 \AX DAIATREVE




VAX DATATRIEVE
Handbook

Order No. AA-W675B-TE

November 1987

This manual contains general information on using
VAX DATATRIEVE.

OPERATING SYSTEM: VMS
MicrovMsS
SOFTWARE VERSION: VAX DATATRIEVE V4.1

digital equipment corporation, maynard, massachusetts



The information in this document is subject to change without notice and should C
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear

in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1984, 1985, 1987 by Digital Equipment Corporation. All Rights
Reserved.

The postage-paid Reader’s Comments forms at the end of this document request
your critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS PDP VAX

CDD RALLY VAXcluster

DATATRIEVE Rdb/ELN VAXinfo

DEC Rdb/VMS VAX Information Architecture
DECnet ReGIS VAX/VMS

DECUS TDMS VIDA

MicroVAX TEAMDATA VMS

MicroVMS UNIBUS vT

Eﬂaﬂnan )

IBMZ®? is a registered trademark of International Business Machines Corporation.



J

How to Use This Manual

Technical Changes and New Features
Part | Getting Started with DATATRIEVE
Getting Started with VAX DATATRIEVE

1.1 WhatIsDATATRIEVE? . . ... ..............
1.2 Createand Usea VMS Directory. . . ... .........
1.3 Obtain a CDD Directory and Start DATATRIEVE. . . .
1.4 Look at Some Sample DefinitionsandData . ... .. ..
1.5 End Data Access and Exit DATATRIEVE. .. ... ...
1.6 Create a Dictionary Subdirectory . .............
1.7 Create aSimple Application . ................

1.7.1 Use ADT to Create Data Definitions and a File

1.7.2 StoreRecords . ........... ...
173 DisplayData..............cccoc....
1.7.4 ChangeFieldValues ..................
1.7.5 Change Domain Structure. . . . . ..........
1.7.6 CreateaTable . ... ..................
1.7.7 WriteaProcedure. ...................

VMS Concepts

2.1 Using DIGITAL Command Language(DCL) . ... ...
22 LoggingIn........... ... . i
2.2.1 GQGettingthe TerminalReady. . ............
2.2.2 Gaining AccesstotheSystem. . ...........
2.3 GettingOnlineHelp . . .. ....... ... ... ....
2.4 EnteringCommands. . ....................
2.4.1 CommandPrompting. .................
242 Defaults. . . . ... ... i i,
2.4.3 AbbreviatingCommands. . . .............
2.4.4 RecoveringfromErrors . ...............
2.4.5 Summary of EnteringCommands . . ........
2.5 Interpreting System Responses . . . ... .........
2.5.1 InformationMessages .. ...............
2.5.2 ErrorMessages . . ......coiuiiivean...

Contents

xiii

xix

........ 1-1

iii



v

26 LoggingOut. . ...... ... innnenns 29

2.7 FileManagement. . ... ... ... it ittt it 29
2771 CreatingFiles . .. ... ... ..., 2-10
2.7.2 IdentifyingFiles. ... .. ... .. i i, 2-10

2721 Nodes. . ..o ittt et it e 2-10
2722 DEVICES. . v v v ittt e e e e 2-11
2.7.2.3 Directories and Subdirectories. . . . .. ... ..... ... 2-11
2.7.2.4 File Names, Types,and Versions. . . . ... ......... 2-11
2.7.2.5 WildcardCharacter ... ........ ... ....... 2-12
273 DeletingFiles . ... ... .. i i i e 2-13
274 PurgingFiles. . .. ... ... . . i i 2-13
2.7.5 Displaying Filesat Your Terminal . . ................ 2-14
2.7.6 PrintingFiles. . . . ... .. .. i i i e 2-14
2.7.7 ListingFilesinaDirectory. . . . . ..... .. . ... 2-15
278 CopyingFiles. . . . ... . i e e e e 2-15
2.7.9 RenamingFiles ... ... ... ... .. . . . 2-16
2,710 AppendingFiles . ... .. ... .. i i oL, 217
2.7.11 Finding Differences BetweenFiles . .. . ... ... ....... 2-17
2.7.12 Searching Files fora Selected String. . . . ... ......... 217

2.8 Creating and Managing VMS Directories ... ... ........... 2-18
2.8.1 DirectoryStructure. . ... .. ... i i . 2-18
2.8.2 Accessing Other Directories. . . . . ................. 2-19
2.8.3 Creating Subdirectories . ... ............. .. .. ... 2-20
2.8.4 Changing Your Default Directory. . . ... ... .......... 2-20
2.8.5 Protecting Your DirectoriesandFiles . . . . ... ......... 221
2.8.6 DeletingaDirectory. . . ... ... . i . 2-23

29 LogicalNames . .. ... ...ttt 2-23

2.10 System Default Logical Names. . . . . .................. 2-24

211 Symbols . .. .. i e e 2-26

2,12 CommandProcedures . .. ...... ... L, 2-27
2121 ALOGIN.COMFile......... ... ... 2-28

2.13 Finding MoreInformation. . . ... ... ... ... ... ... ... 2-28

Using Editors Within DATATRIEVE

3.1 General EditingInformation. . . ... ........... ... ... 3-2
3.1.1 Assigninga DATATRIEVEEditor. . . ... ............ 3-2
3.1.2 Using Line Recall Within DATATRIEVE. . . .. ......... 3-3




3.1.3 Usingthe DATATRIEVEEDITcommand. ...........

3.1.3.1 Editing the Previous DATATRIEVE Command or

Statement. . . .. ... ... . e e

3.1.3.2 Privileges Needed to Edit CDD Objects . .........

3.1.3.3 Editing a CDD Object Specified by Path Name . . . . . .

3.1.3.4 Editing by Types of Objects Within DATATRIEVE . . . .

3.1.3.5 Using EDIT to Recover from a System Failure . . . . ..

3.2 UsingEDTWithinDATATRIEVE . . . .................
3.3 Using VAXTPU WithinDATATRIEVE . . . . ... ..........
3.4 Using LSE within DATATRIEVE., . . . ... ..............
3.5 Ending Your Editing Session. . .. ....................
3.5.1 EndinganEDTSession . ............0vvueeo...
3.6.2 EndingaVAXTPUSession . ....................
3.6.3 EndinganLSESession. . ......................

Using Syntax Diagrams

4.1 Uppercase Wordsin Syntax Diagrams . . . .. ... ..........
4.2 Lowercase Wordsin Syntax Diagrams . . . . ... ...........
4.3 Brackets and Bracesin Syntax Diagrams . . ... ...........
4.4 SeparatorsinSyntaxDiagrams . .. ...................

Part Il Controlling your DATATRIEVE Environment

Input Options During a DATATRIEVE Session

5.1 Invoking DATATRIEVE . ................ ... . .....
5.2 Creating a Startup Command File (DTR$STARTUP). . .. ... ..
5.3 ExitingDATATRIEVE . ........ ... ... ... . .. ... . ...
5.4 Getting DATATRIEVE to Process More Than One Line as a Unit. .
5.4.1 Turning Off the "Looking for...” Messages . . . .........
5.4.2 Using Standard Programming Conventions to Format Input . .

Getting Online Assistance

6.1 UsingHelp. . ... ... ... .. .0t

6.2 GettingHelponErrors . ........... ... ... ...,
6.3 GuideMode . .. ... ... ... .. ... . . i

Using the VAX Common Data Dictionary

7.1 WhatlIstheCDD? . ... ... ... .. iiiinnnnnn.
7.2 HowlstheCDDOrganized? . ..............0uuuue...

7-1
7-2



vi

7.3 Creatingand UsingPathNames. . . .. .................. 7-4

7.3.1 UsingFullPathNames. ........................ 7-5
7.3.2 VersionNumbers . .. ........... ... ... ... 7-6
7.3.3 AbbreviatingPathNames . .. .................... 7-7
7.3.4 The Logical Name in Dictionary PathNames. . . . . . ... ... 7-7
7.4 Setting Dictionary Location . . ....................... 7-9
7.5 Displaying Information About Directories, Objects, and Session
Defaults . . . . ... . e e e 7-9
7.6 Deleting, Purging, and Extracting Definitions . . ... ......... 7-12
7.7 Creating Dictionary Directories . . . . ... ... ..., 7-14
7.8 Deleting Dictionary Directories . . ... .................. 7-15
7.9 Displaying and Setting Protection for Directories and Objects . . . . . 7-16
7.9.1 Displaying Your Privileges. . . .. ......... .. ... ... 7-18
7.9.2 Displayingand ChanginganACL. . . ... ............. 7-21
7.10 Using the CDD to Design Department-Wide or System-Wide
Applications . . .. ... . . e e 7-23

Part Il Setting Up a Database

Application Case Study: a Personnel System
8.1 ReviewingtheRequirements. ........................ 8-1
8.2 AnalyzingtheData. ............ ..., 8-4
8.3 Grouping Fields into DomainsandTables . . .. ... .......... 8-6
Defining Records

9.1 Setting Up Relationships Among Fields (Level Numbers). . . . .. .. 9-3
9.2 SelectingNames . . .. ... ... .. i e e 9-5
9.2.1 Differences Between Record Name and Top-Level Field . . . . . 9-6
922 QueryNames. . . . . .o v ittt ittt e 9-7
9.23 ColumnHeaders. . ......... .. ..., 9-7
9.2.4 FILLERFieldName ............. ... .. ... ..... 9-8
9.3 Specifying Typeand SizeofData . ..................... 9-9
9.3.1 SpecifyingaPICClause . ....................... 99
9.3.1.1 Defining Alphanumeric (X) and Alphabetic (A) Fields . . . 9-10
9.3.1.2 Defining NumericFields .................... 9-11
9.3.2 SpecifyingaUSAGEClause. . . . .................. 9-12
933 DateFields. ... ......... ... ... .. 9-15
9.3.4 Virtual{Computed)Fields . . ..................... 9-15

9.3.5 Defining One Record Area in Different Ways Using the
REDEFINESClause. . . .. ..o it ittt e i 9-16
9.3.6 Specifying Repeating Fields Using the OCCURS Clause. . . . . 9-17
9.4 Formatting the Displayof FieldValues. . . ... ... .......... 9-20



9.5 Including Validation Requirements . . . .. ... ... .......... 9-23

9.6 InitializingFieldValues . . .. ........... ... .. ... ..., 9-23
9.7 Specifying Values to Be Ignored in Statistical Computations. . . . . . 9-23
9.8 Ending Field and Record Definitions . . ... ... ............ 9-24
9.9 Editing Record Definitions . . . .. ..................... 9-24
10 Defining Domains
10.1 NamingtheDomain ... ... ... ...ttt ennenn. 10-2
10.2 Specifyingthe RecordName . . ... ................... 10-3
10.3 SpecifyingtheDataFile. ... ... .. ... ... ... ... .... 10-3
10.3.1 How Much of the File SpecificationtoInclude. . . . . ... ... 10-3
10.3.2 Avoiding Problems When NamingFiles . . . . ... ....... 10-4
11 Defining Data Files
11.1 DefiningIndexedFiles. . . . ... .. ... .. .. ... .. . ... 11-2
11.1.1 SelectingthePrimaryKey . ... ...... ... ........ 11-3
11.1.2 Selecting AlternateKeys. . . .. .................. 11-4
11.1.3 Selecting GroupFieldKeys ... .................. 11-4
11.2 DefiningSequentialFiles . . ... ..................... 11-5
11.3 Planning for FileMaintenance . . . .................... 11-6
11.3.1 Using Other Options inthe DEFINE FILE Command . . . .. 11-6
11.3.2 Using RMS Utilities to Load and MaintainFiles . . . ... ... 11-7
11.4 RestructuringaDomain. .............. .. .. ........ 11-7
11.4.1 Changing Only File Organization, Storage Options, and Keys . 11-7
11.4.2 Changing the Fields Defined in the Record Definition. . . . . . 119
11.4.3 Restructuring a Domain to Add Its Records to Another
Domain.......... ... 11-12
12 Defining Tables
12.1 CreatingDictionaryTables . . . . . .................... 12-2
12.2 CreatingDomainTables. . .. .. ...... ... ... ... ..... 12-3
12.3 Using DATATRIEVETables. . . . .................... 12-4
12.3.1 Access Privileges NeededtoUseTables . . . ... ........ 12-5
12.3.2 AccessingValuesinTables. . .. .................. 12-5
12.3.3 Editing Table Definitions. . . . . ... .. ............. 12-7
12.3.4 Validating ValueswithTables . . . ... ... ........... 12-8
12.4 Choosing Between Dictionary and DomainTables . .......... 12-8

vii



Part IV Data Retrieval and Maintenance

13 Starting and Ending Access to Data
13.1 ReadyingDomains . . .. .... ...ttt ninennnns
13.1.1 Defining Your Own Default Access . . . . . ... .. ... .. ..
13.2 FinishingDomains . . . ... ... ... . e,

14 Retrieving Data the Easy Way: With Collections
14.1 Specifying the Records You WantinaCollection . . . . ... ... ..
14.2 Formingand NamingCollections . .. ..................
14.3 Choosing a Target Record foranOperation. . . . ... ... ......
14.4 Restricting Record Fields tothe Ones YouNeed. . . . .. ... ....
14.5 SortingRecords. . . ... ... i i e e
14.6 Forming a Collection from Two or More Record Sources. . . . . . ..
14.7 Removing Records fromaCollection . ..................
14.8 Removing Collections from Your Workspace. . . . . ... .......
14.9 Disadvantagesof UsingCollections . . . . ... ... .. ........

15 Accessing Data the Expert Way: Without Collections
15.1 Processing Records from Domains Rather Than Collections . . . . .
15.1.1 EnsuringFastAccess.......... ...,
15.1.2 Processing Records in Compound Statements . . . . ... ...
152 CreatingRSEs ... ...... ...
15.3 Working with MultipleRecords. . . ... .................
15.3.1 FOR Statement LoopingErrors. . . ... .............
15.3.2 CROSS Clause LoopingErrors . . .......... ... ...
15.3.3 Lists, the “Record” WithintheRecord. . . . . ... ... .. ..
15.4 CreatingViews . . . . . vttt ittt i ie i et ene s
15.4.1 View Domains That Subset Fields from One Domain . . . . ..
15.4.2 View Domains That Combine Fields from Two or More
Domains . ... .o i ittt i e e e e
15.5 Access Privileges Needed for UsingViews . . . .. ... ........
15.6 Summary of Options: Advantages and Disadvantages . . . . ... ..

16 Maintaining Data
16.1 StoringRecords. ... ....... ... ...,
16.2 ErasingRecords. . .. .......c.c.uiiuii e
16.3 ModifyingRecords . . .. ...... ... .. i i

vili




Part V Programming with DATATRIEVE

17 Using Procedures and Compound Statements

17.1 Creatingand ExecutingProcedures. . . ... .............. 17-1
17.2 Correcting and Changing Procedures . . . . . .............. 17-4
17.3 Using Compound Statements. . . ... .......... ... 17-5
17.3.1 Combining Statements with the REPEAT Statement . . ... 177
17.3.2 Combining Statements with the FOR Statement .. ... ... 17-7
17.3.3 Combining Statements with the Keyword THEN .. ... ... 17-8
17.3.4 Combining Statementsina BEGIN-ENDBlock......... 17-8
17.3.5 Combining Statements with the WHILE Statement . ... .. 17-9
17.3.6 Combining Statements with the IF-THEN and IF-THEN-
ELSE Statements . ... ........ciiiiennn. 17-10
17.3.7 Combining Statements with the CHOICE Statement. . . . . . 17-11

17.4 Guidelines for Writing Procedures and Compound Statements. . . .17-12
17.4.1 Using FIND, SELECT, SORT, REDUCE, and DROP

Statements. . . . . . v vttt e e 17-13
17.4.2 Avoiding LoopingMistakes . .................... 17-13
17.4.3 Invoking DATATRIEVE Procedures from VMS Command
Files . . . .o i e e e e 17-14
17.4.4 Controlling Executionon Error Conditions . . .. ........ 17-14
17.5 Getting a Procedure to Workthe Way YouWant . . .......... 17-16
17.5.1 Displaying Command File and Procedure Input During
Execution. . . . . .ottt i it e e 17-16
17.5.2 Writinga SessionLogtoaFile. . . ... ... ........... 17-18
17.5.3 Checking the Last Word or Character of Input Lines . . . . .. 17-18

18 Defining and Calculating Values with DATATRIEVE

18.1 Using DATATRIEVE Expressions . . .. ... .......uo0.... 18-1
18.1.1 ValueExpressions. .. ... ... .. ..ttt 18-2
18.1.1.1 Literals. . . . .. .. i i e e 18-3
18.1.1.2 RecordFieldNames . ..................... 18-4
18.1.1.3 VariableFieldNames. . . ................... 184
18.1.1.4 Prompting Value Expressions . ... ............ 18-6
18.1.1.5 ArithmeticExpressions . . .................. 18-7
18.1.1.6 Conditional Value Expressions. . .. ............ 18-8
18.1.1.7 FORMAT ValueExpressions. . . . ... .......... 18-10
18.1.2 Boolean Expressions . . . . ... ...ttt 18-10
18.1.2.1 RelationalOperators. .. ... ... ... oo 18-11
18.1.2.2 BooleanOperators . ... ........ ... 18-14

ix



18.2 Computing Sums and Other Statistics . ... .............. 18-16

18.2.1 Statistical ValueExpressions . . . ... .. .. ... .. ..., 18-16
18.2.2 Using the SUM Statement and Statistical Value Expressions

withthe CURRENT Collection. . . . ................ 18-20

18.3 Storing and Displaying DateandTime . .. ... ............ 18-22

18.3.1 Storing and Displaying ValuesinDateFields. . . ... .. ... 18-23

18.3.2 Comparing and Searching for DateValues . ... ........ 18-26

18.3.3 Subtracting Values fromaDateField. . . . . ... ........ 18-28

Part VI Formatting Displays and Writing Reports
19 Improving Screen Displays and Controlling Output

19.1 Optimizing Spacein Display Lines. . . . ... .. ....... .. ... 19-1
19.1.1 Adjusting Screen Width and the Columns-Page Setting . ... 19-2
19.1.2 Usingthe LISTStatement. . . . ..... ... ... ...... 19-2

19.1.3 Writing a Simple Procedure to Segment Record Display . . . . 19-3
19.1.4 Overriding Column Header Defaults with the PRINT

Statement . . . . .. L e e e e 19-4

19.1.5 Using Edit Strings to Optimize Display Space . . . .. ... .. 19-6
19.1.6 Using Concatenation Characters to Conserve Line Space . .. 19-7
19.2 PRINT StatementOptions . . .. ... vviv vt v vt iv oo 199
19.2.1 PRINT Statement Format and Print List Elements. . . . . . . 19-9
19.2.2 UsingPrintList Modifiers . . .. ........... .. ..., 19-13
19.2.3 Sending OutputtoaFileorPrinter. .. ... ... ... ..... 19-13

20 Writing Reports

20.1 Enteringthe REPORT Statement. . . .. ... ............. 20-4
20.2 Controlling Headers and Other Report Settings. . . . .. ... .. .. 20-5
20.3 SpecifyingDetailLines ... ........... ... ... . ..., 20-10
20.3.1 Specifying and Formatting Valuesina Detail Line. . . . . . .. 20-10
20.3.2 Spacing Values in a Detail Line Acrossthe Page . . . . ... .. 20-10
20.4 HandlingControlGroups . . ... .......... oo, 20-12
20.4.1 Sorting Records According to Control Group Key Values. . . .20-13
20.4.2 Printing Control GroupHeaders . ................. 20-13
20.4.3 Printing Control Group and Report Summaries .. ....... 20-13
20.5 Includinga Title PagefortheReport. . . ... ... ........... 20-16
20.6 Exiting the Report Writer and Correcting Mistakes . .. .... ... 20-19

Part VIl Appendixes and Index
A DATATRIEVE Keywords

B Sample Record, Table, and View Definitions




D,

C DATATRIEVE Sort Order

D Edit String Characters

Index
Examples

9-1 Sample DATATRIEVE Record Definition. . . .. ............ 9-2
10-1 DefiningaSampleDomain . ... ..................... 10-2
11-1 DefiningaDataFile. . . ... ... ... ... ... ... ... ... ... 111
11-2 Restructuring a Domain to Change File Organization . ........ 11-8
11-3 Restructuring a Domain to Change the Record Definition. . . .. .. 11-10
12-1 DefiningaDictionaryTable. . . .. .................... 12-2
12-2 DefiningaDomainTable. . . . .. ... .................. 12-4
13-1 Startingand Ending AccesstoData. . ... ............... 13-2
14-1 Creatingand UsingaCollection . . .................... 14-1
15-1 Including RSEsinStatements . . .. ................... 15-2
15-2 Using RSEsin Compound Statements . . ................ 15-4
15-3 DefiningandUsingaView. . . .. ..... .. ... .. ........ 15-14
16-1 Storing Records Interactively. . . . ... ................. 16-1
16-2 Storing RecordsinaProcedure. . . .................... 16-3
16-3 Erasing Records by First Creatinga Collection . . . .......... 16-5
16-4 Erasing Records Usinga FOR StatementRSE . .. . ... ...... 16-8
16-5 Modifying Records by First Creating a Collection. . . .. ....... 16-11
16-6 Modifying Recordsina FOR StatementRSE . . ... ......... 16-13
17-1 Creatinga DATATRIEVE Procedure. . . ... ............. 17-2
18-1 Using Statistical Value Expressions. . . ... .............. 18-18
18-2 Using the SUM Statement and Statistical Value Expressions with

the CURRENT Collection . . . . ....... ... ... ....... 18-20
18-3 Storing and Displaying Values in Fields Defined as USAGE DATE .18-24
18-4 Comparing and Searchingfor DateValues . . . . ............ 18-26
20-1 SampleReport. . . . . ... . e e e e e 20-2
20-2 Using SET Statements toVary Report Format . . . . ......... 20-7
20-3 Varyingthe FormatofDetailLines . ................... 20-11
20-4 Including Control GroupsinaReport . . ... ... ........... 20-14
20-5 CreatingaTitlePage. . ............ ... ... ..., 20-17

Xi



Xii

Figures

1-1 Organizationof PHONESDomain . .................... 1-17
2-1 Sample VMS Directory Structure . . . . . ..o vv e e et e ... 219
4-1 SampleSyntaxDiagram . ... ...........0.itinn... 4-2
7-1 CDDStructure . . . . oo v vttt ittt ettt e e e e 7-2
7-2 SampleCDD . ... ... . e e e e 7-3
8-1 Domains and Tables in Sample Personnel System . . .......... 8-9
9-1 Logical Modelof EMPLOYEES REC .. ................. 9-3
Tables
2-1 DefaultFileTypes . . . . . . ittt ittt e e e e e 2-11
2-2 Examplesofthe DELETE Command. . .. ................ 2-13
2-3 System Default LogicalNames . ...................... 2-25
4-1 Notation UsedinSyntaxDiagrams . . . . . ... ... .......... 4-3
7-1 SpecifyingVersionNumbers . . . ....... ... ... ..., 7-6
7-2 SHOWCommandOptions . . .. ...t eneenn.. 7-10
7-3 AccessControlPrivileges . . . . . ... ... ... ... 7-17
7-4 Access Privilege Requirements for Commands and Statements . . . . 7-19
8-1 Fieldsfor PersonnelSystem . ........................ 8-5
9-1 PictureStringCharacters. . . . ... ... ...ttt ennen. 9-10
9-2 Relating Numeric Picture Strings to Stored Values . .......... 9-11
9-3 USAGEClauseOptions. . . . . v v v vt ittt et e et e e e e 9-13
9-4 EditingTextFields. . ... ......... .. .. . .. i, 9-21
9-5 EditingNumericFields . ... ........... ... .. ... . .... 9-21
9-6 EditingDateFields. . . .. .......... ... 00, 9-22
13-1 AccessOptions . . ... ...t nnns 13-4
13-2 AccessModes . . .. ... i e e e 13-4
13-3 MultiuSer ACCESS . « « -« v v v v it ettt e e e 13-5
18-1 Value EXpressions . . . .. ... viiinieneeneeeenennas 18-2
18-2 ArithmeticOperators . .. ...........0 i eenn.. 18-7
18-3 RelationalOperators . . . . .. ... ..t i i ... 18-11
18-4 Statistical FunctionsandResults . ... ... ... ........... 18-17
19-1 PrintListElements. . ... ... ... . 0. 19-12
19-2 PrintltemModifiers . . . . ..... ... ... . .. 19-13
20-1 Report Writer SET StatementOptions. . ... ... ... ....... 20-6
A-1 DATATRIEVEKeywords .. ........... ... A-1
A-2 DATATRIEVE FunctionNames . . .............. .. ..., A-5
C-1 DATATRIEVESortOrder. . .........couvtteuuuneeenn. C-1
D-1 EditStringCharacters . . .. ......... ... .. D-1



How to Use This Manual

This manual describes how to use the statements and commands of the VAX
DATATRIEVE query language (sometimes simply called DATATRIEVE]} to carry
out data processing tasks. It provides some tutorial information about describing
data and creating procedures for users who are developing data processing skills.

Intended Audience

This manual is intended for users who are in one of two categories:

*  Those who have limited or no experience with computer languages and are
unfamiliar with the basic elements of DATATRIEVE

¢  Those who have experience using languages like COBOL or BASIC and want
introductory information about DATATRIEVE

Operating System Information

Information about the versions of the operating system and related software that
are compatible with this version of VAX DATATRIEVE is included in the VAX
DATATRIEVE media kit, in either the Installation Guide or the Before You
Install letter.

Contact your DIGITAL representative if you have questions about the compatibil-
ity of other software products with this version of VAX DATATRIEVE. You can
request the most recent copy of the VAX System Software Order Table/Optional
Software Cross Reference Table, SPD 28.98.xx, which will verify which versions
of your operating system are compatible with this version of VAX DATATRIEVE.

Xiii



Structure

This manual is divided into seven parts:

Part1

Part 11

Part I11

Part IV

PartV

Part VI

Part VII

Xiv

Getting Started with DATATRIEVE

Provides an overview of concepts important to people just
starting to use DATATRIEVE on VMS systems
(Chapters 1 to 4).

Controlling Your DATATRIEVE Environment

Contains information about startup options, online assistance,
and the VAX Common Data Dictionary (Chapters 5 to 7).

Setting Up a Database

Leads you through the process of deciding how to organize a
database and create the needed data definitions and files
(Chapters 8 to 12).

Data Retrieval and Maintenance

Explains the data access options DATATRIEVE offers you
and shows you how to store, erase, and modify records
(Chapters 13 to 16).

Programming with DATATRIEVE

Tells you how to create complex statements and procedures
and how to calculate values with DATATRIEVE
(Chapters 17 and 18).

Formatting Displays and Writing Reports

Shows you how to improve screen displays and use the
DATATRIEVE Report Writer (Chapters 19 and 20).

Appendixes and Index

Contains reference tables for DATATRIEVE keywords, sort
order, and editing characters; sample record, table and view
definitions; and an index.



Related Documents

For further information on the topics covered in this manual, you can refer to:

VAX DATATRIEVE Release Notes

Includes specific information about the current DATATRIEVE release and
contains material added too late for publication in the other DATATRIEVE
documentation.

VAX DATATRIEVE Installation Guide

Describes the installation procedure for VAX DATATRIEVE. The manual
also explains how to run User Environment Test Packages (UETPs), which
test DATATRIEVE product interfaces, such as the interface between
DATATRIEVE and Rdb/VMS.

VAX DATATRIEVE Guide to Using Graphics

Introduces the use of DATATRIEVE graphics and contains the reference
material for creating DATATRIEVE plots.

VAX DATATRIEVE Guide to Writing Reports
Explains how to use the DATATRIEVE Report Writer.
VAX DATATRIEVE User’s Guide

Describes how to use DATATRIEVE interactively. The manual includes
information on using DATATRIEVE to manipulate data and on using
DATATRIEVE with forms, relational databases, and database management
systems. It also describes how to improve performance and how to work with
remote data.

VAX DATATRIEVE Reference Manual

Contains reference information for DATATRIEVE.

VAX DATATRIEVE Pocket Guide

Contains quick-reference information about using DATATRIEVE.
VAX DATATRIEVE Guide to Programming and Customizing

Explains how to use the DATATRIEVE Call Interface. The manual also
describes how to create user-defined keywords and user-defined functions to
customize DATATRIEVE and how to customize DATATRIEVE help and
message text.

XV



Conventions

This section explains the conventions for the syntax and symbols used in this
manual:

WORD An uppercase word in a syntax format is a keyword. You must
include it in the statement if the clause is used.

word Alowercase word in a syntax format indicates a
syntax element that you supply.

[1] Square brackets enclose optional clauses from which you can
choose one or none.

{3 Braces enclose clauses from which you must choose one
alternative.

This symbol indicates the RETURN key. Unless otherwise
indicated, end all user input lines in examples by pressing the
RETURN key.

This symbol indicates the TAB key.

(CTRLX) This symbol tells you to press the CTRL (control) key and hold

it down while pressing a letter key. If you press CTRL/Z, the
word Exit appears in reverse video; if you press CTRL/Y, the
word Interrupt appears in reverse video. Examples of video
output in this book do not include either word; instead the
conventions "Z and 'Y are used.

This symbol indicates that you press the GOLD key and then a
specified letter key consecutively.

These are double quotation marks.
These are single quotation marks.

Ahorizontal ellipsis in syntax formats means you can repeat
the previous item.

A horizontal ellipsis in examples means that information not
directly related to the example has been omitted.

Xxvi

C




A vertical ellipsis in syntax formats means you can repeat the
syntax element from the preceding line.

A vertical ellipsis in examples means that information not
directly related to the example has been omitted.

Color Color in examples shows user input.

Since CDD Version 3.1, CDD path names include a leading underscore. For
example:

DTR> SHOW DICTIONARY
The default dictionary is _CDD$TOP.DTR32.WEAGER

Examples of the output in DATATRIEVE manuals do not reflect this change.
You do not need to enter CDD path names with the leading underscore.

References to Products

VAX DATATRIEVE is a member of the VAX Information Architecture, a group
of products that work with each other and with VAX languages conforming to the
VAX calling standard to provide flexible solutions for information management
problems.

VAX Information Architecture documentation explaining how these products
interrelate is included with the VAX CDD documentation. VAX Information
Architecture documentation is also available separately. Contact your DIGITAL
representative.

The VAX DATATRIEVE documentation to which this manual belongs often
refers to products that are part of the VAX Information Architecture by their
abbreviated names:

e VAX CDD software is referred to as CDD.

e VAX DATATRIEVE software is referred to as DATATRIEVE.
e VAX DBMS software is referred to as DBMS.

e VAX Rdb/ELN software is referred to as Rdb/ELN.

e VAX Rdb/VMS software is referred to as Rdb/VMS.

XVii



* VAX TDMS software is referred to as TDMS.

e  VIDA software is referred to as VIDA.

This manual uses the terms relational database or relational source to refer to all (
three of these products:

e VAX Rdb/ELN

¢  VAX Rdb/VMS

* VIDA

Xvili




Technical Changes and New Features

This section describes the technical changes and new features for VAX
DATATRIEVE that are documented in this manual.

Version 4.1

Chapters 1 and 3 of this manual include the following new information:

*  Using the arrow keys or CTRL/B for line recall
e Using LSE and VAXTPU with DATATRIEVE

Line recall ability is new with Version 4.1. LSE and VAXTPU were new
DATATRIEVE features with Version 4.0 and 3.4, respectively.

Each new feature was documented in the VAX DATATRIEVE Release Notes for
its particular release and in online help. With Version 4.1, these features are now
included this manual.

All new features since Version 3.0 are described in online help. To read a descrip-
tion of these new features from within DATATRIEVE, refer to the online help:

DTR> HELP New_Features

XiX






Part |
Getting Started with DATATRIEVE







Getting Started with VAX DATATRIEVE 1

This chapter introduces you to DATATRIEVE and the VMS operating system by
asking you to enter some commands and statements to perform simple tasks.

If you have limited programming experience, working through the examples in
this chapter gives you experience describing, storing, and displaying data with

DATATRIEVE. This experience provides a foundation for the more detailed dis-
cussion of the same topics in other chapters.

If you are an experienced programmer but have not used a VAX computer sys-
tem or DATATRIEVE before, simply reading this chapter can help you spot
differences between using DATATRIEVE and using other programming lan-
guages. See the section later in this chapter for a summary of how DATATRIEVE
differs from other computer languages and what advantages it offers.

1.1 What Is DATATRIEVE?

DATATRIEVE is an interactive language and report-writing tool that can help
you keep information organized and up-to-date efficiently, quickly, and
accurately. You tell DATATRIEVE what to do by typing commands and state-
ments at your keyboard, and DATATRIEVE does the tasks you request. The
commands and statements you use are similar to the sentences you would use
when asking a person to do the same data management jobs. DATATRIEVE,
however, can do these jobs faster, more efficiently, and more accurately than
you or any other human being can.

11



DATATRIEVE is a tool for managing information organized as collections of
interrelated data, or databases. You use DATATRIEVE to query and report on a
database. DATATRIEVE can access three types of databases:

e File-structured databases that you set up with DATATRIEVE, RMS, or a
programming language

» Databases that you create using VAX Rdb/VMS, VAX Rdb/ELN, or VIDA
» Databases that you create using VAX DBMS

Examples in this book show you how to create your own file-structured data-
bases. The VAX DATATRIEVE User’s Guide explains how to access data stored
in DBMS and relational databases. For the remainder of this book, the term
database is used to refer to data stored in files. This term is sometimes used in
other documentation to refer only to data stored by database management sys-
tems such as DBMS or the VAX relational database products.

1.2 Create and Use a VMS Directory

This section shows you how to use several system commands important to the
DATATRIEVE user. You need no experience with the VMS operating system or
with DATATRIEVE. You should have an account on your system and know how
to log in and out.

When you log in, you see a dollar sign ($) prompt on your terminal screen. This
prompt indicates that you are at the system command level. The dollar sign ($)
prompt is the VMS default. If you or your system manager change the default
with the DCL SET PROMPT command, you see the changed prompt instead. At
the system command level, you communicate with the VMS operating system
using the DIGITAL Command Language (DCL). Later, when you use
DATATRIEVE, you are at DATATRIEVE command level, indicated by a DTR>
prompt. At this level, you use the DATATRIEVE language to perform most of
your data management tasks. There are a few concepts, however, that you need
to know about the system command level before you start working with
DATATRIEVE.

When you log in to your system, you are assigned to a VMS directory. A direc-
tory is a way of defining and protecting your storage space on the computer sys-
tem. The data that you will store, modify, and display with DATATRIEVE is
stored in files that reside in a VMS directory.

