
Fu~i AD-A279 757 wPAG._____
inmmUI ~ft me 109 M. Ih" OV%"ofwy ha1sow go" of tn 00 ga"uumumuINui O .w .kfmfnOafmw t. IV J16 -9g' 09w Ib~ uiwo InM, Vn. VAdmIat ** * ** * &Ago. WmwftN"w. SM.

I.I.C 3. REPORTTYP ANDiuA D~ed.11 i~rATE~gqS i2OArugaV

940325S1.11343, AVF: 94ddc500_1A
DDC-I, DACS Sun SPARC/Solaris to 80186 Bare Ada Cross Compiles
System, Version 4.6.4

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORMING ORGANUZTION NAME(S) AND S. PROMIN
ORGANIZATION

lalaa jg~ikt e ~ tandards and Technology

Gaithersburg, Maryland 20899

AaJoint Program \\(4e 15731
The Pentagon. Fin 3E 118 2 o4(itE hfli3
Washington, DC 20301-3080 ~

12L. DISTRIBUIJTONAVAILADILr1Y 12b. DISTRIBrN

Approved for Public Release; .. distribution unlimited

13. AIMum 200

Host: Sun SPARCclassic (under Solaris, Release 2.1)
Target: Intel iSBC 186/100 (bare machine)

14. SUBJEC 5.NMBRO

Ada programming linguage, Ada Compler Validation Summary Report, A
WAK p pb Val. Testing, Ada Val. Office, Ada Val. ci -1 y

17.6EQP= 8. EGURY 20.M A

UNLAS~iDUNCLASSIFED UNCLASSIFED LuNCLASSIFED

WN prssarsd by ANSI Bid.

9Q 4 5 2 5 0-~J T,~''~r

AVF Control Number: NIST94DDC500_IB_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPIT-ER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11343
DDC-I

DACS Sun SPARC/Solaris tb 80186 Bare Ada
Cross Compiler System, Version 4.6.4

Sun SPARCclassic => Intel iSBC 186/100 (Bare Machine)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
Accesion' For

NTIS CRA&I
DTIC TAB
Unannounced U
Justification

By.
Distribution i

-' Availability Codes

Avail and Ior
Dist Special

AVF Control Number: NIST94DDC500_lB_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to 80186 Bare Ada
Cross Compiler System, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel iSBC 186/100 (Bare Machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11343 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation, ~ac ity A2 a V ldatio-n Facility
Dr. David K. Jffe •ol Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

T a Va 1a rganrization iAda Joint Program Office
Direct , per & Software David R. Basel

Engineerin ivision Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

NIST94DDC500lB_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Customer: DDC-I

Certificate Awardee: DDC-I

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/Solaris to 80186 Bare Ada Cross
Compiler System, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris, Release 2.1

Target Computer System: Intel iSBC 186/100 (Bare Machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Customer Signature Date
Company DDC-I
Title

/-A _______ ._

Ce iricate Awardee Signature Date
Company DDC-I
Title

TABLE OF CONTENTS

CHAPTER I 1-1
INTRODUCTION 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1 . 2 REFERENCES 1-2
1 .3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 .. #.......... 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2 .3 TEST MODIFICATIONS 2-3

C!HAPTER 3 .. 3-1
PROCESSING INFORMATION.. 3-1

3 .1 TESTING ENVIRONMENT. 3-1
3.2 SUMMARY OF TEST RESULTS. 3-1
3 .3 TEST EXECUTION o.... 3-2

APPENDIX A .o..........o.......o................. o..... A-1
MACRO PARAMETERSA-1

APPENDIX B oo.............o.................... B-1
COMPILATION SYSTEM OPTIONS. B-i
LINKER OPTIONSF THE..Ada..STANDAD.......................C-2

APPENDIX C ... C-1
APPENDIX F OF THE Ada STANDARD oo...........o........ C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

i-i

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

lUG89] Ada Compiler Validation Camabilitv User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units-are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.
Inapplicable Test A test that contains one or more test

objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the executio.. of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPEND3NCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
AD1B08A BD2AO2A CD2A2lE CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AT-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE240IA..C (3) EE2401D CE2401E..F (2) EE2401G
CE240IH..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83A07B B83A07C B83EO1C
B83EOlD B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B9l002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BCl109C
BC1109D BC1202A BC1202F BCl202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed,, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCclassic and is used for
downloading the executable images to the target Intel -3C 186/100
(Bare Machine). The DDC-I Debug Monitor runs on the t ý.get Intel
iSBC 186/100 (Bare Machine) and provides communication interface
between the host downloader and the executing target Intel iSBC
186/100 (Bare Machine). The two processes communicate via
ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in lUGS9]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAXIN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX_INLEN 126 -- Value of V

SBIGIDI (l..V-1 -> 'A', V => '1')

SBIGID2 (1..V-1 => 'A', V => '2')

SBIGID3 (l..V/2 -> 'A') & '3' & (1..V-1-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (l..V-l-V/2 => 'A')

$BIGINTLIT (l..V-3 => 1'0) & "298"

SBIGREALLIT (l..V-5 -> '0') & "690.0"

$BIGSTRINGI '""' & (l..V/2 => 'A') & '""'

$BIGSTRING2 "'"' & (1..V-I-V/2 => 'A') & '1' & '""'

$BLANKS (1..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '2') & "11:"

SMAXLENREAL BASED-LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL f""' & (l..V-2 => 'A') & '""'

A-I

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 1
COUNT LAST : 32767
DEFAULT MEN SIZE : 1 048 576
DEFAULT STOR UNIT : 16 -
DEFAULT SYS NAME : IAPX186
DELTA DOC : 2#1.0#E-31
ENTRYADDRESS : (140,0)
ENTRYADDRESS 1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELDLAST : 35
FILE TERMINATOR : ASCII.SUB
FIXEDNAME : NOSUCHFIXEDTYPE
FLOAT NAME : SHORT SHORTFLOAT
FORM STRING : ""
FORMSTRING2

"CANNOT RESTRICT FILECAPACITY"
GREATER THAN DURATION : 75 000.0
GREATER THAN DURATION BASE LAST : 131 073.0
GREATER_-THAN-FLOATBASELAST : 16#1I.O#E+32
GREATER THAN FLOAT SAFE LARGE : 16#5.FFFFFO#E+31
GREATER THAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGALEXTERNALFILE NAME1 : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILENAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATEPAGELENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -32768
INTEGER LAST : 32767
INTEGER-LAST PLUS_1 : 32768
INTERFACELANGUAGE : ASM86
LESS THAN DURATION : -75 000.0
LESS THAN DURATIONBASEFIRST : -131_073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINECODESTATEMENT

