Guide to VAX C
Order Number: AA-L370D-TE

February 1989

This document describes VAX C constructs in context with both the history of the
C programming language and that of the VMS environment. It contains information
on VAX C program development in the VMS environment, the VAX C programming
language, and cross-system portability concerns.

Revision/Update Information: This revised manual supersedes the Guide to VAX C
(Order No. AA-L370C-TE).

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX C Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1982
Revised, April 1985
Revised, March 1987
Revised, January 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1982, 1985, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-10 PDT

DECUS RSTS ™
DECwriter RSX ﬂﬂmﬂn

ZK4565

Contents
Preface e e e XXi
New and Changed Features i, XXV

Developing VAX C Programs on VMS Systems

Chapter 1 Developing VAX C Programs at the DCL Command Level

1.1 DCL Commands for Program Development 1-1
1.2 Creatinga VAXC Program 14
1.2.1 Using VAXTPUo 14

1.2.1.1 The EVE Interface 14

13 Compilinga VAXCProgram 1-5
1.3.1 The CCCommandniiiinnunennnnn. 1-5

1.3.2 The CC Command Qualifiers 1-7

1.3.2.1 Using the /DEFINE and /UNDEFINE Qualifiers . . . 1-18

1.3.3 Compiler Error Messages 1-20

14 Linkinga VAXCProgram0iiiniinnnn. 1-22
1.4.1 The LINKCommand.c..iinen.. 1-22

1.4.2 LINK Command Qualifiers 1-23

1.4.3 Linker Input Files i, 1-24

1.4.4 Linker Output Files 1-25

iii

1.4.5 Linking Against Object Module Libraries and Shareable
Images. e 1-26
1.4.5.1 Object Module Libraries 1-26
1.4.5.2 Linking Against the RTL Object Libraries 1-27
1.45.3 Linking Against the RTL Shareable Images 1-29
1.4.6 Linker Error Messagesoviiii... 1-30
1.5 Runninga VAX CProgramc.ciiiiuenon.. 1-31
Chapter 2 Using the VMS Debugger

2.1 OVEeIVIBW e 2-1
2.2 Features of the Debugger 2-3
23 Getting Started with the Debugger. 24
2.31 Compiling and Linking a Program to Prepare for Debugging . . 2-4
2.3.2 Starting and Terminating a Debugging Session 2-5
2.3.3 Aborting Program Execution or Debugger Commands 2-6
234 Entering Debugger Commands 2-7
235 Viewing Your Source Code 2-10
2.3.5.1 NoscreenMode 2-10
2.35.2 ScreenMode 2-11
2.3.6 Controlling and Monitoring Program Execution 2-12
2.3.6.1 Starting and Resuming Program Execution. 2-12

2.3.6.2 Determining Where Execution Is Suspended—-SHOW
CALLS 2-14
2.3.6.3 Suspending Program Execution 2-15
2.3.6.4 Tracing Program Execution 2-17
2.3.6.5 Monitoring Changes in Variables. 2-18
2.3.7 Examining and ManipulatingData 2-19
2.3.71 Displaying the Values of Variables 2-20
23.7.2 Changing the Values of Variables 2-21
2.3.7.3 Evaluating Expressions 2-21
24 Notes on Debugger Support for VAXC 2-23
241 Debugger Command-Line Options 2-23
24.2 Accessing Scalar Variables 2-23
243 AcCessiNg AIraysot 2-25
2.4.4 Accessing Character Strings 2-27
245 Accessing Structures and Unions 2-28
25 Controlling Symbol References 2-34
2.5.1 Module Setting 2-34

25.2 Resolving Multiply Defined Symbols 2-35

m 2.6 Sample Debugging Session oL, 2-36

Chapter 3 VAX C Support for Parallel Processing

3.1 Overview of Parallel Processing 3-1
3.2 Preparing Programs for Parallel Processing 3-6
33 Conditions That Inhibit Parallel Processing 3-9
34 Data-Dependency Analysis 3-11
3.4.1 Array Variable References 3-11
34.2 FunctonCalls i i 3-13
3.4.2.1 math.h FunctionCalls 3-14
343 Pointer Variable References 3-15
3.4.4 Scalar Variable References 3-16
3.5 Rewriting Code to Resolve Dependencies 3-17
3.5.1 Loop Alignment e 3-18
3.5.2 Code Replication o, 3-20
ﬁ 35.3 Loop Distributiono e 3-21
3.6 Storage Classes and Parallel Processing 3-22
3.7 Decomposition Pragmas, 3-23
3.7.1 The ignore_dependency Decomposition Pragma 3-25
3.7.2 The safe_call Decomposition Pragma 3-26
3.7.3 The sequential_loop Decomposition Pragma 3-28
3.8 Memory-Management Functions 3-29
3.9 Tuning Issues Related to Parallel Processing 3-30
3.9.1 Customizing the Parallel-Processing Run-Time Environment . . 3-30
3.9.1.1 Controlling the Number of Processes
(FOR$PROCESSES)coivnnn. 3-31
3.9.1.2 Controlling Internal Spin Waits
(FOR$SPIN_WAIT) 3-32
3.9.13 Controlling the State of a Process
(FORSSTALL_WAIT) 3-33

3.9.2 System Parameters Set with the SYSGEN Utility
3.9.2.1 Global Section Descriptor Count
(GBLSECTIONS)ot

3.9.2.2 Global Page Table Entry Count (GBLPAGES)

3-33

3-34
3-35

3.9.23 Global Page File Limit (GBLPAGFIL) 3-35
3.9.3 User Parameters Set with the AUTHORIZE Utility 3-36
3.94 Other Tuning Considerations 3-37
VAX C Programming Concepts
Chapter 4 VAX C Tutorial
4.1 C Programming Language Overview 4-1
4.2 VAX C Programming Language Overview 4-3
4.3 Writinga Program 44
44 Producing Input/Output (10) 4-6
4.5 Conditional Executionof Code 4-10
4.5.1 Theif Statement - 410
45.2 The switch Statement 4-12
453 LOOPS . o e e 4-14
46 Values, Addresses, and Pointers 417
4.7 Aggregates e 4-21
4.7.1 Arrays and Character Strings 4-21
4.7.2 Structures and Unions 4-22
Chapter 5 Program Structure
5.1 Function Definitions, 5-1
5.1.1 Main Function and Function Identifiers. 5-3
5.1.2 Parameter List Declarations 54
5.1.3 Function Return Data Types 5-5
514 Variable-Length Parameter Lists 5-6
5.2 Function Declarations 5-7

vi

53 Function Prototypes 5-9

5.3.1 Using Function Prototypes 5-11
54 Using Parameters and Arguments 5-12
5.4.1 Function and Array Identifiers as Arguments. 5-13
5.4.2 Passing Arguments to the main Function 5-15
55 Identifiers 5-17
5.6 Language Keywords 5-18
5.7 Blocks e 5-21
5.8 Comments i 5-22
5.9 LINT-Like Functionality 5-22

Chapter 6 Statements

6.1 Control Flow Statements 6-1
6.1.1 The null Statement. I 6-1

6.1.2 Thegoto Statement 6-2

6.1.3 The label Statement 6-2

6.2 Expressions and Blocks as Statements 6-3
6.2.1 The expression Statement 6-3

6.2.2 The compound Statement 6-3

6.3 Conditional Statements 64
6.3.1 TheifStatement 64

6.3.2 The switch Statement 6-5

6.3.2.1 Declarations Within a switch Statement 6-7

6.4 Looping Statements 6—7
6.4.1 Thefor Statement 6-8

6.4.2 The while Statement 6-9

6.4.3 Thedo Statement 6-9

6.5 Interrupting Statements 6-10
6.5.1 The break Statement 6-10

6.5.2 The continue Statement 6-10

6.5.3 The return Statement 6—11

vii

Chapter 7

viii

71

7.2

73

74

75

7.6

1.7

7.8

7.9

Expressions and Operators
Ivaluesand rvalueso,

Primary Expressions and Operators

7.2.1 Parenthetical Expressions,
7.2.2 FunctionCalls i
7.2.3 Array References e
7.2.4 Structure and Union References

Overview of the VAX C Operators

Unary Expressions and Operators

7.41 Negating Arithmetic and Logical Expressions
7.4.2 Incrementing and Decrementing Variables
743 Computing Addresses and Dereferencing Pointers.
7.4.4 Calculating a One’s Complement
745 Forcing Conversions to a Specific Type
7.4.6 Calculating Sizes of Variables and Data Types
Binary Expressions and Operators
7.5.1 Additive Operators i
7.5.2 Multiplication Operators
753 Equality Operators
754 Relational Operators i,
7.5.5 Bitwise Operators. it i
7.5.6 Logical Operators. i
7.5.7 Shift Operators

Conditional Operator0 ienienen..
Assignment Expressions and Operators
Comma Expression and Operator

Data-Type Conversionsc..iuiiiinennnnnnn.
7.9.1 ConvertingOperandsccoiiivinnnn...
7.9.2 Converting Function Arguments

7-6

7-10
7-10
7-10
7-11
7-12
7-13
7-14

7-14
7-15

7-15

7-16 u
7-16 -
7-17

7-17

7-19

7-19
7-20
7-22
7-22

7-23
7-24

Chapter 8 Data Types and Declarations

(' ’ 8.1 CONSEANES o ottt e e 81

8.2 Variables 8-2
8.2.1 Classification of Variables 8-2

8.2.1.1 Data-Type Keywords 8-3

8.2.1.2 Format of a Variable Declaration 8-3

8.3 Integers (int, long, short, char, and unsigned) 84
8.3.1 Integer Constants., 8-5

8.3.2 CharacterConstants 8-6

8.3.3 Escape Sequences 8-7

8.4 Floating-Point Numbers (float and double) 8-9
8.4.1 Floating-Point Constants 8-10

8.5 Pointers e 8-11
8.5.1 void Pointers 8-13

8.6 Enumerated Types (enum) 8-13
8.7 Arrays ([1) . . . - o oo 8-15
m 8.7.1 Initializing Arrays 8-18
8.8 Character-String Variables (char *andchar[])................. 8-19
8.8.1 Character-String Constants 8-20

8.9 Structures and Unions (structand union). 8-20
8.9.1 Declaring a Structure orUnion 8-22

8.9.2 Referencing Members of Structures or Unions 8-24

8.9.3 Initializing Structures and Unions 8-26

8.9.4 Variant Structures and Unions 8-28

8.9.5 BitFields i 8-30

8.10 The void Keyword i, 8-32
8.11 The typedef Keyword 8-32
8.12 Interpreting Declarations 8-33

Chapter 9 Storage Classes and Allocation

9.1 The Scope of anldentifier. 9-1 u
9.1.1 The Compilation and Linking Process 9-2
9.1.2 Position of the Declaration. 9-2
9.1.3 Lexical Scope and Link-Time Scope 94
9.1.4 Program Example 0., 9-6
9.2 Storage Allocation 9-8
9.3 Internal Storage Classes 9-9
9.3.1 The auto Specifier 9-10
9.3.2 The register Specifier 9-11
9.4 StaticStorage Class 9-12
9.5 External Storage Class 9-13
9.6 Global Storage Classes 9-15
9.6.1 The globaldef and globalref Specifiers. 9-15

9.6.1.1 Comparing the Global and the External Storage

Classesciiiiiiiniinnnn. 9-17
9.6.2 The globalvalue Specifier 9-19
9.6.3 Global Enumerated Types, 9-20
9.7 Data-Type Modifiers 9-21
9.7.1 The const Modifier 9-21
9.7.2 The volatile Modifier 9-23
9.8 Storage-Class Modifiers 9-23
9.8.1 The noshare Modifier. 9-24
9.8.2 The readonly Modifier 9-25
9.8.3 The _align Modifier 9-25

Chapter 10 Preprocessor Directives

10.1 Macro Definitions (#defineand #undef) 10-2
10.1.1 Constant Identifiers 104
10.1.2 Canceling Definitions (#undef) 104
10.1.3 Macro Parameters 104
10.1.4 Listing Substituted Lines 10-8
10.2 Common Data Dictionary Extraction (#dictionary) 10-8

10.2.1 Using the #dictionary Directive 10-9
10.2.2 Support for COD Data Typeso v i i, 10-11
‘ , 10.3 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, and

fendif) e 10-13

10.3.1 The defined Operator. 10-15

104 File Inclusion (#include) 10-16

10.4.1 Inclusion Using Angle Brackets 10-17

‘ 10.4.2 Inclusion Using Quotation Marks (" ") 10-18

‘ 10.4.3 Inclusion of Text Modules 10-19

10.4.4 Macro Substitution in #include Directives 10-20

10.5 Specifying Line Numbers (#lineand #) 10-21

10.6 Specifying the Module Name and ldentification (#module) 10-21
|

‘ 10.7 Implementation-Specific Preprocessor Directive (#pragma) 10-22

| 10.7.1 #pragma [no]builtins Directive 10-23

: 10.7.2 #pragma ignore_dependency Directive 10-23

| 10.7.3 #pragma [nolinline, 10-24

10.7.3.1 Restrictions on Inline Expansion 10-25

10.7.4 #pragma [nojmember_alignment 10-25

10.7.5 #pragma safe_call Directive 10-26

ﬁ 10.7.6 #pragma sequential_loop Directive 10-27

10.7.7 #pragma [no]standard Directive 10-28

Chapter 11 Predefined Macros and Built-In Functions

1.4 Predefined Macros 11-1
11.1.1 CC#sgfloat (G_Floating Identification Macro) 11-1
11.1.2 CC#sparallel (Parallel-Processing Identification Macro) 11-2
1113 The __DATE__Macro, 11-3
11.1.4 The __FILE__Macro.......... ... 11-3
1115 The __LINE__Macrociiiiiieunnnnn. 11-3
11.1.6 The __TIME__Macroc.iiuiiiieunnnen. 11-3
11.1.7 vax, vms, vaxc, and vaxiic (System-Identification Macros) . . . 114
1.2 Built-in Funetions L i, 114
11.2.1 Add Aligned Word Interlocked (ADAWI) 11-5
11.2.2 Branch on Bit Clear-Clear Interlocked (BBCCI) 11-6
11.2.3 Branch on Bit Set-Set Interlocked (BBSSI) 11-6
11.2.4 Find FirstClear Bit (FFC) 11-7

11.2.5 Find FirstSetBit (FFS)

11.2.6 Halt CHALT) . .o e e e e e e 11-8
11.2.7 Insert Entry into Queue at Head Interlocked (_INSQHI) 11-9
11.2.8 Insert Entry into Queue at Tail Interlocked (_INSQTI) 11-9
11.2.9 Insert Entry in Queue (_INSQUE) 11-10
11.2.10 Load Process Context (LDPCTX) 11-10
11.2.11 Locate Character (LOCC) 11-10
11.2.12 Move from Processor Register (MFPR) 11-11
11.2.13 Move Character 3 Operand (MOVC3) 11-11
11.2.14 Move Character 5 Operand (MOVCS) 11-12
11.2.15 Move from Processor Status Longword (MOVPSL) 11-13
11.2.16 Move to Processor Register (MTPR) 11-14
11.2.17 Probe Read Accessibility (PROBER) 11-14
11.2.18 Probe Write Accessibility (PROBEW) 11-15
11.2.19 Read General-Purpose Register (READ_GPR) 11-15
11.2.20 Remove Entry from Queue at Head Interlocked (REMQH]I) . . 11-16
11.2.21 Remove Entry from Queue at Tail Interlocked (_REMQTI). . . . 11-16
11.2.22 Remove Entry from Queue (REMQUE) 11-17
11.2.23 Scan Characters (SCANC). 11-17
11.2.24 Simple Read (SIMPLE_READ) 11-18
11.2.25 Simple Write (SIMPLE_WRITE) 11-19
11.2.26 Skip Character (SKPC) 11-19
11.2.27 Span Characters (SPANC) 11-20
11.2.28 Save Process Context (SVPCTX) 11-21
11.2.29 Write General-Purpose Register (WRITE_GPR). 11-21
Using VAX C Features on VMS Systems
Chapter 12 Using VAX Record Management Services
121 RMS File Organization 12-2
12.1.1 Sequential File Organization 12-2
12.1.2 Relative File Organization 12-3
12.1.3 Indexed File Organization 12-3
12.2 Record AccessModes 124
123 RMSRecord Formats 12-5
124 RMS Functions i .. 12-5

Xii

125 Writing VAX C Programs UsingRMS 127
12.5.1 Initializing File Access Blocks. 12-9
12.5.2 Initializing Record Access Blocks 12-10
12.5.3 Initializing Extended Aftribute Blocks 12-11
12.5.4 Initializing Name Blocks 12-12
126 RMS Example Program 0oviinn 12-13
Chapter 13 Using VAX C in the Common Language Environment
13.1 The VAX Procedure Calling and Condition Handling Standard 13-2
13.1.1 Register and Stack Usage 13-3
13.1.2 Return of the Function Value 13-5
13.1.3 The Argument List 13-5
13.2 Specifying Parameter-Passing Mechanisms 13-6
13.2.1 Passing Arguments by Immediate Value 13-8
13.2.2 Passing Arguments by Reference 13-11
13.2.3 Passing Arguments by Descriptor 13-14
13.2.4 VAX C Default Parameter-Passing Mechanisms 13-19
133 Interlanguage Calling 13-19
13.3.1 Caling VAX FORTRAN i 13-20
13.3.2 Calling VAXMACRO i 13-25
13.33 Calling VAXBASIC 13-29
13.34 Calling VAX Pascal 13-32
13.4 SharingGlobalData 13-37
13.4.1 Sharing Program Sections with FORTRAN Common Blocks . . 13-37
13.4.2 Sharing Program Sections with PL/I Externals 13-39
13.4.3 Sharing Program Sections with MACRO Programs 13-41
13.5 VMS Run-Time Library Routines 1342
13.6 VMS System Services Routines 1343
13.7 Calling Routines. e 1344
13.7.1 Determining the Typeof Call 1344
13.7.2 Declaring an External Routine and Its Arguments 1345
13.7.3 Calling the External Routine 13-45
13.7.4 System Routine Arguments 1345
13.7.5 Symbol Definitions o 1349
13.7.6 Condition Values 13-50

xiii

13.7.7 Checking System Service Return Values 13-50

13.8 Variable-Length Argument Lists in System Services 13-52
13.9 Return Status Values 13-54
13.9.1 Format of Return Status Values 13-54
13.9.2 Manipulating Return Status Values 13-56
13.9.3 Testing for Success or Failure 13-58
13.9.4 Testing for Specific Return Status Values 13-59
13.10 Examples of Calling System Routines 13-61
Chapter 14 VAX C Implementation Notes
14.1 Program Sections. 141
14.1.1 Attributes of Program Sections (Psects) 141
14.1.2 Program Sections Created by VAXC 14-2
Appendix A VAX C Definition Modules
Appendix B VAX C Compiler Messages
Appendix C Optional Programming/ Productivity Tools
C.1 Using VAXLSEwith VAXC. Cc-1
C.1.1 Entering Source Code Using Tokens and Placeholders Cc-2
C.1.2 Compiling Source Codec..... c+4
C.1.21 Pragma Insertions and Decomposition. C-5
C.1.3 Examples e CcC-6
C.1.3.1 Preprocessor Lines c-7
C.1.3.2 External Definition c-7
C.1.33 Function Definition Cc-8
C.1.34 Block Declaration C-11
C.1.35 Statements and Expressions C-17
C.2 Using the VAX Source Code Analyzer C-20
C.21 Multimodular Development. Cc-21

Xiv

Cc.2.2 Setting Up an SCA Environment. c-23

c.2.21 Creatingan SCA Library c-23
c.2.22 Generating the Data Analysis Files C-24
c.223 Selectingan SCA Library C-24
c.224 Loading Data Analysis Files into a Local Library . . C-24
C.23 Using SCA for Cross-Referencing C-25

Appendix D Language Summary

D.1 The CCCommand iuiiiiniinennn.. D-1
D.2 The LINKCommand D-3
D.3 Data-Type Keywords D4
D.4 Precedence of Operators D-5
D.5 Statements D-6
D.6 Conversion Rulesy D-7
D.7 Escape Sequencesttt e D-8
D.8 Preprocessor Directives D-8
D.9 Record Management Services (RMS) D-9

Appendix E Working with the Multiprocess Debugging Configuration

E.1 GettingStarted. E-1
E.1.1 Establishing a Multiprocess Debugging Configuration E-2
E.1.2 Invoking the Debugger E-2
E.1.3 The Visible Process and Process-Specific Commands E-3
E.1.4 Obtaining Information About Processes E-3
E.1.5 Bringing a Spawned Process Under Debugger Control E-5
E.1.6 Broadcasting Commands to Selected Processes E-6
E17 Controlling Execution E-7

E.1.7.1 Controlling Execution with SET MODE
NOINTERRUPT o it E-8
E.1.7.2 Putting Selected ProcessesonHold E-8
E.1.8 Changing the Visible Process. E-9

XV

E.1.9 Dynamic Process Setting E-10
E.1.10 Monitoring the Termination of Images E-11
E.1.11 Terminating the Debugging Session E-11
E.1.12 Releasing Selected Processes from Debugger Control E-11
E.1.13 Aborting Debugger Commands and Interrupting Program
Execution E-12
E.2 Supplemental Information, E-13
E.2.1 Specifying Processes in Debugger Commands E-13
E.2.2 Monitoring Process Activation and Termination E-15
E.2.3 Interrupting the Execution of an Image to Connect It to the
Debugger e e E-15
E.2.3.1 Using the CTRL/Y-DEBUG Sequence to Invoke the
Debugger i, E-16
E.2.3.2 Using the CONNECT Command to Interrupt an
Image E-17
E.2.4 Screen Mode Features for Multiprocess Debugging E-17
E.25 Setting Watchpoints in Global Sections E-19
E.2.6 Compatibility of Multiprocess Commands with the Default
Configuration.t e E-20
E.3 Sample Multiprocess Debugging Session E-21
E.4 Considerations for Multiprocess Debugging E-25
E.4.1 USEr QUOTAS . . . o o oo et et e it e e E-25
E.4.2 System Resources E-26
VAX C Glossary
Index
Examples
1-1 Symbol Cross-References in a Compiler Listing 1-9
2-1 Debugging Sample Program SCALARS.C 2-24
2-2 Debugging Sample Program ARRAY.C 2-26
2-3 Debugging Sample Program STRING.C. 2-27
24 Debugging Sample Program STRUCT.C 2-30
2-5 Debugging Sample Program ARSTRUCT.C 2-32
2-6 Debugging Sample Program POWER.C. 2-37

Xvi

3-1
3-2
3-3
34
4-1
4-2
4-3

45
46
47

4-9
4-10

A Sample Debugging Session . .

Using the #pragma ignore_dependency Directive
Using the #pragma ignore_dependency Directive
Using the #pragma safe_call Directive
Using the #pragma sequential_loop Directive

Simple Addition in VAXC
Output of Information

Output Using the Newline Character
Conditional Execution Using the if Statement
Conditional Execution Using the switch Statement

Looping Using the do Statement
Looping Using the for Statement

............................

Character-String Constants and Arraysc.cuuonn.
Single Storage Allocationof Unions

Structures
Case Conversion Program.
Declaring Functions

............................

Declaring Functions Passed as Arguments.
Echo Program Using Command-Line Arguments
Scope of Variable Declarations in NestedBlocks
Using switch to Count Blanks, Tabs, and Newlines
Rules for Initialization of Structures oL L.
Scope and Externally Defined Variables

Reinitializing Two auto Variables
Using Global Variables
Using the globalvalue Specifier .
Nested Substitution Directives . .

............................

External Data Declarations and Definitions

Main Program Section

Function Initializing RMS Data Structures

Internal Functions
Utility Function: Adding Records

Utility Function: Deleting Records
Utility Function: Typing the File .
Utility Function: Printing the File .
Utility Function: Updating the File

............................

Passing Floating-Point Arguments by Immediate Value.

Passing Arguments by Reference

2-37
3-25
3-26
3-27
3-29

4-9
4-11
4-12
4-14
4-16
4-22
4-24
4-25

5-2

5-7
5-14
5-16
5-21

8-27

9-11

9-16

9-20

10-3
12-14
12-16
12-18
12-20
12-22
12-24
12-25
12-27
12-29
13-11
13-13

13-3 Passing Arguments by Descriptor o 13-17
13-4 Passing Compile-Time String Descriptors 13-18
13-5 VAX C Function Calling a VAX FORTRAN Subprogram 13-21
13-6 VAX FORTRAN Subprogram Calling a VAX C Function 13-23
13-7 VAX C Function Emulating a VAX FORTRAN CHARACTER*(*)

Function e 13-24
13-8 VAX MACRO Program Calling a VAX C Function 13-26
13-9 VAX C Program Calling a VAX MACRO Program 13-28
13-10 VAX C Function Calling a VAX BASIC Function 13-30
13-11 VAX BASIC Program Callinga VAXC Function 13-31
13-12 VAX C Function Calling a VAX Pascal Routine 13-32
13-13 VAX Pascal Program Calling a VAX C Function 13-35
13-14 Sharing Data with a FORTRAN Program in Named Program Sections . . . 13-38
13-15 Sharing Data with a FORTRAN Program in a VAX C Structure 13-39
13-16 Sharing Data with a PL/I Program in Named Program Sections 13—40
13-17 Sharing Data with a PU/I Program in a VAX C Structure 13-41
13-18 Sharing Data with a MACRO Program in a VAX C Structure 13-42
13-19 Checking System Service Return Values 13-51
13-20 Using Variable-Length Argument Lists 13-53
13-21 Testing for Successt e e 13-58
13-22 Testing for Specific Return Status Values 13-60
13-23 Passing Arguments to System Services L ... 13-62
13-24 Determining $QIO Completion 13-63
13-25 Using Time Routines 13-64
E-1 VAX C Program Used for Multiprocess Debugging Session. E-21
E-2 Sample Multiprocess Debugging Session E-24

Figures

1—1 DCL Commands for Developing Programs 1-2
2-1 Debugger Keypad Key Functions 2-9
3-1 Sequential and Parallel Loop Execution Across Time 3-3
3-2 Program Cycle Using Decomposition. 3-8
41 rvalues, Ivalues, and Assigning Pointers 4-19
4-2 The Indirection Operator in Assignments 4-20
7-1 Boolean Algebra and the Bitwise Operators 7-18
8-1 Alignment of Structure Members. 8-31
13-1 TheCallStack it 134

xviii

13-2 Structure of a VAX Argument List o oL 13-5
13-3 Example of a VAX Argument List 13-6
13-4 Passing Arguments by Immediate Value 13-10
13-5 Bit Fields Within a Return Status Value 13-55
13-6 Internal Representation of a Status Value 13-57
C-1 Use of SCA for Multimodular Development. c-22
Tables
1-1 Debugger Compilation Options 1-9
1-2 /MACHINE_CODE Qualifier Options 1-13
1-3 /INOJOPTIMIZE Qualifier Optionso v, 1-14
14 /SHOW Qualifier Options ot i i e 1-16
1-5 /WARNINGS Qualifier Optionsttt 1-18
1-6 VMS Linker Default File Types for Input Files 1-25
2-1 Supported Operators e 2-22
2-2 Unsupported Operatorsottt it e e 2-22
3-1 VAX C Parallel-Processing Support Mechanisms 3-5
3-2 VAX C Decomposition Pragmas 3-23
3-3 Logical Names Used for Run-Time Tuning 3-31
34 Sysgen Parameters Requiring Changes for Parallel Processing 3-34
5-1 VAX CKeYyWOrdso v ittt ittt ittt et it 5-19
5-2 VAX C Features Similartothe LINT Utility 5-23
71 VAX C Operators . . . o v ittt ettt ittt te et et e 7-7
7-2 Precedence of VAX C Operatorsc.coviiinieunnnenn.n 7-9
8-1 VAX C Data-Type Keywords iiiiiiinninrennn 8-3
8-2 Sizeand Range of VAXC Integers i 8-5
83 VAX C ESCape SeqUeNnCEScuivrieennrnennennennnn 8-8
9-1 VAX C Storage Classes and Storage-Class Specifiers 94
9-2 Scope and the Storage-Class Specifiers 9-5
9-3 The Variables in Example 9—-1 and Their Storage Classes 9-7
94 Location, Lifetime, and the Storage-Class Keywords 9-9
9-5 Predefined Alignment Constants o L. 9-26
10-1 Mapping Between CDD and VAXC Data Types 10-12
12-1 Common RMS Run-Time Processing Functions 12-6
12-2 VAXCRMS #include Modules, 12-8
12-3 RMS Prototype Data Structures i 12-9
13-1 VAXRegisterUsage.ottt 13-3

XixX

Status Values of SYSSSETEF it 13-9

Status Values of SYSSREADEF 13-12
Valid Class Codesttt i 13-15
Atomic Data TYpes v it i e e e 13-16
Valid Parameter-Passing Mechanisms in VAXC 13-19
Default Passing Mechanisms 13-20
Run-Time Library Facilites 13-43
System ServiCeS i e e e 1344
VAX C Implementation s 1346
Possible Severity Values e 13-56
Facility Codes i e 13-59
Program Section Attributes i e 14-2
Combinations of Storage-Class Specifiers and Modifiers 14-3
Combination Aftributes e 144
VAX C Definition Modules A-1
LSE Placeholders I Cc-2
Commands to Manipulate Tokens and Placeholders. C-3
LSE Commands to Review and Examine Source Code C-5
SCA Commands to Use Within LSE C-26
Precedence of Operatorst iieinnnnennnn D-5
Escape Sequences i e e D-8
RMS Module Namesttt D-9
RMS Templates i e D-10
Debugging States e e E-4
Process Specifications i e E-13

Changed and New Keypad Key Functions E-19

™

Preface

This guide combines reference information on the VAX C programming
language with information necessary for developing and debugging VAX C
programs on the VMS operating system. The guide also includes information
about porting C programs to and from VMS and other operating systems,
as well as the differences between VAX C and other implementations of the
language. For more information about porting programs to and from other
operating systems, see the VAX C Run-Time Library Reference Manual.

Intended Audience

This guide is intended for experienced programmers who need to learn VAX
C, for users who need to know the difference between VAX C and other
implementations, or for experienced VAX C users who need to reference
information. You should be familiar with one high-level language and should
have some familiarity with the DIGITAL Command Language (DCL). If
you are not familiar with or need to reference information about DCL, see
Chapter 1.

Document Structure

This manual has 14 chapters and 5 appendixes. These chapters are grouped
into three parts as follows:

XXi

xXii

Developing VAX C Programs on VMS Systems

Chapter 1 explains how to create, compile, link, and run a VAX C

program. u

Chapter 2 explains how to use the VMS Debugger.
Chapter 3 explains how to decompose VAX C loops.

VAX C Programming Concepts

Chapter 4 presents a brief VAX C tutorial.
Chapter 5 explains program structure.
Chapter 6 describes VAX C statements.

Chapter 7 discusses the types of expressions and the operators used in
VAX C.

Chapter 8 explains data types and declarations.

Chapter 9 describes storage classes and allocation.

Chapter 10 explains preprocessor directives.

Chapter 11 describes the predefined macros and the built-in functions.

Using VAX C Features on VMS Systems

Chapter 12 explains VAX Record Management Services (RMS).
Chapter 13 describes VMS System Services and VMS Run-Time Library

routines. ‘ v)

Chapter 14 explains program sections (psects) and VAX C storage
classes.

Appendixes

Appendix A describes VAX C definition modules.
Appendix B lists VAX C compiler messages.

Appendix C provides an overview of the VAX Language-Sensitive Editor
(LSE) and information on the VAX Source Code Analyzer (SCA).

Appendix D provides a summary of all VAX C language features.

Appendix E explains how to debug a program that takes advantage of
parallel-processing features.

The VAX C Glossary provides an alphabetical listing of key terms.

Associated Documents

(- ’ You may find the following documents useful when programming in VAX C:

* VAX C Installation Guide—For system programmers who install the
VAX C software.

e VAX C Run-Time Library Reference Manual—For programmers who
wish to use the VAX C Run-Time Library functions and who need
more information about porting programs to and from other operating
systems.

* The C Programming Languagel —For those who need a more intensive
tutorial than that provided in Chapter 4. This book describes draft-
proposed ANSI C. VAX C contains features and enhancements to the C
language as described in The C Programming Language. Therefore, use
the Guide to VAX C as the reference book for the full description of

VAX C.
Conventions
Convention Meaning
The symbol represents a single
m stroke of the RETURN key on a terminal.
? CTRUX The symbol where letter X rep-
resents a terminal control character, is
generated by holding down the CTRL key
while pressing the key of the specified
terminal character.
$RUN CPROG In interactive examples, the user’s re-

sponse to a prompt is printed in red; system
prompts are printed in black.
float x; A vertical ellipsis indicates that not all of
. the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition (Englewood
Cliffs, New Jersey: Prentice Hall, 1988).

xXxiii

XXiv

Convention

Meaning

option, ...

[output-source, . . .

sc-specifier ::=
auto

static
[extern]
register

falb}

A

switch statement
fprintf function
auto storage class

A horizontal ellipsis indicates that addi-
tional parameters, options, or values can be
entered. A comma that precedes the ellipsis
indicates that successive items must be
separated by commas.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional. Square brackets are
not optional, however, when used to delimit
a directory name in a VMS file specification
or when used to delimit the dimensions of
an array in VAX C source code.

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

Braces surrounding two or more items
separated by a vertical bar (|) indicate
a choice; you must choose one of the two
syntactic elements.

A delta symbeol is used in some contexts to
indicate a single ASCII space character.
In syntax definitions, items appearing in
boldface type identify language keywords
and the names of VMS and VAX C Run-
Time Library functions.

v

New and Changed Features

The following list documents the features that distinguish VAX C Version
3.0 from previous versions:

You can decompose loops for parallel processing by specifying the
/PARALLEL qualifier on the CC command line (see Chapter 1). For
more information about parallel-processing programming, see Chapter 3.
For more information on parallel-processing debugging, see Appendix E.

You can improve program performance with automatic inline expansion
of function code. For more information, see Chapter 10.

VAX C now allows you to create separate preprocessor output with the
/PREPROCESS_ONLY qualifier. For more information, see Chapter 1.
VAX C now supports new versions of the memory-management functions
malloc, calloc, free, cfree, and realloc. For information about the
linking procedure needed to use these functions, see Chapter 1. For
information about the functions themselves, see the VAX C Run-Time
Library Reference Manual.

You can now specify up to 255 characters for identifier names.

When you use /STANDARD=PORTABLE, the compiler no longer issues
portability messages against the inclusion of the .h include files provided
by VAX C.

VAX C supports built-in functions that allow more direct access to VAX
instructions. For more information, see Chapter 11.

VAX C offers an additional predefined macro, CC$parallel, for use with
parallel-processing applications. For more information, see Chapter 11.

VAX C now supports the VMS License Management Facility. For more
information, see the VAX C Installation Guide.

XXV

XXVi

The following chapters of this manual are new:

Chapter 3 (describes parallel-processing features)
Chapter 4 (the tutorial is now a separate chapter)

Chapter 11 (all predefined macros and built-in functions are now in a
separate chapter)

Appendix E (describes parallel-processing debugging)

u

Developing VAX C Programs on VMS Systems

Chapter 1

Developing VAX C Programs at the DCL
Command Level

This chapter describes the following information about program development
on a VMS system:

* Overview of Digital Command Language (DCL) commands used for
program development (Section 1.1)

¢ C(Creating VAX C programs (Section 1.2)

* Compiling VAX C programs (Section 1.3)

¢ Compilation qualifiers (Section 1.3.2)

¢ Linking VAX C programs (Section 1.4)

¢ Linking against object libraries (Section 1.4.5.2)

¢ Linking against shareable images (Section 1.4.5.3)

¢ Object module libraries (Section 1.4.5.1)

¢ Running VAX C programs (Section 1.5)

1.1 DCL Commands for Program Development

This section provides a brief overview of the DCL commands used for
program development. The following sections provide more detailed
information about these topics.

Figure 1-1 shows the basic steps in VAX C program development.

