from better real storage utilization
in a VS2 environment because of demand paging. In MVT, the total amount
of real storage dedicated to a TSC region is usualiy not used 100
percent of the time because of the various sizes of the programs that
are executed in the TSO region.

The implementation of virtual storage in VS2 may emable TS0 to be
added to a VS2 system configuration for a lower real storage cost than
adding it to an MVT installaticm. This cost is even less if TCAM is
already in use. TSO can be installed to complement the advantages of
virtual storage in that it may be of benefit to programmer productivity
when it is used for online program development.

100:25 TASK MANAGEMENT

The VS2 task management routines offer new functioms and are designed
to operate in a paging environment, interface with other modified
control program routines, and support EC instead of BC mode of system
operation (different PSW format, interruption codes in permanently
assigned locations above 127, for example). No significant new
functions are provided by the overlay supervisor, checkpoints/restart
routines, step restart routines, or warm start routines. {(Checkpoint
records are always 2K in size im VS2.) Other supervisor routines have
been altered to provide new functioms, such as a new method of
dispatching tasks assigned to the automatic priority group, fetch
protection, and suppoxrt of the CPU timer and the clock comparatcr. The
following identifies the sigmnificant functional differences between VG2
and MVT task management routines.

INTERRUPTION SUPERVISOR

Interruption handling is essentially the same in V52 and MVT:
however, additiomal interruptioms are recognized im VS2. Specifically,
segment and page translation exception, translation specificaticn
exception, monitor call, program event recording, SET SYSTEM MASK (SSM)
instruction, clock comparator, and CPU timer interruptions are handled.
The CPU is disabled for interruptions from the interval timer at
location 80.

The SPIE facility is expanded to allow problem programs to gain
control after certain types of tramslation errors cause an interruption.
If a segment tramslation exception occurs during the execution of a
problem program task because the segment entry referenced has its
invalid kit on, logically, a storage prctection violation has occurred.
Similarly, if a page translation interruption occurs because of an error
{entry outside the page table is referenced, for example), a prctection
violation has occurred. The program interrxuption handler changes the
interruption code to that for a protectiom error in these cases. A
store or fetch protection exception can also occur because of a mismatch
between the protect key in the current PSW and that in the storage block
a task attempts to access. These protection viclation error conditions
can be handled by a user-writtem protection error handling routine
indicated via the SPIE macrc.

38 0s/Virtwal Storage 2 Release 1 Features Supplement

When a page fault occurs (invalid bit is omn in the page table entry
for the referenced virtual storage page), normally, the page supervisor
gains control to allocate real storage. However, an authorized program
{as determined by the authorized program facility) can indicate in the
SPIE macro that its SPIE exit routine is to be entered after a page
fault. The authorized program will receive control after both enabled
and disabled page faults, and the supervisor lock {described undexr "Task
Supervisor™) is not turned on. Therefore, this facility should be used
carefully. The data presented to a user-written SPIE routine has the
same format in VS2 as in MVT so that SPIE routines that operate im BC
mode will operate in EC mode without modification. (Note that the BC
mode interface for STAE and STAL exit routines is also preserved and is
extended to include status information unique to EC mode.)

MONITOR CALL instructions are contained in warious portiomns cf the
control program in order to alert the control program to the occurrence
of certain events. For example, I0S uses the monitoring facility to
collect statistics about paging operations that are presented to SMF and
to monitor the I/0 events requested via the generalized trace facility
{GTF}. When appropriate, GTF is given control after a monitor call
interruption occurs. When program event recording (PER) is enatled, the
dynamic support system (DSS) is entered after a PER interruption. (GTF
and DSS are discussed in Sectiomr 100:40.)

The interruption supervisor alsc recognizes an §SM special ogeration
exception that occurs when an 5SM instruction is executed. The mask
used in this instruction is assumed to be in BC mode format. Ccntrxol is
given to a routine that analyzes the masking requests indicated and puts
the system in the requested state using the new MODESET macro. The new
supervisor lock (described below) is tested, if necessary. The MODESET
macro is implemented in VS2 to be used in place of the SSM instruction.
MODESET can be used to request setting of the system mask, alteration of
a storage protect key, and the setting of problem program or sugervisor
state in the PSW. This macro camn be issued only by a problem program
that is authorized via the authorized program facility. User-written
programs that operate in supervisor state or with protect key zero can
issue MODESET as well.

TASK SUPERVISOR

Automatic Priority Group

The most significant new feature of the task supervisor is a new
method of dispatching tasks that are designated as part of an automatic
priority group. This new dispatching method is sometimes called dynamic
dispatching or heuristic dispatching, a facility that is not prcvided in
MVT. The VS2 task dispatcher is designed to dispatch a user-designated
group of tasks on the basis of their operational characteristics
relative to one another, either more CPU oriented or more I/0 oriented.
The CPU and I/0 characteristics of this group of tasks are constantly
monitored during their executiom, and changes are dynamically taken into
account in the dispatching process. Paging I/C is not considexed to be
part of the I/0 requirement of a task. The dynamic dispatcher is
designed to improve system performance in a multiprogramming environment
by more readily adapting task dispatching to the changing CPU and I/0
usage reguirements of a group of programs.

Tasks to be dispatched on the basis of the dynamic dispatching
algorithm become a part of the automatic priority group (APG). At
system generation or system initialization, a single job priority level
{0 to 13) can be specified to identify the APG. The priority level
selected for the APG cannot be the same as any priority level assigned
to a time-sliced group. Tasks that are nct part of the APG arxe

0S/Virtual Storage 2 Release 1 Features Supplement 39

dispatched as in MVT, on a priority basis using their system or user-
assigned dispatching priority.

For dispatching purposes, the APG tasks are treated as a logical
subset of all the existing (system and user) tasks in the system. As
shown in Figure 100.25.1, tasks are logically connected in high toc low
dispatching priority sequence, with APG tasks logically divided into an
I/0-oriented subgroup and a CPU-oriented subgroup. The I/0 subgroup is
positioned within the APG to have higher priority than the CPU subgroup.
When the dispatcher is ready to give CPU cantrol to a task, the task
queue shown in Figure 100.25.1 is searched from left to right.

Highest priority Automatic Priority Group Lowest priority

L . e N s,
e N 7 N 4 N
TCB ¥ TCB P8 TCB —B TCB TCB 84 TCB ~® TCB p—~¥{ TCB 8 TCB (¥ TCB
\ ~/ J
" B2
1/0 Subgroup CPU Subgroup

Figure 100.25.1. Task queue containing an automatic priority group

The operating characteristic of each task in the APG is determined by
constantly monitoring its use of CPU time. Each time an APG task is
dispatched, a time interval is established for the task. The same
interval is used for each task during a period of time called the
statistics interval (from 1 to 9999 ms). The statistics interval value
is user specified at system generation and can be overridden during IPL
via the APG parameter. If the entire interval is used (task processing
continues until the interval elapses), the task is assumed to be more
CPU oriented amnd is associated with the CPU subgroup. Tasks are
positioned in the CPU subgroup so that they are dispatched im a cyclic
manner. This is done to ensure that available CPU time is distributed
evenly among them and that no task is kept at the end of the CPU-
oriented subgroup indefinitely.

If a task does not use its entire time interval, it is assumed tc be
more L/0 oriented and is associated with the I/0 subgroup. I/O-oriented
tasks are positioned within their subgroup according to the amount of
the time interval they used. The smaller the portion of the interval
used, the higher a task is placed within the I/0 subgroup. When a task
enters the APG group of tasks as a result of the issuing of a CHAP or
ATTACH macro, the task is placed at the beginning of the I/O subgroup.
The task switching rules for APG tasks are summarized in Table 100.25.1.

The dynamic dispatcher is designed to be self-adjusting to ensure
that it is accurately differentiating between CPU~ and I/O-oriented
tasks. At the end of earh statistics interval of time, the
effectiveness of the time interval currently being used is determined.
If the time intexrval does not adequately distinguish between I/0-
oriented and CPU-oriented tasks, the time interval value is increased orx
decreased (as required) by the user-specified incremental value amount
(from 1 to 99 ms). A lower limit (from 1 to 998 ms) and an upper limit
{from 2 to 999 ms) for the adjusted time interval are also user
specified, as is a ratio value that is used to determine whether the
current time interval is effective. These values are specified at
system generation and can be overridden during IPL via the APG
parameter. The initial time interval value used is the sum of the upper
limit and the lower limit divided by 2.

40 Os/Virtual Storage 2 Release 1 Features Supplement

Table 100.25.1. Task switchirg rules for APG tasks

Reason for loss
of comtrol

Current
classification

New
classification

Actions taken

Task with a higher

dispatching priority
than that of the APG
group becomes ready

Task in the I/O0O-
oriented subgroup or
with a higher dis-
patching priority
than that of the APG
group becomes ready

Time interval ends

Time interval ends

APG task enters wait
state voluntarily

I/0 oriented

CPU oriented

1/0 oriented

CPU oriented

I/70 oriented

I/0 oriented

CPU oriented

CPU oriented

CPU oriented

I/0 oriented

OSss/Virtual Storage 2 Release 1 Features Supplement

e Save unused portion
of the time interval
foxr use next time
this APG task is
dispatched

e Give CPU control to
the higher priority
non-APG ready task

Same as above

o Establish the full
time interval as
that to be used next
time this APG task
is dispatched

e Mark this APG task
CPU oriented and
placed at the
beginning of the
CPU-oriented sub-
group

e Search task queue
beginning with the
fixrst task in the
APG group and give
CPU control to first
ready task found

e Establish the full
time intexval as
the interval to be
used next time
this APG task is
dispatched

e Place this APG task
at the end of the
CPU-oriented subgroup

® Search task gueue
beginning with the
first task in the
CPU-oriented sub-
group of APG tasks
and give CPU control
to first ready task
found

e Establish the full
time interval as
that tc be used next
time this APG task
is dispatched

e Place this APG task
in the I/O-oriented
subgroup based on

41

Table 100.25.1. {(continued)

Reason for loss Current New Actions taken
of control classification | classification

the percentage of
the time intexval
it used

s Search task queue
beginning with the
first task in the
APG group and give
CPU contrxol to first
ready task found

BAPG task enters wait CPU oriented I/0 oriented e Establish the full
state voluntarily time interval as
the interval to be
used next time this
APG task is dis-
patched
e Mark this APG task
I/0 oriented and
place it at the end
of the I/0-oriented
subgroup
e Search task queue
beginning with the
first task in the
CPU~-oriented sub-
group cf APG tasks
and give CPU control
to first ready task
found

The dynamic task dispatching capability in VS2 enables job prioxity
assignments to be moxe truly related to priority than to system
performance. In MVT, job priority assignment is frequently based on CPU
and 170 usage to maximize resource utilization and increase system
performance. In V32, jobs that must have a high dispatching priority
because a certain response or fast turnarcund is required can be
assigned a priority higher than that used for APG jobs. Jobs without
any special priority requirements can be assigned the APG priority. The
dispatcher will attempt to balance CPU usage among these jobs in such a
way that CPU and channel resouxces are efficiently used. Jobs that
actually have a low completion priority can be assigned a job priorxity
lower than that of APG jobs.

The task dispatcher has also been modified to handle the following
new functions which are discussed, as arpropriate, im various
subsections of this supplement:

® Support of a new protection scheme, which includes fetch protection
as well as store protection

¢ Selection of a task for deactivation to prevent system thrashing and
selection of a task for reactivation

e Selection of a task for migration from a primary to a secondary
paging device

e Support of a new supervisor lock in conjunction with the handling of
disabled page faults

42 O0S/Virtual Storage 2 Release 1 Features Supplement

In addition, the task dispatcher is modified to use the time of day
clock instead of the interval timer to determine system wait time.

Authorized Program Facility

The auvthorized program facility (APF) is a new system integrity
feature that is stamndard im VS82. It is designed to prevent unauthorized
programs from performing functioms that are designated as restricted.

Programs that are to be authorized via APF must reside in a secure
library, thet is, S¥S1.LPALIB, SYS1.LINKLIB, or SYS1.SVCLIB, which must
be password protected in order for APF to effective. Authorized
programs are identified at link—edit time via a new PARM field rarameter
on the EXEC statement or via a limkage editor control statement. The
linkage editor places the authorization code (O or 1) in the directory
entry for the program (load module). Code 0 means the program is not
authorized to perform a restricted function. Code 1 designates the
program as authorized to perform all restricted functions. Critical
system functions that are to have access restricted are identified with
function code 1, designating them as reguiring auvthorization.

When a job step is initiated, the authorization code of the rrogram
fetched from a secure library is placed in the job step comtrol block
{JsCB), if a code is present. The JSCB of a program fetched from a
nonsecure Library indicates the program is not authorized. The TESTAUTH
SVC routimpe is provided to test the JSCB for APF authorization.

Whenever any tasks of a job step attempt to use a fumnction marked
restricted, the system tests the authorization of the requesting
program. If a problem program is not properly authorized, or is
authorized but was not contained in SY¥S1.LPALIB, SYS1.LINRLIB, or
S¥YS1.SVCLIB, the problem program is abnormally terminated.

A user-written routine can be restricted to access only by APF
authorized routines in one of two ways. The restricted routine can
include a procedure to test for APF authorization in the JFCB using the
TESTAUTH macro, or the routine can be assigned the authorized attribute
of 1 during link-editing and placed in a secure library, which includes
libraries concatenated tc SYST1.LINRKLIB. HNote that a task that is
assigned protect key zero or that operates in supervisor state is also
authorized to access restricted functions.

User-written programs that use the following macros and programs wust
be authorized via APF: CVOL, DASDR, MODESET, PGFREE, PGFIX, PGLOAD, and
EXCPVR macros and IEHDASDR, IEHATLAS, IEHPROGM, AMASPZAP, OLTEP, and DDR
programs .

Supervisor Lock

A supervisor lock is implemented in the task supervisor to ensure
proper system operation when a disabled page fault occurs. In VS22, a
page fault can occur during the execution of a routine that has disabled
the CPU for imterruptioms (I/0 and/or extermal). This is called a
disabled page fault. A routine pormally operates with the CPU disabled
because it is not reentrant and, therefore, should nct be reentered
before its completion or because it modifies or referemces a serially
reusable resocurce. The processing of a page fault (which requires I/O
interruptions to be enabled to allow the page-in completion I/0
interruption to be presented) can cause code that operates with the CPU
disabled to be reentered, with improper processing the result.

To prevent this situvation, a supervisor lock is implemented in VS2

that can be set on (locked) or off {(unlocked). Superxrvisor code is
included to set and test the lock as reguired. When a disabled page

Os/Virtual Storage 2 Release 1 Features Supplement 43

fault occuxrs in an executing task, the supervisor lock is turned om and
identified as belonging to the task that caused the disabled page fault.
As long as the supervisor lock is on, no code that operates with the CPU
disabled for interruptions can be executed emcept code that is related
to paging or basic dispatching operations. However, CPU control is
given to another ready task that is to operate with the CPU enabled,

The lock remains on until the disabled page fault is resolved, and only
tasks that execute with the CPU enabled and paging tasks can execute
until the lock is turned off. Code is included within the comtrol
program to recognize an attempt made by a task to disable the CPU for
interruptions by executing an SSM instruction or a MODESET macro and to
place such a task in the wait state when the superviscr lock is on.

Certain resident control program voutines {(I0S, page supervisor, task
dispatching routines, for example) are structured to avolid disabled page
faults in VS2. Most type 1 SVC routines that potentially could cause a
disabled page fault have been converted to type 2 SVC routines. Type 2
SVC routines have been modified to address all the pages they require
before they disable the CPU for interrxruptiocoms. This causes any
nonresident pages to be loaded before processing begins with the CPU in
a disabled state. In VS2, all type 1 SVC routines receive control with
the CPU disabled for interruptioms, and type 2, 3, and 4 SVC routines
are given contrxol with the CPU enabled or disabled, depending on the
indication in the SVC table. (In MVT, all type 1 and 2 SVC's axe
entered with the CPU disabled.) User-written type 1 and type 2 SVC's
that are to be added to a VS2 comtzol program should alsc aveid disabled
rage faults.

The lock approach implemented in VYS2 has the advantage of allowing
routines to encounter disabled page faults when required, in order to
avoid fixing a large number of pages. The approach used alsc avoids
delaying total system operation while a disabled page fault condition is
handled.

DEB Validity Checking

A more comprehensive method of ensuring that a task cannot access a
data set associated with ancther task is provided inm V52 via
implementation of an expanded DEB {(data extent block) validity checking
scheme. A new DEBCHK macro and SVC routine are provided to support DEB
validity checking. The DEBCHK macro is designed to be used by control
program routines that modify a DEB or that use or modify a control block
that 1is located via accessing the DEE. The DEBCHK macre can also be
used by system programmers {(most options of this macro reguire the
issuing task to be operating in supervisor statel.

Routines that currently perform DEB validity checking im MVT, such as
OPEN and CLOSE, are modified to use the DEBCHK macro for DEE processing.
In VS2, however, the I/0 supervisor (IOS) is also modified to issue the
DEBCHK macre each time a DEB is passed to it via an EXCP macro to
determine whether the DEB is associated with the task that issued the
EXCP. (The DEB validity check routime ensures that the specified DER is
in the DEB table for the task.) B user task is abnormally terminated if
the DER validity checking routine finds the DEB tc be invalid in any
Way.

VIRTUAL STORAGE SUPERVISOR

The virtual storage supervisor is responsible for allocating and
deallocating virtual storage in respomse to user {(GETMAIN and FREEMAIN)
reguests for storage and system requests for storage other than for LSQA
and SQA. Except for V=R requests, real storage is not assigned to
allocated virtual storage until the virtual storage is referenced during

44 0S/Virtual Storage 2 Release 1 Features Supplement

processing. If a task exhausts the virtual storage available in its
region, it is abnormally terminated. The virtuwal storage supervisor is
functionally equivalent to the main storage supervisor in MVT except for
the following modifications:

e Use of LSQA to store region-related control information
© Allocation of 4K instead of 2K areas to subpools in a region

e An interface with the page table create and destroy routine that is
part of page management. When a virtual storage axea (region, LSQA,
etc.) is allocated, this wvoutine is called by the virtual storage
supervisor to create and initialize the required page tables and
external page tables and to modify the two segment tables as
required. When a virtual storage area is freed, this routine
destroys the associated page tables and external page tables and
invalidates the appropriate emtries in the segment tables.

e Expansion of the GETMAIN macro tc request allocatiom of virtual
storage on a page boundary. Alsc, when a request for storage
contains hieravchy parameters, the storage allocated is the sum of
that requested in hiervarchy 0 and hierarchy 1, rounded up as
appropriate. GETMAIN requests in VS2 are satisfied om a best-fit
rather than a first-fit basis, as in MVT. This is done to pack
allocated virtuwal storage within the fewest number of virtual
storage pages.

e Implementation of a new guickcell facility for handling certain
allocation requests for virtual storage in SQA and LSQA. This
facility is designed to reduce the amount of time required to
service a GETMAIN request foxr a relatively small amount of space (8
to 256 bytes) in SQA and LSQA that will be allocated for a short
duration. Since these types of requests are grouped together,
storage fragmentation within LSQA and SQA is reduced also.

2 guickcell area no larger than 4096 bytes is established in SQA and
in each LSQA whenever these areas are created. An individual
quickcell can be a multiple of 8 bytes in size up to a maximum of
256 bytes. A maximum of eight guickcells can be specified for a
given quickcell length. The number of guickcells to be allocated
for each size and the size of the total quickcell area in SQR and
LSQA are specified during system generation, and these values can be
overxidden during IPL. The guickcell area is allocated xeal storage
when it is created, and this real storage remains allocated for as
long as the SQA or the LSQA exists.

Allocation requests for space in the quickcell area are made via a
special branch. Regquests for space of 8 to 256 bytes (in subpool
245 in SQA and in subpools 235 and 255 in LSQA) are satisfied from
the quickcell area. If a reguest cannot be satisfied, normal
GETMAIN logic is used.

CONTENTS SUPERVISOR

Contents supervision in VS2 is functionally equivalent to that
provided in MVT except that scatter loading and hieraxchy support,
facilities that are not required in VS2, are not supported. Attributes
associated with these functions are ignored. In addition, contents
supervision has been modified as appropriate to support APF, use a new
LPA directory search technigue, and check for LOAD macro requests issued
by nonpageable job steps, all of which have been discussed previously.

OS/Virtual Storage 2 Release 1 Features Supplement 45

Program Fetch

In ¥S2, load modules have a zerc starting address and are stored in
partitioned data sets in the same format that is used in MVT. BHence,
when a load module is fetched im VS2, it must be relovated to the
beginning address of the virtuwal storage area to which it is assigned,
and virtual storage address constants must be modified, just as in MVT.

The PCI fetch routine used in MVT is modified for operation in a VS2
environment. Support of storage hierarchies and scatter loading is
removed and the fetch routine is altered to operate im & paging
environment. One new function PCI fetch provides is the loading of load
module control sections on page boundaries (see the linkage editor
discussion in Sectionm 100:453.

PCI fetch uses the new EXCPVR macro {(discussed in Section 100:30)
instead of EXCP. In V82, PCI fetch reguests the allocation and fixing
of up to five page frames for the execution of each read operation
{START I/0 instructiocn}) when the size of the lcad module is greater than «
16K. Text records are read into these page frames. During execution of
the CCW chain, PCI chaining is suppressed if it is determined that
execution of the next CCW list with a text CCW will cause the fixed real
storage area associated with the 1I/0 operation to be exceeded. The
channel program then terminates, and the page frames actuvally used
during the read operation are umfixed. PCI fetch pexrforms address
constant relocation during read coperations (adds the relocation factor
to virtual storage address constants contained in text rxecoxds), just as
in MVT.

When a program is loaded by PCI fetch, its pages are not
automatically written on external page storage as part of the program
loading procedure. Page-outs of ome or more pages of a program that is
being loaded (or that is loaded) occur for the first time when the resl
storage occupied by any recently lcaded pages is regquired for allcoccation
to other pages, and the page supervisor considers these pages to be
eligible as per its page replacement algorithm. The change and
reference bits for each page frame that contains program text are on as
a result of the I/0 operatiom that read in the text. Hence, before the
page frames allocated to a program that is being lcaded (or that was
recently loaded) can be reassigmned, a page-out will be performed. The
fact that the change bit is turmed on by the fetch operation is what
causes the first and only page-out of pages that do not modify
themselves (refreshable pages).

