

)

VAX DATATRIEVE
Handbook

Order No. AA-W675B-TE

November 1987

This manual contains general information on using
VAX DATATRIEVE.

OPERATING SYSTEM: VMS

MicroVMS

SOFTWARE VERSION: VAX DATATRIEVE V4.1

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should r
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1984, 1985, 198 7 by Digital Equipment Corporation. All Rights
Reserved.

The postage-paid Reader's Comments forms at the end of this document request
your critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECnet
DECUS
MicroVAX
MicroVMS

PDP
RALLY
Rdb/ELN
RdbNMS
ReGIS
TDMS
TEAMDATA
UNIBUS

VAX
VAXcluster
VAXinfo
VAX Information Architecture
VAXNMS
VIDA
VMS
VT

IBM® is a registered trademark of International Business Machines Corporation.

C

)

Contents

How to Use This Manual xiii

Technical Changes and New Features XIX

Part I Getting Started with DATATRIEVE

1 Getting Started with VAX DATATRIEVE
1.1 What Is DATATRIEVE? . 1-1
1.2 Create and Use a VMS Directory. 1-2
1.3 Obtain a COD Directory and Start DATATRIEVE. 1-6
1.4 Look at Some Sample Definitions and Data 1-9
1.5 End Data Access and Exit DAT A TRI EVE. 1-14
1.6 Create a Dictionary Subdirectory . 1-15
1.7 CreateaSimpleApplication 1-16

1. 7 .1 Use ADT to Create Data Definitions and a File. 1-1 7
1. 7 .2 Store Records . 1-20
1. 7 .3 Display Data . 1-21
1. 7.4 Change Field Values 1-22
1. 7 .5 Change Domain Structure. 1-23
1. 7.6 Create a Table . 1-24
1. 7. 7 Write a Procedure . 1-27

1.8 What Do I Read Next? 1-29
1.9 What DAT A TRI EVE Can Do for the Programmer 1-29

2 VMS Concepts
2.1 UsingDIGITALCommandLanguage(DCLl 2-1
2.2 Logging In . 2-2

2.2.1 Getting the Terminal Ready. 2-2
2.2.2 Gaining Access to the System. 2-3

2.3 Getting Online Help . 2-4
2.4 Entering Commands. 2-4

2.4.1 Command Prompting. 2-5
2.4.2 Defaults. 2-6
2.4.3 Abbreviating Commands. 2-6
2.4.4 Recovering from Errors . 2-6
2.4.5 Summary of Entering Commands 2-7

2.5 Interpreting System Responses . 2-8
2.5.1 Information Messages . 2-8
2.5.2 Error Messages . 2-8

iii

2.6 Logging Out . 2-9

2. 7 File Management. 2-9 ,,...
2.7.1 Creating Files 2-10 \. ·
2.7.2 Identifying Files 2-10

2.7.2.1 Nodes 2-10
2.7.2.2 Devices 2-11
2.7.2.3 Directories and Subdirectories 2-11
2. 7 .2.4 File Na mes, Types, and Versions. 2-11
2.7.2.5 Wildcard Character 2-12

2.7.3 Deleting Files 2-13
2.7.4 PurgingFiles 2-13
2. 7 .5 Displaying Files at Your Terminal 2-14

2.7.6 PrintingFiles 2-14
2. 7. 7 Listing Files in a Directory. 2-15
2.7.8 Copying Files 2-15
2.7.9 RenamingFiles 2-16
2.7.10 Appending Files 2-17
2. 7 .11 Finding Differences Between Files 2-1 7

2.7.12 Searching Files for a Selected String 2-17

2.8 CreatingandManagingVMSDirectories 2-18 c·
2.8.1 Directory Structure 2-18 .. .
2.8.2 Accessing Other Directories 2-19
2.8.3 Creating Subdirectories . 2-20
2.8.4 Changing Your Default Directory. 2-20
2.8.5 Protecting Your Directories and Files 2-21
2.8.6 Deleting a Directory 2-23

2.9 Logical Names . 2-23

2.10 System Default Logical Names. 2-24

2.11 Symbols . 2-26

2.12 Command Procedures . 2-27

2.12.1 A LOGIN.COM File 2-28

2.13 Finding More Information. 2-28

3 Using Editors Within DATATRIEVE
3.1 General Editing Information . 3-2

3.1.1 AssigningaDATATRIEVEEditor 3-2
3.1.2 Using Line Recall Within DAT A TRIEVE. 3-3

iv

)

3.1.3 Using the DATATRIEVE EDIT command. 3-5
3.1.3.1 Editing the Previous DATATRIEVE Command or

Statement. 3-5
3.1.3.2 Privileges Needed to Edit CDD Objects 3-7
3.1.3.3 Editing a CDD Object Specified by Path Name 3-7
3.1.3.4 EditingbyTypesofObjects Within DATATRIEVE 3-7
3.1.3.5 Using EDIT to Recover from a System Failure 3-8

3.2 UsingEDTWithinDATATRIEVE 3-9
3.3 UsingVAXTPU Within DATATRIEVE 3-11
3.4 Using LSE within DATATRIEVE 3-13
3.5 Ending Your Editing Session. 3-16

3.5.1 Ending an EDT Session 3-16
3.5.2 Ending a V AXTPU Session . 3-17
3.5.3 Ending an LSE Session. 3-17

4 Using Syntax Diagrams
4.1 Uppercase Words in Syntax Diagrams 4-4
4.2 Lowercase Words in Syntax Diagrams 4-4
4.3 Brackets and Braces in Syntax Diagrams 4-4
4.4 Separators in Syntax Diagrams . 4-5

Part II Controlling your DATATRIEVE Environment

5 Input Options During a DATATRIEVE Session
5.1 Invoking DATATRIEVE . 5-1
5.2 Creating a Startup Command File (DTR$ST ARTUPl 5-2
5.3 Exiting DAT ATRIEVE . 5-3
5.4 Getting DAT A TRIEVE to Process More Than One Line as a Unit. . . 5-4

5.4.1 Turning Off the "Looking for ... " Messages 5-5
5.4.2 Using Standard Programming Conventions to Format Input . . 5-5

6 Getting Online Assistance
6.1 Using Help. 6-1
6.2 Getting Help on Errors . 6-2
6.3 Guide Mode . 6-3

7 Using the VAX Common Data Dictionary
7.1 What Is the CDD? . 7-1

~ 7.2 How Is the CDD Organized? . 7-2

V

7 .3 Creating and Using Path Na mes. 7-4
7.3.1 UsingFullPathNames 7-5 ,...
7.3.2 Version Numbers . 7-6 '-
7.3.3 Abbreviating Path Names . 7-7
7.3.4 The Logical Name in Dictionary Path Names. 7-7

7.4 Setting Dictionary Location . 7-9
7.5 Displaying Information About Directories, Objects, and Session

Defaults . 7-9
7 .6 Deleting, Purging, and Extracting Definitions 7-12
7. 7 Creating Dictionary Directories . 7-14
7 .8 Deleting Dictionary Directories . 7-15
7 .9 Displaying and Setting Protection for Directories and Objects 7-16

7.9.1 Displaying Your Privileges 7-18
7.9.2 Displaying and Changing an ACL 7-21

7.10 Using the CDD to Design Department-Wide or System-Wide
Applications 7-23

Part Ill Setting Up a Database

8 Application Case Study: a Personnel System
8.1 Reviewing the Requirements 8-1
8.2 Analyzing the Data. 8-4
8.3 Grouping Fields into Domains and Tables 8-6

9 Defining Records
9.1 Setting Up Relationships Among Fields (Level Numbers) 9-3
9.2 Selecting Names 9-5

9.2.1 Differences Between Record Name and Top-Level Field 9-6
9.2.2 Query Names 9-7
9.2.3 Column Headers. 9-7
9.2.4 FILLER Field Name 9-8

9.3 Specifying Type and Size of Data 9-9
9.3.1 Specifying a PIC Clause 9-9

9.3.1.1 Defining Alphanumeric (X) and Alphabetic (A) Fields .. . 9-10
9.3.1.2 Defining Numeric Fields 9-11

9.3.2 Specifying a USAGE Clause 9-12
9.3.3 Date Fields 9-15
9.3.4 Virtual (Computed) Fields . 9-15
9.3.5 Defining One Record Area in Different Ways Using the

REDEFINES Clause 9-16

C

9.3.6 Specifying Repeating Fields Using the OCCURS Clause 9-17
9.4 Formatting the Display of Field Values 9-20 ~

vi

)

9.5 Including Validation Requirements 9-23

9.6 Initializing Field Values 9-23

9. 7 Specifying Values to Be Ignored in Statistical Computations 9-23

9.8 Ending Field and Record Definitions 9-24

9.9 Editing Record Definitions 9-24

10 Defining Domains

11

10.1 Naming the Domain . 10-2

10.2 Specifying the Record Name . 10-3

10.3 Specifying the Data File . 10-3
10.3.1 How Much of the File Specification to Include 10-3
10.3.2 Avoiding Problems When Naming Files 10-4

Defining Data Files
11.1 Defining Indexed Files . 11-2

11.1.1 Selecting the Primary Key . 11-3
11.1.2 Selecting Alternate Keys . 11-4
11.1.3 Selecting Group Field Keys 11-4

11.2 Defining Sequential Files . 11-5

11.3 Planning for File Maintenance . 11-6
11.3.1 Using Other Options in the DEFINE FILE Command 11-6
11.3.2 Using RMS Utilities to Load and Maintain Files 11-7

11.4 Restructuring a Domain 11-7
11.4.1 Changing Only File Organization, Storage Options, and Keys . 11·7
11.4 .2 Changing the Fields Defined in the Record Definition 11-9
11.4.3 Restructuring a Domain to Add Its Records to Another

Domain 11-12

12 Defining Tables
12.1 CreatingDictionaryTables 12-2

12.2 Creating Domain Tables. 12-3

12.3 Using DATATRIEVE Tables 12-4
12.3.1 Access Privileges Needed to Use Tables 12-5
12.3.2 Accessing Values in Tables. 12-5
12.3.3 Editing Table Definitions 12-7
12.3.4 Validating Values with Tables 12-8

12.4 Choosing Between Dictionary and Domain Tables 12-8

vii

Part IV Data Retrieval and Maintenance

13 Starting and Ending Access to Data
13.1 Readying Domains . 13-3

13 .1.1 Defining Your Own Default Access 13-5

13.2 Finishing Domains . 13-6

14 Retrieving Data the Easy Way: With Collections
14.1 Specifying the Records You Want in a Collection 14-4

14.2 Forming and Naming Collections 14-6

14.3 Choosing a Target Record for an Operation 14-7

14.4 Restricting Record fields to the Ones You Need 14-10

14.5 Sorting Records 14-12

14.6 Forming a Collection from Two or More Record Sources14-14

14. 7 Removing Records from a Collection14-15

14.8 Removing Collections from Your Workspace 14-16

14.9 Disadvantages of Using Collections 14-16

15 Accessing Data the Expert Way: Without Collections
15.1 Processing Records from Domains Rather Than Collections 15-1

15.1.1 Ensuring Fast Access 15-1
15.1.2 Processing Records in Compound Statements 15-4

15.2 Creating RSEs 15-7

15.3 Working with Multiple Records 15-9
15.3.1 FOR Statement Looping Errors 15-10
15.3.2 CROSS Clause Looping Errors 15-10
15.3.3 Lists, the "Record" Within the Record 15-11

15.4 Creating Views 15-14
15.4.1 View Domains That Subset Fields from One Domain 15-14
15.4.2 View Domains That Combine Fields from Two or More

Domains . 15-1 7

15.5 Access Privileges Needed for Using Views15-19

15.6 Summary of Options: Advantages and Disadvantages 15-20

16 Maintaining Data
16.1 Storing Records. 16-1

C

16.2 Erasing Records. 16-5 I'
16.3 Modifying Records .16-10 '1..,.,

viii

)

Part V Programming with DATATRIEVE

17 Using Procedures and Compound Statements

18

17.1 Creating and Executing Procedures 17-1
1 7 .2 Correcting and Changing Procedures 1 7-4
1 7 .3 Using Compound Statements. 1 7-5

17.3.1 Combining Statements with the REPEAT Statement 17-7
17.3.2 Combining Statements with the FOR Statement 17-7
17.3.3 Combining Statements with the Keyword THEN 17-8
17.3.4 Combining Statements in a BEGIN-END Block 17-8
17.3.5 Combining Statements with the WHILE Statement 17-9
17 .3.6 Combining Statements with the IF-THEN and IF-THEN-

ELSE Statements 17-10
17.3.7 Combining Statements with the CHOICE Statement 17-11

1 7.4 Guidelines for Writing Procedures and Compound Statements 1 7-12
17.4.1 Using FIND, SELECT, SORT, REDUCE, and DROP

Statements 17-13
17.4.2 Avoiding Looping Mistakes 17-13
1 7.4.3 Invoking DAT A TRI EVE Procedures from VMS Command

Files 17-14
1 7.4.4 Controlling Execution on Error Conditions1 7-14

17.5 Getting a Procedure to Work the Way You Want 17-16
17.5.1 Displaying Command File and Procedure Input During

Execution 17-16
1 7 .5.2 Writing a Session Log to a File.1 7-18
17.5.3 Checking the Last Word or Characterof Input Lines 17-18

Defining and Calculating Values with DATATRIEVE
18.1 Using DATATRIEVE Expressions 18-1

18.1.1 Value Expressions. 18-2
18.1.1.1 Literals . 18-3
18.1.1.2 Record Field Names 18-4
18.1.1.3 Variable Field Names. 18-4
18.1.1.4 Prompting Value Expressions 18-6
18.1.1.5 Arithmetic Expressions . 18-7
18.1.1.6 Conditional Value Expressions. 18-8
18.1.1.7 FORMAT Value Expressions 18-10

18.1.2 Boolean Expressions 18-10
18.1.2.1 Relational Operators 18-11
18.1.2.2 Boolean Operators 18-14

ix

18.2 Computing Sums and Other Statistics 18-16
18.2.1 Statistical Value Expressions 18-16
18.2.2 Using the SUM Statement and Statistical Value Expressions ("

with the CURRENT Collection 18-20
18.3 Storing and Displaying Date and Time 18-22

18.3.1 Storing and Displaying Values in Date Fields 18-23
18.3.2 Comparing and Searching for Date Values 18-26
18.3.3 Subtracting Values from a Date Field 18-28

Part VI Formatting Displays and Writing Reports

19 Improving Screen Displays and Controlling Output
19.1 Optimizing Space in Display Lines 19-1

19.1.1 Adjusting Screen Width and the Columns-Page Setting 19-2
19.1.2 Using the LIST Statement. 19-2
19.1.3 Writing a Simple Procedure to Segment Record Display 19-3
19.1.4 Overriding Column Header Defaults with the PRINT

Statement . 19-4
19.1.5 Using Edit Strings to Optimize Display Space 19-6
19.1.6 Using Concatenation Characters to Conserve Line Space . . . 19-7

19.2 PRINT Statement Options . 19-9
19.2.1 PRINT Statement Format and Print List Elements 19-9
19.2.2 UsingPrintListModifiers 19-13
19.2.3 Sending Output to a File or Printer 19-13

20 Writing Reports
20.1 Entering the REPORT Statement. 20-4
20.2 Controlling Headers and Other Report Settings. 20-5
20.3 Specifying Detail Lines 20-10

20.3.1 Specifying and Formatting Values in a Detail Line 20-10
20.3.2 Spacing Values in a Detail Line Across the Page 20-10

20.4 Handling Control Groups .. 20-12
20.4.1 Sorting Records According to Control Group Key Values 20-13
20.4.2 Printing Control Group Headers 20-13
20.4.3 Printing Control Group and Report Summaries 20-13

20.5 Including a Title Page for the Report 20-16
20.6 Exiting the Report Writer and Correcting Mistakes 20-19

Part VII Appendixes and Index

A DATATRIEVE Keywords

B Sample Record, Table, and View Definitions

X

)

C DATATRIEVE Sort Order

D Edif String Characters

Index

Examples
9-1 Sample DAT ATRIEVE Record Definition. 9-2

10-1 Defining a Sample Domain 10-2

11-1

11-2

11-3

12-1

12-2

13-1

14-1

15-1

15-2

15-3

16-1

16-2

16-3

16-4

16-5

16-6

Defining a Data File. 11-1

Restructuring a Domain to Change File Organization 11-8

Restructuring a Domain to Change the Record Definition 11-10

Defining a Dictionary Table. 12-2

Defining a Domain Table 12-4

Starting and Ending Access to Data 13-2

Creating and Using a Collection 14-1

Including RSEs in Statements . 15-2

Using RSEs in Compound Statements 15-4

Defining and Using a View. 15-14

Storing Records Interactively. 16-1

Storing Records in a Procedure 16-3

Erasing Records by First Creating a Collection 16-5

Erasing Records Using a FOR Statement RSE 16-8

Modifying Records by First Creating a Collection 16-11

Modifying Records in a FOR Statement RSE 16-13

17-1 Creating a DATATRIEVE Procedure 17-2

18-1 Using Statistical Value Expressions 18-18

18-2 Using the SUM Statement and Statistical Value Expressions with
the CURRENT Collection 18-20

18-3 Storing and Displaying Values in Fields Defined as USAGE DATE .18-24

18-4 Comparing and Searching for Date Values 18-26

20-1 Sample Report. 20-2

20-2 Using SET Statements to Vary Report Format 20-7

20-3 Varying the Format of Detail Lines 20-11

20-4 Including Control Groups in a Report 20-14

20-5 Creating a Title Page 20-1 7

xi

xii

Figures
1-1 Organization of PHONES Domain .
2-1 Sample VMS Directory Structure
4-1 Sample Syntax Diagram .. .
7-1 CDD Structure
7-2 Sample CDD
8-1 Domains and Tables in Sample Personnel System
9-1 Logical Model of EMPLOYEES_REC

Tables
2-1 Default File Types
2-2 Examples of the DELETE Command
2-3 System Default Logical Names
4-1 Notation Used in Syntax Diagrams
7-1 Specifying Version Numbers
7-2 SHOW Command Options
7-3 Access Control Privileges ..
7-4 Access Privilege Requirements for Commands and Statements
8-1 Fields for Personnel System .
9-1 Picture String Characters.
9-2 Relating Numeric Picture Strings to Stored Values
9-3 USAGE Clause Options .
9-4 Editing Text Fields.
9-5 Editing Numeric Fields
9-6 Editing Date Fields
13-1 Access Options
13-2 Access Modes
13-3 Multiuser Access

1-17
2-19

4-2
7-2
7-3
8-9
9-3

2-11
2-13
2-25

4-3
7-6

7-10
7-17
7-19

8-5
9-10
9-11
9-13
9-21
9-21
9-22
13-4
13-4
13-5

18-1 Value Expressions . 18-2
18-2 Arithmetic Operators . 18-7
18-3 Relational Operators 18-11
18-4 Statistical Functions and Results 18-17
19-1 Print List Elements 19-12
19-2 Print Item Modifiers 19-13
20-1 Report Writer SET Statement Options. 20-6
A-1 DATATRIEVE Keywords . A-1
A-2 DATATRIEVE Function Names . A-5
C-1 DAT A TRI EVE Sort Order . C-1
D-1 Edit String Characters . D-1

r

(

)

How to Use This Manual

This manual describes how to use the statements and commands of the VAX
DAT A TRI EVE query language (sometimes simply called DAT ATRIEVEt to carry
out data processing tasks. It provides some tutorial information about describing
data and creating procedures for users who are developing data processing skills.

Intended Audience

This manual is intended for users who are in one of two categories:

• Those who have limited or no experience with computer languages and are
unfamiliar with the basic elements of DAT A TRI EVE

• Those who have experience using languages like COBOL or BASIC and want
introductory information about DAT A TRI EVE

Operating System Information

Information about the versions of the operating system and related software that
are compatible with this version of VAX DAT ATRIEVE is included in the VAX
DAT ATRIEVE media kit, in either the Installation Guide or the Before You
Install letter.

Contact your DIGITAL representative if you have questions about the compatibil­
ity of other software products with this version of VAX DAT ATRIEVE. You can
request the most recent copy of the VAX System Software Order Table/Optional
Software Cross Reference Table, SPD 28.98.xx, which will verify which versions
of your operating system are compatible with this version of VAX DAT A TRIEVE.

xiii

Structure

This manual is divided into seven parts:

Part I

Part II

Part III

Part IV

PartV

Part VI

Part VII

xiv

Getting Started with DAT A TRIEVE

Provides an overview of concepts important to people just
starting to use DATATRIEVE on VMS systems
(Chapters 1 to 4).

Controlling Your DAT A TRI EVE Environment

Contains information about startup options, online assistance,
and the VAX Common Data Dictionary (Chapters 5 to 7).

Setting Up a Database

Leads you through the process of deciding how to organize a
database and create the needed data definitions and files
(Chapters 8 to 12).

Data Retrieval and Maintenance

Explains the data access options DAT A TRI EVE offers you (
and shows you how to store, erase, and modify records
(Chapters 13 to 16).

Programming with DAT A TRI EVE

Tells you how to create complex statements and procedures
and how to calculate values with DATATRIEVE
(Chapters 17 and 18).

Formatting Displays and Writing Reports

Shows you how to improve screen displays and use the
DATATRIEVE Report Writer (Chapters 19 and 20).

Appendixes and Index

Contains reference tables for DAT A TRIEVE keywords, sort
order, and editing characters; sample record, table and view
definitions; and an index.

)

Related Documents

For further information on the topics covered in this manual, you can refer to:

• VAX DATATRIEVE Release Notes

Includes specific information about the current DAT A TRIEVE release and
contains material added too late for publication in the other DAT ATRIEVE
documentation.

• VAX DATATRIEVE Installation Guide

Describes the installation procedure for VAX DAT A TRI EVE. The manual
also explains how to run User Environment Test Packages (UETPs), which
test DATATRIEVE product interfaces, such as the interface between
DATATRIEVE and RdbNMS.

• VAX DATATRJEVE Guide to Using Graphics

Introduces the use of DAT A TRI EVE graphics and contains the reference
material for creating DAT A TRI EVE plots.

• VAX DATATRIEVE Guide to Writing Reports

Explains how to use the DATATRIEVE Report Writer.

• VAX DATATRIEVE User's Guide

Describes how to use DATATRIEVE interactively. The manual includes
information on using DAT A TRI EVE to manipulate data and on using
DATATRIEVE with forms, relational databases, and database management
systems. It also describes how to improve performance and how to work with
remote data.

• VAX DATATRIEVE Reference Manual

Contains reference information for DATATRIEVE.

• VAX DATATRIEVE Pocket Guide

Contains quick-reference information about using DATATRIEVE.

• VAX DAT A TRI EVE Guide to Programming and Customizing

Explains how to use the DATATRIEVE Call Interface. The manual also
describes how to create user-defined keywords and user-defined functions to
customize DATATRIEVE and how to customize DATATRIEVE help and
message text.

xv

Conventions

This section explains the conventions for the syntax and symbols used in this
manual:

WORD

word

[]

{ }

ITABI

! GOLD-x I

II II

''

xvi

An uppercase word in a syntax format is a keyword. You must
include it in the statement if the clause is used.

A lowercase word in a syntax format indicates a
syntax element that you supply.

Square brackets enclose optional clauses from which you can
choose one or none.

Braces enclose clauses from which you must choose one
alternative.

This symbol indicates the RETURN key. Unless otherwise
indicated, end all user input lines in examples by pressing the
RETURN key.

This symbol indicates the TAB key.

This symbol tells you to press the CTRL (control) key and hold
it down while pressing a letter key. If you press CTRL/Z, the
word Exit appears in reverse video; if you press CTRL/Y, the
word Interrupt appears in reverse video. Examples of video
output in this book do not include either word; instead the
conventions "Z and "Y are used.

This symbol indicates that you press the GOLD key and then a
specified letter key consecutively.

These are double quotation marks.

These are single quotation marks.

A horizontal ellipsis in syntax formats means you can repeat
the previous item.

A horizontal ellipsis in examples means that information not
directly related to the example has been omitted.

C

Color

A vertical ellipsis in syntax formats means you can repeat the
syntax element from the preceding line.

A vertical ellipsis in examples means that information not
directly related to the example has been omitted.

Color in examples shows user input.

Since CDD Version 3.1, CDD path names include a leading underscore. For
example:

DTR> SHOW DICTIONARY
The default dictionary is _CDD$TOP.DTR32.WEAGER

Examples of the output in DATATRIEVE manuals do not reflect this change.
You do not need to enter CDD path names with the leading underscore.

References to Products

VAX DAT A TRI EVE is a member of the VAX Information Architecture, a group
of products that work with each other and with VAX languages conforming to the
VAX calling standard to provide flexible solutions for information management
problems.

VAX Informatioh Architecture documentation explaining how these products
interrelate is included with the VAX CDD documentation. VAX Information
Architecture documentation is also available separately. Contact your DIGITAL
representative.

The VAX DAT A TRI EVE documentation to which this manual belongs often
refers to products that are part of the VAX Information Architecture by their
abbreviated names:

• VAX CDD software is referred to as CDD.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX DBMS software is referred to as DBMS.

• VAX Rdb/ELN software is referred to as Rdb/ELN.

• VAX RdbNMS software is referred to as RdbNMS.

xvii

• VAX TDMS software is referred to as TDMS.

• VIDA software is referred to as VIDA.

This manual uses the terms relational database or relational source to refer to all
three of these products:

• VAX Rdb/ELN

• VAX RdbNMS

• VIDA

xviii

C

Technical Changes and New Features

This section describes the technical changes and new features for VAX
DAT A TRI EVE that are documented in this manual.

Version 4.1

Chapters 1 and 3 of this manual include the following new information:

• Using the arrow keys or CTRL/B for line recall

• Using LSE and VAXTPU with DATATRIEVE

Line recall ability is new with Version 4.1. LSE and VAXTPU were new
DATATRIEVE features with Version 4.0 and 3.4, respectively.

Each new feature was documented in the VAX DATATRIEVE Release Notes for
its particular release and in online help. With Version 4.1, these features are now
included this manual.

All new features since Version 3.0 are described in online help. To read a descrip­
tion of these new features from within DATATRIEVE, refer to the online help:

DTR> HELP New_Features

XIX

,

)

J

)

Part I
Getting Started with DATATRIEVE

;,.

C

. .,.

)

Getting Started with VAX DAT ATRIEVE 1

This chapter introduces you to DATATRIEVE and the VMS operating system by
asking you to enter some commands and statements to perform simple tasks.

If you have limited programming experience, working through the examples in
this chapter gives you experience describing, storing, and displaying data with
DATATRIEVE. This experience provides a foundation for the more detailed dis­
cussion of the same topics in other chapters.

If you are an experienced programmer but have not used a VAX computer sys­
tem or DAT ATRIEVE before, simply reading this chapter can help you spot
differences between using DAT ATRIEVE and using other programming lan­
guages. See the section later in this chapter for a summary of how DATATRIEVE
differs from other computer languages and what advantages it offers.

1 . 1 What Is DAT A TRI EVE?

DAT ATRIEVE is an interactive language and report-writing tool that can help
you keep information organized and up-to-date efficiently, quickly, and
accurately. You tell DAT ATRIEVE what to do by typing commands and state­
ments at your keyboard, and DAT ATRIEVE does the tasks you request. The
commands and statements you use are similar to the sentences you would use
when asking a person to do the same data management jobs. DATATRIEVE,
however, can do these jobs faster, more efficiently, and more accurately than
you or any other human being can.

1-1

DAT ATRIEVE is a tool for managing information organized as collections of
interrelated data, or databases. You use DATATRIEVE to query and report on a
database. DAT ATRIEVE can access three types of databases:

• File-structured databases that you set up with DATATRIEVE, RMS, or a
programming language

• Databases that you create using VAX Rdb/VMS, VAX Rdb/ELN, or VIDA

• Databases that you create using VAX DBMS

Examples in this book show you how to create your own file-structured data­
bases. The VAX DATATRIEVE User's Guide explains how to access data stored
in DBMS and relational databases. For the remainder of this book, the term
database is used to ref er to data stored in files. This term is sometimes used in
other documentation to refer only to data stored by database management sys­
tems such as DBMS or the VAX relational database products.

1.2 Create and Use a VMS Directory

This section shows you how to use several system commands important to the
DATATRIEVE user. You need no experience with the VMS operating system or
with DATATRIEVE. You should have an account on your system and know how
to log in and out.

When you log in, you see a dollar sign ($) prompt on your terminal screen. This (
prompt indicates that you are at the system command level. The dollar sign ($)
prompt is the VMS default. If you or your system manager change the default
with the DCL SET PROMPT command, you see the changed prompt instead. At
the system command level, you communicate with the VMS operating system
using the DIGITAL Command Language (DCL). Later, when you use
DATATRIEVE, you are at DATATRIEVE command level, indicated by a DTR>
prompt. At this level, you use the DAT ATRIEVE language to perform most of
your data management tasks. There are a few concepts, however, that you need
to know about the system command level before you start working with
DATATRIEVE.

When you log in to your system, you are assigned to a VMS directory. A direc­
tory is a way of defining and protecting your storage space on the computer sys­
tem. The data that you will store, modify, and display with DATATRIEVE is
stored in files that reside in a VMS directory.

1-2 Getting Started with VAX DATATRIEVE

The directory you use when you log in is your main directory. It is sometimes
referred to as your login directory. You can check which VMS directory you are
using by typing SHOW DEFAULT at the dollar sign($) prompt and then press­
ing the RETURN key. You can check what your directory contains by typing
DIRECTORY and then pressing the RETURN key.

------------- Note ------------­

Pressing RETURN tells the system that you want it to process the
line you have typed. This book doe& not use a symbol to tell you when
to press RETURN. Therefore, unless the examples in this book indi­
cate otherwise, press the RETURN key to enter each line you type.

The following example shows the results of a DIRECTORY command entered
from his main directory by someone with the user name BELL. When you enter
the command, you see your user name in place of BELL. In addition, your dis­
play might be different from the one in the example. For example, if there is
nothing in your directory, the system displays the message "No files found."

$ DIRECTORY

Directory DBA1 : [BELLl

HELLO.LIS;2

Total of 4 files.
$

HELLO.LIS;! LOGIN .COM; 1 MAIL.MAI;!

The names of files in a directory listing contain three parts in the following
format:

filename. type ;version

Filename is the given name of the file, generally what you think of first when
you are choosing a name for a file. HELLO, LOGIN, and MAIL are the file
names in Bell's directory display.

Type indicates the kind of file it is. The file types in Bell's display are .LIS,
.COM, and .MAI. Although you can choose up to 39 characters for the type,
naming conventions help you identify the type of file you are using. For exam­
ple, the file type:

• .LIS indicates a file you can print or display

• .COM indicates a procedure you can execute

• .MAI indicates a file that stores messages you receive through the VMS MAIL
utility

Getting Started with VAX DATATRIEVE 1-3

Version is a decimal number from 1 to 32767 that indicates versions of a file.
Whenever you change the contents of a file by editing it, you do not destroy the
original contents of the file. You create a file with the same name and type, but
a higher version number. Older versions of the file remain in your directory
until you decide to get rid of them. (Chapter 2 tells you how to delete files.) In
Bell's directory display, all the files except HELLO.LIS have one version.
HELLO.LIS has two versions, HELLO.LIS;2 and HELLO.LIS;l.

You can always abbreviate DCL commands when you enter them. This saves
typing time and reduces the chance of typographical errors. Shortening commands
to the first four letters works for all DCL commands. You can shorten some
commands even more, to the first three or even two letters, as long as the abbre­
viation is not one that could refer to more than one DCL command. The system
understands when you type DIR, for example, that you mean DIRECTORY.

Even though abbreviating commands reduces the chances for typographical
errors, you will probably make a few during this session. When you make these
mistakes at the system command level, you usually receive a message that says
a parameter or delimiter is invalid. If you get such a message during this prac­
tice session, check what you have typed against the example. You probably
spelled a word incorrectly, ran two words together, omitted or changed punctua­
tion, or typed a space where the example did not have one. Simply reenter the
command using corrected spelling and format when this happens.

If you are using one of the the VTlO0-series terminal, another common error is (
to press the NO SCROLL key in place of the SHIFT key. NO SCROLL "freezes"
output to the terminal so that it appears your system has stopped working. Sim-
ply press NO SCROLL a second time to clear up this problem. (If you are like
most people, you then have to delete all the repeat characters you entered, or, if
you pressed RETURN, you will get a few error messages from the system. Sim-
ply try the command again when this happens.)

Storing all your computer files in your main directory is analogous to putting
all your paper files in the top drawer of a file cabinet. After you accumulate
more than a few files, it is difficult to find something when you want to use it.
A well-organized file cabinet keeps unrelated files in separate drawers. Simi­
larly, you can append subdirectories to your main VMS directory to store files
related to a specific task or subject matter.

The data files and other files that result from this session are temporary. It is
best, therefore, to create a VMS subdirectory to keep them apart from the other
files you are using. Use the CREATE/DIRECTORY command to do this. The
following example creates the subdirectory PRACTICE for user BELL. When
you enter the CREATE/DIRECTORY command at your own terminal, substi­
tute your user name for BELL. You can substitute another name for PRACTICE
if you want. If you choose another name, limit it to no more than 39 characters, I
and, for now at least, use only letters of the alphabet. '---·

1-4 Getting Started with VAX DATATRIEVE

$ CREATE/DIRECTORY £BELL.PRACTICE]
$

If you enter the DIR_ECTORY command again, you see your subdirectory listed
with the file type .DIR:

$ DIR

Directory DBA1 =CBELLl

HELLO .LIS;2
PRACTICE .DIR; 1

Total of 5 files.
$

HELLO .LIS; 1 LOCiIN .COM;l MAIL .MAiil

Use the SET DEFAULT command to set your directory location to your sub­
directory. Just as you cannot see the contents of a drawer in a file cabinet or
file anything there unless you open it first, you cannot see the contents of a
directory unless you either set your location to that directory or include the
directory name in your commands.

When you refer to a subdirectory, you type the name of its parent, your main
directory, then type a period(.), and finally the name you chose for it. In addi­
tion, note that you enclose a directory name within square brackets ([]). The
following example shows how user BELL sets his directory location to his sub­
directory PRACTICE and then checks its contents. In the example, MISC$DISK
is a system logical name that stands for the device DBAl:. Chapter 2 tells you
more about logical names.

$ SET DEFAULT £BELL.PRACTICE]
$ SH DEF
$ MISC$DISK =CBELL.PRACTICEJ
$ DIR

No files found.
$

You now have an empty directory in which to store your practice data files.

If you type a directory name incorrectly in a SET DEFAULT command and the
mistake is inside the brackets, the system does not return an error message.
However, you receive a directory not found message if you try to use the direc­
tory. In this case, you must enter another SET DEFAULT command with a cor­
rect directory name. If you ever get totally lost within a VMS directory
structure, you can always type SET DEFAULT SYS$LOGIN to get back to the
login directory.

Getting Started with VAX DATATRIEVE 1-5

1.3 Obtain a COD Directory and Start DATATRIEVE

The first time you use DATATRIEVE, you should run the NEWUSER program.
This program:

• Copies some sample data files into the VMS directory you are currently using

• Defines a Common Data Dictionary (CDD) directory for you

• Copies some sample data definitions into that dictionary directory

Just as you use an assigned VMS directory when you log in to your system, you
use an assigned dictionary directory when you run DATATRIEVE. Each sample
data file (stored on the system command level in a VMS directory) has cor­
responding record and domain definitions (stored on the DATATRIEVE com­
mand level in a dictionary directory). Just as the VMS directory defines and
protects your storage space for files, the dictionary directory defines and protects
your storage space for data definitions.

To run the NEWUSER program, make sure you are using the VMS subdirectory
you created for this practice session and enter the following command:

$ @DTR$LIBRARY=NEWUSER

The program responds with the following information:

NEWUSER helps new users to get started with DATATRIEVE. It gives
you the necessary files to perform the introductory examples in the
VAX DATATRIEVE Handbook and the examples in the VAX DATATRIEVE
User 1s Guide and Reference Manual .

NEWUSER is working ... It will take a few minutes.
All data copied successfully.

The following commands have been defined for you but you will need to
add them to your LOGIN.COM file for the next time you log in=

$ dtr32 == "syssystem=DTR32.EXE"
$ assign;process "cdd$top.dtr$users.bell" cdd$default
If you need help, see the person responsible for DATATRIEVE on your system.

To invoke DATATRIEVE just type = DTR32

The results that appear for user Bell are not exactly the ones you will get when
you run the NEWUSER program. If the display indicates that NEWUSER
has run successfully, write down the line from your display that begins with
dtr32 = = and the one that begins with assign/process. Add these lines to the
LOGIN.COM file in your main directory.

1-6 Getting Started with VAX DATATRIEVE

If no one defined a LOGIN.COM file for you when setting up your system
account or if you do not yet know how to edit a file, you can use the entries
from the following example. This example uses the EDT editor. If your
LOGIN.COM file already exists, you will see the first line of that file in place of
"Input file does not exist":

$ SET DEFAULT SYS$LOGIN
$ EDIT LOGIN .COM
Input file does not exist
[EOBJ
*C

At this point you are using an editing buffer. You can think of a buffer as an
unnamed section of storage space created for you to do some work. The [EOB]
marker indicates end of buffer. As you add text to the buffer, this marker moves
to a position just below your last line of input.

You can position the cursor using the arrow keys on your keyboard. The cursor
indicates where the characters you enter will go when you start typing. If you
position the cursor at the end of a line and press the RETURN key, you can
open up space below to enter a new input line. If you position the cursor at the
beginning of a line and press the RETURN key, you can open up space above to
enter a new input line. To correct typographical errors, you can press the
DELETE key to erase characters (including an accidental RETURN.) Pressing
the DELETE key erases the character just before the cursor. There are more
efficient ways to use an editor, but these suggestions will do the job until you
learn more about editing.

When you finish including the two lines in the file, press CTRL/Z (hold down
the CTRL key and Z at the same time). At the asterisk (*) prompt, type EXIT
and press RETURN. When you enter the EXIT command, the EDT editor cre­
ates the LOGIN.COM file or, if it already exists, a new version of that file.

Later you can refer to the chapter on using editors with DATATRIEVE to learn
how to use an editor to create and modify files. You can also read the chapter
on VMS concepts for an explanation of what command files such as LOGIN.COM
can do for you.

Getting Started with VAX DATATRIEVE 1-7

If the display indicates that the NEWUSER program "aborted" or prints mes­
sages telling you that definitions were not copied, the person who installed
DATATRIEVE on your system selected a different default dictionary setting
than the one the NEWUSER program uses (CDD$TOP.DTR$USERS). In this
case, you will have to ask the person responsible for the CDD software on your
system to set up a dictionary directory for you. After this is done, you can enter
the following commands, substituting your assigned dictionary directory name
for CDD$TOP.DTR$USERS.BELL:

$ ASSIGN "CDD$TOP.DTR$IJSERS .BELL" CDD$DEFAIJLT
$ @DTR$LIBRARY =NEWIJSER

When you insert in your LOGIN.COM file the lines NEWUSER tells you to add,
the assignment to CDD$DEFAULT takes effect whenever you log in to your
system.

Set your default VMS directory to the one you created for this practice session.
You can now run DATATRIEVE with the following command:

$ DTR32
VAX Datatrieve V4.1
DEC Query and Report System
Type HELP for help
DTR>

The startup display indicates that you are in DATATRIEVE and tells you what
version of the product you are running. The DTR > prompt tells you that you
are at DATATRIEVE command level and that DATATRIEVE is ready for you
to enter instructions.

Note ------------­

You can use the arrow keys or CTRL/B within to recall what you
have typed on previous lines. See the chapter on using editors with
DAT ATRIEVE for more information.

Use the SHOW DICTIONARY command to check your dictionary location. (The
DATATRIEVE SHOW command is analogous to the SHOW and DIRECTORY
commands you use at system command level.) The following example shows the
result of the SHOW DICTIONARY command when entered by user Bell:

DTR> SHOW DICTIONARY
The default directory is t DD$TOP.DTR$IJSERS .BELL

DTR>

1-8 Getting Started with VAX DATATRIEVE

You can see that when you invoke DATATRIEVE, your dictionary location is
the directory you assigned to CDD$DEFAULT in your LOGIN.COM file.

Use the SHOW DOMAINS, RECORDS command to display the data definitions
that the NEWUSER program copied into your dictionary directory:

DTR) SHOW DOMAINS, RECORDS
Domains :

Records :

FAMILIES;1
PROJECTS ;1

OWNERS ;1
YACHTS ;1

PERSONNEL ;1 PETS ;1

FAMILY-REC ;1 OWNER_RECORD ;1 PERSO NNEL_REC; 1 PET - RE C; 1
PROJECT-REC ;1 YACHT;1

DTR)

As you can see, the definitions in a dictionary directory have a version number,
just like the files stored in a VMS directory. An earlier version of a definition
serves the same purpose as an earlier version of a file-it gives you something to
fall back on if you cannot use any changes you make to the definition.

1.4 Look at Some Sample Definitions and Data

As mentioned earlier, the NEWUSER program copies sample data definitions
into your default dictionary directory. For each data file NEWUSER copied into
your VMS directory, NEWUSER copied into your default dictionary directory
two data definitions: a record definition and a domain definition.

• A record definition tells you how each record in a data file is divided into
more elementary parts (fields) and, among other things, how much space each
part requires in storage. A record definition is a template that both you and
DAT A TRIEVE use to identify the fields in a record. It is analogous to a blank
job application form before a prospective employee fills in the blanks.

• A domain definition relates a record definition to a data file and specifies a
name for this relationship. You use the domain name as the source or destina­
tion for data when you enter DATATRIEVE commands and statements. The
domain name tells DATATRIEVE that the specified record definition is the
way to interpret the records in the corresponding data file .

You can look at these definitions with the SHOW command.

Getting Started with VAX DATATRIEVE 1-9

In the following example, the command SHOW PERSONNEL reveals the con­
tents of the domain definition PERSONNEL. Note that it specifies the name of
a data file, PERSON.DAT, that the NEWUSER program copied into your VMS
subdirectory. Because NEWUSER puts only a file name and type in the domain
definition, DAT ATRIEVE expects to find the data file in the VMS directory
from which you invoked DATATRIEVE. Chapter 2 discusses the more complete
file specification you can include in domain definitions to get around this default.
The domain definition also specifies a record definition, PERSONNEL_REC,
that describes each record in that file:

DTR> SHOW PERSONNEL
DOMAIN PERSONNEL USING PERSONNEL_REC ON PERSON.DAT ;

DTR>

The command SHOW PERSONNEL_REC displays the contents of the record
definition:

DTR) SHOW PERSONNEL-REC
RECORD PERSONNEL-REC USING
01 PERSON.

05 ID
05 EMPLOYEE-STATUS

05 EMPLOYEE-NAME
10 FIRST-NAME

10 LASLNAME

05 DEPT
05 START-DATE

05 SALARY

05 SUP _ID

DTR)

PIC IS 9(5).
PIC IS X(11)
QUERY-NAME IS STATUS
QUERY-HEADER IS "STATUS"
VALID IF STATUS ~Q
11 TRAINEE","EXPERIENCED 11

•

QUERY-NAME IS NAME.
PIC IS X(10)
QUERY-NAME IS F_NAME.
PIC IS X(10)
QUERY-NAME IS L_NAME.
PIC IS XXX.
USAGE IS DATE
DEFAULT VALUE IS "TODAY" .
PIC IS 9(5)
EDIT_STRING IS$$$,$$$.

PIC IS 9(5)
MISSING VALUE IS 0.

1-10 Getting Started with VAX DATATRIEVE

If you are not a programmer, you probably do not understand all parts of a rec­
ord definition. These are described for you in later chapters. For now, note that
a record definition specifies:

• The fields in each record (such as EMPLOYEE_NAME and SALARY)

• The order in which the fields are stored in the record (ID, .then
EMPLOYEE_ STATUS, and so forth)

• The type of characters that each field can contain (PIC X when it can contain
most keyboard characters and PIC 9 when it can contain only numbers)

• The number of characters each field can contain (PIC 9(5) and PIC X(ll), for
example)

If you wish, you can look at some of the other definitions supplied by the
NEWUSER program. SHOW DOMAINS gives you a listing of the domains,
SHOW name-of-domain displays the data file and corresponding record defini­
tion, and SHOW name-of-record gives you some information about the data in
the file.

To access data, you must type READY, followed by the domain name that
applies to the file where the data is stored. The following command tells
DATATRIEVE to ready the PERSONNEL domain for your use:

DTR> READY PERSONNEL
DTR>

After you ready a domain, you can display records with the PRINT command.
To stop the display temporarily, press the NO SCROLL key if you are using a
VTl00-type terminal, the HOLD SCREEN key if you are using a VT200-type
terminal, or CTRL/S if you are using another type of terminal. To start the
display again after a temporary stop, press NO SCROLL a second time (for
VTl00- or VT200-type terminals) or CTRL/Q (for the others).

Getting Started with VAX DATATRIEVE 1-11

You can enter CTRL/C to stop a display altogether if you do not want to see all
the records:

DTR> PRINT PERSONNEL

ID STATUS
FIRST
NAME

00012 EXPERIENCED CHARLOTTE
00891 EXPERIENCED FRED
02943 EXPERIENCED CASS
12643 TRAINEE JEFF
32432 TRAINEE THOMAS
34456 TRAINEE HANK
38462 EXPERIENCED BILL
"'C

LAST
NAME

SPIVA
HOWL
TERRY
TASHKENT
SCHWEIK
MORRISON
SWA~'

Execution terminated by operator.

DEPT

TOP
Fll
D98
C82
Fll
T32
T32

START
DATE

SUP
SALAR't' ID

12-Sep-1972 $75,892 00012
9-Apr-1976 $59,594 00012
2-Jan-1980 $29,908 39485
4-Apr-1981 $32,918 87465
7-Nov-1981 $26,723 00891
1-Mar-1982 $30,000 87289
5-May- (CTRUC l

The following example illustrates a few of the commands and options you have
when displaying records.

The SHOW FIELDS command displays a list of fields in readied domains.
SHOW FIELDS displays not only the full field names, but also any query names
(in parentheses) that have been defined for the fields. Using query names in
your DATATRIEVE statements can save you some keystrokes.

Note that if you press RETURN at a point in your statement where
DATATRIEVE knows the statement is incomplete, you receive a message telling
you what DATATRIEVE expects next. The CON> prompt indicates that
DATATRIEVE is waiting for you to continue:

DTR> SHOW FIELDS FOR PERSONNEL
PERSONNEL

PERSON
ID <Number, primary key)
EMPLOYEE-STATUS (STATUS) (Character string)
EMPLOYEE_NAME (NAME)

FIRST_NAME (F_NAME) <Character string)
LAST-NAME (L_NAME) (Character string)

DEPT (Character string)
START-DATE <Date>
SALARY <Number)
SUP-ID <Number)

1-12 Getting Started with VAX DATATRIEVE

DTR> PRINT NAME, DEPT, STATUS OF PERSONNEL

FIRST
NAME

LAST
NAME DEPT STATUS

CHARLOTTE SPIVA TOP EXPERIENCED
FRED HOWL F11 EXPERIENCED
CASS TERR 1

1
1 D98 EXPERIENCED

JEFF TASHKENT C82 TRAINEE
THOMAS SCHWEIK F11 TRAINEE
HANK MORRISON T32 TRAINEE
BILL SWA 1t' T32 EXPERIENCED
JOANNE FREIBIJRCi E46 EXPERIENCED
DEE TERRICK D98 EXPERIENCED
GAIL (CTRUC)
"C
Execution terminated by operator.

DTR> PRINT PERSONNEL WITH DEPT= "T32"

FIRST LAST
ID STATUS NAME NAME

34456 TRAINEE HANK MORRISON
38462 EXPERIENCED BILL SWA 1t'
48573 TRAINEE s~· KELLER
83764 EXPERIENCED JIM MEADER

DTR> PRINT DEPT, NAME, STATUS OF

START SUP
DEPT DATE SALAR 1

1
1 ID

T32 1-Mar-1982 $30,000 87289
T32 5-May-1980 $54,000 00012
T32 2-Aug-1981 $31,546 87289
T32 4-Apr-1980 $41,029 87289

[Looking for name of domain, collection, or list]
CON> PERSONNEL SORTED BY DEPT

FIRST LAST
DEPT NAME NAME STATUS

C82 JEFF TASHKENT TRAINEE
C82 ANTHON 1t' IACOBONE EXPERIENCED
C82 DAN ROBERTS EXPERIENCED
C82 BRUNO DONCHIKOV EXPERIENCED
C82 RAND 1t' PODERESIAN EXPERIENCED
D98 CASS TERR 1t' EXPERIENCED
D98 BART HAMMER TRAINEE
D98 MAR 1t' NALEVO EXPERIENCED
D98 DEE TERRICK EXPERIENCED
E46 GAIL CASSID 1t' EXPERIENCED
E46 JOANNE FREIBURCi EXPE (CTRUC)
"C
Execution terminated by operator.
DTR>

Getting Started with VAX DATATRIEVE 1-13

At this point, you might want to try readying and displaying records from some
of the sample domains other than PERSONNEL. If you receive a message that a
name is undefined or used out of context, it probably means that you made one
of the following mistakes:

• You tried to print records without first readying the domain. (If you forget
which domains you have readied, you can enter SHOW READY to find out.)

• You typed a domain or field name incorrectly.

• You used a field name that is not found in the specified domain.

To correct your mistake, you can retype the entire statement or command with
corrections. DATATRIEVE, however, allows you to edit the last statement or
command in either of two ways:

• You can type EDIT and press the RETURN key. This invokes EDT, the default
DATATRIEVE editor. If you are familiar with EDT, you can then use it to
modify your input, even adding new commands and statements. When you
exit the editor, DATATRIEVE processes what you typed in the edit buffer.

• You can use the arrow keys or CTRL/B to recall previous lines. You can then
correct any errors you made and press the RETURN to execute the line. Line
recall is particularly useful if you are not familiar with an editor.

See the chapter in this book on using editors for more information.

1.5 End Data Access and Exit DATATRIEVE

When you finish working with a domain, you can use the FINISH command to
end access to its data:

DTR> READY PERSONNEL
DTR> SHOW READY
Ready sources :

PERSONNEL : Domain , RMS indexed, protected read
CCDD$TOP.DTR$ US ERS.BELL.PERSO NNE L; 1)

No loaded tables.

DTR> FINISH PERSONNEL
DTR> SHOW READY
No ready sources .
No loaded tables.

DTR> PRINT PERSONNEL
"PERSONNEL" is undefined or used out of con text .
DTR>

1-14 Getting Started with VAX DATATRIEVE

Finishing domains you are no longer using frees the system resources needed to
keep the data file available to you.

When you want to end your DAT A TRIEVE session, you can simply type EXIT
or press CTRL /Z at the DTR > prompt. When you exit, DATATRIEVE finishes
any readied domains for you and returns you to system command level. If you
plan to continue with the examples in the next section, do not exit DAT ATRIEVE
at this point.

If you do try the EXIT command, however, you can run DATATRIEVE again by
entering DTR32 at the dollar sign ($) prompt. If you log out or use the SET
DEFAULT command, be sure to set your default to the VMS directory you
created for practice before running DATATRIEVE again:

$ SET DEF [BELL .PRACTICE]
$ DTR32

1.6 Create a Dictionary Subdirectory

The dictionary directory structure at DATA TRIEVE command level is analogous
to the VMS directory structure at system command level. Unlike the VMS direc­
tory structure, however, where each login directory is a top-level directory, the
dictionary directory you are assigned as a DAT A TRIEVE user is not a top-level
directory. CDD$TOP is the name of the top-level directory in the Common Data
Dictionary. All other directories can trace their parentage back to that direc­
tory. (Thinking of the structure as a family tree, with CDD$TOP as the begin­
ning, might be helpful in remembering how things relate to one another.)

For this reason, names of directories and definitions in the dictionary are called
path names. The full path name of your dictionary directory starts with
CDD$TOP and includes the names of all the directories that lead back to
CDD$TOP. Each name is separated from another by a period. For example,
CDD$TOP.DTR$USERS.BELL is the full path name for the directory assigned
to user Bell. You can see the full path name of the directory you are using by
entering the SHOW DICTIONARY command.

The full name of each data definition you store in a dictionary directory also
starts with CDD$TOP and includes the names of all the directories that lead
to its location. The full name of the PERSONNEL domain definition copied
into Bell's assigned directory by the NEWUSER program is
CDD$TOP.DTR$USERS.BELL.PERSONNEL.

Chapter 7 explains more about CDD structure and tells you when you need to
specify full path names and how you can abbreviate them. The examples in this
chapter rarely contain full path names because DATATRIEVE can find what
you want to use in the dictionary directory at which you are currently located.

Getting Started with VAX DATATRIEVE 1-15

You can append subdirectories to the CDD directory created for you by the
NEWUSERS program or assigned to you by the CDD manager on your system.
This allows you to organize your definition storage area so that things are easy
to find. This may not seem important now, but will be when your directory list­
ing grows larger.

You create a dictionary subdirectory by using the DEFINE DICTIONARY com­
mand. The following example shows how user Bell appends a subdirectory to the
one he uses when he first invokes DATATRIEVE:

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL

DTR) DEFINE DICTIONARY PRACTICE
DTR>

Use the SET DICTIONARY command to set your dictionary location to your
new subdirectory. At the new location, using SHOW DICTIONARY reveals the
full path name of your subdirectory:

DTR> SET DICTIONARY PRACTICE
DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL.PRACTICE

DTR>

1. 7 Create a Simple Application

Earlier in this chapter, you saw how to access data when the data file and
domain and record definitions were already in place. This section shows you
how to create your own data file and definitions. You will:

• Create the definitions and data file needed to store a list of phone numbers

• Store a few records in your newly created domain

• Print the results

• Modify some records

• Add a field to the records

• Create a DAT ATRIEVE table

• Create a DATATRIEVE procedure

1-16 Getting Started with VAX DATATRIEVE

)

1 . 7. 1 Use ADT to Create Data Definitions and a File

The DAT ATRIEVE Application Design Tool (ADT) provides a fast way to create
a database for users who have never created a record definition or data file
before, and who do not yet know how to execute the steps needed to create a
database.

Experienced programmers can use ADT to save time when creating record and
domain definitions because ADT automatically includes much of what is needed
in those definitions. After the definitions exist, programmers can edit them to
add any DAT ATRIEVE options that ADT does not provide but that they want
to include.

In this section, you create a small database with the domain name PHONES to
contain a list of names and phone numbers. Figure 1-1 illustrates the organiza­
tion of this domain.

FULL-NAME

LAST_NAME I PHONE_NLJMBER
FIRST_NAME

MK-01570-00

Figure 1-1: Organization of PHONES Domain

Figure 1-1 shows four field names: FULL_NAME, LAST _NAME,
FIRST_NAME, and PHONE_NUMBER. Of these, FULL_NAME is a
group field and LAST_NAME, FIRST_NAME, and PHONE_NUMBER are
elementary fields.

As you might already know, group fields contain fields that are related to one
another. These fields can be elementary fields or other group fields. Generally,
you decide to create a group field when you know that you want to retrieve two
or more fields at a time by using one name, but also want to use each of the
subordinate fields separately. FULL_NAME is a common example of this
situation.

Elementary fields do not contain other fields. Later, you will see that ADT
prompts you to supply more information about elementary fields than it does for
group fields. That is because the elementary fields generate the rules that apply
to data storage-how many and what kind of characters you are allowed to store
in a given section of a record.

Getting Started with VAX DATATRIEVE 1-17

You run ADT by typing ADT at the DTR> prompt and pressing RETURN. The
following example shows the ADT session that creates the PHONES domain.
The example does not show all that is displayed on your screen as you create
the domain; however, it does contain all the questions and the responses you
should make:

DTR> ADT

ADT helps you set up a structure for your data. After a series
of questions and responses, ADT constructs the definitions for
a DATATRIEVE domain, record, and data file . You can have ADT
write these definitions into your dictionary.

Do you want detailed prompts? (YES or NO) = YES

Enter the name for your domain.
Start with a letter and use letters,
digits, hyphens(-), or underscores(_) .
(No spaces or tabs) = PHONES

The data for the domain PHONES will be stored in a file
with the name you specify.

Enter the name for PHONES 1s data file = PHONES.DAT

Enter the first field name in record for PHONES.
Start with a letter and use only letters, digits,
hyphens(-), or underscores(_).
(No spaces or tabs.) = FULL_NAME

Enter an abbreviation you can use
as a query name for FULL-NAME = NAME

What 's in FULL-NAME -- DATE
PERCENT
MONE'r'
NUMBERS used in arithmetic
CHARACTERS
GROUP?

Enter one of these words or its first letter = G

Enter the first field name in record for FULL_NAME.
Start with a letter and use only letters, digits,
hyphens(-), or underscores(_).
(No spaces or tabs.) = LAST_NAME

Enter an abbreviation you can use
as a query name for LAST_NAME = L

What's in LAST_NAME -- DATE
PERCENT
MONE','
NUMBERS used in arithmetic
CHARACTERS
GROUP?

Enter one of these words or its first letter C

1-18 Getting Started with VAX DATATRIEVE

Enter the maximum number of characters for LAST_NAME = 20

Do you want to define more fields in FULL_NAME? (YES or NO) YES

Enter the name of the next field in FULL_NAME : FIRST_NAME

Enter an abbreviation you can use
as a query name for FIRST_NAME = F

What's in FIRSLNAME -- DATE
PERCENT
MONE'T'
NUMBERS used in arithmetic
CHARACTERS
GROUP?

Enter one of these words or its first letter = C

Enter the maximum number of characters for FIRST_NAME = 15

Do you want to define more fields in FULL-NAME? (YES or NO) = NO

Do you want to define more fields in PHONES? (YES or NO) = YES

Enter the name of the next field in PHONES = PHONE_NUMBER

Enter an abbreviation you can use
as a query name for PHONE_NUMBER NUM

What!s in PHONE_NUMBER --DATE
PERCENT
MONE'T'
NUMBERS used in arithmetic
CHARACTERS
GROUP?

Enter one of these words or its first letter = C

Enter the maximum number of characters for PHONE_NUMBER 8

Do you want to define more fields in PHONES? (YES or NO) NO

Do you want the data file to be indexed?
You can!t modify primary keys in indexed files .
You can 1t erase records from sequential files. (YES or NO) YES

Enter the name of the primary key field.
You cannot modify data stored in a primary key field. = L

Do you want the primary key fields in different records
to have duplicate values? (YES or NO) = YES

Do you want to specify an alternate index key? (YES or NO) NO

Do you want ADT to add the domain and record definitions
to your current default dictionary directory? (YES or NO) YES
[Record is 43 bytes long.]

Do you want to define another domain? CYES or NO) NO

DTR>

Getting Started with VAX DATATRIEVE 1-19

If you enter the SHOW DOMAINS, RECORDS command, you now see PHONES
and PHONES_REC listed in your dictionary directory. You can enter SHOW
PHONES and SHOW PHONES _REC to see what these definitions contain. If
you exit DATATRIEVE and enter the DIRECTORY command, you see
PHONES.DAT listed in your PRACTICE directory. (If you do exit DATATRIEVE,
however, remember to set your dictionary location to your dictionary subdirec­
tory before you continue with the next section.)

1. 7 .2 Store Records

You must ready the PHONES domain for write access before you can store
records:

DTR> READY PHONES WRITE
DTR>

You can now enter data. The following example stores five records in PHONES.
Note that DATATRIEVE prompts you to enter values for each elementary field
in each of the five records. Feel free to enter values of your own choosing. Try,
for one field, to enter a value that is too large for the field and see what
happens:

DTR> REPEAT 5 STORE PHONES
Enter LAST_NAME= BELL
Enter FIRST-NAME= LISA
Enter PHONE_NUMBER= 883-8275
Enter LAST-NAME = LINTE
Enter FIRST_NAME = JANE
Enter PHONE_NUMBER = 881-2461
Enter LAST_NAME = CLERC
Enter FIRST-NAME = PHYLLIS
Enter PHONE_NUMBER = 884-9907
Enter LAST-NAME = SCHUTZ
Enter FIRST_NAME = BONNIE
Enter PHONE_NUMBER = 567-8712
Enter LAST_NAME = WINTLOW
Enter FIRST_NAME = JOHN
Enter PHONE_NUMBER = 8890-6789
Truncation during assignment.
Re-enter PHONE_NUMBER= 880-6789
DTR>

1-20 Getting Started with VAX DATATRIEVE

1. 7 .3 Display Data

The following example illustrates a few variations you can use when displaying
records. Do not worry if you do not understand how some of these options work
or what they are called. Chapter 14 discusses the FIND statement. Chapter 19
explains in greater detail how you can adjust display formats:

DTR> SHOW FIELDS FOR PHONES
PHONES

PHONES-REC
FULLNAME (NAME)

LAST_NAME (L) (Character string, primary key)
FIRST_NAME C:F) (Character string)

PHONE_NUMBER C:NUM) (Character string)

DTR> PRINT PHONES

LAST
NAME

FIRST
NAME

BELL
CLERC
LINTE
SCHUTZ
WINTLOW

LISA
PH'ILLIS
JANE
BONNIE
JOHN

DTR> FIND PHONES
[5 records found]

DTR> PRINT ALL F:: :L, NUM

LISA BELL
PH'ILLIS CLERC
JANE LINTE
BONNIE SCHUTZ
JOHN WINTLOW

DTR> PRINT ALL FLNUM, SKIP
LISA BELL 883-8275

PHYLLIS CLERC 884-9907

JANE LINTE 881-2461

BONNIE SCHUTZ 567-8712

JOHN WINTLOW 880-6789

DTR>

PHONE
NUMBER

883-8275
884-9907
881-2461
567-8712
880-678'3

PHONE
NUMBER

883-8275
884-'3907
881-2461
567-8712
880-6789

Getting Started with VAX DATATRIEVE 1-21

1. 7 .4 Change Field Values

You can easily change the values in a record. The following example specifies
NUM as the field to be changed and illustrates only one of the many ways to
modify a record:

DTR> READY PHONES MODIFY
DTR> FIND PHONES WITH LAST_NAME = "LINTE"
[1 rec,:, rd found l
DTR> SELECT
DTR) PRINT

LAST FIRST PHONE /

NAME NAME NUMBER

LINTE JANE 881-2461

DTR> MODIFY NUM
Enter PHONE-NUMBER= 889-3456
DTR> PRINT

LAST FIRST PHONE
NAME NAME NUMBER

LINTE JANE 889-3456

DTR>

Now try to change a value for LAST _NAME and see what happens:

DTR> FIND PHONES WITH LAST-NAME= "BELL"
[1 record found l
DTR) SELECT
DTR> MODIFY LAST-NAME
Enter LAST-NAME = WARTON
You cannot modify the value of an RMS key field that doesn 1t allow changes.
DTR> PRINT

BELL

DTR>

LAST
NAME

LISA

FIRST
NAME

PHONE
NUMBER

883-8275

1-22 Getting Started with VAX DATATRIEVE

)

If you remember when you created the PHONES domain and were specifying
index keys for the file, ADT told you that you cannot change the value of a pri­
mary key. You might have wondered then what you would do if someone's name
changed, for example, after marriage. To get around the restriction that you
cannot change a primary key value, you can erase the record and store it again
with the changed value for LAST _NAME. This is not a real problem for a
small record, but it would be if your record were larger and you needed to
change that key value frequently. Chapter 11 tells you more about primary
keys and how to make the best choices when selecting keys for a file.

1. 7 .5 Change Domain Structure

Suppose that after you create a domain and store quite a few records in it, you
decide you want to rearrange the order of the fields in the record, add a new
field to the record, or change the index keys for the data file. In other words,
you want to restructure your domain.

If you edit the record definition to make changes in record structure or size, it
no longer corresponds to the existing data file and DAT A TRIEVE can no longer
use it to retrieve data from the file. Similarly, you cannot change key options
for a file without creating a new and empty version of the file. When you are
creating your own domains, you can expect to change your mind about record
and file organization more than once. DATATRIEVE allows you to make these
changes without losing data you have already stored by performing a simple
restructure operation. See the chapter on defining data files for more details on
this topic.

The following example shows you how to restructure the PHONES domain to
add a field, AREA_CODE, to the record definition. The FINISH command is
included because you readied PHONES for MODIFY access in the last exercise.
EDIT invokes the EDT editor by default, but you can invoke one of several
different editors if you choose. See the chapter on using editors with
DAT ATRIEVE for more information.

When you edit the record definition, add the AREA_CODE field between the
FIRST _NAME and PHONE_NUMBER fields. Enter the SHOW PHONES_REC
command to see the revised definition.

Getting Started with VAX DATATRIEVE 1-23

DTR> FINISH PHONES
DTR> READY PHONES AS OLD
DTR> EDIT PHONES_REC

[Record is 46 bytes long.]
DTR> SHOW PHONES-REC
RECORD PHONES-REC USING
01 PHONES-REC.

05 FULL-NAME
10 LAST_NAME

10 FIRST _NAME

05 AREA-CODE

QUERY_NAME IS NAME .
PIC X(20)
QUER'LNAME IS L.
PIC X(15)
QIJER\'_NAME IS F.
PIC X(3)

05 PHONE-NUMBER
QUERY-NAME IS AREA.
PIC X(8)
QUERY_NAME IS NUM.

DTR> DEFINE FILE FOR PHONES KEY= LAST-NAME CDUP)
DTR> READY PHONES AS NEW WRITE
DTR> NEW= OLD
DTR> FINISH
DTR> READY PHONES
DTR> PRINT PHONES

BELL
CLERC
LINTE
SCHUTZ
WINTLOW

DTR>

LAST
NAME

FIRST
NAME

LISA
PH'r'LLIS
JANE
BONNIE
JOHN

AREA PHONE
CODE NUMBER

883-8275
884-9907
884-5678
567-8712
880-6789

You can see that space has been added to the record so you can store area codes.
Do not modify your records yet to add area code values.

1. 7.6 Create a Table

If you have some programming experience, you might assume the term
"table" refers to repeating fields (as in a BASIC array or a COBOL table).
In DAT ATRIEVE terminology, however, repeating fields are called lists.
DATATRIEVE tables store sets of paired values apart from other data
definitions.

1-24 Getting Started with VAX DATATRIEVE

In this section, you create a dictionary table to relate an area code value with
the corresponding town and state. A dictionary table stores value pairs in the
table definition itself. DAT A TRIEVE also lets you create domain tables. A
domain table stores pairs of field names that let you relate data stored in one
domain to data stored in another domain. Chapter 12 explains tables more com­
pletely and shows a variety of ways to use them. For now, you will learn one
way to use one kind of table.

You create a table with the DEFINE TABLE command. Enter the following
lines to store AREA_CODE_ TABLE in the dictionary you are currently using.
The DFN > prompt tells you that DAT ATRIEVE expects more input for the
definition. The END_ TABLE entry tells DATATRIEVE you are finished with
the definition:

DTR> SET NO PROMPT
DTR> DEFINE TABLE AREA_CODE_TABLE
DFN> QUERY-HEADER IS "STATE"
DFN> "603" = "NH"
DFN) "617" = "MA"
DFN> "201" : "NJ"
DFN> ELSE "OOPS"
DFN> END-TABLE
DTR>
DTR> SHOW TABLES
Tables=

AREA_CODE-TABLE;1

Obviously, this is an incomplete list of area codes, but it is sufficient for demon­
stration purposes.

You can see how your table works with some simple PRINT statements that
include a VIA clause. Note how the value associated with the ELSE clause tells
you when an area code value is not listed in the table:

DTR> PRINT "603" VIA AREA-CODE-TABLE

STATE

NH

DTR> PRINT "111" VIA AREA-CODE-TABLE

STATE

OOPS

Getting Started with VAX DATATRIEVE 1-25

Now modify your PHONES records to include some area codes, making sure
that you include at least one area code that is not in the table. The last time
you modified data in PHONES, you only wanted to change one record. The fol­
lowing example includes a FOR statement (read it as "FOR every PHONES
record"), so DAT ATRIEVE lets you add all the area codes:

DTR> READY PHONES MODIFY
DTR> FOR PHONES
CON} BEGIN
CON> PRINT
CON> MODIFY USING AREA-CODE= *.AREA-CODE
CON> PRINT
CON} END

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER

BELL LISA 883-8275
Enter AREA_CODE : 603

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER

BELL LISA 603 883-8275
CLERC PH'r'LLIS 884-9907
Enter AREA_CODE = 603
CLERC PH 'r'LLIS 603 884-9907
LINTE JANE 884-5678
Enter AREA-CODE= 603
LINTE JANE 603 884-5678
SCHUTZ BONNIE 567-8712
Enter AREA_CODE = 617
SCHUTZ BONNIE 617 567-8712
WINTLOW JOHN 880-6789
Enter AREA_CODE = 205
WINTLOW JOHN 205 880-6789

You can now use a VIA AREA_CODE_ TABLE expression to display the state
that corresponds to the area code for each record. PHONES_REC, as it appears
in the following PRINT statement, refers to the top level field in the record defi­
nition rather than the record name as it is stored in the dictionary:

DTR> FIND PHONES
(5 records found]
DTR> PRINT ALL PHONES-REC, AREA-CODE VIA AREA-CODE-TABLE

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER STATE

BELL LISA 603 883-8275 NH
CLERC PH'1'LLIS 603 884-9907 NH
LINTE JANE 603 884-5678 NH
SCHUTZ BONNIE 617 567-8712 OOPS
WINTLOW JOHN 205 880-6789 OOPS

1-26 Getting Started with VAX DATATRIEVE

You might ask at this point why you would not simply store the data contained
in AREA_ CO DE_ TABLE in the PHONES domain and save yourself a lot of
keystrokes. It is true that tables make little sense when they store information
that applies to only one domain. Tables, however, can save you a great deal of
storage redundancy when they contain data that you use with more than one
domain. Tables also help you validate fields that must be stored in more than
one domain. (In a set of domains used by the personnel department in a com­
pany, for example, the employee number would need to be stored in more than
one domain.)

1.7.7 Write a Procedure

You create a DATATRIEVE procedure to store a set of commands and state­
ments that you plan to use more than once. In one sense, a procedure is like a
program written in a language like BASIC or COBOL because, after you create
it, you simply execute it to get a job done.

The following example stores the procedure PHONES_REPORT in your current
dictionary directory. Writing reports is not the only job you might want to do
with procedures, but it is one of the most common. Do not worry if you do not
understand what all the statements in the example do for you. Chapter 20
explains report writing more fully for you. Right now, this gives you some
initial practice writing a procedure:

DTR> READY PHONES
DTR) DEFINE PROCEDURE PHONES-REPORT
DFN> REPORT PHONES ON *."device l)r file"
DFN> SET REPORT _NAME = "PHONES LIST"
DFN> SET COLUMNS-PAGE= 50
DFN> PRINT F:: :L, AREA:: :NUM
DFN) END_REPORT
DFN> END-PROCEDURE
DTR) SHOW PROCEDURES
Procedures :

PHONES-REPORT;1

Getting Started with VAX DATATRIEVE 1-27

To execute a DATATRIEVE procedure, type a colon(:) followed by the name
of the procedure, then press the RETURN key. When you execute
PHONES_REPORT, DATATRIEVE prompts you for where you want the
report. If you enter TT: in response to the prompt, DAT ATRIEVE displays the
report on your terminal:

DTR> :PHONES-REPORT
Enter device or file : TT :

LISA BELL
PH'/LLIS CLERC
JANE LINTE
BONNIE SCHUTZ
JOHN WINTLOW

DTR>

PHONES LIST 27-Feb-1984
Page 1

603 883-8275
603 884-9907
603 884-5678
617 567-8712
205 880-6789

If you execute the procedure again and type the name of a printer device, such
as LP:, in response to the prompt, DATATRIEVE prints the report on your line
printer. If you respond with the name of a file (PHONES.LIS, for example),
DAT ATRIEVE creates the report as a file stored in your VMS directory.

If you made any mistakes when defining the PHONES_REPORT procedure,
DAT ATRIEVE displays one or more error messages at the time you execute it.
If this happens, you might notice that it continues to process the statements and
commands left in the procedure after the first error occurs. (Chapter 17 tells you
how to use the SET ABORT command to prevent this from happening.)

If you simply type EDIT and press the RETURN key, you can edit only the last
statement or command DATATRIEVE executed for you. To correct the errors in
the procedure, you must follow the EDIT command with the procedure name.
After you make your corrections and before you exit the editor, double check the
lines in your procedure against those in the example. Then exit the editor and
execute the procedure again. See the chapter on editing for more information
about the editors available to you with DATATRIEVE.

1-28 Getting Started with VAX DATATRIEVE

)

1.8 What Do I Read Next?

The sections of this book you should read next depend on your level of
experience with the VMS operating system and computer languages and also on
how much guidance you expect when learning something new:

• If you are unfamiliar with the VMS operating system and have limited
experience writing programs in computer languages, you can:

- Read Chapters 2 and 3 to learn about the VMS operating system and the
editors you can use with DATATRIEVE.

- Read Chapter 6 to find out how you can get online assistance when using
DATATRIEVE

- Go on to Chapters 8 through 20 to read more about creating your own
applications with DATATRIEVE

After you get more DATATRIEVE experience, you can read Chapter 4 to get
some help with syntax diagrams, Chapter 5 to learn about startup command
files and input entry, and Chapter 7 to learn more details about managing
CDD directories and their contents.

• If you are familiar with the VMS operating system, but have limited program­
ming experience, you do not need to read Chapters 2 and 3. Otherwise, follow
the course just outlined.