MACHINEINSTRUCTION' (NONE,m_NOP);
MACHINE CODE TYPE : REGISTERTYPE
MANTISSADOC : 31

A-2

MAXDIGITS : 15
MAXINT : 2147483647
MAX7INTPLUS_1 : 2147483648
MItINIt- -2147483648
NAMEi : SHORT SHORTINTEGER
NAMELIST :IAPX186
NAMESPECIFICATIONi

DISK$AWC_2: [CROCKETTL.ACVC11. DEVELOPMENT) X2 120A
NAMESPECIFICATION2

DISKSAWC-2: [CROCKETTL.ACVC11 .DEVELOPMENT) X2 120B
NAMESPECIFICATION3

DISKSAWC_2: [CROCKETTL.ACVC11. DEVELOPMENT) X3119A
NUGBASEDINT : 16#FFFFFFFF#
NEW HEM SIZE : 1 048 576
NEW STOR- UNIT : 136
NEW SYS NAME : IAPX186
PAGE TERMlINATOR, : ASCII.FF
RECO7RD DEFINITION :RECORD NULL;END RECORD;
RECORD_'NAME : NOSUCHMACHINECODETYPE
TASK SIZE : 16-
TASKSTORAGESIZE : 1024
TICKC : 0.000 000_125
VARIABLE-ADDRESS : (16#0i,16i1FF9#)
VARIABLE ADDRESS1 : (16#4#,16#1FF9#)
VARIABLEADDRESS2 : (16#8#,16#1FF9#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

5 THE ADA COMPILER

The Ada Compiler compilS all program units within the specified source file and inserts the
generated objects into the curent program library. Compiler options are provided to allow the
user control of optimization. run-time checks. and compiler input and output options such as list
files, configuration files, the program library used. etc.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

If any diagnostic messages am produced during the compilation, they an output on the diagnostic
file and on the current output file. The diagnostic file and the diagnostic messages ame described
in Section 5.3.2.

Output consists of an object placeL in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

S.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell;

S ada {<optiowp) <source-de-lnanm

where the options and parameters are:

35

DACS-80x86 User's Guide
Ada Compiler

OPTION DESCRIPTION REFERENCE

-fnolauito fine Specifies whether local subprograms should be 5.1.1
inline expanded.

-check Controls rnm-time checks. 5.1.2
-conftudontMe Specifies the configuration file used by te 5.1.3

.(noidebug Includes symbolic debugging information in 5.1.4
prlgrm Library. Does not include symbolic
infoummon.

-[molfixpolnimrounding Generates fixed point rounding code. Avoids fixed 5.1.5
po rounding code.

-[nolfloatallowed Flap generaion of floa instructions as 5.1.6
error if selected.

40nojlbrary Specifies progrmn library used. 5.1.7
-[ollist Writes a source listing on the list file. 5.1.8
-*no0optmize Specifies compiler optimization. 5.1.9
-[0ojprogess Displays compiler progress. 5.1.10
.[nolwref Create cross mefence listing. 5.1.11
-nolsave source Copies source to program library. 5.1.12
-(nojtarg;t debug Includes Intel debug information. Does not include 5.1.13

Intel debug information.
-unit Assigns a specific unit nwmber to the compilation 5.1.14

(must be free and in a subifbary).
-recompile Interret the file name as a compilation unit body

that must be recompiled from library. 5.1.15
-specification With -recompile interpret file none as a

compilation unit specification rather than body. 5.1.16

Exampks:

S ada -list testpzog

This example compiles the source file testprog.ada and generates a list file with the name
teaI .-oit

$ ada -l.bzazy myý,lbra&7 test

This example compiles the source file tesLada into the librir my.jbrary.

Default values exist for most options as indicated in the following sections. Option names may
be abbreviated (characters omined from the right) as long a no ambiguity arises.

36

DAL4-8OxS6 User's Guide
Ada Compiler

<source-flIk-iavnu

The Ada compiler has one mandatory parameter that should spify the Ada source file.
This parameter specifies the text file containing the source text to be compiled. If the file type
is omitted in the source file specification. the file type ".ada" is assumed by defaulL

The allowed format of the source text is described in Section 5.2.1.

Below follows a descripion of each of the available options to the invocation of the Ada
compiler.

.1.1 -.nolauto _hnine

-auto nldine loal I global
-. oazo inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less th 4 object declarations and less dm 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C203). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

S.1.2 -check

-check <keyword= = ON I OFF { ,ckeyword> % ON I OFF) }
-check ALL-ON (default)

-chc specifies which run-time checks should be performed. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All umn-time checks ame enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL
ALL All checks.
DISCRIMJNANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check.
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-80x86 User's Guide

Ada Compiler

5.1.,3 -canfturatlooifle

-conflpuration-file cflle-spec:i
-configurationJfile config (default)

This option specifies the configura•on file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings. set error limits. etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 52.2 contains a description of the configuration file.

S.1.4 -(noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.5.11.

S.1., .(nojflxpointrounding

-fixpoint rounding (default)
-nofixpointrounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded, but this
may be avoided with -nofixpoint rounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types. when the target is 80386PM or 80486PM.

5.1.6 -inofloat allowed

-float allowed (default)
-noflo•t allowed

Float instruction generation may be flagged as errors, if -nofloat is selected. This is for use in
systems, where no floating point processor (nor emulator) is available. Notice that TEXTJO uses
floats in conmection with FLOATJO and FIXEDO.

38

DACS-80x86 User's Guide
Ada Compiler

5.1.7 -Ubrary

-ibramy Sle-spec>
-library Sada-ibrary (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary. the currnt
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibraty designated by the environmental variable ada-llbrary is
used as the current sublibrary. Section 5.4 describes how the Ads compiler uses the library.