Note that in OS there is a distinction between a refreshable module
and a reentrant module. A refreshable module is ome that is never
modified, and such a module can be used by concurrently executing tasks.
A reentrant module is one that can be used by concurrently executing
tasks but that may modify itself during execution. A module can modify
itself and still be sharable if the module prevents task switching
during the time it is in a changed state (disables the CPU for I/0 and)
external interruptions, makes a change, changes altered data to its
original value, and reenables the CPU for I/0 and external
interruptions). Refreshable modules will be paged out only once, since
their change bits will never be turned on during execution of the
module. Pages of reentrant modules that are changed during their
execution will have their change bit turned on. These pages will be
paged out if they become inactive and their page frames are needed and -
taken for reassignment to other pages.

TIMER SUPERVISOR
The timer supervisor in VS2 uses the time of day clock and the new

CPU timer and clock comparator to provide timing facilities. The T
interval timer at location 80, which is supported by MVT, is not used.

46 Os/virtual Storage 2 Release 1 Features Supplement

Timing facilities identical to those provided in MVT are supported in
VsS2. However, in VS2 the STIMER macro has been expanded to allow an
interval of time to be specified in terms of microseconds (the
resolution of the CPU timer), the TTIMER macro is expanded to request
the amount of tiwe remaining in an interval in terms of microseconds,
Greenwich Mean Time is used in the time of day clock, and the intermal
logic of the timer handling routines has been altered to give bettex
performance.

In VS2, the time in the time of day clock is Greenwich Mean Time
(GMT)} with a base of January 1, 1900 instead of local time. During
system generation, the time zone differential, east or west of GMT, can
be specified so that the system communicates with the operator using
local time instead of GMT. The time zone differential can be modified
after system generation by changing the appropriate membexr of
S5YS1.PARMLIB. When the operator entexrs the time of day, absence of the
new GMT subparameter for the CLOCK parameter indicates that the time
specified is local. This causes the contrel program to convert the
local time to GMT, using the time zome differential, before placing the
time in the time of day clock.

Reductions in the amount of code required to handle timing queues are
made possible by the common deubleword format of the clock comparator,
CPU timer, and time of day clock. The higher resclution of the new
hardware clocks {one microsecond? and the modified timer routines are
designed to provide timing facilities of greater accuracy.

100:30 DATA MANAGEMENT

Data management components are altered where necessary to operate in
a paging envircnment and to interface with the modified V52 imputsoutput
supervisor (I0S). The significant functional differences between data
management in VS2 and MVT exist in I0S. OPEN, CLOSE, EOV, and LCADSM
routines for VS2 and MVT are functionally equivalent. A1l the access
methods provided in MVT are supported in VS2, except OTAM. ALl the
functions these access methods provide in MVT are also supported in VS2.
Programs that use these access methods can be executed in V52 in either
paged or nonpaged mode with one exceptiom. A program that is to use the
chained scheduling facility of QSAM or BSAM must execute in nonpaged
mode. If a job step with chained scheduling specified is initiated to
execute in paged mode, regular scheduling is automatically substituted.
V52 also provides a new access method called VSAM.

All the VsS2 access methods except TCAM and VSAM interface with I0S
via the EXCP macro and, therefore, use the channel program translation
and page fixing facilities of ICS. TCAM can operxate im a pageable
region but requires certain of its message control program €lements
{such as control blocks and the buffer pool) to be long-term fixed in
real storage during the entire time TCAM is in operation. TCAM
interfaces with I0S via the EXCPVR macro and performs its own channel
program translation. TCAM does mot require long-term fixing of any
portion of the message processing programs that it services. A system
with a minimum of 512K of real storage is required for TCAM operations.

For performance reasons, certain access methods have been modified to
reduce the total amount of code they contain that operates with the CPU
disabled for interruptions or to prevent page faults imn any such code.
ISEM requires an additional 2K of virtual storage in VS2 because of the
inclusion of new reguired I/0 appendages.

The access methods do not support a parameter that can be used to
cause buffers to be aligned on page boundaries when buffers are
allocated by the access method. If an Assembler Language pregrammer
wishes to have buffers aligned om a page boundary or have buffers packed

0OS/sVirtual Storage 2 Release 1 Features Supplement Ly}

within pages so they do not cross page boundaries, buffers must be
defined and aligned by the programmer.

INPUT/0OUTPUT SUPERVISOR
In V32, I0S provides the following additional functions:

e Translation of the virtual storage addresses comtained in CCW lists.
The CCW translation routine performs this function prior to the
issuing of the START I/0 instruction {(or enqueuing of the request)
for each I/0 operation requested by a pageable routine via the EXCP
macro. A new CCW list with translated addresses is built in SQA.
This new list is used for the actual I/0 opexation. The only
restriction on the size of the CCW list translated is the
availability of SQA space.

¢ Construction of indirect data address lists (IDAL), when necessary.
If the buffer specified in a CCW crosses a virtual storage page
boundary or if the buffer is larger than 4K, the appropriate IDAL's
consisting of indirect data address words (IDAW’s) are constructed
in SQA also. (I0S does not determine whethexr buffers that cross
virtual page boundaries have actually been allocated contiguous page
frames.}

e Short—term fiximg of the pages associated with an I/0 operation to
prevent the occurrence of page faults during the opexration. Each
time an I/0 request {EXCP) is received, I0S ensures that pages it
will reference to service the I/0 request are short-term fixed for
the duration of the I/0 operation. This includes pages that contain
contrel blocks (IOB, DCB, DEB, ECB/DECB, and AVT), I/0 appendages,
and buffers.

o Translation of the real storage address in the channel status word
to a virtual storage address at the completion of the I/0 ogeration.
In addition, pages that were short-term fixed before the I/0
operation are unfixed.

The same five I/0 appendage interfaces that are provided in MVT are
supported in VS2, and one new appendage interface is defined. There
also are new returns from the SIO and the PCI appendages. The new page
fix appendage is actually part of the SIO appendage, and it is entered
using a new entry point into this appendage. The page fix appendage is
provided to enable an EXCP user to reguest short-term fixing of up to
seven different virtual storage areas that will be referenced during the
EXCP request but that are not automatically fixed by I0S. A user-
written EXCP program with user-written I/0 appendages that can incur
page faults can use this new appendage to short-term fix the areas
referenced by the I/0 appendage. The new PGFX parameter for the EXCP
DCB is provided to indicate that the page fix appendage is to be used.

In addition to the EXCP macro, VS2 I0S supports a new macro, EXCPVR,
that can be used to request an I/0 operation. This macro can be issued
only by the page supervisor and by routines that have the required
authorization. A routine is authorized to issue EXCPVR if it has a zero
protect key, operates in supervisor state, or has APF authorization.
When IOS receives an EXCPVR macro, it deces not perform channel program
translation, page fixing, or wvalidity checking. It is assumed that,
where necessary, these functions have been performed by the requester
prior to issuing the EXCPVR macro.

When the EXCPVR macro is used instead of EXCP, the time required for
I0S to initiate an I/0 operation is reduced. The EXCPVR macro should be
used carefully, however, because the I/0 supervisor does not perform any
of the storage protection functiomns it provides when the EXCP macro is

48 0S/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

issued (checking to determine whether all the control blocks, buffers,
. etc., associated with the I/0 request belong to the requesting task).
i ; Hence, a task that uses EXCPVR could inadvertently store information
outside its region and impair the integrity of the system.

VIRTUAL STORAGE ACCESS METHOD

General Description

Virtual Storage Access Method (VSAM) is a new component of 0S/VS data
management that is supported in VS1 and VS2. VSAM provides a data set
organization and access method for direct access devices that is
different from existing 0S data set organizations and access methods for

| direct access devices (SAM, ISAM, DAM, PAM). 1In a VS2 Release 1
environment, VSAM supports 2314/2319, 3330-series (all models), and 2305
(Models 1 and 2) direct access devices. Rotational position sensing is
used when the feature is present.

VSAM uses System/370 instructions not available in System/360 and is
designed to operate efficiently in a paging environment. Hence, like
VSl and VS2, VSAM can operate only on System/370 models with dynamic
address translation hardware and cannot run on System/360 models. VSAM
uses the EXCPVR macro for I/0 requests.

VSAM is also supported by DOS/VS. The VSAM Assembler Language macros
used in OS/VS and DOS/VS are compatible, except for OPEN and CLOSE. In
addition, a VSAM file contained on a DOS/VS volume can be processed by
0S (VS1l or VS2) programs. . Similarly, a VSAM data set contained on an
0S/VS volume can be processed by DOS/VS programs. This compatibility
enables VSAM data sets or files to be processed by both 0S/VS and
DOS/VS, and aids in the transition from DOS/VS to OS/VS.

VSAM supports both sequential and direct processing and is designed
to supersede ISAM, although the two access methods can coexist in the
same 0OS/VS2 operating system. VSAM supports functions eguivalent to
those of ISAM and offers several additional features. VSAM also can
provide better performance than ISAM, particularly when the number or
level of additions in the data set is high. The new structure and
features of VSAM make it more suited to data base and online
environments than other 0S/VS2 access methods.

VSAM support consists of the following:

e Access method routines with which the user interfaces to process
logical records in VSAM data sets. These routines are reentrant.

e VSAM catalog/DADSM routines that manage direct access volumes and
B space used by VSAM data sets and catalogs. VSAM data sets are
| cataloged in the new required VSAM master catalog or, optionally, a
VSAM user catalog.

e The access method services multifunction service program, which
provides required VSAM services, such as data set creation,
reorganization, and printing, and VSAM catalog maintenance.

e The ISAM interface routine, which enables the transition from ISAM
to VSAM to be made with little or no modification of ISAM programs.
This routine is reentrant.

This discussion describes Release 1 of VSAM as implemented in Release
| 1.7 of 0OS/VS2. VSAM Release 2 is not supported in VS2 Release 1.7.

0Ss/Virtual Storage 2 Release 1 Features Supplement 49

Page of GUZU-1/33-1
Revised July 18, 1975
By TNL GN20-3481

General Description of VSAM Data Set Organizations

VSAM supports two different data set organizations, key-sequenced and
entry-sequenced, each of which allows both segquential and direct
processing, record addition without data set rewrite, and record
deletion. The primary difference between these two organizations is the
sequence in which logical records are stored.

Key-sequenced organization is logically comparable to ISAM
organization in that logical records, either fixed or variable in
length, are placed in the data set in ascending collating sequence by a
key field, which is called the primary key. Records added after the
key-sequenced data set is created are inserted in primary key sequence
and existing logical records are moved when necessary. In VSAM key-
sequenced data set organization, as in ISAM, each logical record must
have a unique, embedded, fixed-length primary key located in the same
position within each logical record.

A key-sequenced data set always has a primary index containing
primary key values. The entire primary index is used to process records
directly and a portion is used to process records seguentially.
Alternate indexes for key-sequenced data sets are not supported in VSAM
Release 1.

An entry-sequenced VSAM data set, which has no ISAM counterpart,
contains either fixed- or variable-length records seguenced in the orier
in which they were submitted for inclusion in the data set (like a SAM
data set). Records added to an existing entry-sequenced data set are
placed at the end of the data set after the last record. Therefore,
records are sequenced by their time of arrival rather than by any field
in the logical record. A primary index is never created for an entry-
sequenced data set. Alternate indexes for entry-sequenced data sets are
not supported in VSAM Release 1.

Physical Structure of VSAM Data Sets

The way in which the extents of the logical records of a VSAM key-
sequenced or entry-sequenced data set are physically stored on direct
access volumes is quite different from the way in which ISAM logical
record extents are stored.

Each extent of a VSAM data set that contains logical records is
divided into a number of control areas. Each control area contains a
number of control intervals that are on contiguous tracks on the direct
access device. A control interval is composed of one or more fixed-
length physical disk records.

Unlike physical records in an ISAM data set, the physical records in
a VSAM data set can be 512, 1024, 2048, or (except on 2314,/2319 devices)
4096 bytes in size only, and they are written without a key (count and
data disk record format). VSAM chooses the physical record size based
on the user-specified buffer size and the device characteristics. When
buffer size is large enocugh, the physical record size chosen is that
which makes best use of the track capacity of the direct access device
used.

A control interval can be a maximum of 32,768 (32K) bytes in size and
contains an integral number of physical records. If a control interval
is greater than 8192 bytes, it must be a multiple of 2048 bytes in size.

A control interval contains logical records, free space (for key-
sequenced data sets only), system control information about the logical
records (record definition fields), and system control information abcut
the free space (control interval definition field), in that sequence.

50 OSsvirtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18,1975
By TNL GN20-3481

There is one control interval definition field per control interxval and
usually multiple record definition fields, depending on the number of
logical records in the control interval.

A logical record and its control information (record definition
field), although not contiguous within a control interval, are called a
stored record. A complete control interval is the unit of data transfer
between a VSAM data set and real storage. ' Hence, command-chained
reads/writes are used when a control interval contains more than one
physical disk record.

A logical record in a VSAM data set can span physical records within
a control interval. A logical record cannot span two or more control
intervals within the same control area in VSAM Release 1. Therefore,
the maximum logical record size is 32K bytes.

Figure 100.30.1 shows an example of a control area that consists of
three control intervals. There are three physical records in each
control interval. The number of control intervals in a control area is
determined by VSAM and for a key-sequenced data set is chosen taking
into account the amount of space allocated to the data set, index and
data control interval size, and buffer space available to the data set.
The maximum size of a control area on disk is one cylinder. A control
area contains an integral number of control intervals. The size of a
control interval can be specified by the user and is used as long as it
is within the limits defined by VSAM; otherwise, a user-specified ‘
control interval size is ignored.

Controi Area N

Control Control Control
Interval 1 Interval 2 Interval 3
e A

LR LR LR LR LR LR LR

FS. | sC FS FS sC FS FS FS

s~

Physical 1 2 3 4 5 6 ? 8 9
record
within
control

LR = Logical record
area

FS = Free space {key-sequenced data set only)

SC = System control information (record definition fields
for the logical records and one control interval definition
field)

Figure 100.30.1. Organization of a control area for a VSAM data set

When a VSAM data set is loaded, VSAM does or does not preformat
control areas, depending on the attribute specified when the data set is
defined, RECOVERY or SPEED, respectively. When RECOVERY (the default)
is specified, during loading VSAM preformats each control area
immediately before loading any records into it. Preformatting for a
key-sequenced data set consists of putting the appropriate control
information in each control interval and an end-of-file indication in
the first control interval in the next control area after the control
area just preformatted. All zeros in the control interval definition
field indicates end of file or end of key range for a key-sequenced data
set. For an entry-sequenced data set, control information and an end-
of-file indication is placed in each control interval of the control
area during preformatting.

The RECOVERY option ‘ensures that if an error that prevents further

processing occurs while a control area is being loaded, the previously
loaded control areas are not lost. Loading can resume from the first or

0S/Virtual Storage 2 Release 1 Features Supplement 51

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

only end of file indicator. Preformatting is always done when records
are added to an existing VSAM data set.

When SPEED is specified, records are loaded without preformatting
each control area before loading and the end-of-file indicator is not
written until the data set is closed. When this option is chosen,
loading proceeds more rapidly, but if an error that prevents further
processing occurs, all the records loaded up to that point may be lost
and loading would have to resume at the beginning of the data set.

Like an ISAM data set, a VSAM data set can be multi-extent and
multivolume. Secondary space allocation can be specified when a key-
sequenced or entry-sequenced data set is defined so that the data set
can be extended when logical records are added, if necessary (this
facility is not supported in ISAM). A VSAM data set can have a maximum
of 126 extents of logical records.

VSAM data sets can be placed on disk volumes that contain data sets
with other organizations. Space on a volume that is defined for
exclusive use by VSAM is called a data space. A VSAM data space can
consist of a maximum of 16 extents on a volume.

Before a VSAM data set or catalog can be loaded, its attributes and
space requirements must be defined using the DEFINE function of the
access method services program. In order to delete a VSAM data set or
uncatalog and make the space available for reassignment, the DELETE
function of the access method services program must be used. VSAM space
cannot be deleted using the 0S/VS job control DISP parameter or an 0S/VS
data set utility.

The data in a VSAM data set is considered to be mapped into a byte
space that can be over 4.2 billion bytes in size. The physical location
of a logical record or index entry within a data set is given in the
form of a relative byte address rather than a CCHHR disk record address.
The relative byte address (RBA) of a logical record or an index entry is
the byte displacement of the logical record or index entry relative to
the beginning of the data set. The RBA of a logical record or index
entry, therefore, is independent of the physical characteristics of the
direct access device type on which it resides, the number of extents in
the data set, the size of a control interval, etc.

All pointers to data that are contained in an index or a control
interval are in terms of relative byte address instead of the disk
record address (CCHHR) that is used in ISAM pointer fields. In order to
locate a desired index or logical record, the VSAM access method
calculates the disk address of the physical record, using the RBA of the
record and the physical characteristics of the data set. As a result,
VSAM data sets are device type independent. A key-sequenced data set
can be moved from one device type to another and its index data set n=sed
not be recreated.

The logical records of a VSAM data set can be processed by keyed
and/or addressed access depending on the organization. For keyed
access, logical records are processed in a seguential, skip-sequential
(key-sequenced organization only), or direct fashion by a key field,
which must be contained in each logical record. For addressed access,
records are processed in a sequential or direct fashion by RBA. With
keyed or addressed processing, a VSAM data set is processed by the user
on the basis of logical records and VSAM always manages the I/O buffers.

Access to a VSAM data set by control interval is also supported,
primarily for use by system programmers. This type of access allows the
user to read and write a VSAM data set on a control interval basis.

That is, each read or write accesses an entire control interval of data.
A data set that is opened for control interval access can be processed

52 0S/Virtual Storage 2 Release 1 Features Supplement

lqam%
4

3

-

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

by keyed and addressed access at the same time (assuming keyed or
addressed is supported for its organization) as long as VSAM manages the
I/0 buffers.

VSAM Macros

The macros provided to define and process VSAM data sets are divided
into control block macros and request macros. The control block macros
are used to define, modify, display, and test the contents of VSAM
control blocks and lists. The request macros are used to specify the
processing action (read, write, etc.) to be taken on data and index
records.

The following are the VSAM control block macros:

e ACB (generate an access control block). The ACB wmacro is the VSAM
counterpart of the DCB macro that is used for other 0S/VS data set
organizations. It causes an access control block to be generated
during program assembly. One ACB (or GENCB) macro must be specified
in a program for each VSAM data set that is to be processed by the
program. More than one ACB can be specified in a program for the
same VSAM data set. In this case, the ACB"s are connected to the
same VSAM control block structure and the same set of I/0 buffers is
used for all requests issued to the data set. The ACB for a VSAM
data set must be opened before any processing of the data set can
occur.

The ACB specifies the following for a VSAM data set: name of the DD
statement for the data set, address of a list of exit routine
addresses for user-written exit routines, buffer space requirements,
the password required for the type of processing to be done, all
processing options to be used with the data set (keyed, addressed,
and/or control interval, sequential, skip-sequential, ands/or direct,
etc.), and the number of requests that can be outstanding
concurrently for the data set using this ACB.

¢ EXLST (generate an exit list). The EXLST macro is used to define a
list of the addresses of the user-written exit routines that are to
be entered when certain conditions occur during the processing of a
VSAM data set. The EXLST macro causes an exit list to be generated
during program assembly.

Exit to a user-written routine can be taken when end of data set is
reached (EODAD exit), a logical error occurs (LERAD exit), an
uncorrectable physical I/0 error occurs (SYNAD exit), or to perform
a . journaling operation (JRNAD exit). Each exit routine can be
marked active or inactive. An exit routine that is inactive is not
entered when its associated condition occurs. The exits to be used
during the processing of a given VSAM data set are specified in its
ACB (the address of an EXLST macro can be given). More than one ACB
can specify the same EXLST macro.

The journaling exit is taken by VSAM at the following times:
whenever a GET, PUT, or ERASE macro is issued to the VSAM data set;
each time data is shifted within a control interval or moved to
another control interval (key-sequenced data sets only); and each
time a physical I/0 error occurs.

A user-written journaling routine can be used, therefore, to keep
track of any RBA changes for the logical records of a key-sequenced
data set, if it is to be processed by RBA, and/or to record the VSAM
transactions that are processed against a VSAM data set (for
recovery and reconstruction purposes, for example).

OSs/Virtual Storage 2 Release 1 Features Supplement 53

54

Page of GC20-1753-1
Revised July 18,1975
By TNL GN20-3481

e RPL (generate a request parameter list). An RPL macro is used to
generate a request parameter list during program assembly. This
list defines a request for processing. Certain request macros (GET,
PUT, ERASE, POINT, CHECK, and ENDREQ) must specify the address of a
request parameter list to indicate the processing to be performed.
The same RPL can be specified in more than one type of request
macro.

An RPL macro specifies the following: the ACB of the data set with
which it is to be used (multiple RPL macros can specify the same
ACB) ; the size and address of a work area if logical records are not
to be processed in an I/0 buffer; the search argument to be used
during direct retrieval, skip-sequential retrieval, and positioning
(full key, generic key, RBA, or relative record number); address of
an ECB if this is an asynchronous request (optional parameter); the
type of processing for this request, such as keyed or addressed,
sequential or direct, synchronous or asynchronous request, etc.

When a synchronous request is specified in the RPL indicated by a
GET or PUT macro, control is not returned to the instruction after
the GET/PUT macro until processing of the reguest is completed. The
logical record is then available for processing. When an
asynchronous request is specified, control returns to the
instruction after the GET/PUT macro as soon as the request has been
scheduled. The user must then test for completion of the I/0
operation (usually using a CHECK macro). Asynchronous processing of
a request permits the overlap of I/O operations with program
execution and is particularly useful with skip-sequential and direct
processing. Up to 255 asynchronous requests (RPL°®s) can be
outstanding concurrently for the same VSAM data set.

Two or more RPL's can be chained together via a pointer field in the
RPL itself. A chained parameter list can be used to read or write
several records (one for each RPL in the chain) using one GET or PUT
macro instead of multiple macros. Chained parameter lists can be
used only to retrieve several existing records or to add several new
records. It cannot be used to retrieve-for-update, update, or
delete existing records.

e GENCB (generate a control block or list). The GENCB macro can be
used to generate an ACB, EXLST, or RPL during program execution
instead of program assembly. The GENCB macro can be used to
eliminate changing these control macros and reassembling VSAM
programs when control block formats change in new versions of VSAM.