Developing VAX C Programs at the DCL Command Level 1-1

Figure 1-1: DCL Commands for Developing Programs

$ EDIT AVERAGE.C
Use the file type of C to
indicate that the file
contains a VAX C program

$ CC AVERAGE
The CC Command
assumes that the file type
of an input file is C

(If you use the LIST
qualifier the compiler
creates a listing file)

$ LINK AVERAGE
The LINKcommand assumes
that the file type of an input
fileis OBJ
(If you use the /MAP qualifier
the linker creates a map file)

$ RUN AVERAGE
The RUN command assumes

that the file type of an image
is EXE

Create a
source program

[INPUT/OUTPUT FILES]

Compile the
source program

Link the
object module

Run the
executable

image

AVERAGE.C

AVERAGE.OBJ
(AVERAGE.LIS)
libraries

AVERAGE.EXE
(AVERAGE MAP)

ZK-5167-GE

1-2 Developing VAX C Programs at the DCL Command Level

W/

The following example shows each of the commands shown in Figure 1-1
executed in sequence:

$ EDIT/TPU AVERAGE.C
$ CC AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

To create a VAX C source program at DCL level, you must invoke a text
editor. In the previous example, the VAX Text Processing Utility (VAXTPU)
editor is invoked to create the source program AVERAGE.C. You can use
another editor, such as VAX EDT or the VAX Language-Sensitive Editor
(LSE). (LSE is a product that must be purchased separately; see Appendix C
for more information.) C is used as the file type to indicate that you are
creating a VAX C source program. C is the conventional file type for all VAX
C source programs.

When you compile your program with the CC command, you do not have to
specify the file type; by default, VAX C searches for files ending with C.

If your source program compiles successfully, the VAX C compiler creates an
object file with the file type OBJ.

However, if the VAX C compiler detects errors in your source program,
the system displays each error on your screen and then displays the DCL
prompt. You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the CC command. Command
qualifiers cause the VAX C compiler to perform additional actions. In the
following example, the /LIST qualifier causes the VAX C compiler to produce
the listing file AVERAGE.LIS:

$ CC/LIST AVERAGE

For a complete list and explanation of all the command qualifiers available
with the CC command, see Section 1.3.2.

After your program has compiled successfully, invoke the VMS Linker to
create an executable image file. The linker uses the object file produced
by VAX C as input to produce an executable image file as output. (The
executable image is a file containing program code that can be run on the
system.)

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute
your program.

Developing VAX C Programs at the DCL Command Level 1-3

1.2 Creating a VAX C Program

To create and modify a VAX C program, you must invoke a text editor. The u
VMS system provides you with two text editors: VAX EDT (EDT) and the

VAX Text Processing Utility (VAXTPU). The following section discusses

VAXTPU. See the VAX EDT Reference Manual for more information on EDT.

1.2.1 Using VAXTPU

The VAX Text Processing Utility (VAXTPU) is a high-performance, pro-
grammable utility. VAXTPU provides two editing interfaces: the Extensible
VAX Editor (EVE) and the VAXTPU EDT Keypad Emulator. You can also
create your own interfaces.

Like VAX EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. When you invoke VAXTPU to create
a file, a journal file is automatically created. You can use this journal file to
recover your edits if the system fails during an editing session. To recover
your edits, type the EVE/RECOVER command.

Unlike EDT, VAXTPU provides multiple windows. This feature allows you
to view two files on your screen at the same time. VAXTPU also provides
you with other advanced features, such as two editing interfaces. i l

The following sections describe how to use the EVE interface and the EDT
Keypad Emulator interface.

1.2.1.1 The EVE Interface

EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by
typing commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG_1.C:

$ EDIT/TPU PROG_1.C

You can define a global symbol for the EDIT/TPU command by placing a
symbol definition in your LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using the advanced features of EVE, see the Guide
to VMS Text Processing.

1-4 Developing VAX C Programs at the DCL Command Level u

1.3 Compiling a VAX C Program

()

The VAX C compiler performs the following functions:

* Detects errors in your source program
* Displays each error on your screen or writes the errors to a file

* Generates machine language instructions from the source
statements

* Groups these language instructions into an object module for the linker

The following sections discuss the CC command and its qualifiers.

1.3.1 The CC Command

To invoke the VAX C compiler, use the CC command. The CC command has
the following format:

CCl/qualifier...][file-spec [/qualifier...]],...

/qualifier
Specifies an action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the CC command, it
ﬂ affects all the files listed. However, when a qualifier appears after a file
‘ specification, it affects only the file that immediately precedes it. However,
when files are concatenated, these rules do not apply.

file-spec

Specifies an input source file that contains the program or module to be
compiled. You are not required to specify a file type if you give your file a .C
file extension; the VAX C compiler adopts the default file type C.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control
which source files are affected by each qualifier. In the following example,
the VAX C compiler creates an object file for each source file but creates only
a listing file for the source files PROG_1 and PROG_3:

s CC /LIST PROG_1, PROG_2/NOLIST, PROG_3

Developing VAX C Programs at the DCL Command Level 1-5

If you separate file specifications with plus signs, the VAX C compiler
concatenates each of the specified source files and creates one object file
and one listing file. In the following example, only one object file is created,
PROG_1.0BJ, and only one listing file is created, PROG_1.LIS. Both of
these files are named after the first source file in the list, but contain all
three modules.

$ CC PROG_1 + PROG_2/LIST + PROG_3

Any qualifiers specified for a single file within a list of files separated with
plus signs affect all the files in the list.

You can specify the name of a text library on the CC command line to com-
pile a source program. A text library is a file that contains text organized
into modules indexed by a table. Text libraries have a .TLB default file
extension. The modules in the text library have a .TXT file extension, by
default.

If it cannot find #include modules in libraries specified in the CC command
or in the default library defined by the logical name C$LIBRARY, the VAX C
compiler searches the library identified by the following name:

SYS$LIBRARY:VAXCDEF.TLB

The library VAXCDEF.TLB consists of #include modules supplied with
VAX C as an option at installation time. In addition, this library contains
declarations of values returned by the VMS system services.

Including text modules from the VAXCDEF.TLB library is preferable to
including the files in SYS$LIBRARY with the .H extensions. For example,
you can include the Standard I/O definitions in a program with the following
#include line, which includes the file SYS$LIBRARY:STDIO.H:

#include <stdio.h>

You can also use the following line, which includes the text module stdio
from SYS$LIBRARY:VAXCDEF.TLB. This method is more efficient.
Including the stdio text module is usually quicker than including the
STDIO.H file from the SYS$LIBRARY library directory due to the library
indexing system. However, this method is not portable.

#include stdio

See Section 10.4 for more information on #include. See Appendix A for
information on definition modules that you can include in your file. See the
VAX C Run-Time Library Reference Manual for information on the include
files that are required to use certain VAX C RTL functions and macros.

1-6 Developing VAX C Programs at the DCL Command Level

1.3.2 The CC Command Qualifiers

The following list shows all the command qualifiers and their defaults
available with the CC command. A description of each qualifier follows the

list.

Command Qualifiers
/[NOJANALYSIS_DATA[=file-spec]
/[NOJCROSS_REFERENCE
/INOJDEBUG[=(option, . ..)]
/[NO]DEFINE=(identifier[=definition][, . . .])
/[NO]DIAGNOSTICS|=file-spec]

/[NO]JG_FLOAT
/[NOJINCLUDE_DIRECTORY=(pathname [, . ..])
/LIBRARY

/[NOJLIST[=file-spec]

/[INOJMACHINE_CODE[=option]
/[NOJOBJECT][=file-spec]
/[NOJOPTIMIZE[=0ption, ...]
/INOJPARALLEL
/[NOJPRECISION={SINGLE,DOUBLE}
/[NOJPREPROCESS_ONLY[=filename]
/SHOWI[=(option, . ..)]

/[NOJSTANDARD[=(option, . . .)
/[NOJUNDEFINE=(identifier], . . .])
/[NO]JWARNINGS[=(option, . . .)]

Default
/NOANALYSIS_DATA
/NOCROSS_REFERENCE
/DEBUG=(TRACEBACK,NOINLINE)
/NODEFINE
/NODIAGNOSTICS
/NOG_FLOAT
/NOINCLUDE_DIRECTORY
See text.

/NOLIST (interactive mode)
/LIST (batch mode)
/NOMACHINE_CODE
/OBJECT

/OPTIMIZE
/NOPARALLEL
/PRECISION=DOUBLE
/NOPREPROCESS
/SHOW=(NOBRIEF,
NODECOMPOSITION,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIATE,
NOSTATISTICS,
NOSYMBOLS,
NOTRANSLATION,
SOURCE,

TERMINAL)
/NOSTANDARD
/NOUNDEFINE
/WARNINGS

You can place command qualifiers either on the CC command line itself or on
individual file specifications (with the exception of the /LIBRARY qualifier).
If placed on a file specification, the qualifier affects only the compilation of

Developing VAX C Programs at the DCL Command Level 1-7

the specified source file and all subsequent source files in the compilation

unit. If placed on the CC command line, the qualifier affects all source files

in all compilation units unless it is overridden by a qualifier on an individual U
file specification.

The rest of this section describes the CC command qualifiers.

/[NOJANALYSIS_DATA[=file-spec]

Controls whether the compiler generates a file of source-code analysis
information. The default file name is the file name of the primary source
file; the default file type is .ANA. The .ANA file is reserved for use with
DIGITAL layered products. For more information, see Appendix C.

/[NOJCROSS_REFERENCE

Directs the compiler to generate cross-references for variable names.
The cross-reference lists each line number in the listing file on which
each variable is referenced. This qualifier has no effect unless /LIST and
/SHOW=symbols are specified.

The default is NOCROSS_REFERENCE.

Example 1-1 shows a sample of the type of information placed in the com-
piler listing when you use /LIST/SHOW=symbols/CROSS_REFERENCE.

1-8 Developing VAX C Programs at the DCL Command Level u

Example 1-1: Symbol Cross-References in a Compiler Listing

B et T +
| Storage Map |
Fomm e +
Identifier
Name Line Size Class Type and References
main 37 Extern Function returning
def. long int
- No references
timeb 27 10 bytes Structure tag
- Referenced at
line 40

/[INO]DEBUG[=(option, ...)] :
Requests information to be included in the object module for use by the
debugger. Table 1-1 describes the debugger options.

Table 1-1: Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records. This is
equivalent to /DEBUG=INLINE.

INLINE Generates debug information to cause a STEP command to
STEP/INTO an inlined function call.

NOINLINE Generates debug information to cause a STEP command to
STEP/OVER the inlined function call.

NONE Does not include any debugging information. This is equiva-
lent to /NODEBUG.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-9

Table 1-1 (Cont.): Debugger Compilation Options

Option Usage

NOTRACEBACK Does not include traceback records. This option is used to
exclude all extraneous information from thoroughly debugged
program modules. This option is equivalent to /NODEBUG.

NOSYMBOLS Includes only traceback records. This is the default if the
/DEBUG qualifier is not present on the command line.

SYMBOLS Includes symbol table records, but not the traceback records.

TRACEBACK Includes only traceback records. This is the default if the

/DEBUG qualifier is not present on the command line.

The default is /DEBUG=(TRACEBACK,NOINLINE).

/[NO]DEFINE=(identifier[=definition][, . . .])

/[NOJUNDEFINE=(identifier[, ...])

Performs the same functions as the #define and #undefine preprocessor
directives. The /DEFINE qualifier defines a macro to be substituted for
every occurrence of a given identifier in the compilation unit or units;
/UNDEFINE cancels a previous definition (but not subsequent ones). When
both /DEFINE and /UNDEFINE are present in a compilation unit or on the
CC command line, /DEFINE is evaluated before /UNDEFINE.

Since the CC command line must be compatible with DCL, the syntax
of the /DEFINE and /UNDEFINE qualifiers differs from the syntax of
the #define and #undefine preprocessor directives. The following are
differences between the two syntax requirements:

¢ DCL converts all input to uppercase unless it is enclosed in quotation
marks.

¢ When more than one /DEFINE is present on the CC command line or in
a single compilation unit, only the last /DEFINE is used. Similarly, only
the last /UNDEFINE is used on the CC command line or the compilation
unit.

* DCL accepts only one equal sign as a delimiter, and a space terminates
the definition.

* You must use quotation marks to define macro definitions. Within the
quotation marks, a delimiter can be either a space or one equal sign,
whichever comes first.

The simplest form of a /DEFINE definition is as follows:

/DEFINE=true

1-10 Developing VAX C Programs at the DCL Command Level

This results in a definition like the one that follows:
#define TRUE 1
The following example uses the /UNDEFINE qualifier:

$ CC/UNDEFINE="TRUE"

Since /DEFINE and /UNDEFINE are not part of the source file, they are
not associated with a listing line number or source line number. Therefore,
when an error occurs in a command-line definition, the message displayed
at the terminal does not indicate a line number. In the listing file, these
diagnostic messages are placed before the source listing in the order that
they were encountered. When the expansion of a definition causes an
error at a specific source line in the program, the diagnostics—both at the
terminal and in the listing file—are associated with that source line.

A command line containing the /DEFINE and the /UNDEFINE qualifiers
can be long. Continuation characters cannot appear within quotes or they
will be included in the macro stream. The length of a CC command line
cannot exceed the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibil-
ity with other DCL qualifiers. You may wish to use these qualifiers to cancel
/DEFINE or /UNDEFINE qualifiers that you have specified in a symbol that
you use to compile VAX C programs.

The defaults are /NODEFINE and /NOUNDEFINE.

For additional information on the use of these qualifiers, see Section 1.3.2.1.

/[NO]DIAGNOSTICS|=file-spec]

Creates a file containing compiler messages and diagnostic information.
The extension .DIA is the default file extension for a diagnostics file. The
.DIA file is reserved for use with DIGITAL layered products. For more
information, see Appendix C.

The default is NODIAGNOSTICS.

/[INO]JG_FLOAT

Controls the format of floating-point variables. If you do not specify
/G_FLOAT on the CC command line, double variables are represented in D_
floating format. If /G_FLOAT is specified, all variables declared as double
are represented in G_floating format. (See Section 8.4 for more information
on the G_floating format.)

Developing VAX C Programs at the DCL Command Level 1-11

A program compiled with /G_FLOAT must also be linked with either the

object library VAXCRTLG.OLB or the shareable image VAXCRTLG.EXE.

If you are linking against object-module libraries, see Section 1.4.5.2 for U
information about which libraries to link against and in what order you

need to specify these libraries. If you are linking against shareable images,

see Section 1.4.5.3.

The default is /NOG_FLOAT.

/[NO]JINCLUDE_DIRECTORY=(pathname [, ...])

Provides an additional level of search for user-defined include files. Each
path-name argument can be either a logical name or a legal directory
specification, in quoted form.

The /INCLUDE_DIRECTORY qualifier provides the functionality of the -i
qualifier in CC on ULTRIX. This qualifier allows you to specify additional
directories to search for include files. The forms of inclusion affected are the
#include “file-spec” and #include <file-spec> forms. For the quoted form,
the order of search is as follows:

1. The directory containing the top-level source file

2. The directories specified in the INCLUDE_DIRECTORY qualifier (if
any)

3. The directory or search list of directories specified in the logical name
C$INCLUDE (if any) ‘ ’

For the bracketed form, the order of search is as follows:

1. The directories specified in the /INCLUDE_DIRECTORY qualifier (if
any)

2. The directory or search list of directories specified in the logical name
VAXCS$INCLUDE (if any)

3. If VAXC$INCLUDE is not defined, then the directory or search list of
directories specified by SYS$LIBRARY

The default is/ NOINCLUDE_DIRECTORY.

/LIBRARY

Indicates that the associated input file is a library containing modules

of VAX C source text. If the library specification does not include a file
extension, the CC command line assumes the .TLB default type. You must
join the /[LIBRARY qualifier with a file specification in a compilation unit
using a plus sign (+); you cannot place the qualifier on the CC command
line. No matter where you place the /[LIBRARY qualifier in a compilation
unit, all files in the unit may make reference to modules within that library.
Consider the following example:

1-12 Developing VAX C Programs at the DCL Command Level u

$ CC ONE + TWO + THREE/LIBRARY[RETURN]

Files ONE.C and TWO.C can contain references to modules in THREE.TLB.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY, FOUR[RETURN]

The file FOUR.C cannot contain references to modules in THREE.TLB since
FOUR.C is located in a separate compilation unit separated by a comma.
The placement of the library file specification does not matter. The following
command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO[RETURN
$ CC ONE + THREE/LIBRARY + TWO[RETURN

$ CC ONE + TWO + THREE/LIBRARY[RETURN]

/[NO]LIST[=file-spec]

Directs the compiler to produce a listing file containing, by default, a source
program listing, a storage map, and a compilation summary. You must
specify this qualifier to get any type of listing output. None of the other
qualifiers use /LIST by default.

By default, /LIST causes the compiler to create a listing file with the same
name as the source file and with the .LIS file extension. If you include a file
specification with the /LIST qualifier, the compiler uses that specification to
name the listing file.

In interactive mode, the default is /NOLIST. In batch mode, the default is
/LIST. See also the descriptions of the qualifiers /[NOJCROSS_REFERENCE,
/INOJMACHINE_CODE, and /SHOW.

/[NOJMACHINE_CODE[=0option]

Directs the compiler to list the generated machine code in the listing file.
However, the compiler cannot produce any kind of listing file unless you
specify /LIST as well.

Several formats exist to list machine code. Table 1-2 shows the options for
/MACHINE_CODE.

Table 1-2: /MACHINE_CODE Qualifier Options

Option Usage

AFTER Causes the lines of machine code produced during compila-
tion to print after all the source code in the listing.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-13

Table 1-2 (Cont.): /MACHINE_CODE Qualifier Options

Option Usage u

BEFORE Causes lines of machine code produced during compilation to
print before any source code in the listing.
INTERSPERSED Produces a listing consisting of lines of source code followed

by the corresponding lines of machine code. This is the
default option.

The default is/ NOMACHINE_CODE.

/[NOJOBJECT|[=file-spec]

Directs the compiler to produce an object module. By default, /OBJECT
creates an object module file with the same name as that of the first source
file of a compilation unit and with the .OBJ file extension. If you include a
file specification with /OBJECT, the compiler uses that specification instead.
See Section 1.3.1 for more information about file specifications.

The compiler executes faster if it does not have to produce an object module.
Use the /NOOBJECT qualifier when you need only a listing of a program or
when you want the compiler to check a file of source text for errors.

The default is /OBJECT,
/OPTIMIZE[=option, . . .] u

The /[INOJOPTIMIZE qualifier determines whether VAX C eliminates ineffi- |
cient code. Table 1-3 presents the /[/[NOJOPTIMIZE qualifier options.

Table 1-3: /[NOJOPTIMIZE Qualifier Options |

Option Usage

[NOIDISJOINT Directs the compiler to optimize the generated machine code.
For example, the compiler eliminates common subexpres-
sions, removes invariant expressions from loops, collapses
arithmetic operations into 3-operand instructions, and places
local variables in registers.

When debugging VAX C programs, use the
/OPTIMIZE=NODISJOINT option if you need minimal opti-
mization; if optimization during debugging is not important,
use the /NOOPTIMIZE qualifier.

(continued on next page)

1-14 Developing VAX C Programs at the DCL Command Level u

Table 1-3 (Cont.): /[NOJOPTIMIZE Qualifier Options

Option Usage

[NOJINLINE Provides automatic inline expansion of functions that yield
optimized code when they are expanded. Whether or not
a function is a candidate for inline expansion is based on
its size, the number of times it is called, and whether it
conforms to the rules specified in Section 10.7.3.1.

The default is /OPTIMIZE, which is the same as
/OPTIMIZE=(DISJOINT,INLINE). The /NOOPTIMIZE qualifier turns off the
/PARALLEL qualifier.

/[NOJPARALLEL

Specifies whether the compiler should perform dependency analysis on for
loops in the program and generate optimized code to run on a multiprocessor
system.

If you specify /PARALLEL and if you plan on using the memory-
management functions malloe, calloc, free, or cfree, then you should
include the file stddef.h in your program and you should link against
the proper object library (VAXCPAR.OLB) or shareable image. See
Section 1.4.5.2 for information on linking against object-module libraries
and Section 1.4.5.3 for information on linking against a shareable image.

The default is /NOPARALLEL. The /NOOPTIMIZE qualifier turns off
/PARALLEL.

/[NO]PRECISION= { glgl?éEE }

Directs the compiler to generate code to perform floating-point operations on
float variables in single or double precision.

Your code may execute faster if it contains float variables and is compiled
with /PRECISION=SINGLE. However, the results of your floating-point
operations will be less precise. See Chapter 8 for more information on
floating-point variables.

The default is /PRECISION=DOUBLE.

/[[NOJPREPROCESS_ONLY[=filename]

Gives the same functionality as the -E qualifier on UNIX C compilers.
When it is specified, it causes the compiler to perform only the actions of
the preprocessor phase and writes the resulting processed text to a file.
No semantic or syntax processing is done. Furthermore, no object file,
diagnostic file, listing file, or analysis data file is produced.

Developing VAX C Programs at the DCL Command Level 1-15

If you do not specify a file name for the preprocessor output, the name of the
output file defaults to the file name of the input file with a .I file type.

The default is/ NOPREPROCESS_ONLY. U
/SHOW=[(option, ...)]
Sets or cancels listing options. You must use the /LIST qualifier with the

/SHOW qualifier to use any of the /SHOW options. Table 1-4 presents the
/SHOW options.

Table 1—4: /SHOW Qualifier Options

Option Usage
ALL Prints all listing information.
[NOIBRIEF Creates the same listing as the option SYMBOLS

except that BRIEF eliminates from the list any
identifiers that are not referenced in the program
and are not members of a structure or union that is
referenced in the program.

The /NOBRIEF option is the default.

[NOIDECOMPOSITION Places a summary of the loops that were decom-
posed in the listing file. In addition to the /LIST,
/OPTIMIZE, and /PARALLEL qualifiers, must be
specified for SHOW=DECOMPOSITION to take ,
effect. ' u

The [NOJDECOMPOSITION option is the default.

[NOIDICTIONARY ~ Places the Common Data Dictionary (CDD)
definitions—included in the program with the
#dictionary preprocessor directive—into the listing
file. These data definitions are marked in the listing
file with an uppercase letter D in the listing margin.
The NODICTIONARY option is the default.

[NOJEXPANSION Places final macro expansions in the program
listing. When you specify this option, the number
of substitutions performed on the line prints next to
each line.

The NOEXPANSION option is the default.

(continued on next page)

1-16 Developing VAX C Programs at the DCL Command Level u

Table 1—4 (Cont.): /SHOW Qualifier Options

Option Usage
[NOJINCLUDE Places the contents of #include files and modules in
the program listing.
The NOINCLUDE option is the default.
[NOJIINTERMEDIATE Places all intermediate and final macro expansions

in the program listing.
The NOINTERMEDIATE option is the default.
NONE Creates an empty listing file, with only the header.
If you specify this option on a CC command line that
contains /LIST and /MACHINE_CODE, the compiler
places machine code in the listing file.
[NOJSOURCE Places the source program statements in the pro-
gram listing.
The SOURCE option is the default.
[NOISTATISTICS Places compiler performance statistics in the pro-
gram listing.
The NOSTATISTICS option is the default.
[NOISYMBOLS Places the symbol table of the compiled program in
the program listing. The symbol table includes a
list of all functions, the sizes and attributes of all
variables referenced in the program, and a program
section summary and function definition map.

The NOSYMBOLS option is the default.

[NOITERMINAL Displays compiler messages to the terminal.
The TERMINAL option is the default.
[NOITRANSLATION Places into the listing file all UNIX system file

specifications that the compiler translates to VMS
file specifications using DEC/Shell functions. See
the VAX C Run-Time Library Reference Manual for
more information on file translation.

The NOTRANSLATION option is the default.

/[NOJSTANDARDI[=(option, ...)]

Directs the compiler to flag certain VAX C specific constructs and VAX C
relaxations of conventional C language constructs and rules. For example,
the conversions from pointer to integer and back again are subject to more
stringent tests when you specify /STANDARD=PORTABLE. If you specify
/STANDARD without an option, the default is STANDARD=PORTABLE. In
summary, /STANDARD=PORTABLE causes the compiler to issue warning

Developing VAX C Programs at the DCL Command Level 1-17

messages against coding practices that may not be portable between VAX C
and other implementations.

The default is NOSTANDARD.

/INOJUNDEFINE=(identifier[, . . .])
See /[NOJDEFINE in this section.

/[[NOJWARNINGS|[=(option, ...)]

Controls whether the compiler prints warning diagnostic messages, in-
formational diagnostic messages, neither, or both. The default qualifier,
/WARNINGS, causes the compiler to print all diagnostic messages. The
/NOWARNINGS qualifier suppresses both the informational and the warn-
ing messages.

Table 1-5 presents the two /WARNING qualifier options.

Table 1-5: /WARNINGS Qualifier Options

Option Usage

NOINFORMATIONALS Causes the compiler to suppress informational
messages.

NOWARNINGS Causes the compiler to suppress all warning
messages.

The informational message, SUMMARY, cannot be suppressed with
/NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

The default is /WARNINGS.

1.3.2.1 Using the /DEFINE and /UNDEFINE Qualifiers

This section describes using the /DEFINE and /UNDEFINE qualifiers. Since

these qualifiers must follow Digital Command Language (DCL) conventions,
their use differs from the use of the #define and #undefine preprocessor
control directives.

You must enclose macro definitions in quotation marks. DCL issues a
warning message if it encounters a definition of the following form:

/DEFINE=funct (a) = a+sin(a)
The correct definition is written without spaces, as follows:

/DEFINE="funct (a)=a+sin(a)"

1-18 Developing VAX C Programs at the DCL Command Level

This definition produces the same results, as follows:
#define funct(a) a + sin(a)

Within a definition and inside quotes, a delimiter can be either a space or
one equal sign, whichever comes first. Consider the following example:

$ CC/DEFINE="true=1"
This is equivalent to the following:
#define true 1

Consider the following definition:

$ CC/DEFINE="TRUE =1"
This definition is equivalent to the following:

#define TRUE =1

Within the definition and outside quotes, the only allowed delimiter is
one equal sign; a space terminates the definition. Consider the following
example: ‘

$ CC/DEFINE= (maybe=2, "funct (a)=a+sin(a)")
These definitions are equivalent to the following:

#define MAYBE 2
#define funct(a) a + sin(a)

However, the following definitions are not recognized by DCL:

$ CC/DEFINE= TRUE

$ CC/DEFINE=(FALSE 0)

In the first example, DCL interprets TRUE as a file specification; in the
second, DCL flags an invalid value specification.

One equal sign can be passed to the compiler within a single line in one of
the following ways:

$ CC/DEFINE=(EQU==, "equ =", "equal==")

In the first definition, two equal signs are required: the first is removed by
DCL as the delimiter; the other is passed to the compiler. In the second
example, the space is recognized as a delimiter because the definition is
inside quotes. Therefore, only one equal sign is required. In the third
definition, the equal sign is used as the delimiter. The compiler removes the
first equal sign.

Developing VAX C Programs at the DCL Command Level 1-19

You can pass quotation marks in one of the following ways:

$ CC/DEFINE=(QUOTES="""", " funct (b) =printf(")") I '

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

The /UNDEFINE qualifier is useful for undefining the predefined VAX C
preprocessor constants. For example, if you use a preprocessor constant
(such as vaxc, VAXC, VAX1lc, or vms) to conditionally compile segments of
VAX C specific code, you can undefine that constant to see how the portable
sections of your program execute. Consider the following program:

main ()

{

#if vaxc

printf("I'm being compiled with VAX C.");

#else

printf("I'm being compiled on some other compiler.")
#endif

}

Output from the program is as follows:

$ cC EXAMPLE.C[RETURN

$ LINK EXAMPLE.OBJ[RETURN

$ RUN EXAMPLE.EXE[RETURN

I'm being compiled with VAX C.

$ CC/UNDEFINE="vaxc" EXAMPLE [RETURN

$ LINK EXAMPLE.OBJ[RETURN u
$ RUN EXAMPLE.EXE [RETURN]

I'm being compiled on some other compiler.

1.3.3 Compiler Error Messages

1-20

Developing VAX C Programs at the DCL Command Level

If there are errors in your source file when you compile your program, the
VAX C compiler signals these errors and displays diagnostic messages.
Reference the diagnostic message, locate the error, and, if necessary, correct
the error. Diagnostic messages displayed by VAX C have the following
format:

%CC-s-ident, message-text
Listing line number m
At line number n in name

%CC
Is the facility or program name of the VAX C compiler. This portion indicates
that the message is being issued by VAX C.

S
Is the severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error occurs and does
not produce an object module. You must correct the error before you can
compile the program.

E Error. The compiler continues, but does not produce an object module. You
must correct the error before you can successfully compile the program.

w Warning. The compiler produces an object module. It attempts to correct the
error in the statement, but you should verify that the compiler’s action is
acceptable. Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform
you of specific actions taken by the compiler. No action is necessary on your
part.

ident

Is the message identification. This is a descriptive abbreviation (mnemonic)
of the message text.

message-text

Is the compiler’s message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m
Is the integer m, which gives you the line number in the listing file where

the error occurs. This information is given when you specify the command
qualifier /LIST.

At line number n in name

Is the integer n, which gives you the number of the line where the error
occurs. The number is relative to the beginning of the file or text library
module specified by name. You can use the #line directive to change both
the line number and name that appear in the message.

Appendix B lists the messages produced by the VAX C compiler.

Developing VAX C Programs at the DCL Command Level 1-21

1.4 Linking a VAX C Program

After you compile a VAX C source program or module, use the DCL
command LINK to combine your object modules into one executable image,
which can then be executed by the VMS system. A source program or
module cannot run on the VMS system until it is linked.

When you execute the LINK command, the linker performs the following
functions:

* Resolves local and global symbolic references in the object code
e Assigns values to the global symbolic references

¢ Signals an error message for any unresolved symbolic reference
¢ Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /' DEBUG
qualifier to link your program module. The /DEBUG qualifier appends to
the image all the symbol and line number information appended to the
object modules plus information on global symbols, and causes the image to
run under debugger control when it is executed.

The LINK command produces an executable image by default. However,
you can also use the LINK command to obtain shareable images and
system images. The /SSHAREABLE qualifier directs the linker to produce
a shareable image; the /SYSTEM qualifier directs the linker to produce a
system image. See Section 1.4.2 for a complete description of these and
other LINK command qualifiers.

For a complete discussion of the VMS Linker, see the VMS Linkef Utility
Manual.

1.4.1 The LINK Command

The LINK command has the following format:
LINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

/command-qualifier...
Specifies output file options.

file-spec
Specifies the input files to be linked.

1-22 Developing VAX C Programs at the DCL Command Level

W/

ffile-qualifier...
Specifies input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input

file specified and the file type EXE. If you link more than one file, it is good

practice to list the file containing the main program first. Then, the name of
your output file will have the same name as your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BJ, and SUBPROG2.0BJ to produce one executable image
called MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROG1.OBJ, SUBPROG2.OBJ

1.4.2 LINK Command Qualifiers

You can use the LINK command qualifiers to modify the linker’s output,
as well as to invoke the debugging and traceback facilities. Linker output
consists of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the VMS Linker Utility Manual.

Command Qualifiers Default

/BRIEF See text.
/[NOJCROSS_REFERENCE /NOCROSS_REFERENCE
/[INO]DEBUG /NODEBUG
/INOJEXECUTABLE-=[file-spec] /EXECUTABLE=name.EXE

/FULL See text.

/[NOJMAP /NOMAP (interactive) /MAP (batch)
/INOJSHAREABLE/=file-spec] /NOSHAREABLE
/[INOJTRACEBACK /TRACEBACK

/BRIEF

Causes the linker to produce a summary of the image’s characteristics and a
list of contributing modules.

/[NO]JCROSS_REFERENCE

Causes the linker to produce cross-reference information for global symbols;
/NOCROSS_REFERENCE causes the linker to suppress cross-reference
information.

Developing VAX C Programs at the DCL Command Level 1-23

The default is NOCROSS_REFERENCE.

/[NO]DEBUG

Causes the linker to include the VMS Debugger in the executable image and
generates a symbol table; /NODEBUG causes the linker to prevent debugger
control of the program.

The default is /NODEBUG.

/[NOJEXECUTABLE [=file-spec]
Causes the linker to produce an executable image. /NOEXECUTABLE
suppresses production of an image file.

The default is /EXECUTABLE.

/FULL

Causes the linker to produce a summary of the image’s characteristics, a list
of contributing modules, listings of global symbols by name and by value,
and a summary of characteristics of image sections in the linked image.

/[NOJMAP
Causes the linker to generate a map file; /NOMAP suppresses the map.

The default is /MAP in batch mode and /NOMAP in interactive mode.

/[INO]SHAREABLE][=file-spec]
Causes the linker to create a shareable image. /NOSHAREABLE generates u
an executable image.

The default is/ NOSHAREABLE.
/[INOJTRACEBACK

Causes the linker to generate symbolic traceback information when error
messages are produced; NOTRACEBACK suppresses traceback information.

The default is TRACEBACK.

1.4.3 Linker Input Files
You can specify the object modules to be included in an executable image in
any of the following ways:

¢ Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with the
file type OBJ.

* Specify one or more object module library files.

1-24 Developing VAX C Programs at the DCL Command Level u

You can specify either the name of an object module library with the
/LIBRARY qualifier or the names of the object modules contained in
an object module library with the /INCLUDE qualifier. Section 1.4.5.1
describes the uses of object module libraries.

* Specify an options file.
An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS

qualifier to specify an options file. For more information on options files,
see the VMS Linker Utility Manual.

Table 1-6 shows the default input file types for the linker.

Table 1-6: VMS Linker Default File Types for Input Files

File Type File

OBJ Object module
OLB Library

OPT Options file

1.4.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as that of the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXEJUPDATE.EXE and the map
file [PROJECT.MAPJUPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

Developing VAX C Programs at the DCL Command Level 1-25

1.4.5 Linking Against Object Module Libraries and Shareable Images

Linking against object modules (stored in object module libraries) or
against shareable images are ways of allowing your program to access data
and routines outside of your compilation units. Either the object module
libraries and the shareable images can be created by you or they could be
ones provided by DIGITAL. To access data in object modules and shareable
images, you can use LINK command qualifiers, VMS logical names, and
options files.

Also, the VAX C Run-Time Library (RTL) provides two formats for you to
choose from: object module libraries or shareable images. Depending on
which type of RTL you want to use and on which type of functions you plan
on calling from your programs, you need to supply information to the linker
that specifies which versions of the functions to access.

When you use the VAX C RTL and its corresponding definition modules (see
Appendix A), remember that the VAX C RTL ships with the VMS operating
system and the definition modules ship with the VAX C compiler. Since the
releases of the compiler and of the operating system are not synchronized,
there may be compatibility issues that you need to consider to use the VAX
C RTL properly. See the release notes (by typing HELP CC RELEASE_
NOTES on the DCL command line) for information that may pertain to this
issue.

The following sections discuss these topics in further detail:

* Object module libraries (Section 1.4.5.1)
* Linking against the RTL object libraries (Section 1.4.5.2)
* Linking against the RTL shareable images (Section 1.4.5.3)

1.4.5.1 Object Module Libraries

You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to
link. In the following example, the LINK command directs the linker to link
the subprogram modules EGGPLANT, TOMATO, BROCCOLI, and ONION
with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE= (EGGPLANT, TOMATO, BROCCOLI, ONION)

1-26 Developing VAX C Programs at the DCL Command Level

An object module library can also contain a symbol table with the names
of each global symbol in the library, and the name of the module in which
they are defined. You specify the name of the object module library con-
taining symbol definitions with the /LIBRARY qualifier. When you use

the /LIBRARY qualifier during a linking operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE LNK$LIBRARY. The linker searches default
user libraries for unresolved references after it searches modules and li-
braries specified in the LINK command. For more information about the
DEFINE command, see the VMS DCL Dictionary.

For more information about object module libraries, see the VMS Linker
Utility Manual.

