

sy S

[

;..,Z,.:z;,;s?r.

Notice

Data General Corporation (DGC) has prepared this document for use by DGC personnel, customers, and
prospective customers. The information contained herein shall not be reproduced in whole or in part without
DGC's prior written approval.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

The terms and conditions governing the sale of DGC hardware products and the licensing of DGC software
consist solely of those set forth in the written contracts between DGC and its customers. No representation
or other affirmation of fact contained in this document including but not limited to statements regarding
capacity, response-time performance, suitability for use or performance of products described herein shall
be deemed to be a warranty by DGC for any purpose, or give rise to any liability of DGC whatsoever.

In no event shall DGC be liable for any incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or related to this document or the information
contained in it, even if DGC has been advised, knew or should have known of the possibility of such
damages.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
ECLIPSE MV/4000, ECLIPSE MV /6000, ECLIPSE MV /8000, TRENDVIEW, MANAP, SWAT, GENAP, and
PRESENT are U.S. registered trademarks of Data General Corporation,and AZ-TEXT,DG/L,DG/XAP, GW/ 4000,
ECLIPSE MV/10000, GDC/1000, REV-UP, UNX/VS, XODIAC, DEFINE, SLATE, DESKTOP GENERATION,
microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT are U.S. trademarks of Data General Corporation.

Ordering No. 014-000767

© pata General Corporation, 1983

All Rights Reserved

Printed in the United States of America
Rev. 00, October 1983

Notice

Data General Corporation (DGC) has prepared this document for use by DGC personnel, customers, and
prospective customers. The information contained herein shall not be reproduced in whole or in part without
DGC's prior written approval.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

The terms and conditions governing the sale of DGC hardware products and the licensing of DGC software
consist solely of those set forth in the written contracts between DGC and its customers. no representation
or other affirmation of fact contained in this document including but not limited to statements regarding
capacity, response-time performance, suitability for use or performance of products described herein shall
be deemed to be a warranty by DGC for any purpose, or give rise to any liability of DGC whatsoever.

In no event shall DGC be liable for any incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or related to this document or the information
contained in it, even if DGC has been advised, knew or should have known of the possibility of such
damages.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
ECLIPSE MV /4000, ECLIPSE MV/6000, ECLIPSE MV /8000, TRENDVIEW, MANAP, SWAT, GENAP, and
PRESENT are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L, DG/XAP, ECLIPSE
MV/10000, GW /4000, GDC/1000, REV-UP, UNX/VS, XODIAC, DEFINE, SLATE, DESKTOP GENERATION,
microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT are U.S. trademarks of Data General Corporation.

Ordering No. 014-000767

© Data General Corporation, 1983

All Rights Reserved

Printed in the United States of America
Rev. 01, October 1983

ADDENDUM to
Model 20 and 30
Computer Systems

042-000074-00

This addendum updates manual 014-000767-00 to:
014-000767-01

See the updating instructions on the following pages. The pages have been
formatted so that you can insert the information at the beginning or end of a
chapter.

Replace the old “Notice” page with the new one provided.

Errata

1

Programming the CPU
Page 1-9

Under page heading, “Address Translation and Protection”, Replace the first
paragraph with the following paragraph:

A program can load an address translation map consisting of 32 11-bit words for
a maximum of four users, plus one for a data channel. Each user’s logical address
space consists of 32 1024-word (2 Kbyte) pages. Of the 11 bits specified by the
program, ten of them specify the physical page to which a logical page is mapped;
and one bit specifies whether that page is write-protected. A twelfth bit, derived
and appended by hardware, specifies whether the page is validity-protected.
Hardware derives this bit from the 11 bits supplied by the program; a page
becomes validity-protected when these bits are all set to ones.

Page 1-15

Table 1-8 Status Instructions
Action entry for DIS CPU Read Processor Status should be replaced with the

following:

Returns the status of the processor, including the following conditions: power
fail, interrupt on, Break key NMI, power-up (reset) NMI, Halt NMI, interrupt
pending, and single-step NMI.

Page 1-20

Table 1-17 1/0 Instructions
Action entry for Mnem NIO/f] should read:

Used to issue an I/0 flag command; Start, Clear, or Pulse.

Page 1-20

Table 1-18 1/0 command flags
The table should be replaced with the following:

Mnem Flag Value Action

[f] omitted 00 No effect

[f] =S 01 Issues a Start command: effect is device dependent

[f] =C 10 Issues a Clear command: effect is device dependent

[f] =P 11 Issues a Pulse command: effect is device dependent
Page 1-22

Table 1-23 MAP instructions
Delete the entire table entry for mnemonic LMPA.

Errata

Page 1-28

CPU Acknowledge instruction description should be replaced with the following:

CPU Acknowledge

DOAP ac ,CPU
o1t vjofofo| o v vl
o 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15

Clears selective nonmaskable interrupt bits in the CPU status register according
to the contents of the specified accumulator. The format of the specified
accumulator is:

Reserved BRK | PUP | HLT Reserved TRP Reserved [o]
0 2 3 4 5 6 9 10 11 14 15
Mnem Bit Name Function (If Set to 1)
— 0-2 — Reserved. Set to O or 1.
BRK 3 Break Key Clears the Break key NMI bit
PUP 4 Power Up Clears the Power Up NMI bit.
HLT 5 Halt Clears the Halt NMI bit.
— 6-9 — Reserved. Set to O or 1.
TRP 10 Trap Clears the virtual console single-instruction
mode NMI bit
— 11-14 — Reserved. Set to O or 1.
— 15 — Reserved. Must be set to O.
Page 1-31

Under page heading, “Unmapped Mode”, third sentence,
first 32 kilobytes of physical memory
should read:

first 64 kilobytes of physical memory

Errata

Page 1-31

Under page heading, “MAP Address Translation”,
Replace text with the following:

Figure 1-7 illustrates the address translation performed by the MAP unit. Each
user’s 64-kilobyte logical address space consists of 32 1024-word (2-kilobyte)
pages. A program can load an address translation map consisting of 32, 11-bit
words for each of up to four user and one map for a data channel. A 12th bit,
derived by the MAP unit hardware from the 11 bits supplied by the program, is
appended to the 11 bits and loaded into user translation map words. Each 12-bit
word in a user’s map includes 10 bits that specify the physical page to which a
logical page is mapped; and two bits that indicate a MAP protection code. One
map code bit marks the page as write-protected or write enable; the other code
bit, derived and appended by hardware, specifies that the page is validity-
protected or unprotected. A page becomes validity-protected when the 11 bits
supplied by the program are all set to ones.

Page 1-37

Read MAP Status instruction — Accumulator format table
Entries for bit(s) 0,13 and 1 should be replaced with the following:

Bits Name Contents or Function

0,13 NME Next MAP enabled. Depending on the bit settings, the
last DOA MAP instruction enabled:
Bit 1 Bit 13 User Enabled

0 0 A
0 1 B
1 0 C
1 1 D
1 MPN MAP state — 1 indicates mapping

Page 1-40

Map Single Cycle instruction
Second paragraph of this instruction should read:

From user (mapped) mode: if the LEF mode and 1/0 protection are disabled, the
NIOP instruction turns off the MAP after the next memory reference.

Page 1-43

Figure 1-8 Programming summary: accumulator formats
Accumulator format for Read Parity Fault Address instruction (DIA) should be
replaced with the following format:

M/U Logical memory location in error MAP

) 7 12 13 15

Errata

Page 1-44
Read Parity Fault Address instruction description should be replaced with the
following:
Read Parity Fault Address
DIA/f] ac ,2
0 1 1 AC 4] o 1 F o 0 0 o 1 [}
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Places the 12 most significant bits of the logical address of the last memory
location in error in bits 1 to 12 of the specified accumulator. Bits 13 to 15
indicate which map, if any, was enabled at the time of the memory error. Bit O
is set to one if the error occurred in mapped mode or to zero if the error occurred
in unmapped mode. The format of the specified accumulator is

M/U Logical memory location in error MAP
0 1 12 13 15
Bits Name Contents or Function
0 M/U When 1, mapping was enabled when the parity fault
occurred.

When O, mapping was disabled. When O, bits 13-15
are set to zeros.

1-12 — Most significant 12 bits of the logical memory address
when the parity error occurred.

13-15 MAP Specifies which map was enabled, if the fault occurred
while in mapped mode. Set to zeros if the fault occurred
while in unmapped mode.

Errata

Page 2-3
Table 2-2 Programming summary: START,CLEAR,IOPLS,and IORST functions
Entry £ = C Receiver section should be followed by:
Sets the receiver Busy flag to 1 and the Done flag to 0.

Page 2-6

Read Character instruction
Device code mnemonic for this instruction should read TTI.

Page 2-8
Figure 2-2 Writing characters
Change Done = 0 ? decision block to Done = 1 ?
Page 2-9
Figure 2-3 Asynchronous transmission of 8-bit character
Correct this figure with the following:

l-c—————— Data bits ————.l

Start LSB MSB Stop
bit! 1121314151617 181bit(s)

The earliest point where next
character can start is after
the stop bit(s).

Page 2-10
Figure 2-4 Asynchronous reception of 7-bit character
Correct this figure with the following:

‘4——-—- Data bits ————»‘

Start LSB MSB Stop
bit! 1121314151617 !P|Dbit(s)

P = Parity bit

The earliest point where next
character can start is after
the Stop bit(s).

Figure caption should read:
Asynchronous reception of 7-bit character

Errata

Page 2-15

Under page heading, “Clock Counter”,
Insert the following sentence after “...enabled.”, line 4:

After the Busy flag sets to 0 and the Done flag sets to 1, the counter is again
loaded with the count in the Initial Count register and increments as before.

Page 2-16

Under page heading, “Done Flag”,
Add the following sentence to the paragraph:

After the Done flag sets to 1, the Clock Counter is again loaded with the count in
the Initial Count register and the count continues.

Page 2-21

Table 2-10 Programming summary: diskette formats
Byte packing format for IBM PC diskette should read:

Low byte/High byte
Page 2-21

Table 2-10 Programming summary: diskette formats
Byte packing format for DG MPT/100 diskette should read:

High byte/Low byte
Page 2-22
Figure 2-7 Programming summary: accumulator formats
Accumulator format for Read Diskette Status instruction (DIA), when a Get

Number of Sectors Transferred was previously issued, should be replaced with
the following format:

WP | TKO DISK ID DSK TYP NOK Sectors transferred
(o} 1 2 4 5 6 7 8 15
Page 2-27

Table 2-12 Diskette commands
Command column:

Get Number of Sectors should read:
Get Number of Sectors Transferred

Description column for the Get Number of Sectors
Transferred command:

Delete the word “Transferred” from the end of the second line.
Description column for the Recalibrate command:

Change reference from Table 1 to Table 2-13.

Preface

The technical reference manuals for Desktop Generation™ computers and their
peripherals are written for assembly language programmers, systems analysts,
and engineers. This set of manuals, together with two companion programmer’s
references, contains the information you need to: 1) write assembly language
software, including I/O subroutines; 2) knowledgeably expand your system; 3)
learn how your system operates at the card level; and 4) design custom
interfaces.

This manual describes the functional and physical organization of the Desktop
Generation Model 20 and Model 30 computer systems. Other technical and
programmer’s references for the Desktop Generation are listed and summarily
described under “"Related Manuals” in this preface.

ii Preface

Organization

The manual has three parts: a programming section, a theory of operation
section, and a mechanical assemblies section. It also has 4 appendixes and an
index. The chapters in part 1, meant to be read selectively, present the instruction
sets for system devices.

Chapter 1 summarizes the microECLIPSE CPU instruction set and describes in
detail those instructions that are unique to the Model 20 and Model 30 CPU.

Chapter 2 defines the instruction sets and tells you how to program the
asynchronous communications interface, real-time clock, programmable inter-
val timer, and diskette controller.

Chapter 3 describes how to use the firmware console program to do bootstrap
loading, assist in debugging programs, and perform system resets.

The chapters in part 2 are also meant to be read selectively. They describe the
makeup and operation of the component parts of a standard Model 20 and Model
30 computer system.

Chapter 4 describes the one-card Model 20 and 30 SPU, including the
microECLIPSE processor, the MAP unit, the asynchronous communications
interface, real-time clock, programmable interval timer and the microl/O bus
interface. The chapter also discusses the floating point option, the power-up
self test, and the on-card virtual console.

Chapter 5 describes the theory of operation of a Model 20 and 30 dynamic
random-access memory cards.

Chapter 6 discusses the operation of the Model 30 hardware floating point
card.

Chapter 7 discusses the operation of the Model 20 and 30 diskette interface
card.

Chapter 8 provides a description of the Desktop Generation power supply.

The chapter in part 3 illustrates the mechanical components of the Model 20
and Model 30 computer system.

Chapter 9 contains a description of the physical modules and their
configurations as well as the system cabling scheme.

Appendix A lists the numbers of available logic schematics and wiring lists.

Appendix B summarizes the diagnostic assembly language instructions for the
diskette.

Appendix C provides information to calculate the execution times for any of
the commercial instructions.

Appendix D discusses instruction differences between the Desktop Generation
Models 20 and 30 and other ECLIPSE computers.

The index alphabetically lists the concepts and terms in this book and
references the pages on which they appear.

Last, a publications comment form invites you to help Data General improve
future publications by evaluating this manual.

Preface iii

Related Manuals

A comprehensive documentation set supports all the hardware and software
products available for Desktop Generation computers. The hardware-related
books listed below fall into three categories: the technical reference series; the
user guides for operating, installing, and testing; and the introductory guide for
Desktop Generation computers.

The following technical and programmer’s references address the needs of
assembly language programmers and engineers.

16-bit Real Time ECLIPSE Assembly Language Programming

Global in nature, this book explains the processor-independent concepts,
functions, and instruction sets of 16-bit ECLIPSE computers. DGC ordering no.
014-000688.

Model 10 and 10/SP Computer Systems
Technical Reference

In addition to the functional and physical organization of Model 10 and 10/SP
computers and their technical specifications, this manual explains their
processor-unique concepts, functions, and instruction set features. Also included
are guidelines for programming the I/O devices, including the diskette subsys-
tem, and a theory of operation for the basic components of Models 10 and 10/SP.
DGC ordering no. 014-000766.

Model 10 and 10/SP System Console
Programmer’s Reference

Describes the organization and alphanumeric and graphic features of the system
console. Defines the command sets and includes guidelines for programming the
monochrome and optional color monitors at assembly and high-level language
levels. DGC ordering no. 014-000770.

1/0 and Interfacing
Technical Reference

Introduces the microl/O bus and describes the I/O interface required to
communicate with this bus and its host Desktop Generation computer. Discusses
the I/0 instruction set and the I/O program interrupt and data channel facilities.
Includes a chapter about the 4210 general-purpose interface, useful to those
designing a custom I/O interface for their system. DGC ordering no. 014-000774.

For more detailed information about the microl/O bus and Data General
integrated circuits used in the I/O interface, refer to microNOVA Integrated
Circuits Data Manual DGC ordering no. 014-000074.

Communications Interfaces
Technical Reference

Discusses the functional and physical organization of the asynchronous/
synchronous communications interfaces available for Desktop Generation
computers. Defines their I/O instruction sets, offers guidelines for writing
assembly language I/O subroutines, and contains theory of operation for each
communications card. DGC ordering no. 014-000769.

iv

Preface

Sensor 1/0
Technical Reference

Defines instruction sets, offers guidelines for writing assembly language I/0
subroutines, describes theory of operation at an overview level, and explains
how to connect field wiring for the 4222 digital I/O interface, 4223 analog-to-
digital interface, 4224 digital-to-analog interface, and 4335 analog subsystem.
DGC ordering no. 014-000775.

Model 6271 Disk Subsystem
Technical Reference

Describes the functional and physical organization of the Model 6271 disk
subsystem. Defines the I/O instruction set and provides guidelines for program-
ming the subsystem. DGC ordering no. 014-000768.

IEEE-488 Bus Interface
Technical Reference

Provides the information needed to interface, program in assembly language,
and troubleshoot this card in a Desktop Generation system. Reviews the
contents of the IEEE-488 bus standard, summarizing its commands, messages,
and states, and includes a theory of operation. DGC ordering no. 014-000773.

The following books are how-to manuals written for anyone who needs to know
how to install, operate, and test a Desktop Generation system.

Installing Model 10 and 10/SP Systems

The first book that a Model 10 or 10/SP owner should read, explains how to
unpack and install either system and its optional peripherals. Simple instructions
and ample illustrations make the book accessible to any reader. DGC ordering
no. 014-000901.

Operating Model 10 and 10/SP Systems

A logical follow-on to Model 10 and 10/SP installation, this guide takes you from
powering up the system and its optional peripherals through performing such
routine operations as loading paper in a printer and inserting or removing
diskettes. Brings you to the point of loading the system software. Amply
illustrated and written for users at any level of experience. DGC ordering no.
014-000900.

Testing Model 10 and 10/SP Systems

Follows the installation and operating manuals with instructions for verifying
the operation of Model 10 or 10/SP systems and their optional peripherals. Steps
you through the power-up test and Customer Diagnostics and explains how to
troubleshoot customer-replaceable components. Simple instructions and
diagrams make the book accessible to any user. Includes phone numbers for
Data General assistance. DGC no. 014-000902.

Installing Model 20 and 30 Systems

The first book a Model 20 or 30 owner should read, explains how to unpack and
install either system and its optional peripherals. Accessibly written and
illustrated, for users at any level of experience. DGC ordering no. 014-000904.

Preface

Operating Model 20 and 30 Systems

Follows Model 20 and 30 installation, leading you from powering up the system
and its optional peripherals through performing such routine operations as
loading paper in a printer and inserting or removing diskettes. Brings you to the
point of loading the system software. The simple instructions and generous
illustrations are suitable for any reader. DGC ordering no. 014-000903.

Testing Model 20 and 30 Systems

A follow-on to the installation and operating manuals, explains how to verify the
operation of Model 20 or 30 systems and their optional peripherals. Simple
instructions and diagrams lead you through the power-up test, Customer
Diagnostics, and trouble-shooting of customer-replaceable components. Includes
phone numbers for Data General assistance. DGC ordering no. 014-000905.

This last book is a product overview, addressed to all Desktop Generation users.
The Desktop Generation

Introduces the Desktop Generation, summarizing each model of the family, and
describes its many hardware and software products, features, and capabilities.
Includes a brief history of Data General, a sampling of applications, and an
overview of the customer service and support programs available to you as a
Desktop Generation user. DGC ordering no. 014-000751.

Conventions

The following conventions are used throughout this manual.

MNEMONIC Uppercase sans serif letters indicate a signal name or instruc-
tion mnemonic. When a signal is active low, it is barred — for
example, (FDCHE)

argument Italicized lowercase letters mean that a particular instruction
takes an argument. In your program, you must replace this
symbol with the exact code for the argument you need.

[optional] Brackets signify an optional argument. If you decide to use this
argument, do not include the brackets in your code; they only
set off the choice.

In dialogs between system and user, we use this typeface to show your input:
USER INPUT

and this typeface to show the system’s response:

SYSTEM RESPONSE.

In addition, we use the following diagram to show the arrangement of the 16
bits in an instruction. The diagram is always divided into 16 boxes, numbered O
through 15.

A B8IT FORMAT

ONE

Preface

Organization
Related Manuals .
Conventions

System Overview

Configurations
Organization
Components
System Processors
Memory

Diskette Subsystem ..

Disk Subsystem

Cartridge Tape Subsystem

1/0 Interfaces
Power Subsystem
Technical Specifications

Programming

Programming the CPU

Summary of CPU Capabilities

Addressing
Data Formats .

Arithmetic/Logic Class Operations

Stack Operations

Floating-Point Operations

String Operations

Contents

Commerical Operations =19

MAP Operations 19
Page 31 Register o o019
Extended Operations 110
Emulator Trap T € (¢
Parity Check Operations1-10
I/0 Operations o 1-10
The CPU Instruction Set 1-11
Computing Instructions R T 0
Program Flow Management 1-17
Stack and Data Management o ... 1-18
System Management, oo 1419
Commerical Instructions oo 1-19
Device Management 1-19
Memory Management 1-22
Reserved Memory Locations 1-22
Instruction Execution Times o 1-32
System Management 1-36
CPU Status Register o o 1-37
Program Load Register1-38
Halt Instruction 1-39
Memory Management1-40
Memory Allocation and Protection 1-40
Parity Checking o142
Program-Accessible Registers o 1-46
Power-up Response o 1-48
Powerfail/Autorestart1-48

Programming Basic Model 20 and Model 30 I/0
Interfaces

Asynchronous Communications Interface L .22
Programmable Elements 22
Registersand Flags 2-4
I/0 Instruction Set25
Programming Guidelines~ . . 27
I/0 Timing 2-8

Power-Up Response, 2-10
Real-Time Clock Interface2-10
Programmable Elements2-10
Registerand Flags 2-11
I/0 Instruction Set 2-12
Programming Guidelines2-13
I/O Timing 2-13

Power-Up Response 2-14

TWO

Programmable Interval Timer 2-14

Programmable Elements .. . e 2-14
Register and Flags 2-15
I/0 Instruction Set 2-16
Programming Guidelines 2-18
I/0 Timing 2-18
Power-Up Responise 2-18
Diskette Subsystem 2-18
Programmable Elements o219
Registersand Flags 2-23
I/0 Instruction Set L....2-24
Programming Guidelines 2-34
I/0 Timing2-49
Error Conditions 2-50
Power-Up Response and Initial Program Load2-52
Initial Program Load (IPL)2-53

Virtual Console

Cells = = . L ..3-3
Formats33
Cell Commands 3-4
Function Commands3b
Breakpoints and Program Control 3-5
Additional Commands 3-8
Correcting Errors 3-9
The Rubout Key 39
The K Command39
Virtual Console Errors 3-1

Theory of Operation
System Processing Unit

Major Elements e 4-3
CPU and XMCs 4-3
Memory Allocation and Protection 4-4
Parity Checking 4-5
Multidevice Section 4-5
Virtual Console e 4-6

Power Monitoring and Initialization 4-6

Installation and Tailoring 4-6

Tailoring e 4-7

Interfacing 4-7

Device Cables 4-10
Theory of Operation 4-10
System Architecture 4-12
System Timing 4-13
The System Processing Unit 4-14
The CPU Section 4-21
CPU Support Elements P 4-33
Microl/O Bus Interface e 4-38
Signals 4-2

Memory Cards

Installation and Jumpering 5-3
Interfacing 5-3
Theory of Operation 5-5
Initiating a Memory Operation 5-8
Row and Column Address Selection 5-8
Read Operations 5-8
Write Operations 59
Refresh Operations 5-10
Model 30 Hardware Floating Point
Model 30 Hardware Floating Point Instructions 6-3
Installation and Power Requirements 6-6
Power Requirements 6-6
Interfacing 6-7
Power-Up/Reset Response 6-9
Theory of Operation 6-9
Timing/Control 6-12
Data Paths and Data Manipulation 6-12
Address and Instruction Paths 6-12
Floating Point Operations and the System Memory Bus 6-13

Diskette Subsystem

Subsystem Overview 7-3
Diskette Interface S 7-3
Diskette Media 7-4
Initial Program Load (IPL) 7-4
Power-up Self-test 7-5

Installation and Tailoring 7-5

Interfacing 7-5

Theory of Operation 7-13
Interface Elements and Functions 7-13

Diskette Subsystem Interface Operations 7-18

THREE

W o w >

Power Supply Assembly

Theory of Operation 8-2
Line Rectification 8-6
Start-up Circuit 8-6
Power Section 8-6
Output Section 8-8
Auxiliary Voltage Section 8-9
Status Circuits 8-10

Interconnection with the System 8-10

Mechanical Assemblies
Model 20 and Model 30 Modules and Configurations

Unit Architecture 9-3
Configurations 9-7
Module Architecture 991
Power Bus 9-11
Memory Bus S 9-12
Input/Output Bus 9-12
Slot Assignments 9-15
Backpanel Pin Assignments e 9-17
Backpanel Priority Switches oL 9-26
Power Switch 9-26
Line Fuses 9-28
Power Interlock 9-28
System Cables 9-29

Related Drawings

Diskette Diagnostic Commands

Execution Times for Commercial Instructions
Compatibility with ECLIPSE Line Computers

System
Overview

Data General Desktop Generation Model 20 and Model 30 systems are micro-
ECLIPSE-based computers designed for multi-user commercial and technical
applications. Used as technical workstations or applications in business,
education, science, real-time control, and industrial automation arenas, they
offer minicomputer power in a desktop unit.

This chapter provides an overview of the Model 20 and Model 30 computer
systems. It discusses their configurations and functional organization and briefly
describes their major components, including: the Model 20 and Model 30
system processors and their memories, the Model 30 hardware floating point
unit, the diskette and Winchester disk subsystems, the power subsystem, and
the optional cartridge tape subsystem, communications multiplexors, and
input/output (I/0) interfaces. System technical specifications conclude the
chapter.

System Overview

Power switch (power module)

Figure 0-1 Model 20 and Model 30 computer systems

System Overview

Configurations

Model 20 and Model 30 computers use a common set of modular building
blocks, identical in size, that interconnect for ease of installation and system
expansion. The set consists of the following modules:

* Power module

¢ 5-slot CPU logic module

* Diskette module

* Disk module

* b-slot logic expansion module

* Cartridge tape module

Figure 0-2 shows 3-, 4-, 5-, and 6-module configurations. Minimum configuration
systems consist of a system console and a computer unit comprised of the three
basic modules: power module, CPU logic module, and diskette module. Preconfi-
gured systems consist of a system console and four modules: the three basic
modules and a disk module. These modules house the following components:

1. Power module, containing:
One 123-watt power supply (3-module unit); or
Two 123-watt power supplies (4-module unit or greater)
Cooling blower
Optional line frequency clock generator card

2. CPU logic module, containing:
Model 20 or Model 30 system processor unit
256 Kbyte or 512 Kbyte semiconductor memory with byte parity
Hardware floating point unit (Model 30 only)
Three additional memory or 1/0 card slots, Model 20; or
Two additional memory or I/O card slots, Model30

3. Diskette module, containing:
Diskette controller
One or, optionally, two 5.25-inch diskette drives

4. Disk module, containing:
Disk controller
One 5.25-inch Winchester disk drive

A disk module can be added to the basic, 3-module, computer unit and both
minimum and preconfigured systems can be expanded by the addition of the
following components:

* 256 Kbyte or 512 Kbyte memory cards up to a maximum memory capacity
of 2 megabytes for Model 20 systems and 1.5 megabytes for Model 30
systems.

* Asynchronous/synchronous communications multiplexors, including an
JEEE-488 bus interface.

* 5-slot logic expansion module that accommodates up to five I/O interface
cards.

* Sensor I/O subsystems, including analog-to-digital, digital-to-analog, and
digital I/O interfaces.

System Overview

* Disk expansion unit, consisting of a disk module (less the controller) and a
power module with one 123-watt power supply.

* Cartridge tape module, containing: a controller, a 5.25-inch cartridge tape
drive, and a power supply.

Errata

System Overview
Page 4

Last component entry should read:

e (Cartridge tape module, containing a controller, a 1/4 inch cartridge tape
drive, a fan, and a power supply.

System Overview

Diskette CPp Power
module logic module
module
Diskette Disk cPU Power
module module logic module
module
Diskette Disk LOQI(.: CP!J Power
module module | EXPansion logic module
module module
Carttndge Diskette Disk Lognc.: CPP Power
ape module module | EXpansion logic module
module module module

Figure 0-2 Model 20 and Model 30 configurations

ID-00648

System Overview

Organization

As shown in Figure 0-3, the components of Model 20 and Model 30 systems are
organized around two major system buses: the memory bus and the microl/O
bus. The memory bus provides a 16-bit wide, memory address/data path
(address path expands to 20 bits wide in memory mapped mode) between the
system processor and its memories, and the Model 30 hardware floating point
unit, when present. The microl/O bus (sometimes called the Microproducts or
microNOVA I/O bus) consists of sixteen lines, four of which provide a differen-
tially driven, 2-bit serial data path between the system processor and its I/O
subsystems.

Components

The components that comprise Model 20 and Model 30 systems are described
below.

System Processors

The system processor unit (SPU) of the Model 20 and Model 30 systems contains
the microprogrammed, microECLIPSE central processing unit (CPU). The Model
20 CPU supports the character instruction set and firmware floating point. The
Model 30 CPU, in conjunction with its hardware floating point card, supports
the commercial instruction set and hardware floating point.

Both SPUs also contain:

* Memory allocation and protection unit (MAP)

* Asynchronous communications interface for the system console
* Virtual console

* Real-time clock

¢ Programmable interval timer

¢ Parity checking logic for memory data

¢ Power status monitor

¢ Power-up diagnostics

The MAP performs logical-to-physical address translation for up to 2 megabytes
of memory. It also provides the following protection mechanisms: validity, write,
I/0 and indirection.

System Overview

P
oz

256/512 Kbyte
dynamics RAM

cards
_ Memory Bus
System
console
Model 20/30 Model 30
SPU FPU
Line frequency
clock generator o
Cartridge . . L
tape Disk Diskette Sensor 1/0 Communications
subsystem subsystem subsystem subsystems multiplexor

Disk
expansion
unit

ID-00649

Figure 0-3 Model 20 and Model 30 system organization

System Overview

The asynchronous communications port provides an EIA-RS232C or 20 MA
current loop line interface, jumper-selectable, for a selection of DASHER™
display terminals that are offered for use as the Model 20 and Model 30 system
console.

The virtual console provides a firmware substitute for front panel switches and
indicators, allowing the operator at the system console to program load; start,
stop and continue program execution; and perform program debugging
operations.

The real-time clock and programmable interval timer (PIT) provide time bases
for programs that require them. The real-time clock generates low-frequency,
I/O interrupts at one of the following program-selectable rates: 10 Hz, 100 Hz, or
1,000 Hz. And, when the optional line frequency clock generator is present, the
real-time clock can generate it’s interrupts at the ac line frequency rate. The PIT
can be programmed to generate I/O interrupts at fixed intervals ranging from 1
microsecond to 65.536 seconds, in clock rate increments of 1 microsecond to 1
milliseconds. The clock rate of the PIT is switch-selectable.

The parity checking logic of the SPU verifies the integrity of system memory. It
appends a parity bit to each byte of data written to memory and checks it when
it is read. When enabled by the program, a parity error generates a program
interrupt.

The power status monitor tracks the state of a power status signal supplied by
the power supply and initiates a power fail interrupt whenever power falls
outside specified limits.

The power-up diagnostic — a less than one second test routine — verifies the
basic integrity of the system each time power is applied. It checks the first 64
Kbytes of memory, the virtual console, the CPU, and the system console
interface.

Memory

Model 20 and 30 CPUs support up to four or three 256 Kbyte or 512 Kbyte
memory boards, respectively. Thus, Model 20 systems support up to 2 megaby-
tes of memory while Model 30 systems support up to 1.5 megabytes.

Both 256 Kbyte and 512 Kbyte memory cards contain 64K by 1-bit elements of
dynamic MOS random-access memory (RAM). Each card includes byte parity
bits for data and supports its memory with integral refresh logic.

Diskette Subsystem

The diskette subsystem consists of a diskette controller and one or, optionally,
two drives that reside in the diskette module. Each drive stores and retrieves
data from a 5.25 inch, double-sided, low-track density (48 tracks per inch)
diskette containing 40 tracks per surface.

The diskette controller can be programmed to read and write Data General
formatted diskettes (9 sectors per track) or CP/M-86®! and IBM PC formatted
diskettes (8 sectors per track). The controller can also be programmed to read
Data General’'s ENTERPRISE/MPT™ 5.25 inch, formatted diskettes (35 tracks per
surface and 10 sectors per track).

Each sector stores 512 bytes of data. The diskette controller provides a one-word
(2-bytes) buffer for data transfers and uses the microl/O bus and the data

1CP/M-86 is a registered trademark of Digital Research Corporation.

System Overview

channel facility of the CPU to transfer 16-bit data words between memory and
the subsystem.

Disk Subsystem

The disk subsystem consists of a disk controller and up to two 5.25 inch,
Winchester disk drives with a formatted storage capacity of 15 megabytes per
drive.

The controller and one disk drive reside within the disk module of the main
computer unit. The second disk drive, when present, resides in a disk expansion
unit, consisting of a disk module and a power module with one power supply
assembly. An external device cable connects the second disk drive to the
subsystem controller.

Each drive stores and retrieves data from 5.25-inch, double-sided, fixed disk
platters, containing 306 tracks per surface — 305 tracks for the user and one for
diagnostics. Each track contains 17 sectors and each sector stores 512 bytes of
data. The controller provides a sector buffer for data transfers and uses the
microl/O bus and the data channel facility of the CPU to transfer 16-bit data
words between memory and the subsystem.

Cartridge Tape Subsystem

The optional cartridge tape subsystem consists of a controller, a 1/4 inch
magnetic tape cartridge drive, and a power supply. The subsystem provides a
storage capacity of up to 15.4 Mbytes. The controller uses the microl/O bus and
standard data channel facility of the CPU to transfer 16-bit data words between
memory and the subsystem.

I/O Interfaces

Model 20 and 30 systems support a selection of asynchronous/synchronous
communications multiplexors and sensor I/O subsystems. Each communicates
with the CPU via the microl/O bus and each card occupies an I/O slot in either
the CPU logic module or the 5-slot expansion module.

Power Subsystem

The power subsystem consists of two, 123 watt, power supply assemblies and a
cooling blower that reside in the power module. This module also houses a line
frequency clock generator card.

One power supply provides dc power to the CPU logic module and the diskette
subsystem while the second supply supports the main disk module and the
optional 5-slot expansion module.

Technical Specifications

Table 0-1 through Table 0-5 list general specifications as well as mechanical,
electrical, and environmental specifications for Model 20 and Model 30
computer systems.

10 System Overview

Table 0-1 General specifications, models

Wi
Ba

System Overview

Table 0-2 General specifications,

basic components

{Continued)

11

12 System Overview

Table 0-3 Mechanical specifications

* Each side cover adds 0.6 inch (1.5 cm) to width.
** Each circuit card adds 0.75 ib (0.3 kg) weight.

System Overview

13

Table 0-4

Electrical specifications

ONE

Programming

Programming
the CPU

The heart of the Model 20 and 30 computer systems is the microECLIPSE
central processing unit (CPU) which accesses memory, manages data, and
controls program flow. The CPU performs fixed-point and floating-point
computations in the Model 20. It performs fixed-point computations and initiates
and controls data transfers for hardware floating-point computations in the
Model 30 systems.

This chapter summarizes the programming capabilities of the both systems. It
includes brief descriptions of important programming features; presents all
Model 20 and 30 CPU instructions in table form; and describes in detail those
instructions and facilities that are unique to these CPUs. It also includes lists of
program-accessible registers, reserved memory locations, and instruction
execution times. The chapter concludes with descriptions of system initialization
at power up and powerfail/autorestart.

Programming the CPU

Summary of CPU Capabilities

This section summarizes the programming capabilities of the Models 20 and 30.
It includes brief descriptions of important programming features such as
addressing modes and data formats, and explains SPU operations. This section is
not intended as a programming reference. Rather, it serves as an introduction to
the capabilities of the SPUs. For complete information on programming the
Model 20 and 30 SPUs refer to the 16-bit Real-Time ECLIPSE

Assembly Language Programming.

Addressing

The size of the CPU’s logical address space is 64 Kbytes. The physical address
space is a maximum of 2 Mbytes in the Model 20 systems and 1.5 Mbytes in the
Model 30. Refer to the section entitled "MAP Operations” for a summary of
logical-to-physical address translation.

The Model 20 and 30 computers have two classes of instructions: short and
extended. Short class instructions contain an 8-bit address displacement;
extended class instructions contain a 15-bit address displacement. Both classes
use one bit to specify either direct or indirect addressing. In addition, indirect
addressing can be specified by a bit within the contents of an address. (If bit O
of an addressed word is one, the addressed word is used as a pointer to another
address.)

The CPUs permit any number of indirection levels; in mapped mode, however,
indirections can be limited to 15 levels. (See the "MAP Operations’ section later
in this section.)

SHORT CLASS EXTENDED CLASS
MAIN MEMORY
0
ABSOLUTE PAGE ZERO
ADDRESSING
377,
PC-200;
PC-RELATIVE
ApDRessng | PC
PC+177g
AC2-200, ABSOLUTE,
AC-RELATIVE PC-RELATIVE,
ADDRESSING | AC2—> AC-RELATIVE
ADDRESSING
AC2+1774
AC3-200
AC-RELATIVE
ADDRESSING | AC3 T
AC3+177,
J DG-04458

Figure 1-1 Addressing modes

Programming the CPU 1-3

Addressing Modes Direct or indirect word addressing can be done in the
following modes:

* Absolute. The address (before indirection) is the unmodified displacement, that
is, it is the page O address as shown in Figure 1-1.

* Program Counter Relative. The address (before indirection) is found by adding
the displacement to the address of the word containing the displacement, that
is, the current instruction.

* Accumulator Relative. The address (before indirection) is found by adding the
displacement to the contents of a specified accumulator (AC2 or AC3).

Figure 1-1 illustrates the accessible memory ranges for the two instruction classes
and three addressing modes (direct addressing). Note that absolute addressing
mode can be used to access lower page zero, locations 0-377g, regardless of the
current contents of the program counter.

Byte Addressing A byte in memory is selected by a 16-bit byte pointer.
Bits 0-14 of this pointer contain the memory address of a 2-byte word; bit 15
indicates which byte of the address location will be used. Short class instructions
use an accumulator to hold the byte pointer; extended class instructions use their
displacement field to hold the pointer.

Bit Addressing A bit in memory is selected by a bit pointer. Instructions
that require this 32-bit pointer use two accumulators (specified in the instruction)
to hold the pointer. Figure 1-2 illustrates the bit addressing process.

100 101 102 103 104 105 106 107 110 111 112 113
{word] word] word[word] wordword] word [word] word] word] word[word]
A

Illll JIIIJ

1 1 L A i
012344 67 89101112131415
11 11—

N
T I\
0 O 1 0 18] 0 0 0 38l0 54

Bit pointer|0 ooolooolomlooolom ooofoodoodorfofio)]
i 1 ' L) Il T 1 A Ll L 1 Ll o
01 1516 2728 31

L v 1L — I,
Base + Offset Bit number
_address \
-V
Address of word
containing

DG-08290

Figure 1-2 Bit pointer

14 Programming the CPU

Data Formats

This subsection summarizes integer formats in Figure 1-3, commerical formats
in Figure 1-4, and floating point formats in Figure 1-5. Floating-point numbers
are normalized at the end of all floating-point mathematic operations.

Signed Integers
Single precision:

ol 15,

T 2’'s Complement magnitude
Range: —32,768 t0+32,767
Sign

Double precision:

2’s Complement magnitude
Double-Precision Range: —2,417,483,648 to
+2,147,483,647

o 156 0 15

Sign

Unsigned Integers
Single precision:

NOTE Double precision is used
only by MUL and DIV
Q—‘WJ instructions. Refer to their
) descriptions in 16-bit Real-
Unsigned magnitude Time ECLIPSE Assembly
Range: O to 65,535 Language Programming.

Double precision:

0 15 0 15 0 15

Unsigned magnitude
Double precision range: O to 4,294,967,295

{D-00650
Figure 1-3 Integer formats

Programming the CPU

Unpacked Decimal

/] L
Leading sign S I
\ o /
ASCHI v
representation ASCII representation of decimal digits
of sign
R
Trailing sign S 1
_ ’ /
\/ ASCII
ASCII representation of representation
decimal digits of sign
- L
High order sign 4{
\ : /
ASCH representation Vv
of character: defined as ASCII representation
a combination of of remaining decimal
first decimal digit and sign digits
|
Low order sign 5 {
_ T /
\Y4 ASCH representation of
ASCII representation of all character: defined as
but last decimal digit a combination of last

decimal digit and sign

L
Unsigned { {

\ ! /
—/
ASCIl representation of
decimal digits (assumed positive)

Packed Decimal

o " /
v t
BCD representation of decimal digits, Sign: + = 144
extended by a leading O, if necessary, - = 1bg

to an odd number of digits.
Each digit occupies 1/2 byte (4 bits).

DG-15407
Figure 1-4 Commercial formats

1-6 Programming the CPU

Single-precision (2 words)

l Word 0 I I Word 1 J

01 15 16 23 24 31

—)
Exponem Mantissa (6 hex digits)

e —

Sign Excess 64

True value of exponent = (Value in byte O) - 64

Double-precision {4 words)

Word O | Word 1

0 7 8 5 16 73 24 3
—
Exponent [Word 2] | Word 3]
4 l 32 39 40 27 48 53 54 83
Sign N 1
Excess 64 v

Mantissa (14 hex digits)
True value of exponent = (Value in byte O) - 64

Range of exponent field: 0 to 127
Range of true value of exponent: -64 to 63

Magnitude of floating-point number:
Mantissa x 164 (true value of exponent)

Normalization: Shift mantissa left 1 hex digit and decrement

exponent — repeat until high-order hex digit # 0.

Figure 1-5 Floating-point formats

Arithmetic/Logic Class Operations

The arithmetic/logic class (ALC) instructions include ADC, ADD, AND, INC MOV,

NEG, and SUB. Each instruction performs a group of general functions in
addition to the function implied by its name. These general functions are

encoded in four fields in the ALC instructions. They are:

Set carry bit (0, 1, complement, or no change)

Shift (right, left, swap)

Skip test

Load or No Load.

DG-08292

Figure 1-6 illustrates the sequence of operations performed by a general ALC

instruction.

Programming the CPU

1-7

(

C Start)

1

Initialize carry bit.

|

Store contents
of ACD, carry.

|

Perform specified
operation.

What kind
of shift
?

y

Shift left
(bit O to
carry, carry
to bit 15).

Swap right and
left bytes.
Carry unchanged.

Shift right
(bit 15 to
carry, carry
to bit O).

Test carry bit and/or ACD.

Make skip decision.

Restore contents
of ACD, carry.

Y

4
ACD, carry have ACD, carry are
new values. unchanged.

L

]

Skip according to
skip decision.

Figure 1-6 ALC instruction operation sequence

DG-08293

1-8

Programming the CPU

Stack Operations

The processor contained in the Models 20 and 30 maintains a last in/first out
stack in main memory. Stack operations depend on the contents of four reserved
lower page zero locations: the stack pointer, the frame pointer, the stack upper
limit, and the stack fault routine pointer. The program must set up the initial
contents of the stack pointer, stack upper limit, and stack fault routine pointer.
Once this is done, the CPU will update the stack and frame pointers automati-
cally; it will also jump to a user-created stack fault routine, using the stack fault
routine pointer, if an instruction causes a stack overflow. A fast and efficient
method of changing stacks is also provided so that a priority interrupt handler
can make maximum use of the stack feature.

Floating-Point Operations

The floating point instructions allow the manipulation of both single- (32 bits)
and double-precision (64 bits) numbers. Single-precision gives 6-7 significant
decimal digits, while double-precision gives 15-17. The decimal range of a
floating point number is approximately 5.4 X 10-7° to 7.2 X 10*75 in either
precision.

Four separate 64-bit accumulators (FPACs) are available for floating point
operations. While the first floating point operand is always in one of the floating
point accumulators (FPACs), the second operand can reside in an FPAC or be
fetched from memory. The four FPACs and their associated status bits can be
pushed onto or popped off of the stack by one instruction.

After every floating-point operation, the floating-point status register is checked
for the following fault conditions.

* Overflow. Exponent overflow occurred. (The exponent should be increased
by 128; otherwise, the result is correct.)

* Underflow. Exponent underflow occurred. This condition is analogous to an
exponent overflow.

* Divide by Zero. Zero divisor detected; division aborted.

* Mantissa Overflow. A bit was shifted out of the high-order end of the
mantissa during a FSCAL instruction. Alternatively, the result of a FFAS or
FFMD instruction does not fit into the destination.

A fault condition initiates a floating point trap if the trap enabling bit (5) in the
floating-point status register is 1. This trap pushes a return block and causes an
indirect jump via location 45g.

Several floating-point instructions have two forms: one ending in S and the
other in D. Those ending in S use single-precision floating-point format, while
those ending in D use double-precision. The function of the two forms is
otherwise identical. Floating-point formats were listed in Figure 1-5.

String Operations

String instructions CMP, CMT, CMV, and CTR can move strings of bytes from
one portion of memory to another, compare one string of bytes with another
such string, translate a string of bytes from one representation to another, and
search a string of bytes for one or more delimiters.

Programming the CPU 1-9

Commercial Operations

The Model 30 commercial instructions allow you to load decimal numbers (in
BCD format) into a floating point accumulator (with change to floating point
format), store decimal numbers from a floating point accumulator into memory,
load the sign of a number, and convert decimal integers to byte strings, and
then process the strings.

MAP Operations

This subsection explains the functions of address translation and protection
performed by the Model 20 or Model 30 MAP unit, and describes the page 31
register. The address translation procedure is described in "Memory Allocation
and Protection” later in this chapter.

Address Translation and Protection A program can load an address
translation map consisting of 32, 12-bit words for a maximum of four users and a
data channel. (The software actually loads 11 bits; the twelfth bit is hardware-
derived from the logical AND of the physical address.) Each user’s logical address
space consists of 32, 1024-word (2 Kbyte) pages. Of the 12 bits in the MAP
register, ten of them specify the physical page to which a logical page is mapped;
one bit specifies whether that page is write-protected; and one bit specifies
whether the page is validity-protected.

The translation process occurs every time a memory reference is made, provided
the program enables the MAP by manipulating the contents of the MAP status
register. A MAP fault occurs when the program tries to access a validity-protected
word or write to a write-protected word. In either case, the state of the processor
is saved and the program jumps to the (programmer-supplied) MAP fault handling
routine.

In addition, the program can specify I/O or indirection protection, causing a MAP
fault to occur when the processor encounters an I/O instruction or more than 15
levels of address indirection. This specification can also be accomplished by
writing to the MAP status register. Also, by the same means, the processor can be
instructed to interpret all I/O format instructions as Load Effective Address (LEF)
instructions. Finally, whenever the MAP is enabled, the emulator trap facility is
enabled. This facility is described in detail later.

Page 31 Register

Unless the MAP is enabled, no address translation occurs. All addresses issued
in unmapped mode by the CPU reference locations in the first 64 Kbytes (32
Kwords) of physical memory; that is, locations in physical pages 0-31. If a
program operating in the unmapped mode requires access to some other part of
memory, the page 31 register is used.

A Map Page 31 DOB, MAP instruction loads the page 31 register with a 10-bit
translation address. This address corresponds to an entry for one page in a user
map in the MAP register, but without protection bits. A memory reference
addressed to logical page 31 (that is, to octal page 37 — address bits 1-5 are all
one) does not access a word in physical page 31. Instead, the reference
addresses a word in the physical page specified by the 10 bits in the page 31
register. Thus, the page 31 register affords a one-page wide “window" in
memory to a program running in the unmapped mode. After power up or a
system reset, the page 31 register contains octal 37.

1-10

Programming the CPU

Extended Operations

The extended operation (XOP and XOP1) instructions allow the transfer of
control to called procedures. An XOP instruction places all relevant return
information on the stack and retrieves the address of the called procedure from
a user-constructed table of procedure addresses. After the address has been
retrieved, control transfers to the procedure.

Emulator Trap

The CPU in the Model 20 and Model 30 has a hardware provision for instruction
emulation. If the CPU encounters an undefined instruction while operating in
the mapped mode, it automatically makes an indirect jump through location 114
— providing that the contents are not zero. This location can contain the indirect
address of an emulator routine. If the contents of location 115 are zero, an
undefined instruction simply results in a NOP (no operation).

Parity Check Operations

The parity checking facility, when enabled, detects a parity error in any byte

of memory. Each memory word consists of 18 bits. These include 16 data bits
followed by 2 parity bits — one for each byte. The parity logic checks the parity
bits read from memory. If an error occurs, the parity logic requests an interrupt.
The CPU obtains the address of the error with a Read Parity Fault Address (DIA
PAR) instruction. DIA PAR returns the state of the MAP enabled bit (0), the
current user map select bits, and bits 1-12 of the logical address of the fault.

I/O Operations

The CPU addresses an 1/O controller by means of the device code occupying bits
10-15 of an I/0 instruction. The basic I/O instruction set is used to control 1/0
devices, to set up data channel operations, and to pass data to and from these
devices. Programming details for a specific device or interface are available in
the manual for that device.

I/O interrupt control instructions offer the programmer the following selection
of I/O control schemes.

* Polling (no interrupts). The CPU checks 1/O device status under programmed
control.

* Single-level interrupts (interrupts with no priority system). The CPU services
one device at a time in the order determined by the timing of the interrupt
and the physical location of its controller in the system.

e Multiple-level interrupts (interrupts with a priority system). The CPU
services an interrupt from a selected device in the order just described, but
a higher priority device can interrupt a lower priority device’s interrupt
service routine. The interrupt handler accomplishes this by manipulating the
devices’ priority mask bits with the MSKO instruction. If an interrupt-driven
operation is selected, the programmer can choose one of the following
methods to identify the interrupting device.

Testing the device’s Busy/Done flags with an I/0 Skip instruction

Placing the interrupter’s device code in an accumulator with an INTA
instruction

Programming the CPU

1-11

Identifying the interrupting device, saving return information, and
Jjumping through a table to an individual device’s interrupt handling
routine with a VCT instruction

The CPU Instruction Set

This section presents Model 20 and Model 30 CPU instructions in table form.
The instructions are grouped into the following categories.

Computing instructions

Program flow management

Stack and data management

Commerical instructions (Model 30 only)

System management
Device management

Memory management

Computing Instructions

The computing instructions include add (Table 1-1), subtract (Table 1-2), multi-
ply (Table 1-3), divide (Table 1-4), move (Table 1-5), convert (Table 1-6), logic
(Table 1-7), status (Table 1-8), and computational skip (Table 1-9) instructions.

Table 1-1 Add instructions

Mnem Instruction Action

ADC Add Complement Adds an unsigned integer to the logical complement
of another unsigned number.

ADD Add Adds the contents of one accumulator to the
contents of another.

ADDI Extended Add Adds a signed integer in the range of —32,768 to

Immediate + 32,767 to the contents of an accumulator.

ADI Add Immediate Adds an unsigned integer in the range of 1 to 4 to the
contents.

BAM Block Add And Move Moves blocks of memory words from one location to
another, adding a constant to each one.

DAD Decimal Add Adds together the decimal digits found in bits 12-15

FAMS, FAMD Add (Memory to
FPAC)

FAS, FAD Add (FPAC to FPAC)
INC Increment
1SZ, EISZ Increment And Skip

If Zero

of two accumulators.

Adds the floating-point number in memory to the
floating-point number in an FPAC.

Adds the floating-point number in one FPAC to the
floating-point number in another FPAC.

Increments the contents of an accumulator.

Increments the addressed word, then skips if the
incremented value is zero.

1-12 Programming the CPU

Table 1-2 Subtract instructions

Mnem

Instruction

Action

DSB

DSZ, EDSZ

FSMS, FSMD

FSS, FSD

SBI

SUB

Decimal Subtract

Decrement And Skip
If Zero

Subtract (Memory
from FPAC)

Subtract {FPAC from
FPAC)

Subtract Immediate

Subtract

Subtracts the decimal digit in bits 12-15 of one
accumulator from the decimal digit in bits 12-15 of
another accumulator.

Decrements the addressed word, then skips if the
decremented value is zero.

Subtracts the floating-point number in memory from
the floating-point number in an FPAC,

Subtracts the floating-point number in one FPAC from
the floating-point number in another FPAC.

Subtracts an unsigned integer in the range of 1 to 4
from the contents of an accumuiator.

Subtracts the contents of one accumulator from the
contents of another.

Table 1-3 Muiltiply instructions

Mnem

Instruction

Action

FMMS, FMMD Multiply

FMS, FMD

MUL

MULS

{Memory by FPAC)

Multiply
(FPAC by FPAC)

Unsigned Multiply

Signed Multiply

Multiplies the floating-point number in memory by the
floating-point number in an FPAC.

Multiplies the floating-point number in one FPAC by
the floating-point number in another FPAC.

Multiplies the unsigned contents of two accumulators
and adds the results to the unsigned contents of a
third accumulator.

Multiplies the signed contents of two accumulators
and adds the results to the signed contents of a third
accumulator.

Table 1-4 Divide instructions

Mnem

Instruction

Action

DIV

DIVS

DIVX

FDMS, FDMD

FDS, FDD

FHLV
HLV

Unsigned Divide

Signed Divide

Sign Extend And
Divide

Divide

(FPAC by Memory)
Divide

(FPAC by FPAC)
Halve

Halve

Divides the unsigned 32-bit integer in two
accumulators by the unsigned contents of a third
accumulator.

Divides the signed 32-bit integer in two accumulators
by the signed contents of a third accumulator.

Extends the sign of one accumulator into a second
accumulator and performs a Signed Divide on the
result.

Divides the floating-point number in an FPAC by a
floating-point number in memory.

Divides the floating-point number in one FPAC by the
floating-point number in another FPAC.

Divides the floating-point number in FPAC by 2.

Divides the unsigned contents of an accumulator by
2.

Programming the CPU

1-13

Table 1-5 Move instructions

Mnem Instruction Action

BAM Block Add And Move Moves blocks of memory words from one location to
another, adding a constant to each one.

BLM Block Move Moves blocks of memory words from one location to
another.

CMT Character Move Until Moves a string of bytes from one area of memory to

True another until a table-specified delimiter character is
encountered or the source string is exhausted.

CcMv Character Move Moves a string of bytes from one area of memory to
another under control of the values in the four
accumulators.

DHXL Double Hex Shift Shifts the 32-bit contents of two accumulators left 1

Left to 4 hex digits, depending on the value of a 2-bit
number contained in the instruction.

DHXR Double Hex Shift Shifts the 32-bit contents of two accumulators right

Right 1 to 4 hex digits, depending on the value of a 2-bit
number contained in the instruction.

FEXP Load Exponent Places bits 1-7 of ACO in bits 1-7 of the specified
FPAC.

FLDS, FLDD Load Floating Point Copies a floating-point number from memory to a
specified FPAC.

FMOV Move Floating Point Moves the contents of one FPAC to another FPAC.

FRH Read High Word Places the high-order 16 bits of an FPAC into ACO.

FSTS, FSTD Store Floating Point Copies the contents of a specified FPAC into memory.

HXL Hex Shift Left Shifts the contents of an accumulator left 1 to 4 hex
digits, depending on the value of a 2-bit number
contained in the instruction.

HXR Hex Shift Right Shifts the contents of an accumulator right 1 to 4 hex
digits, depending on the value of a 2-bit number
contained in the instruction.

LDA, ELDA Load Accumulator Loads data from memory to an accumulator.

LDB, ELDB Load Byte Places a byte of information into an accumulator.

MoV Move Moves the contents of an accumulator through the
ALU.

POP Pop Multiple Pops 1 to 4 words off the stack and places them in

Accumulators the indicated accumulators.

POPB Pop Block Returns control from a System Call routine or an I/0
interrupt handler that does not use the stack change
facility of the Veector instruction.

PSH Push Multiple Pushes the contents of 1 to 4 accumulators onto the

Accumulators stack.

STA, ESTA Store Accumulator Stores data in memory from an accumulator.

STB, ESTB Store Byte Stores the right byte of an accumulator in a byte of
memory.

XCH Exchange Exchanges the contents of two accumulators.

Accumulators

1-14 Programming the CPU

Table 1-6 Convert instructions

Mnem

Instruction

Action

CTR

FFAS

FFMD

FINT

FLAS

FLMD

FNOM
FSCAL

Character Translate

Fix To AC

Fix To Memory

Integerize

Float From AC

Float From Memory

Normalize
Scale

Translates a string of bytes from one data
representation to another, and either moves it to
another area of memory or compares it to a second
string of bytes.

Converts the integer portion of a floating-point
number to a signed two’s complement integer and
places the result in an accumulator.

Converts the integer portion of a floating-point
number to double- precision integer format and stores
the result in two memory locations.

Sets the fractional portion of the floating-point
number in the specified FPAC to zero and normalizes
the result.

Converts a signed two’s complement number in an
accumulator to a single-precision floating-point
number.

Converts the contents of two memory locations in
integer format to floating-point format and places the
result in a specified FPAC.

Normalizes the floating-point number in FPAC.

Shifts the mantissa of the floating-point number in
FPAC either right or left, depending upon the contents
of bits 1-7 of ACO.

Table 1-7 Logic instructions

Mnem Instruction Action

ANC AND With Forms the logical AND of the contents of one
Complemented accumulator and the logical complement of the
Source contents of another accumulator.

AND AND Forms the logical AND of the contents of two
accumulators.

ANDI AND Immediate Forms the logical AND of a 16-bit number contained
in the instruction and the contents of an accumulator.

BTO Set Bit To One Sets the bit addressed by the bit pointer to 1.

BTZ Set Bit To Zero Sets the bit addressed by the bit pointer to O.

CMP Character Compare Compares one string of characters in memory to
another string.

coB Count Bits Counts the number of ones in one accumulator and
adds that number to the second accumulator.

COM Complement Forms the logical complement of the contents of an
accumulator.

DLSH Double Logical Shift Shifts the 32-bit contents of two accumulators left or
right depending on the contents of a third
accumulator.

FAB Absolute Value Sets the sign bit of an FPAC to O.

FCMP Compare Floating Compares two floating-point numbers and sets the Z

Point and N flags accordingly.
FNEG Negate Inverts the sign bit of the FPAC.

Programming the CPU

1-15

Table 1-7 Logic instructions (Continued)

Mnem Instruction Action

IOR Inclusive OR Forms the logical inclusive OR of the contents of two
accumulators.

I0RI Inclusive OR Forms the logical inclusive OR of a 16-bit number

Immediate contained in the instruction and the contents of an
accumulator.

LOB Locate Lead Bit Counts the number of high-order zeros in one
accumulator and adds that number to the second
accumulator.

LRB Locate And Reset Performs a Locate Lead Bit instruction and sets the

Lead Bit lead bit to O.

LSH Logical Shift Shifts the contents of an accumulator left or right,
depending on the contents of another accumulator.

NEG Negate Forms the two’s complement of the contents of an
accumulator.

XOR Exclusive OR Forms the logical exclusive OR of the contents of two
accumulators.

XORI Exclusive OR Forms the logical exclusive OR of a 16-bit number

Immediate

contained in the instruction and the contents of an
accumulator.

Table 1-8 Status instructions

Mnem Instruction Action
DIA MAP Read MAP Status Returns the status of the MAP, including the following
conditions: last map enabled (by a DOA); MAP state
(on/off); type of last MAP fault; last map loaded (by a
LMP; state of LEF, I/O protection, write protection,
and indirect protection (on/off); data channel map
state; user mode (on/off).
DIS Data In Status Returns the status of a specified 1/O device.
DIS CPU Read Processor Returns the status of the processor, including the
Status following conditions: power fail, interrupt on, Break
key NMI, power-up (reset) NMI Halt NMI, interrupt
pending, external NMI, line frequency, diskette
density, ATP validity fault, ATP QUT instruction,
single-step NMI, diskette controller NMI, and
keyboard NMI. request.
FCLE Clear Errors Sets bits 0-4 of the FPSR to O.
FLST Load Floating-Point Copies the contents of two specified memory
Status locations to the FPSR.
FSST Store Floating-Point Copies the contents of the FPSR to two memory

Status

locations.