The same parameters can be specified in a GENCB macro as in ACB,
EXLST, and RPL macros. However, a GENCB macro can specify that
multiple copies of the control block are to be generated and
parameter values can be specified in more ways (such as in general
registers).

e MODCB (modify the contents of a control block or list). The MODCB
macro is used to change, during program execution, the contents of
an unopened ACB, an EXLST, or an inactive RPL (one not currently
involved in a processing operation).

e SHOWCB (display the contents of a control block or list). The
SHOWCB macro is used to place the contents of user-specified fields
of an ACB, EXLST, or RPL in a user-specified work area.

e TESTCB (test the contents of a control block or list). The TESTCB
macro is used to have VSAM compare a user-specified value with a
field in an ACB, EXLST, or RPL. The condition code in the PSW is
set to indicate the results of the comparison.

OS/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

The following request macros are used to process VSAM data sets:

e OPEN - A VSAM data set must be opened before it can be processed by

other request macros. .The OPEN macro provides the same types of
processing functions for VSAM data sets as for other types of data
sets. OPEN causes the volumes of the VSAM data set to be mounted if
necessary, constructs the control blocks required (in addition to
those already created by EXLST, ACB, and GENCB macros) for the type
of processing to be done, overrides information in the ACB and EXLST
with any parameters specified in the DD statement for the data set,
causes the loading into virtual storage of any VSAM routines
required (in addition to the resident VSAM routines) for the
processing specified, and verifies that the password given is
correct. Any parameter not specified via job control or the ACB is
taken from the catalog entry for the data set.

Both sequential and direct processing can be performed on a VSAM
data set using one OPEN macro and one ACB. Closing and reopening of
the data set to switch modes, as is required for an ISAM data set,
is not necessary.

GET - This macro is used for retrieval only and for retrieval and
update (GET for update) operations. The RPL specified by a GET
macro indicates whether the request is for a retrieval only or a
retrieve and update operation. A record that was retrieved by a GET
for update request need not be written back if it is not to be
changed.

Locate mode (logical record made available in the input buffer) can
be specified for retrieval only (GET) and retrieve for update
without record length change (GET for update) operations. In the
latter case, however, the updated record must be placed in a work
area before it is rewritten. Move mode (logical record made
available in a work area) is supported for all read and write
requests and is required for all write (PUT and ERASE) operations.

PUT - This macro is used to write a new record in a data set during
its creation or insert a new record in an existing data set. A PUT
for update is used to change the contents of an existing record
(update it or mark it deleted with a user-defined deletion
indication). A PUT for update request must be preceded by a GET for
update request. Write verification (automatic reading by VSAM after
each write operation) is optional.

ERASE - This macro is used to delete a logical record from a key-
sequenced data set. The record is physically removed from the data
set. An ERASE macro must be preceded by a GET for update macro.

POINT - This macro is used to position VSAM to a particular logical
record in the data set from which processing is to continue.
Positioning can be in a forward or backward direction and a key
value or RBA can be used to identify the logical record at which
positioning is set.

CHECK - This macro is used to cause VSAM to determine whether
processing of a specific asynchronous request has been completed and
to suspend program execution until processing is completed for an
incomplete request. CHECK also causes the appropriate active user-
written exit routine to be entered, if necessary, at the completion
of the request.

A test for the completion of an asynchronous request can also be
made by specifying an ECB in the RPL for the reguest and testing the
completion bit. Completion can be tested using the TESTCB macro
(IO=COMPLETE operand) as well. These two completion tests can be

OS/Virtual Storage 2 Release 1 Features Supplement 55

rage or GU2U-1/3>3-1
Revised July 18, 1975
By TNL GN20-3481

used to delay issuing the CHECK macro until the operation is
completed so that processing is not suspended by the CHECK macro.

e ENDREQ - This macro is used to terminate the processing of an
asynchronous request whose completion is no longer required or to
free VSAM from keeping track of a position in a data set. VSAM can
maintain knowledge of the same number of positions as the number of
requests that can be outstanding concurrently (specified in the ACB
or GENCB macro).

e CLOSE - The CLOSE macro provides the same types of processing
functions for VSAM data sets as for other types of data sets. It
causes VSAM to write any unwritten data or index records remaining
in the output buffers if their contents have changed, update the
catalog entry for the data set, if necessary (if the location of the
end-of-file indicator has changed, for example), and write SMF
records if SMF is being used. The access method control block(s)
for the data set (such as the ACB"s) are restored to what they were
before the data set was opened and virtual storage that was obtained
during OPEN processing for additional VSAM control blocks and VSAM
routines is released.

Once a VSAM data set has been closed, it must be reopened before any
additional processing can be performed on it. A CLOSE macro with
TYPE=T (temporary CLOSE) can be issued to cause VSAM to complete any
outstanding I/O operations, update the catalog if necessary, and
write any required SMF records. Processing can continue after a
temporary CLOSE without the issuing of an OPEN macro.

When a job step in a region terminates, either normally or
abnormally, all open VSAM data sets for the job step are
automatically closed. .
Figure 100.30.2 illustrates the relationships among the most
frequently used control macros and the request macros.

Note that several parts of a VSAM data set can be accessed
concurrently via sequential and direct processing by a program or its
subtasks using the same ACB without the necessity of closing and
reopening the data set. Each request is processed independently and
asynchronously with respect to all other outstanding requests. This is
called concurrent request processing and is made possible by the fact
that VSAM can keep account of multiple positions in" the data set at one
time. The number of concurrent requests that can be outstanding is
specified in the ACB but is extended by VSAM during processing if
necessary.

Concurrently outstanding requests for a data set can be any
combination of sequential and direct processing requests. Each
outstanding request can specify one RPL or a list of RPL's (chained
RPL"s) and synchronous or asynchronous processing. When a regquest
consists of a list of RPL"s, the first RPL in the list determines
whether synchronous or asynchronous processing is performed for the
request. When synchronous processing is requested in the first RPL,
control is not returned to the user until all requests in the list have
been processed. When asynchronous processing is specified in the first
RPL, control is returned to the user as soon as the chained request is
accepted by VSAM, and the processing status of the list must be checked
by the user by issuing a CHECK macro for each RPL in the list.

56 0Ss/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975

By TNL GN20-3481
‘ Control Macros -——1
Request
Macros
OPEN
User-
Written
GET Exit
Chained Routines
RPL’s
PUT RPL
POINT RPL Logical
Error
v
ACB e EXLST
ERASE RPL
.Y Physical
1/0O Error
CHECK
Single RPL
RPL Journaling
ENDREQ
GETIX
PUTIX
CLOSE

Figure 100.30.2. Relationships among VSAM control and request macros

0S/Virtual Storage 2 Release 1 Features Supplement 57

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

Key-Sequenced Data Set Organization and Processing

The logical organization of a key-sequenced VSAM data set is very
different from that of an ISAM data set. The primary index (index
component) and logical records (data component) in key-sequenced
organization are two distinct data sets with separate data set names,
although a portion of the primary index can be placed within the logical
record data set area to improve performance. The primary index data set
and the logical record data set of a key-sequenced data set form a
cluster. A key-sequenced data set does not have a separate additions
(overflow) area, as can be defined for an ISAM data set, and additions
to a key-sequenced data set are always blocked.

All extents of logical records (the data component extents) in a key-
sequenced data set must reside on direct access volumes of the same
type. The primary index data set, however, can be placed on a device
type that is different from that of the logical record data set.

When a key-sequenced data set is created, the range of primary key
values that are to be allocated to each volume of the data component
data set can be user-specified. This cannot be done for an ISAM data
set. Unlike ISAM data set volumes, all volumes of the data component of
a key-sequenced data set need not always be mounted at OPEN time.

Subset mounting by user-specified volume serial numbers in job control
statements is supported for certain types of sequential processing.

A control interval in the data component data set of a key-sequenced
data set contains logical records in ascending primary key sequence.
Logical records must have a unique primary key. A primary key must be
fixed in length and in a fixed position within each logical recori.
Primary key size can be a minimum of 1 byte and a maximum of 255 bytes.

The data component of a key-sequenced data set is divided into
control areas and control intervals in order to distribute free space
throughout the data set for the addition of logical records. When a
key-sequenced data set is defined, the percentage of unused control
intervals that are to be left in each control area and the percentage of
free space to be left at the end of each control interval during data
set loading can be user-specified.

For example, if 30 percent free control intervals in control areas
and 20 percent free space in control intervals are specified, 70 percent
of the total number of control intervals in each control area will be
used for data in the data component when the key-sequenced data set is
created. Each of the control intervals actually used for data will be
80 percent filled at load time. The unused space in control intervals
and the unused control intervals in each control area are available for
additions.

The use of free space requires less record processing to add a record
and to retrieve an addition than would be needed in ISAM, since there
are no overflow chains in key-sequenced organization. When a record
must be added to a control interval, records are shifted to the right
within the control interval to make room for the new record (if the
record does not belong at the end of the control interval). As long as
there is enough free space in the control interval, no other control
interval is involved in the addition process.

If a control interval does not contain enough space to add another
logical record, control interval splitting occurs. Some of the logical
records and their control information are taken from the full control
interval and moved to an empty control interval at the end of the same
control area, if another control interval is available. The logical
record is then added to the appropriate control interval in primary key
sequence.

58 0OS/Virtual Storage 2 Release 1 Features Supplement

rage oI uLZuU-17/53-1
Revised July 18, 1975
By TNL GN20-3481

When control interval splitting occurs, the physical sequence of
control intervals within a control area no longer represents the correct
sequence of logical records within the control area. Therefore, the
primary index must be updated to reflect this condition. The only times
the lowest level of the primary index must be updated are when control
interval splitting occurs and when a record is added to the end of the
data set. Hence, less primary index maintenance is required for a key-
sequenced VSAM data set than for an ISAM data set.

If there is no free control interval within a control area when one
is required, control area splitting occurs if there is free space at the
end of the extent or if secondary allocation was specified at the time
the data set was defined. A new control area is established and the
contents of approximately half of the control intervals in the full
control area are moved to the new control area. The new logical record
is then inserted in the appropriate control area in primary key
sequence.

The time required to sequentially retrieve records is only slightly
affected by control area splitting. Since the amount of space allocated
to the data set is affected by control area splitting, the number of
split control areas in a key-sequenced data set should be a factor that
is considered when determining whether or not to reorganize the data
set.

Logical records can be physically deleted from a key-sequenced data
set using the ERASE macro, and the length of a logical record in a
variable-length key-sequenced data set can be increased or decreased.
When space becomes available as a result of deleting or shortening a
record, records within the control interval are shifted toward the
beginning of the control interval to reclaim the free space and make it
available for additions and record extemnsions.

The way in which free space can be distributed throughout a key-
sequenced data set, support of space reclamation, and implementation of
control interval and control area splitting are all factors that can
minimize or possibly eliminate, in some cases, the need to reorganize a
key-sequenced data set. This design makes VSAM key-sequenced
organization more suited than ISAM to an online environment.

Logical organization of the primary index data set for key-sequenced
organization. Like the index for an ISAM data set, the primary index
for a key-sequenced VSAM data set contains key values and pointers. It
is built when the key-sequenced data set is initially loaded. Unlike an
ISAM index, a VSAM primary index also contains information regarding
available space in the primary index data set.

The primary index for a key-sequenced VSAM data set also has a
totally different logical structure from that used for an ISAM index. A
key-sequenced primary index data set consists of two or more levels of
index records structured as a balanced tree, and the highest index level
contains only one index record (physical disk record). The one
exception to this organization is discussed later. Primary index
records are fixed in length and of system-determined size. Each
physical index record contains a number of index entries and a pointer
to the next physical index record at the same index level. (The last
index record in a level does not have such a pointer.) Index entries
contain primary keys in ascending collating seguence.

The lowest level of the primary index is called the seguence set.
All levels above the lowest are collectively referred to as the index
set. The sequence set index level points to all the control intervals
in the key-sequenced data set and contains the high compressed primary
key value in each control interval. Since the segquence set does not
contain an entry for each logical record in the key-sequenced data set,

0OS/Virtual Storage 2 Release 1 Features Supplemnent 59

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

it is a nondense index level. The structure of the primary index for a
VSAM key-sequenced data set is shown in Figqure 100.30.3.

—
(ngr\mest High keys of Always only one
feve index records index record
index
Index
Index Set 3
Component High keys of High keys of High keys of
Data index records b index records | *°° | index records
Set
°
e
°
Lowest
Sequence | High keys of High keys of High keys of co o High keys of One index record
Set !e‘: control interval ¥lcontrot intervall " | control interval control intervall per control area
index
S
Data — < <
Component
Key- Control ese Control Control cos Control { e e o FDHIFM soa Control
Sequenced interval interval interval interval interval interval
DataSet - ™~ O\ J - J
—~ ~ T

Control Area 1 Control Area 2 Control Area N

Figure 100.30.3. Structure of the primary index for a VSAM key-sequenced
data set

Each physical index record in the sequence set contains a number of
index entries that is equal to the number of control intervals in a
control area. Hence, there is one sequence set index record per control
area in the data set. An index entry in a seguence set index record
consists of a primary key value, control information, and a pointer to
the control interval in the data component data set that contains the
record with that primary key value. The key in the index entry is the
highest compressed primary key in the indicated control interval.

When the logical record data set has few enough control intervals
that one physical index record can contain all the required index
entries, there is only one level of primary index and it consists of one
sequence set index record.

When a key-sequenced data set is processed sequentially, the sequence
set index level is used to indicate the order in which control intervals
are to be accessed. To improve performance daring sequential
processing, the sequence set index level can be separated from the rest
of the primary index data set (index set levels) and stored with the
logical records in the data component data set. When this option is
chosen, the index records for a control area are placed on the first
track(s) of the control area so that both index and logical records can
be accessed without moving the disk arm (similar to the location of the
track index within the prime area in an ISAM data set).

When the sequence set index level is stored within the data component
data set, sequence set records are also replicated. Tha. i., each
sequence set index record is allocated one track at the beginning of the
control area. The index record is duplicated on the track as many times
as it will fit. This technique significantly minimizes the rotational
delay involved in arriving at the beginning of an index record. If
there is only one control area in a cylinder, sequence set index records
will be replicated beginning with track 0. If there are two control
areas in a cylinder, initial tracks of the first area will contain
replicated index records for the first control area, while initial
tracks of the second area will contain replicated index records for the
second control area.

60 OSsvirtual Storage 2 Release 1 Features Supplement

Pape of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

Index set index records, like sequence set index records, contain
blocked index entries. The index entries in each level of the index set
point to index records of the next lower index level. An index entry
within the index set contains a pointer to an index record, the highest
primary key in that index record, and control information. Index set
index levels can also be replicated. When this option is chosen, one
track is required for each index record in the entire index set. An
index record is duplicated on its assigned track as many times as it
will fit. The index set may or may not be replicated when the index set
and the sequence set of the primary index are physically separate
(sequence set stored with logical records). However, when the index set
and the sequence set are stored together, both are replicated or neither
is replicated.

The entire primary index (index and sequence sets) is used to process
a key-sequenced data set directly by user-specified primary key values.
Each index level is inspected beginning with the highest level. One
index block in each level must be inspected to obtain a pointer to the
next lower level. An advantage of this structure over that of ISAM
index structure is the fact that the time needed to locate any record
directly is based on the number of levels in the primary index and on
the current location of the index records to be inspected (on the direct
access device or in real storage). Therefore, the same amount of time
is required to locate an addition as an original record. 1In ISAM,
additional rotation time is required to locate an addition that is not
the first addition in the chain in the cylinder overflow area of a prime
cylinder.

The primary index of a key-sequenced data set is designed to reguire
as little direct access space as possible. In addition to being
nondense, the index entries contain front and rear compressed keys.
Compression is done to eliminate redundant characters in adjacent keys
in the index and thereby reduce the amount of key data that must be
stored.

Since physical index records are written without a key, index entries
are blocked within index records, and keys are compressed, an index
record must be present in real storage in order for the user-supplied
key value to be compared with the key values contained in an index
record (this comparison cannot be done on disk as for ISAM
organization). As much of the total index set as possible, up to the
entire index set, can be resident in virtual storage if enough buffer
storage is specified by the user. Note that VSAM does not preload index
record buffer(s) with as many primary index records as will fit. Index
records are allocated space in a buffer and loaded when required.

The primary index records that are resident in virtual storage are
pageable; however, heavy referencing of an index record can tend to
cause the page containing the index record to remain in real storage.
(Index records cannot be fixed in real storage.) If an index record
that is not resident in virtual storage is required, and there is not
enough room in the buffer area provided to add the index record, the
access method deletes an existing index record to make room. In
general, an index record is selected that has been in the buffer the
longest time and that belongs to the lowest level index represented in
the buffer.

The compressed index entries in an index record cannot be inspected
using a binary search techinque; however, the entries are not inspected
sequentially. Index entries are divided into sections for the purpose
of searching. The number of sections in an index record is
approximately equal to the square root of the number of index entries in
the index record.

0S/Virtual Storage 2 Release 1 Features Supplement 61

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

A primary index search is begun by comparing the search key with the
highest key in the first section of the index record. If the search key
is less than the highest key, the search continues with the first key in
the first section. An equal or the first greater than comparison
terminates the search operation. If the search key is higher than the
highest key in the first section, it is then compared with the highest
key in the second section, etc.

Using this technique, the average number of index entries inspectel
to locate the desired entry is approximately egual to the sguare root of
the number of entries in the index record. On the average, half of the
number of entries in an index record would have to be searched if a
linear search technique were used.

Physical structure of the primary index of a key-sequenced data set.
Primary index records are stored in control intervals as are the logical
records in the data component of a key-sequenced data set. However,
there is only one physical index record written in a control interval,
control intervals are not grouped into control areas, and no free space
is left within a control interval between a logical record (index entry)
and its control information.

The physical index records associated with each index level of the
primary index are not necessarily stored together in contiguous control
intervals (except when the sequence set level is stored separately from
the index set levels). When a primary index is created or a new index
record is added to an existing primary index, the new index record is
placed in the next available control interval after the last existing
index record. The level to which each index record belongs is indicated
in the control information (header field) in the index record.

In addition to header information and variable-length index entries,
a sequence set index record (but not an index set record) can contain a
set of free control interval entries. These entries indicate the
location of available control intervals in the data component that are
within the control area governed by the sequence set index record.

Key-sequenced data set processing. The records in a key-sequenced
data set can be processed sequentially, skip-sequentially, or directly
using the primary key. Such processing is called keyed sequential,
keyed skip-sequential, or keyed direct processing, respectively. All
volumes of a key-sequenced data set must be mounted at OPEN for keyed
processing.

Records can also be processed sequentially or directly by relative
byte address. Such processing is called addressed sequential or
addressed direct processing, respectively. Control interval access is
supported as well. When addressed sequential processing is used, all
volumes of the data set need not be mounted at OPEN time. As many
volumes as there are available direct access devices can be mounted at
OPEN and the mounting of additional volumes will be requested as they
are required, as is done for SAM data sets.

The RBA of a logical record in an existing key-sequenced data set can
change only when a record is inserted or deleted, or the size of a
variable-length record is altered. A user-written routine should be
included to record changes in RBA's when RBA is used for update. This
routine is entered from VSAM via the journaling exit when appropriate.
Programs that process a key-sequenced data set by RBA need not be
modified if direct access device type is changed.

Keyed sequential processing of a key-sequenced data set is like
sequential processing of an ISAM data set. It is used to load a key-
sequenced data set and to retrieve, update, delete, and add logical
records to an existing key-sequenced data set. When keyed sequential

62 Oss/vVirtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

processing is used, records can be processed in ascending sequence by
primary key, using GET and PUT macros. This is called forward
processing. Processing records in descending key sequence (backward
processing) is not supported in VSAM Release 1. The ERASE macro (not
supported by ISAM) can be used to physically delete records.

Key values need not be user supplied for keyed sequential processing,
since VSAM automatically obtains the next logical record in sequence.
The POINT macro can be issued at any time daring processing to position
VSAM at a specific logical record from which sequential processing is to
proceed. Positioning can be in a forward or backward direction. Only
the sequence set of the primary index is referenced for keyed sequential
processing by primary key and only for control interval sequencing.

A mass sequential insertion technique, not supported in ISaM, is
automatically used by VSAM when additions are sequenced and made using
keyed sequential processing. When VSAM determines that two or more
logical records are to be inserted between two existing logical records,
the control interval (and its sequence set index record if control
interval splitting occurs) is not written until the control interval has
been packed with all the additions that will fit. Mass sequential
insertion is also used by VSAM to add logical records after the last
existing record (extend a key-sequenced data set).

The time required to make additions and update the primary index is
reduced by using the mass sequential insertion facility of keyed
sequential processing. If additions are not sorted and keyed direct
processing is used to add the records, the entire primary index must be
searched to determine where each logical record is to be placed.

Keyed skip-sequential processing, which is not supported by ISAM, is
a variation of direct processing. It can be used for retrieval, update,
add, and delete operations (GET, PUT, and ERASE macros). Keys of the
logical records to be processed must be presented by the user in
ascending sequence. Only the sequence set of the primary index is used
for skip-sequential processing using the primary key.

When a relatively small number of transactions that are in primary
key sequence are to be processed, skip-sequential processing can be used
to retrieve the records directly by key. Since the primary keys
presented are in sequence, the access method uses only the sequence set
index level of the primary index to locate the desired records. . Skip-
sequential processing can be used to avoid retrieving the entire data
set sequentially to process a relatively small percentage of the total
number of records, or to avoid using direct retrieval of the desired
records, which causes the entire primary index to be searched for each
record.

Keyed direct processing of a key-sequenced data set is like direct
processing of an ISAM data set. It can be used to retrieve, update,
delete, and add logical records. A primary key value must be presented
by the user for each logical record that is to be processed. For a
retrieval operation, the key can be the exact key of the desired record,
a generic key, or a key that is less than or equal to the key of the
desired record. 1In ISAM, direct retrieval by exact key value only is
supported. Positioning by generic key or key less than or equal to the
desired record is supported but the record mast be retrieved
sequentially via a separate operation. The entire primary index is
searched to locate the requested logical record during keyed direct
processing.

Addressed sequential can be used to process the logical records of a
key-sequenced data set in ascending RBA sequence. It can be used to
retrieve, update, or delete logical records (GET, PUT for update, and
ERASE macros). Addressed sequential cannot be used to add logical

0S/Virtual Storage 2 Release 1 Features Supplement 63

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

records to a key-sequenced data set or to change the length of existing
variable-length records.