1-2 Getting Started with VAX DATATRIEVE

C

C




The directory you use when you log in is your main directory. It is sometimes
referred to as your login directory. You can check which VMS directory you are
) using by typing SHOW DEFAULT at the dollar sign ($) prompt and then press-

ing the RETURN key. You can check what your directory contains by typing

DIRECTORY and then pressing the RETURN key.

Note

Pressing RETURN tells the system that you want it to process the
line you have typed. This book does not use a symbol to tell you when
to press RETURN. Therefore, unless the examples in this book indi-
cate otherwise, press the RETURN key to enter each line you type.

The following example shows the results of a DIRECTORY command entered
from his main directory by someone with the user name BELL. When you enter
the command, you see your user name in place of BELL. In addition, your dis-
play might be different from the one in the example. For example, if there is
nothing in your directory, the system displays the message “No files found.”
$ DIRECTORY
Directory DBA1:[BELLI

) HELLOD .LIS; 2 HELLO.LIS:1 LOGIN.COM; 1 MAIL .MAI;1
Total of 4 files.
$

The names of files in a directory listing contain three parts in the following
format:

filename.type;version

Filename is the given name of the file, generally what you think of first when
you are choosing a name for a file. HELLO, LOGIN, and MAIL are the file
names in Bell’s directory display.

Type indicates the kind of file it is. The file types in Bell’s display are .LIS,
.COM, and .MAI. Although you can choose up to 39 characters for the type,
naming conventions help you identify the type of file you are using. For exam-
ple, the file type:

e LIS indicates a file you can print or display

e .COM indicates a procedure you can execute

) e .MAI indicates a file that stores messages you receive through the VMS MAIL
utility

Getting Started with VAX DATATRIEVE 1-3



Version is a decimal number from 1 to 32767 that indicates versions of a file.
Whenever you change the contents of a file by editing it, you do not destroy the
original contents of the file. You create a file with the same name and type, but
a higher version number. Older versions of the file remain in your directory
until you decide to get rid of them. (Chapter 2 tells you how to delete files.) In
Bell’s directory display, all the files except HELLO.LIS have one version.
HELLO.LIS has two versions, HELLO.LIS;2 and HELLO.LIS;1.

You can always abbreviate DCL commands when you enter them. This saves
typing time and reduces the chance of typographical errors. Shortening commands
to the first four letters works for all DCL commands. You can shorten some
commands even more, to the first three or even two letters, as long as the abbre-
viation is not one that could refer to more than one DCL command. The system
understands when you type DIR, for example, that you mean DIRECTORY.

Even though abbreviating commands reduces the chances for typographical
errors, you will probably make a few during this session. When you make these
mistakes at the system command level, you usually receive a message that says
a parameter or delimiter is invalid. If you get such a message during this prac-
tice session, check what you have typed against the example. You probably
spelled a word incorrectly, ran two words together, omitted or changed punctua-
tion, or typed a space where the example did not have one. Simply reenter the
command using corrected spelling and format when this happens.

If you are using one of the the VT100-series terminal, another common error is
to press the NO SCROLL key in place of the SHIFT key. NO SCROLL “freezes”
output to the terminal so that it appears your system has stopped working. Sim-
ply press NO SCROLL a second time to clear up this problem. (If you are like
most people, you then have to delete all the repeat characters you entered, or, if
you pressed RETURN, you will get a few error messages from the system. Sim-
ply try the command again when this happens.)

Storing all your computer files in your main directory is analogous to putting
all your paper files in the top drawer of a file cabinet. After you accumulate
more than a few files, it is difficult to find something when you want to use it.
A well-organized file cabinet keeps unrelated files in separate drawers. Simi-
larly, you can append subdirectories to your main VMS directory to store files
related to a specific task or subject matter.

The data files and other files that result from this session are temporary. It is
best, therefore, to create a VMS subdirectory to keep them apart from the other
files you are using. Use the CREATE/DIRECTORY command to do this. The
following example creates the subdirectory PRACTICE for user BELL. When
you enter the CREATE/DIRECTORY command at your own terminal, substi-
tute your user name for BELL. You can substitute another name for PRACTICE
if you want. If you choose another name, limit it to no more than 39 characters,
and, for now at least, use only letters of the alphabet.

1-4 Getting Started with VAX DATATRIEVE

C



$ CREATE/DIRECTORY [BELL.PRACTICE]
$

If you enter the DIRECTORY command again, you see your subdirectory listed
with the file type .DIR:

$ DIR
Directory DBA1:[BELL]

HELLO .LIS;2 HELLO.LIS:1 LOGIN.COM:1 MAIL .MAT:1
FRACTICE.DIR:1

Total of 5 files.
$

Use the SET DEFAULT command to set your directory location to your sub-
directory. Just as you cannot see the contents of a drawer in a file cabinet or
file anything there unless you open it first, you cannot see the contents of a
directory unless you either set your location to that directory or include the
directory name in your commands.

When you refer to a subdirectory, you type the name of its parent, your main
directory, then type a period (.), and finally the name you chose for it. In addi-
tion, note that you enclose a directory name within square brackets ([ ]). The
following example shows how user BELL sets his directory location to his sub-
) directory PRACTICE and then checks its contents. In the example, MISC$DISK
is a system logical name that stands for the device DBA1:. Chapter 2 tells you
more about logical names. '

SET DEFAULT [BELL.PRACTICE]
SH DEF

MISC$DISK:[BELL .PRACTICE]
DIR

No files found.

B R W

You now have an empty directory in which to store your practice data files.

If you type a directory name incorrectly in a SET DEFAULT command and the
mistake is inside the brackets, the system does not return an error message.
However, you receive a directory not found message if you try to use the direc-
tory. In this case, you must enter another SET DEFAULT command with a cor-
rect directory name. If you ever get totally lost within a VMS directory
structure, you can always type SET DEFAULT SYS$LOGIN to get back to the
login directory.

Getting Started with VAX DATATRIEVE 1-5



1.3 Obtain a CDD Directory and Start DATATRIEVE

The first time you use DATATRIEVE, you should run the NEWUSER program.
This program:

» Copies some sample data files into the VMS directory you are currently using
* Defines a Common Data Dictionary (CDD) directory for you

» Copies some sample data definitions into that dictionary directory

Just as you use an assigned VMS directory when you log in to your system, you
use an assigned dictionary directory when you run DATATRIEVE. Each sample
data file (stored on the system command level in a VMS directory) has cor-
responding record and domain definitions (stored on the DATATRIEVE com-
mand level in a dictionary directory). Just as the VMS directory defines and
protects your storage space for files, the dictionary directory defines and protects
your storage space for data definitions.

To run the NEWUSER program, make sure you are using the VMS subdirectory
you created for this practice session and enter the following command:

$ @DTR$LIBRARY:NEWUSER

The program responds with the following information:

NEWUSER helps new users to get started with DATATRIEVE. It gives
you the necessary files to perform the introductory examples in the
VAX DATATRIEVE Handbook and the examples in the VAR DATATRIEVE
User's Guide and Reference Manual.

NEWUSER is working... It will take a few minutes.
All data copied successfully.

The following commands have been defined for you but you will need to
add them to your LOGIN.COM file for the next time you log in:

$ dtr32 == "$sys$system:DTR32.EXE"
$ assiansprocess "cdd$top.dtr$users.bell"” cdd$default
If you need help, see the person responsible for DATATRIEVE on your system.

To invoke DATATRIEVE just type: DTR32

The results that appear for user Bell are not exactly the ones you will get when
you run the NEWUSER program. If the display indicates that NEWUSER

has run successfully, write down the line from your display that begins with
dtr32 == and the one that begins with assign/process. Add these lines to the
LOGIN.COM file in your main directory.

1-6 Getting Started with VAX DATATRIEVE



If no one defined a LOGIN.COM file for you when setting up your system
account or if you do not yet know how to edit a file, you can use the entries
from the following example. This example uses the EDT editor. If your
LOGIN.COM file already exists, you will see the first line of that file in place of
“Input file does not exist’:

$ SET DEFAULT SYS$LOGIN

$ EDIT LOGIN.COM

Input file does not exist
[EOB]

*C

At this point you are using an editing buffer. You can think of a buffer as an
unnamed section of storage space created for you to do some work. The [EOB]
marker indicates end of buffer. As you add text to the buffer, this marker moves
to a position just below your last line of input.

You can position the cursor using the arrow keys on your keyboard. The cursor
indicates where the characters you enter will go when you start typing. If you
position the cursor at the end of a line and press the RETURN key, you can
open up space below to enter a new input line. If you position the cursor at the
beginning of a line and press the RETURN key, you can open up space above to
enter a new input line. To correct typographical errors, you can press the
DELETE key to erase characters (including an accidental RETURN.) Pressing
the DELETE Kkey erases the character just before the cursor. There are more
efficient ways to use an editor, but these suggestions will do the job until you
learn more about editing.

When you finish including the two lines in the file, press CTRL/Z (hold down
the CTRL key and Z at the same time). At the asterisk (*) prompt, type EXIT
and press RETURN. When you enter the EXIT command, the EDT editor cre-
ates the LOGIN.COM file or, if it already exists, a new version of that file.

Later you can refer to the chapter on using editors with DATATRIEVE to learn
how to use an editor to create and modify files. You can also read the chapter
on VMS concepts for an explanation of what command files such as LOGIN.COM
can do for you.

Getting Started with VAX DATATRIEVE 1-7



If the display indicates that the NEWUSER program “aborted’” or prints mes-

sages telling you that definitions were not copied, the person who installed

DATATRIEVE on your system selected a different default dictionary setting
than the one the NEWUSER program uses (CDD$TOP.DTR$USERS). In this 6
case, you will have to ask the person responsible for the CDD software on your

system to set up a dictionary directory for you. After this is done, you can enter

the following commands, substituting your assigned dictionary directory name

for CDD$TOP.DTR$USERS.BELL:

$ ASSIGN "CDD$TOP.DTR$USERS .BELL" CDD$DEFAULT
$ @DTR$LIBRARY : NEWUSER

When you insert in your LOGIN.COM file the lines NEWUSER tells you to add,
the assignment to CDD$DEFAULT takes effect whenever you log in to your
system.

Set your default VMS directory to the one you created for this practice session.
You can now run DATATRIEVE with the following command:

$ DTR32

VAR Datatrieve V4.1

DEC Query and Report System
Type HELF faor help

DTR>

The startup display indicates that you are in DATATRIEVE and tells you what (
version of the product you are running. The DTR> prompt tells you that you
are at DATATRIEVE command level and that DATATRIEVE is ready for you

to enter instructions.

Note

You can use the arrow keys or CTRL/B within to recall what you
have typed on previous lines. See the chapter on using editors with
DATATRIEVE for more information.

Use the SHOW DICTIONARY command to check your dictionary location. (The
DATATRIEVE SHOW command is analogous to the SHOW and DIRECTORY
commands you use at system command level.) The following example shows the
result of the SHOW DICTIONARY command when entered by user Bell:

DTRY SHOW DICTIONARY

The default directory is CDD$TOP .DTR$USERS.BELL

DTR>

1-8 Getting Started with VAX DATATRIEVE



You can see that when you invoke DATATRIEVE, your dictionary location is
the directory you assigned to CDD$DEFAULT in your LOGIN.COM file.

Use the SHOW DOMAINS, RECORDS command to display the data definitions
that the NEWUSER program copied into your dictionary directory:

DTRY SHOW DOMAINS, RECORDS

Domains:
FAMILIES:1 OWNERS1 FERSONNEL: 1 PETSi1
FROJECTS 1 YACHTS 1

Records:
FAMILY_REC:1 OWNER_RECORD; 1 PERSONNEL_REC;1 FPET_-REC;i1
FROJECT-REC; 1 YACHT 1

DTR)

As you can see, the definitions in a dictionary directory have a version number,
just like the files stored in a VMS directory. An earlier version of a definition
serves the same purpose as an earlier version of a file-it gives you something to
fall back on if you cannot use any changes you make to the definition.

1.4 Look at Some Sample Definitions and Data

As mentioned earlier, the NEWUSER program copies sample data definitions
into your default dictionary directory. For each data file NEWUSER copied into
your VMS directory, NEWUSER copied into your default dictionary directory
two data definitions: a record definition and a domain definition.

e A record definition tells you how each record in a data file is divided into
more elementary parts (fields) and, among other things, how much space each
part requires in storage. A record definition is a template that both you and
DATATRIEVE use to identify the fields in a record. It is analogous to a blank
job application form before a prospective employee fills in the blanks.

e A domain definition relates a record definition to a data file and specifies a
name for this relationship. You use the domain name as the source or destina-
tion for data when you enter DATATRIEVE commands and statements. The
domain name tells DATATRIEVE that the specified record definition is the
way to interpret the records in the corresponding data file.

You can look at these definitions with the SHOW command.

Getting Started with VAX DATATRIEVE 1-9



In the following example, the command SHOW PERSONNEL reveals the con-
tents of the domain definition PERSONNEL. Note that it specifies the name of
a data file, PERSON.DAT, that the NEWUSER program copied into your VMS
subdirectory. Because NEWUSER puts only a file name and type in the domain
definition, DATATRIEVE expects to find the data file in the VMS directory
from which you invoked DATATRIEVE. Chapter 2 discusses the more complete
file specification you can include in domain definitions to get around this default.
The domain definition also specifies a record definition, PERSONNEL _ REC,
that describes each record in that file:

DTR) SHOW PERSONNEL
DOMAIN PERSONNEL USING PERSONNEL_REC ON PERSON.DAT;

DTR)

The command SHOW PERSONNEL __REC displays the contents of the record
definition:

DTR) SHOW PERSONNEL-REC
RECORD PERSONNEL-REC USING

@1 PERSON.

@5 ID PIC IS 9(3).

@5 EMPLOYEE-STATUS PIC IS X(11)
QUERY_NAME IS STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EQ
"TRAINEE", "EXPERIENCED" .

05 EMPLOYEE-NAME QUERY_NAME IS NAME.

180 FIRST-NAME PIC IS XK(1d)
QUERY_-NAME IS F_NAME.
10 LAST_NAME PIC IS K(1@)

QUERY_NAME IS L_NAME.

@5 DEPT PIC IS HKX.

@5 START-DATE USAGE IS DATE
DEFAULT VALUE IS "TODAY".

@5 SALARY PIC IS 9(3)

, EDIT_STRING IS $$$,8$¢$.

@5 SUP_ID
PIC IS 9(3)
MISSING VALUE IS @.

DTR?

1-10 Getting Started with VAX DATATRIEVE




If you are not a programmer, you probably do not understand all parts of a rec-
ord definition. These are described for you in later chapters. For now, note that
a record definition specifies:

e The fields in each record (such as EMPLOYEE _NAME and SALARY)

e The order in which the fields are stored in the record (ID, then
EMPLOYEE _ STATUS, and so forth)

« The type of characters that each field can contain (PIC X when it can contain
most keyboard characters and PIC 9 when it can contain only numbers)

« The number of characters each field can contain (PIC 9(5) and PIC X(11), for
example)

If you wish, you can look at some of the other definitions supplied by the
NEWUSER program. SHOW DOMAINS gives you a listing of the domains,
SHOW name-of-domain displays the data file and corresponding record defini-
tion, and SHOW name-of-record gives you some information about the data in
the file.

To access data, you must type READY, followed by the domain name that
applies to the file where the data is stored. The following command tells
DATATRIEVE to ready the PERSONNEL domain for your use:

DTR) READY PERSONNEL
DTR>

After you ready a domain, you can display records with the PRINT command.
To stop the display temporarily, press the NO SCROLL key if you are using a
VT100-type terminal, the HOLD SCREEN key if you are using a VT200-type
terminal, or CTRL/S if you are using another type of terminal. To start the
display again after a temporary stop, press NO SCROLL a second time (for
VT100- or VT200-type terminals) or CTRL/Q (for the others).

Getting Started with VAX DATATRIEVE 1-11



You can enter CTRL/C to stop a display altogether if you do not want to see all
the records:

DTR)Y PRINT PERSONNEL

FIRST LAST START SUP
1D STATUS NAME NAME DEFT DATE SALARY  ID
22012 EXPERIENCED CHARLOTTE SPIVA TOP  12-Sep-1372 $75,89%2 Q0012
22831 EXPERIENCED FRED HOWL F11  39-Apr-1976 $59,594 Q0012
02943 EXPERIENCED CASS TERRY D38 2-Jan-1980 $29,908 39485
12643 TRAINEE JEFF TASHKENT €82  4-Apr-1981 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK F11  7-Novu-1981 $26,723 00891
34456 TRAINEE HANK MORRISON 732 1-Mar-1982 $30,000 87289

38462 EXPERIENCED BILL SWAY T32  5-May-(CTRLC)

~C
Execution terminated by operator.

The following example illustrates a few of the commands and options you have
when displaying records.

The SHOW FIELDS command displays a list of fields in readied domains.
SHOW FIELDS displays not only the full field names, but also any query names
(in parentheses) that have been defined for the fields. Using query names in
your DATATRIEVE statements can save you some keystrokes.

Note that if you press RETURN at a point in your statement where
DATATRIEVE knows the statement is incomplete, you receive a message telling
you what DATATRIEVE expects next. The CON > prompt indicates that
DATATRIEVE is waiting for you to continue:

DTR) SHOW FIELDS FOR PERSONNEL
PERSONNEL
FERSON
ID {Number, primary key)
EMPLOYEE_STATUS (STATUS) {(Character string)
EMFLOYEE_NAME (NAME)
FIRST_NAME (F_NAME) {(Character string)
LAST_NAME C(L_NAME) {(Character string)

DEFT {Character string)
START_DATE {Date)

SALARY {Number)

SUP_ID {Number?)

1-12 Getting Started with VAX DATATRIEVE




DTR) PRINT NAME., DEFT,
FIRST LAST
NAME NAME

CHARLOTTE SFIVA

FRED HOWL

CASS TERRY

JEFF TASHKENT

THOMAS SCHWEIK

HANK MORRISON

BILL SHAY

JOANNE FREIBURG

DEE TERRICK

¢

GAIL

STATUS OF PERSONNEL

DEFT

TOF
F11
D38
ca2
F11
T32
T32
E46
D38

STATUS

EXPERIENCED
EXFERIENCED
EXPERIENCED
TRAINEE
TRAINEE
TRAINEE
EXPERIENCED
EXPERIENCED
EXPERIENCED

Execution terminated by operator.

DTR) PRINT PERSONNEL WITH DEPT = "T32"

ID

34456 TRAINEE

STA

FI

TUS NA

HANK

38462 EXPERIENCED BILL

48573 TRAINEE

sy

283764 EXPERIENCED JIM

DTR) PRINT DEFT, NAME.
[Looking for name of domain, collection, or listl
CON) PERSONNEL SORTED BY DEFPT

DEPT

a2
a2
a2
caz
caz2
D38
D38
D38
D98
E46
E46
~C

FIRS
NAME

JEFF
ANTHON
DAN
BRUND
RANDY
CASS
BART
MARY
DEE
GAIL
JOANNE

T LAS
NAM

TASHKE
Y IACOBO
ROBERT
DONCHI
PODERE
TERRY
HAMMER
NALEVO
TERRIC
CASSID
FREIBU

RST LAST
ME NAME
MORRISON
SWAY
KELLER
MEADER
STATUS OF

T
E

NT
NE

S
Kav
SIAN

K
Y
RG

STATUS

TRAINEE

EXPERIENCED
EXFERIENCED
EXPERIENCED
EXPERIENCED
EXPERIENCED
TRAINEE

EXPERIENCED
EXPERIENCED
EXPERIENCED
EXPE (CTRL/C

Execution terminated by operator.

DTR)

START SUp
DEFT DATE SALARY  ID
T32  1-Mar-1982 $30,000 87289
T32  5-May-1980 $54,000 00012
T32  2-Aug-1981 $31,546 87289
T32  4-Apr-1980 $41,029 87289

Getting Started with VAX DATATRIEVE

1-13



At this point, you might want to try readying and displaying records from some
of the sample domains other than PERSONNEL. If you receive a message that a
name is undefined or used out of context, it probably means that you made one
of the following mistakes:

* You tried to print records without first readying the domain. (If you forget
which domains you have readied, you can enter SHOW READY to find out.)

* You typed a domain or field name incorrectly.

* You used a field name that is not found in the specified domain.

To correct your mistake, you can retype the entire statement or command with
corrections. DATATRIEVE, however, allows you to edit the last statement or
command in either of two ways:

* You can type EDIT and press the RETURN key. This invokes EDT, the default
DATATRIEVE editor. If you are familiar with EDT, you can then use it to
modify your input, even adding new commands and statements. When you
exit the editor, DATATRIEVE processes what you typed in the edit buffer.

* You can use the arrow keys or CTRL/B to recall previous lines. You can then
correct any errors you made and press the RETURN to execute the line. Line
recall is particularly useful if you are not familiar with an editor.

See the chapter in this book on using editors for more information.

1.5 End Data Access and Exit DATATRIEVE

When you finish working with a domain, you can use the FINISH command to
end access to its data:

DTR) READY PERSONNEL
DTR) SHOW READY
Ready sources:
FERSONNEL: Domain, RMS indexed, protected read
{CDD$TOF .DTR$USERS . BELL .PERSONNEL; 1)
No loaded tables.

DTR) FINISH PERSONNEL
DTR)Y SHOW READY

No ready sources.

No loaded tables.

DTRY PRINT PERSONNEL
"PERSONNEL" is undefined or used out of context.
DTR)

1-14 Getting Started with VAX DATATRIEVE



Finishing domains you are no longer using frees the system resources needed to
keep the data file available to you.

When you want to end your DATATRIEVE session, you can simply type EXIT
or press CTRL/Z at the DTR > prompt. When you exit, DATATRIEVE finishes
any readied domains for you and returns you to system command level. If you
plan to continue with the examples in the next section, do not exit DATATRIEVE
at this point.

If you do try the EXIT command, however, you can run DATATRIEVE again by
entering DTR32 at the dollar sign ($) prompt. If you log out or use the SET
DEFAULT command, be sure to set your default to the VMS directory you
created for practice before running DATATRIEVE again:

$ SET DEF [BELL .PRACTICE]
$ DTR32

1.6 Create a Dictionary Subdirectory

The dictionary directory structure at DATATRIEVE command level is analogous
to the VMS directory structure at system command level. Unlike the VMS direc-
tory structure, however, where each login directory is a top-level directory, the
dictionary directory you are assigned as a DATATRIEVE user is not a top-level
directory. CDD$TOP is the name of the top-level directory in the Common Data
Dictionary. All other directories can trace their parentage back to that direc-
tory. (Thinking of the structure as a family tree, with CDD$TOP as the begin-
ning, might be helpful in remembering how things relate to one another.)

For this reason, names of directories and definitions in the dictionary are called
path names. The full path name of your dictionary directory starts with
CDD$TOP and includes the names of all the directories that lead back to
CDD$TOP. Each name is separated from another by a period. For example,
CDD$TOP.DTR$USERS.BELL is the full path name for the directory assigned
to user Bell. You can see the full path name of the directory you are using by
entering the SHOW DICTIONARY command.

The full name of each data definition you store in a dictionary directory also
starts with CDD$TOP and includes the names of all the directories that lead
to its location. The full name of the PERSONNEL domain definition copied
into Bell’s assigned directory by the NEWUSER program is
CDD$TOP.DTR$USERS.BELL.PERSONNEL.

Chapter 7 explains more about CDD structure and tells you when you need to
specify full path names and how you can abbreviate them. The examples in this
chapter rarely contain full path names because DATATRIEVE can find what
you want to use in the dictionary directory at which you are currently located.

Getting Started with VAX DATATRIEVE 1-15



You can append subdirectories to the CDD directory created for you by the
NEWUSERS program or assigned to you by the CDD manager on your system.
This allows you to organize your definition storage area so that things are easy
to find. This may not seem important now, but will be when your directory list-
ing grows larger.

You create a dictionary subdirectory by using the DEFINE DICTIONARY com-
mand. The following example shows how user Bell appends a subdirectory to the
one he uses when he first invokes DATATRIEVE:

DTRY SHOW DICTIONARY
The default directory is CDD$TOP .DTR$USERS.BELL

DTR) DEFINE DICTIONARY PRACTICE
DTR?

Use the SET DICTIONARY command to set your dictionary location to your
new subdirectory. At the new location, using SHOW DICTIONARY reveals the

full path name of your subdirectory:

DTR)> SET DICTIONARY PRACTICE
DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL .PRACTICE

DTR>

1.7 Create a Simple Application

Earlier in this chapter, you saw how to access data when the data file and
domain and record definitions were already in place. This section shows you
how to create your own data file and definitions. You will:

Create the definitions and data file needed to store a list of phone numbers

» Store a few records in your newly created domain

Print the results

e Modify some records

Add a field to the records

Create a DATATRIEVE table
Create a DATATRIEVE procedure

1-16 Getting Started with VAX DATATRIEVE




1.7.1 Use ADT to Create Data Definitions and a File

The DATATRIEVE Application Design Tool (ADT) provides a fast way to create
a database for users who have never created a record definition or data file
before, and who do not yet know how to execute the steps needed to create a
database.

Experienced programmers can use ADT to save time when creating record and
domain definitions because ADT automatically includes much of what is needed
in those definitions. After the definitions exist, programmers can edit them to
add any DATATRIEVE options that ADT does not provide but that they want
to include.

In this section, you create a small database with the domain name PHONES to
contain a list of names and phone numbers. Figure 1-1 illustrates the organiza-
tion of this domain.

FULL_NAME

PHONE_NUMBER
LAST_NAME FIRST_NAME

MK-01570-00

Figure 1-1: Organization of PHONES Domain

Figure 1-1 shows four field names: FULL__ NAME, LAST_ NAME,
FIRST_NAME, and PHONE _ NUMBER. Of these, FULL__NAME is a
group field and LAST__NAME, FIRST__NAME, and PHONE _NUMBER are
elementary fields.

As you might already know, group fields contain fields that are related to one
another. These fields can be elementary fields or other group fields. Generally,
you decide to create a group field when you know that you want to retrieve two
or more fields at a time by using one name, but also want to use each of the
subordinate fields separately. FULL_NAME is a common example of this
situation.

Elementary fields do not contain other fields. Later, you will see that ADT
prompts you to supply more information about elementary fields than it does for
group fields. That is because the elementary fields generate the rules that apply
to data storage—-how many and what kind of characters you are allowed to store
in a given section of a record.

Getting Started with VAX DATATRIEVE 1-17



You run ADT by typing ADT at the DTR> prompt and pressing RETURN. The
following example shows the ADT session that creates the PHONES domain.
The example does not show all that is displayed on your screen as you create
the domain; however, it does contain all the questions and the responses you
should make:

DTR> ADT

ADT helps you set up a structure for your data. After a series
of questions and responses, ADT constructs the definitions for
a DATATRIEVE domain, record, and data file. You can have ADT
write these definitions into your dictionary.

il

Do you want detailed prompts? (YES or NOD : YES

Enter the name for your domain.

Start with a letter and use letters,
digits, hyphens (-), or underscores (_).
(No spaces or tabs) : FHONES

The data for the domain PHONES will be stored in a file
with the name you specify.

Enter the name for PHONES's data file : PHONES.DAT

Enter the first field name in record for FHONES.
Start with a letter and use only letters, digits,
hyphens (-), or underscores (_).
(No spaces or tabs.) : FULL_NAME

Enter an abbreviation you can use
as a query name for FULL_NAME : NAME

What's in FULL_NAME --  DATE
FERCENT
MONEY
NUMBERS used in arithmetic
CHARACTERS
GROUP?
Enter one of these words aor its first letter : G

Enter the first field name in record for FULL_NAME.
Start with a letter and use only letters, digits,
hyphens (-), or underscores (_).

(No spaces or tabs.) : LAST_NAME

Enter an abbreviation you can use
as a query name for LAST_NAME : L

What's in LAST_NAME --  DATE
PERCENT
MONEY
NUMBERS used in arithmetic
CHARACTERS
GROUE?
Enter one of these words or its first letter @ C

1-18 Getting Started with VAX DATATRIEVE



Enter the maximum number of characters for LAST_NAME : 20
Do you want to define more fields in FULL_NAME ? (YES or NO) : YES
Enter the name of the next field in FULL_NAME : FIRST_NAME

Enter an abbreviation you can use
as a query name for FIRST_NAME : F

What's in FIRST_NAME -- DATE
FERCENT
MONEY
NUMBERS used in arithmetic
CHARACTERS
GROUP?
Enter one of these words or its first letter : C

Enter the maximum number of characters for FIRST_NAME : 15

Do you want to define more fields in FULL_-NAME ? (YES or NOD : NO
Do you want to define more fields in PHONES ? (YES or NOO : YES
Enter the name of the next field in FHONES : FPHONE_NUMBER

Enter an abbreviation you can use
as a query name for PHONE_NUMBER : NUM

What's in PHONE_NUMBER --DATE
FERCENT
MONEY
NUMBERS used in arithmetic
CHARACTERS
GROUP?
Enter one of these words or its first letter : C

Enter the maximum number of characters for PHONE_NUMBER : 8

Do you want to define more fields in PHONES ? (YES or NO) : NO
Do you pant the data file to be indexed?

You can't modify primary keys in indexed files.

You can't erase records from sequential files. (YES or NO) : YES

Enter the name of the primary key field.
You cannot modify data stored in a primary key field. : L

Do you want the primary key fields in different records
to have duplicate values? (YES or NO) : YES

Do you want to specify an alternate index key? (YES or NO) : NO
Do you want ADT to add the domain and record definitions

to your current default dictionary directory? (YES or NOO : YES
[Record is 43 bytes long.l

Do you want to define another domain? (YES or NOO : NO

DTR?

Getting Started with VAX DATATRIEVE

1-19



If you enter the SHOW DOMAINS, RECORDS command, you now see PHONES
and PHONES _REC listed in your dictionary directory. You can enter SHOW
PHONES and SHOW PHONES _REC to see what these definitions contain. If
you exit DATATRIEVE and enter the DIRECTORY command, you see
PHONES.DAT listed in your PRACTICE directory. (If you do exit DATATRIEVE,
however, remember to set your dictionary location to your dictionary subdirec-
tory before you continue with the next section.)

1.7.2 Store Records

You must ready the PHONES domain for write access before you can store
records:

DTR) READY PHONES WRITE
DTR?

You can now enter data. The following example stores five records in PHONES.
Note that DATATRIEVE prompts you to enter values for each elementary field
in each of the five records. Feel free to enter values of your own choosing. Try,
for one field, to enter a value that is too large for the field and see what
happens:

DTRY REFPEAT S STORE PHONES
Enter LAST_NAME: BELL

Enter FIRST_NAME: LISA

Enter PHONE_NUMBER: 883-8275
Enter LAST_NAME: LINTE

Enter FIRST_NAME: JANE

Enter PHONE_NUMBER: 881-2461
Enter LAST_NAME: CLERC

Enter FIRST_NAME: FHYLLIS
Enter PHONE_NUMBER: 884-9307
Enter LAST_NAME: SCHUTZ

Enter FIRST_NAME: BONNIE
Enter PHONE_NUMBER: 567-8712
Enter LAST_NAME: WINTLOW
Enter FIRST_NAME: JOHN

Enter PHONE_NUMBER: B8892-6789
Truncation during assignment.
Re-enter PHONE_NUMBER: 880-6789
DTR?

1-20 Getting Started with VAX DATATRIEVE




1.7.3 Display Data

The following example illustrates a few variations you can use when displaying
records. Do not worry if you do not understand how some of these options work
or what they are called. Chapter 14 discusses the FIND statement. Chapter 19

explains in greater detail how you can adjust display formats:

DTRY SHOW FIELDS FOR PHONES
FHONES
FHONES_REC
FULL_NAME ¢NAME)
LAST_NAME (L) {(Character string, primary key)
FIRST_NAME (F) {(Character string)
FHONE_NUMBER (NUM) (Character string)

DTRY PRINT PHONES

LAST FIRST FPHONE

NAME NAME NUMBER
BELL LISA 883-8275
CLERC PHYLLIS 884-3907
LINTE JANE 881-2461
SCHUTZ BONNIE 567-8712
WINTLOW JOHN 880-6733

DTR) FIND FHONES
[5 records found]

DTRY PRINT ALL FiiiL, NUM

FHONE

NUMBER
LISA BELL 883-8275
PHYLLIS CLERC 8284-9507
JANE LINTE 881-2461
BONNIE SCHUTZ 367-8712
JOHN WINTLOW B80-6789

DTR)> PRINT ALL FLNUM, SKIP
LISA BELL 883-8275

FPHYLLIS CLERC 884-3907
JANE LINTE 881-2461
BONNIE SCHUTZ 567-8712

JOHN WINTLOW B882-6789

DTR?

Getting Started with VAX DATATRIEVE 1-21



1.7.4 Change Field Values

You can easily change the values in a record. The following example specifies
NUM as the field to be changed and illustrates only one of the many ways to
modify a record:

DTR) READY PHONES MODIFY
DTR)Y FIND PHONES WITH LAST_NAME = "LINTE"

[1 record foundl
DTR)Y SELECT

DTR) PRINT
LAST FIRST PHONE /
NAME NAME NUMBER

LINTE JANE 881-2461

DTR)Y MODIFY NUM
Enter PHONE_NUMBER: 883-3456

DTR) PRINT
LAST FIRST PHONE
NAME NAME NUMBER
LINTE JANE B889-3456
DTR?

Now try to change a value for LAST__NAME and see what happens:

DTRY FIND FHONES WITH LAST_NAME = "BELL"

[1 record foundl

DTR)Y SELECT

DTR)Y MODIFY LAST_NAME

Enter LAST_NAME: WARTON

You cannot modify the value of an RMS key field that doesn’'t allow changes.
DTR) FRINT

LAST FIRST PHONE
NAME NAME NUMBER
BELL LISA 883-8275

DTR?

1-22 Getting Started with VAX DATATRIEVE




If you remember when you created the PHONES domain and were specifying
index keys for the file, ADT told you that you cannot change the value of a pri-
mary key. You might have wondered then what you would do if someone’s name
changed, for example, after marriage. To get around the restriction that you
cannot change a primary key value, you can erase the record and store it again
with the changed value for LAST _ NAME. This is not a real problem for a
small record, but it would be if your record were larger and you needed to
change that key value frequently. Chapter 11 tells you more about primary
keys and how to make the best choices when selecting keys for a file.

1.7.5 Change Domain Structure

Suppose that after you create a domain and store quite a few records in it, you
decide you want to rearrange the order of the fields in the record, add a new
field to the record, or change the index keys for the data file. In other words,
you want to restructure your domain.