1.4.5.2 Linking Against the RTL Object Libraries

Using the object code of the VAX C Run-Time Library (RTL) functions is
one of two options (see Section 1.4.5.3 for information on the RTL shareable
images). When you choose to use the VAX C RTL as object code, the linker
attempts to resolve all references to VAX RTL functions by searching any
object module libraries specified on the LINK command line. If the linker
locates the function code, it places a copy of the code in the program’s local
program section (psect). If the linker does not locate the function code,

it translates the logical name LNK$LIBRARY_n to the name of an object
library and then searches that library for the code.

If you choose to link against object module libraries and if you want to

use any of the VAX C RTL functions, you have to link against the file
SYS$LIBRARY:VAXCRTL.OLB. Depending on what other VAX C RTL
functions you want to use or on other linking requirements, you may have
to link against other files in strict order. To use these VAX C RTL functions,
define the logicals LNK$LIBRARY_n as libraries in the following order,
omitting any that you do not need to run your programs:

1. SYS$LIBRARY:VAXCCURSE.OLB

Link against this file if you used the Curses Screen Management pack-
age of VAX C RTL functions and macros in your compiled program. If
you do not need Curses, then do not link against this file.

Developing VAX C Programs at the DCL Command Level 1-27

2. SYS$LIBRARY:VAXCRTLG.OLB
Link against this file if you used the /G_FLOAT qualifier on the CC
command line. If you do not specify /G_FLOAT, then do not link against
this file.

3. SYS$LIBRARY:VAXCPAR.OLB
Link against this file either to aécess the parallel-processing versions
of the VAX C RTL functions malloe, calloc, free, cfree, and real-
loc or to fulfill another linking requirement for parallel processing.
(See Section 3.3 for information on linking requirements for parallel
processing.)

4. SYS$LIBRARY:VAXCRTL.OLB
Link against this file to access the VAX C RTL. If you do not use any
VAX C RTL functions and if you do not have a VAX C main program,
then do not link against this file (or any of the previous files).

If you want to use the regular versions of the VAX C RTL functions (without
Curses), then you should define the following logical:

$ DEFINE LNKSLIBRARY SYSSLIBRARY :VAXCRTL.OLB[RETURN

If you need to access all types of VAX C RTL functions and macros, you
should define the logical names in the following order:

$ DEFINE LNK$LIBRARY SYS$LIBRARY : VAXCCURSE. OLB
$ DEFINE LNKSLIBRARY 1 SYS$LIBRARY:VAXCRTLG.OLB[RETURN]
$ DEFINE LNKSLIBRARY 2 SYSSLIBRARY:VAXCPAR.OLB[RETURN]

S DEFINE LNKSLIBRARY 3 SYS$LIBRARY:VAXCRTL.OLB[RETURN]

If you only need to use Curses, then you should define the logical names in
the following order:

$ DEFINE LNK$LIBRARY SYS$LIBRARY : VAXCCURSE . OLB[RETURN]

$ DEFINE LNKSLIBRARY_ 1 SYS$LIBRARY:VAXCRTL.OLB[RETURN]

If you need to use Curses and G_floating precision in your program, then
you should define the logical names in the following order:

$ DEFINE LNKSLIBRARY SYS$LIBRARY : VAXCCURSE . OLB[RETURN]
$ DEFINE LNKSLIBRARY 1 SYS$SLIBRARY:VAXCRTLG.OLB[RETURN]
RETURN

9 DEFINE LNKSLIBRARY 2 SYS$LIBRARY:VAXCRTL.OLB

The order of the specified libraries determines which versions of the VAX
C RTL functions are found by the linker first. If the linker does not find
the function code, or if LNK$LIBRARY_n is undefined, it assumes that
the function is not a VAX C RTL function, and checks the VMS Common
Run-Time Procedure Library. These references can be explicit references
in your code, or they could be references generated by the compiler to

1-28 Developing VAX C Programs at the DCL Command Level

perform common operations such as input and output, calls to mathematical
functions, and so forth.

If the linker cannot resolve the reference by checking the VMS Common
Run-Time Procedure Library, it assumes that an error has been made. For
more information about Curses, see the VAX C Run-Time Library Reference
Manual. For more information about the G_floating representation of
double variables, see Section 8.4. For more information on VAX C support
for parallel processing, see Chapter 3.

NOTE

Do not use search lists to define the equivalence names for
LNKS$LIBRARY_n. The linker will not resolve external references
to the VAX C RTL functions in the proper manner.

1.4.5.3 Linking Against the RTL Shareable Images

Using the object code of the VAX C Run-Time Library (RTL) functions is one
of two options (see Section 1.4.5.2 for more information). You can also use
the VAX C RTL as a shareable image to reduce the space the image takes on
the disk and to increase the program execution rate.

When you use the VAX C RTL as a shareable image, you do not receive a
copy of the object code in your program’s local psect; control is passed, using
pointers, from your program to libraries containing the VAX C RTL images
where the designated function executes. After execution, control returns to
your program. This process has a number of advantages. You significantly
reduce the size of a program’s executable image, the program’s image takes
up less disk space, and the program swaps in and out of memory faster due
to decreased size.

If you do not use the /G_FLOAT qualifier, then create an options file,
OPTIONS_FILE.OPT, containing the following line:

SYS$SHARE : VAXCRTL.EXE/SHARE

If you do use the /G_FLOAT qualifier, then create an options file containing
the following line:

SYS$SHARE : VAXCRTLG. EXE/SHARE

You cannot include the libraries SYS$SHARE:VAXCRTL.EXE and
SYS$SHARE:VAXCRTLG.EXE in the same options file.

Developing VAX C Programs at the DCL Command Level 1-29

If you have linking requirements for parallel processing (see Section 3.3 for
information on compiling and linking requirements), then you also need to
link against the VAXCPAR.OLB object module library. To do this, define the
following logical name:

¢ DEFINE LNKSLIBRARY SYS$LIBRARY:VAXCPAR.OLB[RETURN]
After you define the logical name LNK$LIBRARY, you can create the options
file (described previously) that suits your application.

After you create the appropriate options file, named OPTIONS_FILE.OPT,
you can compile and link the program with the following commands:

$ CC PROGRAM.C [RETURN]
$ LINK PROGRAM.OBJ, OPTIONS_FILE/OPT[RETURN]

1.4.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (that is, errors with severities of E or F), the linker
does not produce an image file.

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

* An object module has compilation errors.
This occurs when you try to link a module that produced warning or
error messages during compilation. You can usually link compiled
modules for which the compiler generated messages, but verify that the
modules will produce the output you expect.

* The input file has a file type other than OBJ and no file type was
specified on the command line.
If you do not specify a file type, the linker searches for a file that has
a file type of OBJ by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

* You tried to link a nonexistent module.
The linker signals an error message if you misspell a module name on
the cominand line or if the compilation contains fatal diagnostics.

¢ A reference to a symbol name remains unresolved.

1-30 Developing VAX C Programs at the DCL Command Level

v/

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition

ﬂ for a specified global symbol reference. In the following example, a
main program module, OCEAN.OBJ, calls the subprogram modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ, and the following LINK
command is executed:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker signals the following error
messages:

$LINK-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located, you
may be linking the program with the wrong VAX C RTL.

For a complete list of linker messages, see the VMS System Messages and
Recovery Procedures Reference Volume.

™ 1.5 Running a VAX C Program

After you link your program, you can use the DCL RUN command to execute
it. The RUN command has the following format:

RUN [/[NOJDEBUG] file-spec [[NOJDEBUG]

/[NO]DEBUG

Is an optional qualitier. Specify the /DEBUG qualifier to invoke the
debugger if the image was not linked with it. You cannot use /DEBUG on
images linked with the NOTRACEBACK qualifier. If the image was linked
with the /DEBUG qualifier and you do not want the debugger to prompt
you, use the /NODEBUG qualifier. The default action depends on whether
the file was linked with the /DEBUG qualifier.

file-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.EXE without invoking
the debugger:

$ RUN SAMPLE/NODEBUG

Developing VAX C Programs at the DCL Command Level 1-31

For more information on debugging programs, see Chapter 2.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error u
message. Run-time errors can also be issued by the operating system or by

certain utilities, such as the VMS Sort Utility (SORT).

When an error occurs during the execution of a program, the program is
terminated and the VMS condition handler displays one or more messages
on the currently defined SYSSERROR device.

A message is followed by a traceback. For each module in the image that
has traceback information, the condition handler lists the modules that were
active when the error occurred, showing the sequence in which the modules
were called.

For example, if an integer divide-by-zero condition occurs, a run-time
message like the following appears:

$SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=00000FC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

$TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A c 8 00000007 00000FC3)
B main 1408 000002F7 00000B17 ‘M 'i

The information in the traceback message is as follows:

module name
Is the name or names of an image module that was active when the error
occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on
the previous line. In this example, the modules are A and B; main called C.

routine name
Is the name of the function in the calling sequence.

line

Is the compiler-generated line number of the statement in the source
program where the error occurred, or at which the call or reference to the
next procedure was made. Line numbers in these messages match those in
the listing file.

1-32 Developing VAX C Programs at the DCL Command Level u

rel PC

Is the value of the PC (program counter). This value represents the location
in the program image at which the error occurred or at which a procedure
was called. The location is relative to the virtual memory address that

the linker assigned to the code program section of the module indicated by
module name.

abs PC
Is the value of the PC in absolute terms; that is, the actual address in
virtual memory representing the location at which the error occurred.

Traceback information is available at run time only for modules compiled
and linked with the traceback option in effect. The traceback option is
in effect by default for both the CC and LINK commands. You may use
the CC command qualifier NODEBUG and the LINK command qualifier
/NOTRACEBACK to exclude traceback information. However, traceback
information should be excluded only from thoroughly debugged program
modules.

Developing VAX C Programs at the DCL Command Level 1-33

Chapter 2
Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger (debugger) with
VAX C programs and provides the following information:

* An overview of the debugger (Section 2.1)

¢ Features of the debugger (Section 2.2)

¢ Information to get you started using the debugger (Section 2.3)

* Debugger support for VAX C (Section 2.4)

¢ Controlling symbolic references (Section 2.5)

¢ A sample terminal session that demonstrates using the debugger
(Section 2.6)

For complete reference information on the VMS Debugger, see the VMS
Debugger Manual. Online HELP is available during debugging sessions.

This chapter describes how to debug programs that run in only one process.
See Appendix E for more information on debugging programs that take
advantage of multiprocess programs.

2.1 Overview

A debugger is a tool that helps you locate run-time errors guickly. It is used
with a program that has been compiled and linked successfully, but does
not run correctly. For example, the output may be obviously wrong, or the
program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate the program’s execution interactively
so you can locate the point at which the program stopped working correctly.

Using the VMS Debugger 2-1

The VMS Debugger is a symbolic debugger, which means that you can refer
to program locations by the symbols (names) you used for those locations in
your program—the names of variables, routines, labels, and so on. You do
not need to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX C, as well as the following VAX-supported languages:

Ada
BASIC
BLISS
COBOL
DIBOL
FORTRAN
MACRO-32
Pascal
PL/I

RPG II
SCAN

If your program is written in more than one language, you can change from
one language to another during a debugging session. The current source
language determines the format used for entering and displaying data, as
well as other features that have language-specific settings {for evample,

comment characters, operators and operator precedence, and case sensitivity‘ ’

or insensitivity).

By entering debugger commands at your terminal, you can perform the
following operations:

e Start, stop, and resume the program’s execution

¢ Trace the execution path of the program

¢ Monitor selected locations, variables, or events

* Examine and modify the contents of variables, or force events to occur

¢ Test the effect of some program modifications without having to edit,
recompile, and relink the program

These techniques allow you to isolate an error in your code much faster than
you could without the debugger.

After you find the error in your program, you can edit the source code and
compile, link, and run the corrected version.

2-2 Using the VMS Debugger

o

2.2 Features of the Debugger

‘ " ’ The VMS Debugger provides the following features to help you debug your
programs:

Online HELP

Online HELP is available during a debugging session and contains
information on all the debugger commands and some selected topics.
Source Code Display

You can display lines of source code during a debugging session.
Screen Mode

You can capture and display various kinds of information in scrol-
lable windows, which can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and
diagnostic messages to displays.

Keypad Mode

When you invoke the debugger, several commonly used debugger
command sequences are assigned by default to the keys of the numeric
keypad (if you have a VT100, VT52, or LK201 keyboard).

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. (You first
specify the editor you want with the SET EDITOR debugger command).

Command Procedures

The debugger allows you to execute a command procedure to recreate a
debugging session, to continue a previous session, or to avoid typing the
same debugger commands many times during a debugging session.

Symbol Definitions

You can define your own symbols to represent lengthy commands,
address expressions, or values.

Initialization Files

You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key

definitions, symbol definitions, and so on. In addition, you may want to
have special initialization files for debugging specific programs.

Using the VMS Debugger 2-3

* Log Files
You can record the commands you enter during a debugging session and -
the debugger’s responses to those commands in a log file. You can use u
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

2.3 Getting Started with the Debugger

The following sections explain how to use the debugger with VAX C
programs. These sections focus on basic debugger functions to get you
started quickly. They also provide any debugger information that is specific
to VAX C. For more detailed information that is not specific to a particular
language, see the VMS Debugger Manual.

2.3.1 Compiling and Linking a Program to Prepare for Debugging

Before using the debugger, you must compile and link your program as
explained in this section. The following example shows how to compile
and link a VAX C program (consisting of a single compilation unit named
INVENTORY) prior to using the debugger:

$ CC/DEBUG/NOOPTIMIZE INVENTORY ™
$ LINK/DEBUG INVENTORY ‘ ,

The /DEBUG qualifier on the CC command line causes the compiler to
write the debug symbol records associated with INVENTORY into the
object module, INVENTORY.OBJ. These records allow you to use the
names of variables and other symbols declared in INVENTORY in debugger
commands. (If your program has several compilation units, you must
compile each unit that you want to debug with the /DEBUG qualifier.)

Use the /NOOPTIMIZE qualifier when you compile a program in preparation
for debugging. Otherwise, if the object code is optimized (to reduce the size
of the program and make it run faster), the contents of some program
locations may be inconsistent with what you might expect from viewing

the source code. (After debugging the program, recompile it without the
/NOOPTIMIZE qualifier.)

The /DEBUG qualifier on the LINK command line causes the linker to
include all symbol information that is contained in INVENTORY.OBJ in the
executable image. This qualifier also causes the VMS image activator to
start the debugger at run time. (If your program has several object modules,
you may need to specify the other modules in the LINK command.)

2-4 Using the VMS Debugger u

2.3.2 Starting and Terminating a Debugging Session

You can invoke the debugger in either the default or multiprocess config-
uration to debug programs that run in either one or several processes,
respectively. The configuration depends on the current value of the logical
name DBG$PROCESS. Thus, before invoking the debugger, enter the DCL
command SHOW LOGICAL DBG$PROCESS.

This chapter covers programs that run in only one process. For such
programs, DBG$PROCESS either should be undefined, as in the following
example, or should have the value DEFAULT:

$ SHOW LOGICAL DBGSPROCESS
$SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS
If DBG$PROCESS has the value MULTIPROCESS, enter the following

commands to debug programs that run in only one process (see Appendix E
for details on multiprocess debugging):

$ DEFINE DBGSPROCESS DEFAULT

You can now invoke the debugger by entering the DCL RUN command. The
following messages then appear on your screen:

$ RUN INVENTORY
VAX DEBUG Version 5.0

$DEBUG-I-INITIAL, language is C, module set to ’INVENTORY’
DBG>

The INITIAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The DBG> prompt indicates that you can now type debugger
commands. At this point, if you type the GO command, program execution
begins and continues until the program is forced to pause or stop (for
example, if the program prompts you for input, or an error occurs).

If you have a mixed-language program that includes an Ada package or a
program compiled with the /PARALLEL qualifier, the following message
will appear on your screen instead of the previous one when you invoke the
debugger:

$ RUN INVENTORY
VAX DEBUG Version 5.0

$DEBUG-I-INITIAL, language is C, module set to ’/INVENTORY'
$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

Using the VMS Debugger 2-5

The INITIAL message indicates that the debugging session is initialized

for a VAX C program and that the name of the main program unit is
INVENTORY. The NOTATMAIN message indicates that execution is
suspended before the start of the main program, so that you can execute
initialization code under debugger control. Typing the GO command places
you at the start of the main program. At that point, type the GO command
again to start program execution. Execution continues until it is forced to
pause or stop (for example, if the program prompts you for input, or an error
occurs).

To end a debugging session and return to DCL level, type EXIT or press
CTRL/Z:

DBG> EXIT
$

The following message indicates that your program has completed execution
successfully:

%$DEBUG-I--EXITSTATUS, is ’$%SYSTEM-S-NORMAL, normal successful completion’
DBG>

If you want to continue debugging after seeing this message, type EXIT and
start a new debugging session with the DCL RUN command.

2.3.3 Aborting Program Execution or Debugger Commands

If your program loops during a debugging session so that the debugger
prompt does not reappear, press CTRL/C. This interrupts program execution
and returns you to the prompt. For example:

DBG> GO

(infinite loop)

Interrupt
$DEBUG-W-ABORTED, command aborted by user request
DBG>

Do not press CTRL/Y from within a debugging session. Pressing CTRL/Y
aborts the session and returns you to the DCL prompt ($) rather than the
debugger prompt.

You can also press CTRL/C to abort the execution of a debugger command.
This is useful if a command takes a long time to complete. For example:

2-6 Using the VMS Debugger

DBG> EXAMINE/BYTE 1000:101000

1000: O

1004: 0

1008: 0

1012: O

1016: 0)

! Should have typed 1000:1010
$DEBUG-W-ABORTED, command aborted by user request
DBG>

If your program has a CTRL/C AST service routine enabled, use the
debugger command SET ABORT_KEY to assign the debugger’s abort
function to another CTRL-key sequence. For example:

DBG> SET ABORT_KEY = CTRL_P
DBG> GO

.

$DEBUG-W-ABORTED, command aborted by user request
DBG>

Note, however, that many CTRL-key sequences have VMS predefined
functions, and the SET ABORT_KEY command enables you to override
such definitions within the debugging session (see the VMS DCL Concepts
Manual). Some of the CTRL-key characters not used by the VMS operating
system are G, K, N, and P. ’

2.3.4 Entering Debugger Commands

You can enter debugger commands any time you see the debugger prompt
(DBG>). Type the command at the keyboard and press the RETURN key.
You can enter several commands on a line by separating the command
strings with semicolons (;). As with DCL commands, you can continue a
command string on a new line by ending the previous line with a hyphen
(-).

You can also use the numeric keypad to enter certain commands. Figure 2-1
shows the predefined key functions. You can also redefine key functions with
the DEFINE/KEY command.

Most keypad keys have three predefined functions—DEFAULT, GOLD, and
BLUE. (The PF1 key is known as the GOLD key; the PF4 key is known

as the BLUE key.) To obtain a key’s DEFAULT function, press the key. To
obtain its GOLD function, first press the PF1 (GOLD) key, and then the key.
To obtain its BLUE function, first press the PF4 (BLUE) key, and then the
key.

Using the VMS Debugger 2-7

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed within

each key’s outline, from top to bottom, respectively. For example, pressing

keypad key 0 enters the STEP command; pressing key PF1 and then key 0 -
enters the STEP/INTO command; pressing key PF4 and then key 0 enters U
the STEP/OVER command.

Type the command HELP KEYPAD to get help on the keypad key defini-
tions.

2-8 Using the VMS Debugger u

Figure 2-1: Debugger Keypad Key Functions

(Fi7 N\ Fis F19 F20 ™\ (s \
DEFAULT MOVE EXPAND CONTRACT “MOVE* MOVEUP
(SCROLL) (EXPAND +) (EXPAND -) MOVE/UP:999
MOVE/UPS
\ < / Y,
| (pF1 PF2 PR3 PFa w
|
| GOLD HELP DEFAULT [SET MODE SCREEN BLUE
GOLD HELP GOLD SET MODE NOSCR BLUE
GOLD HELP BLUE DISPIGENERATE BLUE
7 (s "\ -
MOVE/DOWN
MOVE/DOWN:999
| DISPSRCINST.ouT| scRoLuP DISPLAY next DISP next atFS :
| DISPINST,REGOUT] SCROLLTOP MOVE/DOWN:5
V SCROLUUP... DISP SRC, OUT
__ b=
ﬁ N 5 ﬁ N\ s
SCROLLAEFT EX/SOU .0%PC | SCROLLRIGHT GO *EXPAND" EXPANDIUP
SCROLLAEFT255 | SHOWCALLS | SCROLURIGHT:255 EXPAND/UP:999
SCROLLAEFT... SHOWCALLS3 | SCROLL/RIGHT... SELINST next EXPAND/UP:5
N J y, —
1 a \ 3 ENTER
EXAMINE SCROLLDOWN | SEL/SCROLL next
EXAM*(prev) SCROLL/BOTTOM | SEL/OUTPUT next
SCROLLDOWN... | SEL/SOURCE next
¢ I‘ \ _J .
) . ENTE
STEP RESET
STEPINTO RESET
L STEPOVER RESET
"CONTRACT" EXPAND/UP:-1
LK201 Keyboard: EXPAND/UP:-999
Press 2468 EXPAND/UP:-5
F17 SCROLL
F18 MOVE
F19 EXPAND
F20 CONTRACT
VT-100 Keyboard:
Type 2468
SET KEY/STATE=DEFAULT SCROLL
SET KEY/STATE=MOVE MOVE
SET KEY/STATE=EXPAND EXPAND
SET KEY/STATE=CONTRACT CONTRACT

ZK-4774-GE

) Using the VMS Debugger 2-9

2.3.5 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen mode U
and screen mode. By default, when you invoke the debugger, you are in

noscreen mode, but you may find that it is easier to view your source code in

screen mode. Both modes are briefly described in the following sections.

2.3.5.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence GOLD-PF3. See the sample debugging session in Section 2.6 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the
module whose code is currently executing:

DBG> TYPE 3
module MAIN
3: J = 4;
DBG>
The display of source lines is independent of program execution. To display
source code from a module other than the one whose code is currently
executing, use the TYPE command with a path name to specify the module.
For example, the following command displays lines 16 through 21 of module u ‘
TEST:

DBG> TYPE TEST\16:21

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when it
suspends execution at a breakpoint or watchpoint or after a STEP command,
or when a tracepoint is triggered (see Section 2.3.6).

If the debugger cannot locate source lines for display, it enters a diagnostic
message. Source lines may not be available for a variety of reasons. For

example:
* The module was compiled or linked without the /DEBUG command
qualifier.

* Execution is currently suspended within a system or shareable image
routine for which no source code is available.

2-10 Using the VMS Debugger u

* The module may need to be set with the SET MODULE command.
(Section 2.5.1 explains module setting).

¢ The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules). In this
case, use the SET SOURCE command to specify the new location.

2.3.5.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, the debugger
splits the screen into three displays named SRC, OUT, and PROMPT, by
default. The following example shows how your screen will appear in screen
mode:

--SRC: module SCOPE---source-scroll----------——--——-——————-—
* To be used with F2.C so as to demonstrate the
* control of modules and setting of scope.

main ()
{
static int i;
static double f£;
double function2();
i = 400;
-~ OUT -output----------------m e

|

1

A\
=
O WOWIo U s W
“e se es s es es ee ss e

- PROMPT -error-program-prompt-----—-----=---—--—-c—————————-
DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) where code execution is currently suspended.
An arrow in the left column points to the next line to be executed, which
corresponds to the current value of the program counter, PC (the PC is
a VAX register that contains the address of the next instruction to be
executed). The line numbers, which are assigned by the compiler, match
those in the listing file.

The OUT display, in the middle of the screen, captures the debugger’s output
in response to the commands that you enter.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG>), your input, debugger diagnostic messages, and program
output.

Using the VMS Debugger 2-11

The SRC and OUT displays can be scrolled to display information beyond
the window’s edge. Press keypad key 8 to scroll up and keypad key 2 to
scroll down. Use keypad key 3 to change the display to be scrolled (by
default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

In screen mode, if the debugger cannot locate source lines for the program
unit where execution is currently suspended, it tries to display source

lines in the next routine down on the call stack for which source lines are
available. If this is possible, the debugger also enters the following message:

$DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the call statement in
the calling routine.

2.3.6 Controlling and Monitoring Program Execution

This section discusses the following topics:

¢ Starting and resuming program execution with the GO command
* Stepping through the program’s code with the STEP command

¢ Determining where execution is currently suspended with the SHOW
CALLS command

* Suspending program execution with breakpoints
* Tracing program execution with tracepoints
* Monitoring changes in variables with watchpoints

2.3.6.1 Starting and Resuming Program Execution

There are two debugger commands for starting or resuming program ex-
ecution: GO and STEP. The GO command starts execution. The STEP
command executes a specified number of source lines or instructions.

The GO Command

The GO command starts program execution, which continues until forced to
stop. The GO command is used most often in conjunction with breakpoints,
tracepoints, and watchpoints (described in Sections 2.3.6.3, 2.3.6.4, and
2.3.6.5). If you set a breakpoint in the path of execution and then enter
the GO command, execution is suspended at that breakpoint. If you set a
tracepoint, the path of execution through that tracepoint is monitored. If

2-12 Using the VMS Debugger

you set a watchpoint, execution is suspended when the value of the watched
variable changes.

You can also use the GO command to test for an exception condition or an
infinite loop. If an exception condition that is not handled by your program
occurs, the debugger takes control and displays the DBG> prompt so that
you can enter commands. If you are using screen mode, the pointer in the
source display indicates where execution stopped. You can use the SHOW
CALLS command (see Section 2.3.6.2) to identify the currently active routine
calls (the call stack).

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt execution by
pressing CTRL/C (see Section 2.3.3). You can then look at the source display
and a SHOW CALLS display to find where execution is suspended.

The STEP Command

The debugger command STEP allows you to execute a specified number of
source lines or instructions, or to execute the program to the next instruction
of a particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In
the following example, the STEP command executes one line, reports the
action (“stepped to ... ”), and displays the line number (27) and source code
of the next line to be executed:

DBG> STEP

stepped to TEST\COUNT\S$LINE 27
27: x++

DBG>

Execution is now suspended at the first machine code instruction for line
27 of the module TEST; line 27 is in COUNT, a routine within the module
TEST. TEST\ COUNT\ %LINE 27 is a path name. The debugger uses path
names to refer to symbols. (You do not need to use a path name in referring
to a symbol, however, unless the symbol is not unique. If the symbol is not
unique, the debugger enters an error message. See Section 2.5.2 for more
information on resolving multiply defined symbols.)

The STEP command can execute a number of lines at a time. In the follow-
ing example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines—for example, comment lines.

Using the VMS Debugger 2-13

If a line contains more than one statement, the debugger executes all the
statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction U
rather than by line (SET STEP INSTRUCTION). Also, by default, the

debugger steps over called routines; execution is not suspended within a

called routine, but the routine is executed. Entering the SET STEP INTO
command causes the debugger to suspend execution within called routines,

as well as within the routine that is currently executing.

2.3.6.2 Determining Where Execution Is Suspended-SHOW CALLS

The debugger command SHOW CALLS is useful when you are unsure where
execution is suspended during a debugging session (for example, after a
CTRL/C interruption).

The SHOW CALLS command displays a traceback that lists the sequence
of calls leading to the routine where execution is currently suspended. For
each routine (beginning with the one where execution is suspended), the
debugger displays the following information:

¢ The name of the module that contains the routine

¢ The name of the routine

* The line number at which the call was made (or at which execution is
suspended, in the case of the current routine) Ga

* The corresponding PC addresses (the relative PC address from the start
of the routine, and the absolute PC address of the program)

For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC
*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY PROG 21 0000000D 00000653
DBG>

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

2-14 Using the VMS Debugger u

2.3.6.3 Suspending Program Execution

The debugger command SET BREAK lets you select breakpoints, which
are locations at which program execution is suspended. When you reach a
breakpoint, you can enter commands to check the call stack, examine the
current values of variables, and so on.

In the following example, the SET BREAK command sets a breakpoint on
the procedure COUNT. The GO command then starts execution. When the
procedure COUNT is encountered, execution is suspended. The debugger
reports that the breakpoint at COUNT has been reached (“break at ... ”),
displays the source line (54) where execution is suspended, and prompts you
for another command. At this breakpoint, you can step through the proce-
dure COUNT, using the STEP command, and use the debugger command
EXAMINE (see Section 2.3.7.1) to check on the current values of X and Y.

DBG> SET BREAK COUNT
DBG> GO

break at PROG2\COUNT
54: {
DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses, or byte offsets).
With high-level languages, you typically use routine names, labels, or line
numbers, possibly with path names, to ensure uniqueness.

Specify routine names and labels as they appear in the source code. Line
numbers may be derived from either a source code display or a listing file.
When specifying a line number, use the prefix ZLINE or the debugger will
interpret the line number as a memory location. For example, the following
command sets a breakpoint at line 41 of the module whose code is currently
executing; the debugger suspends execution when the PC value is at the
start of line 41:

DBG> SET BREAK 3%LINE 41

You can only set breakpoints on lines that result in machine code instruc-
tions. The debugger warns you if you try to do otherwise (for example, if
you try to set a breakpoint on a comment line). To set a breakpoint on a line
number in a module other than the one whose code is currently executing,
specify the module’s name in a path name as in the following example:

DBG> SET BREAK SCREEN_IO\SLINE 58

Using the VMS Debugger 2-15

You do not need to specify a particular program location, such as line 58

or COUNT, to set a breakpoint. You can set breakpoints on events, such -
as exceptions. You can also use the SET BREAK command with the /LINE u
qualifier (but no parameter) to break on every line, or with the /CALL

qualifier to break on every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause). For
example, the next command sets a breakpoint on the label loop3. The DO
(EXAMINE TEMP) clause causes the value of the variable TEMP to be
displayed whenever the breakpoint is triggered.

DBG> SET BREAK loop3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\ loop3

37: loop3: for(i = 1; i < 10; i ++)
COUNTER\ TEMP : 284.19
DBG>

To display the currently active breakpoints, enter the SHOW BREAK
command as follows:

DBG> SHOW BREAK u

Breakpoint at SCREEN_IO\SLINE 58
Breakpoint at COUNTER\ loop3
do (EXAMINE TEMP)

DBG>

If any portion of your program was written in Ada, two breakpoints that are
associated with Ada tasking exception events are automatically established
when you invoke the debugger. When you enter a SHOW BREAK command
under these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

To cancel a breakpoint, enter the CANCEL BREAK command, specifying the
program location or event exactly as you did when setting the breakpoint.
The CANCEL BREAK/ALL command cancels all breakpoints.

2-16 Using the VMS Debugger

~

2.3.6.4 Tracing Program Execution

The debugger command SET TRACE lets you select tracepoints, which are
locations for tracing the execution of your program without stopping its
execution. After setting a tracepoint, you can start execution with the GO
command and then monitor the path of execution, checking for unexpected
behavior. By setting a tracepoint on a routine, you can also monitor the
number of times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
enters a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger prompt is not displayed. For
example:

DBG> SET TRACE COUNT
DBG> GO

trace at PROG2\COUNT
54: {

When using the SET TRACE command, specify address expressions, quali-
fiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines
are traced within all called routines, and the currently executing routine.
If you do not want to trace through system routines or through routines

in shareable images, use the /NOSYSTEM or /NOSHARE qualifiers. For
example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and the display of
source code. This is useful when you want to use the SET TRACE command
to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\ CLEAR\ STATUS: 0

Using the VMS Debugger 2-17

2.3.6.5 Monitoring Changes in Variables

The debugger command SET WATCH lets you set watchpoints that will
be monitored continuously as your program executes. With high-level
languages, you typically set watchpoints on variables that are declared
in your program (you can set watchpoints on arbitrary program locations,
however). If the program modifies the value of a watched variable, the
debugger suspends execution and displays the old and new values.

To set a watchpoint on a variable, specify the variable’s name with the SET
WATCH command. For example, the following command sets a watchpoint
on the variable total:

DBG> SET WATCH total

Subsequently, every time the program modifies the value of total, the
watchpoint is triggered.

The following example shows the effect on program execution when your
program modifies the contents of a watched variable:

DBG> SET WATCH total
DBG> GO

watch of SCREEN_IO\total at SCREEN_IO\$LINE 13
13: total ++;
old value: 16
new value: 17
break at SCREEN_IO.3%LINE 14
14: pop(total);
DBG>

In this example, a watchpoint is set on the variable total, and the GO
command is entered to start execution. When the value of total changes,
execution is suspended. The debugger reports the event (“watch of . .. ”)
and identifies where total changed (line 13) and the associated source line.
The debugger then displays the old and new values and reports that exe-
cution has been suspended at the start of the next line (14). (The debugger
reports “break at ... ”, but this is not a breakpoint; it is the effect of the
watchpoint.) Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than at the start of a
source line, the debugger gives the line number plus the byte offset from the
start of the line.

2-18 Using the VMS Debugger

Note that this general technique for setting watchpoints applies to “static”
variables. A static variable is associated with the same virtual memory
location throughout program execution. In VAX C, variables of the following
storage class are statically allocated: static, globaldef, globalref, and
extern.

A variable that is allocated on the stack or in a register (a “nonstatic”
variable) exists only when its defining routine is active (on the call stack).
In VAX C nonstatic variables include variables of the storage classes auto
and register. If you try to set a watchpoint on a nonstatic variable when its
defining routine is not active, the debugger enters a warning as follows:

DBG> SET WATCH Y
$DEBUG-W-SYMNOTACT, nonstatic variable 'Y’ is not active

A convenient technique for setting a watchpoint on a nonstatic variable

is to set a breakpoint on the defining routine, and to specify a DO clause

to set the watchpoint whenever execution reaches the breakpoint. In the
following example, a watchpoint is set on the nonstatic variable Y in routine
COUNTER:

DBG> SET BREAK COUNTER DO (SET WATCH Y)
DBG> GO

break at routine MOD4\ COUNTER

$DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOW WATCH

watchpoint of MOD4\COUNTER\Y [tracing every instruction]

DBG>

The debugger monitors nonstatic watchpoints by tracing every instruc-
tion. Because this slows execution speed compared to monitoring static
watchpoints, the debugger lets you know when it is monitoring nonstatic
watchpoints.

When execution eventually returns to the calling routine, the nonstatic
variable is no longer active, so the debugger automatically cancels the
watchpoint and enters a message to that effect.

2.3.7 Examining and Manipulating Data

The following sections explain how to use the debugger commands
EXAMINE, DEPOSIT, and EVALUATE to display and modify the con-
tents of variables and to evaluate expressions. It also notes restrictions on
the use of these commands with VAX C programs.

Using the VMS Debugger 2-19

Before you can examine or deposit into a nonstatic variable (see
Section 2.3.6.5), its defining routine must be active (on the call stack).

2.3.7.1 Displaying the Values of Variables

To display the current value of a variable, use the debugger command
EXAMINE. The EXAMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command:

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH,

SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers:

DBG> EXAMINE INTEGER_ARRAY
PROG2\ INTEGER_ARRAY

[0,0]:
[0,1]):
[012]:
[1,0]:
[1,1]:
[1,2]):
DBG>

Examine element 4 of a one-dimensional array of characters:

27
31
12
15
22
18

AREA

DBG> EXAMINE/ASCII CHAR_ARRAY[4]

PROG2\ CHAR_ARRAY[4]: 'm’

DBG>

You can use the EXAMINE command with any kind of address expression,
not just a variable name, to display the contents of a program location. The
debugger associates certain default data types with untyped locations. You
can override the defaults for typed and untyped locations if you want the
data to be interpreted and displayed in some other data format.

See Section 2.3.7.3 for a comparison of the EXAMINE and EVALUATE

commands.

2-20 Using the VMS Debugger

2.3.7.2 Changing the Values of Variables

To change the value of a variable, use the debugger command DEPOSIT.
The DEPOSIT command has the following form:

DEPOSIT variable-name = value
The DEPOSIT command is like an assignment statement in VAX C.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which can
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY[12] = 'K’

As with the EXAMINE command, the DEPOSIT command lets you specify
any kind of address expression, not just a variable name. You can override

the defaults for typed and untyped locations if you want to interpret the
data in some other data format.