The user need nat supply RBA's during addressed sequential
processing. VSAM automatically retrieves records in RBA sequence.
Logical records will not be presented in primary key sequence if there
have been any control interval or control area splits. Positioning to a
given RBA can be accomplished using the POINT macro, as for keyed
sequential processing.

Addressed direct processing enables the logical records of a key-
sequenced data set to be processed directly by user specified RBA's. A&s
for addressed sequential processing, only retrieval, update, and delete
operations can be performed. Additions and record length changes can
not be made using addressed direct processing.

Sequential and direct processing of a key-sequenced data set by
control intervals is also supported. Skip-sequential processing by
control intervals is not supported. For sequential access, records are
processed in ascending sequence by control interval. Each GET causes
the next control retrieval in sequence to be presented. For direct
access, the RBA of each desired control interval must be supplied by the
user. Requests can be synchronous or asynchronous and control intervals
can be processed in the I/0 buffer (except when chained RPL's are used)
or in a work area.

The GET, PUT for update, POINT, CHECK, and ENDREQ macros can be used
with control interval processing. When updating using control interval
access, a control interval can be rewritten without first having been
retrieved. The ERASE macro cannot be used nor can PUT macros be issued
to load or extend a key-sequenced data set when control interval
processing is utilized.

Processing of the primary index data set for a key-sequenced data
set. The primary index component of a key-sequenced data set can be
processed using GET and PUT macros. The index component data set must
be opened alone. The primary index can then be processed like an entry-
sequenced data set. It can be accessed using addressed or control)
interval processing.

Processing summary. Table 100.30.1 summarizes the primary types of
processing supported for key-sequenced VSAM data sets (control interval
processing is not included in the table).

64 0OS/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

Table 100.30.1. Types of processing supported for VSAM key-sequenced
data sets. (An entry indicates whether the access
type is supported, a key or RBA is required, and
keys or RBA's must be presented in sequence.)

Type of Keyed Keyed Skip-|Keyed Addressed Addressed
Access Sequential | Sequential |Direct Sequential | Direct

(forward (forward (forward

processing | processing processing

only) only) ‘ only)
Retrieval No keys Keys in Keys not No RBA's RBA's not
only (GET required ascending in required in
without sequence sequence sequence
update)
Retrieval No keys Keys in Keys not Retrieval Retrieval
and update, required ascending in and update | and update
including sequence sequence only. No only. RBA's
changing RBA's not in
record size required. sequence.

(GET and PUT
for update)

Add (pPUT No keys Keys in Keys not

without required ascending in

update) sequence sequence

Delete No Keys Keys in Keys not No RBA's RBA's not

(ERASE) required ascending in required in sequence
sequence sequence

Entry-Sequenced Data Set Organization and Processing

The logical records in an entry-sequenced data set are ordered by the
sequence in which they are presented for entry into the data set. Free
space cannot be left within the control intervals and control areas of
an entry-seguenced data set when it is defined. Additions to an
existing entry-sequenced data set are placed in any available space left
at the end of the data set. Extents can be added to an existing entry-
sequenced data set if secondary allocation was specified when the data
set was defined. All logical record extents of an entry-sequenced data
set must be placed on volumes of the same direct access type. Although
an entry-sequenced data set consists only of a data component and cannot
have an index, it is still referred to as a cluster.

The ERASE macro is not supported for entry-sequenced data sets. A
record that is to be deleted must be marked deleted with an
installation-defined identification. Space made available by marking a
record deleted is not reclaimed. The space occupied by a record marked
deleted can be reused only by storing a new record of the same size in
the space.

Available space at the end of the data set is also used when the size
of an existing record in a variable-length entry-sequenced data set is
to be changed. The existing record must be marked deleted by the user
with an installation-defined deletion identification, and the lengthened
or shortened record must be written at the end of the data set.

OS/Virtual Storage 2 Release 1 Features Supplement 65

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

The only time a change is made in the RBA of a logical record in an
entry-sequenced data set is when the size of the logical record is
changed by the user. Other records are not affected since the changed
record is moved to the end of the data set. An entry-sequenced data set
can also be moved from one direct access device type to another, and
programs need not be modified because the RBA's of the logical records
do not change.

Entry-sequenced data set processing. Addressed sequential, addressed
direct, and control interval processing are supported for entry-
sequenced data sets. When addressed sequential is used, records can be
processed in ascending RBA sequence, using GET and PUT macros. The
POINT macro can be used for forward or backward positioning to a
specific RBA. For addressed sequential processing, no RBA is given by
the user. VSAM automatically presents records in RBA sequence.

When addressed sequential is used to process records in ascending RBA
sequence, existing records can be retrieved, updated (but not changed in
size), and marked deleted, and new records can be added. Record size
changes can be accomplished by the procedure described previously.

Addressed direct processing by user-supplied RBA's can be used to
retrieve records, update their contents (but not change their size), and
mark records deleted. New records cannot be added and record size
changes cannot be made during addressed direct processing.

An entry-sequenced data set can be processed by control interval
using addressed sequential or addressed direct (by RBA) access. The
control intervals in an existing entry-sequenced data set can be
retrieved and updated (but new control intervals cannot be added) using
sequential or direct access and a new entry-sequenced data set can be
created using sequential control interval processing. GET, PUT, POINT,
CHECK, and ENDREQ macros can be used. If updating is to be performed, a
work area must be used.

An entry-sequenced data set can also be used like a BDAM data set. A
randomizing routine can be used to associate the control field of a
logical record with an RBA. The randomizing routine must include a
technique for assigning an alternate RBA to synonyms (records whose
control field converts to the same RBA as an existing record in the data
set). The entry-sequenced data set must be preformatted with dummy
records before the logical records are placed in the data set.

Table 100.30.2 summarizes the primary types of processing supportei

for VSAM entry-sequenced data sets. Access by control interval is not
included in the table.

66 OS/Virtual Storage 2 Release 1 Features Supplement

rage Ul \ULLu-1/23-1
Revised July 18, 1975
By TNL GN20-3481

Table 100.30.2. Types of processing supported for VSAM entry-sequenced
data sets. (An entry indicates whether the access type
is supported, an RBA is required, and RBA's must be
presented in sequence).

Type of Access Addressed Sequential (forward Addressed Direct
processing only)

Retrieval No RBA required RBA's not in

only (GET sequence

without update)

Retrieval and No RBA required RBA's not in
update without sequence
record size
changes (GET and
PUT for update)

Delete Records marked deleted Records marked
by user identification. deleted by user.
No RBA's required. RBA's not in seguence.

VSAM Catalogs

Unlike ISAM data sets, all VSAM data sets nust be cataloged in a VSAM
catalog. Information required to process a VSAM data set, such as its
location and physical characteristics, is contained in the VSAM catalog.
Non-VSAM. data sets that are not part of a generation data group can also
be cataloged in a VSAM catalog.

There must be one VSAM master catalog for a VS2 operating system that
contains VSAM. Optionally, one or more VSAM user catalogs can be
defined. Each catalog is an individual data set. The VSAM master -
catalog data set is cataloged in the VS2 data set catalog (SYSCTLG), and
each VSAM user catalog has an entry in the VSAM master catalog. Each
VSAM data set is cataloged in the VSAM master catalog or a user catalog,
but not both. All VSAM data sets on the same volume must be cataloged
in the same VSAM catalog. Duplicate data set names in the same VSAM
catalog are not permitted but .a given data set name can appear in more
than one VSAM catalog.

VSAM user catalogs can be used to reduce the size of the VSAM master
catalog (to reduce catalog processing time), minimize the effect of a
damaged catalog, and enable a VSAM data set to be portable from one
system to another without having to use the access method services
program to process VSAM master catalogs.

The following information is recorded in the catalog record for a
VSAM data set:

+ e Device type and volume serial numbers of volumes containing the data
set -

e Location of the extents of the data set

o Attributes of the data set, such as control interval size, physical
record size, number of control intervals in a control area, location
of the primary key field for a key-segquenced data set, etc.

e Statistics, such as the number of insertions, the number of
deletions, and the amount of remaining free space

e Password protection information 4

0S/Virtual Storage 2 Release 1 Features Supplement 67

v VA NN 4w 2 e

Added July 18, 1975
By TNL GN20-3481

e An indication of the connection between a key-sequenced data set and
its index

e Information that indicates whether a key-sequenced data set or its
primary index has been processed individually (without reference to
the other)

A VSAM catalog also contains information regarding the location of
data spaces and available space on volumes that contain VSAM data sets.
Therefore, a volume containing a VSAM data set need not be mounted in
order to determine whether it contains available space. VSAM
catalogs/DADSM routines, instead of 0S/VS catalog and DADSM routines, are
used to process the catalog and to allocate space on VSAM catalog and
data set volumes. Generation data groups of VSAM data sets cannot be
defined in a VSAM catalog. In addition, temporary and concatenated VSAM
data sets are not supported.

Several types of entries are used in a VSAM catalog to describe the
various objects the catalog defines (data sets, available space, etc.).
The entry types are cluster, data component, primary index component,
user catalog, non-VSAM space or volume, and alias. A given data set may
require more than one entry type for its description. A key-sequencel
data set, for example, requires a cluster, primary index component, and
data component entry.

A VSAM catalog is logically structured as a key-sequenced data set
that contains 4u4-byte keys and variable-length records. The data
component is physically divided into two address range areas. One area
is the high-address range and the other is the low-address range. The
index component is physically embedded between the two address range
areas.

A VSAM catalog can be accessed as a catalog using access method
services commands and the SHOWCB and TESTCB macros. A VSAM catalog can
also be opened and processed as a key-sequenced data set. Keyed,
addressed, and control interval processing are permitted.

Access Method Services Program

The access method services general purpose, multifunction service
program is provided to support functions required to create, maintain,
and back up VSAM data sets. Facilities to convert ISAM and SAM data
sets to VSAM organization are also included. The access method services
program is invoked via a calling sequence and the functions desired are
requested via a set of access method serxrvices commands. In VS2, the
calling sequence and commands can be placed in the input stream or
issued within a processing program.

The access method services program is used to:

e Define and allocate direct access space for all VSAM data sets and
all VsaM catalogs. The DEFINE function must be used to describe a
VSAM data set or catalog before any data is placed in the data set
or the catalog. The DEFINE function is also used to define data
spaces and to catalog non-VSAM data sets in a VSAM catalog.

® Create, reorganize, and back up VSAM data sets. Input to the REPRO
function can be an ISAM, SAM, or VSAM (key-sequenced or entry-
sequenced) data set. The output can be a VSAM (key-sequenced or
entry-sequenced) or SAM data set. When the input and the output
organizations are different, conversion occurs. The REPRO function,
therefore, can be used to convert an ISAM data set to VSAM key-
sequenced format, initially create a VSAM data set from sequenced
records, merge new logical records into an existing VSAM data set,
and reorganize a VSAM data set.

67.1 0s/Virtual Storage 2 Release 1 Feature Supplement

Page of GC20-1753-1
Added July 18,1975
By TNL GN20-3481

e Print all or some of the logical records of a SAM, ISAM, or VSAM
data set or a VSAM catalog. Three formats are supported: each byte
printed as a single character, each byte printed as two hexadecimal
digits, and a combination of the previous two (side by side).

e Maintain VSAM catalogs (alter, delete, or list catalog entries).
Certain characteristics of a VSAM data set can be modified by
altering the catalog entry for the data set.

Delete data sets, data spaces, indexes, and catalogs and make the
space available for reallocation. The freed space is overwritten
with binary zeros if the erase option is specified.

Perform processing required to make a VSAM data set portable from
one System/370 to another if a VSAM user catalog is not available.
The EXPORT command is used to copy a VSAM data set (any
organization) to a tape or disk volume as a sequentially organized
data set. Required information is extracted from the catalog entry
for the data set ‘and written on the transporting volume as well.

The IMPORT command is used to create a VSAM data set .and its catalog
entry from the data set created by an EXPORT command. EXPORT and
IMPORT are also used to disconnect a VSAM user catalog from one VSAM
master catalog and catalog it in another VSAM master catalog. 1In
this case, the volume containing the VSAM user catalog is
transported from one system to another without copying.

e Create backup copies from VSAM data sets. The EXPORT command is
used to create the backup copy (as for exportation) and the IMPORT
command is used to load the backup copy into the system if
necessary.

e Verify the accessibility of an existing VSAM data set (using the
VERIFY command). This function involves checking for valid end-of-
file or end-of-key range information in the catalog entry for a VSaM
data set. If the catalog information does not agree with the actual
end-of-file or end-of-key range in the data set, the catalog
information is updated.

e Convert entries in the 0S or 0OS/VS system catalog to entries in an
existing VSAM master or user catalog, using the CNVTCAT command.

Since VSAM data sets must be cataloged, and the access method
.services program must be used to define and allocate space for VSAM data
‘sets, a minimum number of job control parameters for DD statements are
used by VSAM.

Three new DD statement keywords are defined for VSAM. - The DD names
JOBCAT and STEPCAT are provided for specifying the VSAM user catalogs
available to a job or job step, respectively. The AMP parameter is
provided for overriding ACB, EXLST, and GENCB parameters that are
specified in the processing program, supplying missing ACB or GENCB
macro operands, indicating checkpoint/restart osptions, specifying ISAM
interface options, requesting storage dumps of VSAM access method
control blocks, and indicating that the DD statement defines a VSAM data
set under certain conditions (DUMMY specified in the DD statement, for
example).

Password Protection

An expanded password protection facility is supported for VSAM.
Optionally, passwords can be defined for clusters, cluster components
(data component and index component), and VSAM catalogs. Passwords are

Os/virtual Storage 2 Release 1 Feature Supplement 67.2

Page of GC20-1753-1
Added July 18, 1975
By TNL GN20-3481

kept in VSAM catalog entries. The password can be supplied by the
programmer via the ACB. If password protection is indicated for a VSAM
data set and the ACB does not specify a password or specifies it
incorrectly, the operator must supply the correct password in order for
the data set to be opened. Up to seven retries can be made.

Multiple levels ofkprotection are provided:

e Full access, which allows access to a data set, its index, and its
catalog entry. Any operation (read, add, update, delete) can be
performed on the data set and its catalog entry.

e Control interval access, which allows the user to read and write
entire control intervals using the control interval interface. All
read, write, and update operations can be performed at the logical
record level as well. This facility is not provided for general use
and should be reserved for system programmer use only.

e Update access, which allows logical records to be retrieved,
updated, deleted, or added. Limited modification of the catalog
entries for the data set is permitted (definition of new objects and
alteration of existing objects), but an entry cannot be deleted.

e Read access, which allows access to a data set for read operations
only. Read access to the catalog entries of the data set is
permitted also. No writing is allowed.

A password can be defined for a given VSAM data set for each level of
protection: master password, control interval access password, read-
write-add-delete password, and read-only password. When multiple
passwords are defined for a data set, the password given when the data
set is opened establishes the level of protection to be in effect for
this OPEN.

Authorization to process a VSAM data set can be supplemented by a
user-written security authorization routine. If supplied, such a
routine must reside in SYS1.LINKLIB. It is entered during OPEN
processing after password verification has been performed by VSaM,
unless the master-access password was specified. A user security
authorization record of up to 255 bytes maximum can also be added to the
catalog entry for the data set. This record can supply data to the
user-written security authorization routine during its processing.

Data Set Sharing

A VSAM data set can be accessed concurrently by two or more subtasks
within the same region and two or more job steps (regions) when DISP=SHR
is specified for the VSAM data set by each job step. Both types of
sharing can be used for a VSAM data set at the same time. The type of
data set sharing permitted for two or more regions is controlled by
using the SHAREOPTIONS parameter of the DEFINE command when the VSaAM
data set is defined. The following types of cross-region sharing
options are supported:

e The data set can be opened by one user for output processing (to
update or add records) or the data set can be opened by multiple
users for read operations only. Full read and write integrity is
provided by this option (SHAREOPTIONS 1).

e The data set can be opened by one user for updating or record
addition (output operations) and by multiple users for read-only
processing. Since only one user can perform write operations, write
integrity is provided by this option. However, read integrity must

67.3 0S/Virtual Storage 2 Release 1 Feature Supplement

Page of GC20-1753-1
Added July 18, 1975
By TNL GN20-3481

be provided by each user since users can read a record that is in
the process of being updated (SHAREOPTIONS 2).

e The data set can be opened by any number of users for both read and
write operations. Data set integrity must be maintained by the
user. No integrity (read or write) is provided by VSAM
(SHAREOPTIONS 3).

e The data set can be opened by any number of users for both read and
write operations. The ENQ and DEQ macros must be issued by users to
maintain data integrity. For direct processing operations, VSAM
provides a new buffer for each request (SHAREOPTIONS 4).

Data set sharing by subtasks within the same region can be
accomplished using one DD statement for the VSAM data set or multiple DD
statements. ‘When a single DD statement is used, multiple subtasks in
the same region can perform read and update operations on the VSAM data
set. VSAM uses the exclusive control facility to maintain integrity
during update operations. The SHR disposition parameter need not be
specified in order to share a VSAM data set when one DD statement is
used. However, if DISP=SHR 1is specified when one DD statement is used,
both subtask sharing and cross-region sharing (as described above) can
be used concurrently.

When multiple DD statements are used, multiple subtasks within a
region can share a VSAM data set using the same options as are supported
for cross-region sharing. The DISP=SHR parameter must be specified on
the DD statements.

VSAM data sets can also be shared across systems as follows:

e The data set can be opened by any number of users for both read and
write operations. VSAM provides a new buffer for each direct
processing request and RESERVE and RELEASE macros must be issued by
users to maintain data set integrity. All job steps that are
accessing a VSAM data set concurrently must specify DISP=SHR if data
set integrity is to be maintained.

e The data set can be opened by any number of users for both read and
write operations. < Data set integrity is a user responsibility as
VSAM does not provide any.

Note the following restriction when DISP=SHR is specified for cross-
region or cross-system sharing, VSAM is providing a new buffer for each
direct processing request, and users are issuing ENQ/DEQ or
RESERVE/RELEASE macros to ensure data set integrity (SHAREOPTION 4 is
specified). VSAM will not allow a control area split for this sharing
of a key-sequenced data set. VSAM indicates no-space-available if an
attempt is made to add or change the size of a record and a control area
split is required to perform the operation.

ISAM Interface Routine

The ISAM interface routine is provided as an aid in converting from
ISAM organization to VSAM organization. It enables existing programs
that process ISAM data sets to be‘used to process key-sequenced VSAM
data sets without modification of the ISAM macros. The VSAM data sets
can be newly created or those that have been converted from ISAM format
to VSAM key-sequenced format.

The ISAM interface routine permits VSAM key-sequenced data sets to be
processed by both ISAM programs and VSAM programs. This capability

0S/Virtual Storage 2 Release 1 Feature Supplement 67.4

Page of GC20-1753-1
Added July 18,1975
By TNL GN20-3481

allows existing ISAM application programs to be used and additional
applications that take advantage of new VSAM facilities to process the
same VSAM data sets. The ISAM interface routine can be used in
Assembler, COBOL, and PL/I programs. The PL/I Optimizing and PL/I
Checkout compilers and FULL ANS COBOL support VSAM organization
directly, that is, without use of the ISAM interface routine.

The ISAM interface routine operates in conjunction with VSAM access
method routines. The interface routine intercepts ISAM requests and
converts them to equivalent VSAM requests. Hence, only functions of
ISAM that are equivalent to those of VSAM are supported by the ISAM
interface routine. There are a few ISAM facilities that the ISAM
interface routine does not support. These are discussed in detail in
0OS/VS Virtual Storage Access Method Programmer®'s Guide (GC28-3838).
Similarly, if VSAM facilities that are not supported by ISAM are to be
used, an existing ISAM program must be modified to define a VSAM data
set and to use VSAM macros. Assembler Language macros for ISAM and VSAM
are not compatible.

When the ISAM interface routine is used by an ISAM program, existing
job control for the ISAM data must be modified as appropriate. The ISAM
interface routine and the access method services program simplify the
amount of effort required to replace ISAM data set organization with
VSAM organization within an installation.

Summary
Highlights of VSaM when it is compared with ISAM are as follows.
VSAM provides new features:

e Two data organizations are supported one with records in ascending
key sequence and one with record in time-of-arrival sequence.

e Data sets are direct access device type independent.

e Direct access space utilization is maximized by device type by using
spanned blocked logical records within a control interval.

e Additions and index entries are blocked and disk space requirements
are therefore reduced.

e Secondary space allocation is supported so that an existing data set
can be extended.

e Free space for additions can be allocated at more frequent intervals
throughout the allocated extents when a key-sequenced data set is
created.

e Free space reclamation capabilities are expanded considerably. This
factor can eliminate or significantly increase the time between key-
sequenced data set reorganizations.

e Subset mounting by volume serial number is supported for sequential
processing.

e Password protection is extended to provide more levels of protection,
and user-written security protection routines are supported.

e Disk volumes containing VSAM data sets are portable between DOS/VS
and OS/VS.

VSAM provides performance enhancements:

67.5 OS/Virtual Storage 2 Release 1 Feature Supplement

Page of GC20-1753-1
Added July 18, 1975
By TNL GN20-3481

e Mass insertion processing reduces the time required to insert a
group of new sequenced records between two existing logical records
or at the end of the data set.

® Skip-sequential processing reduces the time required to sequentially
process a low volume of transactions.

e Total index size is reduced by compressing keys and blocking index
entries. ‘Index search time is thus minimized.

¢ Overflow chains are eliminated and the tine reguired to make an
addition to a key-sequenced data set is therefore reduced.

e The same time is required to retrieve an added record as an original
record in key-sequenced organization.

e Index set and sequence set index records can be replicated to
significantly reduce rotational delay when accessing index records
on disk.

e Index set records, up to a maximum of all index set records, can be
resident in virtual storage.

Table 100.30.3 compares the features of VSAM and ISAM as supported in
0S/VS2 Release 1.7.

0S/Virtual Storage 2 Release 1 Feature Supplement 67.6

L L9

juawatddns aanjeag T oseaTsy 7 obexols TenlxTA/SO

Table 100.30.3.

Characteristic

1. Supporting 0OS environments

2.

Direct access devices
supported
a. RPS supported

b.

Track overflow supported

Types of organization

a.a

b.

Key-sequenced

Entry-sequenced

Multiple extents and volumes
for a data set

-

b.