• If you are an experienced programmer, read the next section. You can then
continue reading chapters in the order that they appear in the book, skipping
Chapters 2 and 3 if you are already familiar with the VMS operating system.

• Feel free to read whatever intrigues you and then start right in using
DATATRIEVE. Use the index or table of contents to look up additional
information.

1.9 What DATATRIEVE Can Do for the Programmer

This section is for readers who can use one or more programming languages,
such as COBOL or BASIC. If you fall into this category, you may want addi­
tional information on how DAT ATRIEVE is different from the languages you
have used before.

DATATRIEVE provides the same data storage capabilities that you have with
other languages. It can store and retrieve data using existing data files of any
type that are supported by VAX Record Management Services (RMS). It can also
create sequential and multikey indexed files, but not relative files.

Getting Started with VAX DATATRIEVE 1-29

DATATRIEVE is an excellent query and report writing interface for databases
created and maintained by VAX DBMS or the VAX relational database
products. This book does not contain information on using DATATRIEVE with II""""'
DBMS or relational databases. Refer to the VAX DATATRIEVE User's Guide if "
you are interested in this subject.

In COBOL or BASIC, each program describes the structure of input and output
records. DATATRIEVE lets you define records and store record definitions
separately from the procedures that use them. You can then write any number
of procedures that use the records you have defined, without redefining the rec­
ord each time.

DAT A TRIEVE also lets you create data definitions, called view domains, that
can access either a subset of the fields in one data file or a combination of fields
from more than one file. View domains can help you reduce the number of state­
ments that you have to write when retrieving data.

DATATRIEVE also handles other common language functions automatically,
without the need for language statements. For instance, DATATRIEVE:

• Finds data files, opens them, and performs input/ output operations

• Labels columns in an output display

• Converts data types

• Formats data for output

• Handles conditions like EOF and matching

As a result, you can save many lines of code, get applications running quickly,
and still have code that is more readable than COBOL or BASIC.

DATATRIEVE does not give you all the options available with other languages:

• DATATRIEVE lets you set up data hierarchies such as the repeating fields
generated by a COBOL OCCURS clause, although retrieving data from
repeating fields is not as easy as retrieving data from other types of fields.
DAT ATRIEVE does not have a system of subscripts or indexes that let you
explicitly specify an occurrence in a repeating field. Be sure you consider this
fact before you decide to use the DATATRIEVE OCCURS clause.

• The DATA TRIEVE language does not contain clauses such as BLOCK SIZE
and CONTIGUOUS BEST TRY that let you optimize files for best response
time. If you are setting up or maintaining large data files, therefore, you
should use the utilities provided by VAX RMS to load and maintain these
files. Refer to the chapter on optimizing DAT ATRIEVE performance in the
VAX DAT AT RIEVE User's Guide if you want more information on this
subject.

1-30 Getting Started with VAX DATATRIEVE

C

)

• DATATRIEVE procedures are not compiled when they are stored. Every time
you execute a DATATRIEVE procedure, DATATRIEVE processes each state­
ment or command in sequential order, just as if you were entering each one
interactively. The advantage in using procedures, therefore, is more a matter
of convenience than speed of execution.

By using the DATATRIEVE Call Interface, you can include DATATRIEVE func­
tions in a program written in another language. The Call Interface is often used
in two ways:

• You can use the linkage section of a COBOL program to do file access
entirely through DATATRIEVE. In this way, the calling program does not
need to specify the structure of the data, and you do not need to relink pro­
grams when the data files change.

• You can write a program that passes commands and statements to
DATATRIEVE. The program can present the user with a customized inter­
face, such as a menu. In this way, you can "hide" DATATRIEVE from users
who do not know how to use its commands and statements.

The VAX DAT A TRIEVE Guide to Programming and Customizing explains how
you can use DAT ATRIEVE with other languages and provides more information
about how you can customize DAT ATRIEVE features for your installation.

Getting Started with VAX DATATAIEVE 1-31

C

)

VMS Concepts 2

As a DATATRIEVE user, knowledge of the VMS operating system is very
important. You gain access to DAT ATRIEVE through the VMS system and the
data files you create are stored in VMS directories.

This chapter describes how to:

• Use the DIGITAL Command Language (DCL) to create and manipulate files

• Log in

• Protect your files and directories

• Set up a useful login command file (LOGIN.COM) to execute commands
automatically

• Use the DTR$ST ARTUP logical to create a startup command file

2.1 Using DIGITAL Command Language (DCL)

An operating system is the system software that controls the operations of the
computer. In this chapter, the operating system is referred to simply as the sys­
tem. To perform data processing operations on a VMS system, you issue instruc­
tions in the DIGITAL Command Language (DCL). Like any language, DCL
consists of a vocabulary and rules of grammar.

The vocabulary of DCL includes commands, parameters, and qualifiers. These
perform functions similar to those of verbs, nouns, adverbs, and adjectives in
English. When arranged to form a command string, these words describe to the
system the operation you want to perform.

2-1

2.2 Logging In

To begin a session at your terminal, you must log in. Logging in consists of get­
ting the system's attention and identifying yourself as an authorized user.

Before you can log in to the system, however, you need an account. Accounts
are set up by the system manager, or whoever is responsible at your installation
for authorizing the use of the system. This person can provide you with a user
name and password.

Your user name is a unique name that identifies you to the system and distin­
guishes you from other users. Your password is for your protection. If you main­
tain its secrecy, other users cannot use system resources under your name or
gain access to files you want to keep private.

When you log in, you must enter both your user name and password before
VMS lets you begin typing commands.

2.2.1 Getting the Terminal Ready

Before you use the terminal, be sure that:

• The terminal is plugged in and the power is turned on.

• If the terminal has a LOCAL/ON LINE switch, the switch is set to ON LINE.
When it is on line, the terminal communicates with your system. When it is C
set to LOCAL, the terminal is electrically disconnected from your system. The ·
following list explains how to set your terminal to ON LINE:

- On a VTIO0 series terminal, press the 4 key on the main keyboard while in
Set-Up mode A.

- On a VT200 series terminal, press the Set-Up key to access the Set-Up
Directory. In the Set-Up Directory, the ON LINE/LOCAL option is located
in the first screen, immediately below the DISPLAY option. If the option is
currently ON LINE, you do not need to change anything. If the option is
currently LOCAL, move your cursor to the LOCAL option using the down
arrow key. Change the option from LOCAL to ON LINE by pressing the
keypad Enter key. Exit the Set-Up Directory by pressing the Set-Up key
again.

- If you are using a dialup connection, check installation instructions for
special procedures.

2-2 VMS Concepts

)

If you have any problems with the login procedure described in the next section,
get help from the system manager. There are several reasons your login may
not work. Among them are:

• The terminal may not be properly connected to the computer

• The baud rate (speed at which the terminal transmits or receives characters)
may not be correctly set

2.2.2 Gaining Access to the System

Press the RETURN key or CTRL/Y to signal the system that you want to log
in. The system responds by prompting you for your user name. Enter your user
name and press the RETURN key. The system displays your user name as you
type it. After you enter your user name and press the RETURN key, the system
prompts you to enter your password. When you type the password, the system
does not display it (in order to preserve its secrecy.) The login sequence looks
like this:

Username: BELL
Password:

Welcome to VAX1VMS version V4.5 on node YOURNODE
Last interactive login on Thursday, 11-JUN-1987 16:09
Last non-interactive login on Thursday, 11-JUN-1987 10:46

You have 5 new Mail messages.
$

Some systems print a welcoming message above the username prompt. If your
system is part of a network, your system name (node) will be printed after the
VMS version number.

The dollar sign ($) is a symbol the system uses as a prompt. It is the VMS
default system prompt. If you or your system manager change the default with
the DCL SET PROMPT command, you see the changed prompt instead. When
the system displays this character at the left side of your screen, it indicates
that the login was successful and that you can begin entering commands.

If you type your user name or your password incorrectly, the system displays an
error message. When an error message appears, you must repeat the entire
login procedure.

VMS Concepts 2-3

2.3 Getting Online Help

When you use the VMS operating system, you may not always have a reference
manual available at your terminal. You may want to get some help on a subject
that you need to know more about The HELP command is designed to provide
you with this information. For example, to display a list of topics for which help
is available, type:

$ HELP

The system displays the list of topics and then prompts for your choice. If you
want information about a particular subject, type its name after the prompt. For
instance:

Topic? PRINT

The information displayed includes a synopsis of what the PRINT command
does, the parameters it requires, and the qualifiers it can take.

If you want to know more about one of the PRINT commands qualifiers, respond
to the prompt PRINT subtopic? with that qualifier. For example, to display
information about the /COPIES qualifier of the PRINT command, type:

PRINT subtopic? ;COPIES

If you already know the topic and even the subtopic on which you need help,
you can simply type, for example:

$ HELP PRINT1COPIES

2.4 Entering Commands

All commands to the system are words, generally verbs, that describe the func­
tions they perform. You can type them in uppercase or lowercase. For example:

$ SHOW TIME

The system responds to this command by displaying the current date and time:

29-NOV-1985 09 =25 =07

Command parameters define what the command acts upon; command qualifiers
further define how that action occurs. For instance, the following PRINT com­
mand requires an object, or parameter, to indicate what is to be printed:

$ PRINT BILLING.LIS

In this command, BILLING.LIS is a parameter for the PRINT command,
indicating the name of the file to be printed. A space separates the command
and its parameter.

2-4 VMS Concepts

Command qualifiers restrict or modify the function that the command is to per­
form. For example:

$ PRINT/COPIES=2 BILLING.LIS

In this command, /COPIES=2 is a qualifier that indicates how many copies of the
file BILLING.LIS you want printed. A slash character(/) precedes the qualifier.

The rules of grammar tor DCL (that is, the order of the words, the spacing, and
the punctuation) are also strictly defined. Your system documentation set con­
tains contains a dictionary of DCL commands and discusses the rules of grammar.

2.4.1 Command Prompting

When you enter a command at the terminal, you do not need to enter the entire
command. If you enter a command without specifying tequired parameters, or you
forget what comes next, the system prompts you for the additional information:

$ PRINT
$_File : BILLING.LIS

In this example, no parameter followed the PRINT command, so the system
prompted for the name of the file to be printed.

If a command requires two or more parameters, it prompts for each parameter:

$ COPY
$_From : OLD FI LE. TXT
$_To : NEWFILE.TXT

You can enter both file names after the first prompt:

$ COP't'
$_From : OLDFILE.TXT NEWFILE.TXT

You can also enter the entire command line on one line:

$ COPY OLDFILE.TXT NEWFILE.TXT

VMS Concepts 2-5

2.4.2 Defaults

A default is the value supplied by the operating system when you do not r
specify one yourself. For instance, if you do not specify the number of copies as
a qualifier for the PRINT command, the system uses the default value of 1. By
not explicitly stating a choice, you imply the default. VMS supplies default
values for many commands. The defaults used with individual commands are
specified with each command's description in both online help and in the DCL
documentation included in your system's documentation set.

2.4.3 Abbreviating Commands

You do not always need to type the full command. You must type at least the
minimum number of characters necessary to identify the command uniquely.

For example, the SET, SEARCH, and SHOW commands all begin with the let­
ter S. To identify the SHOW command, you must type at least two characters,
SH. To identify the SET and SEARCH commands, you must type three charac­
ters, SET and SEA respectively.

The examples in this chapter show full commands, so that you can become
familiar with the commands and what they do.

2.4.4 Recovering from Errors

If you are entering a command and you make a mistake, you can use the follow­
ing keys to correct the mistake or abort the command:

• DELETE

Backspaces over one character typed on the current line, then deletes the
character. Most video display terminals actually move the cursor (an under­
line or block that marks your position) backward and erase the character
when you press the DELETE key.

• CTRL/U

Ignores the current line and performs a return so you can reenter the entire
line. Use CTRL/U when a line contains a number of mistakes and it would be
tedious to use the DELETE key.

2-6 VMS Concepts

C

• CTRL/Z or CTRL/Y

Cancels an entire command, regardless of how many lines were used to enter it.

You can also use CTRL/Y or CTRL/C to interrupt the system while it is
executing a command. Press CTRL/Y (or CTRL/C) and the system terminates
the current process and returns you to DCL level:

$ TYPE BILLING.LIS

(CTRUY)
$

In this example, CTRL/Y interrupted the typing of a long file and returned to
DCL level.

• CTRL/B or Up Arrow

Displays previously entered commands so that you can reproduce them. When
you press CTRL/B or the up arrow key, the previous command is displayed.
(You can recall up to 20 previously entered commands.) Press the down arrow
key to display commands in the other direction. You can edit the command
string by pressing the left and right arrow keys, which move the cursor. You
can also move the cursor to the beginning of the line by pressing CTRL/H
and to the end of the line by pressing CTRL/E. Then, you can overstrike the
character you want to change. Or, you can press CTRL/ A, which lets you
insert a character rather than overstrike it.

• HOLD SCREEN (Fl) or NO SCROLL

Suspends and resumes the scrolling, or upward movement, of the terminal dis­
play. To temporarily stop the display from scrolling, press the HOLD SCREEN
(Fl) key on a VT200-series terminal. On a VTl00-series terminal, press the
NO SCROLL key. To continue scrolling, press the key again.

CTRL/S suspends the VT52 terminal display of the file and the processing of
the command. To resume display, press CTRL/Q. The interrupted command
displays lines beginning at the point at which processing was interrupted.

2.4.5 Summary of Entering Commands

The following list summarizes the rules you must follow when entering com­
mands to the VMS operating system:

• You must precede each qualifier name with a single slash character (/).

• If you omit a required parameter (for example, a file specification), the DCL
command interpreter prompts you to enter it.

VMS Concepts 2-7

• You can truncate any command name or qualifier name to four characters.
Fewer than four characters are acceptable, as long as there is no ambiguity
about the name.

• After you have entered a complete command, you must press the RETURN
key to pass the command to the system for processing.

• You can cancel a command before the final returll by using CTRL/Y.

• You can interrupt command execution by using CTRL/Y. To resume the inter­
rupted command, enter the CONTINUE command. To stop processing com­
pletely after using CTRL/Y, you can begin entering other DCL commands.

2.5 Interpreting System Responses

When you enter a command, the system can:

• Execute the command, indicating successful completion with the dollar sign
prompt

• Execute the command and inform you in a message of what it has done

• Inform you of errors you have made, if execution is not successful

2.5.1 Information Messages

The system responds to some commands by giving you information about what
it has done. For example, when you use the PRINT command, the system dis­
plays the job identification number it assigned to the print job and shows the
print queue the job has entered:

$ PRINT BILLING.LIS
Job 500 entered on queue SYS$PRINT

Not all commands display informational messages; in fact, successful completion
of a command is most commonly indicated by a dollar sign prompt for another
command. Unsuccessful attempts are always indicated by one or more error
messages.

2.5.2 Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts for a new command line. It ignores the incorrect command:

$ CAPY
ZDCL-W-IVVERB, unrecognized command

,CAPY,
$

2-8 VMS Concepts

The code preceding the text of the message indicates that:

• The message is from DCL, the command interpreter

• It is a warning (W) message

• The mnemonic for this particular message is IVVERB

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file that you specify does not exist, the
PRINT command informs you of the error:

$ PRINT PAYROLL.DAT
XPRINT-W-OPENIN, error opening DBA1 =[BELL1PAYROLL.DAT; as input
-RMS-E-FNF, file not found

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason, that is, the file cannot
be found. RMS refers to the VMS file-handling facility, Record Management
Services; error messages related to file handling are generally VAX RMS
messages.

2.6 Logging Out

When you have finished using the computer, use the LOGOUT command to end
the terminal session:

$ LOGOUT
BELL logged out at 30-MAY-1984 15 =30=10

Note that neither shutting off your terminal nor setting the ON LINE/LOCAL
switch to LOCAL automatically causes you to log out. To ensure that you have
logged out, you should use the LOGOUT command to end a terminal session. If
you shut a terminal off without logging out properly, another user may be able
to turn the terminal on later and use your account.

2. 7 File Management

This section explains how to:

• Create, identify, delete, and purge files

• Display and print files

• List files in a directory

• Copy and rename files

VMS Concepts 2-9

• Append files to other files

• Find differences between files

• Search files for a specified string
•

2.7.1 Creating Files

You can create files in two ways. Chapter 3 tells you how to create a file by
using the EDIT command. You can also use the CREATE command to make a
new file. Specify the file name as a parameter. You can insert text immediately
and end with CTRL/Z:

$ CREATE NEWFILE.TXT
THIS IS THE FIRST LINE. (CTRUZ J
"Z

You cannot use the CREATE command to modify an existing file.

2.7.2 Identifying Files

A complete file specification contains all the information the system needs to
locate and identify a file. A complete file specification has the format:

node::device:[directory]filename.type;version

The punctuation marks (colons, brackets, period, semicolon) are required syntax
that separate the various components of the file specification. For example:

BOOKIE= =DBA2 =CBELLlPERSONNEL.DAT;5

2. 7 .2.1 Nodes - When computer systems are linked together to form a net­
work, each system in the network is called a node and is identified within the
network by a unique node name. Your system may or may not be part of a
larger network. ·

If your system is a network node, you can gain access to a file located at
another node on the network by adding a node specification to the first part of
the file specification. This specification lets you access the file only if the owner
of the file has permitted other users access to it. If you do not specify a node,
the system assumes by default that the file belongs to your own node.

2-10 VMS Concepts

)

2.7.2.2 Devices - The second part of a file specification, the device name, iden­
tifies the physical device (for example, a disk) on which a file is stored. As a
DATATRIEVE user, your data is most likely to be stored on disks.

If you omit a device name from a file specification, the system supplies a default
value; that is, it assumes the file is on the disk assigned you when the system
manager set up your account. This is your default disk.

2. 7.2.3 Directories and Subdirectories - Because a disk can contain files
belonging to many different users, each user of a given disk has a directory that
catalogs all the files belonging to him on that device.

Directories and subdirectories are discussed in greater detail later in this chapter.

2.7.2.4 File Names, Types, and Versions - By taking advantage of your
default node, disk, and directory, you can identify a file uniquely by specifying
only its file name and file type in the format:

filename.typ

The file name can have from zero to 39 characters chosen from the letters A
through Zand the numbers O through 9. When you create files, give them
names that are meaningful to you.

The file type can be from zero to 39 characters and must be preceded by a
period. Again, you can choose any of the letters A through Z or the numbers 0
through 9 for the file type. The file type usually describes default file types used
for special purposes.

Table 2-1 lists some of the default file types.

Table 2-1: Default File Types

File
Type Use

DAT Data file

EDT Startup command file for EDT editor

EXE Executable program image file

JOU Journal file used by the EDT editor

(continued on next page)

VMS Concepts 2-11

Table 2-1: Default File Types (Cont.)

File
Type Use

LIS Output listing file

MAI Mail message file

OBJ Object module file output from a compiler or assembler

TJL Journal file use by the LSE and VAXTPU editors

In addition to a file name and type, every file has a version number that the
system assigns when the file is created or revised. The original number is one.
When you create additional versions of the file, the version number is automati­
cally increased by one.

You rarely need to specify the version number with a file specification. The sys­
tem assumes default values for version numbers, as it does with devices, directo­
ries, and file types. Version number defaults are determined as follows:

• For an input file, the system uses the highest existing version number of the
file .

• For an output file, the system adds one to the highest existing version number.

When you use a version number in a file specification, precede the version num­
ber with a semicolon (;).

2. 7 .2.5 Wildcard Character - A wildcard character is a symbol that you. can
use with many DCL commands to apply the command to more than one file,
rather than specifying each file individually. The asterisk (*) can be used in a
specification of a directory, file name, file type, and version number.

For example, you can specify all versions of a file by using an asterisk in place
of the version number in the file specification. If, for example, you want to print
all versions of the file STARTUP.COM type:

$ PRINT STARTUP.COM;*

-
If there were no wildcard character in the previous example, the PRINT
command by default would apply only to the most recent version of the file
STARTUP.COM.

2-12 VMS Concepts

The following command prints all versions of all files in the current directory
with the file type of .COM:

$ PRINT *.COM;*

To print all versions of all files in the directory with the file name of STARTUP,
type:

$ PRINT STARTUP.*;*

2. 7. 3 Deleting Files

The DELETE command deletes specific files. When you use the DELETE com­
mand, you must specify a file name, file type, and version number. This pro­
vides some protection against accidental deletion. However, you can specify any
of these file components as a wildcard character. You can also enter more than
one file specification on a command line, separating the file specifications with
commas. Some examples of the PELETE command are shown in Table 2-2.

Table 2-2: Examples of the DELETE Command

Command Result

$ DELETE AVERAGE.OBJ;l Deletes the file named A VERAGE.OBJ;l

$DELETE.LIS;* Deletes all files with file types of LIS

$ DELETE A.DAT;l ,A.DAT;2 Deletes the first two versions of the same data file

2.7.4 Purging Files

You may want to clean up your directory by getting rid of early versions of
particular files. If you have many versions of a file, naming them all in the
DELETE command would be tedious.

The PURGE command allows you to delete all but the most recent version of a
file; therefore, no version number is allowed with the PURGE command. For
example:

$ PURGE AVERAGE.FOR

This command deletes all files named AVERAGE.FOR, except the file with the
highest version number.

VMS Concepts 2-13

The /KEEP qualifier of the PURGE command allows you to specify that you
want to keep more than one version of a file. For example:

$ PURGE1KEEP=2 TEST .COM

This command deletes all but the two most recent versions of the file
TEST.COM.

2.7.5 Displaying Files at Your Terminal

The TYPE command displays a file at your terminal. For example:

$ TYPE ZAPATA.LIS

EVEN IF YOU KILL ZAPATA,
THERE WILL BE OTHERS
TO TAKE HI S PLACE .

While a file is being displayed, you can interrupt the output by using CTRL/C
or CTRL/Y. The system then prompts you to enter another command.

2.7.6 Printing Files

When you use the PRINT command to obtain a printed copy of a file, the sys­
tem cannot always print the file immediately, because other users may be print­
ing files. The system enters the name of the file you want to print in a queue
and prints the file at the first opportunity.

A printed file is preceded by a header page describing the file so you can iden­
tify your own listing. For example, if you issue the following command, the
header page will show your user name and the file name, type, and version
number of the file:

$ PRINT DB2 : [BELLlAVERAGE.LIS
Job 435 entered on queue SYS$PRINT

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the print job.

The PRINT command also has qualifiers that allow you to control the number of .
copies of the file to print, the type of forms to print the file on, and so on. You
can find more information on these qualifiers in the VMS documentation for the
Digital Command Language.

2-14 VMS Concepts

2.7.7 Listing Files in a Directory

The DIRECTORY command lists the names of files in a particular directory. If
you type the DIRECTORY command with no parameters or qualifiers, the com­
mand displays the files listed in your default directory. For example:

$ DIRECTORY

DIRECTORY DBA2 : [BELLJ

LOGIN.COM;45 PERSON.DAT;13 PET.DAT;3 PHONES.DAT;4
't'ACHTS .DAT; 67

Total of 5 files.

Note that the DIRECTORY command shows:

1. The disk and directory name

(1)

(2)

(3)

2. The file name, file type, and version number of each file in the directory

3. The total number of files in the directory

When you enter the DIRECTORY command, you can provide one or more file
specifications to obtain a listing about particular files only. For example, to find
out how many versions of the file AVERAGE.FOR currently exist, issue the
DIRECTORY command as follows:

$ DIRECTORY AVERAGE.FOR

DIRECTORY DBA2:[BELLJ

AVERAGE.FOR;2 AVERAGE.FOR;!

Total of 2 files.

There are many helpful qualifiers to the directory command. They give you
information such as the date and time a file was created, the size of the file,
and the owner and protection of the file. Refer to the VMS documentation for
online help for more information about using this versatile command.

2.7.8 Copying Files

The COPY command makes copies of files. You can use it to make copies of files
in your default directory, to copy files from one directory to another directory, to
copy files from other devices, or to create files consisting of more than one input
file.

VMS Concepts 2-15

When you issue the COPY command, you specify first the name of the input file
you want to copy, then the name of the output file . For example, the following
COPY command copies the contents on the file PAYROLL. TST to a file named
PAYROLL.OLD:

$ COPY PAYROLL.TST PAYROLL .OLD

If a file named PAYROLL.OLD exists, a new version of that file is created with
a higher version number.

You can copy a file from the directory [BELL] to the subdirectory
[BELL.TESTFILES] and give it a new name, OLDFILE.DAT:

$ COPY NEWFILE.DAT CBELL.TESTFILESJOLDFILE.DAT

When you copy files from devices other than your default disk, you must specify
the device name in the COPY command. For example:

$ COPY DBA1 =CJONESJPET.DAT;2 DBA2 =CBELLJPET.DAT

2.7.9 Renaming Files

The RENAME command changes the identification of one or more files. For
example, the following command changes the name of the most recent version of
the file PAYROLL.DAT to TEST.OLD.

$ RENAME PAYROLL.DAT TEST.OLD

You can use the REN AME command to move a file from one directory to
another. For example, the following command moves TEST.OLD from the
directory [MALCOM] to the subdirectory [MALCOM.TESTFILES]:

$ RENAME CMALCOMJTEST.OLD CMALCOM.TESTFILESJ

You can use wildcard characters if you want to change a number of files that
have either a common file name or file type. For example:

$ RENAME PAYROLL.*;* CMALCOM.TESTFILESl*.*;*

This REN AME command changes the directory name for all versions of all files
that have file names of PAYROLL. The files are now cataloged in the subdirec­
tory [MALCOM.TESTFILES].

You cannot use the REN AME command to move files from one disk to another.

2-16 VMS Concepts

2. 7 .1 O Appending Files

The APPEND command adds the contents of one or more input files to the end
of a specified output file. For example:

$ APPEND TEST .TXT NEWTEST .TXT

The APPEND command appends the contents of the file TEST.TXT from the
default directory to the end of the file NEWTEST.TXT.

2. 7. 11 Finding Differences Between Files

The DIFFERENCES command compares the contents of two files and creates a
listing of those records that do not match. For example:

$ DIFFERENCES PAYROLL.DAT :2 PAYROLL.DAT;!

The DIFFERENCES command compares the contents of PA YROLL.DAT;2 and
PAYROLL.DAT;l in the current default directory. By default, DIFFERENCES
compares every character in every record and displays the results on the terminal.

Several qualifiers are available which let you modify the format of the informa­
tion produced, control the extent of the comparison, and ignore selected data in
each record.

2. 7 .12 Searching Files for a Selected String

The SEARCH command searches one or more files for a specified string or
strings and lists all the lines containing occurrences of the string. For example:

$ SEARCH BRANDO.TXT,WILLIAMS.TXT STELLA

The SEARCH command searches the files BRANDO.TXT and WILLIAMS.TXT
for occurrences of the character string STELLA. Each line containing the string
is displayed at the terminal.

As with the DIFFERENCES command, several qualifiers are available to
modify the SEARCH command.

VMS Concepts 2-17

2.8 Creating and Managing VMS Directories

The main reason for creating directories and subdirectories is to separate infor­
mation logically on a disk. When users are separated from one another through
the use of top-level directories, each user appears to own a portion of the disk
for storage of information. The system also supports protection of the directories,
which can be used to prevent other users from accessing files. This protection
can be used to protect an entire directory from access or to protect only a few of
the files in a directory.

In some situations, one user could be working on several projects, each requir­
ing several files. Subdirectories can be used to separate the files belonging to
one project from files belonging to another.

Subdirectories become useful for a frequent user because directory listings can
be very long. When information is separated, each directory is smaller and eas­
ier to work with.

2.8.1 Directory Structure

A directory file is a special kind of file. It contains a list of names of other
files. The system uses the directory to access these files. Directories reside on
disk volumes, with one directory file generally created by the system manager
for each user.

Your main directory (also called the top-level directory) resides in the master
file directory (MFD) on the disk volume. This MFD catalogs all user file directo­
ries (UFD). Your main directory is one of many UFDs, and it lists all of your
personal files and subdirectories. These subdirectories may contain a list of file
names, some of which may be other subdirectories.

These rules apply to directories and subdirectories:

• Although the name of the directory is listed as directory.DIR, you must
specify it as [directory] in the file specification.

• Directory files are always version 1.

• The number of directory files that may be listed in any directory file is
limited to the amount of disk space available to you. For example,
SMITH.DIR could contain the names of more than one subdirectory, and each
subdirectory file could contain the names of several other subdirectory files.

• You can have as many as eight levels of directories.

2-18 VMS Concepts

C

•
Figure 2-1 shows a sample directory structure for a user named Alexander.

ALEXANDER
< directory> Level 1

I
I I

REPORTS DTR
< subdirectory> < subdirectory> Level 2

I
I I

DATA BACKUP
< subdirectory> < subdirectory> Level 3

ZK-00001-00

Figure 2-1: Sample VMS Directory Structure

2.8.2 Accessing Other Directories

You can gain access to files in other directories (including directories that cata­
log files belonging to other users) by specifying the directory name in a file
specification. For example, to display on your terminal the contents of a file
named CONTENTS.LIS belonging to a user whose directory is [BRANDO], issue
the TYPE command:

$ TYPE CBRANDO]CONTENTS.LIS

Note that the file specification does not include a device name. For this com­
mand to execute successfully, the directory [BRANDO] must be on your default
disk device. This is because the system always applies a default when you omit
a device name. If user Brando's directory is on the disk DBB2, you would issue
the TYPE command as:

$ TYPE DBB2 : CBRAND01CONTENTS.LIS

For either of the previous examples to work correctly, Brando must have given
other users access to files in the directory. You can explicitly allow or restrict
access to your own files, either generally or on a file-by-file basis, with the
SET PROTECTION command. You will see how to do this later in this chapter.

I

VMS Concepts 2-19

2.8.3 Creating Subdirectories

The CREATE/DIRECTORY command creates a subdirectory. For example:

$ CREATE1DIRECTORY £BELL.REMINDER]

This command creates the subdirectory file, REMINDER.DIR, in the directory
[BELL]. You can specify the subdirectory name, [BELL.REMINDER], in com­
mands or programs.

Files can also be cataloged in subdirectories. A subdirectory is a file (cataloged
in a higher directory) that contains additional files. A subdirectory name is
formed by concatenating its name to the name of the directory that lists it. For
example:

$ TYPE £BRANDO.PLAYSJDESIRE.DAT

This TYPE command requests a display of the file DESIRE.DAT that is
cataloged in the subdirectory [BRANDO.PLAYS]. The subdirectory file name is
PLAYS.DIR and is cataloged in the directory [BRANDO].

2.8.4 Changing Your Default Directory

As with the default disk, if you do not specify another directory, or if you do not
specify any directory, the system applies the default. It assumes that the files to
which you refer are cataloged in your default directory. You can find out what
your current default disk and directory are by issuing a SHOW DEFAULT
command:

$ SHOW DEFAULT

DBA2 = £ BELLJ

This response from the SHOW DEFAULT command indicates that the user's
default device is DBA2 and the default directory is [BELL].

To establish another directory or subdirectory as your default directory, use
the SET DEFAULT command. For instance, you can set the default to
[BELL.REMINDER] and then issue the DIRECTORY command:

$ SET DEFAULT £BELL.REMINDER]
$ DIRECTORY

Directory DBA2 =£BELL.REMINDERJ

MEMO.TXT;1 REPORT .DAT;1

Total of 2 files
$

2-20 VMS Concepts

You are now working out of this directory, and any new file you create is
cataloged in the subdirectory [BELL.REMINDER]. You could also do this by
specifying the subdirectory as part of the file specification when you use the
EDIT command.

You can change your default directory as often as is convenient. The latest
change you make with the SET DEFAULT command remains in effect until you
either issue another SET DEFAULT command or log out.

2.8.5 Protecting Your Directories and Files

The VMS operating system protects data on directories and in files to ensure
against accidental or unauthorized access. Protection is provided by means of an
owner user identification code (UIC). The owner UIC is divided into a group
name and a user name. For example:

$ DIRECTORY10WNER PET.DAT

Directory DBA2 =CBELLl

PET .DAT;13 C STUDENTS, BELLl

Total of 1 file, 1 block.
$

The protection code indicates that BELL has a group UIC name of STUDENTS,
which is displayed before his user name.

When a user attempts to access a directory or file, his UIC is compared to the
owner UIC. Depending on the relationship of the UICs, the user is in one or
more of the following categories:

• System - These group numbers are generally reserved for system managers,
system programmers, and operators.

• Owner - The user with the same UIC as the person who created and therefore
owns the directory or file.

• Group - All users, including the owner, who have the same group number in
their UICs as the owner of the subdirectory or file.

• World - All users, including those in the first three categories.

Each of these categories of user can be granted or denied any of the following
types of access:

• Read - The right to examine, print, or copy a directory or file.

• Write - The right to modify a file or to write files onto a disk.

VMS Concepts 2-21

• Execute - The right to execute files that contain executable program images.

• Delete - The right to delete the directory, file, or files.

When you specify a user category with a protection code of 0, or null code, you
deny that user category any access.

The system provides a default protection code for directories and files you cre­
ate. You can determine the current default protection by issuing the SHOW
PROTECTION command:

$ SHOW PROTECTION
SYSTEM=RWED,OWNER=RWED,GROUP=RE,WORLD=NO ACCESS

This response is the system default protection. It indicates that the system and
the owner have all types of access, members of the owner's group have read and
excecute access, and all other users (the world) have no access.

When you create a directory or file, you can define the protection you want to
be applied if you do not want to use the default protection. For example:

$ SET PROTECTION=(S:RWED,O:RWED,G:RE,W :R) PAYROLL.DAT

The SET PROTECTION command in this example allows the system and owner
read, write, execute, and delete privileges; allows the group read and execute
privileges only; and restricts the world to read privileges for the file
PAYROLL.DAT.

To determine the current protection associated with a specific directory, file or
files, use the /PROTECTION qualifier on the DIRECTORY command. For
example:

$ DIRECTORY1PROTECTION PERSONNEL.RNO

DIRECTORY DBA1 : [BELLl

PERSONNEL.RNO;S (RWED,RWED,RW,R)

Total of 1 file, 8 blocks.

You can change the default protection with the SET PROTECTION/DEFAULT
command. This command indicates that the protection code you specify is to be
applied to all directories and files that you subsequently create during the ter­
minal session. For example:

$ SET PROTECTION=(S :RWED,O:RWED,G :R,W)1DEFAULT

This command sets the default protection to give the system and owner
unlimited access, give the group read access and give no access to the world.

2-22 VMS Concepts

The directory protection can override the protection of individual files in the
directory. For example, if a directory denies world access, world users cannot
look at even those files in the directory that permit world access. To guarantee
protection, however, individual files must also be protected.

2.8.6 Deleting a Directory

The VMS system provides two safeguards against the accidental deletion of a
directory. You must delete all files in a subdirectory and then change the pro­
tection of the subdirectory from the default provided by the system. For exam­
ple, the SET DEFAULT command sets the default to the directory targeted for
deletion:

$ SET DEFAULT [BRANDO.PLAYS.WILLIAMS]

The DELETE command deletes all files in the subdirectory:

$ DELETE*.*;*

This SET DEFAULT sets the default to the directory containing the subdirec­
tory WILLIAMS.DIR:

$ SET DEFAULT [BRANDO.PLAYS]
•

The SET PROTECTION changes the default protection to allow deletion:

$ SET PROTECTION=O =D WILLIAMS.DIR

The subdirectory is then deleted:

$ DELETE WILLIAMS.DIR;

2.9 Logical Names

An alternate way of referring to a specific device, directory, or file is to use a
logical name. Two important reasons for using logical names are to:

• Achieve device and file independence

• Reduce typing of long file specifications

A logical name can represent an entire file specification or the leftmost portion
of one. You can create logical names with the ASSIGN command. For example:

$ ASSIGN DBA2=[BELL.TESTFILESl TEST
$ TYPE TEST =MEMO.LIS

VMS Concepts 2-23

The ASSIGN command creates the logical name TEST to represent the directory
specification DBA2:[BELL.TESTFILES]. When TEST is used in the TYPE com­
mand, the system translates it. The logical name in the file specification is
replaced by its current equivalence name. The TYPE command in the previous
example displays the file DBA2:[BELL.TESTFILES]MEMO.LIS.

Only one logical name is permitted in a file specification. It must be the first or
only element of the file specification, and it must be followed by a colon if any
other element is present.

The VMS system maintains tables of all logical names that are created by
users. By default, you use logical names from one of these four tables:

• Process logical name tables. A separate logical name table exists for every
user, or process, on the system. Names in a process logical name table are
available only to the user who defines them. An ASSIGN command places a
logical name in your process logical name table by default.

• Job logical name tables. The job table contains logical names that are availa­
ble to your process and any of your subprocesses.

• Group logical name tables. A separate logical name table exists for every
group in the system. The names in any of these tables can be accessed only by
users who have the same group number in their user identification code.

• System logical name table. There is a single system logical name table. The C
logical names in this table can be accessed by all users.

2.10 System Default Logical Names

When you log in, the system provides several default logical names. These
names are used by the command interpreter to read your commands and to
print responses or error messages. Table 2-3 describes the default logical names.

2-24 VMS Concepts

Table 2-3: System Default Logical Names

Logical
Name Use

SYS$INPUT The default input stream from which the system reads commands
and your programs read data.

Default interactive assignment: your terminal.

Default batch assignment: the command procedure or batch stream.

SYS$OUTPUT The default output stream to which the system writes responses to
commands and your programs write data.

Default interactive assignment: your terminal.

Default batch assignment: batch job log file .

SYS$ERROR The default device to which the system writes all error and infor-
mational messages.

Default interactive assignment: your terminal.

Default batch assignment: batch job log file.

SYS$DISK Your default disk device.

Default assignment: set in user authorization file.

By default, when the system translates a logical name, it searches the process,
job, group, and system logical name tables, in that order. (There are ways to
change the order of this search. See the VMS documentation set for details.)
Each time the system translates a logical name, it checks to see if the result
still contains a logical name. If so, the system translates the result. Therefore,
you can define a logical name in terms of another logical name. You can also
define more than one equivalence name for a single logical name. See the VMS
documentation set for details about DCL commands.) For example:

$ ASSIGN "DBA2 =CBELL.COLIRSEl" HOMEWRK
$ ASSIGN "HOMEWRK =MONTHLY .TST" TEST

In this example, the file specification DBA2:[BELL.COURSE] has been given the
logical name HOMEWRK. This logical name is then used in the second file
specification, HOMEWRK:MONTHL Y.TST, to create the logical name TEST.

VMS Concepts 2-25

You can determine the current equivalence for a logical name by entering the
SHOW LOGICAL command. For example:

$ SHOW LOGICAL HOMEWRK
HOMEWRK = "DBA2 =tBELL.COURSES1" (process)

To assign a logical name temporarily, use ASSIGN/USER_MODE command.
For example:

$ ASSIGN/USER-MODE DMA0 = DISK

The ASSIGN /USER_MODE command assigns the equivalence name DMA0: to
the logical name DISK and stores the assignment in your process logical name
table. The assignment is temporary and is deleted following completion of the
next image. Because all but a few DCL commands complete an image when
they execute, a user mode assignment of a logical name generally lasts only for
one DCL command. Use this command to override existing logical names
temporarily.

To cancel a logical name assignment, use the DEASSIGN command. For example:

$ DEASSIGN HOMEWRK
$ SHOW LOGICAL HOMEWRK

No translation for logical name HOMEWRK

There are many other attributes and options to control how the system inter­
prets logical names. See the VMS documentation set for details.

2.11 Symbols

You can equate symbols to character strings or arithmetic values by defining
them in assignment statements. In addition to their use in command procedures
(see Section 2.12), symbols are useful as synonyms for long, frequently used com­
mand strings. For example, you can equate the symbol HOME to the command
SET DEFAULT DBA2:[BELL] and subsequently use the symbol HOME in place
of SET DEFAULT DBA2:[BELL]. For example:

$ HOME === SET DEFAULT DBA2 =tBELL1

This symbol would be handy for bringing Bell back quickly to his main directory.

To display the current value of a symbol, use the SHOW SYMBOL command.
For example:

$ SHOW SYMBOL HOME
HOME = "SET DEFAULT DBA2 = tBELLl "

2-26 VMS Concepts

To delete a symbol, use the command DELETE/SYMBOL/GLOBAL. For example:

$ DELETE1SYMBOL1GLOBAL HOME
$ SHOW SYMBOL HOME
ZDCL-W-UNDSYM, undefined symbol

The DELETE/SYMBOL/GLOBAL command deleted the symbol HOME. The
response to the SHOW SYMBOL command verifies this.

2.12 Command Procedures

A command procedure is a file with the .COM type containing a sequence of
commands to be executed by the operating system. You execute a command
procedure with one command: the Execute Procedure character (@) for interac­
tive processing or the SUBMIT command for batch processing.

As you continue to use DCL, you can simplify it to save yourself time during
interactive terminal sessions and to establish your own default commands and
command qualifiers.

You can use command procedures and symbol assignment statements together
to redefine and expand system commands.

For example, suppose that during your terminal sessions you frequently create
many files that you do not want cluttering up your directory. You may want to
purge these files at the end of each session. To do this housekeeping, you could
create a command procedure named LOG.COM that contains the lines:

$ PURGE
$ LOGOUT

You can use this command procedure in place of the LOGOUT command when
you want to end your terminal session, as follows:

$ @LOG

The PURGE command is automatically executed before you log out.

Moreover, you could define a symbol named LO that is equated to the following
command string:

$ LO : = = @LOG

Then, the system substitutes the symbol LO with the @LOG command string
and executes your command procedure when you type the command line:

$ LO

VMS Concepts 2-27

2.12.1 A LOGIN.COM File

If you become a frequent user of the VMS system, you may find that you are
entering the same sequence of commands or assignment statements every time
you log in. To avoid such repetition, you can place these commands and state­
ments in a special command procedure.

The command procedure file must be named LOGIN.COM, and it must be in
your default disk directory. When you log in to the system, the system automat­
ically searches for a file with this file name. If the system locates the
LOGIN.COM file, it automatically executes the commands within that file.

For example, a LOGIN.COM file might contain:

$ ST === SHOW TIME
$ DIR*ECTORY === DIRECTORY/OWNER/PROTECTION
$ LO === @LOG
$ DTR32 === SYSSYSTEM=DTR32V3
$ SHOW PROCESS

Note that all the symbols defined in the previous example are global symbols,
assigned with two equal signs. If these symbols were local (assigned with one
equal sign), they would be recognized only within the LOGIN.COM file and
would therefore be useless to you.

You can execute command procedures from within other command procedures. (
You may want to place the global assignment statements you use for command
synonyms in a separate file and execute this procedure in the LOGIN.COM file.
For example, suppose the file SYNONYM.COM contains the lines:

$ ST === SHOW TIME
$ DTR32 === SYSSYSTEM=DTR32V3

Your LOGIN.COM file would contain the line:

When this command is executed, the definitions in the synonym file are
established.

2.13 Finding More Information

This chapter provides a brief overview of the VMS operating system. For more
information, see the VMS documentation set.

2-28 VMS Concepts

)

Using Editors Within DAT A TRI EVE 3

When you need to create or modify a dictionary object, you use an editor with
its own set of rules, functions, commands and statements. This chapter discusses
editing within DATATRIEVE. Within DATATRIEVE, you can use one of the
following editors:

• EDT, which provides a basic editing interface and a predefined keypad with a
variety of useful editing functions. EDT is the default editor within
DATATRIEVE.

• VAX Text Processing Utility (V AXTPU), which allows multiple buffers and
windows. V AXTPU allows you to tailor your editing interface to your
individual editing style.

• VAX Language-Sensitive Editor (LSE), which has all the features of V AXTPU
but also allows you to use DAT ATRIEVE LSE templates. These templates
guide you to enter correct DAT ATRIEVE commands and statements.

Note that you can also edit from DCL level and at CDD level. At DCL level,
you can use your choice of editors depending on what is installed on your sys­
tem. At CDD level, you can use the Dictionary Management Utility (DMU) to
edit CDD objects. See the documentation for your particular editor and for CDD
for further information.

3-1

This chapter includes the following sections:

• General information you need to know to edit within DAT ATRIEVE

• Introductions to:

- EDT

- VAXTPU

- LSE

• Information about ending your editing session

3.1 General Editing Information

This section discusses general information you need to know to edit within
DATATRIEVE. It includes:

• Assigning a DATATRIEVE editor

• Using line recall within DATATRIEVE

• Using the DATATRIEVE EDIT command:

- Editing the last DAT ATRIEVE command or statement

- Using Access Control List privileges when editing CDD objects

- Editing by CDD path name

- Editing by types of objects within DATATRIEVE

- Recovering an aborted editing session

3.1.1 Assigning a DATATRIEVE Editor

EDT is the default editor in DATATRIEVE. To change your default editor to
V AXTPU or LSE, you need to change the editor assigned to the logical name
DTR$EDIT. You must use a three-character acronym, either EDT, TPU, or LSE,
when you assign an editor to DTR$EDIT.

3-2 Using Editors Within DATATRIEVE

C

You can assign an editor to DTR$EDIT in one of two ways:

• Use the ASSIGN command at DCL level:

$ ASSIGN TPU DTR$EDIT

When you assign DTR$EDIT with the DCL ASSIGN command, the assign­
ment lasts only until you log out. After you log out, the previous default edi­
tor is again the default editor.

• Use the function FN$CREATE_LOG from within DATATRIEVE:

DTR> FN$CREATE_LOG ("DTR$EDIT", "TPU")

When you assign DTR$EDIT with FN$CREATE_LOG, the assignment lasts
only during that DATATRIEVE session. After you exit from DATATRIEVE,
the previous default editor is again the default editor.

To assign an editor as your default editor whenever you use DATATRIEVE,
include the ASSIGN command in your LOGIN.COM file. Your default
DATATRIEVE editor will then be the editor assigned to DTR$EDIT.

3.1.2 Using Line Recall Within DATATRIEVE

DAT ATRIEVE allows you to recall the 20 most recent input or prompted lines
using the up arrow and down arrow keys or the CTRL/B key sequence.

You can use this feature to recall, correct, then reenter a previous line that con­
tained an error. Line recall does not invoke an editor, however. To make your
correction, recall the line with the error, position the cursor over the error using
the arrow keys, then use the keyboard keys to insert or delete the necessary
information.

• The up arrow key recalls lines in sequence from most recent to least recent.

• The CTRL/B key sequence also recalls lines in sequence from most recent to
least recent.

• The down arrow key &llows you to recall more recently entered lines after you
have recalled prior lines.

You can use line recall at the DTR > prompt, the CON> prompt, and the RW >
prompt. You can also recall prompted input lines, such as those generated by a
prompting value expression (such as *."prompt-name") or a STORE or MODIFY
statement. You cannot use line recall in Guide Mode, Help, or ADT.

Using Editors Within DATATRIEVE 3-3

Note that DATATRIEVE uses separate recall buffers for interactive and
prompted input lines:

• If you are being prompted for input lines, you can recall the last 20 lines of
prompted input.

• When the prompting has ended, DATATRIEVE switches to the interactive
input buffer. Therefore, you can recall the previous 20 interactive input lines
prior to the prompting session.

• If you subsequently enter another prompting session, you can recall the previ-
ous 20 lines from the previous prompting session.

In the following list, the position of the cursor is indicated by the underscore, _.
The list shows some unique situations using the recall feature:

• DATATRIEVE recalls lines continued with hyphens in interactive sessions as
though they are one concatenated line.

The following example uses lines that have been continued in an interactive
session with hyphens. The cursor is on the bottom line.

DTR> R£ADY-
CON> YACHTS-
CON> SHARED-
CON> READ
DTR) _

If you press the up arrow key or CTRL/B once, DATATRIEVE recalls the
command as one entire concatenated line:

DTR> READY YACHTS SHARED READ

Note that both interactive and prompted input lines have a maximum length
of 255 characters.

• DATATRIEVE recalls a nonhyphenated, continued line in the same manner
as it recalls a line entered at the DTR > prompt:

DTR> FIND YACHTS WITH BUILDER= 11 GRAMPIAN 11

DTR> PRINT All LOA,
CON> BEAN,
CON> DISP12000 C11 DISP12000 11

)

DTR> _

As with a regular DTR> prompt, pressing the up arrow key or CTRL/B once
recalls the most recent line, not the entire command or statement:

CON> DISP12000 C11 DISP12000 11
)

DATATRIEVE does not concatenate the recalled lines if they are not con­
tinued with hyphens.

3-4 Using Editors Within DATATRIEVE

• DATATRIEVE does not echo passwords on the screen, so you cannot edit or
recall passwords.

• When DAT ATRIEVE prompts you for input, it interprets a hyphen as a
minus sign, not as a continuation character. Thus, DATATRIEVE does not
recall prompted lines as one continuous line if you have attempted to continue
the lines with hyphens.

3.1.3 Using the DATATRIEVE EDIT command

The following sections discuss the DATATRIEVE EDIT command, including
information on:

• Editing the previous command or statement

• Using Access Control List privileges when editing CDD objects

• Editing a CDD object specified by a path name

• Editing all objects of a particular type

• Recovering an aborted session

The EDIT section of the VAX DATATRIEVE Reference Manual also contains
complete information on the EDIT command.

3.1.3.1 Editing the Previous DATATRIEVE Command or Statement - You can
enter the EDIT command within DATATRIEVE without specifying a dictionary
path name. DATATRIEVE then invokes your default editor and loads the previ­
ous command or statement into the main text buffer of the editor.

This feature is most useful if there was an error in the previous command or
statement. The following list shows how you can use EDIT to correct such an
error:

1. Enter the EDIT command with no argument.

2. DATATRIEVE loads the previous command or statement into the main
text buff er.

3. Edit the previous command or statement to correct the error

4. Enter the EXIT command

5. DATATRIEVE executes the commands and statements that are in the
editor's main buffer

Using Editors Within DATATRIEVE 3-5

In the following example, assume you did not want to include the argument
BEAM:

DTR> FIND YACHTS WITH BUILDER= "GRAMPIAN"
DTR> PRINT ALL LOA,
CON) BEAM,
CON> DISP12000 (11 DISP12000 11

)

DTR>

To correct the mistake, type the EDIT command without an argument at the
DTR > prompt; this recalls all the lines of the previous PRINT statement. Next,
edit the statement, eliminating the BEAM argument. After you exit from the
editor, DATATRIEVE executes the corrected statement:

DTR> PRINT ALL LOA,
CON) DISP12000 (11 DISP12000")

LENGTH
OVER
ALL DISP12000

34 5.900
26 2 .800
28 3 .450
30 4 .300
33 6.000

Note that you can use both the EDIT command and the arrow keys to recall
and edit the previous line. The EDIT command and the arrow keys function
differently, however, when you recall nonhyphenated commands or statements
that are continued over more than one line. The following list shows these
differences:

• The EDIT command recalls the entire last command or statement even if it
spans more than one line.

• The arrow keys recall only a single line of a nonhyphenated, continued com­
mand or statement; they do not recall the entire command or statement. To
correct an error in a nonhyphenated command or statement using the arrow
keys, you would have to perform each of the following steps:

1. Recall the first line of the command or statement and enter the RETURN
key

2. Recall each successive line of the command or statement and enter the
RETURN key

3-6 Using Editors Within DATATRIEVE

3. When you reach the line where the error occurred, correct the error and
enter the RETURN key

4. Recall any lines of the command or statement following the line where the
error occurred, executing each line by entering the RETURN key

3.1.3.2 Privileges Needed to Edit COD Objects - Each CDD object has an
access control list (ACL) associated with it. ACLs determine what an individual
user or class of users can do with an object. When you use an editor to define or
redefine a dictionary definition within DAT ATRIEVE, the definition you are
editing must have access privileges that allow you to create later versions. Typi­
cally, you need not worry about these privileges. The CDD is usually set up by
the system manager to include the ACL privileges you need. See the chapter on
using the VAX Common Data Dictionary for a description of privileges neces­
sary to define and redefine definitions.

3.1.3.3 Editing a COD Object Specified by Path Name - You can use EDT,
V AXTPU, or LSE to create or modify existing CDD definitions. To create new
CDD definitions, you can use the DEFINE command either within an editor or
at the DTR > prompt. You can also use the Application Design Tool (ADT),
which prompts you for information to create a new domain and record definition.

To edit a CDD object from within DATATRIEVE, enter . the EDIT command fol­
lowed by the CDD path name of the object:

DTR> EDIT definition-path-name

The editor then loads the specified definition into a text buffer, which is a tem­
porary storage area where editing operations take place.

See the following sections on EDT, VAXTPU, and LSE for examples of editing a
CDD object.

3.1.3.4 Editing by Types of Objects Within DATATRIEVE - You can specify
one or more types of object definitions with the DAT ATRIEVE EDIT command.
This allows you to edit all the domains, plots, procedures, records, or tables from
your current default CDD directory.

DATATRIEVE places the object types in the edit buffer in the order you specify.
You can then edit all the objects using EDT or your assigned editor. In the fol­
lowing example, DATATRIEVE places the record object definitions in the edit
buffer before the domain object definitions:

DTR> EDIT ALL RECORDS, DOMAINS

See the EDIT command in the VAX DATATRIEVE Reference Manual for more
information.

Using Editors Within DATATRIEVE 3-7

3.1.3.5 Using EDIT to Recover from a System Failure - Sometimes a computer
system experiences problems that force it to shut down without warning. Your
editor protects you from losing your editing work if this happens by creating a
journal file that allows you to reconstruct your editing session.

While you are editing CDD objects, DATATRIEVE places a journal file for the
editing session in your default VMS directory. The journal file is automatically
deleted upon successful completion of the editing session. If your editing session
ends abnormally, however, you can use the journal file and the RECOVER argu­
ment of the EDIT command to recover almost all the edits. The last several
keystrokes may be missing.

To recover an aborted session, enter exactly the same line you entered when you
started the session but add the RECOVER argument at the end of the line:

DTR> EDIT ALL DOMAINS

. ! System failure

DTR> EDIT ALL DOMAINS RECOVER

Journal files have default file types, depending on which editor you are using.
You do not need to specify the journal file type when you are recovering an
aborted session. You should know what the file type is, though, so you do not
inadvertently delete the journal file before you recover the session. The follow­
ing are the default file types:

EDT .JOU

LSE .TJL

VAXTPU .TJL

If you are editing more than one type of object, DATATRIEVE creates a journal
file using the name of the first object type:

DTR> EDIT ALL DOMAINS, RECORDS

In the preceding example, DAT A TRIEVE creates a journal file called
DOMAINS.JOU.

Note that DATATRIEVE does not create a journal file when you are editing:

• The previous command or statement using the EDIT command with no
arguments

• A previous line you have recalled using one of the arrow keys

3-8 Using Editors Within DATATRIEVE

Because there is no journal file, if your system fails during either of hese situa­
tions, you cannot use the RECOVER argument .

. 3.2 Using EDT Within DAT ATRIEVE

To invoke EDT within DAT ATRIEVE, enter the EDIT command. As detailed in
a preceding section, you can use several arguments with the EDIT command to
achieve various results:

• To edit the previous command or statement, enter the EDIT command with no
arguments.

• To edit a CbD object specified by path name, enter EDIT followed by a
definition-path-name.

• To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

• To recover an aborted session, enter the previous EDIT command followed by
the argument RECOVER.

Although you can use any of the arguments mentioned in the previous list when
you invoke EDT, the following example shows you how to use EDT to edit a
CDD object specified by path name. Enter the EDIT command followed by a
CDD definition path name:

DTR> EDIT definition-path-name

The editor then loads the specified definition into a text buffer, which is a tem­
porary storage area where editing operations take place.

When you invoke EDT, the response varies depending on whether or not you
are creating a new file or editing an existing file. Other factors, such as com­
mands contained in an EDTINI.EDT startup command file, may further alter
the response. See the EDT documentation for information on startup command
files.

To edit the PHONES_REC record definition, type EDIT PHONES_REC at the
DTR > prompt:

DTR> EDIT PHONES-REC

1 REDEFINE RECORD PHONES-REC USING

*

Using Editors Within DATATRIEVE 3-9

EDT puts a copy of the object definition in its buffer and then displays the first
line of the definition and the asterisk (*) prompt. DATATRIEVE automatically
adds the REDEFINE command to the beginning of the first ·line of
PHONES_REC. The REDEFINE command creates a new version of the
definition when you save any changes made during the editing session.

The asterisk is the EDT line editing prompt. When you see the asterisk prompt,
it means you are in EDT line mode and not keypad mode. The following list
describes EDT line mode and keypad mode:

• In line mode, you see only a single line of text at a time and perform editing
operations on that line. You enter line editing commands by typing the com­
mand from the main keyboard.

• In keypad mode, you see an entire screen of text and can move freely about
the display to edit at any point in the text. You enter keypad editing func­
tions by pressing keys on the numeric keypad to the right of the main
keyboard.

To use keypad mode, type the command CHANGE (or the abbreviation C) at the
asterisk prompt. EDT switches to keypad mode and shows you a full screen of
the record definition:

DTR) EDIT PHONES-REC

1

*CHANGE

REDEFINE RECORD PHONES-REC USING

REDEFINE RECORD PHONES-REC USING
01 PHONES-REC .

05 FULLNAME
10 LAST_NAME

10 FIRST_NAME

05 PHONE-NUMBER

[EOBl

QUERY_NAME IS NAME.
PIC X(20)
QUERY_NAME ISL.
PIC X(15)
QIJER'' _NAME IS F.
PIC X(8)
QUERY_NAME IS NUM.

The end-of-buffer symbol [EOB] indicates the last line of text.

See the section near the end of this chapter for information on leaving the
editor.

3-10 Using Editors Within DATATRIEVE

)

3.3 Using VAXTPU Within DATATRIEVE

VAXTPU is a Text Processing Utility that allows you to tailor your editing
environment to your own preferences. V AXTPU provides a variety of features
not available with EDT, including:

• Multiple buffers, windows, and subprocesses

• The ability to define keys to execute a sequence of commands

• A procedural language

You have several choices of editing interfaces:

• The Extensible VAX Editor (EVE) has an easy-to-use editing interface that
includes the most frequently used editing functions. You can also enter more
advanced editing V AXTPU functions on an EVE command line and define
your keyboard to suit your editing style. You can define keys to perform any
V AXTPU /EVE commands or series of commands you choose. EVE is the
default VAXTPU editing interface in DATATRIEVE.

• The EDT Keypad Emulator gives you an interface with the same editing key­
pad as the EDT editor. Like the EVE editing interface, it allows you to enter
more advanced V AXTPU functions on an EDT Keypad Emulator command
line and to define other keys on your keyboard to suit your editing style.

• If you prefer to design your own editing interface, you can define your key­
board the way you like it. You can define keys to perform any V AXTPU com­
mands or series of commands or enter advanced V AXTPU functions on a
command line.

Note ------------­

VAXTPU allows you to use a section file to modify your editing inter­
face. When you use a section file, however, be careful not to specify,
alter, or delete input and output file names. DATATRIEVE uses the
file names DTR$INPUT and DTR$OUTPUT for VAXTPU. See
V AXTPU documentation for more information about section files.

To use VAXTPU within DATATRIEVE, you must first assign VAXTPU as your
default DATATRIEVE editor. (See the section on assigning a DATATRIEVE edi­
tor for more information.) This allows you to invoke the V AXTPU default edit­
ing interface, EVE.

Using Editors Within DATATRIEVE 3-11

If you want to invoke V AXTPU with the EDT Keypad Emulator rather than
EVE, assign the logical name TPUSECINI. You can assign the logical name in
one of two ways:

• Use the ASSIGN command at DCL level:

$ ASSIGN SYS$LIBRARY : EDTSECINI TPUSECINI

When yo4 use the DCL ASSIGN command, the assignment lasts only until
you log out. To assign the EDT Keypad Emulator as your default editor
whenever you use DATATRIEVE, insert the ASSIGN command in your
LOGIN.COM file.

• Use the function FN$CREATE_LOG from within DATATRIEVE:

DTR> FN$CREATLLOG ("TPUSECINI", "SYS$LIBRARY : EDTSECINI")

When you use FN$CREATE_LOG, the assignfnent lasts only during that
DATA.THIEVE session.

To invoke VAXTPU within DATATRIEVE, enter the EDlT command. As
detailed in a preceding section, you can use several arguments with the EDIT
command to achieve various results:

• To edit the previous command or statement, enter the EDIT command with no
arguments.

• To edit a CDD object specified by path name, enter EDIT followed by a path
name.

• To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

• To recover an aborted session, enter the previous EDIT command exactly as
you entered it before, followed by the argument RECOVER.

While you can use any of the arguments from the previous list when invoking
V AXTPU, the following example shows you how to use V AXTPU to edit a CDD
object specified by path name. Invoke VAXTPU with the EDIT command fol­
lowed by the CDD path name:

DTR> EDIT definition-path-name

VAXTPU then loads the specified definition into the editing buffer.

When you invoke VAXTPU, the response varies depending on whether or not
you are creating a new file or editing an existing file. Other factors, such as
commands contained in a startup command file, may further alter the response.
See the V AXTPU documentation for information on startup command files.

3-12 Using Editors Within DATATRIEVE

To edit the PHONES_REC record definition, for example, type EDIT
PHONES_REC at the DTR> prompt. VAXTPU puts a copy of the definition in
the buffer and then displays the record definition:

DTR> EDIT PHONES-REC

REDEFINE RECORD PHONES-REC USING
01 PHONES-REC.

05 FULL-NAME
10 LASLNAME

10 FIRSLNAME

05 PHONE-NUMBER

[End of file]

QUERY-NAME IS NAME.
PIC X(20)
QUERY-NAME ISL .
PIC X(15)
QIJER'/ _NAME IS F.
PIC X(8)
QUERY-NAME IS NIJM.

DATATRIEVE automatically adds the REDEFINE command to the beginning of
the first line of PHONES REC. The REDEFINE command creates a new version
of the definition when you save any changes made during the editing session.

The [End of file] symbol indicates the last line of text in the buffer.

See the section near the end of this chapter for information on leaving the editor.

3.4 Using LSE within DATATRIEVE

LSE is based on V AXTPU and has all the editing features of V AXTPU.

LSE allows you to use a section file to modify your editing interface. When you
use a section file, however, be careful not to specify, alter, or delete input and
output file names. DATATRIEVE uses the file names DTR$INPUT.DTR and
DTR$OUTPUT for LSE. See the LSE documentation for more information about
section files.

In addition to the V AXTPU editing features, you can use DATATRIEVE LSE
templates to guide you to enter correct commands and statements.

The DATATRIEVE LSE templates are made up of placeholders. The .place­
holders represent the DATATRIEVE syntax you need to define dictionary
objects and to use DATATRIEVE. When you expand the placeholders, LSE pro­
vides the required syntax or indicates optional elements. You can expand these
placeholders into:

• The required DAT ATRIEVE syntax elements that are appropriate for that
context

• Optional elements

Using Editors Within DATATRIEVE 3-13

• Tokens representing appropriate keywords or information to be supplied

• Other placeholders

You expand a placeholder or token by positioning the cursor anywhere on it and
pressing CTRL/E.

To use LSE within DATATRIEVE, you must first assign LSE as your default
DATATRIEVE editor. (See the section in this chapter on assigning a
DATATRIEVE editor for more information.)

Next, enter the EDIT command. As detailed in a preceding section, you can use
several arguments with the EDIT command to achieve various results:

• To edit the previous command or statement, enter the EDIT command with no
arguments.

• To edit a CDD object specified by path name, enter EDIT followed by a path
name.

• To edit all objects of a particular type, enter EDIT ALL DOMAINS, EDIT
ALL PLOTS, and so on.

• To recover an aborted session, enter the previous EDIT command followed by
the argument RECOVER.

Although you can use any of the arguments in the previous list when invoking
LSE, the following example shows you how to use LSE to edit a CDD object
specified by path name. Invoke LSE with the EDIT command followed by the
CDD path name:

DTR> EDIT definition-path-name

This command tells your editor to load the specified definition into the editing
buffer.

When you invoke LSE, the response varies depending on whether or not you are
creating a new file or editing an existing file. Other factors, such as commands
contained in a startup command file, may further alter the response. See the
VAX Language-Sensitive Editor documentation for further information on
startup command files.

3-14 Using Editors Within DATATRIEVE

To edit the PHONES_REC record definition, for example, type EDIT
PHONES_REC at the DTR> prompt. LSE puts a copy of the definition in its
main buffer and then displays the record definition:

DTR> EDIT PHONES-REC
REDEFINE RECORD PHONES-REC USING
01 PHONES-REC.

05 FULL-NAME
10 LASLNAME

10 FIRST _NAME

05 PHONE-NUMBER

[End of file]

QUERY-NAME IS NAME.
PIC X(20)
l)UERY _NAME IS L.
PIC X(15)
1JUER'r _NAME IS F.
PIC X(8)
QUERY-NAME IS NUM.

When the editor copies the record definition, DATATRIEVE automatically adds
the REDEFINE command to the beginning of the first line of PHONES_REC.
The REDEFINE command creates a new version of the definition when you exit
the editor.

The [End of file] symbol indicates the last line of text in the buffer.

If you want some additional help in editing or want to use the general LSE tem­
plate for DATATRIEVE, invoke the top-level placeholder in the following
manner:

1. Invoke the editor.

2. Type the DATATRIEVE LSE placeholder {DATATRIEVE_session} at
the top of the file.

3. Place your cursor on {DATATRIEVE_session}.

4. Enter CTRL/E to expand the placeholders and tokens included in the
DATATRIEVE LSE templates.

To save keystrokes, you can define a key to print the placeholder
{DATATRIEVE_session}. For example, adding this line to your LSE initializa­
tion file (LSE$INITIALIZATION) enables the use of the key sequence GOLD-D
for entering the placeholder into the edit buffer when you are in LSE:

DEFINE KE'r1IF_STATE=GOLD D "DO '"'ENTER TEXT {DATATRIEVLsession}'"' "

See the following section for information on ending your editing session.

Using Editors Within DATATRIEVE 3-15

3.5 Ending Your Editing Session

Whether your default editor is EDT, VAXTPU, or LSE, you have two options
when ending your editing session. You can:

• QUIT to end the session without preserving your work.

• EXIT to end the editing session but cause DATATRIEVE to execute any com­
mands in the editing buffer. DATATRIEVE saves the original definition i!l
the CDD when you exit the editor.

Note that when you exit, DATATRIEVE tries to execute the contents of your
editing buffer. You should be sure your editing buffer contains valid
DATATRIEVE syntax before you exit.

After you exit, a confirmation message and the DTR > prompt appear:

REDEFINE RECORD PHONES_REC USING
01 PHONES-REC.

05 FULL-NAME
10 LASLNAME

10 FIRST _NAME

05 PHONE-NUMBER

[EOBJ
(CTRUZJ

*EXIT

QUERY-NAME
PIC X(20)
QUER 1t'-NAME
PIC X(15)
QUER 1I _NAME
PIC X(8)
QIJER 1t _NAME

[Record is 43 bytes long .]

DTR>

IS NAME.

ISL.

IS F.

IS NIJM.

The following sections detail information specific to ending editing sessions from
EDT, VAXTPU, and LSE.

3.5.1 Ending an EDT Session

To end an EDT editing session within DATATRIEVE, you must first leave EDT
keypad mode by entering CTRL/Z. This returns you to line mode and the aster­
isk prompt.

At the asterisk prompt, end your editing session by typing either EXIT or
QUIT, then press the RETURN key.

See the EDT documentation for more information about EDT commands and
keypad editing.

3-16 Using Editors Within DATATRIEVE

3.5.2 Ending a VAXTPU Session

"') To EXIT from the EVE editing interface:

)

• On a VTlO0-family terminal, press CTRL/Z

• On a VT200-family terminal, press either the Fl0 key or CTRL/Z

To QUIT from the EVE editing interface:

• On a VTlO0-family terminal, press the PF4 key, then type QUIT and press
the RETURN key

• On a 200-family terminal, press the DO key, then type QUIT and press the
RETURN key

In the EDT Keypad Emulator, pressing CTRL/Z gives you an asterisk(*)
prompt. You must then type either EXIT or QUIT and press the RETURN key
to end your editing session.

See the V AXTPU documentation for more information about V AXTPU
commands.

3.5.3 Ending an LSE Session

To end your LSE session, enter CTRL/Z. This moves your cursor down to the
LSE > prompt at the bottom of the screen. You can then type either EXIT or
QUIT, then press the RETURN key.

When you end your LSE editing session, do not leave any unexpanded place­
holders in the file. Note that when you exit, DATATRIEVE tries to execute the
contents of your editing buffer. DAT ATRIEVE can interpret only expanded
placeholders and tokens; unexpanded placeholder and tokens will result in error
messages.

Using Editors Within DATATRIEVE 3-17

C

)

Using Syntax Diagrams 4

This chapter explains the notation used in DAT ATRIEVE syntax diagrams.

The language you speak and write has a vocabulary and grammatical rules that
make it unique and understandable to others. DATATRIEVE, too, contains a set
of words and rules that determines how you can form statements and
commands.

When you are first learning to use DATATRIEVE, you will probably use exam­
ples to guide you in writing your own statements, commands, and definitions.
As you become more expert at using DATATRIEVE, however, you will find that
no one example is complete enough for your particular application.

In the VAX DATATRIEVE Reference Manual and VAX DATATRIEVE Pocket
Guide you will find a syntax diagram for each DAT ATRIEVE command, state­
ment, and clause you can use. The syntax diagram tells you the words, order,
and punctuation that apply to the language element illustrated. You can use
syntax diagrams to supplement the information you gain from looking at
examples.

DAT ATRIEVE online help also displays syntax diagrams for you. For example,
to display the syntax diagram for the READY command, you can enter HELP
READY at the DTR > prompt. Refer to Chapter 6 for more information about
using the DATATRIEVE online help.

4-1

Figure 4-1 illustrates the syntax diagram for the READY command.

READY domain-path-name [AT node-spec] [AS alias-1]

[

PROTECTED]
SHARED
EXCLUSIVE [

READ l WRITE
MODIFY
EXTEND

[
CONSISTENCY]
CONCURRENCY [, ...]

Figure 4-1: Sample Syntax Diagram

Table 4-1 explains the notation used in syntax diagrams.

Table 4-1: Notation Used in Syntax Diagrams

Element Meaning

WORD An uppercase word is a keyword.

word A lowercase word indicates a syntax element.

separators Characters that separate words (space), separate items
(punctuation) you are listing (comma), or tell DATATRIEVE you are

finished with a clause (period) or a statement or com-
mand (semicolon).

{ } (braces) Braces enclose a clause from which you must choose
one alternative.

[] (brackets) Square brackets enclose optional clauses from which
you can choose or none.

... Indicates you can repeat the part of the clause, state-
(horizontal ment, command, or expression immediately to the left
ellipsis) of the ellipsis

Indicates you can repeat the line of the clause, state-
. (vertical) ment, command, or expression immediately above the
. ellipsis) ellipsis

Do You
Enter It?

Yes

Yes

Yes

No

No

No

No

The format for the READY command indicates it always starts with the key­
word READY and must contain at least one path name. The command READY
EMPLOYEES, for example, contains the minimum number of elements that a
READY command can include.

4-2 Using Syntax Diagrams

C

The following example illustrates a READY command that includes all the
options in the diagram. It readies the domain FAMILIES on a local system for
write access and specifies that other users cannot access the file. It also readies
the domain PERSONNEL on a remote system for read access, specifies that
other users can access the file, and specifies that the domain be readied under
the name REM PERSONNEL:

DTR> READY FAMILIES EXCLUSIVE WRITE, PERSONNEL AT
(Looking f or Node Specification)
CON> WOMBAT"BELL * . ! password!" AS REM-PERSONNEL SHARED READ
Enter password =
DTR > SHOW READ'r'
Ready sources =

REM-PERSONNEL = Domain, REMOTE, shared read
FAMILIES= Domain, RMS sequential, exclusive write
<CDD$TOP .DTR$USERS . BELL .FAMILIES>

No loaded tables.

The following examples illustrate what can happen when you input a statement
or command that does not follow the rules in the syntax diagram. The comment
line (DTR > !. ..) in each example indicates the correction needed. DATATRIEVE
does not process comment lines. You generally add them only to procedures to
document what is going on for someone reading the procedure. Sometimes in
this book, comment lines are added to interactive examples to help you follow
the steps being demonstrated:

DTR> READY FAMILIES WRITE AS FOLKS
READY FAMILIES SHARED WRITE AS FOLKS

,._

Expected end of c,)mmand, encountered "AS" .
DTR> ! Alias clause should follow domain name
DTR> READY FAMILIES AS FOLKS WRITE
DTR>

DTR> READY FAMILIES FOLKS WRITE
READY FAMILIES FOLKS WRITE

Expected end of c,)mmand, encountered "FOLKS".
DTR> ! Keyword AS is a required part of the alias clause
DTR> READY FAMILIES AS FOLKS WRITE
DTR>

DTR> READY FAMILIES READ PERSONNEL
READY FAMILIES READ PERSONNEL

Expected end of c,:,mmand, encountered "PERSONNEL".
DTR) ! C,:,mma must separate inf,:,rmati,:,n f,:,r the
DTR> ! two domains being readied
DTR> READY FAMILIES READ, PERSONNEL
DTR>

Using Syntax Diagrams 4-3

As you can probably guess, the error message "Expected end of command,
encountered ... " alerts you to a formatting problem with your input. When you
receive this message, you should check the syntax diagram for the statement,
command, clause, or expression you are trying to type.

