N

B

i

n}'

»

PO ane ”s»Mn\M:}c

2

R et |

o

Technical Reference

007~

‘,,/“
260.44 -
E 2180
. Cﬁmﬁ‘
COLOTAL WHITE

*,

BEC LY

P
TEXTURE

‘Model 10 and 10/SP
- Computer Systems

Notice = - , : by
k Data General Corporation (DGC) has prepéred this docuinent for use by .DGC personnel, customers, and :

prospective customers. The information contained herein shall not be reproduced in whole or in part without
DGC's prior written approval. 3 y i ' B

DGC reseﬁes the right to make changes in specifications and other information cént.ained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes’

have been made.

The terms and conditions governing the sale of DGC hardware products and the licensing of DGC soffware
consist solely of those set forth in the written contracts between DGC and its customers. No representation

. or other affirmation of fact contained in this document including but not limited to statements regarding

capacity, response-time performance, suitability for use or performance of products described herein shall

_be deemed to be a warranty by DGC for any purpose, or give rise to any liability of DGC whatsoever.

~ Inno event shall DGC be liable for any incidental, indirect, ipecial or conseqﬁeﬁtiai damages whatsoever
(including but not limited to. lost profits) arising out of or related to this document or the information

contained in it, even if DGC has been advised, knew or should have known of the possibility of such
damages. SR R S i ;

CEO, DASHER, DATAPREP, ECLIPSE, ENTﬁRPRISE, INFOS, micx;dNOVA, NOVaA, PliOXI, SUPERNOVA, -

ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, MANAP, SWAT, GENAP, and
PRESENT are U.S. registered trademarks of Data General Corporation,and AZ-TEXT,DG/L,DG/XAP, GW/4000,
ECLIPSE MV/10000, GDC/1000, REV-UP, UNX/VS, XODIAC, DEFINE, SLATE, DESKTOP GENERATION,
microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT are U.S. trademarks of Data General Corporation.

Ordering No. 014-000766
© Data General Corporation, 1983

All Rights Reserved :
Printed in the United States of America

Rev. 00, October 1983 -

L)
o~

‘s»@g

Preface

~ The technical reference manuals for'Desktop Generation™ computers and their

peripherals are written for assembly language programmers, systems analysts,
and engineers. This set of manuals, together with two companion programmer’s .
references, contains the information you need to: 1) write assembly language
software, including 1/O subroutines; 2) knowledgeably expand your system; 3)
learn how your system operates at the card level and 4) de81gn custom
mterfaces

'This manual ex'plams the functlonal and physxcal orgamzatlon of Desktop

Generation Model 10 and 10/SP computers. Other technical and programmer’s

‘references for the Desktop Generation are hsted and summanly descnbed under

“"Related Manuals" in this preface

Preface

l\%’%ﬁy .

Organization

The manual has three parts: a programming section, a theory of operation

~ section, and a mechanical assemblies section. It also has several appendixes and

an index. The chapters in part 1, meant to be read selectively, present the

instruction sets for system devices. ' : . .

e Chapter 1 summarizes the microECLIPSE and 8086 CPU instruction sets and
describes in detail those instructions that are unique to the Desktop Generation
Model 10 and Model 10/SP CPU. It presents the instructions used to transfer
program control between the microECLIPSE processor and the attached 8086

processor.

. o Chapter 2 defines the instruction sets and tells you how to program the

. keyboard and monitor; printer port, real-time clock, ‘programmable interval
timer, and diskette controller. : S o

* Chapter 3 describes how to use the firmware console program to do bootstrap

loading, assist in debugging programs, and perform system resets.

The chapters in part 2 are also meant to be read selectively. They‘vdeséribe the

makeup and operation of the component parts of a standard Desktop Generation

Model 10 and Model 10/SP computer system.

« Chapter 4 describes the two-card Desktop Generation Modgl 10 and Model
10/SP SPU, including the microECLIPSE and 8086 processors, the main
'memory and MAP unit, the keyboard and monitor interfaces, the diskette
interface, the printer port, real-time clock, and programmable interval timer..
~The chapter also discusses the floating-point option, the power-up self test,
and the on-card virtual console. : : e

o Chaptei‘ 5 describes the‘the.ory of operation of the optional dynamic random-
- access memory card. : \

e Chapter 6 discusses the operation of an optional‘ color video interface card.

‘o Chapter 7 provides a description of the Desktop Generation power supply.

The 'chaptef in part 3 illustrates the mechanical components of the Model 10 and

10/SP computer system.

e Chapter 8 contains a description of the physical'modules and their
configurations as well as the system cabling scheme.

e Appendix A lists the numbers of available logic sChematics and -wiring lists.

 « Appendix B summarizes the diagnostic assembly language instructions for the

diskette.

e | Appendix C presents a listing of some typical assembly language code used to

~ manage the 8086 processor from a microECLIPSE program.

-« 'Appendix D explains the format in which words must be written into the

monochrome monitor screen buffer in order for the data to be displayed on
the screen. ' : ‘

e The index alphabetically lists the concepts and ~ternis in this book and
. references the pages on which they appear. :

A documentation comment form follows the index. It invites you to help Data
~ General improve its publications by commenting on this book.

[

Preface. iii

Related Manuals

vorh andlen

A comprehensive documentation set supports all the hardware and software
products available for Desktop Generation computers. The hardware-related
books listed below fall into three categories: the technical reference series; the
user guides for operating, installing, and testing; and the mtroductory guide for

- Desktop Generation computers. -

The following technical and programmer’s references address the needs of
assembly 1anguage programmers and engmeers ‘

16-b1t Real Time ECLIPSE Assembly I.anguage Programnung

‘Global in nature, thlS book explains the processor-independent concepts

functions, and instruction sets of 16-bit ECLIPSE computers DGC ordering no. _ :

~ 014-000688.

Model 10 and 10/SP System Console
Programmer’s Reference

‘Describes the organization . and alphanumenc and graphic features of the system

console. Defines the command sets and includes guidelines for programming the
monochrome and optional color monitors at assembly and hlgh-level language
levels. DGC ordering no. 014-000770. .

‘Model 20 and 30 Computer Systems

Technical Reference _
In addmon’to the funetional and physical organization of Model 20 and 30

~ computers and their technical specifications, this manual explains their

processor-unique concepts, functions, and instruction set features. Also included

"are guidelines for programming the I/O devices, including the diskette subsys-
- tem, and a theory of operation for the basic components of Models 20 and 30.
_DGC ordermg no. 014-000767.

- 1/0 and Interfacing

Technical Reference

Introduces the microl/O.bus and describes the 1/O interface required to
communicate with this bus and its host Desktop Generation computer. Discusses
the /O instruction set and the I/O program interrupt and data channel facilities.
Includes a chapter about the 4210 general-purpose interface, useful to those
designing a custom I/O interface for their system. DGC ordering no. 014-000774.

- For more detailed information about the microl/O bus and Data General

integrated circuits used in the 1/O interface, refer to microNOVA Integrated

 Circuits Data Manual. DGC ordering no. 014-000074

 Model 6271 Disk Subsystem
- Technical Reference ’

‘, Describes the functional and physical organization of the Model 6271 disk

subsystem. Defines the I/O instruction set and provides guldehnes for program-

- ming the subsystem. DGC ordermg no. 014-000768.

iv

Preface

Cominunications Interfaces
Technical Reference

Discusses the functional and physical organization of the asynchronous/
synchronous communications interfaces available for Desktop Generation

‘computers. Defines their I/O instruction sets, offers guidelines for writing
‘assembly language I/O subroutines, and centains theory of operation for each
communications card. DGC ordering no. 014-000769. . w

Sensor I/0
Technical Reference

: Déﬁnes instruction sets, offers guidelines for writing assembly language I/O

subroutines, describes theory of operation at an overview level, and explains

- how to connect field wiring for the 4222 digital I/O interface, 4223 analog-to-

digital interface, 4224 digital-to-analog interface, and 4335 analog subsystem.
DGC ordering no. 014-000775. o S

IEEE-488 Bus Interface
Technical Reference

Provides the information needed to interface, program in assembly language,
and troubleshoot this card in a Desktop Generation system. Reviews the
contents of the IEEE-488 bus standard, summarizing its commands, messages,
and states, and includes a theory of operation. DGC ordering no. 014-000773..

The following beoks are how-to manuals writiten for anyone who needs to know
how to install; operate, and test a Desktop Generation system. =

Installing Model 10 and 10/SP Systems

The first book that a Model 10 or 10/SP owner should‘read, explains how to
unpack and install either system and its optional peripherals. Simple instructions

" and ample illustrations make the book accessible to any reader. DGC ordering

no. 014-000901.

‘Operating Model 10 and 10/SP Systems

A logical follow-on to Model 10 and 10/SP installation, this guide takes you from

' powering up the system and its optional peripherals through performing such

routine operations as loading paper in a printer and inserting or removing
diskettes. Brings you to the point of loading the system software. Amply

- illustrated and written for users at any level of experience. DGCordering no.
014-000900. :

Testing Model 10 and 10/SP Systems

" Follows the installation and operating manuals with instructions for verifying

the operation of Model 10 or 10/SP systems and their optional peripherals. Steps
you through the power-up test and Customer Diagnostics and explains how to
troubleshoot customer-replaceable components. Simple instructions and
diagrams make the book accessible to any user. Includes phone numbers for

~ Data General assistance. DGC ordering no. 014-000902.
| Installing Model 20 and 30 Systems ‘

The first book a Model 20 or 30 owner should read, éxplains how to unpack and
install either system and its optional peripherals. Accessibly written and
illustrated, for users at any level of experience. DGC ordering no. 014-000904.

e

B

. ‘ _ R : .
R - Preface

- Operating Model 20 and 30 Systems :

Follows Model 20 and 30 installation, leadmg you from powermg up the system
and its optxonal peripherals through performing such routine operations as
loading paper in a printer and inserting or removing diskettes. Brings you to the
point of loading the system software. The simple instructions and generous
illustrations are sultable for any reader. DGC ordenng no. 014-000903.

| Testing Model 20 and 30 Systems -

A follow-on to the mstallatlon and operatmg manuals, explains how to venfy the
' operation of Model 20 or 30 systems and their optional peripherals. Simple
~instructions and diagrams lead you through the power-up test, Customer
~ Diagnostics, and trouble-shooting of customer-replaceable components. Includes
~ phone numbers for Data General assistance. DGC ordermg no. 014-000905.

- This last book 1s a product overview, addressed to all Desktop Generation users.

The Desktop Generanon

Introduces the Desktop Generation, summanzmg each model of the family, and
. describes its many hardware and software products, features, and capabilities.
~“Includes a brief history of Data General, a sampling of applications, and an
overview of the customer service and support programs available to youasa -
- Desktop Generatlon user. DGC ordering no. 014-000751

Conventlons

' The following conventions are used throughout this ,mér_x'ual.

>MNEM'ONIC .Uppercase sans serif letters iﬁdicate'_a signal name or instruc-
‘tion mnemonic. When a signal is active low, it is barred—for
example, FDCHE.

argument ‘ Italicized lowercase letters mean that a particular instruction
: takes an argument. In your program, you must replace this
symbol with the exact code for the argument you need.

[optional] ' Bréckets signify an optional argument. If you decide to use this
: - argument, do not include the brackets in your code, they only

set off the choice.
In dialogs between system and user, we use this typeface td show your input:
USERINPUT ’
and this tyﬁeface to show the system's response:

SYSTEM RESPONSE.

In addmonb we use the follbwmg diagram to show the érrangement of thé 16
~ bits in an instruction. The dxagram is always d1v1ded into 16 boxes, numbered O

- through 15.