1-16

Programming the CPU

Table 1-9 Computational skip instructions

Mnem

Instruction

Action

CWM

DSZ, EDSZ

FSEQ

FSGE

FSGT

FSLE

FSLT

FSND

FSNE

FSNER

FSNM

FSNO

FSNOD

FSNU

FSNUD

FSNUO

ISZ, EISZ

SGE

SGT

SNB

SZB

SZBO

Compare To Limits

Decrement And Skip
if Zero

Skip On Zero

Skip On Greater
Than or Equal To
Zero

Skip On Greater
Than Zero

Skip On Less Than
Or Equal To Zero
Skip On Less Than
Zero

Skip On No Zero
Divide

Skip On Nonzero

Skip On No Error

Skip On No Mantissa
Overflow

Skip On No Overflow

Skip On No Overflow
And No Zero Divide

Skip On No
Underflow
Skip On No

Underflow And No
Zero Divide

Skip On No
Underflow And No
Overflow

Increment And Skip
If Zero

Skip If ACS Greater
Than Or Equal to
ACD

Skip If ACS Greater
Than ACD

Skip On Nonzero Bit

Skip On Zero Bit

Skip On Zero Bit And
Set To One

Compares a signed integer with two other numbers
and skips if first integer is between the other two.

Decrements the addressed word, then skips if the
decremented value is zero.

Skips the next sequential word if the Z flag of the
FPSR is one.

Skips the next sequential word if the N flag of the
FPSR is zero.

Skips the next sequential word if both the Z and N
flags of the FPSR are zero.

Skips the next sequential word if either the Z flag or
the N flag of the FPSR is one.

Skips the next sequential word if the N flag of the
FPSR is one.

Skips the next sequential word if the divide by zero
(DVZ) flag of the FPSR is zero.

Skips the next sequential word if the Z flag of the
FPSR is zero.

Skips the next sequential word if bits 1-4 of the FPSR
are all zero.

Skips the next sequential word if the mantissa
overflow (MOF) flag of the FPSR is zero.

Skips the next sequential word if the overflow (OVF)
flag of the FPSR is zero.

Skips the next sequential word if both the overflow
(OVF) flag and the divide by zero (DVZ) flag of the
FPSR are zero.

Skips the next sequential word if the underflow (UNF)
flag of the FPSR is zero.

Skips the next sequential word if both the underflow
(UNF) flag and the divide by zero (DVZ) flag of the
FPSR are zero.

Skips the next sequential word if both the underflow
(UNF) flag and the overflow (OVF) flag of the FPSR
are zero.

Increments the addressed word, then skips if the
incremented value is zero.

Compares the signed integers in two accumulators
and skips if the first is greater than or equal to the
second.

Compares the signed integers in two accumulators
and skips if the first is greater than the second.

Skips the next sequential word if the bit addressed by
the bit pointer is one.

Skips the next sequential word if the bit addressed by
the bit pointer is zero.

Sets the bit addressed by the bit pointer to one and
skips the next sequential word if the bit was originally
zero.

Programming the CPU 1-17

Program Flow Management

The instructions for program flow management include noncomputational skip
(Table 1-10), jump (Table 1-11), subroutine (Table 1-12), interrupt (Table 1-13),
and accumulator (Table 1-14) instructions.

Table 1-10 Noncomputational skip instructions

Mnem Instruction Action

CLM Compare To Limits Compares a signed integer with two other numbers
and skips if first integer is between the other two.

FNS No Skip No operation.

FSA Skip Always Skips the next sequential word.

Table 1-11 Jump instructions

Mnem Instruction Action

DSPA Dispatch Compares a signed integer with two other numbers
and continues sequential execution if the integer is
not between the others; otherwise, uses the integer
as an index into a table and places indexed value in
the program counter.

JMP, EJMP Jump Places an effective address in the program counter.

JSR, EJSR Jump To Subroutine Increments program counter and stores incremented
value in AC3; then places a new address in the
program counter.

POPJ Pop PC and Jump Pops the top word off the stack and places it in the
program counter.

PSHJ Push PC and Jump Pushes the address of the next sequential instruction

onto the stack, computes the effective address E, and
places it in the program counter.

Table 1-12 Subroutine instructions

Mnem

Instruction

Action

JSR, EJSR

PSHR

RSTR
RTN

SAVE

XOP

XOP1

Jump To Subroutine

Push Return Address

Restore
Return

Save

Extended Operation

Extended Operation

Increments program counter and stores incremented
value in AC3; then places a new address in the
program counter.

Pushes the address of the instruction after the next
sequential instruction onto the stack.

Returns control from certain types of I/O interrupts.

Returns control from subroutines that issue a Save
instruction at their entry points.

Saves the information required by the Return
instruction.

Pushes a return block on the stack, placing the
address in the stack of the specified accumulators
into AC2 and AC3, and transfers control to 1 of 32
other procedures with the XOP table.

Same as XOP, except that 32 is added to the entry
number before entering the XOP table and only 16
table entries can be specified.

1-18 Programming the CPU

Table 1-13 Interrupt instructions

Mnem Instruction Action

DSPA Dispatch Compares a signed integer with two other numbers
and continues sequential execution if the integer is
not between the others; otherwise, uses the integer
as an index into a table and places indexed value in
the program counter.

FTD Trap Disable Sets the trap enable flag of the FPSR to zero.

FTE Trap Enable Sets the trap enable flag of the FPSR to one.

Table 1-14 Accumulator instructions

Mnem

Instruction

Action

LEF, ELEF

XCT

Load Effective
Address

Execute

Places an effective address in an accumulator.

Executes contents of an accumulator as an
instruction.

Stack and Data Management

The instructions that fall under this category are summarized in Table 1-15.

Table 1-15 Stack instructions

Mnem

Instruction

Action

FPOP

FPSH

MSP

POP

POPB

PSH

PSHJ

PSHR

RSTR
RTN

SAVE

Pop Floating-Point
State

Push Floating-Point
State

Modify Stack Pointer
Pop Multiple

Accumulators
Pop Block

Push Multiple
Accumulators

Push PC Jump
Push Return Address

Restore
Return

Save

Pops an 18-word floating-point return block off the
user stack and alters the state of the floating-point
unit.

Pushes an 18-word floating-point return block onto
the user stack.

Changes the value of the stack pointer and checks for
overflow.

Pops 1 to 4 words off the stack and places them in
the indicated accumulators.

Returns control from a System Call routine or an |I/O
interrupt handler that does not use the stack change
facility of the Vector instruction.

Pushes the contents of 1 to 4 accumulators onto the
stack.

Pushes the address of the next sequential instruction
onto the stack, computes the effective address E, and
places it in the program counter.

Pushes the address of the instruction after the next
sequential instruction onto the stack.

Returns control from certain types of 1/0 interrupts.

Returns control from subroutines that issue a Save
instruction at their entry points.

Saves the information required by the Return
instruction.

Programming the CPU 1-19

Table 1-15 Stack instructions (Continued)

Mnem Instruction Action

XOP Extended Operation ~ Pushes a return block on the stack, placing the
address in the stack of the specified accumulators
into AC2 and AC3, and transfers control to 1 of 32
other procedures via the XOP table.

XOP1 Extended Operation ~ Same as XOP except that 32 is added to the entry
number before entering the XOP table and only 16
table entries can be specified.

System Management

The System Call instruction can be specified as SYC, SCL (which is equivalent to
SYC 0, 1), or SVC (which is equivalent to SYC 0, 0). This instruction turns off
the MAP if it is on, pushes a return block onto the stack, and places the address
of the System Call handler in the program counter.

Commerical Instructions

The instructions in this category are available on Model 30 computer systems
only. The commerical instructions are summarized in Table 1-16.

Table 1-16 Commercial instructions

Mnem Instruction Action

EDIT Edit Converts a decimal integer to a string of bytes
controlled by an edit subprogram; or manipulates a
string of bytes.

LDl Load integer Converts a decimal integer to normalized

floating-point form and places it in a specified
floating-point accumulator.

LDIX Extended load Distributes a decimal integer into four floating-point
integer accumulators.
LSN Load-sign Evaluates a number in memory and returns a code
indicating the sign of the number.
STI Store integer Converts the contents of a floating-point accumulator
to a specified format and stores it in memory.
STIX Extended store Converts the contents of four floating-point
integer accumulators to integer form and uses the eight

low-order digits of each to form a 32-digit integer.

Device Management

The instructions for device management include basic I/O (Table 1-17), I/O
command flag (Table 1-18), I/O interrupt (Table 1-19), I/O skip flag (Table 1-20),
CPU device (Table 1-21), and CPU skip flag (Table 1-22) instructions.

1-20 Programming the CPU

Table 1-17 I/O instructions

Mnem Instruction Action

DIA[f] Data In A Transfers data from the A buffer of an I/O device to an
accumulator.

DIB[f] Data In B Transfers data from the B buffer of an 1/0 device to
an accumulator.

DIC[f] DataInC Transfers data from the C buffer of an I/0 device to an
accumulator.

DIS Data in Status Returns the status of a specifed I/O device. *

DOA[f] Data Out A Transfers data from an accumulator to the A buffer of
an 1/O device.

DOB/f] Data Out B Transfers data from an accumulator to the B buffer
of an I/O device.

DOCIf] Data Out C Transfers data from an accumulator to the C buffer of
an 1/0 device.

NIO[f] No I/0O Transfer Sets Busy or Done flag. No I/0 transfer occurs.

*Refer to the accumulator format of this instruction.

Table 1-18 1/O command flags

Mnem Flag Value Action

[f] omitted 00 Does not alter the Busy and Done flags.

[fl=8 01 Starts the device; sets Busy flag to one and Done flag
to zero.

[fl=C 10 Idles the device; sets Busy flag to zero, and sets Done
flag to zero.

[fl=P 11 I/0 pulse; effect depends upon device.

Table 1-19 I/O interrupt instructions

Mnem Instruction Action

INTA (DIB[f] Interrupt Returns the device code of an interrupting device.

CPU) Acknowledge

INTDS (NIOC Interrupt Disable Sets CPU Interrupt On flag to zero.

CPUL)

INTEN (NIOS Interrupt Enable Sets CPU Interrupt On flag to one.

CPU)

MSKO (DOB/f] Mask Out Changes the priority mask.

CPU)

POPB Pop Block Returns control from a System Call routine or an I/0O
interrupt handler that does not use the stack change
facility of the Vector instruction.

RSTR Restore Returns control from I/O interrupts that use the stack
change facility of the VCT instruction.

SKP[t] 1/0 Skip Skips if the I/O condition t is true.

VCT Vector On Identifies highest priority interrupt; passes control

Interrupting Device
Code

through a table to a handler routine for device.

Programming the CPU

1-21

Table 1-19 1/O interrupt instructions (Continued)

Mnem Instruction Action
XCT Execute Executes contents of an accumulator as an
instruction.
Table 1-20 I/O skip flags
Mnem Flag Value Action
[t}=BN 00 Tests Busy flag for nonzero.
[t]=BZ 01 Tests Busy flag for zero.
{t]=DN 10 Tests Done flag for nonzero.
[ti=DZ 11 Tests Done flag for zero.

Table 1-21 CPU device instructions

Mnem Instruction Action
DIS CPU Read Processor Returns the status of the processor, including the
Status following conditions: power fail, interrupt on, Break

Key reset, power-up reset, halt instructions, and
interrupt request. *

HALT (DOC(f] Halt Stops the processor.

CPU)

INTA (DIB[f] Interrupt Returns the device code of an interrupting device.

CPU) Acknowledge

INTDS (NIOC Interrupt Disable Sets CPU Interrupt On flag to zero.

CPU)

INTEN (NIOS Interrupt Enable Sets CPU Interrupt On flag to one.

CPU)

IORST (DICCIf] Reset Sets all Busy and Done flags and the priority mask to

CPU) zero.

MSKO (DOB[f] Mask Out Changes the priority mask.

CPU)

READS (DIAlf] Read Switches Places the contents of the virtual console register into

CPU) an accumulator. * *

SKP[t] CPU} CPU Skip Tests the Interrupt On or Power Fail flag and skips the

next sequential word if the test condition is true.

*Refer to the accumulator format for this instruction.
* *Refer to Chapter 3 for a description of this register.

Table 1-22 CPU skip flags

Mnem Flag Value Action

[t}=BN 00 Tests Interrupt On flag for nonzero.
[t]=BZ 01 Tests Interrupt On flag for zero.
[t]=DN 10 Tests Power Fail flag for nonzero.
[t]=DZ 11 Tests Power Fail flag for zero.

1-22 Programming the CPU

Memory Management

The instructions in this category are summarized in Table 1-23.

Table 1-23 MAP instructions

Mnem

Instruction

Action

DIA MAP

DIC MAP or
DIC ATP

DOA MAP
DOB MAP
DOC MAP or

DOC ATP
LMP

LMPA

NIOP MAP

RHYP

WHYP

Read Map Status
Page Check

Load Map Status

Map Supervisor Page
31

Initiate Page Check

Load microECLIPSE
MAP

Load ATP (8086)
Map

Map Single Cycle

Read Control
Memory Status

Write Control
Memory Status

Reads the status of the current map.

Provides the identity and some characteristics of the
physical page that corresponds to the logical page
identified by the immediately preceding Initiate Page
Check instruction.

Defines the parameters of a new map.

Specifies the physical page corresponding to logical
page 31 of unmapped address space.

ldentifies a logical page; selects map without
changing status.

Loads successive words from memory into the
microECLIPSE MAP, where they are used to define a
user or data channel map.

Loads successive word pairs from memory into the
8086 MAP, where they are used to define the
translation function for the 8086.

Maps one memory reference using the last user map,
or turns off memory mapping for the microECLIPSE
processor.

Loads the contents of the control memory status
register into AC1.

Writes the contents of AC1 into the control memory
status register. Used with RHYP to enable writing to
the monochrome monitor screen buffer.

Reserved Memory Locations

Table 1-24 lists the program-accessible locations in page 0 of memory These
locations have been reserved for the storage of data that have special meanings

for the CPU.

Table 1-24 Reserved memory locations

Memory Address

{octal)

Contents or Use

00000

00001
00002
00003
00004
00005
00006

Return address for I/O interrupts. Also, first instruction of auto-restart

routine.

Address of 1/0 interrupt handling routine. Indirectable.

Address of system call instruction handler. Indirectable.
Address of MAP fault handling routine. Indirectable.
Address of the top of the vector stack. Nonindirectable.

Current interrupt priority mask.
Address of the last normally usable location in the vector stack.

Programming the CPU 1-23

Table 1-24 Reserved memory locations {Continued)

Memory Address
{octal) Contents or Use
00007 Address of the vector stack fault handier. Indirectable.
00011 Address of emulator trap handler. (If contents equal zero, an NOP is
performed.)
00040 Address of the top of the stack. Nonindirectable.
00041 Address of the start of the current stack frame minus one.
Nonindirectable.
00042 Address of stack upper limit.
00043 Address of stack fault routine. Indirectable.
00044 Address of the beginning of the XOP table. Nonindirectable.
00045 Address of floating-point fault handler. Indirectable.
00046 Reserved for future use.
00047 Reserved for future use.

Instruction Execution Times

Table 1-25 lists typical execution times for all instructions. The numbers in
parentheses are execution times for the floating point instructions. Refer
to Appendix C for more information on execution times for commerical
instructions.

Table 1-25 Instruction execution times

Instruction Execution time {microsec.) Cpu Cycles Notes
ADC 0.50 1 1
ADD 0.50 1 1
ADDI 1.00 2

ADI 0.50 1

ANC 0.50 1

AND 0.50 1 1
ANDI 1.00 2

BAM 6.50 + 2.5/word 13 + 5/word 2,3
BLM 3.50 + 2.0/word 7 + 4/word 2,3
BTO 5.50 11 4
BTZ 4.50 9 4
ClM 3.50 7 1
CMP 8.50 + 7.0/byte 17 + 14/byte 3
CMT 1.50 + 9.0/byte 3 + 18/byte 3
cmMmv 5.50 + 5.5/byte 11 + 11/byte 3
coB 7.50 15 5
COM 0.50 1 1
CTR 5.50 + 7.0 or 9.5/byte 11 + 14 or 19/byte 6
DAD 8.00 16

DHXL 7.50 15 5
DHXR 7.00 14 5
DIA,B,C 2.00 4 7
DIS 2.00 4 7
DIV 12.00 24

DiVS 20.50 41

DIVX 19.50 39

DLSH 6.50 13 5
DOA,B,C 2.00 4 7

1-24 Programming the CPU

Table 1-25 Instruction execution times (Continued)

Instruction Execution time (microsec.) Cpu Cycles Notes
DSB 8.00 16
DSPA 6.00 12 2
DSz 2.00 4 2,1
EDIT 150.00 300 5
EDSZ 2.00 4 2,1
EISZ 2.00 4 2,1
EJMP 1.50 3 2
EJSR 1.50 3 2
ELDA 1.00 2 2
ELDB 3.50 7
ELEF 1.00 2 2
ESTA 1.00 2 2
ESTB 3.50 7
FAB 11.00(7.00) 22 8,9
FAD 87.00 (12.50) 174 8,9
FAMD 92.00 (18.00) 184 8,9,10
FAMS 67.00 (15.50) 134 8,9,10
FAS 65.00 (11.50) 130 8,9
FCLE 3.00 (1.50) 6 8
FCMP 29.00 (4.50) 58 8
FDD 900.00 (42.75) 1800 8,9,11
FDMD 900.00 (48.25) 1800 8,9,10,11
FDMS 190.00 (20.50) 380 8,9,10,11
FDS 190.00 (16.75) 380 8,9,11
FEXP 13.00(9.25) 26 8,9
FFAS 46.00 (11.00) 92 8,9
FFMD 45.50 (12.50) 920 8,9,10
FHLV 30.00 (9.00) 60 8,9,11
FINT 20.50 (19.50) 41 8,9
FLAS 31.00 (10.00) 62 8
FLDD 16.50 (10.00) 32 8,10
FLDS 15.00(7.50) 30 8,10
FLMD 31.00(13.50) 62 8,10
FLST 11.50 (11.00) 23 8,9,10
FMD 266.00 (46.00) 532 8,9
FMMD 266.00 (51.50) 532 8,9,10
FMMS 80.50 (22.00) 161 8,9,10
FMOV 17.00 (4.50) 34 8
FMS 80.50 (18.50) 161 8,9
FNEG 12.50(7.50) 25 8,9
FNOM 43.00 (11.50) 86 8,9
FNS 1.00(4.00) 2 8
FPOP 32.00 (43.00) 64 8
FPSH 31.50 (38.00) 63 8
FRH 6.00 (4.00) 12 8
FSA 1.50 (5.00) 3 8
FSCAL 48.00 (15.50) 96 8,9
FSD 87.00(12.75) 174 8,9
FSEQ 5.00 (4.50) 10 8
FSGE 4.50 (4.50) 9 8
FSGT 5.00 (4.50) 10 8
FSLE 5.00(4.50) 10 8
FSLT 4.50 (4.50) 9 8
FSMD 92.00 (18.25) 184 8,9,10
FSMS 67.00 (15.50) 134 8,9,10
FSND 5.00 (4.50) 10 8
FSNE 5.00(4.50) 10 8

Programming the CPU 1-25

Table 1-25 Instruction execution times (Continued)

Instruction Execution time (microsec.) Cpu Cycles Notes
FSNER 5.00 (4.50) 10 8
FSNM 5.00 (4.50) 10 8
FSNO 5.00(4.50) 10 8
FSNOD 5.00 (4.50) 10 8
FSNU 5.00 (4.50) 10 8
FSNUD 5.00 (4.50) 10 8
FSNUO 5.00 (4.50) 10 8
FSS 65.00 (12.00) 130 8,9
FSST 7.50 (7.00) 15 8,10
FSTD 12.50(5.50) 25 8,10
FSTS 9.50 (4.00) 19 8,10
FTD 3.00(1.50) 6 8
FTE 5.00 (3.75) 10 8,9
HALT 6.50 13
HLV 1.50 3
HXL 2.00 4 5
HXR 2.00 4 5
INC 0.50 1 1
INTA 2.00 4 7
I0R 1.50 3
10RI 1.50 3
IORST 3.00 6 7
1ISZ 2.00 4 2.1
JMP 1.50 3 2
JSR 1.50 3 2
LDA 1.00 2 2
LDB 1.50 3
LDi 130/85 260/170 5,17
LDIX 500 1000 5
LEF 1.00 2 2
LMP 4.50 9 2,12
LOB 4.00 8 5
LRB 5.00 10 b
LSH 8.50 17 5
LSN 155/67 310/134 5,17
MOV 0.50 1 1
MSKO 2.00 4 7
MSP 3.00 6 13
MUL 9.50 19
MULS 9.50 19
NEG 0.50 1 1
NIO 2.00 4 7
POP 1.50 3 14
POPB 6.50 13
POPJ 3.00 6
PSH 3.00 6 13,14
PSHJ 4,50 9 13
PSHR 4.50 9
RSTR 10.50 21
RTN 6.00 12
SAVE 8.00 16 13
SBI 0.50 1
SGE 0.50 1 1
SGT 0.50 1 1
SKP 1.50 3 1
SNB 4.50 9 1,4
STA 1.00 2 2

1-26

Programming the CPU

Table 1-25 Instruction execution times (Continued)

Instruction Execution time {microsec.) Cpu Cycles Notes

STB 1.50 3

STl

STIX

SuB 0.50 1 1

SYC 10.50 21 2

SZB 4.00 8 1.4

SZBO 6.00 12 1.4

VCT 8.00 to 34.00 16 to 68 15

XCH 1.50 3

XCT 2.00 4 16

XOP 20.50 41

XOP1 21.50 43

XOR 2.50 5

XORI 2.50 5

NOTES

1. If skip occurs, add 0.50 microseconds.

2. If indirect chain followed, add 0.50 microseconds + (number of indirects
—1*1.00.

3. For each item moved, add the amount shown.

4. If ACS < > ACD, add 1.00 microseconds + 2 (number of indirects).

5. Execution time is operand-dependent. Time listed is typical.

6. Byte moves require 7.0 microseconds/byte; compares require 9.5
microseconds/byte.

7. Time given for devices PAR or MAP. For other internal (SIO) devices,
time is 3.5 microseconds (7 T-periods) for external devices, times are
6 microseconds (12 T-periods) for output transfers and 7.5 microseconds
(15 T-periods) for input transfers.

8. Floating-point execution times in parentheses are achieved with the
optional floating-point board.

9. This instruction can take a floating point trap, which would add 19
microseconds to the execution time.

10. This instruction does an effective address calculation, which can add 15
microseconds to the execution time.

11. Floating-point divide execution times depend on the number of zero and
one bits in the quotient (the more ones contained in the quotient, the
longer the execution time).

12. For each word moved, add 1.50 microseconds.

13. For stack overflow, add 9.00 microseconds + (Note 2).

14. For each accumulator pushed/popped, add 0.50 microseconds.

15. Vector execution times depend on the mode employed.

16. Add instruction execution time.

17. Time shown are for data types 0-5/data types 6,7.

Programming the CPU

1-27

System Management

This section describes system management programmable elements that are
unique to the Model 20 and Model 30 SPU. It describes program-accessible
registers and defines instructions used to access those registers; defines unique
instructions; and describes how the HALT instruction effects the CPUs.

CPU Status Register

The CPU status register reports status pertaining to the system processing unit.
A CPU Status instruction DIS can be used to return the status information to a
specified CPU accumulator. The CPU status register definitions are listed below.

CPU Status

DIS[f]

ac,CPU

[¢] 1

1

AC

1 1 1 o

(4] 1

2

3

4 5 6 7 8

Returns the status of the CPU status register and places this data into the
specified accumulator.

NOTE DIS 0 CPU is equivalent to the SKP 0 CPU instruction.

The information contained in the specified accumulator is in the format:

POF ION 1 BRK | PUP | HLT OH IRQ - - TRP - - - - DG
0 1 2 3 4 5 6 7 8 9 10 m 12 13 14 15

Mnem Bit Instruction Action (If Set to 1)

POF 0 Power Fail Power Fail flag set.

ION 1 Interrupt On Interrupt On flag set.

1 2 -- Set to one.

BRK 3 Break Key Interrupt Reset resulting from depression of console Break
key. Used only by the virtual console.

PUP 4 Power Up Reset Power came up since last DOAP CPU used only
by the virtual console.

HLT 5 Halt HLT instruction was executed. Used only by the
virtual console.

DH 6 Halt Dispatch If one, indicates that a Halt instruction will cause
the processor to enter the virtual console. If zero,
indicates that a Halt instruction will cause the
processor to halt.

IRQ 7 Interrupt An interrupt is being requested.

-- 8-9 - Undefined.

TRP 10 Trap Indicates that the virtual console
single-instruction mode is in use.

-- 11-14 - Undefined.

DG 15 Diagnostic Test Indicates that the virtual console self-test is

looping; for diagnostic purposes only.

1-28

Programming the CPU

Program Load Register

The load register indicates which device last booted the system. After a
program load has been performed, the device code of the device loaded from is
placed in the virtual console switch register. A READS instruction can then be
used to return the device code. The program load register definitions are listed
below. For more information on program load, refer to Chapter 3, “Virtual
Console.”

Read Virtual Console Registers
READS ac

DIA[f] ac,CPU
0 1 1 AC 0 0 1 F 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Places the contents of the virtual console register into an accumulator.

After the transfer, sets the Interrupt On flag according to the function specified
by f The format of the specified accumulator after the transfer is:

HS

DLY

Device code

o 1 2 3 a 5 6 7 8 9 10 15
Mnem Bit Instruction Action (If Set to 1)
HS 0 High Speed Auto load program is loaded from a high-speed
device.
-- 1 -- Reserved.
DLY 2 Delay A one minute delay in the execution of the load.
-- 3-9 -- Reserved.
-- 10-15 Device Code Specifies last device to perform a program load.

CPU Acknowledge

DOAP CPU

[

1

1

o

0

[}

1

0o

1

[}

1

2

3

4

5

6

7

8

Clears nonmasked interrupts or the power-fail interrupt.

Data In Status

DIS[f]

ac,device

Programming the CPU 1-29

0o 1 1 AC 1 1 1 0 0o Device code

(o] 1 2 3 4 5 6 7 8 9 10 15

Returns the status of the addressed device and places this data into the specified
accumulator.

The accumulator should be specified as 1, 2, or 3. The DIS instruction uses the
same operation code as the SKP instruction. If ACO is the specified accumulator,
then the DIS instruction duplicates the SKP instruction.

The information contained in the specified accumulator is in the following
format for I/0 devices:

D B Reserved for future use

o) 1 2 15

D Device is done if set to one.

B Device is busy if set to one.

Halt Instruction

This instruction stops user program execution and returns to the virtual console
program if the Halt Dispatch function is enabled by jumpering. If the Halt
Dispatch function is not enabled, the processor honors data channel requests,
but not program interrupt requests. Refer to Chapter 3 “Virtual Console” for
more information.

Memory Management

The memory management facilities allocate and protect user memory by
translating logical memory addresses into physical memory addresses and
controlling access to physical memory. The facility also provides memory data
integrity by appending and checking parity on the contents of physical memory.

This section describes the memory management facilities, provides mapping
definitions, details functions, summarizes instructions in table form, defines the
relevent instructions, discusses programming considerations, and defines
power-up response.

Memory Allocation and Protection

The memory allocation and protection (MAP) unit provides the necessary
hardware to control and use more than 64 kilobytes of physical memory. In
addition, the MAP provides protection functions to maintain the integrity of a
large system.

NOTE In the following section, MAP refers to the memory allocation and
protection unit, whereas map refers to a set of memory translation functions
used by the MAP unit.

A MAP unit gives several users access to the resources of the computer by
dividing the memory space available into blocks assigned to each user. Each
time a user accesses memory, the MAP translates the address that the user
sees—the logical address—to an address that the memory sees—the physical

1-30 Programming the CPU

address. This is all transparent to the user. With software to control the
priorities of the MAP and the CPU, several users can access the computer
without being aware of the presence of the others.

The following definitions will help you understand mapping.

* Logical Address. The address used by the user in all programming. The
logical address space is 32,768 words long and is addressed by a 15-bit
address.

* Physical Address. The address used by the MAP to address the physical
memory. The maximum size of the physical address space in a Model 20
system is 2 Mbytes and it is addressed by a 20-bit address. The maximum
size of physical memory in a Model 30 system is 1.5 Mbytes.

* Address Translation. The process of translating logical addresses into
physical addresses.

* Memory Space. The addresses (physical or logical) assigned to a particular
user.

* Page. 1024 (2000g) words (2 kilobytes) in memory.

* User Map. The set of memory address translation functions defined for a
particular process. They translate logical addresses to physical addresses for
every memory reference.

* Data Channel Map. The set of address translation functions defined by the
user-specified map. They translate logical addresses to physical addresses
when data channel devices address the memory.

* Supervisor. The part of the operating system which controls system
functions such as the operation of the MAP unit.

Translation Function The primary function of the MAP unit is address
translation. A user map assigns each logical page of a user to a corresponding
physical page. If a user’s map is changed, the address space visible to the user is
unchanged, but the map now translates each logical address into a different
physical address.

A user’s physical pages can be in any order in physical memory. This means that
the supervisor can select unused pages for a new user without concern for
maintaining any particular arrangement. This also allows a more complete use of
the physical memory since no contiguous blocks of memory larger than 2
kilobytes are required.

Memory Sharing Function The MAP allows several users to use the
same section of physical memory. This is useful if several users want to use a
common routine such as trigonometric tables.

Mapped Mode In mapped mode, the MAP unit provides two types of maps:
User maps and the Data channel map.

User Maps Each user requires a separate user map. The MAP can hold four
user maps, but only one can be enabled at any one time. This means that when
four users exist, the processor specifies the user map for each and loads them into
the MAP The supervisor can then enable one or another as needed. If there are
more than four users, new user maps must be loaded as needed. This is simplified
by the use of the LMP instruction which loads a complete map with one instruc-
tion and uses relatively little time.

Programming the CPU 1-31

Data Channel MAP The data channel MAP can access memory without
direct control from the user’s program. Thus, the data channel can service a user
who is not the currently executing user. This allows the I/0 activity of one user to
be overlapped with the execution of another user. The data channel map can be
enabled or disabled at any time.

NOTE If an instruction changes the current map state and the two maps
involved do not contain equivalent mapping, the next instruction will be fetched
from and executed in the new map state.

Unmapped Mode The MAP can also operate in unmapped mode. In this
mode, no address translation occurs, so that addresses issued by the CPU
reference locations in the first 32 kilobytes of physical memory (locations in
physical pages O through 32). If, while operating in unmapped mode, the program
requires access to some other part of memory, the Page 31 register can be used to
accomplish this. Refer to the DOB, MAP instruction in the instruction dictionary.

MAP Address Translation Figure 1-7 illustrates the address translation
performed by the MAP unit. Each user’s 64-kilobyte logical address space consists
of 32 1024-word (2-kilobyte) pages. A program can load an address translation
map consisting of 32 12-bit words for each of up to four users and one map for a
data channel. Each 12-bit word in a user’s map includes 10 bits that specify the
physical page and two bits that indicate a MAP protection code. One map code bit
marks the page as write protected or write enable and the other bit specifies that
the page is validity protected or unprotected.

1-32

Programming the CPU

15-bit address produced by mE670

ADR[ADR |ADR | ADR |ADR [ADR A_RlADRI\ADRIADR ADR[ADR[ADR ADR ADR |ADH
0 1 2 3 4 5

ADR <<1-6>

selects 1 L | |
of 32 pages I ‘L J
Map MAP Address Translation Register } l
selected . . . i i
by DOA of DOC Logical 10-Bit Physical Protection [10 bits | 10 bits
MAP Page No Page Number Bits
instruction —;L
Y For page O —
User . -]
7 For page 7 VW
Map A : 20-bit address placed
31 For page 31 on memory bus
] o
Map User :
Status Map B L : To CPU
ist
Register L] 31 Maximum memory size of
0 2 Mbytes use 20 address
User : bits {the most significant
Map C physical address bit must
31 be 0.)
(0]
User .
Map D ' Note When the MEMCYC is asserted,
?E) 1 ADRO selects system memory when = O,
Data . or virtual console memory when = 1.
Channel :
Map
31
L i
A4
Loaded with

LMP instruction

DG-25686

Figure 1-7 MAP address translation

Emulator Trap The emulator trap allows users to emulate undefined
instructions. If an undefined instruction is encountered while operating in the
mapped mode, a return block is pushed onto the stack. The program then jumps
indirectly through location 11g. This location can contain the indirect address of
an emulator routine.

MAP Protection Capabilities In addition to address translation, the MAP
provides four types of protection. The MAP flags the nature of each protection
violation and causes a MAP protection fault. The four types of MAP protection
are:

Validity protection
Write protection
Indirect protection
1/0 protection
Validity Protection Validity protection protects one user’s memory space

from inadvertent access by another user, thereby preserving the integrity and
privacy of the user’s memory space. When a user’s map is specified, the blocks of

Programming the CPU 1-33

logical addresses required by the user’s program are linked to blocks of physical
addresses. The remaining (unused) logical blocks are declared invalid to that user,
and any attempt to access them will cause a validity protection fault.

Validity protection is always enabled, so the supervisor's responsibility is limited
to declaring the appropriate blocks of logical addresses. If the MAP feature
attempts to translate an invalid logical address for the user, a MAP protection
fault occurs. In this case, the state of the processor is saved and the program
jumps to the programmer-supplied MAP fault handling routine.

NOTE No validity traps occur on MAP single-cycle references, but memory is
protected.

Write Protection Write protection allows users to read the protected
memory locations, but not to write into them. In this way, the integrity of
common areas of memory can be protected. An attempt to write into a write
protected area of memory will cause a protection fault.

Blocks of logical memory may be write protected when the map is specified.
Wrrite protection can be enabled or disabled at any time by the supervisor.

For example, a set of trigonometric functions is stored in a section of memory
accessible to all users. This section should be write protected so that users can
read the functions but cannot change them.

Indirect Protection Indirect protection allows the supervisor to ensure that
the CPU will not be placed in an indirection loop. When in an indirection loop
without indirect protection, the CPU would be unable to proceed with any further
instructions, thus effectively halting the system.

With indirect protection enabled, a chain of 16 indirect references causes a MAP
protection fault. Indirect protection can be enabled or disabled at any time by
the supervisor.

I/O Protection 1/O protection protects the I/O devices in the system from
unauthorized access. If a user with 1/O protection enabled attempts to execute an
I/O instruction, an I/O protection fault will occur. Enabling I/O protection will
prevent execution of the Load Map (LMP) instruction. I/O protection can be
enabled or disabled at any time.

Map Protection Faults When a user violates one of the enabled types of
protection, a protection fault occurs, as follows:

The current user map is disabled.

A 5-word return block is pushed onto the system stack. The program
counter pushed will point to the word following the instruction which
caused the MAP fault.

Control is transferred to the protection fault handler by an indirect jump
through memory location 3 which should contain the fault handler routine
address.

The protection fault handler routine may determine the type of fault that
occurred, using the Read Map Status (DIA MAP) instruction, before taking the
appropriate action.

Any attempt to read beyond the maximum physical address space will result in
undefined data being returned.

Programming the CPU

Any attempt to write beyond the maximum physical address space will have no
effect and will not produce an error.

Load Effective Address Mode The Load Effective Address (LEF) instruction
has the same format as I/0 instructions. The MAP has a LEF mode bit which
determines whether an I/O format instruction will be interpreted as an I/O or a
LEF instruction. When the MAP is enabled and the LEF mode bit is one (LEF mode
enabled), all I/O format instructions are interpreted as Load Effective Address

- (LEF) instructions. When the LEF mode bit is zero, all I/O format instructions are
interpreted as I/O instructions.

The Load Effective Address (LEF) instruction is very useful for loading a constant
into an accumulator. In addition, a user operating in the LEF mode is denied
access to any /0O devices, because all I/O and LEF instructions are interpreted as
LEF instructions in this mode. This means that LEF mode can be used for I/O
protection. The Load Map (LMP) instruction, however, does not use the I/O format
and therefore can still be executed.

MAP Instructions The MAP instructions, shown in Table 1-26, control the
actions of the MAP. They are used by the supervisor program to change the
mapping functions or to check the status of the various maps. All except Load
Map (LMP) are in I/0 format using the device mnemonic MAP.

Table 1-26 MAP instructions

Mnem Instruction Action
DIA Read Map Status Reads the status of the current map.
DIC Page Check Provides the identity and some characteristics of the

physical page that corresponds to the logical page
identified by the immediately preceding DOC ac MAP

instruction.
DOA Load Map Status Defines the parameters of a new map.
DOB Map Supervisor Page Specifies the physical page corresponding to logical
31 page 31 of unmapped address space.

DOC Initiate Page Check ldentifies a logical page; selects the map without
changing status.

LMP Load Map Loads successive words from memory into the MAP
where they are used to define a user or data channel
map.

NIOP Map Single Cycle Maps one memory reference using the last user map.

Load Map

LMP

1 o] o 1 o 1 1 1 o o 0 0 1 0 4] o]

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Loads successive words from memory into the MAP.
Words are loaded in consecutive, ascending order according to their addresses.

Three, accumulators affect the LMP instruction:

Programming the CPU 1-35

ACO must contain zero.

AC1 contains an unsigned integer which is the number of words to be
loaded into the MAP.

AC2 contains the address of the first word to be loaded. If bit zero is one,
the instruction follows the indirection chain and places the resulting
effective address into AC2.

TAC3 is ignored and its contents remain unchanged.

For each word loaded, the instruction decrements the number in AC1 by one
and increments the address in AC2 by one.

Upon completion of the LMP instruction:

ACO remains unchanged.
AC1 contains zero.
AC?2 contains the address of the word following the last word loaded.

The words loaded into the MAP define the address translation functions for the
various user and data channel maps. The contents of the MAP field (bits 6-8) of
the MAP status register determine which map is affected by the LMP instruc-
tion. You can alter this field by using either the Load Map Status (DOA) ac,(MAP)
or the Initiate Page Check (DOC ac,MAP) instruction.

The format of the words loaded into the MAP is:

wp Logical Physical

Bits Name Contents or Function

(0] Write Protect’ Write protect for user maps.
Map faults may not occur during memory references

initiated by data channel.
1-5 Logical Logical page number.

6-15 Physical Physical page number.
"To declare a logical page invalid, set the Write Protect bit to one and all of bits 6-15 to one.

NOTE The LMP instruction is interruptible in the same manner as the BAM
instruction. If you issue this instruction while in mapped mode, with
I/O protection enabled, the map and accumulators are not altered and a MAP

fault occurs.

If the LMP instruction alters the translation of the page indicated by the
program counter for the next instruction fetch, this causes the instruction to

be fetched from the new translation.

Load MAP Status

DOA ac,MAP

1-36

Programming the CPU

The contents of the specified accumulator are placed in the MAP status register.
The contents of the accumulator remain unchanged.

The format of the specified accumulator is:

NME

RESERVED

MAP LEF 170 WP | IND [NME | DCH UE

Bits

Name

Contents or Function

0,13

1-5
6-8

10
11
12
14

15

NME

MAP

LEF

110
WP
IND
DCH Enable

User Enable

Depending on the bit settings, the next user map enabled
will be that for:

Bit O Bit 13 User enabled
0 0 A
(0] 1 B
1 0 C
1 1 D

Reserved for future use.

Specifies which map will be loaded by the next LMP
instruction as follows:

Bit 6 Bit 7 Bit8 User Enabled

(0] 0 A
C
B
D
Data Channel A
Reserved
Reserved
Reserved

o} 0
0 1
] 1
1 0
1 0
1 1

- 0-=0-0-=0

1 1

If one, the LEF instruction will be enabled for the next
user.

If one, 1/0O protection will be enabled for the next user.
If one, write protection will be enabled for the next user.
If one, indirect protection will be enabled for the next user.

If one, the mapping of data channel addresses will be
enabled immediately after this instruction.

If one, mapping of CPU addresses will commence with the
first memory reference after the next indirect reference or
return type instruction (POPB, POPJ, RTN, RSTR).

If the Load Map Status instruction sets the User Enable bit to one, the interrupt
system is inhibited, and the MAP waits for an indirect reference or a return-
type instruction. Either event releases the interrupt system and allows the MAP
to begin translating addresses (using the user map specified by bits O and 13 of
the MAP status register. Address translation resumes after the first level of the
next indirect reference or after a POPB, POPJ, RTN, or RSTR instruction.

Read MAP Status

DIA ac,MAP

Programming the CPU

1-37

[¢] 1

1

AC

[¢]

0

1 0 o] [¢] 0 o] o] 1 1

o 1

2

3 4

5

6

7 8 38 10 11 12 13 14 15

Reads the status of the current map.

Places the contents of the MAP status register in the specified AC. The previous
contents of the AC are overwritten. The format of the information placed in the

specified AC is as follows:

14 2~ dtagscleak fov s

NOTE The IORST instruction will clear bits O to 5 and)86 15 of the MAP
status register. IORST also turns off the MAP.

NME | MPN 1o WP IND sC MAP LEF 110 WP IND NME | DCH um
0 1 2 3 4 5 6 8 9 10 1 12 13 14 15
Bits Name Contents or Function
€L mpN MAP state - 1 indicates mapping
$,1 3 NME Next MAP enabled. Depending on the bit settings, the last
DOA MAP instruction enabled:
Bit & Bit 13 User Enabled
0 0} A
0] 1 B
1 0 C
1 1 D
2 1/0 If one, the last protection fault was an I/O protection fault.
3 WP If one, the last protection fault was a write protection fault.
4 IND If one, the last protection fault was an indirect protection
fault.
5 SC If one, the last map reference was a NIOP MAP instruction.
6-8 MAP Specifies which map was loaded by the last LMPA
instruction as follows:
Bit 6 Bit 7 Bit 8 User Enabled
0 0 0O A
0 0 1 C
0 1 0O B
(0] 1 1 D
1 0] 0 Data Channel
1 0 1 Reserved
1 1 O Reserved
1 1 1 Reserved
9 LEF If one, the LEF instruction was enabled for the last user.
10 1/0 If one, 1/O protection was enabled for the last user.
11 wp If one, write protection was enabled for the last user.
12 IND If one, indirect protection was enabled for the last user.
14 DCH If one, the mapping of data channel addresses has been
enabled.
15 um User mode. If one, the last }/O interrupt occurred while in

user mode (map enabled).

1-38

Programming the CPU

Initiate Page Check

DOC ac,MAP
Q 1 1 AC 1 1 (4] o 0 0 0 0 0 1 1
o 1 2 3) 4 5 6 7 8 9 10 1 12 13 14 15

The contents of the specified accumulator are transferred to the MAP feature
for later use by the DIC ac MAP or LMP instruction. The contents of the
specified accumulator remain unchanged. The format of the specified AC is:

A

Logical J Reserved

(] 1 ' o ' 5 6 ’ ﬁqa N q " T T ' 15
Bits Name Contents or Function
(¢) -- Reserved for future use.
1-5 Logical Number of the logical page for which the check Page is
requested.
6-8 Map Specify which map should be used for check as follows:
Bit6 Bit7 Bit8 User Enabled
(0] (0] 0 A
(0] 0 1 C
0] 1 0O B
0] 1 1 D
1 0 O Data Channel A
1 0 1 Reserved [
1 1 O Reserved
1 1 1 Reserved)
9-15 - Reserved for future use.
Page Check
DIC ac,MAP
o 1 1 AC 1 0 1 0 0 0 (o] 0 0 1 1
o] 1 2 3 4 5 6 7 8 9 10 AR 12 13 14 15

Places the number of the physical page which corresponds to the logical page
specified by the preceding DOC MAP instruction in bits 6 to 15 of the specified
AC. Places additional information about the correspondence in bits 0-5. The
previous contents of the AC are overwritten. The format of the information
placed in the specified AC is:

WP MAP Physical

Programming the CPU

1-39

Bits Name Contents or Function
0 WP The write protect bit for the logical page which
corresponds to the physical page specified by bits 6-15.
1-3 MAP The map which was used to perform the translation
between logical page number and physical page number
as follows:
Bit 1 Bit2 Bit3 User Enabled
0 0 0 A
(0] 0 1 C
0 1 0O B
0 1 1 D
1 0 O Data Channel A
1 0 1 Reserved %
1 1 0 Reserved % -
1 1 1 Reserved .
4-5 - Reserved for future use.
6-15 Physical page The number of the page which corresponds to the logical

page given in the preceding DOC MAP instruction.

NOTE If all physical page bits including the write protect bit are one, then the
logical page is validity protected.

Map Supervisor Page 31

DOB ac,MAP
[+ 1 1 AC 1 o 0 () [s] 0) 0 [v) 1 1
(] 1 2 3) 4 5 6 7 8 9 10 1 2 13 14 15

Specifies that mapping take place for a single page of an unmapped address
space. Mapping is always done for locations 760005 though 777773 (logical page
31). This is the only page which can be mapped when in unmapped address
space. You can use this instruction to access a page of a user’'s memory space
when in unmapped mode. The MAP supervisor Page 31 instruction can only be
used with the MAP off.

Bits 6-15 of the specified'AC are transferred to the MAP feature. These bits
specify a physical page number to which logical page 31 will be mapped when
in the supervisor mode.

The contents of the specified AC remain unchanged. The format of the specified
AC is:

Reserved Physical

—+ + + —+ + —+

Programming the CPU

Bits Name Contents or Function
0-5 -- Reserved for future use.
6-15 Physical Page The number of the physical page to which logical page

31 should be mapped when in supervisor mode.

NOTE If supervisor page 31 translation is altered while instructions are being
fetched through supervisor page 31, instructions will be fetched from the new
translation. IORST resets logical address translation to physical address
translation.

Map Single Cycle
Disable User Mode

NIOP MAP

(o] 1 1 o 0 0 o o 1 1 4] o o] 0 1 1

(¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The effect of this instruction depends upon the mode from which it is issued.

NOTE The interrupt system is disabled from the beginning of the MAP Single
Cycle instruction until after the next LDA, ELDA, STA, or ESTA instruction.

From user (mapped) mode: if the LEF mode and 1/O protection are disabled, the

NIOP instruction turns off the MAP. All subsequent-memory-reforences-are
instructions——wnhd mﬁe\— Hie kept weeworg V‘C—F—erl\«;&.

From the unmapped mode: the user map is enabled for one memory reference.
The first memory reference of the next LDA, ELDA, STA, or ESTA instruction is
mapped. After the memory cycle is mapped, the user map is again disabled. For
example, if AC2 contains 4053 and the following instruction sequence is issued:

NIOP MAP ;MAP SINGLE CYCLE
LDA 3,2,2

then the logical address 4075 will be mapped using the last enabled user map
(specified by bits O and 13 of the MAP status register at the time of the memory
reference). The word contained in the corresponding physical location will be
placed in AC3.

However, if the following instruction sequence is issued:
NIOP MAP ;MAP SINGLE CYCLE
LDA 3,@2,2

then the logical address 407g will be mapped using the user map for the last
enabled user. The contents of the corresponding physical location will be used as
the first level of an indirection chain. The next memory cycle, which is the

Programming the CPU

1-41

second level of the indirection chain, will not be mapped.

Programming the MAP To manage address translation, a memory
supervisor routine must maintain information about memory usage, such as the
allocation of physical pages between processes, the pages available to processes,
the pages that must be shared, and which processes currently have map tables
stored in the translators.

The supervisor must also maintain a map table in memory or on disk for itself and
each process that requires address translation. Normally, the supervisor reserves
the user A map table for itself. When setting up the map table for a process, the
supervisor should invalidate all pages not needed by the process. This ensures
that mistaken references to these unneeded pages do not result in unwanted
access to memory used by other processes. In other words, if a process only needs
12 pages (24 Kbytes), then logical pages 13 through 30 should be invalidated.
Invalidate a page by setting the write protect bit and the physical page bits to 1
in the map table entry for the page. Note that page 1777 cannot be write-
protected without also validity protecting it.

Loading and Enabling Map Tables Before a process becomes active in
a system using address translation, the memory supervisor must make sure the
map table for the process is stored in the MAP. Load a map table into the MAP
from memory with the following instruction sequences:

1. Load MAP Status instruction DOA ac,MAP to select the map table to be
loaded.

2. Load Map instruction LMP to start storing the map table.
Load MAP instruction LMP is interruptible and resumable.

While a user or DCH map table is being loaded, a user or data channel address
translation can occur using another map table. Before a user or data channel
process can use the new map table, the supervisor must enable the map table
together with user or data channel address translation. Do this with another
Load MAP Status instruction DOA ac,MAP. When a Load MAP Status instruction
DOA acMAP instruction enables user translation (sets bit 15 to 1 in the
translator’s status register), then the interrupt system is disabled and the
translator waits for an indirect memory reference. After the first level of the
next indirect reference occurs, the interrupt system is reenabled and address
translation starts using the enabled map table.

The supervisor can enable data channel address translation with a Load MAP
Status instruction DOA ac,MAP. However, it cannot use this instruction to enable
a map table for the data channel process. Instead, it must use an I/O instruction
for the specific device associated with the data channel process. This instruction
is usually one of the instructions used to set the parameters of a data channel
transfer for the device.

When a user or data channel map table is enabled that alters the translation of
the logical page indicated by the program counter for the next instruction fetch,
then the instruction is fetched using the new translation. Likewise, when a DCH
map table is loaded that alters the translation of the logical page indicated by
the DCH address register for the next DCH transfer, then this transfer uses the
new translation.

NOTE Unpredictable results happen if a user memory write is done when all
the following conditions occur together:

1-42

Programming the CPU

The write is to a logical page that is different than the logical page
currently being translated, and

The logical page for the write translates into the same physical page as the
logical page currently being translated, and

The physical address for the write is one or two greater than the current
program counter.

NOTE MAP instructions can be executed in mapped mode if 1/0 protection and
LEF mode are disabled for the user. When executed in mapped mode, the Read
Map Status, Initiate Page Check, and Page Check instructions will return the
desired information without changing the map. The Map Single Cycle instruc-
tion will disable the user map after the next memory reference.

Enabling only LEF mode will convert all I/0 instructions (including MAP
instructions) to LEF instructions. The Load Map instruction, however, does not
use the I/0 format and therefore can still be executed. Enabling I/0 protection
will prevent execution of the Load Map instruction. Bit 1 of the MAP status
register indicates the state of the MAP If bit 1 is set to one, the MAP is enabled.
If bit 1 is set to zero, the MAP is disabled. For further details, refer to the DIA
MAP instruction.

Power-up Response At power up, the user maps and the data channel
maps are undefined, the MAP is in unmapped mode, and unmapped logical page
31 is mapped to physical page 31. This means that all addresses issued by the
CPU reference physical pages 0 to 32, While operating in unmapped mode, page
31 register may be used to access s&ne other part of memory. Refer to the DOB,
MAP instruction in “Instruction Set” of this section.

After an I/O Reset IORST, the MAP is in unmapped mode, the data channel maps
are disabled, and unmapped logical page 31 is mapped to physical page 31.

Parity Checking The Model 20 and Model 30 SPU generates and appends a

parity bit to each byte of data written to memory. In addition, the SPU checks this
bit for each byte read from memory. Detection of an incorrect parity bit may, at
the user’s request, cause an interrupt request.

Programmable Elements From a programming point of view, the parity
checking facility consists of the following major elements:

Control Register

Fault Code Register
Fault Address Register
Done Flag

Your program directs the facility by manipulating these major elements, using
the following interface instructions together with the START device flag
commands:

Enable Parity Checking DOA
Read Parity Fault Address DIA
Read Parity Fault Code DIA

The program also uses I/O Reset IORST instruction to manipulate the state of
some elements.

Programming the CPU

143

Programming Summary The following programming summary provides
general facility specifications; shows the accumulator formats for the three facility

instructions; and explains the facilities response to the START, CLEAR, and PULSE
flag commands and the I/O Reset instruction IORST.

Table 1-27 Programming summary: parity checking facility

Enable Parity Checking (DOA)

Reserved Control

(4] 13 14 15

Read Parity Fault Address (DIA)

M/V Memory location in error
Read Parity Fault Code (PTA) DI®
Fault Undefined

o 1 2 15

DG-25857
Figure 1-8 Programming summary: accumulator formats

/
Table 1-28 Programming summary: START, CLEAR, PULSE, and IORST functions:

Registers and Flags The program-accessible registers of the parity
checking facility include the control, fault address, and fault code registers. Its
program-accessible flag is the Done flag.

* Control Register. The control register stores the 2-bit code sent to the parity
facility by the program to control the parity facility. The program loads this
register using a Enable Parity Checking instruction DOA. The program sets the
two control bits to Os using the I/O Reset instruction IORST. Refer to the
Enable Parity Checking instruction for control details.

* Fault Address Register. The fault address register stores the 15-bit logical
address of the last memory location accessed that contained a parity error.
The program reads this register using a Read Parity Fault Address instruction
DIA.

Programming the CPU

* Fault Code Register. The fault code register stores a 2-bit code specifying
which byte of the accessed memory location contained a parity error. The
program reads this register using a Read Parity Fault Code instruction DIA.
Refer to this instruction for error code details.

* Done Flag. The Done flag, when set to 1, initiates an interrupt request to the
CPU (unless interrupts are disabled) and specifies that the parity facility has
detected a parity error during the last memory access. The program sets the
Done flag to O using the I/O Reset instruction |IORST or the START flag
command. A program can test the Done flag using the I/O Skip instruction
I0SKP addressed to the parity checking facility.

I/0 Instruction Set Three programmed I/O instructions enable you to
program the parity checking facility to enable/disable parity checking and to
determine where a parity error occurred. These instructions:

1. Load the two control bits from a specified CPU accumulator into the control
register (DOA).

2. Read a fault address from the fault address register into a specified CPU
accumulator (DIA).

3. Read a fault code from the fault code register into a specified CPU accumula-
tor (DIB).

Four additional programmed I/O instructions, two addressed to either the receiver
or transmitter section of the parity checking facility and three addressed to the
CPU (Device code 77g) allow the CPU to:

Alter program flow determined by the state of the Done flag (IOSKP).

Issue a START flag command without a programmed input/output transfer
(NI1O).

Identify an interrupting source (INTA).
Initialize the interface (IORST).

These instructions are fully described in 16-bit Real-Time ECLIPSE Assembly
Language Programming.

Assembly language coding and instruction bit patterns are shown for each of
the three instructions described. The device code field of the instruction is
shown with the standard parity checking facility device code, 02g. Mnemonics
PAR or 02g used in the assembly language coding, address the parity checking
facility.

The START device flag command can be specified in the F field of programmed
I/O instructions. Refer to the Programming Summary for the effect that this flag
command and the I/O Reset IORST instruction have on the parity checking

facility.
Read Parity Fault Address
DIA[f] ac,2

Places the logical address of the last memory location in error in bits 1 to 15 of

Programming the CPU

1-45

the specified AC. Bit O is set to one if the error occurred in mapped mode; to
zero if the error occurred in unmapped mode. The format of the specified AC is

Memory Location in Errar

Read Parity Fault Code
DIB[fl] ac,2
[1 1 AC 0 1 1 F 0 0 [o] [¢] 1 ¢}
o 1 2 3 ’ 4 5 6 7 8 9 10 11 2 13 14 15

A 2-bit error code is placed in bits 0 and 1 of the specified accumulator. Bits 2 to
15 of the specified AC are undefined. The format for the specified accumulator

1S
Fault Undefined
5] 1 2 N o " N - 15
Table DIB__2
Bits Name Contents or Function
0,1 Fault A 2-bit error code specifying which byte contained a parity
error:

10 Upper byte
01 Lower byte

00 No error
11 Both bytes
2-15 - Undefined.
Enable Parity Checking
DOA[f] ac,2
0 1 1 AC [0 1 0 0 0 [} [+ [s] [s) 1 0
o] 1 2 3 ' 4 5 6 7 8 9 10 11 2 13 14 15

The parity checking facility is enabled according to the setting of bits 14 and 15
of the specified accumulator. The contents of bits O to 13 of the specified
accumulator are not changed. The format of accumulator is

Reserved Control

+- + -+ -+ + + + + -+

1-46 Programming the CPU

Bits Name Contents or Function
0-13 -- Reserved for future use.
14,15 Control Control the parity checking feature as follows:

00 Disable checking; write valid {odd) parity check field.
01 Disable checking; write even parity field.

10 Disable checking; write valid (odd) parity check field.
11 Enable parity checking; interrupt on parity error.

Power-up Response

After power up or an IORST instruction, the parity checking facility is disabled
and a valid (odd) parity check field is written.

Program-Accessible Registers

Figure 1-9 shows the program-accessible registers of the system processing unit,
their accumulator formats, and the instructions used to access them.

Programming the CPU 1-47

Name

CPU
Status

Auto
Program
Load

MAP
Address

MAP
Status
Out

MAP
Status
In

MAP
Page
Check

MAP
Initiate
Page
Check

MAP
Page
31

Parity
Enable

Parity
Check
Status

Format

Read with DIS ac*, CPU

PF [ION[1 {BRK(PU |HLT{OH |tRQ -[RUNf OO0)0
[1 2737475 6 778 9710117127137 14"15

Read with DIA ac, APL

DCN[—[Reserved for future use. Device Code]

L L S e i S B T+ S S S A S T

Write with LMP ac

FNN[Logical page no. Physical page number
S e e e LA e 57

Write with DOA ac, MAP

ME! - I Reserved] MAP JLEFJ I/O]}NP‘[INDJ:‘ME{DCH!U!]
n
[

Tyt T TS5 6 '8'§ 10 111213 14" 15

F

Read with DIA ac, MAP

T
[NME{MPP{I/O Iw;lmo] sc[MAP]LEF [,’0 [WP‘ IND{NMEDCNlUMI
Tot1i vz 3TatsTe T T8 9 10 1112713 14" 15"

Read with DIC ac, MAP

IWPI MAP l Rsvd I Physical Page Number
T35 e T ™57

Write with DOC ac, MAP

[RSV—I;LOQICB' Page Numberr MAP i Reserved for future use. J
T I S A A A S 2 Tz

Wirite with DOB ac, MAP

Reserved for future use. Physical Page Number
O e s e e e N e e T

Write with DOA ac, PAR

Reserved for future use.]-:omaot]

A e A e e e e TR Ve Tl

Read with DIS ac, PAR

=[]

e —

Reserved for future use.

———T ——TT
—T—TT 5

*This accumulator must not be ACO.

Flgure 1-9 Program accessible registers

Name Format
Read with DIA P

Memory wi ac, PAR

Fault

Address k‘"i Lfogn’:al a:ldr, of last memory loc. in error I MAP sel.]

RER ————

Read with DIB ac, PAR

Memory

Fault e, Laﬂ Reserved for future use
Code

L L L e e A S B B S S o

Read with DIA ac, TTI

TTi
Chara(ter ’ Reserved for future use l Last character receved
Buffer T L S A T e S e e NI

Write with DOA ac, TTO

TTO

Character { Reserved for future use Next character to be sent ‘l

Buffer O e S M Z5A N s g7
Write with DOA ac, RTC

Real

Time Reserved for future use l RTC l

Clock I S s e e A s b T SV R Y
Read with DIA ac, PIT

PIT Current value of PIT counter within 1 count cycle

Count T r—————— 54
Write with DOA ac, PIT

PIT

|nitia| ‘leo‘s complement of the number of intervals between interrupts

Count o e e e MAR T
Read with READS ac

Virtual f Device code of last program load device

Console 'Hy————T———r—T————T—7——r751

Read/Write with Status Register Instructions
Floating Point
St_atus }ANVIOVF[UNFIDVZIMDFI szz l N [I FPMOD]
(first word) ‘v+—+r vt 2 Y7 15

Read with DIS ac*. device

st PP

ety

Resarved for future use.
T

*This accumulator must not be ACO.