The following sections discuss more fully the elements that make up syntax
diagrams. ·

4.1 Uppercase Words in Syntax Diagrams

Uppercase words are DATATRIEVE keywords, the words that make up the
main part of the DATATRIEVE language. Keywords can serve one of three
purposes:

• "Major" keywords, such as READY, STORE, and FIND, let DATATRIEVE
know what kind of task you want it to do. These keywords are always a
required part of the input.

• "Minor" keywords, such as USING, AS, and ALL, sometimes let
DATATRIEVE know what to expect next. In this case, these minor keywords
are a required part of your input.

• "Minor" keywords, such as USING, AS, and ALL, can be included to make
input more like English. In this case, the minor keyword is enclosed in square
brackets and you can choose to omit the keywords from your input.

Do not use any DAT ATRIEVE keywords to name something you define. If you
do, you might get either an error message or unexpected results. Appendix A
contains a complete list of DAT ATRIEVE keywords.

4.2 Lowercase Words in Syntax Diagrams

Lowercase words indicate something that you supply to make a statement or
command complete. The term domain-name limits you to path names of domains
at the location where the term appears. The term statement means that you
supply a complete DAT ATRIEVE statement in that location.

4.3 Brackets and Braces in Syntax Diagrams

Square brackets enclose optional parts of the language element being described
by the syntax diagram. You can choose one or none of the optional clauses
enclosed in square brackets. Braces enclose clauses from which you must choose
one alternative. You can sometimes repeat the part of the diagram that is set
off by square brackets or braces. The presence of the symbol [, ...] just outside
the set tells you when brackets and braces are being used this way.

4-4 Using Syntax Diagrams

C

)

Generally, beginning users have difficulty reading brackets and braces correctly
when these are nested inside one another. Try to remember that brackets and
braces always travel in matched pairs. When you encounter a left bracket or left
brace when reading a syntax diagra~, immediately locate its mate on the right
and look at what they enclose as a unit. As you are working through the first
unit and encounter another bracket or brace, do the same thing again. Remem­
ber that when you decide to use a part of a diagram within a set of brackets or
braces, each element inside is required unless it, in turn, is set off by a pair of
brackets.

4.4 Separators in Syntax Diagrams

Separators let DAT A TRIEVE know that you are finished with something or, in
the case of the comma, that you are not. Intuitively, you realize that typing a
space after a word ends that word. One problem you might have with spaces is
when you inadvertently put them in as replacements for underscores(_) or
hyphens(-). For example, if you defined a domain with the name PHONE_LIST,
DATATRIEVE would not know what you mean if you typed READY PHONE
LIST in order to access the domain. DAT ATRIEVE would see three elements in
the command where your more forgiving human eyes might see only two.

Get into the habit of typing a space after a comma. DAT ATRIEVE does not
require that you do this, but if you do not, you might encounter a problem in
some situations. For example, a comma preceding a string of editing characters
could be interpreted as part of the string if there were no intervening space.

You must enter a comma to tell DATATRIEVE that you are entering more than
one of the same kind of element. For example, commas are required to separate
domain names in a READY or FINISH command or a list of things you want to
display in a PRINT statement.

DATATRIEVE is more flexible about ending punctuation for statements and
commands than are many other computer languages. It does require, however,
that you type a period (.) to signal that you are finished describing a field
(either a variable or a field in a record definition). It also requires that you type
a semicolon (;) to signal that you are finished with a domain or record
definition.

Using Syntax Diagrams 4-5

C

Part II
Controlling Your DATATRIEVE Environment

C

Input Options During a DAT A TRI EVE Session 5

This chapter discusses the options you have when starting and ending a
DATATRIEVE session and when entering input lines. The material in this
chapter supplements the information on this topic in Chapter 1 and is not essen­
tial reading for DAT ATRIEVE beginners.

5.1 Invoking DATATRIEVE

When you invoke DATATRIEVE, you are running an image that resides in a
system directory assigned to the logical name SYS$SYSTEM. If you worked
through the examples in Chapter 1, you created a logical symbol, DTR32,
defined as SYSSYSTEM:DTR32 in your login command file. (Depending on
how DATATRIEVE was installed on your system, the definition might have
included a 2-character suffix on SYS$SYSTEM:DTR32.)

After you create the symbol DTR32, you can use it in an invocation (foreign)
command line, as well as to start an interactive DATATRIEVE session. In other
words, you can use the symbol to execute one or more DATATRIEVE commands
from a DCL command procedure and immediately return control to that com­
mand procedure. You must separate each of the DATATRIEVE commands or
statements in a foreign command line with a semicolon.

5-1

The following example illustrates how the foreign command line operates. Note
that you return to the dollar sign ($) prompt after DAT ATRIEVE carries out
your instructions:

$ DTR32 READY FAMILIES; PRINT FAMILIES WITH MOTHER = "ANN"

FATHER

JIM

$

MOTHER

ANN

NUMBER KID
KIDS NAME

2 URSULA
RALPH

AGE

7
3

5.2 Creating a. Startup Command File (DTR$ST ARTUP)

If you frequently start your DATATRIEVE session with the same series of com­
mands and statements, you can put them in a command procedure stored in one
of your VMS directories. If you assign this file the logical name DTR$STARTUP,
its commands are executed every time you invoke DATATRIEVE.

The following is a sample of such a command file:

DECLARE SYNONYM SH FOR SHOW,
H FOR PRINT,

SH DEF
SET NO PROMPT

PROC FOR PROCEDURES,
DEF FOR DICTIONARY,
DIRS FOR DICTIONARIES

The DECLARE SYNONYM allows you to create abbreviations or substitutions
for DAT ATR1EVE keywords. After you create the synonym, you can use it in
place of the keyword in your DATATRIEVE commands and statements. This
can save you typing time and help you avoid confusion between DCL commands
and DATATRIEVE equivalents. Be careful, however, that you do not create a
synonym for a keyword that duplicates a different keyword or another synonym.
You can check your synonyms against the list of keywords in Appendix A to
ensure that each synonym is unique.

The SET NO PROMPT command is discussed later in this chapter.

Use EDT to create the startup file as you would any other file. Write the com­
mands just as you would in an interactive session, but do not include any of the
DATATRIEVE prompts.

Enter the following line in your LOGIN.COM file, substituting the file specifica­
tion of your file for the one in the example:

$ ASSIGN "DBA1: CBELLJDTRSTART .COM" DTR$STARTIJP

5-2 Input Options During a DATATRIEVE Session

When you invoke DATATRIEVE, it translates the logical name DTR$STARTUP
and executes the command file before it displays the first DTR > prompt on
your terminal. If you want your synonyms to take effect during the terminal
session in which you define them, you can enter the command @LOGIN at the
dollar sign ($) prompt.

5.3 Exiting DATATRIEVE

You can exit DAT ATRIEVE in two ways:

• By typing EXIT at the DTR > prompt and pressing the RETURN key

• By entering CTRL/Z at the DTR > prompt

DATATRIEVE does not recognize the EXIT command when the CON>, DFN >,
or RW > prompts are displayed. In this case, entering CTRL/Z returns you to
the DTR > prompt and you can then exit your session. If you are in the middle
of entering a statement or command and enter CTRL/Z, DATATRIEVE returns
the message "Execution terminated by operator" to let you know that process­
ing of your statement was not completed.

The following examples illustrate the two ways to end a DATATRIEVE session:

DTR> EXIT
$

DTR > READ't'
[Looking for dictionary path name]
CON> [CTRUZ l
Execution terminated by operator.
DTR) [CTRUZ l
$

Note ------------­

Entering CTRL/Y will also exit you from DATATRIEVE. CTRL/Y,
however, also aborts any operations that you started and that are not
yet complete. Using CTRL/Y to exit DATATRIEVE is not recommended.

Input Options During a DATATRIEVE Session 5-3

5.4 Getting DAT ATRIEVE to Process More Than One Line as
a Unit

Sometimes you need to enter statements or commands that are too long to fit on
one line and must continue over two or more input lines. The easiest way to do
this is to press the RETURN key after a word or character that is always fol­
lowed by something else. Pressing the RETURN key following WITH, EQUALS,
OF, or a comma, for example, lets DATATRIEVE know that you plan to con­
tinue. DATATRIEVE then displays a "Looking for ... " message and a CON>
prompt to tell you that it is waiting for more input.

If you press RETURN at the end of a line that is logically complete, no matter
what your plans were for the next line, DATATRIEVE goes ahead and processes
that line. The user entering the lines in the following example was not paying
attention to the kind of prompt DATATRIEVE was giving her. A return to the
DTR> prompt after pressing the RETURN key means that DATATRIEVE has
processed the preceding input:

DTR> READY PERSONNEL
DTR> SHARED WRITE
SHARED WRITE
A

Expected statement, encountered "SHARED".
DTR> ! What is wrong?
DTR> SHOW READ'!
Ready sources =

PERSONNEL= Domain, RMS indexed, protected read
<CDD$TOP.DTR$USERS.BELL .PERSONNEL>

No loaded tables.

DTR> ! OK ... adding SHARED should do it ...
DTR> READY PERSONNEL SHARED
DTR> WRITE
WRITE

Expected statement, enc,)untered "WRITE".
DTR} ! Now what is the problem ...
DTR} SHOW READY
Ready sources =

PERSONNEL = Domain, RMS indexed, shared read
<CDD$TOP.DTR$USERS.BELL.PERSONNEL>

No loaded tables.

DTR> ! Sigh caught by a default
DTR> READY PERSONNEL SHARED WRITE
DTR> SHOW READY
Ready sources=

PERSONNEL = Domain, RMS indexed, shared write
<CDD$TOP.DTR$USERS.BELL.PERSONNEL>

No loaded tables.

DTR > ! Ciot it

5-4 Input Options During a DATATRIEVE Session

If you were surprised to see that DATATRIEVE did not consider a line ending
with SHARED incomplete, that is because READ access is a default access
mode. DAT A TRIEVE assumes that you mean READ access if you do not specify
an access mode. The line READY PERSONNEL SHARED, therefore, is a logi­
cally complete input line that DATATRIEVE can process.

5.4.1 Turning Off the "Looking for ... " Messages

After you get the idea of where you can press the RETURN key to hold
DATATRIEVE back from processing the input, you might find that the "Look­
ing for ... " messages needlessly clutter up your screen. If you want, you can turn
these off (but s.till get a CON> prompt) by entering SET NO PROMPT:

DTR> READY FAMILIES
DTR> PRINT FAMILIES WITH
[Looking for Boolean expressi on]
CON) FATHER = II JIM" AND
[Looking for Boolean expression]
CON> MOTHER = "ANN"

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8

DTR> SET NO PROMPT
DTR> PRINT FAMILIES WITH
CON> FATHER = "JIM" AND
CON> MOTHER= "ANN"

RALPH 4

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

5.4.2 Using Standard Programming Conventions to Format Input

This section is for programmers who have used continuation characters before
and who prefer to keep words like WITH, OF, and EQUALS on the same line as
the information that completes the phrases they begin.

DATATRIEVE uses the hyphen(-) as a continuation character. You can enter it
at the end of a line to signal you are not finished with a command or statement.
When you use the continuation character, you can break an input line where you
want to. When the continuation character follows a word, however, you have to
remember to enter a space character to separate that word from the next word.
You can enter the space character before typing the hyphen or as the first
character on the next line.

Input Options During a DATATRIEVE Session 5-5

In the following example, RET indicates when the RETURN key is pressed:

DTR> PRINT FAMILIES WITH- (RET l
CON> FATHER = "JIM"- CBrn
CON} AND MOTHER = "ANN" (RET l
PRINT FAMILIES WITH FATHER = "JIM"AND MOTHER = "ANN"

Expected end of statement, encountered "WITHFATHER".
DTR> PRINT FAMILIES WITH -(RETJ
CON} FATHER = "JIM"- CBrn
CON> AND MOTHER = "ANN" CRm

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

The SET SEMICOLON command is another option you can use to control input
line format. When you enter SET SEMICOLON, DATATRIEVE considers any
command or statement incomplete until you enter a semicolon (;). Semicolons
can be a nuisance to remember. If you are already used to programming lan­
guages that require explicit statement termination, however, you might prefer
this technique:

DTR> SET SEMICOLON
DTR> READY FAMILIES;
DTR> PRINT FAMILIES
CON} WITH FATHER = II JIM"
CON> AND MOTHER= "ANN"
CON} ;

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

You can enter SET NO SEMICOLON to turn off the semicolon requirement.

5-6 Input Options During a DATATRIEVE Session

Getting Online Assistance 6

This chapter explains how to use the DATATRIEVE online Help facility, HELP
ERROR, and Guide Mode.

6.1 Using Help

The DAT ATRIEVE HELP command provides online inf~rmation about the use
of DA TATRIEVE commands, statements, and language elements.

When you enter HELP or a question mark(?) in response to the DTR> prompt,
DAT ATRIEVE displays a list of topics to choose from.

If you already know which topic you want, you can enter it on the same line as
the HELP command. For example, if you want information on defining a
domain, enter:

DTR> HELP DEFINE DOMAIN

You can do this with any topic available in help. ERROR is one of these topics,
but HELP ERROR follows somewhat different rules. See the next section for
information on how to use HELP ERROR.

6-1

When you are in the Help facility, press the PF2 key on the auxiliary keypad or
enter VIDEO as the topic. This displays information on the screen-oriented Help
facility and explains how to scan the DATATRIEVE help messages. You can
move through the text by using the arrow keys. Press the:

• Up arrow to scroll the help text backward to previous lines

• Down arrow to scroll the help text forward

• Left arrow to display the previous complete help screen

• Right arrow to display the next complete help screen

You can type a question mark(?) to display the current help topics again.

If you enter HELP HELP, DATATRIEVE displays more detailed information on
the HELP command.

If there are any subtopics of the topic you have selected, DATATRIEVE prompts
you to choose for additional information.

If you are at one of the subtopic levels of help, you can press the RETURN key
to move up a level. This is necessary if you want to select a topic displayed on a
previous level. The prompt displayed tells you at what level of help you are. For
example, the prompt "DEFINE DOMAIN subtopic?" tells you that you are two
levels down in help. If you press the RETURN key, you see the prompt
"DEFINE subtopic?" and can enter another DEFINE selection, such as
RECORD.

Enter CTRL/Z to exit from help. This returns you to the DATATRIEVE prompt
DTR>.

6.2 Getting Help on Errors

When DATATRIEVE displays an error message, you can type HELP ERROR
and DATATRIEVE displays the help text pertaining to that error. For example:

DTR> FIND PERSONNEL
"PERSONNEL " is not a readied source, collecti on, or list.
DTR> HELP ERROR
"PERSONNEL " i s not a readied source, collection, or list.

6-2 Getting Online Assistance

ERROR

NOTDOMAIN

EXPLANATION :

The source for a DATATRIEVE collecti on must be a
readied domain, relation, or DBMS record; a collection ;
or a list.

USER ACTION =

Check that you have spelled all names correctly. Ready the
appropriate record source, if necessary, and reenter
the statement.

Topic? (CTRUZ l

DTR>

---------- ---- Note - ------------

DATATRIEVE always gives you information on the last error you
made, even if it was many commands ago.

If you have not made any error during a DATATRIEVE session, entering HELP
ERROR gives you a display of all the error topics. To get the same display after
you have made an error, you may enter ERROR when you are at the Topic?
prompt in help.

6.3 Guide Mode

Guide Mode is a self-documenting aid available whenever you are at the DTR>
prompt. To enter Guide Mode, type:

DTR> SET CiUIDE

If you are using anything but a VTI00, VT200, or compatible terminal,
DAT ATRIEVE displays an error message that tells you your terminal type is
invalid. DATATRIEVE then returns you to the DTR > prompt.

Guide Mode has two functions:

• To complete typing an entry for you

• To prompt you for a legitimate entry

Getting Online Assistance 6-3

•
As you enter each word of a command or statement, you can still enter the word
as you usuaily do. As soon as you have typed enough letters to identify only one
possible choice, however, you can press the space bar and Guide Mode completes
the entry for you and prompts you for the next word. At the end of a line, press
the RETURN key and Guide Mode goes to the next line.

When Guide Mode is waiting for your input, you can press the question mark
(?) key. Guide Mode then displays a list of all the words you can use at that
point.

DATATRIEVE also supplies you with Advanced Guide Mode. To enter this type
of Guide Mode, enter:

DTR) SET GUIDE ADVANCED

This functions exactly like regular Guide Mode, except that more words are
usually available as prompts. The choice of words is made when DATATRIEVE
is installed. By default, the PLOT and REPORT statements, and the use of a
colon(:) to invoke a procedure are available in advanced Guide Mode only. The
following words are available at both levels by default:

FIND

READY

SHOW

MODIFY

SELECT

SORT

PRINT

SET

STORE

The easiest way to learn about Guide Mode is to use it. You may find it particu­
larly helpful when you are starting to use DATATRIEVE. Experiment with it
and use it the way it helps you the most.

6-4 Getting Online Assistance

)

Using the VAX Common Data Dictionary 7

This chapter gives you basic information about the VAX Common Data Dictionary
(CDD) so that you understand its relation to DATATRIEVE. (VAX CDD soft­
ware is also referred to throughout this manual simply as CDD.) It also explains
how to create dictionary directories, display information about directories and
their contents, determine access privileges for directories and definitions, and
delete definitions and directories.

The information in this chapter supplements the information on the CDD in
Chapter 1. The details about CDD structure and access privileges are important
to users who are creating DATATRIEVE applications that will be used by peo­
ple other than themselves. If you are not in that category and are just begin­
ning to use DATATRIEVE, you might want to skip this chapter for now and
return to it when you have questions about specific CDD topics.

7.1 What Is the CDD?

The CDD is a central repository for data definitions. It can:

• Store data definitions such as DATATRIEVE record, domain, view, and table
definitions

• Store DATATRIEVE procedure definitions

• Keep information about the location of each definition

• Control the access to each definition

• Keep track of what happens to each definition-when and by whom a defini­
tion is changed and how each definition is being used

7-1

The CDD can be used by traditional programming languages such as BASIC
and COBOL, as well as by DATATRIEVE. It solves the problems of data redun­
dancy and inconsistency by keeping central record definitions that a variety of
languages can use. Data is therefore no longer tied to a particular program, and
programs written in a variety of languages can access the same data file.

7 .2 How Is the COD Organized?

The CDD is organized as a hierarchy of dictionary directories and dictionary
objects. Dictionary directories are similar to VMS directories in that they
organize information within the hierarchy. Data definitions are dictionary
objects. The definitions are contained in the directories just as files are con­
tained in VMS directories, and they are located at the ends of the branches in
the hierarchy.

The CDD hierarchical structure is like a family tree. Dictionary directories are
the parents, and their children include other directories, as well as dictionary
objects. Figure 7-1 illustrates the tree structure of the CDD.

ROOT DICTIONARY DIRECTORY

DIRECTORY DIRECTORY DIRECTORY

DIRECTORY OBJECT OBJECT

OBJECT

MK----00680--00

Figure 7-1: CDD Structure

7-2 Using the VAX Common Data Dictionary

C

J

Figure 7-2 illustrates a sample CDD. Shaded boxes indicate directories and
unshaded names indicate objects. An ellipsis(. ..) indicates that the CDD branch­
ing continues, but is not shown in the figure. (Few CDD directories are small
and symmetrical enough to fit neatly on one page of a book!) The examples in
this book are drawn from this sample dictionary and its associated data
definitions.

EMPLOYEES SALARY _HISTORY JOB-HISTORY STORE_EMPLOYEE

EMPLOYEES_REC DEPARTMENTS_ TABLE

I
YACHTS YACHT

I I I
PHONES PHONES_REC PHONES_REPORT AREA-CODE_ TABLE

MK-01571-00

Figure 7-2: Sample COD

You can see that all directories and objects are descendants of CDD$TOP.
CDD$TOP is found at the top of every CDD and is created when the CDD is
installed.

DTR$USERS is a directory under CDD$TOP that can be created during
DATATRIEVE installation as a parent directory for the private directories of
DAT ATRIEVE users. BELL is a directory created by the DAT ATRIEVE
NEWUSER program. It contains the sample definitions copied into it by the
NEWUSER program, as well as the PRACTICE directory created by user Bell
to store the definitions PHONES and PHONES REC.

DTR$LIB is a directory under CDD$TOP that, along with its subdirectories and
the definitions they contain, is always created by the DATATRIEVE installation
procedure. Later on, you might want to use the SET DICTIONARY and SHOW
commands to become familiar with what the DTR$LIB branch of the CDD con­
tains. You should never create a dictionary or store your own definitions any­
where in the DTR$LIB branch of the CDD. DTR$LIB and all of its descendants
are deleted and rebuilt each time a new version of DATATRIEVE is installed on
your system.

PERSONNEL is a directory under CDD$TOP that contains the definitions for
the personnel system examples used in later chapters of this book.

Using the VAX Common Data Dictionary 7-3

7 .3 Creating and Using Path Names

Every directory and object in the CDD has a given name, assigned by the instal­
lation procedure or person who created it. Two objects in the CDD can have the
same given name, but they must reside in different directories.

The CDD has rules to which names must conform. Given names must:

• Begin with a letter (A-Z)

• End with a letter or a digit (A-Z, 0-9)

• Not exceed 31 characters in length

• Contain only letters, digits, dollar signs, underscores, or hyphens

You can also use 8-bit alphabetic characters in CDD path names. As far as CDD
names are concerned, DAT ATRIEVE converts lowercase letters in names to
uppercase. DATATRIEVE also treats an underscore and a hyphen (-) as the
same character. If you type phones-table for the name of an object, for example,
DATATRIEVE interprets the string as PHONES_ TABLE and that is how you
see the name displayed.

Note ------------­

As far as field values are concerned, however, DATATRIEVE does not
perform case conversion. If you store an employee's name using mixed
case or a hyphen (Smith-Donlevey, for example), DATATRIEVE stores
it exactly as you typed it. If you later try to find the name by typing
all uppercase or lowercase letters or substitute an underscore for a
hyphen (SMITH_DONLEVEY, for example), DATATRIEVE will not
recognize it. It is important, therefore, to understand the distinction
between 1) the names you use to identify directories, objects, and rec­
ord fields and 2) the values stored in data files.

If you define or assign a logical name either inside or outside DAT ATRIEVE
that duplicates the name of a CDD object, you may get unexpected results.

7-4 Using the VAX Common Data Dictionary

C

For example, you can run into problems if you assign a logical name for
YACHTS. In the following case, the user assigned the logical name in
DATATRIEVE with the FN$CREATE_LOG function:

DTR> FN$CREATLLOG ("YACHTS", "DB2= [MORRISONJLOGIN .COM")
DTR) PRINT FN$TRANS_LOG ("YACHTS")

FN$TRANS
LOG

DB2=[MORRISONJLOGIN.COM

DTR> READY YACHTS
J.CDD-E-ILLNAMCHR, A given name contains a character other than A-Z, 0-9, $, _

DATATRIEVE could not ready the domain because CDD had translated the log­
ical name "YACHTS" into a file specification. If you begin the domain name
with an underscore, you avoid the problem:

DTR> READY _YACHTS
DTR)

Another solution is to delete the logical name assignment within DATATRIEVE
by using FN$DELETE_LOG. Now CDD understands YACHTS to be the name
of a CDD object in the default dictionary. CDD can access YACHTS, and
DATATRIEVE can ready the domain:

DTR> FINISH
DTR> FN$DELETLLOG ("YACHTS")
DTR> READY YACHTS
DTR> SHOW READY
Ready sources=

YACHTS = Domain, RMS indexed, protected read
<CDD$TOP.DTR32.MORRIS.YACHTS>

No loaded tables.

7 .3.1 Using Full Path Names

You have to travel down a path from CDD$TOP to reach a target directory or
object. You specify the path name of a directory or object by linking together
the names of all the directories starting with CDD$TOP and ending with the
given name of the target directory or object. Each name in the path name is
separated from the others by a period. The full path name of a dictionary object
also includes a semicolon(;) followed by a version number:

DTR) SHOW DOMAINS
Domains=

DTR>

COLLEGES;1 DEGREES;1 EMPLOYEES;1 JOBS;1
JOB-HISTORY; 3 . JOB-HISTORY; 2 JOB-HISTORY; 1
SALARY-HISTORY;1

Using the VAX Common Data Dictionary 7-5

The full path name of the most recent version of the JOB_HISTORY domain in
the preceding display is CDD$TOP.PERSONNEL.JOB_HISTORY;3.

Versions of dictionary objects serve the same purpose as versions of VMS files:
they provide backup security to protect you when you change their contents.

7.3.2 Version Numbers

Most CDD objects have a version number. The CDD can contain more than a
single version of all CDD objects except dictionaries (domains, procedures,
records, and so on). For the most part, the rules for specifying versions of
DATATRIEVE definitions follow the rules for specifying versions of VMS files.

The version number is separated from the rest of the given name by a semico­
lon. This number can be an absolute version number or a relative version num­
ber. You can omit the semicolon and number but if you use the semicolon
without a number, DATATRIEVE considers the semicolon the end of a com­
mand or statement.

Table 7-1 lists the various ways you can specify version numbers, the result of
each specific way, and an example of each way.

Table 7-1: Specifying Version Numbers

Specification Result Example

Absolute version number DTR operates on the object SALARY _RANGE;2
with the specified version
number.

Relative version number* DTR operates on the object at SALARY _RANGE;-1
a specified number below the
highest version.

No semicolon or version DTR operates on the highest SALARY - RANGE
number version of the object.

* You cannot use this specification with the REDEFINE or DEFINE command.

For more information on CDD version support, see the VAX Common Data
Dictionary documentation.

7-6 Using the VAX Common Data Dictionary

C

)

7 .3.3 Abbreviating Path Names

You do not always need to use the full dictionary path name to identify directo­
ries and objects in the CDD. Your abbreviation depends on where the target
directory or object is, relative to your current position in the CDD. 'Relative
path name', in fact, is the proper term for a path name abbreviation.

If you are looking downward in the CDD tree structure (away from CDD$TOP),
you have to specify only the portion of the path name below the level of your
current dictionary location. If your dictionary location is at
CDD$TOP.DTR$USERS.BELL in the sample dictionary, for example,
DA TATRIEVE will understand the following commands:

SHOW PRACTICE.PHONES

SHOW PRACTICE.PHONES;

SHOW PRACTICE.PHONES;2

SET DICTIONARY PRACTICE

If you type a semicolon without a version number, or simply omit it altogether,
DATATRIEVE uses the PHONES definition with the highest version number.

If you have to "back up" toward CDD$TOP to get to your target directory or
object, you can substitute a hyphen (-) in your path name for each directory
name leading to CDD$TOP until you have entered one for the first dictionary
directory common to both your current location and the path name you want to
specify. A later section in this chapter contains examples of using hyphens in
path names.

7.3.4 The Logical Name in Dictionary Path Names

You can use logical names to refer to other objects, as well as to give you an
easy means for specifying long dictionary path names.

For example, you have a DCL command in your LOGIN.COM file that defines
CDD$DEFAULT as the logical name for CDD$TOP.DTR$USERS.BELL. How­
ever, you occasionally work with the sample definitions and dictionaries in the
CDD$TOP.DTR$LIB.DEMO directory. Rather than enter the full path name of
the DEMO directory, you can use a logical name when you change directories.
You can put this DCL command in your LOGIN.COM file:

$ DEFINE SAMPLE "CDD$TOP.DTR$LIB.DEMO"

Using the VAX Common Data Dictionary 7-7

Then, when you want to change to your default directory, enter tliis
DATATRIEVE SET command:

DTR) SET DICTIONARY SAMPLE
DTR> SHOW DICTIONARY
The default directory is CDD$TOP .DTR$LIB .DEMO

DTR>

To change back to CDD$TOP.DTR$USERS.BELL, enter this command:

DTR> SET DICTIONARY CDD$DEFAULT
DTR) SHOW DICTIONARY
The default directory is CDD$TOP .DTR$USERS .BELL

DTR>

You can form valid dictionary path names by combining logical names with the
names of directories and objects. You must put the logical name first, followed
by the given names. For example, your default 4irectory is
CDD$TOP.DTR$USERS.BELL. You want to ready the FAMILIES domain
cataloged in the DEMO djrectory, but you do not want to change default directo­
ries. You can enter this READY command:

DTR> READY SAMPLE.FAMILIES
DTR> SHOW READY
Ready sources :

FAMILIES = Domain, R~S indexed, protected read
<CDD$TOP.DTR$LIB.DEMO.FAMILIES;1)

No loaded tables.

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS .BELL

DTR>

Note --- --------­

Do not define your own logical names beginning with three letters
and a dollar sign ($). You especially must avoid defining your own
logical na,mes beginning with DTR$, which is reserved for use by
DATATRIEVE.

' '

7-8 Using the VAX Common Data Dictionary

7 .4 Setting Dictionary Location

When you invoke DATATRIEVE, your location in the dictionary is the diction­
ary directory assigned to the logical name CDD$DEFAULT. If you do not have
an assignment for CDD$DEFAULT and invoke DATATRIEVE, your dictionary
location is CDD$TOP.

Use the DATATRIEVE SET DICTIONARY command to move to another direc­
tory. You can include either a full or relative path name for your destination.
You can also use the logical name CDD$DEFAULT to return to the directory
you assigned to it. Because a hyphen at the end of an input line is always inter- ;
preted as a continuation character, put a semicolon(;) at the end of any SET
commands that end in a hyphen:

DTR> SET DICTIONARY CDD$DEFAULT
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$USERS.BELL

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$LIB.DEMO

DTR> SET DICTIONARY -.-.DTR$USERS.BELL
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$USERS.BELL

DTR> SET DICTIONARY PRACTICE
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$USERS.BELL .PRACTICE

DTR> SET DICTIONARY-;
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.DTR$USERS.BELL

DTR>

7 .5 Displaying Information About Directories, Objects, and
Session Defaults

Use the SHOW command to display information stored in dictionary directories.
(The DAT ATRIEVE PRINT and LIST statements, on the other hand, display
data stored in VMS directories.) Table 7-2 describes most of the options you
have with the SHOW command. The table does not include information about
special help display formats, data managed by VAX DBMS or relational
products, or display by forms.

Using the VAX Common Data Dictionary 7-9

Table 7-2: SHOW Command Options

Option

SHOW ALL

SHOW collection-name

SHOW COLLECTIONS

SHOW CURRENT

SHOW DICTIONARIES

SHOW DICTIONARY

SHOW DOMAINS

SHOW EDIT

SHOW FIELDS

Result

Displays the names of all the objects and directories
cataloged in your default directory, the name of your
default directory, and the names of the collections, the
readied domains, and the loaded tables you are using.

Displays the collection name, the name of the domain
within which the collection has been established, the
number of records in the collection, the status of the
selected record within the collection, and the names of
the keys on which the collection has been sorted.

Displays the names of the collections you are using.

Displays the name of the domain within which the
CURRENT collection has been formed, the number of
records in the CURRENT collection, the status of the
selected record in the CURRENT collection, and the
names of the keys on which the collection has been sorted.

Displays the names of the CDD directories appended to
your default directory. (This option tells you if the CDD
branch continues lower than your current location.)

Displays the full dictionary path name of your default
directory. (This option answers the question "Where am
I?".)

Displays the names of all domains cataloged in your
default directory.

Indicates whether SET EDIT _BACKUP or SET NO
EDIT_ BACKUP is in effect in your DATATRIEVE ses­
sion. SET EDIT _BACKUP is the default. If you enter
the command SET NO EDIT _BACKUP and edit any
definitions, DATATRIEVE deletes the highest version of
the definitions when you exit the editor. SET NO
EDIT _BACKUP automatically keeps outdated versions
of definitions from piling up in your directory, but could
erase the only definition you have to fall back on should
you make a mistake in your editing.

Displays the names, data types, and index-key informa­
tion of the fields of all domains you have readied. It also
displays the names and data types of global variables.

(continued on next page)

7-10 Using the VAX Common Data Dictionary

C

)

Table 7-2: SHOW Command Options (Cont.)

Option

SHOW FIELDS
FOR domain-name

SHOW KEYDEFS

SHOW path-name

SHOW PRIVILEGES

SHOW PRIVILEGES
FOR path-name

SHOW PROCEDURES

SHOW READY

SHOW RECORDS

SHOW SET UP

Result

Displays the names, data types, and FOR domain-name
index-key information of the fields in the domain you
specify after FOR. You can only specify the name of a
readied domain.

Shows all current key definitions in all states. A state
allows the same key to be assigned multiple definitions
by associating each definition with a different state key.

Displays the text of the domain, record, procedure, or
table definition you specify.

Displays the access privileges you have to the directory
at which you are currently located.

Displays the access privileges you have to the directory
or object you name in the FOR clause.

Displays the names of all procedures cataloged in the
directory at which you are currently located.

Displays for each readied domain the full dictionary
path name, the file organization of the associated data
file, the access control option (EXCLUSIVE, PROTECTED,
or SHARED), and the access mode (READ, WRITE,
EXTEND, or MODIFY). The most recently readied
domain is at the top of the list displayed on your termi­
nal. The SHOW READY command also displays the full
dictionary path name and table type of all tables you
have loaded into your work area.

Displays the names of all record definitions cataloged at
your current directory location.

Displays the current status of the options you can con­
trol with the SET command: ABORT/NO ABORT,
APPLICATION KEYPAD/

NO APPLICATION_KEYPAD, COLUMNS_PAGE,

FORM/NO FORM, PROMPT/NO PROMPT,
SEARCH/NO SEARCH, SEMICOLON/
NO SEMICOLON, and VERIFY/NOVERIFY.

(continued on next page)

Using the VAX Common Data Dictionary 7-11

Table 7-2: SHOW Command Options (Cont.)

Option Result

SHOW SYNONYMS Displays the names of any synonyms for DATATRIEVE
keywords in effect during your DATATRIEVE session.

SHOW TABLES Displays the names of all dictionary tables and domain
tables cataloged in your default directory.

SHOW VARIABLES Displays the global variables in effect in the current
DATATRIEVE session.

There is more information on SHOW PRIVILEGES in a later section of this
chapter. Variables and collections are concepts discussed in later chapters.

7.6 Deleting, Purging, and Extracting Definitions

Use the DELETE command to erase definitions from dictionary directories.
When you delete a definition, you must always include an explicit version num­
ber and a semicolon to end the command. This means that every DELETE com­
mand contains at least two semicolons:

DTR> SHOW RECORDS
Recl)rds:

PHONES-REC;3

DTR) DELETE PHONES-REC;

PHONES_REC;2 PHONES_REC;1

ZCDD-E-VERNUMREQ, uersil)n number required cin l)bject name
DTR> DELETE PHONES-REC;1
DELETE PHONES-REC;1

Expected end l)f Cl)mmand, encl)untered "***END-OF_LINE***".
DTR> DELETE PHONES-REC;1;
DTR> SHOW RECORDS
Recl)rds :

PHONES_REC;3 PHONES-REC;2

DTR>

You can get rid of outdated versions of definitions using one of two methods:

• You can explicitly delete each version of the definition you do not want to keep.

• You can use the PURGE command to delete all but the highest version or
specified versions of the definition.

7-12 Using the VAX Common Data Dictionary

To purge CDD objects, set your dictionary location to the directory containing
the definitions you want to purge. Enter the PURGE commanq or the PURGE
command with the KEEP argument to delete outdated versions of definitions.

The following example shows how user Bell purges all but the two highest ver­
sions of PHONES_REC in his PRACTICE directory:

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL

DTR> SET DICTIONARY CDD$TOP.DTR$USERS.BELL.PRACTICE
DTR> SHOW RECORDS
Records=

PHONES-REC;4 PHONES_REC;3 PHONES_REC;2

DTR> PURGE PHONES-REC KEEP= 2
DTR> SHOW RECORDS
Records=

PHONES-REC;4 PHONES_REC;3

If you want to move a definition to another dictionary directory or send it to
another user on your system, you can use the EXTRACT command to copy the
definition into a VMS file that yoq can execute or send. You (or the other user)
can then use the at sign (@) to store the definition at a new dictionary location.

The following example shows how user Bell copies the definition SALES_REC
in the qirectory CDD$TOP.DTR$LlB.DEMO to the file TEMP.COM, sets his dic­
tionary location to his own directory, and stores the SALES _REC definition in
his own dictionary directory. Note that before p.e executes the file, Bell checks
to be sure there is nothing in his own directory with the same name as the defi­
nition in TEMP.COM. If there were, he would edit one of the definitions to
change the object name:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SHOW RECORDS
Records=

ANNUAL-REC;! DAB;l FAMILY-REC;!
PAYABLES-REC;! PERSO~NEL-REC;l PET-REC;l
SALES-REC;l YACHT;l

DTR> EXTRACT SALES-REC ON TEMP.COM
DTR> SET DICTIONARY CDD$TOP.DTR$USERS .BELL
DTR> SHOW ALL

OWNER-RECORD;l
PROJECT-REC;!

(continued on next page)

Using the VAX Common Data Dictionary 7-13

Domains :
FAMILIES; 1
PROJECTS;1

OWNERS;1
YACHTS;1

PERSONNEL;1 PETS; 1

Records:
FAMILY_REC;1 OWNER_RECORD;1 PERSONNEL_REC;1 PET_REC;1
PROJECT-REC;1 YACHT;1

The default directory is CDD$TOP.DTR$USERS.BELL
No established collections.

No ready sources.

No loaded tables.

DTR> @TEMP.COM

Element "SALES-REC" Mt found in dictionary.

[Record is 35 bytes long.]
Element to be redefined not found in dictionary - new element defined.
DTR> SHOW RECORDS
Records :

FAMILY-REC;1 OWNER_RECORD;1 PERSONNEL-REC;1 PET_REC;1
PROJECT-REC;1 SALES-REC;1 YACHT;1

DTR>

The messages resulting from the store operation at the new location are infor­
mational and do not indicate a problem. The extract operation automatically
puts DELETE and REDEFINE commands before the definition in TEMP.COM.
In Bell's directory, nothing can be deleted or redefined as a new version, so
DATATRIEVE lets him know that. The REDEFINE command still stores the
definition for him.

7. 7 Creating Dictionary Directories

You can append new directories to your branch of the CDD with the DEFINE
DICTIONARY command.

Note ------------­

Depending on the privileges you have, you might find that you can
create directories in other branches of the CDD. Check with your CDD
manager before you do this, however. For best CDD management, users
on a system should coordinate where they create directories and store
definitions. In addition, some branches of the CDD, especially those
created by DIGITAL products, are periodically deleted and rebuilt. If
you store definitions in these branches, you could eventually lose
them. The DATATRIEVE installation creates the DTR$LIB branch of
the CDD, for example, and you should not store definitions there.

7-14 Using the VAX Common Data Dictionary

If you specify only the given name of the new directory, DATATRIEVE appends
the directory to the one at which you are currently located:

DTR) SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL

DTR> DEFINE DICTIONARY SALES
DTR> SHOW DICTIONARIES
Dictionaries :

PRACTICE SALES

DTR>

7 .8 Deleting Dictionary Directories

You cannot delete any of your directories from DAT ATRIEVE command level.
You must exit DATATRIEVE, invoke DMU, and use the DMU DELETE com­
mand to do this. The following example illustrates the procedure used by Bell to
delete his PRACTICE directory:

$ RUN SYS$SYSTEM =DMU
DMU) SHOW DEFAULT
CDD$TOP.DTR$USERS.BELL
DMU) SET DEFAULT PRACTICE
DMU) LIST

AREA_CODE_TAB;l (CDD$TABLE)
PHONES;l <DTR$DOMAIN>
PHONES_REC;4 <CDD$RECORD)
PHONES_REPORT;9 <DTR$PROCEDURE>

DMU> DELETE*;*
DMU) LIST
Y.DMU-E-NONODFND, no directories or objects found
DMU) SET DEFAULT CDD$TOP.DTR$USERS.BELL
DMU) LIST/TYPE=DIRECTORY

PRACTICE
SALES

DMU) DELETE PRACTICE
DMU) LIST/TYPE=DIRECTORY

SALES
DMU) EXIT
$

Note that he had to empty PRACTICE of all its contents before deleting the
directory itself. If he had appended subdirectories to PRACTICE, he would have
had to start the delete procedure at the lowest level of his branch in the diction­
ary and delete his way up each twig before he could delete PRACTICE.

DMU also has a DELETE/ALL command that can wipe out an entire branch of
the CDD in one line of input. A user needs a special CDD privilege
(GLOBAL_DELETE) to be able to use this command. The average CDD user,
understandably, does not get this privilege by default and usually is not
assigned it by the person who manages the CDD. The following section dis­
cusses CDD access privileges more fully.

Using the VAX Common Data Dictionary 7-15

7.9 Displaying and Setting Protection for Directories and
Objects

The key to the CDD system of protection is the access control list (ACL). Each
dictionary directory and object has an ACL associated with it. ACLs determine
whether an individual user or class of users can:

• Create, modify, or delete a dictionary directory or object

• See the definition of an object

• Use the object definition in an application and, if so, for what kind of operation

• See or modify the information in the history list associated with the directory
or object

• See or modify the ACL of a dictionary or object

• Use the given name of a dictionary directory in the path name of another
directory or an object

CDD privileges are governed by an inheritance principle. This means that each
user with access to CDD$TOP has access to every descendant of CDD$TOP
unless his or her access privileges are explicitly modified. ACLs at each diction­
ary directory below can modify inheritance by specifically granting or denying
privileges to users or groups of users. These users inherit the modified
privileges as they move down the dictionary path.

When the CDD is first installed, all users have all access privileges to CDD$TOP.
The person who manages the CDD on your system modifies these according to
the needs of your installation so that users can get to the directories containing
information they have a right to use, but cannot get to directories containing
information they should not use.

Table 7-3 lists the access privileges users can have and describes what each
allows you to do.

7-16 Using the VAX Common Data Dictionary

C

)

Table 7-3: Access Control Privileges

Privilege Description

C (CONTROL) Lets you read, create, modify, and delete access
control list entries. You cannot deny yourself
CONTROL privilege.

D (LOCAL_DELETE) Lets you delete dictionary objects, as well as
directories and subdictionaries with no children,
and to edit, replace, or recompile definitions
stored in the CDD.

E (DTR_EXTEND/EXECUTE) Lets you ready a domain for any type of access,
to access a table, or to invoke a procedure.

F (FORWARD) Lets you create subdictionaries.

G (GLOBAL_DELETE) Lets you delete dictionary directories and subdic-
tionaries, including any children they may have,
with a single command.

H (HISTORY) Lets you add entries to CDD history lists with
the Dictionary Management Utility (DMU).

M (DTR_MODIFY) Lets you ready a domain for READ and
MODIFY access.

P (PASS_ THRU) Lets you use a dictionary directory, subdiction-
ary, or object in a path name. You cannot deny
yourself PASS_ THRU privilege.

R (DTR _READ) Lets you ready a domain for READ access, dis-
play CDD definitions with a SHOW command
and copy them into a command file with an
EDIT or EXTRACT command.

S (SEE) Lets you see the definition of a dictionary object.
SEE access to a domain definition and its
associated record definition is necessary to define
a data file and then to ready the domain.

U (UPDATE) Lets you update the definition of a dictionary
object.

W (DTR_ WRITE) Lets you ready a domain for WRITE access.

X (EXTEND) Lets you create children of dictionary directories
and subdictionaries.

Refer to the CDD documentation for an explanation of history lists and
subdictionaries.

Using the VAX Common Data Dictionary 7-17

7.9.1 Displaying Your Privileges

You can display the privileges you have for a directory or object by typing
SHOW PRIVILEGES FOR followed by its path name and pressing RETURN. A
simple SHOW PRIVILEGES entry displays the privileges you have for the direc­
tory at which you are currently located:

DTR> SHOW PRIVILEGES
Privileges for CDD$TOP.DTR$USERS .BELL
R (DTR-READ)
W <DTR-WRITD
M (DTR_MODIF1O
E (DTR_EXTEND1EXECUTE)
C (CONTROL)
D (LOCAL-DELETE)
F (FORWARD)
G (GLOBAL-DELETE)
H (HISTOR1n
P (PASS_THRU)
S (SEE)
IJ (UPDATE)
X (EXTEND)

- may ready for READ, use SHOW and EXTRACT
may ready for READ, WRITE, MODIFY, or EXTEND
may· ready for READ, MODIFY
may ready to EXTEND, or access table or procedure
may issue DEFINEP, SHOWP, DELETEP commands
may delete a dictionary object
may create a subdictionary
may delete a directory and its descendents
may add entries to object's history list
may use given name of directory or object in path name
may see (read) dictionary
may update dictionary object
may create directory or object within directory

DTR) SHOW PRIVILEGES FOR FAMILIES
Privileges for CDD$TOP.DTR$USERS.BELL.FAMILIES
R <DTR-READ)
W (DTR_WRITD
M (DTR_MODIF1O
E (DTR_EXTEND1EXECIJTE)
C (CONTROL)
D (LOCAL-DELETE)
F (FORWARD)
G (GLOBAL-DELETE)
H (HISTOR1n
P (PASS_THRIJ)
S (SEE)
IJ (UPDATE)
X (EXTEND)

DTR)

- may ready for READ, use SHOW and EXTRACT
- may ready for READ, WRITE, MODIFY, or EXTEND

may ready for READ, MODIFY
may ready to EXTEND, or access table or procedure
may issue DEFINEP, SHOWP, DELETEP commands
may delete a dictionary object
may create a subdictionary
may delete a directory and its descendents
may add entries to object's history list

- may use given name of directory or object in path name
- may see (read) dictionary
- may update dictionary object
- may create directory or object within directory

The SHOW PRIVILEGES FOR command is useful when you need to use defini­
tions and directories that are not your own. If you try an operation and receive
an insufficient privilege message, you can check your privileges for the directo­
ries and definitions you need to use against the requirements in Table 7-4.
Table 7-4 tells you what privileges you must have to use the various
DATATRIEVE commands and statements.

7-18 Using the VAX Common Data Dictionary

Table 7-4: Access Privilege Requirements for Commands and Statements

You Need in the The Following
To Enter: ACL of the: Privileges:

DEFINE DICTIONARY parent directory P (PASS_ THRU)
DEFINE DOMAIN X (EXTEND)
DEFINE PORT
DEFINE PROCEDURE
DEFINE RECORD
DEFINE TABLE

DEFINE FILE domain definition P (PASS_ THRU)
S (SEE)
W (DTR_ WRITE)

record definition P (PASS_ THRU)
S (SEE)
E (DTR_EXTEND/EXECUTE)

DEFINEP definition or P (PASS_ THRU)
directory C (CONTROL)

DELETE parent directory P (PASS_ THRU)
X (EXTEND)

) definition P (PASS_ THRU)
and either
D (LOCAL_DELETE)
or G (GLOBAL_ DELETE)

DELETEP definition or P (PASS_ THRU)
directory C (CONTROL)

EDIT path-name parent directory P (PASS_ THRU)

(You also need the definition P (PASS_ THRU)
privileges required to S (SEE)
use the REDEFINE R (DTR_READ)
command and, if present, the
DELETE command in order
to exit the editor.)

(continued on next page)

Using the VAX Common Data Dictionary 7-19

Table 7-4: Access Privilege Requirements for Commands and
Statements {Con,t.)

You Need in the The Following
To Enter: ACL of the: Privileges:

EXECUTE(:) procedure P (PASS_ THRU)
procedure-name definition S (SEE)

E (DTR_EXTEND/EXECUTE)

EXTRACT definition P (PASS_ THRU)
S (SEE)
R (DTR_READ)

IN, NOT IN, or VIA table definition P (PASS_ THRU)
dictionary-table-name S (SEE)

E (DTR_ EXTEND/EXECUTE)

IN, NOT IN, or VIA table definition P (PASS_ THRU)
domain-table-name S (SEE)

E (DTR_EXTEND/EXECUTE)

domain definition P (PASS_ THRU)
S (SEE)
and either
R (DTR_READ)
or W (DTR _ WRITE)
or M (DTR_MODIFY)

record definition P (PASS_ THRU)
S (SEE)
E (DTR_ EXTEND/EXECUTE)

REDEFINE parent directory P (PASS_THRU)
X (EXTEND)

definition P (PASS_ THRU)
S (SEE)
R (DTR _ READ)
U (UPDATE)

READY (for all access record definition P (PASS_ THRU)
modes) S (SEE)

E (DTR_ EXTEND/EXECUTE)

READY ... READ domain definition R (DTR_READ)
or W (DTR _ WRITE)
or M (DTR_MODIFY)
or S (SEE)

(continued on next page)

7-20 Using the VAX Common Data Dictionary

C

Table 7-4: Access Privilege Requirements for Commands and
Statements (Cont.)

You Need in the The Following
To Enter: ACL of the: Privileges:

READY ... WRITE domain definition W (DTR_ WRITE)
S (SEE)

READY ... MODIFY domain definition M (DTR_MODIFY)
W (DTR_ WRITE)
S (SEE)

READY ... EXTEND domain definition E (DTR_EXTEND/EXECUTE)
or W (DTR_ WRITE)

SET DICTIONARY directory P (PASS_ THRU)

SHOW path-name definition P (PASS_ THRU)
S (SEE)
R (DTR_READ)

SHOWP definition or P (PASS_ THRU)
directory C (CONTROL)

) 7.9.2 Displaying and Changing an ACL

You display an ACL with the SHOWP command. You can change an ACL with
the DELETEP and DEFINEP commands. As Table 7-3 indicates, the ACL must
assign you the C (CONTROL) and P (PASS_ THRU) privileges for you to dis­
play or change the ACL. The CDD does not let you deny yourself these
privileges when you already have them, but you cannot give these privileges to
yourself if you do not have them.

Using the VAX Common Data Dictionary 7-21

The following example shows how you can modify the ACL for your top-level
private directory to deny access to other users. If your top-level directory was
created by the NEWUSER program, as was the BELL directory in the following
example, it does not have an ACL. If this is the case, you must create one. (If
you forget what your UIC is, you can exit DATATRIEVE and enter SHOW
PROCESS at the dollar sign($) prompt. The display shows your UIC.)

DTR) SHOW DICTIONARY
The default directory is CDD$TOP .DTR$USERS.BELL

DTR) SET DICTIONARY CDD$TOP.DTR$USERS
DTR) SHOWP BELL
DTR> ! Return to the DTR) prompt means there is no ACL
DTR) DEFINEP FOR BELL 1 USER=BELL, UIC=[311,210l, GRANT=ALL
DTR) DEFINEP FOR BELL 2 UIC=C*,*l, DENY=ALL
DTR) SHOWP FOR BELL

1= [311,210], Username = "BELL"
Grant - CDEFGHMPRSUWX, Deny - none, Banish - none

2= [*,*]
Grant - none, Deny - CDEFGHMPRSUWX, Banish - none

DTR>

The important thing to remember when you create or modify ACLs is that each
entry (identified as 1:, 2:, and so forth in the SHOWP display) is evaluated in
the order that it appears. As soon as a match is found for any particular user,
the CDD stops reading the list. It is very important, therefore, that the
DEFINEP 1 command grants you your privileges and the DEFINEP 2 command
denies privileges to other users. If you define a new entry 1, any existing
entries are reassigned higher numbers so that they appear following 1.

After you get the top two entries correctly in place, you can use DELETEP to
clean up any entries below 2 that you might have entered incorrectly or that
the second entry supersedes. If the ACL for the BELL directory contained ACL
entries numbered 3 and 4, for example, Bell could get rid of them with the com­
mands DELETEP BELL 4 and DELETEP BELL 3.

Protecting the top-level directory of your private branch of the CDD also pro­
tects subordinate directories and objects. In addition, remember that you can
protect data files in your VMS directories with the DCL SET PROTECTION
command.

If you are interested in providing more extensive or specific protection, refer to
the VAX DATATRIEVE Reference Manual. You should also read the next sec­
tion if you plan to create an application that will be used by people in addition
to yourself.

7-22 Using the VAX Common Data Dictionary

)

7.10 Using the CDD to Design Department-Wide or
System-Wide Applications

The CDD utilities provide more options for directory organization and main­
tenance and for access control than you can achieve using DAT ATRIEVE. Using
CDD utilities, for example, you can organize a branch of the CDD as a
subdictionary and assign it to a disk that you can remove from a disk drive for
maximum security. You must also use CDD utilities to inspect and maintain
auditing information (history lists). The CDD DMU utility also has an ACL edi­
tor that simplifies creation and maintenance of ACLs.

When you are designing applications that other people will use, you should refer
to the CDD documentation for a complete explanation of CDD organization and
use.

Using the VAX Common Data Dictionary 7-23

C

)

Part Ill
Setting Up an Application

C

)

Application Case Study: A Personnel System 8

This chapter helps you analyze the requirements for a DATATRIEVE applica­
tion so that you can translate those requirements into DATATRIEVE code. The
sample application is a personnel system for an engineering firm. You will fol­
low these steps:

1. Review the requirements

2. Analyze the data

3. Organize the data into domains and tables

8.1 Reviewing the Requirements

The following pages contain the Data Requirements Study for the sample Per­
sonnel System. When you design your own application, its requirements will
likely be different from those for this application. However, you should follow
the same procedure. Define your application's purpose and sketch out the data
requirements it has. You can use the requirements categories in the sample
study as a guide. Later, as you design your database and procedures, periodi­
cally review your requirements to make sure you do not forget to include any of
them.

8-1

Data Requirements Study
Personnel System

Purpose

All personnel systems must maintain employee data. Most systems must also
answer online inquiries and create reports. The system for this personnel data­
base must do all of these tasks.

System Requirements

System requirements relate to the devices that your application will be receiv­
ing data from and sending data to. System requirements also take into account
whether or not your application will be receiving and sending information
across a computer network:

• For data entry: All data will be entered at the terminal.

• For reports: Reports will be displayed at a video terminal or printed at a
hardcopy terminal or printer.

• For distributed processing: This system will be autonomous. It will not share
data with other computer systems.

Report Requirements

It is important to decide what kinds of reports your application must generate
on a routine basis. What information your database contains depends to a large
extent on the reports you want it to produce. This personnel system must gener­
ate the following reports:

• Individual employee report: Given an employee, list the detailed data per­
taining to him or her. For example, provide all information about Nanette
Greeb.

• Employee listings: Given a field or combination of fields in the employee rec­
ord, list all the employees by that field. For example, list all employees by
department, manager, or job title.

• Job category report: List all the job categories. Show the following
information:

- Job code and job title

- Salary range

8-2 Application Case Study: A Personnel System

C

)

- Average actual salary for employees in the category

- Names of employees in the category

- Actual salary and wage class for each employee

• Department report: List employees, job titles, salaries, and dates of last pe1
formance reviews by department. This report is intended for department
managers.

• Salary and job history: List employees, all the jobs they have held in the
company, and the dates of their performance reviews.

• Educational background: List the college training completed by an employee,
colleges attended, degrees and the dates they were received, and degree fields.

• Miscellaneous reports: Provide small, ad hoc reports generated from the per­
sonnel list format, such as address lists.

Online Inquiry Requirements

Online inquiry to a personnel database must be restricted to information that
the person making the inquiry has a right to see. In this system, the following
employees can access the information listed:

• Supervisors and department managers can access data that applies to their
subordinates.

• Other employees can access only the names, job titles, and departments of
company personnel.

Database Updating Requirements

Requirements for data update include how the data is maintained and how the
system ensures the data is valid. This personnel system has the following updat­
ing requirements:

• Online maintenance: Personnel department employees will add, delete, or
modify employee records on line. The system does not need to process transac­
tion files to update the information stored in the domains.

• Automatic validation: The system must provide a way to make sure that
department codes are valid and there are no duplicate employee identification
numbers.

Application Case Study: A Personnel System 8-3

A real personnel system would include requirements relating to tax computation
and benefits. These requirements are omitted from the sample system in this
book so that you will find it easier to see the relationships among the domains
in the system.

8.2 Analyzing the Data

At this stage of your application, you want to generate a list of the pieces of
information your database should contain. There are a number of ways you can
do this, but you might find it easiest to follow these steps:

1. Sketch out what you expect the reports to look like. The fields in the
reports determine to a large extent the fields you will store in records.

2. Some fields depend on other fields. That is, there is a one-to-one cor­
respondence between them. For example, every job code is associated with
only one job title. Identify these fields. You might be better off storing
these paired values in a DATATRIEVE table and putting only the
smallest or key value in a record.

3. Some fields can be calculated from other fields. For example, age can be
calculated from birth date. Fields like average salary and salary mid­
points for a job category can be calculated from existing salaries and
minimum and maximum salaries.

You can specify a field calculated from others in the same record as a C
COMPUTED BY field in the record definition. COMPUTED BY fields do
not take up storage space because their values are calculated at the time
you access a record. (COMPUTED BY fields are discussed in Chapter 9).
If the calculated field appears in only one report, however, you might
decide to create it as part of the procedure that produces the report
rather than specifying it in a record definition.

Your goal at this point is to determine the minimum number of fields
that you want to put in a record definition and which fields you want to
take up space in storage.

4. Compile a list of data fields. Next to each field you might note the follow­
ing information (if it applies to that field):

- Any field with which it has a one-to-one correspondence

- Any fields from which it can be calculated

- Whether each value stored in the field must be unique

- What makes values for the field valid ones

8-4 Application Case Study: A Personnel System

J

5. Determine the most efficient way to organize the fields into domains and
tables.

Table 8-1 shows a list of fields you might start with when creating a personnel
system. A number of fields would appear in more than one report. Some of them
would probably never appear in the same report together. At this point, you
want to know how many pieces of data you have to work with rather than how
you are going to group them.

Table 8-1: Fields for Personnel System

Field Unique? Depends On Valid If: Calculated?

EMPLOYEE - ID Yes - 5 digits -

LAST NAME - - - --

FIRST NAME - - - --
MIDDLE INITIAL - - - --

ADDRESS DATA - - - --

EMP STREET - - - --

EMP TOWN - - - --

EMP STATE - - - --
EMP ZIP - - - --

SEX - - Mor F -

SOCIAL SECURITY Yes - - --
BIRTHDAY - - Valid -

date

JOB CODE Yes - - --
JOB TITLE - JOB CODE - -- -

MINIMUM SALARY - - - --

MAXIMUM SALARY - - - --

SALARY MIDPOINT -- - - Min and
Max Salary

WAGE CLASS - - - --
DEPARTMENT CODE Yes - - --
DEPARTMENT NAME - DEPARTMENT - -- -

CODE

(continued on next page)

Application Case Study: A Personnel System 8-5

Table 8-1: Fields for Personnel System (Cont.)

Field Unique? Depends On Valid If: Calculated?

JOB START - - Valid --
date

JOB END - - Valid --
date

REVIEW CODE - - - --
SALARY AMOUNT - - - --
SALARY START - - Valid --

date

SALARY END - - Valid --
date

REVIEW DATE - - Valid --
date

SUPERVISOR - ID - - - -

DEGREE - - - -

DEGREE FIELD - - - --
DATE GIVEN - - Valid --

date

COLLEGE NAME - - - --

Expect that field requirements will change as you think about organizing them
into domains or tables. This list of fields does not take into account, for exam­
ple, special fields to indicate whether a record contains current or historical
information.

8.3 Grouping Fields into Domains and Tables

After you know what fields you will need for your application, you have to
decide how best to group them.

The simplest way to go about this is to define a record to match each report you
want to produce and create a data file and domain to go with each record defini­
tion. This can work well for a small application whose requirements are not
going to change and that will only be used by one or two people to generate for­
mal reports.

8-6 Application Case Study: A Personnel System

C

If you are designing a database to support formal and informal reports and
interactive queries, however, that is an inefficient solution. No number of data
files is likely to meet the needs of all users. In addition, the organize-by-report
method probably requires storing some fields in several data files. Each time an
employee's name or address changes, for example, these field values have to be
changed in every file that stores them.

Another method you might consider is to create one massive domain that con­
tains every possible piece of information you would include in any report or
query. This method, too, can create storage and maintenance problems. Besides,
the results of statements like PRINT domain-name or SHOW FIELDS FOR
domain-name would require a fast finger on the NO SCROLL key for people
privileged to see all the information.

DATATRIEVE gives you a variety of methods to look at data stored in different
locations. You should therefore pay special attention to ease of maintenance and
logical grouping of fields when you put together a record.

Aim to put a field in only one place, unless you plan to use it as a link to
related information stored somewhere else. Employee names, for example, are
best stored in only one place. Employee ID numbers, however, probably need to
be stored in several locations.

When you group fields together, consider grouping fields that contain generic
data apart from fields that contain specific data. Job information, for example,
can be generic (the same for each job code) or employee-specific. Generic infor­
mation, such as wage class and minimum salary, can go in one domain.
Employee-specific information, such as start date and review code, can go in
another domain. If you keep generic data apart from specific data, you save stor­
age space. If job entries for employees include wage class and minimum salary,
values for these fields will be stored in many records when they need to be
stored in only a few.

Figure 8-1 shows one way you could organize the fields in the sample personnel
system. Above each grouping is the domain name that will eventually associate
the record definition describing the fields with the data file that will store them.

The fields preceded by an asterisk (*) indicate fields that you can use in
DATATRIEVE statements to link data in one domain with data in the other
domains. When grouping fields into domains for your own applications, you
should note the following points about pivotal fields like these:

• They are the only fields that are stored in more than one place

• They are codes that can easily be made unique (and, unlike names, can stay
that way). Many are likely to be primary keys for the data files to which they
correspond. You cannot modify the value of primary key fields.

Application Case Study: A Personnel System 8-7

• Their values can be a set number of characters. It is easier to write state-
ments that can check for valid values in fields that are always a set number II"'
of ordered characters. '-

Note -----------­

The sample personnel system outlined in this chapter is the basis for
many examples in following chapters. Note, however, that the data
definitions and data shown in examples are not included as part of
DATATRIEVE and are not related to the sample PERSONNEL
domain created during installation of DATATRIEVE. Although the
structure of the sample database described here is similar to the
sample Rdb/VMS database, PERSONNEL, created during the
DATATRIEVE installation, you cannot reproduce the examples in this
book by using that database.

8-8 Application Case Study: A Personnel System

C

)

SALARY _HISTORY

*EMPLOYEE_ID
SALARY_START
SALARY_END
REVIEW_CODE
SALARY _AMOUNT

JOB-HISTORY

*DEPARTMENT _CODE
*EMPLOYEE-ID
JOB-START
JOB_END

*JOB_CODE
REVIEW_DATE
SUPERVISOR-ID

JOBS

*JOB_CODE
MINIMUM-SALARY
MAXIMUM-SALARY
WAGE_CLASS

*Denotes key fields

EMPLOYEES

*EMPLOYEE_ID
LAST_NAME
FIRST _NAME
MIDDLE_INITIAL
ADDRESS_DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIAL_SECURITY
BIRTHDAY

COLLEGES

*COLLEGE-CODE
COLLEGE_NAME
CONTACT _NAME
ADDRESS_DATA
STREET
TOWN
ZIP

DEGREES

*EMPLOYEE_ID
*COLLEGE_CODE
DEGREE
DEGREE_FIELD
DATE_GIVEN

DEPARTMENTS_TABLE

DEPARTMENT_CODE
DEPARTMENT_NAME

JOBS_TABLE

JOB_CODE
JOB_ TITLE

ZK-00002-00

~.J Figure 8-1: Domains and Tables in Sample Personnel System

Application Case Study: A Personnel System 8-9

C

)

Defining Records 9

After you decide what fields you want to associate with a domain, you can cre­
ate a record definition to describe them. If you worked through the examples in
Chapter 1, ADT created a record definition for you. This chapter explains how
you use the DEFINE RECORD command that hides behind ADT's menu of
choices. There are several reasons why you might want to know the explicit way
to define a record:

• If you want to change the record that ADT creates for you, you have to know
what to edit and the consequences of changing anything.

• If you want to create a record definition to use with a data file that already
exists, one created by a COBOL program perhaps, you have to match field
definitions to the way they are stored.

• ADT does not give you all the DATATRIEVE options you can include in a
record definition. The VALID IF and COMPUTED BY clauses are two exam­
ples of options you cannot include using ADT.

• If you are an experienced programmer and have put together many record
definitions in the past, you want more specifics about what you are defining
than the ADT menu provides. If you fall in this category, you probably can
focus on the examples and tables in this chapter and simply skim through the
explanatory text.

The best way to learn how to put a record definition together is to look at an
existing one and pick it apart. Example 9-1 defines a record definition to go
with the EMPLOYEES domain from the personnel system discussed in Chapter 8.

9-1

Comment lines starting with an exclamation point (!) provide labels and
explanatory text that you would not enter if typing the DEFINE command. The
sections following the example more fully explain the labels.

Example 9-1: Sample DATATRIEVE Record Definition

DTR>
DFN}
DFN>
DFN>
DFN>
DFN>
DFN}
DFN>
DFN>
DFN>
DFN>
DFN}
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN}
DFN>
DFN}
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>

DFN>

9-2

DEFINE RECORD EMPLOYEES-REC USING
A A A

required
keywords

name of
definition

optional
keyword

01 EMPLOYEES-REC
A A

level name of end of field
number t op-level field definition

05 EMPLOY EL ID
A A

level name of
number field

05 EMPLOYEE-NAME
A

PIC X(5)
A

field defini-
tion clause

QUERY-NAME IS
A

field defini-
tion clause

QUERY-HEADER
A

field defini­
tion clause

ID

IS 11 EMP 11
/

11 ID 11

A

end of field
definiti on

QUERY_NAME IS NAME.

This group field contains the three elementary fields
that follo111 it.

10 LASLNAME

10 FIRST-NAME

Defining Records

PIC X(14)
QUERY-NAME ISL-NAME
QUERY-HEADER IS "LAST NAME".
PIC X(10)
QUERY-NAME IS F-NAME

QIJER'r'-HEADER IS II FIRST NAME" .

10 MIDDLE-INITIAL PIC X
QUERY-NAME IS !NIT
QUERY-HEADER IS "I".

DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>

Note that all fields subordinate to EMPLOYEE-NAME
have level numbers with larger values.

DFN>

DFN>
DFN>

05 EMPLOYEE-ADDRESS.
10 ADDRESS-DATA
10 STREET
10 TOWN
10 STATE
10 ZIP

05 SEX

05 SOCIAL-SECURITY

DFN> 05 BIRTHDAY
DFN>
DFN>
DTR) ! A

DTR> ! end of record definition
DTR>
DTR>

PIC X(20).
PIC X(25).
PIC X(20).
PIC X(2).
PIC X(5).
PIC X
VALID IF SEX = "M" OR
SEX = "F".
PIC X(9)
QUERY-NAME IS SS

EDIT_STRING XXXBXXBXXXX

VALID IF SS BETWEEN
"1" AND "999999999".

USAGE DATE
EDIT-STRING IS NN/DD/YY.

9.1 Setting Up Relationships Among Fields (Level Nun1bers)

When you create a logical model for your record, you decide which fields will
contain other fields and which fields will not. Figure 9-1 shows the logical model
of fields in the sample employee record before they were defined:

EMPLOYEE-ID
EMPLOYEE-NAME

LAST_NAME
FIRST-NAME
MIDDLE-INITIAL

EMPLOYEE-ADDRESS
ADDRESS-DATA
STREET
TOWN
STATE
ZIP

SEX
SOCIALSECURITY
BIRTHDAY

Figure 9-1: Logical Model of EMPLOYEES_REC

Defining Records 9-3

The fields that contain other fields are group fields. In EMPLOYEES_REC,
for example, EMPLOYEE_NAME and EMPLOYEE_ADDRESS are group #"".,
fields. All the other fields in this logical model are elementary fields; they do '-.
not contain other fields. As you read down the list of fielqs, you can tell by the
indentation in the figure which fields are included under a group heading and
which are not. You can see, for example, that SEX, SOCIAL_ SECURITY, and
BIRTHDAY are not part of the EMPLOYEE _ADDRESS group.

You get DATA TRIEVE to recognize the logical organization of your record by
the level numbers yoµ assign to the fields. When you assign level numbers,
keep t11e following rules in mind:

• The first field in the record must be a top-level field that has a level number
lower than that of any other field in the record. (Top-level fields are discussed
further in a later section of this chapter.)

• You define subordinate fields by giving them level numbers that are higher
than the field or fields that contain them.

• You specify the end of a logical set of fields by assigning to the next field in
the record a level number equal to or lower than the lowest level number of
the group field that begins that set.

Looking at the record definition in Example 9-1, you can see how level numbers
implement the logical model for the s&mple employee record.

The highest logical level of the record is the 01 level field, EMPLOYEES_REC.
Because 01 is a lower value than any other level number in the record, the field
EMPLOYEES_REC contains all the other fields in the record.

All fields on the second logical level have the level number 05. Most of these
fields are elementary fields (EMPLOYEE_ID, SEX, SOCIAL_SECURITY, and
BIRTHDAY) and two are group fields (EMPLOYEE_NAME and
EMPLOYEE_ADDRESS).

All fields on the third logical level have the level number 10 (LAST _NAME,
FIRST _NAME, MIDDLE_INITIAL, EMPLOYEE_ADDRESS, STREET,
TOWN, STATE, and ZIP). In this particular record, all the fields with level
number 10 are elementary fields.

As DATATRIEVE reads down the record, it knows that the EMPLOYEE_NAME
group ends as soon as it encounters the 05 level number of the
EMPLOYEE_ADDRESS field. It knows that the EMPLOYEE_ADDRESS
group ends as soon as it encounters the 05 level number of the field SEX. It
knows that the EMPLOYEES _REC field ends because it encounters the
semicolon (;).

9-4 Defining Records

C

You can choose any integer value from 1 to 65 for a level number. The actual
values you select are not important; only the relative values matter.

Now you know what DATATRIEVE requires from you as far as level numbers
are concerned. The following list of guidelines will make your record definitions
easier to read:

• Use indentation to line up fields that are on the same logical level. This
makes your record definition easier for you and others to read.

• Put a leading O in front of single digit values. Use 01, for example, rather
than 1. When all your level numbers are two characters, it is easier to keep
the numbers aligned.

• Increase level number values by more than 1 as you move from one logical
level to another. Doing this gives you room to add subordinate group fields to
the record in the future, without the problem of readjusting level number
values for the entire record. In the sample definition, for example, the level
numbers progress from 01 to 05 to 10.

9.2 Selecting Names

The names you select for the record definition and for all of the record fields
must adhere to the following rules. Each name:

) • Must begin with a letter

• Can consist only of letters, digits, hyphens, and underscores

• Must not duplicate a DATATRIEVE keyword

• Must not contain blanks

• Must be from 1 to 31 characters long

• Must end with a letter or digit

Some valid DATATRIEVE names are:

EMPLOYEE

SALARY NET

CATEGORYl

YEAR-TO-DATE-SALES-FOR-PRODUCTS

Defining Records 9-5

Some invalid DATATRIEVE names are:

SIZE
(duplicates a keyword)

1984-EARNINGS
(does not start with a letter)

EMPLOYEE NAME
(contains a blank)

PRICE_($/LB)
(contains invalid characters)

THIS _NAME _HAS_ TOO _MANY_ CHARACTERS
(self explanatory)

The same field name can appear more than once in a record definition.
Duplicate field names, however, must belong to different group fields.

------------ Note------------­

When you specify a duplicate field name in your DATATRIEVE state­
ments, you have to qualify it so that DATATRIEVE knows which of
the fields in the record you want. A record could contain two fields
called NAME, for example. If one were in the group field DEPT and
the other in the group field PROJECT, you would have to type PRINT
DEPT.NAME or PRINT PROJECT.NAME.

Now that you know the DATATRIEVE requirements for names, you can read
the next four sections for further guidelines.

9.2.1 Differences Between Record Name and Top-Level Field

The name you type following DEFINE RECORD specifies the name under which
the definition is stored in a dictionary directory. The only time you use the rec­
ord name is when you want to do something with the definition itself-look at it,
edit it, delete it, and so forth. You never use a record name in the DATA TRIEVE
statements that handle data.

The first field name in a record definition is always the top-level field, a field
that includes all the other fields in the record. In most statements that handle
data, you rarely need to specify the top-level field; simply specifying the domain
name usually gets you all the fields in the record. In some complex statements,
however, you might want to specify all the fields in the record when the syntax
requires a field name. Typing the name of the top-level field in this situation
can save you many keystrokes.

9-6 Defining Records

C

)

What does all this explanation mean to you now when you are only at the stage
of defining records? It means you should specify the same name for the top-level
field as you want for the record d·efinition. You do not have to do this but it
makes it easy to avoid mistakes later on.

Are there any conventions to follow when choosing record names? Yes. Many
people specify record names by taking the name they want for the domain and
adding _REC. That is the convention used in Example 9-1 and by ADT. Other
people always use plural nouns for domain names and singular nouns for
records. Following this convention, if you want EMPLOYEES to be the name of
your domain, specify EMPLOYEE as the name of your record. Whatever conven­
tion you decide on, use it consistently. That way you do not have to check the
domain definition to get the name of the record every time you want to edit the
record definition.

9.2.2 Query Names

Field names should be descriptive of the data stored in the field rather than
abbreviations that are easy to type. That makes the record definition easy to fol­
low and maintain.

DAT A TRIEVE lets you both describe fields adequately and also abbreviate
names for speed and ease of use. Add a QUERY _NAME clause to an elemen­
tary field definition to specify a shorter name you can use in place of the field
name when typing DATATRIEVE statements. Example 9-1 has several exam­
ples of the QUERY _NAME clause. The keyword IS is optional when you type a
QUERY _NAME clause.

When you define a query name for a field, you can use the query name as a
replacement for the field name in any DATATRIEVE statements or clauses that
refer to the field.

9.2.3 Column Headers

When you display data, DAT ATRIEVE uses the names you choose for the
elementary fields in the record definition as default column headers for the
stored values. If you segment the field name with underscores or hyphens,
DATATRIEVE automatically uses multiple lines for the column header. This
way, each segment in the name appears on a separate line in the display.