A | BIT : : FORMAT,

)

o«

ONE

- Contents

Preface ‘
Organizationioeiioicieeieeees [O ORI U PN ii
Related Reading. e e e T iii
~ Conventions el B S R S S v
System Overview o
CONFIGUIALIONS\ ooece oo e 2
Organization e O b, e RISl SN S SN 5
COMPONENtSo 5
~ System Processing Unit SN CRER RN AR ..5
Diskette Subsystem AT PR L...8
Disk Subsystem EE S e Sk 9
Video Interface L e e B o R 9
- System Console OO SR ST E N S 9
Multiterminal Workstations R e R 9
‘Cartridge Tape Subsystemcocoooioenn S i 9
I/0 Interfaces e e 9
" Power Subsystem RO ST i R SO I e 10
Technical Specifications L I LI 10
- Programming
Programming the CPUs ,
Model 10 and 10/SP Dual-Processor System e e 1-2
System Memory Mapping e e T 1-3
 Parity Checking e S .13
MicroECLIPSE CPU Features Ceriiani RS B 1-3

Addressing e e 1-4

0

O

~ Data Formats e Deip oty S i

Arithmetic/Logic Class Operatmns e i e.i...1-8
Stack Operations i el 1010
Floating-Point Operationsi....... e 1-10
String Operations SR ORI L ...1-10
MAP Operations:......... e e ..o 1411
Extended Operations SRS S U B ¥/
Emulator Trap SIS el e 1A12
Parity Check Operations R e e e 1-12
I/O Operations VL T 0y R R S V)
'Program-Accessible Reglsters e e RS o .1-13
MiCroECLIPSE INStructions-.--. R 1-16
8086 CPU Features S SR e ...1-28
8086 Memory Segmentatmn e L e 1-29
8086 Addressing Modes SRR e e e e e ... 1-29
Segment Registers SR PR N AR S 1-31
Input/Output RS HNGE W RERErNe 1-33
INSELUCHIONS .. .o oot0..0...1-33
Processor Programming e R RO 1-37
SPU Power-Up Response e TR L B 1-37
microECLIPSE CPU Status Register e L P e T 1-40
Program Load Register L S 1-41
Memory Allocation and Protection 1-43
Programming the MAPs U e T ..1-59
Parity Checking e By N 1-61
 The 8086 Attached Processor R R 1-65
~ Programming Bit-Mapped Graphlcs LT L 1-70 .
Powerfail/Autorestart e R 1-71
- Instruction Execution Times e e Lo 172
2 Programmmg CPU-Resident I / O Devices
System Console Interface i 2-1
Programmable Elements iR AT 2-2
Programming SUMMArYccoooieceeeo i 2-2:
Registersand Flags et N5 A S A AT 2-4
I/0 Instruction Set B R S 2-5
Programming Guidelines PR S e K P 2-7
Reading Characters e e NGRS .2-8
~I/OTiming e R T e I 2-8
Power-Up Response - A AT T ...2-8
Printer Port SRR S S N 2-8
Programmable Elements S RS A 29
Programming SUmmary N R 2-9
 Registersand Flags EPE S ROt e OIS 2-12
I/0 Instruction Set e SN M e 213

L

o

N

0

APro'gramming‘Guidelines LI ke R e Caprimaa n 2-15

Reading Characters i Ll A 2-15
I/0 Timing RO e R 2-16
Power-Up RESPONSEcooio oo e 2718
Real-Time Clock Interface T S {...2-18
.,Programrhable Elements [A CEEEL S0 2-18

~ Programming Summary e I L 2-18
‘Registers and Flags e RI DR 2-19
I/0 Instruction Set- I IR .2-20
Programming Guidelines (Sl o221
 I/OTiming e e 2V e A 2-22
Power-Up Response S R e 222
Programmable Interval Timer B RN A R o 2-22
 Programmable Elements e T e 2422
 Programming Summary ol e S 2-22
~ Registers and Flags R D 2-24
“1/0 Instruction Set i Sl e 2-25
Programming Guidelines i PR 2-27
1/0 Timing S e O 2-27
Power-Up RESPONSE ooonio e oiee o SO 2-27
DlsketteSubsystem.....j P AR Lo, 2-28
Programmable Elements T e s2:28

, Programming Summary b HESEE i 2-28
" Registersand Flags B .2-31
1/0 Instruction Set Kbt e e 2-32
Programming Guidelines RIS I C..0.2-41

~ Reformatting a Diskette N BB S 2-47
I/0 Timing----- AT SR 2-56
Error Conditions A EIO AR N e LT 2-58
Power-Up Response and Inmal Program Toadc.i... 2-59

V1rtua1 Console

Cells S L e e e S 33
Formats- e SRR R Rl33
Cell Commands R O PR e 0% O R el 34
" Function Commands e RO IR 3-5
Breakpoints and Program Control 3-5

* Additional COMMANAS coo..io i 3-8
Correcting Errors B i g0 AL Tk ey 3-8

© The RUBOULKEY ..o o oooeecerece e i ...38

The K Command [e B SR e 39
- Virtual Console Errors BRI R s 39

TWO Theory of Operatlon
4 System Processing Umt

Architecture: Major Elements 4-4
CPU Section A e el 4-6
Control Memory R R e ST 49
- Bus Arbitration and DMA and I/0 Control Log1c i T 4-10
‘Multidevice/microI/0O Bus Section 4-10
MAPs and Master Mulnplexor SR e B TR 4-12
- Oncard Memory and Parity Loglc O T SE M ND S .4-14
Diskette Interface S e X N ot e 414
System Console Interface o L 4-16
Decode and Timing Logic 4-20
Operational Overview R R -.4-20
System Timing s R SRR Sl 4-33
| Signals Ea R ot ke 4-38
5 Optional Memory Card
Installation and JUMPETINg\ i 52
Interfacing e i SRR R A 5-2
‘Theory of Operation A S S 5-4
g Initiating a Memory Operation i S R el 5-4
\Wﬂ Row and Column Address Selectmn Y SOt 5-4
. Read0......... e A e SRS 5-5
Wnte T e R e a0 eI 5-8
_ Refresh.,....A...........‘.,,.. Sk RIS S SR 5-8
6 Opt1ona1 Video Interface ‘
‘ToBeSupphed R 6-1
7 Power Supply Assembly
Theory of Operation e R 7-2
- Line Rectification SR TR g% SR O SR, 7-6
Start-up Circuit SASER R S 7-6
- Power Section PN o THEA AR Ny 7-6
- Output Section g B e e B IS 7-8
Auxiliary Voltage Section e LA ..7-9
- Status Circuits X o P e7-10
Interconnection with the System T e ..7-10

O

THREE

'U-obd:x>

Mechanlcal Assembhes
Model 10 and Model 10 / SP Modules and

'Conflguratlons
' Unit Architecture AIIE R R R 8-2
Power Supply Module (PM) TE G O SR 8-4
' CPU Logic Module (CLM) N R 8-5
Logic Expansion Module (LEM) .00 8-6
Disk Modue (DM) e R A IR RO 8-6
Diskette Module (FM) S L RS 8-6
“Tape Modile (TM) T S R e 8-6
Configurations N Ry S e 8-6
Module Architecture A S 8-8
Power Bus B TR T 8-11
~Memory Bus e i e A b SEE T 8-11
Input/Qutput Bus T e P L T 8-11
Slot Assignments T e 8-14
Backpanel Pin Assignments EERG IR N S St SRR 8-19
- Backpanel Priority Sw1tches i L R e R 8-26
Power Switch Lo FIEER T8-26
Line Fuses W T T eI 8-29
Power Interlock il T R 8-29
'System Cables S SR ORI 8-29

Related Drawmgs
Dlskette Dlagnostlc Commands

‘ATP Interface Programmlng Example
‘Memory Formats for Blthappedecreen Buffer

Memory Mapping the Screen BUFfer © . D-1
Mapping Screen Pixels to the Buffercoooioieion o D-3
Character Cell AttribUtescoooioi i D-7

Attribute AdAressing D-7

“ Figur'e 0-1 Models 10 or 10/SP computer systems =

PH-0726

Overview

Modei 10 and Modél 1OISP systems are dual-processor desktop cfor'nputers'
designed for multi-user commercial and technical applications. Used as technical
workstations or applications in business, education, science, real-time control,

 and industrial automation arenas, they. offer minicomputer power in a desktop

unit.

~ This chapter prdvides an overview of the Model 10 and Model 10/SP Desktop
Generation computer systems. It discusses their configurations and functional

organization and briefly describes their major components, including: the

Overview

system processors, their memories, the diskette and Winchester disk subsys-

tems, the power subsystem, the system console (display monitor and keyboard),
and the optional cartridge tape subsystem, communications multiplexors, and
input/output (I/0) interfaces. System techmcal specifications conclude the
chapter.

Conflguratlons

The Model 10 and Model 10/SP systems are 1dent1cal to each other except that
the Model 10/SP is configured with a firmware floating point feature to support
AOS and MP/AOS-SU operating systems. The systems use a common set of
modular building blocks, identical in size, that interconnect for ease of installa-
tion and system expansion. The set consists of the following modules

power module
‘5-slot CPU loglc module
- diskette module
- disk module
5-slot logic expansmn module
cartndge tape module

Fxgure 0-2 shows 3-, 4., 5-, and 6-module conﬁguratlons Minimum conf1gurat10n
systems consist of a system console and a computer unit comprised of the three
basic modules: power module, CPU logic module, and diskette module. Other

~modules can be added to expand upon the system'’s capabilities.

. 1. Power module, contammg

One power supply: (1f a 3-module system); or

Two power supplies (if more than 3 modules in system)
Cooling blower

Line frequency clock generator card (optlonal)

2. CPU logic module, containing:

Two-board system processor unit featuring dual CPUs basic system memory,
‘and interface logic for system console, serial printer, and diskette subsystem
256 Kbyte or 512 Kbyte semiconductor memory cards (optional) with byte
parity (for a maximum system memory capacity of 768 Kbytes)

" Color monitor interface board (optional)

- One or more (as space permits) I/0 mterface cards (optional)

3. Diskette drive module, contaxmng

One or, optionally, two 5.25-inch diskette drives

Overview

O

. Disk module; containing:

' Disk controller card

One 5.25-inch Winchester disk drive

. Disk expansion unit, consisting of:

Disk module (less the controller) '
Power module with one power supply and a coolmg blower.

.b Cartridge tape module, contaxmng

Controller card
5.25-inch cartridge tape drive

“Power supply
. 5-slot logic expansion module that accommodates up to five I/O interface

cards

Overview

PN

Diskette CPy Power
module logic module
module
‘ Diskette | Disk CPP Power
module module logic module
i : module i
Diskette Disk ngif: _ CPP -Power
module | module | PANSON logic | module
i : module module
Qat;t;fege Diskette Disk Logic- 'CPU Power
: module module | &XPansion ogic module
module module module

Figure 0-2 ' Models 10 or 10/SP systerh configuration

ID-00648

Overview

o Organ.ization

~« Diskette interface

 As shown in Figure 0-3, the two system processors (microECLIPSE and 8086) are

organized around two major system buses: the memory bus and the microl/O
bus. The memory bus provides a 16-bit wide, memory address/data path
(address path expands to 20 bits wide in memory mapped mode) between the

~ system processors and the memories, and the optional firmware floating point

unit, when present. The microl/O bus (sometimes called the Microproducts or
microNOVA I/O bus) consists of sixteen lines, four of which provide a differen-
tially driven, 2-bit serial data path between the microECLIPSE processor and the
I/0 subsystems. : , '

- Components

. The componenfs of the Model 10 and Model 10/SP systems are described below.