5.1.8 -[nollast

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension Ais. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize I -ckeyword> = on I off (,.ckeywor& = on I off }
-Optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords am: (casing is irrelevant)

all All possible optimizations are invoked.
check Eliminates superfluous checks.
cse Performs common subexpression elimination including common

address expmssions.
fct2proc Change function calls returning objects of constrained array types

or objects of record types to procedure calls.
reordering Transforms named aggregates to positional aggregates ant named

parmeter associations to positional associations.
stack-height Performs stack height reductions (also called Aho Ullman

reordering).
block Optimize block and call frnaes.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

DACS-S0i6 User's Guide
Ada Compiler

5.1.10 -[nojprogress

-pror'
.10pro•err (default)

When this option is given, the compiler will outpuz data about which pass the compiler is
cunently nf

S.1.11 -4nojrf

-noxref (default)

A cross-reference listing can be requested by the user by means of the option .xref. If the -xref
option is given and no severe or fatal eors are found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section?.

S.1.12 -[nolsave.source

.savesource (default)
-nosave source

When -save-source is specified. a copy of the compiled source code is placed in the program
library. If -nosave suurce is used. souce code will not be retained in the program fibrary.

Using -nosave.source. while helping to k, tp library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for mor tletails. Also, it will not be possible to do symbolic
debugging at the Ada source code level with the DACS-80x86 Symbolic Ada Debugger, if the
source code is not saved in the library.

5.1.13 -[notargeLtdebug

-target debug
.notargetdebug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currenty the linker does not support the OMF debug information.

This option may be used when debugging with standard OMF tools (i.e.. PICE).

40

DACS-80x86 User's Guide
Ada Compiler

5.1.14 -unit

-unit a <cunit numberm

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile

-recompile

The file name (source) is interpreted as a compilation unit name which has its source saved from
a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

5.1.16 -specification

-specification

Works only together with -reconcile. see Section 5.1.15.

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and. optonally. a
configuration file.

5.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or mote compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCIL This format requires that the
source text is a sequence of ISO charaCters (ISO standard 646). where each line is terminated by
-ither one of the following termination sequences (CR means carriage retur, VT means vertical
tabulation, LF means line feed, and FF means form feed):

"* A sequence of one or more CRs. where the sequence is neither immediately preceded nor
immediately followed by any of the churacters VT, LF, or FF.

"* Any of the characters VT. LF, or F, immediately preceded and followed by a sequence of zero
or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

41

DACS-80x86 User's Guide
Ada Compiler

* The horizontal tabulation (HiT) character may be used as a separator between lexical units.

- LF. VT. PF. and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR. VT. LF, and FF are not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2.2 Conflguration File

Certain processing characteristics of the compiler, such as format of input and output. and error
limit. may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, written on one line. of the type
CONFIGURATIONRECORD, which is described below.

The contiguration file (config) is not accepted by the compiler in the following cases:

"* The syntax does not conform with the syntax for positional Ada aggregates.
"* A value is outside the ranges specified.
"* A value is not specified as a literal.
"• LINES_PER_PAGE is not greater than TOP._MARGIN + BOTTOMMARGIN.
"• The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

DACS-0x86 User's Guide
Ada Compiler

typ CONFIGURATION RECORD is
record

IN FORMAT: INFORMATTING;
OUT FORMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;

end record;

type INPUTFORMATS is (ASCII);

type INFORMATTING is
record

INPUT FORMAT: INPUT FORMATS;
INPUT LINELENGTH: INTEGER range 70..250;

end record;

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
TOP MARGIN : INTEGER range 4.. 90;
BOTTOM MARGIN : INTEGER range 0.. 90;
OUT LINELENGTH : INTEGER range 80..132;
SUPPRESS ERRORNO : BOOLEAN;

end record;

The outformatting parameters have the following meaning:

1) LINESPERPAGE: specifies the maximum number of line, written on each page
(including top and bottom margin).

2) TOPMARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOMMARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER-PAGE - TOPMARGIN - BOTTOMMARGIN.

4) OUTLINELENGTH: specifies the maximum number of characters written on each line.

Lines longer than OUTLINELENGTH ame separated into two lines.

5) SUPPRESSERRORNO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed to die compiler through the
configuration.file option. DDC-I supplies a default configuration file (config) with the following
content:

43

DACS-0xS6 User's Guide

Ada Compiler

((ASCII. 126), (48.53.100XFALSE), 200)

Lines

Peri

page

Botta.

Out-lineJength

Figure S-1. Page Layout

5.3 Compiler Output

The compiler may produce output in the list file, the diagnostic file, and the currem output file.
It also updates the program library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The updating of the program library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written on the list file,
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reference listing is written on the list file, if -xref is active and no severe or fatal
enors have been detected during the compilation.

4) If there anm any diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings are written on the current output file.

44

DACS-8Ox86 User's Guide
Ada Compiler

S.3.1 The Lit File

The name of the list file is identical to the name of the source file except that it has the file type
".lis". The file is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a new list file is crated.

The list rile may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list Me are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Parts of the listing can be suppressed by the use of the LIST pragma.

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been supprssed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or noL

2) The number of diagno-ý,jc messages produced for each class of severity (see Section

5.3.2.1).

3) Which options were active.

4) The full name of the source file.

5) The full name of the curent sublibrary.

6) The number of source text lines.

45

DACS-80x86 User's Guide
Ada Compiler

7) The size of the code produced (specified in bytes).

8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated" otherwise.

.3.1.3 Cross-Reference Lsting

A cross-refe-nc!e listing is an alphabetically sorted list of the identifiers, opemtors, and character
literals of a compilation uni. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generic unit are included in the
cross-reference listing as declared immediately after the instantiation. The visible declarations ame
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constiuent character literal for string
literals.

The following am not included in the cross reference listing:

"* Pragma identifiers and pragma argument identifiers.

"* Numeric literals.

"• Record component identifiers and discriminant identifiers. For a selected name whose selector
denotes a record component or a discriminant. only the prefix generates cross-reference
information.

"* A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

"* The idemifier with, at most, IS characters. If the identifier exceeds 15 characters, a bar (-'")
is writen in the 16th position and the rest of the characters are not printed.

"* The place of the definition. i.e., a line number if the entity is declared in the cutn=
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaraion.

"• The numbers of the lines in which the entity is used. An asterisk ("*) after a line number
indicates an asignment to a variable, initialization of a constant, assignments to functions. or
user-defined operators by means of RETURN statements. Please refer to Appendix B.3 for
examples.