Note The format shown for "‘Device Status’’ applies to any 1/0O device,
whether part of the CPU (eg., PAR.TTO) or external to it.

DG-08947

Programming the CPU

POWER-UP Response

After power is applied to the SPU, the CPU is initialized and enters the Halt
state. At this time, all Busy and Done flags are set to zero, 1/0 interface registers
are cleared, the state machines in the microl/O bus interface are initialized, bits
0-5, 9-12, 14, and 15 of the MAP status register are cleared, and the CPU status
register is cleared except for the Power-up bit (bit 4), which is set to one. The
contents of the Page 31 register are set to 37 (octal). The parity fault code and
parity enable registers are cleared.

From the Halt state, the CPU enters the virtual console, which clears the
Power-up bit and performs a short diagnostic routine. The diagnostic routine
checks physical memory locations O through 31K, the virtual console scratchpad
memory, the CPU, and the console interface. If an error is detected, an error
message is displayed and the virtual console program waits for the user to press
the Break Key!. (The error messages are described in Chapter 3, "The Virtual
Console.”)

After successfully completing the diagnostic routine, the CPU remains in the
virtual console program and issues a prompt to notify the user that the system
is ready to perform a program load function.

"Pressing the Break Key after an error code display will allow the virtual console program to run, but the indicated
error condition will continue and may cause unpredictable results.

Powerfail/Autorestart

When an abnormal power condition occurs, the power supply asserts a signal
that causes the system [/O integrated circuit (IC) to issue an interrupt request to
the CPU. The CPU should respond to the request by entering a user-supplied
powerfail interrupt routine. A typical powerfail routine saves the state of the
processor, loads a return instruction into physical location O, and Halts.

If the power failure condition persists longer than 2 ms, the program and data
in the CPU and RAM memory will be lost. In this case, when power returns, the
virtual console program enters the normal power-up sequence just described.

If power is restored before 2 ms, the following discussion applies.

If the Halt Dispatch bit in the SIO register is set to 1, the Halt instruction
transfers program control to the virtual console when power is restored. The
virtual console automatically clears the powerfail interrupt, the instruction in
location O is executed and control returns to the user’s program. (Refer to
Chapter 3, "Virtual Console.”

NOTE If the virtual console is not entered within 150 ms after the powerfail
interrupt, it is possible that the powerfail condition is cleared before it is tested.
If this occurs, the virtual console will retain control but will not automatically
execute the location O instruction.

NOTE The CPU Done bit directly reflects the status of the powerfail signal.
That is, a CPU Acknowledge instruction (DOAP) with 177776 in the specified
accumulator will clear the interrupt request, but if the powerfail condition still
persists the CPU Done bit remains set.

Programming
Basic Model 20
and Model 30
I/O Interfaces

This chapter describes the programmable elements of the basic Model 20 and
30 I/0 interfaces; summarizes their specifications, instruction accumulator
formats, and flag commands used to program them; defines the relevant I/O
instructions; discusses programming considerations and I/0 timing; and explains
possible error conditions. The basic 1/O interfaces include the Asynchronous
Communications Interface, Real-Time Clock, Programmable Interval Timer, and
Diskette Subsystem

Programming Basic Model 20 and Model 30 I/0O Interfaces

Asynchronous Communications Interface

The asynchronous communications interface is a programmed 1/0O interface
which allows full-duplex communications between the CPU and a terminal
connected to the A connector of the Model 20 and Model 30 SPU printed circuit
card. The interface contains both a double-buffered transmitter (TTO) section
and a receiver (TTI) section that function as separate devices. The transmitter
section is assigned device code 11g and the receiver section is assigned device
code 10g.

NOTE The Model 20 and Model 30 asynchronous communications interface
receives and transmits eight bit data characters without parity. If the terminal
device being used with the Model 20 and Model 30 SPU asynchronous commu-
nications port operates with a data character length of seven bits, you should
configure the device to operate with "mark parity”. When receiving data
characters from a 7-bit terminal device, software should mask out the parity bit
after the character has been loaded into an accumulator. The parity bit is the
most significant bit in the character and is contained in bit 8 of the specified
accumulator.

Programmable Elements

From a programming point of view, the asynchronous communications interface
consists of the following major elements:

Receive Register

Transmit Register

Receiver Busy Flag
Transmitter Busy Flag
Receiver Done Flag
Transmitter Done Flag
Receiver Interrupt Disable flag

Transmitter Interrupt Disable flag

Your program directs interface activities at the interface level by manipulating
these major elements, using the following interface instructions together with
the START, CLEAR, and PULSE device flag commands:

Write Character (DOA)
Read Character (DIA)
1/0 Skip (SKP)

The program also uses two CPU 1/O instructions to manipulate the state of some
elements: I/0 Reset (IORST) and Mask Out (MSKO).

Programming Summary The following programming summary provides
general interface specifications; shows the accumulator formats for the two
asynchronous communications interface instructions; and explains its response to
the Start, Clear, and Pulse flag commands and the I/O Reset instruction (IORST).

Programming Basic Model 20 and Model 30 I/O Interfaces 2-3

Table 2-1 Programming summary: interface specifications

Write Character (DOA)

Reserved Character
0 7 8 15
Read Character (DIA)
Reserved Character
0 7 8 MED

DG-25868

Figure 2-1 Programming summary: accumulator formats

Table 2-2 Programming summary: START, CLEAR, IOPLS, and IORST functions

2-4 Programming Basic Model 20 and Model 30 I/0 Interfaces

Registers and Flags

The program-accessible registers of the asynchronous communications interface
include the receive and transmit registers. Its program-accessible flags include
the Busy, Done, Interrupt Disable, and Break flags.

Receive Register The receive register stores the 8-bit assembled character
that is received over the communications line in serial form. It makes the
character available to the program until the receiver overwrites the contents of
the register with the next assembled character. The program reads the contents
of this register using a Read Character instruction (DIA).

Transmit Register The transmit register stores the 8-bit character sent to
the interface by the program for transmission to the communication line. The
transmit register is double-buffered. Characters to be transmitted are loaded into
one buffer by the program and transferred to the second buffer, when it it empty,
to be transmitted over the communications line. When Clear To Send is asserted
by the terminal, the transmitter section disassembles the character contained in
the second buffer of this register and sends it in serial form over the communica-
tions line. The program loads this register using a Write Character instruction
(DOA).

Busy Flags The Busy flag of the receiver section, when set to 1, indicates a
character is being received over the asynchronous communications line. This flag
remains set while a character is being input from the terminal and fully assem-
bled in the receive register. The program manipulates the receiver Busy flag using
the I/0 Reset instruction (IORST) or the Start and Clear flag commands, however
program manipulation of this flag has no effect in the Model 20 nor Model 30
system. The I/0 Reset instruction and Clear flag command sets the Busy flag to 0;
the Start flag command
sets the Busy flag to 1. A program can test the receiver Busy flag using the
I/O Skip instruction (SKP) addressed to the receiver section of the asynchronous
communications interface (TTT).

The Busy flag of the transmitter section, when set to 1, indicates an output
character is contained in the first buffer of the transmit register. This flag remains
set until the character has been transferred into the second buffer of the transmit
register where it will be disassembled and transferred to the communications
line. The program manipulates the transmitter Busy flag using the I/O Reset
instruction (IORST) or the Start and Clear flag commands. The I/O Reset instruc-
tion and Clear flag command sets the Busy flag to O; the Start flag command sets
the Busy flag to 1. A program can test the transmitter Busy flag using the

I/0 Skip instruction (SKP) addressed to the transmitter section of the asynchro-
nous communications interface (TTO).

Done Flags The receiver Done flag, when set to 1, initiates an interrupt
request to the CPU (unless interrupts are disabled) and specifies that the interface
has a character from the communications line available for transfer to the CPU.
The program sets the Done flag to O using the I/O Reset instruction (IORST) or the
Start or Clear flag commands. A program can test the Done flag using the /0 Skip
instruction (SKP) addressed to the receiver section of the asynchronous communi-
cations interface.

The transmitter Done flag, when set to 1, initiates an interrupt request to the
CPU (unless interrupts are disabled) and specifies that the interface has completed
transfer of the character in the first buffer of the transmit register to the second
buffer of the register (the program can load another character into the transmit

Programming Basic Model 20 and Model 30 /O Interfaces

buffer). (There is no indication to the program when transfer of the character in
the second buffer has been completed to the communications line.) The program
sets the Done flag to 0 using the I/O Reset instruction (IORST) or the Start or Clear
flag commands. A program can test the Done flag using the I/O Skip instruction
(SKP) addressed to the receiver section of the asynchronous communications
interface.

Interrupt Disable Flags The receiver and transmitter Interrupt Disable
flags enable and disable their respective asynchronous communications interface
interrupts. When the flag is set to O, interface interrupts are enabled; when it is
set to 1, interface interrupts are disabled. The program manipulates the state of
the Interrupt Disable flags with either an I/0 Reset instruction (IORST) or the
CPU’s Mask Out instruction (MSKO). The I/O Reset instruction (IORST) sets the
Interrupt Disable flag to 0, enabling interrupts. The Mask Out instruction (MSKO)
sets the Interrupt Disable flag to O or 1, depending upon the logical state of bit
positions 14 (receiver) and 15 (transmitter) of the data word being transferred.
For more information on the Mask Out instruction, refer to its description in
16-bit Real-Time ECLIPSE Assembly Language Programming.

Break Flag The receiver Break flag, when set to 1 and enabled, initiates an
nonmaskable interrupt request to the Model 20 and Model 30 SPU and specifies
that the receiver section of the interface has detected a “break’ character on the
communications line. The program sets the break flag to O using the I/O Reset
instruction (IORST) or the Pulse flag command. The virtual console program can
interrogate the Break flag by issuing a Read CPU Status instruction (DIS) and
examining bit 3 of the word returned to a specified accumulator. The Break flag
is not ordinarily manipulated by the user.

I/0 Instruction Set

Two programmed I/0 instructions enable you to program the asynchronous
communications interface to perform character transfers to and from the device
connected to it. These instructions:

Load a character from a specified CPU accumulator into the transmit
register (DOA).

Read a character from the receiver register into a specified CPU accumula-
tor (DIA).

Five additional programmed I/O instructions, two addressed to either the
receiver or transmitter section of the asynchronous communications interface
and three addressed to the CPU (Device code 77g) allow the CPU to:

Alter program flow determined by the state of either section of the
interface — busy, done, or idle (SKP).

Issue a device flag command without a programmed input/output transfer
(NI0O).

Enable/disable the transmit and/or receive section of the asynchronous
communications interface interrupt facility (MSKO).

Identify an interrupting source (INTA).

Initialize the asynchronous communications interface (IORST).

The latter instructions are fully described in detail in 16-bit Real-Time ECLIPSE
Assembly Language Programming.

Programming Basic Model 20 and Model 30 I/O Interfaces

Assembly language coding and instruction bit patterns are shown for each of
the two instructions described. The device code field of the instruction is shown
with the standard Model 20 and Model 30 asynchronous communications
interface device codes; 10g for the receiver section; 11g for the transmitter
section. Mnemonics TTI or 10g used in the assembly language coding, address
the receiver section of the asynchronous communications interface, while
mnemonics TTO or 115 address the transmitter section.

Three device flag commands, Start (S), Clear (C), and Pulse (P), can be specified
in the f field of programmed I/0 instructions. Refer to the Programming
Summary for the effect that these flag commands and the I/O Reset (IORST)
instruction have on each section of the asynchronous communications interface.

Read Character

DIA[f] acITl
) 1 1 AC 0 0 1 F 0 o] 1 [o] [o] 0
[} 1 2 3) 4 5 6 7 8) 9 10 1 12 13 14 15

Reads the character most recently received by the asynchronous communica-
tions interface.

Loads the contents of the receive register into bits 8-15 of the specified
accumulator. Bits 0-7 of the specified accumulator are set to zero. After the
data transfer, the command sets the Busy and Done flags of the asynchronous
communications interface receiver section according to the function specified
by f. The format of the specified CPU accumulator after the transfer is:

Reserved Character

Bit{s) Name Function
0-7 - Resrved (all bits set to O).
8-15 Character The character most recently received, right justified in

the accumulator.

Write Character
DOA[f] ac,TTO

o 1 1 AC o 1 0 F o o 1 o o 1

[o] 1 2 3 4 5 6 7 8 9 10 1" 2 13 14 15

Loads the transmit register with the character to be sent to the communi-
cations line.

Bits 8-15 of the specified accumulator are loaded into the transmit register.
After the data transfer, the command sets the Busy and Done flags, of the
asynchronous communications interface section, according to the function
specified by f. The format of the specified CPU accumulator before and after the
transfer is:

Programming Basic Model 20 and Model 30 I/O Interfaces

Character

o 7 8 15
Bit(s) Name Function
0-7 - Not used (can be set to 1 or O).
8-15 Character The character to be transmitted.

Programming Guidelines
Programming the asynchronous communications interface involves the
following steps:
Writing characters
Reading characters
Servicing interrupts

Writing Characters Use the following programming sequence to send
each character over the communications line. Refer to Figure 2-2.

1. Issue an I/O Skip instruction (SKP) to ensure that the transmitter section's
Busy flag is set to 0). If it is a 1, wait until it is O.

2. Issue a Write Character instruction with a Start flag command (DOAS) using
the appropriate accumulator bits to specify the character to be sent over the
communications line.

2-8

Programming Basic Model 20 and Model 30 I/0 Interfaces

(Start)

o

'
Write character and set
Busy to one and Done
to zero (DOAS TTO)
N
Done=0
?
Y
N ast
character
Y
Set Done
to zero
(NIOC TTO)

(Return)

DG-09006
Figure 2-2 Writing characters

Reading Characters Use the following programming sequence to obtain a

character received by the interface from the communications line.

When the receiver has a character for the program (Done flag set to 1), issue a
Read Character instruction with either a Start (DIAS) or Clear flag command
(DIAC) to load the character received from the communications line via the
receive register into a CPU accumulator. The Start or Clear flag command clears
the receiver interrupt by setting the Busy flag to 1 and the Done flag to O.

1/O Timing

After the receiver section’s Done flag sets to 1, the character in the receive
register is available to the program for a time interval determined by the
transmission rate (baud). To avoid possible data loss when receiving characters
from the communications line, the program must respond to the receiver
sections Done flag setting to 1 within the time interval indicated in Table 2-3.
The time intervals tabulated in the table are based on the assumption that
characters transmitted at 50 to 134.5 baud contain 11 bits (including one start
and two stop bits), and characters transmitted at 150 to 38,400 baud contain 10
bits (including one start and one stop bit).

Programming Basic Model 20 and Model 30 1/0 Interfaces

Table 2-3 Asynchronous communications interface: timing considerations

Baud Maximum Allowable Programmed
I/O Latency (ms)

50 219.00
75 146.00
110 100.00
134.5 74.35
150 66.66
200 54.75
300 33.33
600 16.66
1200 8.33
1800 5.55
2000 5.00
2400 4.16
4800 2.08
9600 1.04
19,200 0.52
38,400 0.26

After the transmitter Done flag sets to one, the program should provide another
character to the interface within the time period of the designated baud rate
indicated in Table 2-3 to maintain the maximum transfer rate.

Characters are transmitted differently depending on whether they are 7-bit
characters or 8-bit characters. An 8-bit character is transmitted as a start bit,
followed by 8 data bits (least-significant bit first), followed by stop bits. See

Figure 2-3.

Data bits

Start LSB

MSB | Stop
6 7 8 bit

Earliest point where
next character can start

ID-00679

Figure 2-3 Asynchronous transmission of 8-bit character

A 7-bit character is transmitted as a start bit, then 7 data bits (LSB first), a

parity bit, and stop bits. See Figure 2-4.

2-10 Programming Basic Model 20 and Model 30 1/0 Interfaces

Start

Data bits

MSB |Parity | Stop

LSB ‘ I
1 2 3 4 5 6 7 8 | bit

Earliest point where
next character can start

ID-00680

Figure 2-4 Asynchronous transmission of 7-bit character

Power-Up Response

After power-up, the transmitter and receiver Busy, Done, and Interrupt Disable
flags are set to zero.

Real-Time Clock Interface

The real-time clock interface is a programmed I/O interface which provides a
programmable selection of precise time bases for the Model 20 and 30 computer
system.

Programmable Elements

From a programming point of view, the real-time clock interface consists of the
following major elements:

Frequency select register
Busy Flag

Done Flag

Interrupt Disable flag

Your program directs interface activities at the interface level by manipulating
these major elements, using the following interface instructions together with
the Start and Clear device flag commands:

Select Frequency (DOA
I/O Skip (SKP)

The program also uses two CPU /O instructions to manipulate the state of some
elements: I/0 Reset (IORST) and Mask Out (MSKO).

Programming Summary The following programming summary provides

general interface specifications; shows the accumulator formats for the interface
instruction; and explains the interface’s response to the Start and Clear flag
commands and the I/O Reset instruction (IORST).

Programming Basic Model 20 and Model 30 /O Interfaces 2-11

Table 2-4 Programming summary: RTC

Select Frequency (DOA)

Reserved FS

DG-25847

Figure 2-5 Programming summary: accumulator formats

Table 2-5 Programming summary: START, CLEAR, IOPLS, and IORST functions

Register and Flags

The program-accessible register of the real-time clock interface is the 2-bit
frequency select register. Its program-accessible flags include the Busy, Done,
and Interrupt Disable flags.

Frequency Select Register The frequency select register stores the 2-bit
code sent to the interface by the program to select the time base frequency for
the real time clock. The program loads this register using a Select Frequency
instruction (DOA).

Busy Flag The Busy flag, when set to 1, enables the real-time clock to
interrupt the CPU (if interrupts are enabled) when each clock period expires. The
program manipulates the Busy flag using the I/O Reset instruction (IORST) or the
Start and Clear flag commands. The I/O Reset instruction and Clear flag command
sets the Busy flag to 0, disabling real-time clock interrupts; the Start flag
command sets the Busy flag to 1, enabling real-time clock interrupts. A program
can test the Busy flag using the I/O Skip instruction (SKP) addressed to the
real-time clock interface (RTC).

Done Flag The Done flag, when set to 1, initiates an interrupt request to the
CPU (unless interrupts are disabled) and specifies that a clock period has expired.
The program sets the Done flag to O using the I/O Reset instruction (IORST) or the
Start or Clear flag commands. A program can test the Done flag using the I/O Skip
instruction (SKP) addressed to the real-time clock interface.

2-12 Programming Basic Model 20 and Model 30 /O Interfaces

Interrupt Disable Flag The Interrupt Disable flag also enables and
disables real-time clock interface interrupts. When the flag is set to O, interface
interrupts are enabled; when it is set to 1, interface interrupts are disabled. The
program manipulates the state of the Interrupt Disable flag with either an
I/O Reset instruction (IORST) or the CPU's Mask Out instruction (MSKO). The I/O
Reset instruction (IORST) sets the Interrupt Disable flag to O, enabling interrupts.
The Mask Out instruction (MSKO) sets the Interrupt Disable flag to O or 1,
depending upon the logical state of bit position 13 of the data word being
transferred. For more information on the Mask Out instruction, refer to its
description in 16-bit Real-Time ECLIPSE Assembly Language Programming.

I/0 Instruction Set

A single programmed I/0 instruction enables you to program the real-time clock
interface to select the desired clock frequency. This instruction loads a 2-bit field
from a specified CPU accumulator into the frequency select register.

Five additional programmed I/O instructions, two addressed to the real-time
clock interface and three addressed to the CPU (Device code 77g) allow the
CPU to:

Interrogate the state of the interface Busy and Done flags (IOSKP).

Issue a device flag command without a programmed input/output transfer

(NIO).

Enable/disable the interface interrupt facility (MSKO).
Identify an interrupting source (INTA).

Initialize the interface (IORST).

The latter instructions are fully described in detail in 16-bit Real-Time ECLIPSE
Assembly Language Programming.

Assembly language coding and instruction bit pattern is shown for the
instruction described. The device code field of the instruction is shown with the
standard real-time clock interface device code, 14g. Mnemonics RTC or 143 used
in the assembly language coding, address the real-time clock interface.

Two device flag commands, Start (S) and Clear (C) can be specified in the f field
of programmed 1/0 instructions. Refer to the Programming Summary for the
effect that these flag commands and the I/O Reset (IORST) instruction have on
each section of the real-time clock interface.

Select Frequency

DOA[f] acRTC

Selects the frequency of the real-time clock.

Bits 14 and 15 of the specified accumulator are loaded into the frequency select
register. After the data transfer, the command sets the Busy and Done flags
according to the function specified by f. The format of the specified CPU
accumulator before and after the transfer is:

Programming Basic Model 20 and Model 30 I/0 Interfaces

213

FS

Bit{s) Name Function
0-13 — Not used
14-15 Frequency Selects the desired frequency as follows
select
Bits
13 14
0 O Line frequency
0 1 10Hz
1 0 100Hz
1 1 1000 Hz

NOTE Do not select line frequency interrupts unless the model 20 or 30
system contains the optional line frequency clock generator card.

Programming Guidelines
Programming the real-time clock interface involves the following steps:
Selecting the clock frequency
Enabling interrupt requests

Servicing interrupt requests

Selecting Clock Frequency To select the clock frequency, issue a Select
Frequency instruction (DOA) using the appropriate accumulator bits to specify the
frequency at which the interface is to interrupt the CPU. To select the clock
frequency and enable the real-time clock interrupts, issue a Select Frequency
instruction with a Start flag command (DOAS) using the appropriate accumulator
bits to specify the frequency at which the interface is to interrupt the CPU.

Enabling Interrupt Requests To enable real-time clock interrupts, issue
a No I/O Transfer instruction with a Start flag command (NIOS) to set the Busy
flag to 1 and Done flag to O.

Servicing Interrupt Requests When each clock period expires, program
(Done flag set to 1), issue a No I/O Transfer instruction with either a Start (NIOS)
or Clear flag command (NIOC). The Start flag command enables another interrupt
request (unless masked out or CPU has interrupts disabled) at the expiration of
the current clock period by setting the Busy flag to 1 and the Done flag to 0. The
Clear flag command disables subsequent interrupt requests by setting both the
Busy and Done flags to O.

I/O Timing

The first interrupt request initiated by the real-time clock can occur at any time
up to the full clock period. If the program responds to the real-time clock
interrupt requests before each succeeding clock period expires, all subsequent
RTC interrupts will occur at the clock frequency.

2-14 Programming Basic Model 20 and Model 30 I/O Interfaces

Power-Up Response

After power-up or when an I/0 Reset instruction is performed, the line fre-
quency clock rate is selected, and the Busy, Done, and Interrupt Disable flags are
set to zero.

Programmable Interval Timer

The programmable interval timer is a CPU-independent time base which can be
programmed to initiate program interrupts at fixed intervals ranging from 1
microsecond to 65.536 seconds in switch-selectable increments ranging from 1
microsecond to 1 millisecond as listed in Table 2-6. It can also be interrogated
with programmed I/O instructions at any point in its cycle to determine the time
remaining until the next interrupt, or following an interrupt to determine
interrupt latency.

Table 2-6 PIT rates

Selected Frequency Time interval
{kHz) Minimum Maximum
1 1 millisecond 65.536 seconds
10 100 microseconds 6.5536 seconds
100 10 microseconds 655.36 milliseconds
1000 1 microsecond 65.536 milliseconds

Programmable Elements

From a programming point of view, the programmable interval timer consists of
the following major elements:

Initial count register
Clock Counter

Busy Flag

Done Flag

Interrupt Disable flag

Your program directs interface activities at the timer level by manipulating
these major elements, using the following interface instructions together with
the Start and Clear device flag commands:

Specify Initial Count (DOA)
Read Count (DIA)
I/0 Skip (SKP)

The program also uses two CPU I/O instructions to manipulate the state of some
elements: I/0 Reset (IORST) and Mask Out (MSKO).

Programming Summary The following programming summary provides
general timer specifications; shows the accumulator formats for the timer
instructions; and explains the timer's response to the Start and Clear flag
commands and the I/O Reset instruction (IORST).

Programming Basic Model 20 and Model 30 I/0 Interfaces

2-15

Table 2-7 Programming summary: PIT

Read Count (DIA)

Present count (2's complsment)

0o 15

Specify Initial Count (DOA)

Initial count (2's complement)

DG-25848
Figure 2-6 Programming summary: accumulator formats

Table 2-8 Programming summary: START, CLEAR, IOPLS, and IORST functions

Register and Flags

The program-accessible registers of the programmable interval timer include the
16-bit initial count register and the 16-bit counter. Its program-accessible flags
include the Busy, Done, and Interrupt Disable flags.

Initial Count Register The initial count register stores the 16-bit count
sent to the interface by the program to specify the number of clock rate intervals
between interrupts. The program loads this register using a Specify Initial Count
instruction (DOA).

Clock Counter During a timed operation, this counter is first loaded with
the count in the initial count register and is then incremented at switch selected
time intervals. When this counter overflows, the Busy flag sets to O and the Done
flag sets to 1, thus initiating a timer interrupt request if interrupts are enabled.
The program reads the contents of this register using a Read Count instruction
(DOA).

2-16

Programming Basic Model 20 and Model 30 I/0 Interfaces

Busy Flag The Busy flag, when set to 1, starts the counting cycle thus

initiating a timed operation. The program manipulates the Busy flag using the

I/0 Reset instruction (IORST) or the Start and Clear flag commands. The I/O Reset
instruction and Clear flag command sets the Busy flag to O, stopping the counting
cycle; the Start flag command sets the Busy flag to 1, starting the counting cycle.
A program can test the Busy flag using the I/O Skip instruction (SKP) addressed to
the programmable interval timer (PIT).

Done Flag The Done flag, when set to 1, initiates an interrupt request to the

CPU (unless interrupts are disabled) and specifies that the time interval has
expired. The program sets the Done flag to O using the I/O Reset instruction
(IORST) or the Start or Clear flag commands. A program can test the Done flag
using the I/O Skip instruction (SKP) addressed to the programmable interval timer.

Interrupt Disable Flag The Interrupt Disable flag enables and disables

programmable interval timer interrupts. When the flag is set to O, timer
interrupts are enabled; when it is set to 1, timer interrupts are disabled. The
program manipulates the state of the Interrupt Disable flag with either an I/O
Reset instruction (IORST) or the CPU’s Mask Out instruction (MSKO). The I/O Reset
instruction (IORST) sets the Interrupt Disable flag to O, enabling interrupts. The
Mask Out instruction (MSKO) sets the Interrupt Disable flag to O or 1, depending
upon the logical state of bit position 6 of the data word being transferred. For
more information on the Mask Out instruction, refer to its description in 16-bit
Real-Time ECLIPSE Assembly Language Programming.

I/0 Instruction Set

Two programmed I/O instructions enables you to program the programmable
interval timer to specify a time interval between interrupts and to determine
the time until the next interrupt. These instructions:

Load the initial count register with the number of clock rate intervals
between interrupts. (DOA)

Read the count remaining before an interrupt is requested, into a specified
CPU accumulator (DIA)

Five additional programmed I/O instructions, two addressed to the programma-
ble interval timer and three addressed to the CPU (Device code 77g) allow the
CPU to:

Interrogate the state of the interface Busy and Done flags (SKP).

Issue a device flag command without a programmed input/output transfer
(NIO).

Enable/disable the interface interrupt facility (MSKO).
Identify an interrupting source (INTA).

Initialize the interface (IORST).

The latter instructions are fully described in detail in 16-bit Real-Time ECLIPSE
Assembly Language Programming.

Assembly language coding and instruction bit patterns are shown for each of
the two instructions described. The device code field of the instruction is shown
with the standard programmable interval timer device code, 43g. Mnemonics

Programming Basic Mode! 20 and Model 30 I/O Interfaces 2-17

PIT or 43g used in the assembly language coding, address the programmable
interval timer.

Two device flag commands, Start [S] and Clear [C], can be specified in the ffield
of programmed I/0 instructions. Refer to the Programming Summary for the
effect that these flag commands and the I/O Reset (IORST) instruction have on
each section of the programmable interval timer.

Read Count
DIA[f] acPIT
0 1 1 AC [e] 0 1 F 1 (o] (o] 0 1 1
[s) 1 2 3 v 4 5 6 7 8) g 10 11 2 13 14 15

Reads the count remaining before an interrupt is requested.

Loads the contents of the counter into bits 0-15 of the specified accumulator.
After the data transfer, the command sets the Busy and Done flags according to
the function specified by f. The format of the specified CPU accumulator after
the transfer is:

Present count

Bit(s)} Name Function

0-15 Count Current value of the PIT counter (2's complement) within
one count cycle.

Specify Initial Count

DOA[f] acPIT

o] 1 1 AC o 1 (o] F 1 0 0 o 1 1

[¢] 1 2 3 4 5 8 7 8 9 10 1 12 13 14 15

Loads the initial count register with the number of clock rate intervals between
interrupts.

Bits 0-15 of the specified accumulator are loaded into the initial count register.
After the data transfer, the command sets the Busy and Done flags according to
the function specified by f. The format of the specified CPU accumulator before
and after the transfer is:

Initial count

Bit(s) Name Function

0-15 Initial Two’s complement of the number of the clock rate
Count intervals between interrupts.

2-18 Programming Basic Model 20 and Model 30 1/O Interfaces

Programming Guidelines
Programming the programmable interval timer involves the following steps:
Specifying a time interval between program interrupts

Starting the counting cycle

Servicing interrupt requests

Selecting Time Interval To specify a time interval between program
interrupts, issue a Specify Initial Count instruction (DOA) using the appropriate
accumulator bits to specify the time interval between interrupts to the CPU. To
specify the time interval and start the counting cycle, issue a Specify Initial Count
instruction with a Start flag command (DOAS) using the appropriate accumulator
bits to specify the time interval between interrupts to the CPU. Refer to Table 2-6
for a list of PIT rates.

NOTE The selected frequency of the timer is determined by switches on the
SPU card, and is not affected nor can it be read by programming.

Starting the Counting Cycle To start the timing cycle, issue a No I/O
Transfer instruction with a Start flag command (NIOS) to set the Busy flag to 1
and Done flag to O.

Servicing Interrupt Requests When each time interval expires, the
timer sets the Done flag to one, thus initiating a interrupt request if interrupts are
enabled. When the interrupt is serviced, issue a No I/O Transfer instruction with
either a Start (NIOS) or Clear flag command (NIOC). The Start flag command
enables another interrupt request (unless masked out or CPU has interrupts
disabled) at the expiration of the current time period by setting the Busy flag to 1
and the Done flag to 0. The Clear flag command disables subsequent interrupt
requests by setting both the Busy and Done flags to O.

I/O Timing

The first interrupt request initiated by the programmable interval timer can
occur at any time after the timer is started, up to the full time period. The time
between subsequent program interrupt requests will be the value selected by
the contents of the initial count register.

Power-Up Response

After power-up or when an I/0 Reset instruction is performed, Busy, Done, and
Interrupt Disable flags are set to zero and the counting cycle is stopped. Also,
the initial contents of the count register and the timer counter are set to zero.

Diskette Subsystem

This section describes the programmable elements of the Model 20 and Model
30 diskette subsystem; summarizes its specifications and flag commands and
instructions used to program it; defines the relevant I/O instructions; discusses
programming considerations and I/O timing; and explains possible error
conditions.

Programming Basic Model 20 and Model 30 1/0 Interfaces 2-19

Programmable Elements

From a programming point of view, the diskette interface consists of the
following major elements:

Command Register

Status Register

Memory Address Register
Word Count Register
Busy Flag

Done Flag

Interrupt Disable flag

IPL Flag

Your program directs subsystem activities at the interface level by manipulating
these major elements, using the following interface instructions together with
the Start, Clear, and Pulse device flag commands:

Specify Command and Diskette Address (DOA)
Read Diskette Status (DIA)
Load Memory Address Register (DOB)
Read Memory Address Register (DIB)
Load Word Count Register (DOC)
1/0 Skip (SKP)
The program also uses two CPU I/O instructions to manipulate the state of some

elements: I/0 Reset (IORST) and Mask Out (MSKO).

Programming Summary The following programming summary provides
general subsystem specifications in Table 2-9; describes diskette formats in Table
2-10; shows the accumulator formats for the five interface instructions in Figure
2-7; and explains the interface’s response to the Start, Clear, and Pulse flag
commands and the I/O Reset instruction (IORST) in Table 2-11.

Mode! 20 and Model 30 /O interfaces 2-21

Programming Basic

2-22 Programming Basic Model 20 and Model 30 1/O Interfaces

Specify Command and Diskette Address (DOA)

[+] 0 DRV CMD Muitifunction field
0 1 2 3 4 6 7 15

Commands

000 Read

001 Read header

010 Write

on Format track

100 Diagnostic operation

101 Get number of sectors transferred

110 Seek

111 Recalibrate

Read Diskette Status (DIA)

Context: A Get Number of Sectors Transferred was not previously issued.

WP | TKO DISK ID DSK TYP NOK | 0 NR SE DL AE CE oT BS

0 1 2 4 5 6 7 8 9 10 " 12 13 14 15

Context: A Get Number of Sectors Transferred was previously issued.

we | TKo DISK ID DSKTYP | NOK | O~t—f—t—8—1—® &~ Sectors xir. <

0 1 2 4 5 6 7 8 9 10 1 12 15

Load Memory Address Register (DOB)

] Memory Address

o 1 15

Read Memory Address Register (DIB)

[} Memory Address

o] 1 15

Load Word Count (DOC)

WORD COUNT (2's complement)

DG-25849

Figure 2-7 Programming summary: accumulator formats

Programming Basic Model 20 and Model 30 1/0 Interfaces 2-23

Table 2-11 Programming summary: START, CLEAR, IOPLS, and IORST functions

Registers and Flags

The program-accessible registers of the diskette interface include the command,
status, memory address, and word count registers. Its program-accessible flags
include the Busy, Done, Interrupt Disable, and Initial Program Load (IPL) flags.

Command Register The command register stores a 3-bit encoded
subsystem command and a drive select code. The register also contains a
multifunction field that stores the destination track address for a seek operation,
the head and starting sector number for a data transfer, the operating mode
characteristics for a set mode operation, and a diagnostic operation code to
support diagnostic commands. The program loads the command register using a
Specify Command and Diskette Address instruction (DOA).

Status Register The status register maintains the following subsystem
status information: subsystem and diskette drive identity; ability of the diskette
drive to accept commands; positioning and data transfer error flags; presence of
drive read/write heads over track 00; and number of sectors transferred. The
program can read the contents of the status register at any time by issuing a
Read Diskette Status instruction (DIA). The program obtains the number of sectors
transferred by preceding the Read Diskette Status instruction (DIA) with a Specify
Command and Diskette Address instruction (DOA) specifying a Get Number of
Sectors Transferred command.

Memory Address Register The memory address register is self-
incrementing and contains the address of the memory location to be accessed as
the source or destination of the next data channel transfer. The program loads
and reads the memory address register using a Load Memory Address Register
instruction (DOB) or Read Memory Address Register instruction (DIB) respectively.

2-24

Programming Basic Model 20 and Model 30 1/O Interfaces

The program can also set the memory address register to all zeros by issuing an
I/O Reset instruction (I(ORST).

Word Count Register The word count register is self-incrementing and
contains the two’s complement of the number of words remaining for a data
channel transfer. The program loads the word count register using a Load Word
Count Register instruction (DOC).

Busy Flag The Busy flag, when set to 1, initiates a diskette operation and
specifies that the subsystem is performing it. This flag remains set until the
operation is completed. The program manipulates the Busy flag using the I/O
Reset instruction (IORST) or the Start and Clear flag commands. The I/O Reset
instruction and Clear flag command set the Busy flag to O; the Start flag
command sets the Busy flag to 1. A program can test the Busy flag using the I/O
Skip instruction (SKP) addressed to the diskette subsystem.

Done Flag The Done flag, when set to 1, initiates an interrupt request to the
Model 20 and Model 30 SPU (unless interrupts are disabled) and specifies that the
subsystem has completed an operation or that an error condition exists. The
program sets the Done flag to O using the I/O Reset instruction (IORST) or the
Start, Clear, or Pulse flag commands. A program can test the Done flag using the
1/0 Skip instruction (SKP) addressed to the diskette subsystem.

Interrupt Disable Flag The Interrupt Disable flag enables and disables
diskette subsystem interrupts. When the flag is set to 0, subsystem interrupts are
enabled; when it is set to 1, subsystem interrupts are disabled. The program
manipulates the state of the Interrupt Disable flag with either an I/O Reset
instruction (JORST) or the CPU’s Mask Out instruction (MSKO). The I/O Reset
instruction (IORST) sets the Interrupt Disable flag to O, enabling interrupts. The
Mask Out instruction (MSKO) sets the Interrupt Disable flag to O or 1, depending
upon the logical state of bit position 7 of the data word being transferred. For
more information on the Mask Out instruction, refer to its description in 16-bit
Real-Time ECLIPSE Assembly Language Programining.

Initial Program Load (IPL) Flag The IPL flag, when set to 1, enables an
initial program load sequence to be initiated by a Start flag command. The
program manipulates the IPL flag using either the I/O Reset instruction (IORST) or
the Specify Command and Diskette Address instruction (DOA). The I/O Reset
instruction sets the IPL flag to 1, enabling IPL. (The IPL sequence does not initiate
until a Start flag command is performed.) The Specify Command and Diskette
Address instruction sets the IPL flag to O, disabling IPL. The IPL sequence will be
described in the programming section below.

I/0 Instruction Set

Five programmed I/O instructions enable you to program the diskette inter-
face to perform data transfers to and from the diskette subsystem. These
instructions:

Select a drive and specify a command and command parameters. Depend-
ing on the command, the command parameters specify positioning
information for the selected drive’'s read/write heads; a head and/or sector
where the data is to be recorded to or read from; a diagnostic operation; or
drive operating mode characteristics (DOA).

Transfer interface and drive status information to a specified CPU
accumulator (DIA).

Programming Basic Model 20 and Model 30 I/O Interfaces 2-25

Specify the starting memory address for transferring data between
memory and a diskette drive via the data channel (DOB).

Return the address of the memory location to be used as the source or
destination of the next data channel transfer to a specified CPU accumula-
tor (DIB).

Specify the number of words (in two's complement) to be transferred
between memory and a diskette drive via the data channel (DOC).

Five additional programmed I/O instructions, two addressed to the diskette
subsystem and three addressed to the CPU (Device code 77g) allow the CPU to:

Interrogate the state of the interface — busy, done, or idle (SKP).

Issue a device flag command without a programmed input/output transfer
NIO.

Enable/disable the interface interrupt facility MSKO.
Identify an interrupting source INTA.

Initialize the subsystem |IORST.

The latter instructions are fully described in detail in 16-bit Real-Time ECLIPSE
Assembly Language Programming.

Assembly language coding and instruction bit patterns are shown for each of
the five instructions described. The device code field of the instruction is shown
with the standard Model 20 and Model 30 diskette interface device code, 20g.
Mnemonics DEO or 20g used in the assembly language coding, address the
diskette interface.

Three device flag commands, Start (S), Clear (C) and PULSE (P), can be specified
in the f field of programmed 1/O instructions. Refer to the Programming
Summary for the effect that these flag commands and the I/O Reset (IORST)
instruction have on the diskette subsystem.

Specify Commmand and Diskette Address

DOA[f] ac,20

Loads the diskette interface command register with the command and its
parameters.

Bits 0-15 of the specified accumulator are loaded into the diskette interface
command register. After the data transfer, sets the interface Busy and Done
flags according to the function specified by f. The format of the specified
accumulator before and after the transfer is as follows:

0 0 DRV CMD Function field (see table}

— + —+

2-26

Programming Basic Model 20 and Model 30 1/0 Interfaces

Bit(s)

Name

Function

0-1
2-3

4-6

Drive Select

Diskette
Command

Function field

Track

Head/Sector

Head

Diagnostic

Recalibrate/
Set Mode

Reserved (must be set to 0).

Indicates which diskette drive is to carry out the
specified operation, as follows:

00 = drive O

01 = drive 1

10 = reserved

11 reserved

Specifies the diskette command to be performed, as
follows:

000 = Read

001 Read header

010 = Write

011 Format track

100 = Diagnostic operation (specified in bits 11-15)

101 Get number of sectors transferred

110 = Seek

111 = Recalibrate

See Table 2-12 for description of diskette commands.

(]

o

Function determined by the contents of the command
field, as explained below.

If Seek command:
bits 7-8 are reserved (must be 0)
bits 9-15 specify the target track address

If Read, Write, or Format track command:
bits 7-9 are reserved (must be 0)
bit 10 specify the head to select
bits 11-15 specify the starting sector address to
receive or transmit data (can be any sector
address for Read Header or Format Track
command)

If Read Header command:
bits 7-9 are reserved (must be O)
bit 10 specify the head to select
bits 11-15 are reserved (must be O)

If Diagnostic operation command:
bits 7-10 are reserved (must be O unless used by
the diagnostic command)
bits 11-15 specify the diagnostic operation to be
performed {see Appendix B)

I1f Recalibrate command:

bit 7 selects command context, where O =
Recalibrate and 1 = Recalibrate and Set
Mode

bits 8-15 specify the operating characteristics for

the diskette interface when Set Mode is
specified (bit 7 = 1) (see ““Recalibrate/Set
Mode Command’’ in this section);
otherwise ignored

Errata

Page 2-28
Figure 2-8 Read header command:format of words returned
The NOTE in this figure should read:
Sector length code = 2 (base 16) = 512 bytes/sector

Page 2-33

Instruction title, “Memory Address Register”, should read:

Read Memory Address Register
Page 2-37
Figure 2-9 Head positioning
Busy = 0 decision block in right column should read:
Busy = 1
Page 2-39

Figure 2-10 Read or write data
Busy = 0 ? decision block in left column should read:
Busy = 17
Page 2-47
Figure 2-14 Format flowchart

The No path from the Busy = 1 ? decision block in the left column should lead to
the Position heads block only. Delete horizontal line pointing to the right.

Add Yes to the vertical line below the Errors ? decision block, and No to the
horizontal line extending right from the Errors ? decision block (right column).

Programming Basic Model 20 and Model 30 I/O Interfaces 2-27

Table 2-12 Diskette commands

Command

Description

Read

Read Header

Write

Format Track

Diagnostic

Get Number
of Sectors

t w{*““{

Seek

Recalibrate

Reads and transfers one or more sectors of data to host memory, beginning
at the sector specified and continuing until the specified number of words are
read. Head boundaries can be crossed where appropriate; that is, a read
operation beginning on head O can continue on head 1. Read operations
beginning on head 1 cannot continue on head O and will result in the setting
of the Address Error flag.

Reads and transfers three words, of the first address field that passes the
selected head of the selected drive, to the host memory. (The {Load Word
Count Register} instruction (DOC), issued before this command, should
specify that three words are to be transferred to memory.) The format of the
three words returned to memory are shown in Figure 2-8.

Transfers and writes one or more sectors of data from the host memory,
beginning at the sector specified and continuing until the specified number of
words are written. Head boundaries can be crossed where appropriate; that
is, a write operation beginning on head O can continue on head 1. Write
operations beginning on head 1 cannot continue on head O and will result in
the setting of the Address Error flag.

Formats an entire track by transferring and writing an entire track of data
from the host memory. Prior to issuing this command, a buffer in memory
must be set up to contain the image of an entire track. (Refer to *’Formatting
a Diskette’’ in this chapter.)

Performs a specified diagnostic operation. (Refer to Appendix B.)

Transfers a count of the number of sectors transferred during the last
diskette drive operation to the host CPU, along with selective Transferred
status information of the currently selected diskette drive. The actual transfer
does not take place as a result of this command; instead, the information is
loaded into a temporary register for transfer to the CPU during a {Read
Diskette Status} command that follows this command. (Refer to {Read
Diskette Status} under “’1/O Instruction Set’’ in this chapter.) :

Positions the selected diskette drive’s read/write heads to a specified track.
The diskette interface does not verify that the heads are positioned over the
correct track.

Positions the selected diskette drive’s read/write heads to the track 00
position. If track 00 is not found within head 100 steps, the Seek Error bit is
set in the status register. When issued with the Set Mode bit set to 1, this
command performs the recalibration described above and, in addition, sets
the operating modes for the diskette drive(s) as determined by bits 8 through
15 of the specified accumulator. The operating mode bits, shown below and
described in Table 1 can be different for each drive connected to the diskette
interface.

SM

FM

DH SD HS BS

8 9 10 11 12 13 14 15

2-28

Programming Basic Model 20 and Model 30 /O Interfaces

Word 1

Track number

Head number

Word 2

Word 3

Sector address

Sector length code

Reserved

Reserved

1

78

15

NOTE: Sector length code =107 =512 bytes/sector

2

Figure 2-8 Read header command: format of words returned

iD-00620

Programming Basic Model 20 and Model 30 1/0 Interfaces 2-29

Table 2-13 Operating mode bit descriptions

Bit{s)} Name Function
7 Set Mode Specifies Recalibrate or Recalibrate and Set Mode, as
(SM) follows:

O = Recalibrate (bits 8-15 are ignored)
1 = Recalibrate and Set Mode
8 48/96 Specifies number of positioning step pulses per track as
(FN) follows:
O = one step pulse per track {default value)’
1 = two step pulses per track, allows low track density
(48 TPI) diskettes to be read on high track density
(96 TPI) drives?
9 Double Headed Specifies diskette media as follows:

Media (DH) 0 = single sided media
1 = double sided media (default value) 1
10-13 Sector Specifies the number of sectors per track, number of words
Description per sector, diskette size, and sector addressing, as follows:
(SD)

0000 = 8 sectors, 256 words, 5.25"” diskette, logical
sector addressing O-7, physical sector addressing
1-8; this option is used to logically access I1BM PC
formatted diskettes

0001 = 8 sectors, 256 words, 5.25” diskette, logical
sector addressing 1-8, physical sector addressing
1-8; this option is used to physically access IBM
PC formatted diskettes

0010 = 9 sectors, 256 words, 5.25” diskette, logical
sector addressing O-8, physical sector addressing
1-9; this option is the default value and is used to
logically access standard Data General 9-sector
formatted diskettes’

0011 = 9 sectors, 256 words, 5.25” diskette, logical
sector addressing 1-9, physical sector addressing
1-9; this option is used to physically access
standard Data General 9-sector formatted
diskettes

0100 = 10 sectors, 256 words, 5.25" diskette, logical
sector addressing 0-9, physical sector addressing
0-9; this option is used to physically access Data
General MPT/100 10 sector formatted diskettes

0101-1111 = reserved

14 Head Swap Specifies head position as follows:
(HS) 0 = head O on left, head 1 on right (label side of media)
(default value) 1
1 = head O on right (label side of media), head 1 on left
15 Byte Swap Specifies byte first on/off the diskette as follows;
{BS) 0 = high order byte (bits 0-7) (default value)’
1 = low order byte (bits 8-15)

' (Default value) specifies the value that each diskette drive operating mode is set to on power-up, when an IORST
instruction is issued, or a when Clear flag command is specified in any I/0 instruction addressed to the diskette
interface.

2 If an attempt is made to set the FN bit to 1 on a 48 TPl diskette drive, Address Error will be set in the status register.
The recalibration will be performed.

2-30

Programming Basic Model 20 and Model 30 /O Interfaces

Read Diskette Status
DIA[f] ac,20

0 1

1

AC

[

0o

1

o 1

Transfers the status, or selective status along with a number of sectors
transferred, of the currently-selected diskette drive to the processor.

If a command other than Get Number of Sectors Transferred was previously
issued to the diskette interface, this command loads status information for the
currently-selected diskette drive into specific bit positions of the specified CPU
accumulator. After the data transfer, the command sets the Busy and Done flags
according to the function specified by f. The format of the specified accumulator

2

3

4

after the transfer is:

5

6

7

8

WP | TKO

DISK ID

DSK TYP

NOK

NR

SE

DL

AE

CE

oT

BS

5

6

7

Programming Basic Model 20 and Model 30 1/O Interfaces

2-31

Bit(s) Name

Function

10

11

12

13

14

156

Write Protect
Track 00
Subsytem Identity

Diskette Type

Not OK

Not Ready

Seek Error

Data Late

Address Error

Checkword Error

Operation Timeout

Bad Sector

When set to 1, specifies that the diskette inserted in the
selected diskette drive is write-protected.

Specifies that the selected disk drive has its head
positioned over track zero.

Identifies the diskette subsystem; always set to a value
of 28 (0102)

Identifies the diskette drive type and capacity as follows:
00 = double-sided, 48 TPI

01 reserved

10 = reserved

11 = reserved

Specifies that the interface failed its self-test after either
a power-up or a self-test diagnostic commmand. This bit
resets when the interface passes its self-test diagnostic.

Reserved (always set to 0).

Specifies that the seJected diskette drive is not ready to
accept commands. This may be because the drive is not
up speed, no diskette is inserted, or the
currently-selected drive is not present.

Specifies that the Track OO signal failed to assert during
a recalibrate operation (or a Seek command in which the
interface imbedded a recalibrate operation) and the
interface cannot determine the current positioner
location. This error is also set if a Seek command is
issued with a track address that exceeds the maximum
number of tracks of the drive.

Specifies that data was lost because the data channel
facility could not keep up with the demands of the
diskette data transfer.

Specifies one of the following:

the interface was unable to find the desired sector

a Read or Write command was issued with a head or
sector address that exceeds the maximum number of
heads or sectors of the drive

an attempt was made to transfer a sector past the end
of the current cylinder

the Bad Sector error flag is set

a Recalibrate and Set Mode command attempted to set
the 48/96 option bit for a 48 TPl drive to 1.

Specifies that the checkword read from the current
sector did not compare with the checkword calculated
by the interface during a read operation.

Indicates that the specified operation failed to complete
in a designated amount of time.

Indicates that the last sector accessed found a deleted
data mark in the data field. This condition can only be
encountered when reading diskette media written on a
non-Data General system. Also causes address error to
be set.

If the previous command issued to the diskette interface was a

Get Number of Sectors Transferred, this command loads selective status information of the
currently selected diskette drive and a sectors transferred count into specific bit positions
of the specified CPU accumulator. After the data transfer, the command sets the Busy and
Done flags according to the function specified by f. The format of the specified CPU
accumulator following the transfer is:

2-32 Programming Basic Model 20 and Model 30 I/0 Interfaces

wpP TKO DISK ID DSK TYP NOK Sectors transferred
0 1 2 4 5 I 6 7 8))))) ‘iS
Bit{s) Name Function
0 Write Protect When 1, specifies that the diskette inserted in the
selected drive is write-protected.
1 Track 00 When 1, specifies the selected disk drive has its head
positioned over track zero.
2-4 Subsystem Identifies the diskette subsystem; always set to a value
ldentity of 25 {010,).
5-6 Diskette Type Identifies the diskette drive type and capacity, as
follows:
00 = double-sided, 48 TPI
01 = reserved
10 = reserved
11 = reserved
7 Not OK When 1, specifies that the interface failed its self-test

after either a power-up or a self-test diagnostic
commmand. This bit resets when the interface passes its
self-test diagnostic.

8-15 Sectors Specifies the number of sectors transferred during the
Transferred last diskette drive operation that preceded the Get
Number of Sectors Transferred command.

Load Memory Address Register

DOBI[f] ac,20

o] 1 1 AC 1 (o] 1 F [o] 1 o] [o]) o

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Loads the diskette interface memory address register with the address of the
first memory location to be accessed for a data channel transfer.

Bits 1-15 of the specified accumulator are loaded into the memory address
register. After the data transfer, the command sets the interface Busy and Done
flags according to the function specified by f. The format of the specified
accumulator before and after the transfer is:

0 Memory Address
[1 o T D 15
Bit(s) Name Function
0 — Reserved {must be set to O).

1-15 Memory Address Location in memory to be accessed for the first data
channel transfer.

Programming Basic Model 20 and Model 30 I/O interfaces 2-33

Resd Memory Address Register

DIB[f] ac,20

0] 1 1 AC (o] 1 1 F o 1 o]) [o] o

o 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15

Returns to the CPU, the address of the memory location to be accessed for the
next data channel transfer.

Loads the contents of the memory address register into bits 1-15 of the specified
accumulator. Bit O of the specified accumulator is set to zero. After the data
transfer, the command sets the interface Busy and Done flags according to the
function specified by f. The format of the specified CPU accumulator after the
transfer is:

(o] Memory Address
o] 1 - o T) " 15
Bit{s)} Name Function
0 — Reserves (always set to 0).

1-5 Memory Address Location in memory to be accessed for the next data
channel transfer.

Load Word Count

DOCI[f] ac,20

o] 1 1 AC 1 1 o F o 1 o 0 o 0

[¢] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Loads the word count register with the number of 16-bit words to be trans-
ferred during the following read/write operation.

Bits 0-15 of the specified accumulator are loaded into the word count register.
After the data transfer, the command sets the interface Busy and Done flags
according to the function specified by f. The format of the specified accumulator
before and after the transfer is:

— WORD COUNT

—+ = + +———+ —+ + + + + + —+

Bit(s) Name Function

0-15 - Word Count Two's complement of the number of words to be
transferred during a data channel transfer.

NOTES 1. Word count is calculated as the number of sectors times the
number of words per sector.

2. Only integral numbers of sectors may be transferred.

Programming Basic Model 20 and Model 30 1/O Interfaces

Programming Guidelines

Factors involved in programming the diskette subsystem are the subject of this
discussion. Programming the subsystem involves the following steps:

Initiating an operation, including selecting the drive.

Determining diskette format, including defining the surface position and
number of sectors per track.

Setting the diskette drive operating mode, including track density, number
of heads, sector description, head swap, and byte swap.

Positioning the drive’s read/write heads over the desired track.

Setting up a data transfer, including specifying a starting memory address
that will be the source or destination of a block data transfer between
memory and the diskette subsystem, specifying the number of words to be
transferred, selecting a starting head and sector, and issuing a data
transfer command.

The discussion to come elaborates on each step. These programming sequences
assume that no errors occur during head positioning or data transfer operations.
Any error conditions should therefore be corrected by referring to the section,
“Error Conditions,” below.

Initiating An Operation The following steps ensure that the subsystem is
ready to perform an operation and select a drive.

1. Issue an I/O Skip instruction (SKP) to ensure that the interface Busy flag is set
to 0.

2. Issue a Specify Command and Diskette Address instruction (DOA) with no
flag command, using the appropriate accumulator bits to select a drive. (Any
command can be specified.)

3. Issue a Read Diskette Status instruction (DIA) and verify that the selected
drive is ready to perform an operation.

Determining the Diskette Format Before performing diskette read or
write operations, it is necessary that the format of the diskette(s) installed in the
drive(s) be determined and the diskette operating mode be set, as required, to
handle the diskette format. The format of the diskette installed in a drive can be
established by determining the surface position and number of sectors per track,
as detailed below.

Use the following programming sequence to determine if head swapping is
required. Ensure that the diskette subsystem is ready to perform an operation, as
explained earlier under “Initiating an Operation”.

1. Issue a Specify Command and Diskette Address instruction (DOA) with no
flag command, using the appropriate accumulator bits to select a drive,
specify a Read Header command, and specify a head number.

2. Issue a Load Memory Address Register instruction (DOB) with no flag
command, using the appropriate accumulator bits to specify the address of
the first memory location to receive the diskette header data.

3. Issue a Load Word Count Register instruction (DOC) with a Start flag
command, using the appropriate accumulator bits to specify three (in two’s
complement) 16-bit words to be transferred. The Start flag command sets the

Programming Basic Mode! 20 and Model 30 1/0 Interfaces

2-35

interface’s Busy flag to 1, sets the Done flag to 0, and initiates the Read
Header operation.

After the Read Header operation is completed on the selected drive, issue a
Read Status instruction (DiA) with a Pulse flag command and check the error
flags. (The Pulse flag command clears the Done flag and interrupt request.) If
a Data Late or Checkword Error occurred, try the data transfer again.

Interrogate the head number field to determine which surface of the diskette
was read. If the head swapping mode was not enabled, the Read Header
command in Step 1 selected head 0, and the head number read is O, the
diskette does not need head swapping enabled. (See the description of the
Recalibrate command in Table 2-13 for head swap operating mode.) If the
head number read is 1, the diskette is in Data General MPT/100 format for
which head swapping and byte swapping must be enabled. Also for MPT/100
formatted diskettes, the sector description option must be set to option 4 (SD
field = 0100).

The number of sectors per track and the first sector number can be
determined by issuing read commands to see if a particular sector exists.
(Refer to “Setting Up Data Transfers” in this section for the steps taken to
program a read operation.) If a read operation to physical sector 8 completes
with no errors and a read operation to physical sector 9 produces a hard
address error, the last sector number is 8 and the diskette in the selected
drive is formatted in IBM PC format (8 sectors/track, physically numbered 1
through 8); for this format, the sector description option can be set to either
option O or option 1 (SD field 0000 or 0001). If a read operation to physical
sector 9 completes with no errors, the diskette in the selected drive is
formatted in standard Data General format (9 sectors/track, physically
numbered 1 through 9); for this format, the sector description option can be
set to either option 2 or option 3 (SD field 0010 or 0011).

Setting the Operating Mode The Set Operating Mode operation is
performed when the Set Mode bit of a Recalibrate command is 1. In addition to
positioning the selected diskette drive read/write heads at track 00, this operation
sets the selected diskette drive's operating mode as specified. This operation is not
necessary when the drive is to operate in the default operating modes. The
description of the Recalibrate command in Table 2-13 presents the operating
modes, their bit positions, their default values, and their functions.

Use the following programming sequence to set the operating mode of the
diskette interface. Ensure that the diskette subsystem is ready to perform an
operation, as explained under “Initiating an Operation”.

1.

Issue a Specify Command and Diskette Address instruction (DOA) with a Start
flag, command using the appropriate accymulator bits to select a drive, issue
a Recalibrate command (seek to track 00), specify the Set mode operation,
and select the settings of the operating mode bits.

After the Recalibrate and Set Operating Mode procedures are completed,
issue a Read Status instruction (DIA) with a Pulse flag command and check
the Seek Error and Operation Timeout flags. (The Pulse flag command clears
the Done flag and interrupt request.) If a recoverable error occurred, try the
operation again.

Positioning the Read/Write Heads Positioning operations move the
read/write heads to the desired track for a data transfer or format operation.
When a Recalibrate command is issued, the selected drive positions its heads at
track 00. (The drives detect a mechanical reference point to recalibrate on track

2-36

Programming Basic Model 20 and Model 30 I/O Interfaces

00.) When a Seek command is issued, the positioner moves the heads in the
direction and number of steps required to arrive at the desired track. It is
important to note that the positioner must be recalibrated before the first Seek
operation can occur. (Note, too, that the positioner is automatically recalibrated
during the first Seek operation that follows an IORST instruction or a Clear flag
command.)

Use the following programming sequence to position the heads over a selected
track. Refer to Figure 2-9. Make sure the diskette subsystem is ready to perform
an operation, as explained earlier under “Initiating an Operation”.

1. Issue a Specify Command and Diskette Address instruction (DOA) with a Start
flag command, using the appropriate accumulator to select a drive, and specify
either a Recalibrate command (seek to track 00) or a Seek command and track
address.