Secondary space allocation
indicated at creation
Volumes of the same device
type required

All volumes must be online
at OPEN regardless of the
type of processing

Free space available
within the logical record
area

Data set is direct
access device independent

VSAM - 0v/Vs2

VSl and VS22 (VS2 Releases 1, 1.6, and
1.7 support VSAM Release 1 only)

2314/2319, 3330-series (all models),
and 2305 Models 1 and 2

Yes

No

Yes

Records are maintained in ascending
sequence by a primary key. A primary
index is always provided. The logical
records and the primary index are

two separate data sets. The key-
sequenced data set contains logical
records, distributed free space for
additions (as an option), and,
optionally, the sequence set index level
of the primary index.

Yes

Records are sequenced in the order in
which they are placed in the data set.
New records are added to the end of an
existing data set.

Yes
Yes

Yes for logical record extents. The
primary index data set can be on a
device type that is different from

that which contains they key-sequenced
logical records.

No

Subset mounting by volume serial number
is supported for sequential processing
by RBA.

Yes (for key-sequenced data sets only),
within control intervals and control
areas. Free space is distributed within
the tracks of a cylinder.

Yes
RBA pointers are used in the control
interval and in all indexes

Comparison table of VSAM and ISAM facilities for 0S/VS2 Release 1

ISAM - 0OS/VS2

o
<
-3

VSl and VS2 5
2]
g

Same as VSAM (=}
5

Yes —_

No

Yes

Records are maintained in ascending

sequence by key. An index is provided

that is part of the ISAM data set. The

prime area contains logical records, the

track index, and optionally, overflow

tracks in each cylinder for additions.

A separate additions area can exist also.

The cylinder and master index levels are

a separate extent.

Not supported

Yes

No

Yes for all the volumes containing prime

and separate overflow area extends. Index

levels can be on a device type that is
different from that which contains prime
and overflow areas.

Yes

Yes, optionally, at the end of each prime
cylinder. Free space on tracks within

the prime cylinders can be created only by
including deleted records when the data
set is created.

No

Record address ID (CCHHR) is used in

index pointers :

SL61 ‘81 AInf peppy
T~CC/ T-N70y 1n a8p 7

TA/SO

uawaTddns aanjesal T aseaTay 7z obeiols Tenax

8°L9

Table 90.30.3. Comparison table of VSAM and ISAM facilities for 0S/VS2 Release 1 (continued)

* Characteristic

5.

Key-sequenced organization
data set characteristics

de.

Fixed- and variable-length
logical records

Key field is written on
disk

Key field must be embedded
within each logical record
Key must be fixed length
Logical records with
duplicate keys permitted
Physical record sizes
supported

Allocation of logical
records to volumes by key

range

Index structure

Number of levels

Nondense index
Key field written

Logical index records are
blocked
Physical index record size

Keys are compressed in the
index component

Index record replicated
on track to reduce
rotational delay

Sequence set index level
placed adjacent to logical
records for key-sequenced
organization

VSAM - 0S/VS2

Yes

Spanned blocked record format is used
within a control interval.

Original records and additions are
blocked.

No

Physical disk records are written in
count and data format.

Yes

Yes
No

512, 1024, 2048, and 4096 bytes only

Yes

Two to N based on the number of index
entries required and their size. Index
is a balanced tree with one index record
in the highest-level index.

Yes

No

Index records are written in count

and data disk record format.

Yes

Fixed length and determined by system

Yes

Front and rear compression
eliminates redundant characters.
Yes, as an option.

Optional

If chosen, sequence set index records
are replicated at the beginning of
each control interval area.

ISAM - 0OS/VS2

Yes
Fixed or variable, blocked or unblocked

records formats are used for prime records.
Records in an overflow area are always unlocked.

Yes

Physical disk records are written in
count, key, and data format.

Yes, except for unblocked fixed-length
records.

Yes

Block size specified by the user up to a
maximum of the track size.
No

Track and cylinder index levels are
required. Up to three master index
levels are optional.

Yes

Yes

Index records are written in count, key,
and data disk record format.

No

Data field is always ten bytes. Key field

is key size.
No
Full key is always written

No

Standard

Track index is always on the first track(s) of

prime cylinders

I8P€-0ZND INL Ag
SL6I ‘81 A pappy

[-€SL1-020D 30 o8eg

o Table 90.30.3.
~J

0

juwue Tddns 2anj3esd T 9seaTay ¢z abexolzs TenilxITA/SO

Characteristic

i. Index resident in virtual
storage

j-. Multiple indexes for the
same key-sequenced or entry-
sequenced data set.

Types of processing supported

for key-sequenced data sets

a. Sequential retrieval and
‘'update without presenting
key :

b. Skip-sequential retrieval,
addition, and update (by
keys specified in ascending
sequence)

c. Sequential retrieval and
update by record address

d. Sequential updating by
sequenced keys without
retrieving records

e. Direct retrieval and
update by generic key,
equal key, or key-greater-
than the specified key

f. Direct retrieval and
update by record address

g. Additions by direct
processing

h. Additions by mass insertion
using sequential processing
and key sequenced additions

i. Concurrent sequential and
direct processing of the
same data set with a single
OPEN

j- Deletions physically
removed

VSAM - 0S/VS2

Standard
As many index records as will fit in
the user-specified buffer can be

resident, up to a maximum of all index

set records.
Yes

Yes

Each logical record is presented in
ascending primary key sequence.

The sequence set index level of the
primary index is used.

Yes

The sequence set index of the
primary index is used.

Yes, via RBA

(addressed sequential or addressed
direct)

No

A record must be retrieved to be updated.

Yes
Yes, via RBA
Yes

Yes

Yes

Yes

Records are shifted and free space
is reclaimed.

Comparison table of VSAM and ISAM facilities for 0S/VS2 Release 1 (continued)

ISAM - 0OS/VS2

Optional
Only the highest level can be made resident.
Residence of part of an index is not supported.

No

Yes

Each logical record is presented in ascending key

sequence. The track index is used. Processing
in descending key sequence is not supported.

No

Positioning via a SETL macro using record 1D
(CCHHR) is supported. Record must be
retrieved sequentially after positioning.
Yes

Yes for equal key. Generic key and key
greater than specified key can be used in a
SETL macro for positioning. The record must
be retrieved separately using sequential mode.
Yes, via record ID (CCHHR)

Yes

No

No

The data set must be closed and reopened to
change modes. Alternatively two DCB's,

one for sequential and one for direct
processing, can be used.

Limited

Records are flagged when deleted.

Deletions are physically removed only if
they are forced off a prime track or when a
full track of variable-length records is
reorganized for an addition. A record that
is marked deleted can be replaced with a
record of the exact same size.

18+€-0TND INL Ad
SL6T ‘8T AInf PappPV

T-€SL1-0ZDD Jo 83eg

juswaTddng 2xnjead T 2sea[a3y z abexols Ten3lITA/SO

0T°L9

Table 90.30.3.

\Characteristic

8. Checkpoints/restart facilities

9.

10.

11.

12.

13.

k. Variable-length logical

records can be lengthened

or shortened

1. Multiple-request processing

is supported within a

single program Oor a program

and its subtasks.

m. Write check after a write

n. Locate and move mode
processing

0. OPEN validation of end-of-

data indication

Password protection

a. User-written authorization

routines supported

Data set sharing

a. Within a region

b. Across region(DISP=SHR)
c. Across systems

Data set cataloging

Languages supporting
(for VSAM directly and via
ISAM interface)

VSAM data set direct input
t0 sort/merge

VSAM - 0S/VS2

Yes, and space is reclaimed for a
shortened record.

Yes, with one ACB.

Optional

Locate mode for read-only operations and

move mode supported

Yes

Abnormal termination never occurs

during OPEN processing.

Yes, same as for ISAM

Yes

Levels supported for the user are:
Master access - allows access to the
data set its index data set, and
its catalog entry for all operations

e Control interval access allows
read/write of entire control interval

Comparison table of VSAM and ISAM facilities for 0S/VS2 Release 1 (continued)

ISAM - 0S/VsS2

Yes (with space reclamation as
indicated above)

Yes, using multiple DCB's.

Optional
Yes

Yes
Abnormal termination can occur during OPEN
processing.

Yes

Yes

Two levels of protection are provided.
current password is presented, the data
set can be opened for read only or for read
and write processing.

If the

as well as of individual logical records.

e Update access - allows access to the
data set and its index, for retrieval,
updating, deletions, and additions.
Limited modification of the catalog
entries for the data set is permitted
but an entry cannot be deleted.

e Read access - allows retrieval of
data records only (no writing)

Yes

Yes
Yes
Yes

Required
The VSAM master catalog or a
VSAM user catalog must be used.

Assembler

COBOL
PL/I

Yes, 0S/VS Sort/Merge only

No

Yes
Yes
Yes

Optional
The 0S/VS data set catalog (SYSCTG) is used.
There is no special catalog for ISAM data sets.

Assembler
COBOL
PL/I

RPG

No

I8Y€-0TND INL A9
SL61T ‘81 Amf Pappy
T.ert T.nTAN TA AfD T

TT°L9

juawatddng aamjeag [9seaiay ¢ 8beI0lS TENIITA/SO

Table 90.30.3.

Characteristic

14,

Utility program functions

VSAM - 0S/VS2

Access method services program can

perform the following:
Define and delete direct access space
for a VSAM data set

e List, alter, or delete an existing
VSAM catalog entry

e Create new and reorganize existing
VSAM data sets

e Copy a VSAM, ISAM, or SAM disk
data set to a new SAM data set or into
an existing VSAM data set

e List some or all of the records in a
VSAM, ISAM, or SAM data set

o Perform functions required to make a
VSAM data set or catalog portable from
one system to another

e Verify and reestablish, if necessary,
the end-of-file marker in one VSAM
data set

Comparison table of VSAM and ISAM facilities for 0S/VS2 Release 1 (continued)

ISAM - 0Ss/VS2

IEBISAM utility can perform the following:

o Copy an ISAM data set from one disk
volume to another, dropping deletions and
merging additions into the prime area

e Unload an ISAM data set onto a tape or
a disk volume, dropping deletions and
creating a backup sequential data set
suitable for input to the load operation
to re-create the ISAM data set

¢ Load a previously unloaded ISAM data
set from tape or disk onto a disk
volume merging additions into the
prime area

o Retrieve and print the records of an
ISAM data set, except deletions, or
create a sequentially organized data
set from active records

18Y€-0CND INL A4
SL6T ‘81 AI{ P3ppy

Tocer Ton7An 10 afny

100: 35 PAGE MANAGEMENT

Page management consists of a set of routines that manage real
storage and external page storage. Page management implements demand
paging and provides the programming support required by dynamic address
translation hardware for implementation of a virtual storage
environment. The following routines are part of the page supervisor and
are contained in the resident nucleus:

Interface control

Real storage administration

External page storage administration
Page administration

The interface control routimne is primarily responsible for receiving
requests for page management services and for controlling the flow of
requests to the other page supervisor routines, which actually perform
the required services.

REAL STORAGE ADMINISTRATION

The routines that are part of real storage administration perform all
real storage allocation and deallocation. Requests for services
associated with real storage cam be implicit, such as after a page fault
occurs, or explicit, such as those requested via page supervisor macros.

The following services can be requested via page management macros :

o Make one or more virtual storage pages addressable and mark them
fixed (PGFIX macro). Available page frames are allocated to the
virtual storage pages and, if necessary, page-in operations are
scheduled to cause the contents of the virtual storage pages to be
loaded. Pages are marked short- or long-term fixed as indicated in
the PGFIX macro. A release parameter can be specified to indicate
that a page-in is not required, such as when page frames are
allocated for buffer space. A suspend parameter can be used to
indicate that the request can be queued if no real storage is
currently available. Pages marked fixed cannot be paged out until a
PGFREE macro is issued.

e Make one or more virtual storage pages addressable (PGLOAD Macro).
The service performed is like that for PGFIX except that the page
frames allocated are not fixed. The PGLOAD macro provides a page-
ahead function.

e Mark the page frames allocated to the virtual storage pages
indicated unfixed (PGFREE macro). The release parameter can be
specified to indicate that the contents of the unfixed pages are no
longer needed, so that a page-out is avoided.

® Deallocate the page frames and the slots allocated to the virtual
storage pages indicated (PGRLSE macro). The page frames are made
available for allocation without a page-out. The virtual storage
pages specified are marked invalid in the appropriate page table
entries. This macro is issued to free the real storage and external
page storage associated with a virtual storage page when its
contents are no longer required. (PGRLSE does not cause the virtual
storage to be deallocated.) For example, during job step
termination, PGRLSE is issued to release the page frames and slots
associated with a pageable problem program region.

Page management services are implemented primarily for use by control

program routines; however, system programmers can use them, if
necessary. The PGRLSE macro is the only page management macro that can

68 0S/vVirtual Storage 2 Release 1 Features Supplement

be issued by an unauthorized problem program. The other macros can be
issued by a problem program if authorized via APF. User-written
routines that operate in supervisor state or with a protect key of zero
can also use all the page management services macros.

The yreal storage allocation routine processes requests for the
allocation of page frames to satisfy page faults and explicit requests
via macros. The allocation techmique implemented attempts to (1)
minimize paging requirements asssociated with the real storage
allocation process itself, (2) minimize task walt time associated with
real storage allocation, and (3) keep real storage assigned to the
active pages in the system to reduce paging activity for executing
tasks.

The status of all real storage in the system is reflected in the page
frame table (PFT), which contains one t6~byte entry for each 4K page
frame in the system. The page frame table entries (PTFE's) are
connected by pointers to form six page frame status queues and one
SQA/LSQA reserve gueue. The latter queuve contains the page frames that
are reserved for allocatiom to SQA and LSQA virtual storage pages. The
PFTE's arxe initialized at IPL and thereafter always reflect the current
status of each page frame. The page frame table is contained in the
nucleus.

A PFTE contains a pointer to the TCB of the task to which the page
frame is assigned, the number of the virtual storage page to which the
page frame is assigned (if any), a fix counter, queue pointers to
indicate the page frame status gueue of which the PFTE is a part (if
any), and status flags. Certain status flags indicate whether the page
frame contains a long-term fixed page, a page that is being paged in or
out, or an LSQA or SQA page. Other status flags identify the page frame
as not allocatable (because of a permanant malfunction), allocated to a
nonpageable region, or required for allocation t0o a nonpageable region.

The following page frame status queues are maintained:

e Available queue, which indicates the page frames that are available
for allocation when page faults and page load/fix requests occur.
When page frames are released, such as at end of job step, they are
placed in this queue. Whenever a TSO region is swapped out, the
PFIE’s for the page frames allocated to the region arxre placed at the
beginning of the available gueue., Allocated page frames that become
inactive can be placed on this queue. An available page frame count
(APC) is maintained that always reflects the number of page frames
in this gqueune. The available queue has a low thxeshold value and a
replenish count, which are used in determining when to replenish the
available queue and by how much, respectively. A status flag
identifies a PFTE as belonging to the available queue.

- e Hold gueue, which indicates the page frames most recently allocated.
These page frames are not immediate candidates for reallocation. B&as
soon as a page frame is allocated, it is placed in the hold gueue to
enable it to be used by the task to which it is allocated before it
is put on an active queue and, thereby, made available for
reassignment. A status flag identifies a PFTE as belonging to the
held queue.

» Four active gueues, which contain all the PFTE's that are not long-
term fixed, unallocatable, oxr in the available queue or the hold
queue. These gqueues reflect the currently allocated page frames
that are not long-term fixed. As page frames in these gueues become
inactive, they are subject toc being placed on the available gueue,
as per the page replacement algorithm.

0s/Virtual Storage 2 Release 1 Features Supplement 59

Real storage is allocated from the available queue, which contains
unassigned page frames. Frequently referenced page frames are normally
not taken from one task to be allocated to amother; however, this can
occur if a situation axrises in which there are no umassigned orxr inactive
page frames available for allocation to a task.

Tasks execute on a priority basis and, therefore, reguests for page
frames are received and allocated on a priority basis. However, except
for a swap-in operaticn for a TSO user, page management does not ever
attempt to ensure that a given number of page frames are allocated to
each task (page frames are assigmned to the currently most active pages
without regard for the task to which they belongl). Unauthorized
pageable problem programs do not have any contrcl over when or how many
page frames are allocated to their pages.

At regular intervals, the page supervisor inspects the paging
activity of the system. If it is deemed to be too high, a deactivation
procedure is entered to make real storage available. This is done to
prevent the occurrence of thrashing.

Real Storage Allocation

The following is done to service a real storage allocation request
(refer to Figure 100.35.1). Before allocating a page frame, page
reclamation is attempted. If the contents of the referenced virtual
storage page are still in real storage, a page-in operation can be
avoided. Page reclamation is possible (1) if the page frame last
assigned to the virtual storage page has not yet been reassigned {is in
the available gueue), (2) when the page frame containing the desired
page is still waiting to be paged-out, and (3} when a page frame is in
the process of receiving the desired page in response to anothex
request. Reclamation is not attempted when a TSO regiom is swapped in.

If reclamation is not possible, the real storage allocation routine
attempts to allocate a page frame from the available queue. If a page
frame can be allocated from this queue, its PFTE is removed and the
available page frame count is decremented. If a page-in is required, a
request is placed in the appropriate page-in device queue, and the task
requiring the page remains in the wait state. If a page-in is not
required because this is the first time a page frame has been assigned
to this page, the PFTE is placed at the end of the hold queuve and the
allocated page frame is initialized to zero (for data security
protection) if the optional page frame clearing facility was selected at
system generation. Page frame clearing can be elimimated to reduce the
amount of CPU time used by the page manager. The appropriate page table
entry is updated to reflect the allocation of real storage. The same
procedure is used to service a request for more than one page frame.

If the page frame allocation request indicates long-term fixing (for
SQA or LSQA, for example), a page frame in real storage located above
the V=R line address is selected if possible. If a request is received
to long-term fix a page that is already present in real storage and the
page resides in the V=R area, it is moved outside the V=R area if
possible. If no page frame outside the V=R area is available, any
available page frame within the V=R area is allocated.

76 08/Virtual Storage 2 Release 1 Features Supplement

Page Explicit real

translation storage request
exception via a macro
interface
cantrol

Real Storage
Reclamation
Routine

Page Allocate
reclaimed? reclaimed
page frame

APC
below low
threshold?

Real storage
Ailocation
Routine

Reguest
satisfied

Page
frames in
available
queue?

Allocate page
frame and
schedule page-in
if necessary

Page

Replacernent

Algorithm

eplenish Workin: :
aHva’?t:gl'; queue] ‘rh gum Search 0, 1 Warking Put 1,0 queue

ith PFTE's rep eng, € queus; schedule replenish count entries in 0, 0
::eom 0, 0 quéue; ‘ 0,1PFTE's a? queue; put 1, 1
move other ' for page-outs; entries in 0, 1;
PETE's to maove 1,1 put hold queue

[" appropriate PFTE'sta 1,1 entries at end
queues queue of new 1,0
Replenishment Replenishment

completed completed

Figure 100.35.1. Flow of the real storage allocation procedure

.

0S/Virtual Storage 2 Release 1 Peatures Supplement i 71

The V=R real storage allocation routine is entered after it has been
determined that the V=R dynamic area of virtuval storage contains a
virtual storage area large encugh to satisfy the regiom size reguest.
The V=R allocation routine attempts to locate a contiguocus real storage
region that is large enough to satisfy the request. If SQA, LSQA, or
any other long-texm fixed pages have fragmented real storage such that
0o contigucus real storage arsa without such pages exists in the V=R
area that is large enocugh to satisfy the request, the V=R allocation
request is terminated, because it is possible that a large enough area
might not become available until a re-IPL is performed. The operator is
notified. If a large enough real storage area can be found that
contains only short-term fixed pages, nconfixed assigned pages, and
unassigned pages, the V=R reguest walts until the required assigned page
frames become available.

If the available queue does not contain enocugh page frames to sexrvice
the request, or if the available page frame count {(APC} reaches or falls
below the low threshold value for the available gqueue as a result of
page frame allocation, the real storage allocation routine gives control
to the real storage replacement routine. The low threshold is used to
indicate the point at which the available gueue should be replenished
with infrequently referenced page frames from the active gueues. The
real storage replacement routine schedules the replenishment function.

The aim of the real storage replacement routine is to keep encugh
page frames in the avallable gueue to enable page frames to be allocated
without the potential necessity of a page-out operation for each page
fault {which avoids keeping the requesting task in the wait state during
the required I/0 operation). This routine causes page frames to be
placed in the available gueue until the replenish count reaches zerc.
The page replacement algorithm determines the page frames that are to be
placed in the available queue.

Page Replacement Algorithm

The function of the page replacement algorithm is to replenish the
available queue by enqueuing on it infrequently referenced page frames
taken from the active gueuwes. Page~out operations are scheduled when
required f{a change bit for the page frame is onl). The technique used to
determine which page frames are taken from the active qgueues is designed
to ensure that the most frequently referenced (active) and most recently
assigned pages remain in real storage. Page frames that have been
unreferenced for the longest period of time are considered to be the
least active. Unreferenced page frames that have not been changed are
selected before those that have been changed, since these page frames
can be made available without a page—-out operation.

The page replacement algorithm uses one hold queue and four active
quenes of allocated page frames. Each active gueue represents a
possible configuration of reference and change bit settings as follows
{reference and change setitings for a given PFFE are indicated as 0,0;
Gy 1,0; oxr 1,12

72 Qs8/virtual Stoxage 2 Release 1 Features Supplement

Reference Change
Bit Bit Active Queue Contents

0 0 PFTE’s for page frames that were
unreferenced and unchanged since the
last inspection by the replacement
algorithm. Omly 0,0: 1,0:; oxr 1,1
PFTE's can be in this gueue.

0 1 PFTE's for page frawes that were
unreferenced since the last
inspection by the replacement
algoxithm but that were changed at
some previous time. Only 0,1 and 1,1
PFTE*s can be in this gueue.

1 0 PF1E°s for page frames that wexre
referenced since the last inspection
by the replacement algorithm but that
were not changed. Only 0,0; 1,0; or
1,1 PFTE"'s can be in this queue.

1 1 PFTE"s for page frames that were
referenced and changed since the last
inspection by the replacement algorithm.
Only 0,1 or 1,1 PFTE’s can be in this queue.