You can change the default column headers by adding a QUERY _HEADER
clause to your elementary field definition. Example 9-1 contains several exam­
ples of a QUERY _HEADER clause. The keyword IS is optional. The header
you select must be enclosed in quotation marks. Use a slash (/) to indicate that
the following header segment should appear on the next line ("EMP" /"ID").

Defining Records 9-7

When you specify a column header, you and other users lose the advantage of
knowing what the field names are simply by looking at data displays.

As long as your field names are descriptive of the data in the field, the main
reason you want to add a QUERY _HEADER clause to the record definition is
to optimize use of line space in your display. Some descriptive field names are
longer than the values in the field. In Example 9-1, MIDDLE_INITIAL is an
example of such a field. DATATRIEVE must use seven columns of display space
for the column header when the values under the header only require one
character.

The following example illustrates how several fields from EMPLOYEES_REC
would display without the QUERY _HEADER clauses in Example 9-1:

DTR> READY EMPLOYEES
DTR> PRINT ID, NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMPLOYEE LAST FIRST MIDDLE
ID NAME NAME INITIAL TOWN

00164 Toliver Alvin A Chocorua
00165 Smith Terry D Chocorua
00166 Dietrich Rick Boscawen
00167 Kilpatrick Janet Marlow
00168 Nash Norman Meadows

DTR>

STATE

NH
NH
NH
NH
NH

Now the same display with the QUERY _HEADER clauses in Example 9-1:
,

DTR> PRINT ID, NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMP
ID LAST NAME

00164 Toliver
00165 Smith
00166 Dietrich
00167 Kilpatrick
00168 Nash

DTR>

FIRST NAME I

Alvin
Terry
Rick
Janet
Norman

A Chocorua
D Chocorua

Boscawen
Marlow
Meadows

9.2.4 FILLER Field Name

TOWN STATE

NH
NH
NH
NH
NH

You can specify the keyword FILLER as the name of an elementary or group
field. You might want to specify FILLER if you:

• Do not need certain fields in a data file for a particular application

9-8 Defining Records

)

J

• Want to control record display to mask certain data (not for security reasons,
just for display purposes)

• Want to reserve space in the physical record of the data file for future use

The rules for defining fields named f ILLER are the same as those for other
fields. Unlike other fields, however, you can use the name FILLER for more
than one field in the same group field.

Values in FILLER fields cannot be accessed by PRINT, LIST, MODIFY, STORE,
REPORT, and SUM statements. The contents of FILLER fields can always be
viewed, however, by specifying in a DISPLAY statement the name of any group
field containing them. Because even first level elementary FILLER fields belong
to the top-level field in the record, you should not use the name FILLER to
mask sensitive data from users who should not see it.

9.3 Specifying Type and Size of Data

This section explains how you tell DATATRIEVE about storage criteria; that is,
what kind of characters are stored in a field and the maximum number of
characters allowed in that field.

Every time you define an elementary field in your record definition, you must
specify either a PICTURE (PIC, for short) or USAGE clause to tell DATATRIEVE
what kind of characters are stored in the field and how many characters can fit.

9.3.1 Specifying a PIC Clause

A PIC clause starts with the keyword PIC and ends with a string of picture
characters. Although you type a space after the word PIC, you cannot put a
space anywhere in the string of picture characters that follows.

If you look at Example 9-1, you can see that all the PIC clauses contain the
character X, sometimes followed by a number in parentheses. The X indicates
that the field can contain any text character, roughly equivalent to any charac­
ter you can type with a typewriter keyb9ard. (You can, however, press some
keys on a terminal keyboard that produce nontext characters.) The number in
parentheses is a repeat count. For example, X(20) means that a maximum of
20 text characters can be stored in the field. A repeat count is an option gener­
ally used when defining fields longer than three characters. When defining
shorter fields, most people type a picture string character for each character in
the field; for example, PIC X, PIC XX, or PIC XXX.

Defining Records 9-9

Table 9-1 lists and describes all the characters you can use in a PIC clause
except the parentheses and number to designate repeat count. If you have
limited programming experience, focus on the characters X, 9, V, and S. You
can use the X character to define fields, such as names, that need to contain a
wide range of characters. You use the characters 9, V, and maybe S to define
fields, such as salary amount, on which you want to perform arithmetic opera­
tions. The characters A and P are listed in case you encounter them in a record
definition created by someone else.

Table 9-1: Picture String Characters

Picture
Field Class Character Meaning

Alphabetic A Represents one alphabetic character in the field.

Alphanumeric X Represents one character in the field.

Numeric 9 Represents one digit in the field. You can specify
from 1 to 31 digits for a numeric field.

s Indicates that a sign (+ or -) is stored in the field.
A picture string can have only one Sand it must be
the leftmost character.

V Indicates an implied decimal point. The decimal
point does not occupy a character position in the
field, but DATATRIEVE uses its location to align
data in the field. A picture string can contain only
one V.

p Specifies a decimal scaling position. Each P
represents a "distance" in digits from an implied
decimal point. A P can appear at the right or left of
the picture string. A V is unnecessary for any picture
string containing a P.

9.3.1.1 Defining Alphanumeric (X) and Alphabetic (A) Fields - Alphanumeric
(X) fields are best for just about all fields unless you want to use the field
values in arithmetic calculations.

Most people avoid defining alphabetic (A) fields. You cannot store hyphens,
commas, periods, or numbers in alphabetic fields. Notice, however, that some
names contain these characters:

SMITH-JONES

ARCO, INC.

TEA-FOR-2 CATERING

9-10 Defining Records

C

If you have some programming experience, you might be interested to know
that DATATRIEVE has three relational operators especially designed for access­
ing text field values: CONTAINING, NOT CONTAINING, and STARTING WITH.
You can also use the standard operators such as EQUALS, BETWEEN,
GREATER_ THAN, LESS_ THAN, and so forth to access text field values in a
range.

9.3.1.2 Defining Numeric Fields - As you can see by looking at Table 9-1, you
can be more specific about the format of fields that contain only numbers.
Depending on what characters you combine in the string, the field can contain
only positive values or both positive and negative values. It can contain only
integers or both integers and numbers with fractions.

Table 9-2 explains how to use numeric picture strings better than a wordy
explanation can.

Table 9-2: TABLE Relating Numeric Picture Strings to Stored Values

Picture String You Can Store: You Cannot Store:

999 1, 10,999 1000, -21, 2.5, "2"

S9(4) 1000, -1000, 21 10000, 2.5, -3.41, A_ B

9(4)V99 1000, 3.5, 9999.99 -2, 1.314, 99999, 50%

V99 .15, .9, .80 1.5, -.45, 22, . 2

S9V9(4) -1.5347, 2, .7 -78, .78902, $2.45

9(5)PPP 12345000, 2112000 123450000, 21123.999

PPP9(5) .00012345, .0003999 12345, 1.3

The picture character 9 represents places where significant digits can appear.
The picture character P represents a digit you consider nonsignificant. Only zero
can logically occupy a P position. If someone stores 12345 in a field defined as
PIC 99PPP, the value is stored as 12000.

As you can see from Table 9-2, you use either V or Pas a character to mark the
position of the decimal point, but V is the only character you can use to insert a
decimal point between 9s in the string.

Defining Records 9-11

------------- Note ------------­

You can add a SCALE clause to substitute for Ps or a V in the pic­
ture string. For example, you could substitute PIC 9(5) SCALE 3 for
PIC 9(5)PPP, PIC 9(5) SCALE -8 for PIC PPP9(5), and PIC 9(5)
SCALE -2 for PIC 999V99. Do not use a SCALE clause,. however,
when the picture string contains a Vora P.

If you are a beginning programmer, you will find it easiest to limit yourself to
numeric picture strings containing only 9s for digit positions and a V for deci­
mal point position. You should also start the string with S if the field must
store both positive and negative values. Numeric fields defined this way are
iconic. You can visualize where the decimal point is by looking for a V and see
how big the field is by adding up all the 9s. If there is no V, or a rightmost V,
it means the field defines an integer.

You can define numeric picture strings from 1 to 31 digits long. Length in digits
is the sum of all the 9s (and Ps, if any) in the picture string. You can specify
one more character (S) to represent the sign.

9.3.2 Specifying a USAGE Clause

Every field definition has a USAGE clause, even if you do not explicitly specify
one. USAGE DISPLAY is the default. It is the only usage that can apply to
alphabetic and alphanumeric fields, and the one that applies to numeric fields
unless you tell DATATRIEVE otherwise.

When the storage criteria for a numeric field are defined only with a PIC clause
(PIC S99V99, for example), that field has display usage. You can do arithmetic
calculations on a numeric field with display usage with no loss of precision, as
long as any resulting values can be represented by 31 or fewer digits. It takes
the computer a little longer to perform arithmetic calculations using fields that
are display numeric, but the time loss is negligible for simple business
applications.

9-12 Defining Records

C

)

All the other USAGE options exist to give programmers greater precision when
defining and handling fields that contain numbers. Some of these options define
fields that a variety of languages can process. This is important when you plan
to create a data file that will be accessed not only by DAT ATRIEVE users, but
also by programs written in languages such as COBOL, BASIC, and FORTRAN.
You can ignore the rest of this section and resume reading about date fields in
the next section if you have limited programming experience and the following
statements are true in your case:

• Thirty-one or fewer 9s gives you the precision you need for results of arith­
metic operations.

• You want to keep your definitions as simple to use as possible.

• You do not have to create a record definition to match an existing data file.
(If the data file already exists, it might include numeric fields defined with
USAGE options other than display.)

Table 9-3 lists and describes all the USAGE types supported by DATATRIEVE.
When two keywords are grouped together in the table, it means they are
synonymous.

Table 9-3: USAGE Clause Options

Type of
Data USAGE Option Size in Bytes Range (in Decimal Values)

ASCII DISPLAY Depends on Depending on PIC clause,
string (nonnumeric) PIC clause 1 to 65535 characters

DISPLAY Depends on Total number of integer and
(signed PIC clause decimal digits cannot exceed 31
numeric) (-999, ... 999 to 999, ... 999)

DISPLAY Depends on Total number integer and decimal
(unsigned PIC clause digits cannot exceed 31 (0 to
numeric) 999, ... 999

COMP-3 Depends on Same as DISPLAY (signed
PACKED PIC clause numeric)

COMP-5 Depends on Same as DISPLAY (signed
ZONED PIC clause numeric)

Fixed COMP Depends on Depending on size, -128
point INTEGER PIC clause, to 2**63 - 1
binary if any.

Default is 2.

(continued on next page)

Defining Records 9-13

Table 9-3: USAGE Clause Options (Cont.)

Type of
Data USAGE Option Size in Bytes Range (in Decimal Values)

BYTE 1 -128 to 127

WORD 2 -32768 to 32767

LONG 4 -2**31 to 2**31 - 1

QUAD 8 -2**63 to 2**63 - 1

DATE 8 Although stored as an 8-byte
binary number,values are a special
case.

Floating COMP-1 REAL 4 + /-(10**(-38) to 10**38,
point approximately 7 decimal digits
binary precision

G - FLOATING 8 + /-(10**(-308) to 10**308),
approximately 15 decimal digits
precision

COMP-2 8 + /-(10**(-38) to 10**38),
DOUBLE approximately 16 decimal digits

precision

H - FLOATING 16 + /-(10**(-4932) to 10**4932),
approximately 33 decimal digits
precision

You can indicate decimal point position with a SCALE clause. To indicate two
decimal digits for a field that stores a fractional number, for example, you could
define the field as USAGE REAL SCALE IS -2.

For more detailed information about data types, refer to the CDD documenta­
tion. Remember, however, that DATATRIEVE does not support USAGE
OCTA WORD or unsigned value ranges for fixed point binary fields.

9-14 Defining Records

C

)

9.3.3 Date Fields

If you are defining a field to store dates, specify USAGE DATE for that field.
DATATRIEVE, for example, correctly stores any of the following entries in a
USAGE DATE field:

28/MAR/1946

MAR 28 1946

March 28, 1946

When you display a date value, DATATRIEVE formats it by default as
DD-Mmm-YYYY. Any of the preceding entries would be displayed as
28-Mar-1946, unless you specified an EDIT _STRING clause to change this
default.

A section later in this chapter explains how to specify an edit string for a date
field. Chapter 18 gives you more information about using date fields.

9.3.4 Virtual (Computed) Fields

When a field you are defining can be calculated by other field values or by
values stored in a DATATRIEVE table, you can define it as a virtual field. A
virtual field does not occupy any space in storage and so can reduce the size of
your data files. The field value is calculated when you access it with a
DATATRIEVE statement.

Define a virtual field with the COMPUTED BY clause. The value computation
can include the name of one or more fields in the record definition or it might
be accessed in a DAT ATRIEVE table.

In the following example, GROSS_SALARY and DEDUCTIONS are fields that
appear in the same record definition as NET _SALARY:

05 NET_SALARY COMPUTED BY GROSS-SALARY - DEDUCTIONS.

The following example specifies a value using STATES_ TABLE, a dictionary
table that pairs the 2-character state code with the full name of the state
(MA with Massachusetts, for example):

10 STATLNAME COMPUTED BY STATE VIA STATES-TABLE.

You can use the COMPUTED BY clause only to describe elementary fields.

Defining Records 9-15

Many COMPUTED BY fields are better defined as variables that use the values
in a record rather than as fields in the record definition. (A variable is a field
you can define as necessary to get a particular value you need for a display or ,,.,,.
report.) This is especially true if the value you want to calculate uses a constant '-.
(such as tax rate) that is likely to change.

If you find that, just to satisfy the needs of a virtual field you want to compute,
you are adding fields to your record that are likely to change, then consider
doing the calculation outside the record definition. Chapter 18 explains how to
define and use variables.

9.3.5 Defining One Record Area in Different Ways Using the REDEFINES
Clause

The COMPUTED BY clause defines a field that occupies no space in a record.
The REDEFINES clause takes another look -at storage space that already exists.
In the following example, CODE_FOR_SOMETHING is a value that is gener­
ally displayed and stored as a unit; however, users sometimes need to identify
sections of the field:

03 CODE-FOR-SOMETHING PIC X(6).
03 SEGMENT_THE_CODE REDEFINES CODE-FOR-SOMETHING.

06 FIELD1 PIC X(3).
06 FIELD2 PIC X(3).

Note that a field redefining another must follow the field it is redefining. Both
fields must have the same level number. In addition, the REDEFINES clause
must immediately follow the field name in the field definition.

To understand REDEFINES on a higher level, you must first understand some­
thing about group fields-DATATRIEVE always considers them alphanumeric.
This means when you use a group field name in a statement, DATATRIEVE
looks at all the fields in the group as though you had defined them with Xs.
This is true even if you used 9s or a numeric USAGE clause to define every
subordinate item. If you want to define a field as numeric, but also want it to
contain subordinates, you must redefine the field. In the following example,
PART _NUMBER is a numeric field that has been redefined in two ways to
identify subordinate fields:

05 PART-NUMBER PIC 9(10).
05 PART-NUMBER-PARTS REDEFINES PART-NUMBER.

10 PRODUCT-GROUP PIC 99.
10 PRODUCT-YEAR PIC 99.
10 ASSEMBLY-CODE PIC 9.
10 SUB-ASSEMBLY PIC 99.
10 PART-DETAIL PIC 999.

9-16 Defining Records

C

05 PART-NUMBER-GROUPS REDEFINES PART-NUMBER.
10 PRODUCT-GROUP-ID PIC 9(4).
10 PART-DETAIL-ID PIC 9(6).

The REDEFINES clause adds complexity to a record definition that beginning
programmers should probably avoid. Redefining a numeric field as an alphanu­
meric field and then using the two fields properly can be tricky. In addition, if
you change the record definition later on to add new clauses or fields, you have
to be very careful not to disrupt the relationship between a field and its
redefinitions.

9.3.6 Specifying Repeating Fields Using the OCCURS Clause

You can define a list field to specify multiple occurrences of its subordinate field
or fields. A record storing information about a family, for example, can define a
list field to store information about children. In the following record definition,
KIDS is a list field:

DTR> SHOW FAMILY-REC
RECORD FAMILY-REC
01 FAMILY.

03 PARENTS .
. 06 FATHER PIC X(10) .

06 MOTHER PIC X(10).
03 NUMBER-KIDS PIC 99 EDIT_STRING IS 29.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER-KIDS.

06 EACH-KID.

DTR>

09 KID_NAME PIC X(10) QUERY-NAME IS KID.
09 AGE PIC 99 EDIT-STRING IS 29.

If you display records defined this way, you can see that records vary in the
number of values stored in the fields KID NAME and AGE:

DTR> READY FAMILIES
DTR> PRINT FIRST 3 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JOHN JULIE 2 ANN 29
JEAN 26

DTR>

Defining Records 9-17

The field KIDS is a variable occurrence list because the number of values in
each record for fields subordinate to KIDS depends on a value stored in another
field in the record (NUMBER_KIDS). Variable occurrence list fields must be
the last set of fields in the record definition. Therefore, you can define only one
variable occurrence list field in a record definition.

You can also define a fixed occurrence list. In this case, the number of values
in each record for fields subordinate to the list field is specified explicitly in the
OCCURS clause itself. If FAMILY REC were altered to define a fixed occur­
rence list, the definition for KIDS would be:

03 KIDS OCCURS 10 TIMES.

If you display records containing a fixed length list, "empty" occurrences occupy
space in the display. This can take the form of blank lines between records (if
all the list subordinates are text fields) or columns of zeros (under fields defined
as numeric). The advantage of defining a list that is fixed length rather than
variable length is that it does not have to be the last set of fields in the record
definition. While it is not recommended, you can also define any number of
fixed length lists within a variable length list.

Accessing fields subordinate to an OCCURS field takes time to master. It is also
difficult to restructure a domain when you want to add to or reorganize the
fields subordinate to a list field.

DATATRIEVE sees each set of list values as an inner record within the record.
You must treat the field defined with the OCCURS clause as you would a
domain name. If you tried to specify KIDS, for example, in a DATATRIEVE
statement where you normally specify a field name, DATATRIEVE might tell
you that KIDS is undefined or used out of context. The following example illus­
trates this problem and one way to get around it:

DTR> READY FAMILIES
DTR> PRINT FATHER, KID-NAME OF FAMILIES
"KID_NAME" is undefined i:,r used ,:,ut ,:,f c,:,ntext.
DTR> PRINT ALL FATHER, ALL KID-NAME OF KIDS OF FAMILIES

9-18 Defining Records

KID
FATHER NAME

JIM URSULA
RALPH

JIM ANNE
JIM
ELLEN
DAVID
ROBERT

JOHN ANN
JEAN

JOHN (CTRUC)
"C
Executi on terminated by ope rator.

DTR>

You may have to specify list fields in a record definition if you are trying to
create a DATATRIEVE record definition for a data file that already exists. If
you do specify an OCCURS field and it contains more than one subordinate
item, be sure you specify a top group subordinate to the OCCURS item itself.
EACH_KID is an example of such a field in FAMILY _REC. This gives you a
group field name that you can use like a field name. Chapter 15 provides more
information on accessing fields subordinate to list fields.

When setting up your own database, however, you should avoid list fields. The
set of domains for the personnel system in Chapter 8 provides an example of
how to do this. Each salary history and job history entry for an employee is
stored as a separate record. These entries are kept out of the record in the cen­
tral employee domain by putting them in separate domains. If you are wonder­
ing how you can uniquely identify each record from the SALARY _HISTORY
and JOB_HISTORY domains, the answer is to define a group field key for the
data file. Chapter 11 gives you more information on this topic.

Defining Records 9-19

9.4 Formatting the Display of Field Values

You can always specify the output format of an elementary field value by
including an edit string in a PRINT statement. If Y.OU want this information in
a record definition, you use the EDIT _STRING clause. Example 9-1 includes an
edit string for the field SOCIAL_SECURITY (EDIT _STRING IS
XXXBXXBXXXX) to display the value with a space between segments of the
field. It also includes an edit string for the field BIRTHDAY to replace the
DATATRIEVE default of DD-Mmm-YYYY (EDIT _STRING IS NN/DD/YY).
This is how those fields would display without the edit string:

DTR> READY EMPLOYEES
DTR> PRINT NAME, SOCIAL-SECURITY, BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY BIRTHDAY ,

Toliver Alvin A 763080064 28-Mar-1947

DTR)

This is how those same fields display with the edit strings in Example 9-1:

DTR> READY EMPLOYEES
DTR) PRINT NAME, SOCIAL-SECURITY, BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY BIRTHDAY

Toliver Alvin A 763 08 0064 3128147

DTR)

If you do not supply an EDIT _STRING clause for a numeric field, DATATRIEVE
uses the PIC clause to format the field value. If the PIC clause contains a V or P,
DATATRIEVE displays the value with a decimal point in the correct position.
You usually want to include an EDIT _STRING clause for numeric fields that:

• Include a fractional component and that do not indicate decimal point position
in the PIC clause

• Include a sign that you want to display (even if there is one in the PIC clause)

• Store money values

The appendix at the end of this book lists and describes all the edit string
characters you can use. Tables 9-4, 9-5, and 9-6 illustrate examples of using edit­
ing characters for text, numeric, and date fields. The symbol # in the output
values in each of these tables represents a space.

9-20 Defining Records

Table 9-4: Editing Text Fields

Picture Edit Output If Field Output If Field
String String Value Is CHALLENGER Value Is 123

X(lO) X(l0) CHALLENGER 123#######

X(lO) X(3) CHA 123

X(l0) XX/X(8) CHI ALLEN GER 12/3#######

X(l0) X(5)/X(5) CHALL/ENGER 123##/#####

X(l0) X(5)-XX CHALL-EN 123##-##

Table 9-5: Editing Numeric Fields

Picture Edit Field
String String Content Output

9(5) 9(5) 04092 04092

9(5) Z(5) 04092 4092

9(5) *(5) 04092 *4092

99V99 99.99 0001 00.01

99V99 ZZ.99 0001 ##.01

99V99 (None) 1234 12.34

99V99 Z9.99 1234 12.34

99V99 999.9 1234 012.3

99V99 9.999 1234 *****

99V99 9.999 0123 1.230

99V99 Z(4) 1234 ##12

S9999 None -1234 1234

S9999 -9999 -1234 -1234

S9999 -9999 +1234 #1234

S9999 9999+ -1234 1234-

(continued on next page)

Defining Records 9-21

Table 9-5: Editing Numeric Fields (Cont.)

Picture Edit Field
String String Content Output

S9999 +9999 +1234 +1234

S9999 9999DB -1234 1234DB

S9999 9999CR -1234 1234CR

S9999 CR9999 +1234 ##1234

S9999 ((9999)) -1234 (1234)

99 99% 45 45%

9(6) $999,999 100000 $100,000

9(6) $$$$,$$$ 100000 $100,000

9(6) zzz,zzz 000040 #####40

9(6) 999/999 123456 123/456

Table 9-6: Editing Date Fields

Output if Field Value is Output if Field Value
(

Edit String June 4, 1980 is November 27, 1978

DD-MMM-YY #4-Jun-80 27-Nov-78

MMMBDDBY(4) Jun##4#1980 Nov#27#1978

M(9)BDDBY(4) June##4#1980 November#27#1978

NN/DD/YY #6/04/80 11/27 /78

W(9) Wednesday Monday

YYYY/JJJ 1980/156 1978/331

DDBMMMBYY /WWW #4#Jun#80/Wed 27#Nov#78/Mon

DD.NN.YY #4.06.80 27.11.78

9-22 Defining Records

9.5 Including Validation Requirements

You can specify a VALID IF clause to make sure a value is correct before it is
stored in a record field. Example 9-1 includes VALID IF clauses for the fields
SEX and SOCIAL SECURITY to limit the values these fields can contain.
Because these fields are text fields, the acceptable values are enclosed in quota­
tion marks. Values for numeric fields would not be enclosed in quotation marks.

You can specify a VALID IF clause only for an elementary field.

9.6 Initializing Field Values

DATATRIEVE automatically initializes a text field to spaces and a numeric
field to zero if you do not assign it a value when storing a record. If you want a
field initialized to any other value, use the DEFAULT VALUE clause to specify
your preference. Example 9-1 does not contain this clause.

One way to use DEFAULT VALUE is with date fields. If the field should reflect
the date a record is stored, you can specify the value expression "TODAY" as
its default value:

03 DATE-IN USAGE DATE DEFAULT "TODAY".

As you can see from the example, the word VALUE is an optional keyword.

) 9. 7 Specifying Values to Be Ignored in Statistical Computations

You can define a MISSING VALUE clause to mark that no value is stored in a
field. DATATRIEVE ignores fields containing the missing value marker when
computing averages, standard deviations, and minimum and maximum values.

Numeric fields are automatically initialized to zero if no value is stored in them.
It is fairly common for records to be stored in incomplete form. If a field storing
a salary contains zero, for example, it usually means that the salary data has
not been stored, not that the employee is working solely for fun. If you are aver­
aging the salaries of all current employees in a given job category, you do not
want records with these "empty" salary fields to affect your results. You can
include the MISSING VALUE clause in the field definition to make sure that
salaries equal to zero are ignored:

05 SALARY-AMOUNT PIC 9(6)V99
EDIT-STRING IS$$$$,$$$.$$
MISSING VALUE IS 0.

Do not use the DEFAULT VALUE clause along with the MISSING VALUE
clause unless they specify the same value. If they specify different values,
DATATRIEVE initializes an empty field to the default value and includes that
value in statistical computations.

Defining Records 9-23

9.8 Ending Field and Record Definitions

You must end each field definition with a period. Be careful, however, not to
put a period after a clause that is not the last clause in the field definition:

DTR> DEFINE RECORD TEST USING
DFN} 01 TOP_GROUP.
DFN} 05 FIRST_FIELD PIC 9
DFN} 05 SECOND_FIELD PIC X.
DEFINE RECORD TEST USING
01 TOP_GROUP .
05 FIRST_FIELD PIC 9
05 SECOND-FIELD PIC X.

Expected field option or period, encountered 11 05 11
•

DTR} ! A period did not terminate the definition of FIRST_FIELD.
DTR> !
DTR> DEFINE RECORD TEST USING
DFN> 01 TOP_GROUP.
DFN} 05 FIRST-FIELD PIC 9.
DFN> QUERY-NAME IS FF.
DEFINE RECORD TEST USING
01 TOP_GROUP .
05 FIRST_FIELD PIC 9 .
QUERY-NAME IS FF.

Expected number, encountered "OIJER'< _NAME".
DTR} ! Period should not follow PIC clause of FIRST_FIELD.
DTR>

DATATRIEVE also insists that you end a record definition with a semicolon (;).
It will keep displaying the DFN > prompt until you enter one.

9.9 Editing Record Definitions

When you edit a record definition, you see the keyword REDEFINE where
DEFINE used to be. The REDEFINE RECORD command follows the same rules
as DEFINE RECORD. REDEFINE RECORD, however, automatically creates a
new version of an existing record definition.

The DEFINE RECORD command works only when there is no record definition
with the specified name in the dictionary directory.

If you want to modify a record definition that is being used with an existing
data file, read the section on restructuring domains in Chapter 11.

9-24 Defining Records

)

Defining Domains 1 0

A domain is the essential part of DATATRIEVE. It:

• Relates a record definition to a data file

• Gives a name to that relationship (domain name)

After you create the record and domain definitions and define the data file, you
use the domain name to access the file.

------------- Note ------------­

You can also create domain definitions that point to data stored on
other computer systems and in VAX DBMS and relational databases.
Refer to the VAX DATATRIEVE User's Guide for information on
using DATATRIEVE with distributed data and with VAX DBMS and
relational databases.

Example 10-1 illustrates a sample session in which user Bell creates a domain
definition. The definition relates the sample record definition from Chapter 8
(EMPLOYEES_REC) with the file EMPLOYEES.DAT. The domain name
EMPLOYEES identifies this relationship. Comment lines starting with an excla­
mation point (!) tell you what user Bell is doing.

10-1

Example 10-1: Defining a Sample Domain

DTR> ! Set dictionary location to the directory that will store
DTR} ! the domain definition.
DTR>
DTR> SET DICTIONARY CDD$TOP.PERSONNEL
DTR} I

DTR> ! Define the domain.
DTR>
DTR> DEFINE DOMAIN EMPLOYEES USING
DFN> EMPLOYEES-REC ON EMPLOYEES .DAT;
DTR>
DTR} ! Display the listing of domains in the directory PERSONNEL .
DTR}
DTR} SHOW DOMAINS
D,)mains ,

EMPLO'r'EES; 1

DTR> ! Display the domain definition.
DTR> !
DTR> SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES-REC ON EMPLOYEES.DAT;

DTR} ! Decide to make the file specification more complete.
DTR} I

DTR> EDIT EMPLOYEES

DTR} SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES-REC ON DBA2 =CBELL1EMPLOYEES.DAT;

DTR>

As you can see from the example, you use the DEFINE DOMAIN command to
begin a domain definition. The keyword USING is optional. You must end a
domain definition with a semicolon (;). The next three sections provide rules and
suggestions for naming the domain and specifying the record and file.

10.1 Naming the Domain

The name you choose for a domain must follow the rules that apply to any
given name in the CDD. The domain name:

• Must begin with a letter

• Must end with a letter or digit

• Can contain 1 to 31 characters

• Can contain only letters, digits, dollar signs ($), underscores (_), and
hyphens(-)

10-2 Defining Domains

When you enter a name, DATATRIEVE interprets lowercase letters as upper­
case and a hyphen as an underscore. You see names displayed using this
format.

If you prefer, you can specify a full dictionary path name for a domain name.
This lets you store a domain definition in a directory other than the one at
which you are currently located. In Example 10-1, if user Bell had not first set
his dictionary location to the PERSONNEL directory, he could have entered
CDD$TOP.PERSONNEL.EMPLOYEES in place of EMPLOYEES to place the
domain in that dictionary directory. Because DATATRIEVE stored the
EMPLOYEES definition in PERSONNEL, you know Bell must have at least P
(PASS_ THRU) and E (EXTEND) privileges in the ACL associated with that
directory.

A full path name is part of the definition, however, and has to be edited if you
or someone else moves the definition later on. Most people define a domain
using only the given name.

10.2 Specifying the Record Name

The rules that apply to the record name are the same as those for the domain
name. If the record definition is (or will be) in a dictionary directory other than
the one where you are storing the domain definition, you must specify a full
path name for the record definition. Otherwise, you can specify the given name.

If you are specifying a full path name for a record definition in a directory that
is not in your private branch of the CDD, make sure you have P (PASS_ THRU)
and S (SEE) access privileges to that record definition. You do not need these
privileges to put the path name in your definition, but you need them in order
to ready the domain.

10.3 Specifying the Data File

The name of the data file is a VMS file specification. File names are not
governed by the CDD rules for naming things; they follow VMS rules. Chapter
2 contains the rules that apply to file specifications. You should review this
information if you have limited experience using the VMS operating system.

10.3.1 How Much of the File Specification to Include

The shortest form you can use for a file specification in a domain definition is a
file name (EMPLOYEES, for example). When you use this short form,
DATATRIEVE appends the file type .DAT to the name. When you ready a
domain whose definition includes only a file name (or only a file name and
type), DATATRIEVE expects to find the data file in your default VMS directory.

Defining Domains 10-3

You can include a full file specification ih place of the short fortn. If you do this,
you can ready the domain without first setting your VMS directory default to
the directory containing the file. In Example 10-1, user Bell changed the file
specification to DBA2:[BELL]EMPLOYEES.DAT when he edited the domain
definition.

Note ------------­

If your installation uses more than one computer system, a file specifi­
cation can start with a node name. If you want to use a data file on
another system, you might try to append a node name along with user
name and password criteria to your file specification. Do not do this.
DATATRIEVE works very slowly when you access distributed data this
way. The chapter on accessing remote data in the VAX DAT AT RIEVE
User's Guide explains better ways to access data on other computer
systems.

10.3.2 Avoiding Problems When Naming Files

If you break one of the VMS rules governing file specifications, you can still
store the domain definition. When you try to create the file with the DEFINE
FILE command, however, you will get an error message from RMS telling you (
about the problem.

If you are creating the domain in order to use a data file that already exists and
the file specification is incorrect, you will get an error message when you try to
ready the domain. If the file is in a directory other than your own, you will
need the appropriate VMS access privileges to both the directory where the file
is located and to the file itself before you can ready the domain. Chapter 2 pro-
vides more information on directory and file protection.

10-4 Defining Domains

Defining Data Files 11

Once you store domain and record definitions in a dictionary directory, you can
create a file in a VMS directory to contain your data. You omit this step, of
course, if you created domain and record definitions to access a data file that
already exists.

You use the DEFINE FILE command to create a data file. Example 11-1 first
displays domain and record definitions (EMPLOYEES and EMPLOYEES_REC)
and then creates the data file (EMPLOYEES.DAT).

Example 11-1: Defining a Data File

DTR> SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES-REC ON DBA2=CBELLlEMPLOYEES.DAT;

DTR) SHOW EMPLOYEES-REC
RECORD EMPLOYEES-REC USING
01 EMPLOYEES-REC.

05 EMPL0 1r1ELID

05 EMPLOYEE-NAME
10 LASLNAME

10 FIRSLNAME

10 MIDDLE-INITIAL

05 EMPLOYEE-ADDRESS
10 ADDRESS-DATA

PIC X(S)
QUERY-NAME IS ID
QUER'/ _HEADER IS II ID".
QUERY_NAME IS NAME.
PIC X(14)
QUERY-NAME IS L_NAME
QUER'LHEADER IS "LAST NAME".
PIC XC:10)
QUERY_NAME IS F_NAME
QUERY_HEADER IS "FIRST NAME".
PIC X
QUERY_NAME IS !NIT
QIJER'LHEADER IS 11 ! 11

•

QUERY_NAME IS ADDRESS.
PIC XC:20).

DTR> DEFINE FILE FOR EMPLOYEES KEY= ID (NO DUP)
DTR>

11-1

Unlike the other DEFINE commands, DEFINE FILE is not creating a defini­
tion. It does not, therefore, specify the name of the file, but points to the domain
definition that does (EMPLOYEES). It also does not require the semicolon or
END_ clause that must terminate other DEFINE commands. The keyword
FOR, by the way, is optional.

Example 11-1 creates an indexed file because it specifies a field in the record
(ID) as a key. If the command were simply DEFINE FILE FOR EMPLOYEES, it
would have created a sequential file. The differences between indexed and
sequential files are discussed in the next two sections.

11.1 Defining Indexed Files

In almost all cases, it is better to define an indexed file because:

• You can delete records only from an indexed file.

• Only indexed files have keys.

Record access is faster when you can specify a key field to help DATATRIEVE
find a record. When DAT ATRIEVE cannot use a key field, it has to perform
an exhaustive search through the file for the record or records you want.

You can define more than one key for an indexed file. If you do, the first key
you specify is the primary key and the others are alternate keys.

You cannot change the value of a primary key field. For each alternate key,
however, you can choose whether or not users can modify the value in the key
field after a record is stored (CHANGE or NO CHANGE). CHANGE is a default
key characteristic for alternate keys.

For both primary and alternate keys, you can choose whether or not users can
store more than one record with the same value in the key field (DUP or NO
DUP). NO DUP is a default key characteristic for primary keys and DUP is the
default for alternate keys.

The following command explicitly specifies all key characteristics so you can see
command format and punctuation. The characteristics specified are the
DATATRIEVE defaults for primary and alternate keys:

DEFINE FILE FOR EMPLOYEES KEY= ID (NO CHANGE, NO DUP),
KEY= L_NAME (CHANGE, DUP)

11-2 Defining Data Files

C

)

The following command specifies only the key characteristic needed to change a
default:

DEFINE FILE FOR EMPLOYEES KEY L_NAME (DUP),
KE'r' = STATE

L_NAME, a primary key, cannot be changed. State, by default, can be both
changed and duplicated.

11 . 1 . 1 Selecting the Primary Key

The field you select for a primary key should be one whose values do not
change. DATATRIEVE does not let users modify values in primary key fields.
That is why primary key fields are so often a code of some kind: ID number,
invoice number, customer code, product code, and so forth. The codes can remain
constant even if someone decides to change the name or other characteristics
associated with the record. If you must change a primary key value, you have to
erase the whole record and store it again with the changed key value.

The primary key for a file should be able to uniquely identify each record. This
means you should avoid the DUP characteristic for the primary key field even
though DAT ATRIEVE lets you use it. There are two reasons for this guideline:

• If at any time in the future you want to modify the records in the file based
on information contained in another data file (transaction file processing), you
will probably need a record-to-record match. This is impossible to get if you
cannot specify a field or group of fields that is common to both files and that
identifies only one record that is in the file you are changing.

• Retrieving data using a key field that contains many duplicate values can
slow DAT ATRIEVE response time. The primary key is the one you will be
using most often to associate records stored in more than one file. You will
want this operation to proceed as quickly as possible.

If your application is limited to one small data file, go ahead and choose any
field you want for a primary key and allow duplicate values if that is necessary.

Records are stored in ascending order according to the value of the primary key.
The DEFINE FILE command in Example 11-1 specifies that records are stored
so that the record with the lowest value for EMPLOYEE_ID is positioned first
in the file and the record with the highest value for EMPLOYEE_ID is last in
the file.

Defining Data Files 11-3

The order of the values in the primary key field is the default sort order for
the data file. This is the order in which records are displayed when you simply
type PRINT followed by the domain name. Chapters 14 and 15 discuss how you
can change the sort order of records for a particular operation.

11.1.2 Selecting Alternate Keys

If you expect to frequently ask DA TATRIEVE to search for records based on
values in fields other than the primary key field, you can define those fields as
alternate keys. A name associated with a record (LAST _NAME from the
EMPLOYEES domain, for example) is one field often selected as an alternate
key.

Do not specify as a key any field that may contain many duplicate values. A
field such as SEX is an example of a poor key choice. When DATATRIEVE has
to process many duplicate values, a key-based search can sometimes take longer
than a sequential one.

Confine your alternate key choices to fields you expect to use frequently when
retrieving records. From the file maintenance point of view, the fewer keys you
define, the better.

11.1.3 Selecting Group Field Keys

You might want to select a group field key when no single elementary field can
uniquely identify each record in the file.

Suppose that your file stores information about products manufactured by a
number of vendors. For each vendor, there is more than one product and you
cannot be sure that different vendors select differing product codes. If you need
to ensure that one field identifies only one product, you can specify as a primary
key a group field (PRODUCT _ID) that contains both vendor and product codes:

05 PRODUCT _ID.
10 VENDOR-CODE
10 PRODUCT-CODE

PIC X(S).
PIC X(20).

11-4 Defining Data Files

C

)

There are some restrictions when you specify group field keys:

• When you access the file using the key name, DATATRIEVE uses only the
first elementary field in the key for indexed access.

Using the PRODUCT _ID example, DATATRIEVE directly finds the records
with matching VENDOR_CODE, and then sequentially searches those
records to find the matching PRODUCT _CODE. The partial sequential
search through records means that access by group field key proceeds more
slowly than access by elementary field key. The performance difference would
probably bother only users who are trying to pull together large numbers of
records.

• The first elementary field in the group must be alphanumeric, or
DATATRIEVE does not do key-based access at all.

If VENDOR_CODE were defined as PIC 9(5), for example, DATATRIEVE
would sort through records one by one to find the records you ask for. This
performance lag could become very serious.

• You cannot specify a list field as a key.

There are three domains in the sample personnel system used in this book
(SALARY _HISTORY, JOB_HISTORY, and DEGREES) that have no key that
uniquely identifies each record. For any value of EMPLOYEE_ID, there can be
more than one record in the file. The requirements for the personnel system
specify that if records in these domains need to be updated, the updating opera­
tions should be done interactively. In the vast majority of cases, the main­
tenance operations involve adding new records to the domain rather than
changing or deleting existing ones. In addition, these domains are generally
accessed to pull together all the information for an employee or look at the cur­
rent job and salary for one employee. Given these requirements, the keys per­
form a relational function and duplicate primary keys are not likely to cause
problems.

11.2 Defining Sequential Files

Records in a sequential file are positioned in the order they are written to the
file. If you type PRINT followed by the domain name, the first record displayed
is the first one stored in the file. The last record displayed is the last one stored.

Sequential files have the following advantages:

• They are the only files you can store on magnetic tape.

• Report-writing procedures sometimes work more quickly when DATATRIEVE
is processing records stored in a sequential file.

Defining Data Files 11-5

The disadvantages of creating sequential files outweigh the advantages:

• You cannot delete records from sequential files. You can approximate a delete
operation for a sequential file by modifying all elementary field values to con­
tain nothing but spaces or zeros. The "pseudo-erase" you must use with a
sequential file, however, is time-consuming, wastes storage space and can
show up in displays and reports as a blank line.

• Record update and data retrieval operations proceed more slowly because
DATATRIEVE must always exhaustively search the file for each record you
need.

11.3 Planning for File Maintenance

The term file maintenance in this section refers to the methods you employ to
optimize file storage requirements and to improve DATATRIEVE response time.
The discussion provides an overview of the topic and is not a detailed explana­
tion. For more information, refer to the chapter on improving DAT ATRIEVE
performance in the VAX DATATRIEVE User's Guide and to the documentation
on record management services.

11.3.1 Using Other Options in the DEFINE FILE Command

You can determine the storage space assigned to your file by specifying:

• ALLOCATION = n to specify the number of disk blocks initially allocated for
the file. If you understand how the size of your file relates to disk block
requirements, you can use it to ensure that enough space is reserved on the
disk to fit in all the records you plan to store. If you omit this clause,
DATATRIEVE initially allocates O blocks for the file and adds blocks as
records are stored.

• SUPERSEDE to eliminate a previous version of a file when you create a new
one. For this option to take effect, you must include the number of the version
you are superseding in the file specification contained in the domain defini­
tion. If you do not include the keyword SUPERSEDE or do not specify aver­
sion number, DAT ATRIEVE assigns the new file the next higher version
number.

• MAX to specify that records containing variable length list fields occupy
enough space in a sequential file to accommodate the maximum number of
occurrences defined for the list field. This wastes storage space, but lets you
add more list items to a record after storing it in a sequential file.

11-6 Defining Data Files

C

Here is an example of a DEFINE FILE command that contains all but the MAX
option from this section. (The domain definition specifies the file
DBA2:[BELL]FAMILY.DAT;l.) Note that you specify a KEY clause last:

DTR) DEFINE FILE FOR FAMILIES ALLOCATION= 30,
SUPERSEDE,
KEY= FATHER (DIJP)

11.3.2 Using RMS Utilities to Load and Maintain Files

If you are creating large data files or indexed files that contain many keys, you
should use Record Management Services (RMS) utilities to create and load your
files and to periodically maintain them. Doing this can improve DATATRIEVE
response time. Using RMS utilities, you can:

• Consolidate disk storage of data and indexes

It requires fewer read operations to a disk when the data and indexes are not
scattered among many sections of the disk. (Data and indexes can get scat­
tered as you update and add to the file.)

• Adjust parameters for input-output operations so that they best accommodate
the size of the record

It is often better for input-output operations to transfer more than one record
at a time. One record at a time is the DATATRIEVE default.

11.4 Restructuring a Domain

If you have not stored data in a file or do not want to keep data already stored,
you can simply enter a new DEFINE FILE command to:

• Change file organization, storage options, or keys

• Create a file that incorporates changes made to a record definition

If you want to save records you have stored in a file, the commands and state­
ments you enter depend on the changes you want to make.

11.4.1 Changing Only File Organization, Storage Options, and Keys

Example 11-2 illustrates the procedure you can follow when you want to make
the following changes but do not want to lose data you have already stored:

• Change file organization from sequential to indexed or the reverse

• Add, delete, or change keys for an indexed file

Defining Data Files 11-7

• Reserve more storage space for future file expansion (ALLOCATION clause)

• Reserve maximum storage space for each v&ri&ble length record (MAX)

Example 11-2 changes EMPLOYEES.DAT from an indexed file to a sequential
one. Comment lines begin with an exclamation point (!) and explain the next
input line.

Example 11-2: Restructuring a Domain to Change File Organization

DTR>
DTR>
DTR>
DTR>
DTR>

Set up READ access to the original domain. Use an alias
to identify the relationship between the record defin i tion and
the old file. COLD is the alias in this example but you can
select another if you prefer.)

DTR> READY EMPLOYEES AS OLD
DTR>
DTR> ! Create an empty file with the DEFINE FILE command of your
DTR> l choice ,
DTR> !
DTR> DEFINE FILE FOR EMPLOYEES
DTR>
DTR)
DTR)
DTR>
DTR>
DTR>

Set up WRITE access to your restructured domain. Use an alias
to identify the relationship between the record definition and
the new file. (NEW is the alias in this example but you can
select another if you prefer.)

DTR> READY EMPLOYEES AS NEW WRITE
DTR> !
DTR> ! Store records in the new file with a Restructure statement.
DTR) !
DTR> NEW = OLD
DTR> !
DTR> ! End access to NEW and OLD.
DTR> !
DTR> FINISH NEW, OLD
DTR>
DTR> You can now ready the domain with its given name and can
DTR> ! access records in the new file.
DTR>

Before you start the restructure operation to create a new data file, find out the
version number of the data file you are using for the domain. If you make a
mistake or if the system fails in the middle of the restructure operation, you can
delete all files with version numbers higher than this one and start the restruc­
ture operation again. The file the domain uses depends on how it is specified in
the domain definition:

• If no version number is included on the file specification in the domain defini­
tion (usually it is not), then the domain uses the file of that name with the
highest version number in the directory where it is stored. Exit DATATRIEVE
and find out what this version number is and write it down.

11-8 Defining Data Files

)

• If a version number is included in the file specification in the domain defini­
tion, write down the version number. Restructuring a domain that contains a
file specification with a version number involves a step not included in
Example 11-2. After you ready OLD for READ access but before you define a
new file, edit the domain definition to remove the version number from the
file specification. Then continue with the DEFINE FILE command.

11.4.2 Changing the Fields Defined in the Record Definition

You can make some record definition changes without performing a restructure
operation. You can:

• Add, change, or remove QUERY _HEADER and EDIT _STRING clauses

• Change field names or add, change, or remove QUERY _NAME clauses

If you have any procedures stored that use the old field or query names,
remember to change these names in the procedures.

• Add DEFAULT or MISSING VALUE clauses

It is your responsibility, however, to make sure the value you specify agrees
with any default values already stored in the file.

• Add group fields

You have to be careful when adding group fields if there are REDEFINES
fields in the record. In this case, before you add group fields, you might want
to review the rules that apply to the REDEFINES clause. Refer to the
REDEFINES clause in VAX DATATRIEVE Reference Manual for more
information.

You must restructure a domain if you want to do any of the following:

• Add new fields to the record.

• Change the order of the fields in the record.

• Increase the size of a field.

• Eliminate some fields from the record.

Defining Data Files 11-9

• Decrease the size of a field or change its data type.

If you decrease the size of a field or change the type of data it stores, the
existing values in records for that field can be truncated or stored incorrectly.
This is just a warning. You can still decrease field size if you:

- Plan to store new values for that field in all the records

Intend to decrease the size a text field (a field with Xs or A's in the PIC
clause) that has too many character positions for any values it needs to
store

Example 11-3 illustrates the steps you follow to change the record definition
describing data already stored. The comment lines start with an exclamation
point (!) and explain the input line that follows. To put the example in context,
assume you want to change the size of the ZIP field in EMPLOYEES_REC
from 5 to 9 characters.

Example 11-3: Restructuring a Domain to Change the Record Definition

DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR)
DTR)
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR)

11-10

If NO EDIT-BACKUP is in effect during your DATATRIEVE
session (SHOW EDIT will tell you if it is), you should
enter the following command to ensure that the old version
of your record definition is not deleted. If something goes
wrong during the restructure operation, you will need to
use the old version again.

SET EDIT-BACKUP

Set up READ access to the original domain. Use an alias
to identify the relationship between the record definition and
the old file. (OLD is the alias in this example but you can
select another if you prefer.)

READY EMPLOYEES AS OLD

Edit the record definition. Do not change any field names.
If you do, DATATRIEVE will not be able to store the field
values. You can edit the record definition to change field
names after the restructure operation is completed.

EDIT EMPLOYEES-REC

Defining Data Files

DTR>
DTR>
DTR> Create an empty file with the DEFINE FILE command of your
DTR> choice.
DTR>
DTR> DEFINE FILE FOR EMPLOYEES KEY= EMPLOYEE-ID
DTR>
DTR> Set up WRITE access to the restructured domain. Use an alias
DTR) to identify the relationship between the record definition and
DTR> the new file. (NEW is the alias in this example but you can
DTR> select another if you prefer.)
DTR>
DTR> READY EMPLOYEES AS NEW WRITE
DTR> !
DTR> ! Store records in the new file with a Restructure statement .
DTR>
DTR> NEW= OLD
DTR> !
DTR> ! End access to OLD and NEW .
DTR) I

DTR> FINISH OLD, NEW
DTR>
DTR> ! You can now ready the domain with its given name and
DTR> ! DATATRIEVE accesses records in the new file.
DTR>

Before you start the restructure operation to change a record definition, find out
the version numbers of the data file and record definition you are using for the
domain. If you make a mistake or if the system fails in the middle of the res­
tructure operation, you can delete all files and record definitions with version
numbers higher than the ones with which you started. You can then start the
restructure operation again.

The data file the domain uses depends on how it is specified in the domain
definition:

• If no version number is included in the file specification in the domain defini­
tion (usually it is not), then the domain uses the file of that name with the
highest version number in the VMS directory where it is stored. Exit
DATATRIEVE and find out what this version number is and write it down.

• If a version number is included in the file specification in the domain defini­
tion, write down that version number. Restructuring a domain that contains a
file specification with a version number involves a step not included in
Example 11-3. After you ready OLD for READ access but before you define a
new file, edit the domain definition to remove the version number from the
file specification. Then continue by editing the record definition and defining
a new file .

Defining Data Files 11-11

The record definition your domain uses depends on how it is specified in the
domain definition:

• If no version number is included on the record specified in the domain defini­
tion (usually it is not), then your domain uses the record definition of that
name with the highest version number in the CDD directory where it is
stored. Enter a SHOW RECORDS command to see how many versions of the
record are in the directory. Write down the highest version number.

• If a version number is appended to the record in the domain definition, write
down that version number. Restructuring a domain that specifies a record
definition with a version number involves a step not included in Example
11-3. After you ready OLD for READ access but before you define a new file,
edit the domain definition to remove the version number from the record.
Then continue with the EDIT record-name command.

11.4.3 Restructuring a Domain to Add Its Records to Another Domain

Sometimes you might need to merge records from two domains that store the
same data using different field names. In this case, you cannot simply ready the
two domains and use a Restructure statement (domain-namel = domain-name2)
to store the records from one data file into the other. You must use the FOR
statement and a STORE statement that explicitly stores each elementary field.
If the two domains you are merging have the same names, you have to use an
alias clause when you ready them.

In the following example, the domains have different names, so the alias clause
is not necessary. All the records from EMPLOYEES_BOSTON are being stored
into EMPLOYEES_ALL. In the STORE statement, the field names for
EMPLOYEES_ALL are on the left of the equal sign (=)and the field names
for EMPLOYEES_BOSTON are on the right:

DTR> READY EMPLOYEES-BOSTON
DTR) READY EMPLOYEES-ALL SHARED WRITE
DTR) FOR EMPLOYEES_BOSTON
CON> STORE EMPLOYEES-ALL USING
CON) BEGIN
CON> EMPLOYEE-ID= EMP_ID
CON> LAST-NAME= NAME-LAST
CON) FIRST_NAME = NAME_FIRST
CON> MIDDLE_INTIAL = !NIT

CON> END

This operation uses statements that have not been discussed so far in this book.
You can refer to Chapter 16 for more information about the STORE statement
and to Chapter 17 for information about the FOR and BEGIN-END statements.

11-12 Defining Data Files

)

Defining Tables 12

This chapter tells you how to create and use dictionary tables anq. domain tables.

Both types of DATATRIEVE tables associate pairs of values. A dictionary table
might pair zip codes with corresponding towns and states, for example. A domain
table might associate employee identification numbers with employee names.

To save storage space, store the shorter of the two values in several domains in
your database and store the longer value only in a dictionary table or in one
domain that is the base for a qomain table. You can access the longer values
through the table with simple clauses that are easy to remember.

You can also validate field values by using a table. This table function is very
useful when you need to store the same field in more than one domain. Using a
table, you can make sure that the employee identification number for Ann
Ducane, for example, is the same in all the places it is stored.

You create both types of DATA TRIEVE tables with the DEFINE TABLE com­
mand. The syntax for the command differs, depending on the kind of table you
want to create. The name you choose for a table definition cannot duplicate the
name of any other object in the CDD directory where it is stored. Table names:

• Must begin with a letter

• Can consist only of letters, digits, hyphens, and underscores

• Must not duplicate a DATATRIEVE keyword

• Must not contain blanks

• Must be from 1- to 31- characters long

• Must end with a letter or digit

12-1

12.1 Creating Dictionary Tables

DATATRIEVE responds faster when you use a dictionary table than when you
use a domain table. That is because the table definition itself specifies all the
value pairs you want to access.

Example 12-1 creates the dictionary table DEPARTMENTS_ TABLE. This table
pairs department code values with corresponding department names. The com­
ment lines in the example start with an exclamation point (!) and give you
information about the next requirement or option in the command.

Example 12-1: Defining a Dictionary Table

DTR} ! Start your definition with the keywords DEFINE TABLE,
DTR> ! followed by the name you want for the table.
DTR> !
DTR> DEFINE TABLE DEPARTMENTS-TABLE
DFN>
DFN> ! You can include the optional QUERY-HEADER clause to specify
DFN> ! a column header for table values when you display them.
DFN> !
DFN> QUER'LHEADER IS "DEPARTMENT";"NAME"
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>

You should include the optional EDIT_STRING clause to specify
how you want table values displayed. If you omit this clause
and do not include an edit string in a PRINT statement,
DATATRIEVE uses X(80) to display the values.

DFN> EDIT_STRING IS X(20)
DFN>
DFN>
DFN>
DFN>
DFN>
DFN}
DFN>

Now enter the value pairs. The colon(:) is required to
separate values in the pair. Any spaces before and after
the colon are optional. You need the quotation marks to
preserve lowercase values or to enter values that are more
than one word (General Sales, for example).

DFN> "ADMN" "Administration"
DFN> "ENG"
DFN> "MKTG"
DFN> "MNFG"
DFN> "PERS"
DFN> "SALE"
DFN>

"Engineering"
"Marketing"
"Manufacturing"
"Personnel"
"General Sales"

DFN> The ELSE clause is
DFN> substitutes it for
DFN> find in the table.
DFN> error message when
DFN} I

DFN> ELSE "Invalid Dept."
DFN>

optional. If you include it, DATATRIEVE
any values it finds in a domain and cannot
If you omit it, DATATRIEVE displays an
it cannot find the value in the table.

DFN> ! You must end your definition with the keyword END-TABLE.
DFN> !
DFN> END_TABLE
DTR>

12-2 Defining Tables

As you define a dictionary table, DATATRIEVE checks for syntax errors. For
example, if you enter a semicolon (;) in place of the required colon (:),
DATATRIEVE prints an error message on your terminal and aborts the
DEFINE TABLE command. To correct the error, type EDIT and press the
RETURN key. (You cannot follow EDIT with the name of the table until your
definition is stored.) Remember 'that while you are using the editor,
DAT A TRIEVE does not check for syntax errors. If you get an error message
when you exit the editor, you can immediately type EDIT and press the
RETURN key to try again.

Use the SHOW command to display the names of tables stored at your current
dictionary location and to display a table definition:

DTR) SHOW TABLES
Tables :

DEPARTMENTS_TABLE;1

DTR> SHOW DEPARTMENTS_TABLE
TABLE DEPARTMENTS-TABLE
QUER'I _HEADER rs "DEPARTMENT" ;"NAME"
EDIT-STRING rs X(20)
"ADMN" "Administration"
"ENG" "Engineering"
11 MKTG 11 "Marketing"
"MNFG" "Manufacturing"
"PERS" "Personnel"
"SALE" "General Sales"
ELSE "Invalid Dept."
END-TABLE

DTR) SHOW LOCATION-TABLE
TABLE LOCATION-TABLE
QUERY-HEADER "TOWN AND STATE"
EDIT_STRING X(25)
11 02174 11 "Arlington, MA"
11 03051 11 "Hudson, NH"
11 03055 11 "Milford, NH"
11 03060 11 "Nashua, NH"
11 03061 11 "Nashua, NH"
11 07724 11 "Eatontown, NJ"
ELSE "Fix table or record!"
END-TABLE
DTR>

12.2 Creating Domain Tables

LOCATION_TABLE;3

A domain table definition does not contain all the value pairs you want to
associate. It contains a pair of field names. The values for the fields are stored
in the data files associated with domains. Usually several domains contain
values for the shorter field and only one domain contains values for the longer
field. In the sample personnel system used in this book, for example, several
domains contain EMPLOYEE_ID values but only the EMPLOYEES domain
contains EMPLOYEE NAME values.

Defining Tables 12-3

Example 12-2 defines the domain table WHO_IS_IT that associates
EMPLOYEE ID with EMPLOYEE NAME. The comment lines in the exam­
ple begin with an exclamation point (!) and provide information about the input
that follows.

Example 12-2: Defining a Domain Table

DTR>
DTR>
DTR)
DTR>

Start your definition with DEFINE TABLE, followed by the
name of your table. Then enter FROM, followed by the name
of the domain containing both fields you want to relate.

DTR> DEFINE TABLE WHO-IS-IT FROM EMPLOYEES
DFN)
DFN>
DFN>
DFN>
DFN>
DFN>
DFN> !

You can include the optional QUERY-HEADER clause to specify
a column header for table values when you display them. If
the column header uses fewer character positions than the
associated table value, you can include spaces to position
the header where you want it.

DFN> QUERY-HEADER IS"
DFN>

EMPLOYEE NAME "

DFN>
DFN)
DFN)
DFN>
DFN>

You should include the optional EDIT-STRING clause to specify
how you want table values displayed. If you omit this clause
and do not include an edit string in a PRINT statement,
DATATRIEVE uses X(80) to display the values.

DFN> DIT-STRING IS X(36)
DFN)
DFN>
DFN>
DFN>
DFN> !

Now enter the ~ield names. The colon(:) is required to
separate them . Any spaces before and after the colon are
optional. The keyword USING is also optional.

DFN> USING EMPLOYEE-ID : EMPLOYEE-NAME
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN> !

The ELSE clause is optional. If you include it, DATATRIEVE
substitutes it for any values it finds in one domain and cannot
find in th~ other (table) domain. If you omit it, DATAT~IEVE
displays an error message when it cannot find tne value in the
domain on which the table is based. Use quotation ■arks to pre­
serve lowercase letters or if ihe ELSE value contains spaces.

DFN> ELSE "ID not in EMPLOYEES. '"'
DFN) !
DFN> ! You must end your definition with the keyword END-TABLE.
DFN>
DFN> END_TABLE
DTR)

12.3 Using DATATRIEVE Tables

You can reference tables in VALID IF clauses in record definitions and in any
DATATRIEVE statement whose format allows it.

12-4 Defining Tables

12.3.1 Access Privileges Needed to Use Tables

Table definitions, like all CDD objects created by DATATRIEVE, have
associated ACLs that determine who can use them. The following information is
important if you are creating tables to be used by people other than yourself or
if you modify the ACLs for objects you create in your private branch of the CDD.

To use a dictionary table, users must have:

• P (PASS_ THRU) privilege to the directory containing the table definition

• P (PASS_ THRU), S (SEE), and E (EXECUTE/EXTEND) privileges to the
table definition itself

To use a domain table, users must have:

• P (PASS_ THRU) privilege to the directory containing the table definition

• P (PASS_ THRU), S (SEE), and E (EXECUTE/EXTEND) privileges to the
table definition itself

• P (PASS_ THRU), S (SEE), and E (EXECUTE/EXTEND) privileges to the
domain and record definitions on which the table is based

• P (PASS_ THRU) privilege to the directory or directories containing the
domain and record definitions on which the table is based

12.3.2 Accessing Values in Tables

You use the DATATRIEVE keywords IN, NOT IN, and VIA to access table
values. The following example illustrates how these keywords work:

DTR> READY JOB-HISTORY
DTR) I

DTR) ! Create a collection of all the records in JOB-HISTORY that
DTR> ! have department codes in DEPARTMENTS-TABLE.
DTR>
DTR> FIND JOB-HISTORY WITH DEPARTMENT-CODE IN DEPARTMENTS-TABLE
[194 records found]
DTR>
DTR> ! Print values for two fields in the collection's records
DTR> ! and append a related field to each record by accessing the
DTR> ! table .
DTR>
DTR> PRINT ALL EMPLOYEE-ID, DEPARTMENT-CODE, DEPARTMENT-CODE VIA
CON> DEPARTMENTS-TABLE

(continued on next page)

Defining Tables 12-5

EMPLOYEE DEPARTMENT DEPARTMENT
NAME ID CODE

00168
00169
00171
00172
00173
00176
00182
00183
00184
00184
00188
00190
00194

"C

ENG
MNFG
ENG
SALE
MNFG
MNFG
PERS
PERS
MKTG
PERS
ADMN
ADMN
ENG

Engineering
Manufacturing
Engineering
General Sales
Manufacturing
Manufacturing
Personnel
Personnel
Marketing
Personnel
Administration
Administration
I CTRL/C l

Execution terminated by operator.

DTR> ! Now form a collection of all records in JOB-HISTORY whose
DTR) ! department codes are not in the table.
DTR) !
DTR> FIND ALL JOB-HISTORY WITH DEPARTMENT_CODE NOT IN
CON) DEPARTMENTS-TABLE
[705 records found]
DTR)
DTR) Print values for two fields in the collection 's records
DTR) and append a related field t o each record by accessing the
DTR> table. Note that the value in the ELSE clause of the table
DTR) definition appears.
DTR)
DTR) PRINT ALL EMPLOYEE-ID, DEPARTMENT_CODE, DEPARTMENT-CODE VIA
CON> DEPARTMENTS-TABLE

EMPLOYEE DEPARTMENT DEPARTMENT
NAME ID CODE

00164
00164
00165
00165
00165
00165
00166
00166 c

MBMN Invalid Dept.
MCBM Invalid Dept .
ELGS Invalid Dept .
PHRN Invalid Dept .
MBMF Invalid Dept.
MTEL Invalid Dept .
PRMG Invalid Dept .
MB ICTRUC l

Execution terminated by operator .

DTR>
DTR> Assume these values are valid department codes that you
DTR) need to add to the table. By reducing the current collection
DTR> to unique department code values and then printing the
DTR> reduced collection , you get a list of what needs to be
DTR> added to DEPARTMENTS_TABLE.
DTR>
DTR> REDUCE TO DEPARTMENT-CODE
DTR) PRINT ALL

12-6 Defining Tables

)

DEPARTMENT
CODE

ELEL
ELGS
ELMC
MBMF
MBMN
MBMS
MCBM
MCBS
MGVT
MSCI
MSMG
MTEL
PERL
PHRN
PRMG
SEUR
SUNE
SUSA
suso
SUWE

See the next section on how to edit a table definition. A later section explains
how to use the corrected table to prevent users from entering invalid values
when storing or modifying records.

12.3.3 Editing Table Definitions

You edit your table definition by entering EDIT followed by the table name.
Your table definition is copied to an editing buffer where you can make the
changes you want.

When you access a table, it is loaded into your DATATRIEVE workspace where
it remains until you either remove it or exit the session. The SHOW READY
command displays the names of any tables currently in your workspace.

If the table is loaded into your DATATRIEVE workspace at the time you edit
the definition, you must remove the table from your workspace and access it
again before the changes you made can take effect. To remove a table from your
workspace, enter RELEASE followed by the table name.

Defining Tables 12-7

12.3.4 Validating Values with Tables

By referring to a dictionary or domain table in a VALID IF clause in a record
definition, you can validate data entered for a field before it is stored in a record:

DTR> SHOW JOB-HISTORY-REC
RECORD JOB_HISTORY_REC USING
01 JOB-HISTORY-REC.

05 DEPARTMENT-CODE PIC X(4)

DTR>
DTR>
DTR>
DTR>
DTR)

VALID IF DEPARTMENT_CODE IN
DEPARTMENTS-TABLE .

05 EMPLOYEE-ID PIC X(5)
VALID IF EMPLOYEE-ID IN
WHO_IS_IT .

05 JOB_CODE PIC X(4).
05 JOB-START USAGE DATE.
05 JOB_END USAGE DATE.
05 REVIEW-DATE USAGE DATE.
05 SUPERVISOR-ID PIC X(5).

When users store or modify records in the JOB-HISTORY domain,
DATATRIEVE checks a value entered for DEPARTMENT_CODE against
codes in DEPARTMENTS-TABLE and a value entered for EMPLOYEE-ID
against codes in WHO-IS-IT.

DTR> READY JOB-HISTORY WRITE
DTR> STORE JOB-HISTORY
Enter DEPARTMENT_CODE • XXXX
Validation error for field DEPARTMENT-CODE .
Re-enter DEPARTMENT_CODE• SALE
Enter EMPLOYEE-ID • 00000
Validation error for field EMPLOYEE_ID .
Re-enter EMPLOYEE-ID • 00168
Enter JOB_CODE•

DTR>

12.4 Choosing Between Dictionary and Domain Tables

To decide which type of table to use, keep the following guidelines in mind:

• Dictionary tables lend themselves to interactive updates. You add or change
entries to the table directly by editing the table definition. In addition,
DATATRIEVE works faster with dictionary tables than with domain tables.

• Because a domain table does not contain the pairs of values it relates, it is
automatically updated when the associated fields of its domain are changed.
For applications where the values associated by a table change often, a
domain table can be easier to maintain. Any statement that changes or adds
records to the domain that is the basis for the table will also update the table
itself.

12-8 Defining Tables

)

Part IV
Data Retrieval and Maintenance

C

)

Starting and Ending Access to Data 13

This chapter explains data access when you are using domains associated with
VAX RMS (Record Management Services) data files.

Note ------------­

If you are accessing data managed by VAX DBMS or any of the VAX
relational database products, refer to the chapters on those products
in the VAX DATATRIEVE User's Guide. If you are accessing data
stored on remote systems, refer to the chapter in the same manual on
defining and accessing distributed domains. In these cases, there are
READY command options and access default differences that are not
discussed in this book.

You access data with a READY command, which contains the name of the
domain or domains associated with the records you want to see. The SHOW
READY command tells you what domains are currently readied and what
options were selected for their use. You end access to data with a FINISH com­
mand or by exiting your DAT ATRIEVE session.

Example 13-1 shows some sample READY and FINISH commands for a
DATATRIEVE session. For Example 13-1, assume the user needs to store data
for a new employee but first needs to check information stored in the JOBS
domain and JOBS_ TABLE table.

13-1

Example 13-1: Starting and Ending Access to Data

DTR> SHOW DOMAINS
Domains :

COLLEGES;! DEGREES;! EMPLOYEES;!
JOB-HISTORY;! SALARY-HIStORY;l

DTR) READY JOBS
DTR> SHOW FIELDS FOR JOBS
JOBS

JOB
JOB_CODE (Character string, primary key)
MINIMUM-SALARY (Number>
MAXIMUM-SALARY <Number)
WAGE-CLASS <Character string)

JOBS;l

DTR> PRINT JOB-CODE, JOB-CODE VIA JOBS-TABLE, MINIMUM_SALARY,
CON> MAXIMUM-SALARY, WAGE-CLASS OF JOBS WITH JOB-CODE CONTAINING
CON> "GM"

JOB
CODE

JOB
TITLE

MINIMUM
SALARY

MAXIMUM WAGE
SALARY CLASS

APGM Associate Programmer
PRGM Programmer
SPGM Systems Programmer

$15,000.00 $24,000.00
$20,000.00 $35,000.00
$25,000.00 $50,000.00

4
4
4

DTR> !READY "EMPLO'ITTS SHARED WRITE, JOB-HISTORY SHARED WRTTL,
CON) SALARY-HISTORY SHARED WRITE
DTR> .SHOW READY
Ready sources :

SALARY-HISTORY : Domain, RMS indexed, shared write
(CDD$TOP.PERSONNEL.SALARY-HISTORY;1}

JOB_HISTORY : Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.JOB_HISTORY;1}

EMPLOYEES: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.EMPLOYEES;1)

JOBS : Domain, RMS indexed, protected read
<CDD$TOP.PERSONNEL.JOBS;1)

Loaded tables ,
JOBS-TABLE: Dictionary table

(CDD$TOP.PERSONNEL.JOBS-TABLE;2)

DTR> FINISH JOBS
DTR} RELEASE JOBS_TABLE
DTR> SHOW READY
Ready sources:

SALARY-HISTORY: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.SALARY-HISTORY;1}

JOB-HISTORY : Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.JOB-HISTORY;1}

EMPLOYEES : Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.EMPLOYEES;1}

No loaded tables.

13-2 Starting and Ending Access to Data

DTR> STORE EMPLOYEES; STORE JOB-HISTORY; STORE SALARY-HISTORY

DTR> FINISH
DTR > SHOW READ'i'
No ready sources.
No loaded tables.

DTR>

13.1 Readying Domains

When you ready a domain, DATATRIEVE loads the record definition associated
with the domain into your workspace and opens the associated data file. In addi­
tion to the domain name, a READY command can include:

• An alternate name (alias) for the domain while you are using it

• The access options other users have to a domain while you are using it
(PROTECTED, SHARED, or EXCLUSIVE)

• The access mode you need for the operation you want to perform (READ,
WRITE, MODIFY, or EXTEND)

You have to specify an alias only if two domains with the same given name will
be ready at the same time. This situation can occur when you are accessing
domains stored in different dictionary directories and when you are restructur­
ing your database. (In the command READY EMPLOYEES AS NEW WRITE,
NEW is an alias.) When you ready a domain under an alias, you must use the
alias rather than the domain's given name in any subsequent statements or
commands during that session. DATATRIEVE does not recognize the readied
domain if you use the given name.

PROTECTED is the access option that applies if you do not specify one.
PROTECTED means that if other users ready the domain while you are using
it, they can use it only to retrieve and display data. They cannot modify, erase,
or add records.

READ is the access mode that applies if you do not specify one. READ means
that you can use the domain only to retrieve and display data. You cannot
store, erase, or modify records without readying the domain again to specify a
new access mode.

Tables 13-1, 13-2, and 13-3 summarize information about access options and
modes that affect you and other people using the domain.

Starting and Ending Access to Data 13-3

Table 13-1: Access Options

Option Access Constraints

PROTECTED Any other user can have only READ access to records in the
domain or relation. No other user can have WRITE, MODIFY, or
EXTEND access to the records in the domain or relation. This
option is the default for domains containing records from RMS files
and for all view domains.

SHARED Any other user can have access to the domain or relation at the
same time in any access mode.

EXCLUSIVE No other user can have access to the domain or relation at the
same time in any access mode.

Table 13-2: Access Modes

Mode Type of Access Privileges Needed

READ You can only retrieve records. P (PASS_ THRU), S (SEE),
(Default) and R (DTR_READ),

M DTR_MODIFY), or
W (DTR _ WRITE)

MODIFY You can retrieve and modify records. P (PASS_ THRU), S (SEE), and
M (DTR_MODIFY) or
W (DTR _ WRITE)

WRITE You can retrieve, modify, store, and P (PASS_ THRU), S (SEE), and
erase records. W (DTR_ WRITE)

EXTEND You can only store records. P (PASS_ THRU), S (SEE), and
W (DTR _ WRITE) or
E (DTR_EXTEND/EXECUTE)

In addition to the domain definition privileges listed in Table 13-2, you must
also have P (PASS_ THRU), S (SEE), and E (EXTEND/EXECUTE) privileges
for the associated record definition to ready a domain for any operation.

13-4 Starting and Ending Access to Data

C

)

Table 13-3: Multiuser Access

Another User
You Ready Can Then Ready Your Effect on Other Users'
a Domain the Domain Other Users Effect on You

EXCLUSIVE READ No access No one else can No effect.
EXCLUSIVE WRITE read the file.

PROTECTED READ PROTECTED READ No one else can No effect.
SHARED READ write to the file.

PROTECTED WRITE SHARED READ No one else can No effect.
write to the file.

SHARED READ PROTECTED READ No user with Users with
PROTECTED WRITE WRITE access WRITE access
SHARED READ can select your may change
SHARED WRITE selected record. records you are

reading or have
read.

SHARED WRITE SHARED READ No one else can You cannot write
SHARED WRITE modify your to the selected

selected record record of any
or the target rec- other user. You
ord of your cannot write to
MODIFY or the target record
ERASE state- of a MODIFY or
ment. You can ERASE statement
modify a record entered by a
another user has SHARED WRITE
just modified. user. A SHARED

WRITE user can
also write to a
record you have
just modified.

13.1.1 Defining Your Own Default Access

DATATRIEVE provides the following access options by default, depending on
the source you are readying, if you do not supply an access option on the
READY command line:

• PROTECTED (RMS sources)

• SNAPSHOT (Relational sources)

• SHARED (DBMS sources)

Starting and Ending Access to Data 13-5

If you want to define your own default access option, use the logical name
DTR$READY _MODE.