Systeni Procéssing Unit

The two-board System Processing Unit (SPU) resides in slots 1 and 2 of the SPU
logic module. These boards contain two CPUs: a microECLIPSE processor and an
8086 microprocessor. ' A ' R :

The microECLIPSE processor implements the 16-bit ECLIPSE character instruc-
tion set and supports Data General's RDOS, AOS, and MP/AOS-SU operating
systems. It also supports bit-mapped graphics for the monochrome monitor and
gives direct memory access (DMA) to graphics applications for rapid screen .
‘response. The microECLIPSE CPU can be supplied with or without a firmware
floating point instruction set. ' : : :

- The 80'86'miéroprdces,s.or implements the Intel 8086 microprocessor instruction

set, which supports the the MS-DOS and CP/M-86 operating systems. -
The two SPU boards also contain: | i '

. Basic system memory (1 28,kby'tés or 256 kbytes)

. ‘Memory allocation and protection unit (MAP)‘

-« System console in,terfaceb‘for the system console monitor and keyboard

+ Serial prixitér interface (EIA RS-232-C compatible)
s Virtual console L
* Real-time clock -

e Programmable interval timer

- ¢ Parity checking logic for memory data

» Power status monitor

'* Power-up diagnostics

e Program load logic

The twb-board SPU provides basic, low-address RAM for system memory. It can
be configured with either 128 Kbytes or 256 Kbytes of storage. The memory

Overview

~ arrays are structured with 64K by 1-bit elements of dynamic MOS random-

access memory (RAM). The memory includes byte parity bits for data.

The parity checking logic of the SPU verifies the integrity of system memory. It

appends a parity bit to each byte of data written to memory and checks it when

‘it is read. When the parity checking logic is enabled by the program, a parity

error generates a program interrupt.

The MAP performs logical-to-physical address translation for the system
memory. It also provides the following protection mechanisms: validity, write,

1/0 and indirection.

O

Overview 7

System processing unit (SPU)

—— — — — —.

256/512
Kbyte
memory card

8086
CPU-

128/256
Kbytes
memory

Monochrome
system
console
A
=== T[T T T T T T System proce
|
: ‘Console
| - interface
|
l “
|
I - ,
| microECLIPSE
| |cpu
|
|
|
|-)
I Serial
I printer
: interface
; \
Lo Sl
Serial Folor video
rinter :interface
P (optional)
A
Y
Color
console
(optional)

microl/O
bus
interface

Diskette
interface

Diskette
drive(s)

Asynchronous . Expansion‘ :) Optiohal
R Disk .
communications subsystem disk 1/0. _
interfaces . subsystem interface(s)
A \ 3 \ A
[[Y Y)
‘Dasher Dasher Dasher - Dasher Spotlonm
terminal terminal terminal terminal :
device(s)

ID-00715

Overview

{
The system console interface port on the System Processing Unit communicates
. with the system console monitor and keyboard. For the optional 13-inch color
monitor, a separate graphics controller board is used. Additional workstations
for multiterminal operation are connected via the asynchronous communications
‘interfaces (see the subsections “1/0 Interfaces” and “Multiterminal worksta-

tions”’).

The diskette interface, which resides on the two-board SPU, can be programmed
" to read and write Data General formatted diskettes (9 sectors per track) or CPM
and IBM PC formatted diskettes (8 sectors per track). The controller can also be
" programmed to read Data General's ENTERPRISE/MPT™ 5.25 inch, formatted
diskettes (35 tracks per surface and 10 sectors per track). .

“The printer interfacev port on the SPU prbvides asynchronous communications
with a connected serial printer. The interface conforms to EIA RS-232-C
specifications. ‘

The virtual console provides a firmware substitute for front panel switches and -
indicators, allowing the operator at the system console to program load; start,
stop and continue program execution; and perform program debugging
operations. i

The real-time clock and programmable interval timer (PIT) provide time bases
for programs that require them. The real-time clock generates low-frequency,
1/0 interrupts at one of the following program-selectable rates: 10 Hz, 100 Hz,
'1,000 Hz, or ac line frequency. The PIT can be programmed to generate I/O
interrupts at fixed intervals ranging from 100 microseconds to 6.5536 seconds.
The clock rate of the PIT is 10 KHz. ' :

The powér status monitor tracks the state of a power status signél supplied by
the power supply and initiates a power fail interrupt whenever power falls
outside specified limits. :

The power-up diagnostic — a thirty- to forty-five second self-test routine —

verifies the basic integrity of the system each time power is applied. It checks

all of memory, the virtual console, the CPU, the system console interface, the

attached processor, the MAP units, the printer port, and the color video
“interface, if present. G i

The program-load logic — this feature automatically transfers a low-level
bootstrap program from the diskette drive and is initiated after a successful
completion of the power-up self-test diagnostics if no disk drive is present in the
system. The low-level bootstrap program is then executed to initiate the transfer
of subsequent program elements of the operating system. :

~ Diskette Subsystem
: The diskette module contains one or,‘ optionally, two drives that reside in the
diskette module. Each drive stores and retrieves data from a 5.25 inch,
double-sided, low-track density (48 tracks per inch) diskette containing 40 tracks

o _per surface. There can be 8 to 10 sectors per track, depending on the type of
- diskette. : - : :

Each sector stores 512 vby'ites of data. The diskette interface uses direct memory
accessing to transfer 8-bit data bytes between memory and the subsystem.

s

e

Overview

Disk Subsystem

The optional disk subsystem consists of a disk controller and up to two
5.25-inch, Winchester disk drives with a formatted storage capacity of 15
megabytes per drive.

The controller and one disk drive reside within the disk module of the main
computer unit. The second disk drive, when present, resides in an expansion
unit, consisting of a disk module and a power module with one power supply -
assembly. An external device cable connects the second disk drive to the
‘subsystem controller. ’

Each drive stores and retrieves data from 5.25-inch, double-sided, fixed disk
platters, containing 306 tracks per surface — 305 tracks for the user and one for
diagnostics. Each track contains 17 sectors and each sector stores 512 bytes of
data. The controller provides a sector buffer for data transfers and uses the

- microl/O bus and data channel facility of the SPU to transfer 16-bit data words

between memory and the subsystem.

Video 'Interface

An optional video interface board can be added for a 13-inch color graphics
monitor. The video interface board will reside in the slot next to SPU2 in the

CPU logic module.

Systemn Console

The system console consists of a 12-inch monochrome monitor and keyboard. It

allows the user to direct the activities of the system. This console connects to
interface logic on the SPU. If an optional color video interface board is included,
a 13-inch color monitor can be substituted for the monochrome monitor in the

~ system console.

‘Multiterminal Workstations

Up to four additional terminals can be connected for multiterminal operation.

These terminals connect directly to any of the optional asynchronous communi-

 cations interfaces: Models 4463-Z, 4463-W. Any of the following DASHER™

" model terminals may be used: D210, D211, G300, D410, and D460.

‘Cart’ridge Tape Subsystem

The optional cartridge tape subsystem consists of a controller, a 1/4 inch
magnetic tape cartridge drive, a fan, and a power supply. The subsystem
provides a storage capacity of up to 15.4 Mbytes. The controller uses the
‘microl/O bus and standard data channel facility of the CPU to transfer 16-bit
data words between memory and the subsystem. '

1/0 Interfaces

The Model 10 and Model 10/SP Support a selection of asynchronous/synchronous

" communications multiplexors and sensor I/O subsystems. Each card occupies an

1/O slot in either the CPU logic module or the 5-slot expansion module and
communicates with the CPU via the microl/O bus.

10 Overview

The asynchronous communications facilities provxde an EIA-RS232C or 20 MA
current-loop line interface, jumper-selectable, for the several DASHER™ dlsplay
@ terminals avallable as addmonal workstations.

Power Subsystem

The power subsystem consists of one or two, 123-watt (output), power supply
- assemblies and a cooling blower inside the power module. The power module

“also houses an optional line frequency clock generator card. One power supply

assembly provides dc power to the CPU logic module and diskette subsystem

while the second power assembly supports the disk module and optional 5-slot
expansxon module.

TECHN ICAL SPECIFICATIONS

Table 0-1 through Table 0-5 list general specxﬁcatxons as well as mechanical,
-electrical, and env1ronmental specxﬁcanons for the Model 10 and Model 10/SP
computer systems.

Table 0-1 General specifications

Overview

11

Table 0-2 General specifications, basic components

12

Overview

Overview

13

*Each side cover adds 0.7 inch (1.8 cm) to width.
* *Each circuit card adds 0.75 Ib (0.3 kg) weight.

|
|

14 Overview

*Includes blower unit.

Tabie 0-5 - Environmental specifications

o

ey

. Pro
gTamIn]Il
g

Programming
the CPUs

At the heart of the DesktOp Generation Model 10 and Model 10/SP systems are
the two CPU cards in the CPU logic module. These cards contain two system
‘processing units: a Data General microECLIPSE processor and an Intel 8086
processor which access memory, manage data, and control program flow.

This chapter summarizes the logical relationship between the microECLIPSE and
8086 processors and the programming capabilities of each. The summaries
include brief descriptions of important programming features such as address-

- ing modes, data formats, program accessible registers and SPU operations and,

also, tables of both inStruction sets.

The summary descriptions are followed by detaxls of programmmg the
processors that are unique to their use in Model 10 and 10/SP systems. This
includes power-up response, microECLIPSE instructions, registers, memory

v management facilities, a list of reserved memory locations, and the set of

instructions used to pass control between the 8086 and the microECLIPSE CPUs
that are not described in the 16-Bit Real-time ECLIPSE Assembly Language
Programming manual. The chapter concludes with tables of instruction
executlon times for both processors. ;

Flgure 1-1 shows the relationship between the microECLIPSE and 8086

. processors and the rest of the Model 10 or 10/SP system. The microECLIPSE is
_the kernal processor: it manages system memory allocation and protection, all
input/output operatmns, and begins runmng upon power-up or after a system

_ reset. :

1-2 Programming the CPUs

- “1/O devices
microl/O bus ‘ (including
‘ —<—> onboard and .
DMA devices)
" Data (16)
; -t
micro- /1 5 /1 0 Addresses
ECLIPSE = [7 7
processor
| micro-
| ' o ’ : ECLIPSE
| L : , . 5| Wae e
‘ ' ! : : : i User A
@ o 7 7] UserB
, T ' o S User C -
T User D
- ; Data ch.A
APT Register ; . —<—>1 Main memory
| [S , 20 48 or 112
| ; : // »{ kilowords
) ‘
‘ ' : +256 Kwords
‘ r n
1 APT vector » 3086 MAP : optional
I ‘ 9 > i add-on memory
% 7 :
| ‘ S -
. 511
1 5 8086
| : processor }9 /10
77
> /
16
. ; : ID-00716
5@ i . - e, . :
s Figure 1-1 anl-processar organization

' The_MQdel 10 and 10/SP Dual-Processor'System

The 8086 processor shares main memory with the microECLIPSE CPU. Only one
processor can access the memory at a time, so the processors run serially — that
~ is, while one processor runs, the other is idled. Interprocessor communications
" are handled by a combination of 8086 processor calls (performed by executing
any Out instruction on the 8086), by 8086 vectored interrupts, and by shared
memory mailboxes. Software determines the location and format of the

mailboxes.

The operational cycles of the two processors are synchronized so that their

: , ' ~ memory accesses occur during the same relative timing phase: a memory access
R : , for either processor requires 500 ns. The instruction execution times for each
! : ~ processor are listed in the sections on the individual processors.

Programming the CPUs

Since the memory allocation and protection unit (MAP) and all I/O devices are
under the control of the microECLIPSE processor, the 8086 must make requests
to the microECLIPSE CPU via the memory mailboxes if the 8086 program
requires a change of the MAP or an access to an I/O device. '

o

(‘!@WI ‘ Al system I/O interrupts are handled by the nucroECLIPSE processor. If any
interrupt occurs while the 8086 processor is running, the 8086 is paused, and
control passes immediately to the microECLIPSE CPU. After the microECLIPSE
handles the interrupt, it normally restarts the 8086 processor.