2. After the Recalibrate or Seek operation is completed, issue a Read Status
instruction (DIA) with a Pulse flag command and check the Seek Error and
Operation Timeout flags. (The Pulse flag command clears the Done flag and
Interrupt request.) If a recoverable error occurred, try the operation again.

Programming Basic Model 20 and Model 30 /O Interfaces 2-37
RECALIBRATE SEEK
C Begin) (Begin)
Initialize
Specify recalibrate retry counter
command, select drive
and set busy flag to 1 —~€
(DOAS)
Busy =0 Y
~< ?
»i N
Specify seek command,
select drive and
track, and set
Busy flag to 1
v 1ag (DOAS)
Service interrupt, —
read status and set
Done flag to O
(DIAP)
N
Service interrupt
read status and set
Y Done flag to O
Increment
retry counter
| (e)
~ ¢
Increment
retry counter
< N
/
Fatal }
Y
Overflow Fatal !
?
N
TRun diagnostics or call Field Service.
v lllegal
cylinder
?
B N
ID-00613

Figure 2-9 Head positioning

2-38 Programming Basic Model 20 and Model 30 1/0 Interfaces

Setting Up a Data Transfer Read and write operations can transfer one
to 18 (16 in IBM PC format, 20 in Data General MPT/100 format) 512-byte data
blocks between memory and the diskette drive. The number of data blocks
transferred depends on the word count specified by a preceding Load Word Count
Register instruction (DOC). Data is transferred through the data channel facility,
starting at the memory location specified by a preceding Load Memory Address
Register instruction (DOB). Data transfers are performed on a demand basis —
that is, a data channel transfer occurs each time the diskette interface requires a
16-bit data word — and are double-word buffered to reduce the probability of
data-late coditions.

Observe the following precautions before proceeding with a data transfer
operation:

Be sure that the heads are positioned over the desired cylinder. (Refer to
“Positioning the Read/Write Heads" in this section.)

Be sure that data is recorded on the diskette before attempting a Read
operation.

Do not initiate a multiple-sector transfer that crosses a cylinder boundary
(transfers beyond the last sector of head 1).

Continue with the following programming sequence to read data from the
diskette. Refer to Figure 2-10. Ensure that the diskette subsystem is ready to
perform an operation, as explained earlier under “initiating an Operation”.

1. Issue a Specify Command and Diskette Address instruction (DOA) with no
flag command, using the appropriate accumulator bits to select a drive and
to specify a Read command, a starting head number, and starting sector
number.

2. Issue a Load Memory Address Register instruction (DOB) with no flag
command, using the appropriate accumulator bits to specify the address of
the first memory location to receive the read data block(s).

3. Issue a Load Word Count Register instruction (DOC) with a Start flag
command, using the appropriate accumulator bits to specify the number (in
two’s complement) of 16-bit words to be transferred. The Start flag
command sets the interface’s Busy flag to 1, sets the Done flag and
Interrupt request to O, and initiates the Read operation.

4. After the Read operation is completed on the selected drive, issue a Read
Status instruction (DIA) with a Pulse flag command and check the error
flags. (The Pulse flag command clears the Done flag and Interrupt request.)
If a Data Late or Checkword Error occurred, try the data transfer again . If
an address error occurred, recalibrate and reposition the positioning
mechanism, and retry the transfer.

Programming Basic Model 20 and Model 30 I/O Interfaces 2-39

C Begin)

Initialize

N
retry counter End j

Increment
retry counter

Specify Read or
Write command,
and select drive,

head, sector.
(DOA)

Specify starting
memory adddress
(DOB)

Operation
timeout

Specify word count
and set Busy flag
to 1

{DOCS) Seek !

Service interrupt,
read status and
set done flag to O

(DIAP)

Abort

1 See head positioning figure
2 Run diagnostics for call Field Service.

1D-00614
Figure 2-10 Read or write data

Programming Basic Model 20 and Model 30 1/O Interfaces

Continue with the following programming sequence to write data onto the
diskette. Refer to Figure 2-10. Ensure that the diskette subsystem is ready to
perform an operation, as explained earlier under “Initiating an Operation”.

1. Set up the entire data to be written, in a memory buffer.

2. Issue a Specify Command and Diskette Address instruction (DOA) with no
flag command, using the appropriate accumulator bits to select a drive and
to specify a Write command, a starting head number, and starting sector
number.

3. Issue a Load Memory Address Register instruction (DOB) with no flag
command, using the appropriate accumulator bits to specify the address of
the first memory location that contains the write data block(s).

4. Issue a Load Word Count Register instruction (DOC) with a Start flag
command, using the appropriate accumulator bits to specify the number (in
two’s complement) of 16-bit words to be transferred. The Start flag
command sets the interface’s Busy flag to 1, sets the Done flag and
Interrupt request to O, and initiates the Write operation.

5. After the Write operation is completed on the selected drive, issue a Read
Status instruction (DIA) with a Pulse flag command and check the error
flags. (The Pulse flag command clears the Done flag and Interrupt request.)
If a Data Late error occurred, retry the data transfer. If an address error
occurred, recalibrate and reposition the positioning mechanism, and try the
transfer again.

Reformatting a Diskette
About Diskette Formatting

Data General diskettes are completely formatted before they are shipped. You do
not need to reformat a diskette unless it develops a problem. Data General
supplies a stand-alone reformatting program on the Customer Mode Diagnostic
diskette. Its operation is described in Testing a Model 20 and Model 30 System
(DGC No. 014-000902). The information supplied in this section is intended for
those users who may, nevertheless, want to write their own diskette formatting
programs.

Model 20 and Model 30 diskettes are soft sectored there are no physical
reference points for sectors. Instead, there is a unique address field at the
beginning of each sector that identifies the sector’s physical address — its track,
surface, and sector numbers.

During a formatting operation, the SPU must provide data for the track to be
formatted. An entire track must be formatted at once: individual sectors cannot
be reformatted. The formatting information includes the track, sector and head
addresses, along with the sector length code to be recorded in the address field of
each sector.

When a track is reformatted, the previously recorded information is lost. If a
particular sector goes bad, the recorded data in the usable sectors of the track
must be recovered first, and then the entire diskette track reformatted. Format-
ting must be performed independently of and before initializing the diskette with
a Data General operating system.

The programming directions below explain how you can format your own
diskettes in either Data General standard or IBM PC format. First, however, some
background information is necessary.

Programming Basic Model 20 and Model 30 1/O Interfaces

241

Three diskette formats can be used on a Model 20 or Model 30 diskette subsys-
tem, as indicated in Figure 2-11 through Figure 2-13.

1. Data General standard 9 sector, 512 bytes/sector
2. Data General MPT/100 10 sector, 512 bytes/sector
3. IBM PC 8 sector, 512 bytes/sector

Each diskette has two surfaces, and each surface contains 40 recording tracks.
The top surface is labeled 0. One particular track position of each surface
constitutes a diskette cylinder. Data General standard formatted diskettes
contain nine sectors per track, physically addressed 1 through 9. IBM PC
formatted diskettes contain eight sectors per track, physically addressed 1
through 8. MPT/100 formatted diskettes contain ten sectors per track, physi-
cally addressed O through 9. All three formatted sectors can store up to 512
data bytes.

Note that the diskette interface can be programmed to accept logical instead

of physical software sector addresses for standard Data General and IBM PC
formatted diskettes. Logical sector addresses for both formats are O through 8.
When the diskette interface is programmed in this way, it transfers the physical
sector number that is one greater than the addressed logical sector.

Surface zero of standard Data General and IBM PC formatted diskettes is located
on the left side of the diskette when installed in drive, while surface 1 is located
on the right (label) side of the diskette. On Data General MPT/100 formatted
diskettes, these positions are reversed.

Diskettes formatted in standard Data General and IBM PC formats include a
recorded index field that precedes physical sector 1 of each track. This index
field is recorded during the initial formatting and is never written again in
normal operation. Diskettes formatted in Data General MPT/100 format do not
include the recorded index field. Although you can read diskettes that are
formatted in MPT/100 format, you can not write to these diskettes, nor can you
reformat them.

2-42 Programming Basic Model 20 and Model 30 1/O Interfaces

. Sync Index
Field Gap 4A zone mark Gap 1
No. of bytes 80 12 4 50
Value in hex 4E’s 00's C2C2C2FC-J 4E’'s

Physical
index
mark
(hole)

NOTE Diskette shown
is removed from its
jacket.

Section numbers are
physical section numbers.

Surface 0 Rotation

(leftside when
installed in drive)

Surface 1
{underside)

‘ Sector
Field Synch Address Cylinder vSurface Sector length
zone mark number number number code
No. of bytes 12 4 1 1 1 1
Value in hex 00's A1A1A1FE XX XX XX 02
Field Address Gap 2 Sync Data Data [Data field | Gap 3
' field CRC zone mark field |CRC
No. of bytes 2 22 12 4 512 2 80
Value in hex XXXX 4E’s 00's A1A1A1FB xx’s XXXX 4E’s

ID-00681
Figure 2-11 Data General standard 9 sector, 512 bytes/sector format

Programming Basic Model 20 and Model 30 /O Interfaces 2-43

NOTE Diskette shown is Rotat
removed from its otation

Jjacket. ﬂ

Sector numbers are
physical sector numbers.
Surface 0
5 (underside)
Surface 1 (Right side
(Left side when when installed
installed in in device)
drive)
Physical index
mark (hole)

—_

1D-00682

Figure 2-12 Data General MPT/100 10 sector, 512 bytes/sector format

2-44

Programming Basic Model 20 and Model 30 1/O Interfaces

Field Gap 4A Sync Index Gap 1
zone mark

No. of bytes 80 12 4 50

Value in hex 4E’s 00’'s C2C2C2FC 4F’s

ndex field

Physical
NOTE Diskette shown :'::::
is removed from its
(hole)

jacket.

Section numbers are
physical section
numbers.

Surface O Rotation
{left side when
installed in drive)

Surface 1
(underside)

Field Synch Address Cylinder r Surface Sector
zone mark number number number length code

No. of bytes 12 4 1 1 1 1

Value in hex 00’'s | ATA1A1TFE XX XX XX 02
Address Data

. field Gap 2 Sync Data Data field Gap 3

Field CRC zone mark field CRC

No. of bytes 2 22 12 4 512 2 80

Value in hex XXX 4E’'s 00's A1A1A1FB xx’s XXXX 4E's

Figure 2-13 IBM PC 8 sector, 512 bytes/sector format

ID-00683

Programming Basic Model 20 and Model 30 I/0 Interfaces

2-45

The diskette format delineates an address field and specific data field length in
each sector of every data track on the recording surface. The address field of a
sector is a coded header that precedes the data block. On a formatted diskette,
the address field is recorded at a specific location within the sector, giving the
read and write control circuits enough time to initialize and settle before the
field is read. Formatted diskette surfaces are necessary for the proper operation
of the diskette subsystem.

Special address field marks are written to differentiate header fields from data
fields. These headers and their address marks are recorded during the initial
formatting and are never written again during normal operation. Formatting
must be performed on one complete track at a time; a physically determined
index pulse, transmitted from the drive, tells the interface when to begin and
end the format operation for each track.

Data field marks specify the beginning of the data field. These marks are
written during the initial formatting operation and are also recorded every time
a data field is written during normal write operations.

Programming Procedure

A format operation transfers one track of formatting data between memory and
the diskette drive. The number of formatting data words transferred depends on
the word count specified by a previous Load Word Count Register instruction
(DOC). Data is transferred through the data channel facility, starting at the
memory location specified by a previous Load Memory Address Register
instruction (DOB). Data transfers are performed on a demand basis — that is
data channel transfer occurs each time the diskette interface requires a 16-bit
data word) — and are double-word buffered to reduce the probability of
data-late conditions.

Remember that a reformatting operation destroys all existing data on a diskette
track. Never reformat a track without first backing up the data in its usable
sectors.

Before you can format a track(s) on the diskette, a buffer must be set up in
memory that contains the binary image of the entire track. This buffer must
contain the correct number of words required for the format that is to be output
to the diskette . In addition, the binary image in this buffer must be set up to
implement the specified format. The image must contain specially coded bytes
to inform the interface when to write index marks, address marks, and CRC
bytes. These bytes are:

F5 Write address mark
F6 Write index mark

F7 Write calculated CRC (two bytes)

Table 2-14 and Table 2-15 show examples of a memory buffer set up to format
diskettes in standard Data General and IBM PC formats. (Note that only the first
sector is shown in detail and it must be repeated for remaining sectors of the
track.)

Use the following programming sequence to reformat a diskette track. Refer to
Figure 2-14. Ensure that the diskette subsystem is ready to perform an
operation as explained earlier under “Initiating an Operation.”

1. Set up the required format buffer in memory. Refer to Table 2-14 and
Table 2-15.

2-46

Programming Basic Model 20 and Mode! 30 1/O Interfaces

2. Position the heads over the track to be formatted by issuing a Specify
Command and Diskette Address instruction (DOA) with a Start flag
command, using the appropriate accumulator to select a drive, and specify
either a Recalibrate command (seek to track 00) or a Seek command and
track address.

3. After the Recalibrate or Seek operation is completed, issue a Read Status
instruction (DIA) with a Pulse flag command and check the Seek Error and
Operation Timeout flags. (The Pulse flag command clears the Done flag and
Interrupt request.) If a recoverable error occurred, try the operation again.
Before proceeding, you may want to ensure that the seek operation
positioned the heads at the proper track.

4. Issue a Specify Command and Diskette Address instruction (DOA) with no
flag command, using the appropriate accumulator bits to select a drive and
to specify a Format command and head number.

5. Issue a Load Memory Address Register instruction (DOB) with no flag
command, using the appropriate accumulator bits to specify the starting
address of the buffer in memory that contains the format data block.

6. Issue a Load Word Count Register instruction (DOC) with a Start flag
command, using the appropriate accumulator bits to specify the number (in
two’s complement) of 16-bit words to be transferred. The Start flag
command sets the interface’s Busy flag to 1, sets the Done flag and
Interrupt request to 0, and initiates the Format operation.

7. After the Format operation is completed on the selected drive, issue a Read
Status instruction (DIA) with a Pulse flag command and check the error
flags. (The Pulse flag command clears the Done flag and Interrupt request.)
If a Data Late error occurred, try the data transfer again.

8. If surface O was just formatted and surface 1 is to be formatted next,
update the head number byte in each sector’s address field of the format
buffer in memory. Then return to Step 4, this time selecting head 1 and
repeat all steps up to this point. Otherwise, proceed to step 9.

9. If another track is to be formatted, update the track and head number bytes
in each sector’s address field of the format buffer in memory. Then return
to Step 2 and repeat all steps up to this point.

After formatting a diskette for the first time, you may want to recalibrate the
drive’s positioner and step through each track, reading the sectors to ensure
that the track, sector, and head numbers were correctly recorded in each
address field.

Programming Basic Model 20 and Model 30 I/O Interfaces 2-47

Set up format Errors -
block in memory ?
Initialize

retry counter

Increment
retry counter

Fatal 2

Operatidn
timeout
?

Position heads !

Specify format .
command, select drive, Seek
head and sector

|

Specify starting
memory address

(00B)
|

e QD
Secify word count
Y

and set busy flag to 1
(DOCS)

RECALIBRATE
and SEEK '

|

Write and read

data test
patterns
Service inturrupt, “
read status and 1. See head positioning flowchart.
set done flag(to 0) 2. Run diagnostics for Field Service.
DIAP

iD-00654
Figure 2-14 Format flowchart

Programming Basic Model 20 and Model 30 1/0 Interfaces

Table 2-14 Format buffer for Data General 9-sector, 512 bytes/sector format

Number of words High byte High byte Function

{decimal)? value (hex) value (hex)
40 4E 4E Gap 4
6 00 00 Sync zone
1 F6 F6 Write index mark code
1 F6 FC Write index mark
25 4E 4E Gap 1
6 00 00 Sync zone
1 F5 F5 Write address mark code
1 F5 FE Address mark
1 (Track #) (Surface #) Address field
1 (Sector #) 02 Address and bytes/sector field
1 F7 4E Write CRC code and first gap 2 byte
10 4E 4E Gap 2
1 4E 00 Gap 2 and first sync zone byte
5 00 00 Sync zone
1 00 Fb5 Last sync zone byte and write data mark
code
1 F5 F5 Write data mark code
1 FB xx ! Data mark and first data byte
255 xx ! xx ! Data
1 xx ! F7 Last data byte and write CRC code
40 4E 4E Gap 3
2608 Repeat the above block 8 times (once for each sector), starting after Gap
1 and changing the data in the sector number byte to correspond to
each sector.
200 4E 4E Fill gap
(accounts for speed variations of the
diskette drive)

Ixx = any hex value other than F5 through F7.
2Total word count = 3,207

Programming Basic Model 20 and Model 30 V/O Interfaces 2-49

Table 2-15 Format buffer for IBM PC 8-sector, 512 bytes/sector format

Number of words High byte High byte Function

(decimal)? value (hex) value (hex)
40 4E 4E Gap 4
6 00 00 Sync zone
1 F6 F6 Write index mark code
1 F6 FC Write index mark
25 4E 4E Gap 1
6 00 00 Sync zone
1 F5 F5 Write address mark code
1 F5 FE Address mark
1 (Track #) (Surface #) Address field
1 (Sector #) 02 Address and bytes/sector field
1 F7 4E Write CRC code and first gap 2 byte
10 4E 4E Gap 2
1 4E 00 Gap 2 and first sync zone byte
5 00 00 Sync zone
1 00 F5 Last sync zone byte and write data mark
code
1 F5 F5 Write data mark code
1 FB xx ! Data mark and first data byte
255 xx ! xx ! Data
1 xx ! F7 Last data byte and write CRC code
40 4E 4E Gap 3
2282 Repeat the above block 7 times (once for each sector), starting after gap

1, and changing the data in the sector number byte to correspond to
each sector.
500 4E 4E Fill gap
(accounts for speed variations of the
diskette drive)

'xx = any hex value other than F5 through F7.
?Total word count = 3,181

I/0O Timing

Several factors determine the time necessary to access and transfer data blocks
to or from the diskette drive. These factors include:

Recalibrate or seek time
Head load time
Motor on time

Read or write time

Recalibrate or Seek Time Read/write heads must be positioned over the
proper track before a data transfer can begin. The following factors determine the
time necessary to seek a specified track or recalibrate the positioner to select
track 00:

The time the Model 20 and Model 30 SPU takes to issue the Seek command
and then process the interrupt when the operation is completed (referred
to as SPU overhead time).

The time the controller takes to initiate the Seek operation and issue a
program interrupt request (referred to as controller’s overhead time and
lasting approximately 1 ms).

2-50

Programming Basic Model 20 and Model 30 V/O Interfaces

The time the positioner takes to move the heads to the specified track (6
ms for a minimum seek, 78 ms for an average seek, and 234 ms for a
maximum seek).

The time the positioner takes to settle the heads when the destination
track is reached (15 milliseconds).

Thus, the total time for a positioning operation is 16 ms plus (6 ms times the
number of tracks moved). A recalibrate operation for example, could take up to
250 ms.

Head Load Time Read/write heads must be loaded onto the surfaces of the

diskette before the interface can execute any read or write operation. The heads
are loaded when the drive is selected. (After loading, a 50 ms timer delays any
use of the heads for reading or writing, allowing them to settle.

Motor On Time The spindle motors of the diskette drive must be energized

before the drive can execute any command. The spindle motors deenergize if no
diskette commands are received within approximately 30 seconds. If the spindle
motors are not energized when a diskette command is received, an interface
generated one-second delay allows the spindles to come up to speed before the
command is executed.

Read or Write Time The time necessary to read or write information on

the diskette depends on its rotational position when the transfer is initiated, as
well as the number of sectors to be transferred. Read/write time is determined by
the amount of time needed for:

The SPU to issue the Read/Write command along with a starting memory
address and word count, and then process the interrupt when the
operation is completed (referred to as the SPU overhead time).

The interface to initiate the Read/Write operation, data channel operation,
and Program Interrupt request (referred to as the interface overhead time,
approximately 1 ms).

The diskette to rotate to the selected sector once the interface initiates the
Read/Write operation (variable, 100 ms average at nominal 300 RPM). Note
that the interface allows four revolutions before it flags an address error;
thus, it could actually take up to 1 second to flag the error.

The subsystem to transfer the first sector (17.664 ms).

The subsystem to transfer an additional sector after the first one (each
additional transfer takes 20.928 ms).

The minimum total time to transfer a single sector is therefore approximately
18.6 ms excluding the SPU overhead time. For multiple-sector transfers, add
20.9 ms times the number of additional sectors.

The factors that determine the minimum total time for a Format operation are
the same as those for a Write operation. Remember that a Format operation
writes an entire track from the physical index point.

Error Conditions

This discussion defines the diskette subsystem's error conditons, which are
reported by the status register. The error flags specifying the conditions are not
valid until an operation has been completed and the Done flag is set to 1.

Programming Basic Model 20 and Model 30 I/O Interfaces 2-51

When an error condition occurs and a visual inspection of the selected diskette
drive shows nothing unusual, try duplicating the fault with the same drive. If
the fault persists, attempt to duplicate it on the other diskette drive, if present.
“Soft errors” due to airborne particles, random electrical noise, and other
external causes are not the fault of the drive.) Diskette subsystem errors divide
into power-up and self-test errors, initial selection errors, head positioning
errors, and read/write errors. Each type of error is defined below.

Power-Up and Self-Test Errors The Not OK flag sets to 1 if the interface
fails its self-test after a power-up sequence or a self-test diagnostic command. This
bit resets only when the interface passes its self-test diagnostic.

Initial Selection Errors The Not Ready flag indicates the selected diskette
drive is not ready to accept commands. This may be because the drive is not up to
speed, no diskette is inserted in it, or the diskette is improperly inserted in the
drive. This error can occur at any time, and should therefore be checked after
every diskette command.

If the Not Ready flag is 1 when a Read, Read Header, Write, Format Track, Seek
or Recalibrate command is initiated, the operation is not performed. If the flag
asserts to 1 during a Read, Read Header, Write, or Format command, the
operation terminates with the Not Ready flag set in the diskette status.

If the Not Ready status flag is 1 when the diskette drive is accessed, check the
drive to ensure that (1) the drive is powered up, (2) a diskette is properly installed
in the drive, (3) the door is closed, (4) the diskette is rotating, and (5) the drive
unit’s select jumpers are properly installed.

Head Positioning Errors Seek, Address, and Operation Time-out errors
can occur during any head positioning operation and should therefore be checked
following the completion of the positioning operation.

The Seek Error flag sets to 1 and the operation terminates, if (1) the Track 00
signal fails to assert during either a Recalibrate or a Seek operation in which the
diskette interface imbedded a recalibrate operation, and the interface cannot
determine the current positioner location; or (2) a Seek command is issued with a
track address greater than the maximum. To recover head position, reissue the
recalibration command and, if successful, continue with the normal operational
command sequence.

The Address Error flag sets to 1 if a Recalibrate command, with the Set Mode
operation specified, attempts to set the Forty/Ninety-six operation mode bit to 1
on a 48 track-per-inch diskette drive. The Recalibrate operation completes.

The Operation Time-Out flag sets to 1 and the operation terminates if the
specified operation failed to complete within a reasonable time (approximately 3
seconds).

Read/Write Errors The following errors can occur during any data transfer
operation, including a Format Track operation, and should therefore be checked
following the completion of the data transfer operation.

The Address Error flag sets to 1 and the operation terminates if:

A Read/Write operation was issued with a head or sector address greater
than the maximum.

The interface is unable to find the desired sector — that is, it fails to read
an address field that compares with the track, head number, and sector

2-52

Programming Basic Model 20 and Model 30 1/O Interfaces

number that was specified with the operation’s command. This may be due
to a Seek fault.

The checkword appended to the address field did not compare with the
checkword calculated by the interface while reading the address field. This
error also sets the Checkword Error flag to 1.

A multisector read or write operation attempted to transfer a sector
past the end of the current cylinder (last sector of track while head 1
is selected).

A Read command finds a deleted data mark recorded in the data field of a
sector being read. This condition also sets the Bad Sector flag to 1. It occurs
only when reading diskettes written on non-Data General systems.

The Checkword Error flag sets to 1 and the operation terminates immediately

if (1) the checkword appended to the address field did not compare with the
checkword calculated by the interface while reading the address field (this error
also sets the Address Error to 1); or (2) the checkword appended to the data field
did not compare with the checkword calculated by the interface while reading
the data field during a Read command.

The Data Late flag sets to 1 if the processor’s data channel facility fails to
respond in time to a data channel request. This means that the interface’s data
buffer overflowed during a read operation or underflowed during a write
operation.) The operation terminates at the end of the current sector, but data
is lost.

The Operation Time-Out flag sets to 1 and the operation terminates if the
specified operation failed to complete within a reasonable time (approximately
3 seconds).

The Bad Sector flag sets to 1 and the operation terminates if a Read command
finds a deleted data mark recorded in the data field of a sector being read. This
condition also sets the Address Error flag to 1. It occurs only when reading
diskettes written on non-Data General systems.

Power-Up Response and Initial Program Load

Power-Up State = When power is applied to the diskette interface, its

memory address and word count registers are cleared; its Busy, Done, and
Interrupt Disable flags are set to O, its Initiate Program Load (IPL) flag is set to 1,
and its following status flags are set to O:

Write protect
Track 00

Not Ready

Seek error

Data late

Address error
Checkword error
Operation time-out

Bad sector

Programming Basic Model 20 and Model 30 I/0 Interfaces 2-53

The operating modes for the diskette drives are set as follows:

Track density 48 tracks-per-inch

Diskette surfaces 2

Number of sectors/track 9 (physical 1-9)

Number of words/sector 256 (512 bytes)

Sector addressing logical (sectors 0-8)

Head position 1= label side (right side when installed in drive)
0= opposite side (left side when installed in drive)
Byte packing high byte first, low byte second

In addition, following power-up, a self-test diagnostic is run on the diskette
interface card. If any errors are detected during this self-test, a light-emitting
diode (LED) lights up on the interface card. The LED remains lit until another
self-test sequence runs and completes successfully. While the LED is enabled,
the Not OK status bit is set in the diskette interface status information. Diskette
status information can be interrogated by the CPU. (See the description of Read
Diskette Status under “I/O Instruction Set” in this chapter.)

NOTE The drives are not recalibrated when the subsystem is powered up.
Instead, a Recalibrate or Seek command must be issued prior to any Read or
Write commands. If a Seek instead of a Recalibrate command is issued, the
interface automatically performs a recalibrate operation before the seek
operation.

Initial Program Load (IPL)

The Initial Program Load (IPL) feature transfers a single sector, low-level,
bootstrap program from diskette to Model 20 and Model 30 memory. The
transfer originates from drive number O, track O, head 0, and logical sector O
(physical sector 1). The IPL sequence transfers the contents of this sector into
the first 256 word locations of the memory. The bootstrap program must have
been previously recorded on the designated sector of the diskette. If the drive is
not ready, the IPL operation waits until it is.

An IPL operation always occurs when the system is first powered up. CPU
firmware executes a small loader program that initializes the diskette subsystem
and issues an I/O Reset instruction (IORST) followed by a Start command. Then
the program branches to memory location 377g and waits (by looping on a Jump
to 377g instruction placed in this memory location by the loader program). An
operator can initiate an IPL at any time — provided the diskette drive is running
and the diskette inserted in drive O contains the bootstrap program — by
entering virtual console mode and issuing a program load command. (Refer to
“Program Load Commands"” in Chapter 3.)

The IORST instruction initializes the interface logic, sets the IPL flag to 1, and
clears the memory address register. The Start flag command sets the Busy flag
to 1, sets the Done flag to O, and starts the IPL operation. The interface
firmware initiates a recalibrate operation on the drive (positions the drive
head(s) over track 00) and then starts a read operation, transferring sector O of
head O to memory through the data channel facility of the microl/O bus. When
the transfer is completed, the Busy flag is set to O, the Done flag is set to 1, and
a Program Interrupt request is initiated.

The last (256th) word in the bootstrap program contained in the IPL sector on
the diskette should contain a Jump instruction to a location in the bootstrap
program. When transferred into memory location 377g, this word will force the
CPU to execute the low-level bootstrap program. First the bootstrap program

Programming Basic Model 20 and Model 30 1/O Interfaces

should terminate the diskette Read operation. Next the bootstrap program
transfers information from other sectors on the diskette to load the operating
system and bring the system on line. The IPL flag is cleared the first time the
CPU issues a Specify Command and Diskette Address (DOA) command.

Virtual Console

This chapter describes how vitrual console is entered; defines virtual console
cells; discusses the console commands and their formats, and how typographical
errors are corrected. A description of errors caused by incorrectly entered
commands concludes the chapter.

3-2

Virtual Console

The virtual control is a program that can aid you in working with the Desktop
Generation Model 20 and Model 30 computer system. It allows you to interact
with the computer through the terminal that is connected to the Model 20 and
Model 30 system processor unit (SPU) asynchronous communications port. You
enter simple commands on the terminal keyboard to examine or modify any
processor register or memory location. A breakpoint feature allows you to stop
the execution of a program at selected places for debugging.

NOTE Input/Output (I/O) interrupts are disabled when the virtual console is
executing. There is no I/O protection enabled when the virtual console is
executing.

The virtual console resides in read-only memory (ROM) chips on the Model 20
and Model 30 (system processing unit) card. The virtual console has access to 2
kilobytes of static read/write memory (RAM), also on the SPU card, for use as a
scratchpad. Neither virtual console ROM nor scratchpad RAM is part of the
normal address space, so these are transparent to the user.

Upon power up the virtual console firmware first performs a short (0.75 second)
self-test routine; then, if the test completes successfully, the virtual console
program retains control and issues a prompt to the system console. If the test
fails to complete successfully, the virtual console program issues a error code to
the system console. Error codes and their description are presented in “The
Control-G Command” later in this chapter.

In addition to power up, the virtual console is entered under the following
conditions.

A HALT instruction is executed (if Halt Dispatch has been enabled).

The user presses the Break Key of the system console and the break
function on the SPU card is enabled by setting SIO switch 2 on (to 1).

The program completes execution of an instruction in the one-step mode
(see the explanation of single stepping under "Function Commands”’).

A breakpoint is encountered (see the explanation of breakpoints under
“Function Commands”.

Once called, the virtual console displays a ! on the terminal. This is the virtual
console prompt; it tells you that the console is ready to accept a command. The
prompt is preceded by a single character that indicates the current state of the
memory allocation and protection (MAP) unit:

! The MAP is currently off and no address translation will occur.
A! The MAP is on and user A has been selected.
B! The MAP is on and user B has been selected.
C! The MAP is on and user C has been selected.
D! The MAP is on and user D has been selected.

When a particular user has been selected, the current state of that user’s map
will be used in all address translations. You can change the MAP or MAP status
from within the virtual console. The commands for doing so are presented in the
“Additional Commands” subsection of “Function Commands."

10 Errata

Page 3-3
Table 3-1 Internal cells
Footnote 2 should read:

Refer to 16-bit Real-time ECLIPSE Assembly Language Programming, “Program
Accessible Registers” in Chapter 1, or the CPU register contents table in Chapter
4 for the contents of this register.

Footnote 3 should read:
Refer to the Reads instruction in Chapter 1 for the contents of this register.
Add footnote 4 which reads:

Refer to the Read MAP Status instruction in Chapter 4 for the contents of this
register.

Change the footnote number for the MAP status register to 4 instead of 3.
Page 3-6

Under page heading, “Setting Breakpoints”,

The fourth line under “Examples:” should read:

3 423 Breakpoint 3 is at address 423

Virtual Console 3-3

Cells

Several virtual console instructions operate on cells. A cell is either a memory
location (memory cell) or an internal register (internal cell) such as an accumu-
lator. Each internal register accessible by the virtual console is assigned an
internal cell number. Table 3-1 lists these registers and their numbers.

Table 3-1 Internal cells

Number Cell
0-3 Accumulators ACO through AC3, respectively.
4 The address of the break instruction at which the program halted, if the virtual

console was entered on encountering a break instruction; or the contents of the
program counter, if the virtual console was entered in any other way.’

5 Carry bit: bit 15 is equal to O when carry equals O; equal to 1 when carry
equals 1.

6 CPU (interrupt and NMI) status.?

7 System console status word.?

10 Virtual console register.

11 MAP status register.?

1The virtual console sets bit O of this word to 1 when it takes control, no matter what its original value. Bit O in cell 4
must be 1 when the user program is recommenced with a P command.

2Refer to the 16-bit Real-Time ECLIPSE Assembly Language Programming (DGC No. 014-000688)}, or to Tables 00
and 00 in this manual, for the contents of this register.

3Refer to the programmer’s reference listed above, or to p. O in this manual, for the contents of these registers.

In order to examine or modify any cell, you must open it. Opening a cell causes
its address and contents to be printed, in octal, at your terminal.

The virtual console register, which corresponds to internal cell number 10 in
Table 3-1 can be accessed in user mode with a READS instruction. This cell
always contains the device code of the last device from which a program load
was effected.

Formats

A virtual console command consists of a single character. Some commands must
be preceded by an argument which is an octal number. To form a valid number,
you may use:

Digits. These must be in the range from O through 7. (If the argument is an
address, it must be in the range from O through 77777.)

Period. The period (.) replaces the value of the last address used.

Signs. + or — A + or — sign may be entered after any valid number and must
be followed by a valid number. The virtual console program will compute the
arithmetic result and enter it in place of the original expression.

Delete or Rubout The Delete Key may be used to delete any single digit. The
virtual console displays an underscore character () to indicate that the
preceding character has been deleted. The Delete Key will not delete the +, —,
or . symbols. If it is used after a + or a -, it has no effect. If it is used after a
period, it deletes the right-most digit of the last address. The virtual console

Virtual Console

only retains six digits at any time; therefore, the Delete Key will not resolve all
errors.

Examples showing resolution of expressions, when the last address entered was
100 are:

100000_1 will be replaced by 100001.

1000000 will be replaced by 000000. (The virtual console only retains 16
binary bits.)

— 3 will be replaced by 75.
.7 will be replaced by 1007.
0 — 7 will be replaced by 177771.

6 + . — 3 will be replaced by 103.
(6+100—-3=103)

75+ _5 will be replaced by 102. (75 + 5= 102.
The + is not deleted.)

60 + ._ will be replaced by 70. (60 + 10 = 70.
The _ erased the right-most O of the last address, 100.)

Cell Commands

To open a cell, use one of the commands listed in Table 3-2

Table 3-2 Virtual console cell commands

Command Function

nA Opens the internal cell specified by n.

expr/ Opens the memory location specified by octal number expr.

Carriage Closes the current cell and opens the next consecutive cell.

Return

New Line* Closes the current cell but does not open another.

/ Closes the current cell and opens the memory cell whose address is equal to
the contents of the current memory or internal cell; after a New Line, opens
location O.

*Line Feed on non-ANSI standard keyboards.

In Table 3-2 the term current cell refers to the last cell that you opened; the
symbol expr means that you may type any valid octal number or expression, as
explained earlier under "Formats.”

When you open a memory cell, the virtual console interprets the address
according to the current setting of the user MAP. That is, the number you enter
is interpreted as a 15-bit address, then translated into a physical address in
accordance with the current state of the MAP. You do not have to type leading
zeroes. If, for example, you want to open logical memory location 5, you would
type the number 5 followed by a slash (/).

Once you have opened a cell, you may change its contents by typing the octal
number or expression whose value is to be placed in the cell. Terminate the
expression with a Carriage Return, Line Feed, or New Line. Note that if you

Virtual Console

press Carriage Return, the next cell will also be opened. This is convenient when
you need to enter data into several consecutive locations.

NOTE If you open a cell and immediately type H or L, the contents of the cell
are used as the value of expr for that command.

If you type an expression starting with a + or -, the value of the expression will
be added to or subtracted from the current contents of the cell. This result was
illustrated under “Formats”, and is shown again in the examples that follow.
These examples demonstrate the use of /, New Line, and Carriage Return. Data
entered by the user appears in bold face.

Al 3A 000003A 000100<CR> AC3 contains 100.

000004 A 000704/000704
024132<NL>NL

PC contained 704.

Location 704 contains 24132.

Al 5A 000005A 000000 1 <NL>
User changed carry bit to 1.

A! 100/ 000100 025037.<NL>
Contents of location 100 (25037) are changed to current address.

A! 100/ 000100 000100 < CR>
Above step confirmed.

000101/000101 000503
+1<NL>
Contents of 101 incremented.

Al ./000101 000504
Above step confirmed.

NOTE Internal cell 11 is the last accessible internal cell. Do not use a Carriage
Return to close it.

Function Commands

Table 3-3 lists the virtual console function commands. These commands are
explained in detail in the subsections that follow.

Breakpoints and Program Control

The virtual console breakpoint facility allows you to place breakpoints at up to
eight locations in your program. When the program encounters the breakpoint
during execution, it will enter the virtual console so that you can examine or
modify any cells. This can be a great aid in debugging a program, since you can
stop your program at points where you think there is a problem and then
resume execution with no loss of data.

3-6 Virtual Console

Table 3-3 Virtual console function commands

Command Function

exprB Inserts a breakpoint at the memory location specified by octal number expr.
(i no expr is entered, all breakpoints will be displayed along with their
assigned numbers.)

nD Deletes breakpoint number n where nis a number between O and 7. (If no n
is specified, all breakpoints are deleted.)

G Executes the power-up self-test sequence. *

nH Performs a program load from the data channel device whose device
code is n.

Executes an I/O Reset (IORST) instruction.

1

K Cancels the entire line just typed and prints a question mark (?).

nL Performs a program load from the programmed /O device whose device
code isn.

0 Steps through one instruction of the user’s program.

P Starts program execution at the memory location specified by the contents
of internal cell number 4. (See table 3-1.)

exprR Starts program execution at the memory location specified by octal
number expr.

U Changes the user map. Displays a colon (:), after which the user must enter
A, B, C, or D to specify a map. If any other character is entered, the map is
turned off.

* AG represents the simultaneous depression of the console CTRL and G keys.

Setting Breakpoints

NOTE Breakpoints will not work and should not be used if the Halt Dispatch
bit in the SIO switch register is not set to 1.

To set a breakpoint, type expr B. The breakpoint will be set at the address
specified by expr according to the current user map. Breakpoints can be used
only in the user map from which the user program will be started.

The virtual console assigns numbers to breakpoints in reverse order — that is,
breakpoint 7 is assigned first, then 6, and so on. The unassigned breakpoint
with the highest number is always assigned first. For example, if numbers 7 and
5 are assigned, the next will be 6, not 4. To delete a breakpoint you must use
the number assigned to it as described in the subsection to come. Typing B with
no specified address will cause the virtual console to list all the current
breakpoints along with their assigned numbers.

Examples:

A 423B Places a breakpoint at address 423 in user map A.
AlB Requests list of all current breakpoints.

7 75324 Breakpoint 7 is at address 75324.

423 Breakpoint 3 is at address 423.

Al 623B? Requests a breakpoint at a valid location . . . But apparently all
eight breakpoints are in use. User must delete a breakpoint before
setting another.

Al A prompt always follows a question mark (?).

Virtual Console 3-7

NOTE Do not place two breakpoints at the same location, and do not set
breakpoints in addresses that are to be executed when the MAP is enabled and
I/O protection and/or the Load Effective Address mode is enabled.

Deleting Breakpoints Use the D command to delete a breakpoint. Type
nD to delete breakpoint n. This will delete the breakpoint regardless of the
current state of the map. If no number n is specified, the D command will delete
all breakpoints.

Examples of deleting breakpoints are:

A! 3D Deletes breakpoint number 3.

A 12D Only eight breakpoints (numbers 0-7) are valid . . .
? . . . Any other number is not allowed.

Encountering a Breakpoint = When a breakpoint is encountered during
execution of a user program, the virtual console is entered and the address of the
instruction at which the breakpoint was set is displayed and placed in internal cell
number 4. The instruction at the location of the breakpoint is not yet executed.
The virtual console then displays a prompt. The user can now inspect and modify
any internal cell or memory location.

Single Stepping Use the one-step command, O, to single step through a
program. The O command, issued while the virtual console is in control, sets a
flag that will cause a nonmaskable interrupt (NMI) to occur as soon as the first
main (user) program instruction has executed. The virtual console then returns to
the main program location specified by the contents of internal cell 4; the main
program executes one instruction, and then the virtual console resumes control.

As the instruction is executed, the console will print the address of the following
instruction (that is, the contents of the program counter at the time of execution).
Pressing and holding down O with the Repeat key is a convenient way of quickly
locating the occurrence of skips or branches. After each instruction has been
executed, the virtual console resumes control and issues a prompt.

NOTES The fact that a user breakpoint may have been set for an instruction
will have no effect on the execution of the O command. The XCT instruction
cannot be single-stepped.

Resuming Program Execution The virtual console has two commands
that allow you to resume program execution after the console has been entered
through a breakpoint, after single-stepping, or by some other means. Typing P
restarts program execution at the location specified by the contents of internal
cell number 4, which is always the return address (see Table 3-1).

NOTE When the virtual console is entered through a breakpoint, internal cell
4 contains the address of the location of the breakpoint. This should be the next
instruction to be executed in order to resume normal program flow. When the
virtual console is entered any other way, internal cell 4 contains the value of the
PC + 1; this should also be the next instruction executed in order to resume
normal flow. In either case, the P instruction will produce the required result.

You can also return to a program by typing exprR. In this case, program
execution resumes at the location specified by exprsu04. When the R command is
issued, the virtual console inserts all previously specified breakpoints, clears

3-8

Virtual Console

nonmaskable interrupts (NMlIs), and resumes program execution at the logical
address <expr> in the current map. The R command does not cause an I/O or
system reset. The number specified by expr must be a valid address in user
memory. If this argument is not in the user range, or is not supplied, the virtual
console will do nothing.

Additional Commands

This section presents the U command for changing user maps, the 11A
command for changing the MAP status, the L or H command for causing a
program load, and the 1"G! command for initiating the power-up self-test
sequence.

Changing the MAP or MAP Status To change user maps, use the U

command. When you issue this command, the console will inmediately print a
colon (). Now you must type a single character — A, B, C, or D — to change the
map to that user. If you type any other character (including Carriage Return or
New Line), the MAP will be turned off. After you type a character, a prompt is
displayed that reflects the new state of the MAP.

You can change the MAP status from within the virtual console. To do this, open
internal cell 11, the MAP status register, by issuing an 11A command. Type in
the new status, then close the cell with a New Line. Now issue a U command,
whether or not you want to change maps. (If you do not want to change maps,
simply enter the character for the current map.) The new map status takes effect
only after a U command has been issued.

Program Load Commands Typing nL causes the CPU to perform a

program load from a programmed I/O device whose device code is equal to the
last two digits of the octal number n.

Typing nH causes the CPU to perform a program load from a data channel device
whose device code is equal to the last two digits of n. The device code range
specified for the nl. command also applies here. Once a high-speed program load
from a data channel device has begun, the virtual console is no longer in control.

After a program load has been performed, the octal number n is placed in the
virtual console switch register. A READS instruction can then be used to return
the 16-bit number entered by the operator with the H or L command.

NOTE After any program load of whatever type, the state of the accumulators
will be indeterminate.

The Control-G Command The !"G! command causes the virtual console

to execute the power-up self-test sequence. This test is not meant to be a
definitive hardware test. It is designed primarily to detect faults that would
prevent the loading of diagnostic programs.

NOTE Because the memory-test portion of the power-up self-test is destructive
to user and virtual console memory, a program load must be performed after the
self-test.

The virtual console flags any errors that occur by outputting an error code to
the system terminal as follows:

An I is output when an 1/0 fault occurs.

An H is output when a virtual console memory fault occurs.

Virtual Console 3-9

An M is output when a user memory fault occurs.

Once the virtual console has output an error flag, nothing further will happen
until the user depresses the Break Key. If there are no errors, or the user presses
the BREAK key after an error flag has been output, the virtual console will issue
a prompt to the system console.

The I Command Typing an | on the system console while in the virtual
console causes an I/O Reset instruction to be executed immediately. All I/O device
controllers’ flags are cleared as a result (Busy = Done = 0). Refer to the
programmer’s references for the Model 20 and Model 30 and for the device
controllers for information on the effects of the IO Reset instruction.

Correcting Errors

This final section explains the use of the Rubout Key and the K command to
correct typographical errors. It concludes by describing the conditions under
which a virtual console error can occur.

The Rubout Key

You can use the Rubout Key to delete the last character you typed, in which case
the virtual console echoes the rubout with an underscore (_). Typing more
Rubouts will continue to delete digits from right to left.

If you type any rubouts immediately after opening a cell, the virtual console
will delete the right-most digits of the cell’s contents as though you had just
typed them yourself. You may then type in new values for these digits. Refer to
the "Formats” section presented earlier for more information on the Rubout
Key.

The K Command

If you wish to cancel an entire line that you have just entered, type a

K. In response, the virtual console prints a ? followed by a New Line, and also
closes the current cell if it is open. The ? followed by a New Line is also printed
if you type a character that the virtual console does not recognize.

Virtual Console Errors

If you attempt to open a nonexistent memory cell, the data displayed as its
contents will be meaningless. You can test whether a location exists by entering
a new value in the memory cell and then reopening it. If it does not contain the
value just entered, the location is nonexistent.

In addition to the case in which an undefined character is typed, the virtual
console will type a ? followed by a New Line under the following conditions.

A command to open a nonexistent, internal cell is issued.
An R command is issued without an argument.
A set breakpoint command specifies an invalid address.

A delete breakpoint command specifies a number greater than 7.

3-10 Virtual Console

A set breakpoint command is issued after all eight breakpoints have been
assigned.

A program load command is issued with an illegal device code.

In all of these cases, the command involved will not be executed. In fact, the
virtual console will do nothing, and any data just entered will be discarded.

TWO

Theory of Operation

System
Processing Unit

This chapter describes the major elements of the Model 20 and Model 30 unit;
describes power monitoring and initialization; provides power requirements;
details interconnections with the system; and explains its functional theory of

operation. Tables of internal and external signal descriptions conclude the
chapter.

4-2 System Processing Unit

A

T

Ridc I ST

O

3

¢
5
o
>
2
B
T
et
>

~e

BB 7TTABIE,
AR

PH-0551

Figure 4-1 The Model 20 and Model 30 SPU

Designed as the basic module in Data General’s Desktop Generation computer
systems, the system processing unit (SPU) cards, shown in Figure 4-1, consists of
the following elements:

A central processing unit (CPU) based on a microECLIPSE mE670 16-bit
CPU integrated circuit (IC) and two or three external microcontroller chips
(XMCs);

A multidevice section based on a mE676 system I/O (SIO) IC, containing a
powerfail monitor, a programmable interval timer, a real-time clock, a

Errata

Page 4-3
Under page heading, “CPU and XMCs", The second paragraph should read:

A kernal of these microinstructions for the ECLIPSE instruction set reside in the
CPU IC, while microinstructions for the remaining instructions reside in two or
three supporting XMCs.

The first sentence of the fourth paragraph should begin:

The two XMCs of the Model 30 SPU....

Page 4-5

Under page heading, “Multidevice Section”,
The first sentence of the bulleted paragraph should begin:

The asynchronous line controller is the interface to the primary terminal....

Add the following note after the description of the Real-time clock in the fifth
paragraph:

NOTE Operation of the Real-time clock at ac line frequency requires the
presence of the line frequency clock generator card in the power module.

Page 4-20

Under page heading, “The Microcode Controller Chips”,
The first sentence of the third paragraph should read:

As mentioned earlier in this chapter, the Model 20 and 30 SPU card contains two
or three XMCs.

Page 4-25

Under page heading, “Extended Memory Cycles”,
The reference in the last sentence (in parentheses) should be to Chapter 5.

Page 4-42
Table 4-4

Change Table ?? in the footnotes to read:

external signals table

System Processing Unit

full-duplex asynchronous communications interface, and an SPU status
register;

A memory allocation and protection (MAP) unit;
Parity checking logic;

A virtual console residing in 1 Kbyte of read-only memory (ROM), with 2
Kbytes of static read/write memory (RAM).

The SPU receives its power and communicates with other printed circuit cards
(memory or I/O controllers) in the CPU logic module (CLM) card cage using its B
connector, which plugs into the CLM backpanel. It uses its A connector for
full-duplex communication with a serial, asynchronous communacitions device.
In the Model 30, the SPU also communicates with the hardware floating point
card using its C connector.

Major Elements

This section describes the functional characteristics of each major element on
the SPU card.

CPU and XMCs

The CPU in the Model 20 and Model 30 computers is a microprogrammmed
processor that incorporates the full ECLIPSE 16-bit architecture, including four
fixed point and four floating point accumulators, a floating point status register,
and a MAP status register. The CPU implements the ECLIPSE instruction set by
executing a series of microinstructions. These microinstructions control the flow
of data through the CPU internal registers, in the arithmetic logic units, and
along the data paths of the SPU.

A kernel of these microinstructions for the ECLIPSE instruction set reside in the
mEG670 CPU IC, while the microinstructions for the remaining instructions reside
in three supporting XMCs. The XMCs communicate with the mE670 via a
dedicated, 8-bit time-multiplexed bus.

The three XMCs on the Model 20 SPU card contain microcode for all floating
point instructions plus any ECLIPSE instructions not in the mE670 kernal.

The three XMCs on the Model 30 SPU card contain microcode for non-kernal
ECLIPSE instructions and the commerical instructions, in addition to control
microcode for the hardware floating point card.

The mEG670 CPU uses the 16-bit wide memory address/data bus to communicate
with memory elements. During operations in the memory mapped mode, the
memory address width expands from 15 to 20 address bits.

The CPU communicates with its support elements, such as the multidevice SIO
chip and MAP unit, via the 16-bit wide CPU bus. A microl/O bus interface is
connected to this local bus and enables the CPU to communicate with standard
I/0 device controllers.

Model 20 and 30 memory access time is 0.500 microseconds. Instruction
execution times range from 0.50 to 34.00 microseconds for fixed-point opera-
tions. Firmware floating-point operations in the Model 20 are controlled by
floating point XMCs and require from 1.00 to about 900 microseconds.
Hardware floating point operations in the Model 30 require from 1.50 to about

System Processing Unit

50 microseconds. Maximum I/O interrupt latency of Model 20 computers is 110
microseconds; maximum I/O interrupt latency of Model 30 computers is 350
microseconds.! Maximum data channel latency is 6 microseconds. A complete
listing of instruction execution times for the CPUs appears in “Programming the
CPU"” in Chapter 1.

'These figures assume the absence of any data channel operations.

The Model 20 and Model 30 systems can contain up to 2 Mbyte of memory with
validity, I/O and write protection, and parity checking. In addition, the CPU

Supports direct memory access (DMA) via data channel,
Has two distinct program interrupt facilities: maskable and non-maskable,

Supports 16 levels of programmed interrupt priorities.

The CPU's data channel facility allows devices to transfer data to and from fast
memory over the microl/O bus at speeds of 337 kilobytes per second for output
and 267 kilobytes per second for input.

The CPU has two interrupt facilities: standard and nonmaskable. The

standard interrupt facility services four types of interrupt requests based on the
following order of priorities: (1) powerfail, (2) stack overflow, (3) programmed
interval timer, (4) real-time clock, (5) TTI (SPU asynchronous interface receiver),
(6) TTO (transmitter), and (7) external I/0. The SPU reserves the nonmaskable
interrupt facility for user entry into the virtual console.

The 16 levels of programmed interrupt priority are associated with the standard
interrupt facility. They are established by a priority mask. These levels allow the
program to establish interrupt priorities among I/O interfaces. A special,
vectored interrupt instruction updates the priority mask while saving return
information and transferring control.

Memory Allocation and Protection

The memory allocation and protection (MAP) feature performs logical-to-
physical address translation, accessing a maximum of 2 Mbytes of physical
memory. Maximum memory size of 2 Mbytes is obtained by using four
512-Kbyte cards in an Model 20 system. Maximium memory size in a Model 30
system is 1.5 Mbytes and is obtained using three 512 Kbyte memory cards. The
MAP unit stores five address maps that can be used by the system. There are
four user address maps and one data channel map.

In addition to translating addresses, the MAP feature performs the following
functions:

Validity protection
Write protection

I/0 protection
Indirection protection

The MAP feature also allows the implementation of the Load Effective Address
instruction and the emulator trap feature. These and the above protection
features are discussed more fully under “'SPU Instruction Set” later in this
chapter. ‘

System Processing Unit

Parity Checking

The Model 20 and 30 CPUs append a parity bit to each byte of data written to
memory and checks this bit for each byte read from memory. Detection of an
incorrect parity bit causes an interrupt request if such requests have been
enabled.

Multidevice Section

The heart of the multidevice section is the mE676 system I/O (SIO) integrated
circuit chip. This chip contains three internal I/O devices, along with a powerfail
monitor and SPU status register. The internal I/0 devices are (1) an asynchro-
nous line controller, (2) a real-time clock, and (3) a programmabile interval timer.
These I/O devices are programmed using 1/0 format instructions as though they
were external I/O devices (refer to “"Programming Standard I/0 Devices” in
Chapter 2). The powerfail monitor and SPU status register are also programmed
using I/O format instructions with the device code specifying the CPU (refer to
“System Management Instructions” in Chapter 1.

* The Asynchronous line controller. Interface to the primary terminal of the
Model 20 and 30 system. It can transmit and receive serial asynchronous
information at switch-selectable rates of 50 to 38,400 baud. The controllers
line characteristic is switch selectable to be either EIA RS-232 or 20-milliamp
current-loop.

NOTE The Model 20 and Model 30 system processor unit asynchronous
communications interface receives and transmits eight-bit data characters
without parity. If the terminal device connected to this interface port operates
with a data character length of seven bits, it should be configured to operate
with mark parity. If the terminal device connected to this interface port
operates with a data character length of eight bits, it should be configured to
operate with no parity.

When receiving data characters from a seven-bit terminal device connected to
this port, software should maskout the parity bit position of the character after
the character has been loaded into an accumulator. The parity bit position of the
character is the most significant bit of the character and will be contained in bit
position 8 of the specified accumulator.

The Real-time clock generates low frequency /O interrupts for performing time
calculations independent of CPU timing. These interrupts can be used as a time
base in programs that require one. The interrupt frequency of the clock is
program-selectable to AC line frequency, 10 Hz, 100 Hz, or 1000 Hz.

The programmable interval timer (PIT) is a CPU-independent time base that can
be programmed to initiate program interrupts at fixed intervals. These intervals
range from 1 microseconds to 65.5636 seconds in increments of 1 microseconds.
The clock rate of the PIT is switch-selectable (see “"Programmable Interval
Timer” in Chapter 2) The contents of the PIT counter can also be sampled with
1/0 instructions at any point in its cycle to determine the time until the next
interrupt. The PIT is often used in multiprogram operating systems, where it is
used to allocate CPU time to different programs on a time slice basis.

The powerfail monitor tracks the state of a power status signal supplied by the
power supply, and initiates an interrupt request of the CPU whenever there is a
change in this signal. The SIO controller returns device code O to the CPU when
the CPU acknowledges the interrupt.

System Processing Unit

The CPU status register reports on the following conditions:

Occurrence of a powerfail interrupt

Enabling of interrupts

Occurrence of a Break Key interrupt

Power-up condition

Decoding of a HALT instruction

State of the Halt Dispatch bit in the SIO switch register
Occurrence of an interrupt request

Occurrence of a virtual console trap (in virtual console single-step mode)

Virtual Console

This resident firmware, with its 2 Kbytes of read/write memory, allows the user
whose terminal is connected to the SPU asynchronous interface to inspect and
modify the system’s state. It also aids program debugging. The virtual console
allows users to (1) stop, start, and continue program execution; (2) examine and
alter CPU registers and memory locations; and (3) initiate program load
sequences. Chapter 3 discusses the virtual console in full detail.

Power Monitoring and Initialization

The power supply generates two status signals that are monitored by the SPU.
One indicates that all voltages are within specified limits; the other indicates
that a power loss is imminent.

After the SPU is notified that all voltages are within specified limits on power
up, it enters the Halt state with interrupts enabled. When this occurs, the SPU
can be started by issuing a virtual console program load command (refer to the
“Power-up Response” section in Chapter 1 and “Virtual Console”, Chapter 3.)

An imminent power loss generates a program interrupt. When the power loss is
first detected, the SPU has a full two milliseconds of operating time before any
voltages fall below specifications.

Installation and Tailoring

The Model 20 or 30 SPU must reside in Slot 1 of the CPU logic module (CLM) Its
power requirements are listed in Table 4-1.

Table 4-1 SPU power requirements

Supply Voltage Current draw Power dissipation Pin numbers
(Volts DC) {(Amps) (Watts) B Connector
+5(+ 0.5) 5.50 30.25 57, 59, 60
-5(+ 0.5) 0.03 0.15 58

+12 (£ 0.5) 0.10 1.2 55, 56

-12 (£ 0.5) 0.10 1.2 39

Ground 3,11, 14, 36,

53, 54

System Processing Unit

4.7

Tailoring
The SPU card contains eight jumpers and two dual-in-line-package (DIP)

switches that select SPU operating characteristics. Refer to Installation Guide for
your system for their functions, location, and tailoring.

Interfacing

The Model 20 and Model 30 SPU communicates with other parts of the system
via its edge connectors. The SPU receives power and communicates with
memory and I/O cards in the card cages through the B connector. It also
communicates with a system console through the A connector. In addition, the
Model 30 CPU communicates with the hardware floating-point card through the
C connector. The SPU does not use the D connector. Figure 4-2 shows the
connector positions of the SPU card.

NOTE: A/l odd numbered pins
of the connectors are
on the component side
of the card; all even
numbered pins of the
connectors are on the
opposite side of the
card.

Connector A Pin 49

Pin 1

Connector B
Pin 59/<A§

SPU printed
circuit card
(component side)

Pin 49

Connector C

1D-00623

Figure 4-2 SPU card connector positions

The 50-pin A connector carries control and data signals between the SPU and
the system console. Figure 4-3 shows the pin assignments.

4-8

System Processing Unit

Even Signal Names Odd
2 CTS TTIN 1
4 -5V 3
6 5
8 GND 7

10 DTR +5V 9

12 1

14 13

16 15

18 17

20 19

22 TTOUT 21

24 +12V 23

26 25

28| 27

30 29

32 31

34 33

36 35

38 37

40 39

42 41

44 43

46 45

48 47

50 49

Note Blank pins are not used.

Figure 4-3 Pin assignments, A connector

DG-08909

The 60 pins of the B connector are TTL-compatible unless otherwise marked.

Figure 4-4 shows the pin assignments.

System Processing Unit 4-9

Even Signal Names Odd
60 +5v +5V 59
58 —5V +5Vv 57
56 +12v +12v 55
54 GND GND 53
52| SYSCLOCK XMAT 51
50 DATAO DATA8 49
48 | BUSADREN XMAO 47
46 DATAT DATA9 45
44 XMA2 BBOOT 43
42 DATA2 DATA10 41
40 XMA3 —12V 39
38 DATA3 DATAT1 37
36 GND RTC 35
34 DATA4 DATA12 33
32 DATAS DATA13 31
30| WH/PARH WL/PARL | 29
28 DATAG DATAT4 27
26 | BUSMEMCYC XMA4 25
24 DATA7 DATAT5 23
22| POWEROK DCHPOUT 21
20 PF INTPOUT 19
18| BUS READY HALT 17
16 | BI/OCLOCK* | BI/OCLOCK* | 15
14 GND BI/ODATA2* | 13
12| BI/ODATAZ GND 11
10 |CONSOLELOCK| EXTDCHR |9

8 EXTINT PWRFAIL |7
6 CLEAR BI/ODATA1* | 5
4 | BI/ODATA1* GND 3
2| BM CLOCK* | BMcCLOCK* |1

*Not TTL compatible
1D-00624

Figure 4-4 Pin assignments, B connector

The 50-pin C connector carries control signals between the Model 1 SPU and its
hardware floating point card. Figure 4-5 shows the pin assignments.