If you edit the record definition to make changes in record structure or size, it
no longer corresponds to the existing data file and DATATRIEVE can no longer
use it to retrieve data from the file. Similarly, you cannot change key options
for a file without creating a new and empty version of the file. When you are
creating your own domains, you can expect to change your mind about record
and file organization more than once. DATATRIEVE allows you to make these
changes without losing data you have already stored by performing a simple
restructure operation. See the chapter on defining data files for more details on
this topic.

The following example shows you how to restructure the PHONES domain to
add a field, AREA__CODE, to the record definition. The FINISH command is
included because you readied PHONES for MODIFY access in the last exercise.
EDIT invokes the EDT editor by default, but you can invoke one of several
different editors if you choose. See the chapter on using editors with
DATATRIEVE for more information.

When you edit the record definition, add the AREA__CODE field between the
FIRST__NAME and PHONE _ NUMBER fields. Enter the SHOW PHONES__REC
command to see the revised definition.

Getting Started with VAX DATATRIEVE 1-23



DTR> FINISH PHONES
DTR> READY PHONES AS OLD
DTR)> EDIT PHONES_REC

[Record is 46 bytes long.]
DTR> SHOW PHONES_REC
RECORD FHONES_REC USING
@1 PHONES_REC.
25 FULL-NAME QUERY_NAME IS NAME.
18 LAST_NAME FPIC RX(z2@
QUERY_NAME IS L.
1@ FIRST_NAME FPIC RX(13)
QUERY_NAME IS F.
25 AREA_CODE PIC K(3)
QUERY_NAME IS AREA.
25 FPHONE_NUMBER FIC R(g)
QUERY_NAME IS NUM.

DTRY DEFINE FILE FOR PHONES KEY = LAST_NAME (DUP)
DTR} READY PHONES AS NEW WRITE

DTRY> NEW = OLD

DTR> FINISH

DTRY READY FPHONES

DTRY PRINT PHONES

LAST FIRST AREA FHONE

NAME NAME CODE  NLUMBER
RELL LISA B83-8275
CLERC FPHYLLIS 884-9907
LINTE JANE 884-5678
SCHUTZ BONNIE 367-8712
WINTLOW JOHN BEQ-6789

DTR)

You can see that space has been added to the record so you can store area codes.
Do not modify your records yet to add area code values.

1.7.6 Create a Table

If you have some programming experience, you might assume the term
“table” refers to repeating fields (as in a BASIC array or a COBOL table).
In DATATRIEVE terminology, however, repeating fields are called lists.
DATATRIEVE tables store sets of paired values apart from other data

definitions.

1-24 Getting Started with VAX DATATRIEVE




In this section, you create a dictionary table to relate an area code value with
the corresponding town and state. A dictionary table stores value pairs in the
table definition itself. DATATRIEVE also lets you create domain tables. A
domain table stores pairs of field names that let you relate data stored in one
domain to data stored in another domain. Chapter 12 explains tables more com-
pletely and shows a variety of ways to use them. For now, you will learn one
way to use one kind of table.

You create a table with the DEFINE TABLE command. Enter the following
lines to store AREA_CODE__TABLE in the dictionary you are currently using.
The DFN > prompt tells you that DATATRIEVE expects more input for the
definition. The END_TABLE entry tells DATATRIEVE you are finished with
the definition:

DTR)Y SET NO PROMPT
DTRY DEFINE TABLE AREA_CODE_TABLE
DFN) QUERY_HEADER IS "STATE"
DFN> "6@3" : "NH"
DFN> "617" : "MA"
DFN> "2@1" : "NJ"
DFN) ELSE "oops"
DFNY END_TABLE
DTR)
DTRY SHOW TABLES
Tables:
AREA_CODE_TABLE:1

Obviously, this is an incomplete list of area codes, but it is sufficient for demon-
stration purposes.

You can see how your table works with some simple PRINT statements that
include a VIA clause. Note how the value associated with the ELSE clause tells
you when an area code value is not listed in the table:

DTR)Y FRINT "6@3" VIA AREA_CODE_TABLE

STATE

NH

DTR)> PRINT "111" VIA AREA_CODE_TABLE

STATE

0ors

Getting Started with VAX DATATRIEVE 1-25



Now modify your PHONES records to include some area codes, making sure
that you include at least one area code that is not in the table. The last time
you modified data in PHONES, you only wanted to change one record. The fol-
lowing example includes a FOR statement (read it as “FOR every PHONES
record”), so DATATRIEVE lets you add all the area codes:

DTRY READY FHONES MODIFY
DTR) FOR PHONES

CON)Y BEGIN
CONY FRINT
CONY MODIFY USING AREA_CODE = * AREA_CODE
CONY  PRINT
CONY END
LAST FIRST AREA FHONE
NAME NAME CODE  NUMBER
BELL LISA RB3-8275
Enter AREA_CODE: 6@3
LAST FIRST AREA FHONE
NAME NAME CODE  NUMBER
BELL LISA 623 BB3-8275
CLERC FHYLLIS 884-9907
Enter AREA_CODE: 683
CLERC FHYLLIS 603 8R4-9307
LINTE JANE B84-5678
Enter AREA_CODE: 6@3
LINTE JANE 6B3 8B4-5678
SCHUTZ BONNIE 567-8712
Enter AREA_CODE: 617
SCHUTZ BONNIE 617 567-8712
WINTLOW JOHN 280-6783
Enter AREA_CODE: 285
WINTLOW JOHN 205 8RQ-6789

You can now use a VIA AREA _CODE__TABLE expression to display the state
that corresponds to the area code for each record. PHONES__REC, as it appears
in the following PRINT statement, refers to the top level field in the record defi-
nition rather than the record name as it is stored in the dictionary:

DTR)Y FIND FHONES
[5 records found]
DTR) PRINT ALL PHONES_REC, AREA_CODE VIA AREA_CODE_TABLE

LAST FIRST AREA PHONE

NAME NAME CODE  NUMBER STATE
BELL LISA 603 833-8275 NH
CLERC PHYLLIS 603 8284-9907 NH
LINTE JANE 603 884-5678 NH
SCHUTZ BONNIE 617 567-8712 0O0PS
WINTLOW JOHN 205  880-6789 O0PS

1-26 Getting Started with VAX DATATRIEVE




You might ask at this point why you would not simply store the data contained
in AREA _CODE_TABLE in the PHONES domain and save yourself a lot of
keystrokes. It is true that tables make little sense when they store information
that applies to only one domain. Tables, however, can save you a great deal of
storage redundancy when they contain data that you use with more than one
domain. Tables also help you validate fields that must be stored in more than
one domain. (In a set of domains used by the personnel department in a com-
pany, for example, the employee number would need to be stored in more than
one domain.)

1.7.7 Write a Procedure

You create a DATATRIEVE procedure to store a set of commands and state-
ments that you plan to use more than once. In one sense, a procedure is like a
program written in a language like BASIC or COBOL because, after you create
it, you simply execute it to get a job done.

The following example stores the procedure PHONES_REPORT in your current
dictionary directory. Writing reports is not the only job you might want to do
with procedures, but it is one of the most common. Do not worry if you do not
understand what all the statements in the example do for you. Chapter 20
explains report writing more fully for you. Right now, this gives you some
initial practice writing a procedure:

DTR> READY FHONES
DTR> DEFINE PROCEDURE PHONES_REFORT
DFN} REPORT PHONES ON *."device or file"
DFN} SET REPORT_NAME = "FHONES LIST®
DFNY SET COLUMNS_FAGE = 5@
DFN> PRINT Fi!iL, AREA!!INUM
DFN} END_REPORT
DFN}> END_PROCEDURE
DTR)> SHOW PROCEDURES
Frocedures:

FHONES_REFORT ;1

Getting Started with VAX DATATRIEVE 1-27



To execute a DATATRIEVE procedure, type a colon (:) followed by the name
of the procedure, then press the RETURN key. When you execute

PHONES _REPORT, DATATRIEVE prompts you for where you want the
report. If you enter TT: in response to the prompt, DATATRIEVE displays the
report on your terminal:

DTRY :PHONES_-REFORT
Enter device or file: TT:

FHONES LIST 27-Feb-1984
FPage 1
LISA BELL 603 883-8275
FHYLLIS CLERC 603 8284-99@7
JANE LINTE 603 8284-5678
BONNIE SCHUTZ 617 567-8712
JOHN WINTLOW 2035 8B@-6789

DTR>

If you execute the procedure again and type the name of a printer device, such
as LP:, in response to the prompt, DATATRIEVE prints the report on your line
printer. If you respond with the name of a file (PHONES.LIS, for example),
DATATRIEVE creates the report as a file stored in your VMS directory.

If you made any mistakes when defining the PHONES_ REPORT procedure,
DATATRIEVE displays one or more error messages at the time you execute it.
If this happens, you might notice that it continues to process the statements and
commands left in the procedure after the first error occurs. (Chapter 17 tells you
how to use the SET ABORT command to prevent this from happening.)

If you simply type EDIT and press the RETURN key, you can edit only the last
statement or command DATATRIEVE executed for you. To correct the errors in
the procedure, you must follow the EDIT command with the procedure name.
After you make your corrections and before you exit the editor, double check the
lines in your procedure against those in the example. Then exit the editor and
execute the procedure again. See the chapter on editing for more information
about the editors available to you with DATATRIEVE.

1-28 Getting Started with VAX DATATRIEVE




1.8 What Do | Read Next?

The sections of this book you should read next depend on your level of
experience with the VMS operating system and computer languages and also on
how much guidance you expect when learning something new:

 If you are unfamiliar with the VMS operating system and have limited
experience writing programs in computer languages, you can:

- Read Chapters 2 and 3 to learn about the VMS operating system and the
editors you can use with DATATRIEVE.

- Read Chapter 6 to find out how you can get online assistance when using
DATATRIEVE

- Go on to Chapters 8 through 20 to read more about creating your own
applications with DATATRIEVE

After you get more DATATRIEVE experience, you can read Chapter 4 to get
some help with syntax diagrams, Chapter 5 to learn about startup command
files and input entry, and Chapter 7 to learn more details about managing
CDD directories and their contents.

 If you are familiar with the VMS operating system, but have limited program-
ming experience, you do not need to read Chapters 2 and 3. Otherwise, follow
the course just outlined.

» If you are an experienced programmer, read the next section. You can then
continue reading chapters in the order that they appear in the book, skipping
Chapters 2 and 3 if you are already familiar with the VMS operating system.

* Feel free to read whatever intrigues you and then start right in using
DATATRIEVE. Use the index or table of contents to look up additional
information.

1.9 What DATATRIEVE Can Do for the Programmer

This section is for readers who can use one or more programming languages,
such as COBOL or BASIC. If you fall into this category, you may want addi-
tional information on how DATATRIEVE is different from the languages you
have used before.

DATATRIEVE provides the same data storage capabilities that you have with
other languages. It can store and retrieve data using existing data files of any
type that are supported by VAX Record Management Services (RMS). It can also
create sequential and multikey indexed files, but not relative files.

Getting Started with VAX DATATRIEVE 1-29



DATATRIEVE is an excellent query and report writing interface for databases

created and maintained by VAX DBMS or the VAX relational database

products. This book does not contain information on using DATATRIEVE with (
DBMS or relational databases. Refer to the VAX DATATRIEVE User’s Guide if

you are interested in this subject.

In COBOL or BASIC, each program describes the structure of input and output
records. DATATRIEVE lets you define records and store record definitions
separately from the procedures that use them. You can then write any number
of procedures that use the records you have defined, without redefining the rec-
ord each time.

DATATRIEVE also lets you create data definitions, called view domains, that
can access either a subset of the fields in one data file or a combination of fields
from more than one file. View domains can help you reduce the number of state-
ments that you have to write when retrieving data.

DATATRIEVE also handles other common language functions automatically,
without the need for language statements. For instance, DATATRIEVE:

* Finds data files, opens them, and performs input/output operations

« Labels columns in an output display

» Converts data types

« Formats data for output (
+ Handles conditions like EOF and matching

As a result, you can save many lines of code, get applications running quickly,
and still have code that is more readable than COBOL or BASIC.

DATATRIEVE does not give you all the options available with other languages:

 DATATRIEVE lets you set up data hierarchies such as the repeating fields
generated by a COBOL OCCURS clause, although retrieving data from
repeating fields is not as easy as retrieving data from other types of fields.
DATATRIEVE does not have a system of subscripts or indexes that let you
explicitly specify an occurrence in a repeating field. Be sure you consider this
fact before you decide to use the DATATRIEVE OCCURS clause.

» The DATATRIEVE language does not contain clauses such as BLOCK SIZE
and CONTIGUOUS BEST TRY that let you optimize files for best response
time. If you are setting up or maintaining large data files, therefore, you ‘
should use the utilities provided by VAX RMS to load and maintain these
files. Refer to the chapter on optimizing DATATRIEVE performance in the
VAX DATATRIEVE User’s Guide if you want more information on this

subject. ‘

1-30 Getting Started with VAX DATATRIEVE




DATATRIEVE procedures are not compiled when they are stored. Every time
you execute a DATATRIEVE procedure, DATATRIEVE processes each state-
ment or command in sequential order, just as if you were entering each one
interactively. The advantage in using procedures, therefore, is more a matter
of convenience than speed of execution.

By using the DATATRIEVE Call Interface, you can include DATATRIEVE func-
tions in a program written in another language. The Call Interface is often used
in two ways:

You can use the linkage section of a COBOL program to do file access
entirely through DATATRIEVE. In this way, the calling program does not
need to specify the structure of the data, and you do not need to relink pro-
grams when the data files change.

You can write a program that passes commands and statements to
DATATRIEVE. The program can present the user with a customized inter-
face, such as a menu. In this way, you can “hide” DATATRIEVE from users
who do not know how to use its commands and statements.

The VAX DATATRIEVE Guide to Programming and Customizing explains how
you can use DATATRIEVE with other languages and provides more information
about how you can customize DATATRIEVE features for your installation.

Getting Started with VAX DATATRIEVE 1-31






VMS Concepts 2

As a DATATRIEVE user, knowledge of the VMS operating system is very
important. You gain access to DATATRIEVE through the VMS system and the
data files you create are stored in VMS directories.

This chapter describes how to:

¢ Use the DIGITAL Command Language (DCL) to create and manipulate files
e Log in

» Protect your files and directories

e Set up a useful login command file (LOGIN.COM) to execute commands
automatically

« Use the DTR$STARTUP logical to create a startup command file

2.1 Using DIGITAL Command Language (DCL)

An operating system is the system software that controls the operations of the
computer. In this chapter, the operating system is referred to simply as the sys-
tem. To perform data processing operations on a VMS system, you issue instruc-
tions in the DIGITAL Command Language (DCL). Like any language, DCL
consists of a vocabulary and rules of grammar.

The vocabulary of DCL includes commands, parameters, and qualifiers. These
perform functions similar to those of verbs, nouns, adverbs, and adjectives in
English. When arranged to form a command string, these words describe to the
system the operation you want to perform.

2-1



2.2 Logging In

To begin a session at your terminal, you must log in. Logging in consists of get-
ting the system’s attention and identifying yourself as an authorized user.

Before you can log in to the system, however, you need an account. Accounts
are set up by the system manager, or whoever is responsible at your installation
for authorizing the use of the system. This person can provide you with a user
name and password.

Your user name is a unique name that identifies you to the system and distin-
guishes you from other users. Your password is for your protection. If you main-
tain its secrecy, other users cannot use system resources under your name or
gain access to files you want to keep private.

When you log in, you must enter both your user name and password before
VMS lets you begin typing commands.

2.2.1 Getting the Terminal Ready

Before you use the terminal, be sure that:
¢ The terminal is plugged in and the power is turned on.

o If the terminal has a LOCAL/ON LINE switch, the switch is set to ON LINE.
When it is on line, the terminal communicates with your system. When it is
set to LOCAL, the terminal is electrically disconnected from your system. The
following list explains how to set your terminal to ON LINE:

— On a VT100 series terminal, press the 4 key on the main keyboard while in
Set-Up mode A.

- On a VT200 series terminal, press the Set-Up key to access the Set-Up
Directory. In the Set-Up Directory, the ON LINE/LOCAL option is located
in the first screen, immediately below the DISPLAY option. If the option is
currently ON LINE, you do not need to change anything. If the option is
currently LOCAL, move your cursor to the LOCAL option using the down
arrow key. Change the option from LOCAL to ON LINE by pressing the
keypad Enter key. Exit the Set-Up Directory by pressing the Set-Up key
again.

- If you are using a dialup connection, check installation instructions for
special procedures.

2-2 VMS Concepts

C




If you have any problems with the login procedure described in the next section,
get help from the system manager. There are several reasons your login may
not work. Among them are:

» The terminal may not be properly connected to the computer

e The baud rate (speed at which the terminal transmits or receives characters)
may not be correctly set

2.2.2 Gaining Access to the System

Press the RETURN key or CTRL/Y to signal the system that you want to log
in. The system responds by prompting you for your user name. Enter your user
name and press the RETURN key. The system displays your user name as you
type it. After you enter your user name and press the RETURN key, the system
prompts you to enter your password. When you type the password, the system
does not display it (in order to preserve its secrecy.) The login sequence looks
like this:

lUsername: BELL
Password:

Welcome to VAK/VMS version V4.5 on node YOURNODE
Last interactive login on Thursday, 11-JUN-1987 16:09
Last non-interactive login on Thursday, 11-JUN-1987 18:46
You have 5 new Mail messages.

Some systems print a welcoming message above the username prompt. If your
system is part of a network, your system name (node) will be printed after the
VMS version number.

The dollar sign ($) is a symbol the system uses as a prompt. It is the VMS
default system prompt. If you or your system manager change the default with
the DCL SET PROMPT command, you see the changed prompt instead. When
the system displays this character at the left side of your screen, it indicates
that the login was successful and that you can begin entering commands.

If you type your user name or your password incorrectly, the system displays an
error message. When an error message appears, you must repeat the entire
login procedure.

VMS Concepts 2-3



2.3 Getting Online Help

When you use the VMS operating system, you may not always have a reference
manual available at your terminal. You may want to get some help on a subject
that you need to know more about The HELP command is designed to provide
you with this information. For example, to display a list of topics for which help
is available, type:

$ HELF

The system displays the list of topics and then prompts for your choice. If you
want information about a particular subject, type its name after the prompt. For
instance:

Topic? PRINT

The information displayed includes a synopsis of what the PRINT command
does, the parameters it requires, and the qualifiers it can take.

If you want to know more about one of the PRINT commands qualifiers, respond
to the prompt PRINT subtopic? with that qualifier. For example, to display
information about the /COPIES qualifier of the PRINT command, type:

PRINT subtopic? ,COPIES

If you already know the topic and even the subtopic on which you need help,
you can simply type, for example:

$ HELP PRINT,/COPIES

2.4 Entering Commands

All commands to the system are words, generally verbs, that describe the func-
tions they perform. You can type them in uppercase or lowercase. For example:

$ SHOW TIME
The system responds to this command by displaying the current date and time:
29-NOV-1385 09:25:07

Command parameters define what the command acts upon; command qualifiers
further define how that action occurs. For instance, the following PRINT com-
mand requires an object, or parameter, to indicate what is to be printed:

$ PRINT BILLING.LIS

In this command, BILLING.LIS is a parameter for the PRINT command,
indicating the name of the file to be printed. A space separates the command
and its parameter.

2-4 VMS Concepts




Command qualifiers restrict or modify the function that the command is to per-
form. For example:

$ PRINT,COPIES=2 BILLING.LIS

In this command, /COPIES=2 is a qualifier that indicates how many copies of the
file BILLING.LIS you want printed. A slash character (/) precedes the qualifier.

The rules of grammar for DCL (that is, the order of the words, the spacing, and
the punctuation) are also strictly defined. Your system documentation set con-
tains contains a dictionary of DCL commands and discusses the rules of grammar.

2.4.1 Command Prompting

When you enter a command at the terminal, you do not need to enter the entire
command. If you enter a command without specifying required parameters, or you
forget what comes next, the system prompts you for the additional information:

$ PRINT
$_File: BILLING.LIS

In this example, no parameter followed the PRINT command, so the system
prompted for the name of the file to be printed.

If a command requires two or more parameters, it prompts for each parameter:

$ COPY
$_From: OLDFILE.THT
$_To: NEWFILE.TKT

You can enter both file names after the first prompt:

$ COPY
$_From: OLDFILE.THXT NEWFILE.TXT

You can also enter the entire command line on one line:

$ COPY OLDFILE.TXT NEWFILE.TRT

VMS Concepts 2-5



2.4.2 Defaults

A default is the value supplied by the operating system when you do not
specify one yourself. For instance, if you do not specify the number of copies as
a qualifier for the PRINT command, the system uses the default value of 1. By
not explicitly stating a choice, you imply the default. VMS supplies default
values for many commands. The defaults used with individual commands are
specified with each command’s description in both online help and in the DCL
documentation included in your system’s documentation set.

2.4.3 Abbreviating Commands

You do not always need to type the full command. You must type at least the
minimum number of characters necessary to identify the command uniquely.

For example, the SET, SEARCH, and SHOW commands all begin with the let-
ter S. To identify the SHOW command, you must type at least two characters,
SH. To identify the SET and SEARCH commands, you must type three charac-
ters, SET and SEA respectively.

The examples in this chapter show full commands, so that you can become
familiar with the commands and what they do.

2.4.4 Recovering from Errors

If you are entering a command and you make a mistake, you can use the follow-
ing keys to correct the mistake or abort the command:

« DELETE

Backspaces over one character typed on the current line, then deletes the
character. Most video display terminals actually move the cursor (an under-
line or block that marks your position) backward and erase the character
when you press the DELETE key.

« CTRL/U

Ignores the current line and performs a return so you can reenter the entire
line. Use CTRL/U when a line contains a number of mistakes and it would be
tedious to use the DELETE key.

2-6 VMS Concepts

C

C



>

J

« CTRL/Z or CTRL/Y

Cancels an entire command, regardless of how many lines were used to enter it.

You can also use CTRL/Y or CTRL/C to interrupt the system while it is
executing a command. Press CTRL/Y (or CTRL/C) and the system terminates
the current process and returns you to DCL level:

$ TYPE BILLING.LIS

CTRL/Y
$

In this example, CTRL/Y interrupted the typing of a long file and returned to
DCL level.

CTRL/B or Up Arrow

Displays previously entered commands so that you can reproduce them. When
you press CTRL/B or the up arrow key, the previous command is displayed.
(You can recall up to 20 previously entered commands.) Press the down arrow
key to display commands in the other direction. You can edit the command
string by pressing the left and right arrow keys, which move the cursor. You
can also move the cursor to the beginning of the line by pressing CTRL/H
and to the end of the line by pressing CTRL/E. Then, you can overstrike the
character you want to change. Or, you can press CTRL/A, which lets you
insert a character rather than overstrike it.

HOLD SCREEN (F1) or NO SCROLL

Suspends and resumes the scrolling, or upward movement, of the terminal dis-
play. To temporarily stop the display from scrolling, press the HOLD SCREEN
(F1) key on a VT200-series terminal. On a VT100-series terminal, press the
NO SCROLL key. To continue scrolling, press the key again.

CTRL/S suspends the VT52 terminal display of the file and the processing of
the command. To resume display, press CTRL/Q. The interrupted command
displays lines beginning at the point at which processing was interrupted.

2.4.5 Summary of Entering Commands

The following list summarizes the rules you must follow when entering com-
mands to the VMS operating system:

* You must precede each qualifier name with a single slash character (/).

o If you omit a required parameter (for example, a file specification), the DCL

command interpreter prompts you to enter it.

VMS Concepts 2-7



* You can truncate any command name or qualifier name to four characters.
Fewer than four characters are acceptable, as long as there is no ambiguity
about the name.

o After you have entered a complete command, you must press the RETURN
key to pass the command to the system for processing.

* You can cancel a command before the final return by using CTRL/Y.

* You can interrupt command execution by using CTRL/Y. To resume the inter-
rupted command, enter the CONTINUE command. To stop processing com-
pletely after using CTRL/Y, you can begin entering other DCL commands.

2.5 Interpreting System Responses

When you enter a command, the system can:

o Execute the command, indicating successful completion with the dollar sign
prompt

e Execute the command and inform you in a message of what it has done

e Inform you of errors you have made, if execution is not successful

2.5.1 Information Messages

The system responds to some commands by giving you information about what
it has done. For example, when you use the PRINT command, the system dis-
plays the job identification number it assigned to the print job and shows the
print queue the job has entered:

$ PRINT BILLING.LIS
Job 500 entered on queue SYS$PRINT

Not all commands display informational messages; in fact, successful completion
of a command is most commonly indicated by a dollar sign prompt for another
command. Unsuccessful attempts are always indicated by one or more error
messages.

2.5.2 Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts for a new command line. It ignores the incorrect command:

$ CAPY

ZDCL-W-IVVERB, unrecognized command
“CAPY

$

2-8 VMS Concepts




The code preceding the text of the message indicates that:
* The message is from DCL, the command interpreter
o It is a warning (W) message

¢ The mnemonic for this particular message is IVVERB

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file that you specify does not exist, the
PRINT command informs you of the error:

¢ PRINT PAYROLL.DAT
APRINT-W-0OPENIN, error opening DBA1:[BELLIPAYROLL.DAT; as input
-RMS-E-FNF, file not found

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason, that is, the file cannot
be found. RMS refers to the VMS file-handling facility, Record Management
Services; error messages related to file handling are generally VAX RMS
messages.

2.6 Logging Out

When you have finished using the computer, use the LOGOUT command to end
the terminal session:

§ LOGOUT
BELL logged out at 30-MAY-1384 15:30:1@

Note that neither shutting off your terminal nor setting the ON LINE/LOCAL
switch to LOCAL automatically causes you to log out. To ensure that you have
logged out, you should use the LOGOUT command to end a terminal session. If
you shut a terminal off without logging out properly, another user may be able
to turn the terminal on later and use your account.

2.7 File Management

This section explains how to:

* Create, identify, delete, and purge files

» Display and print files

e List files in a directory

e Copy and rename files

VMS Concepts 2-9



» Append files to other files
* Find differences between files

» Search files for a specified string

2.7.1 Creating Files

You can create files in two ways. Chapter 3 tells you how to create a file by
using the EDIT command. You can also use the CREATE command to make a
new file. Specify the file name as a parameter. You can insert text immediately
and end with CTRL/Z:

$ CREATE NEWFILE.TKT
THIS IS THE FIRST LINE. (CTRLUZ
~Z

$

You cannot use the CREATE command to modify an existing file.

2.7.2 ldentifying Files

A complete file specification contains all the information the system needs to
locate and identify a file. A complete file specification has the format:

node::device:[directory]filename.type;version

The punctuation marks (colons, brackets, period, semicolon) are required syntax
that separate the various components of the file specification. For example:

BOOKIE: :DBA2: [BELLIPERSONNEL .DAT:S

2.7.2.1 Nodes — When computer systems are linked together to form a net-
work, each system in the network is called a node and is identified within the
network by a unique node name. Your system may or may not be part of a
larger network.

If your system is a network node, you can gain access to a file located at
another node on the network by adding a node specification to the first part of
the file specification. This specification lets you access the file only if the owner
of the file has permitted other users access to it. If you do not specify a node,
the system assumes by default that the file belongs to your own node.

2-10 VMS Concepts




2.7.2.2 Devices — The second part of a file specification, the device name, iden-
tifies the physical device (for example, a disk) on which a file is stored. As a
DATATRIEVE user, your data is most likely to be stored on disks.

If you omit a device name from a file specification, the system supplies a default
value; that is, it assumes the file is on the disk assigned you when the system
manager set up your account. This is your default disk.

2.7.2.3 Directories and Subdirectories — Because a disk can contain files
belonging to many different users, each user of a given disk has a directory that
catalogs all the files belonging to him on that device.

Directories and subdirectories are discussed in greater detail later in this chapter.

2.7.2.4 File Names, Types, and Versions — By taking advantage of your
default node, disk, and directory, you can identify a file uniquely by specifying
only its file name and file type in the format:

filename.typ

The file name can have from zero to 39 characters chosen from the letters A
through Z and the numbers 0 through 9. When you create files, give them
names that are meaningful to you.

The file type can be from zero to 39 characters and must be preceded by a
period. Again, you can choose any of the letters A through Z or the numbers 0
through 9 for the file type. The file type usually describes default file types used
for special purposes.

Table 2-1 lists some of the default file types.

Table 2-1: Default File Types

File
Type Use

DAT Data file

EDT Startup command file for EDT editor
EXE Executable program image file

JOU Journal file used by the EDT editor

(continued on next page)

VMS Concepts 2-1



Table 2-1: Default File Types (Cont.)

File
Type Use

LIS Output listing file
MAI Mail message file
OBJ Object module file output from a compiler or assembler

TJL Journal file use by the LSE and VAXTPU editors

In addition to a file name and type, every file has a version number that the
system assigns when the file is created or revised. The original number is one.
When you create additional versions of the file, the version number is automati-
cally increased by one.

You rarely need to specify the version number with a file specification. The sys-
tem assumes default values for version numbers, as it does with devices, directo-
ries, and file types. Version number defaults are determined as follows:

e For an input file, the system uses the highest existing version number of the
file.

» For an output file, the system adds one to the highest existing version number.

When you use a version number in a file specification, precede the version num-
ber with a semicolon (;).

2.7.2.5 Wildcard Character — A wildcard character is a symbol that you.can
use with many DCL commands to apply the command to more than one file,
rather than specifying each file individually. The asterisk (*) can be used in a
specification of a directory, file name, file type, and version number.

For example, you can specify all versions of a file by using an asterisk in place
of the version number in the file specification. If, for example, you want to print
all versions of the file STARTUP.COM type:

$ PRINT STARTUP .COM;*

If there were no wildcard character in the previous example, the PRINT
command by default would apply only to the most recent version of the file
STARTUP.COM.

2-12 VMS Concepts




The following command prints all versions of all files in the current directory
with the file type of .COM:

$ FRINT * _CiOM;*
To print all versions of all files in the directory with the file name of STARTUP,
type:

$ FRINT STARTUP .%;¥%

2.7.3 Deleting Files

The DELETE command deletes specific files. When you use the DELETE com-
mand, you must specify a file name, file type, and version number. This pro-
vides some protection against accidental deletion. However, you can specify any
of these file components as a wildcard character. You can also enter more than
one file specification on a command line, separating the file specifications with
commas. Some examples of the DELETE command are shown in Table 2-2.

Table 2-2: Examples of the DELETE Command

Command Result

$ DELETE AVERAGE.OBJ;1 Deletes the file named AVERAGE.OBJ;1
$ DELETE .LIS;* Deletes all files with file types of LIS
$ DELETE A.DAT;1,A.DAT;2 Deletes the first two versions of the same data file

2.7.4 Purging Files

You may want to clean up your directory by getting rid of early versions of
particular files. If you have many versions of a file, naming them all in the
DELETE command would be tedious.

The PURGE command allows you to delete all but the most recent version of a
file; therefore, no version number is allowed with the PURGE command. For
example:

$ PURGE AVERAGE.FOR

This command deletes all files named AVERAGE.FOR, except the file with the
highest version number.

VMS Concepts 2-13



The /KEEP qualifier of the PURGE command allows you to specify that you
want to keep more than one version of a file. For example:

$ PURGE/KEEP=2 TEST.COM

This command deletes all but the two most recent versions of the file
TEST.COM.

2.7.5 Displaying Files at Your Terminal
The TYPE command displays a file at your terminal. For example:

$ TYPE ZAPATA.LIS

EVEN IF YOU KILL ZAFPATA,
THERE WILL BE OTHERS
TO TAKE HIS PLACE.

While a file is being displayed, you can interrupt the output by using CTRL/C
or CTRL/Y. The system then prompts you to enter another command.

2.7.6 Printing Files

When you use the PRINT command to obtain a printed copy of a file, the sys-
tem cannot always print the file immediately, because other users may be print-
ing files. The system enters the name of the file you want to print in a queue
and prints the file at the first opportunity.

A printed file is preceded by a header page describing the file so you can iden-
tify your own listing. For example, if you issue the following command, the
header page will show your user name and the file name, type, and version
number of the file:

$ PRINT DB2:IBELLIAVERAGE.LIS
Job 435 entered on queue SYS$PRINT

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the print job.

The PRINT command also has qualifiers that allow you to control the number of .
copies of the file to print, the type of forms to print the file on, and so on. You
can find more information on these qualifiers in the VMS documentation for the
Digital Command Language.

2-14 VMS Concepts




2.7.7 Listing Files in a Directory

The DIRECTORY command lists the names of files in a particular directory. If
you type the DIRECTORY command with no parameters or qualifiers, the com-
mand displays the files listed in your default directory. For example:

$ DIRECTORY
DIRECTORY DBAZ:[BELLI (1)
LOGIN.COM; 45 PERSON .DAT;13  PET.DAT:3 FHONES .DAT 4 (2)

YACHTS .DATi 67

Total of 5 files. 3)

Note that the DIRECTORY command shows:
1.  The disk and directory name
2.  The file name, file type, and version number of each file in the directory

3.  The total number of files in the directory

When you enter the DIRECTORY command, you can provide one or more file
specifications to obtain a listing about particular files only. For example, to find
out how many versions of the file AVERAGE.FOR currently exist, issue the
DIRECTORY command as follows:

$ DIRECTORY AVERAGE.FOR
DIRECTORY DBAZ:[BELLI

AVERAGE .FOR;2  AVERAGE .FOR;1

Total of 2 files.

There are many helpful qualifiers to the directory command. They give you
information such as the date and time a file was created, the size of the file,
and the owner and protection of the file. Refer to the VMS documentation for
online help for more information about using this versatile command.

2.7.8 Copying Files

The COPY command makes copies of files. You can use it to make copies of files
in your default directory, to copy files from one directory to another directory, to

copy files from other devices, or to create files consisting of more than one input
file.

VMS Concepts 2-15



When you issue the COPY command, you specify first the name of the input file
you want to copy, then the name of the output file. For example, the following
COPY command copies the contents on the file PAYROLL.TST to a file named
PAYROLL.OLD:

$ COPY PAYROLL.TST PAYROLL.OLD

If a file named PAYROLL.OLD exists, a new version of that file is created with
a higher version number.

You can copy a file from the directory [BELL] to the subdirectory
[BELL.TESTFILES] and give it a new name, OLDFILE.DAT:

$ COPY NEWFILE.DAT [BELL.TESTFILESIOLDFILE.DAT

When you copy files from devices other than your default disk, you must specify
the device name in the COPY command. For example:

$ COPY DBA1:[JONESIPET .DAT:2 DBAZ:[BELLIPET .DAT

2.7.9 Renaming Files

The RENAME command changes the identification of one or more files. For
example, the following command changes the name of the most recent version of
the file PAYROLL.DAT to TEST.OLD.