46

DACS-80x86 User's Guide
Ada Compiler

5.3.2 The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err". It is located in the current (default) directory. If any such file exists prior to the
compilation, the newest ve.son of the file is deleted. If any diagnostic messages arm produced
during the compilaion a new diagnostic file is ceated.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing dhe message. and a blank line. There
is no separafm into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erroneous source text

S.AM1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required, the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line am placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are odered by incrasing source line numbers. Line number 0 is
assigned to messages not related to any particular line. On the curent output file the messages
appear in the order in which they am generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken.

Warning: Reports a questionable construct or an error that does not influence the meaning of the
program. Warnings do not hinder the generatm of object code.

Example: A warning will be issued for constructs for which the compiler detects will
raise CONSTAU4TERROR at run time.

Error Reports an illegal :onstruct in the source progrnm. Compilation continues, but no object
code will be generated.

Examples: most syntax erroms most staic semantic errors.

Severe Reports an error which causes the compilation to be terminaed immediately.
error. No object code is genemed.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not ip-sent in the current program library.

47

DACS-80x16 User's Guide
Ad& Compiler

Fatal Reports an error in the compiler system itself. Compilation is terminated immediatly
error. and no object code is produced. The user may be able to circumvent a fatal error by

correctng the program or by replacing program constucts with alternatives. Please
inform DDC-I about the occurence of fatal errors.

The detection of more efors than allowed by the number specified by the ERROR-LIMIT
parameter of the configuration file (see section 5.2.2) is considered a severe error.

.3.2.2 Format and Content of Diagostic Messag

For cetain syntactically incorrect constructs. the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal

charctr.

The text line contains the following information:

"* the diagnostic message identification ""

"* the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error.

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X. uniquely identifies the compiler
location that generated the diagnostic message; Z is of imporance mainly to the compiler
maitenance team - it does not contain informnion of imtems to the compiler user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESSERROR.NO in the configuration file has the value TRUE (see
section 5.2.2).

* the message text the text may include one context dependent field that contains the name of
the offending symbol: if the name of the offmeding symbol is longer than 16 characters only
the rus 16 chacters e shown.

Examples of diagnostic messages:

18W-3: Warning: Exception COhSTRAZNTERROR vwil be raised here

320E-2: Name 053 does not denote a type

535E-0: Expression in return statement missing

48

DACS-80X86 User's Guide
Ada Compiler

1508S-0: specification for this package body not present in the library

5.4 The Program Ubrary

This seaion briefly describes how the Ada compiler changes the progaim library. For a more
general description of the program library, the user is referred to Chapter 3.

The compiler is allowed to read from all sublibrarles conns tnaing the currem progrumn library, but
only the current sublibrary may be changed.

S.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled. i.e., that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body Unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current subiibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.:

", when ther is no library unit of that name

"* when there is an invalid declaration unit of that name

". when there is a package declaration generic package declaration, an instantiated package, cr
subprogram of that name

Compilation of a library unit which is an instantiatIon

A possible existing declaration unit of that name in the curent sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which Is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

"DACS-80x86 User's Guide
Ada Compiler

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibry it is deleted together with its possible subunits. A new
subunit is inserted.

S.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units. the pmrgram library will not be updated for any of the compilation units.

5.5 Instantiation of Generic Units

This section describes the rules after which generic instantation is performed.

53..1 Order of Compilation

When instantiating a generic unit. it is required that the enti unit. including body and possible
subunits, be compiled before the frst instantiation. This is in accordance with the ARM Chapter
10.3 (1).

S.S.2 Generic Formal Private Types

The present section describes the treatment of a generic unit with a generic formal private type,
where there is some construct in the generic unit dht reqirs that ithe corresponding actual type
must be constrained if it is an amy type or a type with diisciiinants, and them exists
instantiations with such an unconstrained type (see ARMK Sction 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when the instamiation is compiled, in
other cases when a constraint-rquiring construct of the generic unit is compiled:

1) If the instantiation appears in a later compilation unit than the first constaint-•quiring
construct of the generic unit. the Wror is assocated with the instantiation which is rejected
by the compiler.

2) If the instantiation appears in the same compilation unit as the fins constraint-nquiring
coruction of the generic unit. the am two possibilities:

a) If there is a costraint-requiring construction of the generic unit after the instantiation,
an enor message appears with the instantiation.

b) If the instantation appears after all constint requiring constructs of the geneic unit
in that compilation unit. an error message appears with the consaint-requring
construct, but will refer to the illegal instantiation.

so

DACS-80xW6 User's Guide

Ada Compiler

3) The imtuaiiation appeas in an earlier compilation unit than the fins conswa-nt-requiring
cotuntrion of the generic unit, which in that case will appear in the generic body or a
subuniL If the instantiation has been accepted. the instantiaton will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instltiation are located in the same sublibrazy. then the compiler will consider it an
error. An error message will be issued with the constraint-requiring constuct and will refer
to the illegal instantiation. The unit containing the instantiation is not changed. however,
and will not be marked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

"The Ada compiler supports a "modified T..ge memory model for data references. The
"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compiled into a different hierarchical level. Intel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the mot
sublibrary.

"* The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

"* The space available for the static data of a compilation unit is 64K - 20 bytes.

"* The space available for the code generated for a compilation unit is limited to 32K words.

"• Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 pmducts:

"* Each source file can contain. at most, 32,767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INPUTLINELENGTH parameter of the configuration file.

"• An integer literal may not exceed the range of LONG_INTEGERL a real literal may not exceed
the range of LONG-FLOAT.

51

DACS-80x86 User's Guide
Ada Compiler

The number of formal parameters permitted in a pocedure is limited to 127 per parameter
spefication. There is no limit on die number of procedure specifications. For example. the
declation:

procedure OVER-LIMIT (INTEGER01,
INTEGER02,

INTEGER166: in INTEGER);

exceeds the limit, but the procedure can be accomplished with die following:

proc:dure UNDERLIMIT (INTZGER01 : in INTEGER;
INTEGER02 : in INTEGER;

INTEGER1G : in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

5.8 Compiler Code Optimizations

DDC-I's Ada compiler for the iAPX 80x86 microprocessor family generates compact. efficient
code. This efficiency is achieved, in pan, by the compiler's global optimizer. Optimizations
performed include:

". Common sub-expression elimination
". Elimination of redundant constraint checks
"* Elimination of redundant elaboration checks
"* Constant folding
"* Dead code elimination
"- Optimal register allocation
"* Selection of optimal jumps
" Optional run-time check suppression

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process tha includes an Ada link using the compilauon units in the Ada
program library, and a target link to integrate the application code, run-time code, and any
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System. which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker

S ada-link {coption>) <unit-name>

where the options and parameters are:

Ada Linker Options

OPTION DESCRIPTION REFERENCE

-[noldebug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-enable task trace Enables trace when a task terminates in 6.51.8
unhandled exception.