2.3.7.3 Evaluating Expressions

To evaluate a language expression, use the debugger command EVALUATE.
The EVALUATE command has the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the cur-
rently set language. In the following example, the value 45 is assigned to
the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52

DBG>

Not all VAX C operators can be supported by the debugger, since some can
produce side effects that adversely affect debugging. Table 2-1 lists the VAX
C operators that are supported in language expressions. Table 2-2 lists the
VAX C operators that are not supported by the debugger.

Using the VMS Debugger 2-21

Table 2-1: Supported Operators

Operator(s) Category u

- Unary arithmetic

+ - * / % Binary arithmetic

== l= > < >= <= Relational

&& Il ! Logical

& | A7~ Bitwise logical

<< >> Shift

sizeof Compute the size of a scalar
& Address of

* Dereference

Table 2-2: Unsupported Operators

Operator(s) Category

++ == Pre/post increment/decrement

= 4= —= F= /= Assignment

%= = &= A=

IS Conditional u
(type) Cast

The following example shows the similarity between the EVALUATE and
EXAMINE commands. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

The following example shows an important difference between the
EVALUATE and EXAMINE commands:

DBG> EVALUATE WIDTH + 7
52

DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,

O

2-22 Using the VMS Debugger

WIDTH + 7 is interpreted as an address expression: 7 bytes are added to
the address of WIDTH, and whatever value is in the resulting address is
ﬂ reported (in this instance, 131584).

2.4 Notes on Debugger Support for VAX C

In general, the debugger supports the data types and operators of VAX C
and the other debugger-supported languages. However, there are certain
language-specific limitations or other differences. (For information on the
supported data types and operators of any of the languages, type HELP
LANGUAGE at the DBG> prompt.)

The following sections present VAX C specific debugging examples. These
examples show you how to work with VAX C data types and expressions.

2.4.1 Debugger Command-Line Options

VAX C provides a set of debugger options that you can specify to the
/DEBUG qualifier to the CC command. These options alter the types of
information that the compiler places in the object module for use by the
VMS Debugger. The debugger options include using traceback records,
using the symbol table, and enabling the debugger to step into inline

ﬂ functions. For information about these options, see the description of the CC
command-line qualifiers in Section 1.3.2.

2.4.2 Accessing Scalar Variables

The EXAMINE command displays the scalar variables of any VAX C data
type. You reference scalar variables in the case that you declare them, using
the VAX C syntax for such references.

Example 2-1 presents the VAX C program SCALARS.C to use in the next
sample debugging session.

Using the VMS Debugger 2-23

Example 2-1: Debugging Sample Program SCALARS.C

/* SCALARS.C This program defines a large number of * u
* variables to demonstrate the effect *
* of the various STEP debugger commands. */
main ()
{
static float light_speed; /* Define the variables */

static double speed_power;

static unsigned ui;

static long 1li;

static char ch;

static enum primary { red, yellow, blue } color;
static int *ptr;

light_speed = 3.0el0;

speed_power 3.1234567890123456789%e10;
ui = -438394;

1i = 790374270;

ch = 'A’;
color = blue;
ptr = &li;

The following debugging session executes SCALARS.EXE and shows the
commands used to access variables of scalar data type:

DBG> show symbol/type color
data SCALARS\main\color
enumeration type (primary, 3 elements), size: 4 bytes

This command uses the debugger command SHOW SYMBOL/TYPE to
display the data type of one variable.

The next commands in this sample debugging session are as follows:

DBG> set break %line 22
DBG> 9°
break at SCALARS\main\$%LINE 22

22: 1}
The commands in the example set a breakpoint before the end of the pro-
gram and enter a GO command to execute the program up to the breakpoint.
These commands allow the variables declared in main to be initialized by
the program.

The next command in this sample debugging session is as follows:

2-24 Using the VMS Debugger

DBG> examine 1li, ui, light_speed, speed power, ch, color, *ptr

SCALARS\main\1li: 790374270
SCALARS\main\ui: 4294528902

SCALARS\main\ light_speed: 3.0000001E+10
SCALARS\main\ speed_power: 31234567890.12346
SCALARS\main\ch: 65

SCALARS\main\color: blue

*SCALARS\main\ptr: 790374270

The EXAMINE command directs the debugger to display the contents of the
variables listed. The char variables are interpreted by the debugger as byte
integers, not ASCII characters.

The next command in this sample debugging session is as follows:

DBG> examine/ascii ch
SCALARS\main\ch: A"

To display the contents of ch as a character, you must use the /ASCII
qualifier.

The next command in this sample debugging session is as follows:

DBG> deposit/ascii ch = 'z’
DBG> examine/ascii ch
SCALARS\main\ch: "z"

DBG>
The DEPOSIT command loads the value 'z’ in the variable ch; the
EXAMINE command shows that ‘'z’ has replaced the previous contents
of the variable ch. Again, use the /ASCII qualifier to translate the byte
integer into its ASCII equivalent.

2.4.3 Accessing Arrays

With the EXAMINE command, you can look at the values in arrays using
VAX C syntax for array references. You can examine an entire array by
giving the array identifier. You can examine individual elements of the
array using the array operators ([]). Array elements can have any data
type. Remember the differences between pointer arithmetic in VAX C and
pointer arithmetic in other languages (see Chapter 8 for more information).
Consider the following declaration:

int *p;

Expression p+1 is equivalent to the address of p[1]; it increments the
array by the length specified by 1 multiplied by the length of the data type
int. Expression p+1 does not add value 1 to the value of variable p. The
following debugger commands are equivalent:

Using the VMS Debugger 2-25

EVALUATE *(p+1)
EVALUATE p[1]

Example 2-2 shows the VAX C program ARRAY.C to use in the next sample u
debugging session.

Example 2-2: Debugging Sample Program ARRAY.C

/* ARRAY.C This program increments an array to *
* demonstrate the access of arrays in VAX C. */

main ()
{
int i;
static int arr[10];
for (i=0; i<10; i++)
arr(il=i;

The following debugging session executes ARRAY.EXE and shows the com-
mands used to access variable arrays:

DBG> set br %line 10
DBG> go
break at ARRAY\main\%LINE 10 _

10: } ‘ ’

The commands in Example 2-2 set a breakpoint at the last line in the
program and execute the program to that point.

The next command in this sample debugging session is as follows:

DBG> examine arr
ARRAY\main\ arr

[0]:

[1]:

[2]:

[3]:

[4]1:

[5]):

[6]:

[7]:

[8]:

[9]:

WooJowuds W KF O

By specifying the variable identifier, you can look at the entire array.

2-26 Using the VMS Debugger , u

The next command in this sample debugging session is as follows:

DBG> examine arr[5]

ARRAY\main\arr[5]: 5
DBG> examine

ARRAY\main\arr[6]: 6
DBG> examine
ARRAY\main\arr([5]: 5

Individual elements of the array are examined when you use the bracket
operator to specify the subscript of the element. Using the debugger’s
address reference operator (specified by pressing RETURN) in an EXAMINE
command returns the next element of the array. Using the up-arrow address
reference operator (”) returns the previous member of the array.

2.4.4 Accessing Character Strings

Character strings are implemented in VAX C as null-terminated ASCII
strings (ASCIIZ strings). To examine and deposit data in an entire string,
use the /ASCIIZ qualifier (abbreviated /AZ) so that the debugger can
interpret the end of the string properly. You can examine and deposit
individual characters in the string using the VAX C array subscripting
operators ([]). When you examine and deposit individual characters, use
the /ASCII qualifier.

Example 2-3 presents the VAX C program STRING.C to use in the next
sample debugging session.

Example 2-3: Debugging Sample Program STRING.C

/* STRING.C This program establishes a string to *
* demonstrate the access of strings in VAX C. */
main ()
{
static char *s = "vaxie";

static char **t = &s;

Using the VMS Debugger 2-27

The following debugging session executes STRING.EXE and shows the
commands used to manipulate VAX C strings:

DBG> step u

stepped to STRING\main\$%LINE 8
8: 1}
DBG> examine/az *s
*STRING\main\s: "vaxie"
DBG> examine/az **t
**STRING\main\t:
The EXAMINE/AZ command displays the contents of the character string

pointed to by *s and **t.
The next command in this sample debugging session is as follows:

DBG> deposit/az *s = "VAX C"

DBG> examine/az *s, **t

*STRING\main\s: "VAX C"

**STRING\main\t: "VAX C"

The DEPOSIT/AZ command deposits a new ASCIIZ string in the variable
pointed to by *s. The EXAMINE/AZ command displays the new contents of
the string.

The next command in this sample debugging session is as follows:

DBG> examine/ascii s(3]

[3] : " "

DBG> deposit/ascii s[3] = "-"

DBG> examine/az *s, **t u
*STRING\main\s: "VAX-C"

**STRING\main\t: "VAX-C"

Using array subscripting, you can examine individual characters in the
string and deposit new ASCII values at specific locations within the string.
When accessing individual members of a string, use the /ASCII qualifier. A
subsequent EXAMINE/AZ command shows the entire string containing the
deposited value.

2.4.5 Accessing Structures and Unions

You can examine structures in their entirety or on a member-by-member
basis. You can deposit data into structures one member at a time.

You can make references to members of a structure or union by using the
usual VAX C syntax for such references. That is, if variable p is a pointer
to a structure, you can reference member y of that structure with the
expression p —>y. If variable x refers to the base of the storage allocated
for a structure, you can refer to a member of that structure with the x.y
expression.

2-28 Using the VMS Debugger U

To reference members of a structure or union, the debugger follows the VAX
C type-checking rules, which follow. For example, in the case of x.y, y need
not be a member of x; it is treated as an offset with a type. When such

a reference is ambiguous—when there is more than one structure with a
member y—the debugger attempts to resolve the reference in the following
manner. The same rules for resolving the ambiguity of a reference to a
member of a structure or union apply to both x.y and p—>y.

¢ If only one of the members, y, belongs in the structure or union, x, that
is the one that is referenced.

e If only one of the members, y, is in the same scope as x, then that is the
one that is referenced.

You can always give a path name with the reference to x to narrow the scope
that is used and to resolve the ambiguity. The same path name is used to
look up both x and y.

Example 2—4 shows the VAX C program STRUCT.C to use in the next
sample debugging session.

The following debugging session executes STRUCT.EXE and shows the
commands used to access structures and unions:

DBG> show symbol * in main

routine STRUCT\main

data STRUCT\main\uv

record component STRUCT\main\<generated name_0002>.im
record component STRUCT\main\<generated_name_0002>.fm
record component STRUCT\main\<generated name_ 0002>.cm
type STRUCT\main\<generated_name_0002>

data STRUCT\main\p

data STRUCT\main\sv

record component STRUCT\main\<generated name_0001>.im
record component STRUCT\main\<generated name_0001>.fm
record component STRUCT\main\<generated name_ 0001>.cm
record component STRUCT\main\<generated name_0001>.bf
type STRUCT\main\<generated name_0001>

The SHOW SYMBOL command shows the variables contained in the user-
defined function main.

The next commands in this sample debugging session are as follows:
DBG> set break $line 29
DBG> go

break at STRUCT\main\$LINE 29
29: uv.im = -24;

Using the VMS Debugger 2-29

Example 2-4: Debugging Sample Program STRUCT.C

/* STRUCT.C This program defines a structure and union *
* to demonstrate the access of structures and *
* unions in VAX C. */

main ()

{
static struct

{
int im;
float fm;
char cm;
unsigned bf : 3;

} sv, *p;

union

int im;

float fm;

char cm;
}ouv;

-24;

3.0el10;

Ial;

7; /* Binary: 111 */

(5]
<
Hh
3
|

Setting a breakpoint at line 29 and entering a GO command allows the
program to initialize the variables declared in the structure sv.

The next command in this sample debugging session is as follows:

DBG> examine sv
STRUCT\main\ sv
im: -24
fm: 3.0000001E+10
cm: 97
bf: 7

An EXAMINE command that gives the name of the structure causes the
debugger to display all members of the structure. Note that sv.cm has the
char data type, which is interpreted by the debugger as a byte integer. The
debugger also displays the value of bit fields in decimal.

2-30 Using the VMS Debugger

The next commands in this sample debugging session are as follows:

DBG> examine/ascii sv.cm

STRUCT\main\sv.cm: "a"
DBG> examine/binary sv.bf
STRUCT\main\sv.bf: 111

To display the ASCII representation of a char data type, you must use the
/ASCII qualifier. To display bit fields in their binary representation, you
must use the /BINARY qualifier.

The next commands in this sample debugging session are as follows:

DBG> deposit sv.im = 99
DBG> deposit sv.fm = 3.14
DBG> deposit/ascii sv.cm = 'z’
DBG> deposit sv.bf = %BIN 010
DBG> examine sv
STRUCT\main\ sv

im: 99

fm: 3.140000

cm: 122

bf: 2

You deposit data into a structure one member at a time. To deposit data into
a member of type char, you can use the /ASCII qualifier and enclose the
character in either single or double quotes. To deposit a new binary value in
a bit field, use the %BIN keyword.

The next commands in this sample debugging session are as follows:

DBG> examine *p
*STRUCT\main\p

im: 99

fm: 3.140000

cm: 122

bf: 2
DBG> examine/binary p ->bf
STRUCT\main\p -->bf: 010

Members of structures (and unions) can also be accessed by pointer, as
shown in *p and p ~>bf in the previous example.

The next commands in this sample debugging session are as follows:

DBG> step
stepped to STRUCT\main\$%LINE 30
30: uv.fm = 3.0el0;
DBG> examine uv
STRUCT\main\uv
im: -24
fm: -1.5485505E+38
cm: -24

Using the VMS Debugger 2-31

A union contains only one member at a time, so the value for uv.im is the
only valid value returned by the EXAMINE command; the other values are

meaningless. ‘ ’
The next commands in this sample debugging session are as follows:
DBG> step
stepped to STRUCT\main\$LINE 31
31: uv.cm = ‘a’;
DBG> examine uv.fm
STRUCT\main\uv.fm: 3.0000001E+10
DBG> step
stepped to STRUCT\main\$%LINE 32
33: }
DBG> examine/ascii uv.cm
STRUCT\main\uv.cm: "a"

This series of STEP and EXAMINE commands shows the content of the
union as the different members are assigned values.

Example 2-5 shows the VAX C program ARSTRUCT.C to use in the next
sample debugging session.

Example 2-5: Debugging Sample Program ARSTRUCT.C

/* ARSTRUCT.C This program contains a structure definition *
* and a for loop so as to demonstrate the *
* debugger’s support for VAX C operators. */

main () U
{

int count, 1i = 1;
char c¢ = 'A’;

struct
{
int digit;
char alpha;
} tbl[27], *p;

for (count = 0; count <= 26; count++)
{

i++;

c++;

tbl[count].digit
tbl[count] .alpha

2-32 Using the VMS Debugger u

The following debugging session executes ARSTRUCT.EXE and shows the
use of VAX C expressions on the debugger command line:

ﬂ DBG> set Dbreak %line 20 when (count == 2)
DBG> go
break at ARSTRUCT\main\&%LINE 20
20: }

Relational operators can be used in expressions (such as count == 2 in the
preceding example) in a WHEN clause to set a conditional breakpoint.

The next commands in this sample debugging session are as follows:

DBG> evaluate &tbl
2146736881

DBG> 2:valuate/address tbl
2146736881

The first EVALUATE command uses VAX C syntax to refer to the address
of a variable. It is equivalent to the second command, which uses the
/ADDRESS qualifier to obtain the address of the variable. The addresses of
these variables may not be the same every time you execute the program if
you relink the program.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl([2].digit
3

ﬂ Individual members of an aggregate can be evaluated; the debugger returns
A the value of the member.

The next commands in this sample debugging session are as follows:

DBG> evaluate tbl +4

$DEBUG-I-SCALEADD, pointer addition: scale factor of 5 applied to
right argument

2146736901

DBG> examine 2146736901

ARSTRUCT\main\tbl(4] .digit: 5

When you perform pointer arithmetic, the debugger displays a message
indicating the scale factor that has been applied. It then returns the address
resulting from the arithmetic operation. A subsequent EXAMINE command
at that address returns the value of the variable.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[4].digit * 2
10

The EVALUATE command can perform arithmetic operations on program
variables.

!’ ' . Using the VMS Debugger 2-33

The next command in this sample debugging session is as follows:

DBG> evaluate 7 % 3
1

The EVALUATE command can also perform arithmetic calculations that
may or may not be related to your program. In effect, it can be used as a
calculator that uses VAX C syntax for arithmetic expressions.

The next command in this sample debugging session is as follows:

DBG> evaluate count++
$DEBUG-W-SIDEFFECT, operators with side effects not supported (++, --)

The debugger enters a message when you use an unsupported operator.

2.5 Controlling Symbol References

In most cases, the way the debugger handles symbols (variable names, and
so on) is transparent to you. However, the following two areas may require
action on your part:

¢ Module setting
e Multiply defined symbols

The following sections describe these two areas. -

2.5.1 Module Setting

To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, antici-
pating what symbols you might want to reference during execution. The
loading process is called module setting, because all of the symbol records of
a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer address
is set. As your program executes, whenever the debugger interrupts
execution, it sets the module where execution is suspended. This lets you
reference the symbols that should be visible at that location.

4
2-34 Using the VMS Debugger u

If you try to reference a symbol in a module that has not been set, the
debugger enters a warning. For example:

‘ ’ DBG> EXAMINE K

$DEBUG-W-NOSYMBOL, symbol ‘K’ is not in symbol table
DBG>

You must then use the debugger command SET MODULE to manually set
the module containing that symbol as follows:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The debugger command SHOW MODULE lists the modules of your program
and identifies the modules that have been set.

The dynamic module setting may slow down the debugger as more modules
are set. If performance becomes a problem, use the debugger command
CANCEL MODULE to reduce the number of set modules, or disable
dynamic module setting by entering the debugger command SET MODE
NODYNAMIC. (The SET MODE DYNAMIC command enables dynamic
module setting.)

2.5.2 Resolving Multiply Defined Symbols
m The debugger finds the symbols that you reference in commands according
to the following conventions. First, it looks in the PC scope (also known

as scope 0), according to the scope and visibility rules of the currently set
language. This means that the debugger first searches for a symbol within
the routine surrounding the current PC value (where execution is currently
suspended). If the symbol is not found, the debugger searches the nesting
program unit, then its nesting unit, and so on. (The precise order of search
depends on the current language and guarantees that the proper declaration
of a multiply defined symbol is selected.)

The debugger allows you to reference symbols throughout your program,
not just those that are visible at the current PC value, so that you can

set breakpoints in arbitrary areas, examine arbitrary variables, and so on.
Therefore, if the symbol is not visible in the PC scope, the debugger also
searches the scope of the calling routine (if any), then its caller, and so on,
until the symbol is found. Symbolically, this search list is denoted 0, 1,

2, ..., n, where scope 0 is the PC scope and n is the number of calls in the
call stack. Within each scope, the debugger uses the visibility rules of the
currently set language to locate symbols.

™ Using the VMS Debugger 2-35

If the debugger cannot resolve a symbol ambiguity, it enters a warning. For
example:

DBG> EXAMINE Y
$DEBUG-W-NOUNIQUE, symbol ‘Y’ is not unique
DBG>

You can use a path-name prefix to uniquely specify a declaration of the given
symbol. First, use the SHOW SYMBOL command to identify all path names
associated with the given symbol; then use the desired path name when
referencing the symbol. For example:

DBG> SHOW SYMBOL Y

data MOD7\ROUT3\BLOCKI1\Y
data MOD4\ROUT2\Y

DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12

DBG>

If you need to refer to a particular declaration of Y repeatedly, use the

SET SCOPE command to establish a new default scope for symbol lookup.
References to Y without a path-name prefix will then specify the declaration
of Y that is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12

DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the debugger command CANCEL
SCOPE.

2.6 Sample Debugging Session

Example 2-6 shows the VAX C program POWER.C, which is to be used in a
debugging session. To learn about a larger number of debugger commands,
reexecute this program and use a different set of debugger commands.

2-36 Using the VMS Debugger

Example 2-6: Debugging Sample Program POWER.C

/* POWER.C This program contains two functions: "main" and *
* "power." The main function passes a number to *
* "power", which returns that number raised to the
* second power. x/

main ()

{
static int i, j;
int power():;

2;

power (i) ;

b]
}
power (j)
int j;
{

return (j * j);

}

Example 2-7 shows some of the debugger commands used to evaluate the
execution of POWER.C.

Example 2-7: A Sample Debugging Session

© CC/DEBUG/OPTIMIZE=NODISJOINT POWER

$ LINK/DEBUG POWER
$ RUN POWER

VAX DEBUG Version 5.n

(continued on next page)

Using the VMS Debugger 2-37

Example 2-7 (Cont.): A Sample Debugging Session

$DEBUG-I-INITIAL, language is C, module set to ’'POWER’
DBG> set break SLINE 13
DBG> go
break at POWER\main\S$LINE 13
13: j = power(i);
DBG> step/into
stepped to routine POWER\power
16: int j;
DBG> step
stepped to POWER\power\%LINE 18
18: return (j * j)
DBG> examine J
$DEBUG-W-NOSYMBOL, symbol ‘J’ is not in the symbol table
DBG> examine j

® rower\ power\ j:

0000600

DBG> step

stepped to POWER\main\S$LINE 13+9
13: j = power(i);

DBG> step

stepped to POWER\main\S%LINE 14
14: }

DBG> examine j
@ roweR\main\j: 4
DBG> go
$DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful
completion’

® oec> exit
$

Key to Example 2-7:

© To execute a program with the debugger, you must compile and link
the program with the /DEBUG qualifier. The VAX C compiler compiles
the source file with the /DEBUG=TRACEBACK qualifier by default.
However, unless you compile your program with the /DEBUG qualifier,
you cannot access all of the program’s variables. Use the /NOOPTIMIZE
qualifier to turn off compiler optimization that may interfere with debug-
ging. If you desire a minimal amount of optimization that will not in-
terfere with your debugging session, use the /OPTIMIZE=NODISJOINT
qualifier.

@® The VMS Image Activator passes control to the debugger on execution
of the image. The debugger tells you the current programming language
and the name of the object module that contains the main function, or
the first function to be executed. Remember that the linker converts the
names of object modules to uppercase letters.

2-38 Using the VMS Debugger

®0e

® 06

You enter debugger commands at the following prompt:
DBG>

The debugger command SET BREAK defines a point in the program
where the debugger must suspend execution. In this example, the SET
BREAK command tells the debugger to stop execution before execution
of line number 13. After the debugger processes the SET BREAK
command, it responds with the debugger prompt.

The debugger command GO begins execution of the image.

The debugger tells you that it suspended execution of the image at
function main in module power. The debugger specifies sections of the
program by telling you the object module it is working in, delimited by
a backslash character (\), followed by the name of the VAX C function.
The linker converted the name of the object module to uppercase letters
but the debugger specifies the name of the function exactly as it is found
in the source text.

The debugger displays the line of source text where it suspended ex-
ecution. Refer to the source code listing in Example 2-6 to follow the
debugger as it steps through the lines of the program in this interactive
debugging example.

The debugger command STEP/INTO executes the first executable line
in a function. The command STEP tells the debugger to execute the
next line of code, but if the next line of code is a function call, the
debugger will not step through the function code unless you use the
/INTO qualifier. Use STEP/INTO to step through a user-defined or VAX
C RTL function.

When stepping through a function, the debugger specifies line numbers
by listing the object module, the VAX C function, a percent sign (%), the
identifier LINE, and the line number in the source text. Once again, the
debugger delimits all items in the specification with backslash characters
(\).

The debugger command EXAMINE displays the contents of a variable.

The debugger does not recognize the variable, J, as existing in the scope
of the current module.

The debugger supports the case sensitivity of VAX C variables; variable
j exists but variable J does not. Refer to Example 2-6 to review the
program variables.

The debugger responds to the EXAMINE command and tells you that
the value of the variable is 2.

Using the VMS Debugger 2-39

@® The value of variable j in function main is different from the separate
variable j in function power. Function power executes properly; it
returns the number 2 raised to the second power (4). ‘))

® Upon completion of execution of the image, the debugger states the
status of the execution. In this example, execution is successful.

@ To enter the DCL RUN command to execute the program again, or to
do other work outside of the debugger environment, use the debugger
command EXIT to end the debugging session and to go back to DCL.

2-40 Using the VMS Debugger u

Chapter 3
VAX C Support for Parallel Processing

This chapter describes how to create and to modify programs that run using
the VAX C parallel-processing features. This chapter discusses the following
topics:

* Overview of parallel processing (Section 3.1)

* Preparing programs for parallel processing (Section 3.2)

* Conditions that inhibit parallel processing (Section 3.3)

* Data-dependency analysis (Section 3.4)

* Rewriting code to resolve dependencies (Section 3.5)

e Storage classes and parallel processing (Section 3.6)

¢ Decomposition pragmas (Section 3.7)

* Memory-management functions (Section 3.8)

¢ Tuning issues related to parallel processing (Section 3.9)

See Appendix E for information on debugging programs that use parallel
processing.

3.1 Overview of Parallel Processing

Parallel processing involves executing segments of a program concurrently
on two or more processors in a multiprocessing system (for example, a
VAX 8300 or a VAX 8800; do not confuse these systems with a VAX cluster
system). Running programs in parallel on multiple processors, instead

of serially on a single processor, can reduce the amount of elapsed time
required to run the program. Running programs in parallel, however,
consumes more system resources (CPU time and memory) than running
serially. Trading off reduced system throughput for reduced elapsed time

VAX C Support for Parallel Processing 3-1

I

is a decision that depends on the application being executed and the
environment in which it is being executed.

Not all programs are suitable for parallel execution; some programs are
inherently sequential. To achieve maximum benefit, only compute-intensive
code sequences should be considered for running in parallel. For example,
program segments dealing with arithmetic operations performed on arrays
(matrix arithmetic) are generally good candidates for parallel processing.
You can identify other compute-intensive code segments using the VAX
Performance and Coverage Analyzer (PCA) software product, which can be
purchased separately. After isolating code sequences that are candidates for
parallel processing, you can then analyze the sequences in detail and make
any coding changes that are necessary.

VAX C supports the parallel processing of for and while loops. (VAX C
does not support the parallel processing of do loops.) Processing a loop in
parallel means that iterations in the loop are divided among processors and
are executed concurrently.

Decomposition is the process by which VAX C divides each parallel loop
into groups of loop iterations that can be executed concurrently. Figure 3—1
shows parallel and sequential execution of loop iterations over a period of
time.

NOTE

Throughout this chapter, loops to be processed in parallel are
referred to as parallel loops.

3-2 VAX C Support for Parallel Processing

\/

W

.

Figure 3-1:

Sequential and Parallel Loop Execution Across Time

Time

Multiple
Processes Sequential l
|
1] | |
|11 Time |
|1 |
1]
lterations lterations

ZK-6740-GE

When you use the /PARALLEL qualifier on the CC command line to compile
a program for parallel processing, a VMS Run-Time Library routine sets up
the parallel-processing environment. VAX C then tries to decompose each
for and while loop. After compilation, each successfully decomposed loop
consists of the following machine code segments:

* Code segment 1 determines the total amount of work to be performed in
the loop and sets up global data structures.

* Code segment 2 divides the work into chunks and allocates them to the
various processes.

¢ Code segment 3 is the body of the loop.

* Code segment 4 resets the environment from parallel to sequential
processing at the end of each parallel loop.

Each decomposed loop executes in two or more subprocesses, with each sub-
process executing a segment of the iterations in the loop. The subprocesses
are created during the initialization phase of the program. They are not
activated, however, until a parallel for or a parallel while loop is encoun-
tered. When they complete the execution of their portion of the iterations in
a parallel loop, they are placed in a wait state until the next parallel loop is
encountered.

VAX C Support for Parallel Processing 3-3

VAX C does not decompose all for and while loops. By default, VAX C

tries to decompose all for loops and tries to decompose while loops whose
iteration mechanism and number of iterations indicate that the loop is a .
good candidate for parallel processing. If in a for or while loop VAX C u
discovers a possible data dependency, the compiler does not decompose the

loop; the compiler executes each iteration of the loop sequentially.

A data dependency is a situation that occurs when two or more iterations of
the loop depend on a single piece of data. A loop that is a good candidate for
parallel processing executes properly and predictably when groups of loop
iterations are executed, possibly out of sequence, on separate processors.

If a loop iteration depends on the data from a previous or subsequent loop
iteration, then the results of the program execution after parallel processing
are erroneous or unpredictable.

The following types of data dependencies exist in many parallel-processing
applications, although VAX C only checks for loop-carried dependencies:

¢ Loop-carried dependency—A data dependency that occurs when a
memory location is both accessed and modified within the same loop.
(VAX C checks programs compiled with /PARALLEL for loop-carried
dependencies.)
* Loop-independent dependency—A data dependency that occurs due
to the relative positions of two statements in a program. (VAX C does
not check programs compiled with /PARALLEL for loop-independent :
dependencies.) u
¢ Control dependency—A data dependency introduced by the flow of
control in a program. (VAX C does not check programs compiled with
/PARALLEL for control dependencies.)

VAX C uses algorithms to determine whether data dependencies exist in a
loop. VAX C examines loops and their iterations for the following:

* Presence of pointer variables (Section 3.4.3)

* Presence of function calls (Section 3.4.2)

¢ Existence of two or more iterations making references to the same array
element (Section 3.4.1)

* Assigning scalar values and using those values (Section 3.4.4)

VAX C provides mechanisms to use parallel processing and also to suppress
the default actions of the compiler during parallel processing. Table 3-1
presents a summary of the VAX C parallel-processing support mechanisms.

3-4 VAX C Support for Parallel Processing v

Table 3-1: VAX C Parallel-Processing Support Mechanisms

Feature Description

CC Command-Line Qualifier

/INOJPARALLEL Specifies that a compilation unit is part of a
program to be run in parallel. The use of the
qualifier determines whether the compiler gener-
ates coding structures that are needed to support
decomposition of for and while loops.

Decomposition Pragmas

#ipragma ignore_dependency

#pragma safe_call

#ipragma sequential_loop

Specifies to the compiler that a variable that
appears to be in conflict is safe to decompose. By
default, VAX C does not decompose loops that have
two iterations that access the same element. (See
Section 3.7.1 for more information about #pragma
ignore_dependency.)

Specifies to the compiler that a loop containing a
call to the specified function is safe to decompose.
By default, VAX C does not decompose loops
with function calls. (See Section 3.7.2 for more
information on #pragma safe_call.)

Specifies to the compiler that the iterations of
a for or while loop are to be executed sequen-
tially. By default, VAX C tries to decompose for
and while loops for parallel processing. (See
Section 3.7.3 for more information on #pragma
sequential_loop.)

(continued on next page)

VAX C Support for Parallel Processing 3-5

Table 3—1 (Cont.): VAX C Parallel-Processing Support Mechanisms

Feature Description
Parallel Object Library
VAXCPAR.OLB Contains parallel versions of some VAX C Run-

Time Library (RTL) functions. You must link
against this object module library if your program’s
main function is written in VAX C, or if your
program calls one of the memory-management
functions malloc, calloc, free, cfree, or realloc.
See Section 3.8 for more information on the
memory-management functions. See Section 3.3
for more information on restrictions placed on
programs running in parallel. See Section 1.4.5.2
for more information on linking against object
module libraries.

Run-Time Environment Logical Names

FOR$PROCESSES Contain values that adjust some aspects of the
FOR$SPIN_WAIT run-time environment in which you execute your
FOR$STALL_WAIT program. (See Section 3.9.1 for more information.)

3.2 Preparing Programs for Parallel Processing

To process a VAX C program for parallel execution, do the following:

1. Use the /PARALLEL qualifier on the CC command line for the compila-
tion unit that contains the main function or that contains loops that you
want to run in parallel.

2. Examine the compiler messages to determine which loops the compiler
decomposed and which it did not. Insert an appropriate decomposition
pragma (see Section 10.7) to alter the loop-decomposition decisions
made by the compiler (if appropriate to your application). If the VAX
Language-Sensitive Editor (LSE) is available on your system, you may
use its VAX C decomposition support to add decomposition pragmas. See
Appendix C for more information about LSE, which is a product that
must be purchased separately.

3. If you inserted decomposition pragmas into the program, then recompile
it using the /PARALLEL qualifier.

4. Link the program. (See Section 3.3 for information about linking
restrictions and requirements.)

3-6 VAX C Support for Parallel Processing

W/

W,

5. Optionally, define the logical FOR$PROCESSES to indicate how many
subprocesses are created to run your decomposed program. For example,
to create four subprocesses to execute your parallel program, enter the
following command:

$ DEFINE/JOB FOR$PROCESSES 4
If you do not specify a value for FOR$PROCESSES, it defaults to the
number of processors in the multiprocessor VAX you are using.

6. Execute the program normally. If you did not define the logical
FOR$PROCESSES, the compiler generates a message when you run
your decomposed program.

7. If the program contains run-time errors, use the multiprocessor debugger
to debug it. Define the logical DBG$PROCESS to set up the debugger,
as follows:

$ DEFINE/JOB DBGSPROCESS MULTIPROCESS

See Appendix E for information about debugging decomposed programs.

Figure 3-2 shows a program cycle using decomposition.

VAX C Support for Parallel Processing 3-7

Figure 3-2: Program Cycle Using Decomposition

EDIT

v

CC/PARALLEL PROG

y

Review Diagnostics

Insert
Decomposition
Pragmas

[

ZK-6739-GE

3-8 VAX C Support for Parallel Processing

m

3.3 Conditions That Inhibit Parallel Processing

You must do the following if you want your program to execute properly in
parallel:

If you want to run some of your VAX C compilation units in parallel, you
must use /PARALLEL to compile the compilation unit containing the
main function, even if the main routine is written in another language.
You can use /PARALLEL on the other compilation units depending on
the needs of your application. If you do not use /PARALLEL on the
compilation unit containing the main routine, the compiler generates a
message.

If you write the main routine of your program in a language that does
not support the /PARALLEL qualifier, you need to write a shell for the
program in a language that does support parallel processing. Then, you
must call the main routine from the shell.

See Section 1.3 for more information on compilation units. See
Chapter 13 for more information on mixed-language programming.

If you use /PARALLEL when compiling a VAX C compilation unit
containing the main function, you must link the program against the
VAXCPAR.OLB object module library. If you do not use the /PARALLEL
qualifier on the compilation unit containing the main function or if your
main routine runs in parallel but is written in another language, you do
not need to link against VAXCPAR.OLB.

See Section 1.4.5.2 for information on object module libraries, linking
order, and the VAX C Run-Time Library (RTL). See Section 3.8 for
information on additional restrictions involving the use of the parallel
memory-management functions in the VAX C RTL. See Chapter 13 for
more information on mixed-language programming.

VAX C does not decompose loops properly if any of the following conditions
exist:

The loop is a while loop and the compiler cannot determine the number
of iterations in the loop

There is a function call in the loop (Section 3.4.2)
There are pointers used in the loop (Section 3.4.3)

There exist two or more iterations making references to the same array
element (Section 3.4.1)

There exists a scalar variable that is defined in one loop iteration and
referenced in another iteration (Section 3.4.4)

A return or goto statement is contained within the loop.

VAX C Support for Parallel Processing 3-9

* Alabel is contained within the loop.
¢ There are more than 32 variables used within the function containing ‘

the loop. ‘
e A static or globaldef array is referenced or modified within the loop. w

(See Section 3.6 for more information about storage classes and parallel

processing.) |
e A static or globaldef scalar is referenced within the loop. (See

Section 3.6 for more information about storage classes and parallel

processing.)

¢ The loop is a do loop.

® The loop control variable is not an [auto] variable. (See Section 3.6 for
more information about storage classes and parallel processing.)

* The loop control variable is a float or double.
* There is a function call in a loop termination condition.

¢ The loop is a multiple index loop. You can rewrite this sort of loop as a
nested loop to allow decomposition analysis.