$ RENAME PAYROLL .DAT TEST.OLD

You can use the RENAME command to move a file from one directory to
another. For example, the following command moves TEST.OLD from the
directory [MALCOM] to the subdirectory [MALCOM.TESTFILES]:

$ RENAME [MALCOMITEST.OLD [MALCOM.TESTFILES]

You can use wildcard characters if you want to change a number of files that
have either a common file name or file type. For example:

$ RENAME PAYROLL .*;% [MALCOM.TESTFILES]I* *;%

This RENAME command changes the directory name for all versions of all files
that have file names of PAYROLL. The files are now cataloged in the subdirec-
tory [MALCOM.TESTFILES].

You cannot use the RENAME command to move files from one disk to another.

2-16 VMS Concepts




2.7.10 Appending Files

The APPEND command adds the contents of one or more input files to the end
of a specified output file. For example:

$ AFPEND TEST.THXT NEWTEST.TKT

The APPEND command appends the contents of the file TEST.TXT from the
default directory to the end of the file NEWTEST.TXT.

2.7.11 Finding Differences Between Files

The DIFFERENCES command compares the contents of two files and creates a
listing of those records that do not match. For example:

¢ DIFFERENCES PAYROLL.DAT:2 PAYROLL.DAT:1

The DIFFERENCES command compares the contents of PAYROLL.DAT;2 and
PAYROLL.DAT;1 in the current default directory. By default, DIFFERENCES
compares every character in every record and displays the results on the terminal.

Several qualifiers are available which let you modify the format of the informa-
tion produced, control the extent of the comparison, and ignore selected data in
each record.

2.7.12 Searching Files for a Selected String
The SEARCH command searches one or more files for a specified string or
strings and lists all the lines containing occurrences of the string. For example:

$ SEARCH BRANDO .THT,WILLIAMS.TXT STELLA

The SEARCH command searches the files BRANDO.TXT and WILLIAMS.TXT
for occurrences of the character string STELLA. Each line containing the string
is displayed at the terminal.

As with the DIFFERENCES command, several qualifiers are available to
modify the SEARCH command.

VMS Concepts 2-17



2.8 Creating and Managing VMS Directories

The main reason for creating directories and subdirectories is to separate infor-
mation logically on a disk. When users are separated from one another through
the use of top-level directories, each user appears to own a portion of the disk
for storage of information. The system also supports protection of the directories,
which can be used to prevent other users from accessing files. This protection
can be used to protect an entire directory from access or to protect only a few of
the files in a directory.

In some situations, one user could be working on several projects, each requir-
ing several files. Subdirectories can be used to separate the files belonging to
one project from files belonging to another.

Subdirectories become useful for a frequent user because directory listings can
be very long. When information is separated, each directory is smaller and eas-
ier to work with.

2.8.1 Directory Structure

A directory file is a special kind of file. It contains a list of names of other
files. The system uses the directory to access these files. Directories reside on
disk volumes, with one directory file generally created by the system manager
for each user.

Your main directory (also called the top-level directory) resides in the master
file directory (MFD) on the disk volume. This MFD catalogs all user file directo-
ries (UFD). Your main directory is one of many UFDs, and it lists all of your
personal files and subdirectories. These subdirectories may contain a list of file
names, some of which may be other subdirectories.

These rules apply to directories and subdirectories:

+ Although the name of the directory is listed as directory.DIR, you must
specify it as [directory] in the file specification.

¢ Directory files are always version 1.

* The number of directory files that may be listed in any directory file is
limited to the amount of disk space available to you. For example,
SMITH.DIR could contain the names of more than one subdirectory, and each
subdirectory file could contain the names of several other subdirectory files.

* You can have as many as eight levels of directories.

2-18 VMS Concepts



Figure 2-1 shows a sample directory structure for a user named Alexander.

ALEXANDER

<directory > Level 1
l l
REPORTS DTR .
<-subdirectory > < subdirectory Leve
l l
DATA BACKUP
<_subdirectory > < subdirectory Level 3
ZK-00001-00

Figure 2-1: Sample VMS Directory Structure

2.8.2 Accessing Other Directories

You can gain access to files in other directories (including directories that cata-
log files belonging to other users) by specifying the directory name in a file
specification. For example, to display on your terminal the contents of a file
named CONTENTS.LIS belonging to a user whose directory is [BRANDO], issue
the TYPE command:

$ TYPE [BRANDOICONTENTS.LIS

Note that the file specification does not include a device name. For this com-
mand to execute successfully, the directory [BRANDO] must be on your default
disk device. This is because the system always applies a default when you omit

a device name. If user Brando’s directory is on the disk DBB2, you would issue
the TYPE command as:

$ TYPE DBBZ:[BRANDOICONTENTS.LIS

For either of the previous examples to work correctly, Brando must have given
other users access to files in the directory. You can explicitly allow or restrict
access to your own files, either generally or on a file-by-file basis, with the
SET PROTECTION command. You will see how to do this later in this chapter.

VMS Concepts 2-19



2.8.3 Creating Subdirectories

The CREATE/DIRECTORY command creates a subdirectory. For example:
$ CREATE/DIRECTORY [BELL .REMINDERI

This command creates the subdirectory file, REMINDER.DIR, in the directory
[BELL]. You can specify the subdirectory name, [BELL. REMINDER], in com-
mands or programs.

Files can also be cataloged in subdirectories. A subdirectory is a file (cataloged
in a higher directory) that contains additional files. A subdirectory name is
formed by concatenating its name to the name of the directory that lists it. For
example:

$ TYPE [BRANDO .PLAYSIDESIRE .DAT

This TYPE command requests a display of the file DESIRE.DAT that is
cataloged in the subdirectory [BRANDO.PLAYS]. The subdirectory file name is
PLAYS.DIR and is cataloged in the directory [BRANDO].

2.8.4 Changing Your Default Directory

As with the default disk, if you do not specify another directory, or if you do not
specify any directory, the system applies the default. It assumes that the files to
which you refer are cataloged in your default directory. You can find out what
your current default disk and directory are by issuing a SHOW DEFAULT
command:

$ SHOW DEFAULT

DBAZ: [BELL]

This response from the SHOW DEFAULT command indicates that the user’s
default device is DBA2 and the default directory is [BELL)].

To establish another directory or subdirectory as your default directory, use
the SET DEFAULT command. For instance, you can set the default to
[BELL.REMINDER] and then issue the DIRECTORY command:

$ SET DEFAULT [BELL .REMINDER]
$ DIRECTORY

Directory DBAZ:[BELL .REMINDER]
MEMO.TKT;1  REPORT.DAT;1

Total of 2 files
$

2-20 VMS Concepts




You are now working out of this directory, and any new file you create is
cataloged in the subdirectory [BELL.REMINDER]. You could also do this by
specifying the subdirectory as part of the file specification when you use the
EDIT command.

You can change your default directory as often as is convenient. The latest
change you make with the SET DEFAULT command remains in effect until you
either issue another SET DEFAULT command or log out.

2.8.5 Protecting Your Directories and Files

The VMS operating system protects data on directories and in files to ensure
against accidental or unauthorized access. Protection is provided by means of an
owner user identification code (UIC). The owner UIC is divided into a group
name and a user name. For example:

$ DIRECTORY OWNER PET.DAT

Directory DBAZ: [BELLI

FET.DAT:13 [STUDENTS,BELL]

Total of 1 file, 1 block.

$

The protection code indicates that BELL has a group UIC name of STUDENTS,
which is displayed before his user name.

When a user attempts to access a directory or file, his UIC is compared to the
owner UIC. Depending on the relationship of the UICs, the user is in one or
more of the following categories:

o System — These group numbers are generally reserved for system managers,
system programmers, and operators.

e Owner - The user with the same UIC as the person who created and therefore
owns the directory or file.

e Group - All users, including the owner, who have the same group number in
their UICs as the owner of the subdirectory or file.

e World - All users, including those in the first three categories.

Each of these categories of user can be granted or denied any of the following
types of access:

e Read - The right to examine, print, or copy a directory or file.

o Write — The right to modify a file or to write files onto a disk.

VMS Concepts 2-21



» Execute — The right to execute files that contain executable program images.

e Delete — The right to delete the directory, file, or files.

When you specify a user category with a protection code of 0, or null code, you
deny that user category any access.

The system provides a default protection code for directories and files you cre-
ate. You can determine the current default protection by issuing the SHOW
PROTECTION command:

$ SHOW PROTECTION
SYSTEM=RWED, DWNER=RWED, GROUF=RE, WORLD=NO ACCESS

This response is the system default protection. It indicates that the system and
the owner have all types of access, members of the owner’s group have read and
excecute access, and all other users (the world) have no access.

When you create a directory or file, you can define the protection you want to
be applied if you do not want to use the default protection. For example:

$ SET PROTECTION=(S:RWED,0:RKWED,G:RE,W:R) PAYROLL .DAT

The SET PROTECTION command in this example allows the system and owner

read, write, execute, and delete privileges; allows the group read and execute
privileges only; and restricts the world to read privileges for the file (
PAYROLL.DAT.

To determine the current protection associated with a specific directory, file or
files, use the /PROTECTION qualifier on the DIRECTORY command. For
example:

$ DIRECTORY/PROTECTION PERSONNEL .RNO

DIRECTORY DBA1:[BELLI

FERSONNEL .RNO; 5 (RWED, RWED,RHW,R3

Total of 1 file, 8 blocks.

You can change the default protection with the SET PROTECTION/DEFAULT
command. This command indicates that the protection code you specify is to be
applied to all directories and files that you subsequently create during the ter-

minal session. For example:

$ SET PROTECTION=CS:RWED,O:RWED,G:R,W)/DEFAULT

This command sets the default protection to give the system and owner
unlimited access, give the group read access and give no access to the world.

2-22 VMS Concepts



The directory protection can override the protection of individual files in the
directory. For example, if a directory denies world access, world users cannot
look at even those files in the directory that permit world access. To guarantee
protection, however, individual files must also be protected.

2.8.6 Deleting a Directory

The VMS system provides two safeguards against the accidental deletion of a
directory. You must delete all files in a subdirectory and then change the pro-
tection of the subdirectory from the default provided by the system. For exam-
ple, the SET DEFAULT command sets the default to the directory targeted for
deletion:

$ SET DEFAULT [BRANDO.PLAYS .WILLIAMS]
The DELETE command deletes all files in the subdirectory:
$ DELETE * ¥;%

This SET DEFAULT sets the default to the directory containing the subdirec-
tory WILLIAMS.DIR:

$ SET DEFAULT [BRANDD.PLAYS]

The SET PROTECTION cha;nges the default protection to allow deletion:

$ SET PROTECTION=0:D WILLIAMS.DIR
The subdirectory is then deleted:

$ DELETE WILLIAMS.DIR;

2.9 Logical Names

An alternate way of referring to a specific device, directory, or file is to use a
logical name. Two important reasons for using logical names are to:

e Achieve device and file independence

» Reduce typing of long file specifications

A logical name can represent an entire file specification or the leftmost portion
of one. You can create logical names with the ASSIGN command. For example:

$ ASSIGN DBA2:[BELL .TESTFILES] TEST
$ TYPE TEST:MEMO.LIS

VMS Concepts 2-23



The ASSIGN command creates the logical name TEST to represent the directory
specification DBA2:[BELL.TESTFILES]. When TEST is used in the TYPE com-
mand, the system translates it. The logical name in the file specification is
replaced by its current equivalence name. The TYPE command in the previous
example displays the file DBA2:(BELL.TESTFILESIMEMO.LIS.

Only one logical name is permitted in a file specification. It must be the first or
only element of the file specification, and it must be followed by a colon if any
other element is present.

The VMS system maintains tables of all logical names that are created by
users. By default, you use logical names from one of these four tables:

¢ Process logical name tables. A separate logical name table exists for every
user, or process, on the system. Names in a process logical name table are
available only to the user who defines them. An ASSIGN command places a
logical name in your process logical name table by default.

+ Job logical name tables. The job table contains logical names that are availa-
ble to your process and any of your subprocesses.

 Group logical name tables. A separate logical name table exists for every
group in the system. The names in any of these tables can be accessed only by
users who have the same group number in their user identification code.

» System logical name table. There is a single system logical name table. The
logical names in this table can be accessed by all users.
2.10 System Default Logical Names

When you log in, the system provides several default logical names. These
names are used by the command interpreter to read your commands and to
print responses or error messages. Table 2-3 describes the default logical names.

2-24 VMS Concepts

C




Table 2-3: System Default Logical Names

’ Logical

Name Use

SYSSINPUT The default input stream from which the system reads commands
and your programs read data.

Default interactive assignment: your terminal.

Default batch assignment: the command procedure or batch stream.

SYS$OUTPUT The default output stream to which the system writes responses to
commands and your programs write data.

Default interactive assignment: your terminal.

Default batch assignment: batch job log file.

SYS$ERROR The default device to which the system writes all error and infor-
mational messages.

Default interactive assignment: your terminal.

Default batch assignment: batch job log file.

SYS$DISK Your default disk device.

Default assignment: set in user authorization file.

By default, when the system translates a logical name, it searches the process,
job, group, and system logical name tables, in that order. (There are ways to
change the order of this search. See the VMS documentation set for details.)
Each time the system translates a logical name, it checks to see if the result
still contains a logical name. If so, the system translates the result. Therefore,
you can define a logical name in terms of another logical name. You can also
define more than one equivalence name for a single logical name. See the VMS
documentation set for details about DCL commands.) For example:

$ ASSIGN "DBAZ:[BELL.COURSEI" HOMEWRK
$ ASSIGN "HOMEWRK:MONTHLY.TST"  TEST

In this example, the file specification DBA2:(BELL.COURSE] has been given the
logical name HOMEWRK. This logical name is then used in the second file
specification, HOMEWRK:MONTHLY.TST, to create the logical name TEST.

VMS Concepts 2-25



You can determine the current equivalence for a logical name by entering the
SHOW LOGICAL command. For example:

$ SHOW LOGICAL HOMEWRK
HOMEWRK = "DBAZ:[BELL .COLURSES]" (process)

To assign a logical name temporarily, use ASSIGN/USER_ MODE command.
For example:

$ ASSIGN/USER_MODE DMA®@: DISK

The ASSIGN/USER_ MODE command assigns the equivalence name DMAO: to
the logical name DISK and stores the assignment in your process logical name
table. The assignment is temporary and is deleted following completion of the
next image. Because all but a few DCL commands complete an image when
they execute, a user mode assignment of a logical name generally lasts only for
one DCL command. Use this command to override existing logical names
temporarily.

To cancel a logical name assignment, use the DEASSIGN command. For example:

$ DEASSIGN HOMEWRK
$ SHOW LOGICAL HOMEMWRK
No translation for logical name HOMEWRK

There are many other attributes and options to control how the system inter-
prets logical names. See the VMS documentation set for details.

2.11 Symbols

You can equate symbols to character strings or arithmetic values by defining
them in assignment statements. In addition to their use in command procedures
(see Section 2.12), symbols are useful as synonyms for long, frequently used com-
mand strings. For example, you can equate the symbol HOME to the command
SET DEFAULT DBAZ2:[BELL] and subsequently use the symbol HOME in place
of SET DEFAULT DBAZ2:BELL]. For example:

$ HOME :== SET DEFAULT DBAZ:[BELLI
This symbol would be handy for bringing Bell back quickly to his main directory.

To display the current value of a symbol, use the SHOW SYMBOL command.
For example:

$ SHOW SYMBOL HOME
HOME = "SET DEFAULT DBAZ:[BELLI"

2-26 VMS Concepts




To delete a symbol, use the command DELETE/SYMBOL/GLOBAL. For example:

$ SHOW SYMBOL HOME

3 $ DELETE/SYMBOL,GLOBAL HOME
ZDCL-W-UUNDSYM, undefined symbnal

The DELETE/SYMBOL/GLOBAL command deleted the symbol HOME. The
response to the SHOW SYMBOL command verifies this.

2.12 Command Procedures

A command procedure is a file with the .COM type containing a sequence of
commands to be executed by the operating system. You execute a command
procedure with one command: the Execute Procedure character (@) for interac-
tive processing or the SUBMIT command for batch processing.

As you continue to use DCL, you can simplify it to save yourself time during
interactive terminal sessions and to establish your own default commands and
command qualifiers.

You can use command procedures and symbol assignment statements together
to redefine and expand system commands.

For example, suppose that during your terminal sessions you frequently create
e many files that you do not want cluttering up your directory. You may want to
) purge these files at the end of each session. To do this housekeeping, you could
create a command procedure named LOG.COM that contains the lines:

$ PURGE
$ LoGouT

You can use this command procedure in place of the LOGOUT command when
you want to end your terminal session, as follows:

$ aL0G

The PURGE command is automatically executed before you log out.

Moreover, you could define a symbol named LO that is equated to the following
command string:

$ L0 :== @L0G

Then, the system substitutes the symbol LO with the @ LOG command string
and executes your command procedure when you type the command line:

$ L0

VMS Concepts 2-27



2.12.1 A LOGIN.COM File

If you become a frequent user of the VMS system, you may find that you are (
entering the same sequence of commands or assignment statements every time

you log in. To avoid such repetition, you can place these commands and state-

ments in a special command procedure.

The command procedure file must be named LOGIN.COM, and it must be in
your default disk directory. When you log in to the system, the system automat-
ically searches for a file with this file name. If the system locates the
LOGIN.COM file, it automatically executes the commands within that file.

For example, a LOGIN.COM file might contain:

8T :== SHOW TIME

DIR*¥ECTORY :== DIRECTORY OWNER,PROTECTION
LD :== 8L0OG

DTR32 :== $SYS$SYSTEM:DTR32V3

SHOW FROCESS

LK R

Note that all the symbols defined in the previous example are global symbols,
assigned with two equal signs. If these symbols were local (assigned with one
equal sign), they would be recognized only within the LOGIN.COM file and
would therefore be useless to you.

You can execute command procedures from within other command procedures. (
You may want to place the global assignment statements you use for command
synonyms in a separate file and execute this procedure in the LOGIN.COM file.

For example, suppose the file SYNONYM.COM contains the lines:

:== SHOW TIME

$ ST :=
$ DTR32 :== $SYS$SYSTEM:DTR32V3

Your LOGIN.COM file would contain the line:
§ ASYNONYNM

When this command is executed, the definitions in the synonym file are
established.

2.13 Finding More Information

This chapter provides a brief overview of the VMS operating system. For more
information, see the VMS documentation set.

2-28 VMS Concepts




Using Editors Within DATATRIEVE 3

When you need to create or modify a dictionary object, you use an editor with
its own set of rules, functions, commands and statements. This chapter discusses
editing within DATATRIEVE. Within DATATRIEVE, you can use one of the
following editors:

o EDT, which provides a basic editing interface and a predefined keypad with a
variety of useful editing functions. EDT is the default editor within
DATATRIEVE.

e VAX Text Processing Utility (VAXTPU), which allows multiple buffers and
windows. VAXTPU allows you to tailor your editing interface to your
individual editing style.

¢ VAX Language-Sensitive Editor (LSE), which has all the features of VAXTPU
but also allows you to use DATATRIEVE LSE templates. These templates
guide you to enter correct DATATRIEVE commands and statements.

Note that you can also edit from DCL level and at CDD level. At DCL level,
you can use your choice of editors depending on what is installed on your sys-
tem. At CDD level, you can use the Dictionary Management Utility (DMU) to
edit CDD objects. See the documentation for your particular editor and for CDD
for further information.

3-1



This chapter includes the following sections:
» General information you need to know to edit within DATATRIEVE

o Introductions to:

- EDT
- VAXTPU
- LSE

+ Information about ending your editing session

3.1 General Editing Information

This section discusses general information you need to know to edit within
DATATRIEVE. It includes:

» Assigning a DATATRIEVE editor
» Using line recall within DATATRIEVE
» Using the DATATRIEVE EDIT command:

Editing the last DATATRIEVE command or statement

Using Access Control List privileges when editing CDD objects

Editing by CDD path name

Editing by types of objects within DATATRIEVE

Recovering an aborted editing session

3.1.1 Assigning a DATATRIEVE Editor

EDT is the default editor in DATATRIEVE. To change your default editor to
VAXTPU or LSE, you need to change the editor assigned to the logical name
DTRS$EDIT. You must use a three-character acronym, either EDT, TPU, or LSE,
when you assign an editor to DTR$EDIT.

3-2 Using Editors Within DATATRIEVE

C



You can assign an editor to DTR$EDIT in one of two ways:
e Use the ASSIGN command at DCL level:
$ ASSIGN TFPU DTR$EDIT

When you assign DTR$EDIT with the DCL ASSIGN command, the assign-
ment lasts only until you log out. After you log out, the previous default edi-
tor is again the default editor.

e Use the function FNSCREATE _LOG from within DATATRIEVE:
DTR) FN$CREATE_LOG ("DTR$EDIT", “TPU™)

When you assign DTRSEDIT with FNSCREATE __LOG, the assignment lasts
only during that DATATRIEVE session. After you exit from DATATRIEVE,
the previous default editor is again the default editor.

To assign an editor as your default editor whenever you use DATATRIEVE,
include the ASSIGN command in your LOGIN.COM file. Your default
DATATRIEVE editor will then be the editor assigned to DTR$EDIT.

3.1.2 Using Line Recall Within DATATRIEVE

DATATRIEVE allows you to recall the 20 most recent input or prompted lines
using the up arrow and down arrow keys or the CTRL/B key sequence.

You can use this feature to recall, correct, then reenter a previous line that con-
tained an error. Line recall does not invoke an editor, however. To make your
correction, recall the line with the error, position the cursor over the error using
the arrow keys, then use the keyboard keys to insert or delete the necessary
information.

e The up arrow key recalls lines in sequence from most recent to least recent.

« The CTRL/B key sequence also recalls lines in sequence from most recent to
least recent.

e The down arrow key allows you to recall more recently entered lines after you
have recalled prior lines.

You can use line recall at the DTR> prompt, the CON > prompt, and the RW >
prompt. You can also recall prompted input lines, such as those generated by a
prompting value expression (such as *.“prompt-name”) or a STORE or MODIFY
statement. You cannot use line recall in Guide Mode, Help, or ADT.

Using Editors Within DATATRIEVE 3-3



Note that DATATRIEVE uses separate recall buffers for interactive and
prompted input lines:

» If you are being prompted for input lines, you can recall the last 20 lines of
prompted input.

» When the prompting has ended, DATATRIEVE switches to the interactive
input buffer. Therefore, you can recall the previous 20 interactive input lines
prior to the prompting session.

o If you subsequently enter another prompting session, you can recall the previ-
ous 20 lines from the previous prompting session.

In the following list, the position of the cursor is indicated by the underscore, __
The list shows some unique situations using the recall feature:

o« DATATRIEVE recalls lines continued with hyphens in interactive sessions as
though they are one concatenated line.

The following example uses lines that have been continued in an interactive
session with hyphens. The cursor is on the bottom line.

DTR) READY-
CON) YACHTS-
CON)> SHRARED-
CON) READ
DTR) -

If you press the up arrow key or CTRL/B once, DATATRIEVE recalls the
command as one entire concatenated line:

DTR)Y READY YACHTS SHARED READ

Note that both interactive and prompted input lines have a maximum length
of 255 characters.

« DATATRIEVE recalls a nonhyphenated, continued line in the same manner
as it recalls a line entered at the DTR> prompt:

DTR) FIND YACHTS WITH BUILDER = "GRAMPIAN"
DTR) PRINT ALL LOA,

CON) BEAM,

CON) DISP,200@ ("DISP,20008")

DTR> -

As with a regular DTR> prompt, pressing the up arrow key or CTRL/B once
recalls the most recent line, not the entire command or statement:

CON) DISP,200@ ("DISP,2000")

DATATRIEVE does not concatenate the recalled lines if they are not con-
tinued with hyphens.

3-4 Using Editors Within DATATRIEVE




D

o DATATRIEVE does not echo passwords on the screen, so you cannot edit or
recall passwords.

« When DATATRIEVE prompts you for input, it interprets a hyphen as a
minus sign, not as a continuation character. Thus, DATATRIEVE does not
recall prompted lines as one continuous line if you have attempted to continue
the lines with hyphens.

3.1.3 Using the DATATRIEVE EDIT command

The following sections discuss the DATATRIEVE EDIT command, including
information on:

« Editing the previous command or statement

« Using Access Control List privileges when editing CDD objects
o Editing a CDD object specified by a path name

« Editing all objects of a particular type

e Recovering an aborted session

The EDIT section of the VAX DATATRIEVE Reference Manual also contains
complete information on the EDIT command.

3.1.3.1 Editing the Previous DATATRIEVE Command or Statement — You can
enter the EDIT command within DATATRIEVE without specifying a dictionary
path name. DATATRIEVE then invokes your default editor and loads the previ-
ous command or statement into the main text buffer of the editor.

This feature is most useful if there was an error in the previous command or
statement. The following list shows how you can use EDIT to correct such an
error:

1. Enter the EDIT command with no argument.

2. DATATRIEVE loads the previous command or statement into the main
text buffer.

3. Edit the previous command or statement to correct the error
4. Enter the EXIT command

5. DATATRIEVE executes the commands and statements that are in the
editor’s main buffer

Using Editors Within DATATRIEVE 3-5



In the following example, assume you did not want to include the argument
BEAM:

DTR)Y FIND YACHTS WITH BUILDER = "GRAMPIAN"
DTR) PRINT ALL LOA,

CON) BEAM,

CON) DISP,2oR@ ("DISP,2000")

DTR)

To correct the mistake, type the EDIT command without an argument at the
DTR> prompt; this recalls all the lines of the previous PRINT statement. Next,
edit the statement, eliminating the BEAM argument. After you exit from the
editor, DATATRIEVE executes the corrected statement:

DTR) PRINT ALL LOA,
CON> DISP,2000 ("DISP,2000")

LENGTH

OVER

ALL DISP,2000

34 3.900
26 2.500
28 3.450
30 4.300
33 6.000

Note that you can use both the EDIT command and the arrow keys to recall
and edit the previous line. The EDIT command and the arrow keys function
differently, however, when you recall nonhyphenated commands or statements
that are continued over more than one line. The following list shows these
differences:

e The EDIT command recalls the entire last command or statement even if it
spans more than one line.

o The arrow keys recall only a single line of a nonhyphenated, continued com-
mand or statement; they do not recall the entire command or statement. To
correct an error in a nonhyphenated command or statement using the arrow
keys, you would have to perform each of the following steps:

1. Recall the first line of the command or statement and enter the RETURN
key

2. Recall each successive line of the command or statement and enter the
RETURN key

3-6 Using Editors Within DATATRIEVE




3. When you reach the line where the error occurred, correct the error and
enter the RETURN key

4. Recall any lines of the command or statement following the line where the
error occurred, executing each line by entering the RETURN key

3.1.3.2 Privileges Needed to Edit CDD Objects — Each CDD object has an
access control list (ACL) associated with it. ACLs determine what an individual
user or class of users can do with an object. When you use an editor to define or
redefine a dictionary definition within DATATRIEVE, the definition you are
editing must have access privileges that allow you to create later versions. Typi-
cally, you need not worry about these privileges. The CDD is usually set up by
the system manager to include the ACL privileges you need. See the chapter on
using the VAX Common Data Dictionary for a description of privileges neces-
sary to define and redefine definitions.

3.1.3.3 Editing a CDD Object Specified by Path Name — You can use EDT,
VAXTPU, or LSE to create or modify existing CDD definitions. To create new
CDD definitions, you can use the DEFINE command either within an editor or
at the DTR> prompt. You can also use the Application Design Tool (ADT),
which prompts you for information to create a new domain and record definition.

To edit a CDD object from within DATATRIEVE, enter the EDIT command fol-
lowed by the CDD path name of the object:

DTRY EDIT definition-path-name

The editor then loads the specified definition into a text buffer, which is a tem-
porary storage area where editing operations take place.

See the following sections on EDT, VAXTPU, and LSE for examples of editing a
CDD object.

3.1.3.4 Editing by Types of Objects Within DATATRIEVE — You can specify
one or more types of object definitions with the DATATRIEVE EDIT command.
This allows you to edit all the domains, plots, procedures, records, or tables from
your current default CDD directory.

DATATRIEVE places the object types in the edit buffer in the order you specify.
You can then edit all the objects using EDT or your assigned editor. In the fol-
lowing example, DATATRIEVE places the record object definitions in the edit
buffer before the domain object definitions:

DTRY EDIT ALL RECORDS, DOMAINS

See the EDIT command in the VAX DATATRIEVE Reference Manual for more
information.

Using Editors Within DATATRIEVE 3-7



3.1.3.5 Using EDIT to Recover from a System Failure — Sometimes a computer
system experiences problems that force it to shut down without warning. Your
editor protects you from losing your editing work if this happens by creating a
journal file that allows you to reconstruct your editing session.

While you are editing CDD objects, DATATRIEVE places a journal file for the
editing session in your default VMS directory. The journal file is automatically
deleted upon successful completion of the editing session. If your editing session
ends abnormally, however, you can use the journal file and the RECOVER argu-
ment of the EDIT command to recover almost all the edits. The last several
keystrokes may be missing.

To recover an aborted session, enter exactly the same line you entered when you
started the session but add the RECOVER argument at the end of the line:

DTRY EDIT ALL DOMAINS
:! System failure
DTR) EDiT ALL DOMAINS RECOVER

Journal files have default file types, depending on which editor you are using.
You do not need to specify the journal file type when you are recovering an
aborted session. You should know what the file type is, though, so you do not
inadvertently delete the journal file before you recover the session. The follow-
ing are the default file types:

EDT JOuU
LSE TJL
VAXTPU TJL

If you are editing more than one type of object, DATATRIEVE creates a journal
file using the name of the first object type:

DTR)Y EDIT ALL DOMAINS, RECORDS

In the preceding example, DATATRIEVE creates a journal file called
DOMAINS.JOU.

Note that DATATRIEVE does not create a journal file when you are editing:

¢ The previous command or statement using the EDIT command with no
arguments

» A previous line you have recalled using one of the arrow keys

3-8 Using Editors Within DATATRIEVE




Because there is no journal file, if your system fails during either of these situa-
tions, you cannot use the RECOVER argument.

3.2 Using EDT Within DATATRIEVE

To invoke EDT within DATATRIEVE, enter the EDIT command. As detailed in
a preceding section, you can use several arguments with the EDIT command to
achieve various results:

e To edit the previous command or statement, enter the EDIT command with no
arguments.

e To edit a CDD object specified by path name, enter EDIT followed by a
definition-path-name.

» To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

e To recover an aborted session, enter the previous EDIT command followed by
the argument RECOVER.

Although you can use any of the arguments mentioned in the previous list when
you invoke EDT, the following example shows you how to use EDT to edit a
CDD object specified by path name. Enter the EDIT command followed by a
CDD definition path name:

DTRY EDIT definition-path-name

The editor then loads the specified definition into a text buffer, which is a tem-
porary storage area where editing operations take place.

When you invoke EDT, the response varies depending on whether or not you
are creating a new file or editing an existing file. Other factors, such as com-
mands contained in an EDTINLEDT startup command file, may further alter

the response. See the EDT documentation for information on startup command
files.

To edit the PHONES _REC record definition, type EDIT PHONES _REC at the
DTR> prompt:

DTRY EDIT PHONES-REC

1 REDEFINE RECORD PHONES-REC USING

Using Editors Within DATATRIEVE 3-9



EDT puts a copy of the object definition in its buffer and then displays the first
line of the definition and the asterisk (*) prompt. DATATRIEVE automatically
adds the REDEFINE command to the beginning of the first line of
PHONES__REC. The REDEFINE command creates a new version of the
definition when you save any changes made during the editing session.

The asterisk is the EDT line editing prompt. When you see the asterisk prompt,
it means you are in EDT line mode and not keypad mode. The following list
describes EDT line mode and keypad mode:

* In line mode, you see only a single line of text at a time and perform editing
operations on that line. You enter line editing commands by typing the com-
mand from the main keyboard.

* In keypad mode, you see an entire screen of text and can move freely about
the display to edit at any point in the text. You enter keypad editing func-
tions by pressing keys on the numeric keypad to the right of the main
keyboard.

To use keypad mode, type the command CHANGE (or the abbreviation C) at the
asterisk prompt. EDT switches to keypad mode and shows you a full screen of
the record definition:

DTR) EDIT PHONES_REC
1 REDEFINE RECORD PHONES_REC USING

*CHANGE

REDEFINE RECORD PHONES_REC USING
@1 PHONES_REC.
@5 FULL-NAME QUERY_NAME IS NAME.
12 LAST_NAME  PIC K(2@)
QUERY_NAME IS L.
12 FIRST_NAME PIC K(13)
QUERY_NAME IS F.
@5 PHONE_NUMBER PIC R(B)
QUERY_NAME IS NUM.

i

[EOB]

The end-of-buffer symbol [EOB] indicates the last line of text.

See the section near the end of this chapter for information on leaving the
editor.

3-10 Using Editors Within DATATRIEVE




3.3 Using VAXTPU Within DATATRIEVE

VAXTPU is a Text Processing Utility that allows you to tailor your editing
environment to your own preferences. VAXTPU provides a variety of features
not available with EDT, including:

e Multiple buffers, windows, and subprocesses
+ The ability to define keys to execute a sequence of commands

e A procedural language

You have several choices of editing interfaces:

o The Extensible VAX Editor (EVE) has an easy-to-use editing interface that
includes the most frequently used editing functions. You can also enter more
advanced editing VAXTPU functions on an EVE command line and define
your keyboard to suit your editing style. You can define keys to perform any
VAXTPU/EVE commands or series of commands you choose. EVE is the
default VAXTPU editing interface in DATATRIEVE.

¢ The EDT Keypad Emulator gives you an interface with the same editing key-
pad as the EDT editor. Like the EVE editing interface, it allows you to enter
more advanced VAXTPU functions on an EDT Keypad Emulator command
line and to define other keys on your keyboard to suit your editing style.

« If you prefer to design your own editing interface, you can define your key-
board the way you like it. You can define keys to perform any VAXTPU com-
mands or series of commands or enter advanced VAXTPU functions on a
command line.

Note

VAXTPU allows you to use a section file to modify your editing inter-
face. When you use a section file, however, be careful not to specify,
alter, or delete input and output file names. DATATRIEVE uses the

file names DTR$INPUT and DTR$OUTPUT for VAXTPU. See
VAXTPU documentation for more information about section files.

To use VAXTPU within DATATRIEVE, you must first assign VAXTPU as your
default DATATRIEVE editor. (See the section on assigning a DATATRIEVE edi-
tor for more information.) This allows you to invoke the VAXTPU default edit-
ing interface, EVE.