In order to write programs for the Data General microECLIPSE processor, refer
to the 16-Bit Real-Time ECLIPSE Assembly Language Programming (DGC No.
014-000688); for the Intel 8086 processor, you need the MCS-86 User’s Manual
(Intel No. 92-722). These documents detail the instruction sets and archltecture
of the system processing units. -

You will need to supplement these references with spec1ﬁcs in this chapter on A
operations peculiar to Model 10 and 10/SP systems such as execution times and
the transfer of control between processors

System Memory Mapping

As shown in Figure 1-1, each processor has its own MAP unit. The micro-
3 ECLIPSE MAP translates 15-bit logical addresses into 20-bit physical addresses
| A i “and the 8086 MAP translates 19-bit logical addresses into 20-bit physical
| SERTES R - addresses. (Model 10 and 10/SP systems use only the first 112 kilowords or the
SR . first 368 kilowords of the 1024 kilowords of physically addressable space.) The
| - mapping operation translates 1-kiloword logical blocks (called pages) to
‘ B * 1-kiloword physical blocks. The blocks do not have to be mapped contiguously,
and microECLIPSE and 8086 blocks can be interspersed among each other. For
detaxls on each MAP unit, read the sections on the individual processors.

Panty Checkmg

l ~ The Model 10 and parity checking facﬂlty, when enabled, detects any byte
| ' panty error or errors that might occur during access to main memory. Each
| ’ " memory word consists of 18 bits: 16 data bits (2 bytes) and 2 parity bits (1 for
! S . each byte). The parity logic checks the parity bits read from memory. If an error
@ ‘ ~ occurs, the parity logic requests an interrupt, when so enabled. The micro-
: ECLIPSE processor must handle this interrupt. Check the section on that
w o 'processor for additional mformatxon .

m1croECLIPSE CPU Features

_This section summarizes the programming capabxhtles of the mlcroECLIPSE
~ processor as it is used in a Model 10 or 10/SP system. It includes brief descrip-
~ tions of important programming features such as addressing modes and data
formats, and explains microECLIPSE CPU operations in general terms. Note that
the ﬂoatmg point instruction set is an optional feature, included only with Model
10/SP systems. a

A microECLIPSE CPU features the standard Data General archltecture This
" architecture is dlagrammed in Fxgure 1-2.

G

1-4

Programming the CPUs

O

o

:{7 XOP table address ﬂ}l,L]

4——.———4 Vector stack addr. O/il
-<—————>{ Frame pointer lMJ

- - >r Stack quer limit l‘_’Z_J

4————4 Stack pointer 40O J

L«— Address/data bus » " Main emary

> st fault handler addr. /12 |

—————.————————-————-——_-——_——-———-——.—_———-

<«—>{ Instruction regis;ter] ‘
f<—> Program counter J o ‘ | ;

> P sttus register | - ' [Shifter |
fe—>] CPU status register | ALY [‘ Skip s|ensor]

> v Internal register
ACO
AC1
! . AC2 (Index register)
r Shifter J ’ AC3 (Index register)
B FPACO
[canry initializer | FPAC1
. \ : FPAC2
{ Carry B FPAC3

)

@

ID-00717

Figure 1-2 ECLIPSE architecture

Addres_sing |

The size of the logical address space of the microECLIPSE CPU is 64 Kbytes. The
physical address space of the Model 10 or 10/SP system can be as large as 768

- Kbyte. Refer to the section entitled “MAP Operations” for a summary of

logical-to-physical address translation.

The microECLIPSE prbcesSor has two classes of instructions. Short class

_ instructions contain an 8-bit address displacement. Extended class instructions

contain a 15-bit address displacement. Both classes of instructions use one bit to
specify either direct or indirect addressing.

v In addition, indirect'addre'ssing can be specified by a bit within the contents of

Programming the CPUs

- an address. (f bit O of an addressed word is one, the addressed word is used as a
pointer to another address.)

The microECLIPSE processor permits any number of indirection levels; in
mapped mode, however, indirections can be limited to 15 levels. (See the "MAP
Operations” sectxon later in this sectlon)

Addressmg Modes Direct or indirect word addressing in the micro-
ECLIPSE CPU can be done in the following modes:

Absqute The address (before indirection) is the unmodified dlsplacement that is,
it 1s the page O address as shown in Flgure 1-3.

SHORT CLASS EXTENDED CLASS

: MAIN MEMORY
0 -
ABSOLUTE PAGE ZERO
* ADDRESSING ;
. 3774
o CoE c PC-200, - -
@ : PC-RELATIVE
' Lo o ADDRESSING
: PC+177g
. - AC2-2005 I ABSOLUTE,
* ‘AC-RELATIVE PC-RELATIVE,
ADDRESSING | AC2 —™] L (" AC-RELATIVE
e ADDRESSIN
' : AC2+177, v SSING
AC3-200
- AC-RELATIVE
ADDRESSING | A€ T
AC3+177g

L : . DG-04458
‘Figure 1-3 Addressing modes
' Program Counter Relative. The address (before indirection) is found by adding

the displacement to the address of the word containing the displacement, that
is, the current instruction.

Accumulator Relative. The address (before indirection) is found by adding the
displacement to the contents of a speciﬁed accumulator (AC2 or AC3).

Figure 1-3 illustrates the accessible memory ranges for the two instruction
classes and three addressing modes (direct addressing). Note that absolute
addressing mode can be used to access lower page zero, locations 0-377s,
regardless of the current contents of the program counter.

yte Addressmg A byte in memory is selected by a 16-bit byte pointer.
Bits 0-14 of this pointer contain the memory address of a 2-byte word. Bit 15
~ indicates which byte of the address location will be used. Short class instructions
“use an accumulator to hold the byte pointer. The pointer is contamed in the
displacement field of an extended class instruction.

Programming the CPUs

Bit Addressing A bit in memory is selected by a bit pointer. Instructions
that require this 32-bit pointer use two accumnulators (specified in the instruction)
to hold the pointer. Figure 14 illustrates the bit addressing process.

100 101 102 103 104 105 106 107 110 111 112 113
[Word] Word] Word [word] word [Word] word [word] word] Word|word| word]
A :

‘0123 44 6 7. 8 9101112131415

T N L N - ”._A_‘
llo o 1 0 1slo o o 3|os
N - 2 X 2 2k CER BN R

01 1516 2728 31
L v— 1L v J L_V_I
Base + Offset Bit number
, address - B
v—
' ‘Address of word
containing

S i DG-08290
Figure 1-4 Bit pointer
Data Formats
: This subsection summarizes integer formats in Figure 1-5 floating point formats

in Figure 1-6. Floating-point numbers are normalized at the end of all floating-
point mathematic operations.

" Programming the CPUs

]

~ Sign

: ~ Signed Integers
Single precision:

o 15,

T 2's Complement magnitude '
Range: —32,768 to+32,767
Sign ! i

Double precision:

2's Complement magnitude
Double-Precision Range: —2,417,483,648 to
+2,147,483,647

PR G YARE £

Unsigned Integers

Single precision: :

0 15
Unsigned magnitude

Range: O to 65,5635

Double precision:

0 5. 0 15
. : Unsigned magnitude
Double precision range: O to 4,294,967,295

‘Figure 1-5 Integer formats

NOTE

Double precision is used
only by MUL and DIV
instructions. Refer to their
descriptions in'-16-bit Real-
Time ECLIPSE Assembly
Language Programming.

- ID-00650

1-8 Programming the CPUs

Single-precision (2 words)

01
IL__v__.

Sign

Exponent

Word 0 J [Word 1 l
15 23 24 31

3

Excess 64

True value of exponent =

Double-precision (4 words)

—
Mantissa (6 hex digits)

{Value in byte O) - 64

Mantissa x 1
Normalization: Shift mantissa left 1 hex digit and decrement
* exponent — repeat until high-order hex digit # O.

True value of exponent

Flgure 1-6 Floating-point formats ;

Range of exponent field: O to 127
Range of true value of exponent: -64 to 63

Magnitude of floating- point number:
64 (true value of exponent)

AnthmetlclLoglc Class Operatlons

The arithmetic/logic class (ALC) instructions include ADC, ADD, AND, COM, INC,
MOV, NEG, and SUB. Each instruction performs a group of general functions in
addition to the function implied by its name. These general functions are

{Value in byte 0) - 64

encoded in four fields in the ALC instructions. They are:

Set carry bit (0, 1, complement, or no change),

Skip test,

instruction.

' vSh1ft (nght left, swap)

Load or No Load.

Word 0 Word 1
0 7 8 15 16 23 24 31
(R
Exponent Word 2 r Word 3
32 39 40 47 48 53 54 63
\ : V S—
Excess 64 Mantissa (14 hex digits)

Figure 1-7 illustrates the sequence of operations performed by a general ALC

Programming the CPUs

(Start)

Y

@ e : ;) Set base value

of carry bit.

l

Store contents
of ACD, carry.

Perform specified
operation.

No

What kind
of shift

Shift left] Shift right
{bit O to Swap right and (bit 15|gt° ‘
carry, carry Ig;t"bvtui;an d carry, carrf
to bit 15). ey nchanged to bit 0).
\) Y L A

Test carry bit, ACD.
Make skip decision.

©

Yes - 7 y

ACD, carry have ACD, carry have '
new values. original values.

|

Skip according to
skip decision.

End

DG-08293

Figure 1-7 ALC instruction operation sequence

O L, '

1-10

Programming the CPUs

Stack Operations

The microECLIPSE processor maintains a last in/first out stack in main memory.
Stack operations depend on the contents of four reserved lower page zero
locations: the stack pointer, the frame pointer, the stack upper limit, and the
stack fault routine pointer. The program must set up the initial contents of the

~ stack pointer, stack upper limit, and stack fault routine pointer. Once this is
done, the CPU will update the stack and frame pointers automatically; it will
also jump to a user-created stack fault routine, using the stack fault routine
pointer, if an instruction causes a stack overflow. A fast and efficient method of

- changing stacks is also provided so that a priority interrupt handler can make’

maximum use of the stack feature.

Floating-Point Operations L

The floating-point instructions, available with Model 10/SP systems only, allow
the manipulation of both single- (32 bits) and double-precision (64 bits) numbers.
Single-precision gives 6-7 significant decimal digits, while double-precision gives

" 15-17. The decimal range of a floating point number is approximately 5.4 X
10~ t0 7.2 X 10*75 in either precision.

Four separate 64-bit accumulators (FPACs) are available for floating-point

_ operations. While the first floating-point operand is always in one of the FPACs,
the second operand can reside in an FPAC or be fetched from memory. The four
FPACs and their associated status bits can be pushed onto or popped off of the
stack by one instruction.

After every floating-point operation, th_e floating-point status register is checked
for the following fault conditions.

_Overflow. Exponent overflow occurred. (The exponent should be increased by
, 12_8; otherwise, the result is correct.) :

Underflow. Exponent underflow occurred. This condition is analogous to an
exponent overflow. ‘

Divide by Zero. Zero divisor detected; division aborted.

Mantissa Oveiﬂow. A bit was shifted out of the high-order end of the mantissa

~ during a FSCAL instruction. Alternatively, the result of a FFAS or FFMD

instruction does not fit into the destination.

A fault condition initiates a floating-point trap if thé trap enabling bit (5) in the
floating-point status register is 1. This trap pushes a return block and causes an
indirect jump via location 45g.

~ Several floating-point instructions have two forms, one ending in S and another

String |

in D. Those ending in S use single-precision floating-point format, while those
ending in D use double-precision. The function of the two forms is otherwise
identical. Floating-point formats were ligted in Figure 1-6.

Operations -
String instructions (CMP, CMT, CMV, CTR) can move strings of bytes from one
‘portion of memory to another, can compare one string of bytes with another

- such string and can translate a string of bytes from one representation to

another. One instruction can search a string of bytes for one or more delimiters.