¢ The loop is a nested loop. If a loop contains other loops (nested loops)
and all the loops are eligible for decomposition, VAX C only decomposes
the outermost loop. Similarly, if your program has a decomposed loop
that contains a function call and the function contains a decomposed
loop, the loop inside the function does not run in parallel. However, if
the function is called from sequential code, the loop inside the function
executes in parallel. u

¢ A call to the VAX C RTL function longjmp.
¢ Input or output operations, since they involve function calls.
¢ Exception or signal handling, since they involve function calls.

¢ Running your programs from the DEC/Shell. (You must use the DCL
command-language interpreter to compile, link, and run parallel
programs.)

If you set errno in a loop to be decomposed, you must check its value within
the decomposed loop. If the program calls a function that sets errno from
within a decomposed loop and, if it then checks the value of errno outside
the loop, the value of errno at that point reflects the error status of the
program code outside the loop, not the error status of the code inside of the
loop. Since each subprocess receives its own copy of errno, you need to check
the value of errno periodically inside of the loop.

See Section 3.8 for information about programming restrictions involving
the use of the parallel-processing versions of the VAX C RTL memory-
management functions malloc, calloc, free, cfree, and realloc.

3-10 VAX C Support for Parallel Processing w

)

3.4 Data-Dependency Analysis

If a data dependency is carried by a for or a while loop, the result of
running it in parallel often varies from sequential execution and varies from
one parallel execution to another parallel execution. This unpredictability
occurs because loop iterations can be executed out of order when a loop is
run in parallel and a loop with a loop-carried data dependency only works
correctly when the loop iterations are executed in order.

This section discusses how VAX C analyzes the following calls and references
inside each loop body to determine if a loop contains dependencies:

* Array variable references (Section 3.4.1)

¢ Function calls (Section 3.4.2)

* Pointer variable references (Section 3.4.3)

* Scalar variable references (Section 3.4.4)

3.4.1 Array Variable References

VAX C analyzes all references to arrays in a loop; each array reference

is considered in turn. If no element of the array can be modified during

execution of the loop, then the values of the array elements arc constant in |
the loop. In this case, the array does not introduce any data dependencies

into the loop.

If any array element can be modified within the loop, VAX C must perform
further analysis of the loop’s references to this array to ensure that no two
iterations of the loop reference the same element of the array. In particular,
VAX C tries to establish that at least one index of every reference to the
array in the loop is distinct in every iteration.

VAX C determines that a simple expression containing the loop’s index
variable is distinct in each iteration if the expression satisfies the following
conditions:

¢ The index variable appears only once (and is not multiplied by a factor
of zero).

¢ All index-expression values are invariant (unchanging) in the loop.

¢ All indexed references to the same dimension of the array are identical,
except for the constant part.

VAX C Support for Parallel Processing 3-11

If an array reference has a constant part, then the compiler computes the
distance. If distance MOD stepsize = 0 (where step_size is the amount

of the increment), then a dependency exists and the compiler does not u
decompose the loop. Otherwise, the compiler decomposes the loop.

Consider the following example:

for (1 = 0; i < 100; i++)
{
for (3 = 0; j < 100; Jj++)
{
for (k = 0; k < 100; k++)

abc[jl[J + k] = abc[j + 1][j + k] + 1 * bed[i][1]);

}

VAX C does not decompose the loop on i because no index expression of

the abc array refers to the loop-index variable i. The abc array is the only
variable considered in loop analysis here, because it is the only one modified
in the loop.

VAX C does not decompose the loop on j, either. While j is used in both
index expressions of abc, the index expression for the first dimension is not
identical in all references to abc, and the index expression for the second
dimension contains a reference to the variable k. The variable k is not
constant during execution of the j loop, and this prevents decomposition.

Even though the first two loops are not decomposed, the loop on k can be u
decomposed. The second index of every reference to array abc is identical

(j + k) and contains the loop index variable k. The remainder of the

expression (j) is invariant within the k loop. The reference to bed[i] does not
prevent decomposition on the k loop because it is also an invariant value in

the k loop.

When loop decomposition is inhibited by an array dependency, VAX C issues
a message for each line of code in the loop that references the array. For
example, consider the following listing fragment:

12 1 for (i = 0; 1 < 10; i++)
13 1 {

14 2 x[i] = x([1 - 1] * pi;
15 2 y[i] = y[i + 1] * pi;

Lines 14 and 15 generate messages that indicates that the loop-control
variable i is contained in an expression that is not invariant. However, the
compiler decomposes the following loop without generating messages:

3-12 VAX C Support for Parallel Processing u

|

ﬂ

12 1 for (i = 0; 1 < 10; i += 2)
13 1 {

14 2 x[i] = x[1 - 1] * pi;
15 2 y[i]l = y(i + 1] * pi;

VAX C requires that the arrays referenced in a loop be [extern] or [auto]
arrays for the loop to decompose. Arrays that have the static, globaldef,
or globalref storage-class specifiers cannot have their storage accessed by
multiple processes. If you use an array with one of these storage classes
within a loop, you receive a message and loop decomposition is inhibited.

NOTE

In this chapter, the notation [extern] refers to any variable
declared outside of a function that does not have a static,
globaldef, or globalref storage-class specifier. When declaring
such a variable, the key word extern is optional, and hence, the
[extern] notation.

Similarly, any variable declared inside a function that is not a function
parameter and that has an auto or register storage-class specifier is an
[auto] variable. If the variable has no storage-class specifier, [auto] is the
default.

See Chapter 9 for more information about the [extern] and [auto] storage-
class specifiers.

3.4.2 Function Calls

By default, VAX C does not decompose loops containing function calls.
Functions that are called inside a loop can introduce unpredictable behavior
in a decomposed loop in the following ways:

If the function called from within the loop is not reentrant, the par-
allel execution of several iterations of the function may introduce
unpredictable behavior.

A nonreentrant function is any function that cannot have several
instances active at once. For example, if a function reads and updates a
counter in a static variable, it is not reentrant. In general, any function
that uses static data is not reentrant.

If the function has side effects that introduce data dependencies into the
loop, the function may behave unpredictably. For instance, if a function
updates a global array that is accessed in the decomposed loop from
which it is called, you must examine the function carefully to make
certain that no dependencies are introduced by the function call. That

VAX C Support for Parallel Processing 3-13

is, the function must not read any memory written by other iterations of
the loop, or write any memory read by other iterations of the loop.

e If the loop does not have a predictable flow of control, that is, it does not §

return normally, decomposition cannot proceed properly. For example, if
the function calls the VAX C Run-Time Library (RTL) routine longjmp,
the function cannot be decomposed.

If you determine that the function contains none of the previous restrictions,
you can use the safe_call pragma to tell the compiler that it is safe

to execute the function in parallel for a given loop. See Section 3.7 for
information about the safe_call pragma and other decomposition pragmas.

If the safe_call pragma does not appear before a loop containing a function
call, the compiler issues a message and that loop is not decomposed.
However, the compiler may still perform the inline optimization on the
function in the loop.

The following section describes the use of math.h functions in decomposed
loops.

3.4.2.1 math.h Function Calls

By default, the compiler does not decompose loops containing function calls.
However, VAX C places global #pragma safe_call directives in the math.h
include file. This allows you to use most of the math functions in the VAX
C Run-Time Library (RTL) without inhibiting loop decomposition or without
requiring you to use #pragma safe_call in your program.

Not all of the math functions are safe to call in your programs. By default,
using the following math functions inhibits loop decomposition:

¢ frexp

e modf

These math functions introduce possible data dependencies by accepting
pointer arguments and by returning additional information by using these
arguments. You should not use these functions in loops that you want VAX
C to decompose.

If you want to check the value of errno as possibly set by one of the math
functions, you need to place that check inside the loop to be decomposed.
(See Section 3.3 for more information.)

NOTE

If you place the #include math directive inside of a function
definition, the effect of the #pragma safe_call directives is only

3-14 VAX C Support for Parallel Processing

\/

U

local to that function. If you call the math functions in other
function definitions, VAX C does not decompose loops in that
function. To keep the effect of the math.h safe_call pragmas
global, place the #include directive outside function definitions.

See the VAX C Run-Time Library Reference Manual for more information on
the math functions in the VAX C RTL. See Section 3.7 for more information
on the #pragma safe_call directive. See Section 10.4 for more information
on file inclusion.

3.4.3 Pointer Variable References

Using pointer variables inside a loop can make it difficult to determine
whether a data dependency exists within the loop. For instance, in the
following example, it is impossible to determine whether the access through
the pointer variable p introduces a data dependency unless it is known
whether p points to an element of vector:

for (i = 0; i < 127; i++)
{
vector[i] = *p * pi / sin (x);
}
The possible data dependency is clear if an arbitrary element of vector is
substituted for *p in the previous expression:

for (i = 0; i < 127; i++)
{

vector(i] = vector[42] * pi / sin (x);
}

If multiple arrays are used in the loop, there is the possibility of a data
dependency between p and every array used in the loop.

VAX C analyzes references to pointers; if the pointer is initialized so that
VAX C can determine the identity of an underlying array, using the pointer
in the loop may not prevent decomposition (if it does not introduce data
dependencies).

If you are working with arrays, you should use the bracket operators to ref-
erence array elements. If you use pointer notation to access array elements,
the compiler does not decompose the loop. The compiler decomposes a loop
containing the following references to array members:

for (i =0; i < n; i++)
plil = qlil;

VAX C Support for Parallel Processing 3-15

The compiler does not decompose a loop containing the following references
to array members, even though this method is functionally equivalent to the
one in the last example:
for (1 = 0; i < n; i++)

*pt+ = *g++;
If VAX C cannot determine whether a pointer dereference introduces a data
dependency, the compiler generates a message and does not decompose the
loop. The compiler generates a message for every dereference of the pointer
in the loop. If you can determine that using the pointer does not introduce
a data dependency, you can use the ignore_dependency decomposition
pragma to inform the compiler of this. See Section 3.7 for information about
decomposition pragmas.

3.4.4 Scalar Variable References

To determine if a loop can be decomposed, VAX C analyzes references to
scalar variables within the loop. If a scalar variable in a loop introduces

a data dependency, the loop is not decomposed. A scalar can introduce a
loop-carried data dependency only if the value of the scalar is defined in one
iteration of the loop, and used in another. Since iterations of a decomposed
loop have no guaranteed execution order, the iteration that is executed last
might vary, which causes the value of the scalar to vary at loop termination.

If a scalar variable is not modified during the execution of a loop, its value
can be shared by all iterations of the loop; such scalar references do not
prevent decomposition. However, if a scalar variable is modified in the loop,
it introduces a loop-carried data dependency when either of the following
conditions occur:

¢ If the value of the scalar variable is defined outside the loop and it is
used before it is defined inside the loop.

¢ If the value of a scalar variable is defined inside the loop and it is used
outside the loop.

If either of these two conditions exists, the loop is not decomposed and VAX
C generates a message.

Consider the following example:

3-16 VAX C Support for Parallel Processing

Q
no
oo
o
i

for (1 = 0; 1 < N; i++4)

b=f(i* a);
if (b < 0)
{
d = -b;
c=c+ d;

printf("$d\n", d);

VAX C does not decompose this loop for two reasons. First, scalar variable
c is initialized outside the loop, then used in a loop iteration before it is
defined inside the loop. Second, the final value of d from the last iteration
is used outside the loop. The references to variables a and b are not factors
preventing decomposition, because a is not modified in the loop, and b is
defined before it is used in the loop, and b is not used after the loop.

VAX C also requires that loop index variables and other scalars modified or
used in a loop have the [auto] storage class in order for decomposition to
proceed. Scalars used in a decomposed loop are placed in registers, to ensure
that each process executing an iteration has its own private copy. VAX C
only places [auto] variables in registers. If you modify a scalar that is not
an [auto] variable in a loop which VAX C is analyzing for decomposition,
you receive a compiler message. Scalars that are read but not modified in
the loop must have either the [auto] or the [extern] storage class, or you
receive a compiler message and loop decomposition is inhibited.

Even if the scalars in a loop do not cause a data dependency, they can
prevent VAX C from decomposing a loop if there are too many of them.
Because VAX C tries to place scalars that are modified within loops in
registers, if there are more modified scalars in a loop than there are
registers available, the loop is not decomposed. When this occurs, a compiler
message is issued.

3.5 Rewriting Code to Resolve Dependencies

The following sections describe three coding techniques that you can use to
eliminate data-dependency problems that remove a loop from consideration
for parallel processing. The three coding techniques are as follows:

¢ Loop alignment (Section 3.5.1)

VAX C Support for Parallel Processing 3-17

¢ Code replication (Section 3.5.2)
¢ Loop distribution (Section 3.5.3)

3.5.1 Loop Alignment

Loop alignment changes loop-carried dependencies to loop-independent
dependencies. This method works by changing subscripts so that all
references to a given array element occur in the same iteration.

The code in the following for loop demonstrates an alignment problem:

for (1 = 2; 1 < n; i++);
{

bli];

afi + 1]1;

aflil]
cli]

}

The first loop iteration accesses the value in memory location afi + 1] and
the next iteration stores another value into that location, referencing it as
location ali]. |

When the code is executed sequentially, the value in memory location a[i + 1] l
is used before another value is stored into that memory location. This is

not true if the code is executed in parallel. For example, if loop iterations 4

and 5 execute in separate processes and iteration 5 executes before iteration

4, the value that iteration 4 accesses from the memory location associated V
with a[i + 1] is the value established by iteration 5 in the memory location :
associated with ali].

The way to remedy this dependency is to bring into alignment the two
references to the memory location in array a, that is, the references to ali]
and afi + 1]. You can do this by changing the second assignment statement,
as follows:

Original Statement

cli) = afi + 1]1;

Revised Statement
cli-1] = a[il;

The revised statement eliminates the data-dependency problem associated
with the previous references to memory locations in array a. However, to
compensate for the change to the array reference, you may have to adjust
the loop control values and add appropriate if constructs to achieve the same
effect as the original loop.

3-18 VAX C Support for Parallel Processing u

It is also important to maintain the order in which memory locations are
accessed. In this case, memory location a[i + 1] in the original for loop is
used in one iteration and then redefined in the next iteration (as memory
location a[i]). By aligning the references, each iteration operates on only
one memory location and, in the original order of the operations, array a’s
memory locations are defined before they are used. So, in the revised for
loop being prepared for parallel processing, the statement performing the
use operation must be moved ahead of the statement performing the store
operation in order to preserve the original order of these operations.

In the following example, additional changes have to be made to the loop, as
follows:

Original for Loop

for (i = 2; i < n; i++)
{
ali]
cl[i]

b[i];
ali + 1);

}

Revised for Loop

for (1 = 2; 1 < n + 1; i++)
{
if (4 > 2)
cli - 1] = ali];
if (i <= n)
a[i) = b[il;
}

Alternatively, you can compensate for the change to the array reference by
distributing certain statements outside the loop, as follows:

Original for Loop

for (i=2; i < n; i++)
{
ali]
cl[i]

bli]);
ali + 1];
}

Revised for Loop

if (n >= 2)

al2] = bl2];
for (i = 3; i < n; i++)
{

cli - 1) = a[i];
a(i] = b[i]);
}
if (n >= 2)
c[n] = a[n + 13;

VAX C Support for Parallel Processing 3-19

If statements are distributed outside the loop, tests must be made to control
when those statements are executed. Otherwise, they are always executed
and that behavior causes an error when the loop has no iterations.

In addition, when using the loop alignment technique to resolve a data
dependency, check to ensure that the coding changes that you make to bring
one reference into alignment do not cause previously aligned references to
become unaligned.

3.5.2 Code Replication

Code replication entails duplicating certain operations to eliminate a
data-dependency problem.

The following example shows a data-dependency problem that can be
resolved by code replication:

for (1 = 2; 1 <= 100; i++)
{

b(i] + cl[i]);
afi] + ali - 1);

afi]
d[i]

}

This example contains a loop-carried dependency between memory locations
a[i] and a[i - 1]. The value at memory location a[i - 1] is not predictable
because, in some instances, it is not defined in one loop iteration before
another loop iteration tries to use it. For example, if iterations 2 through
50 are executing in the main process and iterations 51 through 100 are
executing in a separate process, loop iteration 51 may try to use memory
location a[i - 1] before loop iteration 50 has stored a value in that memory
location, referencing it as memory location a[il.

To eliminate this problem, establish the value of a[i - 1] in a new memory
location and then eliminate the reference to the old memory location,
substituting a reference to the duplicated memory location. For example,
you can revise the for loop, as follows:

Original for Loop

for (i = 2; i <= 100; i++)
{
afi]
d(i)

b[i] + c[i];
afi] + afi - 1};

3-20 VAX C Support for Parallel Processing

W

Revised for Loop
al2] = b[2] + c[2];

ﬁ d[2] = af2] + alll;
for (i = 3; i <= 100; i++)

] = Db(i] + cli];
ta =Db[i - 1] + c[i - 1];
] = a[i] + ta;

In this situation, you compute the value of memory location ali - 1], store
it into temporary variable ta, and replace the reference to ali - 1] with a
reference to variable ta.

Some of the calculations are pulled out of the loop and the iteration count
is modified. This is necessary because the reference to a[i] in the original
loop used the original value of a[i], not one computed by b[i] + c[i]. Using
the code replication technique generally requires this type of modification to
bring references back into alignment.

3.5.3 Loop Distribution

Loop distribution involves breaking down a loop with data-dependency
problems into several loops, one or more of which can be run in parallel. For
example, consider the following for loop:

‘ ’ for (i = 1; i <= 100; i++)

{
afi - 1] + d[i];
b(i] - al[il;

a[i]
cli]

}

This loop contains a data dependency and VAX C cannot run it in parallel
without producing unpredictable results. As mentioned in the previous
section, if loop iterations 1 through 50 are executing on one processor and
loop iterations 51 through 100 are executing on another processor, it is likely
that loop iteration 51 will try to access a value in memory location ali - 1]
before iteration 50 has executed (and stored the necessary value at that
location).

To eliminate this problem, you can distribute the for loop. For example, you
can revise the for loop, as follows:

l l VAX C Support for Paraliel Processing 3-21

Original for Loop

for (1 = 1; i <= 100; i++)

{
a(i] afi - 1] + d(i]; u

cli] b[i] - alil;

}

Revised for Loop

for (i = 1; i <= 100; i++)
alil = ali - 1] + d[i];

for (i = 1; i <= 100; i++)
c[i] = b[i] - a[il;

Given these changes, the second loop can now be executed in parallel.

3.6 Storage Classes and Parallel Processing

Only variables that are mapped to shared memory can be accessed by
multiple processes. Variables that are not mapped to shared memory
can inhibit loop decomposition. VAX C automatically maps the following
variables to shared memory:

* Any variable that is allocated on the stack, such as an automatic scalar
or array variable

* Any scalar variable with the [extern] storage-class modifier -)
* Any variable whose address is passed to a function

Variables that have the globaldef or static attributes are not mapped to
shared memory.

Any memory allocated with the malloc function is not shared unless you
follow certain requirements for using parallel versions of the memory-
managment functions of the VAX C RTL. See Section 3.8 for more
information.

VAX C automatically aligns [extern] variables modified within a decom-
posed loop on a page boundary. This is necessary in order to place them in
shared memory.

However, this page alignment can sometimes cause a linker warning to

be generated. If a variable is automatically page aligned in one module
because it is accessed in a decomposed loop, but it is not page aligned in
other modules, you get a linker warning. This can be safely ignored; if you
prefer, you can change the alignment of the variable to be page aligned in
all modules by using the _align declaration modifier.

3-22 VAX C Support for Parallel Processing v

3.7 Decomposition Pragmas

In addition to rewriting your code to resolve dependencies, you can place
decomposition pragma directives into your programs to override the default
actions taken by the compiler. Table 3-2 presents the VAX C decomposition
pragmas.

Table 3-2: VAX C Decomposition Pragmas

Pragma Description
#pragma ignore_ Specifies to the compiler that a variable that appears
dependency to be in conflict is safe to decompose. By default, VAX

C does not decompose loops that have two iterations
that access the same element.

#pragma safe_call Specifies to the compiler that a loop that contains
a call to the specified function is safe to decompose.
By default, VAX C does not decompose loops with
function calls.

#pragma sequential_loop Specifies to the compiler that the iterations of a for
or while loop should be executed sequentially. By
default, VAX C tries to decompose all for and while
loops for parallel processing.

For the ignore_dependency and sequential_loop pragmas, a placement
of the pragma affects only the next for or while loop encountered (re-
gardless if the loop contains a reference to any specified pointer or array
variable).

For the safe_call pragma, the placement of the pragma determines the
scope of the pragma’s effect. If you place a safe_call pragma outside of all
function definitions, the pragma affects all for and while loops from the
position of the pragma to the end of the compilation unit. In this case, the
effect of the pragma is global.

If you place the safe_call pragma inside a function definition, the pragma
affects only the next for or while loop encountered within that function
(regardless if the loop contains a call to the specified function). In this
case, the effect of the safe_call pragma is local to the enclosing function
definition.

VAX C Support for Parallel Processing 3-23

If you specify the ignore_dependency or sequential_loop pragmas or if
you specify the safe_call pragma inside of a function, remember that the
pragma does not affect any loops nested within the next for or while loop
encountered. In this case, you must use a pragma preceding each loop you
want VAX C to decompose, including nested loops. If you use the safe_call
pragma outside of all function definitions, this pragma affects all for and
while loops including those that are nested from the occurrence of the
pragma to the end of the compilation unit.

The #pragma ignore_dependency and #pragma safe_call directives
require that you specify one or more identifiers to the directives. If you have
more than one specifier, you must separate each identifier with a comma
and can optionally enclose the identifiers in one set of parentheses. If you
do not use parentheses, you must place one space between the pragma
keyword and the identifier list; if you do use parentheses, you do not need
this space. For example, the following pragma tells VAX C to decompose a
loop containing calls to the functions funcl and func2:

#pragma safe _call (funcl, func2)

For the three pragmas that require identifiers, you must make sure that the
pragma appears after the declaration of the identifiers (array, pointer, or
function names). In this way, the compiler can check to make sure that you
are passing identifiers of the correct kind to the three pragmas. Consider
the following example:

int fool();

#pragma safe_call (foo)

main ()

Once you declare the function foo, you can specify foo to the safe_call
pragma. (Once you declare a pointer or array variable, you can specify the
identifier to the ignore_dependency pragma.) In the previous example,
it is safe to call foo—in any for or while loop—from the occurrence of the
pragma to the end of the compilation unit.

See Section 10.7 to review the syntax lines for each of the decomposition
pragmas. The following sections discuss the use of VAX C decomposition
pragmas, as follows:

* j#pragma ignore_dependency (Section 3.7.1)

3-24 VAX C Support for Parallel Processing

o

—

\W/

e #pragma safe_call (Section 3.7.2)
m * #pragma sequential_loop (Section 3.7.3)

3.7.1 The ignore_dependency Decomposition Pragma

When a loop contains a variable that appears to access the same memory lo-
cation after two or more iterations, use the #pragma ignore_dependency
directive. This tells VAX C that the loop is safe to decompose despite its
appearance. The ignore_dependency pragma must be located after the
declarations of any variables that you specify to the pragma. The occur-
rence of this pragma affects only the next for or while loop encountered
(regardless if the loop contains a reference to the specified array or arrays),
excluding any nested loops in this loop.

Example 3-1 is an example of the #pragma ignore_dependency directive
with a variable that is of type array.

Example 3-1: Using the #pragma ignore_dependency Directive

int array(50];

main ()
{
int 1i;
»‘ ’ /* this loop will get inconsistent results */
array[0] = 1;

#pragma ignore_dependency (array)

for (i = 1; i < 50; i++)
{

array(i] = array(i-1] + i;
}
#pragma sequential_loop
for (i = 0; i < 50; i++)

printf("%d \n",array([i]);
}

VAX C Support for Parallel Processing 3-25

In Example 3-2, the value of the pointed-to object does not change through-
out the execution of the program. Therefore, the order in which the loop
iterations execute does not matter. It is safe to decompose the loop that
contains the pointer variable *aa.

Example 3-2: Using the #pragma ignore_dependency Directive

double a[100],x;
double *aa;

main ()

{
int i;
init ();

/* This initializes the contents of the array to 1.0. */
#pragma ignore_dependency aa)
for (i = 0; 1 < 100; i++)

afi] = *aa;

#pragma sequential_loop

for (i = 0; i < 50; ++1i)
printf("$f \n", alil);

}

init ()

{

x =1.0;
aa = &x;

If you have a loop that contains a variable that is part of an address compu-
tation, you must insert the ignore_dependency pragma in order for VAX C
to decompose the loop.

3.7.2 The safe_call Decomposition Pragma

To inform VAX C that it is safe to decompose a loop containing calls to one
or more functions, use the #pragma safe_call directive. (See Section 3.4.2
for information about function calls and data dependency.) The safe_call
pragma must be located after the declarations of any functions that you
specify to the pragma. If you specify the #pragma safe_call directive at
the top of your compilation unit and outside of all function definitions, the
compiler recognizes that all loops in the compilation unit containing calls to
the specified functions are to be decomposed (as long as the loops contain no
other data dependencies).

3-26 VAX C Support for Parallel Processing

U

w

Do not specify a function in a safe_call pragma if the following conditions
are true about the function:

e It is not reentrant.

¢ It has side effects that introduce dependencies.

® It uses the VAX C Run-Time Library (RTL) routine longjmp, or
otherwise modifies the normal flow of control.

¢ It changes the process in some way.

e It takes an address as an argument, and the address points to memory
that is not shared.

In Example 3-3, the first #pragma safe_call directive is over the block

of the i loop, which contains the j and k loops. However, only the i loop

is affected by the pragma. The second pragma covers the j loop, and the
third pragma covers the k loop. (Using the safe_call outside of the function
definition in this example would affect all loops from the occurrence of the
pragma to the end of the compilation unit.)

Example 3-3: Using the #pragma safe_call Directive

#define pi 3.14259
float a[100][100]([100], b[50][50]([50];

main ()

{

int 1i,3j,k;

#pragma safe_call(func_a) /* Only affects i loop. */
for (i = 1; i < 100; i++)
{
/* Next line gets a message on, func_b and func_c. */
alil[i1]1(i] = func_b(pi) * func_a(pi) / func_c(pi);

#pragma safe_call (func_b)
for(j = i; j < 100; ++3)
{
/* Next line gets a message on func_a and func_c. */
afi]l [j1[1i] = func_b(pi) * func_a(pi) / func_c(pi);

(continued on next page)

VAX C Support for Parallel Processing 3-27

Example 3-3 (Cont.): Using the #pragma safe_call Directive

#pragma safe_call (func_a, func_b, func_c)
/* This loop will be decomposed, since it is the
only one that contains all safe calls. */
for (k = j; k < 100; k = k + 1)
{
ali}l [j} (k] = func b(pi) * func_a(pi) / func_c(pi);
}

In Example 3-3, VAX C decomposes the k loop, but the compiler issues
messages against the statement in the k loop. However, these messages
apply only to the analysis of the i and j loops, not the k loop. Using the last
specified safe_call pragma outside of the function definition in this example
causes all three loops to be candidates for decomposition.

3.7.3 The sequential_loop Decomposition Pragma

To inform VAX C that the iterations of a for or while loop are to execute
sequentially, use the #pragma sequential_loop directive. (By default, VAX
C tries to decompose all for and while loops.) This pragma shuts off all
decomposition analysis and prevents most decomposition diagnostics from
being generated for the loop. The occurrence of this pragma affects only the
next for or while loop encountered, excluding any nested loops in this loop.

Example 3—4 presents an example of using the #pragma sequential_loop
directive to tell the compiler that the next encountered for loop requires
sequential execution.

A loop using an I/O function and whose algorithm requires that iterations
execute in a given order is a good candidate for the sequential_loop

pragma.

3-28 VAX C Support for Parallel Processing

Example 3-4: Using the #pragma sequential_loop Directive

main ()

{
printf("This program counts from 1 to 100:\n");
#pragma sequential_ loop

for (i = 0; 1 <= 100; i++)
printf("$-d\n", 1i);

3.8 Memory-Management Functions

There is an additional VAX C Run-Time Library (RTL) that you can use if
you wish to use memory-management functions in programs that run in
parallel. The VAX C RTL contains versions of the following functions that
allow memory access between subprocesses during parallel processing:

¢ malloc
¢ calloc
e free

e cfree

¢ realloc

To use the new versions of these routines, you perform the following tasks:

1. Write the main function of a parallel program in VAX C.

2. Declare the memory-management functions by including stddef.k in your
program.

3. Compile your program using the /PARALLEL qualifier.

4. Link against the object library VAXCPAR.OLB.

The main function of your program must be named main or it must be
declared using the main_program option. Otherwise, memory allocated by
malloc cannot be accessed across subprocesses.

To avoid errors, the parallel-processing versions of the functions have
different names from those of the normal memory-management functions.
The stddef.h file contains macro definitions that make the correct versions
of the functions available, depending on the current value of the predefined
macro CC$parallel; VAX C defines this macro according to the presence or

VAX C Support for Parallel Processing 3-29

absence of the /PARALLEL qualifier on the command line (see Section 11.1.2
for more information). If you do not use stddef.h to declare the memory-
management functions, a potential mismatch of versions may occur,
causing unpredictable results in your program. See Section 10.4 for more
information on including files into your program.

If you want to use the parallel-processing versions of the memory-
managment functions, you must follow the VAX C procedures for linking
aginst object module libraries or for linking against shareable images. (See
Section 1.4.5.2 for more information about linking against object module
libraries; see Section 1.4.5.3 for more information about linking against
shareable images).

The effect of using these versions of the functions is slightly different from
that of using the normal versions. The free function does not return a
value, and the malloc function does not set errno.

See the VAX C Run-Time Library Reference Manual for more information on
these memory-allocation functions.

3.9 Tuning Issues Related to Parallel Processing

Parallel-processing programs may fail to execute because of insufficient
system resources. You may have to adjust some resource-utilization
parameters both for the entire system and for individual user accounts. You
may also want to adjust some parameters to achieve better performance for
programs executing in parallel. These considerations are addressed in the
following sections.

You may also find it advisable to adjust system resources to accommodate
the needs of the multiprocessing configuration of the VMS Debugger.

3.9.1 Customizing the Parallel-Processing Run-Time Environment

To tune the parallel-processing run-time environment in which a program is
executed, you can use the logical names shown in Table 3-3.

3-30 VAX C Support for Parallel Processing

Table 3-3: Logical Names Used for Run-Time Tuning

Logical Name Use

FOR$PROCESSES Controls the number of processes used to execute a
program in parallel (32 maximum)

FOR$SPIN_WAIT Control CPU usage when waiting, for work or synchro-

FOR$STALL_WAIT nization, in a program executing in parallel

You can define your own values for the logical names using the DCL
commands DEFINE or ASSIGN. For example:

$ DEFINE FORS$SPROCESSES 4

The values defined when a program starts parallel execution remain in
effect until execution is completed.

The following sections describe the logical names, as follows:

¢ FOR$PROCESSES (Section 3.9.1.1)
¢ FOR$SPIN_WAIT (Section 3.9.1.2)
e FORS$STALL_WAIT (Section 3.9.1.3)

Controlling the Number of Processes (FOR$PROCESSES)

The logical name FOR$PROCESSES defines the number of processes to be
used when executing a program in parallel. To define FOR$PROCESSES,
you must specify a nonzero, positive number. The maximum number is 32.
If you do not define a value for FOR$PROCESSES, a default value equal to
the number of processors that are currently active on the system is used.

Being able to adjust the number of processes can be helpful for a variety of
reasons, as follows:

¢ It enables you to execute your parallel program in a single process. This
allows you to debug the logic within your parallel for or while loops
as they execute in a serial, nonparallel fashion. (Note that running a
program with parallel loops serially and in one process does not reduce
the initialization overhead associated with the parallel loops.)

e It enables you to compare the performance impact of executing a parallel
program with a varying number of processes.

¢ It enables you to gauge the tradeoffs between increasing system over-
head and increasing execution time. For example, in a time-sharing en-

vironment, you may find it advisable to reduce the number of processes
in order to minimize contention for system resources.

VAX C Support for Parallel Processing 3-31

¢ It is useful when you are executing a program in parallel on a multipro-
cessor with more than two processors and you do not want to contend for
the use of all the available processors. \ , ’

3.9.1.2 Controlling Internal Spin Waits (FOR$SPIN_WAIT)

The logical name FOR$SPIN_WAIT allows you to tune the synchronization
method used when a program runs in parallel.

multitasking environment must deal with two conflicting goals, as follows:

| * To respond as quickly as possible to a synchronization flag. The common

way to accomplish this is to repeatedly test for an appropriate flag in a

‘ shared storage location. Doing this test in a tight loop ensures a quick

| response when the flag is reset. This solution, however, conflicts with
the second goal.

The synchronization methods used by a program running in parallel in a

¢ To avoid wasting valuable CPU cycles that might be used by another
program.

|

|

|

1

| .

| Because of this conflict, a tradeoff must be made between the fastest re-
', sponse to the synchronization flags and fairness to other programs.

VAX C allows you to affect this tradeoff by defining a value for FOR$SPIN_

WAIT. You can define it to be any nonnegative integer. This value specifies

how many iterations of the spin-wait loop execute before the executing w
process gives up the processor and allows the VMS system to schedule

another process.

|
|
i
i
Defined values for FOR$SPIN_WAIT can be the following:

* A value of 0 is a special case that tells the run-time support to use the
fastest synchronization at the expense of wasted CPU cycles. This value
is appropriate for running a program in parallel on a system that is
dedicated to running that single program.

® Other positive values tell the run-time support to use more or fewer
spin-wait iterations, with higher values indicating more iterations. A
value of 1 ensures the least wasted cycles—at the cost of the slowest
synchronization response.

It is usually not necessary to define this logical name. The default value

i
|
|
‘ (1000) established by the run-time system should be adequate for most
programs.
|
|
\
i

3-32 VAX C Support for Parallel Processing w

™

3.9.1.3 Controlling the State of a Process (FOR$STALL_WAIT)

When a subprocess is waiting to work on a parallel loop, it can be either in
an active state on the system or in an inactive state. When a subprocess is
inactive, it becomes less responsive because it has to become active again
before it can respond to the parallel loop.

As a second level of control over the internal spin waits in the parallel-
processing environment, the logical name FOR$STALL_WAIT allows you
to control the time that a subprocess stays active on the system. To con-
trol how long it remains active, you define a value for the logical name
FOR$STALL_WAIT. This nonnegative value specifies the number of times
that the subprocess will give up the CPU before becoming inactive.

Defined values for FOR$STALL_WAIT can be the following:

e A value of 0 tells the run-time support to maintain the subprocess as
active, so that the subprocess is more responsive when a parallel loop
becomes available. A value of 0 is appropriate for programs that contain
mostly parallel loops.

¢ Other positive values tell the run-time support to stay active for a longer
or shorter interval, with higher values directing it to stay active longer.
A value of 1 ensures that a subprocess waiting for a parallel loop will
stay active for the shortest time interval. A value of 1 is appropriate
when the program has large segments of code before, after, or between
parallel loops.

It is usually not necessary to define this logical name. The default value
(10 times the number of subprocesses) established by the run-time system
should be adequate for most programs.

3.9.2 System Parameters Set with the SYSGEN Utility

When a parallel application is executed, much of the local memory and many
external variables of the application are mapped to global sections (the VMS
operating system’s way of sharing data between processes). You must ensure
that the number of global sections, global pages, and global page file sections
required by a parallel application are available. To allow enough space for
this global data, some of the system’s sysgen parameters may need to be
increased.

VAX C Support for Parallel Processing 3-33

The most important sysgen parameters are GBLPAGFIL, GBLPAGES, and
GBLSECTIONS. These parameters are not dynamic; your system must be
restarted for any modifications to them to take effect. Adjust the parameters
one at a time to avoid modifying some of them unnecessarily. Table 3—4 lists
suggested values for the three sysgen parameters.

Your system manager should use the SYS$UPDATE:AUTOGEN.COM
command procedure to modify these sysgen parameters. Using
AUTOGEN.COM, parameters related to those you are modifying are
automatically changed for you. For details on how to use this procedure, see
the installation guide for the operating system software installed on your
system.