DATATRIEVE checks the definition of DTR$READY _MODE only when an
access option is not found on the READY command line. You can assign a
default to DTR$READY _MODE as follows:

• Use the DATATRIEVE function FN$CREATE_LOG. The following example
changes the READY access of the RMS domain YACHTS from its default,
PROTECTED, to SHARED access:

DTR > FN$CREATLLOG ("DTR$READ't'-MODE", "SHARED")
DTR> FINISH
DTR> READY YACHTS
DTR> SHOW READ'/
Ready sources =

YACHTS= Domain, RMS indexed , shared read
(_CDD$TOP .DTR32 .DAB .YACHTS ;3}

• Use either the DCL ASSIGN or DEFINE command as follows:

$ ASSIGN "SHARED" DTR$READ'LMODE

$ DEFINE DTR$READ't'-MODE "SHARED"

• Use a combination of a synonym and a logical assignment:

DTR> DECLARE SYNONYM EXCL FOR EXCLUSIVE
DTR> FN$CREATLLOG ("DTR$READ't'-MODE", "EXCL")
DTR> READY YACHTS
DTR> SHOW READY
Ready sources =

YACHTS = Domain , RMS indexed, exclusive read
(_CDD$TOP.DTR32.DAB.YACHTS ;3}

If you define DTR$READY _MODE using FN$CREATE_LOG, the definition
lasts only until the end of the DATATRIEVE session. You can change the defi­
nition during the session, however.

See the VAX DATATRIEVE Reference Manual for information about access
option error handling.

13.2 Finishing Domains

Use the FINISH command to end your control over one or more domains. If you
specify more than one domain name in the FINISH command, enter commas to
separate the domain names. If you enter the keyword FINISH by itself, or if you
enter FINISH ALL, you end your control over all the domains you have readied.

13-6 Starting and Ending Access to Data

)

Finishing domains is especially important if you have readied any domains with
the PROTECTED or EXCLUSIVE access option and other users access those
domains. The PROTECTED option keeps other users from updating the data
file. The EXCLUSIVE access option locks out other users entirely. In addition,
if you ready a domain with the EXCLUSIVE access option and that domain is
the base for a domain table, you must finish the domain before you can use the
domain table.

Starting and Ending Access to Data 13-7

C

Retrieving Data the Easy Way: With Collections 14

A DATATRIEVE collection is a group of records you gather from one or more
sources with a FIND statement. Usually, record sources are readied domains. A
collection stays in your workspace until it is superseded by another collection or
until you remove it.

DAT ATRIEVE considers that many statements apply to a record selected from a
collection unless you say otherwise. There are also some statements that apply
only to collections. W orkip.g with collections, therefore, usually means that your
statements can be simpler and shorter. You do not always have to tell
DATATRIEVE where to look for data and can focus on what you want to do
with it.

Example 14-1 illustrates creating a collection and some of the things you can do
with it. The comment lines in the example begin with an exclamation point (!)
and prepare you for the input that follows.

Example 14-1: Creating and Using a Collection

DTR>
DTR>
DTR>
DTR>

To find out how many employees have been willing to commute
from Massachusetts, create a collection of empl oyee
records with MA listed as the state.

DTR> READY EMPLOYEES
DTR> FIND EMPLOYEES WITH STATE = 11 MA 11

[36 records found]
DTR>
DTR} ! DATATRIEVE groups these records in a collection named
DTR > ! CURRENT.
DTR> !
DTR> SHOW COLLECTIONS
Collections:

CURRENT

(continued on next page)

14-1

DTR> SHOW CURRENT
Collection CURRENT

Domain= EMPLOYEES
Number of Records = 36
No Selected Record

DTR>
DTR> You can type PRINT ALL to display the records in CURRENT.
DTR>
DTR>
DTR> PRINT ALL

ID LAST NAME

00174 Myotte
95 Princeton Rd.
1117148

00175 Siciliano
109 Old New Boston
5125141

00191 Pfeiffer
143 Hudson Rd.

DTR>

FIRST NAME !NIT

Daniel V
Bennington

George
Rd. Farmington

Karen I
Marlborough

ADDRESS
DATA

MA

MA

SOCIAL
ZIP SEX SECURITY

03442 M 246 68 2816

03835 M 136 17 0800

DTR> You do not need all the information in the record. You can use
DTR> the REDUCE statement to specify a combination of field
DTR> values that makes each record unique and to eliminate fields
DTR) you are not interested in. (You would include ID if you
DTR) suspect there might be employees with the same name living
DTR> in the same town.)
DTR>
DTR> REDUCE TO NAME, TOWN, STATE
DTR> PRINT ALL

LAST NAME FIRST NAME !NIT TOWN

Babbin Cora Boston
Boutin Janis s Bennington
Carmody Susan Marlborough
Chandler Christine E Bennington
Clarke Aruwa Q Cambridge

STATE

MA
MA
MA
MA
MA

14-2 Retrieving Data the Easy Way: With Collections

DTR>
DTR) Order the records in the collection according to
DTR> town .
DTR) I

DTR> SORT BY TOWN
DTR>
DTR) Display the reordered records so only town and name
DTR) print on your screen .
DTR>
DTR> PRINT ALL TOWN, NAME

TOWN LAST NAME FIRST NAME INIT

Benningt i:,n Delano Al F
Bennington Comstock Frederick E
Bennington Mistretta Kathleen (;

Bennington Rodrigo Lisa
Bennington Turner Alan
Bennington Lynch Mary F
Bennington Chandler Christine E
Bennington Boutin Janis s
Bennington Rothwell Dean
Bennington M1:1ot te Daniel V
Bennington Siciliano Jesse w
Boston Harrison Lisa
Boston Staples Jerry z
Boston Roberts Joseph V

DTR>
DTR) Create a new collection from the CURRENT collection.
DTR) 1 Make it contain onli:1 names from Bost,)n.
DTR> !
DTR> FIND CURRENT WITH TOWN CONTAINING "BOSTON"
[6 records found]
DTR> PRINT ALL

LAST NAME FIRST NAME INIT TOWN

Harrison Lisa Boston
Staples Jerry z Boston
Roberts Joseph V Boston
Iosca Karen Boston
Babbin Cora Boston
Sprout Wayne Boston

DTR>

STATE

MA
MA
MA
MA
MA
MA

Retrieving Data the Easy Way: With Collections 14-3

14.1 Specifying the Records You Want in a Collection

Example 14-1 uses the statement FIND EMPLOYEES WITH STATE = "MA"
to form a collection. EMPLOYEES WITH STATE = "MA" is a record selection
expression (RSE). The simplest RSE specifies only a record source. FIND
EMPLOYEES, for example, creates a collection that contains all the records in
the EMPLOYEES domain, rather than only those that specify MA in the
ST ATE field.

There are six options you can include in an RSE to specify the records you
want. When you include more than one of these options in an RSE, you must
specify them in the order they appear in the following list. A simple FIND
statement example illustrates each option:

• Record number restriction

DTR> FIND FIRST 5 EMPLOYEES

• A name for the group of records from each record source

DTR> FIND A IN EMPLOYEES

• A match of records from more than one source

DTR> FIND EMPLOYEES CROSS JOB-HISTORY OVER EMPLOYEE-ID

• Record contents restriction

DTR> FIND JOB-HISTORY WITH JOB_END MISSING

• Field restriction

DTR> FIND SALARY-HISTORY REDUCED TO EMPLOYEE-ID,
DEPARTMENT-CODE, JOB-CODE

• Record order

DTR} FIND EMPLOYEES SORTED BY LAST-NAME

The following FIND statement shows you the order of these options when all of
them appear in the same RSE. Using data from the EMPLOYEE and
JOB_HISTORY domains, the statement creates a collection that contains cur­
rent job information for ten employees:

DTR} FIND FIRST 10 A IN EMPLOYEES CROSS
CON> BIN JOB-HISTORY OVER
CON> EMPLOYEE-ID WITH JOB_END MISSING REDUCED TO
CON> EMPLOYEE-ID, LAST-NAME, DEPARTMENT-CODE,
CON> JOB_CODE SORTED BY DEPARTMENT_CODE, LAST_NAME

14-4 Retrieving Data the Easy Way: With Collections

)

One of the nicest things about collections is you do not have to enter statements
like that one. You can start out with a collection that contains more records
than you need. You can then order the records and fields, eliminate fields, or
drop records out of the collection in separate steps until you get exactly the data
you want.

When reading this chapter, you will encounter expressions that include key­
words such as =, CONTAINING, GT, LT, and MISSING. You can read the sec­
tions on using Boolean and value expressions in Chapter 18 to find out all the
options DATATRIEVE provides for data retrieval. For now, here are a few
guidelines and options to get you started:

• Enclosing values in quotation marks

The SHOW FIELDS command displays the name and description for all fields
in the domains you have readied. If the field name is followed by "character
string" or "date," you put quotation marks around values for the field. If the
field name is followed by "number," then you do not put quotation marks
around field values.

• Choosing keywords such as = (equals), GT (greater than), LT (less than)

These keywords (called operators) relate two value expressions. Most com­
monly, you precede an operator with a field name and follow it with a value
appropriate for that field.

When you are using these operators and you specify values for fields described
as character string, you must enter each letter using the case in which the
letter is stored. For example, if you enter "TERRY" and the value for which
you are searching was stored as "Terry", DATATRIEVE will not find it. Simi­
larly, you must distinguish underscores (_) from hyphens (-).

• Choosing the keyword CONTAINING (abbreviated CONT)

CONTAINING works more slowly than the other operators do when you
specify values for fields that are keys to an indexed file, so use it sparingly.
CONTAINING is not case-sensitive. You can use it to find character-string
values when you are not sure what case was used when values were stored in
a field.

The following sections explain in more detail how you create and work with
collections.

Retrieving Data the Easy Way: With Collections 14-5

14.2 Forming and Naming Collections

You must ready a domain (using any access mode other than EXTEND) before
you can form a collection from it.

When the FIND statement executes, DAT ATRIEVE creates a collection consist­
ing of the records specified in the RSE and names the collection CURRENT.
Unless the FIND statement executes inside a procedure, DATATRIEVE also
tells you how many records it found.

If you specify a name for the group of records in the FIND statement RSE, the
collection has two names: CURRENT and the name you specify. You can refer
to the collection by the name CURRENT or by the name you specify:

DTR> READY SALARY-HISTORY
DTR> FIND BIG_WIGS IN SALARY-HISTORY WITH
CON> SALARY-END MISSING AND SALARY-AMOUNT GT 50000
[38 records found]
DTR> SHOW CURRENT
Collection BIG_WIGS

Domain = SALARY-HISTORY
Number of Records = 38
No Selected Record

DTR> SHOW COLLECTIONS
Collections =

BICi_WIGS (CURR END

When you use a FIND statement to form another collection, the new collection
becomes the CURRENT collection. You can refer to the old collection only by
the name you gave it. If you did not name the old collection, DATATRIEVE
deletes it when the new one is formed:

DTR> FIND DRONES IN SALARY-HISTORY WITH
CON> SALARY-END MISSING AND SALARY-AMOUNT LT 50000
[281 records found]
DTR> SHOW CURRENT
Collection DRONES

Domain = SALARY-HISTORY
Number of Records= 281
No Selected Record

DTR> SHOW COLLECTIONS
Collections =

DRONES
BIG-WIGS

(CURRENT)

14-6 Retrieving Data the Easy Way: With Collections

DTR> PRINT
No record selected, printing whole collection.

EMPLOYEE SALARY SALARY
START ID AMOUNT

00165
00166
00167

00359

$11,676.00 1-Jul-1982
$18,497.00 7-Aug-1982
$17,510.00 21-Aug-1982

$93,340.00 18-Dec-1982

DTR> PRINT BIG_WIGS

EMPLOYEE SALARY SALARY
START ID AMOUNT

00164
00172
00195
00200
00204
00215

..... c

$51,712 .00 14-Jan-1983
$55,413.00 17-Dec-1982
$51,586.00 10-Mar-1982
$51,019.00 21-Nov-1982
$87,143.00 21-Sep-1982
$55, (CTRUC l

Execution terminated by operator.

DTR>

SALAR1
~ REVIEW

END CODE

3
2
2

1

SALARY REVIEW
END CODE

1
1
1
1
1

14.3 Choosing a Target Record for an Operation

You can use the SELECT statement to establish a target record for an opera­
tion. This is very useful when you want to erase or modify one or a few records
from a data file . When you establish a selected record, you can simply type
PRINT, ERASE, or MODIFY, and DATATRIEVE will know you are referring to
the selected record. If you want to do something to the whole collection rather
than the selected record, include the keyword ALL (PRINT ALL, MODIFY ALL,
or ERASE ALL, for example):

DTR> READY EMPLOYEES MODIFY
DTR> FIND EMPLOYEES WITH LAST_NAME CONTAINING "SMITH"
[2 records found]
DTR) PRINT ALL LAST_NAME, ID, STREET, TOWN, STATE

LAST NAME

Smith
Smith

ID STREET

00165 120 Tenby Dr.
00209 163 Lowell Rd.

Chocorua
Bristol

TOWN STATE

NH
NH

(continued on next page)

Retrieving Data the Easy Way: With Collections 14-7

DTR> SELECT
DTR> PRINT LAST-NAME, ID

LAST NAME ID

Smith 00165

DTR> MODIFY LAST-NAME
Enter LAST_NAME • Overton
DTR} PRINT LAST_NAME, ID

LAST NAME ID

Overton 00165

DTR> PRINT ALL LAST-NAME, ID

LAST NAME ID

Overton 00165
Smith 00209

DTR>

The example illustrates only two of the eight options you can use with a
SELECT statement. Here is a complete list of SELECT options with an example
for each. You can:

• Select the first record in the collection

SELECT FIRST

• Select the record in the collection positioned immediately after the current
selected record

SELECT NEXT

This is the default. When you simply type SELECT, DATATRIEVE selects
the next record in the collection. As the example in the beginning of this sec­
tion illustrates, if you have not established a selected record, DATATRIEVE
selects the first record in the collection when you type SELECT or SELECT
NEXT.

• Select the record in the collection positioned immediately before the current
selected record

SELECT PRIOR

• Select the last record in the collection

SELECT LAST

14-8 Retrieving Data the Easy Way: With Collections

• Select the record whose ordinal position you specify

SELECT 5

The example specifies the fifth record in the collection. You can use an expres­
sion in place of an integer as long as the expression resolves to an integer
value (COUNTER_FIELD + 1, for example, where COUNTER_FIELD con­
tains O or an integer).

• "U nselect" a record for a collection

SELECT NONE

This option releases your control over your current selected record so that
other users can access it.

• Name the collection from which you want to select (or unselect) a record

SELECT 2 MY COLLECTION

The example specifies the second record in the collection named
MY_ COLLECTION. If you do not name a collection in a SELECT statement,
DAT ATRIEVE selects the record from the CURRENT collection.

• Specify a WITH clause

SELECT FIRST MY COLLECTION WITH LAST NAME = "SMITH"

The example specifies the first record in MY_ COLLECTION that has SMITH
in the LAST NAME field.

You can establish more than one selected record but only one for each collection.
When you enter a statement that applies to a selected record, DAT ATRIEVE
carries out the requested operation on the record you most recently selected. If
your statement cannot apply to the most•recently selected record, DATATRIEVE
tries to carry out the operation on a selected record for another collection.
DATATRIEVE continues to check selected records you have available, in
reverse order of their selection, until it can either execute the statement or
determine an error condition.

When you are beginning to work with DATATRIEVE, this rather elaborate
description of how DATATRIEVE works probably is not important to you.
Generally, beginners work with one collection at a time and do not have more
than one selected record available. As you _gain experience, however, you may
be working with more than one collection and have several selected records
established. You might also be working with a DATATRIEVE procedure written
by an experienced user who manipulates multiple selected records. In this case,
you need to know more about how DATATRIEVE processes your input. The
appendix on name recognition and record context in the VAX DAT ATRIEVE
User's Guide provides more detailed information on this topic.

Retrieving Data the Easy Way: With Collections 14-9

14.4 Restricting Record Fields to the Ones You Need

As an alternative to putting a REDUCED TO clause in the FIND statement
RSE, you can use a REDUCE statement to keep only the fields you want to
work with in a collection:

DTR> READY EMPLOYEES
DTR> FIND EMPLOYEES WITH SEX = "F"
[105 records found]
DTR> PRINT ALL

ID LAST NAME FIRST NAME INIT

00167 Kilpatrick Janet
143 Pine St. Marlow
3105137

00169 Gray Susan 0
51 Maple St. Etna
8113138

00171 D1Amico Aruwa
67 Underhi 11 St. Sandown

1129132
00172 Peters Janis K
13 Mobile C ! CTRUC l
"'C
Execution terminated by operator

ADDRESS SOCIAL
DATA ZIP SEX SECURITY

NH 03456 F 889 84 0384

NH 03750 F 475 94 2624

NH 03873 F 185 77 9984

DTR> ! You can control record display by specifying fields in the
DTR> ! PRINT statement. This does not change tHe records in the
DTR> ! collection.
DTR>
DTR> PRINT ALL EMPLOYEE-ID, NAME, STATE

ID LAST NAME

00167 Kilpatrick
00169 Gray
00171 D1Amico
00172 Peters
00179 Vermouth
00185 Stadecker
00186 Watters
00188 Clarke
00191 Pfeiffer
00192 Connolly
00194 Morrison
00196 Clarke
00197 ! CTRUC l
"'C
Execution terminated

DTR> PRINT ALL

FIRST NAME INIT STATE

Janet NH
Susan 0 NH
Aruwa NH
Janis K NH
Meg NH
Hope E NH
Cora NH
Karen G NH
Karen I MA
Christine NH
Mary Lou u NH
Mary NH

by operator.

14-10 Retrieving Data the Easy Way: With Collections

ID LAST NAME FIRST NAME !NIT

00167 Kilpatrick Janet
143 Pine St. Marlow
3/05137

00169 Gray Susan 0
51 Maple St. Etna
8113/38 (CTRUC l

Ac
Execution terminated by operator.

DTR>

ADDRESS
DATA

SOCIAL
ZIP SEX SECURITY

NH 03456 F 889 84 0384

NH 03750 F 475 94 2624

DTR> The REDUCE statement changes the records in the collection
DTR> to unique combinations of the fields you specify.
DTR> Duplicate values, if any exist, no longer appear in the
DTR> collection. The first REDUCE statement that follows does not
DTR> change the number of records in the collection. Its purpose
DTR> is to reduce the number of fields each record contains. The
DTR> second REDUCE statement that follows does change the number
DTR> of records in the collection. It illustrates the power of
DTR) reducing a collection to unique values.
DTR>
DTR> REDUCE TO EMPLOYEE-ID, NAME, STATE
DTR> PRINT ALL

ID LAST NAME

00167 Kilpatrick
00169 Gray
00171 D!Amico
00172 Peters
00179 Vermouth
00185 Stadecker
00 (CTRUC l
"'C
Execution terminated

DTR> REDUCE TO STATE
DTR> PRINT ALL

STATE

MA
NH

DTR>

FIRST NAME INIT STATE

Janet NH
Susan 0 NH
Aruwa NH
Janis K NH
Meg NH
Hope E NH

by operator.

The REDUCE statement comes in handy when your collection data results from
crossing records from two or more domains. A cross operation produces records
with one or more duplicate fields. You can use the REDUCE statement to make
sure that all fields are unique. (See a later section in this chapter for more
information.)

Retrieving Data the Easy Way: With Collections 14-11

Note ------------­

If a record contains between 80 and 132 characters, you can do the
following so that it displays on one line:

• Type FN$WIDTH(132) and press the RETURN key.

• Type SET COLUMNS_PAGE=132 and press the RETURN key.

This changes system, terminal, and DATATRIEVE defaults for screen
width setting so that up to 132 characters are displayed on each line.
To set your screen width back to 80 characters per line, enter the
same commands but substitute 80 for 132.

14.5 Sorting Records

As an alternative to putting a SORTED BY clause in a FIND or PRINT state­
ment RSE, you can use the SORT statement to put collection records in the
order you want:

DTR> ! Assume you want to find out the employee distribution within
DTR> ! job codes in each department.
DTR) !
DTR> READY JOB-HISTORY
DTR> FIND JOB-HISTORY WITH JOB-END MISSING
(338 records found]
DTR> PRINT ALL

EMPL0 1,EE JOB JOB JOB DEPARTMENT SUPERVISOR
ID CODE START END CODE

00164 DMGR 21-Sep-1981 MBMN
00165 DGFR 8-Mar-1981 MBMF
00166 APGM 12-Aug-1981 MBMS
00167 APGM 26-Aug-1981 MBMN
00168 SPGM 18-Feb-1982 MGVT
00169 SPGM 28-Mar-1981 SUNE
00170 SCTR 26-Nov-1980 (CTRUC)

""C
Execution terminated by operator.

DTR> SORT BY DEPARTMENT-CODE, JOB_CODE
DTR> PRINT ALL

ID

00359
00358
00229
00359
00267
00354

14-12 Retrieving Data the Easy Way: With Collections

REVIEW
DATE

14-Jul-1983
1-Jan-1983
7-Feb-1983

21-Feb-1983
15-Jun-1983
17-Jul-1983

r

EMPLO'r'EE JOB JOB
START ID CODE

00472
00300
00188
00330
00438
00190

.... c

DSUP 27-Apr-1981
EENG 11-Feb-1982
EENG 8-Apr-1982
JNTR 6-Feb-1981
MENG 25-Apr-1980
MENG 25-Feb-1982

JOB
END

Execution terminated by operator.

DTR)

DEPARTMENT SUPERVISOR
CODE ID

ADMN
ADMN
ADMN
ADMN
ADMN
ADMN

00225
00225
00225
00225
00225
00225

REVIEW
DATE

19-Apr-1983
11-Aug-1982
2-Aug-1983
1-Dec-1982

14-Aug-1982
22 (CTRUC l

DTR> Usually, you want your records displayed according to the way
DTR) you sorted them. The following PRINT statement does this. It
DTR> also retrieves the name for each employee from the domain table
DTR> WHO-IS_IT.
DTR)
DTR> PRINT ALL DEPARTMENT-CODE, JOB-CODE, EMPLOYEE-ID,
CON> EMPLOYEE-ID VIA WHO-IS-IT

DEPARTMENT JOB EMPLOYEE
CODE CODE ID EMPLO'r'EE NAME

ADMN DSUP 00472 Delano Al F
ADMN EENG 00300 Gramby Marforie
ADMN EENG 00188 Clarke Karen G

ADMN JNTR 00330 Williams Christine B

ADMN VPSD 00415 Mistretta Kathleen G
ELEL APGM 00377 Lobdell Lawrence V
ELEL EENG 00238 Flynn Peter
ELEL EENG 00428 Augusta Thomas
ELEL GFER 00231 Clairmont Rick
ELEL GFER 00240 Johnson Bi 11 R
ELEL GFER 00461 Boutin George
ELEL GFER 00222 Lasch Norman

DTR>

If you specify more than one field by which you want to sort the records,
remember to always include a comma to separate the fields in your list.

Retrieving Data the Easy Way: With Collections 14-13

14.6 Forming a Collection from Two or More Record Sources

You form a collection from two or more record sources by including a CROSS
clause in a FIND statement RSE:

DTR> ! Assume you want to find out which jobs one employee has
DTR> ! held in the company.
DTR> !
DTR> READY EMPLOYEES, JOB-HISTORY
DTR> FIND EMPLOYEES CROSS JOB-HISTORY OVER EMPLOYEE-ID WITH
CON> EMPLOYEE-ID = "00472"
[1 record found]
DTR> PRINT
No record selected, printing whole collection.

ADDRESS SOCIAL
ID LAST NAME FIRST NAME INIT DATA ZIP SEX SECURIH

00472 Delano Al F
114 Princeton Rd . Bennington MA 03442 M 005 89 7164
3103129 00472 DSUP 27-Apr-1981 ADMN

DTR> This is tough to read, a normal occurrence when you are
DTR> crossing records. Note that the value 00472 appears twice.
DTR} That is because each record in the collection results from

00225

DTR} crossing two records, each of which has a value for EMPLOYEE-ID.
DTR} You can use the REDUCE statement to get rid of duplicate values
DTR} 1 and pare the data down to the fields which interest you.
DTR} !
DTR} REDUCE TO EMPLOYEE-ID, NAME, DEPARTMENT-CODE, JOB_CODE, JOB_START
DTR} PRINT
No record selected, printing whole collection.

DEPARTMENT JOB
ID LAST NAME FIRST NAME INIT CODE CODE

JOB
START

004 72 Delano

DTR>

Al F ADMN DSUP 27-Apr-1981

The sources for the records you want to cross can be either domains or other col­
lections. Read the section on disadvantages of using collections, however, before
you decide to cross collections.

14-14 Retrieving Data the Easy Way: With Collections

14. 7 Removing Records from a Collection

You might create a collection of records with the idea of doing something with
the whole group (writing a report, for example) and find that you do not want to
use some of the records in the collection. For each record you want to remove
from a collection: ·

• Select the record

• Type PRINT to make sure you selected the right record

• Type DROP to remove that record

The DROP statement does not erase the record from storage, only from the
collection:

DTR> FIND EMPLO','EES WITH LAST _NAME CONTAINING "BURTON"
[2 records found]
DTR> PRINT ALL ID, LAST-NAME, FIRST_NAME

ID LAST NAME

00237 Burt,:,n
00417 Burton

DTR) SELECT 2

FIRST NAME

Frederick
Kathleen

DTR> PRINT ID, LAST_NAME, FIRST-NAME

ID LAST NAME

00417 Burton

DTR> DROP
DTR> SHOW CURRENT
Collection CURRENT

Domain • EMPLOYEES

FIRST NAME

Kathleen

Number of Records • 2
Selected Record • 2 (Dropped)

DTR> PRINT ALL ID, LAST-NAME, FIRST_NAME

ID LAST NAME FIRST NAME

00237 Burton Frederick

Retrieving Data the Easy Way: With Collections 14-15

14.8 Removing Collections from Your Workspace

The RELEASE command removes collections from your workspace. RELEASE
ALL removes all collections. RELEASE, followed by one or more collection
names, removes the collections you specify:

DTR) SHOW COLLECTIONS
Collections :

COLL
DEG
EMP

DTR> RELEASE DEG

(CURRENT)

DTR> SHOW COLLECTIONS
Col lecti,:,ns :

COLL
EMP

DTR> RELEASE ALL

(CURRENT)

DTR> SHOW COLLECTIONS
No established collections.

DTR>

Remember that RELEASE ALL removes more than just collections; it also
removes from your workspace all declared variables, all loaded tables, and any
forms product definitions you have accessed. You load table and form definitions
simply by accessing them but variables have to be declared again.

In addition, when you finish a domain from which a collection is formed, you
also release the collection. If you need to change the access mode to a domain in
order to do something to the records in a collection, ready the domain again
with a new access mode. Do not finish it first.

14.9 Disadvantages of Using Collections

There are two disadvantages to using collections:

• There are restrictions that apply to the use of collection-oriented statements
in compound statements.

This means that your options are limited when designing procedures that
manipulate collections and selected records. You cannot use FIND, SORT,
REDUCE, and DROP statements in FOR, REPEAT, THEN, WHILE, or
BEGIN-END statements.

As an alternative to the SORT and REDUCE statements, you can use the
REDUCED TO and SORTED BY clauses in the RSE of the FIND statement
that creates the collection. There is no equivalent for DROP, however. In addi­
tion, the SELECT statement can produce unexpected results when included in
a compound statement.

14-16 Retrieving Data the Easy Way: With Collections

)

• DATATRIEVE does not use keyed access when a collection is the record
source.

This means that all search, cross, and sort operations that manipulate records
in collections are done sequentially, even when you base them on fields that
are index keys for a data file. If you are processing a collection of 50 or fewer
records, the slower performance of sequential searches might not bother you.
If you are doing complicated operations on a collection of 500 or more records,
the response time might be unacceptable.

To get around this problem, put your key-based operations in the RSE of any
FIND statement that creates a large collection from a domain. In addition,
avoid creating collections from other collections when the latter contain thou­
sands of records.

For cross operations, use only key-based access. Crossing records in collections
can be very time consuming, even when the collections each contain fewer
than 50 records.

This discussion should not discourage you from working with collections. As the
rest of the chapter indicates, collections provide numerous advantages, espe­
cially when you are learning to use DATATRIEVE. You should still read
Chapter 15, however, to find out about methods of data retrieval you can use as
alternatives to collections. With the combined information in this chapter and in
Chapter 15, you can tailor data access to meet both your convenience and per­
formance needs. You can also read the chapter on improving DATATRIEVE per­
formance in the VAX DATATRIEVE User's Guide to find out more about using
key-based access.

Retrieving Data the Easy Way: With Collections 14-17

C

)

Accessing Data the Expert Way: 15 Without Collections

This chapter explains how you specify records in a compound statement begin­
ning with FOR or in a statement, such as PRINT, that carries out the operation
you want to perform.

This chapter also tells you how to define and use view domains. A view domain
is a data definition that contains a subset of fields from one domain or a combi­
nation of fields from two or more domains. Using a view domain, you can get
results that otherwise require complex statements.

15.1 Processing Records from Domains Rather Than Collections

There are two reasons you might want to work with records directly from
domains:

• You are working with large numbers of records and want fast access.

• You are using compound statements to process records.

15.1.1 Ensuring Fast Access

When you use the FIND statement to create a collection, you are not removing
records from files or copying records to some sort of temporary storage area. The
FIND statement creates a list of pointer values. For each record in the collec­
tion, there is a pointer value that tells where its data is located in a file (or
files, if the collection record resulted from a cross operation). Whenever
DAT ATRIEVE must search through records in a collection, it must process
every pointer value and look at all the places where associated data is stored.

15-1

You can often get DATATRIEVE to respond more quickly when you work
directly with domains. You achieve faster response time by specifying a readied
domain as the record source and an index key field as the criteria for any
searching, sorting, and crossing that you want done. In this case, DATATRIEVE
can use the indexes associated with data files to find the records you want. It
does not have to check every record in the data file to see which ones meet your
needs.

Example 15-1 contrasts three ways to perform the same operation. The opera­
tion retrieves records for current employees in a manufacturing department,
sorts the records by job code, and displays selected fields from the records. The
comment lines in the example begin with an exclamation point (!) and prepare
you for the input that follows.

Example 15-1: Including RSEs in Statements

DTR> READY JOB-HISTORY
DTR>
DTR>
DTR>
DTR>
DTR)
DTR>
DTR>
DTR>
DTR>

The next input illustrates data retrieval by first
forming a collection and then manipulating and displaying
the data it contains. The first FIND statement uses
key-based access. The second FIND statement and the SORT
statement access records using collection pointer values.
WHO_IS_IT is a domain table that links EMPLOYEE-ID with
EMPLOYEE-NAME.

DTR> FIND JOB-HISTORY WITH DEPARTMENT-CODE=
[36 records found]
DTR> FIND CURRENT WITH JOB-END MISSING
[13 records found]
DTR> SORT BY JOB-CODE
DTR> PRINT ALL JOB-CODE, EMPLOYEE-ID,
CON> EMPLOYEE-ID VIA WHO-IS-IT

JOB EMPLOYEE
CODE ID EMPL0 1t'EE NAME

APGM 00275 DuBois Alvin
APGM 00449 Leger Carol
APGM 00167 Kilpatrick Janet
DGFR 00349 Chandler Christine
DMGR 00164 Toliver Alvin
DSUP 00344 Kawell Edward
EENG 00198 Gehr Leslie
EENG 00447 Potter Beverly
GFER 00329 Rodrigo Jerry
MENG 00410 Klein Walter
SANL 00366 Harrington Russ
SANL 00433 Glackemeyer Jodie
SPGM 00217 Siciliano James

Q

E
A
H

0
D
X
J

X

"MBMN"

15-2 Accessing Data the Expert Way: Without Collections

DTR>
DTR) The next input performs the same operation using a
DTR> compound statement. The FOR statement component restricts
DTR) the records to the ones you want and specifies the order in
DTR> which you want them. The PRINT statement component specifies
DTR) the fields you want to see displayed.
DTR>
DTR> FOR JOB_HISTORY WITH DEPARTMENLCODE = 11 MBMN 11 AND
CON> JOB-END MISSING SORTED BY JOB-CODE
CON> PRINT JOB-CODE, EMPLOYEE-ID, EMPLOYEE-ID VIA WHO_IS_IT

JOB EMPLOYEE
CODE ID

APGM 00275 DuBois
APGM 00449 Leger

SPGM 00217 Siciliano

DTR>

EMPLOYEE NAME

Alvin
Carol

James

Q

X

DTR> The following input ircludes everything you need to do in
DTR) one PRINT statement. Note that when you do this, the record
DTR> selection and sorting is specified last, following the
DTR) keyword OF. You always specify record selection clauses
DTR> last when you put them inside the statement that carries out
DTR> the operation you want to perform .
DTR>
DTR> PRINT JOB-CODE, EMPLOYEE-ID, EMPLOYEE-ID VIA WHO-IS-IT OF
CON) JOB-HISTORY WITH DEPARTMENLCODE = "MBMN" AND
CON> JOB-END MISSING SORTED BY JOB-CODE

JOB EMPLOYEE
CODE ID

APGM 00275 DuBois
APGM 00449 Leger

SPGM 00217 Siciliano

DTR>

EMPLO 1IEE NAME

Alvin
Carol

James

Q

X

Accessing Data the Expert Way: Without Collections 15-3

15.1.2 Processing Records in Compound Statements

Example 15-2 illustrates another reason for working directly with domains. The
example shows two procedures designed to help users modify one or more
records in the EMPLOYEES domain. Both procedures use a number of com­
pound statements (statements that contain other statements). In the example,
the compound statements start with the keywords FOR, WHILE, IF, and
BEGIN. When executed, the first procedure fails because it includes collection­
oriented statements inside compound statements. The second procedure works. It
substitutes a FOR statement and slightly different statement structure to
accomplish the same task.

The comment lines explain the purpose of most input in the two procedures. The
section on working with multiple records explains about processing more than
one record at a time. Chapter 17 discusses how you create and use procedures
and Chapter 18 explains variables.

Example 15-2: Using RSEs in Compound Statements

DTR> SHOW MODIFY_AN-EMPLOYEE_RECORD1
PROCEDURE MODIFY_AN-EMPLOYEE_RECORD1
READY EMPLOYEES MODIFY

The DECLARE statements create the variables STILL_WORKING,
GET_ID, and YES_OR_NO. STILL_WORKING starts out with the
value 111

1
111

• After users modify a record, the procedure prompts
them to enter a new value for STILL-WORKING. If users enter
Yin response to this prompt, they can modify another record.
The reasons for declaring the other variables are explained
when the procedure uses them .

ECLARE STILL-WORKING PIC X.
STILL_WORKING = "'r'"

DECLARE GET_ID PIC X(5) .

DECLARE YES_OR_NO PIC X.

The WHILE statement includes all of the statements starting
with the first BEGIN and concluding with the last END.
This "outer" BEGIN-END block can execute more than once,
depending on value entries for STILL_WORKING .

WHILE STILL-WORKING CONTAINING "Y"
BEGIN

!

The value for the variable GET-ID is ~ssigned by
a prompting value· expression. This allows the user to
enter the employee ID for the record needing change .

GET _ID = * ." ID for the emplo•:1ee record you want to change"
I

The following FIND and SELECT statements should not be
subordinate to the WHILE statement or contained in a
BEGIN-END block . Because they are, the procedure will fail.

15-4 Accessing Data the Expert Way: Without Collections

FIND EMPLOYEES WITH EMPLOYEE-ID= GET_ID
SELECT

The following lines assume the presence of a selected
record. The value for the variable YES_OR_NO is assigned
by a prompting value expression. The user gets to see the
record and to decide whether or not it should be modified.

RINT
't'ES-OR_NO = *. '"t' if you want to m,)dify this record"
IF ~·Es_oR_N(I CONTAINING 11 Y11 THEN

BEGIN
PRINT "Press TAB in response to Enter prompts for"
PRINT "fields you do not want t o change. " , SKIP
MODin1

PRINT "Changed record MW looks like this= 11
, SKIP

PRINT
END

STILLWORKING = -* . 111t' if you have more records t,) change"
END

FINISH EMPLO't'EES
PRINT "Access ended to EMPLO't'EES. 11

END-PROCEDURE

DTR>
DTR>
DTR>
DTR}
DTR>
DTR>

When someone executes the procedure, DATATRIEVE returns
an error message. In this case, no collection was created,
the SELECT statement produced an error, and parts of the
procedure did not execute .

DTR> :MODIFY_AN_EMPLOYEE-RECORD1
No collection for select.
Access ended to EMPLOYEES.

DTR>
DTR> Here is the procedure revised to work directly with
DTR} domains.
DTR>
DTR} SHOW MODIFY-AN-EMPLOYEE_RECORD2
PROCEDURE MODIFY-AN-EMPLOYEE-RECORD2
READY EMPLOYEES MODIFY
DECLARE STILL-WORKING PIC X.
STILL-WORKING = 11 Y11

DECLARE GET_ID PIC X(5).
DECLARE YES_OR_NO PIC X.
WHILE STILL_WORKING CONTAINING 11 Y11

BEGIN
GET_ID = *."ID for the employee record you want to change"

Using the domain table WHO_IS_IT, this procedure checks
to ensure that the ID entered by the user exists in the
EMPLOYEES domain. If the ID is not valid, the procedure
prints a message and ignores the FOR statement.

(continued on next page)

Accessing Data the Expert Way: Without Collections 15-5

IF GELID NOT IN WHILIS_IT THEN PRINT "No such ID." ELSE

The FOR statement replaces the FIND and SELECT statemehts to
specify the record being changed. It tells DATATRIEVE to
execute all the statements in the following BEGIN-END block
for each record specified in the FOR statement RSE. In this
case, that RSE specifies one record.

FOR EMPLOYEES WITH EMPLOYEE-ID= GET_ID
BEGIN

LIST
'r'ES_OR_NO = *. ".'r' if you want to modify this record"
IF 'r'ES-OR_NO CONTAINING 11

~
111 THEN

BEGIN
PRINT SKIP, "Press TAB in response to Enter prompts for"
PRINT "fields you do not want to change.", SKIP
MODIF'r'
PRINT SKIP, "Changed record now looks like this= 11

, SKIP
LIST

END
END

STILL_WORKING = *."'r' to change more records, N to exit"
END

FINISH EMPLO'r'EES
PRINT "Access ended to EMPLO'r'EES rec,:,rds. 11

END-PROCEDURE

DTR>
DTR> Here is what happens when the second procedure executes.
DTR) !
DTR> =MODIFY-AN_EMPLOYEE-RECORD2
Enter ID for the employee record you want to change = 0016R
No such ID.
Enter Y to change more records, N to exit = Y
Enter ID for the employee record you want to change = 00164

EMPLOY EL ID
LAST-NAME
FIRST-NAME
MIDDLE-INITIAL
ADDRESS-DATA

00164
Toliver
Alvin
A

STREET 146 Parnell Place
TOWN Chocorua
STATE NH
ZIP 03817
SEX M
SOCIAL-SECURITY 763 08 0064
BIRTHDAY 3128147
Enter Y if you want to modify this record= Y

Press TAB in response to Enter prompts for
fields you do not want to change.

15-6 Accessing Data the Expert Way: Without Collections

Enter EMPLO)'ELID : CTA[)
Enter LAST-NAME : (TABJ
Enter FIRST-NAME : (TABJ
Enter MIDDLE-INITIAL : (TABJ
Enter ADDRESS_DATA : Cffi[)
Enter STREET: 52 Tiger Way
Enter TOWN : (TAB)
Enter STATE : CTA[)
Enter ZIP : CTA[)
Enter SEX : (TABJ
Enter SOCIALSECIJRIH: (TAB J
Enter BIRTHDA)' : CTA[)

Changed record now looks like this:

EMPLO't'EE-ID
LAST_NAME
FIRST-NAME
MIDDLE-INITIAL
ADDRESS-DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIALSECIJRIH
BIRTHDAY

00164
Toliver
Alvin
A

52 Tiger Way
Chocorua
NH
03817
M
763 08 0064
3128147

Enter Y to change more records, N to exit : N
Access ended to EMPLOYEES records .

DTR>

15.2 Creating RSEs

Chapter 14 listed and described the options you have when including a record
selection expression (RSE) in a FIND statement. These options and the order in
which you can specify them are the same for any statement that can contain an
RSE.

Accessing Data the Expert Way: Without Collections 15-7

Here are some examples of RSEs in FOR, PRINT, and MODIFY statements. So
that you can focus on the position of an RSE in the statement, the RSEs are
highlighted by gray shading: r
PR I NT ·f'Jft§T ,,, •.• f){!$

FOR ·1£~ tSQRttJ t~, D!Gft!E'.:..fl£ll> PRINT DEGREE_FIELD, DEGREE,
COLLEGE-CODE .

PRINT ~E£l<14flttcpu.'itf.,~J .}1\•·~s~t'

FoR +siitPte.nttllJ' "\#1'tt~t;Jt1!•t·ttt1.;t•~~ ••• •star
PRINT EMPLOYEE-ID, DEGREE, DEGREE-FIELD

PRINT NAME, ADDRESS OF ·t,!@S(~;t,:lftf\.OJUS

MODIFY JOB-END OF+*':Jiit~r'A,j,1'jo).im:1f$Sl:N6''•Altt
.EtJP!~\'~CJI +.,. ~~,,,L
The following example includes all the RSE options in one PRINT statement.
The statement joins records stored in three different places to display informa­
tion about past jobs and salaries for an employee. When you include an RSE in
a PRINT statement, as in the example, the order of fields listed in a REDUCED
TO clause also specifies the order in which fields are displayed. When you
include a REDUCED TO clause in a FOR statement RSE, any subordinate
PRINT statement must specify the field display order when it differs from the
way those fields are stored in records.

The WITH clause restricts the data to one employee and also matches salary
data to a job. Chapter 18 tells you more about using the BETWEEN operator
and including more than one condition in a WITH clause.

The SORTED BY clause ensures that the most recent job and salary data dis­
plays first:

15-8 Accessing Data the Expert Way: Without Collections

C

When you get complex RSEs like that one to do your work, you can feel quite
accomplished. You are well on your way to being a DAT ATRIEVE expert. Here
is the data that the PRINT statement displays:

DEPARTMENT JOB JOB SALAR't' SALAR'r'
LAST NAME CODE CODE START START AMOUNT

Nash SUWE PRGM 23-Feb-1979 10-0ct-1981 $27,126.00
Nash SUWE PRGM 23-Feb-1979 15-0ct-1980 $25,057.00
Nash SUWE PRGM 23-Feb-1979 21-0ct-1979 $23,919.00
Nash SUWE PRGM 23-Feb-1979 23-Feb-1979 $23,605.00
Nash ENG PRGM 30-0ct-1977 26-Aug-1978 $21,520.00
Nash ENG PRGM 30-0ct-1977 30-0ct-1977 $20,883.00
Nash ELMC APGM 1-Jul-1975 21-Apr-1977 $15,977.00
Nash ELMC APGM 1-Jul-1975 24-Aug-1976 $15,851.00
Nash ELMC APGM 1-Jul-1975 1-Jul-1975 $15,179.00

The section later in this chapter on view domains shows you how to use a view
domain to display this data in a more readable format.

15.3 Working with Multiple Records

Both Example 15-1 and Example 15-2 specify operations that can be performed
on more than one record. When you specify iterative operations, you are creat­
ing what is sometimes called a loop. In Example 15-1, you specify a group of
records and tell DAT ATRIEVE to do a print operation for each record in the
group. The RSE defines a loop because it specifies more than one record for an
operation. In Example 15-2, the WHILE statement defines a loop even though
the RSE specifies one record. All operations contained in the WHILE statement
can execute more than once depending on a variable value under the control of
the person executing the procedure.

In these examples, the loops are intentional and help users get work done more
quickly and efficiently. There are record processing loops in the following areas,
however, that can cause problems for new users:

• FOR statements

• CROSS clauses

• List fields

The following sections discuss these areas in more detail.

Accessing Data the Expert Way: Without Collections 15-9

15.3.1 FOR Statement Looping Errors

When you include ari RSE in a FOR statement, make sure you do not put an
RSE in a statement subordinate to the FOR statement. In the following exam­
ple, the user forgot to enter a SORTED BY clause in the FOR statement RSE
and thought the clause could go in a PRINT statement RSE to make up for the
oversight. In thfa case, DATATRIEVE uses the PRINT statement RSE as the
record specification and the FOR statement RSE as a counter. It displays the
requested information but repeats the display as many times as there are
records in COLLEGES:

DTR> FOR COLLEGES
CON) PRINT COLLEGE_NAME, TOWN, ZIP OF COLLEGES SORTED BY ZIP

Bates College
Colby College
University of Maine

Lewistc,n
Waterville
Orono

U. of Southern California San Diego
Bates College Lewiston
Colby College Waterville
University of Maine Orono

U. of Southern California San Diego
Bates College Lewiston

04240
04563
04913

98431
04240
04563
04913

98431
04240

Either of the following statements would have produced correct results =

DTR> FOR COLLEGES SORTED BY ZIP
CON) PRINT COLLEGE-NAME, TOWN, ZIP

DTR> PRINT COLLEGE-NAME, TOWN, ZIP OF
CON) COLLEGES SORTED BY ZIP

15.3.2 CROSS Clause Looping Errors

For each CROSS clause that joins data stored in different locations, include an
OVER clause to specify a field DATATRIEVE can use to match records for the
join. When you want to limit the values that fields can contain, include a WITH
clause:

EMPLOYEES CROSS JOB-HISTOR'I OVER NPLOVEE-IJ) CROSS
SALARY _HISTOR'I OVER EHP[OVEE-ID WITH EMPLO'IELID = "00168"

15-10 Accessing Data the Expert Way: Without Collections

)

If you omit the first OVER clause in the example, you are telling
DATATRIEVE to take the first record from EMPLOYEES and join it to each
record in JOB_HISTORY, then take the second record from EMPLOYEES and
join it to each record in JOB_HISTORY, and so forth. Ifthere are 350 records
in EMPLOYEES and 800 records in JOB_HISTORY, DATATRIEVE produces
280,000 hybrid records for the first cross operation. It then takes each of those
280,000 records and uses them for the second cross operation. If you also omit
the second OVER clause and SALARY _HISTORY contains 1200 records,
DAT ATRIEVE produces a grand total of 280,000 times 1200 hybrid records.

If you omit any OVER clause, you are asking DATATRIEVE to process many
more records than you intended. This will produce results you do not want.

DATATRIEVE interprets the clause OVER EMPLOYEE_ID as WITH
EMPLOYEE_ID = EMPLOYEE_ID. In fact, the following RSEs are equiva­
lent to the preceding one. The first RSE names each record source (A, B, and C)
and uses these names to qualify the EMPLOYEE_ID fields in each component
of the WITH clause. The second RSE uses the top-level field names in each rec­
ord source to qualify the EMPLOYEE_ID fields:

A IN EMPLOYEES CROSS BIN JOB_HISTORY
CROSS C IN SALARY-HISTORY WITH CB.EMPLOYEE-ID= A.EMPLOYEE-ID) AND
CC.EMPLOYEE-ID= B.EMPLOYEE_ID)

EMPLOYEES CROSS JOB-HISTORY CROSS SALARY-HISTORY WITH
CJOB_HISTORY-REC.EMPLOYEE-ID = EMPLOYEES-REC.EMPLOYEE-ID) AND
CSALARY-HISTORY_REC.EMPLOYEEID = JOB-HISTORY-REC.EMPLOYEE-ID)

Before you enter an RSE that includes one or more CROSS clauses, check your
input to make sure you included a corresponding number of OVER clauses or a
corresponding number of equivalent conditions in a WITH clause. If you inad­
vertently start a runaway cross operation, you can enter CTRL/C to stop it.

15.3.3 Lists, the "Record" Within the Record

The preceding two sections discussed looping problems users learn to avoid. This
section discusses looping users must learn to include.

Accessing Data the Expert Way: Without Collections 15-11

When a record definition includes a list field (defined by the OCCURS clause), it
means that fields subordinate to the list field can contain more than one value
(or occurrence) per record. If you need to access a particular value in a list field,
perhaps because you _want to change it, you must create a loop to get at it. You
do this by treating the list field as you would a record source, so that
DAT ATRIEVE can recognize and process the fields it contains. The domains
from the sample personnel system in this book do not contain records with list
fields. The FAMILIES domain in CDD$TOP.DTR$LIB.DEMO does. The follow­
ing example uses the FAMILIES domain to illustrate how you can access values
in list fields:

DTR> READY FAMILIES MODIFY
DTR> PRINT FIRST 5 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME ACiE

JIM

JIM

JOHN

JOHN
ARNIE

DTR>
DTR>
DTR>
DTR>
DTR>

ANN
l.. URSULA 7

RALPH 3
LOUISE 5 ANNE 31

JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JULIE .-,
,:_ ANN 29

JEAN 26

ELLEN 1 CHRISTOPHR 1
ANNE •)

,:_ SCOTT 20
BRIAN 20

The SHOW FIELDS command reveals that the group field
EACH_KID and the elementary fields KID-NAME and ACiE
are subordinate to the list field KIDS.

DTR> SHOW FIELDS
FAMILIES

FOR FAMILIES

FAMIL'r'
PARENTS

DTR>
DTR>
DTR>
DTR>
DTR>

FATHER
MOTHER

NUMBER_KIDS
KIDS

EACH_KID

<Character
<Character
<Number>
<List>

string)
string)

KID-NAME (KID) <Character string)
ACiE <Number)

If you try to use a list field as a field name, it
does not work. Neither can you rafer to list field
subordinates as you do to other fields in the record.

DTR) PRINT KIDS OF FIRST 1 FAMILIES
PRINT KIDS OF FIRST 1 FAMILIES

15-12 Accessing Data the Expert Way: Without Collections

Expected end of statement, encountered "OF".
DTR> PRINT EACH_KID OF FIRST 1 FAMILIES
"EACH-KID" is undefined or used out ,)f context.
DTR> !
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR)

If you want to put an RSE in a PRINT statement, you can
set up a double loop by putting two RSEs at the end of
the statement--the first for the list field and the second
for the domain. For each OF RSE clause, put an ALL before
the field name (or list of field names) that you want to
display.

DTR> PRINT ALL ALL EACH-KID OF KIDS OF FIRST 1 FAMILIES

KID
NAME AGE

URSULA
RALPH

DTR>

7
3

DTR) You can also set up a list field loop when you use the
DTR> FOR statement. In this case, after the first FOR statement
DTR> that contains the RSE for the domain, enter a second FOR
DTR> statement that contains the RSE for the list. (If you were
DTR> trying to get at an item in a list field subordinate to
DTR> another list field, you would need three FOR statements-­
DTR> one for the domain, one for the outer list, and one for the
DTR) inner list.)
DTR>
DTR) FOR FIRST 1 FAMILIES
CON) FOR KIDS
CON> PRINT EACH_KID

KID
NAME AGE

URSULA 7
RALPH 3

DTR>
DTR>
DTR)
DTR) I

The following input shows FOR statement looping that lets
you change values occurring in list fields.

DTR) FOR FIRST 1 FAMILIES
CON> FOR KIDS
CON> MODin1 AGE
Enter AGE : 8
Enter AGE= 4
DTR) PRINT FIRST 1 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

Accessing Data the Expert Way: Without Collections 15-13

15.4 Creating Views

A view is a data definition that specifies fields from one or more domains. You
ready a view just as you do a domain and can display or modify data in the
fields it contains. The only operation you cannot do using a view is storing
records in the associated domains. To store records in a domain, you must ready
the domain itself.

You can define a view so that users can access a subset of fields from a long rec­
ord. You might want to do this for one of two reasons:

• The records you want to access contain more fields than you want to use.
Without a view, you must include a list of fields in PRINT and MODIFY
statements to restrict data display and access. After you define the view, you
can simply use the view name in READY and PRINT statements to get the
access you need.

• You want users to be able to access a file that contains some data they have
no right to see. In this case, you can define a view that specifies the fields
these users are allowed to see.

You can also define a view so that you or other users can access data stored in
more than one place. In this case, the view performs what would otherwise
require one or more CROSS clauses in a fairly complex statement.

15.4.1 View Domains That Subset Fields from One Domain

Example 15-3 shows you how to define and use a view containing a subset of
fields from one domain. As you will see, a view definition has a combination of
features you have used before when creating domain and record definitions.

Example 15-3: Defining and Using a View

DTR> Your view definition must start with the keywords
DTR> DEFINE DOMAIN followed by the name you choose for the view.
DTR> The OF clause specifies the name of the domain on which
DTR> the view is based . The keyword USING is optional.
DTR>
DTR) DEFINE DOMAIN COLLEGE-LOCATIONS OF COLLEGES USING
DFN)
DFN> Your first level number specifies a field that
DFN> DATATRIEVE uses to identify an RSE fr om the domain . You can
DFN) pick any name you want for this field . Follow the name
DFN> with the keywords OCCURS FOR and then enter the RSE . In
DFN> this case the RSE includes only the domain name . End this
DFN) and all subsequent field definitions with a pe r iod.
DFN>

15-14 Accessing Data the Expert Way: Without Collections

DFN> 01 COLLEGE OCCURS FOR COLLEGES .
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>

Using level numbers higher than the field that identifies
the domain RSE, put in field definiti ons for each of the
fields from records in the RSE that you want in the view.
Make sure you use the same name that identifies the field
in the source domain. Each field definition must include a
FROM clause that specifies the source domain .

03 COLLEGE-NAME
03 TOWN
03 STATE
03 ZIP

FROM COLLEGES .
FROM COLLEGES.
FROM COLLEGES.
FROM COLLEGES .

End the view definition with a semicolon t o let DATATRIEVE
DFN> know you have finished it .
DFN>
DFN>
DTR> SHOW COLLEGE_LOCATIONS
DOMAIN COLLEGE-LOCATIONS OF COLLEGES
01 COLLEGE OCCURS FOR COLLEGES.

03 COLLEGE-NAME FROM COLLEGES .
03 TOWN FROM COLLEGES .
03 STATE FROM COLLEGES.
03 ZIP FROM COLLEGES.

DTR> READY COLLEGE-LOCATIONS
DTR> SHOW READ't'
Ready sources :

USING

COLLEGE-LOCATIONS : Domain, VIEW, protected read
<CDD$TOP.PERSONNEL .COLLEGE_LOCATIONS;1)

No loaded tables.

DTR> PRINT COLLEGE_LOCATIONS

COLLEGE
NAME

American University
Bates College
Bowdoin College
Cal . Institute of Tech.
Colby College

'r'ale University

DTR>

TOWN

Washington, DC
Lewiston
Brunswick
Pasadena
Waterville

New Haven

STATE ZIP

20073
ME 04240
ME 04913
CA 91342
ME 04563

CT 06510

Accessing Data the Expert Way: Without Collections 15-15

Here is an example of a more complex view definition. Even though the view
specifies fields from only one domain, bATATRIEVE must use two domains to
resolve the RSE identified by CURRENT _FOLKS. Therefore, both domains
must be listed in the OF clause:

DTR> SHOW ADDRESS-LIST
DOMAIN ADDRESS-LIST OF EMPLOYEES, JOB-HISTORY USING
01 CURRENT_FOLKS OCCURS FOR EMPLOYEES CROSS

JOB-HISTORY OVER EMPLOYEE-ID WITH JOB-END MISSING.
03 LAST-NAME FROM ~MPLOYEES.
03 FIRST_NAME FROM EMPLOYEES .
03 MIDDLE-INITIAL FROM EMPLOYEES.
03 ADDRESS-DATA FROM EMPLOYEES.
03 STREET FROM EMPLOYEES.
03 TOWN FROM EMPLOYEES .
03 ZIP FROM EMPLOYEES.

DTR> READY ADDRESS-LIST
DTR> LIST ADDRESS-LIST

LAST_NAME
FIRST_NAME
MIDDLE- INITIAL
ADDRESS-DATA
STREET
TOWN
ZIP

LAST_NAME
FIRST-NAME
MIDDLE-INITIAL
ADDRESS-DATA
STREET
TOWN
ZIP

DTR>

Toliver
Alvin
A

146 Parnell Place
Chocorua
03817

Smith
Terry
D

120 Tenby Dr.
Chocorua
03817

15-16 Accessing Data the Expert Way: Without Collections

15.4.2 View Domains That Combine Fields from Two or More Domains

The following example illustrates a view definition that specifies fields from
more than one domain. It allows users to access both current and historical job
and salary information for current employees:

DTR> SHOW EMPLOYEE-HISTORY_1
DOMAIN EMPLOYEE-HISTORY_1 OF EMPLOYEES, SALARY_HISTORY,
JOB-HISTORY USING
01 ONE_OF_us OCCURS FOR EMPLOYEES CROSS JOB-HISTORY OVER
EMPLOYEE-ID WITH JOB-END MISSING.

03 EMPLOYEE-ID FROM EMPLOYEES .
03 LAST_NAME FROM EMPLOYEES.
03 JOBS_HERE OCCURS FOR JOB_HISTORY WITH EMPLOYEE-ID=

EMPLOYEES-REC.EMPLOYEE-ID SORTED BY DECREASING JOB_START .
05 JOB_CODE FROM JOB-HISTORY.
05 DEPARTMENT-CODE FROM JOB-HISTORY.
05 JOB-START FROM JOB_HISTORY.

03 SALARIES OCCURS FOR SALARY-HISTORY WITH
(EMPLOYEE-ID= EMPLOYEES-REC.EMPLOYEE-ID) SORTED BY
DECREASING SALARY-START.

05 SALARY-START FROM SALARY-HISTORY.
05 SALARY-AMOUNT FROM SALARY_HISTORY .

DTR> READY EMPLOYEE_HISTORY_1
DTR>
DTR> ! Note that DATATRIEVE considers fields subordinate to all but
DTR> ! the first OCCURS field as list items.
DTR)
DTR> SHOW FIELDS FOR EMPLOYEE-HISTORY_1
EMPLOYEE_HISTORY-1

ONE_OF_US
EMPLOYEE-ID CID) <Character string, indexed key)
LAST_NAME (L_NAME) {Character string, indexed key)
JOBS-HERE <List>

JOB_CODE (JOB) <Character string)
DEPARTMENT_CODE <DEPT) <Character string)
JOB_START <Date>

SALARIES <List>
SALARY-START <Date)
SALARY-AMOUNT (SALARY) <Number, indexed key)

DTR> PRINT EMPLO','ELHISTOR'L1 WITH EMPL0 1,ELID = 11 00168 11

(continued on next page)

Accessing Data the Expert Way: Without Collections 15-17

JOB DEPARTMENT
ID LAST NAME CODE CODE

JOB
START

SALARY
START

SALARY
AMOUNT

00168 Nash SPGM
PRGM
PRGM
APGM

MGVT
SUWE
ENG
ELMC

18-Feb-1982 15-Dec-1982 $32,254.00
23-Feb-1979 18-Feb-1982 $29,469.00
30-0ct-1977 10-0ct-1981 $27,126.00

DTR>

1-Jul-1975 15-0ct-1980 $25,057.00
21-0ct-1979 $23,919.00
23-Feb-1979 $23,605.00
26-Aug-1978 $21,520.00
30-0ct-1977 $20,883.00
21-Apr-1977 $15,977.00
24-Aug-1976 $15,851.00
1-Jul-1975 $15,179.00

The following view is very similar to the first one but it associates salary data
with job data. Note that the level numbers indicate the subordinate relationship
of salary fields to job fields. In addition, the WITH clause in the last OCCURS
RSE restricts salary values to the ones current for a given job.

Because the missing value specified for JOB_END is earlier than any other
dates (November 17, 1858), the BT (BETWEEN) operator cannot detect salaries
for the current job in the sample database. This view, therefore, omits current
job and salary data from the display (JOBS_HERE ... WITH JOB_END NOT
MISSING):

DTR> SHOW EMPLOYEE-HISTORY_2
DOMAIN EMPLOYEE-HISTORY_2 OF EMPLOYEES, SALARY-HISTORY,

JOB_HISTORY USING
01 ONE-OF_IJS OCCURS FOR EMPLOYEES CROSS JOB-HISTORY OVER

EMPLOYEE-ID WITH JOB-END MISSING .
03 EMPLOYEE-ID FROM EMPLOYEES .
03 LAST-NAME FROM EMPLOYEES.
03 JOBS_HERE OCCURS FOR JOB-HISTORY WITH

(EMPLOYEE-ID= EMPLOYEES_REC.EMPLOYEE-ID) AND
(JOB-END NOT MISSING) SORTED BY DECREASING JOB-START .
05 JOB_CODE FROM JOB_HISTORY .
05 DEPARTMENT-CODE FROM JOB-HISTORY.
05 JOB_START FROM JOB_HISTORY.
05 SALARIES_FOR_JOBS OCCURS FOR SALARY-HISTORY WITH

(EMPLOYEE-ID= JOB-HISTORY-REC.EMPLOYEE_ID) AND
(SALARY-START BT JOB-START AND JOB_END) SORTED BY
DECREASING SALARY-START.
07 SALARY-START FROM SALARY-HISTORY.
07 SALARY-AMOUNT FROM SALARY-HISTORY.

DTR> READY EMPLOYEE_HISTORY_2
DTR> PRINT EMPLOYEE-HISTORY-2 WITH EMPLOYEE-ID= "00168"

15-18 Accessing Data the Expert Way: Without Collections

)

J

JOB DEPARTMENT JOB SALARY SALARY
ID LAST NAME CODE CODE START START AMOUNT

00168 Nash PRGM SUWE 23-Feb-1979 10-0ct-1981 $27,126.00
15-0ct-1980 $25,057.00
21-0ct-1979 $23,919.00
23-Feb-1979 $23,605.00

PRGM ENG 30-0ct-1977 26-Aug-1978 $21,520.00
30-0ct-1977 $20,883.00

APGM ELMC 1-Jul-1975 21-Apr-1977 $15,977.00
24-Aug-1976 $15,851.00
1-Jul-1975 $15,179.00

DTR>

If you look back at the earlier section in this chapter on creating RSEs, you will
see that the data this view displays is very similar to the data you get from
crossing the same three domains in one RSE. It is important to remember that
DAT ATRIEVE considers fields defined in the second and subsequent OCCURS
clauses in a view domain as repeating fields. Because of this, you must use the
techniques for retrieving list items when you retrieve fields subordinate to the
second and subsequent OCCURS fields.

The section on print statement options in Chapter 19 shows an example of a
PRINT statement that retrieves such fields from a view domain.

15.5 Access Privileges Needed for Using Views

To ready a view for any task, users need the appropriate ACL privileges from
the following list:

• The view itself

• The directory in which the view is located

• Each domain that the view accesses

View users also need the appropriate VMS privileges for all data files associated
with the domains on which the view is based and for the VMS directories stor­
ing those files.

In short, users cannot ready the view if they do not have sufficient privileges to
ready the domains on which the view is based.

Chapter 7 discusses access privileges in greater detail.

Accessing Data the Expert Way: Without Collections 15-19

15.6 Summary of Options: Advantages and Disadvantages

As you have learned, DATATRIEVE gives you many options for accessing data.
This section summarizes those options and their advantages and disadvantages.

• Using the statements that create and manipulate collections

These statements begin with the keywords FIND, SELECT, SORT, REDUCE,
and DROP. The advantage you have when you create a collection is that the
RSE in the FIND statement is still at your disposal after the FIND statement
executes. Therefore, the RSE does not have to be exact and you can refine it
with other statements after you take a look at the records it specifies.

You do not have the advantage of indexed access to records in a collection. If
the collection contains many records and you need to perform complex opera­
tions on those records, DAT ATRIEVE performance is going to be slower than
if you used key-based access to a domain. On the other hand, if the collection
gathers together only a few records from a domain that contains thousands of
records, you might get faster performance using one or more collections as the
basis for your operations.

The performance factor aside, you either cannot or should not use collection­
oriented statements in compound statements. In most procedures, this limits
what you can do with collections.

• Using RSEs in statements other than FIND:

This option gives you the greatest flexibility. You can specify the records you
want to process in compound statements. You can specify either collections or
domains as the record sources in the RSE. To get the best response time from
DATATRIEVE, include in the RSE key-based access to a domain or use a
small collection when its records come from very large domains.

The disadvantage of using RSEs in statements other than FIND is that you
must learn to tell DATATRIEVE what records you want in one RSE. Remem­
ber, however, you can type EDIT immediately after an incorrect statement to
correct your mistakes. This takes much of the pain out of learning to enter
complex RSEs.

15-20 Accessing Data the Expert Way: Without Collections

C

)

• Defining and using views

A view is an excellent substitute for RSEs and lists of fields that you fre­
quently enter. A view also provides a way to mask sensitive data in a domain
from users who should not see it.

One disadvantage of views is that you cannot use them to store records in
domains, only to display or modify records already stored.

When a view contains more than one OCCURS RSE, the fields subordinate to
all but the first OCCURS field are treated as list items. Accessing these fields
individually requires the same method you must use to access list fields
defined in record definitions. (See the section earlier in this chapter on lists.)
Views that contain more than one OCCURS RSE, in order to be easy to use,
should include data that you want to display or modify as a unit.

Accessing Data the Expert Way: Without Collections 15-21

,

)

J

Maintaining Data 16

This chapter discusses storing, erasing, and modifying records stored in VAX
RMS (Record Management Services) data files.

16. 1 Storing Records

To store records in a domain, you must first ready it for either write or extend
access. If you choose write access, you can also print and modify records in the
domain. Ready the domain with the shared option if you know other users
might be storing, modifying, or erasing records in that domain at the same time
you are. For example:

DTR> READY EMPLOYEES SHARED WRITE
DTR>

Example 16-1 illustrates two variations of a STORE operation.

Example 16-1: Storing Records Interactively

DTR} READY EMPLOYEES SHARED WRITE
DTR>
DTR> To store one record, enter STORE followed by the domain name.
DTR> DATATRIEVE then prompts you to enter a value for each of the
DTR} elementary fields in the record . After you enter a value,
DTR} DATATRIEVE checks the record definition to make sure the
DTR} value meets all the field requirements. If the value does not
DTR> meet those requirements, DATATRIEVE displays a message and
DTR} prompts you to enter another value for the field.
DTR>

(continued on next page)

16-1

DTR> STORE EMPLOYEES
Enter EMPLOYEE-ID : 00502
Enter LAST_NAME: SCHULTZ
Enter FIRST-NAME : BONNIE
Enter MIDDLE-INITIAL: T
Enter ADDRESS-DATA : RFD 5
Enter STREET : STORK DRIVE
Enter TOWN : HUDSON
Enter STATE : MASS
Truncation during assignment.
Re-enter STATE : MA
Enter ZIP : (TAB)
Enter SEX : F
Enter SOCIAL-SECURITY : 234796666
Enter BIRTHDAY: (TAB)

If you want to store more than one record, you can enter
REPEAT, followed by the number of records you want to store
and a STORE statement. DATATRIEVE then prompts you to enter
field values for the specified number of records.

DTR) !
DTR>
DTR>
DTR>
DTR>
DTR>
DTR)
Enter
Enter
Enter
Enter

REPEAT 3 STORE EMPLOYEES
EMPLOYEE-ID : 00503
LAST-NAME: BRAVO
FIRST-NAME : MARYANN
MIDDLE-INITIAL: M

DTR>
DTR>
DTR>
DTR)
DTR>
DTR>
DTR>
DTR>
DTR> !
Enter
Enter
Enter
Enter
Enter
"Z

If you discover a mistake in a previous field entry for the
record you are storing, you can enter CTRL1Z. Then
DATATRIEVE will not store that record. CTRL1Z also
aborts (terminates) a compound statement. If the store
operation is part of a REPEAT statement and you enter
CTRL1Z, you do not get to store any subsequent records
you otherwise would be prompted for.

LAST-NAME: PHARES
FIRST-NAME: ELIZABETH
MIDDLE-INITIAL : C
ADDRESS-DATA : 37 TINTON AVE.
STREET : (CTRUZ l

Execution terminated by operator.
DTR>

Example 16-2 shows a store operation in a procedure. The example also
illustrates the optional USING and VERIFY USING clauses of the STORE
statement.

16-2 Maintaining Data

Example 16-2: Storing Records in a Procedure

DTR>
DTR>
DTR>
DTR>
DTR>

NEW-PEOPLE is a procedure to be used by people who do not
understand the restrictions they must obey when entering
data and who do not know much about DATATRIEVE.

DTR> SHOW NEW-PEOPLE
PROCEDURE NEW-PEOPLE

SET ABORT makes sure the procedure will stop if for some
reason a user cannot ready the domain.

SET ABORT
READY EMPLOYEES SHARED WRITE

SET NO ABORT makes sure the procedure does not stop if
someone enters CTRL1Z to negate a mistake made while
storing a record.

SET NO ABORT

The value for the variable MORE-RECORDS determines when
the procedure stops. MORE-RECORDS starts with the value '11t 11

<:for 111,es") and the user gets to change it after storing
each record.

DECLARE MORE-RECORDS PIC X.
MORE-RECORDS = 11

~
111

WHILE MORE-RECORDS CONT "Y"
BEGIN

STORE EMPLOYEES USING
BEGIN

EMPLOYEE_ID is the primary key for a data file. This
statement automatically gives it a number that is one
more than the largest existing value. Because the field
is defined as PIC X(S), you want to be sure that values
containing fewer than 5 digits are stored with leading
zeros. The edit string in the FORMAT value expression
ensures that this is done.

EMPLOYEE-ID= FORMAT(MAX ID OF EMPLOYEES+ 1) USING 99999

The following statements display information to help the
user enter data correctly. The expressions containing an
asterisk(*) prompt the user to enter a value for a
field.

(continued on next page)

Maintaining Data 16-3

PRINT "Press the TAB key if. you have no data for a field.",
SKIP

LAST _NAME = *. "last name"
FIRSLNAME = *."first name"
MIDDLLINITIAL = * . "middle initial"
ADDRESS-DATA= *."RFD number or other misc. address data"
STREET= *."street"
TOWN= *."city or to111n"
STATE= *."two-character state abbreviation"
SEX= *."sex (Mor F)"
BIRTHDAY= *."birth date (11 character maximum)"

You need to let users know when they cannot enter TAB.
SOCIAL-SECURITY is an index key field that does not allow
duplicates. You do not want users to leave such a field
blank. If a user leaves the field blank for one record,
then subsequent blank entries are considered duplicates.

PRINT SKIP,
"You must enter the employee's social security number.",
SKIP

SOCIAL-SECURITY = *. "social security number (digits only)"
END VERIFY USING

The VERIFY clause of the STORE statement lets you put in
additional statements you want DATATRIEVE to execute
before it stores a record. In this case, it contains
an IF statement to make sure the user has not entered
any spaces or pressed the TAB key for the SOCIAL-SECURITY

! field.
!
IF SOCIAL-SECURITY CONTAINING 1111 THEN
BEGIN

PRINT SKIP, "Do not press TAB or enter spaces for this field"
SOCIAL-SECURITY= -*."social security number again"

END
PRINT SKIP
MORLRECORDS = *. "Y if storing more records, N if not"

END
FINISH EMPLOYEES
PRINT "NEW_PEOPLE program finished."
END-PROCEDURE
DTR>
DTR> Here is what happens when someone executes NEW_PEOPLE.

DTR>
DTR> :NEW-PEOPLE
Press the TAB key if you have no data for a field.

Enter last name : Warren
Enter first name : Leslie
Enter middle initial : A
Enter RFD number or other misc. address data : (TAB)
Enter street: 16 Ricky Lane
Enter city or town: Hudson
Enter two-character state abbreviation : MA
Enter sex (Mor F) : F
Enter birth date (11 character maximum): 3128146

16-4 Maintaining Data

You must enter the employee 's social security number .

Enter social security number (digits only) = (TAB I

Do not press TAB or enter spaces for this f i eld.

Enter social security number again = 149873444

Enter Y if storing more records, N if not = N
NEW_PEOPLE program finished .
DTR>

You cannot store records in a domain by accessing a view based on that domain.
Access domains directly when you want to store records.

16.2 Erasing Records

You must first ready a domain with write access before you can erase any
records it contains. Use the shared option if you want to let other users store,
erase, or modify records in the domain at the same time you are accessing it.

There are three ways you can erase records. You can erase:

• A selected record in a collection

• All of the records in the CURRENT collection

• All of the records in an RSE

You cannot erase records in a view based on more than one domain or records
specified by an RSE that contains a CROSS clause. Although you can erase
records in a view that contains a subset of fields from more than one domain,
remember that you are erasing all the fields in those records, not just the ones
you see in the view. The same holds true for a collection record that results
from a REDUCED TO clause or a REDUCE statement.

If you want to delete only one or a few records, it is easiest to isolate records in
a collection. Example 16-3 illustrates how to erase records using a collection.

Example 16-3: Erasing Records by First Creating a Collection

DTR> ! Erase one of the DEGREES records for the employee with
DTR> ! ID number 00183 .
DTR>
DTR> READY DEGREES SHARED WRITE
DTR> FIND DEGREES WITH EMPLOYELID = 11 00183 11

CS records found]
DTR> PRINT
No record selected, print i ng whole collection.

(continued on next page)

Maintaining Data 16-5

EMPLO'r'EE COLLEGE
ID CODE

00183
00183
00183
00183
00183 MIT

DTR}
DTR> The first
DTR>
DTR> SELECT 1
DTR> PRINT

EMPLO'r'EE COLLEGE
ID

00183

DTR> ERASE
DTR>

CODE

DEGREE DATE
DEGREE FIELD GIVEN

Associates Arts 3-Jul-1964
Masters Elect. Engrg. 16-Aug-1965
Masters Applied Math 3-Jul-1965
Bachelors Arts 14-Jun-1965
Ph.D. Elect . Engrg . 20-May-1965

record in the collection is the one to be erased.