Using Editors Within DATATRIEVE 3-11



If you want to invoke VAXTPU with the EDT Keypad Emulator rather than
EVE, assign the logical name TPUSECINI. You can assign the logical name in
one of two ways:

e Use the ASSIGN command at DCL level:
$ ASSIGN SYS$LIBRARY:EDTSECINI TPUSECINI

When you use the DCL ASSIGN command, the assignment lasts only until
you log out. To assign the EDT Keypad Emulator as your default editor
whenever you use DATATRIEVE, insert the ASSIGN command in your
LOGIN.COM file.

e Use the function FNSCREATE __ LOG from within DATATRIEVE:
DTR} FN$CREATE_LOG ("TPUSECINI", "SYS$LIBRARY:EDTSECINI™)

When you use FNSCREATE __LOG, the assignment lasts only during that
DATATRIEVE session.

To invoke VAXTPU within DATATRIEVE, enter the EDIT command. As
detailed in a preceding section, you can use several arguments with the EDIT
command to achieve various results:

To edit the previous command or statement, enter the EDIT command with no
arguments.

To edit a CDD object specified by path name, enter EDIT followed by a path
name.

To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

To recover an aborted session, enter the previous EDIT command exactly as
you entered it before, followed by the argument RECOVER.

While you can use any of the arguments from the previous list when invoking
VAXTPU, the following example shows you how to use VAXTPU to edit a CDD
object specified by path name. Invoke VAXTPU with the EDIT command fol-
lowed by the CDD path name:

DTR) EDIT definition-path-name
VAXTPU then loads the specified definition into the editing buffer.

When you invoke VAXTPU, the response varies depending on whether or not
you are creating a new file or editing an existing file. Other factors, such as
commands contained in a startup command file, may further alter the response.
See the VAXTPU documentation for information on startup command files.

3-12 Using Editors Within DATATRIEVE




To edit the PHONES_REC record definition, for example, type EDIT
PHONES__REC at the DTR> prompt. VAXTPU puts a copy of the definition in
the buffer and then displays the record definition:

DTR) EDIT PHONES_-REC

REDEFINE RECORD PHONES_REC USING
@1 PHONES-REC.
@5 FULL-NAME QUERY_NAME IS NAME.
12 LAST_NAME  PIC K(2@)
QUERY_-NAME IS L.
12 FIRST_NAME PIC X(15)
QUERY_NAME IS F.
@5 PHONE_NUMBER PIC K(g)
QUERY_NAME IS NUM.

i

[End of filel

DATATRIEVE automatically adds the REDEFINE command to the beginning of
the first line of PHONES__REC. The REDEFINE command creates a new version
of the definition when you save any changes made during the editing session.

The [End of file] symbol indicates the last line of text in the buffer.

See the section near the end of this chapter for information on leaving the editor.

3.4 Using LSE within DATATRIEVE
LSE is based on VAXTPU and has all the editing features of VAXTPU.

LSE allows you to use a section file to modify your editing interface. When you
use a section file, however, be careful not to specify, alter, or delete input and
output file names. DATATRIEVE uses the file names DTRSINPUT.DTR and

DTR$OUTPUT for LSE. See the LSE documentation for more information about
section files.

In addition to the VAXTPU editing features, you can use DATATRIEVE LSE
templates to guide you to enter correct commands and statements.

The DATATRIEVE LSE templates are made up of placeholders. The place-
holders represent the DATATRIEVE syntax you need to define dictionary
objects and to use DATATRIEVE. When you expand the placeholders, LSE pro-

vides the required syntax or indicates optional elements. You can expand these
placeholders into:

e The required DATATRIEVE syntax elements that are appropriate for that
context

e Optional elements

Using Editors Within DATATRIEVE 3-13



» Tokens representing appropriate keywords or information to be supplied

e Other placeholders

You expand a placeholder or token by positioning the cursor anywhere on it and
pressing CTRL/E.

To use LSE within DATATRIEVE, you must first assign LSE as your default
DATATRIEVE editor. (See the section in this chapter on assigning a
DATATRIEVE editor for more information.)

Next, enter the EDIT command. As detailed in a preceding section, you can use
several arguments with the EDIT command to achieve various results:

e To edit the previous command or statement, enter the EDIT command with no
arguments.

» To edit a CDD object specified by path name, enter EDIT followed by a path
name.

» To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

» To recover an aborted session, enter the previous EDIT command followed by
the argument RECOVER.

Although you can use any of the arguments in the previous list when invoking
LSE, the following example shows you how to use LSE to edit a CDD object
specified by path name. Invoke LSE with the EDIT command followed by the
CDD path name:

DTRY EDIT definition-path-name

This command tells your editor to load the specified definition into the editing
buffer.

When you invoke LSE, the response varies depending on whether or not you are
creating a new file or editing an existing file. Other factors, such as commands
contained in a startup command file, may further alter the response. See the
VAX Language-Sensitive Editor documentation for further information on
startup command files.

3-14 Using Editors Within DATATRIEVE




To edit the PHONES _REC record definition, for example, type EDIT
PHONES _REC at the DTR> prompt. LSE puts a copy of the definition in its
main buffer and then displays the record definition:

DTR) EDIT PHONES_-REC
REDEFINE RECORD PHONES_REC USING
@1 PHONES_REC.
@5 FULL-NAME QUERY_-NAME IS NAME.
12 LAST_NAME  PIC X(2@)
QUERY_NAME IS L.
12 FIRST_NAME FPIC K(13)
QUERY_NAME IS F.
@5 PHONE-NUMBER FIC R(B)
QUERY_NAME IS NUM.

[End of filel
When the editor copies the record definition, DATATRIEVE automatically adds
the REDEFINE command to the beginning of the first line of PHONES _REC.

The REDEFINE command creates a new version of the definition when you exit
the editor.

The [End of file] symbol indicates the last line of text in the buffer.

If you want some additional help in editing or want to use the general LSE tem-
plate for DATATRIEVE, invoke the top-level placeholder in the following
manner:

1. Invoke the editor.

2.  Type the DATATRIEVE LSE placeholder {DATATRIEVE _ session} at
the top of the file.

3.  Place your cursor on {DATATRIEVE __session}.

4. Enter CTRL/E to expand the placeholders and tokens included in the
DATATRIEVE LSE templates.

To save keystrokes, you can define a key to print the placeholder
{DATATRIEVE __session}. For example, adding this line to your LSE initializa-

tion file (LSESINITIALIZATION) enables the use of the key sequence GOLD-D
for entering the placeholder into the edit buffer when you are in LSE:

DEFINE KEY/IF_STATE=GOLD D "DO ""ENTER TEKT {DATATRIEVE.session}"" "

See the following section for information on ending your editing session.

Using Editors Within DATATRIEVE 3-15



3.5 Ending Your Editing Session

Whether your default editor is EDT, VAXTPU, or LSE, you have two options
when ending your editing session. You can:

e QUIT to end the session without preserving your work.

o EXIT to end the editing session but cause DATATRIEVE to execute any com-
mands in the editing buffer. DATATRIEVE saves the original definition in
the CDD when you exit the editor.

Note that when you exit, DATATRIEVE tries to execute the contents of your
editing buffer. You should be sure your editing buffer contains valid
DATATRIEVE syntax before you exit.

After you exit, a confirmation message and the DTR > prompt appear:

REDEFINE RECORD PHONES_REC USING
@1 PHONES_REC.
@5 FULL-NAME BUERY_NAME IS NAME.
120 LAST_NAME  PIC X(2@)
QUERY_NAME IS L.
18 FIRST_NAME PIC K(15)
QUERY_NAME IS F.
@5 PHONE_NUMBER FIC ®(8)
QUERY_NAME IS NUM.

[EOB]
CTRL/Z

*EXIT
[Record is 43 bytes long.]

DTR)

The following sections detail information specific to ending editing sessions from
EDT, VAXTPU, and LSE.

3.5.1 Ending an EDT Session

To end an EDT editing session within DATATRIEVE, you must first leave EDT
keypad mode by entering CTRL/Z. This returns you to line mode and the aster-
isk prompt.

At the asterisk prompt, end your editing session by typing either EXIT or
QUIT, then press the RETURN key.

See the EDT documentation for more information about EDT commands and
keypad editing.

3-16 Using Editors Within DATATRIEVE




3.5.2 Ending a VAXTPU Session

To EXIT from the EVE editing interface:
e On a VT100-family terminal, press CTRL/Z
+ On a VT200-family terminal, press either the F10 key or CTRL/Z

To QUIT from the EVE editing interface:

e On a VT100-family terminal, press the PF4 key, then type QUIT and press
the RETURN key

e On a 200-family terminal, press the DO key, then type QUIT and press the
RETURN key

In the EDT Keypad Emulator, pressing CTRL/Z gives you an asterisk (*)
prompt. You must then type either EXIT or QUIT and press the RETURN key
to end your editing session.

See the VAXTPU documentation for more information about VAXTPU
commands.

3.5.3 Ending an LSE Session

To end your LSE session, enter CTRL/Z. This moves your cursor down to the
LSE > prompt at the bottom of the screen. You can then type either EXIT or
QUIT, then press the RETURN key.

When you end your LSE editing session, do not leave any unexpanded place-
holders in the file. Note that when you exit, DATATRIEVE tries to execute the
contents of your editing buffer. DATATRIEVE can interpret only expanded
placeholders and tokens; unexpanded placeholder and tokens will result in error
messages.

Using Editors Within DATATRIEVE 317






Using Syntax Diagrams 4

This chapter explains the notation used in DATATRIEVE syntax diagrams.

The language you speak and write has a vocabulary and grammatical rules that
make it unique and understandable to others. DATATRIEVE, too, contains a set
of words and rules that determines how you can form statements and
commands.

When you are first learning to use DATATRIEVE, you will probably use exam-
ples to guide you in writing your own statements, commands, and definitions.
As you become more expert at using DATATRIEVE, however, you will find that
no one example is complete enough for your particular application.

In the VAX DATATRIEVE Reference Manual and VAX DATATRIEVE Pocket
Guide you will find a syntax diagram for each DATATRIEVE command, state-
ment, and clause you can use. The syntax diagram tells you the words, order,
and punctuation that apply to the language element illustrated. You can use
syntax diagrams to supplement the information you gain from looking at
examples.

DATATRIEVE online help also displays syntax diagrams for you. For example,
to display the syntax diagram for the READY command, you can enter HELP
READY at the DTR> prompt. Refer to Chapter 6 for more information about
using the DATATRIEVE online help.

4-1



Figure 4-1 illustrates the syntax diagram for the READY command.

READY domain-path-name [AT node-spec] [AS alias-1]

PROTECTED READ

SHARED WRITE CONSISTENCY |

EXCLUSIVE MODIFY CONCURRENCY
EXTEND

Figure 4-1: Sample Syntax Diagram

Table 4-1 explains the notation used in syntax diagrams.

Table 4-1: Notation Used in Syntax Diagrams

Do You
Element Meaning Enter It?
WORD An uppercase word is a keyword. Yes
word A lowercase word indicates a syntax element. Yes
separators Characters that separate words (space), separate items Yes
(punctuation) you are listing (comma), or tell DATATRIEVE you are
finished with a clause (period) or a statement or com-
mand (semicolon).
{ } (braces) Braces enclose a clause from which you must choose No
one alternative.
[ 1 (brackets) Square brackets enclose optional clauses from which No
you can choose or none.
Indicates you can repeat the part of the clause, state- No
(horizontal ment, command, or expression immediately to the left
ellipsis) of the ellipsis
. Indicates you can repeat the line of the clause, state- No
. (vertical) ment, command, or expression immediately above the
. ellipsis) ellipsis

The format for the READY command indicates it always starts with the key-
word READY and must contain at least one path name. The command READY
EMPLOYEES, for example, contains the minimum number of elements that a
READY command can include.

4-2 Using Syntax Diagrams



The following example illustrates a READY command that includes all the
options in the diagram. It readies the domain FAMILIES on a local system for
write access and specifies that other users cannot access the file. It also readies
the domain PERSONNEL on a remote system for read access, specifies that

other users can access the file, and specifies that the domain be readied under
the name REM _ PERSONNEL:

DTRY READY FAMILIES EXCLUSIVE WRITE, PERSONNEL AT
(Looking for Node Specification)
CONY WOMBAT"BELL *. "password " AS REM_PERSONNEL SHARED READ
Enter password:
DTR)Y SHOW READY
Ready sources:
REM_FERSONNEL: Domain, REMOTE, shared read
FAMILIES: Damain, RMS sequential, exclusive write
{CDD$TOF .DTR$USERS .BELL.FAMILIES)
No loaded tables.

The following examples illustrate what can happen when you input a statement
or command that does not follow the rules in the syntax diagram. The comment
line (DTR> !...) in each example indicates the correction needed. DATATRIEVE
does not process comment lines. You generally add them only to procedures to
document what is going on for someone reading the procedure. Sometimes in
this book, comment lines are added to interactive examples to help you follow
the steps being demonstrated:

DTR)Y READY FAMILIES WRITE AS FOLKS
READY FAMILIES SHARED WRITE AS FOLKS

Expected end of command, encountered "AS".
DTRY ! Alias clause should follow domain name
DTRY READY FAMILIES AS FOLKS WRITE

DTR?

DTR) READY FAMILIES FOLKS WRITE
READY FAMILIES FOLKS WRITE

Expected end of command, encountered "FOLKS".

DTRY ! Keyword AS is a required part of the alias clause
DTRY READY FAMILIES AS FOLKS WRITE

DTR>

DTR) READY FAMILIES READ PERSONNEL
READY FAMILIES READ PERSONNEL

Expected end of command, encountered "PERSONNEL".
DTRY ! Comma must separate information for the
DTRY ! two domains being readied

DTRY READY FAMILIES READ, FERSONNEL

DTR?

Using Syntax Diagrams 4-3



As you can probably guess, the error message “Expected end of command,
encountered...” alerts you to a formatting problem with your input. When you
receive this message, you should check the syntax diagram for the statement,
command, clause, or expression you are trying to type.

The following sections discuss more fully the elements that make up syntax
diagrams.

4.1 Uppercase Words in Syntax Diagrams

Uppercase words are DATATRIEVE keywords, the words that make up the
main part of the DATATRIEVE language. Keywords can serve one of three
purposes:

» “Major” keywords, such as READY, STORE, and FIND, let DATATRIEVE
know what kind of task you want it to do. These keywords are always a
required part of the input.

» “Minor” keywords, such as USING, AS, and ALL, sometimes let
DATATRIEVE know what to expect next. In this case, these minor keywords
are a required part of your input.

» “Minor” keywords, such as USING, AS, and ALL, can be included to make
input more like English. In this case, the minor keyword is enclosed in square
brackets and you can choose to omit the keywords from your input.

Do not use any DATATRIEVE keywords to name something you define. If you
do, you might get either an error message or unexpected results. Appendix A
contains a complete list of DATATRIEVE keywords.

4.2 Lowercase Words in Syntax Diagrams

Lowercase words indicate something that you supply to make a statement or
command complete. The term domain-name limits you to path names of domains
at the location where the term appears. The term statement means that you
supply a complete DATATRIEVE statement in that location.

4.3 Brackets and Braces in Syntax Diagrams

Square brackets enclose optional parts of the language element being described
by the syntax diagram. You can choose one or none of the optional clauses
enclosed in square brackets. Braces enclose clauses from which you must choose
one alternative. You can sometimes repeat the part of the diagram that is set
off by square brackets or braces. The presence of the symbol [,...] just outside
the set tells you when brackets and braces are being used this way.

4-4 Using Syntax Diagrams




Generally, beginning users have difficulty reading brackets and braces correctly
when these are nested inside one another. Try to remember that brackets and
braces always travel in matched pairs. When you encounter a left bracket or left
brace when reading a syntax diagram, immediately locate its mate on the right
and look at what they enclose as a unit. As you are working through the first
unit and encounter another bracket or brace, do the same thing again. Remem-
ber that when you decide to use a part of a diagram within a set of brackets or
braces, each element inside is required unless it, in turn, is set off by a pair of
brackets.

4.4 Separators in Syntax Diagrams

Separators let DATATRIEVE know that you are finished with something or, in
the case of the comma, that you are not. Intuitively, you realize that typing a
space after a word ends that word. One problem you might have with spaces is
when you inadvertently put them in as replacements for underscores (__) or
hyphens (-). For example, if you defined a domain with the name PHONE _LIST,
DATATRIEVE would not know what you mean if you typed READY PHONE
LIST in order to access the domain. DATATRIEVE would see three elements in
the command where your more forgiving human eyes might see only two.

Get into the habit of typing a space after a comma. DATATRIEVE does not
require that you do this, but if you do not, you might encounter a problem in
some situations. For example, a comma preceding a string of editing characters
could be interpreted as part of the string if there were no intervening space.

You must enter a comma to tell DATATRIEVE that you are entering more than
one of the same kind of element. For example, commas are required to separate
domain names in a READY or FINISH command or a list of things you want to
display in a PRINT statement.

DATATRIEVE is more flexible about ending punctuation for statements and
commands than are many other computer languages. It does require, however,
that you type a period (.) to signal that you are finished describing a field
(either a variable or a field in a record definition). It also requires that you type
a semicolon (;) to signal that you are finished with a domain or record
definition.

Using Syntax Diagrams 4-5






Part 1l
Controlling Your DATATRIEVE Environment







Input Options During a DATATRIEVE Session 5

This chapter discusses the options you have when starting and ending a
DATATRIEVE session and when entering input lines. The material in this
chapter supplements the information on this topic in Chapter 1 and is not essen-
tial reading for DATATRIEVE beginners.

5.1 Invoking DATATRIEVE

When you invoke DATATRIEVE, you are running an image that resides in a
system directory assigned to the logical name SYS$SYSTEM. If you worked
through the examples in Chapter 1, you created a logical symbol, DTR32,
defined as $SYS$SYSTEM:DTR32 in your login command file. (Depending on
how DATATRIEVE was installed on your system, the definition might have
included a 2-character suffix on SYS$SYSTEM:DTR32.)

After you create the symbol DTR32, you can use it in an invocation (foreign)
command line, as well as to start an interactive DATATRIEVE session. In other
words, you can use the symbol to execute one or more DATATRIEVE commands
from a DCL command procedure and immediately return control to that com-
mand procedure. You must separate each of the DATATRIEVE commands or
statements in a foreign command line with a semicolon.

5-1



The following example illustrates how the foreign command line operates. Note
that you return to the dollar sign ($§) prompt after DATATRIEVE carries out
your instructions:

$ DTR32 READY FAMILIES; PRINT FAMILIES WITH MOTHER = "ANN"

NUMBER KID

FATHER MOTHER KIDS NAME AGE
JIn ANN 2 LURSULA 7
RALPH 3

5.2 Creating a Startup Command File (DTR$STARTUP)

If you frequently start your DATATRIEVE session with the same series of com-
mands and statements, you can put them in a command procedure stored in one
of your VMS directories. If you assign this file the logical name DTR$STARTUP,
its commands are executed every time you invoke DATATRIEVE.

The following is a sample of such a command file:

DECLARE SYNONYM SH FOR SHOW,
TY FOR PRINT,
PROC FOR PROCEDURES,
DEF FOR DICTIONARY,
DIRS FOR DICTIONARIES
SH DEF
SET NO PROMPT

The DECLARE SYNONYM allows you to create abbreviations or substitutions
for DATATRIEVE keywords. After you create the synonym, you can use it in
place of the keyword in your DATATRIEVE commands and statements. This
can save you typing time and help you avoid confusion between DCL commands
and DATATRIEVE equivalents. Be careful, however, that you do not create a
synonym for a keyword that duplicates a different keyword or another synonym.
You can check your synonyms against the list of keywords in Appendix A to
ensure that each synonym is unique.

The SET NO PROMPT command is discussed later in this chapter.

Use EDT to create the startup file as you would any other file. Write the com-
mands just as you would in an interactive session, but do not include any of the
DATATRIEVE prompts. '

Enter the following line in your LOGIN.COM file, substituting the file specifica-
tion of your file for the one in the example:

$ ASSIGN "DBAL1:[BELLIDTRSTART .COM"™ DTR$STARTUF

5-2 Input Options During a DATATRIEVE Session




When you invoke DATATRIEVE, it translates the logical name DTR$STARTUP
and executes the command file before it displays the first DTR > prompt on
your terminal. If you want your synonyms to take effect during the terminal
session in which you define them, you can enter the command @LOGIN at the
dollar sign ($) prompt.

5.3 Exiting DATATRIEVE

You can exit DATATRIEVE in two ways:

e By typing EXIT at the DTR> prompt and pressing the RETURN key
e By entering CTRL/Z at the DTR> prompt

DATATRIEVE does not recognize the EXIT command when the CON >, DFN >,
or RW> prompts are displayed. In this case, entering CTRL/Z returns you to
the DTR> prompt and you can then exit your session. If you are in the middle
of entering a statement or command and enter CTRL/Z, DATATRIEVE returns
the message ‘“Execution terminated by operator” to let you know that process-
ing of your statement was not completed.

The following examples illustrate the two ways to end a DATATRIEVE session:

DTRY EXIT
$

DTK} READY

[Looking for dictionary path namel
CON)

Execution terminated by operator.
DTR>

Note

Entering CTRL/Y will also exit you from DATATRIEVE. CTRL/Y,
however, also aborts any operations that you started and that are not
yet complete. Using CTRL/Y to exit DATATRIEVE is not recommended.

Input Options During a DATATRIEVE Session 5-3



5.4 Getting DATATRIEVE to Process More Than One Line as
a Unit

Sometimes you need to enter statements or commands that are too long to fit on
one line and must continue over two or more input lines. The easiest way to do
this is to press the RETURN key after a word or character that is always fol-
lowed by something else. Pressing the RETURN key following WITH, EQUALS,
OF, or a comma, for example, lets DATATRIEVE know that you plan to con-
tinue. DATATRIEVE then displays a “Looking for...” message and a CON >
prompt to tell you that it is waiting for more input.

If you press RETURN at the end of a line that is logically complete, no matter
what your plans were for the next line, DATATRIEVE goes ahead and processes
that line. The user entering the lines in the following example was not paying
attention to the kind of prompt DATATRIEVE was giving her. A return to the
DTR > prompt after pressing the RETURN key means that DATATRIEVE has

processed the preceding input:

DTR) READY FERSONNEL
DTRY SHARED WRITE
SHARED WRITE

Expected statement, encountered "SHARED".
DTRY ! What is wrong?
DTR) SHOW READY
Ready sources:
FERSONNEL: Domain, RMS indexed, protected read
{CDD$TOF .DTR$USERS .BELL .FERSONNEL)
No loaded tables.

DTRY ! 0OK... adding SHARED should do it...
DTRY READY PERSONNEL SHARED

DTR) WRITE

WRITE

Expected statement, encountered "WRITE".
DTRY ! Now what is the problem...
DTR) SHOW READY
Ready sources:
FERSONNEL: Domain, RMS indexed, shared read
{CDD$TOF .DTR$USERS .BELL .FERSONNEL>
No loaded tables.

DTRY ! Sigh.... caught by a default....
DTR) READY PERSONNEL SHARED WRITE
DTR) SHOW READY
Ready sources:
FERSONNEL: Domain, RMS indexed, shared write
{(CDD$TOF .DTR$USERS .BELL .PERSONNEL)
No loaded tables. >

DTRY ! Got it....

5-4 Input Options During a DATATRIEVE Session




If you were surprised to see that DATATRIEVE did not consider a line ending
with SHARED incomplete, that is because READ access is a default access
mode. DATATRIEVE assumes that you mean READ access if you do not specify
an access mode. The line READY PERSONNEL SHARED, therefore, is a logi-
cally complete input line that DATATRIEVE can process.

5.4.1 Turning Off the ‘‘Looking for...”” Messages

After you get the idea of where you can press the RETURN key to hold
DATATRIEVE back from processing the input, you might find that the “Look-

ing for...” messages needlessly clutter up your screen. If you want, you can turn
these off (but still get a CON > prompt) by entering SET NO PROMPT:

DTRY READY FAMILIES

DTR) PRINT FAMILIES WITH
[Looking for Boolean expression]
CON> FATHER = "JIM" AND

[Looking for Boolean expressionl
CON)Y MOTHER = "ANN"

NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIM ANN 2 URSULA i
RALFH 4

DTR> SET NO PROMPT
DTR) PRINT FAMILIES WITH

CON> FATHER = "JIM" AND
CON> MOTHER = "ANN"
NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIN ANN 2 URSULA B8
RALFH 4
DTR>

5.4.2 Using Standard Programming Conventions to Format Input

This section is for programmers who have used continuation characters before
and who prefer to keep words like WITH, OF, and EQUALS on the same line as
the information that completes the phrases they begin.

DATATRIEVE uses the hyphen (-) as a continuation character. You can enter it
at the end of a line to signal you are not finished with a command or statement.
When you use the continuation character, you can break an input line where you
want to. When the continuation character follows a word, however, you have to
remember to enter a space character to separate that word from the next word.
You can enter the space character before typing the hyphen or as the first
character on the next line.

Input Options During a DATATRIEVE Session 5-5



In the following example, RET indicates when the RETURN key is pressed:

DTRY PRINT FAMILIES WITH- (RED)

CONY FATHER = "JIM"- (RET)

CON) AND MOTHER = "ANN" (RET)

PRINT FAMILIES WITHFATHER = "JIM"AND MOTHER = "ANN"

Expected end of statement, encountered "WITHFATHER".
DTRY FRINT FAMILIES WITH - (RET)

CON) FATHER = "JIM"- (BET)

CONY AND MOTHER = "ANN" (RET)

NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIn ANN 2 URSULA 8
RALFH 4
DTR}

The SET SEMICOLON command is another option you can use to control input
line format. When you enter SET SEMICOLON, DATATRIEVE considers any
command or statement incomplete until you enter a semicolon (;). Semicolons
can be a nuisance to remember. If you are already used to programming lan-
guages that require explicit statement termination, however, you might prefer
this technique:

DTRY SET SEWICOLON

DTRY READY FAMILIES;
DTRY PRINT FAMILIES
CON)> WITH FATHER = “JIM"
CON) AND MOTHER = "ANN"

CONY
NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIN ANN 2 URSIULA 8
RALFH 4
DTR>

You can enter SET NO SEMICOLON to turn off the semicolon requirement.

5-6 Input Options During a DATATRIEVE Session




Getting Online Assistance 6

This chapter explains how to use the DATATRIEVE online Help facility, HELP
ERROR, and Guide Mode.

6.1 Using Help

The DATATRIEVE HELP command provides online information about the use
of DATATRIEVE commands, statements, and language elements.

When you enter HELP or a question mark (?) in response to the DTR> prompt,
DATATRIEVE displays a list of topics to choose from.

If you already know which topic you want, you can enter it on the same line as
the HELP command. For example, if you want information on defining a
domain, enter:

DTR) HELP DEFINE DOMAIN

You can do this with any topic available in help. ERROR is one of these topics,
but HELP ERROR follows somewhat different rules. See the next section for
information on how to use HELP ERROR.

6-1



When you are in the Help facility, press the PF2 key on the auxiliary keypad or
enter VIDEO as the topic. This displays information on the screen-oriented Help
facility and explains how to scan the DATATRIEVE help messages. You can
move through the text by using the arrow keys. Press the:

» Up arrow to scroll the help text backward to previous lines
* Down arrow to scroll the help text forward
» Left arrow to display the previous complete help screen

* Right arrow to display the next complete help screen

You can type a question mark (?) to display the current help topics again.

If you enter HELP HELP, DATATRIEVE displays more detailed information on
the HELP command.

If there are any subtopics of the topic you have selected, DATATRIEVE prompts
you to choose for additional information.

If you are at one of the subtopic levels of help, you can press the RETURN key
to move up a level. This is necessary if you want to select a topic displayed on a
previous level. The prompt displayed tells you at what level of help you are. For
example, the prompt “DEFINE DOMAIN subtopic?” tells you that you are two
levels down in help. If you press the RETURN key, you see the prompt
“DEFINE subtopic?”’ and can enter another DEFINE selection, such as
RECORD.

Enter CTRL/Z to exit from help. This returns you to the DATATRIEVE prompt
DTR>.
6.2 Getting Help on Errors

When DATATRIEVE displays an error message, you can type HELP ERROR
and DATATRIEVE displays the help text pertaining to that error. For example:

DTRY FIND PERSONNEL

"FERSONNEL" is not a readied source, collection, or list.
DTR> HELF ERROR

"PERSONNEL" is not a readied source, collection, or list.

6-2 Getting Online Assistance




ERROR

NOTDOMAIN

EXPLANATION:

The source for a DATATRIEVE collection must be a
readied domain, relation, or DBHS record; a collection;
or a list.

USER ACTION:
Check that you have spelled all names correctly. Ready the

appropriate record source, if necessary, and reenter
the statement.

Topic? (CTRLZ
DTR>

Note

DATATRIEVE always gives you information on the last error you
made, even if it was many commands ago.

If you have not made any error during a DATATRIEVE session, entering HELP
ERROR gives you a display of all the error topics. To get the same display after
you have made an error, you may enter ERROR when you are at the Topic?
prompt in help.

6.3 Guide Mode

Guide Mode is a self-documenting aid available whenever you are at the DTR>
prompt. To enter Guide Mode, type:

DTR) SET GUIDE

If you are using anything but a VT100, VT200, or compatible terminal,
DATATRIEVE displays an error message that tells you your terminal type is
invalid. DATATRIEVE then returns you to the DTR> prompt.

Guide Mode has two functions:
» To complete typing an entry for you

e To prompt you for a legitimate entry

Getting Online Assistance 6-3



As you enter each word of a command or statement, you can still enter the word
as you usually do. As soon as you have typed enough letters to identify only one
possible choice, however, you can press the space bar and Guide Mode completes
the entry for you and prompts you for the next word. At the end of a line, press
the RETURN key and Guide Mode goes to the next line.

When Guide Mode is waiting for your input, you can press the question mark
(?) key. Guide Mode then displays a list of all the words you can use at that
point.

DATATRIEVE also supplies you with Advanced Guide Mode. To enter this type
of Guide Mode, enter:

DTR)Y SET GUIDE ADVANCED

This functions exactly like regular Guide Mode, except that more words are
usually available as prompts. The choice of words is made when DATATRIEVE
is installed. By default, the PLOT and REPORT statements, and the use of a
colon (:) to invoke a procedure are available in advanced Guide Mode only. The
following words are available at both levels by default:

FIND MODIFY PRINT
READY SELECT SET
SHOW SORT STORE

The easiest way to learn about Guide Mode is to use it. You may find it particu-
larly helpful when you are starting to use DATATRIEVE. Experiment with it
and use it the way it helps you the most.

6-4 Getting Online Assistance




Using the VAX Common Data Dictionary 7

This chapter gives you basic information about the VAX Common Data Dictionary
(CDD) so that you understand its relation to DATATRIEVE. (VAX CDD soft-
ware is also referred to throughout this manual simply as CDD.) It also explains
how to create dictionary directories, display information about directories and
their contents, determine access privileges for directories and definitions, and
delete definitions and directories.

The information in this chapter supplements the information on the CDD in
Chapter 1. The details about CDD structure and access privileges are important
to users who are creating DATATRIEVE applications that will be used by peo-
ple other than themselves. If you are not in that category and are just begin-
ning to use DATATRIEVE, you might want to skip this chapter for now and
return to it when you have questions about specific CDD topics.

7.1 What Is the CDD?

The CDD is a central repository for data definitions. It can:

e Store data definitions such as DATATRIEVE record, domain, view, and table
definitions

» Store DATATRIEVE procedure definitions
¢ Keep information about the location of each definition
» Control the access to each definition

¢ Keep track of what happens to each definition-when and by whom a defini-
tion is changed and how each definition is being used

7-1



The CDD can be used by traditional programming languages such as BASIC
and COBOL, as well as by DATATRIEVE. It solves the problems of data redun-
dancy and inconsistency by keeping central record definitions that a variety of
languages can use. Data is therefore no longer tied to a particular program, and
programs written in a variety of languages can access the same data file.

7.2 How Is the CDD Organized?

The CDD is organized as a hierarchy of dictionary directories and dictionary
objects. Dictionary directories are similar to VMS directories in that they
organize information within the hierarchy. Data definitions are dictionary
objects. The definitions are contained in the directories just as files are con-
tained in VMS directories, and they are located at the ends of the branches in
the hierarchy.

The CDD hierarchical structure is like a family tree. Dictionary directories are
the parents, and their children include other directories, as well as dictionary
objects. Figure 7-1 illustrates the tree structure of the CDD.

ROOT DICTIONARY DIRECTORY

DIRECTORY DIRECTORY DIRECTORY
DIRECTORY OBJECT OBJECT
OBJECT
MK-00680-00

Figure 7-1: CDD Structure

7-2 Using the VAX Common Data Dictionary

C



Figure 7-2 illustrates a sample CDD. Shaded boxes indicate directories and
unshaded names indicate objects. An ellipsis (...) indicates that the CDD branch-
ing continues, but is not shown in the figure. (Few CDD directories are small
and symmetrical enough to fit neatly on one page of a book!) The examples in
this book are drawn from this sample dictionary and its associated data
definitions.

EMPLOYEES SALARY_HISTORY JOB_HISTORY STORE_EMPLOYEE

EMPLOYEES_REC DEPARTMENTS_TABLE

YACHTS YACHT

PHONES PHONES_REC PHONES_REPORT AREA_CODE_TABLE
MK-01571-00

Figure 7-2: Sample CDD

You can see that all directories and objects are descendants of CDD$TOP.
CDDS$TOP is found at the top of every CDD and is created when the CDD is
installed.

DTR$USERS is a directory under CDD$TOP that can be created during
DATATRIEVE installation as a parent directory for the private directories of
DATATRIEVE users. BELL is a directory created by the DATATRIEVE
NEWUSER program. It contains the sample definitions copied into it by the
NEWUSER program, as well as the PRACTICE directory created by user Bell
to store the definitions PHONES and PHONES_REC.

DTRSLIB is a directory under CDD$TOP that, along with its subdirectories and
the definitions they contain, is always created by the DATATRIEVE installation
procedure. Later on, you might want to use the SET DICTIONARY and SHOW
commands to become familiar with what the DTR$LIB branch of the CDD con-
tains. You should never create a dictionary or store your own definitions any-
where in the DTR$LIB branch of the CDD. DTR$LIB and all of its descendants
are deleted and rebuilt each time a new version of DATATRIEVE is installed on
your system.

PERSONNEL is a directory under CDD$TOP that contains the definitions for
the personnel system examples used in later chapters of this book.

Using the VAX Common Data Dictionary 7-3



7.3 Creating and Using Path Names

Every directory and object in the CDD has a given name, assigned by the instal-
lation procedure or person who created it. Two objects in the CDD can have the
same given name, but they must reside in different directories.