-exception_space Defines area for exception handling in task stack. 6.529
-[nolextract Extracts Ada Object modules 6.5.14
-interruptentry table Range of interrupt enries. 6.5.27
-library The library used in the link. 6.5.7
-[nojlog Specifies creation of a log file. 6.5.9
-it-segment sie Library task default segment size. 6.5.23
-it stack size Library task default stack size. 6.5.22
*mp segmnt size Main program segment size. 6.5.25
-mrp stack sie Main program stack size. 6.5.24
-*nojnpx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserve stack Size of reserve stack. 6.5.21
-rus Select Rate Monotonic Scheduling Run-Tune 6.5.13

Kernel (optional).
.[nrioroot-extract Using non-DDC-I units in the root library. 6.5.10

53

DACS-80x86 User's Guide
The Ada Linker

-[noirs Includes or excludes the run-time system. 6.5.12
-searchblb Target libraries or object modules to include 6.5.4

in target link.
.slectlve-ink Removes uncalled code from final program. 6.5.8
.signon Produce sign on and sign off messages. 6.5.30
.stop.before-Jink Performs Ada link only. 6.5.5
.tasks Maximum number of tasks or non-tasking 6.5.17

application.
-task storage-size Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
-timer Timer resolution. 6.5.20
-time slice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: Several simuitaneous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the current output file and on the optional

log file. The messages are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A warning reports something which does not prevent a successful linking. but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit. e.g. if the body unit is invalid or if them is no object
code container for the body unit. Warnings are only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of warnings issued,
even if the issued warnings have not been output.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hypothetical recompilations are
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6. The Lnking Process

The linking process can be viewed as two consecutive processes. Both are automatically carried
out when issuing the link command adalink.

54

DACS-80x86 User's Guide
Tix Ada Linker

The fRIst process constitutes the Ada link process and the second constitutes the target link

process.

The Ada link process

"* retrieves the required Ada object modules from the program library,

"* determines an elaboration order for all Ada units,

" creaes a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

"* creames a shell script that carries out the target link process (i.e., dlnkbldx86). The locate/build
phase is an integral pat of the target link.

If the option -stop-before.lnk is NOT specified (default), the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop-beforelink is specified. all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

The foliowing temporary files are in use during the link phase:

<main.program>_ink.com The shell script which invokes the target linker.

<main.program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main.prgram>_ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<mainApMgram>_.uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit.

55

DACS-80x86 User's Guide
1he Ada Linker

AM U

FiNur 3M. STi o
LI

Is1

Li~wss iA~jI RMS

Figur 6-3. The Linking Process

The following components make up the run-tine system:

1) User configurable portion of the RTS

a) User configurable data (UCD) and
b) User configurable code (UCC)

2) Permanent pan of the RTS

a) Non-tasking RTS (rl llib) or
b) Tasking RTS (r12.lib)
c) RMS Tasking RTS (rl31ib)

The User Configurable Code defined by the enviomnmenral varable adaupclib is included in the
link. If no tasking has been specified, then the RTS non-tasking library (rl .lib) will be included.
If tasking has been specified, then support for tasking will be included (rl21ib or, when -rims,
rl3.1ib).

56

DACS-80x86 User's Guide
"1The Ada Linker

The output of the linker step is an absolute executable object file with the extension ".dat" and
a map file with the extension ".mp5".

6..2. Environmental Variables

When a link is executed, a nurmber of files are referred to and most are accessed through
environmental variables. The locatedbuild phase uses the control file $adauccdir/config.bld.ddci,
the remaining variables are:

VARIABLE PURPOSE

ada2system-library Identifies the root library where the system compilation units reside.

adajlibrary Identifies the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

ada-root-lib Identifies the OMW library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

adajrl I -ib Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

adajrl2_lib Identifies the OMF library for the Permanent Part of the tasking version
of the Run-Time System.

ada_rl3_lib Identifies the OMF library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Tune System.

adaLccJib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada-template Identifies the template file for the Linker.

ada.u-ccdir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, adal86 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
ada186_root..ib. and the RTS UCC library environmental variables for the 8086 version would
be adaf6_uciNb.

57

DACS-80x86 User's Guide
The Ada Linker

63 Run-Time System Overview

The Run-Time System for DACS-80x86 is defined as all code and data. other than the code and
data produced by the code generator. required to make an embedded system application operate
property on a specific hardware system.

In general, there are two major components that make up the Run-Tune System.

1) Code and data assumed to exist by the code generator. This is hardware independent and
known as the RTS Permanent Part.

2) Code and data ailoring the application with respect to die charcterstics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Par.

Both of the above components consist of modular OMF librares. The modules are only included
in the user program if they are needed. i.e.. if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Pan does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Part available for different development
targets. Also. the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for complete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the parts of the Run-Time System that must be
configurable for hardware independence, freeing the user from major rewrites whenever the
Run-Time System is retargeted while, still allowing for almost unlimited adaptability.

Four important features of the run-time system are:

"* It is sma

"* It is completely ROMable

"* It is configurable

"* It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

"• Executive. i.e., the stan-up mechanism

"* Storage Management

"• Tasking Management

"* - t

"* Exception Handling

58

DACS-80x86 User's Guide
The Ada Linker

"* Run-Time Library Routines

"* Package CALENDAR support routines

The run-time system (RTS) can be configured by the user through Ada Linker command options.
The Ada Linker will generate appropriate data structures to represent the configured characteristics
(UCD).

Two versions of the RTS ae supplied, one including tasking and one excluding tasking. The
linker selects the RTS version including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Otherwise, the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies. but this leaves some freedom
here andl there to arbitrarily choose between two or more alternatives. This arbitrary is in the
DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated afr the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-leveL

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.S Ada Linker Options

This section describes in detail the Ada linker option ard parameters.

6.5.1 The Parameter cunit-name>

cunit-na==e

The <mit_nmne> must be a library unit in the current program library, but not necessarily of the
curmr sublibrary.