Programming the CPUs

1-11

MAP Operations

This subsection explains the functions of address translation and protection

* performed by the microECLIPSE MAP unit, and describes the page 31 register.

Address Translation and Protecti

: Each ImcroECLIgSE user'’s

physical page to which a log:

The details of programming the microECLIPSE processor to manage the address
translation function are described in “*Memory Allocation and Protection” later
in this chapter.

A program can load an address
translation map consistin is for each of up to four microECLIPSE
‘users, an esktop G hannel. It can also load 512
12-bit words into the 8086 processor’s MAF. (The software actually loads 11 bits;
the twelfth bit is hardware-derived from the logical and of the physical address.)

; of 32, 1024-word
n specify the
one bit specifies whether that

logical address

(2-Kbyte) pages

page ap,

: - page is write-protected; and one bit speciﬁés whether the page is validity-

protected.

The logical address spaée of the 8086 processor is 512 1024-word pages. The 12
bits in the 8086 MAP registers have the same function as they have in the
microECLIPSE user’s maps, except that the 8086 MAP does not implement write

protection. .

a memory reference is made ded
] AP by manipulating the contents of the MAP status
ult when the program tries to access a validity-protected

~ word or write to a write-protected word. In either case, the state of the processor

is saved and the program jumps to the (programmer-supplied) MAP fault handling

routine. B

Additionally, the program can specify 1/O or indirection protection, causing a MAP
fault to occur when the processor encounters an I/O instruction or more than 15

~ levels of address indirection. This specification can also be accomplished by

_ writing to the MAP status register. By the same m:

instructed to interpret all I/O format instructions as{f
instructions. Finally, whenever the MAP is enabled, t
enabled. This facility is described in detail further on.

Screen Buffer Write Enable A program running in the microECLIPSE

CPU can use the microECLIPSE MAP to enable direct access to the monochrome
monitor screen buffer. This allows direct display of bit-mapped graphics.

Pa

ge 31 Register Unless the MAP is enabled, no address translation

occurs. All addresses issued in unmapped mode by the CPU reference locations in
the first 64 Kbytes (32 Kwords) of physical memory, that is, locations in physical
pages 0-31. If a program operating in the unmapped mode requires access to

some other part of memory, the page 31 register can be used to accomplish this.

A Map Page 31 (DOB, MAP) instruction lbads the page 31 register with a 10-bit

~ translation address. This address corresponds to an entry for one page in a user

map in the MAP register, but without protection bits. A memory reference
addressed to logical page 31 (that is, to octal page 37 — address bits 1-5 are all

~ one) does not access a word in physical page 31. Instead, the reference addresses

: ~aword in the physical page specified by the 10 bits in the page 31 register. Thus,

1-12 Programming the CPUs
the page 31 register affords a one-page wide “window" on memory to a program
running in the unmapped mode. After power up or a system reset, the page 31
' register contains octal 37. i :
. Extended Operations

" The extended operation (XOP and XOP1) instructiohs allow the transfer of

control to called procedures. An XOP instruction places all relevant return

~ information on the stack and retrieves the address of the called procedure from

a user-constructed table of procedure addresses. Control transfers to the
procedure after the address has been retrieved. ' '

Emulato_r Trap

Parity

The microECLIPSE CPU has a hardware provision for inétructioh emulation. If

' the CPU encounters an undefined instruction while operating in the mapped

mode, it automatically makes an indirect jump through location 115 — provided
that the contents are not zero. This location can contain the indirect address of
an emulator routine. If the contents of location 115 are zero, an undefined
instruction simply results in a NOP (no operation).

Check Operations

When the parity logic detects a memory byte parity error, it requests an
interrupt — if the microECLIPSE processor has enabled such interrupts. (If the

- 8086 processor is running at the time, the interrupt causes it to be idled while
~ control is passed to the microECLIPSE processor.) The microECLIPSE CPU obtains

the value of the program counter at the time that the error occurred with a

" Read Parity Fault PC (DIA PAR) instruction. DIA PAR returns the state of the

MAP enabled bit (0), the current user map select bits, and bits 1-12 of the logical
address contained in the program counter when the fault occurred.

1I/0 «Operations

The microECLIPSE 1/O instructions are used to program several system devices
and up to 20 external input/output devices connected to the system's microl/O
bus. These devices include .

ParitY ,checking logic

Two MAPs: microECLIPSE and 8086
Two Pprocessors . B
* System console

Real-time clock
‘ Program:mable interval timer
 Diskette drive ,
- Onboard a‘synchronous‘ interface.

The CPU addresses a controller or system device with the device code in bits

10-15 of an I/O instruction. The basic I/O instruction set controls 1/O devices, sets
up data channel operations, and passes data to and from these devices.
Programming details for system devices are contained in this manual. Similar

Programming the CPUs 1-13

information for external I/O devices or interfaces are available in the manuals
for these devices. : . ,

" 1/O interrupt control instructions offer the programmer the following selection
of 1/0 control schemes. ‘ : ' ' '

va/ Polling (no intézrupts). The CPU che.cks 1/0 device status under programmed
Ll control. ~ -

Sing]e-lével interrupts (interrupts with no priority system). The CPU services one
device at a time in the order determined by the timing of the interrupt and the
physical location of the device controller in the system.

Multiple-level interrupts (interrupts with a priority system). The CPU services an
interrupt from a selected device in the order just described, but a higher priority
device can interrupt a lower priority device's interrupt service routine. The
interrupt handler accomplishes this by manipulating the devices’ priority mask
bits with the MSKO instruction. :

If an interrupt-driven operation is selected, the programmer can choose one of
Q : the following methods to identify the interrupting device.
Test the device's Busy/Done flags with an I/O Skip instruction, or

Place the interrupter’s device code in an accumulator with an INTA
instruction, or . ‘

Identify the interrupting device, save return information, and jump
through a table to a device's interrupt handling routine with a VCT
instruction. B ; : ‘

Prograxh—AcCeSsible Registers

Q Figure 1-8 shows the program-acc_:essiblé registers of the microECLIPSE
e processor, their accumulator formats, and the instructions used to access them.

1-14

‘ Programming the CPUs

CPU
Status

Auto
Program
Load

microECLIPSE
MAP
Address

microECLIPSE

MAP
Status
Out

microECLIPSE
MAP

Status

In

microECLIPSE
MAP ;
Page

Check

microECLIPSE
MAP

Initiate

Page

Check

Parity
Fault
Address

Parity
Fault
‘Code

Format

Read with DIS ac*, CPU

* Write with DOB ac, MAP

IPOFIION[IW'MI bI.YI mlm!xw{ HZ I ™ |VFTIOU|’I s&and :la:: [_k:mod for future use Physical Page Number J
Moz 1 Ms gy [5 6 15
Read with DIA ac, APL or READS ac
Read with DIA ac, ATP
[usl Reserved for future use Device Code l :)
e i 9 10 15 fTP [on [asvl Reserved/Always 0 l ve lourl IS I
; : : n o 1 2 ; : 12 13 14 15
Write with LMP ac
. Write with DOA ac, ATP .
I'ml —— s 6 ——— ""fh" 15 ATP I Reserved/Must be 0 l ﬂ
° 14 15
. Out !
Write with DOA ac, MAP
) Write with DOC ac, ATP
NME| Reserv MAP - |LEF|170 | WP | IND Inme]
[01 P l P ”' 5 6 J] !] " l 12 l 13 ID:"lil .8085 [Reserved Logical Page Number 4]
‘ T % T e 71 K i T s
Page .
Check
Read with DIA ac, MAP :
. Read with DIC ac, ATP
NME|MPN| 170 | WP | IND | SC MAP EF| 170 . . :
Tl Tl s o T]
Page ot : s 6 15
Check
Read with DIC ac, MAP Loéd with LMPA (DIB ATP) instruction
!ﬁ! 'MAP [Revd I ‘Phylioi-l Pnoon:mﬁov' | I :"1:; [[{ o l o ‘ o l o I o [Logical Page Number . I
o 1 3 4 § 8 - ls",air»onzsaso 15
IPBIO'O‘O'O]D' PhycicalPu.Numlnrv J
Write with DOC ac, MAP o1z 3 48 e 1
: : Write with DOA ac, PAR
{nul Logical Page Number MAP Reserved for future use J : _
o 5 6 PYAEDY ‘ 5 Parity - ‘ * Reserved for future vse Icumoll
) . Enable " 13 14 15
‘Read with DIA ac, PAR Write with DOA ac, PIT. -
i‘u’ High 12 bits of address in PC at fault time : I MAP"“;' ::i:ial ! Two's complement of the number-of intervals between interrupts J
0t 13 15) . 15
Count - -
Read with DIB ac, PAR Read/Write‘witﬁ Status Register Instructions
| Faut Reserved for future ise J E"’"i'»‘ﬂ Point Imvlbvnlw]nvzluosl rs[z I N I FPMOD
"o 1 2 i T) T TR T8 y "o 1 2 3 4 &5 e 7.8 . u oz
(first word) -
DG-25972 .

Figure 1-8 Program accessible registers

O

Programming the CPUs 1-15

TTior TTH
Character

Buffer

 TTO or TTO1

Character
Buffer

Real
Time
Clock

PIT
Count

.Format

Read with DIA ac, TTi or DIA ac, TTH

r . Reserved for future use) I RTC I

o 1314

Read with DIA ac, PIT

15

I Gurrent value of PIT counter within 1 count cycle

[}

Read with DIS ac*®, device

r " Ressrved for future use I Last character received J Device BSY| DN l Reserved for future use |
"o 7 e w S "o 1 2 8 T) 16
Write with DOA ac, TTO or DOA ac, TTO1 ‘Read/write with RHVP, WHVP (ACO= 14) instructions
r Reserved for future use Next character to be sent ‘l Control I;E] Reserved l Number of 1 Kbyte blocks in system I
To. hE 7 8 15 Y = s b pry
: Status
- Write with DOA ac, RTC ATP l Reserved | 8086 Interrupt Vector J
) Interrupt i R s
Vector

NOTE The format shown for “Device Status” applies to any 170

device, whether part of the CPU (e.g., PAR, TTO) or external

*This accumulator must not be ACO.

1-16 Programming the CPUs

MicroECLIPSE Instructions

This section presents microECLIPSE CPU instructions in table form. The
instructions are grouped into the following categories.

@ ; , Computing instructions

Program flow management

Stack and data management

System management
Device management

Memory management

Computmg Instrucnons ~ The computing instructions include add (Table
1-1), subtract (Table 1-2), multiply (Table 1-3), divide (Table 1-4), move (Table 1-5),
convert (Table 1-6), logic (Table 1-7), status ('Ihble 1-8), and computatlonal skip

(Table 1-9) instructions.

“Table 1-1 Add instructions

Action

Mnem Instruction

ADC ~ Add Complement
ADD ~ Add

ADDI - ~ Extended Add

- , Immediate

ADI Add Immediate

BAM Block Add And Move

DAD _ v Decimal Add

FAMS, FAMD Add (Memory to
' FPAC) ‘ ‘

FAS,FAD Add (FPAC to FPAC)

v INC Increment
182, EISZ " Increment And Skip

 If Zero

Adds an unsigned integer to the logical complement
of another unsigned number.

Adds the contents of one accumulator to the
contents.of another. ’

Adds a signed integer in the range of —32,768 to
+ 32,767 to the contents of an accumulator.

Adds an unsigned. integer in the range of 1 to 4 to the

- contents.

Moves blocks of memory words from one Iocatlon to
another, adding a constant to each one.

Adds together the decimal digits found in bits 12-15
of two accumulators.

Adds the floating-point number in memory to the
floating-point number in an FPAC.

Adds the ﬂoating-pdint number in one FPAC to the

floating-point number in another FPAC.

Increments the contents of an accumulator.
Increments the addressed word, then skips if the

" incremented value is zero.