The CDD has rules to which names must conform. Given names must:
» Begin with a letter (A-Z)

e End with a letter or a digit (A-Z, 0-9)

* Not exceed 31 characters in length

» Contain only letters, digits, dollar signs, underscores, or hyphens

You can also use 8-bit alphabetic characters in CDD path names. As far as CDD
names are concerned, DATATRIEVE converts lowercase letters in names to
uppercase. DATATRIEVE also treats an underscore and a hyphen (-) as the
same character. If you type phones-table for the name of an object, for example,
DATATRIEVE interprets the string as PHONES_TABLE and that is how you
see the name displayed.

Note

As far as field values are concerned, however, DATATRIEVE does not
perform case conversion. If you store an employee’s name using mixed
case or a hyphen (Smith-Donlevey, for example), DATATRIEVE stores
it exactly as you typed it. If you later try to find the name by typing
all uppercase or lowercase letters or substitute an underscore for a
hyphen (SMITH__DONLEVEY, for example), DATATRIEVE will not
recognize it. It is important, therefore, to understand the distinction
between 1) the names you use to identify directories, objects, and rec-
ord fields and 2) the values stored in data files.

If you define or assign a logical name either inside or outside DATATRIEVE
that duplicates the name of a CDD object, you may get unexpected results.

7-4 Using the VAX Common Data Dictionary

C



For example, you can run into problems if you assign a logical name for
YACHTS. In the following case, the user assigned the logical name in
DATATRIEVE with the FNSCREATE _LOG function:

DTR)Y FN$CREATE_LOG ("YACHTS", "DB2:[MORRISONILOGIN.COM")
DTR) PRINT FN$TRANS_LOG C"YACHTS")

FN$TRANS
LOG

DB2: [MORRISONILOGIN .COM

DTR) READY YACHTS
ZCDD-E-ILLNAMCHR, A given name contains a character other than A-Z, -9, §, _

DATATRIEVE could not ready the domain because CDD had translated the log-
ical name “YACHTS” into a file specification. If you begin the domain name
with an underscore, you avoid the problem:

DTR}> READY _YACHTS
DTR>

Another solution is to delete the logical name assignment within DATATRIEVE
by using FNSDELETE _ LOG. Now CDD understands YACHTS to be the name
of a CDD object in the default dictionary. CDD can access YACHTS, and
DATATRIEVE can ready the domain:

DTRY FINISH
DTR) FN$DELETE_LOG ("YACHTS™)
DTR) READY YACHTS
DTR) SHOW READY
Ready sources:
YACHTS: Domain, RMS indexed, protected read
{(CDD$TOF .DTR32 .MORRIS .YACHTS)
No loaded tables.

7.3.1 Using Full Path Names

You have to travel down a path from CDD$TOP to reach a target directory or
object. You specify the path name of a directory or object by linking together
the names of all the directories starting with CDD$TOP and ending with the
given name of the target directory or object. Each name in the path name is
separated from the others by a period. The full path name of a dictionary object
also includes a semicolon (;) followed by a version number:

DTR) SHOW DOMAINS

Domains:
COLLEGES;1 DEGREES; 1 EMPLOYEES1 JOBS;1
JOB_HISTORY;3  JOB_HISTORY;2  JOB_HISTORY;1
SALARY_HISTORY;1

DTR»

Using the VAX Common Data Dictionary 7-5



The full path name of the most recent version of the JOB_HISTORY domain in
the preceding display is CDD$TOP.PERSONNEL.JOB_HISTORY;3.

Versions of dictionary objects serve the same purpose as versions of VMS files:
they provide backup security to protect you when you change their contents.

7.3.2 Version Numbers

Most CDD objects have a version number. The CDD can contain more than a
single version of all CDD objects except dictionaries (domains, procedures,
records, and so on). For the most part, the rules for specifying versions of
DATATRIEVE definitions follow the rules for specifying versions of VMS files.

The version number is separated from the rest of the given name by a semico-
lon. This number can be an absolute version number or a relative version num-
ber. You can omit the semicolon and number but if you use the semicolon
without a number, DATATRIEVE considers the semicolon the end of a com-
mand or statement.

Table 7-1 lists the various ways you can specify version numbers, the result of
each specific way, and an example of each way.

Table 7-1: Specifying Version Numbers

Specification Result Example
Absolute version number DTR operates on the object SALARY _RANGE;2
with the specified version

number.

Relative version number* DTR operates on the object at SALARY_ RANGE;-1
a specified number below the
highest version.

No semicolon or version DTR operates on the highest SALARY __RANGE
number version of the object.

* You cannot use this specification with the REDEFINE or DEFINE command.

For more information on CDD version support, see the VAX Common Data
Dictionary documentation.

7-6 Using the VAX Common Data Dictionary




7.3.3 Abbreviating Path Names

You do not always need to use the full dictionary path name to identify directo-
ries and objects in the CDD. Your abbreviation depends on where the target
directory or object is, relative to your current position in the CDD. ‘Relative
path name’, in fact, is the proper term for a path name abbreviation.

If you are looking downward in the CDD tree structure (away from CDD$TOP),
you have to specify only the portion of the path name below the level of your
current dictionary location. If your dictionary location is at
CDD$TOP.DTR$USERS.BELL in the sample dictionary, for example,
DATATRIEVE will understand the following commands:

SHOW PRACTICE .PHONES
SHOW PRACTICE .PHONES:
SHOW PRACTICE .PHONES:2

SET DICTIONARY PRACTICE

If you type a semicolon without a version number, or simply omit it altogether,
DATATRIEVE uses the PHONES definition with the highest version number.

If you have to “back up” toward CDD$TOP to get to your target directory or
object, you can substitute a hyphen (-) in your path name for each directory
name leading to CDD$TOP until you have entered one for the first dictionary
directory common to both your current location and the path name you want to
specify. A later section in this chapter contains examples of using hyphens in
path names.

7.3.4 The Logical Name in Dictionary Path Names

You can use logical names to refer to other objects, as well as to give you an
easy means for specifying long dictionary path names.

For example, you have a DCL command in your LOGIN.COM file that defines

CDD$DEFAULT as the logical name for CDD$TOP.DTR$USERS.BELL. How-

ever, you occasionally work with the sample definitions and dictionaries in the
CDD$TOP.DTR$LIB.DEMO directory. Rather than enter the full path name of
the DEMO directory, you can use a logical name when you change directories.

You can put this DCL command in your LOGIN.COM file:

$ DEFINE SAMPLE "CDD$TOP.DTR$LIB.DEMO"

Using the VAX Common Data Dictionary 7-7



Then, when you want to change to your default directory, enter this
DATATRIEVE SET command:

DTR)Y SET DICTIONARY SAMPLE
DTRY SHOW DICTIONARY
The default directory is CDD$TOP.DTR$LIB.DEMO

DTR?

To change back to CDD$TOP.DTR$USERS.BELL, enter this command:

DTR) SET DICTIONARY CDD$DEFAULT
DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS . BELL

DTR>

You can form valid dictionary path names by combining logical names with the
names of directories and objects. You must put the logical name first, followed
by the given names. For example, your default directory is
CDD$TOP.DTR$USERS.BELL. You want to ready the FAMILIES domain
cataloged in the DEMO directory, but you do not want to change default directo-
ries. You can enter this READY command:

DTR)Y READY SAMPLE .FAMILIES
DTR) SHOW READY
Ready sources:

FAMILIES: Domain, RMS indexed, protected read
(CDD$TOP .DTR$LIB.DEMO.FAMILIES:1)
No loaded tables.

DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL

DTR)

Note

Do not define your own logical names beginning with three letters
and a dollar sign ($). You especially must avoid defining your own
logical names beginning with DTR$, which is reserved for use by
DATATRIEVE.

7-8 Using the VAX Common Data Dictionary




7.4 Setting Dictionary Location

When you invoke DATATRIEVE, your location in the dictionary is the diction-

3 ary directory assigned to the logical name CDD$DEFAULT. If you do not have
an assignment for CDD$DEFAULT and invoke DATATRIEVE, your dictionary
location is CDD$TOP.

Use the DATATRIEVE SET DICTIONARY command to move to another direc-
tory. You can include either a full or relative path name for your destination.
You can also use the logical name CDD$DEFAULT to return to the directory
you assigned to it. Because a hyphen at the end of an input line is always inter-
preted as a continuation character, put a semicolon (;) at the end of any SET
commands that end in a hyphen:

DTRY SET DICTIONARY CDD$DEFAULT
DTR) SHOW DICTIONARY
The default dictionary is CDD$TOP .DTR$USERS .BELL

DTRY SET DICTIONARY CDD$TOP .DTR$LIB.DEMO
DTRY SHOW DICTIONARY
The default dictionary is CDD$TOP .DTR$LIB.DEMD

DTRY SET DICTIONARY -.- .DTR$USERS .BELL
DTR) SHOW DICTIONARY
The default dictionary is CDD$TOP .DTR$USERS .BELL

DTR)Y SET DICTIONARY PRACTICE
DTR) SHOW DICTIONARY
The default dictionary is CDD$TOP .DTR$USERS .BELL .PRACTICE

DTR)Y SET DICTIONARY -;
DTR)> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$USERS .BELL

DTR?

7.5 Displaying Information About Directories, Objects, and
Session Defaults

Use the SHOW command to display information stored in dictionary directories.
(The DATATRIEVE PRINT and LIST statements, on the other hand, display
data stored in VMS directories.) Table 7-2 describes most of the options you
have with the SHOW command. The table does not include information about
special help display formats, data managed by VAX DBMS or relational
products, or display by forms.

Using the VAX Common Data Dictionary 7-9



Table 7-2: SHOW Command Options

Option

Result

SHOW ALL

SHOW collection-name

SHOW COLLECTIONS

SHOW CURRENT

SHOW DICTIONARIES

SHOW DICTIONARY

SHOW DOMAINS

SHOW EDIT

SHOW FIELDS

Displays the names of all the objects and directories
cataloged in your default directory, the name of your
default directory, and the names of the collections, the
readied domains, and the loaded tables you are using.

Displays the collection name, the name of the domain
within which the collection has been established, the
number of records in the collection, the status of the
selected record within the collection, and the names of
the keys on which the collection has been sorted.

Displays the names of the collections you are using.

Displays the name of the domain within which the
CURRENT collection has been formed, the number of
records in the CURRENT collection, the status of the
selected record in the CURRENT collection, and the

names of the keys on which the collection has been sorted.

Displays the names of the CDD directories appended to
your default directory. (This option tells you if the CDD
branch continues lower than your current location.)

Displays the full dictionary path name of your default
directory. (This option answers the question ‘“Where am
1?”)

Displays the names of all domains cataloged in your
default directory.

Indicates whether SET EDIT_BACKUP or SET NO
EDIT_ BACKUP is in effect in your DATATRIEVE ses-
sion. SET EDIT_BACKUP is the default. If you enter
the command SET NO EDIT__BACKUP and edit any
definitions, DATATRIEVE deletes the highest version of
the definitions when you exit the editor. SET NO
EDIT_BACKUP automatically keeps outdated versions
of definitions from piling up in your directory, but could
erase the only definition you have to fall back on should
you make a mistake in your editing.

Displays the names, data types, and index-key informa-
tion of the fields of all domains you have readied. It also
displays the names and data types of global variables.

(continued on next page)

7-10 Using the VAX Common Data Dictionary

C



Table 7-2: SHOW Command Options (Cont.)

Option

Result

SHOW FIELDS
FOR domain-name

SHOW KEYDEFS

SHOW path-name

SHOW PRIVILEGES

SHOW PRIVILEGES
FOR path-name

SHOW PROCEDURES

SHOW READY

SHOW RECORDS

SHOW SET__UP

Displays the names, data types, and FOR domain-name
index-key information of the fields in the domain you
specify after FOR. You can only specify the name of a
readied domain.

Shows all current key definitions in all states. A state
allows the same key to be assigned multiple definitions
by associating each definition with a different state key.

Displays the text of the domain, record, procedure, or
table definition you specify.

Displays the access privileges you have to the directory
at which you are currently located.

Displays the access privileges you have to the directory
or object you name in the FOR clause.

Displays the names of all procedures cataloged in the
directory at which you are currently located.

Displays for each readied domain the full dictionary
path name, the file organization of the associated data
file, the access control option (EXCLUSIVE, PROTECTED,
or SHARED), and the access mode (READ, WRITE,
EXTEND, or MODIFY). The most recently readied
domain is at the top of the list displayed on your termi-
nal. The SHOW READY command also displays the full
dictionary path name and table type of all tables you
have loaded into your work area.

Displays the names of all record definitions cataloged at
your current directory location.

Displays the current status of the options you can con-
trol with the SET command: ABORT/NO ABORT,
APPLICATION _KEYPAD/

NO APPLICATION _KEYPAD, COLUMNS _PAGE,

FORM/NO FORM, PROMPT/NO PROMPT,
SEARCH/NO SEARCH, SEMICOLON/
NO SEMICOLON, and VERIFY/NOVERIFY.

(continued on next page)

Using the VAX Common Data Dictionary 7-11



Table 7-2: SHOW Command Options (Cont.)

Option Result
SHOW SYNONYMS Displays the names of any synonyms for DATATRIEVE
keywords in effect during your DATATRIEVE session.
SHOW TABLES Displays the names of all dictionary tables and domain
tables cataloged in your default directory.
SHOW VARIABLES Displays the global variables in effect in the current
DATATRIEVE session.

There is more information on SHOW PRIVILEGES in a later section of this
chapter. Variables and collections are concepts discussed in later chapters.

7.6 Deleting, Purging, and Extracting Definitions

Use the DELETE command to erase definitions from dictionary directories.
When you delete a definition, you must always include an explicit version num-
ber and a semicolon to end the command. This means that every DELETE com-
mand contains at least two semicolons:

DTR} SHOW RECORDS
Records:
PHONES_REC; 3 PHONES_REC; 2 FPHONES_REC: 1

DTR)Y DELETE PHONES_REC;

/CDD-E-VERNUMRER, version number required on ocbiect name
DTR) DELETE PHONES_REC;1

DELETE PHONES_REC;1

Expected end of command, encountered "¥¥¥END_OF_LINEX¥*¥"
DTRY DELETE PHONES_REC;1;
DTR> SHOW RECORDS
Records:
PHONES_REC; 3 FHONES_REC; 2

DTR?

You can get rid of outdated versions of definitions using one of two methods:
* You can explicitly delete each version of the definition you do not want to keep.

* You can use the PURGE command to delete all but the highest version or
specified versions of the definition.

7-12 Using the VAX Common Data Dictionary




To purge CDD objects, set your dictionary location to the directory containing
the definitions you want to purge. Enter the PURGE command or the PURGE
command with the KEEP argument to delete outdated versions of definitions.

The following example shows how user Bell purges all but the two highest ver-
sions of PHONES__REC in his PRACTICE directory:

DTR) SHOW DICTIONARY
The default directory is CDD$TOP .DTR$USERS .BELL

DTRY SET DICTIONARY CDD$TOF .DTR$USERS.BELL .PRACTICE
DTR) SHOW RECORDS
Records:

PHONES_REC;4  PHONES_REC;3  PHONES_REC;2

DTR) PURGE PHONES_REC KEEP = 2
DTR) SHOW RECORDS
Records:
PHONES_REC;4  PHONES_REC;:3

If you want to move a definition to another dictionary directory or send it to
another user on your system, you can use the EXTRACT command to copy the
definition into a VMS file that you can execute or send. You (or the other user)
can then use the at sign (@) to store the definition at a new dictionary location.

The following example shows how user Bell copies the definition SALES__REC
in the directory CDD$TOP.DTR$LIB.DEMO to the file TEMP.COM, sets his dic-
tionary location to his own directory, and stores the SALES__ REC definition in
his own dictionary directory. Note that before he executes the file, Bell checks
to be sure there is nothing in his own directory with the same name as the defi-
nition in TEMP.COM. If there were, he would edit one of the definitions to
change the object name:

DTRY SET DICTIONARY CDD$TOP.DTR$LIB.DEMD

DTR) SHOW RECORDS

Records:
ANNUAL_REC;1 DABi1 FAMILY_REC:1 OWNER_RECORD; 1
PAYABLES_REC;1 PERSONNEL_-REC:1 PET_REC;1 PROJECT-REC; 1
SALES_REC;1 YACHT 1

DTRY EXTRACT SALES_REC ON TEMP .CONM
DTR)Y SET DICTIONARY CDD$TOP.DTR$USERS .BELL
DTR)Y SHOW ALL

(continued on next page)

Using the VAX Common Data Dictionary 7-13



Domains:
FAMILIES;1 OWNERS;1 FERSONNEL: 1 PETS;1
PROJECTS1 YACHTS 1

Records:
FAMILY_REC;:1 OWNER-RECORD;1 PERSONNEL_REC;1 PET_REC;1
PROJECT_REC;1  YACHT;1

The default directory is CDD$TOP.DTR$USERS .BELL

No established collections.

No ready sources.
No loaded tables.

DTR)Y @TEMP .COM
Element "SALES_REC" not found in dictionary.

[Record is 35 bytes long.l
Element to be redefined not found in dictionary - new element defined.
DTR)Y SHOW RECORDS
Records:
FAMILY_REC:1 OWNER_RECORD;1 PERSONNEL_REC;1 PET_REC;1

PROJECT_REC;1  SALES_REC;1 YACHT:1

DTR?

The messages resulting from the store operation at the new location are infor-
mational and do not indicate a problem. The extract operation automatically
puts DELETE and REDEFINE commands before the definition in TEMP.COM.
In Bell’s directory, nothing can be deleted or redefined as a new version, so
DATATRIEVE lets him know that. The REDEFINE command still stores the

definition for him.

7.7 Creating Dictionary Directories

You can append new directories to your branch of the CDD with the DEFINE
DICTIONARY command.

Note

Depending on the privileges you have, you might find that you can
create directories in other branches of the CDD. Check with your CDD
manager before you do this, however. For best CDD management, users
on a system should coordinate where they create directories and store
definitions. In addition, some branches of the CDD, especially those
created by DIGITAL products, are periodically deleted and rebuilt. If
you store definitions in these branches, you could eventually lose
them. The DATATRIEVE installation creates the DTR$LIB branch of
the CDD, for example, and you should not store definitions there.

7-14 Using the VAX Common Data Dictionary




If you specify only the given name of the new directory, DATATRIEVE appends
the directory to the one at which you are currently located:

DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL

DTR) DEFINE DICTIONARY SALES
DTR)Y SHOW DICTIONARIES
Dictionaries:

PRACTICE SALES

DTR)

7.8 Deleting Dictionary Directories

You cannot delete any of your directories from DATATRIEVE command level.
You must exit DATATRIEVE, invoke DMU, and use the DMU DELETE com-
mand to do this. The following example illustrates the procedure used by Bell to
delete his PRACTICE directory:

$ RUN SYS$SYSTEM: DMU
DMU) SHOW DEFAULT
CDD$TOP .DTR$USERS .BELL
DMU) SET DEFAULT PRACTICE
DMLY LIST
AREA_CODE_TAB;1 (CDD$TABLE)
PHONES:1 (DTR$DOMAIN)
PHONES_REC; 4 (CDD$RECORD»
PHONES_REPORT;9 (DTR$PROCEDURE)
DHU) DELETE *;#*
DMU) LIST
/DMU-E-NONODFND, no directories or obiects found
DMuU)Y SET DEFAULT CDD$TOF.DTR$USERS .BELL
DMuU) LIST,/TYPE=DIRECTORY
PRACTICE
SALES
DMU) DELETE FPRACTICE
pMuy LIST,/TYPE=DIRECTORY
SALES
DMu) EXIT
$

Note that he had to empty PRACTICE of all its contents before deleting the
directory itself. If he had appended subdirectories to PRACTICE, he would have
had to start the delete procedure at the lowest level of his branch in the diction-
ary and delete his way up each twig before he could delete PRACTICE.

DMU also has a DELETE/ALL command that can wipe out an entire branch of
the CDD in one line of input. A user needs a special CDD privilege
(GLOBAL_DELETE) to be able to use this command. The average CDD user,
understandably, does not get this privilege by default and usually is not
assigned it by the person who manages the CDD. The following section dis-
cusses CDD access privileges more fully.

Using the VAX Common Data Dictionary 7-15



7.9 Displaying and Setting Protection for Directories and
Objects

The key to the CDD system of protection is the access control list (ACL). Each
dictionary directory and object has an ACL associated with it. ACLs determine
whether an individual user or class of users can:

» Create, modify, or delete a dictionary directory or object
» See the definition of an object
« Use the object definition in an application and, if so, for what kind of operation

* See or modify the information in the history list associated with the directory
or object

¢ See or modify the ACL of a dictionary or object

» Use the given name of a dictionary directory in the path name of another
directory or an object

CDD privileges are governed by an inheritance principle. This means that each
user with access to CDD$TOP has access to every descendant of CDD$TOP
unless his or her access privileges are explicitly modified. ACLs at each diction-
ary directory below can modify inheritance by specifically granting or denying
privileges to users or groups of users. These users inherit the modified
privileges as they move down the dictionary path.

When the CDD is first installed, all users have all access privileges to CDD$TOP.
The person who manages the CDD on your system modifies these according to
the needs of your installation so that users can get to the directories containing
information they have a right to use, but cannot get to directories contdining
information they should not use.

Table 7-3 lists the access privileges users can have and describes what each
allows you to do.

7-16 Using the VAX Common Data Dictionary



J

Table 7-3: Access Control Privileges

Privilege

Description

C (CONTROL)

D (LOCAL_DELETE)

E (DTR_EXTEND/EXECUTE)

F (FORWARD)
G (GLOBAL _DELETE)

H (HISTORY)

M (DTR_MODIFY)

P (PASS_THRU)

R (DTR_READ)

S (SEE)

U (UPDATE)

W (DTR _WRITE)
X (EXTEND)

Lets you read, create, modify, and delete access
control list entries. You cannot deny yourself
CONTROL privilege.

Lets you delete dictionary objects, as well as
directories and subdictionaries with no children,

and to edit, replace, or recompile definitions
stored in the CDD.

Lets you ready a domain for any type of access,
to access a table, or to invoke a procedure.

Lets you create subdictionaries.

Lets you delete dictionary directories and subdic-
tionaries, including any children they may have,
with a single command.

Lets you add entries to CDD history lists with
the Dictionary Management Utility (DMU).

Lets you ready a domain for READ and
MODIFY access.

Lets you use a dictionary directory, subdiction-
ary, or object in a path name. You cannot deny
yourself PASS_ THRU privilege.

Lets you ready a domain for READ access, dis-
play CDD definitions with a SHOW command
and copy them into a command file with an
EDIT or EXTRACT command.

Lets you see the definition of a dictionary object.
SEE access to a domain definition and its
associated record definition is necessary to define
a data file and then to ready the domain.

Lets you update the definition of a dictionary
object.

Lets you ready a domain for WRITE access.

Lets you create children of dictionary directories
and subdictionaries.

Refer to the CDD documentation for an explanation of history lists and

subdictionaries.

Using the VAX Common Data Dictionary 7-17




7.9.1 Displaying Your Privileges

You can display the privileges you have for a directory or object by typing
SHOW PRIVILEGES FOR followed by its path name and pressing RETURN. A

simple SHOW PRIVILEGES entry displays the privileges you have for the direc-
tory at which you are currently located:

DTR) SHOW PRIVILEGES

Privileges for CDD$TOF. DTRSUSERS BELL

(DTR-EXTEND/EXECUTE) - may

CCONTROL) - may
CLOCAL-DELETE) - may
(FORWARD) - may
(GLOBAL_DELETE? - may

XTUTDMIOTMOoOOMIED

(HISTORY) - may
(PASS_THRL) - may
(SEE) - may
(UPDATE) - may
(EXTEND) - may

(DTR_READ) may
(DTR_WRITE) - may
(DTR_MODIFY) - may

ready for READ, use SHOW and EXTRACT

ready for READ, WRITE, MODIFY., or EXTEND
ready for READ, MODIFY

ready to EXTEND, or access table or procedure
issue DEFINEF, SHOWP, DELETEP commands

delete a dictionary obiect

create a subdictionary

delete a directory and its descendents

add entries to obiect's history list

use given name of directory or obiect in path name
see (read) dictionary

update dictionary object

create directory or obiect within directory

DTR) SHOW PRIVILEGES FOR FAMILIES
Privileges for CDD$TOP. DTRSUSERS BELL .FAMILIES

R (DTR_-READ) may
W (DTR_WRITE) - may
M (DTR_MODIFY) - may
E (DTR_EXTEND/EXECUTE) - may
C CCONTROL) - may
D (LOCAL_DELETE) - may
F (FORWARD) - may
G (GLOBAL_DELETE? - may
H (HISTORY) - may
P (PASS_THRU) - may
S (SEE) - may
Il CUPDATE) - may
X CEXTEND) - may
DTR?

ready for READ, use SHOW and EXTRACT

ready for READ, WRITE, MODIFY, or EXTEND
ready for READ, MODIFY

ready to EXTEND, or access table or procedure
issue DEFINEF, SHOWF, DELETEF commands

delete a dictionary obiect

create a subdictionary

delete a directory and its descendents

add entries to obiect's history list

use given name of directory or obiect in path name
see (read) dictionary

update dictionary object

create directory or object within directory

The SHOW PRIVILEGES FOR command is useful when you need to use defini-
tions and directories that are not your own. If you try an operation and receive
an insufficient privilege message, you can check your privileges for the directo-
ries and definitions you need to use against the requirements in Table 7-4.

Table 7-4 tells you what privileges you must have to use the various
DATATRIEVE commands and statements.

7-18 Using the VAX Common Data Dictionary




Table 7-4: Access Privilege Requirements for Commands and Statements

To Enter:

You Need in the
ACL of the:

The Following
Privileges:

DEFINE DICTIONARY
DEFINE DOMAIN
DEFINE PORT
DEFINE PROCEDURE
DEFINE RECORD
DEFINE TABLE

DEFINE FILE

DEFINEP

DELETE

DELETEP

EDIT path-name

(You also need the
privileges required to

use the REDEFINE
command and, if present, the
DELETE command in order
to exit the editor.)

parent directory

domain definition

record definition

definition or
directory

parent directory

definition

definition or
directory

parent directory

definition

P (PASS_THRU)
X (EXTEND)

P (PASS_THRU)
S (SEE)
W (DTR_WRITE)

P (PASS_THRU)
S (SEE)
E (DTR _EXTEND/EXECUTE)

P (PASS__THRU)
C (CONTROL)

P (PASS_THRU)
X (EXTEND)

P (PASS__THRU)

and either

D (LOCAL_DELETE)

or G (GLOBAL__DELETE)

P (PASS__THRU)
C (CONTROL)

P (PASS_THRU)

P (PASS__THRU)
S (SEE)
R (DTR_READ)

(continued on next page)

Using the VAX Common Data Dictionary 7-19



Table 7-4: Access Privilege Requirements for Commands and
Statements (Cont.)

You Need in the

The Following

IN, NOT IN, or VIA
dictionary-table-name

IN, NOT IN, or VIA

domain-table-name

REDEFINE

READY (for all access
modes)

READY... READ

table definition

table definition

domain definition

record definition

parent directory

definition

record definition

domain definition

To Enter: ACL of the: Privileges:
EXECUTE (:) procedure P (PASS_ THRU)
procedure-name definition S (SEE)

E (DTR_ EXTEND/EXECUTE)
EXTRACT definition P (PASS__THRU)

S (SEE)
R (DTR_READ)

P (PASS__THRU)
S (SEE)
E (DTR _EXTEND/EXECUTE)

P (PASS_THRU)
S (SEE)
E (DTR_ EXTEND/EXECUTE)

P (PASS_THRU)

S (SEE)

and either

R (DTR_READ)

or W (DTR_ WRITE)
or M (DTR _ MODIFY)

P (PASS_THRU)
S (SEE)
E (DTR_ EXTEND/EXECUTE)

P (PASS_THRU)
X (EXTEND)

P (PASS_THRU)
S (SEE)

R (DTR_READ)
U (UPDATE)

P (PASS__THRU)
S (SEE)
E (DTR _EXTEND/EXECUTE)

R (DTR_READ)

or W (DTR__WRITE)
or M (DTR__MODIFY)
or S (SEE)

7-20 Using the VAX Common Data Dictionary

(continued on next page)




D

Statements (Cont.)

Table 7-4: Access Privilege Requirements for Commands and

To Enter:

You Need in the
ACL of the:

The Following
Privileges:

READY... WRITE

READY... MODIFY

READY... EXTEND

SET DICTIONARY
SHOW path-name

SHOWP

domain definition

domain definition

domain definition
directory

definition

definition or
directory

W (DTR _WRITE)
S (SEE)

M (DTR _MODIFY)
W (DTR__WRITE)
S (SEE)

E (DTR _EXTEND/EXECUTE)
or W (DTR _ WRITE)

P (PASS_THRU)

P (PASS_THRU)
S (SEE)
R (DTR_READ)

P (PASS_THRU)
C (CONTROL)

7.9.2 Displaying and Changing an ACL

Using the VAX Common Data Dictionary

You display an ACL with the SHOWP command. You can change an ACL with
the DELETEP and DEFINEP commands. As Table 7-3 indicates, the ACL must
assign you the C (CONTROL) and P (PASS__THRU) privileges for you to dis-
play or change the ACL. The CDD does not let you deny yourself these

privileges when you already have them, but you cannot give these privileges to
yourself if you do not have them.

7-21




The following example shows how you can modify the ACL for your top-level
private directory to deny access to other users. If your top-level directory was
created by the NEWUSER program, as was the BELL directory in the following
example, it does not have an ACL. If this is the case, you must create one. (If
you forget what your UIC is, you can exit DATATRIEVE and enter SHOW
PROCESS at the dollar sign ($) prompt. The display shows your UIC.)

DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL

DTRY SET DICTIONARY CDD$TOP .DTR$USERS

DTR) SHOWF BELL

DTRY ! Return to the DTR) prompt means there is no ACL
DTR)Y DEFINEF FOR BELL 1 USER=BELL, UIC=[311,212], GRANT=ALL
DTRY DEFINEF FOR BELL 2 UIC=[%*,%], DENY=ALL

DTR) SHOWF FOR BELL

1: [311.,21@1, lsername: "BELL"
Grant - CDEFGHMFRSUWX, Deny - none, Banish - none
2 [%,%]

Grant - none, Deny - CDEFGHMPRSUWX, Banish - none
DTR?

The important thing to remember when you create or modify ACLs is that each
entry (identified as 1:, 2:, and so forth in the SHOWP display) is evaluated in
the order that it appears. As soon as a match is found for any particular user,
the CDD stops reading the list. It is very important, therefore, that the
DEFINEP 1 command grants you your privileges and the DEFINEP 2 command
denies privileges to other users. If you define a new entry 1, any existing
entries are reassigned higher numbers so that they appear following 1.

After you get the top two entries correctly in place, you can use DELETEP to
clean up any entries below 2 that you might have entered incorrectly or that
the second entry supersedes. If the ACL for the BELL directory contained ACL
entries numbered 3 and 4, for example, Bell could get rid of them with the com-
mands DELETEP BELL 4 and DELETEP BELL 3.

Protecting the top-level directory of your private branch of the CDD also pro-
tects subordinate directories and objects. In addition, remember that you can
protect data files in your VMS directories with the DCL. SET PROTECTION

command.

If you are interested in providing more extensive or specific protection, refer to
the VAX DATATRIEVE Reference Manual. You should also read the next sec-
tion if you plan to create an application that will be used by people in addition
to yourself.

7-22 Using the VAX Common Data Dictionary




7.10 Using the CDD to Design Department-Wide or
System-Wide Applications

The CDD utilities provide more options for directory organization and main-
tenance and for access control than you can achieve using DATATRIEVE. Using
CDD utilities, for example, you can organize a branch of the CDD as a
subdictionary and assign it to a disk that you can remove from a disk drive for
maximum security. You must also use CDD utilities to inspect and maintain
auditing information (history lists). The CDD DMU utility also has an ACL edi-
tor that simplifies creation and maintenance of ACLs.

When you are designing applications that other people will use, you should refer
to the CDD documentation for a complete explanation of CDD organization and
use.

Using the VAX Common Data Dictionary 7-23






Part Il
Setting Up an Application







Application Case Study: A Personnel System 8

This chapter helps you analyze the requirements for a DATATRIEVE applica-
tion so that you can translate those requirements into DATATRIEVE code. The
sample application is a personnel system for an engineering firm. You will fol-
low these steps:

1. Review the requirements
2.  Analyze the data

3. Organize the data into domains and tables

8.1 Reviewing the Requirements

The following pages contain the Data Requirements Study for the sample Per-
sonnel System. When you design your own application, its requirements will
likely be different from those for this application. However, you should follow
the same procedure. Define your application’s purpose and sketch out the data
requirements it has. You can use the requirements categories in the sample
study as a guide. Later, as you design your database and procedures, periodi-
cally review your requirements to make sure you do not forget to include any of
them.

8-1



Data Requirements Study
Personnel System

Purpose

All personnel systems must maintain employee data. Most systems must also
answer online inquiries and create reports. The system for this personnel data-
base must do all of these tasks.

System Requirements

System requirements relate to the devices that your application will be receiv-
ing data from and sending data to. System requirements also take into account
whether or not your application will be receiving and sending information
across a computer network:

» For data entry: All data will be entered at the terminal.

 For reports: Reports will be displayed at a video terminal or printed at a
hardcopy terminal or printer.

» For distributed processing: This system will be autonomous. It will not share
data with other computer systems.

Report Requirements

It is important to decide what kinds of reports your application must generate
on a routine basis. What information your database contains depends to a large
extent on the reports you want it to produce. This personnel system must gener-
ate the following reports:

¢ Individual employee report: Given an employee, list the detailed data per-
taining to him or her. For example, provide all information about Nanette
Greeb.

» Employee listings: Given a field or combination of fields in the employee rec-
ord, list all the employees by that field. For example, list all employees by
department, manager, or job title.

» Job category report: List all the job categories. Show the following
information:

- Job code and job title

- Salary range

8-2 Application Case Study: A Personnel System

C




— Average actual salary for employees in the category
— Names of employees in the category
- Actual salary and wage class for each employee

e Department report: List employees, job titles, salaries, and dates of last pex
formance reviews by department. This report is intended for department
managers.

e Salary and job history: List employees, all the jobs they have held in the
company, and the dates of their performance reviews.

+ Educational background: List the college training completed by an employee,
colleges attended, degrees and the dates they were received, and degree fields.

» Miscellaneous reports: Provide small, ad hoc reports generated from the per-
sonnel list format, such as address lists.

Online Inquiry Requirements

Online inquiry to a personnel database must be restricted to information that
the person making the inquiry has a right to see. In this system, the following
employees can access the information listed:

« Supervisors and department managers can access data that applies to their
subordinates.

« Other employees can access only the names, job titles, and departments of
company personnel.