Note that a main program must be a procedure without parameters. and that ,curt-name> is the
identifier of the procedure. not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-80x86 User's Guide
"The Ada Linker

6.2. The Partnoer crecompilaion-spec

The syntax of <€reompiladon-specz' is:

-cunitspec:,[-bodyl-spedfkcadonl[,_]

This parameter tells the linker to perform a consistency check of die entire program using the
hypothetical recompilation of all units designated in the <recompilation-speo. The link process
in this insance is not actually performed.

The <unit-spec> is a lis of unit-names (wildcards am allowed), separated by comma (0) or plus
(+). Each unit-name should include an option to indicate if the body or specification is to be
hypothetically compiled (-spec is the default).

6.53 Required Recompilaons

If the consistency check found that recompilations am required. a list of required recompilations
is written to the current output file or to a text file if the 4og option is specified (the name of
the text file is indicated in the log file, line 8). The list will include any inconsistencies detected
in the library and recompilations required by the hypothetical recompilatiors specified with the
options -declaration and -body.

The entries in the list contain:

1) The unit name.

2) Indication of what type of unit (declaration unit, body unit, or subunit).

3) If the unit is specified as recompiled with the -declaration or -body option, it is marked
with "-R-'.

4) The environmental variable of the sublibrary containing the unit.

In the recompilation list the units are listed in a recommended recompilation order, consistent with
the dependencies among the units.

63.4 -searchlib

-smrchlib due name-n , (,,d<e.name•)

The -searchlib option directs the Ada Linker to sarch the specified 80x86 tar•t libraries for
object modules in order to resolve symbol rferenes. The 80x86 target libraries for object files
will be sewched before the DACS Run-tme System (RTS) library normally searches for rnm-time
roine. in this way one can replace the standard DACS RTS routines with custom routines.

The -searchlib option is also imnteded to specify libraries of modules referenced from Ada via
pragma iDTERFACE.

60

DACS-80x$6 User's Guide
The Ada Linker

Examples:

S adank -seaMdtlib iterlfcelib p

Links the subprogmn p. resolving referenced symbols first with f tarWget library interfacejlib
and then with the standard RTS target library.

6.5.5 -sop.befbenk

-s.op befre lnk

The -sWop beftore ink option allows the user to introduce semblem and linkers from third
paums or t ohmewse configure the link to suit the application. The link is halted with the
following conditions

-he user configublme data file. <main>_ucd.o. is produced with the default or user specified
ihker option values included.

"* The elaboration code is conained in the <main>.elabcode.o file.

"* The shell script file that contains the link command is present and has not been executed. The
file's name is <main>_.irLcom.

"* The temporary Ada object file(s) used by the target linker are produced. These objets are
linked and deleted when <main> link.com is executed.

"* With -seuective link the object fdes comprise a&U Ada unts including those from the foot
library. At this int it is possible to disassemble the "cut" objec files using -object with the
dissembier.

To complete the link, the <main>_lirdkcom script must be executed. To use third party tools, this
file may have to be modified.

6.3.6 -optin

-options qWrnmutes'

-options allow the user to pas options onto the target linker.

61

DACS-8OxA6 User's Guide
Run-Time System

6".7 -lbrary

4Hwbary Aflle-nausw,
-lbrary Sa.Jlbrvry (defoult)

The .Ubrar option specifies the current sublibrary. from which the linking of the main unit will
take place. If this option is not specifiled, the sublibrary specified by the environmental varable
ada-11brary is used.

6.5. -nketive-link

638-ftiective Ink

This extracts all required object modules from die Ada library (including the root library) and cuts
out exactly those pats that am actually called, in oder to make the resulting target Program
considerably smaller. If a program uses eg. PUTLINE as die only routine from TEXTIO. the
contribution from the TEXTJO object module will only contsin PUT-LINE (and whtmever that
needs)..Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtaied by disassembling
directly those units that made up the selective link. by sopping the linking before the target link
phase (.utop_efore lInk), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables an not removed.

Only "level I* subprograms may be removed. Nested subprograms (that ae not cawled) am to be
removed during compilation using the -optimize option. Nested subprograms a only removed,
if the routine in which the nesting occurs is removed.

6.39 -1nollog

-log [flle-spec>1
-nolog (default)

The option specifies if a log file will be produced from the from end linker. As default, no log
file is produced. If <fl¢e-spec' is not entered with -log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

"• An elaboration order list with an entry for each unit included, showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp, and the dependencies are
shown. Furhermore. any elaboration incormsiencies will be reponed.

"* A linking summary with the following infomation:

"• Parameters and active options.

"* The full name of the program library (the current sublibrary and its ancestor sublibraries).

62

DACS-80x86 Useres Guide
The Ada Linker

" The number of each type of diagnoatic message.

• A termination message, stating if the linking was terminated successfully or unsuccessfully or
if a consequece examination was tenrinated

- Diagnostic messages and warnings am written on the log file.

If recompilations amre rquired (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in the log file., line 8.

The log file consists of:

"* Header consisting of the linker name, the linker version number, and the link time.

"• The elaboration order of the compilation unizs. The units ae displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

"* If recompilations ame required. the units that must be recompiled am listed along with its unit
type and sublibrazy level

"* The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or warnings occurred.

6.5.10 .[nolrootextract

.rooLextract
-noroot ex'ract (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the Sada-rotolib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sada-mot-lib will no longer
match the Ada system library and -root-extract must be specified in order to link from die Ada
system library.

6.S.11 -[noidebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

DACS-80x86 User's Guide
"The Ada Linker

"into the chosen sublibrary, thus saving disk space. Note that any unit which should be
symbolically debugged with the DDC-l Ada Symbolic Cross Debugger must also be compiled with
the -debug opton.

6.5.12 -[nolrts

.rts (default)
-.nts

The -ns option directs the Ada Linker to include the approprate Run-Time System (RTS) in the
link. -nomts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-Tune System from the link allows the user to do an additional link
with a private copy of a custom RTS. The Ada Linker may report unresolved references to RTS
routines, but will still produce a relocamble object file.

6S.13 -rms

This option selects the Rate Monotonic Scheduling Tasking Kernel (if tasking is selected). The
default is to use the Standard Tasking Kernel. This feature is supplied as an option.