Programming the CPUs

1-17

Table 1-2 Subtract instructions

Mnem Instruction Action
DSB Decimal Subtract Subtracts the decimal digit in bits 12-15 of one
: ; accumulator from the decimal digit in bits 12-15 of
i another accumulator. - 4
DSz, EDSZ Decrement And Skip Decrements the addressed word, then skips if the
If Zero decremented value is zero.
FSMS, FSMD = Subtract (Memory Subtracts the floating-point number in memory from
from FPAC) the floating-point number in an FPAC.
FSS, FSD Subtract (FPAC from Subtracts the floating-point number in one FPAC from
o FPAC) the floating-point number in another FPAC.
SBI- Subtract Immediate Subtracts an unsigned integer in the range of 1to4
; from the contents of an ac;:umuiator.
: suB Subtracts the contents of one accumulator from the

Subtract

contents of another.

Table 1-3 . Multiply instructions

Halve

Mnem _ Instruction Action
FMMS, FMMD Multiply Multiplies the floating-point number in memory by the
S {(Memory by FPAC) floating-point number in an FPAC.
FMS, FMD Multiply - Multiplies the floating-point number in one FPAC by
. ; (FPAC by FPAC) the floating-point number in another FPAC. »
MUL Unsigned Multiply Multiplies the unsigned contents of two accumulators
' : . and adds the results to the unsigned contents of a
v third accumulator.’ '
MULS Signed Multiply o Multiplies the signed contents of two accumulators
, and adds the results to the signed contents of a third
.accumulator.
~ Table 1-4 . Divide instructions
~ Mnem Instruction Action
DIV Unsigned Divide - Divides the unsigned 32-bft integer in two
ey accumulators by the unsigned contents of a third
» - accumulator. : :
DIVS . Signed Divide. ~ Divides the signed 32-bit integer in two accumulators
) : : by the signed contents of a third accumulator.
DIVX * Sign Extend And - Extends the sign of one accumulator into a second
Divide accumulator and performs a Signed Divide on the
' ' result. '
FDMS, FDMD- Divide Divides the floating—point number in an FPAC by a
(FPAC by Memory) floating-point number in memory.
FDS, FDD Divide) Divides the floating-point number in one FPAC by the
‘ {FPAC by FPAC) floating-point number in another FPAC.
FHV Halve Divides the floating-point number in FPAC by 2.
" HLV Divides the unsigned contents of an accumulator by

2

1-18

Programming the CPUs

TaHe 1-5 Move instructions :

- Action

Mnem Instruction
BAM - Block Add And Move
' BLM ‘ Block Move ’
CMT Chafacter Move Until
True
CMV " . Character Move E
DHXL Double Hex Shift -
i - Left '
DHXR Double Hex Shift
) Right
FEXP - Load Exponent
" FLDS, FLDD Load Floating Point
~ FMOV - Move Floating Point
FRH Read High Word
" FSTS, FSTD - Store Floating Point
HXL . Hex Shift Left
HXR Hex Shift Right
LDA, ELDA Load Accumulator
: : LDB, ELDB Load Byte
: MoV Move
POP Pop Multiple
o Accumulators
- POPB Pop Block
 PSH ; Push Multiple
, ' Accumulators
STA, ESTA - Store Accumulator.
STB, ESTB Store Byte
XCH Exchange

Accumulators

Moves blocks of memory words from one location to
another, adding a constant to each one.

Moves blocks of memory words from one location to
another.

Moves a string of bytes from one area of memory to
another until a table-specified delimiter character is
encountered or the source string is exhausted.
Moves a string of bytes from one area of memory to
another under control of the values in the four-
accumulators. :

Shifts the 32-bit contents of two accumulators left 1
to 4 hex digits, depending on the value of a 2-bit
number contained in the instruction.

Shifts the 32-bit contents of two accumulators right
1 to 4 hex digits, depending on the value of a 2-bit
number contained in the instruction.

Places bits_1-7 of ACO in bits 1-7 of the specuf!ed
FPAC.

Copies a floating-point number from memory to a
specified FPAC.

Moves the contents of one FPAC to another FPAC.
Places the high-order 16 bits of an FPAC into ACO.
Copies the contents of a specified FPAC into memory.
Shifts the contents of an accumulator left 1 to 4 hex
digits, depending on the value of a 2-bit number
contained in the instruction.

Shifts the contents of an accumulator right 1 to 4 hex
digits, depending on the value of a 2-bit number
contained in the instruction.

Loads data from memory to an accumulator.

Places a byte of information into an accumulator.
Moves the contents of an accumulator through the
ALU.

. Pops 1 1o 4 words off the stack and places them in

the indicated accumulators.
Returns control from a System Callroutine or an I/O
interrupt handler that does not use the stack change

facility of the Viector instruction.

Pushes the contents of 1to 4 accumulators onto the
stack.

Stores data in memory from an accumulator.

Stores the right byte of an accumulator in a byte of
memory.

Exchanges the contents.of two accumulators.

Programming the CPUs

1-19

Table 1-6 Convert instmctions’

Mnem

Instruction

Action _

Q ~ Ccm
FFAS
FFMD

FINT

FLAS

FNOM

FLMD

FSCAL

" Character Translate

FixTo AC
Fix To Memory
V lntégeriie
,Flcai FromAC

' Float From Memory

Normalize
Scale

Translates a string of bytes from one data
representation to another, and either moves it to
another area of memory or compares it to a second
string of bytes.

Converts the integer portion of a floating- point

" number to a signed two’s complement integer and

places the result in an accumulator.

. Converts the integer portion of a floating-point

number to double- precision integer format and stores
the result in two memory locations.

Sets the fractional portion of the floating-point
number in the specified FPAC to zero and normalizes
the result.

Converts a signed two's complement number in an

“‘accumulator to a smgle-precus:on floating-point

number.

Converts the contehts of two memory locations in
integer format to floating-point format and places the
result in a specified FPAC.

Normalizes the floating-point number in FPAC.

* Shifts the mantissa of the floating-point number in

FPAC either right or left, depending upon the contents
of bits 1-7 of ACO.

Table 1-7 Logic instructions

Mnem Instruction Action
'ANC AND With . Forms the logical AND of the contents of one
Complemented - accumulator and the logical complement of the
‘ Source ‘ contents of another accumulator.
AND AND Forms the logical AND of the contents of two
: - accumulators.
ANDI AND Immediate Forms the logical AND of a 16-bit number contained
v in the instruction and the contents of an accumulator.

BTO Set Bit To One ~ Sets the bit addressed by the bit pointer to 1.

BTZ Set Bit To Zero Sets the bit addressed by the bit pointer to O.

CMP Character Compare - . Compares one string of characters in memory to

: ‘ - another string.
- CoB Count Bits = Counts the number of ones in one accumulator and
» R _ adds that number to the second accumulator.
coM - Complement Forms the logical complement of the contents of an
L : accumulator.
- DLSH ‘Double Logical Shift ~ Shifts the 32-bit contents of two accumulators left or
i : o S ; right dependmg on the contents of a third
. _accumulator.

3, S - FAB * Absolute Value Sets the sign bit of an FPAC to 0.
! } FCMP - Compare Floatlng . Compares two floating-point numbers and sets the Z
P : Point

“and N flags accordingly.

1-20 -

Programming the CPUs

Table 1-7 “ Logic instructions (Continued)

Mnem Instruction Action
FNEG Negate Inverts the sign bit of the FPAC.
IOR Inclusive OR Forms the logical inclusive OR of the contents of two
' accumulators. .
IORI Inclusive OR Forms the logical inclusive OR of a 16-bit number
Immediate contained in the instruction and the contents of an
: accumulator.
LOB Locate Lead Bit ~ Counts the number of high-order zeros in one
X accumulator and adds that number to the second
accumulator. ‘
LRB Locate And Reset Performs a Locate Lead Bit instruction and sets the
Lead Bit lead bit to O. :
-LSH Logical Shift Shifts the contents of an accumulator left or right,
) ; depending on the contents of another accumulator.
- NEG Negate ‘Forms the two’s complement of the contents of an
’ : accumulator. ' '
- XOR Exclusive OR Forms the logical exclusive OR of the contents of two
accumulators.
XORI Exclusive OR Forms the logical exclusiVe OR of a 16-bit number
Immediate contained in the instruction and the contents of an
 accumulator.
-Table 1-8 . Status instructions
- Mnem Instruction Action
DIA MAP Read MAP Status Returns the status of the MAP, including the following
, conditions: last map enabled (by a DOA); MAP state
{on/off); type of last MAP fault; last map loaded (by a
LMP; state of LEF, I/O protection, write protection,
_and indirect protection (on/off); data channel map
, ; state; user mode (on/off). :
DIS Data In Status Returns the status of a specified I/O device.
DIs CPU * Read Processor ~Returns the status of the processor, including the
e Status - . following conditions: power fail, interrupt on, Break
‘ key NMI, power-up (reset) NMI Halt NMI, interrupt
pending, external NMI, line frequency, diskette
density, ATP validity fault, ATP OUT instruction,
single-step NMI, diskette controller NMI, and
_ keyboard NMI. request.
FCLE Clear Errors Sets bits 0-4 of the FPSR to 0.
FLST Load Floating-Point Copies the contents of two specified memory
Status locations to the FPSR. ,
FSST Store Floating-Point Copies the contents of the FPSR to two memory

Status

locations.

¢

ol

Programming the CPUs

1-21

Table 1-9 - Computational skip instructions

- Set To One

~ Mnem Instruction Action
‘ CLM ‘Compare To Limits Compares a signed integer with two other numbers
' and skips if first integer is between the other two.
DSz, EDSZ Decrement And Sktp Decrements the addressed word, then skips if the
: if Zero decremented value is zero.
FSEQ Skip On Zero Skips the next sequential word if the Z flag of the
; ’ FPSR is one.
FSGE . Skip On Greater Skips the next sequential word if the N flag of the
' Than or Equal To FPSR is zero.
. Zero : , A
FSGT Skip On Greater Skips the next sequential word if both the Z and N
. Than Zero flags of the FPSR are zero.
~ FSLE Skip On Less Than Skips the next seduential word if either the Z flag or
’ L Or Equal To Zero the N flag of the FPSR is one.
FSLT ‘Skip On Less Than ~Skips the next sequential word if the N flag of the
- Zero FPSR is one.
FSND - Skip On No Zero Skips the next sequential word if the divide by zero
: Divide (DVZ) flag of the FPSR is zero.
- FSNE Skip On Nonzero Skips the next sequential word if the Z flag of the
, ' ok FPSR is zero.
" FSNER Skip On No Error Skips the next sequential word if bits 1-4 of the FPSR
’ » are all zero. '
FSNM - Skip On No Mantissa = Skips the next sequential word if the mantissa
i Overflow overflow (MOF) flag of the FPSR is zero.
FSNO = Skip On No Overflow Skips the next sequential word if the overflow (OVF)
‘ L flag of the FPSR is zero.
FSNOD - Skip On No Overflow Skips the next sequential word if both the overflow
And No Zero Divide (OVF) flag and the dlwde by zero (DVZ) flag of the
v - FPSR are zero.
FSNU Skip On No Skips the next sequential word if the underflow (UNF)
B Underflow . flag of the FPSR is zero.
FSNUD Skip OnNo Skips the next séquentlal word if both the underflow
L Underflow And No {UNF) flag and the divide by zero (DVZ) flag of the
T Zero Divide FPSR are zero.
FSNUO Skip On No Skips the next sequential word if both the underflow
Underflow And No (UNF) flag and the overflow (OVF) flag of the FPSR
L .. Overflow i are zero. ‘
ISZ, EISZ Increment And Skip Increments the addressed word, then skips if the
o If Zero incremented value is zero.
SGE - ~ Skip If ACS Greater Compares the signed integers in two accumulators
' Than Or Equal to and skips if the first is greater than or equal to the
ACD ~second. :
SGT 'Skip If ACS Greater ~ Compares the signed integers in two accumulators
: : ~ Than ACD and skips if the first is greater than the second.
SNB Skip On Nonzero Bit -~ Skips the next sequential word if the bit addressed by
‘ S L , the bit pointer is one.
~ SZB - Skip On Zero Bit " Skips the next sequential word if the bit addressed by
: ' the bit pointer is zero.
8§ZBO Skip On Zero Bit And = Sets the bit addressed by the bit pointer to one and
: skips the next sequentsal word if the bit was originally

zero.