Database Updating Requirements

Requirements for data update include how the data is maintained and how the
system ensures the data is valid. This personnel system has the following updat-
ing requirements:

e Online maintenance: Personnel department employees will add, delete, or
modify employee records on line. The system does not need to process transac-
tion files to update the information stored in the domains.

o Automatic validation: The system must provide a way to make sure that
department codes are valid and there are no duplicate employee identification
numbers.

Application Case Study: A Personnel System 8-3



A real personnel system would include requirements relating to tax computation

and benefits. These requirements are omitted from the sample system in this

book so that you will find it easier to see the relationships among the domains C
in the system.

8.2 Analyzing the Data

At this stage of your application, you want to generate a list of the pieces of
information your database should contain. There are a number of ways you can
do this, but you might find it easiest to follow these steps:

1.  Sketch out what you expect the reports to look like. The fields in the
reports determine to a large extent the fields you will store in records.

2. Some fields depend on other fields. That is, there is a one-to-one cor-
respondence between them. For example, every job code is associated with
only one job title. Identify these fields. You might be better off storing
these paired values in a DATATRIEVE table and putting only the
smallest or key value in a record.

3. Some fields can be calculated from other fields. For example, age can be
calculated from birth date. Fields like average salary and salary mid-
points for a job category can be calculated from existing salaries and
minimum and maximum salaries.

You can specify a field calculated from others in the same record as a (
COMPUTED BY field in the record definition. COMPUTED BY fields do

not take up storage space because their values are calculated at the time

you access a record. (COMPUTED BY fields are discussed in Chapter 9).

If the calculated field appears in only one report, however, you might

decide to create it as part of the procedure that produces the report

rather than specifying it in a record definition.

Your goal at this point is to determine the minimum number of fields
that you want to put in a record definition and which fields you want to
take up space in storage.

4.  Compile a list of data fields. Next to each field you might note the follow-
ing information (if it applies to that field):

Any field with which it has a one-to-one correspondence

Any fields from which it can be calculated

— Whether each value stored in the field must be unique

What makes values for the field valid ones

8-4 Application Case Study: A Personnel System



5.  Determine the most efficient way to organize the fields into domains and

tables.

Table 8-1 shows a list of fields you might start with when creating a personnel
system. A number of fields would appear in more than one report. Some of them
would probably never appear in the same report together. At this point, you
want to know how many pieces of data you have to work with rather than how
you are going to group them.

Table 8-1:

Fields for Personnel System

Field

Unique?

Depends On

Valid Iif:

Calcutated?

EMPLOYEE__ID
LAST_NAME
FIRST_NAME
MIDDLE __ INITIAL
ADDRESS_ DATA
EMP_ STREET
EMP_TOWN
EMP__STATE
EMP_ZIP

SEX

SOCIAL _ SECURITY
BIRTHDAY

JOB_CODE
JOB_TITLE

MINIMUM _ SALARY
MAXIMUM _SALARY
SALARY _MIDPOINT

WAGE _ CLASS
DEPARTMENT__CODE
DEPARTMENT__NAME

Yes

Yes

Yes

Yes

JOB__CODE

DEPARTMENT _
CODE

5 digits

MorF

Valid
date

- Min and
Max Salary

(continued on next page)

Application Case Study: A Personnel System 8-5



Table 8-1: Fields for Personnel System (Cont.)

Field Unique? Depends On Valid If: | Calculated?
JOB__START - - Valid -
date
JOB_END - - Valid -
date

REVIEW _CODE - - - -
SALARY__AMOUNT - - - -

SALARY _ START - - Valid -
date

SALARY_END - - Valid -
date

REVIEW _DATE - - Valid -
date

SUPERVISOR_ID - - - -
DEGREE - - - -
DEGREE _FIELD - - - -

DATE _ GIVEN - - Valid -
date

COLLEGE_NAME - - - -

Expect that field requirements will change as you think about organizing them
into domains or tables. This list of fields does not take into account, for exam-
ple, special fields to indicate whether a record contains current or historical
information.

8.3 Grouping Fields into Domains and Tables

After you know what fields you will need for your application, you have to
decide how best to group them.

The simplest way to go about this is to define a record to match each report you
want to produce and create a data file and domain to go with each record defini-
tion. This can work well for a small application whose requirements are not
going to change and that will only be used by one or two people to generate for-
mal reports.

8-6  Application Case Study: A Personnel System



J

If you are designing a database to support formal and informal reports and
interactive queries, however, that is an inefficient solution. No number of data
files is likely to meet the needs of all users. In addition, the organize-by-report
method probably requires storing some fields in several data files. Each time an
employee’s name or address changes, for example, these field values have to be
changed in every file that stores them.

Another method you might consider is to create one massive domain that con-
tains every possible piece of information you would include in any report or
query. This method, too, can create storage and maintenance problems. Besides,
the results of statements like PRINT domain-name or SHOW FIELDS FOR
domain-name would require a fast finger on the NO SCROLL key for people
privileged to see all the information.

DATATRIEVE gives you a variety of methods to look at data stored in different
locations. You should therefore pay special attention to ease of maintenance and
logical grouping of fields when you put together a record.

Aim to put a field in only one place, unless you plan to use it as a link to
related information stored somewhere else. Employee names, for example, are
best stored in only one place. Employee ID numbers, however, probably need to
be stored in several locations.

When you group fields together, consider grouping fields that contain generic
data apart from fields that contain specific data. Job information, for example,
can be generic (the same for each job code) or employee-specific. Generic infor-
mation, such as wage class and minimum salary, can go in one domain.
Employee-specific information, such as start date and review code, can go in
another domain. If you keep generic data apart from specific data, you save stor-
age space. If job entries for employees include wage class and minimum salary,
values for these fields will be stored in many records when they need to be
stored in only a few.

Figure 8-1 shows one way you could organize the fields in the sample personnel
system. Above each grouping is the domain name that will eventually associate
the record definition describing the fields with the data file that will store them.

The fields preceded by an asterisk (*) indicate fields that you can use in
DATATRIEVE statements to link data in one domain with data in the other
domains. When grouping fields into domains for your own applications, you
should note the following points about pivotal fields like these:

e They are the only fields that are stored in more than one place

¢ They are codes that can easily be made unique (and, unlike names, can stay
that way). Many are likely to be primary keys for the data files to which they
correspond. You cannot modify the value of primary key fields.

Application Case Study: A Personnel System 8-7



e Their values can be a set number of characters. It is easier to write state-
ments that can check for valid values in fields that are always a set number
of ordered characters.

Note

The sample personnel system outlined in this chapter is the basis for
many examples in following chapters. Note, however, that the data
definitions and data shown in examples are not included as part of
DATATRIEVE and are rot related to the sample PERSONNEL
domain created during installation of DATATRIEVE. Although the
structure of the sample database described here is similar to the
sample Rdb/VMS database, PERSONNEL, created during the
DATATRIEVE installation, you cannot reproduce the examples in this
book by using that database.

8-8 Application Case Study: A Personnel System




J

SALARY_HISTORY

*EMPLOYEE_ID
SALARY_START
SALARY_END
REVIEW_CODE
SALARY_AMOUNT

JOB_HISTORY

*DEPARTMENT_CODE

*EMPLOYEE_ID
JOB_START
JOB_END

*JOB_CODE
REVIEW_DATE
SUPERVISOR_ID

JOBS

*JOB_CODE
MINIMUM_SALARY
MAXIMUM_SALARY
WAGE_CLASS

EMPLOYEES

*EMPLOYEE_ID
LAST_NAME
FIRST_NAME
MIDDLE_INITIAL
ADDRESS_DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIAL_SECURITY
BIRTHDAY

COLLEGES

*COLLEGE_CODE
COLLEGE_NAME
CONTACT_NAME
ADDRESS_DATA
STREET
TOWN
ZIP

DEGREES

“EMPLOYEE_ID

*COLLEGE_CODE
DEGREE
DEGREE_FIELD
DATE_GIVEN

DEPARTMENTS_TABLE

DEPARTMENT_CODE

DEPARTMENT_NAME

JOBS_TABLE

JOB_CODE
JOB_TITLE

*Denotes key fields

ZK-00002-00

Figure 8-1: Domains and Tables in Sample Personnel System

Application Case Study: A Personnel System

8-9






Defining Records 9

After you decide what fields you want to associate with a domain, you can cre-
ate a record definition to describe them. If you worked through the examples in
Chapter 1, ADT created a record definition for you. This chapter explains how
you use the DEFINE RECORD command that hides behind ADT’s menu of
choices. There are several reasons why you might want to know the explicit way
to define a record:

If you want to change the record that ADT creates for you, you have to know
what to edit and the consequences of changing anything.

If you want to create a record definition to use with a data file that already
exists, one created by a COBOL program perhaps, you have to match field
definitions to the way they are stored.

ADT does not give you all the DATATRIEVE options you can include in a
record definition. The VALID IF and COMPUTED BY clauses are two exam-
ples of options you cannot include using ADT.

If you are an experienced programmer and have put together many record
definitions in the past, you want more specifics about what you are defining
than the ADT menu provides. If you fall in this category, you probably can
focus on the examples and tables in this chapter and simply skim through the
explanatory text.

The best way to learn how to put a record definition together is to look at an
existing one and pick it apart. Example 9-1 defines a record definition to go
with the EMPLOYEES domain from the personnel system discussed in Chapter 8.

9-1



Comment lines starting with an exclamation point (!) provide labels and
explanatory text that you would not enter if typing the DEFINE command. The
sections following the example more fully explain the labels.

Example 9-1: Sample DATATRIEVE Record Definition

DTR) DEFINE RECORD EMPLOYEES_REC USING

DFN} ! -

DFN) ! required name of optional

DFN) ! keywords definition keyword

DFN) !

DFN» 21 EMPLOYEES_REC

DFNY '~ ~ -

DFN} | level name of end of field

DFN} ! number top-level field definition

DFN) !

DFN) 25 EMPLOYEE_ID PIC X(5)

DFN) ! - ~ -

DFN) ! level name of field defini-

DFNY ! number field tion clause

DFN) !

DFN» QUERY_NAME IS ID

DFN) ! -

DFN) ! field defini-

DFN) ! tion clause

DFN) !

DFN) QUERY_HEADER IS “EMP","ID"

DFN) ! ~ ~
DFN} ! field defini- end of field
DFN} ! tion clause definition
DFN) !

DFN> 25 EMPLOYEE_NAME QUERY_NAME IS NAME.

DFN) ! ~

DFN) ! This group field contains the three elementary fields
DFN) ! that follow it.

DFN) !

DFN> 18 LAST_NAME PIC K(14)

DFN) QUERY_NAME IS L-NAME
DFN» QUERY_HEADER IS "LAST NAME".
DFN? 18 FIRST_NAME PIC K1)

DFN} QUERY_NAME IS F-NAHME
DFN> QUERY_HEADER IS "FIRST NAME".

9-2 Defining Records



DFN> 12 MIDDLE-INITIAL PIC X

DFN> QUERY_NAME IS INIT

DFN> QUERY-HEADER IS "I".
DFN> -

DFN) Note that all fields subordinate to EMPLOYEE_NAME

DFN> have level numbers with larger values.

DFN)

DFN) 25 EMPLOYEE_ADDRESS.

DFN> 12 ADDRESS_DATA PIC K(2@).

DFN) 18 STREET PIC K(25).

DFN> 18 TOWN FIC X(2@).

DFN) 18 STATE PIC K(2).

DFN} 18 ZIP FIC X(5).

DFN> a5  SERW PIC X

DFN?> VALID IF SEX = "M" OR
DFN> SEX = "F".

DFN) 25 SOCIAL_SECURITY PIC X(9)

DFN> QUERY_NAME IS 5§

DFN> EDIT_STRING HRKBRRBRRKA
DFN» VALID IF SS BETHWEEN
DFN) "1" AND "999999999" .
DFN> @5 BIRTHDAY IISAGE DATE

DFN) EDIT_STRING IS NN/DD-/¥Y.
DFN> ;

DTRY ' ~©

DTRY ! end of record definition

DTR) !

DTR?

9.1 Setting Up Relationships Among Fields (Level Numbers)

When you create a logical model for your record, you decide which fields will
contain other fields and which fields will not. Figure 9-1 shows the logical model
of fields in the sample employee record before they were defined:

EMPLOYEE_ID
EMPLOYEE-NAME
LAST_NAME
FIRST_NAME
MIDDLE_INITIAL
EMPLOYEE-ADDRESS
ADDRESS_DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIAL_SECURITY
BIRTHDAY

Figure 9-1: Logical Model of EMPLOYEES _REC

Defining Records 9-3



The fields that contain other fields are group fields. In EMPLOYEES_ REC,
for example, EMPLOYEE_NAME and EMPLOYEE_ ADDRESS are group
fields. All the other fields in this logical model are elementary fields; they do
not contain other fields. As you read down the list of fields, you can tell by the
indentation in the figure which fields are included under a group heading and
which are not. You can see, for example, that SEX, SOCIAL_ SECURITY, and
BIRTHDAY are not part of the EMPLOYEE__ ADDRESS group.

You get DATATRIEVE to recognize the logical organization of your record by
the level numbers you assign to the fields. When you assign level numbers,
keep the following rules in mind:

 The first field in the record must be a top-level field that has a level number
lower than that of any other field in the record. (Top-level fields are discussed
further in a later section of this chapter.)

* You define subordinate fields by giving them level numbers that are higher
than the field or fields that contain them.

* You specify the end of a logical set of fields by assigning to the next field in
the record a level number equal to or lower than the lowest level number of
the group field that begins that set.

Looking at the record definition in Example 9-1, you can see how level numbers
implement the logical model for the sample employee record.

The highest logical level of the record is the 01 level field, EMPLOYEES_ REC.
Because 01 is a lower value than any other level number in the record, the field
EMPLOYEES__REC contains all the other fields in the record.

All fields on the second logical level have the level number 05. Most of these
fields are elementary fields (EMPLOYEE __ID, SEX, SOCIAL__SECURITY, and
BIRTHDAY) and two are group fields (EMPLOYEE _NAME and
EMPLOYEE _ ADDRESS).

All fields on the third logical level have the level number 10 (LAST_NAME,
FIRST_NAME, MIDDLE __INITIAL, EMPLOYEE _ ADDRESS, STREET,
TOWN, STATE, and ZIP). In this particular record, all the fields with level
number 10 are elementary fields.

As DATATRIEVE reads down the record, it knows that the EMPLOYEE_ NAME
group ends as soon as it encounters the 05 level number of the

EMPLOYEE _ADDRESS field. It knows that the EMPLOYEE _ ADDRESS
group ends as soon as it encounters the 05 level number of the field SEX. It
knows that the EMPLOYEES__REC field ends because it encounters the
semicolon (;).

9-4 Defining Records



You can choose any integer value from 1 to 65 for a level number. The actual
values you select are not important; only the relative values matter.

Now you know what DATATRIEVE requires from you as far as level numbers
are concerned. The following list of guidelines will make your record definitions
easier to read:

o Use indentation to line up fields that are on the same logical level. This
makes your record definition easier for you and others to read.

e Put a leading 0 in front of single digit values. Use 01, for example, rather
than 1. When all your level numbers are two characters, it is easier to keep
the numbers aligned.

« Increase level number values by more than 1 as you move from one logical
level to another. Doing this gives you room to add subordinate group fields to
the record in the future, without the problem of readjusting level number
values for the entire record. In the sample definition, for example, the level
numbers progress from 01 to 05 to 10.

9.2 Selecting Names

The names you select for the record definition and for all of the record fields
must adhere to the following rules. Each name:

e Must begin with a letter
¢ Can consist only of letters, digits, hyphens, and underscores
e Must not duplicate a DATATRIEVE keyword

¢ Must not contain blanks

Must be from 1 to 31 characters long
e Must end with a letter or digit

Some valid DATATRIEVE names are:
EMPLOYEE

SALARY_NET

CATEGORY1
YEAR-TO-DATE-SALES-FOR-PRODUCTS

Defining Records 9-5



Some invalid DATATRIEVE names are:

SIZE
(duplicates a keyword)

1984-EARNINGS
(does not start with a letter)

EMPLOYEE NAME
(contains a blank)

PRICE _(§/LB)

(contains invalid characters)

THIS_NAME__HAS__TOO_MANY__CHARACTERS
(self explanatory)

The same field name can appear more than once in a record definition.
Duplicate field names, however, must belong to different group fields.

Note

When you specify a duplicate field name in your DATATRIEVE state-
ments, you have to qualify it so that DATATRIEVE knows which of
the fields in the record you want. A record could contain two fields
called NAME, for example. If one were in the group field DEPT and
the other in the group field PROJECT, you would have to type PRINT
DEPT.NAME or PRINT PROJECT.NAME.

Now that you know the DATATRIEVE requirements for names, you can read
the next four sections for further guidelines.

9.2.1 Differences Between Record Name and Top-Level Field

The name you type following DEFINE RECORD specifies the name under which
the definition is stored in a dictionary directory. The only time you use the rec-
ord name is when you want to do something with the definition itself-look at it,
edit it, delete it, and so forth. You never use a record name in the DATATRIEVE
statements that handle data.

The first field name in a record definition is always the top-level field, a field
that includes all the other fields in the record. In most statements that handle
data, you rarely need to specify the top-level field; simply specifying the domain
name usually gets you all the fields in the record. In some complex statements,
however, you might want to specify all the fields in the record when the syntax
requires a field name. Typing the name of the top-level field in this situation
can save you many keystrokes.

9-6 Defining Records

C



What does all this explanation mean to you now when you are only at the stage
of defining records? It means you should specify the same name for the top-level
field as you want for the record definition. You do not have to do this but it
makes it easy to avoid mistakes later on.

Are there any conventions to follow when choosing record names? Yes. Many
people specify record names by taking the name they want for the domain and
adding _ REC. That is the convention used in Example 9-1 and by ADT. Other
people always use plural nouns for domain names and singular nouns for
records. Following this convention, if you want EMPLOYEES to be the name of
your domain, specify EMPLOYEE as the name of your record. Whatever conven-
tion you decide on, use it consistently. That way you do not have to check the
domain definition to get the name of the record every time you want to edit the
record definition.

9.2.2 Query Names

Field names should be descriptive of the data stored in the field rather than
abbreviations that are easy to type. That makes the record definition easy to fol-
low and maintain.

DATATRIEVE lets you both describe fields adequately and also abbreviate
names for speed and ease of use. Add a QUERY _NAME clause to an elemen-
tary field definition to specify a shorter name you can use in place of the field
name when typing DATATRIEVE statements. Example 9-1 has several exam-
ples of the QUERY _NAME clause. The keyword IS is optional when you type a
QUERY _NAME clause.

When you define a query name for a field, you can use the query name as a
replacement for the field name in any DATATRIEVE statements or clauses that
refer to the field.

9.2.3 Column Headers

When you display data, DATATRIEVE uses the names you choose for the
elementary fields in the record definition as default column headers for the
stored values. If you segment the field name with underscores or hyphens,
DATATRIEVE automatically uses multiple lines for the column header. This
way, each segment in the name appears on a separate line in the display.

You can change the default column headers by adding a QUERY__HEADER
clause to your elementary field definition. Example 9-1 contains several exam-
ples of a QUERY _HEADER clause. The keyword IS is optional. The header
you select must be enclosed in quotation marks. Use a slash (/) to indicate that
the following header segment should appear on the next line (“EMP”/“ID”).

Defining Records 9-7



When you specify a column header, you and other users lose the advantage of
knowing what the field names are simply by looking at data displays.

As long as your field names are descriptive of the data in the field, the main
reason you want to add a QUERY _HEADER clause to the record definition is
to optimize use of line space in your display. Some descriptive field names are
longer than the values in the field. In Example 9-1, MIDDLE __INITIAL is an
example of such a field. DATATRIEVE must use seven columns of display space
for the column header when the values under the header only require one
character.

The following example illustrates how several fields from EMPLOYEES__REC
would display without the QUERY _HEADER clauses in Example 9-1:

DTR) READY EMPLOYEES
DTR) PRINT ID, NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMPLOYEE LAST FIRST MIDDLE
ID NAME NAME INITIAL TOWN STATE

2164 Toliver Alvin A Chocorua NH
20165 Smith Terry D Chocorua NH
20166 Dietrich Rick Boscawen NH
Q0167 Kilpatrick Janet Marlow NH
Q0168 Nash Norman Meadows NH
DTR)

Now the same display with the QUERY_HEADER clauses in Example 9-1:

¢

DTR)Y PRINT ID., NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMF

ID LAST NAME FIRST NAME I TOWN STATE
20164 Taliver Aluin A Chocorua NH
22165 Smith Terry D Chocorua NH
20166 Dietrich Rick Boscawen NH
20167 Kilpatrick Janet Marlow NH
228168 Nash Norman Meadows NH
DTR)>

9.2.4 FILLER Field Name

You can specify the keyword FILLER as the name of an elementary or group
field. You might want to specify FILLER if you:

* Do not need certain fields in a data file for a particular application

9-8 Defining Records




e Want to control record display to mask certain data (rot for security reasons,
just for display purposes)

* Want to reserve space in the physical record of the data file for future use

The rules for defining fields named FILLER are the same as those for other
fields. Unlike other fields, however, you can use the name FILLER for more
than one field in the same group field.

Values in FILLER fields cannot be accessed by PRINT, LIST, MODIFY, STORE,
REPORT, and SUM statements. The contents of FILLER fields can always be
viewed, however, by specifying in a DISPLAY statement the name of any group
field containing them. Because even first level elementary FILLER fields belong
to the top-level field in the record, you should not use the name FILLER to
mask sensitive data from users who should not see it.

9.3 Specifying Type and Size of Data

This section explains how you tell DATATRIEVE about storage criteria; that is,
what kind of characters are stored in a field and the maximum number of
characters allowed in that field.

Every time you define an elementary field in your record definition, you must
specify either a PICTURE (PIC, for short) or USAGE clause to tell DATATRIEVE
what kind of characters are stored in the field and how many characters can fit.

9.3.1 Specifying a PIC Clause

A PIC clause starts with the keyword PIC and ends with a string of picture
characters. Although you type a space after the word PIC, you cannot put a
space anywhere in the string of picture characters that follows.

If you look at Example 9-1, you can see that all the PIC clauses contain the
character X, sometimes followed by a number in parentheses. The X indicates
that the field can contain any text character, roughly equivalent to any charac-
ter you can type with a typewriter keyboard. (You can, however, press some
keys on a terminal keyboard that produce nontext characters.) The number in
parentheses is a repeat count. For example, X(20) means that a maximum of
20 text characters can be stored in the field. A repeat count is an option gener-
ally used when defining fields longer than three characters. When defining
shorter fields, most people type a picture string character for each character in
the field; for example, PIC X, PIC XX, or PIC XXX.

Defining Records 9-9



Table 9-1 lists and describes all the characters you can use in a PIC clause
except the parentheses and number to designate repeat count. If you have
limited programming experience, focus on the characters X, 9, V, and S. You
can use the X character to define fields, such as names, that need to contain a
wide range of characters. You use the characters 9, V, and maybe S to define
fields, such as salary amount, on which you want to perform arithmetic opera-
tions. The characters A and P are listed in case you encounter them in a record
definition created by someone else.

Table 9-1: Picture String Characters

Picture
Field Class Character Meaning
Alphabetic A Represents one alphabetic character in the field.
Alphanumeric X Represents one character in the field.
Numeric 9 Represents one digit in the field. You can specify
from 1 to 31 digits for a numeric field.

S Indicates that a sign (+ or —) is stored in the field.
A picture string can have only one S and it must be
the leftmost character.

\% Indicates an implied decimal point. The decimal
point does not occupy a character position in the
field, but DATATRIEVE uses its location to align
data in the field. A picture string can contain only
one V.

P Specifies a decimal scaling position. Each P
represents a “distance” in digits from an implied
decimal point. A P can appear at the right or left of
the picture string. A V is unnecessary for any picture
string containing a P.

9.3.1.1 Defining Alphanumeric (X) and Alphabetic (A) Fields — Alphanumeric
(X) fields are best for just about all fields unless you want to use the field
values in arithmetic calculations.

Most people avoid defining alphabetic (A) fields. You cannot store hyphens,
commas, periods, or numbers in alphabetic fields. Notice, however, that some
names contain these characters:

SMITH-JONES
ARCO, INC.

TEA-FOR-2 CATERING

9-10 Defining Records



If you have some programming experience, you might be interested to know
that DATATRIEVE has three relational operators especially designed for access-
ing text field values: CONTAINING, NOT CONTAINING, and STARTING WITH.
You can also use the standard operators such as EQUALS, BETWEEN,
GREATER_THAN, LESS__THAN, and so forth to access text field values in a
range.

9.3.1.2 Defining Numeric Fields — As you can see by looking at Table 9-1, you
can be more specific about the format of fields that contain only numbers.
Depending on what characters you combine in the string, the field can contain
only positive values or both positive and negative values. It can contain only
integers or both integers and numbers with fractions.

Table 9-2 explains how to use numeric picture strings better than a wordy
explanation can.

Table 9-2: TABLE Relating Numeric Picture Strings to Stored Values

Picture String You Can Store: You Cannot Store:
999 1, 10, 999 1000, —21, 2.5, “2”
S9(4) 1000, —1000, 21 10000, 2.5, -3.41, A_B
9(4)V99 1000, 3.5, 9999.99 -2, 1.314, 99999, 50%
V99 15, .9, .80 1.5, —45, 22, . 2
S9V9(4) —1.5347, 2, .7 —178, .78902, $2.45
9(5)PPP 12345000, 2112000 123450000, 21123.999
PPPI(5) .00012345, .0003999 12345, 1.3

The picture character 9 represents places where significant digits can appear.
The picture character P represents a digit you consider nonsignificant. Only zero
can logically occupy a P position. If someone stores 12345 in a field defined as
PIC 99PPP, the value is stored as 12000.

As you can see from Table 9-2, you use either V or P as a character to mark the
position of the decimal point, but V is the only character you can use to insert a
decimal point between 9s in the string.

Defining Records 9-11



Note

You can add a SCALE clause to substitute for Ps or a V in the pic-
ture string. For example, you could substitute PIC 9(5) SCALE 3 for
PIC 9(5)PPP, PIC 9(5) SCALE -8 for PIC PPP9(5), and PIC 9(5)
SCALE -2 for PIC 999V99. Do not use a SCALE clause, however,
when the picture string contains a V or a P.

If you are a beginning programmer, you will find it easiest to limit yourself to
numeric picture strings containing only 9s for digit positions and a V for deci-
mal point position. You should also start the string with S if the field must
store both positive and negative values. Numeric fields defined this way are
iconic. You can visualize where the decimal point is by looking for a V and see
how big the field is by adding up all the 9s. If there is no V, or a rightmost V,
it means the field defines an integer.

You can define numeric picture strings from 1 to 31 digits long. Length in digits
is the sum of all the 9s (and Ps, if any) in the picture string. You can specify
one more character (S) to represent the sign.

9.3.2 Specifying a USAGE Clause

Every field definition has a USAGE clause, even if you do not explicitly specify
one. USAGE DISPLAY is the default. It is the only usage that can apply to
alphabetic and alphanumeric fields, and the one that applies to numeric fields
unless you tell DATATRIEVE otherwise.

When the storage criteria for a numeric field are defined only with a PIC clause
(PIC S99V99, for example), that field has display usage. You can do arithmetic
calculations on a numeric field with display usage with no loss of precision, as
long as any resulting values can be represented by 31 or fewer digits. It takes
the computer a little longer to perform arithmetic calculations using fields that
are display numeric, but the time loss is negligible for simple business
applications.

9-12 Defining Records

C



All the other USAGE options exist to give programmers greater precision when
defining and handling fields that contain numbers. Some of these options define
fields that a variety of languages can process. This is important when you plan
to create a data file that will be accessed not only by DATATRIEVE users, but
also by programs written in languages such as COBOL, BASIC, and FORTRAN.
You can ignore the rest of this section and resume reading about date fields in
the next section if you have limited programming experience and the following
statements are true in your case:

¢ Thirty-one or fewer 9s gives you the precision you need for results of arith-
metic operations.

* You want to keep your definitions as simple to use as possible.

* You do not have to create a record definition to match an existing data file.
(If the data file already exists, it might include numeric fields defined with
USAGE options other than display.)

Table 9-3 lists and describes all the USAGE types supported by DATATRIEVE.
When two keywords are grouped together in the table, it means they are

synonymous.
Table 9-3: USAGE Clause Options
Type of
Data USAGE Option Size in Bytes Range (in Decimal Values)

ASCII DISPLAY Depends on Depending on PIC clause,

string (nonnumeric) PIC clause 1 to 65535 characters
DISPLAY Depends on Total number of integer and
(signed PIC clause decimal digits cannot exceed 31
numeric) (—999,...999 to 999,...999)

‘ DISPLAY Depends on Total number integer and decimal

(unsigned PIC clause digits cannot exceed 31 (0 to
numeric) 999,...999
COMP-3 Depends on Same as DISPLAY (signed
PACKED PIC clause numeric)
COMP-5 Depends on Same as DISPLAY (signed
ZONED PIC clause numeric)

Fixed COMP Depends on Depending on size, —128

point INTEGER PIC clause, to 2**63 — 1

binary if any.

Default is 2.

(continued on next page)

Defining Records 9-13



Table 9-3: USAGE Clause Options (Cont.)

Type of (
Data USAGE Option Size in Bytes Range (in Decimal Values)
BYTE 1 —128 to 127
WORD 2 —32768 to 32767
LONG 4 —2**31 to 2**¥31 — 1
QUAD 8 —2**63 to 2**63 — 1
DATE 8 Although stored as an 8-byte
binary number,values are a special
case.
Floating | COMP-1 REAL 4 +/—(10**(—38) to 10**38,
point approximately 7 decimal digits
binary precision
G_FLOATING 8 +/—(10**(—308) to 10**308),
approximately 15 decimal digits
precision
COMP-2 8 +/—(10**(—38) to 10**38),
DOUBLE approximately 16 decimal digits
precision (
H__FLOATING 16 +/—(10%*(—4932) to 10**4932),
approximately 33 decimal digits
precision

You can indicate decimal point position with a SCALE clause. To indicate two
decimal digits for a field that stores a fractional number, for example, you could
define the field as USAGE REAL SCALE IS -2.

For more detailed information about data types, refer to the CDD documenta-
tion. Remember, however, that DATATRIEVE does not support USAGE
OCTAWORD or unsigned value ranges for fixed point binary fields.

9-14 Defining Records

L



9.3.3 Date Fields

If you are defining a field to store dates, specify USAGE DATE for that field.
DATATRIEVE, for example, correctly stores any of the following entries in a
USAGE DATE field:

28/MAR/1946

MAR 28 1946

March 28, 1946

3/28/46

When you display a date value, DATATRIEVE formats it by default as
DD-Mmm-YYYY. Any of the preceding entries would be displayed as
28-Mar-1946, unless you specified an EDIT_STRING clause to change this
default.

A section later in this chapter explains how to specify an edit string for a date

field. Chapter 18 gives you more information about using date fields.

9.3.4 Virtual (Computed) Fields

When a field you are defining can be calculated by other field values or by
values stored in a DATATRIEVE table, you can define it as a virtual field. A
virtual field does not occupy any space in storage and so can reduce the size of
your data files. The field value is calculated when you access it with a
DATATRIEVE statement.

Define a virtual field with the COMPUTED BY clause. The value computation
can include the name of one or more fields in the record definition or it might
be accessed in a DATATRIEVE table.

In the following example, GROSS__SALARY and DEDUCTIONS are fields that
appear in the same record definition as NET _SALARY:

05 NET_SALARY COMPUTED BY GROSS_SALARY - DEDUCTIONS.

The following example specifies a value using STATES__TABLE, a dictionary
table that pairs the 2-character state code with the full name of the state
(MA with Massachusetts, for example):

18 STATE_NANME COMPUTED BY STATE VIA STATES.TABLE.

You can use the COMPUTED BY clause only to describe elementary fields.

Defining Records 9-15



Many COMPUTED BY fields are better defined as variables that use the values
in a record rather than as fields in the record definition. (A variable is a field
you can define as necessary to get a particular value you need for a display or
report.) This is especially true if the value you want to calculate uses a constant
(such as tax rate) that is likely to change.

If you find that, just to satisfy the needs of a virtual field you want to compute,
you are adding fields to your record that are likely to change, then consider
doing the calculation outside the record definition. Chapter 18 explains how to
define and use variables.

9.3.5 Defining One Record Area in Different Ways Using the REDEFINES
Clause

The COMPUTED BY clause defines a field that occupies no space in a record.
The REDEFINES clause takes another look -at storage space that already exists.
In the following example, CODE_FOR_SOMETHING is a value that is gener-
ally displayed and stored as a unit; however, users sometimes need to identify
sections of the field:

23 CODE_FOR_SOMETHING PIC X(6).

23 SEGMENT_THE_CODE REDEFINES CODE-FOR_SOMETHING .
w6 FIELD1 PIC X(3).
w6 FIELD2 PIC K(3).

Note that a field redefining another must follow the field it is redefining. Both
fields must have the same level number. In addition, the REDEFINES clause
must immediately follow the field name in the field definition.

To understand REDEFINES on a higher level, you must first understand some-
thing about group fields-DATATRIEVE always considers them alphanumeric.
This means when you use a group field name in a statement, DATATRIEVE
looks at all the fields in the group as though you had defined them with Xs.
This is true even if you used 9s or a numeric USAGE clause to define every
subordinate item. If you want to define a field as numeric, but also want it to
contain subordinates, you must redefine the field. In the following example,
PART_NUMBER is a numeric field that has been redefined in two ways to
identify subordinate fields:

25 PART_NUMBER PIC 95(10).
85 PART_NUMBER_PARTS REDEFINES PART_NUMBER.
18 PRODUCT_GROUP PIC 99.
18 PRODUCT_YEAR PIC 99.
12 ASSEMBLY_CODE FIC 3.
18 SUB_ASSEMBLY PIC 99.
18 PART_DETAIL PIC 999.

9-16 Defining Records



@5 PART_NUMBER-GROUPS REDEFINES PART_NUMBER.
12 PRODUCT_GROUP_.ID PIC 9(4).
1@ PART_DETAIL_-ID PIC 9(6).

The REDEFINES clause adds complexity to a record definition that beginning
programmers should probably avoid. Redefining a numeric field as an alphanu-
meric field and then using the two fields properly can be tricky. In addition, if
you change the record definition later on to add new clauses or fields, you have
to be very careful not to disrupt the relationship between a field and its
redefinitions.