4-10

System Processing Unit

Figure 4-5 Pin assignments, C connector

Device Cables

Even Signal Names

Odd

2 GND

GND

4 TEST

6 GND

GND

0w N oW =

20 GND

QPIPE

22 +5V

+5V

GND

QUACK

QSKiP

QREQ

QFETCH

BMCR

BLOCK

BMCGRANT

GND

Note Blank pins are not used.

DG-08297

A number of cables are available to connect the Model 20 or 30 system to a
serial, asynchronous terminal with either an EIA RS-232C interface or a 20-mA

current-loop interface. (Refer to the Installation Guide for your system.)

Theory of Operation

This section launches its discussion of operating theory with overviews of

system architecture, system timing, and the system processing unit. A brief list
of references follows. Then the three major areas of SPU operation — the CPU,
CPU support, and microl/O bus areas — are examined in depth. A summary of
internal signals concludes the section.

System Architecture

As shown in Figure 4-6, the Model 20 and 30 systems are organized around two

system busses, the memory bus and the microl/O bus. In addition, the SI0

TTI/TTO interface communicates with the system console over the console bus,
and a fourth bus carries control signals between the SPU and the hardware

floating point card.

System Processing Unit

4-11

C connector

Unmapped addresses
CPU
and timing/] Memory ———
control 4 trans- - Oota
circuits ceiver
Floating
- point
5 board
§ SIO (RTC, . (optional)
2 | PIT, TTI/ S]
£ TTO) and g [Memory: |
: related logic § bus ||
MAP -
Parity check @ Memory
virtual (104
console boards}
micro /0 | 1/0
interface - microl/O bus device(s)
section T e o O BYS (optional)
DG-08910

Figure 4-6 Model 20 and Model 30 system architecture

The memory bus transfers data and addresses between the SPU and system
memory. The data and addresses are multiplexed on the memory bus, which
consists of 16 bidirectional data/address lines (DATA <0-15>), 5 unidirectional
extended address lines (XMA <0-4 >), and 8 timing and control lines.

The 16-line microl/O bus transfers data and I/O instructions or status between
the SPU and I/O device controllers. These transfers occur on two bidirectional
serial lines (BI/ODATA1 and BI/ODATAZ2), and are synchronized by a differen-
tially-driven clock signal (BI/OCLOCK). Two interrupt lines — programmed I/O
(EXTINT) and data channel (EXT DCHR) — allow I/O interfaces to request
processor time. A system reset line (CLEAR), two device priority lines (INTPOUT)
and (DCHPOUT), a differentially driven master clock signal (BMCLOCK), and
three ground lines comprise the remainder of the I/O bus.

The hardware floating point unit communicates with the SPU and system
memory over the memory bus. This unit exchanges protocol and status signals
with the SPU over the floating point bus, which uses the C connector.

412

System Processing Unit

System Timing

The Model 20 and Model 30 participate in two kinds of data exchange: memory
and 1/0. Addresses and data are multiplexed on the CPU and memory busses.
Thus, data exchanges on these busses take place in two phases: an address
phase and a data phase. An address phase/data phase pair corresponds to one
CPU microcycle with a duration of 500 nanoseconds. A CPU microcycle is also
called a T period.

Located in the CPU section, the I/O decode circuitry detects instructions coded in
I/0 format (instruction formats starting 011 . . .). Once detected, these instruc-
tions are referred to the internal devices — the SIO chip, the MAP unit, the
parity check unit — or to the I/O interface section. The I/O interface produces I/O
timing signals for instructions and data intended for I/O devices connected to
the microl/O bus. The timing signals are based on a 125-nanosecond I/0 clock
cycle.

The “address” for an instruction directed to an element of the SPU itself (that is,
a device contained in the multifunction controller or in the CPU support section)
is an encoded version of the actual instruction. This address is issued by the CPU
and decoded by the I/O decode circuitry during the CPU address phase. Then
the data are transferred during the data phase.

Devices that require more than 500 nanoseconds to send or receive data can
extend the data phase of the cycle for as long as necessary. To do this, an
external device holds the memory bus control signal BUS READY low. The CPU
will not initiate another system cycle until BUS READY is asserted high.

System Processing Unit 4-13

CPU Section
FP <}
%3
protocol 2
drivers 5
Q
[3)
DATA <0-7>
High
bus o
transceiver
mE670CPU DATA <8-15>
and
associated " r Low A
circuits el : R bus A
l transceiver
8 mE676
8 TTI/TTO and
c . .
5 interface associated
° circuits
<
N 5
Memory — IN <0-15> c
allocation and g
protection 8
@
ADR <0-15>
i Virtual
Support
console !
Address/ Section
control
latch
Parity
check
T s Y B logic
ST D155 o
Slo N
switch 0,17, 8, 12°
register
- APL
register
External
SPU
status
logic
microl/O
interface

microl/ O Interface Section

DG-08911

Figure 4-7 SPU block diagram

The System Processing Unit

From a functional point of view, the SPU consists of three major sections:

e The CPU section

4-14

System Processing Unit

¢ The CPU support section

¢ The microl/O bus interface section
As Figure 4-8 shows, these sections are organized around four internal busses:

16-bit bidirectional CPU bus (MB<O0-15>)
16-bit local output bus (OUT<0-15>)
16-bit local input bus IN<0-15>)

16-bit address bus (ADR<0-15>)

The CPU section sends and receives addresses and data over the CPU bus to and
from the local busses and memory transceivers. In response to control and
timing signals from the CPU control section, the memory transceivers convey
addresses and data to and from the system memory.

¢ CPU bus. Is a multimaster bus; that is, any system component capable of
asserting the signals necessary to control the bus cycle specification can be a
bus master. In particular, the system state machine in the microl/O bus
interface section becomes the bus master during data channel operations, as
will be described.

* Local bus transceivers. Convey addresses and data to and from the CPU
support section (see Figure 4-7). The elements contained in this section
perform functions that support CPU operations. The MAP unit supports the
memory allocation and protection function of the CPU. The parity check
supports the CPU error reporting function. And the virtual console program
contains object code in read-only memory that runs system self-tests and
allows the user to access SPU and memory locations directly. For more
information about these elements and the functions they perform, see the
subsection entitled “CPU Support Elements."”

* I/0 interface section. Contains logic and signal processing circuitry that
convert data from the SPU format (16-bit parallel) to microl/O bus format
(2-line serial). This section also transfers the data to and from the I/0 bus
with the appropriate timing and handles data channel operations, taking
over the system bus and asserting bus cycle signals as needed.

e Address bus. Carries internal addresses from the address latch to the virtual
console and parity checking circuitry.

The SPU incorporates integrated circuits from the microNOVA microcomputer
chip set. Refer to the microNOVA Integrated Circuits Data Manual (DGC No.
014-000074) for more information about these.

The sections to come present material relative to Logic schematic DGC
001-003078. All signals presented in the figures or text of these sections are
listed in Table 4-3 and Table 4-4.

The CPU Section

The CPU section, shown in Figure 4-8, contains the following features.

An mE670 16-bit central processing unit
Two or three external microcode controller chips (XMCs)

Floating point protocol drivers for the Model 20 and Model 30 hardware
floating point card

System Processing Unit

4-15

Bus arbitration logic
Timing/control circuitry

An 1/O decoder

Two octal memory bus transceivers

Two local bus buffers

4-16 System Processing Unit

/0 CLEAR BREQ BMC GRANT
> ——»0
PREDIC CPU o DCH GRANT. (:)
0 BMCR

pcrHR _ | Bus
Q> arbitration

XMC RESET

READY|
BREQ
mE670
CPU
Crystal - Under lap *
oscillator - generator
CPU RESET
(} ouTo _BP
71 Timing/

control

() DCH GRANT |

DG-08912

Figure 4-8 The CPU section

DG-08912

System Processing Unit 4-17

READY

C Connector

FETCH

STATUS

L XMC RESET

XMC RESET

HIGH BUS

— INPUT PHASE
ENABL I

High
bus
xcvr

LOW BUS
ENABLE

INPUT PHASE

/{LOCAL BUS N
| PREDIC CPU @

VALPROT

Out
buffer

V

B connector
1/0
decoder

START PAR

UNOVAI/O @

4-18 System Processing Unit

The mE670 CPU The mE670 CPU is a single, large-scale integrated circuit
(IC) device that executes the kernel of the instruction set described earlier. It
supports up to 2 megabytes of memory while implementing indirect protection,
I/0 protection, the LEF instruction, and the emulator trap capability. The CPU
executes 16-bit register-to-register operations in a single 500-nanosecond
microcycle and external bus-to-register moves in two microcycles.

The simplified block diagram in Figure 4-9 shows the major, functional compo-
nents of the CPU: the CPU bus transceiver, four internal busses (A, B, C, and M),
an autonomous prefetch control unit, a program counter (PC) pipeline, an
instruction register (IR) pipeline, the register file, the arithmetic/logic unit (ALU)
and shifter, the MAP status register, and the microprogrammed control logic.

System Processing Unit

4-19

Bus
control

L
Interrupts{

XMmC
MAP {

Timing{

Micro-
programmed
control
logic

Autonomous
pre-fetch
control

MAP
status
register

CPU
control

CPU bus
transceiver

IR Pipeline

TO—~Amm

moOOOMmMO

mH4coOmxm

PC Pipeline

TO-AmM™M
mMOoOoOOmMQg
mo comxm

Register File

General

General
Register

Register

General
Register

General
Register

AC 3

AC 2

AC 1

ACO

ALU
and
shifter

/

DG-08301

Figure 4-9 Internal CPU block diagram

4-20

System Processing Unit

The CPU bus transceiver forms the interface between the CPU's internal busses
and the time-multiplexed external CPU bus. The transceiver drives addresses
onto the external CPU bus during the first half of a microcycle, that is, during
the CPU address phase. During the second half of the microcycle (the data
phase), data are read from or placed on the external CPU bus.

The four busses internal to the CPU enable rapid and flexible transfer of data
between the components that they connect. The A and B busses, for example,
allow the simultaneous transfer of two source operands from the register file to
the ALU and shifter.

The autonomous prefetch control unit causes two words from the instruction
stream, beyond the currently executing instruction, to be fetched and placed in
the IR pipeline; the corresponding instruction sequence is preserved in the PC
pipeline. In cases where instructions alter the program flow or make memory
references to the locations of prefetched instructions, the contents of the
pipelines are invalidated, or flushed.

The register file includes the four program-accessible accumulators and four
general registers accessible only to the microcode.

The ALU and shifter perform all arithmetic and logic operations under the
control of the microprogrammed control logic. The microprogram for the control
logic is contained partly in microcode that is resident on the CPU and partly on
external microcontroller chips (XMCs).

In addition to supervising the manipulation of data, the CPU-resident, micro-
programmed control logic produces CPU and bus control signals; responds to
interrupt requests; handles the microcode transfer protocol; and sends, receives,
and processes MAP control signals.

The Microcode Controller Chips Each external microcontroller chip (XMC)

contains a decode programmed logic array (PLA) that can decode up to 64 macro-
instructions. When the PLA decodes an instruction contained on the XMGC, it
transfers control to the XMC'’s microcode controlling logic. The XMC then sends
microcode for the macroinstruction to the CPU.

The CPU accepts 16-bit external microcode instructions from the microcontroller
chips (XMCs) via a dedicated, 8-bit time-multiplexed bus (CR< 0-7 >). In addition,
the CPU and XMCs use five control signals for microcode transfer protocol. The
protocol allows conditional branching that depends on the result of CPU micro-
code execution.

As mentioned earlier in this chapter, the Model 20 and 30 card contains three
XMCs. The Model 20 XMCs contain microcode for the floating point instruction
set, along with an instruction set that supplements the instruction kernel residing
on the mE670. The Model 30 XMCs contain the supplementary instructions, the
commerical instruction set, and the microcode that decodes floating point
instructions and provides command and status signals for the hardware floating
point card.

Each XMC monitors the system bus to maintain a duplicate of the CPU’s
macroinstruction pipeline. This allows the CPU and multiple XMCs to decode
macroinstructions simultaneously. As a result, only one microcycle is needed to
obtain the microcode for an instruction not contained on the mE670.

Bus Arbitration The bus arbitration logic allocates control of the memory

bus between the CPU and any data channel controller. It consists of a 4-bit

System Processing Unit 4-21

registered PAL device, clocked by PHASE. It arbitrates among the presence or
absence of the following conditions:

The current phase is an address phase.

The CPU is not issuing BLOCK to prevent interruption of its operation.

A device is not asserting READY to extend the length of a memory cycle.
A data channel request has been received.

An I/O Reset instruction has been decoded.

The microl/O bus interface state machine has signalled that it has finished
a data channel operation.

Based on the current combination of the conditions just described, the bus
arbitration logic issues one or more of the following signals.

DCH GRANT to the MAP section and the microl/O bus interface state
machine
BREQ to the CPU

The bus arbitration PAL is also used to translate bits OUT < 5-7 > into bits
UNADR< 5-7 > for an 1/O Reset instruction.

Timing/Control The timing/control circuitry consists of a state machine
(32 x 8 PROM and octal flip-flop) and a programmed array logic (PAL) timing
decoder. Associated with these are a 16-MHz crystal-controlled oscillator and an
underlap generator.

Figure 4-10 shows the signals produced by the timing state machine. Also shown
in Figure 4-9 are the 16-MHz reference signal and the timing input signals for the
CPU and XMCs.

4-22 System Processing Unit

System Timing PROM

16MHZCLOCK [LI+ /L It L oo oL oo e

CSO (PHASE) | [~]
Cs1 | 1 N
cs2 S e INSSS e BN m—
PR I L I
PH2
L | 1
-
— L
SCLK
] 1] l J 1 a| L I L
PERIOD -1 /.
62.5 ns'
125 ns

APH1

APH2

N
a
(=}
2
7]
Y

8
]

1 T L

DG-08913

Figure 4-10 Timing finite state machine signals

The timing signals and their meanings are as follows.

CS < 0-2 >: state machine outputs from which system timing signals are
derived. CSO is also named PHASE.

PH<1,2>: inputs to the underlap generator; they generate APH<1,2>, the
two-phase, nonoverlapping clock signals for the CPU and XMCs.

13: a timing signal for reading from and writing to the scratchpad memory in
the virtual console.

SCLK: the source of (SYSTEM CLOCK), which clocks the system state machine in
the microl/O bus interface and is the microl/O bus master clock.

PERIOD and PHASE: sources of state information for the system state machine
in the microl/O bus interface.

The state machine outputs are always present after powerup.

Figure 4-11 shows the inputs to and outputs from the PAL timing decoder; also
represented are the bus control signals ADREN and DATEN, which are issue
from the CPU. The timing signals from both sources, along with their meanings,
are as follows.

System Processing Unit 4-23

HIGH PROM OUT: the enable signal for reading the virtual console PROMs.
LOCAL BUS IN: the enable signal for the local input buffer.
INPUT PHASE: the direction control signal for the CPU bus transceivers.

BUS TERM: source of the enabling signals for the CPU bus transceivers, HIGH
BUS ENABL and LOW BUS ENABLE. This signal is asserted for all read operations
unless a fault occurs.

DATEN: the enable signal for data drivers; asserted for all read operations unless
a fault occurs. This signal remains asserted during extended memory operations
and prevents the assertion of ADREN. It is produced by the circuit element that
is currently the source of the data.

RAM ENABLE: source of the chip select signal RAM CS for the virtual console
scratchpad memory.

ADREN: the enable signal for address drivers. It is asserted during the address
phase by the current bus master, which will be the CPU or the microl/O bus
interface state machine.

Timing Decoder
Input from CSO (PHASE)

1 I 1
Input from CS1 1 |
Input from CS2 _—
RAM ENABLE — I al
DATEN N— 18 I
BUS TERM —_ I —
INPUT PHASE S 1 I
[OCALBUSIN — T T
HIGH PROM OUT — T 1 I
ADREN 1 T

DG-08914

Figure 4-11 Timing decoder signals

The signals already described, in logical combination with system control signals
such as MAPEN and WL, produce other timing control signals. These derived
signals and their meanings are as follows:

RAM WRITE: a write-enable signal for the virtual console scratchpad memory. It
is asserted at the same time as
T3, when the operation is a write.

4-24

System Processing Unit

MAP ADDRESS OUT: an enabling signal for high-order memory address bits
produced by the MAP section. It is asserted during the address phase of a
memory operation when the MAP is enabled.

ADDRESS LATCH: a signal whose falling edge latches the data on the local
output bus, along with several system control signals, into the address latch in
the CPU support section. It is held low during extended memory operations.

The following signals convey SPU state information to the decoder: from the
CPU — ADREN, MEMCYCLE, WRITE, MAPEN; from the local output bus — OUTO:
from the microl/O bus — CLEAR; from the MAP unit — FAULT; from the address
latch — ADR<0,5,6>; and from the bus arbitration logic — DCH GRANT.

The timing/control logic also produces the three system reset signals: CPU
RESET, XMC RESET, and SIO RESET.

I/O Decoder The I/O decoder consists of two PAL devices, two 1-of-8

decoders, and associated latches and gates. Its function is to decode 1/0 format
instructions during the address phase and route them to the internal devices they
were intended for. In the case of an I/O format instruction not intended for an
internal device, the decoder asserts UNOVA I/O, which activates the microl/O bus
interface state machine.

The I/O decoder also monitors the output of the MAP unit during the address
portion of memory cycles, asserting VALPROT whenever it detects a write-
protected page assigned to the last physical page (physical address bits all 1).

Memory Bus Transceivers The two octal memory bus transceivers,

diagrammed in Figure 4-12 and Figure 4-13 are bidirectional tri-state output
devices. As described earlier, the outputs of these transceivers are enabled by
HIGH BUS ENABL and LOW BUS ENABLE. The direction of transfer is determined
by the timing control signal INPUT PHASE: low into the CPU, high out to the bus.
LOW BUS ENABLE occurs during the address and data phases of a memory
reference operation; HIGH BUS ENABL always occurs during the data phase but
during the address phase only when no mapping is involved.

Memory Read/Write Operations Figure 4-12 illustrates the timing of
memory read/write operations. The bus master asserts ADREN during the address
phase. (The bus master is either the CPU, for normal memory operations, or the
microl/O bus interface state machine, for data channel operations.) It then places
the address on the memory bus. During the same phase the bus master also
asserts WH, WL, or both — corresponding to the memory operations write high
byte, write low byte, or write word. If no write signal is asserted, the operation is
a memory read.

System Processing Unit

4-25

mo2 —— 1 L [
[I
MB <0-15>(Address/Data) jL Address H Data)——

WL, WH,MEMCYC h} l
READY j—-l-——-——
MAPEN ————-' l

DG-08916

Figure 4-12 Memory bus control signals

Bus control signals derived from BUS TERM enable the memory bus transceivers
during the address phase. The address is clocked into its destination when the
low-to-high transition of PHASE occurs.

If a MAP fault occurs during a mapped memory operation, the MAP logic
asserts FAULT. This signal prevents the timing decoder PAL from asserting BUS
TERM and inhibits the WH and WL signals as well. FAULT is latched by the
low-to-high transition of PHASE and remains latched until PHASE goes low
again, provided the fault condition is removed.

During the data phase the bus transceivers are again enabled; when the rising
edge of PHASE occurs, the data is clocked into its destination. However, no data
is written into memory when the latched FAULT signal, FAULT CYCLE, is
present.

Extended Memory Cycles A device can request additional time to
complete a memory cycle by pulling the READY line low. In response, the CPU
extends the data phase as long as necessary. The CPU samples the state of READY
at the end of each data phase. If READY is low, the CPU extends the memory
operation for another complete 500-nanosecond cycle. If READY is high at the end
of this second cycle, the CPU begins a new memory operation; otherwise, it
extends the current operation for yet another cycle. If the CPU is the data source,
it makes the data available for the entire period through which the memory cycle
is extended; the memory does not clock the data in, however, until the end of the
memory cycle in which READY is not low. If the memory is the data source, it
places the data on the bus during the first data phase after the refresh operation
that necessitated the extended cycle.

Figure 4-13 illustrates the extension of a memory cycle. The diagram shows that
memory has pulled the READY line low because it received the address for a CPU
memory operation during a refresh operation — one that was pended during a
data channel operation. (Refer to Chapter 3 for a full description of these
operations.)

4-26 System Processing Unit

CPU
l<— Memory operation ——>|<-—— Refresh operation —>l<—-— memory operation —>|
A Y I IR e T S

BUS ADREN——) [.
BUS DATEN — | L I

BUS DATA I Address —I l Data 1 l Addressl l CPU Data l Memory data l

READY

DG-08304
Figure 4-13 Extended memory cycle

Data Channel Operations Data channel operations are managed by the
microl/O bus interface, described in a later section.

Local Bus Buffers The 16-bit local bus buffers are bidirectional tri-state
output devices. The out buffer is always enabled. The in buffer is controlled by
LOCAL BUS IN.

CPU Support Elements

The CPU support elements, shown earlier in Figure 4-7, include the following.

The SIO chip and TTIU/TTO interface

The address latch

The memory allocation and protection unit (MAP)
The parity checking unit

The virtual console

The three registers: SIO, APL, and CPU status

SIO Chip The SIO chip contains five devices

a powerfail monitor

a programmable interval timer (device 43)

a real-time clock (device 14)

an asynchronous interface (TTI — device 10, TTO — device 11)
the CPU status register

The powerfail monitor in the SIO monitors the power status signal PF. The power
supply asserts this signal when AC power is interrupted. The monitor generates
a power-change interrupt under one of two circumstances:

when PF goes from negative to positive, indicating that AC power has
failed, or

System Processing Unit

4-27

when PF goes from positive to negative and DC power has remained within
specifications.

The second condition indicates that AC power has returned after a momentary
interruption. The SIO IC actually detects this condition by noticing that no
system reset occurred.

Under this condition, the SIO chip drives SIO INT low to cause a power-change
interrupt and sets bit O in the SPU status register to 1. The CPU responds to this
interrupt with a DIB CPU, interrupt acknowledge, which causes the SIO IC to
return device code O.

The power-change interrupt is cleared by a CPU Acknowledge (DOAP CPU)
instruction, with bit O of the specified accumulator set to 1.

The power monitor generates a power-up, non-maskable interrupt (NMI) when
PF changes from positive to negative and DC power has just risen — that is,
when the SIO has received a SIO RESET signal. In this case, the SIO chip sets
bit 4 in the CPU status register to 1 and asserts NMI. Bit 4 is cleared as just
described by a DOAP CPU, with bit 4 of the specified accumulator set to O.

The programmable interval timer generates an interrupt when its counter
overflows. A DOA PIT instruction loads the counter with the two's complement
of the desired count. When the counter overflows, the SIO chip asserts SIO INT,
but the counter is not stopped. When the CPU acknowledges the interrupt, the
SIO chip returns device code 43.

The user program can read interrupt latency by interrogating the present
counter value with a DIA PIT instruction. A Clear command (NIOC PIT) stops
the counter, and a Start command (NIOS PIT) starts it. The PIT counter/register
is double-buffered, so no counts are lost when the register is read. The PIT
counter rate is determined by setting the SIO switches as described earlier in
this chapter.

The real-time clock generates interrupts at any one of four program selectable
frequencies. When the CPU acknowledges an interrupt caused by the RTC, the
SIO chip returns device code 14. The RTC rate is set according to bits 14 and 15
of the specified accumulator with a DOA. RTC instruction.

After power-up or an I/O Reset instruction, the real-time clock frequency is
automatically set to the AC line frequency.

The asynchronous interface is a universal asynchronous receiver/transmitter
(UART). It consists of a terminal input (TTI) with device code 10 (interrupt
priority mask bit 14) and a terminal output with device code 11 (mask bit 15).
The buffers, registers, and state machine logic for the interface are contained on
the SIO chip. The driver and receiver for the EIA RS-232 or 20-mA current loop
lines are separate IC devices.

The interface operates at one of 16 baud rates, depending on the setting of the
SIO switches as described in “SPU Card Tailoring” in Installion Guide for Model
20 and Model 30 Systems. The following baud rates have two stop bits: 50, 75,
110, and 134.5. The remaining rates — 150, 200, 300, 600, 1200, 1800, 2000,
2400, 4800, 9600, 19200, and 38400 — have one stop bit.

The terminal output section is equipped with a Clear To Send (CTS) input, which
inhibits the shifting out of the serial data when the device is not asserting CTS.
The CTS input is only monitored at the start of a TTO cycle — a cycle does not
abort if CTS is changed while it is in progress.

4-28

System Processing Unit

The terminal output section is also equipped with a Data Terminal Ready (DTR)
signal, which it continually asserts as long as the system is powered up.

The terminal input section contains logic that detects the depression of the
console Break Key. The logic contained on the SIO chip interprets two consecu-
tive framing errors as a depression of this key. Then, provided the Break Key
enabling switch has been set (see “"SPU Card Tailoring” in Installion Guide for
Model 20 and Model 30 Systems, the logic causes the Break key bit in the SPU
status register to be set and the NMI signal to be asserted. The non-maskable
interrupt causes the processor to enter the virtual console mode. For informa-
tion on the Virtual Console, refer to Chapter 3.

NOTE The Model 20 and Model 30 system processor unit asynchronous
communications interface receives and transmits eight-bit data characters
without parity. If the terminal device connected to this interface port operates
with a data character length of seven bits, it should be configured to operate
with “"mark parity”. If the terminal device connected to this interface port
operates with a data character length of eight bits, it should be configured to
operate with "no parity”.

When receiving data characters from a seven-bit terminal device connected to
this port, software should maskout the parity bit position of the character after
the character has been loaded into an accumulator. The parity bit position of the
character is the most significant bit of the character and will be contained in bit
position 8 of the specified accumulator.

The 12-bit CPU status register, is contained on the SIO chip. A Read CPU Status
instruction DIS ac,CPU places the contents of this register into the specified
accumulator. Six status bits report the occurrences of nonmaskable interrupts:

0, 3, 4, 5, and 10. These bits can be cleared (set to 0) with a DOAPac,CPU
instruction, with the corresponding bit in the specified accumulator set to 1. The
remaining bits report the status information listed in %tablenum(1). These bits
cannot be cleared, although the Interrupt On bit becomes O when CPU inter-
rupts are disabled.

NOTE The virtual console clears those bits that cause it to be entered (3, 4, 5,
and 10). They are not ordinarily manipulated by the user.

CAUTION Never set bit 15 to 1. The least significant bit in the accumulator
specified by a CPU Acknowledge (DOAP CPU) instruction must be O.

Table 4-2 CPU status register contents

Bit Name Function

0 Powerfail Indicates the state of the power supply powerfail line.

1 Interrupt On A 1 signifies that CPU interrupts are on (enabled), and a O
that CPU interrupts are off (disabled).

2 S10 Always set to 1, this bit is used for diagnostics.

3 Break Key A 1 indicates that the system console Break Key has been
depressed.

4 Power Up A 1 indicates that the system has just been powered up.

5 Halt A 1 signifies that a Halt instruction has been decoded and

the Halt Dispatch bit in the SPU register is 1.

System Processing Unit 4-29

Table 4-2 CPU status register contents (Continued)

Bit Name Function

6 Halt Dispatch Indicates the state of the Halt Dispatch switch in the SIO
switch register. A 1 indicates that the Halt Dispatch switch is
set to 1 (on). In this case, control passes to the virtual
console when a Halt instruction has been decoded. A O
means that the Halt Dispatch switch is set to O (off}.
Accordingly, when a Halt instruction is decoded, the CPU will
simply halt; bit 5 in the SPU status register will not be set.

7 Interrupt Request Indicates the state of the SIO interrupt request pin (S10 INT).
A 1 means that a device is requesting an interrupt. (Can be
used to test for interrupt requests when interrupts are

disabled.)
8-9 --- Reserved for future use. Set to O.
10 Run A 1 signifies that a user program instruction has just been
executed in the virtual console one-step mode.
11-14 - Reserved for future use. All are set to O.
15 Test Always set to O, this bit is used for diagnostics.

Address Latch The address latch preserves the data on the local output
bus, OUT < 0-15>, from the time ADDRESS LATCH is asserted by the timing/
control logic (during the address phase) until the next address phase occurs.
The latched data word is the address ADR<0-15>. Part or all of this address is
supplied to the virtual console, to the timing/control and I/O decode circuits of the
CPU section, and to the parity section.

The signal ADDRESS LATCH also latches the following system status and control
signals for the same time period: MAPEN, MEMCYCLE, ADREN, WRITE, FAULT,
EXT INTR, SIO INT, PAR DONE, and UNADR?7. In addition, the CPU I/O decoder
uses ADDRESS LATCH to latch its decoded I/O instructions, in this way preserving
them throughout the data phase.

Parity Checking The parity checking section contains Busy/Done logic and
three registers:

a parity control register,
a parity status register, and
a parity address register.

The parity control register is loaded with bits OUT < 14,15 > when it receives
the control strobe DOA PAR from the I/0O decoder. DIC CPU from the 1/O decoder
clears this register. Its contents determine the mode of operation of the parity
calculation and comparison logic. (See the 16-bit Real-Time ECLIPSE Assembly
Language Programming.)

The parity calculation logic checks the parity of the two bytes, OUT <0-7> and
<0UT8-15>, that it receives from the local output buffer. During a memory
cycle when INPUT PHASE and READY are high, the results of the calculation are
sent out on the memory bus lines WH/PARH and WL/PARL. During a memory
cycle when INPUT PHASE is low and READY high, the results of the parity
calculation are compared with the parity bits PARH and PARL received from
memory.

4-30 System Processing Unit

A parity error determined by the above comparison will store the results of the
check (high error or low error) and set the parity Done flag to 1, assuming that
parity checking has been enabled. The logical address currently on the address
bus (ADR< 1-15>) will be latched into the parity address register. The state of
the Done flag will cause a CPU interrupt.

When the parity address latch receives a DIA PAR from the I/O decoder, it places
the address it contains on the local input bus. When the parity status register
receives a DIB PAR from the same source, it places its contents on the local bus
(bits IN<O,1>). When the Busy/Done logic receives a DIS PAR, it places the
state of the Done flag on the local input bus (bit INO).

Virtual Console The virtual console consists of a 2-kilobyte array of random
access (read/write) memory, along with a programmed read-only memory
containing a 512-word (16 bits per word) program. This program consists of a
self-check routine and a set of commands that give users access to CPU registers
and memory for debugging machine language programs and allow users to
perform program loads. The routines are described in Chapter 3 of this manual.

The contents of the read-only memory location, addressed by ADR< 1-15> on
the address bus, are placed on the local input bus when the timing/control PAL
chip asserts PROM OUT.

The virtual console read/write memory is enabled when it receives RAM CS
from the timing/control PAL chip. The contents of the location addressed by
ADR< 1-15> are either read or written, with the data transfer occurring via
the local input and output busses. The control signal RAM WRITE controls the
direction of transfer.

Memory Allocation and Protection The memory allocation and
protection (MAP) unit, shown in Figure 4-14, consists of the following:
the MAP memory, consisting of a 256 x 12 RAM array,
the 1-word by 10-bit page 31 register,
the 1-word by 16-bit MAP status register,
the 1-word by 13-bit page check register,
page 31 control logic,
fault logic,

a device code decoder.

System Processing Unit

4-31

MAP ADR OUT

DCH GRANT MAPEN

DOA MAP

DOAC MAP Part of
MAP
status

register

Figure 4-14 The MAP unit

DATA<0-7>

PWPROT,MAP<1-5> XMA<0-5>

DIC MAP

Page
check
register

The MAP unit receives addresses and data (to be placed in the MAP memory
and registers) through the local bus. It produces the physical page numbers
required to map the current user’s logical address space into physical address

O O
PAGE 31 OUTPUT MAP
address
out
buffer >B
Selected connector
MAP page
MAP RAM v
memory =
\ XMA<Z0-45
Word MAP<1-5> XMA<0-5>
address
VALPROT on page
MAPEN
DCH GRANT
>
MEMCYCLE | _Page 31
ADREN control [
—_— .
logic
*— | —_—
MAP FAULT
— fault
PAGE 31 OUTPUT v WPROT logic
Control< ENABLED
DOB MAP _ | WRITE
_————
CPU JL MAPEN
Page 31
register DOC MAP

DG-08305

4-32

System Processing Unit

space. These bits are XMA <0-4 > and DATA< 1-5>. Local output bus bits
OUT<0,6,7 > are passed through unchanged to become DATA<0,6,7 >.

The Load Map Operation Four user maps and one data channel map are

stored in the MAP memory in response to a Load Map instruction preceded by a
Load MAP Status (DOA MAP) or an Initiate Page Check (DOC MAP) instruction.

DOC MAP or DOA MAP causes bits OUT < 6-8> to be loaded into the MAP status
register. (The DOC MAP loads these bits into the page check register as well.) The
MAP status register produces three map select signals, MAP SELECT<0-2>.
These bits address the selected user area (A, B, C, D, or data channel) within the
MAP memory to be loaded by the next Load Map instruction. Also, the write
protection enable bit is loaded by DOA MAP (bit 11).

When the Load Mabp instruction is executed, the MAP page assignments are made
as follows: bits OUT < 1-56> on the local bus represent the logical page number;
they address the user page number in the selected user area of the MAP memory.
Bits OUT < 6-15> represent the physical page number to be assigned to the
given logical page number; these bits are stored in the addressed location in MAP
memory when LMP is asserted. Additionally, two more bits are stored in that
addressed location: the write protect bit (received via OUTO) and the validity
protect bit (received via the device code decoder).

The device code decoder detects that bit O and bits 6-15 are all set to one,
indicating a validity-protected page, and also supplies a recoded device code to
the I/O decode and control logic.

Mapped Mode Operation The mapped mode is entered with a Load Map
Status instruction (DOA MAP) that sets a user or data channel enable bit (14 or 15)
in the MAP status register to one. If a user map is to be enabled, it is selected by
the same instruction (setting bits O and 13 in the MAP status register). Setting the
enable user map bit inhibits the interrupt system, and the MAP waits for either
an indirect reference or a return type instruction. Either event releases the
interrupt system and allows the MAP to begin translating addresses. Address
translation begins (1) after the first level of the next indirect reference; or (2) after
the first Pop Block, Pop Jump, Return, or Restore with no stack fault.

NOTE The MAP status register physically located in the MAP unit is only a
copy of part of the MAP status register that is contained in the mE670 CPU. In
particular, bits 1-5, 9-12, 14, and 15 of the MAP status word are stored in the
mE670 MAP status register.

The MAP status register asserts signals MAP SELECT and WPROT ENABLED as
just described. When an address appears on the local bus, the MAP memory
sends the physical memory page number corresponding to the logical page
number (bits 1-5 of the address) for the selected user to the MAP buffer. The
MAP buffer sends this page number on the memory bus during the address
phase, if PAGE 31 OUTPUT is not asserted (low).

Page 31 Register The page 31 register is loaded by a Map Page 31
instruction (DOB MAP). Its 10-bit contents contain the physical page number to
which logical page 31 is to be mapped in the unmapped mode. The page 31
control logic will assert PAGE 31 OUTPUT to enable the output of the page 31
register when bits OUT < 1-5> are all one, MAPEN is low, and the operation is a
nondata channel memory cycle during an address phase.

Page Check An Initiate Page Check instruction (DOC MAP) loads the page
check register with the physical translation of the logical page number of the

System Processing Unit 4-33

page to be checked. The instruction also loads the user map code of the user map
to be checked. The page number is received via the MAP memory as MAP< 1-5>
and XMA <0-4>. A Page Check instruction (DIC MAP) causes the page check
register to send this physical page number and the user map code to the CPU
over the local bus.

Map Faults The MAP fault logic asserts the signal FAULT if any of the
following conditions occur during a processor-initiated memory transition: (1) a
memory reference to a validity-protected page, or (2) a write attempt to a
write-protected page when write protection is enabled.

microl/O Bus Interface

The microl/O bus interface performs the serial-parallel and parallel-serial
conversions, timing, and buffering necessary to pass data and instructions from
the SPU local bus to I/0 devices connected to the Model 20 and Model 30 system
with the microl/O bus. The interface section consists of two subsections: the
microl/O bus interface state machines and the microl/O bus interface.

State Machine Section The state machines coordinate the timing of
system operations, which take 4 cycles of the 8-MHz SYSTEM CLOCK signal, with
1/O bus operations, which take 3 to 60 cycles of the SYSTEM CLOCK signal. The
state machines also produce memory bus control signals during data channel
operations. Figure 4-15 diagrams the state machines of the microl/O bus interface.

4-34

System Processing Unit

SYSTEM CLOCK

SKIP TEST

B

Timing
control

SYSTEM CLOCK

SYSTEM CLOCK

SM ADREN

SM WRITE

WH

Register

: SKIP TEST

o

SYSTEM CLOCK

Output .
Register

PROM

SYSTEM CLOCK

Al

o

o L. UNADR 7
1@ UNOVAT/O

G- BITO ~

@ DCH GRANT

Counter

COUNT<4,8,16>

State
machine
PROM

Sources: 1 Address latch
2 1/0 decoder

3 1/0 bus interface

4 Bus arbitration

5 Timing/control

i

/;/—>

@ RESET

Multiplexor

SYSTEM CLOCK

State
machine
register

signals

Figure 4-15 microl/O bus interface state machine

The state machines consist of two registered 512 x 8 PROMs and an unregis-
tered 512 x 8 PROM with an external register. A synchronous, 4-bit counter and
a 1-of-8 multiplexor are associated with these PROMS. The state machines are
driven by the SYSTEM CLOCK signal, shown earlier in Figure 4-10. Their states

are determined by the conditions of seven signals:

* Two system timing signals, PHASE and PERIOD (see Figure 4-11)
* Two I/O control signals — UNOVA 1/0 from the I/0 decode logic, and

‘ SKIP TEST :
i

1/O bus
interface

DG-08916

System Processing Unit

4-35

L.UNADR?7 derived from OUT7 by the address latch — that signal the
performance of an I/O operation and indicate the direction of I/O transfer

¢ BITO, from the microl/O bus interface serial to parallel converter, which
specifies a memory operation if O or a virtual console RAM memory
operation when 1

* DCH GRANT, from the bus arbitration PAL circuit

* One system reset signal

The outputs of the state machines consist of four data channel control signals;
one control signal CLEAR BREQ for the bus arbitration PAL circuit; three
microl/O bus interface control signals; and seven microl/O bus interface signals.

The data channel control signals are SM ADREN, SM DATEN, SM READY, and
SM WRITE. They perform the functions of the corresponding, CPU-issued system
control signals when the system state machine takes control of the system bus
for data channel operations.

The three microl/O bus interface control signals are as follows.

LATCH UNOVA: when high, causes data to be latched into the holding latch of
the bus interface.

UNOVA INPUT: enables the output of the holding latch.

CLEAR INPUT: when low, clears the serial-to-parallel converter in the bus
interface.

The seven microl/O bus interface signals include the following.

1/0 DATA1 and I/O DATAZ2: the serial data transmitted on the I/O bus.

INPUT: indicates the direction of data transfer (high indicates in to the CPU, low
indicates out).

1/0 CLOCK: which synchronizes data transmission on the I/0 DATA lines.

SHIFT < 1,2 >: these signals control the direction of the shifting done by the
parallel-to-serial converter in the bus interface.

PREAMBLE: when low, enables the sending of short data transfers (Request
Enable, Data Channel Address Request, Data, and I/O Command).

Figure 4-16 shows the loops of the microl/O bus state machines in summary
form.

4-36 System Processing Unit

#NOVA I/0

uNOVAT/0
{2NDTPER + 3RO T PER |

Idle states:
Send CLEAR BREQ,
enable loading of
par-ser converter.

uNOVA 1/0

uNOVAI/O
/\DCH GRANT

uNOVAI/O
Nth T PER

Initializing
states: send RQEN,
enable loading of
par-ser converter

P10 delay
states: assert

READY.

PIO command
states: assert
READY while sending
command then CLEAR
INPUT (3T per).

PCH GRANT

#NOVA 170

DCH address

PIO input P10 output
states: send DCHAR, states: assert states: assert
wait 5 T periods, READY while READY while
assert LATCH uNOVA receiving data sending data

(6 T per). (3 T per).

DCHI input states:
Assert CLEAR INPUT,
clear ser-par converter,
wait 6 T periods for data to

come in, assert SM ADREN and
SM WRITE, then LATCH uNOVA
and uNOVA INPUT, wait
4 T per.

Input done Output done

DCHO states:
Assert SM ADREN and
uNOVA INPUT, wait 2
T periods, send data,
wait 2 T per.

PIO completion
states: while asserting
READY, wait 2 T periods then
send RQEN. Assert uNOVA
INPUT and, if L.LADR7 = 1, SM,
DATEN and CLEAR BREQ
(3 T per).

Output done

Input done
DCH completion
States: assert

CLEAR BREQ, wait
1 T period.

DG-08917
Figure 4-16 Summarized operation of the microl/O state machine

System Processing Unit 4-37

Bus Interface The bus interface, shown in Figure 4-17, consists of an
mN629 CPU I/O transceiver, a parallel-to-serial converter, a serial-to-parallel
converter, and a holding latch.

SYSTEM CLOCK

microl/O l
"} bus 1/0 CiOCK" LATCH uNOV uNOVA INPUT*

INPUT*

mN629 ? >
: m cPU ORCEIN 4‘}‘ Serial-to-parallel 5
1/0 __.) converter -
BM CLOCK, bus
B 1/0 CLOCK transceiver

f———— Holding

latch

BDATA<C1,2>

Code
bit
multiplexor

converter

Serial-to-parallel Jj

"y SHIFTO SHIFT 1] " t
o SYSTEM CLOCK - '
, EM R

e\ CLEAR INPUT*
N Parallel-
V to-serial

converter
Instruction :

translator T
ouT<3-7> RESET

*From the microl/O state machine.

DG-08309

Figure 4-17 Bus interface

Data to be transmitted from the local output bus are input to the bus interface
parallel-to-serial converter via the microl/O bus instruction translater. SYSTEM
CLOCK clocks this parallel data out in serial form under the control of signals
SHIFT<0,1> from the microl/O bus state machines. The instruction translator
performs the instruction conversion needed to make the microl/O bus operate
compatibly with the ECLIPSE instruction set. (DIC CPU is translated to DOA
CPU))

Short-form transmissions to be sent on the I/O bus are received from the
microl/O bus state machine. These transmissions are multiplexed with the
output of the parallel-to-serial converter to form the input to the mN629
transceiver.

The mN629 transceiver receives data from the I/O bus and sends it, in serial
form, to the serial-to-parallel converter. There the data is clocked in by the I/O
synchronizing signal from the microl/O bus state machine, /0 CLOCK. The
output of the converter is latched into the holding latch when LATCH UNOVA is

System Processing Unit

asserted (low). The timing signal UNOVA INPUT places the output of the holding
latch on the local bus.

Signals

Table 4-3 lists all the external signals sourced or sunk by the Model 20 and
Model 30. Table 4-4 concludes the chapter by listing all the internal signals of
the Model 20 and Model 30 card that are mentioned in the text or figures of

this book.

Table 4-3 External signals

Name Pin{(s) Source Destination Description
Memory Bus
Signals
DATAO B50 SPU Memory FPU, Memory Address phase: user mem.
FPU SPU, FPU SPU Data phase: data word msb
DATA<1-15> B23, 24, SPU Memory FPU, Memory Address phase: low-order
27, 28, FPU SPU, FPU SPU address bits. Data phase:
31-34, low-order data bits
37,38
41,42
45,46 49
XMA<0-4> B25, 40, SPU Memory Address phase: high-order
44,47 51 address bits (XMAO is msb)
SYSCLOCK B52 SPU FPU, memory System clock
BUS READY B18 Memory SPU Data phase: indicates
memory is ready to finish
cycle
BUS MEMCYC B26 SPU FPU, memory Address phase: indicates
memory ref. (otherwise
cycle is 1/0)
BUS ADREN B48 SPU SPU FPU, memory Indicates valid address
WH/PARH, B30 SPU Memory Memory SPU Address phase: high byte
write
Data phase: high byte data
odd parity
WL/PARL B29 -~ - Address phase: low byte
write
Data phase: low byte data
odd parity
microl/O bus
Signals
BMCLOCK, B1, 2 1/0 bus 1/0 bus Differential system clock for
BMCLOCK interface 1/0 devices
BI/ODATA1, B4,5 1/0 bus 1/0 bus I/O bus Differential bidirectional 1/O
BI/ODATA1 interface 1/0 interface data line used for serial
bus transfer of high byte of data
word
BI/ODATA2, B12,13 1/0 bus 1/0 bus 1/0 bus Differential bidirectional 1/0
BI/ODATA2 interface 1/0 interface data line used for serial
bus transfer of low byte of data

word

System Processing Unit

4-39

Table 4-3 External signals (Continued)

Name Pin(s) Source Destination Description
BI/OCLOCK, B15, 16 1/0 bus 1/0 bus I/O bus Differential bidirectional
BI/OCLOCK interface YO interface clock; synchronizes data

bus transfers
CLEAR B6 SPU RESET I/O bus, FPU System reset caused by
power up
EXTINT B8 1/0 device SPU Interrupt request
INTPOUT B19 SPU /O device Interrupt priority line
DCHPOUT B21 SPU 1/0 device Data channel priority line
EXTDCHR B9 1/O device SPU Data channel request
Power Supply
Signals
POWEROK B22 Power supply microl/O Indicates that DC power is
interface within specifications
PWRFAIL,PF B7,B20 Power supply SIO Indicates that AC power is
not within specs
RTC B35 Power supply SIO Line frequency
DC Power
Ground B3, 11, -— SPU, FPU,
14, 36, Memory,
53, 54, System
C1,A7 console
+5V B57, 59, Power supply SPU, FPU,
60, A9 Memory,
System
console
-5V B58, A3 Power Supply SPU, Memory,
System
console
+12Vv B55, 56, Power supply SPU, Memory,
A23 System
console
Floating Point
Signals
QUACK C25 SPU FPU Acknowledges microcode
QsKiP c27 FPU SPU Used to control microcode
flow for FPU
QREQ C31 SPU FPU Requests microcode
QPIPE c19 SPU FPU Controls instruction flow
QFETCH C33 SPU FPU Controls instruction flow
Other
C-connector
Signals
TEST Cc4 - SPU Causes the SCP self-test to
loop
BLOCK C45 SPU BMC Indicates that the CPU is

executing an indivisible
process

System Processing Unit

Table 4-3 External signals (Continued)

Name Pin(s) Source Destination Description
System Console
Signals
TTIN Al System SPU Serial data input
console
TTOUT A21 SPU System Serial data output
console
DTR A10 SPU System Opens and holds open the
console communication line
CTS A2 System SPU Enables data transmission
console
Table 4-4 Internal signals
Name Pin(s) Description
CPU Bus
MB<O-15> CPU17-CPU32, CPU address/data, bidirectional
SI017-S1032,
XMC12-XMC29
ADREN*® CPU16, SI016, Address enable; carried on the system memory
XMC30 bus
DATEN CPU13, SI012 Data enable
WH, WL CPU11, 12, Wirite operation to high or low order bytes
SI010, 11, requested; carried on the system memory bus
XMC31 (WL),
B29, 30
READY* * CPU4, SIO13, Bus transaction in progress will terminate this
XMC9 cycle; also affects bus arbitration; carried on
system memory bus
BLOCK CPU10, SI047, Indivisible operation in progress; also affects bus
C45 arbitration
MEMCYCLE* ** CPU15, SIO15, Memory cycle is asserted (otherwise I/0 cyc.);
XMC32 carried on system memory bus
Bus Arbitration
Signals****
BREQ CPU47 Requests CPU relinquish bus
DCH GRANT --- Grants a data channel to an 1/O device
CLEAR BREQ -— Indicates microl/O bus data channel operation
completed
Timing Signals (see
Figure 00)
CS<0-2> - Timing state machine output (CSO is also called
PHASE)
PH<1,2> - 2-phase system clock
APH<1,2> CPUA43, 44, 2-phase non-overlapping clock for CPU, SIO, and
SI043, 44, XMCs
XMC33, 34
T3 -—- Virtual console scratchpad memory write enable

and /O decoder enable

System Processing Unit

Table 4-4 Internal signals (Continued)

Name Pin(s) Description

SCLK, SYSTEM - microl/O bus master clock and clock for I/O

CLOCK interface state machines

PERIOD -— System state information for 1/O interface

Timing/Control

Signals (See Figure

00)

BUS TERM --- CPU bus transceiver enable timing

INPUT PHASE -—- CPU bus transceiver direction

LOCAL BUS IN -- Local input bus buffer enable

HIGH PROM OUT -- Virtual console PROM output enable

RAM ENABLE - Virtual console scratchpad memory chip select

HIGH BUS ENABL - Enables high bus transceiver during data phase of
all transfers and address phase of unmapped
memory references, except if a MAP fault occurs

LOW BUS ENABLE --- Enables low bus transceiver during all data
transfers, except during MAP faults

RAM WRITE - Virtual console scratchpad memory write enable

MAP ADDRESS -~ Enables MAP address out buffer during address

ouT phase of mapped memory operation

ADDRESS LATCH --- Latches logical address and /0O encoding
information

Reset Signals

CPU RESET CPU3 Causes CPU to enter and remain in a halted state
until it receives an NMI

SIO RESET SI03 Causes SIO chip to reset all internal registers and
counters, to load the settings of SIO switches
into its internal devices, to set the Power Up bit in
the CPU status register, then to issue an NMI

XMC RESET XMC7 Puts XMCs in a known idle state

1/O Decode Signals

DOAP CPU --- Write to run light register

DOA MAP - Write to MAP status register

LMP - Write to MAP RAMs

DOB MAP - Write to MAP page 31 register

DOC MAP - Write to initial page check register

DOA PAR - Write to parity enable register

DIC CPU Reset CPU

DIA APL - Read Auto Program Load register

DIB PAR - Read Memory Fault Code

DIB CPU - Read device code of interrupting device (Interrupt
Acknowledge}

DIS PAR - Read parity status

DIS CPU - Read CPU status register

DIA PAR --- Read memory fault address

DIC MAP - Read page check register

DIS

Read microl/O bus device status

442

System Processing Unit

Table 4-4 Internal signals (Continued)

Name Pin(s) Description

PRE DIC CPU - A reset has been decoded

UNOVA I/0 - An instruction for a microl/O bus device has been
decoded

MAP Signals

MAPEN CPU8 Enable MAP logic

PVROT CPU48 Validity-protection violation

PWROT CPU2 Write-protection violation

FAULT MAP fault

XMA<O-4> --- Physical page number

MAP< 1-6> Physical page number

MAP

SELECT<O0-2> --- Selected user or data channel map

PAGE 31 OUTPUT - Indicates memory reference to highest page with
the MAP disabled

Parity Signals

START PAR - From the 1/O decoder, clears the parity done flag

PAR DONE - Parity done flag, asserted only if parity checking
enabled; causes a CPU interrupt

microl/O bus

Interface Signals

LATCH UNOVA - Data latch for microl/O bus interface holding latch

UNOVA INPUT - Output enable for interface holding latch

CLEAR INPUT - Clears interface serial-to-parallel converter

INPUT - Controls direction of microl/O bus interface
transfer: high in, low out

SHIFT<1,2> - Parallel-to-serial converter shift direction control

PREAMBLE - Short data transfer enable; enables sending of
Request Enable, Data Channel Address Request,
(the next word is) Data, and (the next word is a)
Command

SKIP TEST - State condition signal from interface multiplexor,
sent via the state machine register to all the
interface PROMs

LOAD COUNT --- Resets the interface counter

Miscellaneous

Signals

UNADR<5-7> - microl/O 1/O address translated by the bus
arbitration PAL from OUT<5-7>

L.UNADR7 - Latched UNADR7; indicates direction of I/O
transfer

NMi CPU 45 Nonmaskable interrupt

INT CPU 46 I/O control program interrupt

CR <0-7> XMC1-XMC3, Microinstruction from XMC to CPU

XMC39-XMC45,
CPU42-CPU34

* See also BUS ADREN in Table ??.

** See also BUS READY in Table ??.
*** See also BUS MEMCYC in Table ??.
= » »» Additional bus arbitration signals appear under *‘microl/O bus signals’’ in this table, and in Table ?? under
‘‘Other C-connector Signals.’’

Memory Cards

This chapter describes the Model 20 and Model 30 memory card, which
provides 256 or 512 Kbytes of dynamic MOS random-access memory (RAM) for
the Model 20 and Model 30 processor. All memory cards use 64K by 1-bit RAM
integrated circuits (ICs). Two parity bits are associated with each 16-bit data
word in memory — one parity bit with the low-order byte and another with the
high-order byte. Thus, a memory location is 18 bits wide, requiring 18 RAM ICs.
The 256-Kbyte memory card contains two banks of RAM ICs (36 ICs); the 512
Kbyte memory card contains four banks of RAM ICs (72 ICs).

5-2

Memory Cards

Figure 5-1

Random-access memory card

UL LT

PH-0518

Memory Cards

A maximum of four 512-Kbyte memory cards provides the system with a
2-Mbyte physical address space. All memory cards present in the Model 20 and
Model 30 system must be installed in the cage of the CPU logic module (CLM).
The RAM cards are positioned in the system’s memory space with jumpers.
Each card has an independent controller for generating its timing and refresh
operations.

Figure 5-1 shows a random-access card and Table 5-1 summarizes its character-
istics.

Table 5-1 Memory card characteristics

Installation and Jumpering

Table 5-2 gives the power requirements of each memory card.

Table 5-2 Power requirements of each RAM card

Memory Card Size Supply Voltage Current draw Power dissipation
{Volts DC) {Amps) (Watts)

256-kilobyte +5 2.1 10.5

512-kilobyte +5 2.4 12.0

The memory card contains four card-select jumpers that allow you to position
the memories in various blocks of memory space. Normally, RAM is added to a
system from the bottom (address 0) of memory up. Refer to Installing a Model
20 and Model 30 System for the jumper locations and configurations for the
memory.

Interfacing

Memory cards communicate with the CPU and data channel controllers through
their B edge connector. This connector also provides all power to the memory.
(Model 20 and Model 30 memories do not use the A connector.) Figure 5-2
shows the RAM card connector positions. Figure 5-3 shows the B connector pin
assignments.

Memory Cards

NOTE: A/l odd numbered pins
of the B connectors are
on the component side

are on the opposite
side of the card.

RAM
printed circuit
card

{component side)

Pin 59
Connector B

Connector A
(not used)

Figure 5-2 Memory card connection positions

of the card; all even
numbered pins of the

DG-08314

Memory Cards

5-5

Odd

59

57

55

53

Even Signal Names

60 +5V +5v
58 —5V +5v
56 +12v +12v
54 GND GND
52| SYSCLOCK XMAT
50 DATAO DATA8
48| BUSADREN XMAO
46 DATA1 DATA9
44 XMA2
42 DATAZ DATA10
40 XMA3
38 DATA3 DATAT1
36 GND
34 DATA4 DATA12
32 DATAS DATAT3
30| WH/LPARH WL/PARL
28 DATA6 DATAT4
26| BUSMCYC XMA4
24 DATA7 DATATS
22
20
18
16
14 GND
12 GND
10

8

6

4 GND

2

Figure 5-3 Pin assignments, B connector

Theory of Operation

51
49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13

- w o~

1D-00625

The main component of the RAM cards is a RAM array containing two or four
banks of memory ICs. Each memory bank contains eighteen 64K-by-1-bit RAM
ICs. These locations are assigned to system memory locations by the card-select

jumpers.

Figure 5-4 shows the interconnection of the RAM array and the other compo-
nents that comprise the RAM cards, as well as the various signals that control
the flow of data between the memory bus and the RAM array. The descriptions

that follow relate to Data General logic schematic no. 001-003136.

Memory Cards

Jumpers
wi-wa Board/bank
select
Memory logic

bus

BRDY |
SELECT

WH/PARHI

WL/PARLO

CIEAR Memory
DATAO DATAO ADRLATCH/WMEM controller
J a1 Refresh TC
interval
timer
DATA<C1-15>
PR Row
BDATAQ, XMA <0-4>; address/
i data
register
ADRLATCH . I
} REFRESH
Column
address
register
REFRESH REFRESH
Refresh Refresh
address address
counter driver
Column
address/data
buffer

Reference: Logic Schematic 001-003136

DG-08318

Figure 5-4 Memory card block diagram

Memory Cards

5-7

Row/Column
enable
logic

REFRESH

RASEN CASEN

W +5V

LED

WPARLO o

RPARLO

COLSEL

Row/column
address
multiplexor/
driver

Read

data

driver

LWHIGH

Write
data
register

RAM
array

*MAD?7 is shown as signal name
PIN<<0-3> on Logic Schematic 001-003136

Memory Cards

Initiating a Memory Operation

The memory card continually receives data from the processor’s memory bus
via its B connector. At the start of a memory operation, the bus controller drives
MCYC and ADREN low and DATAO high (DATAO =0), and sends a 20-bit
physical address over the memory bus. The address consists of DATA< 1-15>
and XMA <0-4>. When DATAO is high (referencing user memory space), the
card/bank select logic of the memory card decodes address bits DATA1 and
XMA <0-4 > If the card is jumpered to contain the memory range specified by
those bits, the card/bank select logic chooses the appropriate bank and notifies
the memory card controller by driving SELECT high. On 256-Kbyte memory
cards, signals XMA <0-2 > select the card, while signal XMA3 selects one of the
two banks of RAM ICs. On 512-Kbyte memory cards, signals XMA <0-1 > select
the card, while signals XMA < 2-3 > select one of the four banks of RAM ICs.

The memory card controller initiates a memory operation as soon as it receives
ADREN, provided that the addressed location is within the selected memory
range and MCYC is low. When the controller drives ADRLATCH and R/WLATCH
high in response to ADREN, the bank select logic latches the memory bank
select line (SELO, SEL1, SEL2, or SEL3); then the row and column address
registers latch the row address DATA < 1-8 >) and the column address (XMA4
DATA < 9-15>), respectively, and send them to the row/column address
multiplexor. At this point, the controller begins a read or write operation.

A memory operation either reads the 16-bit word of the addressed memory
location or writes the high-order byte, the low-order byte, or both bytes of a
word. A parity bit supplied by the SPU is read or written with each byte.

Each memory card features a light emitting diode (LED), which lights when a
memory reference to an address on the card is in progress.

Row and Column Address Selection

As soon as the address multiplexor receives the address, it sends the row
address bits (described above) to the RAM array via the MAD <0-7 > lines.
(MAD 7 is shown as signal name PIN9 < 0-3 > on logic schematic 001-003136.)
The controller then asserts RASEN. At the same time, the row/column enable
logic drives the row address strobe of the selected memory bank (RASO, RAS1,
RAS2, or RAS3) low, latching the row address into the appropriate RAMs.

When the controller drives COLSEL high, the address multiplexor sends the
column address bits (described above) to the RAM array via the MAD<0-7 >
lines. (MAD 7 is shown as signal name PIN9 <0-3> on logic schematic
001-003136.) Then the controller asserts CASEN, causing the row/column
enable logic to drive the column strobes of all the memory banks (CASO, CAS1,
CAS2, and CAS3) low, latching the column address into the RAM array. The
assertion of CASEN also causes the LED on the memory card to light up.