1-22

O

Programming the CPUs

Program Flow Management The instructions for program flow
management include noncomputatlonal skip (Table 1-10), jump (Table 1-1 1),
- subroutine (Table 1-12),: mterrupt (Table 1- 13) and accumulator ('I‘able 1-14)
instructions.

i Table 1-10 Noncomputational skip instructions

Mnem Instruction . Action

CLM Compare To Limits Compares a signed integer wnth two other numbers
i , and skips if first integer is between the other two.

FNS ~ NoSkip No operation. : :

FSA - Skip Always Skips the next sequential ‘wor‘d.

Table 1-11 Jump instructions

Mnem Instruction Action

DSPA - Dispatch =~ Compares a signed integer with two other numbers
: and continues sequential execution if the integer is
_not between the others; otherwise, uses the integer
as an index into a table and places indexed value in
~ the program counter.

JMP, EJMP Jump Places an effective addi'ess in the program counter.

JSR, EJSR ' Jump To Subroutine Increments program counter and stores incremented
: ‘ : value in AC3: then places a new address in the
. : program counter.
POPJ 'Pop PC and Jump Pops the top word off the stack and places it in the
i program counter.

, - PSHJ Push PC and Jump Pushes the address of the next sequentlal instruction

onto the stack, computes the effective address E, and
places it in the program counter. ’

Programming the CPUs

1-23

Table 1- 12 Subroutine instructions

Mnem Instruction Action
JSR, EJSR Jump To Subroutine Increments program counter and stores incremented
: value in AC3; then places a new address in the
program counter.)
‘PSHR - Push Return Address Pushes the address of the instruction after the next
» o sequential instruction.onto the stack.
RSTR Restore Returns control from certain types of /O interrupts.
‘RTN Return " Returns control from subroutines that issue a Save
: i _instruction at their entry points.
SAVE Save Saves the information required by the Return
‘ instruction.
XOP Extended Operation Pushes a return block on the stack, placing the
Ay * address in the stack of the specified accumulators
into AC2 and AC3, and transfers control to 1 of 32
. :) other procedures with the XOP table.
XOP1 ‘Extended Operation ~ Same as XOP, except that 32 is added to the entry
~ number before entering the XOP table and only 1 6
. table entries can be specified.
Table 1-13 Interrupt instructions
Mnem Instruction Action
DSPA Dispatch Compares a signed integer with two other numbers
' and continues sequential execution if the integer is
not between the others; otherwise, uses the integer
as an index into a table and places indexed value in
- the program counter.
FTD Trap Disable Sets the trap enable flag of the FPSR to zero.
FT_E Trap Enable Sets the trap enable flag of the FPSR to one.

o

Table 1-14 Accumulator instructions

Mnem Instmction Action

LEF, ELEF ' Ldad Effective Places an effective address in an accumulator.
Address :

XCT Executes contents of an accumulator as an

Execute

instruction.

1-24

Programming the CPUs

Stack and Data Management The stack and data management
instructions are summarized in Table 1-15. :

Table 1-15 Stack instructions

Mnem

Instruction

Action

FPOP

FPSH -

MsP

POP
' POPB
PSH

PSHJ

PSHR

RSTR

RTN

SAVE

XOP-

XOP~ -

Pop Floating-Point
State

Push Floating-Point

State. o
Modify Stack Pointer

Pop Multiple

Accumulators
Pop Block

Push Multiple

- Accumulators

Push PC Jump

'Push Return Address

Restore :
Return

Save

Extended Operation

Pops an 18-word floating-point return block off the
user stack and alters the state of the floating-point
unit. :

~ Pushes an 1 8-word floating-point return block onto

the user stack.
Changes the value of the stack pointer and checks for

overflow. . :

Pops 1 to 4 words off the stack and places them in
the indicated accumulators.

Returns control from a System Call routine or an 1/O

- interrupt handler that does not use the stack change

facility of the Vector instruction.

Pushes the contents of 1 to 4 accumulators onto the
stack. :

Pushes the address of the next sequential instruction
onto the stack, computes the effective address E, and

- places it in the program counter.

Pushes the address of the instruction after the next
sequential instruction onto the stack.

“Returns control from certain types of I/O interrupts.

Returns control from subroutines that issue a Save
instruction at their entry points.

Saves the information required by the Return
instruction.

Pushes a return block on the stack, placing the
address in the stack of the specified accumulators

- into AC2 and AC3, and transfers control to 1 of 32

Extended Operation

other procedures via the XOP table. ‘
Same as XOP except that 32 is added to the entry

- number before entering the XOP table and only 16-

table entries can be specified.

System Management The System Call instruction can be specified as
SYC, SCL (which is equivalent to SYC 0, 1), or SVC (which is equivalent to SYC O,
0). This instruction turns off the MAP if it is on, pushes a return block onto the
stack, and places the address of the System Call handler in the program counter.

Device Management

The instructions for device management include

basic 1/O (Table 1-16), I/O command flag (Table 1-17), /O interrupt (Table 1-18), 1/0

skip flag (Table 1-19), CPU device
instructions. -

(Table 1-20), and CPU skip flag (Table 1-21)

Programming the CPUs 1-25

~ Table 1-16 I/O instructions

Mnem Instruction - Action
DIA[f] Datain A ‘ Transfers data from the A buffer of an 1/O device to an
B : * accumulator.
' DIBIfl Datain B 3 Transfers data from the B buffer of an I/O device to
v : an accumulator.
DIC[f] DatainC ' Transfers data from the C buffer of an I/O device to an
‘ accumulator.
DIS DatalnStatus ~ Returns the status of a specifed 1/0 device.*
~ DOAIf] " Data OutA Transfers data from an accumulator to the A buffer of
R ' an 1/O device.
DOBIf] Data OutB Transfers data from an accumulator to the B buffer
: : ~ of an l/O device.
DOCIfl DataOutC - Transfers data from an accumulator to the C buffer of
R : - . anl/Odevice.
NIO[f] Nol/OTransfer ~ Sets Busy or Done flag. No I/O transfer occurs.

*Refer to the accumulator format of this instruction.

Table 1-17 /O command flags

Mnem Flag Value - Action
[flomitted 00 Does not alter the Busy and Done flags.
[fl=S 01 ' ' Starts the devnce, sets Busy flag to one and Done flag
kT) . to zero. i
[fl=C 10 ‘ : Idles the device; sets Busy flag to zero, and sets Done
v .~ - flag to zero. :
fl=pP 1) 1/0 pulse; effect depends upon device.

Table 1-18 I/O interrupt instructions , e

Mnem Instruction Action
|NTA (DIBff] = Interrupt Returns the device code of aﬁ interrupting device.
CPU) Acknowledge . .
INTDS (NIOC = Interrupt Disable Sets CPU Interrupt On flag to zero.
CPU) . ’ ,
INTEN (NIOS Interrupt Enable Sets CPU Interrupt On flag to one.

. CPU} » ' .

- MSKO (DOB(f] Mask Out ol Changes the priority mask.

CPU) ‘ ‘ :

" POPB - PopBlock : Returns control from a System Call routine or an /0

interrupt handler that does not use the stack change
facility of the Vector instruction.

1-26 Programming the CPUs
Table 1-18 I/O interrupt instructions (Continued)
Mnem Instruction Action
S/ ‘RSTR Restore 'Returns control from I/O interrupts that use the stack
, . change facility of the VCT instruction.
SKP[t] /O Skip Skips if the /O condition t is true.
VCT Vector On Identifies highest priority interrupt; passes control
Interrupting Device through a table to a handler routine for device.
Code v :
XCT Execute Executes contents of an accumulator as an
instruction.
Table 1-19 I/O skip flags
Mnem Flag Value ' _Action
[tI=BN 00 Tests Busy flag for nonzero.
[tl=BZ 01 Tests Busy flag for zero.
Itl= DN 10 Tests Done flag for nonzero.
~[t]I=DZ ' 11 Tests Done flag for zero.
-~ Table 1-20 CPU device instructions
S Mnem Instruction Action
DIS CPU Read Processor Returns the status of the processor, including the
Status following conditions: power fail, interrupt on, Break
key reset, power-up reset, halt instructions, and
interrupt request. *
HALT (DOC[f] Halt Stops the processor.
CPU) ’ : ’
INTA (DIB[f] Interrupt Returns the device code of an interrupting device.
~CPU) . Acknowledge : o R :
INTDS (NIOC Interrupt Disable Sets CPU Interrupt On flag to zero.
CPU) o :
INTEN (NIOS - Interrupt Enable Sets CPU Interrupt On flag to one.
CPU) ‘ , ‘
IORST (DICCIf] Reset Sets all Busy and Done flags and the priority mask to
CPU) zero. , :
MSKO (DOB[f] Mask Out Changes the priority mask.
~CPU) ' : :
READS (DIA[f] Read Switches Places the contents of the virtual console register into
CPU) an accumulator.* * o
CPU Skip Tests the Interrupt On or Power Fail flag and skips the

e

- SKP[t]CPU

next sequential word if the test condition is true.

*Refer to the accumulator format for this instruction.
_* *Refer to a description of this register.

O

Programming the CPUs

1-27

Mémory Management

Table 1-21 = CPU skip flags
Mnem ' Flag Value Action
ft)=BN- ~ 00 Tests Interrupt On flag for nonzero.
[t1=BZ 01 Tests Interrupt On flag for zero.
[t]=DN 10 Tests Power Fail flag for nonzero.
[t]=DZ 11 Tests Power Fail flag for zero.

The instructions for memory management are

- summarized in Table 1-22.
Table 1-22 MAP instructions
Mnem Instruction Action

Ol 2
O{ E c}g\olA MAP

) 0 {6 U) L"O& "\ DIC MAP or

) 00
O{%ioog» —

ch ATP

DOA MAP

-~ DOB MAP

oféSioofz — pocro

0113410

Oéo%OS

o 064002

064063
06hook

LMP
LMPA
NIOP MAP

RHYP:

WHYP

Read Map Status
Page Check '

Load Map Status

Map Supervisor Page
31

Initiate Page Check

Load microECLIPSE
MAP

Load ATP (8086)
Map

Map Single Cycle

Read Control
Memory Status

Write Control
‘Memory Status

He_éds the status of the eurrent map.

. Provides the identity and some characteristics of the

physical page that corresponds to the logical page
identified by the immediately preceding Initiate Page
Check instruction.

Defines the parameters of a new map.

Specifies the physical page corresponding to Ioglcal
page 31 of unmapped address space.

: Identifies a logical page; selects map without
- changing status. ,

Loads successive words from memory into the i
microECLIPSE MAP, where they are used to definea
user or data channel map.

. Loads successive word pairs from memory into the

8086 MAP, where they are used to define the

translatlon function for the 8086. .

- Maps one memory reference using the last user map,
~ or turns off memory mappmg for the microECLIPSE

processor.
Loads the contents of the control memory status

“register into AC1.

Wirites the contents of AC1 into the control memory
status register. Used with RHYP to enable writing to .
the monochrome monitor screen buffer.