DEGREE DATE
DEGREE FIELD GIVEN

Associates Arts 3-Jul-1964

DTR> The SHOW CURRENT command indicates the selected record
DTR> has been erased. Remember, however, the address pointer
DTR} value for that record is still part of the collection.
DTR} Therefore, the value for "number of records" in the
DTR} collection always stays the same, no matter how many
DTR> records you erase from the data file.
DTR>
DTR} SHOW CURRENT
Collection CURRENT

Domain = DEGREES
Number of Records = 5
Selected Record = 1 (Erased)

DTR> PRINT ALL

EMPLO'r'EE COLLEGE
ID CODE DEGREE

DEGREE
FIELD

00183
00183
00183
00183

Masters Elect. Engrg .
Masters Applied Math
Bachelors Arts

MIT Ph.D. Elect. Engrg.

DTR>

DATE
GIVEN

16-Aug-1965
3-Jul-1965

14-Jun-1965
20-May-1965

DTR> The first record in the PRINT ALL display is still
DTR> ordinal position 2 in the collection. Ordinal position 1
DTR> still belongs to the erased record. This is important to
DTR> remember if you are working with collections from which
DTR> you have erased records. If your SELECT statement
DTR> specifies an ordinal position that belongs to an erased
DTR} 1 record, DATATRIEVE tells you it cannot find the record.
DTR} !
DTR> SELECT 1
Selected record not found.

16-6 Maintaining Data

DTR>
DTR> If you want to erase all the records in the CURRENT
DTR> collection, simply enter ERASE ALL.
DTR>
DTR> FIND DEGREES WITH El'IPLOYELID = "00489"
[3 records found]
DTR> PRINT
No record selected, printing whole collection.

EMPLOYEE COLLEGE
ID CODE DEGREE

00489
00489
00489 MIT

DTR> ERASE ALL
DTR> PRINT ALL
DTR>

Bachelors
Masters
Masters

Arts

DEGREE
FIELD

Elect. Engrg.
Applied Math

DATE
GIVEN

11-Jun-1983
9-Mar-1983

11-Jun-1983

Example 16-4 is a procedure that erases records specified in a FOR statement
RSE. It is designed to handle a situation that sometimes arises in a personnel
system - "new hires" who, because they worked for a company some time ago
and then worked at another firm for a while, end up with two employee identifi­
cation numbers when they return to the original company. Employee identifica­
tion numbers are usually primary keys for data files and cannot be modified.
Therefore, all employee records to which you want to assign new numbers must
be erased and stored again.

Note ------------­

The sample personnel system in this book defines the
SOCIAL_SECURITY field in the EMPLOYEES domain as a key
field in which duplicates are not allowed. If users tried to enter a second
EMPLOYEE_ID for an employee, the duplicate SOCIAL_SECURITY
value would result in an error message and the record would not be
stored. The record d.efinitions for all other domains containing the
EMPLOYEE_ID field check to make sure the EMPLOYEE_ID
exists in the EMPLOYEES domain before records are stored (VALID
IF EMPLOYEE_JD IN WHO_IS_IT).

When looking at this example, assume that the SOCIAL_ SECURITY
field is not a key field and that the appropriate VALID IF clauses are
not in place in the record definitions. This is a good illustration of
how mistakes can mushroom when database design is faulty.

Maintaining Data 16-7

Example 16-4: Erasing Records Using a FOR Statement RSE

DTR} SHOW WASTE-BASKET
PROCEDURE WASTE-BASKET
SET ABORT
READY EMPLOYEES SHARED WRITE, SALARY_HISTORY SHARED WRITE,
JOB_HISTORY SHARED WRITE, DEGREES SHARED WRITE

PRINT SKIP, "This program checks the main employee file and also"
PRINT ''job, salary, and educational history files to findh
PRINT ''records for an employee who has two ID numbers.", SKIP

I

The display produced by the next block of statemehts Prints the
two records. Because EMPLOYEE_ID is the primary key for the file
and the primary key values determine the default order in which
records are displayed, the lowest (and first EMPLOYEE-ID value
assigned to the employee) is displayed first.

DECLARE GET_SS PIC 9(9).
GET_SS = *."social security number (digits only)"
FIND EMPLOYEES WITH SOCIAL-SECURITY= GET_ss
PRINT EMPLOYEE-ID, SOCIAL-SECURITY, LAST-NAME, STREET, TOWN,
STATE OF CURRENT

PRINT SKIP, "Enter the FIRST EMPLOYEE ID in the display in response"
PRINT "to the following prompt. If only one record is displayed or"
PRINT "if the employee records are not the ones you want, terminate"
PRINT "the procedure by entering CTRL1Z."
DECLARE GET-GOOD-ID PIC 9(5).
GET _GOOD_ID = *. "employee number for records to be retained"
!
PRINT SKIP, "Enter the LAST EMPLOYEE ID in the display in response"
PRINT "to the following prompt."
DECLARE GET-BAD-ID PIC 9(5).
GET-BAD-ID= *."employee number for records to be erased"
I

Each of the following FOR statements prints any bad records to
a file in the user's default VMS directory before erasing
them. A file is not created and no records are erased if the
domain in the FOR statement RSE has no records containing
the value in GET_BAD_ID.

FOR EMPLOYEES WITH EMPLOYEE-ID= GET-BAD-ID
BEGIN

ON STOREEMP .LIS
BEGIN

PRINT "Check the employee record with the following ID to"
PRINT "make sure name and address is current="
PRINT SKIP, GET-GOOD_ID
PRINT SKIP, "Here is the current information= 11

, SKIP
PRINT LAST_NAME, FIRST_NAME, MIDDLE-INITIAL
PRINT ADDRESS

END
ERASE

END

16-8 Maintaining Data

FOR JOB-HISTORY WITH EMPLOYEE-ID= GET_BAD_ID
BEGIN

ON STOREJOB . LIS
BEGIN

PRINT "These records must be stored in JOB-HISTORY under
PRINT "the fol lowing ID, not the one 1 isted: 11

PRINT SKIP, GET_GOOD_ID, SKIP
LIST

END
ERASE

END
!
FOR SALARY-HISTORY WITH EMPLOYE~-ID = GET-BAD-ID
BEGIN

ON STORESAL. LIS
BEGIN

PRINT "Store these records in SALARY-HISTORY under the
PRINt "following ID, not the one listed ="
PRINT SKIP, GET_GOOD-ID, SKIP
LIST

END
ERASE

END

FOR DEGREES WITH EMPLOYEE-ID= GET-BAD-ID
BEGIN

ON STOREDEG . LIS
BEGIN

PRINT "Add these records to DEGREES if they are not"
PRINT "already stored under the following ID =
PRINT SKIP, GET-GOOD-ID, SKIP
PRINT COLLEGE-CODE, DEGREE, DEGREE-FIELD, DATE_GIVEN

END
ERASE

END
!
PRINT "If any of the following files are in your default"
PRINT ''VMS directory, they contain additional changes"
PRINT ''you might have to make to the Personnel database"
PRINT "for this employee:"
PRINT SKIP, "STOREEMP .LIS"
PRINT "STOREJOB .LIS"
PRINT "STORESAL.LIS"
PRINT "STOREDEG .LIS"
FINISH EMPLOYEES, JOB_HISTORY, SALARY-HISTORY, DEGREES
END-PROCEDURE

DTR> !
DTR) ! Here is what happens when a user executes WASTE-BASKET.
DTR>
DTR> =WASTE-BASKET

(continued on next page)

Maintaining Data 16-9

This program checks the main employee file and also
job, salary, and educational history files to find
records for an employee who has two ID numbers.

Enter social security number (digits only) : 269212608

SOCIAL
ID SECURITY LAST NAME STREET

00173 269 21 2608 Bartlett 149 Steeple Lane
NH

00502 269 21 2608 Bartlett 149 Steeple Lane

NH

Enter the FIRST EMPLOYEE ID in the display in response

Troy

Troy

to the following prompt. If only one record is displayed or
if the employee records are not the ones you want, terminate
the procedure by entering CTRL1Z.

Enter employee number for records to be retained = 00173

Enter the LAST EMPLOYEE ID in the display in response
to the following prompt.

Enter employee number for records to be erased = 00502

If any of the following files are in your default
VMS directory, they contain additional changes
you might have to make to the Personnel database
for this employee =

STOREEMP .LIS
STOREJOB .LIS
STORESAL. LIS
STOREDEG .LIS

DTR>

16.3 Modifying Records

TOWN

You must first ready a domain with either modify or write access before you can
modify any records it contains. Use the shared option if you want to let other
users store, erase, or modify records in the domain at the same time you are
accessing it.

There are three methods you can use to modify records. You can modify:

• A selected record in a collection

• All of the records in the CURRENT collection

• All of the records in an RSE

16-10 Maintaining Data

Using any of these methods, you can specify the fields you want to change. If
you do not specify the fields to be changed, DATATRIEVE prompts you for all
the record fields.

Note -----------­

Be very careful when modifying record fields pulled from more than
one domain. This situation can exist when you are modifying records
in a view based on more than one domain or in an RSE containing a
CROSS clause. In these cases, if the field you are changing is stored
in more than one data file, you are updating only one of those files for
each field value you enter. In the sample personnel system used in
this book, the domains are set up to minimize duplicate fields. If, how­
ever, you are modifying a field that needs to be changed in nine
domains, you cannot escape entering the change nine times without
some fairly complex statements.

Example 16-5 illustrates modifying records using a collection.

Example 16-5: Modifying Records by First Creating a Collection

DTR> ! Change the value of the field CONTACT-NAME in one record
DTR> ! from the COLLEGES domain.
DTR>
DTR> READY COLLEGES MODIFY
DTR> FIND COLLEGES WITH CONTACT _NAME CONTAINING "L'r'NCH"
[2 records found]
DTR> LIST ALL

COLLEGE-CODE
COLLEC;E_NAME
CONTACT-NAME
ADDRESS-DATA
STREET
TOWN
STATE
ZIP

COLLEGE_CODE
COLLEGE_NAME
CONTACT_NAME
ADDRESS-DATA
STREET
TOWN
STATE
ZIP

QUIN
Quinnipiac College
George C. Lynch

Hamden
NH
06152

STAN
Stanford Univ.
Carol Lynch

Stanford
CA

(continued on next page)

Maintaining Data 16-11

DTR)
DTR>
DTR>

Select the record to be modified from the collection .

DTR > SELECT 1
DTR>
DTR)
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>

If you want to be prompted to enter a value for every field
in the record, simply enter the keyword MODIFY. If you
want to be prompted to enter values only for specific fields,
follow the keyword MODIFY with the names of those fields.
Remember to include a comma between field names if there is
more than one of them.

DTR> MODIFY CONTACT-NAME
Enter CONTACT_NAME = Hayward C. Dublin
DTR> LIST

COLLEGLCODE
COLLEGLNAME
CONTACT_NAME
ADDRESS-DATA
STREET
TOWN
STATE
ZIP

DTR>

QUIN
Quinnipiac College
Hayward C. Dublin

Hamden
NH
06152

DTR> Create a collection in which all records should have the
DTR> same values for a field. In the following example, two
DTR> JOB-HISTORY records have missing values in the SUPERVISOR-ID
DTR> field. Both records are for employees who have the same
DTR> supervisor, and you want to enter one value for DATATRIEVE
DTR> to store in both records.
DTR>
DTR> FIND JOB-HISTORY WITH
CON) DEPARTMENLCODE = "ELEL" AND JOB-CODE= "EENG" AND
CON> JOB-END MISSING
[2 records found]
DTR> PRINT ALL

EMPLO'/EE JOB
ID CODE

JOB
START

00238 EENG 2-Feb-1982
00428 EENG 10-Jan-1982

JOB
END

DEPARTMENT SUPERVISOR
CODE ID

ELEL
ELEL

DTR>
DTR)
DTR>
DTR>
DTR>
DTR>

In this case, enter MODIFY ALL followed by the field name or
names you want to change. DATATRIEVE prompts you once for
each field you specify and changes all the records in the
collection.

DTR> MODIFY ALL SUPERVISOR-ID
Enter SUPERVISOR-ID = 00356
DTR) PRINT ALL

EMPLO'/EE JOB
ID CODE

JOB
START

00238 EENG 2-Feb-1982
00428 EENG 10-Jan-1982

16-12 Maintaining Data

JOB
END

DEPARTMENT SUPERVISOR
CODE ID

ELEL
ELEL

00356
00356

When you are modifying records in collections, you must be careful when using
the keyword ALL. As shown in Example 16-5, you enter MODIFY ALL only
when you want all the records in the collection to contain identical values in
one or more fields. If you include an RSE in a MODIFY statement (MODIFY ...
OF EMPLOYEES, for example), you get the same results for that RSE as you
do for collections with MODIFY ALL-you are asking DATATRIEVE to store
identical values in all the records.

If you want to put different field values in each collection record (without select­
ing each record in turn), you must set up a FOR loop. In the following sample
statement, the keyword PRINT allows you to look at each record before and
after you enter changes. Depending on what you want to display and change,
you can specify field names following the keywords PRINT and MODIFY:

FOR CURRENT
BEGIN

PRINT
MODIF'r'
PRINT

END

Example 16-6 illustrates two modify operations. In both cases, the RSE specifies
records directly from a domain rather than a collection. The first operation
modifies records in a FOR statement RSE. The second operation modifies
records in a MODIFY statement RSE using values contained in an update file.
The second operation includes the optional USING and VERIFY USING clauses
you usually want to add to a MODIFY statement when designing applications
for multiple users.

Example 16-6: Modifying Records in a FOR Statement RSE

DTR> SHOW CHANGE-SUPERS

This procedure allows a user to change supervisor IDs for one
or more current records in JOB_HISTORY. The user is prompted
to enter the outdated supervisor ID and the department code .
DATATRIEVE then displays a record, prompts the user to enter
a new supervisor ID, and displays the changed record. The user
is returned to the DTR> prompt if DATATRIEVE cannot find any
records that meet the requirements in the FOR statement RSE.

(continued on next page)

Maintaining Data 16-13

PROCEDURE CHANGE_SUPERS
READY JOB-HISTORY SHARED MODIFY
FOR JOB-HISTOR'r' WITH SUPERVISOR-ID = *. "old supervisor" AND

DEPARTMENT _CODE = *. "department c,:,de" AND JOB_END MISSING
BEGIN

PRINT EMPLOYEE-ID, EMPLOYEE-ID VIA WHO_IS_IT, SUPERVISOR-ID
MODIF'r' USING SUPERVISOR-ID = *. "new supervisor"
PRINT EMPLOYEE-ID, EMPLOYEE-ID VIA WHO_IS_IT, SUPERVISOR_ID
PRINT SKIP

END
FINISH JOB-HISTORY
END-PROCEDURE

DTR> =CHANGE-SUPERS
Enter department code = SALE
Enter old supervisor = 00200

EMPLO~'EE
ID EMPLO'r'EE NAME

00208 Sciacca Joe
Enter new supervisor= 00504

EMPLO'r'EE
ID EMPLO'r'EE NAME

00208 Sciacca Joe

00233 Mathias Susan
Enter new supervisor = 00497
00233 Mathias Susan

DTR}

V

V

N

N

DTR} Here is a more complex procedure.
DTR} I

DTR} SHOW MODIFY-EMPLOYEES

SUP ERV I SOR
ID

00200

SUPERVISOR
ID

00504

00200

00497

lhis procedure uses records in an update file (associated with
the domain TRANS_EMP) to modify records in a master file
(associated with the domain EMPLOYEES).

ROCEDURE MODIFY-EMPLOYEES
SET ABORT
READY EMPLOYEES SHARED MODIFY, TRANS_EMP READ

The FOR statement specifies the update file records and
identifies them as A. The MODIFY statement specifies the
master file records and identifies them as B. The identifiers
A and B, when appended to field names, make it clear where
each field value is located.

OR A IN TRANS_EMP
MODIFY BIN EMPLOYEES WITH B.EMPLOYEE_ID = A.EMPLOYEE-ID USING

BEGIN

16-14 Maintaining Data

)

You cannot change values in any key fields that do not
allow changes. In t~e EMPLOYEES domain, EMPLOYEE-ID and
SOCIAL_SECURITY are such fields. The following set of
statements transfer from the update file record only
values for fields that can be changed in the master file .

. LAST-NAME= A.LAST-NAME
B.FIRST_NAME = A.FIRST_NAME
B.MIDDLE_INITIAL = A.MIDDLE-INITIAL
B.ADDRESS_DATA = A.ADDRESS-DATA
B.STREET = A.STREET
B.TOWN = A.TOWN
B.STATE = A.STATE
B.ZIP = A.ZIP
B.SEX = A.SEX
BRTHDAY = ARTHDAY

END VERIFY USING

The VERIFY clause prints on the system line printer a
record of the changes made to EMPLOYEES when this procedure
executes. Because the VERIFY clause executes before each
EMPLOYEES record is changed, it can print out the date and
time just before the change and the EMPLOYEES record before
the change. This is useful information to have in case
the system fails during the procedure or if you later

! receive information that an update record is wrong.
!
BEGIN

ON LP:

END

BEGIN
DECLARE DATE_OF_TRANSACTION USAGE DATE.

"NOW" stores current date and time in the variable.
LIST ... USING X(23) displays date and time. (By default,
DATATRIEVE displays date fields using X(11) which
truncates the value for time.)

DATE_OF-TRANSACTION = "NOW"
LIST DATE_OF_TRANSACTION USING X(23), SKIP
PR I NT II EM PLO'~ EE record= "

EMPLOYEES_REC is the top-level field in the record
definition. In this case, it has the same name as
the record definition itself. The top-level field you
are working with may not. List requires a field name
in this c,:,ntext.

LISl EMPLOYEES-REC
PRINT SKIP
PRINT "TRANS-EMP record="
LIST TRANS-EMP_REC
PRINT SKIP 2

END

FINISH EMPLOYEES, TRANS_EMP
END-PROCEDURE
DTR>

Maintaining Data 16-15

C

)

Part V
Programming with DAT A TRI EVE

C

)

Using Procedures and Compound Statements 17

This chapter tells you how to create and use procedures and compound statements.

A procedure is a fixed sequence of DAT ATRIEVE commands and statements
you create, name, and store in the Common Data Dictionary (CDD). Procedures
are useful when you plan to execute a series of DATATRIEVE commands and
statements frequently. By putting these in a procedure, you can simply execute
the procedure to save yourself much time.

Procedures are also useful when you are creating applications to help users not
proficient in DATATRIEVE. You can create a procedure to carry out what they
want to do, and all they have to do is execute it.

Compound statements can control a variety of execution conditions that simple
statements cannot. They are particularly useful in procedures because of their
flexibility.

17 .1 Creating and Executing Procedures

You create a procedure with the DEFINE PROCEDURE command. You execute
a procedure by entering EXECUTE or a colon (:) followed by the procedure
name. If you execute a procedure using a colon, do not type a space between the
colon and the procedure name.

A procedure name cannot duplicate the name of any other definition in the dic­
tionary directory where it is stored. Like other CDD names, it can consist of
from 1 to 31 letters, numbers, dollar signs, underscores, and hyphens. It must
begin with a letter and end with a letter or number.

17-1

Example 17 -1 creates and executes a very simple procedure called
NEAT NAME that makes a name easier to read and reduces the amount of
space it occupies in a display line. The example also shows and executes a
slightly more complex procedure called MAILING _LABELS.

Example 17-1: Creating a DATATRIEVE Procedure

DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>
DTR>

Start a procedure definition with the keywords DEFINE
PROCEDURE and type the name you want for the procedure. Then
enter any statements and commands you want in the procedure
just as you would enter them interactively. When you
continue a statement or command over more than one line, be
careful that the last word or character of each line to be
continued indicates that the statement or command is
incomplete. Terminate the procedure definition with the
keyword END-PROCEDURE.

DTR> DEFINE PROCEDURE NEAT_NAME
DFN)
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>
DFN>

Comment lines like these can be stored in the procedure
definition to make it easy to understand and read.
DATATRIEVE ignores any input that follows an exclamation
point (!) .on a line. You cannot end a comment line with
a hyphen, however.

The vertical bars c: :or:) in the following variable
definition suppress leading and trailing spaces that occur in
field values. Chapter 19 tells you more about using them.

DFN> DECLARE NEAT-NAME COMPUTED BY
DFN} FIRSLNAMEl : 11 11 :MIDDLLINITIAL: : 11 11 :LASLNAME
DFN> QUERY-HEADER IS "NAME".
DFN> END-PROCEDURE
DTR> SHOW PROCEDURES
Procedures=

CHANGE-SUPERS;l DATESTORE;l
DATESTORE4;1 DATESTORE5;1
MAILING-LIST; 2

NEAT_NAME;l
NEW_PEOPLE;4

DTR>

DATESTORE2;1 DATESTORE3;1
MODIFY_AN_EMPLOYEE-RECORD;7

MODIFY_EMPLOYEES;11

WASTE_BASKET;l

DTR> ADDRESS-LIST is a view that contains names and addresses of
DTR> current employees.
DTR>
DTR> READY ADDRESS_LIST
DTR> = NEALNAME
DTR> PRINT NEAT-NAME, TOWN, STATE OF FIRST 5 ADDRESS-LIST

17-2 Using Procedures and Compound Statements

NAME TOWN STATE

Alvin A Toliver Chocorua NH
Terry D Smith Chocorua NH
Rick Dietrich Boscawen NH
Janet Kilpatrick Marlow NH
Norman Nash Meadows NH

DTR>
DTR)
DTR>
DTR>
DTR>
DTR)
DTR)
DTR>

MAILING-LABELS is a procedure that prints out the names
and addresses of employees as they would appear on a
label for postal service distribution. The COL expressions
determine the line position on which the following print
element begins. The hyphen in parentheses(-) specifies
that the preceding field is displayed without a header.

DTR> SHOW MAILING_LABELS
PROCEDURE MAILING_LABELS
READY ADDRESS-LIST
FOR ADDRESS-LIST

PRINT COL 3, FIRST _NAME:: 11
:

11 MIDDLE_INITIAL:: 11 11
: LAST _NAME,

COL 3, ADDRESS-DATA(-),
COL 3, STREET(-),
COL 3, TOWN: : 11

,
11

: STATE,
COL 18, ZIP (-),
SKIP 2

FINISH ADDRESS-LIST
END-PROCEDURE

DTR> =MAILING_LABELS
Alvin A Toliver
RFD 5
146 Parnell Place
Chocorua, NH

Terry D Smith

120 Tenby Dr.
Chocorua, NH

Rick Dietrich
Apartment 45
19 Union Square
B,:iscawen, NH

DTR>

03817

03817

03301

Using Procedures and Compound Statements 17-3

17 .2 Correcting and Changing Procedures

When you enter END_PROCEDURE, DATATRIEVE checks your definition for
some of the syntax errors you might have made. It checks for other syntax
errors at the time you execute the procedure. If DATATRIEVE finds a syntax
error, it displays an error message and does not store the definition. If this hap­
pens, immediately type EDIT and press the RETURN key. DAT ATRIEVE puts
your entire DEFINE command in the edit buffer. You must look over your state­
ments to determine which one produced the error, correct your mistake, and exit
the editor. You may have to repeat this process several times to take care of all
the syntax mistakes in your procedure definition.

It is wise, therefore, to create long procedures in stages. In the first stage, put
only the first few statements and commands you eventually want in your proce­
dure before typing END_PROCEDURE. If DATATRIEVE displays an error
message, you have only a few lines to troubleshoot when you type EDIT. If
DATATRIEVE returns you to the DTR> prompt, DATATRIEVE stored the first
version of your procedure definition. You then type EDIT followed by the proce­
dure name to add more to your procedure.

Note ------------­

The EDIT entry immediately after the first version is stored should be
followed by the procedure name. Doing this ensures that a REDEFINE
command appears at the top of the definition copied to your edit
buffer. If you simply type EDIT and press the RETURN key, you get
your last command. Immediately after a procedure is stored, your last
command is DEFINE PROCEDURE, not REDEFINE PROCEDURE.
Any DEFINE command produces an error when the named object
already exists in the dictionary directory. If your last command was
REDEFINE PROCEDURE, entering the keyword EDIT by itself
causes no problems.

Creating procedures in stages can save you the frustration of searching through
50 lines of input to find a missing quotation mark or period. It can, however,
create quite a few versions of your procedure definition before you are done.
Chapter 7 tells you how to get rid of the earlier versions.

17-4 Using Procedures and Compound Statements

C

17.3 Using Compound Statements

A compound statement can contain one or more subordinate statements, but
never any commands. If you begin a statement with any of the following key­
words, DATATRIEVE recognizes it as a compound statement:

• REPEAT

• FOR

• BEGIN

• IF

• CHOICE

• WHILE

When you use the keyword THEN to join two statements, you also create a com­
pound statement.

You use compound statements to process one or more records in an RSE, to set
up conditions to control the number of times something is done, or to set up con­
ditions to specify whether something is done at all.

Here are some templates that illustrate a few compound statements useful in
procedures. By substituting a phrase for a real statement, the templates make it
easier for you to focus on which statements are subordinate to others. These
templates do not illustrate all the options you have when putting statements
together but they give a beginner some useful "roadmaps" to follow:

REPEAT this-many-times STORE ...

FOR each-each-of-the-records-in-this-ASE
Do-this ... THEN Do-this ...

STORE in-this-domain USING
BEGIN

Prompt-for-a-field-value
Prompt-for-a-field-value
Prompt-for-a-field-value

END VERIFY USING
BEGIN

Maybe-check-a-field-entry
Maybe-print-a-message
Maybe-get-a-new-field-value

END

(continued on next page)

Using Procedures and Compound Statements 17-5

FOR each-of-the-records-in-this-ASE
MODIFY USING

BEGIN
Print-the-record-before-the-change
Maybe-print-a-message
Prompt-for-a-field-value
Prompt-for-a-field-value
Prompt-for-a-field-value

Print-the-record-after-the-change
END VERIFY USING

BEGIN
Maybe-print-a-message
Maybe-check-a-field-entry
Maybe-reprompt-for-a-field-value
Maybe-print-auditing-information

END

WHILE this-condition-is-true
BEGIN

Do-this ...
And-also ...

And-finally ...
END

IF this-condition-is-true THEN
BEGIN

Do-this ...
And-also ...

And-finally ...
END ELSE

Do-this ...

17-6 Using Procedures and Compound Statements

C

)

CHOICE
FIELD1 EQUAL FIELD2 THEN Do-this ...
FIELD1 LESS FIELD2 THEN Do-this ...
FIELD1 GREATER FIELD2 THEN Do-this ...

ELSE Do-this ...
END_CHOICE

As shown in the templates, compound statements often contain other compound
statements. When you create your own procedures, you often find that you start
out with a word like FOR or WHILE and type many lines before you end that
statement. The templates use indentation to show which statements are con­
tained in others. It is a good idea for you to do this, too. DATATRIEVE does not
require indentation but you will find that compound statements are easier to
read if you include it.

The following sections discuss each type of compound statememt.

17 .3.1 Combining Statements with the REPEAT Statement

The REPEAT statement causes DATATRIEVE to execute the next statement a
specified number of times. In response to the following statement,
DATATRIEVE prompts you to enter field values for each of five records:

REPEAT 5 STORE EMPLOYEES

The number of times DATATRIEVE executes the subordinate statement can be
specified as an expression rather than an integer; for example, REPEAT
(FIELDl * 4). If you use an expression, it must result in a positive whole num­
ber when DATATRIEVE evaluates it.

17.3.2 Combining Statements with the FOR Statement

A FOR statement causes DATATRIEVE to execute the next statement on each
of the records in an RSE. The following FOR statement causes DATATRIEVE to
print each of the records in DEGREES that contain PRDU in the
COLLEGE CODE field:

FOR DEGREES WITH COLLEGE_CODE = 11 PRDU 11

PRINT

Using Procedures and Compound Statements 17-7

17.3.3 Combining Statements with the Keyword THEN

The keyword THEN joins two statements. THEN is most useful when you have
two or three simple operations to perform in a loop:

FOR JOB-HISTOR'' WITH EMPLO 1,EE-ID = "00205"
PRINT THEN MODIFY THEN PRINT

Using THEN to join long statements makes them difficult to read. A
BEGIN-END statement is a good substitute for repeated THEN statements
when you want to execute several long statements.

17 .3.4 Combining Statements in a BEGIN-END Block

A BEGIN-END statement (also called a BEGIN-END block) causes
DATATRIEVE to treat several statements as one statement. It is especially use­
ful within FOR, MODIFY, STORE, and REPEAT statements. A BEGIN-END
block defines the set of statements that must execute for each record in an RSE
or each time a condition is true:

FOR EMPLO','EES WITH EMPLO',EE-ID = *. "employee number"
BEGIN

LIST EMPLOYEE-ID, EMPLOYEE-NAME, EMPLOYEE_ADDRESS
MODIFY EMPLOYEE-NAME, EMPLOYEE-ADDRESS
LIST EMPLOYEE-ID, EMPLOYEE-NAME, EMPLOYEE-ADDRESS

END

A BEGIN-END block inside a REPEAT statement causes DATATRIEVE to
repeat an entire sequence of statements. If you want to store numerous records
using selected fields, you can use a BEGIN-END block to repeat the sequence of
prompting statements:

REPEAT 20 STORE JOBS USING
BEGIN

JOB_CODE = *.JOB_CODE
JOB-TITLE= *.JOB-TITLE

END

17-8 Using Procedures and Compound Statements

C

17.3.5 Combining Statements with the WHILE Statement

The WHILE statement tells DATATRIEVE to repeat the subordinate statement
as long as a specified condition is true. You can use a WHILE statement to con­
trol the number of times DATATRIEVE loops through a PRINT, MODIFY, or
STORE operation. In the following example, MORE_RECORDS is a variable
whose value is under the control of the person storing records in EMPLOYEES:

DECLARE MORE-RECORDS PIC X DEFAULT VALUE IS "~'".
READY EMPLOYEES SHARED WRITE
WHILE MORE-RECORDS CONTAINING 111

1
111

BEGIN
STORE EMPLOYEES
MORE_RECORDS =* ."','if you are storing more records, N if not"

END

The condition specified in the WHILE statement takes the form of a Boolean
(relational) expression. In the last example, MORE_RECORDS CONTAINING
"Y" is a Boolean expression. In the following example, the WHILE statement
contains the Boolean expression NUM LE 10 (LE is one way to write "less than
or equal to"):

DTR> DECLARE NUM PIC 99.
DTR> DECLARE ITS-SQUARE COMPUTED BYNUM* NUM.
DTR> WHILE NUM LE 10
CON> BEGIN
CON> PRINT NUM, ITS-SQUARE
CON> NUM = NUM t 1
CON> END

ITS
NUM SQUARE

00 0
01 1
02 4
03 9
04 16
05 25
06 36
07 49
08 64
09 81
10 100

DTR>

Note that MORE_RECORDS and NUM are both variable field names. You can­
not specify a record field name on the left side of a Boolean expression when
setting up a condition in a WHILE statement. If you need to put a record field
name in that position, you must prompt the user to enter one (WHILE *. "field

") name

Using Procedures and Compound Statements 17-9

Chapter 18 tells you more about creating simple and complex Boolean expres­
sions and using variables.

17.3.6 Combining Statements with the IF-THEN and IF-THEN-ELSE Statements

An IF-THEN statement causes DATATRIEVE to execute a statement only when
a condition is true. The IF component of the statement contains a Boolean
expression. The THEN component contains the simple or compound statement to
be executed when the expression is true. If the expression is false, DATATRIEVE
goes on to process the next statement if any exists.

An IF-THEN-ELSE statement causes DATATRIEVE to execute one of two state­
ments depending on whether a condition is true or not. The THEN component
contains the simple or compound statement to be executed when the expression
is true. The ELSE component specifies the simple or compound statement to be
executed when the expression is false.

When you combine statements with IF-THEN-ELSE, you can omit the keyword
THEN because DATATRIEVE knows an IF component is always incomplete.
When you include an ELSE component, however, you cannot omit the keyword
ELSE or put it on a line following the THEN statement. Type ELSE on the
same line as the last part of the THEN statement. This is how you tell
DATATRIEVE that you are not entering a simple IF-THEN statement.

Here is one example of an IF-THEN-ELSE statement:

IF REVIEW-DATE< CUT_OFF_DATE
THEN PRINT EMPLOYEE-ID, EMPLOYEE-ID VIA WHO_IS_IT,

REVIEW-DATE, 11 Needs a review" ELSE
PRINT EMPLOYEE_ID, EMPLOYEE-ID VIA WHO_IS-IT,

REVIEW_DATE, 11 Review up-to-date"

Here is the way the statement can be included in a procedure:

DTR> SHOW REVIEW-DATES
PROCEDURE REVIEW-DATES
READY JOB-HISTORY

DECLARE CUT_OFF_DATE USAGE DATE.
CIJT_OFF_DATE = *."date six months ago"
I

FOR JOB-HISTOR',' WITH SUPERVISOR-ID = *. "supervisor ID" AND
JOB_END MISSING SORTED BY REVIEW-DATE

IF REVIEW_DATE < CUT_OFF_DATE
THEN PRINT EMPLOYEE-ID, EMPLOYEE-ID VIA WHO_IS_IT,

REVIEW-DATE, " Needs a review" ELSE
PRINT EMPLOYEE-ID, EMPLOYEE-ID VIA WHO-IS-IT,

REVIEW_DATE, " Review up-to-date"

17-10 Using Procedures and Compound Statements

FINISH JOB-HISTORY
RELEASE WHO-IS_IT, CUT_OFF_DATE
END-PROCEDURE

DTR> :REVIEW-DATES
Enter date six months ago : 1/9183
Enter supervisor ID: 00267

EMPLOYEE
ID EMPLOYEE NAME

00497 Weist Robert
00419 Clarke Aruwa
00355 Gutierrez Joe
00184 Frydman Louie

EMPLOYEE
ID EMPLOYEE NAME

00464 Aaron Alvin
00216 Lobdell Arleen
00244 Boyd Ann
00283 Dal las Paul
00200 Ziemke Al
00501 Gramby Terry
00241 Keisling Edward

DTR>

Q

T

y
B

F

REVIBI
DATE

30-Sep-1982
15-Dec-1982
1-Jan-1983
5-Jan-1983

REVIEW
DATE

9-Jan-1983
13-Apr-1983
24-Apr-1983
4-May-1983

21-May-1983
7-Jun-1983
3-Jul-1983

Needs a review
Needs a review
Needs a review
Needs a review

Review up-to-date
Review up-to-date
Review up-to-date
Review up-to-date
Review up-to-date
Review up-to-date
Review up-to-date

17 .3. 7 Combining Statements with the CHOICE Statement

A CHOICE statement causes DATATRIEVE to execute one of a series of state­
ments depending on the evaluation of a Boolean expression associated with each
statement.

The CHOICE statement is a good substitute for nested IF-THEN-ELSE
statements:

IF A > B THEN PRINT "A 1s bigger" ELSE
IF A= B THEN PRINT "A 1s the same size" ELSE

IF A < B THEN PRINT 11 A1s smaller" ELSE
PRINT "A 1s a strange duck"

CHOICE
A> B THEN PRINT "A 1s bigger "
A = B THEN PRINT "A 1s the same size"
A < B THEN PRINT "A 1s smaller"
ELSE PRINT "A 1s a strange duck "

END-CHOICE

The ELSE clause is optional in a CHOICE statement. You can also omit the
keyword THEN, although doing so makes the statement more difficult to read.

Using Procedures and Compound Statements 17-11

Do not add the keyword IF before a Boolean expression in a CHOICE statement,
even though you might say "if" to yourself as you read it.

Here is an example of a CHOICE statement in a procedure:

DTR> SHOW REVIEW-DATES_TWO
PROCEDURE REVIEW-DATES-TWO
READY JOB-HISTORY

DECLARE CURRENT-DATE USAGE DATE .
CURRENT _DATE = "TODA',"'
I

FOR JOB_HISTOR't' WITH SUPERVISOR-ID = "00267" AND
JOB-END MISSING SORTED BY REVIEW-DATE

CHOICE
!
! GE 210 days is 7 months or more ...

CURRENT-DATE - REVIEW_DATE GE 210 THEN
PRINT EMPLOYEE-ID, REVIEW-DATE,
"At least one month overdue"

BT 209 AND 180 days is between 7 and G months . ..

CURRENT-DATE - REVIEW-DATE BT 209 AND 180 THEN
PRINT EMPLOYEE-ID, REVIEW_DATE,
"A few weeks overdue"

BT 179 AND 150 days is between G and 5 months ...

CURRENT-DATE - REVIEW_DATE BT 179 AND 150 THEN
PRINT EMPLOYEE-ID, REVIEW-DATE ,
"Not overdue, but schedule"

No one else needs a performance review ...

ELSE PRINT EMPLOYEE-ID, REVIEW-DATE,
"Reviewed recentli.:1 11

END_CHOICE
I

FINISH JOB_HISTORY
END-PROCEDURE

DTR>

Chapter 18 tells you more about manipulating date fields.

17 .4 Guidelines for Writing Procedures and Compound
Statements

This section discusses some restrictions and error conditions that you should
know about before you begin to write your own procedures.

17-12 Using Procedures and Compound Statements

)

J

17.4.1 Using FIND, SELECT, SORT, REDUCE, and DROP Statements

You can include FIND, SELECT, SORT, REDUCE, or DROP statements in
procedures but include them only as simple statements. Do not enter these
statements as part of a compound statement.

In addition, remember that when a FIND statement is in a procedure,
DATATRIEVE does not display a message to tell you how many records it found
for the collection. If DATATRIEVE did not find any records to meet the specifi­
cations in the FIND statement RSE, a subsequent SELECT statement will pro­
duce an error message.

17.4.2 Avoiding Looping Mistakes

You can create an infinite loop (looping that does not stop) by setting up a con­
dition that is always true. The following is an obvious example of a condition
that is always true (The symbol < means less than):

WHILE 0 < 1
PRINT "This is an infinite 1,)op. Enter CTRL1C to stop it. 11

You can create the same sort of situation when you use expressions that contain
variables whose values you do not control. Refer back to the examples for the
WHILE statement earlier in this chapter. If the values of the condition varia­
bles (MORE_RECORDS and NUM) were changed outside the BEGIN-END
block subordinate to the WHILE statement, an infinite loop would result.

You can invoke a procedure within a loop but you should put the EXECUTE (:)
statement inside a BEGIN-END block when you do. Otherwise, DATATRIEVE
may execute only the first statement or command in the procedure:

FOR rse
BEGIN

:procedure-name
END

REPEAT n-times
BEGIN

:procedure-name
END

You can let procedures execute other procedures but do not let a procedure
invoke itself, either directly or indirectly. If you do, you might create an infinite
loop.

Using Procedures and Compound Statements 17-13

17 .4.3 Invoking DAT ATRIEVE Procedures from VMS Command Files

You might want to invoke a DA TATRIEVE procedure from a VMS command
file. If you do this, you invoke the procedure with the keyword EXECUTE
rather than the colon (:). In the following example, DTR32 is a DCL symbol:

$ TYPE STOREEMP.COM
$! STOREEMP.COM executes a DATATRIEVE procedure to
$! store new employee records and then prints the
$! auditing information created by the procedure.
$!
$ DTR32 EXECUTE CDD$TOP .PERSONNEL .ST ORE-EMPLOYEES
$ PRINT;QUEUE=SYS$PRINT AUDIT.LOG
$ @STOREEMP.COM

$

17 .4.4 Controlling Execution on Error Conditions

You can use the SET ABORT or SET NO ABORT commands to control what
happens if DATATRIEVE encounters an error condition when processing a
procedure. SET ABORT is the normal default when you invoke DATATRIEVE.

When SET ABORT is in effect, DATATRIEVE exits a procedure when either of
the following conditions is true:

• It finds an error condition when trying to execute one of the statements or
commands in the procedure.

• It processes a CTRL/Z or CTRL/C entered by the person who invokes the
procedure.

If either of these conditions is true and SET NO ABORT is in effect,
DATATRIEVE does not exit the procedure. It does abort the statement it is
executing but continues processing any remaining statements and commands.

Generally, you want SET ABORT in effect when your procedure readies
domains that contain the data you want to access. If those domains cannot be
readied, there is no point in continuing with the rest of the procedure. If SET
NO ABORT were in effect, DATATRIEVE would produce error messages as it
processed any statements referring to the domains.

17-14 Using Procedures and Compound Statements

On the other hand, SET NO ABORT should be in effect if your procedure
prompts users to enter values for more than one record. In this case, you can
expect someone to enter CTRL/Z once in a while to keep an entry for one of the
records from being stored. You want users to reenter the looping cycle so they
can store or change more records. If SET ABORT is in effect, DATATRIEVE
aborts the remainder of a procedure or command file when you enter CTRL /Z.

The ABORT statement lets you specify an error condition appropriate for the
operation you are performing. The ABORT statement terminates execution of
the compound statement or statements containing it and can print a message
explaining the termination.

An IF or CHOICE statement sets up the condition under which the ABORT
statement executes. In the following example, the ABORT statement is in the
VERIFY clause of a STORE statement. It executes when a value for
EMPLOYEE_ID already exists in the EMPLOYEES domain. Note that the
ABORT statement terminates all statements to which it is subordinate. In this
case, the user does not get to store any more records. Because SET NO ABORT
is in effect, however, the FINISH command and the final PRINT statement do
execute:

DTR> SHOW STORE_EMPLOYEE
PROCEDURE STORE_EMPLOYEE
SET ABORT
READY EMPLOYEES SHARED WRITE
SET NO ABORT
DECLARE MORE-RECORDS PIC X.
MORE-RECORDS = '"r"'
WHILE MORE-RECORDS CONT 111r111

BEGIN
STORE EMPLOYEES VERIFY USING

IF EMPLOYEE_ID IN WH O_I S_IT THEN
ABORT "Ernpl,:,yee number 11 :EMPL0 1

1
1ELID: : 11 already exists"

MORE-RECORDS= * . '"r' if storing rnore records, N if not"
END

FINISH EMPLO'r'EES
PRINT "Exit frorn procedure STORE-EMPLO'i'EE . 11

END_PROCEDURE

(continued on next page)

Using Procedures and Compound Statements 17-15

DTR> :STORE-EMPLOYEE
Enter EMPLOYEE-ID: 00799
Enter LAST_NAME : TORRELL
Enter FIRST-NAME : MAY

Enter Y if storing more records, N if not: Y
Enter EMPLOYEE-ID : 00164
Enter LAST_NAME : CHARLES
Enter FIRST_NAME : LISA

ABORT : Employee number 00164 already exists
Exit from procedure STORE-EMPLOYEE.

DTR>

Statements to control and specify error conditions can be numerous and complex
in large scale applications. This section is designed only to introduce you to the
topic. There are restrictions that apply to the ABORT statement that are not
listed here. If you want more detailed information on handling error conditions,
you should read the sections on the SET command and the ABORT statement in
the VAX DATATRIEVE Reference Manual.

17.5 Getting a Procedure to Work the Way You Want

When you execute a procedure for the first time, you might find one of two
things happens:

• DATATRIEVE uncovers some syntax problems that it did not catch at the
time you stored the procedure.

• The results produced by the procedure are not what you want.

The SET VERIFY and OPEN commands are useful when you are troubleshoot­
ing problems with procedures.

17 .5.1 Displaying Command File and Procedure Input During Execution

SET VERIFY displays input from VMS command files and the editing buffer as
they are processed. SET NO VERIFY turns off this input display. (The SHOW
SET_ UP command tells you whether SET VERIFY or SET NO VERIFY is in
effect during your DATATRIEVE session.) SET VERIFY and SET NO VERIFY
are also DCL settings. The default for your DATATRIEVE session is whichever
one is in effect at DCL level when you invoke DATATRIEVE.

17-16 Using Procedures and Compound Statements

)

SET VERIFY does not display statements and commands from DAT ATRIEVE
procedures as they are processed. It is easy, however, to recreate your
DATATRIEVE procedure as a VMS command file so you can take advantage of
SET VERIFY:

1. Write your procedure definition to a command file using the format:

EXTRACT procedure-name ON filename.COM

2. Exit DATATRIEVE and edit the command file to remove the following
lines:

DELETE procedure-name;
REDEFINE procedure-name
END PROCEDURE

If you execute the procedure in a compound statement (FOR rse
:procedure-name, for example), you must also include the compound
statement in the command file.

3. Invoke DATATRIEVE again and execute the command file:

@filename

If SET VERIFY is in effect when you execute your command file, DATATRIEVE
displays input from the command file as it is processed. If there is a syntax
error, you can see exactly where it occurs. Check your incorrect input for
typographical errors. Then check the final word or character of the preceding
input line. (A common mistake is to enter parts of statements or commands so
that DA TATRIEVE cannot recognize that you are continuing them on the next
line.) If you do not recognize your syntax mistake, you might have to check the
format in the VAX DATATRIEVE Reference Manual or the VAX DATATRIEVE
Pocket Guide that applies to the statement, command, clause, or expression in
which the error occurred.

If parts of your command file do not execute when you expect them to
(DATATRIEVE apparently "skips" over some parts of a compound statement or
loops too many or too few times), SET VERIFY allows you to see which lines
are being executed before the skip occurs and where DATATRIEVE starts
processing again. You can then inspect the input at the point where the problem
seems to start.

When you are finished editing the command file and it works the way you
want, you can edit it one more time to insert:

1. REDEFINE procedure-name as the first line of the file

2. END PROCEDURE as the last line of the file

Using Procedures and Compound Statements 17-17

At DATATRIEVE command level, you can then execute the command file a
final time to create it as a new version of your DATATRIEVE procedure.

You might ask at this point, ~'Why not use command files rather than proce­
dures?" You can. However, there are disadvantages to using command files. For
example:

• You cannot execute command files inside a compound statement, such as a
FOR statement

• You lose advantages such as history and access control lists that are available
for CDD objects

17 .5.2 Writing a Session Log to a File

You can use the OPEN command to create a log file of your DATATRIEVE ses­
sion in your VMS directory. After you execute a command file, you can close
this file with a close command and exit DATATRIEVE to print it. This is useful
when you are troubleshooting a long command file or one that produces much
output. In this case, your screen often does not accommodate all the lines you
need to see at one time. In the following example, PROBLEMS.LOG is the log
file name, but you can choose any valid VMS file specification you want:

DTR> OPEN PROBLEMS.LOG
DTR> SET VERIFY
DTR> @MYFILE

DTR> CLOSE ! Do not enter the file name following CLOSE .
DTR> SET NO VERIFY
DTR> EXIT
$ PRINT/QUEUE=SYS$PRINT PROBLEMS.LOG

17 .5.3 Checking the Last Word or Character of Input Lines

Some procedure and DATATRIEVE command file problems occur because one or
more DATATRIEVE statements or commands were not properly continued from
one input line to the next. Read the section in Chapter 5 on processing more
than one input line as a unit for a discussion of this topic. Then try entering
interactively a statement or command that does not work properly in the proce­
dure or command file. Enter it exactly as it is written in the procedure or com­
mand file. If DATATRIEVE returns the DTR > prompt rather than a CON>
prompt after you enter an input line that you plan to continue, you need to cor­
rect your input format for the statement.

17-18 Using Procedures and Compound Statements

)

Defining and Calculating Values
with DAT ATRIEVE 18

This chapter provides details on forming and using values with DATATRIEVE.
It provides more comprehensive coverage of concepts to which you have been
introduced in preceding chapters.

18.1 Using DATATRIEVE Expressions

You use value expressions, Boolean expressions, and record selection expressions
(RSEs) every time you tell DATATRIEVE what you want to print, find, store, or
modify:

• A value expression consists of characters and symbols that specify a value
for DATATRIEVE to use when executing statements.

PRINT EMPLOYEE_NAME, PRINT "Do not press TAB", and PRINT
TOTAL SALARY all contain value expressions to tell DATATRIEVE what to
print.

• A Boolean expression consists of value expressions, relational operators, and
Boolean operators and specifies a relationship between value expressions for
DATATRIEVE to evaluate when executing statements. DATATRIEVE evalu­
ates Boolean expressions as either true or false.

DEPARTMENT_CODE = "ADMN", DEPARTMENT_CODE = *."department",
and JOB_ CODE = "CLRK" AND JOB _END MISSING are examples of
Boolean expressions.

18-1

• A record selection expression (RSE) consists of a record source, Boolean
expressions, and other clauses that identify the records with which you want
to do something.

EMPLOYEES WITH BIRTHDAY < "1/1/1946" SORTED BY BIRTHDAY is
an example of an RSE.

The clauses you can use when creating RSEs are detailed in Chapters 14 and 15
and are not discussed further in this chapter. RSEs contain Boolean expressions,
however, and you can get additional ideas for creating your own RSEs from
reading this chapter.

18.1.1 Value Expressions

Table 18-1 lists all the value expressions recognized by DATATRIEVE. These
are all discussed later in this chapter, with the exception of the last two value
expressions: table is discussed in Chapter 12 and concatenated is discussed in
Chapter 19.

Table 18-1: Value Expressions

Value Expression

Literal

Record field name

Variable field name

Prompting

Arithmetic

Conditional

FORMAT

Statistical

Date

Table

Concatenated

Example

"Order number:"

LAST NAME

RECORD COUNTER

*. "department"

PRICE* .75

IF PRICE LE 5 THEN PRICE * .9

FORMAT ID USING 9(5)

TOTAL PRICE

NOW

IN JOBS_ TABLE

FIRST _NAME I I ILAST _NAME

18-2 Defining and Calculating Values with DATATRIEVE

C

18.1.1.1 Literals - Literals are what most people think of first when they see
the term value. A literal explicitly states what you want to store or find in a
field or what you want to print. There are two types of literals:

• A character string, or text, literal is a string of up to 253 printing characters.
Except when you enter them in response to a DATATRIEVE prompt, you
must enclose character string literals in quotation marks. Printing characters
consist of uppercase and lowercase letters, numbers, and the following special
characters:

! @ # $ %
[{] } ' .

&*()-_= +"'
\ I ,<.>!?

• A numeric literal is a string of up to 31 digits. It can also contain a decimal
point (except in the rightmost position). Negative numbers can be preceded by
a minus sign(-). If you use a numeric literal to assign a value to a numeric
field, the PIC, USAGE, and sometimes SCALE clauses for the field can limit
the number of digits you can enter for the field. These clauses also determine
whether you can enter a decimal point or a sign.

The following example uses both a character string literal and a numeric literal:

DTR> PRINT "The number is : ", 21
The number is : 21

DTR>

Note that DAT ATRIEVE preserves the case of any letters you type for character
string literals. This is also true when you retrieve values for a text field in
response to a DATATRIEVE prompt. Except when you use the CONTAINING
(CONT) operator to search for field values, you must type letters using the case
in which they are stored in a field.

Chapter 19 shows you how to enter long character string literals over several
lines. It also shows you how to append value expressions to one another when
you need to create a string longer than 253 characters.

Defining and Calculating Values with DATATRIEVE 18-3

18.1.1.2 Record Field Names - When you use the name or query name of an
elementary or group field as a value expression, DATATRIEVE uses whatever
values are stored in that field. The following PRINT statement specifies the
group field NAME as a value expression:

DTR> PRINT NAME OF FIRST 3 EMPLOYEES

LAST NAME FIRST NAME !NIT

Toliver Alvin A
Smith Terry D
Dietrich Rick

DTR)

18.1.1.3 Variable Field Names - A variable is a field you define and name
with the DECLARE statement. After you create the variable, you can assign a
value to it and use its name as a value expression just as you can a record field
name. When you create a variable, you can define tt using any of the field defi­
nition clauses (except for the OCCURS and REDEFINES clauses) used to define
a record field. Unless you specify a DEFAULT or MISSING VALUE clause in
your variable definition, DATATRIEVE gives text variables an initial value of
spaces and numeric variables an initial value of zero.

The following example creates three variables and manipulates their assigned
values. Note that you end a variable field definition with a period, just as you
do a field definition for a record:

DTR) DECLARE NUM1 PIC 99.
DTR> PRINT NIJM1

NIJM1

00

DTR> NIJM1 = 15
DTR> PRINT NIJM1

NUM1

15

DTR> DECLARE NIJM2 PIC 99.
DTR) NUM2 = 10
DTR> PRINT NIJM2

18-4 Defining and Calculating Values with DATATRIEVE

NIJM2

10

DTR) PRINT NIJM1 * NIJM2
150

DTR> DECLARE NIJM3 COMPUTED BY NIJM1 * NIJM2 .
DTR) PRINT NUM3

NIJM3

150

NUM1, NlJM2, and NUM3 are global variables. A global variable exists until
you get rid of it with the RELEASE command, declare another global variable
with the same name, or exit DATATRIEVE.

Variables declared within a BEGIN-END block or a THEN statement are local
variables. A local variable disappears when the BEGIN-END block or the THEN
statement containing it finishes executing. As the following example illustrates,
the definition and value of a local variable has no effect on another local varia­
ble in an outer BEGIN-END block or on a global variable:

DTR) DECLARE X PIC X(6).
DTR> X = "Global"
DTR) PRINT X

X

Global

DTR> BEGIN
CON) DECLARE X PIC X(7).
CON) X = "Local 1"
CON) PRINT X
CON> BEGIN
CON> DECLARE X PIC X(7).
CON> X = "Local 2"
CON> PRINT X
CON) END
CON) PRINT X
CON) END

(continued on next page)

Defining and Calculating Values with DATATRIEVE 18-5

X

Local 1

X

Local 2

X

Local 1

DTR> PRINT X

X

Global

DTR)

18.1.1.4 Prompting Value Expressions - To make your procedures more versa­
tile, you can have DATATRIEVE prompt for a value to use when executing
statements. Do this by using a prompting value expression rather than
explicitly typing a literal, field name, or variable name in your statements. The
following example shows the variations you can use when typing prompting
value expressions:

DTR> PRINT *.name
Enter NAME : ERIN
ERIN

DTR) PRINT *."your name"
Enter your name = ERIN
ERIN

DTR> REPEAT 3 PRINT *. "a greeting"
Enter a greeting = Hi
Hi
Enter a greeting • Hello
Hello
Enter a greeting • Bonjour
Bonjour

DTR> REPEAT 3 PRINT **."a greeting"
Enter a greeting • Hello
Hello
Hello
Hello

18-6 Defining and Calculating Values with DATATRIEVE

As you can see, you put quotation marks around the message for the Enter
prompt when you want to include lowercase letters and spaces. You use a dou­
ble asterisk(**) in your prompting expression when you are creating a loop and
you want DATATRIEVE to prompt for one value to repeat every time through
the loop. The double asterisk prompt is useful when you are storing or modify­
ing records in a loop and you know a field value is going to be the same for all
records.

18.1.1.5 Arithmetic Expressions - An arithmetic expression is any number of
numeric value expressions separated by arithmetic operators. DATATRIEVE
recognizes four arithmetic operators. Table 18-2 shows each arithmetic operator
and the operation it performs.

Table 18-2: Arithmetic Operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

I Division

The following PRINT statement contains an elementary arithmetic expression
that adds three numeric literals:

DTR> PRINT 4 + 5 + 1
10

Arithmetic expressions can contain record or variable field names in addition to
or in place of numeric literals. DATATRIEVE uses the values stored in those
fields when it performs the arithmetic operation. If you are subtracting values
in fields, however, be sure to include spaces around the minus sign. If you do
not include spaces, DATATRIEVE interprets the minus sign as a hyphen and
converts it to an underscore:

DTR> PRINT X-1
"X-1" is undefined or used out of context .
DTR>

Defining and Calculating Values with DATATRIEVE 18-7

The following three rules control the order in which DAT ATRIEVE performs
arithmetic operations:

1. First evaluate any part of the expression in parentheses.

2. Then perform multiplications and divisions from left to right in the arith­
metic expression.

3. Finally, perform additions and subtractions from left to right in the arith­
metic expression.

You can control the order in which DATATRIEVE performs arithmetic opera­
tions by using parentheses. This can affect the results DATATRIEVE gets when
it evaluates the expression:

DTR> PRINT (6 * 7) + 5
47

DTR> PRINT 6 * (7 + 5)
72

DTR> PRINT 12 - 6 1 2
9.000

DTR> PRINT (12 - 6) 1 2
3.000

DTR>

18.1.1.6 Conditional Value Expressions - The DATATRIEVE conditional
value expressions (IF-THEN-ELSE and CHOICE) look very much like the
DATATRIEVE statements that use the same keywords. The conditional state­
ments (discussed in Chapter 17) execute subordinate statements, depending on
whether a condition is true or false. The conditional value expressions assign
field values, depending on whether a condition is true or false.

The IF-THEN-ELSE value expression can assign one of two values. In the fol­
lowing example, it assigns values to a variable, DISCOUNT _PRICE, depending
on the value in another variable, PRICE:

DTR> DECLARE PRICE PIC 9(4)V99 EDIT-STRING $$$$$.99.
DTR} DECLARE DISCOUNT-PRICE COMPUTED BY
CON> IF PRICE LE 500 THEN PRICE* .95 ELSE PRICE* .75
CON> EDIT-STRING $$$$$.99.
DTR> PRICE= 100.00
DTR> PRINT PRICE, DISCOUNT-PRICE

18-8 Defining and Calculating Values with DATATRIEVE

DISCOUNT
PRICE PRICE

$100.00 $95.00

DTR> PRICE= 1000.00
DTR> PRINT PRICE, ·DISCOUNT-PRICE

DISCOUNT
PRICE PRICE

$1000.00 $750.00

DTR)

The CHOICE value expression can assign one of several values. In the following
exa~ple, it assigns values to a variable, NEW _SALARY, depending on the
values in a record field, REVIEW_ CODE:

DTR) PRINT CURRENT

REVIEW CURRENT
NAME CODE SALARY

HARR't' 1 $51,712.00
SAM 5 $11,676.00
HORTENSE 4 $18,497.00
SALLY 3 $17,510 .00
JANE 2 $32,254.00

DTR>
CON)
CON>
CON>
CON)
CON>
CON)
CON>
CON>
DTR>
CON>

DECLARE NEW_SALARY PIC 9(6)V99 COMPUTED BY
CHOICE

REVIEW-CODE= "1"
REVIEW-CODE= "2"
REVIEW-CODE= 11 311

REVIEW-CODE= "4"
ELSE

END-CHOICE

THEN CURRENT-SALARY* 1.20
THEN CURRENT-SALARY* 1.15
THEN CURRENT-SALARY* 1.10
THEN CURRENT-SALARY

CURRENT-SALARY* .90

EDIT_STRING $$$$,$$$.99.
PRINT NAME, REVIEW-CODE, CURRENT-SALARY,
NEW_SALARY OF CURRENT

REVIEW CURRENT NEW
NAME CODE SALAR't' SALAR't'

HARR'l 1 $51,712.00 $62,054.40
SAM 5 $11,676.00 $10,508.40
HORTENSE 4 $18,497.00 $18,497.00
SALL't' 3 $17,510.00 $19,261.00
JANE 2 $32,254.00 $37,092.10

DTR>

In both the IF-THEN-ELSE and the CHOICE value expressions, the keyword
THEN is optional but the ELSE clause is required.

Defining and Calculating Values with DATATRIEVE 18-9

18.1.1. 7 FORMAT Value Expressions - These expressions consist of the key­
word FORMAT followed by a value expression and then a USING clause with
an edit string. The USING clause is optional. If you omit it, DATATRIEVE uses
the default edit string for the field to carry out your operation.

A FORMAT value expression lets an edit string affect more than display opera­
tions. Depending on how you use it, a FORMAT edit string can tell
DATATRIEVE how to store data and how to interpret data when searching for
field values.

You can use the FORMAT value expression, for example, when you want
DATATRIEVE to align numbers in a text field so that the least significant digit
always occupies the rightmost character position in the field. Otherwise,
DAT ATRIEVE fills a text field from left to right:

DTR> DECLARE INVOICE-NUMBER PIC X(6)
CON) VALID IF INVOICE-NUMBER NOT CONTAINING II II

DTR> INVOICE-NUMBER= *."invoice number"
Enter invoice number = 456
Validation error for field INVOICE-NUMBER.
Re-enter invoice number = 000456
DTR> INVOICE-NUMBER= FORMAT * ."invoice number" USING 9(6)
Enter invoice number = 456
DTR> PRINT INVOICE-NUMBER

INVOICE
NUMBER

000456

DTR>

The section later in this chapter on comparing and searching for data values
contains an example of using a FORMAT value expression to search for date
values corresponding to a day of the week.

18.1.2 Boolean Expressions

A Boolean expression specifies a relationship between value expressions. It con­
sists of value expressions, relational operators, and Boolean operators:

• Value expressions specify the values you want to compare.

• Relational operators specify how you want to compare the values.

• Boolean operators join two or more Boolean expressions together or reverse
the value of a Boolean expression.

18-10 Defining and Calculating Values with DATATRIEVE

)

All Boolean expressions contain at least two value expressions and at least one
relational operator. Some contain Boolean operators. DATATRIEVE evaluates a
Boolean expression as either true or false.

You use Boolean expressions in the following clauses, statements, and
expressions:

• The WITH clause in a record selection expression or SELECT statement

• The IF clause of an IF-THEN-ELSE statement or value expression

• The CHOICE statement or value expression

• The COMPUTED BY or VALID IF clauses in a field definition

• The WHILE statement

18.1.2.1 Relational Operators - Relational operators let you compare value
expressions, check whether a code value is in a table, check whether or not an
RSE contains any records, or check whether or not a field value is missing.

Table 18-3 shows relational operators and describes their meaning in a Boolean
expression. The characters a, b, and c in the table stand for value expressions
used in the comparison.

Table 18-3: Relational Operators

Operator

a EQUAL b

a NOT _EQUAL b

a GREATER THAN b

a GREATER_EQUAL b

a LESS THAN b

a LESS_EQUAL b

Meaning

True if a and b
are equal

True if a and b
are not equal

True if a is
greater than b

True if a is
greater than or
equal to b

True if a is less
than b

True if a is less
than or equal to b

Example

LAST _NAME EQUAL
"SMITH"

STATE NOT _EQUAL "NH"

PRICE GREATER_ THAN
50

PRICE GREATER_EQUAL
50

PRICE LESS THAN 50000

PRICE LESS_EQUAL 50000

(continued on next page)

Defining and Calculating Values with DATATRIEVE 18-11

Table 18-3: Relational Operators (Cont.)

Operator

a BETWEEN b AND c

a NOT BETWEEN b AND c

a STARTING WITH b

a CONTAINING b

a NOT CONTAINING b

a BEFORE b

a AFTER b

a IN table-name

a NOT IN table-name

ANY rse

NOT ANY rse

Meaning

True if a is
between b and c or
if a is equal to b
or c

True if a is not
between b and c or
not equal to b or c

True if the begin­
ning characters of
"a" match the
characters speci­
fied by "b"

True if a contains b

True if a does not
contain b

True if date value
a is earlier than
date value b

True if date value
a is later than
date value b

True if a is found
in the specified
table

True if a is not
found in the speci­
fied table

True if there are
any records
meeting RSE
requirements

True if there are
not any records
meeting RSE
requirements

Example

PRICE BETWEEN 1000
AND 5000

PRICE NOT BETWEEN 1000
AND 5000

LAST_ NAME STARTING
WITH "S"

COMPANY CONTAINING
"INC"

COMPANY NOT CONTAIN­
ING "INC"

BIRTHDAY BEFORE
"1-JAN-1910"

BIRTHDAY AFTER
"3/28/46"

DEPT_ CODE IN
DEPTS TABLE

DEPT_ CODE NOT IN
DEPTS TABLE

FAMILIES WITH ANY
KIDS

FAMILIES WITH NOT ANY
KIDS

(continued on next page)

18-12 Defining and Calculating Values with DATATRIEVE

C

)

Table 18-3: Relational Operators (Cont.)

Operator Meaning Example

a MISSING True if a contains SALARY AMOUNT -
the value specified MISSING
in the MISSING
VALUE clause for
a

a NOT MISSING True if a does not SALARY AMOUNT NOT -
contain the value MISSING
specified in the
MISSING VALUE
clause for a

To save typing time, you can use the following abbreviations and symbols for
relational operators:

EQUAL -------EQor=
NOT_EQUAL NEorNOTEQUAL
GREATER_ THAN • GT or >
GREATER_EQUAL ► GE
LESS_ THAN LT or <
LESS_EQUAL LE
BETWEEN BT
CONTAINING CONT

When you use relational operators that compare for lesser or greater values in
character strings, each character has a value. Appendix C lists all the charac­
ters that can appear in character strings according to their relative "values."

If you refer to Appendix C, you see that lowercase letters are considered
"greater than" uppercase letters. All relational operators except for
CONTAINING, NOT CONTAINING, BEFORE, and AFTER are case-sensitive.
EQUAL "SMITH" and EQUAL "Smith" are not equivalent expressions, but
CONTAINING "SMITH" and CONTAINING "Smith" are equivalent. The date
values compared with the BEFORE and AFTER operators are displayed like
text strings but they are not stored as text. You do not have to pay attention to
character values when you enter date value expressions.

Defining and Calculating Values with DATATRIEVE 18-13

The ANY and NOT ANY relational operators are particularly useful when a
record search depends on values contained in variable length lists (fields defined
with both the OCCURS and DEPENDING ON clauses). In the following exam­
ple, the field KIDS is a variable length list in the FAMILIES domain:

DTR> PRINT FAMILIES WITH ANY KIDS WITH
CON> KID-NAME CONT "RALPH"

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 IJRSIJLA 7
RALPH 3

18.1.2.2 Boolean Operators - You use the AND and OR Boolean operators to
join Boolean expressions and the NOT Boolean operator to reverse the value of
a Boolean expression.

When you join Boolean expressions with AND, the resulting expression is true
only if both expressions are true:

DTR> PRINT LAST-NAME, TOWN, STATE OF FIRST 5 ADDRESS_LIST WITH
CON> TOWN= "Milton" AND STATE= "NH"

LAST NAME

Reynolds
Frydman
Gehr
Moen
Brown

DTR>

Milton
Milton
Milton
Milton
Mil ton

TOWN STATE

NH
NH
NH
NH
NH

When you join Boolean expressions with OR, the resulting expression is true if
either one of the expressions is true:

DTR> PRINT LAST-NAME, TOWN, STATE OF FIRST 5 ADDRESS-LIST WITH
CON> TOWN= "Milton" OR STATE= "NH"

LAST NAME TOWN STATE

Toliver Chocorua NH
Smith Chocorua NH
Dietrich Boscawen NH
Kilpatrick Marlow NH
Nash Meadows NH

18-14 Defining and Calculating Values with DATATRIEVE

When you precede a Boolean expression with NOT, the resulting expression is
true if the expression following NOT is false. In the following example,
CURRENT _SALARIES is a view domain based on SALARY _HISTORY that
accesses salary information for current employees:

• DTR> PRINT EMPLOYEE-ID, SALARY-AMOUNT OF
CON> CURRENT-SALARIES WITH
CON> SALARY-AMOUNT NOT LT 85000

EMPL0'1'EE
ID

00228
00415
00204
00359

SALAR 111

AMOUNT

$85,150.00
$86,124.00
$87,143.00
$93,340.00

You can enclose parts of compound Boolean expressions in parentheses.
DATATRIEVE evaluates Boolean expressions in parentheses before evaluating
other Boolean expressions. If a Boolean expression contains Boolean operators as
well as parentheses, DATATRIEVE evaluates the compound expression in this
order:

1. Expressions enclosed in parentheses

2. Expressions preceded by NOT

3. Expressions combined with AND

4. Expressions combined with OR

Use parentheses to group Boolean expressions into compound Boolean expres­
sions to ensure that your expressions identify the records you want. For
example:

DTR> FIND ADDRESS-LIST WITH TOWN = "Miltl)n" AND
CON> (STATE= 11 NH 11 OR STATE= 11 MA")
[20 recl)rds fl)undJ
DTR> PRINT ALL LAST-NAME, TOWN, STATE

(continued on next page)

Defining and Calculating Values with DATATRIEVE 18-15

LAST NAME

Reynolds
Frydman
Gehr

Klein

DTR>

Milton
Milton
Milton

Milton

TOWN STATE

NH
NH
NH

MA

Here is what happens when the parentheses are not included. The true condi­
tion for the Boolean expression is met if a record includes either Milt9n, NH in
the address, or only MA as the state:

DTR> FIND ADDRESS-LIST WITH TOWN= "Milton" AND STATE= "NH" OR
CON) STATE = "MA"
[49 records found]
DTR> PRINT ALL LAST-NAME, TOWN, STATE

LAST NAME

Myotte
Siciliano
Reyn,)lds

DTR)

TOWN

Bennington
Farmington
Milton

STATE

MA
MA
NH

18.2 Computing Sums and Other Statistics

This section shows you how to use statistical value expressions and the SUM
statement.

18.2.1 Statistical Value Expressions

DATATRIEVE statistical functions let you summarize and calculate statistical
information from fields in your records. Usually, you enter a statistical function
along with the name of a record field or a variable (TOTAL SALARY _AMOUNT,
for example) and DATATRIEVE calculates the result. The exceptions are the
functions COUNT and RUNNING COUNT, which you use by themselves. Table
18-4 lists DATATRIEVE statistical functions and the values they compute.

18-16 Defining and Calculating Values with DATATRIEVE

)

Table 18-4: Statistical Functions and Results

Function

AVERAGE

MAX

MIN

STD DEV

TOTAL

RUNNING TOTAL

COUNT

RUNNING COUNT

Result

Averages the values in the expression

Identifies the largest value in the expression

Identifies the smallest value in the expression

Computes the standard deviation for the values in the
expression

Totals the values in the expression

In a PRINT statement loop, displays the running total of the
values in the expression

Counts the number of records in a record source

In a PRINT statement loop, displays a running count for the
items displayed

When you use statistical value expressions, you must follow each one with
the keyword OF and then an RSE (TOTAL SALARY _AMOUNT OF
CURRENT _SALARIES, for example). The exception to this rule is when the
value expressions apply to records in the CURRENT collection.

Example 18-1 shows you how to use statistical value expressions to obtain infor­
mation. The example uses data from two view domains, CURRENT _JOBS and
CURRENT SALARIES.

CURRENT_SALARIES contains one record in which SALARY _AMOUNT
is equal to 0. Because the field definition for SALARY _AMOUNT (in
JOB_HISTORY _REC) specifies MISSING VALUE= 0, DATATRIEVE does
not include that record in statistical computations based on SALARY _AMOUNT.
When DATATRIEVE displays a statistical result for SALARY _AMOUNT, it
precedes that result with a message telling you that it is not based on values
from all the records.

Defining and Calculating Values with DATATRIEVE 18-17

Example 18-1: Using Statistical Value Expressions

DTR> SHOW CURRENT_JOBS
DOMAIN CURRENT_JOBS OF JOB-HISTORY
01 CURRENT_JOB OCCURS FOR JOB-HISTORY WITH

JOB-END MISSING SORTED BY DEPARTMENT_CODE, JOB-CODE.
03 DEPARTMENT_CODE FROM JOB_HISTORY.
03 JOB_CODE FROM JOB-HISTORY.
03 EMPLOYEE-ID FROM JOB-HISTORY.
03 JOB_START FROM JOB-HISTORY .
03 SUPERVISOR-ID FROM JOB-HISTORY .

DTR> SHOW CURRENT-SALARIES
DOMAIN CURRENT-SALARIES OF SALARY-HISTORY
01 CURRENT_SALARY OCCURS FOR SALARY_HISTORY WITH

SALARY-END MISSING.
03 EMPLO'T'ELID
03 REVIEW-CODE
03 SALARY_AMOUNT

FROM SALARY-HISTORY .
FROM SALARY-HISTORY.
FROM SALARY_HISTORY.

DTR> READY CURRENT_JOBS, CURRENT_SALARIES
DTR> PRINT COUNT OF CURRENT_JOBS

COUNT

337

DTR> PRINT COUNT OF CURRENT_JOBS, COUNT OF CURRENT-SALARIES

COUNT COUNT

337 337

DTR> PRINT COUNT OF CURRENLJOBS ("Job 11 1 11 Count"),
CON> COUNT OF CIJRRENT_SALARIES ("Salary";"Count")

Job Salary
Count Count

337 337

DTR> PRINT TOTAL SALARY-AMOUNT OF
CON> CURRENT_SALARIES USING $$$$,$$$,$$$.99

TOTAL
SALAR'r'
AMOUNT

[Function computed using 336 of 337 values .]
$8,967,907.00

18-18 Defining and Calculating Values with DATATRIEVE

DTR> PRINT AVERAGE SALARY-AMOUNT OF CURRENT-SALARIES

AVERAGE
SALAR 1t
AMOUNT

[Function computed using 336 of 337 values.]
$26,611.00

DTR> PRINT MAX SALARY-AMOUNT OF CURRENT_SALARIES

MAX
SALARY
AMOUNT

[Function computed using 336 of 337 values.]
$93,340.00

DTR) PRINT MIN SALARY-AMOUNT OF CURRENT_SALARIES

MIN
SALAR1t
AMOUNT

[Function computed using 336 of 337 values.]
$7,205.00

DTR> PRINT STD-DEV SALARY-AMOUNT OF CURRENT-SALARIES

STANDARD
DEVIATION

SALAR't
AMOUNT

[Function computed using 336 of 337 values.]
1. 7113E+04

DTR> PRINT STD-DEV SALARY-AMOUNT OF
CON> CURRENT-SALARIES USING $$$$,$$$.99

STANDARD
DEVIATION

SALARY
AMOUNT

[Function computed using 336 of 337 values.]
$17,113.30

The next section explains an option, the SUM statement, you can use only with
a CURRENT collection. The section also contains some examples of statistical
value expressions that use fields from a CURRENT collection.