Read Operations

If WH and WL are both high (unasserted) while ADREN is driven low during the
address phase of the memory operation, the memory card initiates a read
operation. After the row and column addresses are multiplexed to the RAM
array, the selected RAM bank outputs the contents of the addressed location.
The data bits are placed on the read data bus (RD <0-15>) and the two parity
bits associated with the data are sent to the controller.

Memory Cards 5-9

The controller drives RMEM low, gating the data onto the memory bus. The
controller then transmits the parity bits of the high-order byte and the low-
order byte via the WH and WL lines, respectively. (Note that WH and WL are
multiplexed lines that transmit parity bits during the data phase of the memory
bus cycle.) Figure 5-5 shows a read timing diagram.

| P 500ns

—

SELECT I J
RAS | —
RMEM | 1

DG-08319
Figure 5-5 Read timing

Write Operations

If WH and/or WL are low during the address phase while ADREN is asserted, the
controller initiates a byte or word write operation; signals LWHIGH and/or
LWLOW are driven low, depending on the states of WH and WL. During the data
phase of the memory write operation, the write data register receives data from
three sources: the column address/data buffer transmits the low-order byte
(DATA<8-15>) as MB< 8-15>; the row address/data register transmits seven
bits of the high-order byte DATA< 1-7>) as R/IW< 1-7>; and the card circuitry
transmits bit 0 as DATAO.

The write data register drives the appropriate byte(s) of data onto the

WD < 0-15> lines, inverting bits MB< 8-15>. The controller transmits the
parity bit(s) to the RAM array by driving signals WPARLH!I and/or WPARLO
high or low, depending on the states of WH and WL. The controller then
issues a write enable pulse — WELO for low-order bytes and WEHI for high-
order bytes — which writes the byte or word with its associated parity bit(s)
into the addressed RAM location. Figure 5-6 shows a write timing diagram.

| > 500ns &

o

SELECT 1 J
RAS 1 —
WELD or WEHI

1T
WMEM i

DG-08320

Figure 5-6 Write timing

5-10

Memory Cards

Refresh Operations

The refresh interval timer asserts the TC signal every 15.6 microseconds. This
signal causes the controller to initiate a refresh operation, provided it is not
already busy with a read or write operation. If the controller is busy, it waits
until the current operation is finished and then immediately starts a refresh
operation.

When a refresh operation is initiated, the controller signals the refresh address
driver to supply the refresh address; this is the address specified by the refresh
address counter to the RAM array through the address multiplexor. The
controller asserts REFRESH, enabling all rows of the RAM array (RAS <0-3>).
The controller then strobes the refresh address onto MAD <0-7> (MAD 7 is
shown as signal name PIN < 0-3> on logic schematic No. 001-0003136) by
driving COLSEL high. (Note that although the card logic uses column address
lines to drive the refresh address, the RAM array sees the address input as a
row address.) The controller does not send any column address because a
refresh operation recharges every word of the selected row; thus, no column
address is required. After the operation, the controller increments the refresh
address counter.

In case of conflict between a memory read/write and a refresh operation; that is,
if the TC and SELECT signals are asserted simultaneously, the controller
executes the memory read/write operation first and the refresh operation
second. If SELECT is asserted during a pended refresh (a refresh preceded by a
memory operation), the controller latches the incoming address and drives
BRDY high to extend the data transfer phase of the CPU cycle by one T period.
After the refresh operation is completed, the controller performs a read or write
operation to the addressed memory location. This process is known as a pended
memory cycle. Figure 5-7 through Figure 5-9 show a normal refresh, a pended
refresh, and a pended memory cycle, respectively.

'[—> 500ns ~<€¢—]
TC [1
SELECT
REFRESH I -
RAS L o
CLRRAS .

DG-08321

Figure 5-7 Refresh timing

Memory Cards 5-11

IL 3 500ns <€ {
SELECT F—— | 1
TC J 1
REFRESH I -
PEND iy I
RAS
_ — —

DG-08322

Figure 5-8 Pended refresh timing

}————» 500ns - { » Pended refresh 4—‘—-> Pended memory cycle 4__l

PSELECT m i

SELECT - | D 1

TC N 1

PEND]

REFRESH I 1

BRDY s N

CLR RAS L B | | pm—
RAS - 1 1 L —

DG-08323

Figure 5-9 Pended memory cycle

Model 30
Hardware
Floating Point

This chapter describes the Model 30 hardware floating point card; summarizes
the instructions it executes and their execution times; describes installation and
power requirements; details interconnections with the system; and describes

power-up and reset response. A functional theory of operation concludes the
chapter.

6-2

Model 30 Hardware Floating Point

*
»
]
.
*
»
»
»
.
.

PH-0513

Figure 6-1 Model 30 hardware floating point card

The Model 30 hardware floating point card, shown in Figure 6-1, executes the
ECLIPSE hardware floating point instruction set. This instruction set performs
operations on numbers supplied by main memory or by the four, floating point
accumulator (FPAC) registers. These numbers are either 4 bytes wide (single-
precision) or 8 bytes wide (double-precision). Each number consists of a sign, a
fractional part called the mantissa, and an exponent. The first byte contains the
sign and exponent; the remaining bytes contain the mantissa.

A floating point external microcode controller (FPXMC) is contained on the SPU
card; it initiates the operation of the hardware floating point option and sends

Model 30 Hardware Floating Point

microcode to the CPU. The microcode commands the CPU to control all data
transfers between itself, the Model 30 hardware floating point card, and main
memory. Under the FPXMC microcode control, the CPU synchronizes the
operations of the Model 30 hardware floating point card and memory to transfer
a number whenever a floating peint instruction stores, or uses a number stored
in memory. In like manner, when a floating point instruction stores or uses data
in a CPU accumulator, the CPU, under the control of microcode from the
FPXMC, synchronizes its operation with that of the Model 30 hardware floating
point card to transfer the data.

Model 30 Hardware Floating Point
Instructions

The Model 30 hardware floating point card executes the entire ECLIPSE
hardware floating point floating point instruction set. These instructions are
listed in Table 6-1 and their execution times by the Model 30 hardware floating
point card are listed in Table 6-2. Refer to the 16-bit Real-Time ECLIPSE
Assembly Language Programming for complete descriptions of these instruc-
tions and their use.

Note that several instructions have two forms; one ending in S and another in D.
The first form uses single-precision floating point format, while the second uses
double-precision floating point format. The function of the two forms is
otherwise identical.

Table 6-1 Instructions executed by the Model 20 and Model 30 hardware floating

point card

Mnem Instruction Action

FAB Absolute Value Sets the sign bit of a floating point accumulator
(FPAC) to O.

FAMS, FAMD Add (memory to Adds the floating point number in memory to the

FPAC) floating point number in an FPAC.

FAS, FAD Add (FPAC to FPAC) Adds the floating point number in one FPAC to the
floating point number in another FPAC.

FCLE Clear Errors Sets bits 0-4 of the floating point status register
(FPSR) to O.

FCMP Compare Floating Compares two floating point numbers and sets

Point the zero (Z) and negative result (N) flags in the
FPSR accordingly.

FDMS, FDMD Divide (FPAC by Divides the floating point number in an FPAC by a

memory) floating point number in memory.

FDS, FDD Divide (FPAC by Divides the floating point number in one FPAC by

FPAC) the floating point number in another FPAC.

FEXP Load Exponent Places bits 1-7 of ACO in bits 1-7 of the specified
FPAC.

FFAS Fix To AC Converts the integer portion of a floating point
number to a signed two’s complement integer and
places the result in an accumulator.

FFMD Fix To Memory Converts the integer portion of a floating point

number to double-precision integer format and
stores the result in two memory locations.

Model 30 Hardware Floating Point

Table 6-1 Instructions executed by the Model 20 and Model 30 hardware floating
point card (Continued)
Mnem Instruction Action
FHLV Halve Divides the floating point number in FPAC by 2.
FINT Integerize Sets the fractional portion of the floating point
number in the specified FPAC to zero and
normalizes the result.
FLAS Float From AC Converts a signed two’s complement number in
an accumulator to a single-precision floating point
number.
FLDS, FLDD Load Floating Point Copies a floating point number from memory to a
specified FPAC.
FLMD Float From Memory Converts the contents of two memory locations in
integer format to floating point format and places
the result in a specified FPAC.
FLST Load Floating Point Copies the contents of two specified memory
Status locations to the FPSR.

FMMS, FMMD Muitiply Memory by Muiltiplies the floating point number in memory by
FPAC the floating point number in an FPAC.

FMOV Move Floating Point Moves the contents of one FPAC to another FPAC.

FMS, FMD Muttiply (FPAC by Muitiplies the floating point number in one FPAC
FPAC) by the floating point number in another FPAC.

FNEG Negate Inverts the sign bit of the FPAC.

FNOM Normalize Normalizes the floating point number in FPAC.

FNS No Skip No operation.

FPOP Pop Floating Point Pops an 18-word floating point block off the user

State stack and alters the state of the floating point unit.

FPSH Push Floating Point Pushes an 18-word floating point block onto the

State user stack.
FRH Read High Word Places the high-order 16 bits of an FPAC in ACO.
FSA Skip Always Skips the next sequential word.
FSCAL Scale Shifts the mantissa of the floating point number in
FPAC either right or left, depending on the
contents of bits 1-7 of ACO.
FSEQ Skip On Zero Skips the next sequential word if the Z flag of the
FPSRis 1.
FSGE Skip On Greater Than Skips the next sequential word if the N flag of the
Or Equal To Zero FPSR is O.

FSGT Skip On Greater than Skips the next sequential word if both the Z and N
Zero flags of the FPSR are O.

FSLE Skip On Less Than Or Skips the next sequential word if either the Z flag
Equal To Zero or the N flag of the FPSR is 1.

FSLT Skip On Less Than Skips the next sequential word if the N flag of the
Zero FPSRis 1.

FSMS, FSMD Subtract (memory Subtracts the floating point number in memory

from FPAC) from the floating point number in an FPAC.

FSND Skip On No Zero Skips the next sequential word if the divide by

Divide zero (DVZ) flag of the FPSR is O.
FSNE Skip On Non-Zero Skips the next sequential word if the Z flag of the

FPSRis O.

Model 30 Hardware Floating Point

65

Table 6-1 Instructions executed by the Model 20 and Model 30 hardware floating
point card (Continued)
Mnem Instruction Action
FSNER Skip On No Error Skips the next sequential word if bits 1-4 of the
FPSR are all O.
FSNM Skip On No Mantissa Skips the next sequential word if the mantissa
Overflow overflow (MOF) flag of the FPSR is O.
FSNO Skip On No Overflow Skips the next sequential word if the overflow
(OVF) flag of the FPSR is O.
FSNOD Skip On No Overflow Skips the next sequential word if the OVF and the
And No Zero Divide divide by DVZ flags of the FPSR are O.
FSNU Skip On No Overfiow Skips the next sequential word if the underflow
(UNF) flag of the FPSR is O.
FSNUD Skip On No Skips the next sequential word if the UNF and the
Underflow And No divide by DVZ flags of the FPSR are O.
Zero Divide
FSNUO Skip On No Skips the next sequential word if the UNF and
Underflow And No OVF flags of the FPSR are O.
Overflow
FSS, FSD Subtract (FPAC from Subtracts the floating point number in one FPAC
FPAC) from the floating point number in another FPAC.
FSST Store Floating Point Copies the contents of the FPSR to two memory
Status locations.
FSTS, FSTD Store Floating Point Copies the contents of a specified FPAC into
memory.
FTD Trap Disable Sets the trap enable flag of the FPSR to O.
FTE Trap Enable Sets the trap enable flag of the FPSR to 1.
Table 6-2 Instruction execution times
Instruction Execution time (us) Notes
FAB 7.00 1
FAD 12.50 1
FAMD 18.00 1,2
FAMS 15.50 1,2
FAS 11.50 1
FCLE 11.50
FCMP 4.50
FDD 42.75 1,3
FDMD 48.25 1.2,3
FDMS 20.50 1,2,3
FDS 16.75 1.3
FEXP 9.25 1
FFAS 11.00 1
FFMD 12.50 1,2
FHLV 9.00 1,3
FINT 19.50 1
FLAS 10.00
FLDD 10.00 2
FLDS 7.50 2
FLMD 13.50 2
FLST 11.00 1.2

Model 30 Hardware Floating Point

Table 6-2 Instruction execution times (Continued)

Instruction Execution time (us) Notes
FMD 46.00 1
FMMD 51.50 1,2
FMMS 22.00 1,2
FMOV 4.50
FMS 18.50 1
FNEG 7.50 1
FNOM 11.50 1
FNS 4.00
FPOP 43.00
FPSH 38.00
FRH 4.00
FSA 5.00
FSCAL 15.50 1
FSD 12.75 1
FSEQ 4.50
FSGE 4.50
FSGT 4.50
FSLE 4.50
FSLT 4.50
FSMD 18.25 1,2
FSMS 15.50 1,2
FSND 4.50
FSNE 4.50
FSNER 4.50
FSNM 4.50
FSNO 4.50
FSNOD 4.50
FSNU 4.50
FSNUD 4.50
FSNUO 4.50
FSS 12.00 1
FSST 7.00 2
FSTD 5.50 2
FSTS 4.00 2
FTD 1.50
FTE 3.75 1

"This instruction can take a floating point trap, which will add 17 microseconds to its execution time.
2This instruction does an effective address calculation, which may add 15 microseconds to its execution time.

3Floating point divide execution times depend on the number of zero and one bits in the quotient (the more one’s, the
longer the time.

Installation and Power Requirements

The Model 30 hardware floating point unit card must be inserted into slot 2
of the Model 30 CPU logic module (CLM) cage. An interconnection cable to
the system processor unit card is also required (see "Interfacing” below). No
jumpering or other tailoring is required.

Power Requirements

The Model 30 hardware floating point card requires only one voltage level:

+ 5 V. The maximum current requirement at this voltage level is 4.6 A, for

a maximum power dissipation of 23 W. The voltage is supplied to the card via
B connector pins 57, 59, and 60.

Model 30 Hardware Floating Point

8-7

Interfacing

The FPU card communicates with the system processor unit (SPU) card and
memory card(s) through its B and C edge connectors. The B connector connects
to printed circuit wiring contained on the CLM backpanel through a backpanel
connector. The C connector connects to the SPU card through an interconnec-
tion cable that plugs onto the C connector of both the SPU and the FPU card.
Figure 6-2 shows the connector positions of the FPU card.

Connector A Pin 49
Pin 1

Connector B
Pin 59/<®

FPU printed
circuit card
{component side)

Pin 49

Connector C

Figure 6-2 FPU card connector positions

The 60-pin B connector supplies data, power, and memory bus control signals to
and from the Model 30 hardware floating point card. Figure 6-3 shows the
B-connector pin assignments.

ID-00626

Model 30 Hardware Floating Point

Even Signal Names Odd
60 +5V +5V 59
58 +5V 57
56 55
54 GND GND 53
52| SYSCLKB 51
50 DATAOOB DATAO8B 49
48| ADRENB DATENS | 47
46 DATAO1B DATAO98B 45
44 43
42 DATA02B DATA10B 41
40 39
38 DATAQ38 DATA11B 37
36 GND 35
34 DATAQ048 DATA12B 33
32 DATAQSB DATA13B 31
30 WHIGHB 29
28 DATAO68 DATA14B 27
26 MEMCYC 25
24 DATAO7B DATA 158 23
22 21
20 19
18 17
16 15
14 GND 13
12 GND 1
10 9

8 7
6| CLEAR 5
4 GND 3
2 1

ID-00627

Figure 6-3 Pin assignments, B connector

The 50-pin C connector carries protocol signals for synchronizing floating point
operations between the SPU and the Model 30 hardware floating point card.
Figure 6-4 shows the C-connector pin assignments.

Model 30 Hardware Floating Point 6-9

Even Signal Names Odd
2 1
4 3
6 GND 5
8 7

10 9
12 1
14 13
16 15
18 17
20 PIPE 19
22 GND 21
24 23
26 QUACK 25
28] QSKiPB 27
30 29
32 REQ 31
34 FETCHB |33
36 35
38 37
40 39
42 41
44 43
46 45
48 47
50 49

DG-08918

Figure 6-4 Pin assignments, C connector

Power-up/Reset Response

When the Model 30 system is powered up, the hardware floating point option
enters an idle loop. The card also enters the idle loop after the execution of any
jump instruction.

Theory of Operation

The organization of the hardware floating point card is shown in Figure 6-5. For
the purpose of discussion, the card may be thought of as comprising three
sections: the timing/control section, the data manipulation section, and the
address/instruction section. The description that follows refers to Data General
logic schematic No. 001-002863.

6-10

Model 30 Hardware Floating Point

System Memory Bus

From Pipeline Reg.

Timing
Logic

From
Pipeline
Reg.

sections

Input
Register

Nibble Shifter/
Register

ALU

To various

Figure 6-5 Model 30 hardware floating point unit block diagram

Dispatch

Register

Bit Shift
Control
PROM

PREVIN

4-Bit
Counter

Carry
Look-Ahead
Generator

—

LDCTRB

To Pipeline
Control PROM

DG-08920

Model 30 Hardware Floating Point

6-11

XMC bus

JAMB
Start/Stop f————— To Sequencer

Decode
JSO

PROM I——-——> To Bit Shift Control

Pipeline
Control
PROM and
Register

To various
sections

PREVIN

PEXP

Add Decode
Speedup

Dispatch
PROM

Immediate
PROM

From Pipeline Reg.
JAMB

From To Bit Shift
Pipefine Status o Bit Shift 4
. Sequencer Contro!
Multiplexor
To ALY Enabling
signals
Register i
i To Constant 0 various
Select ;A;g;code PROM sections
Muitiplexor/Storage Pipeline
Register

To Register
Select
Multiplexor/
Storage

To Status
Multiplexor

6-12

Model 30 Hardware Floating Point

Timing/Control

The timing/control circuitry consists of the timing logic, the pipeline control
PROM and latch, and the start/stop decode PROM. Together these elements
produce the timing, synchronization, and control signals required to coordinate
operation of the floating point card with the system memory address bus and
the combination of the mE670/FPXMC.

Data Paths and Data Manipulation

The input buffer passes data and instructions from the system memory bus to
the dispatch register and the input register. The input register is loaded during
each CPU data phase. When enabled, it passes the data it contains to the nibble
shifter/register. (The dispatch register is discussed in the section to come.)

The add decode speedup PROM dispatches an 8-bit, microprogram address to
the microsequencer in order to speed up add/subtract prealignment and
compare operations.

The nibble shifter/register can perform nibble (4-bit) shifts one place to the left,
or one or two places to the right. It includes an 8-bit register so that multiple-
word shifts can be performed for all operations. The nibble shifter is controlled
by signals BSC< 0,2 > from the pipeline register.

The (possibly) shifted data output by the nibble shifter comprises the 28-bit
input to the arithmetic/logic unit (ALU). The ALU consists of seven 2901 4-bit
bipolar microprocessor slices. These as a unit split the 64-bit contents of a
floating point accumulator (FPAC) into two 28-bit mantissas and one 8-bit
sign/exponent. The addresses (0, 1, 2, or 3) of the source and destination FPACs
are stored in the register select multiplexor/storage circuits, whose output
determines which ALU register is to be used for each operation.

The ALU performs the sequences of operations needed to implement the
floating point instruction set under the control of instructions received from the
microcode PROM via the pipeline register. It does this in coordination with the
operation of the nibble shifter.

The coordination of shift outputs and inputs, necessary for multiply and divide
operations, is performed by the bit shift control PROM. The bit shift control
PROM is addressed by BSC < 0-2> from the pipeline register.

The shift control PROM works in conjunction with a 4-bit counter that keeps
track of multiply and divide iterations. The counter also allows direct specifica-
tion of one of the registers in the ALU.

The data output of the ALU passes through the nibble shifter and output buffer
to the system memory bus.

In addition to data from the input register, the nibble shifter sometimes receives
28-bit constants from the constant PROMs. Two 32 X 8 PROMs provide the
constants, which are addressed by signals CNST < 0-6 > from the pipeline
register. The nibble shifter also receives and passes to the output buffer the
8-bit floating point status word from the status register, when that register’s
output is enabled.

Address and Instruction Paths

Just as the ALU is central to the data manipulation section, the microcode PROM

Model 30 Hardware Floating Point 6-13

is the heart of the address/instruction section. The 512x48-bit microcode PROM
contains the following items.

instructions for the ALU

ALU register select controls

ALU data source select controls

microcode branch addresses

addresses of the constants in the — constant PROMs
control signals for the sequencer

bit shift control signals

branch address source control signals

miscellaneous control signals

These items are clocked into the 48-bit-wide pipeline register at the beginning
of each phase of floating point operation. The items latched are those addressed
by the 8-bit word produced by the sequencer. The sequencer’s output depends
on the input it receives from the following sources.

the pipeline register

the dispatch PROM

the add decode speedup PROM
the immediate PROM

The dispatch PROM provides a dispatch for all floating point instructions based
on bits 1-9 of an instruction word. It receives this word from the dispatch
register.

The immediate PROM affords 32 entry points for immediate instruction
executions. It is addressed by bits SHOT < 00-04 > from the nibble shifter.

The status multiplexor selects the state of one of several conditions as an input
to the next address selection of the sequencer. These conditions pertain to the
results of ALU operations (for example, zero, carry) or to the state of the FPACs
(recently read or written).

Floating Point Operations and the System
Memory Bus

Figure 6-6 illustrates the timing of a floating point load double operation. A
sequence of events such as that shown in this figure occur whenever a floating
point operation must use data from main memory.

Figure 6-7 illustrates the timing of a floating point store double operation. The
load operation requires more cycles per (16-bit) word than does the store
operation because the load operation, as shown in the figure, must wait for the
floating point status register to be updated. Extra microcycles are also required
to shift each half of the 56-bit mantissa into the 28-bit ALU. (Local location 370,
referred to in the figures, is used for transparent interdevice communication.
When this location is accessed, address bit 0 — ADRO — is 1 and MEMCYC is
low, while ADR< 1-15> are 000 000 011 111 000.)

6-14

Model 30 Hardware Floating Point

PhasaIA'DIAID'AID'AIDIAID'A'DIA DIAIDlAlDlAlDlAIDlAlDIAIDIAID'A'DIAIDlAlDlAlDlAlDlAlﬂl

MB(1-16)
MBO
MEMCYC
WL/WH

LT Sipipiig BN iy
Effective address Read Read FPAC formatting Write Write FPSR updating
calculation from from to to
user user “local” “local” t20
to memory memory location location FLDD instruction
FLDP |nstructfon Write Write Read 370 Read 370 execution complete
begins execution
to to from from
“local” “local” user user
location location memory memory
370 370

Figure 6-6 Floating point load double timing diagram

DG-08946

AIDIAID]AIDIAIDIADA DIAIDADlAID[AIDlAIDlAIDlAIDAD I
MB(1-15)
MBO | | i .’".J—U". H | A T T A
MEMCYC 11 [[11
WL/WH 1 M I _ 1M
——
Effective address Write Write Write Write
calculation to user to user to user to user
to memory memory memory memory ty2
FSTD instructio, ?“d ?read Read :iead FSTD instruction
begins execution rom om from rom execution complete
"local” “focal “local” local
location location location location
370 370 370 370

Figure 6-7 Floating point store double timing diagram

DG-08921

Diskette
Subsystem

The Model 20 and 30 diskette subsystem provides up to 737 Kbytes of format-
ted storage for the computer system. The subsystem consists of a diskette
interface card and one or two diskette drives housed in the diskette module
(FM). Each diskette drive accepts one removable, double-density, double-sided
diskette. The interface connects to the microl/O bus and transfers data between
the host’'s memory and subsystem via the data channel facility at an average
rate of 23 Kbytes per second.

This chapter describes the diskette subsystem and media, its interconnections
with the system, and its functional theory of operation.

7-2 Diskette Subsystem

dc power cable connector

Signal cable connector

Ground wire connector

Figure 7-1 Model 20 and Model 30 diskette interface card and drive

Diskette Subsystem 7-3

Subsystem Overview

This section provides an overview of the diskette subsystem: the interface card
(shown in Figure 7-1), diskette media, the initial program load feature (IPL), and,
in general terms, power-up self-test.

Diskette Interface

The diskette interface card connects to the microl/O bus of the SPU through one
of its printed circuit card connectors that plugs into a mating connector located
on the FM backpanel. A daisy chain ribbon cable connects the drive(s) to the
interface. Each drive is assigned a unique address, which is selectable on the
drive unit, allowing the interface to select individual drives for seek, data
transfers, and status operations. A second daisy chain, the power harness,
connects the drive(s) to power carried on the FM backpanel. Figure 7-2 shows
the diskette subsystem connections.

Connector B

Backpanel

{ Connector C

Interface Data

card ——__ cable

N

Drive O

Power
cable

=
|

Ground

cable Drive 1

iD-00628
Figure 7-2 Diskette subsystem connections
The diskette interface contains four major integrated circuits (ICs):
1. 8-bit microprocessor CPU,
2. Byte-oriented, diskette drive controller (FDC),
3. Data channel controller (DCH),

74

Diskette Subsystem

4. Microl/O bus controller (IOC).

The microprocessor supervises the major portion of the diskette interface

and controls the positioning of the diskette drive read/write heads. The drive
controller handles the read/write operations of the interface. The FDC also
performs extensive error checks, including address checking and cyclic redun-
dancy checks (CRC) on the recorded data. The data channel controller uses the
data channel facility of the microl/O bus to handle data transfer activities
between memory and the diskette controller, on a demand mode basis: a data
channel transfer occurs each time the diskette controller requires a 16-bit data
word transfer. The microl/O bus controller acts as an interface between the
diskette interface and the microl/O bus.

Transfers to and from the diskette are double-word buffered to improve data
channel latency. Up to 18 contiguous sectors (16 in IBM PC format), available at
a particular head position, can be transferred by one command. (When a Data
General MPT/100 formatted diskette is inserted in the drive, up to 20 contigu-
ous sectors can be read by one command.) A multiple-sector transfer operation
beginning on head zero can continue on head one.

Diskette Media

A diskette has two surfaces, each providing 40 recording tracks. The top surface
is labeled 0. The same track position of the upper and lower surface constitutes
a diskette cylinder. Diskettes can be formatted in either Data General standard
or IBM PC format. Each track, when properly formatted, contains either nine
standard Data General or eight IBM PC recording sectors.

In addition, the diskette subsystem can be programmed to read Data General
MPT/100 formatted diskettes. These diskettes provide 35 recording tracks per
surface and contain 10 sectors per track.

Surface zero of standard Data General and IBM PC formatted diskettes is located
on the left side of the diskette when installed in the drive, while surface 1 is
located on the right (label) side of the diskette. On Data General MPT/100
formatted diskettes, these positions are reversed.

Diskette tracks are soft-sectored, meaning that there are no physical reference
points to identify the sector boundaries; thus sector boundaries must be
recorded. Recording of sector boundaries is performed by formatting each track
into sectors. Each formatted sector contains an address field that allows the
subsystem to locate it. Diskette formats and the formatting operation are
detailed in Chapter 2.

Initial Program Load (IPL)

The diskette subsystem provides an Initial Program Load (IPL) feature that can
transfer a single sector, low-level bootstrap program from diskette to memory.
The transfer originates from drive number O, track 0, head O, and logical sector
0O (physical sector 1). The IPL sequence transfers the contents of this sector into
the first 256 word locations of memory. The bootstrap program must have been
previously recorded on the designated sector of the diskette. If the drive is not
ready, the IPL operation waits until it is. The IPL feature is fully detailed in
Chapter 2.

12 Errata

Page 7-5

Under page heading, “Installation and Tailoring”,
Add the following note after the first paragraph:

NOTE These switches are set when installed in the system and should not be
changed.

Page 7-10
Figure 7-5 Pin assignments, B-connector

Change pin 57 from —5 VDC to +5 VDC

Page 7-13
Table 7-2 Drive interface signal descriptions

Delete the up-arrow (”) symbol before each signal name in the table and place a
bar over each signal name.

In the Description column, change each occurrence of “when 1" to “when low".

In the Description column, change each occurance of “when 0" to “when high”.

Page 7-17

Under page heading, “Byte Swap Network”,
Change the entire description of this network to read:

This network can be enabled to swap high- and low-order bytes of 16-bit
words between memory and the DCH during data channel activity. This network
must be enabled when reading from or writing to diskettes in IBM PC format.
This format writes or reads the low-order byte of a 16-bit word first.

Diskette Subsystem

Power-Up Self-Test

When the Model 20 or 30 system is powered-up, the diskette interface logic is
automatically initialized, the diskette drive operating modes are set to their
default values, and the diskette interface card performs a short self-test. If the
test is completed successfully, the interface idles and waits for a command. If
the test is not successful, a diagnostic light-emitting-diode (LED) on the inter-
face card turns on and the NOT OK flag bit is set to 1 in the interface’s status
register. The LED will turn off and the NOT OK flag will set to O only after the
interface is reset and passes the self-test. (Refer to “Power-Up Response” in the
diskette subsystem section of Chapter 2 for interface initialization and diskette
drive operating mode default values.)

Installation and Tailoring

The diskette interface card inserts into the I/O slot of the diskette module. An
interconnection cable to the diskette drive(s) is also required, as explained later
in this section. The card contains two sets of dual-in-line-package (DIP) switches
that select diskette drive characteristics and “he interface’s device code. Refer to
the installation manual for your system for details on function, location, and
tailoring of these switches.

.able 7-1 gives the power requirements of the diskette interface card.

Interfacing

The diskette interface card receives power and communicates with the SPU card
through its B edge connector. It communicates with the diskette drive(s) through
its C edge connector. The B connector joins with printed circuit wiring on the
FM backpanel through a backpanel connector. The backpanel connects, through
adjacent module backpanel interconnectors, to the SPU card in the CPU logic
module and to power supply 1 in the power module (PM). The C connector joins
the diskette drive(s) through an interconnection cable that plugs onto a
connector located on the rear of the drive. This cable connects in daisy chain
fashion to the second drive, when present.

Figure 7-3 shows the connector positions of the diskette interface card. Diskette
subsystem interconnections are illustrated in Figure 7-4. Figure 7-5 and Figure
7-6 show the pin assignments of the B and C connectors, respectively. Table 7-2
describes the drive interface signals.

Power to the diskette drive(s) is provided through a dc power cable soldered to
the FM backpanel. This power cable connects, in daisy chain fashion, to the
second drive, when present. Table 7-3 lists the power requirements for each
diskette drive.

7-6 Diskette Subsystem

Diskette Subsystem 7-7

NOTE: A/ odd numbered pins
of the connectors are
on the component side
of the card; all even
numbered pins of the
connectors are on the
opposite side of the
card.

Connector A Pin 49

Pin 1

Connector B
Pin 59/<®

Diskette interface
printed circuit card
(component side)

Pin 49

Connector C

ID-00629
Figure 7-3 Diskette interface card connector positions

7-8 Diskette Subsystem

BUSCLEAR 86
2
Diskette BMCLOCK B1
module BMCLOCK 2
backpanel ! B2
2
BI/OCLOCK B16
2
BI/OCLOCK P
BI/ODATA1> 85
2
BI/ODATA1 Ba
2
____ BI/ODATA2 813
BI/ODATAZ> B12
BEXTINT B8
INTPIN 820
INTPOUT 819
BDCINT 89
DCHPIN 822
DCHPOUT 821
All even number
pins of C connector
15 vDC B857-B60
—5 VDC 858
+12 vDC B55, BS6
B3, B11
GROUND B14, B36
B53, B54

Data Cable

C45

C43 |e—r

C41

C39
Cc37

C356

C33 |——

C31

C29 I—
Cc27 b—
C25 |e—-o
C23 [=e—o

C21 pe—o

c19

C17 pe—ro

1B connector pins of diskette
backpanel same as B connector

of diskette intrface card.

2Not TTL compatible

Power Cable

Ground Cable

Figure 7-4 Diskette subsystem interconnections

ID-00630

Diskette Subsystem

7-9

DRVSEL3

— J1-6

INDEX J1-8

DRVSELO J1-10

DRVSEL1 J1-12

DRVSEL2 J1-14

MOTORON J1-16

ﬁi—'ﬁf J1-18

STEP J1-20

WRITEDATA 11-22 Diskette

FWRGATE J1-24 drive

TRACKOO J1-26

WRITEPRO J1-28

RAWREAD J1-30

HDSELT J1-32

READY J1-34

DC GROUND All odd number
pins of J1

+12 vDC J2-1

+5 VDC 24

PS GROUND 12-2,3

AC GROUND 13

INDEX J1-8

DRVSELO J1-10

DRVSEL1 J1-12

DRVSEL2 J1-14

MOTORON 1-16

STEP J1-20 loptional)

WRITEDATA J1-22

FWRGATE J1-24

TRACKOO J1-26

WRITEPRO J1-28

RAWREAD J1-30

HDSEL1 J1-32

READY J1-34

DC GROUND { Al odd number
pins of J1

+12 vDC J2-1

+5 VDC J2-4

PS GROUND 12-2.3

AC GROUND

J3

7-10 Diskette Subsystem

Even Signal Names Odd
60| +5 VvDC +5 VDC 59
58| —5 vDC -5 VDC 57
56| +12 vDC +12 vDC 55
54| GROUND GROUND 53
52 51
50 49
48 47
46 45
44 43
42 41
40 39
38 37
36| GROUND 35
34 33
32 31
30 29
28 27
26 25
24 23
22| DCHPIN DCHPOUT 21
20| INTPIN INTPOUT 19
18 17
16 | BI/OCLOCK* |BIJOCLOCK* | 15
14| GROUND BI/ODATA2* [13
12 | BI/ODATAZ2* GROUND 1
10 BCDINT 9

8| BEXTINT 7
6 | BUSCLEAR |BI/ODATAT* |5
4 | BI/ODATA1* GROUND 3
2 | BMCLOCK* BMCLOCK * 1

NOTE *Not TTL compatible.

Blank pins are not used.
ID-00631

Figure 7-5 Pin assignments, B connector

Diskette Subsystem

7-11

Even Signal Names Odd
2 GROUND 1
4 GROUND 3
6 GROUND 5
8 GROUND 7

10 GROUND 9

12 GROUND 11
14 GROUND 13
16 GROUND 15
18 GROUND READY 17

20 GROUND HDSEL1 19

22 GROUND RAWREAD 21

24 GROUND WRITEPRU 23

26 GROUND TRACKOO 25

28 GROUND FWRGATE 27

30 GROUND WRITEDATA | 29

32 GROUND STEP 31
34 GROUND DIREC 33

36 GROUND MOTORON 35

38 GROUND DRVSEL2 37

40 GROUND DRVSEL1 39

42 GROUND DRVSELO 41

44 GROUND TNDEX 43

46 GROUND DRVSEL3 45

48 GROUND 47

50 GROUND 49

NOTES Blank pins are not used

Figure 7-6 Pin assignments, C connector

ID-00632

Table 7-1 Power requirements for interface card
Supply Current Power Pin Numbers
Voltage Draw (max) Dissipation B Connector
+5 Vdc 1.50 amps 7.5W 57,59, 60
-5 Vdc 0.025 amps 0.125 W 58
+12 Vdc 0.3 W 55, 56

Ground

0.025 amps

3,11, 14, 36, 53, 54

7-12 Diskette Subsystem

Diskette Subsystem

7-13

Table 7-2 Drive interface signal descriptions

Signal Description

AMOTORON When 1, activates the spindle motor of all drives connected to the
subsystem.

"WRITEPRO When 1, indicates the diskette contained in the selected drive is

"DRVSEL<O0-1>
"READY
“TRACKOO

ANDEX

"DIREC

"STEP

"HDSEL1

"RAWREAD
"FWRGATE
"WRITEDATA

write-protected.
When 1, selects the appropriate drive to respond to the interface.
When 1, indicates the selected drive is ready to accept commands.

When 1, indicates the selected drive’s read/write heads are positioned
at track OO (the outermost track).

When 1, indicates the index hole of the diskette in the selected drive
is being sensed.

Defines the direction of read/write head motion when the "STEP
signal line is pulsed; when 1, specifies the head is to move towards
the center of the diskette (in), when O, specifies the head is to move
away from the center of the diskette (out).

On the signal transition from 1 to O, causes the read/write head to
move one track position in the direction defined by the "DIREC signal
line.

When 1, selects read/write head of surface 1 to be used for reading
or writing.

The serial read data stream to the interface.

When 1, enables data is to be recorded on the diskette.

The serial write data stream to the diskette.

Table 7-3 Power requirements for diskette drives

Supply Current Power Pin Numbers
Voltage Draw (max) Dissipation {Drive)
+5 Vdc 1 amp 5W 4
+12 Vdc 1 amp 12W 1
Ground — 2,3

Theory of Operation

This section describes the operation of the diskette interface card. It begins
with a discussion of the major elements of the interface, followed by a general
explanation of interface operations. The discussions in this section reference
logic schematic DGC No. 001-003343.

Interface Elements and Functions

The diskette subsystem interface directs all activities of the Model 20 and 30
diskette drive(s). It executes programmed input/output instructions from the
host processor, supports data channel transfers from one sector to a full cylinder
(two tracks) and between host memory and the diskette drive(s). Table 7-3
shows the major components of the interface and their interconnection.

7-14 Diskette Subsystem

(control)
One-word
(DHCSYNC Data
channel
SETDONE controller N
m
; FDRQ
i _— (includes | ;™
c BUSY o command
r o register)
tl) 1/O bus
/ interface
0
b
u
s Sector
count
register
B PIO and flag

command signals

Status
register

Interface status

Read
status
gates

Drive status

ID-0063.

Figure 7-7 Diskette interface block diagram

Diskette Subsystem 715

DAVSELO
Drive o
select
drivers DRVSEL1 o
SETDONE
Interface Head DIREC >
coptroller position STEP N
(micro- and select >
processor drivers HDSEL1 o
based) >
Seindle | &5TORON
Self-test M mPtor —
fail LED 7” driver
7ORa. 4 A
¢ FINTER
FWRGATE o
Write >
data
cirouits | WRITEDATA
Diskette Read
drive data FAWREAD
controller circuits
READY
Drive INDEX
e————————
status WRITEPRO
receivers |€—m———
TRACKOO

Drive status

7-16 Diskette Subsystem

I/O Bus Interface The I/O bus interface connects the diskette interface to
the microl/O bus and contains the memory address and word count registers.
For more information on this interface, see Input/Output and Interfacing.

Interface Controller The interface controller is based on an 8-bit micropro-
cessor that supervises all interface functions and controls the positioning of the
drive read/write heads. The microprocessor monitors the Busy flag (BUSY) to
determine when to start an operation. When the Busy flag sets to 1, the
microprocessor decodes and executes the command by:

Controlling the interface

Selecting a drive

Turning the drive spindle motor on

Positioning, loading, and selecting the read/write heads

Controlling the write circuits during write operations.

When the operation completes, the interface controller flags the CPU by
signaling the 1/0 bus interface to clear the Busy flag and set the Done flag
(SETDONE). In addition, the microprocessor executes a self-test on power-up that
checks itself and the diskette controller. If this check fails to complete success-
fully, the microprocessor turns on the self-test fail LED and sets the Not OK
status flag.

Status Register and Status Gates This logic returns diskette interface
and drive status to the CPU during a Read Status instruction. The description of
the Read Status instruction in the diskette subsystem section of Chapter 2
discusses the status information returned.

Sector Count Register This register duplicates selective bits of the word
count register contained in the I/O bus interface. These bits specify the number of
sectors to be transferred during an operation.

Data Channel Controller and One-Word Buffer The data channel
controller (DCH) connects the I/O bus interface to the diskette controller for data
channel activities and contains the diskette command register. During read
operations, it assembles 8-bit bytes from the diskette controller into 16-bit words
and transfers them to memory. During write operations, it receives 16-bit words
from memory and transfers them in 8-bit bytes to the diskette controller.

During read operations, requests to transfer data read from the diskette controller
(FDRQ) cause the DCH to transfer an 8-bit data byte from the diskette controller
to the one-word buffer. Then the DCH transfers this 8-bit byte from the one-word
buffer into a high- or low-order byte position of a 16-bit internal DCH register
(high-order loads first). Each time the DCH transfers a byte into the low-order
byte position, it requests a data channel cycle to transfer a word into memory.
This process continues until the requested number of words are transferred to
memory.

During write operations, a data channel cycle is initially requested (DCHSYNC) to
load a word from memory into a 16-bit internal DCH register. The DCH then loads
the high-order 8-bit byte into the one-word buffer. As the diskette controller
issues requests (FDRQ) for data bytes to write, the DCH transfers the byte stored
in the one-word buffer to the diskette controller. Following the transfer, the DCH
loads the next byte to be written into the one-word buffer. Each time it loads the
low-order byte into the buffer, the DCH requests another data channel cycle to fill

Diskette Subsystem 7-17

its 16-bit internal register. This process continues until the requested number of
words are transferred from memory.

Byte Swap Network This network can be enabled to

(1) Swap high- and low-order bytes of 16-bit words between memory and the
DCH during data channel activity, or

(2) Swap bytes when reading from or writing to diskettes in Data General
MPT/100 format. This format writes or reads the low-order byte of a 16-bit
word first.

Data Channel Direction Logic This logic inserts the data channel
direction bit returned to the CPU data channel facility, along with the 15-bit
memory address, during the address portion of each data channel cycle.

Diskette Drive Controller The diskette drive controller (DDC) handles
read/write operations. It provides the modified frequency modulation (MFM)
method of encoding and decoding recorded data, along with the serialization
(write) and deserialization (read), needed to read and write data on the diskette.
The DDC contains a data shift register that assembles the serial read data stream
received from the diskette drive into 8-bit bytes during read operations. The shift
register also disassembles 8-bit bytes into a serial write data stream to be
transferred to the diskette drive during write operations.

The DDC also contains five microprocessor-selectable registers whose functions
are defined below.

* Command register. Specifies the next operation (read, read header, or write) to
be performed by the selected drive.

¢ Track address register. Holds the track address specified during the last seek
command issued to the diskette interface.

* Sector address register. Holds the sector address that is to supply or receive
data during the next sector transfer between the DDC and the selected drive.
This register receives the sector address specified during a Read, Read Header,
or Write command issued to the diskette interface, and it updates as each
sector is transferred.

» Data register. Used as a holding register during diskette read and write
operations. During a read operation, it holds the byte assembled by the DDC'’s
data shift register from the serial read data stream and latches the byte until
the data channel controller transfers it to the one-word buffer. During a write
operation, it holds the byte transferred from the one-word buffer by the data
channel controller until the DDC's data shift register is ready to convert it into
the serial write data stream.

* Status register. Holds status information about the DDC, the selected diskette
drive, and data transfers.

The DDC requests data transfers (FDRQ) as required from the data channel
controller (DCH). When the DCH services the request, it transfers a data byte to
or receives a data byte from the one-word buffer and removes the data transfer
request. In addition, the DDC notifies the microprocessor when it completes any
command (FINTR).

Read Circuits These circuits convert the serial read data stream from the
drive into serial data bits and clock signals that are sent to the diskette controller.

7-18 Diskette Subsystem

Using the clock signals, the DDC assembles eight data bits and loads them into its
data register.

Write Circuits These circuits provide the write precompensation required
for high-density recording.

Diskette Subsystem Interface Operations

The discussion that follows explains in general terms how the diskette interface
operates. At times it refers to the previous discussion of functional elements for
background and supplementary information.

Program Control Al diskette drive operations must be set up by data
transfers between the CPU and the diskette interface. Each of these transfers
involves reading or writing an interface register under direct program control. All
programmed I/O instructions received by the diskette interface are decoded by
the I/O bus interface. Then the instruction is either carried out by the I/O bus
interface or the 1/0 bus interface asserts control signals to cause the diskette
interface to carry out the instruction,

Positioning the Read/Write Heads The microprocessor controls four
different head positioning operations:

Recalibrate Steps the heads to track 00.

Seek Steps the heads to the track specified by the track field of the
command register.

Step in Steps the heads from their current position one track further
from track 00.

Step out Steps the heads from their current position one track towards
track 00.

Before data can be transferred between memory and the diskette, the heads
must be positioned over the track to be accessed. The program must define
the head positioning operation by writing the appropriate control information
to the diskette interface command register located in the data channel con-
troller (DCH), and initiate the operation. Once this information is loaded into
the command register, the microprocessor begins the operation by sending
control signals to the drives that select the drive unit and position the drive
read/write heads. The microprocessor also loads the target track number,
stored in the command register, into the apprropriate register of the diskette
drive controller (DDC). When the head positioning operation is complete, the
microprocessor flags the CPU by signaling the I/O bus interface to set the Busy
flag to O and the Done flag to 1. Setting the Done flag to 1 initiates an interrupt
if interrupts are enabled.

Setting Up Data Transfers Once the heads are positioned over the
desired track, the program must set up the standard data channel transfer by
loading the memory address and the word count registers, located in the I/O
bus interface, with the starting memory address and number of words to be
transferred into or out of memory. Next, the program must specify the type of
data transfer, the starting head number, and the starting sector number by
loading the appropriate command information into the diskette interface
command register, located in the DCH, and initiate the operation.

Once the program specifies and initiates the operation in the command register,

Diskette Subsystem 7-19

the microprocessor begins the operation, sending the control signals to the drives
that select the drive and read/write head. The microprocessor also loads the
command, starting sector and head numbers from the command register into
appropriate registers of the diskette drive controller (DDC) and initiates the data
channel controller (DCH). (The track number was loaded into the diskette drive
controller during the last head positioning operation.) In addition, the micropro-
cessor transfers the content of the sector count register into one of its internal
registers. For a write operation, the DCH requests a data channel cycle to obtain
the first word to be written from memory.

Writing Sectors Once the command is loaded into the DDC, the DDC
begins the operation. For a write operation, it first checks the diskette media in
the selected drive to see if it is write-protected; if so, the DDC terminates the
operation and asserts its operation done line to the microprocessor. The micropro-
cessor flags the CPU by signaling the I/O bus interface to set the Busy flag to O
and the Done flag to 1. Setting the Done flag to 1 initiates an interrupt when
interrupts are enabled. If the diskette is not write-protected or if the operation is
a read, the DDC continues the operation.

The DDC locates the starting sector by reading consecutively, starting with the
first address fields it encounters and comparing the track, sector, and head
address fields to the contents of its track, sector, and head address registers.

When the starting sector is located during a write operation, the DDC requests
the data channel controller (DCH) to supply a data byte. (Refer to "Data Channel
Controller” in this section for details on the transfer of data between the DCH and
DDC.) When the DDC receives the data byte from the DCH, it requests the next
data byte and encodes the current one into a modified frequency modulated serial
write data stream that is sent to the selected diskette drive through the write
circuits. The DDC continues to write the rest of the diskette data field in the

same way, requesting DCH data transfers for each byte that it writes. The DCH
requests data channel cycles for each two bytes that it transfers to the DDC.

Reading Sectors The DDC locates the starting sector by reading consecu-
tively. It starts with the first address fields it encounters, and compares the track,
sector, and head address fields to the contents of its track, sector, and head
address registers.

When the starting sector is located during a read operation, the DDC reads

the sector’s data field. As each byte is assembled, the DDC requests DCH data
transfers to transfer the data byte to the DCH. (Refer to “Data Channel Con-
troller” in this section for details on the transfer of data between the DDC and
the DCH.) The DDC continues to read the rest of the sector in the same way,
requesting DCH data transfers for each byte that it assembles. The DCH requests
data channel cycles for each two bytes that it transfers from the DDC.

Ending the Data Transfer = The DDC terminates a read or write operation
after the last byte of the data field is read or written, and notifies the micropro-
cessor. The microprocessor interrogates the sector count, stored in one of its
internal registers. If the sector count specified a single-sector transfer, the
microprocessor flags the CPU by signaling the I/O bus interface to set the Busy
flag to O and the Done flag to 1. Setting the Done flag to 1 initiates an interrupt
when interrupts are enabled. If the sector count specified a multiple-sector
transfer, the microprocessor decrements the sector count and initiates another
read or write operation as previously described, switching to head 1 if required,
until the specified number of sectors are read or written or the end of the
cylinder (end of track while head 1 is selected) is reached.

Power Supply
Assembly

A Model 20 and Model 30 power supply assembly consists of a single 4.75-inch
by 10.0-inch printed circuit card contained in an EMI-shielded case, as shown in
Figure 8-1. The power supply assembly mounts in a compartment within the
power supply module (PM). It receives ac power through a line cord, line fuse,
interlock, power switch, and internal ac power cable. It provides dc power and
status signals to the backplane of the CPU logic module by means of an internal
dc power cable.

This chapter describes the power supply’s ac input and dc output specifications,
explains its theory of operation, and demonstrates its interconnection with the
system.

8-2

Power Supply Assembly

PH-0717,718

Figure 8-1 Model 20 and Model 30 power supply

Theory of Operation

The 123-watt power supply is an off-line switching converter that offers high
efficiency in a compact package. Portions of the power supply Control and
Status circuitry are contained on a daughter-type printed circuit card, vertically
mounted and soldered to the power supply PCB. Two identical power supply
assemblies, a main and an auxiliary, can be mounted in a power supply module.
The main supply powers the CPU logic module (CLM) and diskette module (FM),
while the auxiliary supply powers the logic expansion module (LEM) and disk
module (DM). Table 8-1 and Table 8-2 provide the ac input and dc output
specifications for each power supply assembly.

Power Supply Assembly

8-3

Figure 8-2 shows that the supply converts incoming ac voltage to non-regulated
high voltage dc, which feeds a high frequency step-down switching power
circuit (pulse width modulated). The outputs of the switching power circuit are
rectified and filtered to provide the required voltages. All four outputs are
regulated and current-limited. The + 12V, — 12V, and — 5V outputs are
controlled by series pass regulators and are self-protected by the regulator
current limits. The + 5V output is regulated by a pulse width modulator
controller and is current-limited on the primary side of the switching power
supply. The + 5V output is also protected against overvoltage.

The Control and Status daughter card of the power supply contains the circuitry
to perform start-up directly off the nonregulated high voltage line, puise width
modulation, and + 5V regulation. This card also contains circuitry that
generates two power status signals (+ 5 OK and PWRFAIL) for the processor.

+ 5 OK specifies when the + 5V output is above a specified limit, and PWRFAIL
specifies when a power loss is imminent.

The Control and Status card also monitors the supply operation for internal
undervoltage, overvoltage, and overcurrent conditions. Should one of these
faults occur, the power supply will shut down temporarily and then automati-
cally attempt to power up again, provided line power is present. If the fault
condition is still present when the power supply attempts to power-up, the
power supply detects the fault condition and immediately shuts down.

This section explains the operation of each functional portion of the Model 20
and Model 30 power supply, as shown in Figure 8-2. Topics include the line
rectification, start-up circuit, power section, auxiliary voltage, output, and status
circuits. Reference designators such as U1 and T1 refer to logic schematic
drawings DGC No. 001-003322 and DGC No. 001-003357. You may find it
helpful to refer to these drawings while reading this chapter.

Table 8-1
Voltage (Vac) Frequency (Hz) Input power (Watts)
85t0 115 47 10 63 180
97 to 132 47 t0 63 180
187 to 264 47 to 63 180
Table 8-2
Output Voltage {Vdc) Ripple (mVp-p) Current (Amps)
+5V 5.15t05.25 50 2.51t016.3
-5V —4.75t0 —-5.25 50 0.05t0 0.5
+12V 11.5t0 12.6 50 0.251t0 2.5

-12v -11.41t0 -12.6 50 0.05t0 0.8

Power Supply Assembly

Line Line Power
cord fuse Interlock switch

>\ - ——7

(Not part of power supply board) JIy Reference: 001-003322 (Main Power Supply Board)
- - R, R
I Rectifier
- and
Inrush filter
current Line filter
limiter
Rectifier
¥ o= and
ine)
> rectifier +300v Primary switch Power filter
(VNR) PRICS and] transformer
current sense rn
J6 J6 | VSWT Re:tlfler
> ; a‘n
115 Vac jumper filter
AUXW
Base drive section -
NOTE Jumper plug J6
must be installed for A Auxiliary
100/115 Vac operation voltage
and removed for rectifier
220/240 Vac operation. and filter
)\VAUX
J3 J3 J3 J3
N T
4 J1 J1 J1 VAUXSWT J1
Auxiliary
voltage g
switch
Base drive JA“ J2
current
boost
circiut
4
PWM out
RFREQ J1 J3
RTHRESH
. 1 drive bias
P Pulse width ye J1 J3 53
+ SPRAWE] moduation 771 per 15 A
J3 J1 control ®
+ 300V VAUX
‘ |
J3 n
Y
Inrush
current VPTC
limiter J;3 1 o Staft—up
circiut
J3 n
ID-00375

Figure 8-2 Model 20 and Model 30 power supply functional block diagram

Power Supply Assembly

8-5

it Y
g J2
,S:ﬁ:‘gfss > — 12V
—12VUR 9 J2
+ 12VUR i
Sem:stpass > + 12V
regulator J2
> > +5V
J2
Output sense Overvoltage
and protection
gain_control
VSENSE
m JaNua J4
A J2 / r\JZ r\JZ J2
VSWT
PWRFAL > > PWRFAIL
J2 J4 52
Status
circiuts
+ 12VUR
Series Pass | REF + 2.5 TS5 0K —> >> +50K
Regulator J2 Ja J2
. REF+ 2.5 S>>
Error g2 4
VERROR ifi ~
- amplifier COMP

Reference: 001-003357 (Control and Status Board)

Power Supply Assembly

Line Rectification

The ac line voltage passes through an inrush current limiter (thermistor), and

a line filter to the line rectifier, where it converts to a non-regulated, high-dc
voltage source. Although this voltage source ranges from 180 to 370 volts with
the line voltage, the block diagram and engineering drawings refer to it as 300V.
Thermistor RT1 limits the cold start inrush current to an acceptable value.

For 110/120 volt ac or 100 volt ac operation, the line rectifier rectifies and
doubles the ac line source by connecting the junction of capacitors C5 and C6
(J6-1) to the neutral side of the power line (J6-3). In this way, the rectifier
provides a 300V source. For 220/240 volt ac operation, the line rectifier simply
rectifies the ac line source.

NOTE Jumper plug connecting J6-1 (JMPB) to J6-3 (JMPA) must be installed
for 100 Vac or 110/120 Vac operation and removed for 220/240 Vac operation.

Start-Up Circuit

A start-up circuit, contained on the power supply Control and Status daughter
card, provides the power needed to energize the pulse width modulation con-
trol section, thus energizing the power drive section. When the power supply
receives ac line voltage, the voltage goes both to the line rectifier and to

the start-up circuit, where it serves as a control signal. The high-dc voltage

(+ 300V) provides energy (VPTC) for the start-up circuit through an inrush
current limiter. The ac control signal turns on Q1, applying VPTC to the
auxiliary voltage (VAUX).

VAUX drives the PWM controller integrated circuit (IC) internally, and the
controller generates a regulated reference voltage (REF + 5) for the power
supply control circuitry.

VAUX also drives power to an auxiliary voltage switch (Q4 on the Control and
Status card) that turns on when VAUX reaches approximately 25 volts. This
switch (Q4) turns on when the PWM controller drive bias output turns on. The
resulting voltage (VAUXSWT) drives the base drive section to provide mag-
netizing current during power supply operation. Also at this time, the PWM
controller initiates pulse width modulation and turns off the start-up circuit.
At this time VAUX begins to decay toward an undervoltage point. If the PWM
controller begins pulse width modulation and the power supply successfully
powers up, an auxiliary voltage section supplies VAUX, and VAUX remains
above the undervoltage point. If start-up does not occur because the PWM
controller fails to begin operation (drive bias output fails to turn on), VAUX,
generated by the start-up circuit, will limit at approximately 33V (VR7 con-
ducts, turning on Q2) to prevent damage to the control circuitry.

As stated earlier, when the power drive section turns on, a secondary winding
of the power transformer and a rectifier supply the auxiliary voltage (VAUX).
If start-up does not occur because of an error condition, VAUX will fall to an
undervoltage fault, which initiates a restart attempt. Thermistor RT2 limits the
energy dissipated during the period of start-up cycling. The power supply may
attempt from 50 to 200 start-up cycles during any fault condition.

Power Section

The power section transforms nonregulated high dc voltage into high frequency,
low-voltages. These voltages drive the auxiliary voltage section and the output

Power Supply Assembly

8-7

section. The power section also regulates the + 5V output by means of a
feedback loop. This section consists of:

Pulse width modulation section
Base drive section
Power drive section

Error amplifier

Pulse Width Modulation Section This section consists of a pulse width

modulator (PWM) controller IC and associated passive components that govern
the operation of the power drive section (and, in turn, of the output section) by
controlling the amount of power through the power transformer. It accomplishes
this by causing the primary switch to close and open the power path to the power
transformer at a typical 50 KHz rate and varying the duty cycle (ratio between
the closed and open times) according to variations on the + 5V output. As the ac
line voltage decreases, or the + 5V output load increases, pulse width modulation
increases the closed time (drive cycle) to transfer more power to the output
section. Similarly, as the ac line voltage increases or the + 5V output load
decreases, pulse width modulation decreases the closed time to transfer less
power to the output section. In this way, the puise width modulation regulates the
+ 5V output.

To prevent the power transformer from saturating, pulse width modulation is
designed to operate at duty cycles of approximately 40 percent at the lowest line
voltage. This section, with the exception of two bias resistors, is contained on
the Control and Status daughter card. The PWM controller IC and associated
components

provide a low current start-up,
establish the operation frequency of the power drive section,

provide a slow turn-on to prevent output-voltage overshoots by gradually
increasing the power drive section [on] time from zero to the nominal time,

provide a + 5V regulated reference voltage for the power supply control
circuitry,

provide pulse width modulation control to the power drive section by
means of the base drive current boost circuit and the base drive section
(explained below),

perform pulse-by-pulse current-limiting of the power drive section.

During the drive portion of each power cycle, the output of the PWM controller
floats, causing the base drive current boost circuit PWM signal to float. This
causes the base drive section to turn off, which turns on the primary switch.
When the PWM controller’s internally generated ramp voltage reaches the
buffered error signal VERROR, or its duty cycle ends, the controller’'s PWM
output goes low, causing the base drive current boost circuit PWM output to go
low. The base drive section then turns on, which turns the primary switch off
and ends the power drive cycle. The controller also terminates a drive cycle

by the same method if the power drive section current (PRICS) reaches an
established threshold during a drive cycle (pulse-by-pulse current-limiting).

The PWM controller IC also includes fault-sensing circuitry to monitor

the high voltage bus (+ 300V) for undervoltage/overvoltage conditions,

Power Supply Assembly

the auxiliary voltage bus (VAUX) for an undervoltage condition,

the power drive section for overcurrent conditions (PRICS).

Should one of these faults occur, the PWM controller will shut down, which
shuts down the power supply until the start-up circuit recycles. (See “Start-Up
Circuit” in this chapter.) The start-up circuit automatically recycles when the
PWM controller shuts down, provided line power is present. Of course, if the
fault condition is still present when the PWM controller attempts to restart, the
controller detects the fault and either fails to start operation or immediately
shuts down, depending upon the fault.

Base Drive Section The base drive section provides the control to turn the
primary switch on and off. When the control card signal (PWM) floats, the base
drive section causes the primary switch to turn on, closing the + 300V path to
the power transformer. When the control card signal goes low, the primary
switch turns off, which terminates the power drive cycle. During the power drive
cycle, AUXW charges capacitor C7 in order to provide a fast turn-off of the
primary switch when the drive cycle terminates. Energy supplied by the auxiliary
voltage switch (VAUXSWT) provides magnetizing current for the remainder of the
power drive off-time.