EHY? (f\QO f-‘f*;”\;v Eivﬁut{l'{@r— MQP—.ZUS.«?{;D

1-28

Programming the CPUs

8086 CPU Features

The 8086 is two processors in one. Data manipulation (that is, instruction
execution), status maintenance, and instruction decoding are done within the
execution unit (EU), while instruction fetching, bus control, memory accessing,
‘and data I/O are done by the bus interface unit (BIU), which has its own ALU -
and registers. Figure 1-9 illustrates the. archltecture of the 8086 Processor.

(Accumulator) ~AH AL
(Base) | BH BL
*(Count) CH cL
(Data} DH- DL

General Stack pointer

registers Base pointer

Dest. Index -

Source Index

ALU data bus

Addr. adder

Address/
data bus
et

Code Segment R

Data Segment R

Stack Segment R

Extra Segment R

A A \

Temporary registers

Flags

‘Execution- Unit (EU)

- — —— —— —— — o —" G— — o— — — — — —— — — v — o— — — — — — — — — — —— —— — — — — o— o— —
-

Figure 1-9 Architecture of the 8086 procéssbr :

Internal
communications
registers

Bus Interface Unit (BIU)

ID-00718

Programming the CPUs 1-29

The 8086 processor has two distinct sets of registers: those in the EU, which are
used for instruction execution, and those in the BIU, which partition memory
into four segments. The memory segments are automatically referenced
depending on the operation involved. This feature facilitates relocatable coding.

Hm.‘ ‘
8086 Memory Segmentation
Memory space in an 8086 system is logically divided into 64-kilobyte segments.
The CPU can access four segments at a time, whose starting addresses are

~ stored in BIU registers. The segment registers can be manipulated by the
program and are discussed in the context of addressing modes below.

In general, the memory has three types of contents: instructions, (variable) data,
and stack items. These different types of contents are stored in different
segments (areas) of memory.

| 8086 Addressiﬁg Modes

From the point of view of how it performs addressing, the 8086 deals with four
kinds of data: register data, immediate data, I/O data, and memory data.
~ Register data and immediate data require no memory reference. Memory
mapped I/O data and ordinary data in memory must be located according to
their 20-bit physical address. (Non-memory-mapped I/O will be discussed later.)

The physical address is determined by two different sets of calculations: first,
the EU calculates an effective address (EA) in one of the five addressing modes
(described below), and then the BIU computes a physical address based on the
memory segmentation scheme in the 8086. The effective address calculated by
the EU is an unsigned 16-bit number that gives the data’s memory address
displacement in bytes from the beginning of the segment the data is in. The
@ content of the second byte of an instruction tells the EU by what method to
' calculate the effective address. Figure 1-10 shows in general how the EU goes
about the calculation. The item labelled “displacement” in the figure is an 8- or
. 16-bit number that the EU gets from the instruction. - : ‘

1-30

Programming the CPUs

Encoded
in the
instruction

Explicit
in the
instruction

Assumed

‘unless

overridden
by prefix

Single index

BX

or

BP

_or

Sl

or

DI

‘Double index
BX s
or or
BP DI
EU
Effective
. Y ~address
Displacement - el
cs 0000 }—
or
ss ' 0000 |
ol’ E
‘DS | 0000 |— BIU
m .
ES 0000 |1
' Physical address
ID-00717

Figure 1-10 8086 memory.address computation

The five forms of effective address calculation or

\

addressing modes, are:

Direct addreséihg The effective address is simply the displacement itself.

2... Register indire_ét addressing The effective address is the contents of the
specified base or index register (or in the case of JMP or CALL the contents

of any specified register).

3.. Based addressing . The effective address is the sum of a displacement value
and the contents of a base register (BP or BX).

4. Indexed addressing The effective address is the sum of a displacement
~ and the contents of an index register (SI or DI).

: Q . v » Shift left 4 bits

Programming the CPUs

1-31

' 5. Based indexed addressing The effective address is the sum of the contents
of a based register, an index register, and a displacement. - :

NOTE String instructions do not use the addressing modes described above.
@ : . When a string instruction is executed, SI points to the first byte in the source
e string and DI points to the first word in the destination string. In repeated
operations, the CPU automatically adjusts the contents of SI and DI to obtain the
next bytes.

Segment Registers
| After the EU has calculated a 16-bit logical effective address, the BIU converts

that address into a 20-bit physical address. This is done using the contents of
the BIU segment registers listed below. ,

The Code Segmeht register (CS) contains the address of the code segment
base (the location of the first byte of code). -

~ The Data Segment register (DS) contains the address of the data segment
base. , s ‘ : Stv
‘The Stack Segment register (SS) points to the stack segment base.
The Extra Segment register (ES) points to the extra segment base.

‘The BIU, to calculate a physical address, takes a value from one of the segment
registers and combines it with the effective address from the EU. (The EA in

" this context is now referred to as the offset.) The BIU shifts the segment base
value left four positions and adds the offset to it as shown in Figure 1-11.

Segment
1 2 3 4 |poee
» ; \ Logical
, 15 ’ » 0 address
Y ' : 0 0 2 2 |Offset
1 2 3 4 (o] 15 (]
19 Y 0
+ o o0 2 2 |«
15 ¥ 0
=1 2 3 6 2 | Physical address
v Vv 0
To memory
1D-00720

‘Figure 1-11 8086 physical address generation

1-32 Programming the CPUs

~ Which segment reglster the BIU takes the base value from depends on the type
of reference:

: Instructions use the code segment (CS) base and the contents of the
, @ : instruction pomter (IP) as the offset. ‘

-Stack operations use the stack segment (SS) base and the contents of the
stack pointer (SP) as the offset. ‘

String sources are taken from the data segment (DS) base (or the code,
stack, or extra segment base if specified in the instruction) and the
contents of the source index (SI) as the offset.

String destinations are taken from the extra segment (ES) base and the
destination index (DI) as the offset.

Other variables are taken from the data segmentr (DS) base (or the code,
extra, or stack segment base if specified in the mstructlon) and the
effective address as the offset. :

~ If BP is used as the base register, then the data is taken using the stack
S ‘ ‘ , segment base (or the code, data, or extra segment base if specified in the
‘ ‘ instruction) and the effective address as the offset.

‘Since 64 kllobytes of memory can be accessed using any one of the segment
bases, the maximum memory space that is available at any given time is 256

* kilobytes. (The result of the algorithm to calculate physical addresses is that
sums greater than 64 K “wrap around.”) The segments, however, do not have to °
be mutually exclusive. They can be conjoint or overlapping, as shown in Figure
1-12. The programmer can, of course, access more than 256 kilobytes of

- memory by writing new values into the segment registers. In order to retain
dynamic relocatablhtz this should not be done within a program segment.

-

Fully
- overlapped

&gm'em 5 Disjoint \
Partly overlapped
o cantigaous Feamam & ?t:gﬁ:lms
; : ; Segment A : Segment B ‘ Segment E
i . O — . | - —— B J Physical
memory
A ! } 4

OH 10000H 20000H © 30000H

ID-00721

Figure 1-12 8086 segment locationé in physical memory

Programming the CPUs

1-33

Inplit/Outp‘ut'\

The 8086 processor in a Model 10 or 10/SP system does not perform any I/0
operations. Instead, it calls on the microECLIPSE processor to perform data
transfers to and from peripheral devices. The 8086 uses one I/O instruction to
call the microECLIPSE: OUT. Exchange of control between the 8086 and the
microECLIPSE processors is described later in the Model 10 or 10/SP-specific
programming section. . :

Instructions L

‘The 8086 has six different kinds of instructions:
Data transfer instructions v
‘ Arithmetic instructions
Bit maniphlation inéfrucitions
String instructions
, Program transfer instructions

Processor control instmctions

Data Transfer Instructions = Data transfer instructions move single (as

‘opposed to strings) bytes and words between memory and registers, and between
register AL or AX and I/O ports. Stack instructions are included in this group,

- since they are data-moving instructions, as are load segment instructions, and

instructions that move flag contents. Table 1-23 lists these instructions.

Tablé 1-23 8086 data transfer instructions

Instruction Function
“Mov - Move byte or word
PUSH Push word onto stack
POP ~ Pop word off stack :
XCHG ~ Exchange word or byt
XL Translate byte : ;
IN° 5 Input byte or word (not ud in %tbox({)ystems
ouT ' Output byte or word; used to pass control to microECLIPSE processor
- LEA . Load effective address : :
/ Lbs - i Load poiﬁter using DS -
LES _Load pointer using ES ’
LAHF - Load ’AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack

POPF ~ Pop flags offxDtack

1-34 Programming the CPUs

Arithmetic Instructions Arithmetic instructions perform the four
arithmetic (+, —, x, /) operations on four types of numbers: signed and unsigned
binary integers; unsigned, packed decimal and unsigned, unpacked decimal ‘

@ ~ numbers. These are listed in Table 1-24.
‘Table 1-24 = 8086 arithmetic instructions
Instruction ° Function
ADD -~ Add byte or word
ADC. Add byte or word with carry
INC - " Increment byte or word with carry
. AAA ASCIl adjust for addition :
DAA Decimal adjust for addition
SUB - "Subtract byte or word
SBB - Subtract byte or word with borrow
DEC ~ Decrement byte or word by 1
 NEG - Negate byte or word
- CMP L Compare byte or word
AAS AsClladjust for subtraction
DAS © Decimal adjust for subtraction
MUL Multiply byte or word unsigned'«
IMUL - Integer multiply byte or word
AAM - ~ ASCIi adjust for multiply
Div - - Divide Byte or word unsigned
oV * Integer divide byte of word
AAD ASCII adjust for subtraction
CBW Convert byte or word
CWD ~ Convert word 'to double word

Bit Manipulation Instructions Bit manipulation instructions include
logical instructions, and shift and rotate instructions. The logical instructions
“include one that tests the results of an AND, sets flags, but does not change the
operands. Table 1-25 lists these instructions.

v

Programming the CPUs

1-35

Table 1-25 8086 bit manipulation instructions

Instruction Function
~NOT ' Logical NOT byte or word
: AND ~ Logical AND byte or word
OR . Logical OR byte or word
XOR ~ Logical XOR byte or word
TEST Logical AND of two bytes or words with no change of operands
- SHL/SAL Shift logical/arithmetic left byte or word '
'SHR/SAR Shift logical/arithmetic right byte or word
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry bit left byte or word
RCR Rotate through carry bit right byte or word
String Instructlons String instructions allow moving, scanning, and

comparison of strings in bytes up to 64 kllobytes in length. These instructions are

listed in Table 1-26.

o Tablgj-za 8086 string instructions

Instruction Function
REP Repeat
REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal zero
MOVS Move byte or word string ‘
MOVSB/MOVSW Alternate {no-operand) codmg of move byte or word string
CMPS : Compare byte or word stnng
SCAS Scan byte or word string

- 'LODS " Load byte“of word string

STOS

Store byte or word string

1-36

Programming the CPUs

Program Transfer Instructions Program transfer instructions include
unconditional transfers, conditional transfers, iteration control instructions, and
interrupt-related instructions. They are listed in Table 1-27.

Table 1-27 8086 program transfer instructions

Instruction Function
- CALL Call procedure
RET Return from procedure
JMPC Unconditional jump
JA/JNBE Jump if above/not below nor equal
JAE/JNB Jump if above or equal/not below
JB/JNAE. Jump if beldW/not above nor equal
JBE/JNA Jump if below or equal/not above
Jc ' Jump if carry flag set
- JEINZ Jump if equal/zero ‘
-~ JG/JNLE. Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JL/INGE Jump if less/not greater nor equal
© JLE/ING Jump if less or equal/not greater
JINC Jump if carry flag not set
JNE/UNZ Jump if not equal/not zero
"JNO - Jump if no overflow (overﬂow flag was not set)
JNP/JPO ¥ Jump if parity flag not set/parity odd
JNS Jump if sign flag not set
Jo © Jump if overflow flag set
JP/JPE Jump if parity flag setlparity even
Js “Jump if<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>