A replenish count, as well as a low threshold value and an APC, is
associated with the available gueue. The low threshold value (LTH}) and
the replenish count (REPCT} can be supplied vy the operator during IPL
via the PAL parameter. They cannot be specified during system
generation. LTH can be a value from 1 to 99 and defaults to 5. REPCT
can be a value from 1 to 99 and defaults to 3. The system—supplied
defaults are used if the operator does not provide these wvalues. The
page replacement algorithm is entered whenever the APC falls below the
low threshold value for the available gqueue. The page relacement
algorithm attempts to take the number of page frames specified by the
replenish count from the unreferenced, unchanged (0,0} queue, and place
them in the available queue. As the 0,0 active gueuve is inspected, page
frames whose reference and change recording bits have changed since the
last inspection are moved to their appropriate queues. After a PFTE is
moved from one active gueue to another, the reference bit for the page
frame associated with the PFTE is set to zero. The change bit for a
PFTE is set to zero only when the entry is placed in the available queue
after a page~out operation and at the completion of a page-in. The
reference bit also is set to zero after a page-in.

The following defines the activity of the page replacement algorithm
during an inspection sequence.

e A working replenish count is set equal to the replenish count value.
The 0,0 active queue is searched serially from top to bottom.
PFTE®’s with a 0,0 reference and change bit setting are placed in the
available gueue, the working replemish counter is decremented, and
the APC count is incremented. PFTE's with reference and change
settings other than 0,0 are moved to the appropriate active gueue.
Their reference bit is set to zexro, and they are placed at the end
of the gueue they are assigned. Henece, active queues are maintained
in FIFO sequence to preserve a reccord of comparative length of time
in the gueue among PFTE's in the same active gueue. (The hold gueue
is maintained in FIFQ sequence also.} The 0,0 active queue is
searched until enough 0,0 PFIE's are found to raise the APC to the
high threshold value of the available queue.

0S/Virtual Storage 2 Release 1 Features Supplement 73

e If enough 0,0 PFTE’s can bhe placed in the available quene from the
0,0 active gueue to reduce the working replenish count to zexro, page
replacement processing terminates. If enough 0,0 PFTE’s are not
found in the 0,0 active queue, the 0,1 active gueue is inspected
next from top to bottom. PFTE's with a 0,1 reference and change bit
setting are selected and scheduled for a page-out operation. PFTE's
with a 1,1 setting are moved toc the 1,1 active gueue and their
reference bits are turned off. The working replenish count is
reduced when a 0,1 PFTE is selected. However, 0,1 PFTE's that are
selected do not cause the APC to be incremented, since the rages
these PFTE's represent can be reclaimed before the page-out occurs.
Gnce a page-out is completed, the associated PFTE is placed in the
available queue and the APC is incremented.

e Since the 0,0 and 0,1 queues have been depleted by the previous two
searches, they must be replenished. All the PFTE’s on the 1,0
active gueue are moved to the 0,0 queue, and the entire contents of
the 1,1 quewe are moved to the 0,1 queuve. All the PFTE’s in the
hold queue are moved to the 1,0 queue. The reference bits of PFTE's
are not reset to zero when the queues are switched. The 0,0 gueue
is then searched as before for 0,0 entries, and entries with otherx
settings are moved to the appropriate queues.

Figure 100.35.2 illustrates the operation of the page replacement
algorithm. The page replacement algorithm used in VS2 is sensitive to
the paging rate of the system. The higher the paging rate, the more
frequently the algorithm will be entered to reexamine the status of the
PFTE gueues and reclassify them accordingly. The page replacement
algorithm also selects unreferenced, unchanged pages before
unreferenced, changed pages when replenishing the available queue.
Therefore, inactive refreshable pages will be made available fox
allocation before inactive nonrefreshable pages.

The page supervisor monitors the paging activity of the system. When
it becomes too high, as determined by user— or system-specified values,
task deactivation occurs to prevent a system thrashing condition. (The
page supervisor does not monitor the paging activity of individual
programs, only of the entire system.)

Note that the PURGE TLB instruction is issued to invalidate all the
entries in the translation lookaside buffer when task switching from one
region to another occurs, at swap-out time for a TSO region, at task or
job step termination time, and when the invalid bit is turned omn in an
entry im an active segment table or page table.

T4 0S/Virtual Storage 2 Release 1 Features Supplement

Low threshold=2

Status of Queues Before Replenishment
Active Queues

@Zﬁ:ﬁ’;gt;‘;:;;fa rUnreferent&d Unreferenced Referenced Referenced\
Unchanged Changed Unchanged Changed
Available 0,0 0,1 1.0 131 Hoid
fool 13 | 0] 3 1] 1] 5 01| 10 10} 12
APC=1 10 7 11 a 11 2 11 17 11 16
00| 15 1 8 1 14
00 4 1] 13
1 1] 19
6
o] N
\ Reference and change recording bits
’ Working replenish=2 Status After Searching 0,0 Active Queue
Available 0,0 0,1 1,0 1.1 Hold
oo | 18 1 1 10 5 o1 10 (10| 12
. 00| 15 1 0 1 2 1) 17 1 16
00 4 " 00 3 1 14
00 s 1 13 00 7 01 9
APC=4 1 19 Q0 1
Working replenish=2 Status After Searching 0,1 Active Queue
Available 0,0 0,1 1,0 1.1 Hold
00 18 10 5 01 10 10 12
o | 15 1 2 1 17 1 16
00 a 00 3 1] 14
00 6 00 7 o1 9
APC=4 co| 1 01 1
01 0
01 8
o1 | 13
01| 19
Working replenish=2 Status After Switching Queues
Available 0,0 0,1 1,0 11 Hold
gof 18 10 5 o1 | 10 10 12
00§ 15 1 2 1] 17 11 16
a0 4 00 3 1 14 {From Hold
00 5 w0 7 o1 o queue)
APC=4 00| 11 01 1
{From 1,0 a1 0
queue)} o1 8
1| 13
o1{ 19
{From 1,1
queue))
Working replenish=0 Status After Searching 0,0 Active Queue
Available 0,0 0,1 1.0 1,1 Hold
. 00| 18 {oo] 11 | o1 10 Jiwo] 12 01| 2
00| 15 M| 17 i 16
0| 4 1) 14 00} &
00 [o1]
00 3 1 1
0] 7 o) o
APC=8 1] 8
1] 13
01| 19

Figure 100.35.2.

Operation of the page replacement algorithm

0S/Virtual Storage 2 Release 1 Features Supplement

Task Deactivation and Reactivation

Paging activity for the entire system is measured by accumalating
statistics regarding reclaimed pages and page-in operatioms. The
reclaim count is incremented each time a required page is fournd to be in
real storage and also scheduled for a page-out. A high reclaim count
indicates the incidence of page replacement is so high that even
frequently needed pages are being scheduled for a page-out. A low
reclaim count may indicate that wery little page replacement is
occurring and that the system may be operating well below its capacity.
The page-in count includes all page-ins and one-half the number of pages
brought into real storage as a result of TSO regicon swap-ins.

Periodically, these two counts are inspected to determine whether
they exceed the high threshold values established at system
initialization. The interval of real time in seconds between
inspections (MTIM) can be specified by the operatcor during IPL as can a
high and a low threshold value for reclaimed pages (HRC and LRC} and a
high and a2 low threshold walue {(HRD and LRD) for page-in and swap-in
operations. These five values cannot be specified during system
generation. System defaults are used if the operator does not supply
these values.

MTIM can be a value from 1 to 9 and defaults to 1. HRC can be a
value from 0 to 9999 and defaults to 20. LRC can be a value from 0 to
9999 and defaults to 5. HRD and IRD each can be a value from 0 to 98989,
HRD defaults to 0 and IRD defaults to 9999. If the system defaults for
the high and low threshold values are not used, care should be taken
when selecting substitutes. If any cne of the following conditions
exist, the task disable algorithm is effectively disabled:

e LRC or LRD {or both) are 0 and either HRC or HRD {(oxr both) are 2999
s LRC oxr LRD is 92999

s HRC is O

e HRD is 1

When established high threshold values are exceeded, the task
dispatcher is given control to select a task (not region) for
deactivation. The lowest~priority pageable task is selected and marked
nondispatchable. Nonpageable and TSO tasks are not considered for
deactivation. The reference bits for each of the nonfixed page frames
currently allocated to the deactivated task are set to zexo, which makes
these page frames available and most likely to be selected next time the
page replacement algoxrithm inspects the PFTE queunes.

When any task is in deactivation status at the time paging activity
counts are inspected and found to be below their high threshold values,
a check is made to see if the same counts are also below a low thresheold
value. When they are, the task dispatcher is entered to select a
deactivated task for reactivation, since this condition indicates that
paging activity is sufficiently reduced to permit task reactivation.

EXTERNAL PAGE STORAGE ADMINISTRATION

External page storage administration manages the allocation of slots
in external page storage to virtual storage pages. This routine
maintains external page tables that indicate whether a virtual storage
page has a slot assigned and, if so, the location of the slot. When a
page-in operation is reguired, these tables are inspected to determine
the address of the assigned slot.

Té 0SsVirtual sStorage 2 Release 1 Features Supplement

There is one external page table associated with and adjacemnt to the
page table for each allocated segment of virtual storage that is
pageable and for segments allocated to TSO LSDA's. These tables are
contained inm SQA or the appropriate LSQA. There axe 16 entries, eight
bytes in size, in each extermal page table (one for each virtual storage
page in the segment the associated page table descxibes). In addition
to indicating the location of an assigned slot, an external page table
entry contains the storage pzotect key associated with its corresponding
virtual storage page.

Bit maps, one per paging device, are used to indicate whethex a slot
in defined external page storage is assigned or available. When a slot
must be allocated for a page-cout operation, these maps are inspected
during the selection of a slot. Bit maps are contaimed in the nucleus. -

When a slot must be assigned, the external page storage algorithm
attempts to select a device that will balance the usage of paging
devices. When primary and secondary paging devices are defined, slot
assignment is balanced among primary paging devices and secondarxy
devices are not selected until the threshold value for available primary
external page storage is reached. When there is more than one grimary
paging device, the one selected is the one with the most available
slots. @ If the selected device has a movable arm, the algorithm attempts
to select a slot that will minimize seek time. This is accomplished by
selecting an available slot within or as close as possible to the
cylinder at which the arm is currently positioned. If the selected
paging device is a fixed head type, the algorithm attempts to select a
slot that will minimize rotational delay by allocating the next
available slot that will pass umnder the read/write heads.

A virtual storage page does not have a slot permanently assigned to
it, except for those allocated to the pageable link pack area and its
directory. Slot assignment is performed for a page every time a page-
out operation is reguired for the page. A slot is selected that will
minimize paging I/0 time. Hence, each time a page is written out, a new
slot may be assigned and, if so, the slot previously assigned is freed.

PAGE ADMINISTRATION

Routines in page administration are primarily responsible forx
initiating I/0 operations (page-ins and page-outs) on paging devices and
for performing the required processing when these I/0 operations
terminate. Page administration performs the followings

e Page I/0 initiation. Channel programs for all paging operations are
built according to a slot sorting algorithm ({(discussed below) that
is designed to optimize paging operations. The EXCPVR macro is
issued to initiate paging I/0 requests and a special interface to
I0S is used.

e Completion processing for paging operations. For example, when a
page~in is completed, the reference and change bits for the affected
page frame are reset, the PFTE for the page frame is placed in the
hold gqueue, the appropriate page table entry is validated; and the
task that was awaiting completion of the page-in operation is placed
in the ready state. When a page-out completes, the affected page
frame may be reclaimed, allocated to a nonpageable region, allocated
as a reserved page frame for SQA and LSQA, or placed in the
available queue.

e Determination of the location (virtual storagé address) of the page

table entry and the external page table entry for a virtual storage
address when they are required (such as after a page fault occurs)

0S/Virtual Storage 2 Release 1 Features Supplement T7

s Creation and destruction of page tables when these functions are
requested by virtual storage management {(discussed in Sectiom 100:25)

o Release of page frames and slots currently assigned to an area of
virtual storage. (PGRLSE macro processing is part of page administration.). .~

¢ Swapping of TSO regicn contents in and out of extermal page storage
{(described undexr "Time Sharing Option” in Section 100:20)

The slot sorting algorithm constructs and initiates channel programs
for paging operations. The number of channel programs made available
for exclusive use in paging operationms is determined during IPL. These
channel programs are located near the end of the resident nucleus. When
a paging operation is required, the slot sorting algorithm places the
required device-dependent information into an available channel program
based on the address of the slot assigned by the extermal page storage
algorithm. The channel programs built for paging operations contain
real addresses. Rotational positicon sensing is utilized when the
feature is present for the paging device.

When construction of a paging channel program has been completed, the
slot sorting algorithm determines whether the paging operation is for a
movable or fixed head device. If it is for a movable head device, the
slot sorting algorithm determines whether the addressed paging device is
busy. If mot, the paging channel program is initiated on the device,
using the new EXCPVR macro. If the paging device is busy, the slot
sorting algorithm determines whether a paging operation is taking place
in the cylinder addressed by the new paging channel program. If so, the
new paging channel program is chained to the operaticmal paging channel
program. If not, the new paging channel program is placed in the
appropriate slot queue for the addressed paging device without also
being initiated.

A slot queue is a queue of channel programs that are to perform
operations om slots that have the same slot mumber {(but not group
number) within the same paging device. The number of slot queues per
paging device is equal to the number of slots per group for that direct
access device type {three slot queues for a 3330-series device, eight
slot gueues for a 2314,2319 device, etc.). For a paging device with a
movable arm, channel programs are placed in a slot queue in low-to-~high
cylinder address sequence. The channel programs for the same cylinder
are then arranged in task priority sequence, with read requests having
priority over write requests when task priorities are equal. Read
requests or write requests with the same priority are queued in FIFO
sequence. .

When a paging channel program completes for a movable head paging
device, a channel end appendage is enmtered. This routine posts the I/O
operation complete, releases the paging channel programs, and attempts
to start a paging channel program on the next highest addressed
cylinder. The slot sorting algorithm is called to inspect the slot
queues for the movable head paging device and construct a channel
program chain for the next cylinder. The channel program chain is
constructed such that rotational delay is minimized. Once a paging
channel program has been constructed, it is initiated by the channel end
appendage routine. Note that the paging chamnel program chain that is
constructed in Release 1.6, for either a movable head or a fixed head
paging device, does not contain PCI flags as does the paging channel
program chain that is constructed in Release 1.

When a paging channel program is constructed for a fixed head paging
device, the slot sorting algorithm initiates the chanmnel program via the
EXCPVR macro if the addressed paging device is not busy. If the fixed
head paging device is operational, the paging channel program is chained
to the operational channel program. A fixed head paging device is

- 78 - 0S/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18,1975
By TNL GN20-3481

considered to have only one cylinder. Hence, a paging operation on a
fixed head paging device terminates only when there is no paging to be
done in the system.

Slot queues are also maintained for fixed head paging devices.
Channel programs are placed in a slot queue for a fixed head paging
device in task priority sequence, with read requests having priority
over write requests when task priorities are egual. Read requests or
write requests with the same priority are queued in FIFO sequence. When
a paging operation terminates on a fixed head device, a channel end
appendage is entered to post the I/O operation complete, release the
paging channel programs, and start another paging I/0 operation. The
slot sorting algorithm is called to construct a channel program chain
that consists of the paging requests in the slot queues for the fixed
head paging device. This channel program chain is then started by the
channel end appendage routine.

Page-out write operations are not verified for performance reasons.
When a permanent write error occurs during a page-out, the slot involved
is marked assigned so that it will not be reassigned. Another available
slot is selected and the page is written in the new slot. The operator
is informed that an error occurred on a paging device. When a permanent
read error occurs during a page-in operation, the task associated with
the page is abnormally terminated, the slot is marked assigned to
prevent further allocation of the slot, .and the operator is informed of
the error.

100:40 RECOQVERY MANAGEMENT

RECOVERY MANAGEMENT SUPPORT

The routines included in recovery management support are machine
check handler (MCH), channel check handler (CCH), alternate path retry
(APR), and dynamic device reconfiguration (DDR). = All are standard in
VS2w (APR is included automatically only when an alternate path to a
device is specified.) The facilities provided by these routines are
functionally equivalent to those supported by 0S MFT and MVT RMS
routines for System/370 models, with a few exceptions, as follows.

MCH routines are structured such that a VS2 control program generated
for:one System/370 model can be executed on other Systems/370 models
supported by VS2. When MCH recognizes that it is operating on a model
other than the one for which it was generated, error conditions that
require processing by model-dependent routines are handled by model-
independent routines.

Extensions to recovery processing after a real storage error occurs
have been made as well. When an uncorrectable real storage failure
occurs after the IPL procedure has been. completed, MCH determines
whether the page frame in error is assigned to the resident nucleus,
SQA, the paging channel program area, or LSQA. If so, system operation
is terminated. Otherwise, if the page frame is allocated to'a virtual
storage page in the pageable dynamic area, MCH attempts to isolate the
page frame involved so that it will not be allocated by real storage
management, and an attempt to recover the contents of the damaged page
frame is made. If the page was unchanged before the uncorrectable
storage error occurred, it is assigned another page frame and paged in
again. If the page was changed and it belongs to a user task, the task
is abnormally terminated. If the page was changed and it belongs to a
system task, MCH determines whether the task is critical or noncritical.
The system is placed in a wait state if the error is associated with a
critical task. If the affected task is noncritical, it is marked
nondispatchable and system operation continues.

OS/Virtual Storage 2 Release 1 Features Supplement 79

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

In all cases, MCH determines whether the real storage error was
intermittent or permanent. If the error is permanent, the PFTE for the
affected page fram is marked not allocatable and removed from the gqueue
of page frames that can be assigned to virtual storage pages so that it
will not be reassigned. This action is not taken if the error was
intermittent.

The resident portion of MCH is contained in the control program
nucleus. The transient modules of MCH are contained in SYS1.SVCLIB. A
central CCH routine is also part of the nucleus. The five channel-
dependent CCH routines (for 2860, 2870, 2880, Model 158/155 II, and
Model 145 channels) are contained in SYS1.LINKLIB. During IPL, the
required channel-dependent module or modules, as- determined by the STORE
CHANNEL ID instruction, are fetched and made resident in the nucleus.

APR and DDR processing is equivalent in function in VS2 and MVT,
except that DDR does not support the swapping of a system residence or a
page data set volume in a VS2 environment.

Power Warning feature support (also available in Releases 21.6, 21.7,
and 21.8 of MVT) is a system generation option that is provided for
Model 158 and 168 users that have the optional Power Warning feature and
uninterruptible power supplies installed for their systems. When this
support is included in a generated VS2 system and a warning machine:
check interruption occurs as a result of a power disturbance, actions
are taken to prevent a system termination, if possible, or to save the
contents of real storage on disk before a termination occurs so that
system operations can be restarted when normal power is restored.

Power Warning feature support requires a system to have
uninterruptible power supplies for only a critical subset of the
hardware configuration, that is, the central processing unit, all
channels, two 3330-series drives, and the critical paths to these disk
drives. When a system is fully protected by uninterruptible power
supplies, system termination can be avoided after a power disturbance of
short enough duration, that is, a disturbance of shorter duration than
the interval of time during which the system can be powered by the
reserve power supply.

When Power Warning feature support is present in the generated VS2
control program, two warn data sets, SYSi.WARNA and SYS1.WARNB, must be
allocated on two separate 3330-series volumes of the same model (1, 2,
or 11). One of these can be the system residence volume in VS2. Each
data set must consist of one contiguous extent of cylinders that is
large enough to contain the entire contents of real storage. When
required, the contents of real storage are dumped to SYS1l.WARNA, which
is the primary warn data set. The alternate warn data set, SYS1.WARNB,
is used when the primary data set is not accessible.

The two warn data sets must be placed on two 3330-series drives that
have an uninterruptible power supply. The 3330-series drives that have
an uninterruptible supply are identified by the user during system
generation. During system initialization, the initialization routines
ensure that the two warn data sets are mounted on 3330-series drives
that have uninterruptible supplies and that a channel path to these
devices exists. The DDR routine ensures that a volume with a warn data
set is swapped only to another 3330-series device that has an
uninterruptible power supply. Both warn data sets are always formatted
during system initialization for data security reasons. The operator is
notified if a warn data set contains dump data that was not used during
a system restart. The operator must indicate that this daomp data is to
be restored or give control to a system routine that erases and
reformats the warn data set. A user-written routine can be included in
VS2 that will be executed before the warn data sets are erased and
reformatted.

80 0OSs/Virtual Storage 2 Release 1 Features Supplement

When a warning machine check interruption occurs, one of the
following steps is taken, depending on the user specification at system
generation for Power Warning feature support:

e A real storage dump routine is entered immediately after the warning
interruption. This routine dumps the contents of real storage to
disk and terminates system operations. This option should be chosen
when an I/0 device critical to the operation of the system does not
have an uninterruptible power supply.

e A timing routine is entered after the warning interruption occurs to
determine whether the disturbance is transient before any other
action is taken.

When the second option listed above is chosen, a system-supplied
timing routine executes for an interval of time called the' time delay
interval. This interval is user specified at system generation. The
length of the time delay interval specified should be limited by the
amount of reserve power provided by the installed uninterruptible power
supplies. During the time delay interval, the timing routine constantly
enables the system for warning and all exigent machine check ,
interruptions. The power disturbance is determined to be transient or
nontransient, depending on the interruptions received during the tlme
delay interval after each enabling of the system.

If a warning interruption occurs after an enabling, the timing
routine continues the enabling procedure. The disturbance is considered
to be transient if a warning interruption is_.not received after an
enabling, which indicates utility power has been restored. If a warning
interruption is still occurring at the end of the time delay interval,
the disturbance is considered to be nontransient. The disturbance is
also considered to be nontransient if an exigent machine check
interruption occurs during the time delay interval. Operation of the
timing routine terminates immediately after the occurrence of an exigent
machine check interruption even though the time delay interval has not
expired.

When a disturbance is determined to be transient, the warning
condition is treated as a repressible machine check condition. MCH logs
the error and returns control to the VS2 supervisor so that system
operations can continue. When a power disturbance is found to be non-
transient, control is passed to a user-written routine, if one is
present, or to the real storage dump routine which will write the entire
contents of real storage in a warn data set. System operation is
terminated after the dump is taken. If a‘user-written routine is
executed after a nontransient power disturbance occurs, the routine can
determine whether system termination is required. The user-written
routine can return control to the VS2 supervisor so that system
operations continue or to the dump routine as required.