Table 3—4: Sysgen Parameters Requiring Changes for Parallel Processing

Parameter Suggested

Name Value! Default Minimum Maximum Unit Dynamic
GBLSECTIONS 512 128 20 4095 Sections No
GBLPAGES 32768 4096 512 -1 Pages No
GBLPAGFIL 7000 1024 128 -1 Pages No

1The values listed under this heading are typical values.

The following sections provide more detail about the following parameters:

¢ GBLSECTIONS (Section 3.9.2.1)
¢ GBLPAGES (Section 3.9.2.2)
¢ GBLPAGFIL (Section 3.9.2.3)

3.9.2.1 Global Section Descriptor Count (GBLSECTIONS)

The GBLSECTIONS parameter sets the number of global section descriptors
established in permanent resident memory at startup time. Each global
section must have a descriptor. The number of global section descriptors
determines the maximum number of global sections that can exist on the
system at one time.

Each descriptor requires 32 bytes of permanent resident memory. To avoid
wasting permanent resident memory, try to minimize the value you give to
the GBLSECTIONS parameter.

If the count is not high enough, a diagnostic message is issued.

3-34 VAX C Support for Parallel Processing

W/

3.9.2.2 Global Page Table Entry Count (GBLPAGES)

m The GBLPAGES parameter establishes the size of the global page table and
the maximum number of global pages that can be created. For every 128
entries in the global page table, 4 bytes are added to permanent resident
memory in the form of a system page table entry. (When you increase
GBLPAGES beyond the default setting, you may want to increase the
SYSMWCNT by 1 for each multiple of 128 entries that you add to the
default setting.)

One way to calculate the number of global pages required to run an applica-
tion using the VAX C parallel-processing support is to obtain a link map and
add up the size of the psects that will be shared.

To get a link map, specify the MAP/FULL qualifiers on your LINK command
line. To calculate the approximate number of global pages required for
your application, go through the link map and add up the decimal sizes

of the psects for external variables and the $LOCAL psect. (The link map
gives you the size of the psects, in bytes.) In addition, the VAX C parallel-
processing run-time support requires approximately 3 global pages for its
own use; so add 1536 bytes to the number of bytes required for the psects.
Then, to determine the number of global pages required for the application,
divide the total number of bytes by 512.

If the count is not high enough, a diagnostic message is issued.

ﬂ The GBLPAGFIL and GBLPAGES parameters must both be at least as large
as the number of global pages required for your application.

3.9.2.3 Global Page File Limit (GBLPAGFIL)

The GBLPAGFIL parameter establishes the maximum number of global
pages with page file backing store that can be created. Space for global page
file sections is allocated from the paging file at startup time. When you
increase this parameter you may want to increase the size of the paging files
as well. You can check the current size of the paging files by using the DCL
command SHOW MEMORY. For example:

$ SHOW MEMORY

[other memory information removed]

Paging File Usage (pages): Free Reservable Total
DISKS$SPAGE: [PAGE] SWAPFILE2.SYS;1 68280 68280 79992
DISKSPAGE: [PAGE]PAGEFILE2.SYS;1 73490 60190 79992

If the limit is not high enough, a diagnostic message is issued.

‘ ’ VAX C Support for Parallel Processing 3-35

3.9.3 User Parameters Set with the AUTHORIZE Utility

You may need to adjust the PRCLM and PGFLQUO authorization quotas for
any account that runs parallel applications. Adjust them using the following
guidelines:

¢ The PRCLM quota determines the number of subprocesses that your
process can create. For applications involving parallel for loops, it must
be at least equal to the number you specify for the FOR$PROCESSES
logical name. (During debugging operations, one additional process must
be available for the debugger.)

* The PGFLQUO quota is a pooled quota. It restricts the total pages
that your processes can use in the system paging file. It is shared by
all processes in a job so it may require an adjustment to allow for the
additional processes used in parallel processing. It may need to be as
high as the value that results from multiplying the total number of
writable pages (shown in the Image Section Synopsis in the image map
produced by the linker) times the number of processes.

If either of these quotas is not high enough, a diagnostic message is issued.

These quotas are adjusted using the Authorize Utility and are established
only at login time. This implies that any current user of the account must
log off and log back on before the quotas change for that user. The following
user listing shows example settings for the PRCLM and PGFLQUO quotas:

Username: USER_J Owner: Joe User
Account: NONE . UIC: [360,100] ([USER_J])
CLI: DCL Tables: DCLTABLES

Default: USRDS: [USER_J]
[other user information removed from this listing display]

Prclm: 10 DIOlm: 18 WSdef: 300

Prio: 4 ASTlm: 30 WSquo: 500
Queprio: 0 TQElm: 20 WSextent: 2048

CPU: (none) Englm: 200 Pgflquo: 20000

[other user information removed from this listing display]
Use the Authorize Utility’s MODIFY command to change these quotas. For
example:

UAF> MODIFY USER_J/PGFLQUOTA=23921

3-36 VAX C Support for Parallel Processing

3.9.4 Other Tuning Considerations

m Parallel-processing applications typically use large amounts of memory.
To get better performance for an application, you may want to make
adjustments to the working set size parameters (WSMAX, WSQUOTA, and
WSEXTENT) both for the system and for user accounts. See the Guide to
VMS Performance Management for information on how to adjust working set
size.

I ' VAX C Support for Parallel Processing 3-37

VAX C Programming Concepts

Chapter 4
VAX C Tutorial

This chapter is a VAX C tutorial for the experienced programmer. The topics
covered in this chapter are as follows:
¢ C language overview (Section 4.1)
¢ VAX C language overview (Section 4.2)
e Writing a program (Section 4.3)
¢ Producing input and output (I/O) (Section 4.4)
¢ Conditional execution of code (Section 4.5)
* Values, addresses, and pointers (Section 4.6)
ﬁ e Aggregate data structures (Section 4.7)

The text provides detailed examples and short tutorials, as well as pointers
to other chapters in this guide. If you need detailed language information,
see the more detailed chapters in this part of the guide.

4.1 C Programming Language Overview

The C language is a general-purpose programming language that is
manageable due to its small size, flexible due to its ample supply of
operators, and powerful due to its utilization of modern control flow and
data structures. The C language was originally designed and implemented
on a UNIX® system with the PDP-11. The designers of the language spoke
of its functionality as follows:

“The [C] language . . . is not tied to any one operating system or
machine; and although it has been called a ’ system programming

® UNIX is a registered trademark of American Telephone and Telegraph Company in the U.S. and other
countries.

‘ i VAX C Tutorial 4-1

language’ because it is useful for writing operating systems, it has
been used equally well to write major numerical, text-processing, and

database programs.”!

Like assembly language, C was not designed to accommodate the needs of
any particular application. C manipulates and stores data with regard to
the similarities of modern machine architecture. Despite their similarities,
C is not as complex as assembler language and is not machine dependent.
C is highly portable, which means that you can compile and run C source
programs using different compilers on different machines.

There is no ANSI or other industry-wide standard for the C programming
language at the time of publication (although the ANSI C committee is in
the late stages of developing such a standard). Also, there is a consistency
of functionality between implementations. There must be consistency if C is
to be portable across systems, and this is one of the most desirable features
of the language. So, not only must C source programs be portable, the
language features themselves must produce the same effects on all systems
when you compile and run programs.

The C language was developed in a UNIX system environment, and

eventually was used to rewrite most of that operating system, so many

standard methods of operation in C are related to UNIX. For instance,

UNIX systems access files by a numeric file descriptor, so C implementations

should provide functions to access files by file descriptor. In a UNIX system
environment, you can expect a concise command structure, an ability to v
redirect output from one program or command to the input of another —
program or command, an ability to create asynchronous and synchronous
subprocesses, and an ability to manipulate the operating system features

without many restrictions and system safeguards.

Some standard C constructs include preprocessor directives and a run-
time library of functions and macros. In a UNIX system environment, a
preprocessor completes the tasks designated in the preprocessor directives
located in the source code before the compiler takes any action.

Since the C language has no means to input and output information, a run-
time library usually provides this service. If a run-time function produces
side effects other than those produced in the UNIX system environment,
the function’s portability is questionable. For a complete discussion of
portability, see the VAX C Run-Time Library Reference Manual.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, New Jersey:
Prentice Hall, 1978), p. 1.

4-2 VAX C Tutorial v

4.2 VAX C Programming Language Overview

The VAX C programming language incorporates the features that are
fundamental to the C language and that exist in most C compilers.
However, VAX C also provides features, unique to VAX C, that work
directly and efficiently with the VMS operating system environment. You
must decide which set of features of VAX C are most important to your
programming needs: portability across systems or efficient use of the VMS
operating system features. Choosing one set of features over the other has
its benefits as well as disadvantages.

If you choose to program in VAX C so that your source programs are highly
portable across systems, you sacrifice efficiency to some degree. For the
VAX C Run-Time Library (RTL) to emulate UNIX system features, which it
must do to maintain a satisfactory degree of portability, VMS features may
have to be manipulated, causing a loss of efficiency. For example, a UNIX
system accesses a file using a structure called a file descriptor, but VAX
Record Management Services (RMS) access files using a variety of control
structures. In VAX C, I/O functions appear to access files in the same
manner as UNIX systems, but the run-time library actually manipulates
RMS structures, making it appear as though you are working in a UNIX
system environment. Most of the VMS manipulation is transparent to you,
but can slow the execution of a program in some instances.

Most of the differences between VAX C and other implementations—
differences that hinder the portability of source code—evolved due to the
differences between VMS and UNIX systems. For example, it is difficult for
VAX C to create an environment that gives you a great amount of control, as
in a UNIX system environment, when a VMS system environment will not
grant you such control; I/O redirection is not a part of the VMS command
line syntax; creating subprocesses on VMS systems is not as efficient as

it is on UNIX systems; and, VMS high-level languages do not implement
preprocessors in the same manner as languages on a UNIX system. In this
guide, differences between VAX C and other implementations are flagged in
the text so that you can use nonportable VAX C constructs efficiently.

If you choose to program in VAX C so that your program works with the
VMS system in an efficient manner, you sacrifice, to some degree, the option
of being able to port your programs to and from other systems. For example,
you can call the VMS Run-Time Library (RTL) routines within VAX C
programs.

VAX C Tutorial 4-3

However, you can have portability and efficiently access the powerful VMS
environment. You can use special constructs of VAX C and the DIGITAL
Command Language (DCL) (such as the VAX C preprocessor substitutions
and the DCL command-line qualifier /STANDARD=PORTABLE). These
constructs allow you to execute some segments of code only when running
on a VMS system, and to execute other segments of code when running

on systems other than a VMS system. For more information about the
preprocessor directives, see Section 11.1.7. For information about the VAX C
compilation qualifiers, see Section 1.3.2.

4.3 Writing a Program

In an effort to keep the examples in this tutorial simple so that you can
concentrate on the concepts, the first program presented here adds two
numbers and stores the total in a variable. Example 4-1 shows how to code
such a program.

Example 4-1: Simple Addition in VAX C

o /* This program adds two numbers and places the sum in *

* the variable total. */
emain() /* The function name "main" */
{ /* Begins function body */

(3] int total; /* Variable of type "int" */
/* Blank lines are allowed */

(4] total = 2 + 2; /* Answer placed in "total" */
} /* Ends the function body */

Key to Example 4-1:

@ The text bordered by the characters (/*) and (*/) are comments. You
cannot place comments within comments (that is, they cannot be nested),
but you can place comments anywhere white space is allowed. White
space is an area within the source code where blank spaces or blank
lines separate code. In later chapters, permitted white space is defined
for VAX C constructs.

® VAX C programs are comprised of user-defined external functions that
cannot be nested. Here, a function named main is defined. In VAX C,
execution of a program begins at either a function named main or at
a function defined using the main_program option, or both. If a user-
specified main function does not exist, the first function in the program
stream at the time external references are resolved is the default main

4-4 VAX C Tutorial

function. The main_program option is VAX C specific and is not portable.
For more information about the syntax and usage of the main_program
option, see Section 5.1.1.

VAX C functions have methods of exchanging information using param-
eters and arguments. In the function definition of main, the lack of
parameters is designated by the empty parentheses. In Example 4-1,
the function main cannot receive information using parameters.

To specify parameters in a function definition, list the parameter iden-
tifiers within the parentheses and separate them with a comma (,).
You must declare the parameters before the beginning of the body of
the function. If you call a function from within function main (you
normally do not call the main function from another part of your pro-
gram), the function name is followed by a list of arguments delimited by
parentheses and separated by commas. The number of arguments must
correspond with the number of parameters in the function declaration.
In Example 4-1, there are no function calls.

The function performs its task as determined by the statements found in
the body, and may or may not return a value to the calling expression.
The body of the function main is delimited by braces ({}). They are
similar to the DO-END of PL/I, or the BEGIN-END of Pascal. The body
usually contains one or more return statements. A return statement
specifies what, if anything, is returned to the expression that called

the function. Depending on the set-up of the function, you can omit

the return statement, and its return value will remain undefined. If a
function does not return a value, you can declare the function to be of
data type void. For more information about functions, see Section 5.1.1.
For more information about function parameters, see Section 5.1.2.

In the example, the variable total is declared and defined within the
function main. You usually declare all variables before referencing
them within the program. Declarations end with a semicolon (;). If
you declare a variable, you specify its data type. Data types specify
the amount of storage required and how to interpret the stored object.
For example, variable total is of the data type int (integer), the object
of which requires 32 bits (4 bytes or 1 longword) of memory. VAX C
interprets variables of type int as integers having a positive or negative
sign (or zero).

When you define a variable, you specify its storage class, which affects
its location, lifetime, and scope. Variables declared within a function
have a default storage class of auto (automatic). Variables of this
storage class receive storage space when the function is activated and
storage is freed when control of the calling function resumes. Not all
storage classes are implemented by default. You can specify all VAX C

VAX C Tutorial 4-5

storage classes and may place the storage-class keyword either before or
after the data-type keyword in the variable declaration.

Data types and storage classes are very important when determining
the scope of a variable. For more information about data types, see
Chapter 8. For more information about storage classes, see Chapter 9.

Keywords are the reserved words used to identify data types (such as
int, double), storage classes (such as auto, globalvalue), statements
(such as if, goto), and operators (such as sizeof). Keywords are prede-
fined and cannot be redeclared. You cannot use these words to identify
variables and functions in your programs. You must express keywords
in lowercase letters. For a list of the VAX C keywords, see Section 5.6.

VAX C is a case-sensitive language. You can declare variables such

as total in any mixture of upper- or lowercase letters. If you reference
variable total in your program, the reference also must be lowercase. For
example, if you attempt to reference variable Total, an error occurs; the
compiler does not recognize the variable name due to the initial capital
letter.

O The sum of 2 + 2 is stored in variable total. This is accomplished
using a valid VAX C statement. You can use any valid expression as a
statement by ending it with a semicolon (;). Identifier total is a declared
variable; the equal sign (=) and the plus sign (+) are valid VAX C
operators; and the numbers being added are valid constants. For more
information about the various VAX C statements, see Chapter 6. For
more information about the VAX C operators, see Chapter 7.

4.4 Producing Input/Output (1/0)

The C language includes no facilities to administer input or output (I/0).
However, all implementations must have methods that allow the programs
and users to communicate. The lack of communication in Example 4-1 is
inconvenient; there is no way to know if the program assigns the correct
value of 4 to variable total. You can use a VAX C Run-Time Library (RTL)
function to output the value of variable total to the terminal.

All C compilers are accompanied by a run-time library of functions and
macros in order to perform input, output, and various tasks related to
specific operating environments. The VAX C RTL provides many of the
functions and macros that are included with other implementations of the C
language. In addition, there are functions that work directly and efficiently
with the VMS environment.

4-6 VAX C Tutorial

/

W

Before you can execute any of the example programs in this manual, you
have one of two options. You can link against the VAX C RTL in an object
code library or in a shareable image. Both methods require instructions to
be passed to the linker so that the linker knows the location of the correct
versions of the functions or macros you wish to use.

If you want to use the VAX C RTL as an object library, you must de-

fine, in the correct order, the libraries the linker must search to resolve
references to VAX C RTL functions. All the VAX C RTL object code
modules are located in the libraries SYS$LIBRARY:VAXCCURSE.OLB,
SYS$LIBRARY:VAXCRTLG.OLB, SYS$LIBRARY:VAXCRTL.OLB. and
SYS$LIBRARY:VAXCPAR.OLB. To determine in which order to define these
libraries, see Section 1.4.5.2. For general information about libraries, see
Section 1.4.5.1.

If you prefer to use the VAX C RTL as a shareable image, see Section 1.4.5.3
for more information. VAX C RTL macro references within program source
code look just like function references. However, the compiler replaces macro
references with VAX C source code at an early stage in the execution process.
The compiler locates VAX C RTL macro source code in the .H definition files
provided with VAX C. If your system manager extracted these .H files during
installation, you can access the files in the directory SYS$LIBRARY. For
example, you can type the STDIO.H file at your terminal with the following
command:

$ TYPE SYSSLIBRARY:STDIO.H

If this command causes an error, see your system manager about the
extraction of the .H files during installation. It is a good idea to type or
print all of the .H files to see the macros and definitions provided with
VAX C.

You can also locate the .H definition files in text library VAXCDEF.TLB
located in directory SYS$LIBRARY. This guide refers to the .H files as
definition modules since they can be accessed as modules in this text library.

For more information about macros, see Section 10.1.3. For more informa-
tion on the various methods of accessing VAX C RTL functions, see the VAX
C Run-Time Library Reference Manual.

Example 4-2 shows that by using the VAX C RTL function printf, a VAX C
program can print a message to the terminal.

VAX C Tutorial 4-7

Example 4-2: Output of Information

/* This program adds two numbers, assigns the value 4 to *

* variable total, and then prints the answer on the *
* terminal screen. */
"#include stdio /* Good programming practice when *
* using I/O functions. x/
main ()
{
int total;
total = 2 + 2;
/* Print intro string */
9 printf ("Here is the answer: ");
printf("%-d.", total); /* Print the answer */

}

Key to Example 4-2:

@ When you are using any of the I/O functions, it is good programming
practice to include the definition module that is appropriate for that
function (see the VAX C Run-Time Library Reference Manual). In the
case of printf, you should include the stdio module, which is located in
the text library SYS$LIBRARY:VAXCDEF.TLB. This module contains
function prototypes and macro definitions that are used by many I/O
functions.

@ The VAX C RTL function printf writes to the standard output file (the
terminal screen). The first call to the VAX C RTL function printf passes
a string as the argument. The second call to printf passes a string with
special formatting characters and a variable as arguments. Within the
formatting string, the percentage sign (%) is replaced by the value of
total, the minus sign (-) left-justifies the output, and the letter d forces
the value of the argument to be expressed as a decimal number. The
period (.) prints immediately after the value of total.

The output for Example 4-2 is as follows:
Here is the answer: 4.

If you want to print the value of total on a separate line, then the newline
character (\n) must be added to the string. Example 4-3 shows how to
output on two lines.

4-8 VAX C Tutorial

\J

Example 4-3: Output Using the Newline Character

/* This program adds two numbers, stores the sum in the *
* variable total, and then prints the answer on two
* separate lines on the terminal screen. x/

#include stdio

main ()

{

int total;
total = 2 + 2;

/* Print intro string *x/
printf ("Here is the answer ... \n");

/* Print the answer *x/

printf("%-d.", total);

Output from this program is as follows:

Here is the answer . . .
4.

Now that a program producing output has been presented, it is necessary
to compile, link, and execute the program using DCL to see the results.
Compiling a program translates the source code to object code; linking a
program organizes storage and resolves external references (for example,
references to VAX C RTL functions); and running a program executes the
image.

In the VMS environment, a file is distinguished by a file name and a file
extension. Choose the file name so that the file is easily identifiable to the
user. Choose the file extension to reflect the functionality of the file. For
example, the file name ADDITION.C is a good name for a VAX C source
program. The file extension .C is the default file extension for the VAX C
compiler. If the file name ADDITION is given to the VAX C compiler, the
compiler will look for the file ADDITION.C.

After you create and name your program, the program can be compiled,
linked, and executed as follows:

$ DEFINE LNKSLIBRARY SYSSLIBRARY:VAXCRTL.OLB[RETURN]
$ CC ADDITION.C[RETURN]

$ LINK ADDITION.OBJ[RETURN]

$ RUN ADDITION.EXE[RETURN]

Here is the answer . . .
4.
$

The .OBJ and .EXE extensions are the default file extensions assigned to the
object file and the image file, respectively.

VAX C Tutorial 4-9

You may have to define more libraries to the linker or use shareable images
in order to use VAX C RTL functions in your program. The definition in
Example 4-3 is sufficient to execute all example programs in this chapter,
if you have the object libraries installed on your system. After you define
the libraries, you do not have to define them again for the remainder of the
terminal session (until you log out). For more information on the compilation
process, see Section 1.3. For more information on accessing the VAX C RTL
in an object library, see Section 1.4.5.2. For information on using the VAX C
RTL as a shareable image, see Section 1.4.5.3.

4.5 Conditional Execution of Ccde

There will be occasions when you must execute one or more VAX C
statements given a certain condition. There will be other occasions when
you must execute one or more VAX C statements repeatedly, within the body
of a loop, until you meet a certain condition. There are several statements in
VAX C that accomplish these tasks. These statements are the if statement,
the switch statement, the do statement, and the for statement. For
information about the while statement, another statement that loops until
meeting a condition, see Section 6.4.2.

4.5.1 The if Statement

4-10

When executing one or more VAX C statements given a certain condition,

you can use the if statement. Example 4—4 shows a program using the if
statement.

VAX C Tutorial

—

W/

(\

Example 4-4: Conditional Execution Using the if Statement

/*
*
*
*

This program asks the user to guess a letter. The *
program tells whether the answer’s correct or *
incorrect. The program is hard coded to accept 'a’ or *
'A’' as the correct letter. */

#include stdio

main ()

{

char ch; /* Declare a character */
/* Ask the user to guess */
printf ("Guess which letter I’m thinking of!\n");

ch = getchar(); /* Get the character */
/* Correct = "a" or "A" *x/
if (ch == ’'a’ || ch == "'A'")
/* 1f correct guess *x/

printf ("You’re right!");
else /* If incorrect guess */
{
printf("You’re wrong.\n");
printf("You’ll have to try again!");
}

Key to Example 4—4:
© The VAX C RTL function getchar retrieves a character from the stan-

dard output device (the terminal). The program pauses, waiting for the
user to type a character and to press the RETURN key. The function
getchar retrieves one character and ignores any others that are typed
in.

If the letter that the user types is either 'a’ or 'A’, then a message
stating that the choice is correct is displayed. If any other letter is
typed, then a message stating that the choice is incorrect prints. The
equality operator (==) compares the variable ch with the constants
ra’ and ’'A’. The logical OR operator (| |) presents the condition to
test. If there is more than one statement to be executed upon condition,
then you must enclose the statements within braces ({ }). A statement
or statements enclosed within braces is called a block or compound
statement. The concept of blocks is important when determining the
scope of variables. For more information about blocks, see Section 5.7.

VAX C Tutorial 4-11

The output for Example 44 is as follows:
$ RUN EXAMPLE4

Guess which letter I’m thinking of!
B [RETURN]

You’re wrong.

You’ll have to try again!

4.5.2 The switch Statement

The switch statement can perform the same task as the if statement does
in Example 4-4, but switch is useful when many conditions must be tested.
Example 4-5 uses the switch statement.

Example 4-5: Conditional Execution Using the switch Statement

/* This program plays the same guessing game as the
* previous example except that it uses the switch *
* statement. *x/

#include stdio
"#include ctype /* Include proper module x/

main ()
{

char ch;

printf ("Guess what letter I'm thinking of!\n");
ch = getchar();

(2] ch = _tolower(ch); /* Convert "ch": lowercase */
switch (ch) /* Examine "ch" */
{ /* Body of switch statement */
case ’a’
printf ("You’re right!");
return;
default : /* Any other answer *x/

printf("You’re wrong.\n");
printf ("You’ll have to try again!");

Key to Example 4-5:

©® When using the macro _tolower, you must include the definition module
ctype in the compilation process. The module ctype is located in the
text library SYS$LIBRARY:VAXCDEF.TLB, and defines macros and
constructs used for character processing and classification.

4-12 VAX C Tutorial

In VAX C, the preprocessor directives are processed by an early phase
of the compiler, not by a separate program as the name preprocessor
implies. Directives, unlike other VAX C lines of source code, begin with
a pound sign (#). The pound sign must appear in column 1—the far
left margin of your source file. Do not end preprocessor directives with a
semicolon.

The module ctype is not the only module that contains macros and
definitions used by the VAX C RTL functions; there are several ways to
include definitions in the program stream. For more information about
the VAX C RTL and the definition modules, see the VAX C Run-Time
Library Reference Manual.

® The compiler replaces the reference to the _tolower macro with a line of
VAX C source code that, when the program is run, translates the value
of the variable ch to a lowercase letter. To see the macro definition of
_tolower, print the file SYS$LIBRARY:CTYPE.H if it is available on
your system. For more information about the possible side effects of
macros, see Section 10.1.3.

The output for Example 4-5 is as follows:
$ RUN EXAMPLES [RETURN]

Guess which letter I’'m thinking of!
A [RETURN]

You’re right!

The switch statement executes one or more of a series of cases based on
the value of the expression in parentheses. If the value of variable ch is
ra’, then the statements following the label case 'a’ : are executed. In
Example 4-5, the _tolower macro translates all alphabetic answers to
lowercase letters, so there is no need to test for uppercase letter ' A-’.

When a case label is matched with the value of expression ch, all the
statements following the remaining case labels are executed until the
compiler encounters a break statement (which terminates the immediately
enclosing statement), a return statement (which terminates the enclosing
function), or the end of the switch statement. The statements following the
default label are executed if the value of the expression does not match any
of the other case labels. For more information about switch statements, see
Section 6.3.2.

VAX C Tutorial 4-13

.

4.5.3 Loops

In the previous examples, you could only guess once during the execution of u

the program. To guess another letter, you had to execute the program again.
If you want to execute a segment of code repeatedly until a condition is met,
you may use a loop. Some loops execute a block of statements, known as
the loop body, a specified number of times. Some loops test for a condition
first and then execute the body of the loop if the condition is true. Some
loops execute the loop body and then test for a condition, which guarantees
at least one execution of the body. In VAX C, this last loop is called the do
statement. Example 4-6 shows that you can use the do statement to alter

the letter-guessing program.

Example 4-6: Looping Using the do Statement

/* This program plays the same guessing game as the

* other examples except that the user must guess until
the answer is correct. This is accomplished using a

* do statement.

#include stdio
#include ctype

main ()
{

char ch;

printf ("Guess what letter I'm thinking of!\n");
printf ("Keep guessing till you get it!\n");

do /* Do the following .
{ /* Beginning of loop body
ch getchar();
ch = _tolower(ch);
switch (ch)
{

*

*/
*/

case 'a’
printf ("You’re right!");
return;
/* Ignore RETURN (newline) ch */
" case ’'\n’:
break;

(continued on next page)

4-14 VAX C Tutorial

Example 4-6 (Cont.): Looping Using the do Statement

default
printf("You’re wrong.\n");
printf("You’ll have to try again!\n");

} /* End of switch statement */
} /* End of do loop body */
/* Condition to be tested */
® while(ch !'= ra’);

}

Key to Example 4-6:

@ In this example, the case label tests to see if the value of the character
is a newline character (\n). The newline character is entered when you
press the RETURN key. If it is the newline character, the character is
ignored and a new character is taken from the terminal.

@® The while expression at the end of the do statement uses the not equal
to operator (!=) and translates as follows: “while the variable ch is not
equal to a’ AND ch is not equal to ‘A-.”

The output for Example 4-6 is as follows:
$ RUN EXAMPLE6

Guess which letter I'm thinking of!
Keep guessing till you get it!

B [RETURN]

You’re wrong.

You’ll have to try again!

A
You’re right!

You can use the for statement to specify the number of times to execute the
loop body; in regard to the previous examples, it can be used to limit the
number of guesses that the user may attempt. Example 4-7 shows how to
use the for statement.

VAX C Tutorial 4-15

O

| Example 4-7: Looping Using the for Statement

/* This program plays the same guessing game as the

* previous examples except that the user is limited to *
* three guesses. This is accomplished using a for *
* statement. *x/

#include stdio
#include ctype

main ()
{
char ch;
int i; /* An incrementor for loop */

printf ("Guess what letter I’'m thinking of!\n");
printf ("You have three guesses. Make them count!\n");
/* Do the following 3 times */
Q@ for (i=1;i<=3; it+)
{ /* Beginning of loop body */
ch = getchar();
ch = _tolower(ch);
switch (ch)
{

case ’'a’' :
; printf("You’re right!");
‘ return;
! case ‘\n’:
| (2] -=i;
{ break;
! default :
' printf ("You’re wrong.\n");
if (1 !'= 3)
printf("You’ll have to try again!\n");
} /* End of switch statement */
} /* End of for loop body */
printf("Sorry, you ran out of guesses!"™);
}
Key to Example 4-7:

© In the example, the for statement controls how many times the body
of the loop is executed. The first expression inside the parentheses
following the keyword for initializes loop incrementor i to the value 1.
The second expression establishes an upper bound; the value of variable
i is not to exceed 3. The third expression establishes the increment
or decrement value of the variable that will be executed after every
execution of the loop body. The double plus signs (++) are the increment
operator; they increase the value of a variable by the integer 1. The loop
body is executed, and the value of variable i increases by 1 each time,
until the value of i is greater than 3.

4-16 VAX C Tutorial

W)

® The double minus signs (- —) are the decrement operator. The decre-
ment operator is used in this example to subtract 1 from the value of
variable i so that newline characters are not counted as the guess of a
letter.

A sample output for Example 4-7 is as follows:

$ RUN EXAMPLE7[RETURN]

Guess which letter I’'m thinking of!
You have three guesses. Make them count!
B [RETURN]

You’re wrong.

You’ll have to try again!

c [RETURN]

You’re wrong.

You’ll have to try again!

U [RETURN]

You’re wrong.

Sorry, you ran out of guesses!

4.6 Values, Addresses, and Pointers

In VAX C, every variable has two types of values: a memory location and a
stored object. In VAX C, an lvalue is the variable’s address in memory, and
an rvalue is the stored object. Consider the following example:

put_it_here = take_this_object;

This assignment statement is not very different from statements in other
programming languages, but think about the differences between locations
in memory and objects stored in memory. This assignment takes take_this
object’s rvalue and places it in memory at put_it_here’s lvalue.

Consider the following VAX C assignment statement:

int x =2, vy;

/* put_it_here take_this_object; */

y = X;
The two distinct variables have different memory locations (lvalues), but,

after the assignment statement, they contain objects of the equivalent
value 2.

A variable’s rvalue can be an integer, a real number, a character string, or
a data structure. The rvalue can also be the address of another variable.
In other words, a variable’s rvalue can be another variable’s lvalue. In this
case, one variable points to another variable.

VAX C Tutorial 4-17

A declaration of a variable whose rvalue is a pointer to another variable is
as follows:

int “*pointr; u

The indirection operator (*) specifies that the variable is a pointer, which in
this example points to an object of data type int. Pointers are declared as
pointing to an object of a particular data type.

You can assign the address of a variable to the pointer as follows:

static int *pointr; /* Declarations */
static int x = 10, y = 0;

pointr = &x; /* Assignment x/

The rvalue of the variable pointr is the lvalue of variable x. In other
example assignment statements, the rvalue of the variable on the right side
of the equal sign (=) was taken. In this example, the ampersand (&), which
is the address of operator, translates to the following: “take the lvalue of
this variable instead of its rvalue.”

The static keyword specifies the static storage class. For general informa-
tion about storage classes and the scope of variables, see Section 9.1. For
information about the static storage class, see Section 9.4.

Figure 4-1 shows the difference between rvalues and lvalues.

4-18 VAX C Tutorial u

Figure 4-1: rvalues, Ivalues, and Assigning Pointers

ivalues rvalues Variable
(addresses) (objects) Identifiers
1400 ~————— -
10 X
141F ~——fF——— .
pointr
1400
/
14F2 ~————— -
0 y
ZK-3019-GE

The value of the variable pointr contains the address of variable x.
Remember that the location of variables in memory and the order in which
the compiler processes them is unpredictable and left to the discretion of the
compiler.

After you assign an address to the pointer, you will want to use it. For
example, if you want to assign x’s rvalue to a variable y, you can use the
pointer in a VAX C statement as follows:

y = *pointr;

VAX C Tutorial 4-19

The asterisk (*) is the VAX C indirection operator; the object of the variable

being pointed to by pointr is assigned to y. The indirection operator trans- B
lates as follows: “the rvalue of this variable points to some other variable,]
so go to that location and access the stored object.” Figure 4-2 shows the U
status of the variables after you execute the last code example.

Figure 4-2: The Indirection Operator in Assignments

lvalues rvalues Variable
(addresses) (objects) Identifiers
1400 -————— -
10 X
141F ~————— -
pointr)
1400 ‘ ’

[N N]

ZK-3020-GE

4-20 VAX C Tutorial u

For detailed information about lvalues and rvalues, see Section 7.1. For
more information about pointers, see Section 8.5.

4.7 Aggregates

The variables used in the previous examples were either pointers or single
objects that could be manipulated, in their entirety, in an arithmetic
expression. These types of variables are called scalar variables. The VAX
C data structures—arrays, structures, and unions—are called aggregates.
Aggregates are comprised of segments called members. Members are
sections of the structure that you can declare to be of a scalar or an
aggregate data type.

The following sections discuss arrays, character strings, structures, and
unions.

™

4.7.1 Arrays and Character Strings

An array is a data structure whose members are of the same type. Members
of arrays can be any of the scalar or aggregate data types.

In VAX C, character strings are represented internally as arrays of type
ﬁ char. You may declare and initialize a character string as a character-string
o variable using the indirection operator (*), as an array of a specified number

of members, or as an array of an unspecified number of members, as follows:

char *str = "Hello";
char string[6] = "Hello";
char string[] = "Hello";

In VAX C, all character strings end with the NUL character (\0/). In
the previous example, the NUL character is appended to Hello making the
string six characters in length. When assigning strings to character-string
and array variables within the executable portion of the program, you must
use the string-handling VAX C RTL functions. For more information about
the string-handling functions, see the VAX C Run-Time Library Reference
Manual. Example 4-8 shows the use of character strings and arrays.

’ ' VAX C Tutorial 4-21

Example 4-8: Character-String Constants and Arrays

/* This program plays the same guessing games as the
previous examples except that it uses character-
* string constants and arrays.

#include stdio

main ()
{

char ch; /* Declare a character

/* Initialize messages

"Guess which letter I’m thinking of!";
"You’re right!";
"You’'re wrong.";
"You’ll have to try again!";

char *greeting
char *messagel
char *message2
char *message3
char correct(2];

correct[0] = 'a’; /* Store correct letters
correct[l] = 'A’;
printf("$s\n", greeting); /* %s = char string
ch = getchar();
if (ch == correct([0] || ch == correct([1l])
printf("%s", messagel);
else

{
printf ("%$s\n", messagel);
printf("%s", message3);

}

*/
*/

*/

*/

The output for Example 4-8 is as follows:
$ RUN EXAMPLES [RETURN]

Guess which letter I'm thinking of!
5 [RETURN]

You’re wrong.

You’ll have to try again!

For more information about arrays, see Section 8.7. For more information

about character strings, see Section 8.8.

4.7.2 Structures and Unions

Structures and unions are aggregates whose members can be of different
types. Structures and unions are declared using the keywords struct and
union, an optional tag name, and a list of member declarations delimited
by braces ({}). A member of a structure or a union is a declared segment
of the data structure. The syntax for declaring a member is the same as for
declaring any variable. The structure or union tag is a name that can be
used when declaring structure or union variables of the same type elsewhere

4-22 VAX C Tutorial

W)

in the program. Members of structures and unions may be referenced as
follows:

main()
{
struct optional_tag /* Tag = optional_tag */
{
char letter_ 1;
char letter_2;
int number;
} characters = {’a’, 'b’, 59}; /* Variable = characters */

characters.letter_1 = characters.letter 2;
}

You may reference members using the structure or union variable name,
directly followed by a period (.), directly followed by the member name. As
in the previous example, structures are initialized using a variable name
and an assignment operator (=) immediately following the declaration of the
members. The values of the members are delimited by braces and separated
by commas (,). The address of the first member of a structure begins, in
memory, at the base of the data structure, which is referred to as offset zero.