..

Defining and Calculating Values with DATATRIEVE 18-19

18.2.2 Using the SUM Statement and Statistical Value Expressions with the
CURRENT Collection

When you are working with a CURRENT collection, you can use the SUM state­
ment to sort and total data. Example 18-2 shows you how to enter a SUM state­
ment and statistical value expressions using a CURRENT collection. The
records in the collection join fields from the views CURRENT _JOBS and
CURRENT_ SALARIES. The comment lines in the example begin with an
exclamation point (!) and provide information about the input that follows.

Example 18-2: Using the SUM Statement and Statistical Value Expressions
with the CURRENT Collection

DTR) ! Create a CURRENT collection and print its records.
DTR>
DTR> FIND CURRENT_JOBS CROSS CURRENT-SALARIES OVER
CON> EMPLOYEE-ID WITH JOB-CODE = "CLRK" REDUCED TO
CON> DEPARTMENT_CODE, EMPLOYEE_ID, SALARY_AMOUNT
(19 records found]
DTR> PRINT ALL

DEPARTMENT EMPLO','EE SALAR','
CODE ID AMOUNT

ELMC 00181 $1 '3, 953 .00
ELMC 00333 $15,968.00
MBMS 0031'3 $1 2 ,350.00
MCBM 00396 $13,561.00
MCBM 00483 $14,745.00
MSC! 00263 $19,057 .00
MSC! 00337 $16,987.00
MSC! 00392 $13 I 162 .00
SUNE 003'31 $14, 173.00
SUSA 00 279 $15 , 571.00
SUSA 00364 $15,315.00
SUSA 00382 $15,392.00
SUSA 00404 $12,135.00
SUSA 00406 $14,306 .00
suso 00187 $13,067.00
suso 00193 $17,960 .00
suso 00245 $14,794.00
suso 00268 $18,933.00
SI.ISO 00289 $15,560.00

DTR>
DTR> Begin a SUM statement with the keyword SUM and
DTR> enter the item (o r items) t o be t otaled. Then enter
DTR> the keyword BY foll owed by the item (or items) on
DTR> which you want the information sorted.
DTR>
DTR> SUM SALARY_AMOUNT BY DEPARTMENT_CODE

18-20 Defining and Calculating Values with DATATRIEVE

DEPARTMENT
CODE

ELMC
MBMS
MCBM
MSC!
SUNE
SLISA
SI.ISO

DTR>

TOTAL
SALAR1

,
1

AMOUNT

35921
12350
28306
49206
14173
72719
80314

292989

DTR) You can include an edit string for each of the items
DTR> being totaled .
DTR) I

DTR> SUM SALARY_AMOIJNT USING $$$$,$$$.99 BY DEPARTMENT_CODE

DEPARTMENT
CODE

ELMC
MBMS
MCBM
MSC!
SIJNE
SUSA
SI.ISO

DTR>

TOTAL
SALAR 1

/

AMOUNT

$35,921 .00
$12,350.00
$28,306.00
$49,206 .00
$14,173.00
$72,719.00
f8~,314.00

$292,989.00

DTR> You can also specify the column headers you want
DTR> for each field being totaled.
DTR>
DTR> SUM SALAR'LAMOIJNT ("PA'/ROLL FOR" ;"CLERKS") USING
CON> $$$$,$$$.99 BY DEPARTMENT-CODE

DEPARTMENT PAYROLL FOR
CODE CLERKS

ELMC $35,921.00
MBMS $12,350.00
MCBM $28,306 .00
MSC! $49,206.00
SIJNE $14,173 .00
SUSA $72,719.00
SI.ISO $80,314.00

$292,989.00

(continued on next page)

Defining and Calculating Values with DATATRIEVE 18-21

DTR>
DTR> You can include the keyword 1 as one of the items
DTR> listed following SUM. When you do this, DATATRIEVE
DTR> displays a count to indicate how many records were
DTR> used to compute the total for each sort key.
DTR} I

DTR> SUM 1 (11 TOTAL 11
/

11 CLERKS 11
),

CON> SALARY-AMOUNT ("PAYROLL FOR"/"CLERKS") USING
CON> $$$$,$$$.99 BY DEPARTMENT-CODE

DEPARTMENT TOTAL PAYROLL FOR TOTAL
CODE CLERKS CLERKS CLERKS

ELMC 2 $35,921.00
MBMS 1 $12,350.00
MCBM 2 $28,306.00
MSCI 3 $49,206.00
SUNE 1 $14,173.00
SUSA 5 $72,719.00
suso 5 $80,314.00

19
$292,989.00

DTR>
DTR> When you use statistical expressions with the CURRENT
DTR> collection, you do not need to specify an OF rse clause
DTR> ! for each expression.
DTR> !
DTR> PRINT AVERAGE SALARY-AMOUNT

AVERAGE
SALARY
AMOUNT

$15,420.47

DTR> PRINT STD-DEV SALARY-AMOUNT USING $$$$,$$$.99

STANDARD
DEVIATION

SALARY
AMOUNT

$2,277.05

DTR>

18.3 Storing and Displaying Date and Time

This section discusses the options you have when storing or searching for values
in fields defined as USAGE DATE. It also shows you various ways you can dis­
play values from those fields. The information provided here supplements the
explanation of date fields in Chapter 9. You might want to review that explana­
tion before reading the following sections.

18-22 Defining and Calculating Values with DATATRIEVE

)

18.3.1 Storing and Displaying Values in Date Fields

There are several ways to store a date. You can:

• Enter the date as a literal

DATE-FIELD= "28-JAN-1952"

• Enter the date as a date value expression (TODAY, TOMORROW,
YESTERDAY)

DATE-FIELD = "TODA''"

To store the time, in addition to the date, you can:

• Enter the current date and time with the value expression NOW

DATE-FIELD= "NOW"

• Enter any date and time using the function FN$DATE and a character string

The character string must adhere to the format DD-MMM-YYYY hh:mm:ss.cc.
In this format, DD is the day, MMM (each letter capitalized) is the month,
YYYY is the year, hh is the hour (00 for 12 o'clock a.m. to 23 for 11 o'clock
p.m.), mm is the minute, ss is the second, and cc is the hundredth of a second.

DATE-FIELD= FN$DATE("12-JAN-1962 13=30=00.00")

If you store time in a date field, you can display it using the edit string X(23). If
you do not supply an edit string for a date field either in the field definition or
in a PRINT statement, DATATRIEVE uses the edit string DD-MMM-YYYY.

------------- Note ------------­

You can assign a value to the logical name DTR$DATE_INPUT to
control the way DATATRIEVE converts date values represented by a
string of numbers. By default, for example, DATATRIEVE interprets
the value "03/12/09" as March 12, 1909. If the following assignment
is in effect, DATATRIEVE interprets the values "03/12/09" or
"031209" as December 3, 1909:

ASSIGN DMY DTR$DATE_INPUT

For more information on using the logical name DTR$DATE _INPUT,
refer to the EDIT STRING article in the VAX DATATRIEVE
Reference Manual.

Defining and Calculating Values with DATATRIEVE 18-23

Example 18-3 illustrates the options you have when displaying values in date
fields.

Example 18-3: Storing and Displaying Values in Fields Defined as
USAGE DATE

DTR> DECLARE DATE-FIELD USAGE DATE.
DTR> DATE-FIELD = "3128147"
DTR> PRINT DATE-FIELD

DATE
FIELD

28-Mar-1947

DTR> PRINT DATE-FIELD USING NN1DD1YY

DATE
FIELD

3128147

DTR> PRINT DATE_FIELD USING MMMD,BYYYY

DATE
FIELD

Mar . 28, 1947

DTR> PRINT DATE_FIELD USING M(9)BDD,BYYYY

DATE
FIELD

March 28, 1947

DTR> PRINT DATE-FIELD USING YY

DATE
FIELD

47

DTR> PRINT DATE_FIELD USING MMM1YYYY

DATE
FIELD

Mar11947

18-24 Defining and Calculating Values with DATATRIEVE

DTR> PRINT DATE-FIELD USING WWW

DATE
FIELD

Fri

DTR> PRINT DATE-FIELD USING WWW/MMMBDD

DATE
FIELD

Fri / Mar 28

DTR> PRINT DATE_FIELD USING JJJ

DATE
FIELD

87

DTR> DATLFIELD = "TODA'r'"
DTR> PRINT DATE-FIELD

DATE
FIELD

6-Apr-1 '384

DTR> DATLFIELD = 111,'ESTERDA'r'"
DTR> PRINT DATE-FIELD

DATE
FIELD

5-Apr-1984

DTR> DATE-FIELD= "TOMORROW"
DTR> PRINT DATE-FIELD

DATE
FIELD

7-Apr-1984

DTR> DATLFIELD = "NOW"
DTR> PRINT DATE-FIELD USING X(23)

DATE
FIELD

6-Apr-1984 11 =57 =48.56

DTR> DATLFIELD = FN$DATE("28-MAR-1947 04=59 =06.01")
DTR} PRINT DATE-FIELD USING X(23)

DATE
FIELD

28-Mar-1947 04 =59 =06 .01

Defining and Calculating Values with DATATRIEVE 18-25

18.3.2 Comparing and Searching for Date Values

You can compare date values using all the relational operators except IN, NOT
IN, ANY, and NOT ANY. BEFORE and AFTER are two operators especially
designed for dates. You can also get useful information by subtracting dates,
with the statistical functions MIN and MAX, and with the FORMAT value
expression. Example 18-4 illustrates some techniques you can use with date
values. The comment lines in the example begin with an exclamation point (+)
and provide information about the input that follows.

Example 18-4: Comparing and Searching for Date Values

DTR> READY CURRENT_JOBS
DTR) I

DTR> ! Print the records for current employees who started
DTR) ! work before and after a specified date.
DTR> !
DTR> PRINT CURRENT_JOBS WITH JOB-START BEFORE "12/31/82"

DEPARTMENT JOB EMPLO'r'EE JOB SUPERVISOR
CODE CODE ID START ID

ADMN DSUP 00472 27-Apr-1981 00225
ADMN EENG 00300 11-Feb-1982 00225
ADMN EENG 00188 8-Apr-1982 00225

SUWE SPGM 00284 16-Dec-1980 00230

DTR> PRINT CURRENT _JOBS WITH JOB-START AFTER "12/31/82"

DEPARTMENT JOB EMPLO~'EE JOB SUPERVISOR
CODE CODE ID START ID

ADMN PRSD 00225 3-Jan-1983 00225
PERL DMGR 00241 3-Jan-1983 00415
PHRN EENG 00437 4-Feb-1983 00201

DTR>
DTR> Find out how long current employees have been working
DTR> for the company . (WHO_IS_IT is a domain table that
DTR> accesses the employee name from the EMPLOYEES domain.)
DTR>
DTR> DECLARE DAYS_WORKIN(;_HERE COMPUTED BY
CON) (II TODAY II - JOB-START) .
DTR> FOR CURRENT_JOBS SORTED BY JOB-START
CON> PRINT EMPLOYEE-ID VIA WHO-IS-IT, DAYS-WORKING-HERE

18-26 Defining and Calculating Values with DATATRIEVE

Ackerman
Kinmonth
Roberts

Stornell i

DTR>

EMPLO'/EE NAME

Ellen
Louis
N,:,rman

Franklin

C

u

DAYS
WORKING

HERE

DTR> A field computed by dates has a default edit string

1923
1908
1873

455

DTR> much longer than what you need for a display . Reenter
DTR) the statement with an edit string for the field
DTR> DAYS_WORKING_HERE.
DTR)
DTR> FOR CURRENT-JOBS SORTED BY JOB-START
CON> PRINT EMPLOYEE-ID VIA WHO-IS-IT,
CON> DAYS_WORKING_HERE USING ZZ,229

DAYS
WORKING

EMPLO'/EE NAME HERE

Ackerman Ellen C 1,923
Kinm,:,nth Louis 1, "308
Roberts Norman u 1,873

Stornell i Franklin 455

DTR> !
DTR> ! Find out which current employee has been working
DTR> ! for the company the longest period of time.
DTR> !
DTR) PRINT CURRENT_JOBS WITH JOB_START = MIN JOB-START OF
CON> CURRENT_JOBS

DEPARTMENT JOB EMPLOYEE
CODE CODE ID

JOB
START

SUPERVISOR
ID

SUWE JNTR 00318 28-Jan-1979 00230

DTR) I

DTR) ! Find out which employee was hired most recently.
DTR>
DTR) PRINT CURRENT-JOBS WITH JOB-START= MAX JOB_START OF
CON> CURRENT-JOBS

DEPARTMENT JOB EMPLOYEE
CODE CODE ID

PHRN EENG 00437

JOB
START

SUPERVISOR
ID

4-Feb-1983 00201

(continued on next page)

Defining and Calculating Values with DATATRIEVE 18-27

DTR>
DTR> Print records for employees hired in 1982.
DTR>
DTR> PRINT CURRENT _JOBS WITH JOB-START CONT "1982"

DEPARTMENT JOB EMPLO't'EE JOB SUPERVISOR
CODE CODE ID START ID

ADMN EENG 00188 8-Apr-1982 00225
ADMN EENG 00300 11-Feb-1982 00225
ADMN MENG 00190 25-Feb-1982 00225
ADMN SP{iM 00488 6-Mar-1982 00225
ADMN VPSD 00267 28-Feb-1982 00225
ADMN VPSD 00439 26-Nov-1982 00225
ADMN VPSD 00204 24-Jan-1982 00225
ELEL APGM 00377 26-Jan-1982
ELEL EENG 00428 10-Jan-1982 00356
ELEL EENG 00238 2-Feb-1982 00356

SUWE EENG 00293 20-Sep-1982 00230

DTR>
DTR> Form a collection of records for employees starting
DTR> work on a specific day of the week. Print their
DTR> employee ID numbers and start dates.
DTR>
DTR> FIND CIJRRENLJOBS WITH FORMAT JOB-START USING WWW CONT "MON"
[45 records found]
DTR> PRINT ALL EMPLOYEE-ID, JOB_START USING DD-MMM-YYYY1WWW

·EMPLO'IEE
ID

00472
00225
00435
00211

00293

JOB
START

27-Apr-19811Mon
3-Jan-19831Mon

17-N,:,v-19801Mon
25-Jan-1982/Mon

20-Sep-1982/Mon

18.3.3 Subtracting Values from a Date Field

When you subtract a value from a date, DATATRIEVE converts the value to a
date and then subtracts it. If you want to subtract days from dates, you must
add the number of days as a negative number:

DTR> BALANCE-DATE= BALANCE-DATE+ (-1)

18-28 Defining and Calculating Values with DATATRIEVE

)

Part VI
Formatting Displays and Writing Reports

C

Improving Screen Displays and 19 Controlling Output

This chapter discusses how you can change DATATRIEVE display defaults to
suit your needs. It also summarizes information about PRINT statement varia­
tions and options. You can use the tables in this chapter as references when you
are creating your own displays and reports. This chapter does not cover defining
a form to use with DATATRIEVE. If you are interested in displaying data on a
VAX TDMS or VAX FMS form, refer to the chapter on using forms in the
VAX DATATRIEVE User's Guide.

) 19.1 Optimizing Space in Display Lines

When you display records, you might find that the fields from each record do
not all fit on one display line on your terminal screen. The result is that some
fields wrap to the next line and that headers for some fields either do not
appear at all or are inserted in available space between other headers. A display
like this is not very attractive and often difficult to read.

If you are interested in seeing only a subset of the fields in a record, you can
try listing the names of the fields you want to see following the keyword
PRINT. If these fit on one line, your problem is solved. If they do not or if you
want to see the entire record, See the following sections which discuss some
other things you can try.

19-1

19.1.1 Adjusting Screen Width and the Columns-Page Setting

If your terminal screen width is set to 80 characters (the default most people
have), you can increase this to 132 characters. The extra 52 columns might be
enough to accommodate what you want to look at. Changing screen width is a
2-step process. You have to tell the operating system to adjust your screen dis­
play, and you have to tell DATATRIEVE to space its output across the specified
number of columns. The order in which you do the steps does not matter:

DTR> FN$WIDTH (132)
DTR> SET COLUMNS_PAGE=132

The reduced character size that comes with the 132-character setting is not to
everyone's liking. In addition, some record displays require more than 132
columns. If you want to set your screen width back to 80 columns, use the
FN$WIDTH function and the SET COLUMNS_PAGE command again, but
specify 80 in place of 132.

19.1.2 Using the LIST Statement

The LIST statement displays each field from the record on a separate line.
Rather than displaying a column header for each field, it prints the field name
followed by a colon (:) and then the field contents. When the elementary field
names are descriptive of the data in the field, the LIST statement can improve
the readability of long record displays:

DTR> FIND EMPLOYEES WITH EMPLOYEE-ID = "00181"
(1 record found]
DTR> SELECT
DTR> PRINT

ADDRESS
SOCIAL

ID LAST NAME FIRST NAME INIT DATA
SECURIH

Louis E Apartment 78C

ZIP SEX

00181 Reynolds
63 Derry Rd.
12/11152

Milton NH 03851 M 393 98 1984

19-2 Improving Screen Displays and Controlling Output

DTR> LIST

EMPLOYEE_ID
LAST_NAME
FIRST-NAME
MIDDLE-INITIAL
ADDRESS-DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIALSECIJRIT~'
BIRTHDAY

DTR>

00181
Reyn,:,lds
L,:,uis
E
Apartment 78C
63 Derry Rd.
Milt,:,n
NH
03851
M
393 98 1984
12111152

19.1.3 Writing a Simple Procedure to Segment Record Display

If you plan to print an entire record from a domain or view frequently, you can
write a short procedure to display the record neatly on more than one line. This
method lets you use a PRINT statement, which accesses any column headers
defined in the record definition, or lets you override these with ones of your own
choosing. In the following example, the procedure prints a string literal of 80
hyphens to set off each line. The last hyphen in the first line of the literal is a
continuation character, which tells DATATRIEVE that the literal is continued
on the next line:

DTR) SHOW PRINT_EMP
PROCEDURE PRINT_EMP
BEGIN

PRINT "---­
-----------"

PRINT EMPLOYEE-ID, LAST_NAME, FIRST-NAME, MIDDLE-INITIAL
PRINT "--

II

PRINT ADDRESS-DATA, STREET, TOWN, STATE, ZIP
PRINT 11

---­
___________ 11

PRINT SEX , SOCIAL-SECURITY, BIRTHDAY
PRINT"--

II

END
END-PROCEDURE

(continued on next page)

Improving Screen Displays and Controlling Output 19-3

DTR> FIND EMPLOYEES WITH EMPLOYEE-ID = "00181"
[1 record found l
DTR> SELECT
DTR> PRINT

ID LAST NAME FIRST NAME !NIT
ADDRESS

DATA

Louis E Apartment 78C

SOCIAL
ZIP SEX SECURITY

00181 Reynolds
63 Derry Rd.
12/11152

Hudson NH 03851 M 393 98 1984

DTR> =PRINT_EMP

ID LAST NAME

00181 Reynolds

ADDRESS
DATA

Apartment 78C

SOCIAL

FIRST NAME !NIT

Louis E

STREET

63 Derry Rd.

SEX SECURITY BIRTHDAY

M 393 98 1984 12111152

DTR>

TOWN

Hudson

STATE ZIP

NH 03851

This method is effective when you are displaying one record at a time. It is not
very helpful when you want to print more than one record with a single state­
ment. In this case, DATATRIEVE only prints the column headers for the first
record displayed.

19.1.4 Overriding Column Header Defaults with the PRINT Statement

When you enter a PRINT statement that simply lists the items you want to dis­
play or one that prints an entire record, DATATRIEVE checks each field defini­
tion for a QUERY _HEADER clause. If the field definition contains this clause,
DATATRIEVE displays the specified column header above the field value. If the
field definition does not contain a QUERY _HEADER clause, DATATRIEVE
makes a column header out of the field name.

19-4 Improving Screen Displays and Controlling Output

If the column header DATATRIEVE uses is longer than the largest value that
can appear in a field, you can conserve some space in your display line by doing
one of three things:

• Edit the record definition to include a QUERY _HEADER clause that speci­
fies a header no longer than the length of the field.

Chapter 9 tells you how to edit a record definition and write
QUERY _HEADER clauses.

• Specify another header for the field in your PRINT statement.

If the field REVIEW _CODE were a 1-character field, for example, you could
enter PRINT REVIEW _CODE ("C") or PRINT REVIEW _CODE ("R" /"C")
to make sure the header for the field is also one character in length.

• Specify in your PRINT statement that the field values are displayed without a
header.

You do this by typing the field name followed by a hyphen enclosed in paren­
theses, (-); for example, PRINT REVIEW_ CODE (-).

The following example defines and displays three variable fields to illustrate
these options. You can manipulate the display of record fields in the same way:

DTR> DECLARE WIDGET-CODE PIC X.
DTR> DECLARE WIDGET-NAME PIC X(5).
DTR> DECLARE WIDGET-PRICE PIC 99V99
CON) EDIT-STRING $$$.99.
DTR> WIDGELCODE = "Z"
DTR> WIDGET-NAME= "WHIZZ"
DTR> WIDGET-PRICE= 10.50
DTR> PRINT WIDGET-CODE, WIDGET_NAME, WIDGET-PRICE

WIDGET WIDGET WIDGET
CODE NAME PRICE

Z WHIZZ $10.50

DTR> PRINT WIDGET-CODE(-), WIDGET_NAME (-),WIDGET-PRICE(-)
Z WHIZZ $10 .50

DTR> PRINT WIDGET-CODE ("C 11
/

11 011
/

11 D11
/

11 E"),
CON> WIDGELNAME ("NAME"),
CON> WIDGELPRICE ("PRICE")

C
0
D
E NAME PRICE

Z WHIZZ $10.50

DTR>

Improving Screen Displays and Controlling Output 19-5

19.1.5 Using Edit Strings to Optimize Display Space

When you enter a PRINT statement that simply lists the items you want to dis­
play or one that prints an entire record, DATATRIEVE checks each field defini­
tion for an EDIT_ STRING clause. If the field definition contains this clause,
DATATRIEVE displays the field contents according to the specified edit string.
If the field definition does not contain this clause, DATATRIEVE formats field
contents according to the PIC or USAGE clauses.

For some fields defined with the COMPUTED BY clause and some very long
numeric fields, you might find that the values stored in the field are much
smaller than the space alotted to them in the display line. This situation can
also arise when you are printing value expressions calculated from two or more
field values. In these cases, you can save some space by including an edit string
in your PRINT statement. Take care that you do not inadvertently truncate
some values by doing this, however. The following example defines and displays
variable fields to illustrate this technique, which works just as well when you
are displaying record fields:

DTR> DECLARE DATE-VARIABLE1 USAGE DATE.
DTR> DATE-VARIABLE1 = 11 TODA 1t"1

DTR> !
DTR> DECLARE DATE_VARIABLE2 USAGE DATE.
DTR> DATLVARIABLE2 = "23-JUL-1984"
DTR> !
DTR> DECLARE BIG-NUMBER USAGE QUAD.
DTR> BIG-NUMBER= 1234567890
DTR> !
DTR} PRINT DATE_VARIABLE2 - DATE_VARIABLE1, BIG_NUMBER

BIG
NUMBER

106 1234567890

DTR> !
DTR} ! Edit strings that are too small can cause problems.
DTR> !
DTR> PRINT DATE_VARIABLE2 - DATE_VARIABLE1 USING 9(6),
CON> BIG_NUMBER USING ZZZ,ZZZ,ZZ9

BIG
NUMBER

000106 ***********

DTR> !
DTR> ! Edit strings adapted to the size of the values being
DTR> ! displayed can optimize display space.
DTR> !
DTR> PRINT DATE_VARIABLE2 - DATE-VARIABLE1 USING 2(5)9,
CON> BIG-NUMBER USING 9(10)

19-6 Improving Screen Displays and Controlling Output

BIG
NUMBER

106 1234567890

DTR>
DTR}
DTR>
DTR>
DTR>

The next PRINT statement takes two characters fr om
the first number and adds some editing characters to the
second number .

DTR> PRINT DATE-VARIABLE2 - DATE_VARIABLE1 USING 2(3)9,
CON} BIG-NUMBER USING ZZZ,ZZZ,ZZZ,ZZ9

BIG
NUMBER

106 1,234,567,890

19.1.6 Using Concatenation Characters to Conserve Line Space

Sometimes you can conserve space in a display line by using the concatenation
characters (I, I I, and I I I) to join fields and literals into a continuous text
string. The difference between the three concatenation characters is the way
they treat trailing spaces in the value that precedes them and whether they add
any spaces between values they join:

• A single bar (I) does nothing to the values except join them.

• A double bar (I" I) suppresses any trailing spaces in the value that precedes it
and does nothing to the value that follows it.

• A triple bar (I I I) suppresses any trailing spaces in the value that precedes
it, inserts one space, and does nothing to the value that follows it.

Improving Screen Displays and Controlling Output 19-7

When you join fields and literals this way, you form a concatenation value
expression. As is the case with any value expression that is neither a field
name nor a statistical value expression based on one field name, DATATRIEVE
does not supply a default header for the result. If you want one, you must sup­
ply a column header in your PRINT statement. In the following example, a
procedure using concatenation value expressions logically groups fields from
each record in EMPLOYEES so that groups of records display in more readable
form:

DTR) SHOW CONCATENATE
PROCEDURE CONCATENATE

BEGIN
PRINT SKIP
PRINT EMPLOYEE-ID: l lFIRST_NAMEl: lMIDDLE-INITIALl l lLAST_NAME, SKIP
PRINT ADDRESS-DATA:: 11 II: STREET: : 11, II: TOWN:: 11, II: STATE::: ZIP, SKIP
PRINT SEX(-), SOCIAL-SECURITY(-) USING xxx_xx_xxxx,

BIRTHDAY (-)
END

END-PROCEDURE

DTR> FOR FIRST 3 EMPLOYEES =CONCATENATE

00164 Alvin A Toliver

146 Parnell Place, Chocorua, NH 03817

M 763-08-0064 3128147

00165 Terry D Smith

120 Tenby Dr., Chocorua, NH 03817

M 179-97-8016 5115154

00166 Rick Dietrich

19 Union Square, Boscawen, NH 03301

M 902-87-8080 3120154

DTR>

19-8 Improving Screen Displays and Controlling Output

You can also use concatenation characters to create text literals that are longer
than 253 characters. Because you are allowed to enter only up to 255 characters
in a DATATRIEVE command or statement, most of the values you are joining
should be entered as field names rather than text literals. When you display the
combined values, you must tell DATATRIEVE how many characters of the
string you want on each display line. Use the T edit-string character followed by
a repeat count to do this:

DTR> DECLARE A PIC XC80).
DTR> DECLARE B PIC XC80).
DTR> DECLARE C PIC XC80).
DTR> DECLARED PIC X(80).
DTR>
DTR> PRINT *.All l*.Bl l l*.Cl l l*.D USING T(40)
Enter A= When DATATRIEVE joins the values in A, B, C, and D, It
Enter B= suppresses any trailing spaces in A, B, and C and
Enter C= inserts one space. It displays their combined values using
Enter D= up to 40 characters per line and without breaking words.
When DATATRIEVE joins the values in A,
B, C, and D, it suppresses any trailing
spaces in A, B, and C and inserts one
space . It displays their combined values
using up to 40 characters per line and
without breaking words.

DTR>

19.2 PRINT Statement Options

This section summarizes information about the PRINT statement.

19.2.1 PRINT Statement Format and Print List Elements

When you specify fields or other items you want to print, you are creating a
print list. If the print list contains more than one item, you must separate the
items with commas.

The format you use for a PRINT statement depends on the source of the values
you want to display and whether or not your statement includes a print list:

• If the source of your values is a selected record from the CURRENT collection:

- To display an entire record, type PRINT:

FIND an-rse
SELECT a-record
PRINT

Improving Screen Displays and Controlling Output 19-9

- To display a subset of fields from the record, type PRINT followed by a
print list:

FIND an-rse
SELECT a-record
PRINT print-list

• If the source of your values is the CURRENT collection:

- To display entire records, type PRINT ALL:

FIND an-rse
PRINT ALL

- To specify a subset of fields from each record, type PRINT ALL followed by
a print list:

FIND an-rse
PRINT ALL print-list

• If the source of your values is a FOR statement RSE:

- To display entire records, type PRINT:

FOR an-rse
PRINT

- To specify a subset of fields from each record, type PRINT followed by a
print list:

FOR an-rse
PRINT print-list

• If the source of your values is an RSE in the PRINT statement itself:

- To display entire records, type PRINT followed by the RSE:

PRINT an-rse

- To specify a subset of fields from each record, type PRINT followed by a
print list, then type OF followed by the RSE:

PRINT print-list OF an-rse

19-10 Improving Screen Displays and Controlling Output

C

• If you want to name items subordinate to a list (OCCURS) field in the record,
you can do this in one of several ways:

FOR an-rse
FOR a-list-field
PRINT print-list

FOR an-rse
PRINT ALL print-list OF list-field

PRINT ALL ALL print-list OF list-field OF an-rse

There are times when you can get by with fewer than the indicated number of
ALLs or put them in different positions in the print list. To be safe, put in an
ALL for each OF clause in the PRINT statement. To make it simple, put the
ALLs before the print list.

The most difficult thing to do in a PRINT statement is to specify a print list
that includes only certain list items subordinate to an OCCURS clause. Here is
an example that uses the view domain EMPLOYEE_HISTORY _2 (discussed
in Chapter 15) to display only one field subordinate to each OCCURS clause.
The PRINT statement indents lines to show the list items and their correspond­
ing repeating field defined with an OCCURS clause:

DTR> READY ENPLOYEE-HISTORY-2
DTR> PRINT ALL LAST_NANE,
CON> ALL JOB-START, !Subordinate to JOBS-HERE
CON> ALL SALARY-AMOUNT - !Subordinate to
CON> ! SA LARI ES-FOR-JOBS
CON> OF SALARIES-FOR-JOBS -
CON> OF JOBS-HERE -
CON> OF EMPLOYEE-HISTORY-2 WITH EMPLOYEE-ID= "00168"

LAST NAME

Nash

DTR>

JOB SALARY
START AMOUNT

23-Feb-1979 $27,126.00
$25,057.00
$23,919.00
$23,605.00

30-0ct-1977 $21,520.00
$20,883.00

1-Jul-1975 $15,977.00
$15,851.00
$15,179.00

Table 19-1 lists and describes the elements you can include in a print list.

Improving Screen Displays and Controlling Output 19-11

Table 19-1: Print List Elements

Print List Element

field-name [modifier]

literal [modifier]
*. prompt-name [modifier]
**.prompt-name [modifier]
arithmetic-exp [modifier]
statistical-exp [modifier]

SPACE [n]

TAB [n]

COL n

SKIP [n]

NEW PAGE

Function and Results

Specifies the field whose contents are to be formatted
and printed. The optional modifier describes the column
header for the field or the format of the output or both.
(See Table 19-2.) If the field is a group field,
DATATRIEVE displays all the elementary fields con­
tained in that group field. If you omit this element, all
the elementary fields in a record are displayed.

Specifies a value expression to be evaluated and printed.
The optional modifier describes the column header for
the value expression or the format of the display, or
both. (See Table 19-2.) Chapter 18 discusses these value
expressions.

Inserts n horizontal spaces before the next print list
element. If you omit n, DATATRIEVE inserts one
space before the next print list element.

Inserts the space of n tab characters before the next
print list element. If you omit n, DATATRIEVE inserts
the space of one tab before the next print list element.
DATATRIEVE assumes that tabs are set every eight
spaces and inserts enough spaces (not actually tab
characters) in the print line to start the next print list
element in the appropriate column.

Specifies that the following print list element begins in
column n of the display line. If n is less than the cur­
rent column number, DATATRIEVE skips a line and
begins the next print list element in column n. The
first column in the line is column 1.

Begins the output of the next print list element at the
beginning of the nth line from the current line. If n is
greater than 1, the intervening lines are blank. If you
omit n, DATATRIEVE moves the cursor to the begin­
ning of the next line. If you omit this print list ele­
ment, DAT ATRIEVE displays multilined output on
consecutive lines.

Moves the cursor to the top of a new print page.
Column headers are suppressed, and output begins at
column 1 unless another print list element changes the
position of the cursor.

19-12 Improving Screen Displays and Controlling Output

C

)

J

19.2.2 Using Print List Modifiers

Table 19-2 describes the options you use to control a header above each value
you are printing and to specify an edit string to format that value. If you want
to specify both a header and an edit string for a value, enter the header modi­
fier first.

Table 19-2: Print Item Modifiers

Modifier

(''column-header'')

(-)

USING edit-string

Effect

Specifies a column header for the preceding data item. You
must enclose column header text in double quotation marks
and the entire modifier in parentheses. To specify a multiline
column header, separate one segment of the column header
from another with a slash (/), as in ("WHOLE" /"NAME").
When you use this modifier in your PRINT statement, it over­
rides a header specified in a QUERY _HEADER clause when
the field was defined.

Suppresses the printing of a column header for the preceding
data item. You must enclose the hyphen in parentheses.

Tells DATATRIEVE how to format the preceding data item.
The specified edit string overrides any edit string specified in
an EDIT _STRING clause when a field was defined. See the
section on the EDIT _STRING clause in Chapter 9 for infor­
mation on forming edit strings. If you follow an edit string
with another print list element, include a space between the
last character of the edit string and the comma that separates
one print list element from another. Otherwise, DAT ATRIEVE
considers the comma part of the edit string.

19.2.3 Sending Output to a File or Printer

There are two ways you can specify where you want PRINT statement output
to go:

• You can precede the PRINT statement with one or more ON statements.

• You can append an ON clause to the end of the PRINT statement.

If you do not specify an ON statement or ON clause, DATATRIEVE sends the
output of the PRINT statement to the device assigned to the logical name
SYS$OUTPUT. Usually, this is your terminal (TT:).

Improving Screen Displays and Controlling Output 19-13

As the following examples illustrate, using the ON statement gives you the
options you do not have when you use the ON clause. With the ON statement,
you can send the output of more than one PRINT statement to the same device I""
or file. You can also send the output of one or more PRINT statements to more '-
than one device or file:

ON LP:
BEGIN

PRINT .. .
PRINT .. .

END

ON DBA2=[PERSONNEL.REPORTSlSALARIES.DAT
ON TT:

PRINT .. .

PRINT ... ON SALARIES.DAT

If, on your system, the term "LP:" is defined to mean something other than a
line printer, the statement ON LP: might not work for you. In this case, you
have to specify a particular device, such as LQP or LPA0:.

You can specify a prompting value expression in place of a file specification in
either the ON statement or the ON clause. You can therefore write procedures
that let users specify where they want output printed or filed:

ON *."enter device or file name"
BEGIN

PRINT .. .
PRINT .. .

END

19-14 Improving Screen Displays and Controlling Output

C

Writing Reports 20

This chapter tells you how to use the VAX DATATRIEVE Report Writer. For a
more comprehensive discussion of the Report Writer, refer to the VAX
DATATRIEVE Guide to Writing Reports.

The SUM statement and the PRINT statement (discussed in Chapters 18 and
19) give you control over the display of your data. The DATATRIEVE Report
Writer can do more formatting for you than either the SUM statement or the
PRINT statement alone can do. The Report Writer can:

) • Center a report name at the top of the page

• Print the current date at the upper right

• Print page numbers at the upper right

• Set up column headings

• Print a detail line for each record

• Print summary lines for selected groups of records and for the entire report

You create a DATATRIEVE report with a series of Report Writer statements
called a report specification. A report specification controls the format and
determines the content of your report. Some Report Writer statements are
required for a valid report specification and others are optional.

Example 20-1 shows a sample report specification and the report it creates. Sub­
sequent sections in this chapter show you how to use Report Writer options to
improve the report's format and to increase the information it can produce from
the data on which it is based. Comment lines begin with an exclamation point
(!) and point out features in the input that follows.

20-1

Example 20-1: Sample Report

DTR> Before you invoke the Report Writer, ready the domains or
DTR) views containing your data. If you prefer, you can create
DTR> a collection on which to base your report.
DTR>
DTR> READY CURRENT_JOBS, CURRENT_SALARIES
DTR>
DTR> The REPORT statement invokes the Report Writer and
DTR> specifies the data on which you want to base the report.
DTR> In this case, the data specification is an RSE that
DTR> joins records in two views. The RW> prompt indicates
DTR> that the Report Writer is waiting for your input.
DTR)
DTR> REPORT CURRENT_JOBS CROSS CURRENT_SALARIES OVER
RW) EMPLOYEE-ID WITH DEPARTMENT _CODE = "ELEL"
RW)
RW> If you want your report to have a name, you must
RW> specify one. The SET REPORT-NAME statement lets you
RW> specify a name for your report that will be centered on
RW> the first line (in this case, on the first two lines).
RW> Note that the way you enter a report name follows the
RW> same conventions you use for entering column headers and
RW> text literals, covered in Chapter 19.
RW)
RW> SET REPORLNAME = "SALARIES IN 11 1 11 ELECTRICAL -
CON> ENGINEERING DEPARTMENT"
RW>
RW> You specify one PRINT statement in a report. It lists
RW> the items you want to display in each detail line. It
RW> can also specify any edit strings and column headers you
RW> might want for items in the print list. The following
RW> PRINT statement specifies only three fields and lets
RW> DATATRIEVE use the default edit strings and column
RW> headers that apply to those fields.
RW>
RW) PRINT JOB-CODE, EMPLOYEE-ID, SALARY-AMOUNT
RW)
RW> You can use the AT BOTTOM statement when you want to
RW> summarize data for a group of detail lines. The
RW> following AT BOTTOM statement calculates and displays
RW> the total value for all the salaries in the report.
RW>
RW> AT BOTTOM OF REPORT PRINT TOTAL SALARY_AMOUNT USING
RW> $$$,$$$,$$$.99
RW>
RW> You must finish a report with the END-REPORT statement.
RW> Following END-REPORT, DATATRIEVE displays the report
RW> and returns you to the DTR> prompt.
RW>
RW> END-REPORT
DTR>

20-2 Writing Reports

SALARIES IN
ELECTRICAL ENGINEERING DEPARTMENT

JOB EMPLO'r'EE
CODE ID

SANL 00172
SPGM 00206
SANL 00211
GFER 00222
GFER 00231
EENG 00238
GFER 00240
SANL 00273
MENG 00296
APGM 00377
MENG 00393
EENG 00428
JNTR 00443
MENG 00458
SPGM 00460
GFER 00461
PRGM 00480
MENG 00489

DTR>
DTR>
DTR>
DTR}
DTR>
DTR>

If you plan to produce the report frequently, you can put
the commands and statements you need to produce it in a
procedure. You can then simply execute the procedure every
time you want the report. Refer to Chapter 17 for details
on creating procedures.

DTR> SHOW SALARIES-REPORT
PROCEDURE SALARIES-REPORT

READY CURRENT_JOBS SHARED READ, CURRENT-SALARIES SHARED READ

REPORT CURRENT_JOBS CROSS CURRENT_SALARIES OVER
EMPLO'r'ELID WITH DEPARTMENLCODE = "ELEL"

SET REPORLNAME = "SALARIES IN 11 1"ELECTRICAL ENGINEERING DEPARTMENT"
!
PRINT JOB_CODE, EMPLOYEE-ID, SALARY-AMOUNT

AT BOTTOM OF REPORT PRINT TOTAL SALARY-AMOUNT USING
$$$ I $$$I$$$. 99

END-REPORT

FINISH CURRENT-JOBS, CURRENT_SALARIES

END-PROCEDURE

DTR>

10-Apr-1984
Page 1

SALAR'r'
AMOUNT

$55,413.00
$29,692.00
$42,554.00
$14,122 .00
$10,907.00
$24,330.00
$10,188 .00
$44,264.00
$20,770.00
$15,646.00
$32,558.00
$27,363.00
$10,232.00
$22,690.00
$25,000.00
$10,364.00
$26,032.00
$32,488.00
$454,613.00

The following sections more fully discuss each part of a report specification.

Writing Reports 20-3

20.1 Entering the REPORT Statement

A report specification must begin with the keyword REPORT. Unless you are
reporting on all records in the CURRENT collection in the order that they
appear, you then enter an RSE to tell DATATRIEVE the location of the records
containing the data you are using, which records you want, and how you want
the records sorted. Refer to the sections in Chapters 14 and 15 that discuss and
illustrate RSEs if you need more information about creating RSEs.

A REPORT statement can also specify an ON clause to direct report output to a
specific device or file. If you want to direct report output to more than one
device or file, you can put your entire report specification after more than one
ON statement. If you do not specify either an ON clause or an ON statement,
DATATRIEVE displays the report on your terminal.

Here are some sample REPORT statements:

DTR> REPORT
RW>
RW) Uses all the records in the CURRENT collection in default
RW) ! sort order.

DTR> REPORT
CON> LP :

CURRENT SORTED BY DEPARTMENT-CODE, JOB_CODE ON

RW>
RW>
RW>
RW>
RW>

Uses all the records in the CURRENT collection, but first
sorts them according to DEPARTMENT_CODE and then,
within each DEPARTMENT_CODE group, according to
JOB-CODE. Sends the report to the system 1ine printer.

DTR> REPORT CURRENT_JOBS WITH DEPARTMENT-CODE = "ADMN"
RW>
RW>
RW>
RW>

Uses only those records in CURRENT_JOBS that contain
the specified DEPARTMENT_CODE value and uses them in
default sort order.

20-4 Writing Reports

DTR> REPORT CURRENT_JOBS CROSS CURRENT_SALARIES OVER
CON> EMPLOYEE-ID WITH DEPARTMENT _CODE = *. "department code"
RW>
RW> Uses records that combine data from CURRENT_JOBS and
RW> CURRENT-SALARIES, but only those containing the
RW> DEPARTMENT_CODE value entered in response to the prompt.
RW> Detail lines for the records will appear in default
RW> sort order.

DTR> ON SALARIES.RPT
DTR> ON TT :
DTR> REPORT ...
RW>
RW> Writes the report to the file SALARIES.RPT in your
RW> current VMS directory and also displays the report
RW> on your terminal .

After the REPORT statement, the only· remaining requirement for your report

specification is the END_REPORT statement. Usually, however, you want to

enter one or more SET statements to control report headings, report width, and

page size. (A PRINT statement, while not required in a report, is needed to

specify detail lines.)

20.2 Controlling Headers and Other Report Settings

Use one or more Report Writer SET statements to specify:

• What you want the report header to look like, if you do not want the format

DATATRIEVE uses by default

• The width of the report in columns per page, if you do not want the

80-column default

• The number of lines you want on each page of the report, if you do not want

the 60-line default

• The maximum number of lines or pages you want the report to contain, if you

want to set a limit to the size of your report

Table 20-1 lists the elements you can include in a SET statement and explains

what each can do for you. The first column indicates the general objective for

the setting.

The next three columns indicate the keywords that can follow SET, the function

of the statement, and the Report Writer's default setting if the statement is not

used.

Writing Reports 20-5

The Prompt Option column indicates whether or not a prompting value expres­
sion may be included with a form of the SET statement. If you include a
prompt, the Report Writer prompts you for a value when it processes the report
specification.

The Maximum Value column indicates the largest value you can specify for a
form of the SET statement.

Table 20-1: Report Writer SET Statement Options

Setting Prompt Maximum
For Keywords Function Default Option Value

Report REPORT - NAME= Specifies a name No report Yes; -
Header for the report name response to

and centers the prompt
name on the must be
first line of each enclosed in
page quotation

marks

DATE= Specifies a date Current No -

or string and system
prints it on the date
upper right line
of each page ·•.

NO DATE Suppresses the Current No -
printing of a system
date date

NUMBER= Causes the Current Yes 99,999
Report Writer page
to print the number
specified page
number below
the date

NO NUMBER Suppresses the Current No -

printing of a page
page number number

NO Suppresses the Header No -
REPORT - HEADER printing of report printed on

name, date, each page
column headers, of the
and page num- report
her on each page

(continued on next page)

20-6 Writing Reports

C

Table 20-1: Report Writer SET Statement Options (Cont.)

Setting Prompt Maximum
For Keywords Function Default Option Value

Column NO Suppresses the Headers No -
Headers COLUMN - HEADER printing of printed on

column headers each page

Page COLUMNS - PAGE= Specifies the Current Yes 2p5
Size page width in terminal

columns width or
80 columns

LINES - PAGE= Specifies the 60 lines Yes About 2
page length in billion
lines

Report MAX - LINES= Specifies the No limit Yes About 2
Size maximum lines billion

for the report

MAX - PAGES= Specifies the No limit Yes About 2
maximum pages billion
for the report

Example 20-2 illustrates how different combinations of SET statements in the
report specification vary the format of the report produced in Example 20-1.

Example 20-2: Using SET Statements to Vary Report Format

DTR) SHOW SALARIES-REPORT
PROCEDURE SALARIES-REPORT
READY CURRENT_JOBS , CURRENT-SALARIES SHARED READ

REPORT CURRENT_JOBS CROSS CURRENT-SALARIES OVER
EMPLO'r'ELID WITH DEPARTMENLCODE = 11 ELEL 11

SET REPORLNAME = "SALARIES IN 11
/

11 ELECTRICAL ENCiINEERINCi DEPARTMENT "
SET COLUMNS_PACiE = 50
SET DATE = "Wednesday, Apr i 1 11"
SET NO NUMBER

PRINT JOB-CODE, EMPLOYEE-ID, SALARY-AMOUNT

AT BOTTOM OF REPORT PRINT TOTAL SALARY-AMOUNT USING
$$$, $$$, $$$. 99

END-REPORT

(continued on next page)

Writing Reports 20-7

!
FINISH CURRENT_JOBS, CURRENT-SALARIES
END-PROCEDURE
DTR> = SALARIES-REPORT

SALARIES IN
ELECTRICAL ENGINEERING DEPARTMENT

Wednesday, April 11 ·

JOB EMPLO'r'EE SALAR'r'
CODE ID AMOUNT

SANL 00172 $55,413.00
SPGM 00206 $29,692.00
SANL 00211 $42,554.00
GFER 00222 $14,122.00
GFER 00231 $10,907.00

DTR> EDIT SALARIES_REPORT

DTR> SHOW SALARIES-REPORT

SET REPORLNAME = "SALARIES IN 11 1 11 ELECTRICAL ENGINEERING 11 1 11 DEPARTMENT 11

SET COLUMNS_PAGE = 70
SET DATE= "RESTRICTED DISTRIB."

DTR> = SALARIES-REPORT

20-8 Writing Reports

SALARIES IN RESTRICTED DISTRIB.

JOB
CODE

SANL
SPGM
SANL
GFER
GFER
EENG

ELECTRICAL ENGINEERING Page 1
DEPARTMENT

EMPLO'IEE SALAR''
ID AMOUNT

00172 $55,413.00
00206 $29,692.00
00211 $42,554.00
00222 $14,122.00
00231 $10,907.00
00238 $24,330 .00

DTR> EDIT SALARIES-REPORT

DTR> SHOW SALARIES-REPORT

SET COLUMNS_PAGE = 60
SET NO REPORT-HEADER

DTR> =SALARIES-REPORT

JOB
CODE

SANL
SPGM
SANL
GFER
GFER
EENG

DTR>

EMPLO'IEE
ID

00172
00206
00211
00222
00231
00238

SALAR''
AMOUNT

$55,413.00
$29,692.00
$42,554.00
$14,122.00
$10,907.00
$24,330.00

Writing Reports 20-9

20.3 Specifying Detail Lines

Detail lines usually take up the most space in your report. A detail line
represents the set of values contributed by an individual record. Use one PRINT
statement in your report specification to tell DATATRIEVE:

• The fields from each record that you want to print in each detail line

• Other fields that you want to print in each detail line

• Value expressions that you want to print in each detail line

• How to space the items in a detail line across the report page

The following sections explain these options. Example 20-3 illustrates various
formats and contents for one detail line.

20.3.1 Specifying and Formatting Values in a Detail Line

Most often you specify record field names to represent values in a detail line.
Sometimes you may want to specify names of variables you have declared or
other value expressions (for example, SALARY _AMOUNT - DEDUCTIONS).

When you want to display value expressions that are computed by one or more
fields, you might want to include a column header and edit string to display the C
results in that column of data. You might also want to include column headers
and edit strings for field values to override the DATATRIEVE defaults. If you
need to review how to handle column headers and edit strings, refer to the sec-
tion on the PRINT statement in Chapter 19.

20.3.2 Spacing Values in a Detail Line Across the Page

By default, DAT ATRIEVE spaces the items in your detail lines evenly across
the number of columns set for the report page. You might want to vary this
spacing by including the PRINT list elements COL n and SPACE n in your
detail lines. The table in Chapter 19 on print list elements explains these
options.

20-10 Writing Reports

Example 20-3: Varying the Format of Detail Lines

DTR} SHOW SALARIES-REPORT
PROCEDURE SALARIES-REPORT
READY CURRENT_JOBS, CURRENT-SALARIES SHARED READ

REPORT CURRENT_JOBS CROSS CURRENT-SALARIES OVER
EMPLO't'ELID WITH DEPARTMENLCODE = "ELEL"

SET COLUMNS_PAGE = 70
SET REPORT-NAME= "SALARIES FOR 11 1 11 ELECTRICAL ENGINEERING"

PRINT JOB_CODE, EMPLO'r'ELID ("ID"), SPACE 1, EMPLO 't'ELID VIA
wHo_ Is_ n ("NAME") , SALARY _AMOUNT

AT BOTTOM OF REPORT PRINT TOTAL SALARY-AMOUNT USING
$$$,$$$I$$$.99

FINISH CURRENT_JOBS , CURRENT_SALARIES
END-PROCEDURE

DTR> =SALARIES-REPORT

SALARIES FOR
ELECTRICAL ENGINEERING

JOB
CODE ID

SANL 00172 Peters
SPGM 00206 Stornell i
SANL 00211 Gutierrez
GFER 00222 Lasch
GFER 00231 Clairmont

DTR> EDIT SALARIES-REPORT

DTR> SHOW SALARIES-REPORT
PROCEDURE SALARIES-REPORT

EMPLOYEE NAME

Janis K
Marty J
Ernest F
Norman
Rick

11-Apr-1984
Page 1

SALAR't'
AMOUNT

$55,413.00
$29,692.00
$42,554.00
$14,122.00
$10,907.00

(continued on next page)

Writing Reports 20-11

DECLARE NAME COMPUTED BY EMPLOYEE-ID VIA WHO_IS_IT
QUER'LHEADER IS "NAME OF EMPLO','EE"
EDIT_STRING IS XC25).

!
REPORT CURRENT_JOBS CROSS CURRENT_SALARIES OVER

EMPLO'i'EE-ID WITH DEPARTMENT _CODE = "ELEL"

SET COLUMNS-PAGE= 65
SET REPORLNAME = "SALARIES FOR 11

/
11 ELECTRICAL ENGINEERING"

!
PRINT COL 8, JOB_CODE, SPACE 2, EMPLl:i't'EE_ID ("ID"), SPACE 2, NAME,

SPACE 3, SALARY-AMOUNT USING $$$$,$$$.99

DTR> =SALARIES-REPORT

JOB
CODE ID

SANL 00172
SPGM 00206
SANL 00211
GFER 00222
Ci FER 00231

DTR>

SALARIES FOR
ELECTRICAL ENGINEERING

NAME OF EMPLO'i'EE

Peters Janis
Stornell i Mart•:i
Gutierrez Ernest
Lasch Norman
Clairmont Rick

20.4 Handling Control Groups

K
J
F

11-Apr-1984
Page 1

SALAR','
AM OUNT

$55,413.00
$29,692.00
$42,554.00
$14,122.00
$10,907.00

Often you need to report not only on a whole body of data but also on groups of
records within it. A series of sorted records that have the same value in one or
more fields or the same computed value is called a control group. If the
SALARIES_REPORT procedure used in this chapter generated a report that
summarized salary data for each DEPARTMENT_ CODE, rather than only one of
them, then all the records having the same value in the DEPARTMENT_ CODE
field would form a control group.

Reports can contain more than one control group. SALARIES_REPORT could
also summarize salary data for each JOB_ CODE value within each group hav­
ing the same DEPARTMENT _CODE value. In this case, SALARIES_REPORT
would have two control groups.

20-12 Writing Reports

20.4.1 Sorting Records According to Control Group Key Values

The most important thing to remember when including control groups in a
report is that the records must be sorted according to the control group values
you want to use. Sometimes records from a domain, view, or collection are
already sorted the way you want them to appear in the report. When they are
not, you must include a SORTED BY clause in the REPORT statement RSE to
get the records in the proper order.

To revise the SALARIES_REPORT procedure so that it generates a report to
summarize salary data for each department and for each type of job within each
department, the REPORT statement would need to look like this:

REPORT CURRENT_JOBS CROSS CURRENT-SALARIES OVER
EMPLOYEE-ID SORTED BY DEPARTMENT-CODE, JOB_CODE

20.4.2 Printing Control Group Headers

To print a header for a series of records within a control group, use the AT TOP
OF statement in your report specification:

AT TOP OF DEPARTMENT-CODE PRINT DEPARTMENT-CODE

AT TOP OF JOB-CODE PRINT JOB_CODE

20.4.3 Printing Control Group and Report Summaries

To print summary information for a series of records within a control group, use
the AT BOTTOM OF statement:

AT BOTTOM OF DEPARTMENT-CODE PRINT TOTAL SALARY-AMOUNT

AT BOTTOM OF JOB-CODE PRINT AVERAGE SALARY-AMOUNT

Writing Reports 20-13

You might want to print some sort of explanation for the summary values you
are computing. In this case, declare a COMPUTED BY variable to store the
summary value you want to display. Displaying the variable value, rather than
the expression directly, ensures that the explanation for the value and the value
itself are printed on the same line of the report:

DECLARE TOTAL-SALARY COMPUTED BY TOTAL SALARY_AMOUNT
EDIT-STRING $$,$$$,$$$.99.

DECLARE AVERAGE-SALARY COMPUTED BY AVERAGE SALARY_AMOUNT
EDIT-STRING $$$,$$$.99.

AT BOTTOM OF DEPARTMENT-CODE
PRINT "TOTAL SALARIES FOR DEPT : 11

, TOTALSALAR 1r1
(-)

AT BOTTOM OF JOB_CODE
PRINT "AVERAGE SALAR 1I FOR JOB : 11

, AVERAGE-SALAR 1r1
(-)

Example 20-4 shows the SALARIES _REPORT procedure modified to include
control groups. The example uses the keywords COL, SKIP, and NEW _PAGE
to control the position of the values immediately following them in the print
list. The example also includes field names in concatenation value expressions
to make the control group summaries more descriptive. Refer to Chapter 19 if
you need to review how to use concatenation characters and print list keywords.

Example 20-4: Including Control Groups in a Report

DTR> SHOW SALARIES_REPORT
PROCEDURE SALARIES-REPORT
READY CURRENT_JOBS, CURRENT-SALARIES SHARED READ

DECLARE NAME COMPUTED BY EMPLOYEE-ID VIA WHO_IS_IT
t~UERY _HEADER IS "NAME OF EMPLOYEE"
EDIT_STRING IS X(25).

DECLARE TOTAL-SALARY COMPUTED BY TOTAL SALARY-AMOUNT
EDIT-STRING IS $$,$$$,$$$.99.

DECLARE AVERAGE-SALARY COMPUTED BY AVERAGE SALARY-AMOUNT
EDIT-STRING IS $$$,$$$.99.

REPORT CURRENT-JOBS CROSS CURRENT_SALARIES OVER
EMPLOYEE-ID SORTED BY DEPARTMENT-CODE, JOB-CODE

SET COLUMNS-PAGE= 65
SET REPORLNAME = 11 SALAR 1I DATA" 1 11 B1I DEPARTMENTS"

PRINT EMPL0 1IEE_ID ("ID"), NAME ,
SALARY-AMOUNT USING $$$$,$$$.99

20-14 Writing Reports

t

AT TOP OF DEPARTMENT_CODE PRINT DEPARTMENT_CODE ("DEPT")
AT TOP OF JOB_CODE PRINT JOB_CODE
AT BOTTOM OF JOB-CODE

PRINT COL 54, 11

11
, SKIP, COL 27,

"AVERAGE SALARY FOR 11
:: :JOB_CODE: 11

:
11

, AVERAGE_SALARY (-), SKIP
AT BOTTOM OF DEPARTMENT-CODE

PRINT COL 51. 11

11
, SKIP, COL 24,

11 TOTAL SALARIES FOR 11
:: :DEPARTMENT-CODE: 11: II,

TOTAL-SALARY(-), NEW-PAGE

AT BOTTOM OF REPORT
PRINT COL 51. "-------------", SKIP, COL 26,

"GRAND TOTAL SALARIES: ", TOTAL-SALARY (-)
!
END-REPORT

FINISH CURRENT-JOBS, CUR~ENT-SALARIES
END-PROCEDURE
DTR> :SALARIES-REPORT

JOB
DEPT COPE ID

ADMN
DSUP

00472

EENG
00188
00300

JNTR
00330

MENG

00438
00190

PRSD
00225

SALARY DATA
BY DEPARTMENTS

NAME OF EMPLOYEE

Delano Al F

AVERAGE SALARY FOR DSIJP :

Clarke Karen G
Gramby Marjorie

AVERAGE SALARY FOR EENG:

Williams Christine B

AVERAGE SALARY FOR JNTR:

Wilkins Mark
01Sull ivan Rick G

AVERAGE SALARY FOR MENG:

Jackson Mary Lou

AVERAGE SALARY FOR PRSD:

12-Apr-1984
Page 1

SALARY
AMOUNT

$39,531.00

$39,531.00

$21,093.00
$23,856.00

$22,474.50

$15,694.00

$15,694.00

$20,589.00
$34,976.00

$27,782.50

$8,687.00

$8,687.00

(continued on next page)

Writing Reports 20-15

SPCiM
00488 McGrath Torn $26,334.00

AVERAGE SALAR'i' FOR SPCiM: $26,334.00

VPSD
00204 M•dot te Charles K $87,143.00
00228 Harrison Lisa $85,150.00
00439 Srnoot Mary Lou $83, 19"3 . 00
00471 Herbener Jarnes Q $83,905.00
00435 MacDonald Johanna p $84,147.00
00267 Saninocencio Roger H $80,812.00
00271 Cirarnb 1d Karen z $75,113.00
00359 Crain Jesse $93,340.00
00494 Raiola-Paul Barbara $78,660.00
00415 Mistretta Kathleen (i $86,124.00

AVERACiE SALAR'r' FOR VPSD: $83,759.30

TOTAL SALARIES FOR ADMN: $1,028,353.00

CiRAND TOTAL SALARIES: $8,%7,'307 .00

DTR>

20.5 Including a Title Page for the Report

If you want to include a title page for your report, use the AT TOP OF REPORT
statement. Example 20-5 shows SALARIES_REPORT modified to include a
title page. Note that NEW _PAGE is the last item in the AT TOP OF REPORT
print list. This ensures that the main body of the report does not start to print
on the title page. The report specification sets the first page number to 2. (Page
numbering is suppressed for the title page itself.)

20-16 Writing Reports

r

C

Example 20-5: Creating a Title Page

DTR> SHOW SALARIES-REPORT
PROCEDURE SALARIES-REPORT
READY CURRENT_JOBS, CURRENT-SALARIES SHARED READ

DECLARE NAME COMPUTED BY EMPLOYEE-ID VIA WHO_IS_IT
1~UER 1LHEADER IS "NAME OF EMPLO'r'EE"
EDIT-STRING IS X(25).

DECLARE TOTAL-SALARY COMPUTED BY TOTAL SALARY-AMOUNT
EDIT_STRING IS $$,$$$,$$$.99.

DECLARE AVERAGE-SALARY COMPUTED BY AVERAGE SALARY-AMOUNT
EDIT_STRING IS $$$,$$$.99.

DECLARE DATE_TODAY USAGE DATE
DEFAULT VALUE IS 11 TODA'r111

•

REPORT CURRENT_JOBS CROSS CURRENT-SALARIES OVER
EMPLOYEE-ID SORTED BY DEPARTMENT-CODE, JOB-CODE

AT TOP OF REPORT PRINT SKIP 15, COL 27, "SALAR'r' DATA",
SKIP, COL 25, "B'r' DEPARTMENTS", SKIP 5, COL 27,
DATE-TODAY(-), SKIP 15, COL 21,
"RESTRICTED DISTRIBUTION", NEW-PAGE

SET COLUMNS_PAGE = 65
SET NO DATE
SET NUMBER= 2
!
PRINT EMPLO'r'EE_ID ("ID"), NAME.

SALARY-AMOUNT USING $$$$,$$$.99
I

AT TOP OF DEPARTMENT-CODE PRINT DEPARTMENT_CODE ("DEPT")
AT TOP OF JOB-CODE PRINT JOB-CODE
AT BOTTOM OF JOB_CODE

PRINT COL 54, "----------", SKIP, COL 27,
"AVERAGE SALAR'r' FOR":: : JOB_CODE: 11 = 11

, AVERAGLSALAR'r' (-),
SKIP

AT BOTTOM OF DEPARTMENT_CODE
PRINT COL 51, 11

11

, SKIP, COL 24,
"TOTAL SALARIES FOR":: :DEPARTMENLCODE: 11

:
11

,

TOTAL-SALARY(-), NEW_PAGE

AT BOTTOM OF REPORT
PRINT COL 51. "------------ -", SKIP, COL 26,

"GRAND TOTAL SALARIES = 11
, TOTALSALAR'r' (-)

END_REPORT

FINISH CURRENT_JOBS, CURRENT_SALARIES
END-PROCEDURE

DTR> =SALARIES-REPORT

(continued on next page)

Writing Reports 20-17

SALAR'r' DATA
B'r' DEPARTMENTS

12-Apr-1984

RESTRICTED DISTRIBUTION

20-18 Writing Reports

C

DEPT

ADMN

DTR>

JOB
CODE

DSUP

EENG

ID

00472

00188

NAME OF EMPLO',EE

Delano Al

AVERAGE SALAR\' FOR

Clarke Karen

F

DSUP =

(;

Page 2

SALAR 1
1
1

AMOUNT

$39,531 .00

$39 , 531.00

$21 , 093.00

20.6 Exiting the Report Writer and Correcting Mistakes

You normally exit the Report Writer by entering the END_REPORT state­
ment. DATATRIEVE processes the report specification and produces the report
if there are no errors.

• If DATATRIEVE detects an error in your Report Writer statements, it displays
an error message and returns you to DAT ATRIEVE command level. You can
immediately type EDIT to correct your mistakes. Your editing buffer will con­
tain your entire report specification (or your entire procedure if you are creating
the report specification in a procedure).