6.5.14 .Inoleztract

-extract (default)
.noextract

This option to the linker allows the user to specify that program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many
objects have not changed since the last link and does not want the linker to waste time extracting
them.

To use this feature, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the current directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tooL A new target link
can then be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that share common and rarely modified librauies and when relinking prgrmns
that have had only a few units modified.

64

DACS-80x86 User's Guide
The Ada Linker

* 6.5.15 4uPhate

mpla te cfu-nme>
4emplat Sada..mplate (default)

The tempzate file is known to the linker via the environmental variable adatemplate. DDC-i
supplies a default template file as pan of the standard release system. Please refer to appendix H
for detailed information.

6.5.16 -. px

-Wpx (default)

The -npx option specifies tha the 80x87 (8087 80287, or 80387) numeric coprocessor is used
by the Ada program. When -apx is specified. dte)x87 is initialized by the task initializa on
routine, the floaing point stack is reset during exception conditions, and the 8Ox87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada linker.

CD-NX-USED

a 0 - 80x87 is not used
SI - 8Ox87 is used

6.5.17 -tasks

-tasks In)
(defalt is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specified, the RTS used will not include support for taskin. If -tasks is specified, the RTS used
will include support for tasking

Ada Interrupt tasks identified with pnagma INOrRU"FFHANDLER need not be included in the
count of maximum number of tuks. The main pfogm must be counted in the maximum number
of tasks. Note tha the main program, which may implicitly be considered a task, will not ran
under control of the tasking kernel when .- oaks is specified. See ao -rum opdon.

Configurable Data

For -tasks, the linker generates the foMowing configurable dama

65

DACS-80u6 User's Guide
•Te Ada Linker

Control
SloCks

(ITCS)

Zf -am Ls

Iactive.
V

SLO~ no-
Processor

Example:

$ adaJink -tasks 3 p

Link the program P. which has at most 3 tasks, including the main program.

6.5.18 -priority

-priority n
-priority is (default)

The -priority option specifies the default priority for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from 0 o 31.

Priorities can be set on a per task basis dynamically at run time. See section E.l (Package
RTSEntryPoints) for mom details.

Configurable Data

The Ada Linker generates the following constant data:

_ •,+mc.-= onstgntP 771I

Example:

S adaUnk -tasks -priority 8 p

Link the subprogram P which has the main pvgram and tasks running at
default priority 8.

66

DACS-80x86 User's Guide
The Ada Linker

"" 6.5.19 .tlme.sike

-time sluce [r] (default no time slicing is active)

The -time slce options specifies whether or not time slicing will be used for tasks. If specified.
R is a deimal number of seconds representing the default time slice to be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Duration'Small
S R : 2.0 and must be greaer than or equal the 4imer linker option value. Time slicing onlv
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
ame running at the same pionry is time slicing applied to each task.

Tune slicing can be specified on a per task basis dynamically at nm-time. See Section E.l
(Package RTSEntryPoints) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for -timeslice to be effective.

Conflgurable Data

The Ada Linker generates the following data:

_;_T?G;SL1CzulszD I

- 0 - wo tn slicing
- 1 - Time slicing

CO?1W,ýSL1Zc abolute iftto

0 representing the number Y that satisfies Y * DURATION'SMALL -I R

Example:

S adaslink -timesice 0.125 -tasks p

* Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer option specifies the resolution of calls to the Run-Tune System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R. specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER resolution is one millisecond. R must be in the range DURATiON'SMALLc R
,c2.

67

DACS-80x86 User's Guide
MrT Ada Linker

Configurable Data

The Ada Linker generates the following 16 bit constant:

represening the number Y that satisfies Y * DURATION'SMALL=R

6.5.21 -reserve-stack

-reserve stack [n]

The -reserve-stack option designates how many words ae reserved on each task stack. This
space is reserved for use by the RTS, which does no checking for stack overflow. This reserved
space also allows the RTS to function in situations such as handling a storage error exception
arising from stack overflow.

The -reservestack option also reserves pan of the main program stack size, specified by the
linker option -mpstacksize.

Configurable Data

The Ada Linker generates the following integer constant:

cVRZSft•_V = nMAC

Examples:

S ada-link -reserve-stack 200 -tasks p

• Reserve 200 words fmm each stack for use by the RTS.

6,1.22 -Itstack-size

-k stack size n
-ItCstack..siaz Sm}(default)

The 4t stack size option designates the library task default size in words. A library task is
formed when a task object is declared at the outermost level of a package. Library tasks are
created and activated during the initial main program elaboration. (See the Ada Reference Manual
for more details).

68

DACS-80x86 User's Guide
"The Ada Linker

"For each library task. the represemraon spec:

FOR Task-object'STORAGE.SIZE USE N,

can be used to specify the library task stack size. However, if the representation spec is not used,
the default library task size specified by -It-stack size will be used.

For efficiency masons, all tasks cmated within library tasks will have stacks allocated within the
same segment as the library task stack. Normally, the segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefore. one must use
the option -it-stack-option or the prugma LTSEGMENTSIZE to reserve more space within the
segment that may be used for nested tasks' stacks. (See the implementation dependent pragma
LTSEG SENT-SJZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task sack size allocated during
the build phase of the link, and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

P?S_?AC]_XS12 I

Example:

$ ada-Jink -It stacksize 2048 -tasks p

0 Link the subprogram P using a 2K words default library stack size.

6.5.23 -it-stack..size

-Itsegnent-size n
-ft_segmntsize (sOt.stacksize + 20 + exception.s) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If 4t- stack size is used and
specifies a value other than the default value, 4t.segmentsize should also be specified to be the
size of <tak_skwksize> +

<totaofnested.tasks;_sizes> +
<20_wordsoverbead> +
exceptionscack.space.

Note that the task stack size specified by the 'STORAGE-size can be reptesentation spec or by
the option -It.stack.size.

Dynamically allocated tasks receive their own segment equal in size to the mpsegmentsize.

69

DACS-80x86 User's Guide
The Ada Linker

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase, and the maximum segment size (64K for all excep the 386/486 protected mode.
which is 4 GB).

Configurable Data

The Ada Linker generates the Molowing data stucnuue:

Example:

$ adalink Uitsegment she 2048 -tasks p

* Link the program P using a library task segment size of 2K words.