Unions are declared in the same way as structures, but all members in a
union begin at offset zero. Unlike structures, unions cannot be initialized.
The size of the union in memory is as large as its largest member. When
the single storage space allocated to the union contains a smaller member,
the extra space between the end of the smaller member and the end of the
allocated memory remains unaltered. Example 4-9 shows the nature of
unions.

VAX C Tutorial 4-23

Example 4-9: Single Storage Allocation of Unions

/* This example shows the storage maintenance of * \
* unions with different size members. */ u

#include stdio

main ()
{
union /* Declare the union *x/
{
char lastname[8]; /* Array for a last name */
char firstinit; /* Char. for first initial */

} overlap;
/* Copy and print members */
strcpy (overlap.lastname, "Jackson");

printf("$s\n", overlap.lastname);

overlap.firstinit = 'M’;

printf ("%c\n", overlap.firstinit);
printf ("$s\n", overlap.lastname);

The output for Example 4-9 is as follows:
$ RUN EXAMPLE9.EXE

Jackson
M
Mackson

The VAX C RTL function strcepy copies the second string argument into the u
first array argument. When assigning values to smaller union members,

the compiler does not fill the remaining space with NUL characters (- \0’);
whatever was in memory at the time remains. For more information about
structures and unions, see Section 8.9.

Example 4-10 shows a structure definition and its usage.

4-24 VAX C Tutorial u

Example 4-10: Structures

/* This program plays the same guessing game as the *
* previous examples except that it uses a structure. */

#include stdio

main ()

{
char ch;
char *greetingl = "Guess which letter I’'m thinking of!";
char *greeting2 = "You’ve 3 guesses. Make them count!";
char *messagel = "You’re right!";

I

char *message2
char *message3

"You’re wrong.";
"You’ll have to try again!";

char *message4 = "Sorry, you ran out of guesses!";
int i;
/* Store information *x/
struct storage /* Structure tag = storage */
{
char small_a; /* One correct letter */
char capital_a; /* Another correct letter */
char newline_ch; /* newline character */
int num_guesses; /* Number of guesses */

};

/* Declare "letter"
* using tag "storage" */
struct storage letter = {’a’, 'A’, '\n’};

letter.num_guesses = 3;
printf ("%$s\n", greetingl);
printf("%$s\n", greeting2);

for (i = 1; i <= letter.num_guesses; i++)
{
ch = getchar();
if (ch == letter.small_a || ch == letter.capital_a)
{
printf("%s", messagel);
return;
}
else
if (ch == letter.newline_ch)
-—i;
else
{
printf ("$s\n", message2);
if (14 != 3)
printf ("$s\n", message3);

(continued on next page)

VAX C Tutorial

4-25

Example 4-10 (Cont.): Structures

} /* End of for loop body *x/ ‘) ’
printf("%$s", messaged);

Key to Example 4-10:

© In the example, the structure declaration with the tag storage has four
members. The first three members are of type char. The last member is
of type int.

@ The variable letter is declared using the tag storage and individual
members of the structure are initialized. The equal sign initializes the
members of the structure variable with constants. The constants are
separated by a comma and are delimited by braces. The number of
initializing constants cannot exceed the number of members. However,
as in this example, you may omit constants; the compiler pads the
uninitialized member (in the example, member num_guesses) with zeros.
However, you cannot initialize a member in the middle of any aggregate
without initializing the previous members.

The output for Example 4-10 is as follows:
$ RUN EXAMPLE10[RETURN]

Guess which letter I’m thinking of! ‘)
You’ve 3 guesses. Make them count!
B [RETURN]

You’re wrong.

You’ll have to try again!

C |RETURN

You’re wrong.

You’ll have to try again!

U

You’re wrong.

Sorry, you ran out of guesses!

After executing these program examples, you are well on your way to
programming in VAX C.

4-26 VAX C Tutorial u

Chapter 5

Program Structure

A VAX C program is a group of user-defined functions that cannot be nested
(you cannot define functions within other function definitions). This chapter
describes the following components of program structure:
e Function definitions (Section 5.1)
e Function declarations (Section 5.2)
¢ Using function prototypes (Section 5.3)
¢ Using function parameters and arguments (Section 5.4)
¢ Identifiers (Section 5.5)
m ¢ Keywords (Section 5.6)
¢ Blocks (Section 5.7)
¢ Comments (Section 5.8)
¢ LINT-like functionality (Section 5.9)

5.1 Function Definitions

You may declare or define functions you wish to call or use in a VAX C
program. You may or may not have to declare user-defined functions before
you call them. This depends on what type of value the function returns, and
the position of the function definition within the program. The following
sections explain the rules for defining functions.

In a function definition, you specify the VAX C statements that execute
whenever you call the function. You also specify the parameters (if any)
of the function. The parameters of a function provide a means to pass
data to the function. See Section 5.4 for a detailed discussion about using
parameters and arguments.

Program Structure 5-1

o

()

Example 5-1 presents an example of two function definitions.

Example 5-1: Case Conversion Program u
/* This program converts its input to lowercase. The *
first function passes control to the second function *
to convert a letter. Comments are located to the *
right of the code. x/
#include stdio /* To use I/0 definitions */
main ()
{
FILE *infile, *outfile; /* Declare files *x/
int i, ¢, c_out;

/* Open "infile" for input */
infile = fopen("ex113.in", "r");

/* Open "outfile" for output */
outfile = fopen("exll3.out", "w");

/* While not end of file .. . *x/
/* Get a char from the file */
while ((c = getc(infile)) != EOF)
{
c_out = lower(c); /* Send char to "lower" */

/* Output the char to file */
putc(c_out, outfile);
}

return; /* Optional return statement */ —~
} W/
2 S S
* Beginning of the next function definition: *
K e e e e e e = = = —_——— */
/* Function and parameter *
* name */
9 lower (c_up)
@’int c_up; /* Declare parameter type */
{ /* Beginning function body */
/* If capital, convert */

if (c_up >= A’ && c_up <= 'Z')
return c_up - ‘A’ + 'a’;

else /* Else, return as is */
return c_up;

} /* End of function body *x/
/* End function definition */

Key to Example 5-1:

@ Program execution begins with function main. A left brace ({) signifies
the beginning of the function body; a right brace (}) signifies the end
of the body. The function body is any set of valid VAX C statements or

5-2 Program Structure U

~

declarations. Usually, the body includes one or more return statements,
as shown here. A return statement can specify an expression whose
value is returned to the calling function. If the expression is omitted,
the returned value is undefined in the calling function. If the return
statement is not included, the function terminates when the right brace
is encountered, and its return value is undefined.

® The identifier lower begins a new function definition; function lower has
the single parameter c¢_up. Although function main has no parameters,
the parentheses must be present.

© The next statement, int ¢_up, declares the parameter’s data type; in
this case, int (integer). The declaration is omitted if the function has
no parameters; furthermore, declarations at this place in the program
should specify only the names of parameters, not the names of other
variables used in the function body. For more information about data
types and declarations, see Section 8.2.

For more information about the VAX C operators used in the previous
example, see Section 7.3.

5.1.1 Main Function and Function ldentifiers

The execution of a program begins at the function whose identifier is main,
or, if there is no function with this identifier, at the first function seen by
the VMS Linker. In Example 5-1, the main function physically precedes the
function lower, but the two function definitions can appear in the reverse
order. The word main is not a language keyword, so it may be used for other
purposes in the program.

Function names have compile-time scope rules that are different from those
that apply to other identifiers. Any valid function identifier followed by

a left parenthesis is declared implicitly as the name of a function whose
storage class is external and whose return value is of the data type int. For
more information about scope and storage classes, see Section 9.1.

Between the definition of a function’s identifier and the declaration of its
parameters, you can write the following option:

main_program

The main_program option identifies the function as the main function in
the program. It is not a keyword, and it can be expressed in either upper-
or lowercase. Use the main_program option when the program does not
contain a function named main and when you do not want the program’s
execution to begin at the first function linked. For example, the following

Program Structure 5-3

definition establishes function lower as the main function; execution begins
there, regardless of the order in which the function is linked:

char lower (c_up)

MAIN_PROGRAM

int c_up;

{

NOTE
The main_program option is VAX C specific and is not portable.

5.1.2 Parameter List Declarations

Example 5-1 shows only one of two methods to declare function parameters.
The first method is as follows:

lower(c_up)
int c_up;
{

To make your code concise, you may list the data types of the function
parameters within the parameter list. If you use this method, your function
definition also serves as a function prototype. See Section 5.3 for more
information about the effect of function prototypes.

The second method of declaring parameter data types is shown in the
following code example:

lower(int c_up)

{

For instance, if you need to declare parameters of different data types, your
function definition may appear as follows:

function_name(int lower, int upper, int temp, char x, float y)
{

5-4 Program Structure

If you are using the function prototype format in a function definition,
you must supply both an identifier and a data-type specification for each
parameter. If you do not, the action generates an error message.

In a function definition, you have the following two options when specifying
an empty parameter list:

* You can specify empty parentheses.
* You can use the keyword void to specify an empty parameter list.

The following example shows the use of the void keyword:

char function_name(void)
{ return 'a’; }

5.1.3 Function Return Data Types

By default, all VAX C functions return objects of data type int. In
Example 5-1, function lower returns an integer to the main function
using the return statement.

If you define a function that returns anything other than an integer, you
need to specify the function return data type in the function definition. The
following example shows the definition of a function returning a character:

char letter(int paraml, char param2, int *param3)
{

return param2;
}

If a function does not return a value, or if you do not call the function within
an expression that requires a value, you can define the function as type
void. Using the void keyword in a function declaration generates an error
under the following conditions:

¢ If the function returns a value

¢ If you call the void function in an expression that requires a return
value

e If you use the cast operator to cast anything other than a function to the
void type

Program Structure 5-5

The following example shows how to use the void keyword to specify a
function without a return value and to specify a null parameter list:

void message(void) u

{
printf ("Stop making sense!");
return;

}

5.1.4 \Variable-Length Parameter Lists

If you decide to define a function with a variable-length parameter list, you
can use ellipses (...)in a function prototype declaration to designate the
variable-length portion of the parameter list, as follows:

function_name (int lower, int upper, char x, float y, ...)

{

}

Within the function body, use the stdarg functions and macros to access

the argument list passed to the function. The stdarg functions and macros

provide a portable means of accessing variable-length argument lists. For

more information about variable-length argument lists, see the stdarg

information in the VAX C Run-Time Library Reference Manual. u

When using ellipses for variable-length argument lists, you must have at
least one argument preceding the ellipses. The following definition is legal:

function_name(double lower, ...)

{
o
The following definition is not legal:

function_name(...)

{

}

If you are not using function prototypes, you can use the stdarg header
and declaration within the parameter list and before the function body, as
opposed to using the ellipsis notation. The following example shows such a
construct:

56 Program Structure u

function_name(lower, upper, X, y, va_alist)
int lower, upper;

char x;
float y;
va_dcl
{
NOTE
If you are using function prototypes, use ellipses (...) within

parameter lists so that the compiler does not compare varargs
declarations (va_alist, va_dcl) with prototype data declarations.
See Section 5.3 for more information about function prototypes.

5.2 Function Declarations

As in Example 5-1, you may call a function without declaring it if the
function’s return value is an integer. If the return value is anything else,

the function may have to be declared. Example 5-2 shows when you need to
declare a function.

Example 5-2: Declaring Functions

main ()
{
" char lower(); /* The function declaration */
while ((c = getc(infile)) != EOF)

{
/* The function call *x/
c_out = lower(c);
putc(c_out, outfile);
}

(continued on next page)

Program Structure 5-7

Example 5-2 (Cont.): Declaring Functions

char lower (c_up) /* The function definition */ ‘
int c_up; u

{

Key to Example 5-2:

@ Since the location of the function definition is after the main function in
the source code, and since function lower has a return type of char, you
have to declare the function before calling it.

If the function definition of lower was located before the main function in
the source code, you would not have to declare function lower before calling
the function.

In a function declaration, you can use the void keyword to specify an empty
argument list, as follows:

main ()

{

char function_name(void);
}

char function_name(void)

{1}

If the function does not return a value, you can use the void keyword in the
declaration and definition, as follows:

main ()
{

void function_name();

}
void function_name()

{1}

5-8 Program Structure u

If you specify argument data types or void in the parameter list of a func-
tion declaration, as shown in the following example, VAX C treats the
function declaration as a function prototype for the scope of the declaration:

main ()
{

char function_name(int x, char y);

}

Since the declaration is within the scope of function main, VAX C uses the
function declaration as a function prototype only within function main. See
Section 5.3 for more information about function prototypes.

5.3 Function Prototypes

A function prototype is a function declaration that specifies the data types
of its arguments in the identifier list. VAX C uses the prototype to ensure
that all function definitions, declarations, and calls within the scope of the
prototype contain the correct number of arguments or parameters, and that
each argument or parameter is of the correct data type.

Function prototypes provide argument checking found in the LINT utility
provided with other implementations of C. See Section 5.9 for more
information.

When using function prototypes, you can first define the following function:

char function name(int lower, int *upper, char (*func) (), double y)
{1}

You can also use the following code:

char function_name(lower, upper, func, y)
int lower;

int *upper;

char (*func) ();

double y;

{1}

This function’s identifier list includes an integer, a pointer to an integer, a
pointer to a function returning a character, and a double floating-point value.
The type specifications are identical to the ones used in a parameter list
located before the function body. For more information about interpreting
complex declarations, see Section 8.12.

Program Structure 5-9

In each compilation unit in your program, determine where to place the
corresponding function prototype. The position of the prototype determines

the prototype’s scope; the scope of the function prototype is the same as the

scope of any function declaration. VAX C checks all function definitions, u
declarations, and calls from the position of the prototype to the end of

its scope. If you misplace the prototype so that a function definition,

declaration, or call occurs outside the scope of the prototype, the results are
undefined.

Corresponding function prototype declarations are identical to the header
of a function definition that specifies data types in the identifier list. Since
prototypes are function declarations, you end the prototype code with a
semicolon (;). The following code example is a prototype that corresponds
with either of the previous function definitions:

char function_name(int lower, int *upper, char (*func) (), double y);

When declaring nondefinition function prototypes, you do not need to use the
same parameter identifiers as in the function definition. If you choose, you
do not need to specify any identifiers in the prototype declaration. The scope
of the identifiers within function prototypes exists only within the identifier
list; you are free to use those identifiers outside the prototype.

For example, you can use any of the following prototype declarations for the
function definition presented:

char function name(int lower, int *upper, char (*func) (), double y);
char function_name(int a, int *b, char (*c) (), double d); &
char function_name(int, int *b, char (*c) (), double);

char function_name(int, int *, char (*) (), double);

You can specify variable-length argument lists in function prototypes by
using ellipses. You must have at least one argument in the list preceding the
ellipses. The following example shows the specification of a variable-length
argument list:

char function_name(int lower, . ..):

You cannot omit data-type specifications in a function prototype. Also, you
cannot have a variable-length argument list that is not preceded by at
least one argument. The following prototypes are not legal and their use
generates error messages:

char function_name(lower, *upper, char (*func) (), float y);

char function_name(, , char (*func) (), float y);
char function_name(...);

5-10 Program Structure v

5.3.1 Using Function Prototypes

Using function prototype ensures that all corresponding function definitions,
declarations, and calls within the scope of the prototype conform to the
number and type of parameters specified in the prototype. A function
prototype is considered in scope only if a function prototype declaration is
specified within a block enclosing the function call or at the outermost level
of the source file. If a prototype is in scope, the automatic widening of float
arguments to double is not performed. However, the automatic widening
of char and short int arguments to int is performed. If the number of
arguments in a function definition, declaration, or call does not match the
prototype, the statement generates the appropriate message.

If the data type of an argument in a function call does not match the
prototype, VAX C attempts to perform conversions. If the mismatched
argument is assignment compatible with the prototype parameter, VAX C
converts the argument to the data type specified in the prototype, according
to the parameter and argument conversion rules (see Section 5.4).

If the mismatched argument is not assignment compatible with the proto-
type parameter, the action generates the appropriate error message and the
results are undefined.

The syntax of the function prototype is designed so that you can extract the
first line of each of your function definitions, add a semicolon (;) to the end
of each line, place the prototypes in a .H definitions file, and include that file
at the top of each compilation unit in your program. In this way, you declare
the function prototypes to be external, so that the scope of the prototype
extends throughout the entire compilation unit. To use prototype checking
for VAX C Run-Time Library (RTL) function calls, include the module or
modules appropriate for the VAX C RTL functions used in your program.
You place the include preprocessor directives at the top of any applicable
compilation units.

For basic descriptions of the VAX C RTL prototype include modules,

see Appendix A. For more information about the #include preprocessor
directives, see Section 10.4. For more information about compilation units
and scope, see Section 9.1.

Program Structure 5-11

5.4 Using Parameters and Arguments

VAX C functions can exchange information by means of parameters and U
arguments. (In this guide, the term parameter denotes the variable within
parentheses named in a function definition; the term argument denotes an
expression that is part of a function call.) In Example 5-1, function lower

has the single parameter c_up. When this function is called from the main
function, argument c is evaluated and passed to function lower.

The following rules apply to parameters and arguments of VAX C functions:

¢ The number of arguments in a function call must be the same as the
number of parameters in the function definition. This number may be
zero.

¢ In VAX C, the maximum number of arguments (and corresponding
parameters) is 253 for a single function. The maximum length of an
argument list is 255 longwords.

* Arguments are separated by commas. However, the comma is not an
operator in this context, and the arguments may be evaluated by the
compiler in any order. Do not expect function calls or other complicated
expressions in the argument list to be evaluated in any particular order.

¢ In VAX C, arguments are passed by value; that is, when a function is
called, the parameter receives a copy of the argument’s value, not its -
address. This rule applies to all scalar variables, structures, and unions u
passed as arguments. Function and array names used as arguments
undergo conversions that are described later in this list.

¢ A function cannot modify the values of its arguments. However, since
arguments can be addresses or pointers, a function can use addresses to
modify the values of variables defined in the calling function.

NOTE

When passing arguments between programs written in VAX C
and programs written in other VMS programming languages,
remember the restrictions of the VAX Procedure and Condition
Handling Standard (sometimes called the VAX Calling
Standard). For more information about the VAX Calling
Standard and passing arguments in VAX C, see Section 13.1.

* The types of evaluated arguments must match the types of their cor-
responding parameters. When a function is called, unless a function
prototype is in scope, VAX C does not compare the types of the ar-
guments with those of the corresponding parameters; so it does not
generally convert the arguments to the types of the parameters. Instead,

5-12 Program Structure ' W

all the expressions in the argument list are converted according to the
following conventions:

Any arguments of type float are converted to double.
Any arguments of type char or short are converted to int.

Any arguments of type unsigned char or unsigned short are
converted to unsigned int.

Any function name appearing as an argument is converted to the
address of the named function. You must declare the corresponding
parameter as a pointer to a function, which evaluates to a value of
the same data type as the function.

Any array name appearing as an argument is converted to the
address of the first element of the array. You must declare the
corresponding parameter either as an array of the given type or as
a pointer to the given type. Since character-string constants are
declared implicitly as arrays of characters, this rule also applies to
the use of string constants as arguments.

No other default conversions are performed on arguments. If you know
that a particular argument must be converted to match the type of the
corresponding parameter, use the cast operator. For more information
about the cast operator, see Section 7.4.5.

e If you declare variables in the parameter declaration section that do not
exist in the parameter list, these variables are treated as if they were
declared in the function body. However, this is not good programming
practice and, if used, your programs may not be portable.

¢ Ifyou do not declare parameters, they are implicitly declared to be of
data type int.

The following sections discuss the following topics:

¢ Function and array identifiers as arguments
¢ Passing arguments to the main function

5.4.1 Function and Array Identifiers as Arguments

You can use a function identifier without parentheses and arguments. In
this case, the function identifier evaluates to the address of the function.
This method of referencing is useful when passing a function identifier in an
argument list. You can pass the address of one function to another as one of
the arguments.

Program Structure 5-13

If you wish to pass the address of a function in an argument list, the

function must either be declared or defined, even if the return value of

the function is an integer. Example 5-3 shows when you must declare u
user-defined functions and how to pass functions as arguments.

Example 5-3: Declaring Functions Passed as Arguments

"x() { return 25; }

/* Defined before it is *
* used */
int z[10];
main ()
{
e) int y(); /* Function declaration x/
@’ funct (x, y, 2z): /* Passed as addresses */
}
y() { return 30; } /* Function definition */
funct (£1, £2, a) /* Function definition *x/ ;
/* Declare arguments as * u
* pointers to functions *
* returning an integer *x/
int *a;
O inc (*£1) 0, (*£2) 0;
{

(*£1) (); /* A call to a function *x/

Key to Example 5-3:
@ You can pass function x in an argument list, since its definition is located
before the main function.

® You must declare function y before you pass the function in an argument
list, since its function definition is located after the main function.

© When you pass functions as arguments, do not include the parentheses.
Similarly, when you specify arrays, do not include subscripts.

5-14 Program Structure u

O When declaring parameters that represent functions, declare them as
pointers to functions. When declaring arrays, declare the parameter
as a pointer to the type of the array. For convenience, declarations of
parameters, which are functions or arrays, can be declared as ordinary
function or array declarators; the compiler automatically converts them
to pointers.

5.4.2 Passing Arguments to the main Function

The main function in a VAX C program can accept arguments from the
command line from which it was invoked. The syntax for a main function is
as follows:

int main(argc, argv, envp)

int argc;
char *argv|],"envp[];

argc
Is the number of arguments present in the command line that invoked the
program.

argv
Is a character-string array of the arguments.

envp

Is the environment array. This array contains process information, such

as the user name and controlling terminal. It has no bearing on passing
command-line arguments. Its primary use in VAX C programs is during
exec and getenv function calls. (See the VAX C Run-Time Library Reference
Manual for more information).

In the main function definition, the parameters are optional. However, you
can access only the parameters that you define. You can define function
main in any of the following ways:

main ()

main (argc)

main(argc, argv)
main(argec, argv, envp)

To pass arguments to the main function, you must install the program as a
DCL foreign command. When a program is installed and run as a foreign
command, the parameter argc is greater than or equal to 1, and argv[0]
contains the name of the image file.

Program Structure 5-15

The procedure for installing a foreign command involves using a DCL

assignment statement to assign the name of the image file to a symbol that -
is later used to invoke the image. For example: \ ’
$ ECHO == "$ DSKS$:COMMARG.EXE" [RETURN]

The symbol ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar sign
($) and include a device name, as shown.

For more information about the procedure for installing a foreign command,
see the VMS DCL Dictionary.

Example 5-4 shows a program called COMMARG.C, which displays the
command-line arguments that were used to invoke it.

Example 5-4: Echo Program Using Command-Line Arguments

/* This program echoes the command-line arguments. */
#include stdio

main(argc, argv)
int argc;
char *argv(];
{
int i;
/* argv[0] is program name */
printf ("program: %s\n",argv[0]); ‘)

for (i = 1; i < argc; i++)
printf ("argument %d: %s\n", i, argv[il]);

You can compile and link the program using the following DCL
command lines:

$ CC COMMARG

$ DEFINE LNKSLIBRARY SYS$LIBRARY:VAXCRTL.OLB[RETURN]
$ LINK COMMARG[RETURN]

5-16 Program Structure u

A sample output for Example 54 is as follows:
m ¢ ECHO Long "Day’s" "Journey into Night"[RETURN]

program: db7:[oneill.plays]commarg.exe;1
argument 1: long

argument 2: Day’s

argument 3: Journey into Night

DCL converts most arguments on the command line to uppercase letters.
However, VAX C internally parses and modifies the altered command line
to make VAX C argument access compatible with C programs developed on
other systems.

All alphabetic arguments in the command line are delimited by spaces

or tabs. Arguments with embedded spaces or tabs must be enclosed in
quotation marks ("). Uppercase characters in arguments are converted to
lowercase, but arguments within quotation marks are left unchanged.

5.5 Identifiers

Identifiers can consist of letters, digits, dollar signs ($), and the underscore
character (_). Do not create identifiers with a length of more than 255
characters. If you do, the compiler ignores all characters after the two
hundred and fifty-fifth character. If the identifier will be seen by the linker,
as in a declaration with [extern] or #module, do not use more than

ﬂ 31 characters.

The first character must not be a digit and, to avoid conflict with names used
by VAX C, should not be an underscore character. VAX C uses a preceding
underscore to identify implementation-specific macros and keywords,

and uses two preceding underscores to identify implementation-specific
constants.

Upper- and lowercase letters specify different variable identifiers; that is,
the compiler interprets abc and ABC as different variable names.

Use the dollar sign only within identifiers for VMS global symbols.
Identifiers that contain dollar signs may not be portable.

DIGITAL recommends the following conventions if practical:

e Avoid using underscores as the first character of your identifiers.

e Type identifiers in uppercase if they are constants that are given values
by the #define directive.

Program Structure 5-17

* Type all instances of a global name in the same case. All names that
become part of the VMS Linker’s global symbol table are represented
there in uppercase. Consider these examples:

int globalvalue ss$_accvio = 0;

globalvalue SS$_ACCVIO;

The compiler will consider these to denote different global names;
however, uppercase forms for both are passed to the linker, potentially

causing errors when the program is linked or executed. For more
information about globalvalue, see Section 9.6.2.

* Type all other identifiers and keywords in lowercase.

5.6 Language Keywords

The VAX C keywords are predefined identifiers. They cannot be redeclared.
They identify data types, storage classes, and certain statements in VAX C.
Note that many conventional words in VAX C programs are not keywords
and can be redeclared. The notable examples are the names of functions,
including main and the functions found in libraries that accompany the VAX
C compiler.

Keywords must be expressed in lowercase letters.
Table 5-1 lists the VAX C keywords and their meaning.

5-18 Program Structure

J

W/

m

ﬁ

Table 5-1:

VAX C Keywords

variant_struct
variant_union

Data-type modifiers:

const
volatile

Storage-class specifiers:

auto

static
register
extern
globaldef
globalref
globalvalue
readonly
noshare

-align

Keyword Meaning

Type specifiers:
int Integer (On VAX systems, 32 bits)
long 32-bit integer
unsigned Unsigned integer
short 16-bit integer
char 8-bit integer
float Single-precision, floating-point number
double Double-precision, floating-point number
struct Structure (aggregate of other types)
union Union (aggregate of other types)
typedef Tagged set of type specifiers
enum Enumerated scalar type
void Function return type

Variant structure
Variant union

Definition of constant data
Definition of volatile data

Allocated at every block activation

Allocated at compile time

Allocated at every block activation

Allocated by an external data definition (at compile time)
Definition of a global variable

Reference to a global variable

Definition or declaration of a global value

Allocated in read-only program section

Assigned NOSHR program section attribute

Aligns data on specific storage boundaries

(continued on next page)

Program Structure 5-19

Table 5-1 (Cont.): VAX C Keywords
Keyword Meaning
Statements:
goto Transfers control unconditionally
return Terminates a function and optionally returns a value to
the caller
continue Causes next iteration of a containing loop
break Terminates its corresponding switch or loop
if Executes the following statement conditionally
else Provides an alternative for the if statement
for Iterates the next statement (zero or more times) under
control of three expressions
do Iterates the next statement (one or more times) until a
given condition is false
while Iterates the next statement (zero or more times) while a
given expression is true
switch Executes one or more of the specified cases (multiway
branch)
case Begins one case for switch
default Provides default case for switch
Operator:
sizeof Computes the size of an operand, in bytes

Although they are not true keywords, the VAX C compiler defines substitu-
tions for the following identifiers; you should avoid redefining them:

vms
vax
vaxc
vaxllc

vms_version VMS_VERSION

CC$gfloat
CC$parallel

For more information about these identifiers, see Section 11.1.7.

5-20 Program Structure

m

5.7 Blocks

A block is a compound statement surrounded by braces ({}). You can use
a block when the grammar of VAX C requires a single statement. The
common cases are the bodies of functions and if, for, do, switch, and
while statements. Note that this definition of a block may conflict with its
definition in other languages. In VAX C, the terms block and compound
statement are equivalent.

A block may also contain declarations. If it does, any declarations of auto,
register, or static variables declare names that are local to the block.
Example 5-5 presents nested blocks and the differences in the scope of
declared variables.

Example 5-5: Scope of Variable Declarations in Nested Blocks

/* This program shows how variables with the same *
* identifier can be of different data types if located *
* in different blocks. */

main ()

{ /* Outer block of "main" x/

int i;
i=1;
if (i == 1)
{ /* An inner block *x/
float i;
i = 3el0;

Key to Example 5-5:

@ In all blocks of the program, except the block in the if statement,
variable i is an integer. The default storage class for this variable
is auto.

Program Structure 5-21

® Within the block in the if statement, variable i is a single-precision,
floating-point value. Since it is also of the storage class auto, a new
floating-point version of variable i is allocated each time the inner block
is activated.

If initialization is specified for any auto or register variables in a block,

it is performed each time control reaches the block normally; that is, such
initializations are not performed if a goto statement transfers control into
the middle of the block or if the block is the body of a switch statement. For
more information about data types, see Chapter 8. For more information
about scope and storage classes, see Chapter 9.

5.8 Comments

Comments, delimited by the character pairs (/*) and (*/), can be placed
anywhere that white space can appear. The text of a comment can contain
any characters except the close-comment delimiter (*/). Comments cannot
be nested.

5.9 LINT-Like Functionality

. Some implementations of C provide a utility called LINT. LINT provides

a way to check source code for improper definitions and declarations,

for parameter and argument mismatching, and for inefficient coding
practices. VAX C provides the following features shown in Table 5-2 that, in
combination, offer much of the functionality of LINT.

§-22 Program Structure

\J

—

\J

Table 5-2: VAX C Features Similar to the LINT Utility

Feature

Description

/STANDARD=PORTABLE

Function prototypes

SCA support

When you compile your source code, add this
qualifier to CC. The compiler flags constructs that
may not be supported by other implementations of
the C language.

The use of function prototypes allows VAX C

to check the number and the data types of all
arguments passed to functions. See Section 5.3 for
complete information.

The VAX Source Code Analyzer (SCA) is a source
code cross-reference and static analysis tool that
you can use with VAX C source code. SCA’s query
and reporting facilities allow you to query a
library for the presence of specific symbol, file,

or module information, and to discern such things
as declarations of program symbols, references to
the symbols, and references to the source files.

Program Structure 5-23

Chapter 6

Statements

™

This chapter describes the statements in the VAX C programming language.
Statements are executed in the sequence in which they appear in a program,
except as indicated. The VAX C statements are grouped as follows:

Control flow statements (Section 6.1)

Expressions and blocks as statements (Section 6.2)
Conditional statements (Section 6.3)

Looping statements (Section 6.4)

Interrupting statements (Section 6.5)

6.1 Control Flow Statements

You can use some VAX C statements either to maintain or modify the control
of the program. The following sections describe the control flow stateménts.

6.1.1 The null Statement

Use null statements to provide null operations in situations where the
grammar of the language requires a statement, but the program requires no
work to be done.

The syntax of the null statement is as follows:

Statements 6-1

You may need to use the null statement with the if, while, do, and for

statements in cases where the grammar requires a statement body but the

program requires no functional operation. The most common use of this

statement is in loop operations, where all the loop activity is performed by u
the test portion of the loop. For example, the following statement finds the

first element of an array known to have a value of zero:

for (i=0; array(i] !'= 0; i++)
See Section 6.2 and Section 6.4 for more information about the statements
mentioned here.

6.1.2 The goto Statement

The goto statement transfers control unconditionally to a label statement,
where the label identifier must be located in the scope of the function
containing the goto statement.

The syntax of the goto statement is as follows:

goto identifier;

statement. The compiler allocates storage for automatic variables declared

within a block when the block is activated. When a goto statement branches \
into a block, automatic variables declared in the block cannot exist in u
storage. Attempts to access such variables can cause a run-time error.

6.1.3 The label Statement

Take care when branching into a block or function body using the goto
|
| Labels are identifiers used to flag a location in a program, and to be the
; target of a goto statement.
| The syntax of a label is as follows:

identifier:

Any statement can be preceded by a label. The scope of the label is the
current function body. Variables can have the same name as the label in the
function because the label name is independent of the scope rules applied to
variables. Labels are used only as the targets of goto statements.

6-2 Statements u

6.2 Expressions and Blocks as Statements

l . The statements in the following sections are expressions or groups of other
statements that you can use when the grammar calls for a single statement.

6.2.1 The expression Statement
You can use any valid expression as a statement by terminating it with a
semicolon. The following example is an expression used as a statement:
i++;
This statement increments the value of the variable i. Note that i++ is a

valid VAX C expression that can appear in more complex VAX C statements.
For more information about the valid VAX C expressions, see Section 7.2.

6.2.2 The compound Statement

A compound statement in VAX C is often called a block. It allows more
than one statement to appear where a single statement is required by the
language. The following code is an example of a compound statement:

~ ‘
int x = 5;

z = 1;
if (y < x)
funct(y, z):;
else
funct (x, z);

}

The compound statement contains optional declarations followed by a list of
statements, all enclosed in braces. If you include declarations, the variables
they declare are local to the block, and, for the rest of the block, they
supersede any previous declaration of variables of the same name. Inside
blocks, you can initialize variables whose declarations include the auto,
register, static, or globaldef storage-class specifiers.

A block is entered “normally” when control flows into it, or when a goto
statement transfers control to a label on the block itself. The compiler-
generated code allocates storage for auto or register variables each time
the block is entered normally; the storage allocations do not occur if a
goto statement refers to a label inside the block or if the block is the body
of a switch statement. For more information about storage classes, see
Chapter 9. '

Statements 6-3

All function definitions are compound statements. The compound statement
following the parameter declarations in a function definition is called the
function body.

v

6.3 Conditional Statements

The statements in the following sections execute only if a tested condition
is true.

6.3.1 The if Statement

An if statement executes a statement depending on the evaluation of an
expression, and may or may not be written with an else clause.

The syntax of the if statement is as follows:

if (expression)
statement
else
statement

An example of the if statement is as follows:

if (i < 1)

funct (i) ; ~ ‘
else

{
1= x++4;
funct (i) ;
}

If the evaluated expression within parentheses is true (in the example,

if variable i is less than 1), then the statement following the evaluated
expression executes; the statement following the keyword else does not
execute. If the evaluated expression is false, then the statement following
the keyword else executes.

All logical operators define a true result to be nonzero. Therefore, the
expression in any conditional statement can be a logical expression with
predictable results (true or false; nonzero or zero).

When if statements are nested within else clauses, an else clause matches
the most recent if statement that does not have an else clause.

6—4 Statements \)

6.3.2 The switch Statement

" ’ The switch statement executes one or more of a series of cases, based on
the value of the expression.

The syntax of the switch statement is as follows:

switch (expression)
statement

The usual arithmetic conversions are performed on the expression, but the
result must be type int. For more information about data type conver-
sion, see Section 7.9. The statement is typically a compound statement,
within which one or more case labels prefix statements that execute if the
expression matches the case.

The syntax for a case label and expression follows:

case constant-expression :
statement(,statement, . . .]

The constant expression must also be of type int. No two case labels can
specify the same value. The value of a constant expression can be any
integral value.

Only one statement in the compound statement can have the following label:

! ‘ default :

The case and default labels can occur in any order. Note that each

‘ case flows into the next unless explicit action is taken, such as a break
statement. When the switch statement is executed, the following sequence

‘ takes place:

|

1. The switch expression is evaluated and compared with the constant
expressions in the case labels.

2. If the expression’s value matches a case label, the statements following
that label are executed. If the list of statements ends with the break
statement, the break terminates the switch statement; otherwise, the
next case encountered is executed. (See Example 6-1.) The switch
statement can also be terminated by a return or goto statement; if the
switch is inside a loop, it can be terminated by a continue statement.
For more information about interrupting statements, see Section 6.5.