When a power disturbance causes a system termination, system
operations can be restarted using the contents of the warn data set
after normal power is restored. 'The routine that restores the contents
of real storage is contained in SYS1.LINKLIB. When the operator
indicates that restoration of real storage is to occur during IPL, the
restore routine is loaded into the real storage. It reads the contents
of the warn data set and places the data in the real storage locations
from which it was dumped. The system is placed in a disabled wait state
after real storage has been successfully restored. System recovery and
restart procedures can then be performed. s

O0S/Virtual Storage 2 Release 1 Features Supplement 81

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

OLTEP

OLTEP is a standard feature of VS2, and it supports the same
functions as O0S MVT OLTEP. When controlling the execution of OLT's,
OLTEP must operate in a nonpageable region in VS2. A minimum of 64K is
required for the nonpageable region when 4K OLT's are executed. OLTEP
can execute in a pageable region, however, when it is controlling
execution of the logout analysis program for a Model 158, 155 II, 168,
or 165 II. A pageable region of 192K minimum is required to execute a
logout analysis program under OLTEP.

PROBLEM DETERMINATION FACILITIES

Service Aids

The service aids in VS2 are designed to help diagnose a control or !
problem program failure by gathering information about the cause of the
failure, formatting and printing the information in a readily usable
form, and aiding in the development and application of an immediate fix
for a given problem.

The following service aids are provided, all of which can operate in a
pageable region under VS2 control, except IMCOSJQD:

e AMAPTFLE is used to apply PTF's to a systen. This aid also proluces
‘the job control required to apply the fix. Independent component
releases of VS2 are supported (not supported in MVT). AMAPTFLE is
functionally superseded by the system modification program (SMP),
which is also provided for MVT (Releases 21.0, 21.6, 21.7, and
21.8). ©SMP provides an improved and more comprehensive method of
applying system modifications (PTF°'s), component releases, and user
modifications to VS2 distribution libraries and system libraries.

e AMBLIST replaces the IMAPTFLS and IMDMDMAP service aids in MVT an:l
produces formatted listings that can be used for system
serviceability and diagnostic purposes. It can print the follow1ng:

Formatted load module listings

Formatted object module listings

Load module map and cross-reference listings

Map and cross-reference listings of the system nucleus

Listings of the data stored in the CSECT identification
records of load modules

Load module map and cross-reference listings showing
relocated addresses

Load module summary data including entry point addresses, module
attributes, and the contents of the module's system status index

Program modifications to a load module library

A map of the pageable link pack area (does not include
modifications to the pageable link pack area)

e AMASPZAP provides the capability of inspecting and modifying any
load module in a partitioned data set (PDS) or any specific data
record on a direct access device. It also can be used to dump an
entire data set, a specific member in a partitioned data set, or any
portion of a data set on a direct access device. Use of this
service aid is restricted via APF.

e IMCOSJQD can be used to print the contents of SYS1.SYSJOBQE. This
standalone program replaces the IMCJQDMP program provided in MVT.

e AMDSADMP is a macro instruction that enables a user to generate a
standalone, high-speed or low-speed real storage dump program. The

82 0OS/Virtual Storage 2 Release 1 Features Supplement

high-speed version writes the contents of the control registers,
real storage (including the seven-bit protect key), and, optionally,
the page file to tape in large blocks (to be printed by AMDPRDMP).
The low-speed version primts the contents of the control registers
and real storage or writes them to tape in unblocked printable
format so the tape can be prxinted by IEBGENER or AMDPRDMP. The
store status function must be performed by the operatoxr before
loading a standalone dump program.

e AMDPRDMP formats and prints a dump tape produced by a high-speed or
low-speed version of AMDSADMP, the trace data gathered by the
generalized trace function of GTF, the SY¥S1.DUMP data set, and the
TSO DUMP data set. It alsc can be used to print selected pages from
the page file. The V52 AMDPRDMP service aid formats dumps created
using the vS2 AMDSADMP dump routime only. It will not format a dump
created using a VS1 dump routine.

e IFCDIPQ0 initializes, reinitializes, and reallocates the S¥S1.LOGREC
data set, as in MVT.

s IFCEREPO formats and prints records contained in SY¥S51.LOGREC and
creates a history tape, if desired, as in MVT.

e Generalized Trace Facility

The general functions of GTF, as implemented in VS2, are the same as
those for GTF operating under O0S MFT or MVT. When executing in VS2,
GTF uses the hardware monitoring facility and supports tracing of
page fault interruptions.

The generalized trace functiom of GTF must be initiated as a system
task via a START command. A virtual storage region of 64K minimum
is required. A larger region may be required depending on the
number and size of the trace buffers used and the options selected.
Parameters (events to be traced, definition of trace output data
set, etc.) can be supplied to GTIF via the START command oOr a
SY¥S1.PARMLIB member. During its execution in VS2, the trace
function requires a certain minimum of fixed real storage when trace
data is contained in real storage and a larger minimum of fixed real
storage when the data is written in a trace data set. If additional
trace buffers are defined, more real storage is fixed.

The trace EDIT function of GTIF is a part of the AMDPRDMP service aid
and is invoked as a problem program via job control. A minimum 128K
byte pageable region is required for its executiom. The trace EDIT
function of VS2 will format only the trace data produced in a VS2
environment. It will not format data traced using GTF in VS1, MFT,
or MVT environments. However, MVT programs that use the GTRACE
macro can be executed under VS2 control without modification. If
user-written EDIT exit routimes are being used in MVT, they may
require modification for operxation in a VS2 environment because of
differences im the format of trace data for system events.

While GTF and the current MVT resident trace facility coexist in a
VS2 control program, only ome can be active at a time. GTF disables
the trace facility whenever it activates its own tracing function
and reenables the trace facility whenever GTF tracing is suspended.

The storage dump facilities available in MVT are also provided in
V82. Real storage and/or the contents of selected areas of virtual
storage can be dumped in VS2.

OS/Virtual Storage 2 Release 1 Features Supplement 83

Dynamic Support System (DSS)

The dynamic support system is a general purpose debugging tool that
is designed to help locate and temporarily repair a failure in most
components of the VS2 control program. DSS uses program event recording
hardware in its interface with the coperational VS2 operating system.

D88 is designed to be used by authorized personnel, such as an IBM FE
Programming Systems representative.

The DSS user interfaces with DSS only via a required primary comnsole
device type (3210, 3215, Model 158 display console, 3066} and
communicates requests using a DSS language that consists of several
commands. Secondary input can be entered via card readers and tape
units. The SY¥S1.DSSVM data set is used to contain such things as DSS
language processing routines, the paging data set for DSS, space for the
DSS intermal dump, and a nucleus swap area. The DSS user can:

e Display any portion of real storage or virtual storage and any
register ox system control bleock during system operation under DSS.
Any of the preceding can be altered also, except DSS, IPL, and NIP
code.

Monitor hardware events recognized by the PER feature and certain
program events that are detected using the monitoring feature

o Stop the operatiomn of the system at a given point, perform
maintenance procedures, and then continue system operation

e Save data (register or real storage contents, etc.) accessed during
DSS activation on sequential devices for later use

Unauthorized use of DSS must be prevented by installation procedures.

The primary protection that DSS offers is the fact that only the primary
system console can be used for DSS operations.

100: 45 LANGUAGE TRANSLATORS, SERVICE PROGRAMS, AND EMULATORS

SYSTEM ASSEMBLER

The System Assembler is a stendard component of V82 (and VS1). It is
the only langunage translator that is a standard component of VS2.
Program product and Type I language translators that are to be used with
V52 must be obtained and added to the VS2 system after the desired VS2
control program has been generated. The System Assembler offers the
same functions as Assembler F and many enhancements, including improved
diagnostics and extended language capabilities. The System Assembler is

“compatible with OS Assemblers E and F, with a few minor exceptions (see
05/VS System Assembler Language, 6C33-4010}). The System Assembler is a
compatible subset of Assembler H.

The System Assembler and the 0S5 Assembler H {Release 5) program
product are the only OS5 Assemblers that support the following Systems/370
instructions:

CLEAR I/0 SET PREFIX

CCOMPARE AND SWAP SET PSW EKEY

COMPARE DOUBLE AND SWAP SIGNAL PROCESSOR

INSERT PSW KEY FROM ADDRESS STORE CLOCR COMPARATOR
LCAD REAL ADDRESS STORE CPU ADDRESS

PURGE TLB STORE CPU TIMER

RESET REFERENCE BIT " STORE PREFIX

SET CLOCK COMPARATOR STORE THEN AND S¥STEM MASK
SET CPU TIMER STORE THEN OR SYSTEM MASK

84 0s/svirtual Storage 2 Release 1 Features Supplement

The System Assembler is packaged to cause fewer page faults in a
paging environment than does Assembler F, and its modules are reentrant.
Therefore, the System Assembler can be placed in the pageable LPA ‘and
shared by concurrently executing tasks. ' The System Assembler can
operate in a pageable region of 64K; however, for more efficient
operation, a region 128K or larger in size is required.

LINKAGE EDITOR

The VS2 Linkage Editor program is a standard component of VS2 (and
VSl). It also can operate under OS MFT and MVI. A pageable region a
minimum of 64K in size is required for its operation; however, a region
of 118K or more is recommended for better performance.

The VS2 Linkage Editor supports the same facilities as 0S Linkage
Editor F. In addition, it is designed to operate in a paging
environment, to support the authorized program facility (as previously
described), and to provide two new features that can be used to reduce
the paging and real storage requirements of programs.

The new features provided for use in minimizing paging activity ani
real storage usage are CSECT reordering and CSECT alignment on a page
boundary. Linkage editor control statements can be included to indicate
the order in which control sections (CSECTs) and common areas appear in
a program (load module). By the reordering of control sectionms,
existing OS MVT programs can be restructured (without a rewrite) for
more efficient operation in a paging environment, if necessary. Linkage
editor control statements can also be included that specify which
control sections and common areas of a load module are to be aligned on
a page boundary in virtual storage.

The VS2 Linkage Editor accepts as input all load modules produced by
0S Linkage Editors E and F and the object modules that are produced by
all 0OS language translators. Existing job control statements and
Linkage Editor E and F control statements are accepted without
modification except for the SIZE option and certain linkage editor
program names. . VS2 does not recognize IEWL4UO, IEWL880, or IEWL128 as
linkage editor program names on EXEC statements. Only IEWL and LINKEDIT
can be used in VS2 as linkage editor program names.

UTILITIES

The same utilities that are provided in MVT are available in VS2.
The IEBCOPY system utility is enhanced to allow a partitioned data set
to be unloaded to a removable volume (tape or disk) and later reloaded
to the same or a different type disk volume. This utility is to be used
during a system generation to place distribution libraries supplied with
the starter system on direct access volumes. The VS2 starter system,
therefore, is independent of the direct access devices that will be used
during a system generation.

The IEHDASDR utility is modified to place a user-written IPL program
on track zero of an IPL volume, after the required IPL records and
volume label(s). This function can be used to place an AMDSADMP dump
program on disk so that it need not be IPLed from cards or tape. The
disk volumes used to contain any user-written IPL program must have a
track size that is large enough to contain the entire IPL program and
the IPL records. (The IPL program must be totally contained on track
zero.)

OS/Virtual Storage 2 Release 1 Features Supplement 85

Page ot GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

SORT/MERGE PROGRAMS

The OS Sort/Merge (5734-SML) and 0S/VS Sort/Merge (5740-SM1) program
products can be used in a VS2 environment. Both programs can operate in
the minimum size virtual region (64K). While the 0S Sort/Merge program
can operate in nonvirtual storage OS environments, the 0S/VS Sorts/Merge
program operates only under VS1 and VS2 control.

The 0S/VS Sort/Merge supports the same functions, facilities, and
options that the 0S Sort/Merge supports. In addition, the 0S/VS
Sorts/Merge supports features and I/O devices not supported by the 0S
Sort/Merge and can also provide better performance via a new disk
sorting technique for fixed- and variable-length records.

The 0S/VS Sort/Merge is compatible with the 0OS Sort/Merge.
Therefore; sort/merge control statements, job control, and user-written
exit routines that are used with the 0S Sort/Merge can be used with the
0S/VS sort/Merge without modification, except when they apply to direct
access devices that the 0S/VS Sort/Merge does not support.

Differences between the 0S/VS Sort/Merge and the OS Sort/Merge are
the following:

e The 0S/VS Sorts/Merge supports as intermediate storage for sorting,
3330-series Model 11 and 3340 disk storage units, which are not
supported by the OS Sort/Merge. The 0S/VS Sort/Merge does not
support, for intermediate storage, 2311 and 2301 direct access
storage, which are supported by the 0S Sort/Merge. The 0S/VS
Sorts/Merge supports up to 100 direct access devices for intermediate
storage when the new disk sorting technique is used. Both programs
support 2314/2319, 3330-series Models 1 and 2, and all 3400-series
tape units (from 3 to 32) for intermediate storage.

e A new sorting technique is implemented in the OS/VS Sort/Merge. It
is used for fixed- or variable-length records when disk storage is
provided for intermediate work storage. This new technique takes
advantage of any existing sequencing within the input file that is
to be sorted. When the new technique is used, the input file is
never written to intermediate disk storage if it can be completely
contained in virtual storage.

e The 0S/VS Sort/Merge is also designed for more efficient operation
in a virtual storage environment and is reentrant. These features
can provide better performance, depending on the ratio of virtual
storage allocated to the sort/merge and the amount of real storage
dynamically available for allocation to the sort/merge.

e The 0S/VS Sort/Merge supports key-sequenced and entry-sequenced VSAM
data sets as well as QSAM data sets as inpaut and output for both
sorting and merging operations. Any I/0 devices supported by QSAM
or VSAM can be used as the input or output device type. The 0S
Sort/Merge program supports only QSAM organization for input and
output data sets. VSAM input data sets cannot be concatenated as
can QSAM data sets. The minimum amount of virtuwal storage required
by the 0S/VS Sort/Merge is greater than 64K when VSAM data sets are
sorted. Checkpoints cannot be written when the output from a merge
operation is a VSAM data set.

e The 0S/VS Sort/Merge provides the capability of invoking a merge
operation within a sorting operation for either a QSAM or VSAM input
data set. A new exit is provided that enables a user-written
routine to supply input records to the invoked merge operation.

e The 0S/VS Sort/Merge can sort records based on a user-specified
collating sequence, which is not supported by the 0S Sort/Merge.

86 . OS/virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised September 13, 1976
By TNL GN20-3589

* The O0S/VS Sort/Merge handles up to 64 binary or character control
fields, which can contain a total of 4092 bytes. The 0S Sort/Merge
handles up to 64 binary or character control fields with a total of
256 bytes.

* The 05/VS Sort/Merge provides the capability of maintaining the
input order of records with equal control fields. This capability
is not supported by the 0S Sort/Merge.

* When fixed-length records are being sorted, the 0S/VS Sort/Merge
automatically provides a formatted dump of the sort/merge program
when a program failure occurs that terminates sorting operatioms.
This capability is not provided by the OS Sort/Merge programw.

INTEGRATED EMULATORS

The following emulator programs that operate under MVI control will
also operate under VS2 SVS control:

e 1401/1440/1460 emilator Version 2 operating on a Model 145, 155 II,
or 158

e 1410/7010 emulator operating on a Model 145, 155 II, or 158

* 707077074 emulator operating on a Model 155 I1II, 158, 165 II, or 168

* 7080 emulator operating on a Model 165 II or 168

e 709/7090/709U/70941TT emulator operating on a Model 165 II or 168

e DOS emulator Version 3 Level ? operating on a Model 145, 155 II, or
158 to emulate a DOS Version 3 or 4 system (Releases 25, 26, and 27)
or DOS/VS system (Releases 28 to 32).

The functions supported by the integrated emmlator programs listed
above when they operate under VS2 are identical to the functions
supported by these emulators when they operate under MVT. These
functions are discussed in appropriate system library publications and
in Section 40 of the following System/370 guides:

e A.Guide to the IBM System/370 Model 145 (GC20-1734)
* A Guide to the IBM System/370 Model 155 (GC20-1729)
e A Guide to the IBM System/370 Model 165 (GC20-1730)

Version 3 of the 1401/1440/1460 emulator program runs under VS2 SVS

(and V51) but not under MVT (or MET). Version 3 supports the same

facilities as Version 2 and provides the following new features:

o Support of multiple-volume 1400 files. ' Version 2 supports only
single-volume 1400 files.

e Carriage control commands for the 1403 printer are emulated directly
on the System/ 370 printer device.

e Stacker selection for the 3505 reader and 3525 punch is supgorted.

e A 1401/1440/1460 simulator is supported. This simulator is provided
for use on Model 165 II and 168 Systems for which a 1401/1440/1460
Compatibility hardware feature is not available. This simulator can
also be used under VS2 on Models 145, 155 II, and 158. The
1401/1440/1460 simulator suppcrts the same functions as Version 3 of
the 1401/1440/1460 emulator and requires 10K more of virtual storage.

0S/Virtual Storage 2 Single Virtual Storage (SVS) Features Supplement 87

Page of GC20-1753-1
Revised September 13, 1976
By TNL GN20-3589

The additional virtual storage is required for prcgramming that
provides the functions of the 1401,/1440/1460 Compatibility feature.

All the integrated emulator programs for VS2 are pageable. The
emulator interface, SVC 88, is standard in VS2; however, the desired
emulator programs must be ordered separately, as for MVT. Emulator
programs generated to operate on a Model 145, 155, or 165 under 0OS MVT
control will operate on a Model 145, 158,/155 II, or 168/165 II,
respectively, under VS2 control. Emulator regeneration is not required.

100:50 0S MVT TO 0S/VS2 SVS TRANSITION

VS2 SVS is designed to be upward compatible with MVT, as of Release
21.8, and, therefore, migration from MVT to VS2 should involve minimal
conversion effort. Some additional education of installation personnel
is required. For the most part, this involves their becoming
knowledgeable about the additional facilities and new environment
offered by VS2. System programmers must become acquainted with new
interfaces to VS2 (SMF exits, for example). Operators must learn how to
respond to new system messages, such as those related to paging devices,
and must become familiar with changes to the IPL procedure. BApplication
programmers should learn how to use some program structuring techniques
that are designed to improve system performance in a paging environment.
System designers must learn about the new factors that affect system
performance in a VS2 environment so that the system can be designed and
operated in a manner that will achieve the results desired.

Once the VS2 SVS environment to be supported has been determined, a
system generation must be performed. A VS2 system control program is
generated via a two-stage procedure, which is, in function, much like
that required to generate an MVT control program. The system generation
macros used to describe the desired control program are identical for
MVT and VS2 for like functions. Some of the macros and parameters used
in MVT are not required in VS2, while new macros are provided to
describe additional or different functions of VS2 (paging devices,
automatic priority group, etc.).

As for MVT, a complete, nucleus-only, or I/0-device-only VS2
generation can be performed. Processcr-only generations, which are
supported in MVT, are not supported in VS2. All OS program products and
Type I and Type II components that are to be used with the generated VS2
SCP must be added to the VS2 operating system after its generation.
Since processor generations for Type I language translators cannot be
performed using a VS2 system, they must be done using OS MFT or MVT.

The VS2 Release 1.7 starter system (available on tape only for
231472319 or 3330-series residence) operates on any System/370 model
with 384K or more of real storage that has the dynamic address
translation feature, onre console, one nine-track tape unit, one SYSOUT
device, and four 2314/2319 or three 3330-series direct access storage
devices. The VS2 starter system can only be used to generate a VS2
control program and is required only for the first generation.
Thereafter, an existing VS2 control program can be used. The Model 158
display console can be used only in printer-keyboard mode when the
starter system is being used for the generation.

If the existing VS2 system is not to be modified, the system
generation can be performed concurrently with other executing jobs. The
generated VS2 system can operate on any System/370 Model 145, 155 II,
158, 165 II, or 168 that has the hardware features and 1/0 devices
required by the control program. The SECMODS parameter should ke
specified in the CENPROCS macro at system generation to cause inclusion
in the operating system of

88 OS/Virtuwal Storage 2 Single Virtual Storage (SVS) Features Supplement

Lage Ul ULounl /30-1
Revised July 18,1975
By TNL GN20-3481

the model-dependent EREP for the secondary models on which the Vs2
control program is to be run, if any.

A new feature of the VS2 generation process is the installation
verification procedure (IVP) which is designed to be performed after the
VS2 control program is generated. The IVP involves executing an IBM-
supplied job stream (maintained in the SYS1.SAMPLIB data set) using the
generated VS2 system. The function of the IVP is to exercise the
generated SCP system components to the degree that general operation of
the operating system and support of the system hardware configuration
specified are assured.

Existing user-written programs that operate under MVT on a System/370
model must be modified for correct operation ander VS2 if they do any of
the following (otherwise, user-written existing executable programs,
that is load modules, can be used without change):

e Reference permanently assigned locations in lower real storage whose
contents vary depending on whether BC or EC mode is specified

e Issue the LPSW instruction or directly reference fields in old or
new PSW locations whose function or location is affected by which
mode, BC or EC, is specified (such as the system mask field and the
interruption code field). The MODESET macro should be used to
selectively enable or disable the system for interruptions.

e Use the trace EDIT exit of GTF, if fields are accessed whose
location varies between MVT and VS2

e Depend on a nonstandard interface to the MVT control program. These
programs may require modification, based on the specific dependency.

e Use QTAM to support teleprocessing operations. These programs must
be altered to use TCAM since QTAM is not supported in VS2. . Minimal
effort is required for this modification. (See 0S/VS TCAM
Programmer's Guide, GC30-2034, for a discussion of running QTAM
application programs under TCAM.)

e Modify an active channel program by data being read (channel program
contains self-modifying CCW"s) or by execauting instructions, if the
program is to be run in a pageable region under VS2 control.
Program modification is not required if such programs operate in a
nonpageable region. This situation can apply only to user-written
programs that use the EXCP macro instead of an access method. Such
programs do not execute correctly because the modification affects
the virtual channel program rather than the translated channel
program that is actually controlling the I/O operation. (See 0S/VS
Data Management for System Programmers, GC28-0631, for a discussion
of how to modify an EXCP program that contains dynamically modified
channel programs so it can operate in paged mode.)

e Use the EXCP macro and contain user-written I/0 appendages that can
incur disabled page faults, if these programs are to be run in paged
mode. Modification is not required to operate such programs in
nonpaged mode. - These programs operate in paged mode if they are
altered to use the page fix appendage in order to fix the required
pages.