To force an exit from the Report Writer and return to DATATRIEVE command
level , you can enter CTRL/C as a response to an RW > prompt or in the middle
of an input line:

DTR> READY CURRENT-SALARIES
DTR> REPORT CURRENT-SALARIES SORTED BY JOB_CODE
RW> (CTAUC l
"C
Execution terminated by operator
DTR>

Writing Reports 20-19

(

)

Part VII
Appendixes and Index

i . '

~~~:~lt!j;;~';~~ . 



C 



) 

DAT ATRIEVE Keywords A 

This appendix contains the keywords and function names that you should not 
use when you are naming items. 

The following table lists all VAX DAT ATRIEVE keywords. 

Table A-1: DATATRIEVE Keywords 

* (asterisk) 

@ (at sign) 

: (colon) 

, (comma) 

** (double asterisk) 

" (double quotation mark) 

= (equal sign) 

! (exclamation point) 

> (greater than sign) 

- (hyphen or minus sign) 

( (left parenthesis) 

< (less than sign) 

. (period) 

+ (plus sign) 

? (question mark) 

) (right parenthesis) 

; (semicolon) 

APPLICATION KEYPAD 

ARGUMENTS 

/ (slash) AS 

_ (underscore) ASC 

I (vertical bar) ASCENDING 

ABORT AT 

ADT AVERAGE 

ADVANCED BANISH 

AFTER BATCH 

ALIGNED MAJ0R_MIN0R BEFORE 

AUN MAJ MIN BEGIN 

ALL BETWEEN 

ALLOCATION BLANK 

AND BOOLEAN 

ANY BOTTOM 

(continued on next page) 

A-1 



Table A-1: DATATRIEVE Keywords (Cont.) 

BT 

BUT 

BY 

BYTE 

CHANGE 

CHARACTER 

CHARACTERS 

CHOICE 

CLOSE 

COL 

COLLECTIONS 

COLUMN 

COLUMN HEADER 

COLUMNS PAGE 

COMMIT 

COMP 

COMP 1 

COMP 2 

COMP 3 

COMP 5 

COMP 6 

COMPUTED 

CONCURRENCY 

CONNECT 

CONSISTENCY 

CONT 

CONTAINING 

COUNT 

CROSS 

A-2 DATATRIEVE Keywords 

CURRENCY 

CURRENT 

DATABASE 

DATABASES 

DATATYPE 

DATE 

DEBUG 

DECIMAL 

DECLARE 

DECREASING 

DEFAULT 

DEFINE 

DEFINEP 

DELETE 

DELETEP 

DENY 

DEPENDING 

DESC 

DESCENDING 

D FLOATING 

DICTIONARY 

DICTIONARIES 

DIGIT 

DIGITS 

DISCONNECT 

DISPLAY 

DISPLAY FORM 

DO 

DOMAIN 

DOMAINS 

DOUBLE 

DROP 

DUP 

EDIT 

EDIT BACKUP 

EDIT STRING 

ELSE 

END 

END CHOICE 

END PLOT 

END_ PROCEDURE 

END REPORT 

END TABLE 

ENDING 

ENTRY 

EQ 

EQUAL 

ERASE 

EXCLUSIVE 

EXECUTE 

EXIT 

EXTEND 

EXTRACT 

F FLOATING 

FIELDS 

FILE 

FILL 

FILLER 

(continued on next page) 

C 



) 

J 

Table A-1: DATATRIEVE Keywords (Cont.) 

FIND 

FINISH 

FIRST 

FOR 

FORM 

FORMAT 

FORMS 

FROM 

GE 

GET FORM 

G_FLOATING 

GRANT 

GREATER_EQUAL 

GREATER THAN 

GROUP 

GT 

GUIDE 

HELP 

HELP LINES 

HELP PROMPT 

HELP WINDOW 

H FLOATING 

IF 

IN 

INCR 

INCREASING 

INIT VECTOR 

INSERT 

INTEGER 

IS 

JUST 

JUSTIFIED 

JUSTIFY 

KEEP 

KEY 

KEYDEFS 

KEYWORD 

LAST 

LE 

LEADING 

LEAVE 

LEFT 

LEFT RIGHT 

LESS_EQUAL 

LESS THAN 

LINES PAGE 

LIST 

LOCAL 

LOCK WAIT 

LONG 

LONGWORD 

LT 

MAJOR MINOR 

MATCH 

MAX 

MAX LINES 

MAX PAGES 

MEMBER 

MIN 

MISSING 

MODIFY 

NE 

NETWORK 

NEW PAGE 

NEW SECTION 

NEXT 

NO 

NONE 

NONLOCAL 

NOT 

NOT_EQUAL 

NOVERIFY 

NUMBER 

NUMERIC 

OCCURS 

OCTA 

OCTAWORD 

OF 

ON 

OPEN 

OPTIMIZE 

OR 

OVER 

OVERPUNCHED 

OWNER 

PACKED 

PAGE 

(continued on next page) 

DATATRIEVE Keywords A-3 



Table A-1: DATATRIEVE Keywords (Cont.) 

PATH 

PIC 

PICTURE 

PLOT 

PLOTS 

PORT 

PRINT 

PRIOR 

PRIVILEGES 

PROCEDURE 

PROCEDURES 

PROMPT 

PROTECTED 

PURGE 

PUT FORM 

PW 

QUAD 

QUADWORD 

QUERY _HEADER 

QUERY_NAME 

READ 

READY 

REAL 

RECONNECT 

RECORD 

RECORDS 

RECOVER 

REDEFINE 

REDEFINES 

REDUCE 

REDUCED 

RELEASE 

REPEAT 

REPORT 

REPORT HEADER 

REPORT NAME 

RETRIEVE 

RIGHT 

ROLLBACK 

RSE 

RUNNING 

SCALE 

SCHEMA 

SCHEMAS 

SEARCH 

SELECT 

SEMICOLON 

SEPARATE 

SET 

SETS 

SET UP 

SHARED 

SHOW 

SHOWP 

SIGN 

SIGNED 

SIZE 

SKIP 

SNAPSHOT 

SORT 

A-4 DATATRIEVE Keywords 

SORTED 

SOURCE 

SPACE 

STARTING 

STD DEV 

STORE 

STRING 

STRUCTURE 

SUBSCHEMA 

SUM 

SUPERCEDE 

SUPERSEDE 

SYNC 

SYNCHRONIZED 

SYNONYM 

SYNONYMS 

TAB 

TABLE 

TABLES 

TERMINAL 

TEXT 

THE 

THEN 

TIMES 

TO 

TOP 

TOTAL 

TRAILING 

UIC 

UNSIGNED 

(continued on next page) 

C 



) 

Table A-1: DATATRIEVE Keywords (Cont.) 

USAGE VARYING WITH 

USER VECTOR WITHIN 

USING VERIFY WORD 

VALID VIA WRITE 

VALUE WHEN ZERO 

VARIABLES WHILE ZONED 

The following table lists all the DATATRIEVE functions. As with the keywords 
in the preceding table, you should not use function names when you are naming 
items. 

Table A-2: DAT A TRI EVE Function Names 

FN$ABS FN$INIT _ TIMER FN$SHOW _ TIMER 

FN$ATAN FN$JULIAN FN$SIGN 

FN$COMMAND_KEYBOARD FN$KEYPAD_MODE FN$SIN 

FN$COS FN$KEYTABLE_ID FN$SPAWN 

FN$CREATE_ LOG FN$LN FN$SQRT 

FN$DATE FN$LOAD _KEYDEFS FN$STR_ EXTRACT 

FN$DAY FN$LOG10 FN$STR_LOC 

FN$DCL FN$MINUTE FN$TAN 

FN$DEFINE _ KEY FN$MOD FN$TIME 

FN$DELETE _ KEY FN$MONTH FN$TODAY 

FN$DELETE_ LOG FN$NINT FN$TRANS_LOG 

FN$EXP FN$OPENS_LEFT FN$UPCASE 

FN$FLOOR FN$PROMPT _KEYBOARD FN$VERSION 

FN$HEX FN$SECOND FN$WEEK 

FN$HOUR FN$SHOW _KEY FN$WIDTH 

FN$HUNDREDTH FN$SHOW _KEYDEFS FN$YEAR 

DATATRIEVE Keywords A-5 



C 



) 

Sample Record, Table, and View Definitions B 

This appendix contains the record definitions for the domains in the sample per­
sonnel database used in this book. It also contains the table and view definitions 
that supplement or use the domains in that database. 

Record definition for EMPLOYEES domain: 

RECORD EMPLOYEES-REC USING 
01 EMPLOYEES-REC. 

05 EMPLOY EL ID PIC X(S) 
QUERY-NAME IS ID 
QUERY _HEADER IS "ID" . 

05 EMPLOYEE-NAME QUERY-NAME IS NAME. 
10 LAST_NAME PIC X(14) 

QUERY-NAME IS L_NAME 
QUERY-HEADER IS "LAST NAME". 

10 FIRST-NAME PIC X(10) 
QUERY-NAME IS F_NAME 
QUERY-HEADER IS "FIRST NAME". 

10 MIDDLE-INITIAL PIC X 
QUERY-NAME IS INIT 
QUERY-HEADER IS II INIT". 

05 EMPLOYEE-ADDRESS QUERY-NAME IS ADDRESS. 
10 ADDRESS-DATA PIC X(20). 
10 STREET PIC X(25). 
10 TOWN PIC X(20). 
10 STATE PIC X(2). 
10 ZIP PIC X(S). 

05 SEX PIC X 
VALID IF SEX = 11 1'1 11 OR SEX= "F". 

05 SOCIAL-SECURITY PIC X(9) 
EDIT-STRING IS XXXBXXBXXXX. 

05 BIRTHDAY USAGE DATE 
EDIT-STRING IS NN1DD1YY. 

B-1 



Record definition for JOB_HISTORY domain: 

RECORD JOB_HISTORY_REC USING 
01 JOB-HISTORY-REC. 

05 EMPLO'r'EE-ID 

05 JOB_CODE 

05 JOB_START 
05 JOB-END 

05 DEPARTMENT-CODE 

05 SUPERVISOR-ID 

PIC X(5) 
QIJER'LNAME IS ID 
VALID IF ID IN WHO_IS_IT. 
PIC X(4) 
QUERY-NAME IS JOB 
VALID IF JOB IN JOBS_TABLE. 
USAGE DATE. 
USAGE DATE 
MISSING VALUE IS 
"17-NOV-1858 00=00=00.00". 
PIC X(4) 
QUERY-NAME IS DEPT 
VALID IF DEPT IN DEPARTMENTS_TABLE. 
PIC X(5) 
QUERY-NAME IS SUPER 
MISSING VALUE IS '"' 
VALID IF SUPER IN WHO_IS_IT OR 
SUPER= 

Record definition for SALARY_ HISTORY domain: 

RECORD SALARY_HISTORY-REC USING 
01 SALARY-HISTORY-REC. 

05 EMPLOYEE-ID PIC X(5) 
QUER'LNAME IS ID 

05 SALARY-AMOUNT 

05 SALAR'r' _START 
05 SALAR'LEND 

05 REVIEW-CODE 

VALID IF ID IN WHO-IS-IT. 
USAGE LONG SCALE IS -2 
QUERY_NAME IS SALARY 
EDIT_STRINCi $$$$,$$$.99. 
USAGE DATE. 

USAGE DATE. 
MISSING VALUE IS 
"17-NOV-1858 00=00=00.00". 
PIC X. 

Record definition for JOBS domain: 

RECORD JOBS_REC USING 
01 JOB. 

05 JOB_CODE 
05 MINIMUM-SALARY 

05 MAXIMUM-SALARY 

05 WAGLCLASS 

PIC X(4). 
USAGE LONG SCALE IS -2 
EDIT_STRINCi $$$$,$$$.99. 
USAGE LONG SCALE IS -2 
EDIT_STRINCi $$$$,$$$.99. 
PIC )1. 

B-2 Sample Record, Table, and View Definitions 

C 



) 

Record definition for DEGREES domain: 

RECORD DEGREES_REC USING 
01 DEGREES-REC. 

05 EMPLO'T'ELID 
05 COLLEGE-CODE 
05 DEGREE 
05 DEGREE-FIELD 
05 DATE-GIVEN 

PIC X(5). 
PIC X(4). 
PIC X(10). 
PIC X(15). 
USAGE DATE. 

Record definition for COLLEGES domain: 

RECORD COLLEGES-REC 
01 COLLEGE. 

05 COLLEGE-CODE 
05 COLLEGE-NAME 
05 CONTACT _NAME 
05 ADDRESS. 

10 ADDRESS_DATA 
10 STREET 
10 TOWN 
10 STATE 
10 ZIP 

PIC X(20). 
PIC X(25). 
PIC X(20). 
PIC XX. 
PIC X(S). 

Dictionary table DEPARTMENTS_ TABLE: 

TABLE DEPARTMENTS-TABLE 
QUERY-HEADER IS 11 DEPARTMENT 11 1 11 NAME" 
EDIT_STRING IS X(20) 
"ADMN" "Administration" 
"ENG" "Engineering" 
"MKTG" "Marketing" 
"MNFG" "Manufacturing" 
"PERS" "Personnel" 
"SALE" "General Sales" 

ELSE "Invalid Dept." 
END-TABLE 

PIC X(4). 
PIC X(25). 
PIC X(25). 

Sample Record, Table, and View Definitions B-3 



Dictionary table JOBS_ TABLE: 

TABLE JOBS-TABLE 
EDIT-STRING X(20) 
QUER'I _HEADER II JOB" / 11 TITLE 11 

"APGM" 
"CLRK" 
"DGFR" 
"DMGR" 
"DSUP" 
11 EENG 11 

"Associate Programmer", 
"Clerk", 
"Deputy Gopher", 
"Department Manager", 
"Dept. Supervisor", 
"Electrical Engineer", 

11 GFER 11 "Gopher", 
"JNTR" "Janitor", 
"MENG" "Mechanical Engineer" 
"PRGM" "Programmer" 
"PRSD" "Company President" 
"SANL" "Systems Analyst" 
"SCTR" "Secretary", 
"SPGM" "Systems Programmer", 
"VPSD" "Vice President" 
ELSE "Not in JOBS_TABLE" 
END-TABLE 

Domain table WHO_ IS_ IT: 

TABLE WHO-IS-IT FROM EMPLOYEES 
QUER'f _HEADER IS II EMPLO'fEE NAME 
EDIT-STRING IS XC36) 
USING EMPLOYEE-ID = EMPLOYEE-NAME 
ELSE II ID not in EMPLO'fEES. 11 

END-TABLE 

View ADDRESS_ LIST: 

DOMAIN ADDRESS-LIST OF EMPLOYEES, JOB_HISTORY USING 
01 CURRENT-FOLKS OCCURS FOR EMPLOYEES CROSS 

JOB-HISTORY OVER EMPLOYEE-ID WITH JOB-END MISSING. 
03 LAST-NAME FROM EMPLOYEES. 
03 FIRST_NAME FROM EMPLOYEES. 
03 MIDDLE-INITIAL FROM EMPLOYEES. 
03 ADDRESS-DATA FROM EMPLOYEES. 
03 STREET FROM EMPLOYEES. 
03 TOWN FROM EMPLOYEES. 
03 STATE FROM EMPLOYEES. 
03 ZIP FROM EMPLOYEES. 

B-4 Sample Record, Table, and View Definitions 

C 



) 

View CURRENT _JOBS: 

DOMAIN CURRENT_JOBS OF JOB_HISTORY 
01 CURRENT_JOB OCCURS FOR JOB-HISTORY WITH 

JOB-END MISSING SORTED BY DEPARTMENT_CODE, JOB_CODE. 
03 DEPARTMENT-CODE FROM JOB-HISTORY. 
03 JOB_CODE FROM JOB_HISTORY. 
03 EMPLOYEE-ID FROM JOB-HISTORY. 
03 JOB_START FROM JOB_HISTORY. 
03 SUPERVISOR-ID FROM JOB-HISTORY. 

View CURRENT _SALARIES: 

DOMAIN CURRENT-SALARIES OF SALARY_HISTORY 
01 CURRENT-SALARY OCCURS FOR SALARY-HISTORY WITH 

SALARY-END MISSING. 
03 EMPLO'T'EE_ID 
03 REVIEW-CODE 
03 SALARY-AMOUNT 

FROM SALARY-HISTORY. 
FROM SALARY-HISTORY. 
FROM SALARY-HISTORY. 

View EMPLOYEE_HISTORY _ 1: 

DOMAIN EMPLOYEE-HISTORY_1 OF EMPLOYEES, SALARY-HISTORY, 
JOB-HISTORY USING 
01 ONE_OF_US OCCURS FOR EMPLOYEES CROSS JOB_HISTORY OVER 

EMPLOYEE-ID WITH JOB-END MISSING. 
03 EMPLOYEE-ID FROM EMPLOYEES. 
03 LAST_NAME FROM EMPLOYEES. 
03 JOBS-HERE OCCURS FOR JOB-HISTORY WITH EMPLOYEE-ID 

EMPLOYEES-REC.EMPLOYEE-ID SORTED BY 
DECREASING JOB_START., 
05 JOB-CODE FROM JOB-HISTORY. 
05 DEPARTMENT-CODE FROM JOB-HISTORY. 
05 JOB-START FROM JOB-HISTORY. 

03 SALARIES OCCURS FOR SALARY-HISTORY WITH 
(EMPLOYEE-ID= EMPLOYEES-REC.EMPLOYEE-ID) SORTED BY 
DECREASING SALARY-START. 
05 SALARY-START FROM SALARY-HISTORY. 
05 SALARY-AMOUNT FROM SALARY_HISTORY. 

Sample Record, Table, and View Definitions B-5 



View EMPLOYEE_HISTORV _2: 

DOMAIN EMPLOYEE-HISTORY_2 OF EMPLOYEES, SALARY-HISTORY, 
JOB-HISTORY USING 

01 ONE_OF_US OCCURS FOR EMPLOYEES CROSS JOB_HISTORY OVER 
EMPLOYEE-ID WITH JOB-END MISSING. 
03 EMPLOYEE-ID FROM EMPLOYEES. 
03 LAST-NAME FROM EMPLOYEES. 
03 JOBS-HERE OCCURS FOR JOB-HISTORY WITH 

(EMPLOYEE-ID= EMPLOYEES-REC.EMPLOYEE-ID) AND 
(JOB-END NOT MISSING) SORTED BY DECREASING JOB_START. 
05 JOB-CODE FROM JOB-HISTORY. 
05 DEPARTMENT-CODE FROM JOB-HISTORY. 
05 JOB-START FROM JOB-HISTORY. 
05 SALARIES_FOR_JOBS OCCURS FOR SALARY-HISTORY WITH 

(EMPLOYEE-ID= JOB-HISTORY-REC.EMPLOYEE-ID) AND 
(SALARY-START BT JOB-START AND JOB_END) SORTED BY 
DECREASING SALARY-START. 
07 SALARY-START FROM SALARY-HISTORY. 
07 SALARY-AMOUNT FROM SALARY-HISTORY. 

View COLLEGE_LOCATIONS: 

DOMAIN COLLEGE-LOCATIONS OF COLLEGES USING 
01 COLLEGE OCCURS FOR COLLEGES. 

03 COLLEGE-NAME FROM COLLEGES. 
03 TOWN FROM COLLEGES. 
03 STATE FROM COLLEGES. 
03 ZIP FROM COLLEGES. 

B-6 Sample Record, Table, and View Definitions 

C 



) 

J 

DAT ATRIEVE Sort Order C 

The order and value associated with text characters is determined by the ASCII 
collating sequence. The following table lists characters in ascending order of 
ASCII values. Note that lowercase letters have higher values than uppercase 
letters. 

Table C-1: DATATRIEVE Sort Order 

Decimal 
Value Character Description 

32 Space 

33 ! Exclamation point 

34 " Double quotation mark 

35 # Number sign 

36 $ Dollar sign 

37 % Percent sign 

38 & Ampersand 

39 ' Apostrophe, single quotation mark 

40 ( Left parenthesis 

41 ) Right parenthesis 

42 * Asterisk 

43 + Plus sign 

(continued on next page) 

C-1 



Table C-1: DATATRIEVE Sort Order (Cont.) 

Decimal 
Value Character Description 

44 
' 

Comma 

45 - Minus sign, hyphen 

46 Period, decimal point 

47 I Slash 

48 0 Zero 

49 1 One 

50 2 Two 

51 3 Three 

52 4 Four 

53 5 Five 

54 6 Six 

55 7 Seven 

56 8 Eight 

57 9 Nine C 
58 Colon 

59 ; Semicolon 

60 < Less-than sign, left angle bracket 

61 = Equal sign 

62 > Greater-than sign, right angle bracket 

63 ? Question mark 

64 @ Commercial at sign 

65 A Uppercase A 

66 B Uppercase B 

67 C Uppercase C 

68 D Uppercase D 

69 E Uppercase E 

70 F Uppercase F 

(continued on next page) 

C-2 DATATRIEVE Sort Order 



Table C-1: DATATRIEVE Sort Order (Cont.) 

Decimal 
Value Character Description 

71 G Uppercase G 

72 H Uppercase H 

73 I Uppercase I 

74 J Uppercase J 

75 K Uppercase K 

76 L Uppercase L 

77 M Uppercase M 

78 N Uppercase N 

79 0 Uppercase 0 

80 p Uppercase P 

81 Q Uppercase Q 

82 R Uppercase R 

) 83 s Uppercase S 

84 T Uppercase T 

85 u Uppercase U 

86 V Uppercase V 

87 w Uppercase W 

88 X Uppercase X 

89 y Uppercase Y 

90 z Uppercase Z 

91 [ Left bracket 

92 \ Backslash 

93 ] Right bracket 

94 A Circumflex, caret 

95 - Underscore, underline 

96 ' grave accent 

97 a Lowercase a 

J (continued on next page) 

DATATRIEVE Sort Order C-3 



Table C-1: DATATRIEVE Sort Order {Cont.) 

Decimal 
Value Character Description 

98 b Lowercase b 

99 C Lowercase c 

100 d Lowercased 

101 e Lowercase e 

102 f Lowercase f 

103 g Lowercase g 

104 h Lowercase h 

105 i Lowercase i 

106 j Lowercase j 

107 k Lowercase k 

108 1 Lowercase 1 

109 m Lowercase m 

110 n Lowercase n 

111 0 Lowercase o C 
112 p Lowercase p 

113 q Lowercase q 

114 r Lowercase r 

115 s Lowercases 

116 t Lowercase t 

117 u Lowercase u 

118 V Lowercase v 

119 w Lowercase w 

120 X Lowercase x 

121 y Lowercase y 

122 z Lowercase z 

123 { Left brace 

124 I Vertical line 

125 } Right brace 

126 '\, Tilde 

C-4 DATATRIEVE Sort Order 



) 

Edit String Characters D 

The following table lists and describes all the edit string characters you can use 
in the EDIT _STRING clause of a field definition or in the USING clause of the 
PRINT statement. 

The table heading "Character Type" indicates what type of field you can edit 
with the character. Do not use editing characters designated only alphabetic or 
alphanumeric on numeric fields (or vice versa). If you do, you can get unex­
pected results. Remember that field type is determined by the PIC or USAGE 
clause, not the value in the field. A field defined as PIC X(lO) might contain 
only numbers, for example, but you should use only alphanumeric editing 
characters to format the way you want to display those numbers. 

Table D-1: Edit String Characters 

Edit String 
Character Type Character Description 

Alphabetic A Each A is replaced by an alphabetic character 
Replacement from the field's content. An asterisk is placed in 

the position of each digit or nonalphabetic 
character in the field's content. 

Alphanumeric X Each X is replaced by one character from the 
Replacement field's content. 

(continued on next page) 

D-1 



Table D-1: Edit String Characters (Cont.) 

Edit String 
Character Type Character Description 

T Indicates text. Each T reserves a column on a 
line for the associated print list element. For 
example, PRINT "1234567890" USING T(5) dis-
plays: 12345 in the first five columns of one line 
and 67890 in the first five columns of the next 
line. Edit strings containing a T cannot contain 
other characters. 

A Each A is replaced by an alphabetic character 
from the field's content. An asterisk is placed in 
the position of each digit or nonalphabetic 
character in the field's content. 

Numeric 9 Each 9 is replaced by one digit from the field's 
Replacement content. Nondigit characters are ignored, and 

the digits are right justified in the output and 
the leading character positions (if any) are filled 
with zeros. 

z If a Z matches a leading zero in the field's con-
tent, it is replaced by a space. If not, Z is 
replaced by a digit from the field's content. C 

* (asterisk) If an asterisk ( *) matches a leading zero in the 
field's content, an asterisk is placed in that 
character position. If not, it is replaced by a 
digit from the field's content. 

. (period) A period specifies the character position of the 
decimal point. 

Alphanumeric + (plus) A plus is inserted in that character position 
Insertion unless more than one plus sign is specified. 

- (hyphen) A hyphen is inserted in that character position. 

. (period) A period is inserted in that character position. 

, (comma) A comma is inserted in that character position. 

Numeric + (plus) If only one plus sign is specified, it is replaced 
Insertion by either a plus sign, if the field's content is 

positive, or a minus sign if it is negative. 

(continued on next page) 

D-2 Edit String Characters 



Table D-1: Edit String Characters (Cont.) 

Edit String 
Character Type Character Description 

- (minus) If only one minus sign is specified, it is replaced 
by either a blank, if the field's content is posi-
tive, or a minus sign if it is negative. 

. (decimal) A decimal point is inserted in that character 
position. Put only one decimal point in a 
numeric edit string. 

, (comma) If all the digits to the left of the comma are sup-
pressed zeros, the comma is replaced by a blank. 
If not, a comma is inserted in that character 
position. 

CR If the field's content is negative, the letters CR 
are inserted. If the field's content is positive, CR 
is replaced by 2 blanks. Put only one CR in an 
edit string, either at the far right or the far left. 

DB If the field's content is negative, the letters DB 
are inserted. If the field's content is positive, DB 

) 
is replaced by 2 blanks. Put only one DB in an 
edit string, either at the far right or the far left. 

( ( ) ) If the field's content is negative, single left and 
(parentheses) right parentheses are inserted before and after 

the field value. 

Alphanumeric B A space is inserted in that character position. 
and Numeric 
Insertion 

0 (zero) A zero is placed in that character position. 

$ (dollar sign) If only one dollar sign is specified, it is printed 
in that character position. 

% (percent) A percent sign is inserted in that character 
position. 

/ (slash) A slash is inserted in that character position. 

"literal" The character string literal enclosed in single or 
double quotation marks is inserted at that posi-
tion. The outer quotation marks are not inserted 
in the output. 

(continued on next page) 

J 
Edit String Characters D-3 



Table D-1: Edit String Characters (Cont.) 

Edit String 
Character Type Character Description 

Numeric $ (dollar sign) If more than one dollar sign is specified to the 
Floating left of the other edit string characters, leading 
Insertion zeros are suppressed and one dollar sign is dis-

played to the immediate left of the leftmost 
digit. 

+ (plus) If more than one plus sign is specified to the 
left of the other edit string characters, any lead-
ing zeros are suppressed, and the sign of the 
field's value (plus or minus) is displayed to the 
immediate left of the leftmost character position 
determined by the other edit string characters. 

- (minus) If more than one minus sign is specified to the 
left of the other edit string characters, any lead-
ing zeros that the minus sign matches are sup-
pressed. If the value of the field is negative, a 
minus sign is displayed to the immediate left of 
the leftmost character position determined by 
the other edit string characters. 

Floating-Point E The E divides the edit string into two parts for C 
Edit String floating-point or scientific notation. The first 

part is the mantissa edit string and the second 
part is the exponent edit string. 

Missing Value ? If the field has a MISSING VALUE clause, the 
Edit String question mark separates two edit strings. If the 

field value is not the missing value, the first 
edit string controls the output of the field. If the 
field value is the missing value, the second edit 
string controls the output of the field. 

Date D Each D is replaced by the corresponding digit of 
Replacement the day of the month, starting with the first let-

ter. Put no more than two Ds in a date edit 
string; the use of DD is recommended. 

M Each M is replaced by the corresponding letter 
of the name of the month. An edit string of 
M (9) prints the entire name of the month. 

(continued on next page) 

D-4 Edit String Characters 



Table D-1: Edit String Characters (Cont.) 

Edit String 
Character Type Character Description 

N Each N is replaced by a digit of the number of 
the month. Put no more than two N s in a date 
edit string; the use of NN is recommended. 

y Each Y is replaced by the corresponding digit of 
the numeric year. Put no more than four Ys in 
a date edit string; the use of YY or YYYY is 
recommended. 

J Each J is replaced by the corresponding digit of 
the Julian date. Put no more than three Js in a 
date edit string; the use of JJJ is recommended. 

w Each W is replaced by the corresponding letter 
from the name of the day of the week, starting 
with the first letter. An edit string of W(9) 
prints the entire day. Put no more than 9 W s in 
a date edit string. 

B Each B is replaced by a space in that character 

) 
position. 

/ (slash) A slash is inserted in that character position. 

- (hyphen) A hyphen is inserted in that character position. 

. (period) A period is inserted in that character position . 

Edit String Characters D-5 



C 



) 

J 

In this index, a page number followed 
by a "t" indicates a table reference. 

! (exclamation point) 
See Comments 

$ (dollar sign) 
See Dollar sign ($) 

% (percent sign) 
See Percent sign(%) 

* (asterisk) 
See Asterisk ( *) 

- (hyphen) 
See Hyphen(-) 

: (colon) 
See Colon (:) 

; (semicolon) 
See Semicolon(;) 

? (question mark) 
See Question mark (?) 

A 

A (alphabetic) 
edit string character, D-1 t 

A (alphabetic) picture string character, 
9-l0t 

Index 

Abbreviating 
DATATRIEVE keywords, 5-2 
DCL command strings, 2-28 
DCL commands, 2-6 

ABORT statement, 17-15 
Access control list, 3-7, 7-16 

editing, 7-21 
Access modes, 13-4t 

EXTEND, 13-4t 
MODIFY, 13-4t 
READ, 13-4t 
WRITE, 13-4t 

Access options, 13-4 t 
EXCLUSIVE, 13-4t 
PROTECTED, 13-4t 
SHARED, 13-4t 

Access privileges, 7-16 
displaying, 7-18 
in multiuser environments, 13-4 
needed to use 

domains, 13-4 
procedures, 7-19 
record definitions, 10-3 
tables, 12-5 
views, 15-19 

requirements, 7-19t 
Accessing data, 15-20 
Account, 2-2 
ACL 

See Access control list 

lndex-1 



ADT 
See Application Design Tool 

AFTER relational operator, 18-1 lt 
Alias, 13-3 

using to restructure domains, 11-8 
ALL keyword 

in PRINT statement, 19-11 
ALLOCATION clause, 11-6 
Alphabetic fields, 9-10 
Alternate keys 

allowing 
changes to, 11-2 
duplicate values in, 11-2 

characteristics of, 11-2 
choosing, 11-4 

AND Boolean operator, 18-14 
ANY relational operator, 18-11 t 

and list fields, 18-14 
APPEND command (DCLI, 2-17 
Application Design Tool (ADT), 1-17 

to 1-19 
Arithmetic operations, 18-7t 

order of evaluation for, 18-8 
Arithmetic value expressions, 18-7 

rules for evaluating, 18-8 
ASCII values for characters, C-1 
ASSIGN command (DCL), 2-24 

/USER_MODE qualifier, 2-26 
Assigning default editor, 3-2 
Asterisk (*) 

arithmetic operator (multiplication), 
18-7 

as wildcard character (DCL), 2-12 
edit string character, D-lt 
in prompting value expressions, 

18-6 
AT BOTTOM statement 

REPORT option, 20-2 
to summarize control group data, 

20-13 
AT TOP statement 

to create title page, 20-16 
to specify control group header, 

20-13 
Auditing information 

lndex-2 

including time in, 16-15 
writing to a file, 16-8 

AVERAGE statistical operator, 18-17 

B 
B (blank) 

edit string character, D-1 t 
BEFORE relational operator, 18-llt 
BEGIN-END statement, 1 7-8 

declaring variables in, 18-5 
BETWEEN relational operator, 

18-11 t 
Blank lines 

adding to displays, 19-11 
including in reports, 20-14 

Boolean expressions, 18-1 
compound, 18-15 
contents of, 18-10 
evaluation of, 18-15 
uses for, 18-11 

Boolean operators, 18-14 
Braces in syntax diagrams, 4-2t, 4-4 
Brackets in syntax diagrams, 4-2t, 4-4 
BT 

See BETWEEN relational operator 
BYTE data type, 9-13t 

C 

Call Interface, reasons for using, 1-31 
Case conversion of 

CDD names, 7-4 
field values, 7 -4 

Case-sensitivity and character values, 
18-13 

CDD 
See Common Data Dictionary 

CDD$DEFAULT logical name, 1-6 
CDD$TOP dictionary directory, 7-3 
Character strings 

searching for in files, 2-1 7 
stored in fields, 9-10 

CHOICE statement, 17-11 
CHOICE value expression, 18-9 
CLOSE command, 17-18 

C 



) 

J 

COL print list element, 17-3, 19-11 
in reports, 20-14 

Collections, 14-1 
advantages of, 15-20 
changing access mode for, 14-16 
choosing target record from, 14-7 
compound statements with, 15-4 
CURRENT, 14-6 

performing statistical operations 
on, 18-20 

disadvantages of, 14-16, 15-20 
displaying 

information about, 14-6 
names of, 14-6 

do not use keys, 15-20 
dropping records from, 14-15 
effect on performance, 14-1 7 
erasing records from, 16-5 
how they work, 15-1 
modifying records in 

to assign different values, 16-13 
to assign one value per field, 

16-11 to 16-13 
naming, 14-6 
reducing number of fields in, 14-10 
removing from workspace, 14-16 

Colon(:) 
following logical name, 2-24 
using to execute procedures, 1 7-1 

from command files, 1 7-14 
Column headers 

in SUM statement, 18-21 
PRINT statement, 19-13 
QUERY _HEADER clause, 9-7 
to optimize line space, 19-4 

Comma(,) 
edit string character, D-lt 
following an edit string, 4-5 

Command files, 2-27 
converting to procedures, 1 7-1 7 
correcting problems in 

using interactive entry, 17-18 
using log files, 1 7 -18 
using SET VERIFY, 17-16 

created with EXTRACT, 7-13 

DATATRIEVE startup, 5-2 
disadvantages of, 17-18 
LOGIN.COM, 2-28 
nesting, 2-28 

Command string (DCL), 2-1 
Commands 

continuing over lines, 5-4 to 5-6 
continuing with hyphen, 5-5 
ending, 4-5, 5-6, 7-9 
privileges needed to use, 7-19 

Comments, in procedures, 17-2 
Common Data Dictionary 

access control, 7-16 
creating directories in, 7-14 
deleting 

definitions in, 7-12 
directories in, 7 -15 

full path names in, 7-5 
functions of, 7-1 
organization of, 7-2 
relative path names in, 7-7 
rules for names in, 7 -4 
setting location in, 7-9 
structure of, 1-15 
used in examples, 7-3 

COMP data type, 9-13t 
COMP-I data type, 9-13t 
COMP-2 data type, 9-13t 
COMP-3 data type, 9-13t 
COMP-5 data type, 9-13t 
Comparing 

character string values, 18-13 
file contents, 2-1 7 

Compound statements 
See Statements, compound 

COMPUTED BY clause, 9-15 
CON> prompt, 1-12, 5-4 
Concatenated expressions 

to format names, 17-2 
Concatenation characters, 19-7 
Conditional value expressions, 18-8 

CHOICE, 18-9 
IF-THEN-ELSE, 18-8 

CONTAINING relational operator, 
18-llt 

lndex-3 



Context errors, 1-14 
when accessing list fields, 15-11 

Continuation character H, 5-5, 19-3 
CONTINUE command (DCL), 2-8 
Continuing 

commands, 5-4 to 5-6 
literals, 19-3 
statements, 5-4 to 5-6 

Control groups, 20-12 
CONTROL privilege, 7-17 
COPY command (DCL), 2-15 
Copying 

definitions to files, 7-13 
files, 2-15 

Correcting mistakes 
with EDIT command, 1-14 

COUNT statistical operator, 18-17 
CR (credit) 

edit string character, D-1 t 
CREATE/DIRECTORY command 

(DCL), 2-20 
Creating 

DATATRIEVE procedures, 17-1 
domain definitions, 10-1 
files, 11-1 

indexed, 11-2 
sequential, 11-5 

record definitions, 9-1 
tables 

dictionary, 12-2 to 12-3 
domain, 12-3 to 12-4 

variables, 18-4 
CROSS clause, 14-4 

cannot erase records created by, 
16-5 

FIND statement RSE, 14-14 
in view definition, 15-15 
looping errors in, 15-10 to 15-11 
modifying records created by, 16-11 

CTRL/A, 2-7 
CTRL/B, 2-7 
CTRL/C 

canceling DCL command, 2-7 
effect on procedure execution, 

17-14 

lndex-4 

exiting Report Writer, 20-19 
CTRL/E 

at DCL level, 2-7 
expanding LSE placeholders and 

tokens, 3-15 
CTRL/H, 2-7 
CTRL/Q, 2-7 
CTRL/S, 2-7 
CTRL/U, 2-7 
CTRL/Y 

canceling DCL commands, 2-7 
exiting DATATRIEVE with, 5-3 

CTRL/Z 

D 

canceling DCL command, 2-7 
effect on procedure execution, 

17-15 
exiting DAT ATRIEVE, 5-3 
stopping a store operation, 16-2 
using in editors, 3-16 

EDT, 3-16 
LSE, 3-17 
VAXTPU, 3-17 

D (day number) 
edit string character, D-1 t 

DAT file type, 2-11 t 
Data 

summary of access options, 15-20 
to 15-21 

Data files 
See also Indexed files 
See also Sequential files 
accessing using domain definitions, 

10-1 
adjusting 1/0 parameters for, 11-7 
changing organization of, 11-7 
consolidating storage for, 11-7 
creating with 

DEFINE FILE command, 11-1 
MAX option, 11-6 
RMS utilities, 11-7 
SUPERSEDE option, 11-6 

location of, 1-2 

C 



) 

maintaining, 1-30 
effect of key structure on, 11-4 
with RMS utilities, 11-7 

preallocating disk space for, 11-6 
specifying in domain definitions, 

10-3 
Data types 

ASCII string, 9-13t 
assigning with PIC clause, 9-9 
date, 9-13t 
fixed decimal, 9-13t 
floating point, 9-13t 

Database design 
access restrictions in, 8-3 
data entry requirements, 8-2 
deciding on fields in, 8-4 to 8-6 
distributed or local access, 8-2 
grouping fields in, 8-6 to 8-9 
key fields in, 8-7 
maintenance requirements, 8-3 
report requirements, 8-2 
system requirements, 8-2 

Databases accessed by 
DATATRIEVE 

DBMS databases, 1-2 
Rdb/ELN databases, 1-2 
RdbNMS databases, 1-2 
Relational databases, 1-2 
VIDA databases, 1-2 

DATATRIEVE 
differences from other languages, 

1-29 to 1-31 
storage capabilities, 1-29 

DAT A TRIEVE editors 
See also EDIT command 
See also EDT editor 
See also LSE 
See also V AXTPU editor 
assigning default editor, 3-2 

Date fields 
controlling conversion of numeric 

strings for, 18-23 
default display of, 9-15 
defining, 9-15 
displaying time stored in, 18-23 

displaying values in, 18-24 
searching for values in, 18-26 

to find day of week, 18-28 
size of, 9-15 
storing 

date values in, 18-23 
time values in, 18-23 

subtracting, 17-12, 18-26 
DB (debit) 

edit string character, D-lt 
DBMS databases, 1-2, 1-30 
DCL 

See DIG IT AL Command Language 
fOCL) 

DEASSIGN command (DCL), 2-26 
Decimal point 

specifying position of 
SCALE clause, 9-14 

Decimal point, specifying position of 
P character, 9-11 
SCALE clause, 9-11 
V character, 9-11 

DECLARE statement, 18-4 
DECLARE SYNONYM command, 

5-2 
Defaults 

access mode, 13-3 
access option, 13-3 
for column headers, 9-7 
for data types, 9-12 
for displaying dates, 9-15 
for field value displays, 9-20 
for index keys, 11-2 
for order of records in indexed files, 

11-3 
location 

of data files, 10-3 
of record definitions, 10-3 

operating system, 2-6 
DEFINE DICTIONARY command, 

1-16, 7-14 
access privilege requirements, 7-21 

DEFINE DOMAIN command, 10-1 
access privilege requirements, 7-21 
to create view definition, 15-14 

lndex-5 



DEFINE FILE command, 11-1 
access privilege requirements, 7-21 
ALLOCATION option, 11-6 
ending, 11-2 
KEY clause options, 11-2 
MAX option, 11-6 
SUPERSEDE option, 11-6 

DEFINE PORT command, access 
privilege requirements, 7-21 

DEFINE PROCEDURE command, 
7-21, 17-1 

DEFINE RECORD command, access 
privilege requirements, 7-21 

DEFINE TABLE command 
access privilege requirements, 7-21 
EDIT _STRING clause, 12-2, 12-4 
ELSE clause, 12-2, 12-4 
END_TABLE requirement, 12-2, 

12-4 
for dictionary tables, 12-2 to 12-3 
for domain tables, 12-3 to 12-4 
QUERY _HEADER clause, 12-2, 

12-4 
DELETE command 

access privilege requirements, 7-21 
DATATRIEVE, 7-12 
DCL, 2-13 

for deleting subdirectory, 2-23 
/SYMBOL qualifier, 2-26 

DMU, 7-15 
DELETE key, 2-6 
DELETEP command, access privilege 

requirements, 7-21 
Deleting 

definitions 
all earlier versions of, 7-12 

files, 2-13 
records 

See Erasing records 
Devices 

in file specifications, 2-11 
writing PRINT statement output 

to, 19-13 
DFN > prompt, 1-25 
Dictionary path names, 7-7 

lndex-6 

DIFFERENCES command (DCL), 
2-17 

DIGITAL Command Language (DCL), 
2-1 

abbreviating commands in, 2-6 
CONTINUE command, 2-8 
defaults, 2-6 
delimiters, 2-5 
entering commands in, 2-4 
messages, 2-8 
parameters, 2-4 
qualifiers, 2-5 

Directories 
CDD, 1-6 

assigning CDD$DEFAULT to, 
1-6 

creating, 1-16, 7-14 
deleting, 7-15 
displaying contents of, 1-9 
displaying default, 1-8 

VMS, 1-2 
accessing other, 2-19 
changing location among, 2-20 
creating, 1-4, 2-20 
default, 1-5 
deleting, 2-23 
DIR files, 2-18 
displaying contents of, 1-3, 2-15 
displaying protection for, 2-22 
entering names of, 1-5 
in file specifications, 2-11 
main (login), 1-3 
master file of, 2-18 
protection for, 2-21 

DIRECTORY command (DCU, 2-15 
/OWNER option, 2-21 

Displaying 
access privileges, 7-18 
CDD objects, 7-lOt 
command files as they execute, 

17-16 
data in views, 15-15 
fields in readied domains, 14-5 
files, 2-14 
information 

C 



) 

about a collection, 14-6 
stored in dictionary, 7-9 

items at specific line positions, 1 7-3 
names of 

CDD directories, 7-lOt 
collections, 14-6 
DAT A TRIEVE procedures, 7-1 0t 
domains, 10-2 
loaded tables, 12-7 
readied domains, 13-1 
records, 7-1 0t 
tables, 12-3 
variables, 7 -1 0t 

OCCURS field items, 19-11 
procedures as they execute, 1 7-16 
protection for 

files, 2-22 
VMS directories, 2-22 

records, 1-21 
longer than 80 characters, 19-1 

translation of 
logical name, 2-26 
logical symbol, 2-26 

view definitions, 15-15 
VMS directory contents, 2-15 

Displays, stopping 
with CTRL/C, 1-12 
with NO SCROLL key, 1-11 

Distributed data, 10-1 
accessing, 10-4 

Division arithmetic operator (/), 18-7 
Dollar sign ($) 

edit string character, D-lt 
prompt, 1-2, 2-3 

Domains 
accessing 

data from two or more with view, 
15-14 

data in two or more with CROSS 
clause, 15-10 

subsets of fields in, 15-14 
changing structure of, 11-7 
ere a ting, 10-1 to 10-2 
displaying readied, 13-1 
purpose of, 10-1 

rules for naming, 9-7, 10-2 
DOUBLE data type, 9-13t 
DROP statement, 14-15 
DTR$DATE_INPUT logical name, 

18-23 
DTR$LIB dictionary directory, 7-3 
DTR$ST ARTUP logical name, 5-2 

assigning command file to, 5-2 
DTR$USERS dictionary directory, 

7-3 
DTR32 logical symbol 

including in LOGIN.COM, 1-6 
DTR> prompt, 1-8 
DTR_EXTEND/EXECUTE privilege, 

7-17 
DTR_MODIFY privilege, 7-17 
DTR_READ privilege, 7-1 7 
DTR_ WRITE privilege, 7-1 7 

E 

E (floating point) 
edit string character, D-1 t 

EDIT command, 3-5 
access privilege requirements, 7-21 
correcting mistakes with, 1-14 
RECOVER argument, 3-8 
specifying CDD path name, 3-7 
specifying object types, 3-7 

Edit string characters, D-1 t 
Edit strings 

alphabetic replacement, D-1 t 
alphanumeric insertion, D-1 t 
alphanumeric replacement, D-1 t 
for date fields, 18-24 
for statistical results, 18-18 
in FORMAT value expressions, 

18-10 
in SUM statement, 18-21 
numeric floating insertion, D-1 t 
numeric insertion, D-1 t 
numeric replacement, D-1 t 
problems when too small, 19-6 
specifying in PRINT statement, 

19-13 

lndex-7 



that display time, 18-23 
using to optimize line space, 19-6 

EDIT _STRING clause, 9-20 
Editing 

See also DATATRIEVE editors 
See also EDT editor 
See also LSE 
See also VAXTPU editor 
access control lists, 7-21 
buffers, 1-7 
in EDT keypad mode, 3-10 
in EDT line mode, 3-10 
record definitions, 9-24 
table definitions, 12-7 

Editors 
See DATATRIEVE editors 
See Editing 

EDT editor, 3-1 
exiting, 3-16 
invoking from DAT ATRIEVE, 3-9 
journal files, 3-8 
quitting, 3-16 

EDT file type, 2-11 t 
EDT Keypad Emulator, 3-11 
Elementary fields, 1-1 7 
Ellipsis in syntax diagrams, 4-2t 
Ending 

access to data, 1-14 
statements with semicolon, 5-6 

Ending editing sessions 
EXIT command, 3-16 
QUIT command, 3-16 

EQUAL relational operator, 18-11 t 
Equal sign ( =) 

as relational operator, 18-1 lt 
in symbol definition, 2-28 

Erasing 
definitions 

See DELETE command 
dictionary directories 

See DELETE command, DMU 
records, 16-5 

from a collection, 16-5 to 16-7 
in a FOR statement RSE, 16-7 

to 16-10 

lndex-8 

Error conditions 
in procedures 

with SET ABORT, 17-14 
specifying, 1 7-15 

Error messages 
getting help for, 6-2 
in response to DCL commands, 2-8 

EXCLUSIVE access option, 13-4t 
EXE file type, 2-11 t 
EXECUTE (:) command, 17-1 
Executing 

command files, 2-27 
DATATRIEVE procedures, 17-1 

EXIT command in editing, 3-16 
Exiting 

DATATRIEVE, 1-15, 5-3 
when not at DTR > prompt, 5-3 
with CTRL/Y, 5-3 

DATATRIEVE online help, 6-2 
EDT editor, 1-14, 3-16 
LSE, 3-17 
Report Writer 

with CTRL/C, 20-19 
with END_REPORT, 20-19 

VAXTPU editor, 3-17 
EXTEND access mode, 7-21, 13-4t 
EXTEND privilege, 7-17 
Extensible VAX Editor (EVE), 3-11 
EXTRACT command, 7-13, 17-17 

access privilege requirements, 7-21 

F 

Field names 
abbreviating, 9-7 
as value expressions, 18-4 

Field values 
character string 

sort order of, C-1 
performing arithmetic operations 

with, 18-7 
Fields 

record 
alphabetic, 9-10 
changing values of, 1-22 

C 



) 

DATATRIEVE recognition of, 
9-4 

display headers for, 9-7 
duplicate, 9-6 
elementary, 9-4 
formatting values of, 9-20 
group, 9-4 
numeric, 9-11 
redefining other fields, 9-16 
relationships among, 9-3 
restricting characters allowed in, 

9-9 
size of, 9-9 
specifying decimal point in, 9-11 
specifying size of, 9-13t 
storing dates, 9-15 
top-level, 9-4 
type of data in, 9-9 
using tables to validate, 12-8 

variable 
computed, 9-16 
defining, 18-4 to 18-5 

File specifications 
errors in, 10-4 
format for, 2-10 
in domain definitions, 10-3 
including logical names in, 2-24 

File types 
See also DAT file type 
See also EDT file type 
See also EXE file type 
See also Journal files 
See also LIS file type 
See also MAI file type 
See also OBJ file type 
defaults, 2-11 t 
restrictions, 2-11 t 

Files 
See also Data files 
appending, 2-1 7 
changing default protection for, 

2-22 
creating with 

CREATE command (DCL), 2-10 
deleting, 2-13 

displaying, 2-14 
displaying protection for, 2-22 
journal, 3-8 
listing differences between, 2-1 7 
moving 

with COPY command, 2-15 
with RENAME command, 2-16 

naming, 2-11 
printing, 2-14 
protection codes for, 2-21 
purging, 2-13 
recovering, 3-8 
renaming, 2-16 
setting protection for, 2-22 
writing PRINT statement output 

to, 19-13 
FILLER field name 

does not mask sensitive data, 9-9 
uses for, 9-8 

FIND statement 
advantages of using, 15-20 
disadvantages of using, 15-20 
displays no message in procedure, 

17-13 
FINISH command, 13-1 

effect of, 13-6 
FIRST clause of RSE, 14-4 
Fixed decimal data types, 9-13t 
Fixed occurrence lists, 9-18 
Floating point data types, 9-13t 
FN$DATE function, 18-23 
FN$WIDTH function, 19-2 
FOR statement 

erasing records specified in a, 16-7 
to 16-10 

looping errors in a, 15-10 
results, 1 7-7 
used in a modify operation, 16-13 to 

16-15 
Foreign command lines, 5-1 
FORMAT value expression, 18-10 

to control alignment of numeric val­
ues, 18-10 

to search for day of the week, 18-28 

lndex-9 



using with MAX value expression, 
16-3 

FORWARD privilege, 7-17 
Fractions, ensuring display of, 9-20 
Functions, A-5t 

G 
G_FLOATING data type, 9-13t 
GE 

See GREATER_EQUAL relational 
operator 

Global variables, 18-5 
GLOBAL_DELETE privilege, 7-17 
GREATER_EQUAL relational opera-

tor, 18-llt 
GREATER_THAN relational opera­

tor, 18-1 lt 
Group fields, 1-17 

are always alphanumeric, 9-16 
as index keys, 11-4 

restrictions on, 11-5 
GT 

See G REA TE R_ THAN relational 
operator 

Guide Mode 
entering, 6-3 
using advanced, 6-4 

H 
H_FLOATING data type, 9-13t 
Headers 

See Column headers 
Help 

DAT A TRIEVE online 
accessing, 6-1 
controlling displays in, 6-2 
exiting, 6-2 
for error messages, 6-2 
topic levels for, 6-2 

VMS online, 2-4 
History lists, 7-23 
HISTORY privilege, 7-17 
HOLD SCREEN key, 2-7 
Hyphen(-) 

lndex-10 

cannot end a comment line, 1 7-2 
continuation character, 5-5, 19-3 
edit string character, D-lt 
in path names, 7-7, 7-9 
to suppress column headers, 19-5 

IF-THEN-ELSE statement, 17-10 
IF-THEN-ELSE value expression, 

18-8 
Indentation 

in compound statements, 17-7 
in record definitions, 9-5 

Index keys in database design, 8-7 
Indexed files 

advantages of, 11-2 
and collections, 15-1 
changing keys for, 11-7 
for transaction file processing, 11-3 
specifying 

alternate keys for, 11-4 
group field keys for, 11-4 
primary keys for, 11-3 

INTEGER data type, 9-13t 
Invocation command lines, 5-1 

J 
J (Julian date) 

edit string character, D-lt 
JOU file type 

See Journal files 
Journal files 

JOU file type, 2-llt, 3-8 
T JL file type, 3-8 

Julian date 

K 

See J (Julian date) edit string 
character 

Keywords, A-lt 
creating synonyms for, 5-2 
effect on user-defined names, 4-4 
optional, 4-4 

C 



) 

required, 4-4 

L 

Language-Sensitive Editor 
SeeLSE 

LE 
See LESS_EQUAL relational 

operator 
LESS_EQUAL relational operator, 

18-llt 
LESS_ THAN relational operator, 

18-llt 
Level numbers, 9-3 

for redefining fields, 9-16 
leading zeros in, 9-5 
range of values for, 9-5 
suggested intervals between, 9-5 

Line recall, 3-3 
LIS file type, 2-11 t 
List fields 

cannot be index keys, 11-5 
creating loops to process, 15-11 to 

15-13 
defining, 9-17 
disadvantages of, 9-18 
fixed occurrence, 9-18 
group field names for, 9-19 
using ANY operator to search, 

18-14 
variable occurrence, 9-18 

LIST statement, 19-2 
Literals, 18-3 

character string, 18-3 
case of letters in, 18-3 
searching for in files, 2-17 

continuing to next line, 19-3 
longer than 253 characters, 19-8 
numeric, 18-3 

Local variables, 18-5 
LOCAL_DELETE privilege, 7-17 
Log files, creating, 17-18 
Logging in, 2-2 
Logging out, 2-9 
Logical names 

advantages of using, 2-23 
CDD$DEFAULT, 1-6 
default, 2-24 
deleting, 2-26 
DTR$DATE_INPUT, 18-23 
DTR$STARTUP, 5-2 
SYS$DISK, 2-25 
SYS$ERROR, 2-25 
SYS$INPUT, 2-25 
SYS$OUTPUT, 2-25 
system tables of, 2-24 

group, 2-24 
job, 2-24 
process, 2-24 
system, 2-24 

temporary, 2-26 
translation of, 2-25 

LOGIN .COM file, 2-28 
assigning CDD$DEFAULT, 1-6 
including DTR32 symbol, 1-6 

LONG data type, 9-13t 
"Looking for" messages, turning on 

and off, 5-5 
Loops 

avoiding errors when creating, 
17-13 

conditions for executing, 17-9 
errors when creating 

CROSS clause, 15-10 to 15-11 
FOR statement, 15-10 

infinite, 1 7-13 
processing 

lists with, 15-11 to 15-13 
multiple records with, 15-9 

Lowercase words in syntax diagrams, 
4-2t, 4-4 

LSE, 3-13 
DATATRIEVE templates, 3-13 
exiting, 3-1 7 
invoking from DATATRIEVE, 3-14 
journal files, 3-8 
placeholders, 3-13 
quitting, 3-1 7 
tokens, 3-13 

LT 

lndex-11 



M 

See LESS_ THAN relational 
operator 

M (month letter) 
edit string character, D-1 t 

MAI file type, 2-11 t 
Master file directories (MFD), 2-18 
MAX (maximum value) statistical 

operator, 18-17 
MAX option of DEFINE FILE com­

mand, 11-6 
MFD 

See Master file directories (MFD) 
MIN (minimum value) statistical oper­

ator, 18-17 
Minus sign H 

arithmetic operator, 18-7 
edit string character, D-lt 
interpreted as underscore, 18-7 

MISSING relational operator, 18-llt 
MISSING VALUE clause and statisti­

cal operations, 18-17 
MODIFY access mode, 7-21, 13-4t 
Modifying records, 1-22 

collection 
to assign different values, 16-13 
to assign one value per field, 

16-11 to 16-13 
created by CROSS clause, 16-11 
FOR statement loop, 16-13 to 16-15 
in views, 16-11 
MODIFY statement RSE, 16-13 
readying domains when, 16-10 
using a transaction file, 16-13 to 

16-15 
Multiplication arithmetic operator (*), 

18-7 

N 
N (month number) 

edit string character, D-lt 
Names 

conventions for 

lndex-12 

record and domain, 9-7 
top-level field, 9-7 

duplicate field, 9-6 
of 

domains, 10-2 
procedures, 1 7 -1 
record definitions, 9-5 
tables, 12-1 

qualifying field, 9-6 
record 

related to top-level field, 9-6 
used out of context, 1-14 

NE 
See NOT_EQUAL relational 

operator 
NEW _PAGE print list element, 19-11 

in reports, 20-14 
NEWUSER program, 1-6 

error messages from, 1-8 
NO SCROLL key, 2-7 
Nodes in file specifications, 2-10 
NOT Boolean operator, 18-14 
NOT _EQUAL relational operator, 

18-llt 
NOW value expression, 18-23 

used in a procedure, 16-15 
Numeric fields 

allowing negative values in, 9-12 
calculations with, 9-12 
defining 

PIC clause, 9-11 
the easy way, 9-12 
USAGE clause, 9-13 

maximum number of digits in, 9-12 
specifying size of, 9-13 
that need edit strings, 9-20 

9 (numeric) 

0 

edit string character, D-1 t 
picture string character, 9-1 0t 

OBJ file type, 2-llt 
Object types, specifying with EDIT 

command, 3-7 

C 



) 

J 

OCCURS clause, 9-17 
disadvantages of, 1-30 
variable definition restriction, 18-4 

ON clause of PRINT statement, 19-13 
ON statement, 19-13 

used to print auditing information, 
16-8 

Online assistance 
See Help 

OPEN command, 17-18 
Operating system, 2-1 
Operators 

arithmetic, 18-7 
Boolean, 18-14 
relational, 18-11 

Optimizing 
See also Performance 
data files, 1-30 

OR Boolean operator, 18-14 
Ordering records 

in RSEs, 14-4 
SORT statement, 14-12 

OVER clause of RSE, 14-4 

p 

P (decimal scaling) picture string char­
acter, 9-1 0t 

PACKED data type, 9-13t 
Page breaks, specifying in reports, 

20-14 
Parameter (DCL), 2-1 
Parentheses 

edit string characters, D-1 t 
to group Boolean expressions, 

18-15 
to order arithmetic operations, 18-8 

PASS_THRU privilege, 7-17 
Password (login), 2-2 
Path names, 1-15 

contents of 
full, 7-5 
relative, 7-7 

displaying privileges, 7-18 
full 

of domain in domain definitions, 
10-3 

of records in domain definitions, 
10-3 

version numbers in, 7-5 
Percent sign(%) 

edit string character, D-1 t 
Performance 

as affected by 
data file maintenance, 11-7 
duplicate alternate keys, 11-4 
duplicate primary keys, 11-3 

using domains to improve, 15-1 
when using 

collections, 14-17, 15-20 
domains directly, 15-20 
tables, 12-2 

Period(.) 
edit string character, D-1 t 

Period(.) in path names, 7-5 
PICTURE clause, 9-9 
Picture string characters, 9-1 0t 

A (alphabetic), 9- lOt 
9 (numeric), 9- lOt 
P (decimal scaling), 9-lOt 
S (sign), 9-lOt 
V (decimal point), 9-1 0t 
X (alphanumeric), 9-lOt 

Plus sign ( +) 

edit string character, D-lt 
Plus sign ( +) arithmetic operator, 

18-7 
Precision in arithmetic operations 

with numeric USAGE fields, 9-13 
with PIC fields, 9-12 

Primary keys 
allowing duplicate values in, 11-2 
cannot allow changes to, 11-2 
characteristics of, 11-2 
choosing, 11-3 
for transaction file processing, 11-3 

PRINT command (DCU, 2-14 
Print list, 19-9 
Print list elements, 19-11 t 
Print list modifiers, 19-13 t 

lndex-13 



Print list with OCCURS field, 19-11 
PRINT statement 

how to enter a, 19-9 
in a report specification, 20-2 
output to file or device, 19-13 

Procedures 
access privileges for invoking, 7-21 
advantages of, 1-31 
cannot invoke themselves, 1 7-13 
comment lines in, 17-2 
controlling error conditions in, 

17-14 
converting to command files, 1 7-16 
correcting problems in, 1 7-16 

using interactive entry, 17-18 
using log files, 17-18 
using SET VERIFY, 17-16 

creating, 1-27, 17-1 
reports with, 20-3 

editing, 1 7-4 
ending definitions of, 1 7-4 
erasing records with, 16-7 to 16-10 
error conditions in 

specifying, 1 7-15 
executing, 1-27, 17-1 
invoking from command files, 1 7-14 
invoking in loops, 17-13 
modifying records with, 16-13 to 

16-15 
naming, 17-1 
not compiled when stored, 1-31 
storing records with, 16-2 
using collections in, 14-16 

Prompting for 
input 

in a modify operation, 16-14 
when storing records, 16-3 

output file or device, 19-14 
Prompting value expressions, 18-6 

using one asterisk ( * ), 18-6 
using two asterisks ( * * ), 18-6 

Prompts 
CON>, 1-12, 5-4 
DFN>, 1-25 
dollar sign ($), 1-2 

lndex-14 

DTR>, 1-8 
RW>, 20-2 

PROTECTED access option, 13-4t 
Protecting 

CDD directories, 7-16 
from other users, 7-21 
in multiuser applications, 7-23 

definitions, 7-16 
from other users, 7-21 
in multiuser applications, 7-23 

files 
changing default for, 2-22 
codes for, 2-21 
SET PROTECTION command, 

2-22 
VMS directories, 2-21 

Punctuation 
in syntax diagrams, 4-2t 
to end DAT A TRIEVE statements, 

4-5 
PURGE command, 7-12 

DCL, 2-13 
Purging 

a 

DCL files, 2-13 
definitions, 7-13 

QUAD data type, 9-13t 
Qualified field names, 9-6 
Qualifier (DCL), 2-1 
Query names 

in SHOW FIELDS display, 1-12 
uses for, 9-7 

QUERY_HEADER clause, 9-7 
using to reduce size of column 

headers, 19-5 
QUERY_NAME clause, 9-7 
Question mark(?) 

entering for online help, 6-1 
missing value edit string character, 

D-lt 
QUIT command in editing, 3-16 
Quitting 

EDT editor, 3-16 

C 



) 

LSE, 3-17 
VAXTPU editor, 3-17 

Quotation marks 

R 

around field values, 14-5 
edit string characters, D-1 t 
enclosing literal values, 18-3 
using in prompting value expres-

sions, 18-6 

Rdb/ELN databases, 1-2 
RdbNMS databases, 1-2 
READ access mode, 7-21, 13-4t 
READY command, 7-21, 13-1 

alias clause, 13-3 
for views, 15-15 

Readying domains 
effect of, 13-3 
with the same name, 13-3 

REAL data type, 9-l 3t 
Recalling 

lines, 3-3 
lines versus commands and state­

ments, 3-6 
previous command or statement, 

3-5 
Record definitions 

accessing using domain definitions, 
10-1 

adding 
clauses to, 11-9 
fields to, 11-9 
group field names to, 11-9 

alphabetic fields in, 9-10 
changing 

field names in, 11-9 
field order in, 11-9 
size of fields in, 11-9 

column headers in, 9-7 
computed fields in, 9-15 
date fields in, 9-15 
deleting, 7-12 
editing, 9-24 
ending, 9-4 

FILLER fields in, 9-8 
formatting field values in, 9-20 
improving readability of, 9-5 
in domain definitions, 10-3 
level numbers in, 9-3 
naming conventions for, 9-5, 9-7 
numeric fields in 

PIC clause, 9-11 
PIC clause in, 9-9 
query names in, 9-7 
redefining fields in, 9-16 
repeating fields in, 9-17 
scaled values in, 9-11 
top-level fields in, 9-4, 9-6 

Record Management Services 
See RMS 

Record selection expressions (RSEs), 
18-2 

and loops, 15-9 
FIND statement, 14-4 
FOR statement, 15-7 to 15-9 
MODIFY statement, 15-7 to 15-9, 

16-13 
naming groups of records, 14-4 
PRINT statement, 15-7 to 15-9 
REPORT statement, 20-4 
restricting 

fields from records, 14-4 
number of records, 14-4 
records from source, 14-4 

sorting records in, 14-4 
specifying records from more than 

one source, 14-4 
Records 

accessing subsets of fields in, 15-14 
defining top-level fields in, 9-4 
displaying, 1-21 
modifying, 1-22 
storing, 1-20 

RECOVER argument, EDIT com­
mand, 3-8 

REDEFINE command, 9-24 
REDEFINES clause, 9-16 

variable definition restriction, 18-4 
REDUCE statement, 14-10 

lndex-15 



advantages of using, 15-20 
disadvantages of using, 15-20 

REDUCED TO clause of RSE, 14-4 
Relational databases, 1-2, 1-30 
Relational operators, 18-11 t 
RELEASE command, to remove col-

lections, 14-16 
Remote data 

See Distributed data 
RENAME command IDCL), 2-16 
Renaming files, 2-16 
Repeat count 

for edit string characters, D-1 t 
for picture string characters, 9-9 

REPEAT statement 
in store operations, 16-2 
results, 17-7 

Repeating fields, 9-17 
disadvantages of, 1-30 

REPORT statement 
ON clause option, 20-4 
RSEs in, 20-4 

Reports 
control groups in 

headers for, 20-13 
summaries for, 20-13 

controlling 
column headers in, 20-6t 
date displays in, 20-6t 
detail lines in, 20-10 to 20-12 
names of, 20-6t 
page numbers in, 20-6t 
page width of, 20-6t 
size of, 20-6t 

correcting mistakes in, 20-19 
creating 

detail lines for, 20-2 
in procedures, 20-3 
title pages for, 20-16 

default settings for, 20-6t 
ending, 20-2, 20-19 
maximum settings for, 20-6t 
prompting for values in, 20-6 
required statements in, 20-5 

lndex-16 

sorting records for control groups, 
20-13 

specifying 
names for, 20-2 
page breaks in, 20-14 

summarizing data in, 20-2 
writing to printers and files, 20-4 

Response time 
See Performance 

Restricting data access 
by creating a view, 15-14 

Restructuring domains, 11-7 
back up for, 11-8, 11-11 
to change 

file organization, 11-7 
keys for indexed files, 11-7 
record definition, 11-9 

when changes do not require, 11-7, 
11-9 

RETURN key 
as line terminator, 1-3 
when to press the, 5-4 

RMS, 1-30 
SPP Record Management Services 

(RMS) 
messages from, 2-9 

RSEs 
See Record selection expressions 

RUNNING COUNT statistical opera­
tor, 18-17 

RUNNING TOTAL statistical opera­
tor, 18-17 

RW > prompt, 20-2 

s 
S (sign) picture string character, 9-lOt 
Sample data, copying with 

NEWUSER program, 1-6 
SCALE clause, 9-11 

with USAGE REAL fields, 9-14 
Scientific notation 

specifying, D-1 t 
Screen width, setting, 19-2 

C 



) 

SEARCH command (DCL), 2-17 
Security methods 

See Protecting 
See also Editing 
SEE privilege, 7-17 
SELECT statement 

advantages of using, 15-20 
disadvantages of using, 15-20 
naming collection in, 14-9 
options 

FIRST, 14-8 
LAST, 14-8 
NEXT, 14-8 
NONE, 14-9 
PRIOR, 14-8 
record position number, 14-9 
WITH clause, 14-9 

restricting records in, 14-9 
uses for, 14-7 

Selected record 
releasing control over, 14-9 
restrictions for the, 14-9 
that cannot be found, 16-6 

Semicolon (;) 
at end of DELETE command, 7-12 
following hyphen(-), 7-9 
in path names, 7-5 

Separators, 4-2t, 4-5 
Sequential files 

advantages of, 11-5 
cannot erase records from, 11-6 
effect on performance, 11-6 

SET ABORT command, 17-14 
in procedure to store records, 16-3 

SET COLUMNS_PAGE command, 
19-2 

SET DEFAULT command (DCL), 1-5 
SET DICTIONARY command, 7-9 

access privilege requirements, 7-21 
SET EDIT_BACKUP command, 

7-l0t 
SET NO PROMPT command, 5-5 
SET SEMICOLON command, 5-6 
SET statement (Report Writer) 

COLUMNS_PAGE, 20-6t 
DATE, 20-6t 
defaults, 20-6t 
LINES_PAGE, 20-6t 
MAX_LINES, 20-6t 
MAX_PAGES, 20-6t 
NO COLUMN_HEADER, 20-6t 
NO DATE, 20-6t 
NO NUMBER, 20-6t 
NO REPORT _HEADER, 20-6t 
NUMBER, 20-6t 
options, 20-6t 
REPORT_NAME, 20-2, 20-6t 

SET VERIFY command, 17-16 
Setting screen width, 19-2 
SHARED access option, 13-4t 
SHOW ALL command, 7-lOt 
SHOW collection-name command, 

7-l0t 
SHOW COLLECTIONS command, 

7-l0t 
SHOW CURRENT command, 7-l0t 
SHOW DEFAULT command (DCL), 

2-20 
SHOW DICTIONARIES command, 

7-l0t 
SHOW DICTIONARY command, 1-8, 

7-l0t 
SHOW DOMAINS command, 1-9, 

7-l0t 
SHOW EDIT command, 7-lOt 
SHOW FIELDS command, 1-12, 7-

l0t, 14-5 
SHOW LOGICAL command (DCL), 

2-26 
SHOW path-name command, 7-l0t 

access privilege requirements, 7-21 
SHOW PROCEDURES command, 7-

lOt, 17-2 
SHOW PROTECTION command 

(DCL), 2-22 
SHOW READY command, 7-l0t 

displaying readied domains, 13-1 
displaying tables in workspace, 12-7 

lndex-17 



for views, 15-15 
SHOW RECORDS command, 1-9, 

7-l0t 
SHOW SET_UP command, 7-l0t 
SHOW SYMBOL command (DCL), 

2-26 
SHOW SYNONYMS command, 7-l0t 
SHOW TABLES command, 7-l0t 
SHOW VARIABLES command, 7-l0t 
SHOWP con1mand 

access privilege requirements, 7-21 
Signs 

minus (-), 9-20 
plus ( + ), 9-20 

SKIP print list element, 19-11 
in reports, 20-14 

Slash (/) 
arithmetic operator (division), 18-7 
edit string character, D-1 t 

Sort order, C-1 t 
SORT statement, 14-12 

advantages of using, 15-20 
disadvantages of using, 15-20 

SORTED BY clause of RSE, 14-4 
Sorting records 

in RSEs, 14-4 
SORT statement, 14-12, 15-20 

SPACE print list element, 19-11 
Spaces 

in edit strings, D-1 t 
needed around minus sign, 18-7 
replacing hyphens with, 4-5 
suppressing trailing, 17-2, 19-7 
to separate comma and edit string, 

4-5 
Specifying object types, EDIT com­

mand, 3-7 
Staged output, D-1 t 
Starting 

ADT, 1-18 
DATATRIEVE 

with logical symbol, 5-1 
with options you choose, 5-2 

DATATRIEVE Help, 6-1 
DATATRIEVE Report Writer, 20-4 

lndex-18 

Guide Mode, 6-3 
STARTING WITH relational opera­

tor, 18-llt 
Startup command file, 

DATATRIEVE, 5-2 
Statements 

compound 
and collections, 15-4 
BEGIN-END, 17-8 
cannot execute command files, 

17-18 
CHOICE, 17-l 1 
contents of, 1 7-5 
FOR, 17-7 
IF, 17-10 
keywords that define, 1 7-5 
REPEAT, 17-7 
restrictions, 1 7-13 
THEN, 17-8 
using indentation in, 1 7-7 
WHILE, 17-9 

continuing over lines, 5-4 to 5-6 
continuing with hyphen, 5-5 
ending, 4-5, 5-6, 7-9 
privileges needed to use, 7-19 

Statistical operators, 18-1 7t 
Statistical value expressions, 18-16 

editing results of, 18-18 
missing values and, 18-1 7 
that do not require OF clause, 

18-20 
that require OF clause, 18-17 

STD_DEV statistical operator, 18-17 
Stopping displays 

with CTRL/C, 1-12 
with NO SCROLL key, 1-11 

Storage space 
conserving with tables, 12-1 
required by various data types, 9-13 

Storing records, 1-20 
checking input when, 16-4 
entering no data for field when, 

16-4 
one at a time, 16-2 
readying domains for, 16-1 



) 

using procedures when, 16-2 
with REPEAT statement, 16-2 

Subdictionaries, 7-23 
Subdirectories 

VMS, 2-20 
SUM statement, 18-20 

column headers, 18-21 
edit strings, 18-21 
entering, 18-20 
including record count in, 18-22 

SUPERSEDE clause, 11-6 
Symbols 

creating logical, 2-26 
deleting, 2-26 
DTR32, 1-6 
global, 2-28 
local, 2-28 

Synonyms, creating keyword, 5-2 
Syntax diagrams, 4-1 

braces in, 4-2t, 4-4 
brackets in, 4-2t, 4-4 
breaking rules in, 4-3 
ellipsis in, 4-2t 
lowercase words in, 4-2t, 4-4 
punctuation in, 4-2t 
repeating parts of, 4-4 
uppercase words in, 4-2t, 4-4 

SYS$DISK logical name, 2-25 
SYS$ERROR logical name, 2-25 
SYS$INPUT logical name, 2-25 
SYS$OUTPUT logical name, 2-25 

and ON clause or statement, 19-13 
System failure 

recovering files edited during, 3-8 

T 

T (text) edit string character, 19-9, D-
1 t 

TAB key 
using when storing records, 16-4 

TAB print list element, 19-11 
Tables, 1-26 

access privileges for invoking, 7-21 
associating values with, 12-1 

creating, 1-24 
dictionary, 12-2 to 12-3 
domain, 12-3 to 12-4 

displaying names of, 12-3 
editing definitions of, 12-7 
for validating field values, 12-8 
privileges needed, 12-5 
referencing with 

IN and NOT IN clauses, 12-5 
VALID IF clause, 12-4 
VIA clause, 12-5 

specifying 
display format for values from, 

12-2, 12-4 
headers for values from, 12-2, 

12-4 
types of DATATRIEVE, 1-25, 12-1 
using in computed fields, 9-15 
validating values with, 12-1 

Terminals 
See also VTl 00 terminal 
See also VT200 terminal 
See also VT52 terminal 
getting ready to log in, 2-2 

Text fields, 9-10 
THEN statement, 17-8 

declaring variables in a, 18-5 
Time 

defining fields to store, 9-15 
including in auditing information, 

16-15 
size of fields that store, 9-15 

T JL file type, 3-8 
TODAY value expression, 18-23 
TOMORROW value expression, 18-23 
Top-level fields, 9-6 
TOTAL statistical operator, 18-17 
Transaction file, using to modify 

records, 16-14 
TYPE command (DCL), 2-14 

u 
UFD directories, 2-18 
UIC 

lndex-19 



See User identification code 
Update file, using to n1odify records, 

16-14 
UPDATE privilege, 7-17 
Uppercase words in syntax diagrams, 

4-2t, 4-4 
USAGE cJause 

DA TE option, 9-15 
DISPLAY default for, 9-12 

User identification code, 2-21 
User name, 2-2 
User-defined names and keywords, 4-4 

V 

V (decimal point) picture string char­
acter, 9-1 0t 

VALID IF clause with tables, 12-8 
Validating data 

VALID IF clause of field definition, 
9-23 

VERIFY clause of MODIFY state­
ment, 16-15 

with tables, 12-1 
with VERIFY clause of STORE 

statement, 16-4 
Value expressions, 18-1, 18-2t 

arithmetic, 18-7 
concatenation, 19-8 
conditional, 18-8 
date, 18-23 
FORMAT, 18-10 
literals, 18-3 
prompting, 18-6 
record field name, 18-4 
statistical, 18-16 
variable field name, 18-4 

Variable occurrence lists, 9-18 
in sequential files, 11-6 

Variables 
computed, 9-16 
computed by date values, 18-26 
defining, 18-4 to 18-5 
global, 18-5 
local, 18-5 

lndex-20 

using date, 17-10 
using in reports, 20-10, 20-14 

VAX Text Processing Utility 
See VAXTPU editor 

VAXTPU editor, 3-1, 3-11 
EDT Keypad Emulator, 3-11 
exiting, 3-1 7 
Extensible VAX Editor (EVE), 3-11 
invoking from DATATRIEVE, 3-12 
journal files, 3-8 
quitting, 3-1 7 

VERIFY clause 
in a MODIFY statement, 16-15 
of STORE statement, 16-4 

Versions 
of CDD objects, 1-9, 7-6 
of files, 1-4, 2-12 
of VAX DATATRIEVE, 1-8 

Vertical bars 
See Concatenation characters 

VIDA databases, 1-2 
Views 

access privileges needed, 15-19 
accessing fields in multiple 

domains, 15-17 to 15-19 
cannot store records in, 15-14 
containing subset of fields, 15-14 to 

15-16 
displaying 

data in, 15-15, 19-11 
definitions of, 15-15 

erasing records in, 16-5 
modifying records in, 16-11 
reasons for creating, 15-14 

Virtual fields, 9-15 
VT 100 terminal 

resuming displays on, 2-7 
suspending displays on, 2-7 

VT200 terminal 
resuming displays on, 2-7 
suspending displays on, 2-7 

VT52 terminal 
resuming displays on, 2-7 
suspending displays on, 2-7 



) 

w 
W (day letterl 

edit string character, D-lt 
WHILE statement, 17-9 

Boolean expressions in, 17-9 
in a modify operation, 15-5 

Wildcard character(*), 2-12 
in RENAME command, 2-16 

WITH clause 
RSE, 14-4 
SELECT statement, 14-9 

WORD data type, 9-13t 
W RlTE access mode, 7-21, 13-4t 

X 
X (alphanumeric) 

edit string character, D-1 t 
picture string character, 9-1 0t 

y 

Y (year) 
edit string character, D-lt 

YESTERDAY value expression, 18-23 

z 
Z (numeric) edit string character, D-lt 
Zero IO) 

edit string character, D-lt 
Zeros, ensuring storage of leading, 

16-3 
ZONED data type, 9-13t 

lndex-21 



, 

) 

j 



) 

How to Order Additional Documentation 

If you live in: 

New Hampshire, 
Alaska 

Continental USA, 
Puerto Rico, Hawaii 

Canada 
(Ottawa-Hull) 

Canada 
(British Columbia) 

Canada 
(All other) 

All other areas 

Call: 

603-884-6660 

1-800-258-1710 

613-234-7726 

1-800-267-6146 

112-800-267-6146 

or Write: 

Digital Equipment Corp. 
P.O. Box CS2008 
Nashua, NH 03061-2698 

Same as above. 

Digital Equipment Corp. 
940 Belfast Road 
Ottawa, Ontario KlG 4C2 
Attn: P&SG Business 
Manager or approved 
distributor 

Same as above. 

Same as above. 

Digital Equipment Corp. 
Peripherals & Supplies 
Centers 
P&SG Business Manager 
c/o DIGITAL's local 
subsidiary 

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid­
iary (phone 809-754-7575). 

Place internal orders with the Software Distribution Center, Digital Drive, 
Westminster, MA 01473-0471. 



C 



) 

J 

Reader's Comments VAX DATATRIEVE 
Handbook 

AA-W675B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness ( enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more /less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

Good 

□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 

I am using Version ___ of the software this manual describes. 

Name/Title Dept. 

Company 

Mailing Address 

Phone 

Fair Poor 

□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 

Date 



- Do Not Tear - Fold Here and Tape ---------------------------------------

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

I ll11111ll1ll1111ll11111.11.1 .. 1.1 .. 1 .. 1. 1 ... 1 I 11 .. 1 

No Postage 
Necessary 
if Mailed 

1n the 
United States 

-- Do Not Tear - Fold Here --------------------------------------------



) 

Reader's Comments VAX DATATRIEVE 
Handbook 

AA-W675B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity ( easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more /less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

Good 

□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Dept. 

Phone 

Fair Poor 

□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 
□ □ 

Date 



Do Not Tear - Fold Here and Tape ---------------------------------------

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

Ill .. , .. II, II, .. ,II .... 1,11,1 .. 1,1 .. 1 .. I ,I,, ,I ,II .. I 

No Postage 
Necessary 

1f Mailed 
in the 

United States 

-- Do Not Tear - Fold Here --------------------------------------------

C 


	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0001
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0002
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0003
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0004
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0005
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0006
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0007
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0008
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0009
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0010
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0011
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0012
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0013
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0014
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0015
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0016
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0017
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0018
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0019
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0020
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0021
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0022
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0023
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0024
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0025
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0026
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0027
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0028
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0029
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0030
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0031
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0032
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0033
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0034
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0035
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0036
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0037
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0038
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0039
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0040
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0041
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0042
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0043
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0044
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0045
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0046
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0047
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0048
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0049
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0050
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0051
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0052
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0053
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0054
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0055
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0056
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0057
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0058
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0059
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0060
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0061
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0062
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0063
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0064
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0065
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0066
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0067
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0068
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0069
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0070
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0071
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0072
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0073
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0074
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0075
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0076
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0077
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0078
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0079
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0080
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0081
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0082
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0083
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0084
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0085
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0086
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0087
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0088
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0089
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0090
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0091
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0092
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0093
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0094
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0095
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0096
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0097
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0098
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0099
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0100
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0101
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0102
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0103
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0104
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0105
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0106
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0107
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0108
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0109
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0110
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0111
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0112
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0113
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0114
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0115
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0116
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0117
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0118
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0119
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0120
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0121
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0122
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0123
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0124
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0125
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0126
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0127
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0128
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0129
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0130
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0131
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0132
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0133
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0134
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0135
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0136
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0137
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0138
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0139
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0140
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0141
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0142
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0143
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0144
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0145
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0146
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0147
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0148
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0149
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0150
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0151
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0152
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0153
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0154
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0155
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0156
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0157
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0158
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0159
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0160
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0161
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0162
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0163
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0164
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0165
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0166
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0167
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0168
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0169
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0170
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0171
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0172
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0173
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0174
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0175
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0176
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0177
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0178
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0179
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0180
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0181
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0182
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0183
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0184
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0185
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0186
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0187
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0188
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0189
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0190
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0191
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0192
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0193
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0194
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0195
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0196
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0197
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0198
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0199
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0200
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0201
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0202
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0203
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0204
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0205
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0206
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0207
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0208
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0209
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0210
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0211
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0212
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0213
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0214
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0215
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0216
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0217
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0218
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0219
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0220
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0221
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0222
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0223
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0224
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0225
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0226
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0227
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0228
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0229
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0230
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0231
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0232
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0233
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0234
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0235
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0236
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0237
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0238
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0239
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0240
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0241
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0242
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0243
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0244
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0245
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0246
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0247
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0248
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0249
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0250
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0251
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0252
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0253
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0254
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0255
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0256
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0257
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0258
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0259
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0260
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0261
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0262
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0263
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0264
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0265
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0266
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0267
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0268
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0269
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0270
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0271
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0272
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0273
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0274
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0275
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0276
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0277
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0278
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0279
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0280
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0281
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0282
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0283
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0284
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0285
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0286
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0287
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0288
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0289
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0290
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0291
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0292
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0293
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0294
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0295
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0296
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0297
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0298
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0299
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0300
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0301
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0302
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0303
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0304
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0305
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0306
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0307
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0308
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0309
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0310
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0311
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0312
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0313
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0314
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0315
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0316
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0317
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0318
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0319
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0320
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0321
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0322
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0323
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0324
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0325
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0326
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0327
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0328
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0329
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0330
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0331
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0332
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0333
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0334
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0335
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0336
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0337
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0338
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0339
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0340
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0341
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0342
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0343
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0344
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0345
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0346
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0347
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0348
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0349
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0350
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0351
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0352
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0353
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0354
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0355
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0356
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0357
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0358
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0359
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0360
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0361
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0362
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0363
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0364
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0365
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0366
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0367
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0368
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0369
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0370
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0371
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0372
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0373
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0374
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0375
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0376
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0377
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0378
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0379
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0380
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0381
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0382
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0383
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0384
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0385
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0386
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0387
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0388
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0389
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0390
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0391
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0392
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0393
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0394
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0395
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0396
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0397
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0398
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0399
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0400
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0401
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0402
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0403
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0404
	AA-W675B-TE_VAX-DATATRIEVE-Handbook_Nov-1987_page_0405