9.3.6 Specifying Repeating Fields Using the OCCURS Clause

You can define a list field to specify multiple occurrences of its subordinate field
or fields. A record storing information about a family, for example, can define a

list field to store information about children. In the following record definition,
KIDS is a list field:

DTR> SHOW FAMILY_REC
RECORD FAMILY_REC
21 FAMILY.
@3 PARENTS.
@6 FATHER PIC X(1@).
26 MOTHER PIC X(1@).
@3 NUMBER-KIDS PIC 99 EDIT_STRING IS Z9.
@3 KIDS OCCURS @ TO 1@ TIMES DEPENDING ON NUMBER-KIDS.
26 EACH_KID.
@9 KID_NAME PIC X(1@) QUERY_NAME IS KID.
@9 AGE PIC 99 EDIT_STRING IS 29.

i

DTR>

If you display records defined this way, you can see that records vary in the
number of values stored in the fields KID__NAME and AGE:

DTR) READY FAMILIES
DTR) PRINT FIRST 3 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7

RALPH 3
JIM LOUISE S  ANNE 31

JIM 29

ELLEN 26

DAVID 24

ROBERT 16
JOHN JULIE 2  ANN 29

JEAN 26
DTR>

Defining Records 9-17



The field KIDS is a variable occurrence list because the number of values in
each record for fields subordinate to KIDS depends on a value stored in another
field in the record NUMBER __ KIDS). Variable occurrence list fields must be
the last set of fields in the record definition. Therefore, you can define only one
variable occurrence list field in a record definition.

You can also define a fixed occurrence list. In this case, the number of values
in each record for fields subordinate to the list field is specified explicitly in the
OCCURS clause itself. If FAMILY _REC were altered to define a fixed occur-
rence list, the definition for KIDS would be:

@3 KIDS OCCURS 1@ TIMES.

If you display records containing a fixed length list, “empty” occurrences occupy
space in the display. This can take the form of blank lines between records (if
all the list subordinates are text fields) or columns of zeros (under fields defined
as numeric). The advantage of defining a list that is fixed length rather than
variable length is that it does not have to be the last set of fields in the record
definition. While it is not recommended, you can also define any number of
fixed length lists within a variable length list.

Accessing fields subordinate to an OCCURS field takes time to master. It is also
difficult to restructure a domain when you want to add to or reorganize the
fields subordinate to a list field.

DATATRIEVE sees each set of list values as an inner record within the record.
You must treat the field defined with the OCCURS clause as you would a
domain name. If you tried to specify KIDS, for example, in a DATATRIEVE
statement where you normally specify a field name, DATATRIEVE might tell
you that KIDS is undefined or used out of context. The following example illus-
trates this problem and one way to get around it:

DTR) READY FAMILIES
DTR) PRINT FATHER. KID_NAME OF FAMILIES

"KID_NAME" is undefined or used out of context.
DTR) FRINT ALL FATHER, ALL KID_NAME 0OF KIDS 0OF FAMILIES

9-18 Defining Records




KID

FATHER NAME
JIM URSULA
RALFH
JIN ANNE
JIM
ELLEN
DAVID
ROBERT
JOHN ANN
JEAN
JOHN
~C

Execution terminated by operator.

DTR>

You may have to specify list fields in a record definition if you are trying to
create a DATATRIEVE record definition for a data file that already exists. If
you do specify an OCCURS field and it contains more than one subordinate
item, be sure you specify a top group subordinate to the OCCURS item itself.
EACH __KID is an example of such a field in FAMILY __REC. This gives you a
group field name that you can use like a field name. Chapter 15 provides more
information on accessing fields subordinate to list fields.

When setting up your own database, however, you should avoid list fields. The
set of domains for the personnel system in Chapter 8 provides an example of
how to do this. Each salary history and job history entry for an employee is
stored as a separate record. These entries are kept out of the record in the cen-
tral employee domain by putting them in separate domains. If you are wonder-
ing how you can uniquely identify each record from the SALARY _ HISTORY
and JOB_HISTORY domains, the answer is to define a group field key for the
data file. Chapter 11 gives you more information on this topic.

Defining Records 9-19



9.4 Formatting the Display of Field Values

You can always specify the output format of an elementary field value by
including an edit string in a PRINT statement. If you want this information in
a record definition, you use the EDIT__ STRING clause. Example 9-1 includes an
edit string for the field SOCIAL__SECURITY (EDIT__STRING IS
XXXBXXBXXXX) to display the value with a space between segments of the
field. It also includes an edit string for the field BIRTHDAY to replace the
DATATRIEVE default of DD-Mmm-YYYY (EDIT__STRING IS NN/DD/YY).
This is how those fields would display without the edit string:

DTR) READY EMPLOYEES
DTRY PRINT NAME, SOCIAL_SECURITY, BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY  BIRTHDAY
Toliver Alvin A 763080064 28-Mar-1947
DTR?

This is how those same fields display with the edit strings in Example 9-1:

DTR) READY EMPLOYEES
DTR) PRINT NAME, SOCIAL_SECURITY, BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY  BIRTHDAY
Taliver Alvin A 763 B8 Q064 3,28,47
DTR)

If you do not supply an EDIT__STRING clause for a numeric field, DATATRIEVE
uses the PIC clause to format the field value. If the PIC clause contains a V or P,
DATATRIEVE displays the value with a decimal point in the correct position.
You usually want to include an EDIT__STRING clause for numeric fields that:

 Include a fractional component and that do not indicate decimal point position
in the PIC clause

 Include a sign that you want to display (even if there is one in the PIC clause)

e Store money values

The appendix at the end of this book lists and describes all the edit string
characters you can use. Tables 9-4, 9-5, and 9-6 illustrate examples of using edit-
ing characters for text, numeric, and date fields. The symbol # in the output
values in each of these tables represents a space.

9-20 Defining Records




Table 9-4:

Editing Text Fields

Picture Edit Output If Field Output If Field

String String Value Is CHALLENGER Value Is 123

X(10) X(10) CHALLENGER 1234444444

X(10) X(3) CHA 123

X(10) XX/X(8) CH/ALLENGER 12/34KKHA#H

X(10) X(5)/X(5) | CHALL/ENGER 12344/ #AHHH

X(10) X(5)—-XX CHALL-EN 12344 —##
Table 9-5: Editing Numeric Fields

Picture Edit Field

String String Content Output

95) 9(5) 04092 04092

9(5) Z(5) 04092 4092

9(5) *(5) 04092 *4092

99V99 99.99 0001 00.01

99V99 Z27.99 0001 ##.01

99V99 (None) 1234 12.34

99V9I9 79.99 1234 12.34

99V99 999.9 1234 012.3

99V99 9.999 1234 HHEX

99V99 9.999 0123 1.230

99V99 7Z(4) 1234 ##12

S9999 None —-1234 1234

59999 —-9999 —-1234 -1234

59999 —9999 +1234 #1234

S9999 9999+ —1234 1234-

(continued on next page)

Defining Records

9-21



Table 9-5: Editing Numeric Fields (Cont.)
Picture Edit Field
String String Content Output
59999 +9999 +1234 +1234
$9999 9999DB —-1234 1234DB
S9999 9999CR —-1234 1234CR
59999 CR9999 +1234 ##1234
S9999 ((9999) -1234 (1234)
99 99% 45 45%
9(6) $999,999 100000 $100,000
x6) $$$$,55% 100000 $100,000
9(6) 777,227 000040 #H###40
9(6) 999/999 123456 123/456

Table 9-6: Editing Date Fields

Output if Field Value is

Output if Field Value

Edit String June 4, 1980 is November 27, 1978
DD-MMM-YY #4-Jun-80 27-Nov-78
MMMBDDBY(4) Jun##4#1980 Nov#27#1978
M(9)BDDBY(4) June##4#1980 November#27#1978
NN/DD/YY #6/04/80 11/27/78
W(9) Wednesday Monday
YYYY/JJJ 1980/156 1978/331
DDBMMMBYY/WWW | #4#Jun#80/Wed 27#Nov#78/Mon
DD.NN.YY #4.06.80 27.11.78

9-22 Defining Records




9.5 Including Validation Requirements

You can specify a VALID IF clause to make sure a value is correct before it is
stored in a record field. Example 9-1 includes VALID IF clauses for the fields
SEX and SOCIAL_ SECURITY to limit the values these fields can contain.
Because these fields are text fields, the acceptable values are enclosed in quota-
tion marks. Values for numeric fields would not be enclosed in quotation marks.

You can specify a VALID IF clause only for an elementary field.

9.6 Initializing Field Values

DATATRIEVE automatically initializes a text field to spaces and a numeric
field to zero if you do not assign it a value when storing a record. If you want a
field initialized to any other value, use the DEFAULT VALUE clause to specify
your preference. Example 9-1 does not contain this clause.

One way to use DEFAULT VALUE is with date fields. If the field should reflect
the date a record is stored, you can specify the value expression “TODAY” as
its default value:

03 DATE_IN USAGE DATE DEFALLT "TODAY".

As you can see from the example, the word VALUE is an optional keyword.

9.7 Specifying Values to Be Ignored in Statistical Computations

You can define a MISSING VALUE clause to mark that no value is stored in a
field. DATATRIEVE ignores fields containing the missing value marker when
computing averages, standard deviations, and minimum and maximum values.

Numeric fields are automatically initialized to zero if no value is stored in them.
It is fairly common for records to be stored in incomplete form. If a field storing
a salary contains zero, for example, it usually means that the salary data has
not been stored, not that the employee is working solely for fun. If you are aver-
aging the salaries of all current employees in a given job category, you do not
want records with these “empty” salary fields to affect your results. You can
include the MISSING VALUE clause in the field definition to make sure that
salaries equal to zero are ignored:

@85  SALARY_AMOUNT PIC 3(6)V33
EDIT_STRING IS $$$%,$%¢ .$¢
MISSING VALUE IS B.

Do not use the DEFAULT VALUE clause along with the MISSING VALUE
clause unless they specify the same value. If they specify different values,
DATATRIEVE initializes an empty field to the default value and includes that
value in statistical computations.

Defining Records 9-23



9.8 Ending Field and Record Definitions

You must end each field definition with a period. Be careful, however, not to
put a period after a clause that is not the last clause in the field definition:

DTR) DEFINE RECORD TEST USING
DFN) @1 TOP_GROUF.

DFN> @5 FIRST_FIELD FIC 3
DFN? @5 SECOND_FIELD PIC X.
DEFINE RECORD TEST USING

@1 TOP_GROUF .

@5 FIRST_FIELD PIC 9

@5 SECOND_FIELD PIC X.

Expected field option or period, encountered "Q5".

DTR> ! A period did not terminate the definition of FIRST_FIELD.
DTR) !

DTRY DEFINE RECORD TEST USING

DFN) @1 TOP_GROUF.

DFN) @5 FIRST_FIELD FIC 9.

DFN> QUERY_NAME IS FF.
DEFINE RECORD TEST USING
@1 TOP_GROUP .

@5 FIRST_FIELD FIC 5 .
WUERY_NAME IS FF.

Expected number, encountered "QUERY_NAME".
DTR> ! Feriod should not follow FIC clause of FIRST_FIELD.
DTR>

DATATRIEVE also insists that you end a record definition with a semicolon (;).
It will keep displaying the DFN > prompt until you enter one.

9.9 Editing Record Definitions

When you edit a record definition, you see the keyword REDEFINE where
DEFINE used to be. The REDEFINE RECORD command follows the same rules
as DEFINE RECORD. REDEFINE RECORD, however, automatically creates a
new version of an existing record definition.

The DEFINE RECORD command works only when there is no record definition
with the specified name in the dictionary directory.

If you want to modify a record definition that is being used with an existing
data file, read the section on restructuring domains in Chapter 11.

9-24 Defining Records



Defining Domains 10

A domain is the essential part of DATATRIEVE. It:
* Relates a record definition to a data file

» Gives a name to that relationship (domain name)

After you create the record and domain definitions and define the data file, you
use the domain name to access the file.

Note

You can also create domain definitions that point to data stored on
other computer systems and in VAX DBMS and relational databases.
Refer to the VAX DATATRIEVE User’s Guide for information on
using DATATRIEVE with distributed data and with VAX DBMS and
relational databases.

Example 10-1 illustrates a sample session in which user Bell creates a domain
definition. The definition relates the sample record definition from Chapter 8
(EMPLOYEES__REC) with the file EMPLOYEES.DAT. The domain name
EMPLOYEES identifies this relationship. Comment lines starting with an excla-
mation point (!) tell you what user Bell is doing.

10-1



Example 10-1: Defining a Sample Domain

DTR) ! Set dictionary location to the directory that will stare
DTRY ! the domain definition.

DTR) !

DTRY SET DICTIONARY CDD4$TOP .FERSONNEL
DTR) !

DTRY ! Define the domain.

DTR) !

DTR} DEFINE DOMAIN EMPLOYEES USING
DFN} EMPLOYEES_REC ON EMPLOYEES.DAT;
DTR) !
DTR} ! Display the listing of domains in the directory PERSONNEL .
DTR) !
DTR)> SHOW DOMAINS
Domains:
EMPLOYEES; 1

DTR} ! Display the domain definition.

DTR) !

DTR) SHOW EMPLOYEES

DOMAIN EMPLOYEES USING EMPLOYEES_REC ON EMFLOYEES .DAT;

DTR> ! Decide to make the file specification more complete.
DTR) !
DTRY EDIT EMPLOYEES

DTR) SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES_REC ON DBAZ:[BELLIEMPLOYEES .DAT;

DTR>

As you can see from the example, you use the DEFINE DOMAIN command to
begin a domain definition. The keyword USING is optional. You must end a
domain definition with a semicolon (;). The next three sections provide rules and
suggestions for naming the domain and specifying the record and file.

10.1 Naming the Domain

The name you choose for a domain must follow the rules that apply to any
given name in the CDD. The domain name:

Must begin with a letter
e Must end with a letter or digit

Can contain 1 to 31 characters

Can contain only letters, digits, dollar signs ($), underscores (_), and
hyphens (-)

10-2 Defining Domains



When you enter a name, DATATRIEVE interprets lowercase letters as upper-
case and a hyphen as an underscore. You see names displayed using this
format.

If you prefer, you can specify a full dictionary path name for a domain name.
This lets you store a domain definition in a directory other than the one at
which you are currently located. In Example 10-1, if user Bell had not first set
his dictionary location to the PERSONNEL directory, he could have entered
CDD$TOP.PERSONNEL.EMPLOYEES in place of EMPLOYEES to place the
domain in that dictionary directory. Because DATATRIEVE stored the
EMPLOYEES definition in PERSONNEL, you know Bell must have at least P
(PASS_THRU) and E (EXTEND) privileges in the ACL associated with that
directory.

A full path name is part of the definition, however, and has to be edited if you
or someone else moves the definition later on. Most people define a domain
using only the given name.

10.2 Specifying the Record Name

The rules that apply to the record name are the same as those for the domain
name. If the record definition is (or will be) in a dictionary directory other than
the one where you are storing the domain definition, you must specify a full
path name for the record definition. Otherwise, you can specify the given name.

If you are specifying a full path name for a record definition in a directory that
is not in your private branch of the CDD, make sure you have P (PASS__THRU)
and S (SEE) access privileges to that record definition. You do not need these
privileges to put the path name in your definition, but you need them in order
to ready the domain.

10.3 Specifying the Data File

The name of the data file is a VMS file specification. File names are not
governed by the CDD rules for naming things; they follow VMS rules. Chapter
2 contains the rules that apply to file specifications. You should review this
information if you have limited experience using the VMS operating system.

10.3.1 How Much of the File Specification to Include

The shortest form you can use for a file specification in a domain definition is a
file name (EMPLOYEES, for example). When you use this short form,
DATATRIEVE appends the file type .DAT to the name. When you ready a
domain whose definition includes only a file name (or only a file name and
type), DATATRIEVE expects to find the data file in your default VMS directory.

Defining Domains 10-3



You can include a full file specification in place of the short form. If you do this,

you can ready the domain without first setting your VMS directory default to

the directory containing the file. In Example 10-1, user Bell changed the file r
specification to DBA2:[BELL]JEMPLOYEES.DAT when he edited the domain

definition.

Note

If your installation uses more than one computer system, a file specifi-
cation can start with a node name. If you want to use a data file on
another system, you might try to append a node name along with user
name and password criteria to your file specification. Do not do this.
DATATRIEVE works very slowly when you access distributed data this
way. The chapter on accessing remote data in the VAX DATATRIEVE
User’s Guide explains better ways to access data on other computer
systems.

10.3.2 Avoiding Problems When Naming Files

If you break one of the VMS rules governing file specifications, you can still

store the domain definition. When you try to create the file with the DEFINE

FILE command, however, you will get an error message from RMS telling you

about the problem. (

If you are creating the domain in order to use a data file that already exists and
the file specification is incorrect, you will get an error message when you try to
ready the domain. If the file is in a directory other than your own, you will
need the appropriate VMS access privileges to both the directory where the file
is located and to the file itself before you can ready the domain. Chapter 2 pro-
vides more information on directory and file protection.

10-4 Defining Domains



Defining Data Files 1 1

Once you store domain and record definitions in a dictionary directory, you can
create a file in a VMS directory to contain your data. You omit this step, of
course, if you created domain and record definitions to access a data file that
already exists.

You use the DEFINE FILE command to create a data file. Example 11-1 first
displays domain and record definitions (EMPLOYEES and EMPLOYEES _REC)
and then creates the data file (EMPLOYEES.DAT).

Example 11-1: Defining a Data File

DTR) SHOW EMFLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES_REC ON DBAZ:[BELLIEMPLOYEES .DAT;

DTR) SHOW EMPLOYEES_REC
RECORD EMPLOYEES_REC USING
@1 EMPLOYEES-REC.
25 EMPLOYEE-ID PIC K(3)
QUERY_-NAME IS ID
QUERY_HEADER IS "ID".
@5 EMPLOYEE-NAME QUERY_NAME IS NAME.
12 LAST_NAME PIC K(14)
QUERY_NAME IS L_NAME
QUERY_HERDER IS "LAST NAME".
12 FIRST_NAME PIC X{1@)
QUERY_NAME IS F_NAME
QUERY_HEADER IS "FIRST NAME".
18 MIDDLE-INITIAL PIC ¥
QUERY_NAME IS INIT
QUERY_HEADER IS "I".
@5 EMPLOYEE-ADDRESS QUERY_NAME IS ADDRESS.
12 ADDRESS_DATA PIC H(20).

DTRY DEFINE FILE FOR EMPLOYEES KEY = ID (NO DUP)
DTR)

111



Unlike the other DEFINE commands, DEFINE FILE is not creating a defini-
tion. It does not, therefore, specify the name of the file, but points to the domain
definition that does (EMPLOYEES). It also does not require the semicolon or
END__ clause that must terminate other DEFINE commands. The keyword
FOR, by the way, is optional.

Example 11-1 creates an indexed file because it specifies a field in the record
(ID) as a key. If the command were simply DEFINE FILE FOR EMPLOYEES, it
would have created a sequential file. The differences between indexed and
sequential files are discussed in the next two sections.

11.1 Defining Indexed Files

In almost all cases, it is better to define an indexed file because:
* You can delete records only from an indexed file.

e Only indexed files have keys.

Record access is faster when you can specify a key field to help DATATRIEVE
find a record. When DATATRIEVE cannot use a key field, it has to perform
an exhaustive search through the file for the record or records you want.

You can define more than one key for an indexed file. If you do, the first key
you specify is the primary key and the others are alternate keys.

You cannot change the value of a primary key field. For each alternate key,
however, you can choose whether or not users can modify the value in the key
field after a record is stored (CHANGE or NO CHANGE). CHANGE is a default

key characteristic for alternate keys.

For both primary and alternate keys, you can choose whether or not users can
store more than one record with the same value in the key field (DUP or NO
DUP). NO DUP is a default key characteristic for primary keys and DUP is the
default for alternate keys.

The following command explicitly specifies all key characteristics so you can see
command format and punctuation. The characteristics specified are the
DATATRIEVE defaults for primary and alternate keys:

DEFINE FILE FOR EMPLOYEES KEY = ID (NO CHANGE, NO DUP),
KEY = L-NAME (CHANGE., DUP)

11-2 Defining Data Files




The following command specifies only the key characteristic needed to change a
default:

DEFINE FILE FOR EMPLOYEES KEY = L-NAME (DUF),
KEY = STATE

L_NAME, a primary key, cannot be changed. State, by default, can be both
changed and duplicated.

11.1.1 Selecting the Primary Key

The field you select for a primary key should be one whose values do not
change. DATATRIEVE does not let users modify values in primary key fields.
That is why primary key fields are so often a code of some kind: ID number,
invoice number, customer code, product code, and so forth. The codes can remain
constant even if someone decides to change the name or other characteristics
associated with the record. If you must change a primary key value, you have to
erase the whole record and store it again with the changed key value.

The primary key for a file should be able to uniquely identify each record. This
means you should avoid the DUP characteristic for the primary key field even
though DATATRIEVE lets you use it. There are two reasons for this guideline:

o If at any time in the future you want to modify the records in the file based
on information contained in another data file (transaction file processing), you
will probably need a record-to-record match. This is impossible to get if you
cannot specify a field or group of fields that is common to both files and that
identifies only one record that is in the file you are changing.

e Retrieving data using a key field that contains many duplicate values can
slow DATATRIEVE response time. The primary key is the one you will be
using most often to associate records stored in more than one file. You will
want this operation to proceed as quickly as possible.

If your application is limited to one small data file, go ahead and choose any
field you want for a primary key and allow duplicate values if that is necessary.

Records are stored in ascending order according to the value of the primary key.
The DEFINE FILE command in Example 11-1 specifies that records are stored
s0 that the record with the lowest value for EMPLOYEE _ID is positioned first
in the file and the record with the highest value for EMPLOYEE _ID is last in
the file.

Defining Data Files 11-3



The order of the values in the primary key field is the default sort order for

the data file. This is the order in which records are displayed when you simply

type PRINT followed by the domain name. Chapters 14 and 15 discuss how you r
can change the sort order of records for a particular operation.

11.1.2 Selecting Alternate Keys

If you expect to frequently ask DATATRIEVE to search for records based on
values in fields other than the primary key field, you can define those fields as
alternate keys. A name associated with a record (LAST__NAME from the
EMPLOYEES domain, for example) is one field often selected as an alternate
key.

Do not specify as a key any field that may contain many duplicate values. A
field such as SEX is an example of a poor key choice. When DATATRIEVE has
to process many duplicate values, a key-based search can sometimes take longer
than a sequential one.

Confine your alternate key choices to fields you expect to use frequently when
retrieving records. From the file maintenance point of view, the fewer keys you
define, the better.

11.1.3 Selecting Group Field Keys

You might want to select a group field key when no single elementary field can (
uniquely identify each record in the file.

Suppose that your file stores information about products manufactured by a
number of vendors. For each vendor, there is more than one product and you
cannot be sure that different vendors select differing product codes. If you need
to ensure that one field identifies only one product, you can specify as a primary
key a group field (PRODUCT _ID) that contains both vendor and product codes:

85  PRODUCT_ID.
10 VENDOR_CODE PIC R(5).
18 PRODUCT.CODE FIC Hezgy.

11-4 Defining Data Files



D

J

There are some restrictions when you specify group field keys:

* When you access the file using the key name, DATATRIEVE uses only the
first elementary field in the key for indexed access.

Using the PRODUCT _ID example, DATATRIEVE directly finds the records
with matching VENDOR _CODE, and then sequentially searches those
records to find the matching PRODUCT _CODE. The partial sequential
search through records means that access by group field key proceeds more
slowly than access by elementary field key. The performance difference would
probably bother only users who are trying to pull together large numbers of
records.

» The first elementary field in the group must be alphanumeric, or
DATATRIEVE does not do key-based access at all.

If VENDOR _CODE were defined as PIC 9(5), for example, DATATRIEVE
would sort through records one by one to find the records you ask for. This
performance lag could become very serious.

* You cannot specify a list field as a key.

There are three domains in the sample personnel system used in this book
(SALARY _HISTORY, JOB__HISTORY, and DEGREES) that have no key that
uniquely identifies each record. For any value of EMPLOYEE _ID, there can be
more than one record in the file. The requirements for the personnel system
specify that if records in these domains need to be updated, the updating opera-
tions should be done interactively. In the vast majority of cases, the main-
tenance operations involve adding new records to the domain rather than
changing or deleting existing ones. In addition, these domains are generally
accessed to pull together all the information for an employee or look at the cur-
rent job and salary for one employee. Given these requirements, the keys per-
form a relational function and duplicate primary keys are not likely to cause
problems.

11.2 Defining Sequential Files

Records in a sequential file are positioned in the order they are written to the
file. If you type PRINT followed by the domain name, the first record displayed
is the first one stored in the file. The last record displayed is the last one stored.

Sequential files have the following advantages:
e They are the only files you can store on magnetic tape.

¢ Report-writing procedures sometimes work more quickly when DATATRIEVE
is processing records stored in a sequential file.

Defining Data Files 11-5



The disadvantages of creating sequential files outweigh the advantages:

* You cannot delete records from sequential files. You can approximate a delete r
operation for a sequential file by modifying all elementary field values to con-
tain nothing but spaces or zeros. The “pseudo-erase” you must use with a
sequential file, however, is time-consuming, wastes storage space and can
show up in displays and reports as a blank line.

* Record update and data retrieval operations proceed more slowly because
DATATRIEVE must always exhaustively search the file for each record you
need.

11.3 Planning for File Maintenance

The term file maintenance in this section refers to the methods you employ to
optimize file storage requirements and to improve DATATRIEVE response time.
The discussion provides an overview of the topic and is not a detailed explana-
tion. For more information, refer to the chapter on improving DATATRIEVE
performance in the VAX DATATRIEVE User’s Guide and to the documentation
on record management services.

11.3.1 Using Other Options in the DEFINE FILE Command

You can determine the storage space assigned to your file by specifying: (

« ALLOCATION = n to specify the number of disk blocks initially allocated for
the file. If you understand how the size of your file relates to disk block
requirements, you can use it to ensure that enough space is reserved on the
disk to fit in all the records you plan to store. If you omit this clause,
DATATRIEVE initially allocates 0 blocks for the file and adds blocks as
records are stored.

+ SUPERSEDE to eliminate a previous version of a file when you create a new
one. For this option to take effect, you must include the number of the version
you are superseding in the file specification contained in the domain defini-
tion. If you do not include the keyword SUPERSEDE or do not specify a ver-
sion number, DATATRIEVE assigns the new file the next higher version
number.

* MAX to specify that records containing variable length list fields occupy
enough space in a sequential file to accommodate the maximum number of
occurrences defined for the list field. This wastes storage space, but lets you
add more list items to a record after storing it in a sequential file.

11-6 Defining Data Files



Here is an example of a DEFINE FILE command that contains all but the MAX
option from this section. (The domain definition specifies the file
DBA2:(BELLJFAMILY.DAT;1.) Note that you specify a KEY clause last:

DTR)Y DEFINE FILE FOR FAMILIES ALLOCATION = 38,
SUPERSEDE,
KEY = FATHER C(DUF)

11.3.2 Using RMS Utilities to Load and Maintain Files

If you are creating large data files or indexed files that contain many keys, you
should use Record Management Services (RMS) utilities to create and load your
files and to periodically maintain them. Doing this can improve DATATRIEVE
response time. Using RMS utilities, you can:

» Consolidate disk storage of data and indexes

It requires fewer read operations to a disk when the data and indexes are not
scattered among many sections of the disk. (Data and indexes can get scat-
tered as you update and add to the file.)

o Adjust parameters for input-output operations so that they best accommodate
the size of the record

It is often better for input-output operations to transfer more than one record
at a time. One record at a time is the DATATRIEVE default.
11.4 Restructuring a Domain

If you have not stored data in a file or do not want to keep data already stored,
you can simply enter a new DEFINE FILE command to:

e Change file organization, storage options, or keys

e Create a file that incorporates changes made to a record definition

If you want to save records you have stored in a file, the commands and state-
ments you enter depend on the changes you want to make.

11.4.1 Changing Only File Organization, Storage Options, and Keys

Example 11-2 illustrates the procedure you can follow when you want to make
the following changes but do not want to lose data you have already stored:

e Change file organization from sequential to indexed or the reverse

e Add, delete, or change keys for an indexed file

Defining Data Files 11-7



* Reserve more storage space for future file expansion (ALLOCATION clause)

* Reserve maximum storage space for each variable length record (MAX)

Example 11-2 changes EMPLOYEES.DAT from an indexed file to a sequential
one. Comment lines begin with an exclamation point (!) and explain the next
input line.

Example 11-2: Restructuring a Domain to Change File Organization

DTRY ! Set up READ access to the ariginal domain. lUse an alias

DTRY ! to identify the relationship between the record definition and
DTRY ! the old file. (OLD is the alias in this example but you can
DTR} ! select another if you prefer.)

DTR) !

DTR)Y READY EMPLOYEES AS OLD

DTR) !

DTRY ! Create an empty file with the DEFINE FILE command of your

DTRY ! choice,

DTR) !

DTR) DEFINE FILE FOR EMPLOYEES

DTR) !

DTR} ! Set up WRITE access to your restructured domain. Use an alias
DTRY ! to identify the relationship between the record definition and
DTR} ! the new file. (NEW is the alias in this example but you can
DTRY ! select another if you prefer.)

DTR) !

DTR) READY EMFLOYEES AS NEW WRITE

DTR) !

DTRY ! Store records in the new file with a Restructure statement.
DTRY !

DTR) NEW = 0OLD

DTR) !

DTR> ! End access to NEW and 0OLD.

DTRY 1

DTRY FINISH NEW, 0OLD

DTR) !

DTR) i You can now ready the domain with its given name and can
DTRY ! access records in the new file.
DTR»

Before you start the restructure operation to create a new data file, find out the
version number of the data file you are using for the domain. If you make a
mistake or if the system fails in the middle of the restructure operation, you can
delete all files with version numbers higher than this one and start the restruc-
ture operation again. The file the domain uses depends on how it is specified in
the domain definition:

* If no version number is included on the file specification in the domain defini-
tion (usually it is not), then the domain uses the file of that name with the
highest version number in the directory where it is stored. Exit DATATRIEVE
and find out what this version number is and write it down.

11-8 Defining Data Files



D

« If a version number is included in the file specification in the domain defini-

tion, write down the version number. Restructuring a domain that contains a
file specification with a version number involves a step not included in
Example 11-2. After you ready OLD for READ access but before you define a
new file, edit the domain definition to remove the version number from the
file specification. Then continue with the DEFINE FILE command.

11.4.2 Changing the Fields Defined in the Record Definition

You can make some record definition changes without performing a restructure
operation. You can:

Add, change, or remove QUERY _ HEADER and EDIT_STRING clauses
Change field names or add, change, or remove QUERY _ NAME clauses

If you have any procedures stored that use the old field or query names,
remember to change these names in the procedures.

Add DEFAULT or MISSING VALUE clauses

It is your responsibility, however, to make sure the value you specify agrees
with any default values already stored in the file.

Add group fields

You have to be careful when adding group fields if there are REDEFINES
fields in the record. In this case, before you add group fields, you might want
to review the rules that apply to the REDEFINES clause. Refer to the
REDEFINES clause in VAX DATATRIEVE Reference Manual for more
information.

You must restructure a domain if you want to do any of the following:

Add new fields to the record.
Change the order of the fields in the record.

Increase the size of a field.

e Eliminate some fields from the record.

Defining Data Files 11-9



* Decrease the size of a field or change its data type.

If you decrease the size of a field or change the type of data it stores, the
existing values in records for that field can be truncated or stored incorrectly.
This is just a warning. You can still decrease field size if you:

— Plan to store new values for that field in all the records

— Intend to decrease the size a text field (a field with Xs or A’s in the PIC
clause) that has too many character positions for any values it needs to
store

Example 11-3 illustrates the steps you follow to change the record definition
describing data already stored. The comment lines start with an exclamation
point (!) and explain the input line that follows. To put the example in context,
assume you want to change the size of the ZIP field in EMPLOYEES__REC

from 5 to 9 characters.

Example 11-3: Restructuring a Domain to Change the Record Definition

DTR) If NO EDIT_BACKUFP is in effect during your DATATRIEVE
DTR) session (SHOW EDIT will tell you if it is), you should
DTR) enter the following command to ensure that the old version

!
!
!
DTR} ! of your record definition is not deleted. If something goes
!
!
|

DTR) wrong during the restructure operation, you will need to
DTR? use the old version again.

DTR) !

DTR} SET EDIT_BACKUP

DTR) !

DTRY> ! Set up READ access to the ariginal domain. lUse an alias

DTRY ! to identify the relationship between the record definition and
DTRY ! the old file. (OLD is the alias in this example but you can
DTR) ! select another if you prefer.)

DTRY !

DTR) READY EMPLOYEES AS OLD

DTR) !

DTR? Edit the record definition. Do not change any field names.
DTR? If you do, DATATRIEVE will not be able to store the field

!
!
DTR} ! values. You can edit the record definition to change field
DTRY> ! names after the restructure aperation is completed.

1

DTR) !
DTR)> EDIT EMPLOYEES_REC

11-10 Defining Data Files



DTR>

I

DTR) !

DTR) ! Create an empty file with the DEFINE FILE command of your
DTRY ! choice.

DTR) !

DTR) DEFINE FILE FOR EMPLOYEES KEY = EMPLOYEE-ID

DTR) !

DTR)Y ! Set up WRITE access to the restructured domain. Use an alias
DTRY ! to identify the relationship between the record definition and
DTRY ! the new file. (NEW is the alias in this example but you can
DTRY ! select another if you prefer.)
DTRY !
DTR)> READY EMPLOYEES AS NEW WRITE
DTRY !
DTR} ! Store records in the new file with a Restructure statement.
DTRY !
DTRY NEW = OLD

1

DTRY !

DTRY ! End access to OLD and NEW.
DTR) !

DTR) FINISH OLD, NEW

DTR) !

DTR? i You can now ready the domain with its given name and
DTRY ! DATATRIEVE accesses records in the new file.
DTR?

Before you start the restructure operation to change a record definition, find out
the version numbers of the data file and record definition you are using for the
domain. If you make a mistake or if the system fails in the middle of the res-
tructure operation, you can delete all files and record definitions with version
numbers higher than the ones with which you started. You can then start the
restructure operation again.

The data file the domain uses depends on how it is specified in the domain
definition:

e If no version number is included in the file specification in the domain defini-
tion (usually it is not), then the domain uses the file of that name with the
highest version number in the VMS directory where it is stored. Exit
DATATRIEVE and find out what this version number is and write it down.

o If a version number is included in the file specification in the domain defini-
tion, write down that version number. Restructuring a domain that contains a
file specification with a version number involves a step not included in
Example 11-3. After you ready OLD for READ access but before you define a
new file, edit the domain definition to remove the version number from the
file specification. Then continue by editing the record definition and defining