Power Drive Section The power drive section consists of the primary
switch (composed of Q1, Q2 and associated components) and the power trans-
former (T'1). This section receives nonregulated high dc power from the line
rectifier and transforms it into high frequency ac voltage outputs to power
the output section, and an auxiliary voltage section. When the power supply
is operating, the auxiliary voltage section powers the control circuitry. Pulse
width modulation governs the operation of the primary switch, and, in turn,
of the output section, by controlling the amount of power through the power
transformer.

A current sensing resistor (R8) senses current flow in the power drive path and
applies a proportional signal to the PWM controller. The controller monitors this
signal to provide pulse-by-pulse current limiting and to shut down the power
supply in the event of an over-current fault.

Three secondary windings of the power transformer supply high frequency, low
voltage ac to the output and auxiliary voltage sections.

Error Amplifier The error amplifier compares a sample voltage from the
+ 5V output (VSENSE) with a threshold level established from reference voltage
REF + 2.5. The amplifier converts the resulting error signal to current that drives
an opto-isolator. The collector output of the opto-isolator controls the error voltage
(VERROR) applied to a noninverting amplifier contained within the PWM controller
IC. A resistor and capacitor located on the power card provides compensation for
the error amplifier feedback loop through the COMP signal line by a resistor and
capacitor located on the power card.

Output Section

The output section rectifies, filters, and regulates all outputs (except the + 5V),
senses the + 5V output for control of the power drive section (regulates the
+ 5V output), and protects against overvoltage on the + 5V output.

In the rectifying and filtering circuits, transformer-to-inductor-connected
rectifiers conduct during the drive cycle, supplying current to an inductor (L4).

Errata

13

Page 8-10
Figure 8-3 Status signal timing diagram (power up and power down)
Change the 5 ms minimum time to 300 ms minimum
Change the 10 ms minimum time to 2 ms minimum
Page 8-13
Table 8-5 Power status signals

Delete the up-arrow (”) symbol before the signal name PWRFAIL in the table
and place a bar over this signal name.

Power Supply Assembly- 8-9

During the off portion of the cycle, common line-to-inductor-connected rectifiers
commutate current. Thus, current through the inductor remains continuous.
Filtering capacitors reject ripples and smooth output to provide a steady dc
output voltage.

Three linear series pass voltage regulators provide [regulation] of the + 12V,

— 12V, and — 5V outputs, as well as limiting current on the three outputs. The
+ 12V output also contains a series pass transistor to boost the current handling
capacity. This transistor turns on only when output current begins to approach
the capacity of the regulator. The + 5V [sensing] circuit provides a sampling
voltage (VSENSE) to the control circuitry. The control circuitry compares this
sampling voltage with a reference voltage in order to perform the pulse width
modulation that governs the operation of the power drive section of the power
supply. Signal COMP provides a feedback path to establish gain control for the
error amplifier of the control card. This gain is high so that pulse width
modulation can regulate the + 5V output to a very close tolerance.

A Zener diode (VR1) provides overvoltage protection of the + 5V output. This
diode conducts and puts the power supply into foldback limit if the voltage on
the + 5V output exceeds 6.2V.

The nonregulated + 12 volt rectifier applies power (+ 12VUR) to a linear series
pass regulator on the control card. The resulting + 2.5V (REF + 2.5) provides a
reference voltage to the error amplifier and status circuit. The status circuit uses
this reference voltage to determine when the + 5V output is above a minimum
specified limit.

The 5V secondary winding of the power transformer also applies a high
frequency ac voltage (VSWT) to the status circuit of the control card. This
voltage, which is monitored by the status circuit, is proportional to the high dc
voltage source. When this ac voltage drops below an established threshold (as
in an input line voltage failure), the status circuit generates a powerfail signal,
warning the system of an imminent power failure.

Auxiliary Voltage Section

This section consists of a secondary winding of the power transformer, and
a rectification network that provides auxiliary voltage (VAUX) to power the
control circuitry of the power supply once the supply begins operation. The
section also contains an auxiliary voltage switch that provides magnetizing
current (VAUXSWT) to the base drive section when the PWM controller
becomes operational.

The auxiliary voltage (VAUX) powers the PWM controller on the Control and
Status card. Using VAUX, the PWM controller chip develops its internal voltage
and generates a regulated reference voltage (REF + 5) for the power supply
control circuitry. VAUX also drives an auxiliary voltage switch (Q4 on the control
and status card) that turns on when the PWM controller becomes operational.
The resulting voltage (VAUXSWT) drives the base drive section to provide
magnetizing current during the power drive off-time.

The auxiliary voltage secondary winding of the power transformer also applies
a high frequency ac voltage (AUXW) to the base drive section that charges a
capacitor during the power drive cycle. This charge provides a fast turn-off of
the primary switch when the drive cycle is terminated.

8-10

Power Supply Assembly

Status Circuits

Status circuits, contained on the Control and Status card, generate two power
status signals for use by the processor: + 5 OK signals the processor when the
+ 5V output is above a specified limit; and PWRFAIL signals that a power loss is
imminent. PWRFAIL asserts either when input power to the supply is lost, or
when the power drive section shuts down. Timing for the two status signals,
during both power up and power down, is presented in Figure 8-3.

L
Y Y
PWRFAIL —L__j
L ¢
) Y
+ 5 OK I
5ms 10ms |
min. min. [
Power up
Power down

ID-0037-
Figure 8-3 Status signal timing diagram (power up and power down)

A 2.5 volt reference voltage (REF + 2.5) establishes a threshold voltage for the
power ok and power fail status circuits.

The power ok monitor compares the + 5V output, applied to a voltage divider,
with a threshold level established from the reference voltage (REF + 2.5). During
power up, an R/C circuit (R12 and C7) delays the assertion of the + 5 OK signal
so that the supply voltages can stabilize. Should the + 5V output fall below the
specified minimum, the capacitor discharges rapidly through a diode to negate
the + 5 OK status signal.

The power fail detector rectifies and monitors the high frequency ac voltage
from the 5V secondary winding of the power transformer (VSWT). During
power up, PWRFAIL asserts until a capacitor charges to a value that places the
monitored voltage level above a threshold level established from the reference
voltage (REF + 2.5). This capacitor maintains the monitored voltage level above
that threshold level while VSWT is present. During a power failure the capacitor
discharges, allowing the monitored voltage level to fall below the established
threshold level. The resulting condition causes PWRFAIL to be asserted to the
processor.

Power Supply Assembly 8-11

Interconnection with the System

The Model 20 and Model 30 power supply connects with the rest of the system
through jacks J1 and J2. J1 receives input ac power from the internal ac power
cable of the power supply module (PM). This cable plugs into the power supply
card through an opening in the front of the case. J2 supplies the four dc
voltages and two power status signals to the backpanel of the CPU logic module.
One end of this cable plugs into the power supply card through an opening in
the rear of the case, and the other end is soldered to the backpanel of the CPU
logic module. Table 8-3 through Table 8-5 list each signal received or generated
by the power supply card together with the jack location(s) of the signal. Refer
to Figure 8-4 or the CLM backpanel logic schematic drawing, DGC No. 001-
003344, for the locations of dc voltages and status signals on the backpanel.

Power Supply Assembly

Backpanel
connector
to adjacent
module

Layout of backpanel (viewed from front of module)

7 |
B connectors
= P
J6 J5 J4 J3 J2 J1
o O
o O
O O — Power supply
\ o O connection
(solder
o O .
connection)
O O
o O
o O L
| Priority
0000F——7 b
switches
Power supply connection
Optional real time clock connections
GROUND - _E36
—5PS #1 - _E34 RTC - E33
+5PS #1 - E32 +5 PS #1 - E31
+5 PS #1 - E30 +5 PS #1 - E29
—5 PS #1 - E23 NO CON. - E27
GROUND - E25 GROUND - E25
GROUND - E24 GROUND - E23
—12PS #1 - E22 NO CON. - E21
+12PS #1 - E20 +12 PS #1 - E19
+12PS #2 - E18 +12 PS #2 - :E17
—12PS #2 - :E16 NO CON. - oE15
GROUND - _E14 GROUND - _E13
GROUND - E12 GROUND - EN
—5 PS #2 - _E10 NO CON. - E8
+5 PS #2 - E8 +5 PS #2 - E7
+5 PS #2 - E6 +5 PS #2 - E5
PF1 - E4 POWER 0K 1 - E3
PF2 - E2 POWER OK2 - E1

Figure 8-4 CLM backpanel

ID-00684

Power Supply Assembly 8-13

Table 8-3 ac power input

Signal Jack Pin
Earth Ground J1-1
A.C. Neutral J1-2
A.C. Line J1-3

Note: Jumper plug connecting J6-1 ([JMPBI]) to J6-3 ([JMPA]) must be installed for 100 Vac
or 110/120 Vac operation; removed for 220/240 Vac operation

Table 8-4 dc voltage outputs

Signal Jack Pin

+12V J2 pins 1, 2
Common J2 pins 3, 4,9, 11
+5V J2 pins 5-8

-5V J2-10

-12V J2-12

Table 8-5 Power status signals

Signal Jack Pin

+5 0K J2-14
"PWRFAIL J2-15

THREE

Mechanical Assemblies

Model 20 and
Model 30
Modules and
Configurations

Model 20 and Model 30 systems consist of three to six modules horizontally
connected to form a single desk- or shelf-top unit. Figure 9-1 demonstrates this
modular design. There are six module types, each type accommodating specific
components of the system.

" This chapter describes the Model 20 and Model 30 system modules and their
architecture, configurations, and interconnections. The chapter also details
system cabling and system expansion potential.

9-2 Model 20 and Model 30 Modules and Configurations

Power switch (power module)

Figure 9-1 Model 20 and Model 30 modules

14

Errata

Page 9-9

Under page heading, “Module Architecture”,
The first two sentences of the paragraph should read:

Each module consists of a metal cage with a base plate and removable front
radio-frequency interference (RFI) shield panel. The metal cage is enclosed in
removable plastic front, rear, and top panels.

Page 9-11

Add the following phrase to the second sentence of the second paragraph, after
“removing its plastic front cover”:

“ and RFI shield panel.”
Page 9-12

Under paragraph heading, “Input/Output Bus”,
The fourth sentence of the paragraph, beginning in line 5, should read:

The input/output bus can be extended to incorporate compatible Data General
peripherals, as explained under “Input/Output Bus Extension”.

Page 9-14

Under page heading, “Input/Output Bus Extension”,
First paragraph, line 2; third paragraph, lines 3 and 4:

Change the word “standard” to “compatible”; delete the word “Microproducts”.
Add the following note after the first paragraph:

NOTE Data General does not provide support for controller/peripheral
combinations connected to the Models 20 or 30 systems by means of the external,
extended microl/O bus cable.

Change the fourth paragraph, beginning on the bottom of the page, to read:

Remember that when compatible peripheral(s) are connected to the system by
means of the extended microl/O bus, the last peripheral connected to the extended
microl/O bus must terminate the bus.

Page 9-29

Under page heading, “Line Cords”,
Add the following warning:

WARNING In some configurations it is possible that your computer system
may exceed standard (15 amps) duplex wall outlet power specifications. This will
cause an outlet overload, resulting in a tripped circuit breaker (or blown fuse) at
your local ac power distribution panel. In this case, the system will require
higher capacity wiring and wall outlet.

Model 20 and Model 30 Modules and Configurations 9-3

Unit Architecture

The six module types that can comprise Model 20 and Model 30 systems are
pictured in Figure 9-2 through Figure 9-4 and are described below.

Power module
CPU logic module
Disk module
Diskette module

ac power input connectors
to power supplies

Power supply 1

Power supply 2

Disk interface card)
Disk drive unit Cooling blower power switch for CPU logic, disk,

Diskette interface card diskette, and logic expansion
Diskette drive unit O {when present) modules {mounted
Diskette drive unit 1 (optional) to plastic front panel)

Figure 9-2 Model 20 and Model 30 system modules (front view)

Model 20 and Model 30 Modules and Configurations

Convenience ac power cord
receptacle

ac line fuse

ac power line cord receptacle

Figure 9-3 Model 20 and Model 30 system modules (rear view)

Model 20 and Model 30 Modules and Configurations

Power switch (tape module)

NOTES

1. microl/O bus terminator position when tape module
is present and no external peripherals are connected
to extended bus.

2. See Figure 9.10 for microl/O bus terminator posi-
tion when neither the tape module nor internal
microl/O bus expansion cable are present

ac power line cord receptacle
(tape module)

microl/O bus terminator or extended bus
connector position (See notes 1 and 2).
Terminator shown.

ac line fuse (tape module)

Figure 9-4 Tape module (rear view)

Power Supply Module (PM)

This module contains an ac line connection; a line fuse; a convenience ac outlet;
a power on/off switch; a cooling blower; space for a line frequency clock card;
and space for two power supply assemblies. Power supply (supply 1) occupies
the left-most position; power supply (supply 2) occupies the right-most position.
The cooling blower, located at the bottom of this module, draws air, from the
outside, through vents in the front and rear panels of the module and the power
supply assemblies and forces it through all adjacent modules connected to its
left. The air exhausts the modules through air vents in their top panels. Figure
9-5 shows the air flow pattern.

CPU Logic Module (CLM)

This module accepts up to five 7-inch by 9-inch printed circuit cards includ-
ing the system processor card, memory cards, and /0 interface cards. The
hardware floating point card of the Model 30 system is also contained in this
module. All components contained in the CLM receive their power from power

supply 1.

Model 20 and Model 30 Modules and Configurations

Logic Expansion Module (LEM)

This module accepts up to five 7-inch by 9-inch printed circuit cards. A printed
circuit card must occupy slot 1 of this module to pass interrupt and data channel
priority signals. (See “"Backpanel Priority Switches” later in this chapter.) All
components contained in the LEM receive their power from power supply 2.

Disk Module (DM)

This module contains a fixed disk drive unit and the disk controller card. The
disk controller card can interface to a second disk drive contained in an expan-
sion unit, described below. Both the disk controller card and the disk drive
receive their power from power supply 2.

For additional disk storage capacity, an expansion unit consisting of power
module and a disk module can be added to the system. When the expansion
unit is added to the system, its power module contains only one power supply
assembly (supply 1), and its disk module contains only the disk drive. The
expansion drive connects to the disk interface contained in the system unit.

Diskette Module (FM)

This module contains the diskette controller card and space for two diskette
drive units, one standard, and one optional. The diskette controller card
interfaces to both drives. All components contained in the FM receive their
power from power supply 1.

Tape Module (TM)

This module contains a cartridge tape drive unit, and controller card along with
its own power supply, cooling fan, power on/off switch, ac line connection, and
line fuse. The cartridge tape controller communicates with the system processor
unit over the microl/O bus, to which it is connected by way of a flat ribbon cable
to the diskette module backpanel.

Model 20 and Model 30 Modules and Configurations

9-7

Figure 9-5 Air flow

Configurations

Preconfigured Model 20 and Mode

Air flow

Air flow

ID-00655

1 30 system units always consist of at least

four modules; a power module with two power supplies, CPU logic module, disk
module, and diskette module. They can be expanded to six modules by the

The disk expansion unit, when pre

sent, always consists of two modules; a power

module with one power assembly, and a disk module.

Model 20 and Model 30 Modules and Configurations

Power module (PM)

CPU logic module (CLM)
Power module (PM)

CPU logic module {CLM)
Disk module (DM)

Diskette module
(FM)

Logic expansion module {LEM)
Disk module (DM)
Diskette module (FM)

Basic configuration

Power module (PM)

CPU logic module (CLM)

Logic expansion module (LEM)
Disk module (DM)
Diskette module (FM)
., Tape module (T™M)

Power module (PM)
CPU logic module (CLM)
Disk module (DM)

Diskette
module {FM)

Tape
module

Basic configuration expanded with
logic expansion and tape modules

Basic configuration expanded
with tape module. Power module (PM)

CPU logic module {CLM)
Logic expansion module (LEM) \
Disk module (DM)

Power module (PM) .
Diskette module (FM)

Disk module (DM)

Basic configuration expanded with logic
expansion (optional), disk module and
disk expansion unit.

Figure 9-6 Model 20 and Model 30 system unit configuration

Basic configuration expanded with logic expansion

ID-00656

Model 20 and Model 30 Modules and Configurations

9-9

Module Architecture

Each module consists of a metal cage with a base plate and removable plastic
front, rear, and top panels. End modules have a removable plastic end panel.
Adjacent cages mechanically interlock with one another. Except for the cages
of the power supply, tape, and expansion disk modules, each cage contains its
own printed circuit backpanel with connectors that electrically interconnect
the backpanels of adjacent modules. The LEM and DM backpanels contain two
intermodule connectors, one at each end. The CLM and FM backpanels each
contain one intermodule connector, located on the left end of the CLM back-
panel and the right end of the FM backpanel. All backpanels also contain one to
five connector(s) that accept the B connector of up to five system printed circuit
cards. Figure 9-7 shows a typical Model 20 and Model 30 module.

9-10

Model 20 and Model 30 Modules and Configurations

Rear
panel

DIN connector
for power and
1/O transfer to
next module

Side panel
(If last module in
configuration)

Figure 9-7

Metal chassis

Top panel

Receptacle for

controller "B" connector Air vents

DIN connector for power

and 1/O from previous module
Back panel
PCB card

/]

Installation slots
for controller card

Latches for
module interconnection

/ RFI shield
//‘

Latch catches for
module
interconnection

Power
connector

Ground
connector

e

To disk
drive

L

Front panel

Base plate

Typical Model 20 and Model 30 module

ID-00657

Model 20 and Model 30 Modules and Configurations 8-11

The CLM backpanel has the power supply harness soldered to its right end.

On the other end of this harness are two connectors that plug into the power
supply assemblies as shown in Figure 9-8. The FM and DM backpanels have a dc
power cable soldered to them near their left end. On the other end of each cable
is a connector that plugs into the rear of the drive unit (refer to “"Diskette Power
Cable” and "Disk Power Cable” in this chapter). The dc power cable for the
expansion disk module plugs into a dc load card mounted in the backpanel
position of the expansion disk drive module. A dc power cable connects the load
card to the power supply assembly of the expansion unit.

System cards (except for the tape controller), diskette or disk drives, and the
power supply assemblies are inserted from the front of the respective module
after removing its plastic front cover. The tape controller card inserts from the
rear of its module after removing the rear plastic cover.

S

dc power cabie 1
dc power cable 2

Figure 9-8 Dc power cable connections

Power Bus

Two printed circuit power busses extend across the CLM, LEM, FM, and DM
backpanels. One power bus on each backpanel connects power to all compo-
nents contained within that module, and then passes to the next module on
the left through connectors that electrically connect adjacent backpanels. The
second power bus on each backpanel simply passes to the next module on the
left through the connectors that electrically interconnect adjacent backpanels.
Both power busses begin on the CLM module backpanel. A power supply
harness, which connects to the power supply assemblies, is soldered on the

9-12

Model 20 and Model 30 Modules and Configurations

right end of the CLM backpanel.

The components in the CPU logic and diskette modules are powered by power
bus 1, connected to power supply 1. The components in the logic expansion and
disk modules are powered by power bus 2 connected to power supply 2. The
expansion disk drive, when present, is powered from power supply 1 of the
expansion power supply.

NOTE When installing additional cards in the CPU logic or logic expansion
module, or installing an additional diskette drive in the diskette module, be
sure that the dc current draw does not exceed the dc current capacity of the
respective power supply assembly.

Memory Bus

A printed circuit memory bus extends horizontally across the CLM backpanel.
It connects the Model 20 and Model 30 system processor unit and optional
hardware floating point cards to the system memory card(s). The memory bus
contains 26 signal lines for address and data transfers, timing, and control.

Input/Output Bus

A printed circuit input/output bus extends horizontally across the CLM, LEM,
FM, and DM backpanels. It connects the Model 20 and Model 30 system
processor unit to all system interfaces except the system console device. This
bus extends across backpanels using the connectors by which they are elec-
trically interconnected. The input/output bus can be extended to incorporate
standard Data General Microproducts peripherals, as explained under “Input/
Output Bus Extension.” The input/output bus contains 13 signal lines for data
transfers, control, timing, and priority enforcement.

Input/Output Bus Termination Termination for the input/output bus

must be provided at the tape module (in the diskette module when the tape
module is not present) when the extended microl/O bus is not present. Termina-
tion is accomplished with a DIP termination block that plugs onto pins located on
the FM backpanel (see Figure 9-9 when the tape module or the optional internal
extended microl/O bus cable within the diskette module is not present. When the
tape module or the internal extended microl/O bus cable is present, termination
is accomplished by a D connector type terminator that plugs onto the extended
microl/O bus connector at the rear of the respective module (see Figure 9-10).
When the extended microl/O bus is present, termination of the input/output bus
must be accomplished by an I/O bus terminator at the last Microproducts
peripheral connected to the expanded bus.

Model 20 and Model 30 Modules and Configurations 9-13

NOTE Connector position for microl/O microl/O bus terminator position (see note)
bus cable to tape module, when pres-

ent, or optional internal extended

microl/O bus cable, when present.

Figure 9-9 microl/O bus terminator (in diskette module)

9-14 Model 20 and Model 30 Modules and Configurations

NOTES microl/O bus terminator or extended bus
connector position (see notes 1 and 2)

1. microl/O bus terminator position when 2. See Figure 9.9 for microl/O bus termina-

tape module is not present or optional tor position when neither the tape module
internal extended microl/O bus cable is nor internal microl/O bus expansion cable
present but no external peripherals are are present.

connected to extended bus.

Figure 9-10 External microl/O bus connector or terminator positions

Input/Output Bus Extension The Model 20 and Model 30 system unit can
be electrically connected to standard Data General Microproducts peripherals
with one internal and one external extended microl/O bus cable.

The internal microl/O bus cable is located in the tape module when present,
otherwise an optional cable is located in the diskette module. One end contains
a 20-pin DIP connector that plugs onto the diskette module backpanel pins pro-
vided for the microl/O bus terminator described above. The other end contains a
25-pin D connector that mounts to the rear of the module’s cage, as shown in
Figure 9-10.

The external extended microl/O bus cable contains 25-pin D connectors at both
ends. One end plugs into a connector located at the rear of the tape or diskette
module as described above; while the other end plugs into the first standard
Microproducts peripheral connected to the Model 20 and Model 30 system. The
extended microl/O bus cable is available in various lengths to accommodate
peripheral placement.

Remember that when Microproducts peripheral(s) is connected to the system,

Mode!l 20 and Model 30 Madules and Configurations

9-15

the last peripheral connected to the extended microl/O bus must terminate
the bus.

Slot Assignments

Slot assignments for the Model 20 and Model 30 CPU logic and logic expansion
modules are listed in Figure 9-11 and Figure 9-12 respectively.

Slot 5 Slot 4 Slot 3 Slot 2 Slot 1
S
M M M F y
e e e P s
m m m U t
o o o e
r r r o m
Y Y y r
P
o o 0 M r
r e o
I I o ¢
e
/ / / r s
0 (o] 0 Y s
o
o r
r
U
|
n
/ i
0 t

FPU = Hardware floating point unit {Model 30 only}
I/0 = Input/output interface option

ID-00658
Figure 9-11 Slot assignments: CPU logic module

9-16 Model 20 and Model 30 Modules and Configurations

Slot 5 Slot 4 Slot 3 Slot 2 Slot 1
| | | I !
/ / / / /
(0] o] o} (o] 0
| | | | |
n n n n n
t t t t t
e e e e e
r r r r r
f f f f f
a a a a a
c c c c c
e e e e e
(o) (o] (0] (o} (o}
p p p P p
t t t t t
i i i i i
o o o o o
n n n n n

NOTE Slot 7 must contain an //O interface
printed circuit card to pass interrupt
and data channel priority signals.

ID-00659

Figure 9-12 Slot assignments: logic expansion module

Model 20 and Model 30 Modules and Configurations 9-17

Backpanel Pin Assignments

Actual backpanel layouts and their pin assignments for all modules are shown in
Figure 9-13 through Figure 9-16.

Power supply connection

Optional real time clock connections

GROUND oE_36_

—5 PS #1 E34 RTC - oggg
+5PS #1 OE_SE +5 PS #1 - O_E3_1
+5 PS #1 OE_SQ +5 PS #1 - 052_9
—5PS #1 E28 NO CON. - &E_2_7
GROUND E26 GROUND - 05_2_5
GROUND E24 GROUND - 0§2—3
—12 PS #1 E22 NO CON. - (éﬂ
+12 PS #1 E20 +12PS #1 - om
+12 PS #2 ogﬁ +12 PS #2 -0511
—12 PS #2 OE_HS_ NO CON. - OE_E
GROUND ogﬁ GROUND - OE_E
GROUND mEE GROUND - OE1_'|
—5 PS #2 05_12 NO CON. - O_EQ_
+5 PS #2 E8 +5 PS #2 - OEL
+5 PS #2 OE_B_ +5 PS #2 - OE_E;_
P-F_—f o4 POWER OK1 - E3
PF2 oEi— POWER OK2 - 051_

J6
PIN COLUMN A COLUMN B COLUMN C
32 +5 PS #1 +5PS #1 +5PS #1
31 +5PS #1 +5 PS #1 +5PS #1
30 +5PS #1 +5PS #1 +5PS #1
29 +5 PS #1 + 51 PS #1 + 5 PS #1
28 +5 PS #1 +5PS #1 + 5 PS #1
27 +5PS #1 +5Ps #1 + 5 PS #1
26 GROUND GROUND GROUND
25 GROUND GROUND GROUND
24 GROUND GROUND GROUND
23 GROUND GROUND GROUND
22 GROUND GROUND GROUND
21 GROUND GROUND GROUND
20 GROUND BMCLOCK BMCLOCK
19 DCHPOUTS BI/ODATA1 BI/ODATA1
18 EXTDCHR INTPOUTS CLEAR
17 EXTINT BI/ODATA2 BI/ODATA2
16 GROUND BI/OCLOCK BI/OCLOCK
15 GROUND GROUND GROUND
14 GROUND GROUND GROUND
13 GROUND GROUND GROUND
12 —12PS #1 + 12 PS #1 + 12 PS #1
11 —5 PS #1 — 5 PS #2 + 5 PS #1
10 —12 PS #2 + 12 PS #2 + 12 PS #2
9 GROUND GROUND GROUND
8 GROUND GROUND GROUND
7 GROUND GROUND GROUND
6 +5PS #2 +5PS #2 + 5 PS #2
5 +5 PS #2 +5PS #2 + 5 PS #2
4 +5 PS #2 +5PS #2 +5PS #2
3 +5 PS #2 + 5 PS #2 + 5 PS #2
2 +5 PS #2 +5PS #2 +5PS #2
1 +56 PS #2 +6 PS #2 +65PS #2

*PRIORITY JUMPER CABLES

Figure 9-13 Backpanel pin assignments: CPU lagic

INTPOUTS

DCHPOUTS
INTPOUT4

DCHPOUT4

INTPOUT3

DCHPOUT3
———— INTPOUT2
DCHPOUT2

———DCHPOUT1?
INTPOUT1

DCHPOUT2

INTPOUT2

DCHPOUT3

INTPOUT3

DCHPOUT4

INTPOUT4

ID-00685

Model 20 and Model 30 Modules and Configurations

SLOT 5 - J5 SLOT 4 - J4

EVEN PINS ODD PINS EVEN PINS 00D PINS
60 +5 PS #1 §9 +5 PS #1 60 +5 PS #1 59 +5PS #1
58 —5 PS #) §7 +5PS #1 58 —5 PS #1 57 +5PS #1
56 + 12 PS #1 §5 +12PS #1 56 +12 PS #1 §5 +12PS #1
§4 GROUND 53 GROUND 54 GROUND 53 GROUND
52 SYSCLOCK 51 XMA1 52 SYSCLOCK 51 XMA1
50 DATAO 49 DATAO 50 DATAO 49 DATAO
48 BUSADREN 47 XMAD 48 BUSADREN 47 XMAO
46 DATA1 45 DATA9 46 DATAY 45 DATA9
44 XMA2 43 SPARE 1 44 XMA2 43 SPARE 1
42 DATA2 41 DATATO 42 DATA2 41 DATAT0
40 XMA3 39 —12PS #1 40 XMA3 39 —12PS #1
38 DATA3 37 DATAIY 38 DATA3 37 DATATY
36 GROUND 35 SPARE 2 36 GROUND 35 SPARE 2
34 DATA4 33 DATAT2 34 DATA4 33 DATA12
32 DATAS 31 DATAI3 32 DATAS 31 DATAI3
30 WH/PARH 29 WU/PARL 30 WH/PARH 29 WL/PARL
28 DATAB 27 DATAN4 28 DATA6 27 DATAT4
26 BUSMEMCYE 25 XMA4 26 BUSMEMCYC 25 XMA4
24 DATA7 23 DATATS 24 DATA7 23 DATA1S
22 DCHPOUT4 21 DCHPOUTS 22 DCHPOUT3 271 DCHPOUT4
20 INTPOUT4 19 INTPOUTS 20 INTPOUT3 19 INTPOUT4
18 BUSREADY 17 SPARE 3 18 BUSREADY 17 SPARE 3
16 BI/OCLOCK 15 BI/OCLOCK 16 BI/OCLOCK 15 BIJOCLOCK
14 GROUND 13 BI/ODATA2 14 GROUND 13 BI/ODATA2
12 BI/ODATA2 11 GROUND 12 Bi/ODATA2 11 GROUND
10 SPARE 4 9 EXTDCHR 10 SPARE 4 9 EXTDCHR
8 EXTINT 7 SPARE 5 8 EXTINT 7 SPARE 5

6 CLEAR 5 BIJODATAT 6 CLEAR 5 BIJODATAT
4 BI/ODATAY 3 GROUND 4 BI/ODATAY 3 GROUND

2 BMTLOCK 1 BMCLOCK 2 BMCLOCK 1 BMCLOCK

SLOT 3 - J3 SLOT 2 - J2

EVEN PINS ODD PINS EVEN PINS 0DD PINS
60 +5PS #1 59 +5PS #1 80 +5 PS #1 59 +5PS #1
58 —5PS #1 57 +5PS #1 58 —5 PS #1 57 +5PS #1
56 +12 PS #1 56 +12 PS #1 §6 +12 PS #1 55 +12 PS #1
54 GROUND 53 GROUND 54 GROUND 53 GROUND
52 SYSCLOCK 51 XMA1 52 SYSCLOCK 51 XMA1
50 DATAO 49 DATAO 50 DATAQ 49 DATAO
48 BUSADREN 47 XMAO 48 BUSADREN 47 XMAO
46 DATA1 45 DATA9 46 DATA1 45 DATA9
44 XMA2 43 SPARE 1 44 XMA2 43 SPARE 1
42 DATA2 41 DATA0 42 DATA2 41 DATATO
40 XMA3 39 —12PS #1 40 XMA3 39 —12PS #1
38 DATA3 37 DATAT1 38 DATA3 37 DATAT1
36 GROUND 35 SPARE 2 36 GROUND 35 SPARE 2
34 DATA4 33 DATA12 34 DATA4 33 DATA12
32 DATAS 31 DATAI3 32 DATAS 31 DATA13
30 WH/PARH 29 WU/PARL 30 WH/PARH 29 WL/PARL
28 DATA6 27 DATA14 28 DATA6 27 DATA14
26 BUSMEMCYC 25 XMA4 26 BUSMEMCYC 25 XMA4
24 DATA7 23 DATA1S 24 DATA? 23 DATA1S
22 DCHPOUT2 21 DCHPOUT3 22 DCHPOUT1 21 DCHPOUT2
20 INTPOUT2 19 INTPOUT3 20 INTPOUT1 19 INTPOUT2
18 BUSREADY 17 SPARE 3 18 BUSREADY 17 SPARE 3
16 B1/OCLOCK 15 BIJOCLOCK 16 BI/OCLOCK 15 BI/OCLOCK
14 GROUND 13 BI/ODATA2 14 GROUND 13 BI/ODATA2
12 BI/ODATA2 11 GROUND 12 BI/ODATA2 11 GROUND
10 SPARE 4 9 EXTOCAR 10 SPARE 4 9 EXTDCHR
8 EXTINT 7 SPARE 5 8 EXTINY 7 SPARE 5
6 CLEAR 5 BiJODATAT 6 CLEAR 5 BI/ODATAT
4 BI/ODATA1 3 GROUND 4 BI/ODATA1 3 GROUND

2 BMCLOCK 1 BMCLOCK 2 BMCLOCK 1 BMCLOCK

Figure 9-13 Backpanel pin assignments: CPU logic

1D-00685

Model 20 and Model 30 Modules and Configurations

9-19

Backpanel
connector
to adjacent
module

SLOT 1 - J1

EVEN PINS ODD PINS
60 +5 PS #1 59 +5 PS #1
58 —5 PS #1 57 +5PS #1
56 +12 PS #1 55 +12 PS #1
54 GROUND 53 GROUND
52 SYSCLOCK 51 XMAT

50 DATAD 49 DATAO
48 BUSADREN 47 XMAD
46 DATAT 45 DATAS
44 XMA2~ 43 SPARE 1
42 DATAZ 41 DATA10
40 XMA3™ 39 —12 PS #1
38 DATA3 37 DATATT
36 GROUND 35 RTC #
34 DATAG 33 DATA1Z
32 DATAS 31 DATA13
30 WH/PARH 29 WL/PARL
28 DATAG 27 DATA14
26 BUSMEMCYC 25 XMA4
24 DATA7 23 DATA15
22 POWER OK 21 DCHPOUT1
20 PF 19 INTPOUT1
18 BUSREADY 17 SPARE 3
16 BI/OCLOCK 15 BI/OCLOCK
14 GROUND 13 BI/ODATA2
12 BIJODATA2 11 GROUND
10 SPARE 4 9 EXTDCHR
8 EXTINT 7 SPARE 5

6 CLEAR 5 BIJODATAT
4 BI/ODATA1 3 GROUND

2 BMCLOCK 1 BMCLOCK

Actual Layout of backpanel {viewed from front of module)

]/ B connectors

J7
o5 /

J6 J5 Ja J3 J2 Ji
— o — — Em— -———1
— Power supply
connection
(solder

connection)

O 0000000
OOOOO?OO

[
l
!

| Priority

1
0000 o

A 2

switches

|

1. Indicates pin 1 as viewed from front of chassis
2. When card slot empty, switch is in closed
position to extend priority chain.

9-20 Model 20 and Model 30 Modules and Configurations

J7 J8
PIN | COLUMN A COLUMN B COLUMN C PIN | COLUMN C COLUMN B COLUMN A
32 +5PS #1 +5PS #1 +5PS #1 32 +5 PS #1 +5PS #1 +5PS #1
31 +5PS #1 +5PS #1 +5PS #1 31 +5PS #1 +5PS #1 +5PS #1
30 +5 PS #1 +5PS #1 +5PS #1 30 +5PS #1 +5PS #1 +5PS #1
29 +5PS #1 +51PS #1 +5PS #1 29 +5PS #1 +51PS #1 +5ps #1
28 +5 PS #1 +5PS #1 +5PS #1 28 +5PS #1 +5PS #1 +5Ps #1
‘27 +5 PS #1 +5PS #1 +5PS #1 27 +5 PS #1 +5PS #1 + 5 PS #1
26 GROUND GROUND GROUND 26 GROUND GROUND GROUND
25 GROUND GROUND GROUND 25 GROUND GROUND GROUND
24 GROUND GROUND GROUND 24 GROUND GROUND GROUND
23 GROUND GROUND GROUND 23 GROUND GROUND GROUND
22 GROUND GROUND GROUND 22 GROUND GROUND GROUND
21 GROUND GROUND GROUND 21 GROUND GROUND GROUND
20 GROUND BMCLOCK BMCLOCK 20 | BMCLOCK BMCLOCK GROUND
19 DCHPOUTS BI/ODATA1 BI/ODATA1 19 | BI/ODATA1 BI/ODATA1 DCHPIN
18 EXTDCHR INTPOUTS CLEAR 18 | CLEAR INTPIN EXTDCHR
17 EXTINT BI/ODATA2 BIJODATA2 17 | BI/ODATA2 BI/ODATA2 EXTINT
16 GROUND BI7OCLOCK BI/OCLOCK 16 | BI/OCLOCK BI/OCLOCK GROUND
15 GROUND GROUND GROUND 15 GROUND GROUND GROUND
14 GROUND GROUND GROUND 14 GROUND GROUND GROUND
13 GROUND GROUND GROUND 13 GROUND GROUND GROUND
12 —12 PS #1 +12PsS #1 + 12 PS #1 12 +12 PS #1 + 12 PS #1 — 12 PS #1
11 —5 PS #1 —5PS #2 + 5 PS #1 1 +12 PS #2 — 6 PS #2 — 5 PS #1
10 —12PS #2 | +12PS #2 + 12 PS #2 10 +12PS #2 | +12PS #2 — 12 ps #2
9 GROUND GROUND GROUND 9 GROUND GROUND GROUND
8 GROUND GROUND GROUND 8 GROUND GROUND GROUND
7 GROUND GROUND GROUND 7 GROUND GROUND GROUND
6 +5 PS #2 +5PS #2 + 5 PS #2 6 +6 PS #2 +5PS #2 + 5 PS #2
5 +5 PS #2 +5PS #2 +5PS #2 5 +5PS #2 +5PS #2 +5PS #2
4 +5 PS #2 +5PS #2 + 5 PS #2 a +5 PS #2 +5 PS #2 +5pS #2
3 +5 PS #2 +5PS #2 + 5 PS #2 3 +5 PS #2 +5 PS #2 +5PS #2
2 +5 PS #2 +5PS #2 + 5 PS #2 2 +5 PS #2 +5PS #2 + 5 PS #2
1 +5PS #2 +5PS #2 +5 P8 #2 1 +5 PS #2 +5 PS #2 4 5PS #2
*PRIORITY JUMPER CABLES Actual Layout of backpanel (viewed from front of module)
INTPOUTS
DCHPOUTS
INTPOUT4 J6
DCHPOUT4 3]
INTPOQUT3 J7 J5 Ja J3 J2 J1 J8
DCHPOUT3
INTPOUT2
DCHPOUT2 Backpanel
connector \\
‘I] to adjacent
module
—————DCHPOUT 1
————INTPOUT1
DCHPOUT2 ¥ * * :
INTPOUT2 D D D D ’//’—r’
DCHPOUT3
INTPOUT3
DCHPOUT4
INTPOUT4

| __ B connectors

Backpanel

4~ connector

* Indicates pin 1 as viewed from the front of chassis
** When card slot is empty, switch is in closed
position to extend priority chain

Figure 9-14 Backpanel pin assignments: logic expansion module

from adjacent
module

Priority
jumper
switches **

ID-00686

Model 20 and Model 30 Modules and Configurations

9-21

SLOT 5 - J3 SLOT 4 - J4
EVEN PINS ODD PINS EVEN PINS 00D PINS
60 +5 PS #2 59 +5 PS #2 60 +5PS #2 59 +5PS #2
58 —6 PS #2 57 +5PS #2 58 —5 PS #2 57 +5PS #2
56 +12 PS #2 56 +12 PS #2 56 +12 PS #2 55 +12 PS #2
54 GROUND 53 GROUND 54 GROUND 53 GROUND
52 51 52 51
50 49 50 49
48 a7 48 47
46 45 46 45
44 43 44 43
42 a1 42 41
40 39 —12PS #2 40 39 12 PS #2
38 37 38 37
36 GROUND 35 36 GROUND 35
34 33 34 33
32 31 32 31
30 29 30 29
28 27 28 27
26 25 26 25
24 23 24 23
22 DCHPOUT4 21 DCHPOUTS 22 DCHPOUT3 21 DCHPOUT4
20 INTPOUT4 19 INTPOUTS 20 INTPOUT3 19 INTPOUT4
18 17 18 17
16 BI/OCLOCK 15 BIJOCLOCK 16 BI/OCLOCK 15 BIJOCLOCK
14 GROUND 13 BI/ODATA2 14 GROUND 13 BI/ODATA2
12 BIJODATA2 11 GROUND 12 BI/ODATA2 11 GROUND
10 9 EXTDCHR 10 g EXTDCHR
8 EXTINT 7 8 EXTINT 7
6 CLEAR 5 BI/ODATA! 6 CLEAR 5 BI/ODATA1
4 BI/ODATA1 3 GROUND 4 BI/ODATA1 3 GROUND
2 BMCLOCK 1 BMCLOCK 2 BMCLOCK 1 BMCLOCK
SLOT 3 - J3 SLOT 2 - J2 SLOT 1 - 1
EVEN PINS 0DD PINS EVEN PINS 0DD PINS EVEN PINS 0DD PINS
60 +5PS #2 59 +5PS #2 60 +5PS #2 53 +5PS #2 60 +5 PS #2 59 +5PS #2
58 —5 PS #2 57 +5PS #2 58 —5 PS #2 57 +5PS #2 58 —5 PS #2 57 +5PS #2
56 +12 PS #2 55 +12PS #2 56 +12PS #2 55 412 PS #2 56 + 12 PS #2 55 +12 PS #2
54 GROUND 53 GROUND 54 GROUND 53 GROUND 54 GROUND 53 GROUND
52 51 52 51 52 51
50 49 50 49 50 49
48 47 48 47 48 47
46 45 46 45 46 45
44 43 a4 a3 44 43
42 41 42 41 42 "
40 39 12 ps #2 40) 39 —12p5 #2 40 39 —12PS #2
38 37 38 37 38 37
36 GROUND 35 36 GROUND 35 36 GROUND 35
34 33 34 33 34 33
32 31 32 31 a2 31
30 29 30 29 30 29
28 27 28 27 28 27
26 25 26 25 26 25
24 23 24 23 24 23
22 DCHPOUT2 21 DCHPOUT3 22 DCHPOUT1 21 DCHPOUT2 22 DCHPIN 21 DCHPOUT1
20 INTPOUT2 19 INTPOUT3 20 INTPOUT1 19 INTPOUT2 20 INTPIN 19 INTPOUT1
18 17 18 17 18 17
16 BI/OCLOCK 15 BIJOCLOCK 16 BI/OCLOCK 15 BI/OCLOCK 16 BI/OCLOCK 16 BIJOCLOCK ~
14 GROUND 13 BI/ODATA2 14 GROUND 13 BI/ODATA2 14 GROUND 13 BI/ODATA2
12 BI/ODATA2 11 GROUND 12 BI/ODATA2 11 GROUND 12 BI/ODATAZ - 11 GROUND
10 9 EXTDCHR 10 9 EXTDCHR 10 9 EXTDCHR
8 EXTINT 7 8 EXTINT 7 8 EXTINT 7
6 CLEAR 5 BI/ODATA1 6 CLEAR 5 BI/ODATA1 & CLEAR 5 BIODATAT
4 BI/ODATA1 3 GROUND 4 BI/ODATA1 3 GROUND 4 BI/ODATA1 3 GROUND
2 BMCLOCK 1 BMCLOCK 2 BMCLOCK 1 BMCLOCK 2 BMCLOCK 1 BMCLOCK

9-22 Model 20 and Mode! 30 Modules and Configurations

Figure 9-15 Backpanel pin assignments: diskette module

SLOT 1 - J2 J1
EVEN PINS 0ODD PINS PIN COLUMN C COLUMN B COLUMN A
60 + 5 PS #1 59 + 5 PS #1 32 +5 PS #1 +5 PS #1 +5PS #1
58 —5PS #1 57 + 5 PS #1 31 +5 PS #1 +5 PS #1 + 5 PS #1
56 + 12 PS #1 55 + 12 PS #1 30 +5 PS #1 +5PS #1 + 5 PS #1
54 GROUND 53 GROUND
52 51 29 +5 PS #1 +5PS #1 + 5 PS #1
50 49 28 +5 PS #1 +5PS #1 + 5 PS #1
48 47 27 +5 PS #1 +5 PS #1 + 5 PS #1
46 45
44 43 26 GROUND GROUND GROUND
42 41 25 GROUND GROUND GROUND
40 39 —12 PS #1 24 GROUND GROUND GROUND
38 37
36 GROUND 35 23 GROUND GROUND GROUND
34 33 22 GROUND GROUND GROUND
a2 31 21 GROUND GROUND GROUND
30 29
28 27 20 BMCLOCK BMCLOCK GROUND
26 25 19 | BI/ODATA1 | BI/ODATA1 DCHPIN
24 23 18 CLEAR INTPIN EXTDCHR
22 DCHPIN 21 DCHPOUT1 17 BI/ODATA2 BI/ODATA2 EXTINT
20 INTPIN 19 INTPOUT1 16 BI/OCLOCK BI/OCLOCK GROUND
18 17
16 BI/OCLOCK 15 BIJOCLOCK 15 GROUND GROUND GROUND
14 GROUND 13 BI/ODATA2 14 GROUND GROUND GROUND
12 BI/ODATA2 11 GROUND 13 GROUND GROUND GROUND
10 9 EXTDCHR
8 EXTINT 7 12 +12 PS #1 + 12 PS #1 — 12 PS #1
6 CLEAR 5 BI/ODATA1 1 +12 PS #2 — 5 PS #2 — 5 PS #1
4 BI/ODATA2 3 GROUND 10 +12PS #2 | +12PS #2 — 12 PS #2
2 BMCLOCK 1 BMCLOCK
9 GROUND GROUND GROUND
Extended microl/O bus 8 GROUND GROUND GROUND
connection or bus terminator 7 GROUND GROUND GROUND
1 BMCLOCK 20 BMCLOCK 6 +5 PS #2 +5PS #2 4 5PS #2
2 GROUND 19 BI/ODATA1 5 | +sps#2 | +5Ps#2 +5PS #2
3 BI/ODATA1 18 CLEAR 4 | +s5ps#2 | +5PS#2 +5Ps #2
4 INTPOUT1 17 EXTINT
5 EXTDCHR 16 DCHPOUT1 3 15 PS #2 +5PS #2 +5ps #2
6 GROUND 15 BI/ODATA2 2 | +s5Ps#2 | +5Ps#2 +5Ps #2
7 BI/ODATA2 14 GROUND +5 PS #2 +5PS #2 58PS #2
8 BIJOCLOCK 13 BI/OCLOCK
9 NO CONN. 12 NO CONN.
10 GROUND 11 REM/PWR/ON

ID-00687

Model 20 and Model 30 Modules and Configurations

9-23

Backpanel
connector
pins for
micro 1/0 bus
terminator for
extended
micro |/O bus
cable

Priority jumper switch

DCHPOUT1
INTROUT1

INTPIN

DCHPIN

Diskette drive

dc power cable connection

- +12PS #1
-~ GROUND

- GROUND
+5 PS #1

“ GROUND

et itk

Actual layout of backpanel (viewed from front of module)

~

Ja

Diskette
drive dc
power cable
connection
(solder
connection)

O 0 0 O

/

J2 J1

I

N

* Indicates pin 1 as viewed from front of chassis
** When card slot empty, switch is in closed
position to extend priority chain

-~ NO CONNECTION

S

B connectors

| —1— Backpanel

connector
from adjacent
module

Priority
jumper
switch **

9-24 Model 20 and Model 30 Modules and Configurations

J3

PIN COLUMN C COLUMN B COLUMN A
32 +5 PS #1 + 5 PS #1 + 5 PS #1
31 +5 PS #1 + 5 PS #1 +5PS #1
30 +5 PS #1 + 6 PS #1 + 5 PS #1
29 +5 PS #1 + 5 PS #1 + 5PS #1
28 +5 PS #1 + 5 PS #1 + 5 PS #1
27 +5 PS #1 + 5 PS #1 + 5 PS #1
26 GROUND GROUND GROUND
25 GROUND GROUND GROUND
24 GROUND GROUND GROUND
23 GROUND GROUND GROUND
22 GROUND GROUND GROUND
21 GROUND GROUND GROUND
20 GROUND BMCLOCK BMCLOCK
19 DCHPOUT1 BI/ODATA1 BI/ODATA1
18 EXTDCHR INTPOUT1 CLEAR

17 EXTINT BI/ODATA2 BI/ODATA2
16 GROUND BI/OCLOCK BI/OCLOCK
15 GROUND GROUND GROUND
14 GROUND GROUND GROUND
13 GROUND GROUND GROUND

12 —12 PS #1 + 12 PS #1 + 12 PS #1
11 —5 PS #1 — 5 PS #2 + 12 PS #2
10 —12 PS #2 + 12 PS #2 + 12 PS #2
9 GROUND GROUND GROUND

8 GROUND GROUND GROUND

7 GROUND GROUND GROUND

6 +5 PS #2 + 5 PS #2 + 5 PS #2
5 +5 PS #2 + 5 PS #2 + 5 PS #2
4 +5 PS #2 + 5 PS #2 + 5 PS #2
3 +5 PS #2 + 5 PS #2 + 5 PS #2
2 +5 PS #2 + 5 PS #2 + 5 PS #2
1 +5 PS #2 + 5 PS #2 + 5 PS #2

Figure 9-16 Backpanel pin assignments: disk module

Disk drive

dc power cable connection

56T fafo e

- +12 PS #1

- GROUND

- GROUND

- +5 PS #1

- NO CONNECTION
-~ GROUND

ID-00688

Model 20 and Model 30 Modules and Configurations 9-25
SLOT 1 - J2 J1
EVEN PINS 0DD PINS PIN | COLUMN C COLUMN B COLUMN A
60 +5 PS #1 59 +5 PS #1 32 +5 PS #1 +5PS #1 +5PS #1
58 —5 PS #1 57 +5 PS #1 31 +5 PS #1 +5PS #1 +5PS #1
56 + 12 PS #1 55 +12 PS #1 30 +5 PS #1 +5PS #1 + 5 PS #1
54 GROUND 53 GROUND
52 51 29 +5 PS #1 + 5 PS #1 + 5 PS #1
50 49 28 +5 PS #1 +5PS #1 +5PS #1
48 47 27 +5 PS #1 +5 PS #1 + 5 PS #1
46 45
44 a3 26 GROUND GROUND GROUND
42 41 25 GROUND GROUND GROUND
40 39 —12 PS #1 24 GROUND GROUND GROUND
38 37
36 GROUND 35 23 GROUND GROUND GROUND
34 33 22 GROUND GROUND GROUND
32 31 21 GROUND GROUND GROUND
30 29
28 27 20 BMCLOCK BMCLOCK GROUND
26 25 19 BI/ODATA1 BI/ODATA1 DCHPIN
24 23 18 CLEAR INTPIN EXTDCHR
22 DCHPIN 21 DCHPOUT1 17 BI/ODATA2 BI/ODATA2 EXTINT
20 INTPIN 19 INTPOUT1 16 BI/OCLOCK BI/OCLOCK GROUND
18 17
16 BI/OCLOCK 15 BIJOCLOCK 15 | GROUND GROUND GROUND
14 GROUND 13 BI/ODATA2 14 | GROUND GROUND GROUND
12 BI/ODATA2 11 GROUND 13 GROUND GROUND GROUND
10 9 EXTDCHR
8 EXTINT 7 12 +12 PS #1 + 12 PS #1 — 12 PS #1
6 CLEAR 5 BI/ODATA1 11 +12PS #2 | —5PS #2 —5PS #1
4 BI/ODATA2 3 GROUND 10 +12 PS #2 + 12 PS #2 — 12 PS #2
2 BMCLOCK 1 BMCLOCK
9 GROUND GROUND GROUND
8 GROUND GROUND GROUND
7 GROUND GROUND GROUND
6 +5 PS #2 +5PS #2 + 5 PS #2
Actual layout of backpanel (viewed from front of module) 5 +5 PS #2 +5PS #2 +5PS #2
4 +5 PS #2 + 5 PS #2 + 5 PS #2
| _ B connectors
53 Jz/u/ﬂ 3 +5Ps#2 | +5PS#2 + 5 PS #2
Backpanel 2 +5 PS #2 +5PS #2 + 5 PS #2
connector — Backpanel +5PS#2 | +5PS#2 +5Ps #2
connector

to adjacent |
module

Disk drive]
dc power

(s

O 0O 0O

module

cable
connection
(solder
connection)

* |Indicates pin 1 as viewed from front of chassis

from adjacent

9-26 Model 20 and Model 30 Modules and Configurations

Backpanel Priority Switches

When any backpanel slot between the Model 20 and Model 30 SPU card and
the farthest I/O interface card is unused or used by a card other than an 1/0
interface card, priority switching is required to pass two priority signals of the
I/O bus along the backpanel. These priority signals, interrupt priority (INTP),
and data channel priority (DCHP) connect across a slot by closing a slot priority
switch (up position) located on the front of the backpanels, as shown in Figure
9-13 through Figure 9-16. Four slot priority switches reside on the CLM and
LEM backpanels. One slot priority switch is included on the FM backpanel.
Closing a slot priority switch connects both the interrupt and data channel
priority chains across the slot. (Refer to [Installation Data Sheets], DGC No.
010-#u##84)

Power Switch

The power switch, located on the front of each power module (Figure 9-17),
turns power on and off for the system unit. This switch does not remove power
from a device plugged into the convenience outlet of the power module. When
an expansion disk unit is present, its power switch works jointly with that of the
system unit: both switches must be turned on to apply power to both units, and
both switches must be turned off to remove power. The power switch for the
tape module, when present, is located on the rear of that module (Figure 9-18).

NOTE When a tape module is present and is to be powered up, it must be
powered up before the system unit. Likewise, the tape module must not be
powered down while the system unit is powered up.

Power switch (power module)

Figure 9-17 Power switch, power module

Model 20 and Model 30 Modules and Configurations 9-27

Power switch (tape module)

NOTES

1. microl/O bus terminator position when tape module
is present and no external peripherals are connected
to extended bus.

2. See Figure 9.10 for microl/O bus terminator posi-
tion when neither the tape module nor internal
microl/O bus expansion cable are present

ac power line cord receptacle
(tape module)

microl/O bus terminator or extended bus
connector position (See notes 1 and 2).
Terminator shown.

ac line fuse (tape module)

Figure 9-18 Tape module (rear view)

9-28 Model 20 and Model 30 Modules and Configurations

System console connector position External disk expansion unit interface
cable connector position

ac line fuse {power module)

ac power line cord receptacle
(power module)

Figure 9-19 Model 20 and Model 30 system modules (rear view)

Line Fuses

Power fuses, located on the rear of each power module and the tape module as
shown in (Figures 9-17 and 9-18), protects the ac line input. Line power to the
Model 20 and Model 30 unit and to any device plugged into the power module’s
convenience outlet is applied through this fuse.

Power Interlock

The power interlock, located behind the front cover of each power module,
removes ac power from the blower and power supply assemblies when the
module’s front cover is removed.

WARNING Line power is present to the ac power connector and the conve-
nience ac power connector (both located at the rear of the PM), as well as to the
power interlock connector, when the ac power cord is plugged into its connector.

Model 20 and Model 30 Modules and Configurations 9-29

System Cables

Line cords, system console cable, and 1/O cables connect the system unit and
their components to ac line voltage and input/output devices. In addition, in the
Model 30, the hardware floating point card connects to the system processor
unit card through an internal cable. Internal interface and power cables connect
the diskette and disk drives to their respective interface cards and to dc power
sources. An external interface cable connects the main disk module to the
expansion disk module, when present. An internal microl/O bus cable connects
the tape subsystem interface (when present) to the diskette module backpanel.

Line Cords Line cords plug into connectors located at the rear of each power
supply module and the tape module, when present, as shown in Figure 9-19. The
line cord also supplies ac power, through the line fuse, to the device plugged into
the power module convenience outlet.

System Console Cable A system console cable connects the Model 20 and
Model 30 SPU directly to an optional terminal or system console device. One end
of this cable contains a 50-pin connector that plugs onto the asynchronous
interface port (A connector) of the SPU card as shown in Figure 9-19. The other
end contains a connector that plugs into a mating connector on the system
console davice.

Hardware Floating Point Interconnection Cable This cable carries
protocol signals for synchronizing floating point operations between the SPU card
and the hardware floating point card in the Model 30. Each end of this cable
contains a connector that plugs onto the C connectors of both cards, as shown in
Figure 9-20.

9-30 Model 20 and Model 30 Modules and Configurations

Memory card {Model 30 Hardware

floating point card slot") System processing unit (SPU) card

Diskette interface
cable connector

Hardware floating point interconnection
TModel 30 memory card(s) positioned cable position (model 30 only)
to left of Hardware floating point card

Figure 9-20 Model 20 and Model 30 system module (front view, covers removed).

Diskette Interface Cable The diskette interface cable connects the
diskette interface to one or two diskette drives. One end of this cable contains
a 50 pin connector that plugs onto the C connector of the diskette interface
card, as shown in Figure 9-20. The other end contains two connectors that plug
into mating connectors located on the rear of the diskette drives, as shown in
Figure 9-21.

Diskette Power Cable The diskette power cable provides dc power to the
diskette drive(s). One end of this cable is soldered directly to the diskette module
backpanel, as shown in Figure 9-15. The other end contains two 4-pin connectors
that plug into mating connectors located on the rear of the diskette drives, as
shown in Figure 9-21. In addition, a safety ground wire connects J4 of the
diskette module’s backpanel (shown in Figure 9-15) to J3, located on the rear
of the diskette drives (shown in Figure 9-21).

Model 20 and Model 30 Modules and Configurations 9-31

dc power cable connector

Signal cable connector

Ground wire connector

DG-25833

Figure 9-21 Diskette drive unit (rear view)

Disk Interface Cable The disk interface cable connects the fixed disk
interface to the fixed disk drive. One end of this cable contains a 50-pin connector,
with two flat-ribbon cables, that plugs onto the A connector of the disk interface
card. One flat-ribbon cable contains a connector that plugs into a mating connector
located on the rear of the disk drive, as shown in Figure 9-22. The second cable
contains a connector that mounts to the rear of the module’s cage to facilitate
connection to the expansion disk unit, when present.

Disk Power Cable The disk power cable provides dc power to the fixed
disk drive. One end of this cable is soldered directly to the DM backpanel, as
shown in Figure 9-16. The other end contains a connector that plugs into a
mating connector located on the rear of the disk drive, as shown in Figure 9-22.
In addition, a ground wire connects J4 of the disk module’s backpanel (shown in
Figure 9-16) to a terminal located on the rear of the disk drive (shown in
Figure 9-22). The power cable for the expansion disk drive contains a connector at
one end that plugs into a load card contained in the expansion disk drive module.
The other end contains a connector that plugs into a mating connector located on
the rear of the disk drive, as shown in Figure 9-22. The load card connects to the
expansion power supply assembly by a dc power cable. A ground wire also
connects between the load card and the expansion disk drive.

9-32 Model 20 and Model 30 Modules and Configurations

Ground wire connector

dc power cable connector

Signal cable connectors (2)

DG-25834

Figure 9-22 Disk drive unit (rear view)

Disk Expansion Unit Cable The system’s main disk module electrically
connects to an expansion disk module (when present) with three interface cables.
One of these cables is the disk interface cable described above that is located in
the main disk module.

A second interface cable contains 50-pin connectors at both ends. Each end of this
cable plugs into connectors located on the rear of the main disk and expansion
disk modules. Figure 9-19 shows this cable connector position on the disk module.

A third interface cable located in the expansion disk module, contains two
connectors: one connector is mounted on the rear of the expansion module’s cage;
the other connector plugs into the expansion disk drive, as shown in Figure 8-20.