In addition, the following must be done if applicable to the existing
MVT installation:

e Programs that issue the SET STORAGE KEY (SSK) or the INSERT STORAGE
KEY (ISK) instruction should be inspected to determine whether
implementation of a seven-bit key instead of a five-bit key affects
the processing being performed.. If the SET STORAGE KEY instruction

0OS/Virtual Storage 2 Release 1 Features Supplement 89

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

is used, it should be used with the understanding that it causes the
reference and change bits in the storage protect key to be set also.
Alteration of these bits, particularly the change bit, can impair
system. integrity. Note also that these instructions use real, and
not virtual, storage addresses.

e PL/I F programs that are assembled using an OS MVT release prior to
20 and that use the teleprocessing facilities of this language
translator must be reassembled and link-edited.

e TCAM message control programs must be reassembled and relink-edited
in order to include the coding required for them to operate in a
virtual storage environment. Modification of the source statements
is not required.

e User-written SMF exit routines should be inspected to determine
whether they are affected by SMF record changes.

e TSO system parameters must be modified as required to adhere to
changes indicated in Section 100:20.

The job control statements for existing user-written problem programs
do not require alteration except as follows:

e The ADDRSPC=REAL parameter must be added to the appropriate JOB or
EXEC statements for programs that must operate in nonpaged mode if
the IBM-supplied reader procedure is used. The REGION parameter for
nonpaged job steps may have to be changed to request more space
because of differences in subpool allocation within a region in VS2
and MVT. In addition, the default region size for a nonpaged job
step in VS2 is 12K (plus track stacking), which is larger than the
MVT region size default.

e The REGION parameter for job steps that use the rollout feature may
have to be changed to specify a larger amount of storage, since
rollout is not supported.

e EXEC statements that specify IEWL440, IEWNL880, or IEWL128 as the
linkage editor program name must be modified to specify IEWL or
LINKEDIT. Alternatively, the three MVT linkage editor program names
can be specified as aliases of IEWL or LINKEDIT to avoid job control
changes.

If I/0 device type changes are made and/or if unsupported device
types, such as those listed in Section 100:05, are currently being used
in an MVT environment, program and/or job control changes may be
required to specify the supported I/0 device that is used in a VS2
environment. Existing data sets can be used without alteration,
assuming device type or access method changes are not made. If VSaM is
to be used instead of ISAM, the affected data sets must be converted
from ISAM format to VSAM format, as discussed in Section 100:30, ani
appropriate changes to existing ISAM job control statements must be
made.

If desired, the structure of existing user-written MVT programs can
be modified to minimize the occurrence of page faults and use of real
storage (as discussed in Section 15:15 or 30:15 of the base publication
of which this supplement is a part). Such modification may improve
system performance but is not required to enable existing programs (load
modules) to operate correctly in a VS2 environment.

As part of the transition process, MVT users with HASP II installed
must perform a HASP II generation using Version 4. If the 7094 emulator
is used in a VS2 environment and column binary cards are placed in the
input stream, HASP II Version U4 must be used, because the VS2 reader

90 0S/Virtual Storage 2 Release 1 Features Supplement

Page of GC20-1753-1
Revised July 18, 1975
By TNL GN20-3481

interpreter does not support column binary reading of card SYSIN data
sets.

VS2 can also be used in the main processor(s) and/or the support
processor of an ASP Version 3.1 maltiprocessing configuration and in a
processor operating in local execution mode. VS22 and MVT (Releases
21.0, 21.6, 21.7, and 21.8) can be mixed in an ASP configuration (VS2 or
MVT in the support processor and MVT or VS2 in the main processor). The
ASP program operates in nonpaged mode under VS2 control.) ’

For transition from a System/360 MVT environment to a System/370 VS2
environment, the considerations discussed in Section 60 of one of the
following publications apply in addition to the preceding discussion:

e A Guide to the IBM System/370 Model 145 . (GC20-1734)

e A Guide to the IBM Systemv/370 Model 155 (GC20-1729)

e A Guide to the IBM Systemv/ 370 Model 165 (GC20-1730)

100: 55 SUMMARY OF ADVANTAGES

As a growth system for 0OS MVT users, 0S/VS2 offers many new
facilities. Some are changes in the internal structure and organization
of the operating system control program to make its operation more
efficient. Some new facilities improve operational aspects by
simplifying the job of the operator and by reducing causes of total
system termination. Others provide functions not available to MVT
users. VS2 can be more responsive to a dynamically changing daily
workload than MVT, and it supports an environment in which design
changes can be made more easily to accommodate maintenance changes and
the addition of new function or applications.

While 0S/VS2 supports many new features, including functions
exclusive to Systemv370 (not provided in System/360), such as EC mode
and dynamic address translation, it remains upward compatible with MVT
because existing standard interfaces have been preserved. Control
program modifications that are required to handle new features are
transparent to the user so that operators and programmers interface with
VS2 using basically the same commands, job control statements, data
sets, and programs they use in an MVT environment.

The single most significant new feature of VS2 is its support of a
virtual storage environment. The general advantages that can result
from using a virtual storage operating system are discussed in the
System/370 guide base publication of which this supplement is a part
(either in Section 15:05 or Section 30:05). In addition to these, VS2
offers other specific advantages over MVT, several of which also result
from the implementation of virtual storage. These advantages are
summarized below.

Improved Job Scheduling

e Up to 63 initiators can be started, if enough resources are present, -
instead of a maximum of 15.

e Up to 42 foreground (TSO) regions can be started, instead of a
maximam of 14.

e An initiator can have up to 15 job classes assigned instead of a
maximum of 8.

0S/Virtual Storage 2 Release 1 Features Supplement 91

The operator can cancel a job during its initiation if it is waiting
for data sets, region space, or external page storage to become
available. The system automatically cancels a job that requires
data sets that are permanently allocated to another job.

Operational Enhancements

The operator is relieved of most real storage management functions
(such as starting long-running jobs at certain times to avoid
fragmenting real storage).

High-priority jobs can be handled more easily. The operator can
start an initiator that is to be used to initiate only high-priority
jobs. Since real storage fragmentation is significantly reduced in
V52, there is more chance that the high-priority job can be
initiated in a VS2 environment than in an MVT environment.

System parameters can be modified at IPL by the operator more easily
because of the addition of several new types of system parameter
members to SYS1.PARMLIB. Default system parameters can be modified
by changing the default SYS1.PARMLIB member and do not require a
system generation.

The VS2 starter system is independent of the direct access device
types to be used during a system generation.

Improved System Inteqrity and Availability

Fetch protection as well as store protection is provided for all
regions.

The new authorized program facility is supported to prevent
unauthorized use of routines identified as having restricted access.

Validity checking of data extent blocks (DEB's) is significantly
expanded to prevent one job step from accessing data sets belonging
to another job step (unless the data sets are to be shared).

Total system terminations that result from the lack of available
real storage for control blocks are minimized through enhanced SQA
management and via the implementation of LSQA for all regions rather
than TSO regions only.

A module that checks for missing channel end and I/O device end
interruptions during system operation is standard to prevent system
waits, indefinite job step waits, and job step cancellations because
of an uncompleted I/0 operation.

Additional error recovery procedures have been included in master
scheduler tasks that are designed to prevent abnormal termination of
these tasks when certain errors occur.

Improved Utilization of Real Storage

92

Inefficient use of real storage caused by unused storage within the
region size specified and/or residence of inactive pages of a
program is eliminated. Unused virtual storage within a pageable
region (either background or foreground) does not have real storage
assigned, and real storage allocated to inactive pages of a program
is released and allocated to active pages when necessary.

Oss/Vvirtual Storage 2 Release 1 Features Supplement

Real storage fragmentation that occurs in MVT as regions of
differing sizes are allocated and deallocated is eliminated because
real storage is allocated om a demand basis, 4K at a time.

Readers and writers are totally pageable so that during any time
interval, they use only the amcunt of real storage required to
handie the cnrrent activity. The operator need not perform any
function to make real storage assigned to inactive readers or
writers available for allocation to other programs.

The amount of real storage used for routines in the link pack area
auntomatically inrreases and decreases based om the activity of these
routines. The most active modules at any given time will tend to
remain resident in real storage without the necessity of preplamning
on the part of system designers.

The amount of real storage allocated to system comtrol blocks (LSQA
and S0A) dynamically expands and contracts as required.

Dynamic real storage management is provided for all programs that
operate in paged mode in a ¥S2 envivonment, regardiess of the
language in which they are written. Dynamic serial program
structure implemented via use of LINK, LOAD, and XCTL macros, and
dynamic storage allocation supported via GETMAIN and FREEMAIN
macros, all of which are supported by the Assembler Language in MVT,
are not supported by all high-level languages.

Performance Enhancements

@

Improved utilization of real storage, as discussed previously, may
enable a VS2 control program to operate in the same real storage
configuration as an MVT control program and support (1)} a higher
level of multiprogramming, if more initiatcors can be kept active,
{2) more TSO users, or (3) better response for TSO regions with the
same number of TS0 users.

A new I/0 load balancing algorithm is implemented to allocate 1/0
devices in such a way that I/0 activity is more evenly distributed
on available channels and contention among devices is reduced.

A new task dispatching algorithm is provided that can increase
system throughput by allocating CPU time to selected jobs (those in
the APG) on the basis of their changing operatiomal characteristics
{more CPU-hound or more I/0~bound) rather than according to user—
assigned priorities.

The required link pack area is greatly expanded, and it includes
most of the more frequently used control program routines. ALL
transient SVC routines reside in the link pack area. SVC and I/0
transient areas are not implemented in order to eliminate contention
for these areas. Serialization of system processing that results
from such contention in MVT is avoided. Less control prougram time
is regunired to page-in transient SVC routines in V52 than to fetch
them in MVT.

Serialization of command processing is minimized by executing
command processing routines concurrently as subtasks of the mastexr
scheduler.

The time regquired to process storage allocation (GETMAIN} reguests
for certain space in LSOA and SQA is reduced via implementation of
guickcells in these areas.

O5/Virtual Storage 2 Release 1 FPeatures Supplement 23

New

The time required to process timing queues during a task switch is
reduced through implementatiom of new algorithms that support the
CPU timer and clock comparator instead of the interval timer at
location 80.

Since real storage management is provided by VS22, problem
programmers need not use LOAD, LINK, XCTL, GETMAIN, and FREEMAILN
macros in pnew applications to efficiently manage real storage for
their pageable regions, and can avoid the control program execution
time required to service these requests.

Features

VSAM, a new access method designed to provide better performance and
more function than ISAM, is provided.

Expanded online system debugging capability is provided by the
dynamic support systemn.

The new facilities of 0S/V32 make it a desirable growth operating

system for MVT users. However, many of the new features of V82 make it
more suited to am online environment than is MVT. Specifically:

94

Reduction of real storage restraints made possible by the
implementation of virtual storage can be an advantage when
designing, coding, and testing online applications that are
typically larger and more complex than most batched jobs.

New functions may be added to existing online applications more
easily because the design of a program can be straightforward and
not involve the use of a complex dynamic or planned overlay
structure.

Dynamic storage management is provided automatically by the system,
and real storage can be more efficiently used. Storage management
no longer need be the major effort in online application design, as
it often is in MVT.

More freedom in progtam design and better utilization of xeal
storage may enable lower cost entry into online applications
processing.

VSAM is designed to be more suitable for an online or a data base
environment than ISAM.

A system operating with VS2 should be less susceptible to the total
termination of operations because of certain improvements made in
the VS2 comtrol program. System integrity and protection
enhancements have also been made.

A system with a large online application need not be backed up with
a system having the identical amount of real storage.

OS/Virtwal Storage 2 Release 1 Features Supplement

w

INDEX {(Section 100)

access method services program 58
access methods

BDAM 3

BPAM 3, 24

BSAM 3, 47

BTAM 4

ISAM 4, 49

QsaM 3, a7

OTAM 47

TCAM 4, 26, 47

VSAM 4, 49
active queues 69, 73
ADDRSPC parameter 11
advantages summary 91
allocation routine 28
alternate path retry (APR) 79, 80
ASB reader 2 ‘
ASP 91
authorized program 39, 43
authorized program facility (APF) 43
auvtomatic priority group (APG) 39
automatic volume recognition (AVR) §
available page frame count 6%, 70, 72
available quene 69, 70, 72, 73

background region 32

BDAM 3

BLDL table 8, 1i&, 18, 19, 21
BPAM 3, 24

BsaM 3, 47

BTAM &

chained scheduling 47
channel check handler (CCH) 79, 80
channel program translation 12, &7
channel programs for paging I/0 18, 78
checkpoint/restart 38
clock comparator 2, 46
CLOSE routine 47
command processing regiom 12
configuration, system

for system generation 88

minimam 1
contents supervisor 45
control and processing program components 24
conversational remcte job entry 2
CPU's supported im VS2 1
CPU timer 2

DADSM &7
data management U47-67
access methods 47
CLOSE xoutine 47
DADSM youtine 47
EOV routine 47
OPEN routine 47
VSAM 49
DEB wvalidity checking 44
device availability testing 23

0S/Virtual Storage 2 Release 1 Features Supplement

)

(&4

DEVSTAT option 23
DIDOCS 24
direct SYSOUT writers 2
disabled page faults #3, 44
dynamic address translation 2, 12, 21
dympamic area
in resl storage 14
in virtuwal storage 6, 11
dynamic device reconfiguration (DDR) 79, 80
dynamic dispatching 40
dynamic support system (DSS) 84

emilators 87

EOV voutine 47

EXCP macro 47

EXCPVR macro 46, 48

external page storage
direct access devices supported 15
initialization 22
organization 15
page capacity by device type 17
slot allocation 77

external page storage administration 76

features
optional &
standard 3
unsupported 2
fetch protectiom 13-14
fizxed BLDL table 8, 14
fixed link pack area 8, 10, 18, 18, 20, 22
foreground region 32

general functioms 1
generalized tyrace facility (GTF) 39, 83
graphic support #

HASP IX Versiom 4% 2, 30, %0
hierarchy support 2, 45
hold gueue 69, 73

indirvect data address list (IDAL) 48
indirect data address word (IDAW) 48
initialization of storage
external page 22
real 22
virtwal 21
initiator 12, 27
inputsountput supervisor (IOS) 48
installation verification procedure (IVP) 89
interpreter 12, 27
interruption supervisor 38
interval timexr #46
I/0 appendages 48
170 devices
supported &
unsupported &
I/70 load balancing 28
I/0 transient area 2
IPL (see system initialization)
IsalM b4, 49

job contrel 27

dob mansgement
allocation routine 28

24 2S8s/Virtual Storage 2 Release 1 Features Supplement

r o

ASB reader 2
« CRJE 2
direct SYSOUT writers 2
initiator 27
interpreter 27
master scheduler 26
cutput writers 27
reader interpreters 27
terminator 29
job queue management 27
job scheduler 27

langquage translators 25
libraries 284
link pack area
contents 9
creation of 21
directoxry 10
fixed 9, 10
general descripticon 8
modified 21, 22
pageable 9, 10
linkage editor 85
local system queue area 10, 45

machine check handler (MCH)Y 79, 80
master scheduler 10, 26

minimum system configuration 1
missing interruption checker 23
MODESET macro 39

modified link pack area 18, 21, 22
MONITOR CALL instxuction 39
multiprocessing 2, 921

nondynamic area

in real storage 14

in virtual storage 6
nonpageable area 11 ‘
nonpageable problem program regions 11-12

OLTEP 82

OPEN routine 47

operator commands 26

operator communication during system initialization
optional features &

output writer 12, 27

overlay supervisor 38

page administratiom 77
page data set 15-17, 18, 19
page faults

disabled 43

handling 69
page file 15-17, 18, 19
page fix I/0 appendage 48
page fixing 48
page frame

allocation 70

fixing 68, 70

nonfixable 14, 19

queues 69
page frame table 69
page I/0 channel programs 18, 78
page I/0 chaunnel gueues 78
page L/0 initiatiom 77

0Ss/Virtual Storage 2 Release 1 Features Supplement

17-20

97

page management 68
accounting data provided 30
external page storage administration 76
68
page administration 77
queues 69 .
real storage administration 68
page migration 16
page reclamation 70
page replacement algorithm 72
page supervisor 30, 68
page tables 13
pageable BLDL table 8
pageable dynamic area 12
pageable link pack area B8-10, 21-23
pageable problem program regions 13
paging devices 16, 17
power warning feature support 80
problem determination facilities
DSs 84
service aids 82
problem program regions 11, 13
program event recording 2, 39
program fetch 36
program properties table 13

sk

QShAM 3, 47
QTaM 47
quickcell facility 45

reader interpretexr 12, 27
real storage
administration routines 68
allocation procedure 70
initialization 22
minimum fixed requirements 14-15
minmum system requirements 1
organization 14
real storage administration 68
recovery management 79
APR 79, 80
ccH 7S
DDR 79, 80
MCH 79, 80
CLTEP 82
region
background 32
command processing 12
foreground 32
initiatoxr 12, 27
naster scheduler 8, 10, 18
nonpageable 11
output writer 12, 27
pageable 12
reader/interpreter 12, 27
time sharing comtrol 36
REGION parameter 11, 27
remote job entyry 2
resident BLDL 1list 8, 14, 18, 19, 21
resident comtrol program 6, 8, 14
rolloutsrollin 2

scatter loading 2, #6

segment tables 13
service aids 82

S8 08/Virtual Storage 2 Release 1 Features Sufpplement

SET SYSTEM MASK interruption 39

shared DASD support 24

short-term fixing 48

slot allocation 77

slot queues 78

slots 17

Smar t-NIP routine 23

sort/merge programs 86

SPIE facility 39

standard features 3

storage hierarchies 2, 45

storage protection 2, 13

supervisor lock 43

SVC routines 8, u43-44

SVC transient area 2, 8

System Assembler 84

system components 24

system data sets 24

system generation 88

system initialization
device availability testing 23
initialization of storage 21
missing interruption checker 23
pageable link pack area creation 21-23
system parameter specification 17

system log 3

system management facilities (SMF) 26, 29

system modification program 82

system parameter specification 17

system queue area (SQA) 8, 10, 45

System/370 models supported 1

SYS1.DSSvM 24

SYS1.LPALIB 9, 20, 21, 22

SYS1.PAGE 15, 24

Sysi.PARMLIB 17, 18, 19, 20, 21

SYS1.SYSJOBQE 27

SYS1.WARN data sets 80

task deactivation 76
task management 38-46
contents supervisor U5
interruption supervisor 38
overlay supervisor 38
task supervisor 39
timer supervisor 46
virtual storage supervisor u4
task reactivation 76
task supervisor 39
TCAM 4, 24, 47
terminals supported 5
terminator 29
TESTAUTH macro and SVC routine 43, 44
TESTRAN 2
time of day clock 2, 46
time sharing option (TSO) 32-37
allocation of external page storage 33
AUXLIST parameter 19, 34
BACKUP parameter 34
commands 36
foreground region description 34
migration of TSO regions 16
parallel swapping 35
performance 37
storage protection 13
supervisor 36

OS/virtual Storage 2 Release 1 Features Supplement

99

RBED UL ULLutL 1027
Revised July 18, 1975
By TNL GN20-3481

swapping procedure 35
system parameter changes 37
TSC region 36
TSOAUX parameter 19, 33
TSOMAX parameter 33
working set for TSO regions 35
time slicing 4, 39
timer supervisor U6
tracing facility 3, 83
track stacking 11
transient areas 2, 8
transition from MVT to VS2 88
TSO (see time sharing option)
Type I language translators for Vvs2 25

utilities 85

virtual storage
initialization 21
organization 6
size supported 6
supervisor U4
VSAM 49-67
access method services program 67.1
addressed processing
entry-sequenced data sets 66
key-sequenced data sets 64
advantages 67.6
asynchronous requests 54
catalogs 67
chained parameter lists 54
cluster 58
comparison with ISAM 67.7-67.11
compatibility with DOS/VS VSAM 49
concurrent request processing 55
control area 50, 51
control interval 50
control interval processing 52, 64, 66
data set sharing 67.3
data space 52
devices supported 49
entry-sequenced data sets
organization 65
processing 66
free space 58
general description 49-50
ISAM interface routine 67.4
keyed processing, key-sequenced data sets 63
journaling 53
key-sequenced data sets
organization 58
processing 62
macros 53-56
mass sequential insertion 63
password protection 67.2
physical structure of data sets 50
preformatting 51
primary index data set
logical structure 59
physical structure 62
primary key 58
processing 64
relative byte address 52
stored record 51
synchronous request 54

100 OS/Virtual Storage 2 Release 1 Features Supplement

types of processing supported
entry-sequenced 67

i N key-sequenced 65

V=R dynamic area 11

V=R line 11, 12, 14

V=R mode
description 11-12
programs that must run in 12

working set 35

OS/Virtual Storage 2 Release 1 Features Supplement 101

GC20-1753-1

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International)

L-€G/1-029D “V'S'M Ul palulld juawajddng saimeay (SAS) abeiolg jenuiiA aibuls g abelols [eniA/SO

READER'S COMMENT FORM

0S/Virtual Storage 2 GC20-1753-1
Release 1

Features Supplement

Release 1.7

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 1Mm. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

evesocoes

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20-1753-1

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this-
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Foid
First Class
Permit 40
Armonk
New York
EEa
B
Business Reply Mail T
N if mailed in the U.S
0 postage stamp necessary if mailed in the U.S.A. T
s
Postage will be paid by: ——
International Business Machines Corporation e
1133 Westchester Avenue T
White Plains, New York 10604 T
Att: Technical Publications/Systems — Dept. 824
Fold

Fold

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internationat)

1-€G/1-0209 °V'S'N Ul paluily /'] aseajay 1uswajddng saanlea | asesjay g abelolg [enIA/SO

o READER'S COMMENT FORM

: 0OS/Virtual Storage 2 GC20-1753-1
Single Virtual Storage (SVS)

Features Supplement

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of M. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

s,

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20-17563-1

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

First Class

Fold
Business Reply Mail
No postage stamp necessay if mailed in the U.S.A.
Postage will be paid by:
International Business Machines Corporation
1133 Westchester Avenue
White Plains, New York 10604
Att: Technical Publications/Systems — Dept. 824
Fold

BN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International)

Fold

(SAS) 9Be101G [enLiiA 2iBulg g 8BR10IS [ENLIA/SO

1-€G/1-020D V'S’ Ul Palullg Juawa|ddng sainiea