3. If the expression’s value does not match any case label but there is a
default case, the default case is executed. It need not be the last case
listed. If a break statement does not end the default case and it is not
the last case, the next case encountered is executed.

. . ‘ Statements 6-5

4. If the expression’s value does not match any case label and there is no
default, the body of the switch statement is not executed.

In general, the break statement must be used to ensure that a switch
statement executes as expected. Example 6-1 uses the switch statement to
count blanks, tabs, and newlines entered from the terminal.

Example 6-1: Using switch to Count Blanks, Tabs, and Newlines

/* This program counts blanks, tabs, and newlines in text *
* entered from the keyboard. *x/

#include stdio
main ()
{
int number_tabs = 0, number_lines = 0, number blanks = 0;

int ch;
while ((ch = getchar()) != EOF)
switch (ch)
{
(1) case ‘\t’: ++number_tabs;
9 break;
case ‘\n’: ++number_lines;
break;
case ' ' : ++number_ blanks;
break;

}
printf ("Blanks\tTabs\tNewlines\n");
printf("$6d\t%6d\t%6d\n", number_blanks,
number_tabs,number_lines);

Key to Example 6-1:

© A series of case labels is used to increment the counters.

® The break statement causes control to go back to the while loop every
time a counter increments. The program automatically passes control to
the while loop if none of the counters is incremented.

The program in Example 6-1 responds to the following input:

$ RUN EXAMPLE.EXE
Every good boy.[RETURN]
The quick brown fox.[RETURN]

Line with 2 abs .[RETURN
A
Z

6-6 Statements

Example 6-1 produces the following output:

Blanks Tabs Newlines
7 2 3

If you omit the break statements, the program prints the following:

Blanks Tabs Newlines
12 2 5

Without the break statements, each case drops through to the next case.
The number shown for tabs happens to be right, because the tabs case is
first in the switch statement and is executed only if ch == 7 \t’. Notice
that the number shown for newlines is the correct number plus the number
of tabs, and the number shown for blanks is the total of all three cases.

6.3.2.1

Declarations Within a switch Statement

If variable declarations appear in the compound statement within a switch
statement, any initializations of auto or register variables are ineffective.
However, if you initialize variables within the statements following a case
label, the initialization is effective. Consider the following example:

switch (ch)
{

int x = 1; /* Improper initialization */

printf ("%d", x); /* This first printf won’t be executed */

case 'a'’ :

{ int x = 5; /* Proper initialization */

printf("%d", x);
break; }

case 'b’ :

}

In the previous example, if the variable ch equals 'a’, then the program
prints the value 5. If the variable equals any other letter, the program prints
nothing because the initialization outside of the case label is ineffective.

6.4

Looping Statements

The statements in the following sections execute repeatedly (loop) until an
expression evaluates to false. Some loops execute a block of statements,
known as the loop body, a specified number of times (in VAX C, the for
statement); some loops evaluate an expression and then execute the body of
the loop (in VAX C, the while statement); some loops execute the loop body
and then evaluate the expression, which guarantee at least one execution of

Statements 6-7

the body (in VAX C, the do statement). The following sections discuss the
for, while, and do statements.

U

6.4.1 The for Statement

The for statement evaluates three expressions and executes a statement
(the loop body) until the second expression evaluates to false. The for
statement is useful for executing a loop body a specified number of times.

The syntax for the for statement is as follows:

for (expression-1 ; expression-2 ; expression-3)
statement;

The for statement executes the loop body zero or more times. It uses three
control expressions as shown. Semicolons (;) are used to separate the
expressions; notice that a semicolon does not follow the last expression. A
for statement executes the following steps:

1. Expression-1 is evaluated only once before the first iteration of the loop.
It usually specifies the initial values for variables.

2. Expression-2 is a relational or logical expression that determines
whether or not to terminate the loop. Expression-2 is evaluated before
each iteration. If the expression evaluates to false, execution of the for
loop body terminates. If the expression evaluates to nonzero, the body of
the loop is executed. u

3. Expression-3 is evaluated after each iteration. It usually specifies
increments for the variables initialized by expression-1.

4. Iterations of the for statement continue until expression-2 produces a
false (zero) value, or until some statement—such as break or goto—
interrupts.

The for statement is equivalent to the following code:
expression-1;
while (expression-2)
{
statement
expression-3;

}

The VAX C compiler optimizes certain for statements for simple loops such
as the following example:

for (i=0; i<15; i++)
printf("%d\n", i);

6-8 Statements u

When the incrementation is as simple as in the previous example, the
compiler generates less macro code so efficiency increases. When possible,
m use for statements as opposed to while statements when the increment
‘ is small.

Any of the three expressions in a loop can be omitted. If expression-2 is
omitted, the test condition is true; that is, the while in the expansion
becomes while(x), where x is not equal to zero. If either expression-1 or
expression-3 is omitted from the for statement, that expression is effectively
dropped from the expansion.

The following syntax shows an infinite loop:
for (;;) statement

Terminate infinite loops with a break, return, or goto statement.

6.4.2 The while Statement

The while statement evaluates an expression and executes a statement (the
loop body) zero or more times, until the expression evaluates to false.

The syntax of a while statement is as follows:

while (expression)

ﬁ statement

An example of the while loop is as follows:

while (x < 10)
{
array[x] = x;
X++;

}

This statement tests the value of the variable x; if variable x is less than 10,
it assigns x to the xth element of the array and then increments the
variable x. If the expression in parentheses evaluates to false, the loop body
never executes.

6.4.3 The do Statement

The do statement executes a statement (the loop body) one or more times,
until the expression in the while clause evaluates to false.

' I Statements 6-9

L

The syntax for the do statement is as follows:

do
statement
while (expression) ;

The statement is executed at least once, and the expression is evaluated
after each subsequent execution of the loop body. If the expression is true,
the statement is executed again.

6.5 Interrupting Statements

You can use the statements in the following sections to interrupt the
execution of another statement. These statements are primarily used to
interrupt switch statements and loops.

6.5.1 The break Statement

The break statement terminates the immediately enclosing while, do, for,
or switch statement. Control passes to the statement following the loop
body.

The syntax for the break statement is as follows:

break;

6-10

6.5.2 The continue Statement

The continue statement passes control to the end of the immediately
enclosing while, do, or for statement.

The syntax for the continue statement is as follows:
continue;

The continue statement is equivalent to the goto label statement, shown
here, for each of the looping statements in the syntax examples that follow:

Statements

(W)

while(...) do for(... ; ...

goto label; goto label; goto label;
label: label: label:
} } }

while(...);

In the preceding syntax examples, a continue statement passes control to
label. The continue statement is intended only for loops, not for switch
statements. A continue inside a switch statement that is inside a loop
causes continued execution of the enclosing loop after exiting from the body
of the switch statement.

6.5.3 The return Statement

The return statement causes a return from a function, with or without a
return value.

The syntax of the return statement is as follows:
return [expression];

The compiler evaluates the expression (if you specify one) and returns the
value to the calling function. If necessary, the compiler converts the value
to the declared type of the containing function’s return value. If there is no
specified return value, the value is undefined.

You can declare a function without a return statement to be of type void.
For more information about the void data type and function return values,
see Section 5.2.

Statements 6-11

Chapter 7

Expressions and Operators

An expression is any series of symbols that VAX C uses to produce a value.
The simplest expressions are constants and variable names, which yield a
value directly. Other expressions combine operators and subexpressions to
produce values.

In some instances, the compiler makes conversions so that the data types
of the operands are compatible. This chapter refers to these rules as the
arithmetic conversion rules. See Section 7.9.1 for more information about
these rules.

This chapter discusses the following topics:

lvalues and rvalues (Section 7.1)

Primary expressions and operators (Section 7.2)

An overview of the VAX C operators (Section 7.3)
Unary expressions and operators (Section 7.4)
Binary expressions and operators (Section 7.5)

The conditional expression and operator (Section 7.6)
Assignment expressions and operators (Section 7.7)
The comma expression and operator (Section 7.8)
Data-type conversions (Section 7.9)

Expressions and Operators 7-1

7.1 Ilvalues and rvalues
A variable identifier is one of the primary VAX C expressions. (See u
Section 7.2 for more information about primary expressions.) This type of
expression yields a single value. However, when using the variable identifier
with other operators, the expression evaluates to the variable’s location in
memory. The address of the variable is the variable’s lvalue. The object
stored at that address is the variable’s rvalue. For example, VAX C uses
both the lvalue and the rvalue of variables in the evaluation of an expression
as follows:

X =Yy;

The contents of variable y are taken and assigned to variable x. The
expression on the right side evaluates to the variable’s rvalue while
the expression on the left side evaluates to the variable’s lvalue when
performing an assignment.

The following syntax defines those VAX C expressions that either have or
produce lvalues:

lvalue ==
identifier
primary [expression]
Ivalue . identifier

primary -> identifier w

* expression
(Ivalue)

These expressions represent, respectively:

¢ Identifiers of scalar variables, structures, and unions
¢ References to scalar array elements

* References to structure and union members, except for references to
fields that are not lvalues

* Indirect references to structure and union members, except for refer-
ences to fields that are not lvalues

* References to pointers (also called dereferenced pointers; an asterisk (*)
followed by an address-valued expression)

* Any of the previous expressions, enclosed in parentheses

All lvalue expressions represent a single location in a computer’s memory.

7-2 Expressions and Operators u

ﬂ

7.2 Primary Expressions and Operators

Simple expressions are called primary expressions; they denote values.
Primary expressions include previously declared identifiers, constants
(including strings), array references, function calls, and structure or
union references.

The syntax descriptions of the primary expressions are as follows:

primary =
identifier
constant
string
(expression)
primary (expression-list)
primary [expression]
Ivalue . identifier
primary -> identifier

The simplest forms are identifiers such as variable names and string
or arithmetic constants. Other forms are expressions (delimited by
parentheses), function calls, array references, lvalues and rvalues, and
structure and union references.

The following sections describe the primary expressions and operators.

7.2.1 Parenthetical Expressions

An expression within parentheses has the same type and value as the same
expression without parentheses. As in declarations, any expression can be
delimited by parentheses to change the grouping, or associative precedence,
of the operators in a larger expression.

7.2.2 Function Calls

A function call is a primary expression followed by parentheses. The
parentheses may contain a list of arguments (separated by commas) or may
be empty. An undeclared function is assumed to be a function returning
int. If you declare an identifier as a “function returning . . . ”, but use the
identifier in a context other than a function call, it converts to “the address
of function returning ... ”. When you pass an argument that is an array
or function, specify the identifier in the argument list. The compiler passes
the address of the array or function to the called routine. This means that

Expressions and Operators 7-3

the corresponding parameters in the called function must be declared as
pointers. For example:

int £1();

fl(i;
Consider the following declaration:
double atof();

The previous example declares a function returning double. You can then
use the identifier atof in a function call, as follows:

result = atof(c);

You can use the identifier atof in other contexts without the parentheses.
For example:

dispatch (atof);

The identifier atof converts to the address of that function, and the address
is passed to the function dispatch.

Functions can also be called using a pointer to a function. Consider the
following pointer declaration and asssignment:

double (*pfd) ();

pfd = atof;

To call the function, you can specify the following form:

result = (*pfd) (c);

VAX C also accepts a pointer to a function, as shown in the following form:

result = pfd (c):

While the first call to the function is valid, the second call to the function is
simpler and requires fewer keystrokes.

74 Expressions and Operators

e

7.2.3 Array References

Use bracket operators ([]) to refer to elements of arrays. In an array
defined as having three dimensions, you can refer to a specific element
within the array, as in the following example:

int sample_array([10])([5])[2]; /* Array declaration *x/
int i = 10;
sample_array (9] (4] (1] = i; /* Assign value to element */

This example assigns a value of 10 to element sample_array[{9][4][1].

In addition, if an array reference is not fully qualified, it refers to the
address of the first element in the dimension that is not specified. Consider
the following statement in which the third dimension of the array is not
specified:

sample_array[9][4]) = 10;

This statement assigns a value of 10 to the element sample_array[9][4][0].
Consider the following statement in which none of the array dimensions are
specified:

sample_array = 10;

This statement assigns a value of 10 to the element sample_array[0][0][0].
A reference to an array name with no bracket operator is often used to pass
the array’s address to a function, as in the following statement:

funct (array);

You can also use bracket operators to perform general pointer arithmetic as
follows:

addr [intexp]

Here, addr is the address of some previously declared object (pointer-
valued) and the variable, intexp, is an integer-valued expression. The
result of the expression is scaled, or multiplied, by the size, in bytes, of the
addressed object. If intexp is a positive integer, the result is the address of
a subsequent object of this size; if intexp is zero, the result is the address
of the same object; if intexp is negative, the result is the address of a
previous object. The expressions *(addr + intexp) and addr(intexp] are
equivalent because both expressions reference the same memory location;
*(addr + intexp) points to the same element as addr[intexp].

Expressions and Operators 7-5

7.2.4 Structure and Union References

A member of a structure or union can be referenced with either of two u
operators: the period (.) or the right arrow (->).

A primary expression followed by a period followed by an identifier refers
to a member of a structure or union and is itself a primary expression.
The identifier must name a member of that structure or union. The result
is a reference (if the member is a scalar) to the named member of the
structure or union. The name of the desired member must be preceded by
a period-separated list of the names of all higher-level members. For more
information about structures and unions, see Section 8.9.

The form for a pointer to a structure and union uses the right-arrow
operator. A primary expression followed by an arrow (specified with a
hyphen (-) and a greater-than symbol (>)) followed by an identifier refers
to a member of a structure or union. The identifier following the arrow
operator must name a declared member of that structure or union. The
result is a reference to the named member.

The primary expression in both cases can be either a pointer or an integer.

If it is a pointer, VAX C assumes that it points to a structure where the

name on the right is a member. If it is an integer, VAX C assumes that

it is the absolute address of the appropriate structure in machine storage

units. If you specify something other than a pointer to a structure or union, ,
VAX C signals the QUALNOTSTRUCT informational message. If you point u
to a different structure or union type, VAX C signals the NONSEQUITUR
informational message.

7.3 Overview of the VAX C Operators

You can use the simpler variable identifiers and constants in conjunction
with VAX C operators to create more complex expressions. Table 7-1
presents the set of VAX C operators.

7-6 Expressions and Operators u

Table 7-1: VAX C Operators

Operator Example Result
— [unary] -a Negative of a
* [unaryl *a Reference to object at address a
& [unary] &a Address of a
~ ~a One’s complement of a
++ [prefix] ++a The value of a after increment
++ [postfix] a++ The value of a before increment
— — [prefix] --a The value of a after decrement
— — [postfix] a-—-— The value of a before decrement
sizeof sizeof(t1) Size in bytes of type t1
sizeof e Size in bytes of expression e
(type-name) (tle Expression e, converted to type t1
+ a+b aplusb
— [binary] a-b a minus b
* [binary] a*b a times b
/ al/b a divided by b
% a%b Remainder of a/b (a modulo b)
>> a>>b a, right-shifted b bits
<< a<<b a, left-shifted b bits
< a<b 1if a < b; 0 otherwise
> a>b 1 if a > b; 0 otherwise
<= a<=b 1 if a <= b; 0 otherwise
>= a>=b 1 if a >=b; 0 otherwise
== a== 1 if a equal to b; 0 otherwise
I= al=b 1 if a not equal to b; 0 otherwise
[binary] a&b Bitwise AND of a and b
| alb Bitwise OR of a and b
A a’b Bitwise XOR (exclusive OR) of a and b
&& a&&b Logical AND of a and b (yields 0 or 1)
1 allb Logical OR of a and b (yields 0 or 1)
! la Logical NOT of a (yields 0 or 1)
?: a?el:e2 Expression el if a is nonzero;

Expression e2 if a is zero

(continued on next page)

Expressions and Operators 7-7

Table 7-1 (Cont.): VAX C Operators

Operator Example Result

= a=b b (assigned to a)

+= a+=b a plus b (assigned to a)

— a-=>b a minus b (assigned to a)

= a=b a times b (assigned to a)

= al/=b a divided by b (assigned to a)

o= a%=b Remainder of a/b (assigned to a)
>>= a>>=b a, right-shifted b bits (assigned to a)
<<= a<<=b a, left-shifted b bits (assigned to a)
&= a&=Db a AND b (assigned to a)

| = al=b a OR b (assigned to a)

A= a’=b a XOR b (assigned to a)

, el,e2 e2 (el evaluated first)

These VAX C operators fall into the following categories:

¢ Unary operators, which take a single operand.

¢ Binary operators, which take two operands and perform a variety of
arithmetic and logical operations.

* The ternary operator, which is the conditional operator, takes three
operands and evaluates either the second or third expression, depending
on the evaluation of the first expression.

* Assignment operators, which assign a value to a variable, optionally
performing an additional operation before the assignment takes place.

¢ The comma operator, which guarantees left-to-right evaluation of
comma-separated expressions.

¢ Primary operators, which usually modify or qualify identifiers (see
Section 7.2 for more information).

Table 7-2 presents the precedence by which the compiler evaluates
operations. Operators with the highest precedence appear at the top of
the table; those with the lowest appear at the bottom. Operators of equal
precedence appear in the same row.

7-8 Expressions and Operators

—

Table 7-2: Precedence of VAX C Operators

Category Operator Associativity
Primary Oll—>. Left to right
Unary ! ~ 4+ ——(type) * & Right to left
sizeof
Binary (mult.) */ % Left to right
Binary (add.) + - Left to right
Binary (shift) << >> Left to right
Binary (relat.) <<=>>= Left to right
Binary (equal.) === Left to right
Binary (bitand) & Left to right
Binary (bitxor) A Left to right
Binary (bitor) | Left to right
Binary (AND) && Left to right
Binary (OR) |1 Left to right
Conditional 7 Right to left
Assignment = 4= —= *= /= %= >>= Right to left
<<= &="= | =
Comma R Left to right

Consider the following expression:
A*B+C

The identifiers A and B are multiplied first because the multiplication
operator (*) has a higher precedence than the addition operator (+). The
associative rule applies to each row of operators. Consider the following
expression:

A/B/C

This expression is evaluated as follows because the division operator
evaluates from left to right:

(A/B)/C

Expressions and Operators 7-9

7.4 Unary Expressions and Operators

You form unary expressions by combining a unary operator with a single
operand. All unary operators are of equal precedence and group from right
to left. They perform the following operations:

e Negate a variable arithmetically (—) or logically (!) (Section 7.4.1)

* Increment (++) and decrement (— —) variables (Section 7.4.2)

¢ Find addresses (&) and dereference pointers (*) (Section 7.4.3)

* (Calculate a one’s complement (~) (Section 7.4.4)

¢ Force the conversion of data from one type to another (the cast operator)
(Section 7.4.5)

¢ Calculate the sizes of specific variables or of types (sizeof) (Section 7.4.6)

7.4.1 Negating Arithmetic and Logical Expressions

Consider the syntax of the following expression:
- expression

This is the arithmetic negative of expression. The compiler performs the
arithmetic conversions. The negative of an unsigned quantity is computed
by subtracting its value from 232, There is no unary plus operator in VAX C.

Consider the following expression:
! expression

The result is the logical (Boolean) negative of the expression. If the result of
the expression is 0, the negated result is 1; if the result of the expression is
not 0, the negated result is 0. The type of the result is int. The expression
can be a pointer (or other address-valued expression) or an expression of any
arithmetic type.

7.4.2 Incrementing and Decrementing Variables

Consider the syntax of the following expression:

++lvalue

The object to which the lvalue refers to in the expression is incremented
before its value is used. After evaluating this expression, the result is

the incremented rvalue, not the corresponding lvalue. For this reason,
expressions that use the increment and decrement operators in this manner

7-10 Expressions and Operators

cannot appear by themselves on the left side of an assignment expression
where an lvalue is needed.

Consider the syntax of the following expression:
Ivalue++

The object to which the lvalue refers to in the expression increments after
its value is used. The expression evaluates to the value of the object before
the increment, not the incremented variable’s lvalue.

If the operand is a pointer, the address is incremented by the length of the
addressed object, not by the integer value 1. If declared as an integer, the
variable increases or decreases by the value’l. -

The objects of the following lvalues point to other variables:

--lvalue
Ivalue--

These pointers decrement not by the integer value 1, but by the size of the
addressed object. The data type of the variable determines the amount of the
increment or decrement. If declared as a pointer, the variable increments or
decrements by the size of the addressed object’s data type. For example, if
declared as a pointer to an integer, the variable increments or decrements
by the value 4. For example:

int *ip;
char *cp;
ip--; /* Decremented by 4 */
--cp; /* Decremented by 1 */

When using the increment and decrement operators, do not depend on
the order of evaluation of expressions. Consider the following ambiguous
expression:

k = x[j] + j++;

Is the value of variable j in x[j] evaluated before or after the increment
occurs? Do not assume which expressions the compiler will evaluate first.
To avoid ambiguity, increment the variable in a separate statement.

7.4.3 Computing Addresses and Dereferencing Pointers

Consider the syntax of the following expression:

& identifier

Expressions and Operators 7-11

The expression results in the lvalue (address) of the identifier. The amper-
sand operator (&) may not be applied to register variables or to bit fields
in structures or unions.

NOTE

In VAX C, the compiler changes any register variable to which
the ampersand operator applies to an auto variable. If you do not
use /STANDARD=PORTABLE, the compiler issues no warning
message; if you do use /SSTANDARD=PORTABLE, the compiler

issues an appropriate message.

In the special context of argument lists, you may apply the ampersand
operator to constants. This use of the ampersand operator passes constants
to user-defined functions that expect arguments to be passed by reference.
This is a VAX C extension and is not portable. For more information about
manipulating argument lists, see Section 5.1.2. For more information
about the VAX Procedure Calling and Condition-Handling Standard, see
Section 13.1.

Because function identifiers and unqualified array identifiers are lval-
ues, you cannot apply the ampersand operator to these identifiers. If you
apply the address of an operator to function identifiers or to unqualified
array identifiers, VAX C considers this to be a redundant use of the am-
persand operator and generates the appropriate error message when the
/STANDARD=PORTABLE qualifier is specified.

When an expression evaluates to an address, as in the following example,
the address is used to indirectly access the object to which the address
refers:

* pointer

An expression using the indirection operator (*) evaluates to the object
pointed to by a pointer or by an address-valued expression.

7.4.4 Calculating a One’s Complement

Consider the syntax of the following expression:
~ expression

The result is the one’s complement of the evaluated expression; it converts
each 1-bit into a 0-bit and vice versa. The expression must be integral
(an integer or character). The compiler performs necessary arithmetic
conversions.

7-12 Expressions and Operators

m

7.4.5 Forcing Conversions to a Specific Type

The cast operator forces the conversion of its operand to a specified scalar
data type. Structures and unions may not appear as a cast operator. The
operator consists of a data-type name, in parentheses, which precedes the
operand expression, as follows:

(type-name) expression

The resulting value of the expression converts to the named data type, just
as if the expression were assigned to a variable of that type. If the operand
is a variable, its value converts to the named type. The variable’s contents
do not change. The type name has the following formal syntax:

type-name ::=
type-specifier abstract-declarator

In simple cases, type-specifier is the keyword for a data type, such as char
or double. The type-specifier may also be a structure specifier, union
specifier, an enum specifier, or a typedef name.

An abstract-declarator in a parameter declaration is a declaration without
an identifier or data-type keyword, as shown in the following form:

abstract-declarator ::=
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression]

Consider the following form of the abstract-declarator:
abstract-declarator()

To avoid confusion with the previous form, the abstract-declarator may not
be empty in the following form:

(abstract-declarator)

Abstract declarators may include the brackets and parentheses that indicate
arrays and function calls. However, cast operations may not force the
conversion of any expression to an array, function, structure, or union.

The brackets and parentheses are used in operations such as the following
example, which casts identifier P1 to “pointer to array of int:”

(int (*) []) P1

This kind of cast operation does not change the contents of P1; it only causes
the compiler to treat the value of P1 as a pointer to such an array. For

Expressions and Operators 7-13

example, casting pointers this way can change the scaling that occurs when
you add an integer to a pointer. For example:

int *ip;
((char*)ip) ++; /* Increments by 1 not by 4 */

7.4.6 Calculating Sizes of Variables and Data Types

Consider the syntax of the following expressions:

sizeof expression
sizeof (type-name)

The result is the size, in bytes, of the operand. In the first case, the result
of sizeof is the size determined by the type of the expression. In the second
case, the result is the size, in bytes, of an object of the named type. The
syntax of type-name is the same as that for the cast operator. For example:

int x;
X = sizeof (char *);

See Section 7.4.5 for more information about the cast operator.

7.5 Binary Expressions and Operators

The binary operators are categorized as follows:

* Additive operators: addition (+) and subtraction (-) (Section 7.5.1)

* Multiplication operators: multiplication (*), mod (%), and
division (/) (Section 7.5.2)

¢ Equality operators: equality (==) and inequality (!=) (Section 7.5.3)

* Relational operators: less than (<), less than or equal to (<=), greater
than (>), and greater than or equal to (>=) (Section 7.5.4)

¢ Bitwise operators: AND (&), OR (|), and XOR (~) (Section 7.5.5)
* Logical operators: AND (&&) and OR (| |) (Section 7.5.6)
* Shift operators: left shift (<<) and right shift (>>) (Section 7.5.7)

The following sections describe these binary expressions and operators.

7-14 Expressions and Operators

7.5.1 Additive Operators

' ’ The additive operators (+) and (-) perform addition and subtraction. Their
operands are converted, if necessary, following the arithmetic conversion
rules. For more information, see Section 7.9.1.

You can increment an array pointer by adding an integral variable to the
address of an array element. The compiler calculates the size of one array
element, multiplies that by the integer to obtain the offset value, and then
adds the offset value to the address of the designated element. For example:

int arr([10];

int *p = arr;

p=p + 1; /* Increments by 4 */

You may subtract a value of any integral type from a pointer or address; in
that case, the same conversions apply as for addition.

When you add or subtract two enum constants or variables, the type of the
result is int.

If you subtract two addresses of objects of the same type, the result converts
(divides by the length of the object) to an int representing the number of
objects separating the addressed objects. The result of this conversion is
unpredictable unless the two objects are in the same array.

7.5.2 Multiplication Operators

The multiplication operators (*), (/), and (%) perform arithmetic conver-
sions, if necessary. The binary operator (*) performs multiplication. The
binary operator (/) performs division. When integers are divided, truncation
is toward zero.

The binary mod operator (%) divides the first operand by the second and
yields the remainder. Both operands must be integral. The sign of the result
is the same as the sign of the quotient. If variable b is not zero, then the
following statement is true:

(a/b)*b + a%b = a

‘4 . Expressions and Operators 7-15

7.5.3 Equality Operators

The equality operators equal-to (==) and not-equal-to (!=) perform the u
necessary arithmetic conversions on their two operands. These operators

produce a result of type int, so that in the following statement the result is

the value 1, if both relational expressions have the same truth value, and

the value 0 if they do not:

a<b == c<d

Two pointers or addresses are equal if they identify the same storage
location. You can compare a pointer or address with an integer, but the
result is not portable unless the integer is zero; a null pointer is considered
equal to zero.

Although different symbols are used for assignment and equality, (=) and
(==) respectively, VAX C allows either operator in some contexts, so you
must be careful not to confuse them. Consider the following example:

if (x=1) statement-1;
else statement-2;

In the previous example, statement-1 always executes, since the result of
assignment x=1 delimited by parentheses is equivalent to the value of x,

which is equal to 1 (or true).
NOTE ‘ '

The following example shows a coding practice useful to avoid this
common error when doing comparisons. By placing the constant
first, the compiler diagnoses the incorrect use of the equality
operator (=).

int x;
if (1==x); /* This syntax does the comparison */
if (1=x); /* This syntax causes a compiler error */

7.5.4 Relaticnal Operators

The relational operators compare two operands and produce a result of type
int. The result is the value 0 if the relation is false, and 1 if it is true.
The operators are less-than (<), greater-than (>), less-than or equal-to
(<=), and greater-than or equal-to (>=). The compiler performs necessary
arithmetic conversions.

7-16 Expressions and Operators u

If you compare two pointers or addresses, the result depends on the relative
locations of the two addressed objects. Pointers to objects at lower addresses
are less than pointers to objects at higher addresses. If two addresses
ﬁ indicate elements in the same array, the address of an element with a lower
subscript is less than the address of an element with a higher subscript.

The operators group from left to right. However, note that the following
statement compares the variable ¢ with 0 or 1 (possible results of a<b); it
does not mean “if b is between a andc ... ”™:

if (a<b<c) . . .

In order to check that b is between a and ¢, you should use the following
code:

if (a<b && b<c) . ..

7.5.5 Bitwise Operators

The bitwise operators may be used only with integral operands: with
variables of types char and with int of all sizes. The compiler performs the
necessary arithmetic conversions. The result of the expression is the bitwise
AND (&), XOR—exclusive OR (”), or OR (|) of the two operands. The
compiler evaluates all operands. Figure 7-1 shows the effects of Boolean
algebra when using the bitwise operators.

ﬁ In Boolean algebra, VAX C evaluates values bit by bit. If you are using the
bitwise AND on a bit value 1 and on a bit value 0, the result is 0. When
using the bitwise AND, both bits must be 1, as shown in Figure 7-1, for the
result to be 1. When using the bitwise OR, either bit value can be 1 for the
result to be 1. When using the bitwise EXCLUSIVE-OR, either value, but
not both, can be 1 for the result to be 1.

7.5.6 Logical Operators

The logical operators are AND (&&) and OR (| |). These operators
guarantee left-to-right evaluation. The result of the expression (of type int)
is either O (false) or 1 (true). If the compiler can make an evaluation by
examining only the left operand, it does not evaluate the right operand.
Consider the following expression:

‘ ‘ ’ Expressions and Operators 7-17

EXCLUSIVE-OR (%)

1
0

10

0]1

110

DECIMAL VALUE

95
97
65

95
97
127

95

97

62
ZK-3071-GE

valued expression.

7-18 Expressions and Operators

The result is 1 if both its operands are nonzero, or 0 if one operand is 0. If
expression E1 is 0, expression E2 is not evaluated. Similarly, the following
expression is 1 if either operand is nonzero, and 0 otherwise. If expression

1
Figure 7-1: Boolean Algebra and the Bitwise Operators
Boolean Algebra
AND (&) OR())
10 10
11110 111
0[ojo 110
OPERATOR BITWISE OPERATION
AND (&) i 0 1 1 1 1 1
i1 0 0 0 0 1
i 1 0 0 0 0 1
OR () 10 1 1 1 1 1
t 1 0 0 0 0 1
11 1 1 1 11
X-OR (») 10 1 1 1 1 1
i1 1 0 0 0 0 1
0 1 1 1 1 1 0
El && E2
El is nonzero, expression E2 is not evaluated.
El || E2

The operands of logical operators need not have the same type, but each
must be one of the fundamental types or must be a pointer or other address-

W,

7.5.7 Shift Operators

m The shift operators (<<) and (>>) take two operands, both of which must be
integral. The compiler performs necessary arithmetic conversions on both
operands if they are not integers. The right operand is then converted to
int, and the type of the result is the type of the left operand. Consider the
result of the following expression:

El << E2

The result is the value of expression E1 shifted to the left by E2 bits. The
compiler clears vacated bits. Consider the following expression:

E1 >> E2

5 The result is the value of expression E1 shifted to the right by E2 bits. The
| compiler clears vacated bits if E1 is unsigned; otherwise, the bits are filled
| with a copy of E1’s sign bit.

The result of the shift operation is undefined if the right operand (E2 in the
previous example) is negative or if the value of E2 is greater than 32.

\
|
|
7.6 Conditional Operator

m The conditional operator (?:) takes three operands. It tests the result of the
first operand and then evaluates one of the other two operands based on the
result of the first. Consider the following example:

El 2 E2 : E3

If expression E1 is nonzero (true), then E2 is evaluated. If E1 is 0 (false), E3
is evaluated. Conditional expressions group from right to left. The compiler
makes conversions in the following order:

1. If possible, the arithmetic conversions are performed on expressions E2
and E3, so that they will result in the same type.

2. If expressions E2 and E3 are address expressions indicating objects of
the same type, the result has that type.

3. One of the E2 and E3 operands must be an address expression, and the
other, the constant 0. The result has the type of the addressed object.

Q ’ Expressions and Operators 7-19

7.7 Assignment Expressions and Operators

7-20

VAX C has several assignment operators. An assignment is not only an
operation but is also an expression. Assignments result in the value of the
target variable after the assignment. They can be used as subexpressions in
larger expressions.

The set of assignment operators consists of the equal sign (=) alone and

in combination with binary operators. An assignment expression has two
operands (an lvalue and an expression separated by one of these operators).
Consider the following assignment expression:

El += E2;
This is equivalent to the following expression:
El = E1 + E2;

The expression E1 is evaluated once and must result in an lvalue. The type
of the assignment expression is the type of E1, and the result is the value of
E1 after the completion of the operation. You must delimit some expressions
in parentheses if the expressions may contain other operators of a lower
precedence. Consider the following expression:

a*=Db + 1;
This is the same as the following expression:
a=a* (b +1);

However, the previous expression is not the same as the following
expression:

a= (a*b) + 1;

In the following assignment expression, the value of expression E2 replaces
the previous object of E1:

El = E2
The following expression adds 100 to the contents of a_number[1]:
a_number (1] += 100;

The result of this expression is the result of the addition and has the same
type as a_number[1]. '

If both assignment operands are arithmetic, the right operand is converted
to the type of the left before the assignment (see Section 7.9.1).

Expressions and Operators

You can use the assignment operator (=) to assign values to structure and
union members. You can assign one structure value to another as long as
you define the structures to be the same size. With all other assignment
operators, all right operands and all left operands must be either pointers
or evaluate to arithmetic values. If the operator is (—=) or (+=), the left
operand may be a pointer, and the right operand (which must be integral) is
converted in the same manner as the right operand in the binary plus (+)
and minus (—) operations.

You can assign an address to an integer, an integer to a pointer, and
the address of an object of one type to a pointer of another type. Such
assignments are simple copy operations, with no conversions. This usage
may cause addressing exceptions when you use the resulting pointers.
However, if the constant 0 is assigned to a pointer, the result is a null
pointer. The equality operators distinguish a null pointer from a pointer
that points to any object.

For compatibility with some other C implementations, VAX C allows certain
deviations from the spellings of the compound assignment operators shown
in Table 7-2. The deviations are as follows:

* When the operators are written in the order shown in Table 7-2, the two
characters can be separated by blank spaces. For example, the following
expressions are identical:

El += E2;
El + = E2;

* The operators can also be written with the characters in reverse order,
as in the following expression:

El =+ E2;

The second form generates an informational message. Avoid this form for
the following reasons:

* The syntax allowed by VAX C is more restrictive in this case.
Specifically, the characters (*, —, and &) must be immediately adja-
cent to the equal sign (=) character because they also appear in unary
operators. For example, this placement avoids ambiguities such as
that shown in the following example, which multiplies the result of
expression E1 by the value of p:

El =*p;

Expressions and Operators 7-21

e Even with usage that follows the guidelines, it is possible to introduce
ambiguities, as in the following expression: N

El =/*part of a comment . . . u

7.8 Comma Expression and Operator

When two expressions are separated by the comma operator, they evaluate
from left to right, and the compiler discards the result of the left expression.
If you separate many expressions with commas, the compiler discards all but
the result of the rightmost expression. For example, the following expression
assigns the value 1 to variable R and the value 2 to variable T:

R=7T-=1, T += 2, T -=1;

The type and value of the result of a comma expression are the type and
value of the rightmost operand. The operator evaluates operands from left
to right.

You must delimit comma expressions with parentheses if they appear where
commas have some other meaning, as in argument and initializing lists.
Consider the following expression:

f(a, (t=3rt+2)r c)

This example calls the function, f, with the arguments a, 5, and c. In
addition, variable t is assigned the value 3. u

7.9 Data-Type Conversions

VAX C performs data-type conversions in the following four situations:
¢ When two or more operands of different types appear in an expression
(including an assignment).

¢ When arguments other than l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>