Tape Module I/O Bus Cable This internal cable, when present, extends
the microl/O bus from the diskette module to the tape controller located in the

Model 20 and Model 30 Modules and Configurations 9-33

tape module. One end contains a 16-pin DIP connector that plugs onto pins
located on the diskette module backpanel as shown in Figure 9-23 and Figure
9-15. (This connector plugs onto the upper 16 pins of the 20 pins provided on
the backpanel.) The other end contains a connector that plugs onto the tape
controller card.

Extended microl/O bus cable connector position
(tape module 1/O bus connector plugs onto top
16 pins of the 20 pin provided)

Figure 9-23 Diskette module, internal view of backplane

Input/Output Cables Input/output cables connect I/O interfaces to the
device they control. One end of these cables contains a 50-pin connector that
plugs onto the A connector of the respective I/0 interface card, as shown in
Figure 9-24. The other end contains a connector that plugs into a mating
connector on the device the interface is controlling.

9-34 Model 20 and Model 30 Modules and Configurations

System input/output cable connector positions

NOTE Unused connector positions are covered
with a metal plate fastened to the modules
cage and a plastic insert that snaps into place
on the plastic rear panel.

Figure 9-24 Input/output cable connector positions

Errata 15

Page A-2

Delete reference to part number, the second-to-last line:

Related
Drawings

The table below lists Model 20 and Model 30 engineering drawings

llustrated
Part Number Part Schematic Parts List
005-017609 System Processor Unit (SPU) card with 001-003078 016-001321
firmware floating point
005-017611 System Processor Unit card with 001-003078 016-001321
hardware floating unit interface
005-020324 System Processor Unit card with 001-003078 016-001321
hardware floating unit interface and
commercial instruction set
005-016544 Hardware Floating Point Unit card 001-002863 016-001133
005-020323 Hardware Floating Point Unit card with 001-002863 016-001133
commercial instruction set
005-009663 SPU to FPU interconnection cable — 018-000113
005-019538 256 Kbytes Memory card 001-003136 016-001448
005-019537 512 Kbytes Memory card 001-003136 016-001448
005-019593 Diskette module backpanel 001-003345 016-001457
005-019698 Diskette interface card 001-003343 016-001455
005-021149 Diskette data cable 001-003421 018-001510
005-019331 Diskette power cable — 018-001488
005-019591 Diskette drive assembly — -
005-008152 Microl/O bus terminator 001-001027 016-000345
005-020331 Power supply PCB, 100V 001-003322 016-001465
005-020385 Power supply control PCB, 100V 001-003357 016-001466
005-020620 Power supply PCB, 120V and 220/240V 001-003322 016-001465
005-019683 Power supply controi PCB, 120V and 001-003357 016-001466
220/240V
005-019299 CPU logic module backpanel 001-003344 016-001456

Related Drawings

005-019337
005-021050
005-019347
005-019426
005-019915
005-019914
005-019344
005-019346

dc power cable

Logic expansion module backpanel
Disk module backpanel

Disk interface card

Disk data cable

Disk power cable

Disk drive assembly, 5 Mbytes
Disk drive assembly, 15 Mbytes

001-003433
001-003418
001-003401
001-003306
001-003417

018-001487
016-001474
016-001472
016-001441
018-001473
018-001489

Diskette
Diagnostic
Commands

This appendix explains the special diagnostic commands that can be carried out
under program control. It may help you to understand the diagnostic programs
if you are troubleshooting the Model 20 and Model 30 diskette subsystem. It is

not the intent of this section to explain how the commands are used or how the
hardware works.

A diagnostic operation is performed when a diagnostic command is specified
by the command field (bits 4-6) of the accumulator transferred to the diskette
interface during a {Specify Command and Diskette Address} instruction (DOA).
The diagnostic operation to be performed is encoded in bits 11-15 of the same
accumulator.

Diagnostic commands override other commands and may redefine the accumu-
lator formats of the programmed instructions. Diagnostic commands and a brief
description of their operations are listed in Table B-1.

B-2

Diskette Diagnostic Commands

Table B-1

Diagnostic commands

Bits 11-15 Command

Description

00000

00001

00010

00011

00100

00101

00110

00111

01000
01001

01010

01011

01100

01101

01110

01111
10000

Read Controller
Type

NOP
NOP

Read Drive Type
Bits

Write DIA Bits
8-15

Step In

Step Out

Start Data
Channel

NOP
Read DOC

NOP

Read Control
Program Revision
Number

Read Current
Track Address

Read Drive Mode
Bits

NOP
NOP
NOP

Sets bits 8-15 of the interface status register to zeros.
Diskette diagnostics interrogate these bits to determine the
interface hardware implementations to test.

No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.

Loads the diskette drive configuration switches of the
interface card into bits 8-15 of the diskette interface status
register (1). Bits 10 and 11 define them. When both bits are
0, drive is double-sided, 48 TPI; when bit 10 is O and bit 11
is 1, drive is double-sided, 96 TPI.

Loads bits 0-3 and 7-10 of the command register into bits
8-15 of the interface status register, and into bits 0-7 and
8-15 of the diskette interface word count register.’

Positions the head(s) of the selected drive to the next
higher-numbered track and increments the current cylinder
register.

Positions the heads of the selected drive to the next
lower-numbered track and decrements the current cylinder
register.

Simulates a data channel facility data transfer. When bit 8 of
the (Specify Command and Diskette Address) instruction
that issued this diagnostic operation is 1, a word will be
transferred from memory to the interface buffer; when bit 8
is 0, a word will be transferred from the interface buffer to
memory. The interface contains only a single-byte buffer for
use by this operation. Thus only the least significant byte
transferred on a data channel out operation will be stored. A
subsequent data channel in operation will receive this least
significant byte in both bytes of the word received. The
interface byte swapping feature can be enabled to test the
most significant byte.

Prior to issuing this command, the memory address register
should be loaded with a memory address and the word
count register with -1.

No operation is performed. The interface Done flag is set.
Loads bits 2-9 of the interface word count Bits 2-9 register
into bits 8-15 of the interface status register'. These bits
contain the portion of the word count register that specify
the number of sectors to transfer.

No operation is performed. The interface Done flag is set.
Loads the revision number of firmware in the interface
microprocessor into bits 8-15 of the interface status
register.’

Loads the current track address for the selected drive into
bits 8-15 of the interface status register.’

Loads the interface mode byte into bits 8-15 of the
interface status register.’ (Refer to Table 5.# for description
of the interface mode bits.)

No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.

Diskette Diagnostic Commands

B-3

Table B-1

Diagnostic commands (Continued)

Bits 11-15 Command

Description

10001
10010
10011
10100
10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

NOP

NOP

NOP

NOP

Write Diskette
Controller Track
Register

Write Diskette
Controller Sector
Register

Write Diskette
Controlier Data
Register

Read Diskette
Controller Status
Register

Read Diskette
Controller Track
Register

Read Diskette
Controller Sector
Register

Read Diskette
Controller Data
Register

Read DOA Bits
8-15

Read DOA Bits
0-7

Read Self-Test
Results

Run Self-Test

No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.
No operation is performed. The interface Done flag is set.

Loads bits 0-3 and 7-10 of the interface command register
into bits 8-15 of the controller track register.’

Loads bits 0-3 and 7-10 of the interface command register
into bits 8-15 of the controller sector register. "

Loads bits 0-3 and 7-10 of the interface command register
into bits 8-15 of the controller data register.’

Loads bits 7-O of the controller status register into bits 8-15
of the interface status register.’

Loads bits 7-0 of the controller track register into bits 8-15
of the interface status register.’

Loads bits 7-0 of the controller sector register into bits 8-15
of the interface status register.’

Loads bits 7-0 of the controller data register into bits 8-15
of the interface status register.’

Loads bits 8-15 of the interface command register into bits
8-15 of the interface status register."

Loads bits O-7of the interface command register into bits
8-15 of the interface status register."

Loads a two-hexadecimal digit code that specifies the
results of the interface self-test into bits 8-15 of the
controller status register.’ The following hexadecimal codes
specify the self-test results:

00 = no error

01 = failure in microprocessor RAM test
02 = failure in microprocessor ROM test
03 = failure in diskette controller chip test

Initiates a subset of the power-up self-test. The results of

this test can be determined by reading the diskette status

register and interrogating the Not OK status bit. (See Read
Self-Test Results above to determine the cause of a failure
specified by a Not OK status condition.)

' Diagnostic commands that load information into the interface status register do not cause the information loaded to
be returned to the SPU. The diagnostic command must be followed by a (Read Diskette Status) instruction (DIA) to
return the information to the SPU.

Execution Times
for Commercial
Instructions

C/30 commercial instruction execution times

Instruction Overhead 0 1 2 3 4 5 6 7
LDI 67 85+A 100+A 85+A 100+A 85+A 90+B 56+C 26+D
LDIX 165 +1 85F+A 100+A 85F+A 100+A 85F+A 90F+B — —
+ 30F + 85F’ +85F’
STI 491 +1 356 356 356 356 356 3556 — —
STI* — — — — — — — 155+E 230
STiIX 541F + 356F 356F 356F 356F 356F 355F — —
103 +1
LSN J 38 36 29 27 17 32 46 46

+40N + 40N + 40N +41N +37N +37N +11T +11T

*If the FPAC =0, the overhead will be 110 CPU cycles, and there will be no interrupts.
NOTES

= 15*(Number of digits — 1)

= 35*((Number of digits + 1)/2)

= 6*(Number of bytes in the string)

16*(Number of words in the destination)

= 12*(Number of bytes in the string)

Number of FPACs to convert

= (Number of FPACs to convert) — 1

~

= 40*(Number of program interrupts taken)

o = = = =3 O O R >
I

15*(Number of program interrupts taken)

C-2 Execution Times for Commercial Instructions

N
T = Number of bytes

Number of digits — 1

The overhead — in CPU cycles — for the Edit instruction is 23 + 13*(number of
subinstructions executed). The following table lists the number of CPU cycles
required for each Edit subinstruction.

DEND 4 DNDF 20 DSTK 24 DDTK 20

DSSZ 1 DSSO 1 DSTZ 1 DMVO 35 + 25/digit
DMVN 35 + 25/digit DSTO 1 DINT 13 DAPT 3

DMVC 39 + 16/digit DMVA 49 + 28/digit DINS 14 DICI 15

DADI 15 DASI 24 DMVF 22 + 17/digit DIMC + 7/digit

DMVS 17 + 38/digit DAPU 14

Maximum number of interrupts:

LDI —O
LDIX — 4
STI —3
STIX — 12

LSN — 1 per digit (byte)
EDIT — 1 per subinstruction

Compatibility
With ECLIPSE
Line Computers

The microECLIPSE™ based computers are compatible with the ECLIPSE line
of computers, up to and including the ECLIPSE S/140 series computers. Any
program currently running on an ECLIPSE S/140 computer will run on a
microECLIPSE™ based computer with the following changes:

Unique features — Data In Status returns the status of the addressed device
and places this data into the specified accumulator.

Emulator trap — The CPU in the Desktop Generation Model 20 and Model 30
systems has a hardware provision for instruction emulation. If the CPU
encounters an undefined instruction while operating in the mapped mode, it
automatically makes a jump through location 11g — provided that the contents
are not zero. This location can contain the indirect location of an emulator
routine.

Execution timing — The program may not be dependent on instruction
execution times or I/O transfer times. Times for the ECLIPSE S/140 series
computers may be faster than a microECLIPSE™ based computer depending
upon the application.

Reserved memory locations — Memory location 11 is now the location that the
processor will jump to for an emulator trap and should contain the address fault
handler routine.

Virtual console — Commands are entered on a terminal keyboard.

Automatic increment/Automatic decrement locations — Memory locations 20g
to 275 and 305 to 375 are not available for this purpose on microECLIPSE™ based
computers.

No load always skip — This is an undefined operation code for the Desktop
Generation Model 20 and Model 30; therefore, it results in an emulator trap.

D-2

Compatibility with ECLIPSE Line Computers

Floating-point manipulation — The return address pushed during a floating-
point trap is the address of the instruction following the instruction that caused
the trap.

The floating-point program counter is valid only when ANY is set.

Bit 9 of the FPSR is the resume bit. It should be ignored and not modified when
saving and restoring the floating-point status register. When initializing the
floating-point status, this should be set to zero.

Stack — No underflow protection is automatically provided. This may be
accomplished with a user subroutine if desired.

Bit O of the stack pointer will be set on a stack overflow if the return block
pushed by the stack overflow routine wraps around from the top location
(777773) to the bottom location 0 of memory.

MAP — If an instruction changes the current map state, the next instruction will
be fetched from and executed in the new map state. See DOA MAP.

During a MAP fault, the program counter produces unpredictable results.
There are four user maps available.

Any attempt to read beyond the maximum physical address space will return
undefined data. Any attempt to write beyond the maximum physical address
space will have no effect.

Error checking — Desktop Generation Model 20 and Model 30 computers check
for parity errors only.

Instructions

DIA MAP — Bit O will contain the extra map select bit; bit 1 will be set to O if the
map is off, and will be set to 1 if the map is on.

No validity traps occur on map single-cycle references.

DIVS and DIVX — Carry will be set to one only if an overflow condition occurs.
10RST — Will not affect any bits in the floating-point status register.

SKP — The AC field (bits 3 and 4) must be zero.

If the device specified by the device code is nonexistent, busy and done equal O.

LMP — When I/O protection is on, a map fault occurs and no accumulators are
altered.

ACO must be equal to zero or three.
NIO — The AC field (bits 3 and 4) must be zero.

XOP1 — Operates like the Extended Operation instruction except that it adds 32
to the entry number before it adds the entry number to the XOP origin address.

Within the index, the letter “f” following a page entry
indicates “and the following page”; the letters “ff”
following a page entry indicate “and the following
pages”. The letter “t” following a page entry indicates
that a table resides on the page. ?, virtual console
outputs a 3-9

A

Absolute addressing 1-3
Ac input specifications 8-3t
Ac interlock, power module 9-5
Ac line connection, power module 9-5
Ac line connection, tape module 9-6
Ac power cable 8-11
Ac power input connections (power supply) 8-13t
Accessible memory ranges 1-3
Accumulator format(s)
asynchronous communications interface 2-3
CPU Status instruction 1-27
Data In Status instruction 1-29
diskette subsystem 2-22
Enable Parity Checking instruction 1-46
Initiate Page Check instruction 1-38
Load Map instruction 1-35
Load Map Status instruction 1-36
Map Page 31 instruction 1-40
Page Check instruction 1-39
programmable interval timer 2-15
Read Map Status instruction 1-37
Read Parity Fault Address instruction 1-45
Read Parity Fault Code instruction 1-45
Read Virtual Console Register instruction 1-28
real-time clock interface 2-11

Index

Accumulator instructions 1-18t
Accumulator states following a program load 3-8
Accumulators, 3-3
fixed-point 4-3
floating-point 1-8f, 4-3, 6-2
Add instructions 1-11t
Address bus 4-14
Address displacement 1-2
Address error (diskette subsystem) 2-51
Address latch 4-29
Address maps, user 4-4
Address phase 4-12, 4-25, 5-8
Address space
logical 1-9
physical 5-2f
Address translation 1-30, 3-2, 4-32
definition 1-30
map 1-9
Address translation
logical-to-physical 6, 4-4
MAP 1-31
Addressing modes 1-3
Addressing
absolute 1-3
bit 1-3
byte 1-3
direct 1-2
indirect 1-2
indirection levels of 1-2
memory 1-2
relative 1-3
Air flow 9-5
ALC instructions
(see arithmetic/logic class instructions)
Altitude 13t

Index-2

Analog-to-digital I/0 interface 3
Arbitration, bus 4-20
Architecture
module 9-9
SPU system 4-10
unit 9-3
Arithmetic logic unit 4-3
Arithmetic/logic class instructions 1-6
Arithmetic/logic class instructions operation
sequences flow diagram 1-7
Asynchronous communications device 4-3
Asynchronous communications interface, 2-2ff, 4-2,
4-5, 4-27
accumulator format 2-3
baud rates 4-27
character formats 2-9
character structure 2-3
device codes 2-3
line characteristics 4-5
line speed 2-3
mnemonics 2-3
priority mask bits 2-3
programming 2-7
programming summary, 2-3
Start, Clear, Pulse, and IORST functions 2-3
transfer rates 4-5
Asynchronous communications port 8, 3-2
Autorestart 1-48

B

B command, virtual console 3-6t
Backpanel 9-9
Backpanel interconnection 9-9
Backpanel pin assignments 9-17ff
Backpanel priority switches 9-26
Backpanel
pin assignments CPU logic module 9-18f
pin assignments disk module 9-24f
pin assignments diskette module 9-22f
pin assignments logic expansion module 9-20f
Bad sector flag {diskette subsystem) 2-52
Baud rates, asynchronous communications interface
4-27
BCD format 1-9
Bit addressing 1-3
Bit pointer 1-3
Block diagram
bus interface 4-37
CPU internal 4-19
CPU section 4-16f
diskette interface 7-14f
diskette subsystem interconnection 7-8f
floating-point card 6-10f
MAP unit 4-31
memory card 5-6f
microl/O bus state machine 4-34
power supply 8-4f
SPU 4-13

SPU system architecture 4-11
system organization 7
Blower, (see also fan) 3, 9-5
Break flag 2-5
Break function 3-2
Break key 1-48, 3-2, 3-9, 4-28
Break key enable switch 4-28
Break key interrupt 4-6
Breakpoint(s) (virtual console), 3-2, 3-5
deleting 3-7, 3-9
encountering a 3-7
setting 3-6, 3-9
Bus arbitration 4-20
Bus buffers, local 4-26
Bus extension, input/output 9-12, 9-14
Bus interface
block diagram (SPU card) 4-37
IEEE-488 3
microl/0 4-33
SPU card 4-37
Bus termination
input/output 9-12
microl/0 9-12
Bus transceivers
local 4-14
memory 4-24
Bus width
memory 4-11
microl/0 4-11
Bus
address 4-14
console 4-11
CPU 4-3, 4-12, 4-14
floating-point 4-11
input/output 9-12
local input 4-14
local output 4-14
memory 6, 4-11f, 6-12, 9-12
memory address/data 4-3
microl/0 6, 4-11
multimaster 4-14
power 9-11
system 6, 6-12
Busy flag(s)
PIT 2-16
RTC 2-11
diskette subsystem 2-24
TTI/TTO 2-3
Byte addressing 1-3
Byte pointer 1-3
Byte strings 1-9

C

Cable
ac power 8-11
dc power 8-11
device 4-10
disk expansion unit 9-32

disk interface 9-31
disk power 9-11, 9-31
diskette drive dc power 7-3
diskette interface 9-30
diskette interface signal 7-3
diskette power 9-11, 9-30
hardware floating-point card, interconnection 9-29
input/output 9-16
system console 9-29
tape module I/0 bus 9-32
Cabling 9-29
Cage, module 9-9
Capacity
disk 9
diskette 2-20
memory 3, 8, 4-4
Card hardware floating-point 9-5
Card insertion, system 9-11
Card installation, diskette interface 7-5
Card(s) 4
dc load (disk expansion unit) 9-31
disk interface 9-6
diskette controller 9-6
hardware floating-point 6
1/0 interface 9-5
line frequency clock generator 3, 8, 9-5
memory 3, 8, 4-4, 9-5
system processor 9-5
tape controller 9-6
installing additional system 9-12
Carry bit 3-3
Cartridge tape drive 4, 9, 9-6
Cartridge tape module 3, 9-6
Cell commands, virtual console 3-4f
Cell(s) (virtual console), 3-3f
closing 3-4
current 3-4
internal 3-3t
memory 3-3
nonexistent internal 3-9
nonexistent memory 3-9
opening 3-4
Changing MAP status, virtual console 3-8
Character formats asynchronous communications
interface 2-9
Character instruction set 6
Character structure asynchronous communications
interface 2-3
Characteristics
asynchronous communications interface, line 4-5
memory 5-3
SPU operating 4-7
Checkword error (diskette subsystem) 2-52
Clear to Send 4-27
Clock counter (PIT) 2-15
Clock cycle time, I/0 4-12
Clock generator card, line frequency 3, 9-5
Clock rates, programmable interval timer 4-5
Clock, real-time 8, 4-2, 4-5, 4-27

Command argument, virtual console 3-3
Command flags, I/0 1-20
Command format, virtual console 3-3
Command register (diskette subsystem) 2-23
Command

program load 4-6
Commands (virtual console)

B 3-6t

cell 3-4t, 3-4

D 3-6tf

function 3-5

G 3-6tf

H 3-6t

I 3-6tf

X 3-6t

L 3-6t

0 3-6t

P 3-6t

program load 3-8, 3-10

R 3-6t

U 3-6t
Commands

diskette 2-27

diskette diagnostic B-1f
Commercial formats 1-5
Commercial instructions 1-9, 1-19t
Commerical instruction executions times C-1f
Commerical instructions 6
Communications multiplexors 3
Compability with ECLIPSE line computers D-1f
Computational skip instructions 1-16t
Computing instructions 1-11
Configurations, 3

diagram 5

minimum 3

system 6, 9-7

system expansion 9-7
Connections

power status signals 8-13t

ac line (power module) 9-5

ac line (tape module) 9-6

ac power input (power supply) 8-13t

dc voltage output (power supply) 8-13t

tape controller 9-6
Connector positions

diskette interface card 7-7

floating-point card 6-7

memory card 5-4

SPU card 4-7
Console bus 4-11
Console

system 4-7

virtual 4-6, 4-30
Control and status card, power supply 8-2f
Control circuitry (SPU card) 4-21
Control signals microl/O bus interface (SPU card)

4-35
Convert instructions 1-14t
Cooling blower 3

Index-3

Index-4

Correcting typographical errors, virtual console 3-9
Count rate programmable interval timer 2-15
Count rates, programmable interval timer 2-14
CPU (Central processing unit), 4-2
CPU Acknowledge instruction 1-28, 4-27f
CPU
bus 4-3, 4-12, 4-14
bus width 4-3
capabilities, summary of 1-2
device instructions 1-21
Done bit {see also powerfail signal) 1-48
instruction set 1-11
internal block diagram 4-19
internal registers 4-3
microcycle time 4-12
power-up response 1-48
section 4-13ff
section block diagram 4-16f
skip flags 1-21
status register 1-27, 1-48, 4-5f, 4-27ff
support elements 4-26
support section 4-14
specifications 10t
CPU logic module 3, 8-11, 9-5
backpanel, pin assignments 9-18f
slot assignment 9-15
CPU Status instruction 1-27
accumulator format 1-27
Current user map 3-6
Cylinder, diskette 7-4

D

D command, virtual console 3-6t, 3-7
Data channel
facility 4-4
interrupt 4-11
latency 4-4
latency, diskette 2-20
map 1-30f, 4-4
Map table 1-41
operation 4-26
priority signal 9-6, 9-26
transfer rate 4-4
Data formats 1-4
Data General 9-sector format buffer 2-48
Data General MPT diskette format 2-43
Data General standard diskette format 2-42
Data In Status instruction 1-28
accumulator format 1-29
Data late flag (diskette subsystem) 2-52
Data paths, SPU 4-3
Data phase 4-12, 4-25, 5-8f
Data Terminal Ready 4-28
Data transfer rate, diskette 2-20
Data transfer, diskette 7-4
Data
packed decimal 1-5
unpacked decimal 1-5

Dc load card (disk expansion unit) 9-11, 9-31
Dc output specifications 8-3t
Dc power cable 8-11
Dc voltage output connections (power supply) 8-13t
DCHP (see data channel priority signal)
Decimal data
packed 1-5
unpacked 1-5
Decimal integers 1-9
Definitions
address translation 1-30
Data Channel Map 1-30
logical address 1-30
memory space 1-30
page 1-30
physical address 1-30
Supervisor 1-30
user Map 1-30
Deleting breakpoint(s}, virtual console 3-7, 3-9
Determing diskette format (diskette subsystem) 2-34f
Device cables 4-10
Device code 0 4-5
Device code decoder (SPU card) 4-32
Device code
diskette subsystem 2-20
programmable interval timer 2-15
real-time clock interface 2-11
asynchronous communications interface 2-3
Device management instructions 1-19
DIA DEO instruction 2-30f
DIA PIT instruction 2-17
DIA TTI instruction 2-6
Diagnostic commands, diskette B-1f
Diagnostic routine, SPU power-up 1-48
Diagnostics, power-up 8
DIB DEO instruction 2-33
DIC MAP instruction 4-33
Digital I/0 interface 3
Digital-to-analog 1/0 interface 3
Direct addressing 1-2
Direct memory access 4-4
DIS (see Data In Status instruction)
DIS CPU instruction 4-28
Disable User Mode (see also Map Single Cycle
instruction), instruction, 1-40
Disk
capacity 9
drive 3, 9, 9-6
expansion unit 4, 9, 9-6f
expansion unit cable 9-32
interface 3, 9
interface cable 9-31
interface card 9-6
module 3f, 9-6
module backpanel, pin assignments 9-24f
module expansion 3
power cable 9-11, 9-31
subsystem 9

Diskette
capacity 2-20
commands 2-27
controller card 9-6
cylinder 7-4
data channel latency 2-20
data transfer 7-4
data transfer rate 2-20, 7-1
diagnostic commands B-1f
drive 3, 8, 9-6
drive controller internal registers 7-17
drive dc power cable 7-3
drive interface signal description 7-13t
drive power requirements 7-13t
drive unit 7-1
format(s) 2-21
format, Data General MPT 2-41
format, Data General standard 2-41
format, IBM PC 2-41
formats 8, 7-4
head load time 2-20
1/0 bus interface 7-16
interface 3, 8, 7-3
interface block diagram 7-14f
interface cable 9-30
media 7-1, 7-4
module 3, 9-6
module backpanel, pin assignments 9-22f
power cable 9-11, 9-30
recalibrate time 2-20
rotational latency 2-20
rotational speed 2-20
sector boundaries 7-4
surfaces 7-4
track access time 2-20
track density 2-20
reformatting 2-40ff

Diskette interface
elements 7-13ff
functions 7-13ff
interconnections 7-5
operations 7-18f
power-up self-test 7-5
sector count register 7-16
signal cable 7-3
status register 7-16
theory of operation 7-13ff

Diskette interface card 7-1
B connector pin assignments 7-10
C connector pin assignments 7-11
connector positions 7-7
installation 7-5
power requirements 7-11t
schematic number 7-13
self-test 7-16
tailoring 7-5
microprocessor 7-16

Diskette subsystem 8, 2-18ff, 7-1ff
device code 2-20
interconnection block diagram 7-8f

Index-5

interconnections 7-3

I/0 timing, 2-49ff

mnemonic 2-20

priority mask bit 2-20

programming summary 2-19ff

programming, 2-34ff

specifications 10t

subsystem self-test 2-51
Displacement, address 1-2
Divide instructions 1-12t
DOA DEO instruction 2-25f
DOA MAP instruction 4-32
DOA PIT instruction 2-17
DOA TTO instruction 2-6
DOAP CPU instruction 4-27f
DOAP RTC instruction 2-12
DOB DEO instruction 2-32
DOB MAP instruction 4-32
DOC DEO instruction 2-33
DOC MAP instruction 4-32f
Done flag(s)

PIT 2-16

RTC 2-11

diskette subsystem 2-24

TTI/TTO 2-3
Double-precision numbers 1-8
Drive

cartridge tape 4, 9, 9-6

disk 3, 9, 9-6

diskette 3, 8, 9-6

E

Electrical specifications 13t
Emulator trap 1-9f, 1-32, 4-4
Enable Parity Checking instruction 1-45
accumulator format 1-46
Enabling interrupt requests (RTC) 2-13
Entering virtual console 1-48, 3-2, 3-5, 3-7
Environmental specifications 13t
Error code, virtual console 3-2
Error codes, power-up self-test 3-8
Error conditions (diskette subsystem) 2-50ff
Errors, virtual console 3-9
Examine virtual console cell 3-3
Execution times
commerical instruction C-1f
floating-point instruction 6-5f
instruction 1-23t, 1-23
Expansion configurations, system 9-7
Expansion unit, disk 4, 9-6f
Expansion
disk module 3
system 3
Extended class instructions 1-2
Extended data phase 4-12
Extended memory cycles 4-25, 5-10
Extended operation instructions 1-10

Index-6

Extension, input/output bus 9-12, 9-14
External microcontroller chips 4-3, 4-20

F

Fan, tape module 9-6
Fault conditions, floating-point 1-8
Fault, MAP 1-9
Faults, protection 1-33
Floating-point accumulators 1-8f, 6-2
Floating-point arithmetic/logic unit 6-12
Floating-point bus 4-11
Floating-point card
block diagram 6-10f
connector positions 6-7
installation 6-6
interconnection with the system 6-7
interfacing 6-7
internal registers 6-12
pin assignments B connector 6-7f
pin assignments C connector 6-8f
power requirements 6-6
power-up response 6-9
reset response 6-9
schematic number 6-9ff
theory of operation 6-9ff
timing control 6-12
hardware 6
interconnection cable 9-29
Floating-point
fault conditions 1-8
Floating-point format(s), 1-6, 6-2
double-precision 1-8
single-precision 1-8
Floating-point
hardware option 6-1ff
instruction execution times 6-5f
instructions 6-3ff
memory operation timing 6-14
Floating-point numbers 1-8
normalized 1-6
Floating-point
operands 1-8
operations 1-8
status register 1-8, 4-3
trap 1-8
Floating-point,
firmware 6
hardware 6
Flow diagram, arithmetic/logic class instructions
operation sequences 1-7
Flowchart (diskette subsystem), read/write data
2-39
Format buffer, Data General 9-sector 2-48
Format buffer, IBM PC 8-sector 2-49
Format operation 2-45ff
Format programmable interval timer, accumulator
2-15

Format(s)

commercial 1-5

data 1-4

diskette 8, 7-4

double-precision floating-point 1-8

floating-point 1-6, 6-2

integer 1-4

read header command (diskette subsystem) 2-28

single-precision floating-point 1-8
Frame pointer 1-8
Frequencies, real-time clock interface 2-11
Frequency select register (RTC) 2-11
Function commands, virtual console 3-5
Functions

diskette interface 7-13ff

virtual console 3-6t
Fuse(s), 9-28

power module 9-5

tape module 9-6

G

G command, virtual console 3-6t

H

H command, virtual console 3-6t
Halt dispatch 3-2

Halt Dispatch bit 1-48, 4-6

HALT instruction 1-29, 1-48, 3-2, 4-6
Halt state 1-48, 4-6

Hardware floating-point card 4-3, 9-5

Hardware floating-point card, interface SPU with 4-9
Harness power (CPU Logic Module to power supplies)

9-11
Head load time, diskette drive 2-20
Head positioning (diskette subsystem) 2-37
Head positioning errors (diskette subsystem) 2-51

I

I command, virtual console 3-6t
1/0 bus cable, tape module 9-32
I/0 bus interface, diskette 7-16
I/0 clock cycle time 4-12
I/0 command flags 1-20t
1/0 control schemes 1-10
I/0 decode circuitry 4-12
I/0 decoder 4-24
I/0 instructions 1-20t
I1/0 interfacel(s) 9, 4-12
analog-to-digital 3
cards 9-5
digital 3
digital-to-analog 3
section (CPU) 4-14
1/0 interrupt instructions 1-20t
I/0 interrupts 3-2

1/0 latency (asynchronous communications interface)
2-3, 2-8
1/0 operations 1-10
1/0 protection 1-33, 3-2
I/0 Reset instruction 3-9
1/0 skip flags 1-21
I/0 timing
asynchronous communications interface 2-8
diskette subsystem 2-49ff
PIT 2-18
IBM PC 8-sector format buffer 2-49
IBM PC diskette format 2-44
IEEE-488 bus interface 3
Indirect addressing 1-2
Indirect protection 1-33
Indirection levels of addressing 1-2
Initial count register (PIT) 2-15
Initial program load (diskette) 7-4
Initial Program Load (IPL) flag 2-24
Initial selection errors (diskette subsystem) 2-51
Initialization, power 4-6
Initiate Page Check instruction 1-38, 4-32f
accumulator format 1-38
Initiating operation (diskette subsystem) 2-34
Input/output bus 9-12
Input/output bus extension 9-12, 9-14
Input/output bus termination 9-12
Input/output cables 9-16
Installation
diskette interface card 7-5
floating-point card 6-6
memory card 5-3
SPU card 4-6
Installing additional system cards 9-12
Instruction eraulation 1-10
Instruction execution times 1-23t, 4-3
floating-point 6-5f
commerical C-1f
Instruction
CPU Acknowledge 1-28, 4-27f
CPU Status 1-27
Data In Status 1-28
DIA DEO 2-30f
DIA PIT 2-17
DIA TTI 2-6
DIB DEO 2-33
DIC MAP 4-33
DIS CPU 4-28
Disable User Mode
{see also Map Single Cycle instruction) 1-40
DOA DEO 2-25f
DOA MAP 4-32
DOA PIT 2-17
DOA TTO 2-6
DOAP CPU 4-27f
DOAP RTC 2-12
DOB DEO 2-32
DOB MAP 4-32
DOC DEO 2-33
DOC MAP 4-32f

Enable Parity Checking 1-45

HALT 1-29, 1-48, 3-2, 4-6

I/0 Reset 3-9

Initiate Page Check 1-38, 4-32f

Load Effective Address 1-9, 1-34

Load Map 1-34, 1-41, 4-32

Load Map Status 1-35, 1-41, 4-32

Load Memory Address Register 2-32

Load Word Count 2-33

Map Page 31 1-9, 1-39, 4-32

Map Single Cycle (see also Disable User Mode
instruction) 1-40

Page Check 1-38, 4-33

Read Character 2-6

Read Count 2-17

Read CPU Status 4-28

Read Diskette Status 2-30f

Read Map Status 1-36

Read Memory Address Register 2-33

Read Parity Fault Address 1-10, 1-44

Read Parity Fault Code 1-45

Read Virtual Console Register 1-28

READS (see Read Virtual Console Register
instruction)

Select Frequency 2-12

Specify Command and Diskette Address 2-25f

Specify Initial Count 2-17

System Call 1-19

vectored interrupt 4-4

Write Character 2-6

Instructions

accumulator 1-18t

add 1-11t

ALC (see arithmetic/logic class instructions)

arithmetic/logic class 1-6

commercial 1-9, 1-19t

commerical 6

computational skip 1-16t

computing 1-11

convert 1-14t

CPU device 1-21

device management 1-19

divide 1-12t

extended class 1-2

extended operation 1-10

floating-point 6-3ff

1/0 1-20t

I/0 interrupt 1-20t

interrupt 1-18t

jump 1-17t

logic 1-14t, 1-15t

MAP 1-22t, 1-34t

memory management 1-22

move 1-13t

multiply 1-12t

noncomputional skip 1-17t

program flow management 1-17

short class 1-2

stack 1-18t

Index-7

Index-8

stack and data management 1-18
status 1-15t
subroutine 1-17t
subtract 1-12t
Instruction set
character 6
CPU 1-11
parity checking 1-44
Integer formats 1-4
Interconnection block diagram, diskette subsystem
7-8f
Interconnection cable hardware floating-point card
9-29
Interconnection with the system, floating-point card
6-7
Interconnection, backpanel 9-9
Interconnections,
diskette interface 7-5
diskette subsystem 7-3
Interface SPU with hardware floating-point card 4-9
Interface
asynchronous communications 4-2, 4-27
disk 3, 9
diskette 3, 8
I/04-12
IEEE-488 bus 3
microI/O bus 4-33
Interfaces, I/0 9
Interfacing
floating-point card 6-7
memory card 5-3
SPU 4-7
Interlock
module mechanical 9-9
power 9-28
Interlock, ac (power module) 9-5
Internal cell 4, virtual console 3-7
Internal cell 11, virtual console 3-5, 3-8
Internal cell number 3-3
Internal cell, nonexistent virtual console 3-9
Internal cells 3-3
Internal cells, virtual console 3-3t
Internal registers, floating-point card 6-12
Interrupt Disable flag
diskette subsystem 2-24
PIT 2-16
RTC 2-12
TTI/TTO 2-5
Interrupt facilities 4-4
Interrupt frequency, real-time clock 4-5
Interrupt instructions 1-18t
Interrupt instructions, I/0 1-20t
Interrupt latency, I/0 4-4
Interrupt priorities 4-4
Interrupt priority mask 4-4
Interrupt priority signal 9-6, 9-26
Interrupt rates,
programmable interval timer 8
real-time clock 8

Interrupt
Break key 4-6
data channel 4-11
low-frequency 1/0 8
maskable 4-4
nonmaskable 3-7
power-change 4-27
power-up 4-27
powerfail 1-48, 4-6
programmed I/0 4-11
Interrupts
1/03-2
multiple-level 1-10
nonmaskable 4-4
single-level 1-10
Interval ranges, programmable interval timer 4-5
INTP (see interrupt priority signal)
Invalidate page 1-41
IPL (see Initial Program Load)
IPL flag 2-67
IPL sector 2-67

J

Jump instructions 1-17t
Jumper plug, power supply 8-6, 8-13
Jumpers

memory card 5-3, 5-5

SPU 4-7

K

K command, virtual console 3-6t, 3-9

L

L command, virtual console 3-6t
Last accessible internal cell, virtual console 3-5
Latency
data channel 4-4
1/0 interrupt 4-4
LED, memory card 5-8
LEF (see Load Effective Address instruction) 1-34
Levels of addressing, indirection 1-2
Limit, stack upper 1-8
Line cord
power module 9-29
tape module 9-29
Line current requirements 13t
Line frequency clock generator card 3, 8, 9-5
Line frequency requirements 13t
Line speed asynchronous communications interface 2-3
Lines, priority 4-11
LMP (see Load Map instruction) 1-34
Load card (disk expansion unit}, dc 9-31
Load device 1-28
Load Effective Address instruction 1-9, 1-34
Load Map instruction 1-34, 1-41, 4-32

Load Map instruction, accumulator format 1-35

Load Map operation 4-32

Load Map Status instruction 1-35, 1-41, 4-32

Load Map Status instruction, accumulator format 1-36

Load Memory Address Register instruction 2-32

Load Word Count instruction 2-33

Local bus buffers 4-26

Local bus transceivers 4-14

Local input bus 4-14

Local output bus 4-14

Locations, page zero 1-8

Logic expansion module 3, 9-6f

Logic expansion module backpanel, pin assignments
9-20f

Logic expansion module slot assignment 9-16

Logic instructions 1-14t, 1-15t

Logical address definition 1-30

Logical address space 1-2, 1-9, 1-31

Logical page 1-9

Logical page 31 4-32

Logical page number 4-32

Logical-to-physical address translation 6, 4-4

M

Major elements, SPU card 4-3
Manual conventions p-4
Manual organization p-2
MAP (see also Memory allocation and protection unit)
MAP,
address translation 1- 9, 1-31
changing status 3-8
data channel 1-31, 4-4
enabling 1-36
fault(s) 1-9, 4-25, 4-33
instructions 1-22tf
memory 4-32
operations 1-9
page assignments 4-32
power-up response 1-42
programming 1-41
status register 1-9, 1-35ff, 1-48, 3-3, 4-3, 4-32
tables 1-41
enabling 1-41
loading 1-41
user 1-41
unit 1-29, 4-14
block diagram 4-31
user 1-30
Map Page 31 instruction 1-9, 1-39, 4-32
accumulator format 1-40
Map Single Cycle instruction (see also
Disable User Mode instruction) 1-40
Mapped mode 1-30, 4-32
Maps, user address 4-4
Mark parity 4-5
Maskable interrupt 4-4
Media, diskette 7-1, 7-4

Index-9

Memory 8

(location 11g, reserved) 1-10
(allocation and protection) 1-29
access time 4-3
address,
register (diskette subsystem) 2-23
selection 5-8
width 4-3
address/data bus 4-3
addressing 1-2
allocation and protection 4-3, 4-30ff
array 5-5
bank 5-2, 5-5
bus 6, 4-11f, 6-12, 9-12
bus
control signals 5-8
control signals timing diagram 4-25
extended address lines 4-11
transceivers 4-24
width 6, 4-11
capacity 3, 8, 4-4
card 3, 8, 4-4, 5-1ff, 9-5
card
block diagram 5-6f
connector positions 5-4
installation 5-3
interfacing 5-3
internal registers 5-8
jumpers 5-3, 5-5
LED 5-8
pin assignments B connector 5-5
power requirements 5-3t
schematic number 5-5
theory of operation 5-5ff
cells 3-3
characteristics 5-3
management 1-29
management instructions 1-22
MAP 4-32
maximum size 4-4
protection 6
random-access 8
read-only 4-30
read operations 5-8
timing diagram 5-9
read/write operations 4-24, 6-14
refresh operation 5-10
timing diagram 5-10
reserved location 114 1-10
select logic 5-8
space definition 1-30
specifications 10t
system 4-14
transceivers 4-14
write operations 5-9
write timing diagram 5-9

Microcontroller chips, external 4-20
Microcycle time 4-18

Index-10

Microl/O bus 6, 4-11
interface 4-33
control signals (SPU card) 4-35
section 4-14
state machine 4-33f
block diagram 4-34
termination 9-12
width 6, 4-11
Microinstructions 4-3
Microprocessor diskette interface card 7-16
Mnemonic
diskette subsystem 2-20
programmable interval timer 2-15
real-time clock interface 2-11
asynchronous communications interface 2-3
Modifying a virtual console cell 3-3
Modifying a virtual console expression 3-5
Modular design 9-1
Module(s) 3
architecture 9-9
cage 9-9
cartridge tape 3f, 9-6
CPU logic 3, 8-11, 9-5
disk 3f, 9-6
diskette 3, 9-6
logic expansion 3, 9-6f
mechanical interlock 9-9
mechanical specifications 12t
panels 9-9
power 3f, 8-1ff, 9-5
slot assignment,
CPU logic 9-15
logic expansion 9-16
Monitor
power 4-6
power status 8
powerfail 4-26
Motor on time (diskette subsystem) 2-20, 2-50
Move instructions 1-13t
Multidevice section 4-2, 4-5
Multimaster bus 4-14
Multiple-level interrupts 1-10
Multiply instructions 1-12t

N

NMI (see nonmaskable interrupt)
Noncomputional skip instructions 1-17t
Nonexistent virtual console memory cell 3-9
Nonmaskable interrupt(s) 3-7, 4-4
Numbers,

double-precision 1-8

floating-point 1-8

normalized floating-point 1-6

single-precision 1-8

o

O command, virtual console 3-6t
Off-line switching converter, power supply 8-3

One-step mode, virtual console 3-2
Opening a virtual console cell 3-3f
Operating mode bit description 2-29
Operation time-out flag (diskette subsystem) 2-52
Operations,
floating-point 1-8
I1/0 1-10
MAP 1-9
stack 1-8
string 1-8

P

P command, virtual console 3-6t
Page 31 register 1-9, 1-48, 4-32
Page check 4-32f
Page Check instruction 1-38, 4-33
accumulator format 1-39
Page check register 4-32
Page definition 1-30
Page number,
logical 4-32
physical 4-32
Page zero accessing 1-3
Page zero locations 1-8
Page,
invalidate 1-41
logical 1-9
physical 1-9
validity-protected 4-33
write-protected 4-33
Parity
address register 4-30
bit (asynchronous communications) 2-2
bits (memory) 5-2
checking 8, 1-10, 1-42, 4-3, 4-5, 4-14, 4-29
instruction set 1-44
control register 4-29
enable register 1-48
fault code register 1-48
power-up response 1-46
program-accessible flags 1-43
program-accessible registers 1-43
programmable elements 1-42
programming summary 1-43
Start, Clear, Pulse, and IORST functions 1-43
status register 4-30
Physical address
definition 1-30
space 1-2, 5-2f
Physical page 1-9
number 4-32
Pin assignments
A connector, SPU card 4-7f
backpanel 9-17ff
B connector
diskette interface card B connector 7-10
floating-point card 6-7f
memory card 5-5
SPU card 4-8f

C connector
diskette interface card C connector 7-11
floating-point card 6-8f
SPU card 4-9f
CPU logic module backpanel 9-18f
disk module backpanel 9-24f
diskette module backpanel 9-22f
logic expansion module backpanel 9-20f
PIT (see programmable interval timer), 8
Pointer
bit 1-3
byte 1-3
frame 1-8
stack 1-8
stack fault routine 1-8
Polling 1-10
Positioning read/write heads (diskette subsystem)
2-35f
Power
bus 9-11
consumption 13t
harness (CPU Logic Module to power supplies) 9-11
initialization 4-6
interlock 9-28
Power module, 3f, 8-1ff, 9-5
ac line connection, 9-5
blower, (see also fan) 9-5
line cord 9-29
power switch, 9-5, 9-26
Power monitor 4-5f
Power requirements
diskette drive 7-13t
diskette interface card 7-11t
floating-point card 6-6
memory card 5-3t
SPU 4-6
system 13t
Power
status monitor 8
signal connections 8-13t
status signals 8-3
subsystem 9
specifications 10t
Power supply 3
assembly 8-1ff
auxiliary voltage section 8-9
base drive section 8-8
block diagram 8-4f
case 8-1ff
control and status card 8-2f
error amplifier 8-8
interconnection with the system 8-10
jumper plug 8-6, 8-13
line rectification 8-6
off-line switching converter 8-3
output section 8-8f
positioning 9-5
power drive section 8-8

Index-11

power section 8-6
schematic number 8-3
start-up circuit 8-6
status circuits 8-10
status signal timing diagram 8-10
tape module 9-6
theory of operation 8-2ff
Power switch(s), 9-5f, 9-26
tape module 9-6, 9-26
power module 9-5, 9-26
Power-change interrupt 4-27
Power-up
condition 4-6
diagnostic routine, SPU 1-48
diagnostics 8
errors (diskette subsystem) 2-51
interrupt 4-27
Power-up response
CPU 1-48
floating-point card 6-9
Map 1-42
parity checking 1-46
programmable interval timer 2-18
real-time clock interface 2-14
state (diskette subsystem) 2-52f
Power-up self-test 3-8
diskette interface 7-5
Power-up state (diskette subsystem) 2-52f
Powerfail 1-48
Powerfail
interrupt 1-48, 4-6
monitor 4-2, 4-26
signal (see also CPU Done bit) 1-48
Powering up/down tape module 9-26
Preconfigured systems 9-7
Priority lines 4-11
Priority mask bits
diskette subsystem 2-20
programmable interval timer 2-15
real-time clock interface 2-11
asynchronous communications interface 2-3
Priority switches, backpanel 9-26
Program accessible registers 1-46f
Program counter 3-3
Program flow management instructions 1-17
Program load
command 4-6
commands (virtual console) 3-8, 3-10
function 1-48
register 1-28
Programmable interval timer 8, 2-14ff, 4-2, 4-5, 4-27
accumulator format 2-15
clock rates 4-5
count rate 2-15
count rates, 2-14
device code 2-15
interrupt rates 8
interval ranges 4-5
mnemonic 2-15

Index-12

power-up response 2-18 device code 2-11
priority mask bit 2-15 frequencies 2-11
programming summary 2-15 interrupt frequency 4-5
specifications 10t interrupt rates 8
Start, Clear, Pulse, and IORST functions 2-15 mnemonic 2-11
time intervals 2-15 power-up response 2-14
time intervals, 2-14 priority mask bit 2-11
Programmable system management elements 1-27 programming 2-13ff
Programmed 1I/0 interrupt 4-11 programming summary 2-11
Programming Start, Clear, Pulse, and IORST functions 2-11
asynchronous communications interface 2-7 specifications 10t
diskette subsystem 2-34ff timing 2-13
MAP 141 Recalibrate or seek time (diskette subsystem) 2-20, 2-49f
programmable interval timer 2-18 Receive register (TTI) 2-3
real-time clock interface 2-13ff Reformatting diskette 2-40ff
Programming summary Refresh address 5-10
diskette subsystem 2-19ff Refresh interval 5-10
programmable interval timer 2-15 Register(s)
real-time clock interface 2-11 CPU internal 4-3
parity checking 1-43 CPU status 1-27, 1-48, 4-5f, 4-27ff
asynchronous communications interface 2-3 diskette interface command 2-23
Prompt virtual console 1-48, 3-2, 3-7ff diskette interface sector count 7-16
Protection (see also Memory Allocation and diskette interface status 7-16
Protection) 1-32 floating-point status 1-8, 4-3
faults 1-33 frequency select (RTC) 2-11
I/01-33 MAP status 1-9, 1-35ff, 1-48, 3-3, 4-3, 4-32
indirect 1-33 memory address (diskette subsystem) 2-23
memory 6 Page 31 1-9, 1-48, 4-32
validity 1-32 page check 4-32
write 1-33 parity address 4-30
Pulse width modulation 8-3, 8-7 parity control 4-29
parity enable 1-48
R parity status 4-30
program accessible 1-46f
R command, virtual console 3-6t, 3-9 Program load 1-28
Random-access memory 8 receive (TTI) 2-3
Read Character instruction 2-6 SIO switch 4-6
Read Count instruction 2-17 SPU status 4-3
Read CPU Status instruction 4-28 status (diskette subsystem) 2-23
Read Diskette Status instruction 2-30f transmit (TTO) 2-3
Read header command format 2-28 virtual console 3-3
Read Map Status instruction 1-36 virtual console switch 1-28, 3-8
accumulator format 1-37 word count (diskette subsystem), 2-24
Read Memory Address Register instruction 2-33 Related
Read Parity Fault Address instruction 1-44 engineering drawings A-1f
accumulator format 1-45 manuals p-3ff
Read Parity Fault Code instruction 1-45 reference 1-1, 5-3
accumulator format 1-45 Relative addressing 1-3
Read Virtual Console Register instruction 1-28, 3-8 Relative humidity 13t
Read-only memory 4-30 Reserved memory location 115 1-10
Read/write data flowchart (diskette subsystem) Reserved memory locations 1-22t, 1-22
2-39 Resuming program execution, virtual console 3-7
Read/write errors (diskette subsystem) 2-51f Rotational latency, diskette 2-20
Read/write time (diskette subsystem) 2-50 Rotational speed, diskette 2-20
Reading characters (TTI) 2-8 RTC (see Real-Time Clock)
READS instruction (see Read Virtual Console Register Rubout key 3-9
instruction)

Real-time clock, 8, 4-2, 2-10ff, 4-5, 4-27
accumulator format 2-11

S

Schematic number,

diskette interface card 7-13

floating-point card 6-9ff

memory card 5-5

power supply 8-3

SPU card 4-14
Sector boundaries, diskette 7-4
Sector count register, diskette interface 7-16
Select Frequency instruction 2-12
Selecting clock frequency (RTC) 2-13
Selecting time interval (PIT) 2-18
Self-test,

diskette interface card 7-16

diskette subsystem 2-51

power-up 3-8

virtual console 3-2
Sensor 1/0 subsystems 3
Servicing interrupt requests,

PIT 2-18

RTC 2-13
Setting breakpoint(s), virtual console 3-6, 3-9
Setting operation mode (diskette subsystem) 2-35
Setting up data transfer (diskette subsystem) 2-38ff
Short class instructions 1-2
Signal descriptions,

SPU external 4-38ff

SPU internal 4-40f
Single stepping, virtual console 3-7
Single-level interrupts 1-10
Single-precision numbers 1-8
SI0 switch register 4-6
Slot assignment,

CPU logic module 9-15

logic expansion module 9-16
Soft-sectored 7-4
Specifications

ac input 8-3t

CPU 10t

dc output 8-3t

diskette subsystem 10t

electrical 13t

environmental 13t

general 10t

memory 10t

Model 20 system 10t

Model 30 system 10t

module mechanical 12t

power subsystem 10t

programmable interval timer 10t

real-time clock 10t

SPU 10t

system console interface 10t

system mechanical 12t

technical 9
Specify Command and Diskette Address instruction

2-25f

Specify Initial Count instruction 2-17

Index-13

SPU (see also System processor unit)
SPU block diagram 4-13
SPU card connector positions 4-7
SPU card
bus interface 4-37
CPU section 4-14
installation 4-6
major elements 4-3
pin assignments
A connector 4-7f
B connector 4-8f
C connector 4-9f
schematic number 4-14
tailoring 4-6
SPU
data paths 4-3
external signal descriptions 4-38ff
interface with hardware floating-point card 4-9
interfacing 4-7
internal signal descriptions 4-40f
jumpers 4-7
operating characteristics 4-7
power requirements 4-6
power-up diagnostic routine 1-48
status register 4-3
switches 4-7
system architecture 4-10
system architecture block diagram 4-11
tailoring 4-7
theory of operation 4-10ff
specifications 10t
Stack 1-8
Stack and data management instructions 1-18
Stack
fault routine pointer 1-8
instructions 1-18t
operations 1-8
overflow 1-8
pointer 1-8
upper limit 1-8
Start, Clear, Pulse, and IORST functions,
asynchronous communications interface 2-3
parity checking 1-43
programmable interval timer 2-15
real-time clock interface 2-11
diskette subsystem 2-23
Starting counting cycle (PIT) 2-18
State machine, microl/O bus 4-33f
Status instructions 1-15t
Status register
CPU 1-48, 4-27
diskette subsystem 2-23
floating-point 1-8
MAP 1-9, 1-35ff, 1-48, 3-3, 4-32
Status word, system console 3-3
String operations 1-8
Strings, byte 1-9
Subroutine instructions 1-17t

Index-14

Subsystem
cartridge tape 9
disk 9
diskette 8, 7-1ff
power 9
Subtract instructions 1-12t
Summary of CPU capabilities 1-2
Supervisor definition 1-30
Supply, power 3
Surfaces, diskette 7-4
Switch register, virtual console 3-8
Switch,
Switches
backpanel priority 9-26
Break key enable 4-28
power 9-5f, 9-26
SPU 4-7
System architecture block diagram, SPU 4-11
System architecture, SPU 4-10
System bus 6, 6-12
System Call instruction 1-19
System component organization 6
System configurations 6, 9-7
System console 4-7
cable 9-29
interface, specifications 10t
status word 3-3
System
expansion 3
expansion configurations 9-7
input/output chip 4-2, 4-5, 4-26
management 1-19
mechanical specifications 12t
memory 3, 4-14
organization block diagram 7
power requirements 13t
processing unit 3, 6, 4-2, 4-13ff
reset line 4-11
specifications 10t
timing 4-12
System processor card 9-5
Systems, preconfigured 9-7

T

T period 4-12
Tailoring
diskette interface card 7-5
SPU 4-7
SPU card 4-6
Tape controller card 9-6
Tape controller connection 9-6
Tape module I/0 bus cable 9-32
Tape module,
ac line connection, 9-6
cartridge 4, 9-6
fan, 9-6
fuse 9-6
line cord 9-29
power switch 9-6, 9-26
powering up/down 9-26

Tape subsystem, cartridge 9
Technical specifications 9
Temperature ranges 13t
Termination,
input/output bus 9-12
microl/O bus 9-12
Theory of operation,
diskette interface 7-13ff
floating-point card 6-9ff
memory card 5-5ff
power supply 8-2ff
SPU 4-10ff

Time intervals programmable interval timer 2-14f

Time(s)
CPU microcycle 4-12
I/0 clock cycle 4-12
memory access 4-3
microcycle 4-18
Times
commerical instruction execution C-1f
floating-point instruction execution 6-5f
instruction execution 1-23t, 1-23, 4-3
Timing
PIT 2-18
asynchronous communications interface 2-8
circuitry, SPU card 4-21
control, floating-point card 6-12
diskette subsystem 2-49ff
system 4-12
Timing diagrams
extended memory cycle 4-26
finite state machine 4-22
memory bus control signals 4-25
memory read 5-9
memory refresh 5-10
memory write 5-9
pended memory operation 5-11
power supply status signal 8-10
timing decoder 4-23
Track access time, diskette 2-20
Track density, diskette 2-20
Transceivers
local bus 4-14
memory 4-14
Transfer rates
asynchronous communications interface 4-5
data channel 4-4
diskette data 7-1
Translation function 1-30
Translation process 1-9
Transmit register (TTO) 2-3
Trap
emulator 1-9f, 1-32, 4-4
floating-point 1-8
virtual console 4-6
TTI/TTO (see asynchronous communications
interface)

U

U command, virtual console 3-6t, 3-8
UART (see Universal asynchronous
receiver/transmitter)
Unit architecture 9-3
Universal asynchronous receiver/transmitter 4-27
Unmapped mode 1-31
User address maps 4-4
User Map, 1-30
definition 1-30
tables 1-41

\'

Validity protect bit 4-32
Validity protection 1-32
Validity-protected page 4-33
Vectored interrupt instruction 4-4
Virtual console, 8, 3-1ff, 4-6, 4-30
B command 3-6t
breakpoints 3-2, 3-5
cell 3-4
cell commands 3-4t
Virtual console cell
examine 3-3
modify 3-3
opening 3-3
opening a 3-4
Virtual console cells 3-3
changing MAP status 3-8
changing user MAP 3-8
closing cell 3-4
command argument 3-3
command format 3-3
correcting typographical errors 3-9
current cell 3-4
D command 3-6t, 3-7
deleting breakpoint(s) 3-7, 3-9
displaying selected user MAP 3-8
encountering a breakpoint(s) 3-7
entering 1-48, 3-2, 3-5, 3-7
error code 3-2
errors 3-9
expression, modifying a 3-5
function commands 3-5
functions 3-6t
G command 3-6t, 3-8
H command 3-6t
I command 3-6tf
internal cell(s), 3-3t
11 3-5, 3-8
4 3-7
nonexistent 3-9
K command 3-6t
L command 3-6t
last accessible internal cell 3-5
memory cell, nonexistent 3-9
O command 3-6t

one-step mode 3-2
opening cell 3-4
outputs a ? 3-9
P command 3-6t
program 4-14
program control 3-5
program load commands 3-8, 3-10
prompt 1-48, 3-2, 3-7ff
R command 3-6t
register 3-3
resuming program execution 3-7
self-test 3-2
setting breakpoint(s) 3-6, 3-9
single stepping 3-7
switch register 1-28, 3-8
trap 4-6
turning off MAP 3-8
U command 3-6t
Voltage requirements 13t

W

Width
CPU bus 4-3
memory address 4-3
memory bus 6, 4-11
microl/0 bus 6, 4-11
Word count register (diskette subsystem) 2-24
Write Character instruction 2-6
Write protect bit 4-32
Write protection 1-33
Write-protected page 4-33
Writing characters (TTO) 2-7

X

XMC (see also External microcontroller chips) 4-2

Index-15

moisten & seal

Documentation Comment Form

Manual Title
Manual No.

Your Name
Your Title
Company
Street
City State Zip

Please help us improve our future publications by answering the questions below. Use the
space provided for your comments. Thank you.

Is this manual easy to read?

Is it easy to understand?

Are the topics logically organized?

Is the technical information accurate?

Can you easily find what you want?

Does it tell you everything you need to know?

ooooooog
ooooooo?2

Do the illustrations help you?

If you wish to order manuals, contact your sales representative or dealer.

Comments:

Date

I I8G10 VIN ‘o10qisam
] aAug Jamndwon) Qovy
— (612d) $901A13S uB1saQ :NLLV
I
]
] lmguaf)em(] 4 '
]
]
]
A -8assaippe Aq pied aq |m abeisoq
L
A ZLLLO 'YW 'OHOSHLNOS 92 ON LIWH3d SSV1D LSHI4
— 1VIN A'ld3d SSINISNY
]
]
S3LVLIS QILINN
JHL NI
CERIVVET
AHVSS3O3N
39v1SOd ON
]

134-755