6.5.24 -mp..stacksze

.mp_Stack-size n
-mp.stack-size 8000 (default)

The -mp_stackshe option specifies the main program stack size in words.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), the maximum segment size (64K for all excepit the
386/486 protected mode, which is 4 GB), and the size of mp-sepneme.sie..

Configurable Data

The Ada Linker generates the following data stuctures for nontasking programs:

_P@SThCKSzz I m m

_RwSTAM PcKC SZ

For tasking programs, the Ada Linker generates the same sticnuies but limits the size to 1024
words. This stack is only used for the execution of the system stauap code and elaboration.
At main program activation, a segment for the main program equal to the size specified by -
-mpsegnmet sie will be allocated from the dynamic memory pool and a stack for the main
program equal to the size specified by -mWpstacksize will be allocated from the memory
pool-

70

DACS-80x86 User's Guide
MwTe Ada Linker

Example:

S adallnk -mp sack_size 1000 p

SLink the subprogram P with a stack of 1000 words.

6.5•.2 .mp-sqgent..size

-mp segmeinetze n
-mp..JsegmuLize 8100 (Default)

The *mp segment size option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setting can be calculated from the formula,

mp-sememn size - mp-stack_size +
overhead + (tasks - 1)
(overhead + task-storage-size)

Normally, the main program segment size can be set to the size of the main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Therefore, when the
main program contains nested tasks, the main program stack segment must be extended via the
-rap_segment size option.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp-semenmtsize.

Configurable Data

The Ada Linker allocates the _CDMPSTACK (see the -mp_stack size option) within a data
segment called _CD_MP_STACKSEGMENT:

cojsecisz'r su _sm•cx z , msgm:s
)@-W .STACKSAR? IM-STACK Z I InVm

Example:

S ada..nk -tasks -mp_segmentsize 32000 programsa

Links the subprogram PROGRAMA, which conains tasks nested in the main program
allocating 32,000 words for the main program sack segment

71

DACS-S046 User's Guide
The Ada Linker

6.j.26 .task.storage..size

-taskstorages# n
-taskstaora...size 1024 (default)

This op•ion sets the default storage size in words for stacks of tasks that are not library tasks.
This value can be overridden with a representation clause.

The rnge is limited by the size of the It-segment-size (if it is a sutxask to a library task), or by
mp_segment-size (if it is a subtask to the main program).

Configurable Data

The Ada Linker generates the following data structure:

_CTASKS2-O(z.SzzZ I IM=

6.S.27 -interrupt-entry table

-interrupt~entryjtable LH

The .interrupt entry table option specifies the range of interript vector numbers used by the
Ada program in interrupt tasks.

The number, L, specifies the lowest numbered interrupt handler. The rumber, H, specifies the
highest numbered interrupt handler. The range for low and high inerrupts is 0 to 255.

Configurable Data

If -interruptentry table is specified, the Ada Linker will generate the foilowing data structue:

_p3zxG31UnKRRPT COMTA l (a)

_;ZU2T=OPTW VCTOft (11L+)*
for ZntorzzWt|! wctor

If the user ever detects unresolved references to the symbols:

CDLOW-JNTUIT
_CD_HIGHNTERRUPT
_CDVnERRUPTVECTOR

72

DACS-80x86 User's Guide
The Ada Linker

the Ada progrmn contains standard interrup tasks for which the RTS requires the above data

srucume. You must ielink tie Ada program specifying the -interrupt entrytable option.

Example:

S ada-Jink -tasks -interruptentry table 5,20 p

Links the subprogram P. which has standard Ada interrupt entries numbered 5
thmugh 20.

6.528 4nojenble.a sk_.Jac

-enabie task trace
-noenlale-etasktrace (default)

This option instructs the exception handler td produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

- 0 - task trace disabled
I 1 - task trace enabled

6.S.29 -exceptionespace

-exception..space n
-exception.-space Oa~h (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may switch stack to this area to avoid accidental overwrite below the sack
bottom (which may lead to protection exceptions) if the size of the remaining pan of the stack
is smaller than the N value. Specifying a value =0 will never cause stack switching. Otherwise an
N value below the default value is not recommended.

Configurable Data

Note that this value is added to all request for task stack space, thus requiting an increase in the
requirements of the appropriate segment's size

73

DACS-80x46 User's Guide
The Adsa Linker

When ths option is specified the linker will generate code to output a sign on message. before
the Ada elaboration ia initiated and a sign off message when the target progrun has teminated
successfully. If the prgran terminates with an uncaught exception, the sign off message is not

The sig on message coists of:

START [stn>p] <pmram name

and the sign off message

STOP [Isuin> <pprogim nam>

The <suinp may contain spaes, e.g.

-*dgn..on "Test 3" (remember the quotes).

This facility is very useful to separate output from several target programs nn after each other.
and to verify thaz a program that produces lite or no output has actually been loaded and run
successfully.

74

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFF_FFFF_FFFF_F8#E256 .. 16#0.FFFFFFFFFFFFF8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-i

APPENDIX F - IMPLEMENTATION-DEPENDENT CHAAACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-8OX86r,4 as required
in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-18l5A).

F.1 Implementation-Dependent Pragnms

This section describes all implementation defined pragmas.

F.1.1 Pragna INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pfagma must be used in conjunction with
pragma INTERFACE, i.e.. pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTSGetDataSegment return Integer;

pragma INTERFACE (ASM86, RTSGetDataSegment);
pragma INTERFACE-SPELLING (RTSGetDatasegmqnt, "R1SMGS?GetDataSegmenrt"):

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used, when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.l2 Pragma LTSEGMENTSIZE

This pragma sets the size of a library task stack segmem.
The pragma has the format

pragma LTSEGMENTSIZE (T. N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-80486 User's Guide
•m em Dependen Cha-acte•rsics

stack segmen in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the representation clause (note that T must be a task
type)

for T'STORAGES1ZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus. pragma LTSEGMENTSIZE
must be specified to reserve space within the library task stack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LTSEGNNT._SEM:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.I.3 Pragm EXTERNAL-NAME

F.I.3.1 Function

The pragma EXTERNALNAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.I.32 Format

The format of the pragma is:

pragma EXTERNALNAME(cada_entity>,<extemal name>)

where <ada-enmty> should be the name of:

"* a permanent object, i.e. an object placed in the permanent pool of the compilation unit- such
objects onginate from package specifications and bodies only,

"* a constant object, i.e. an object placed in the constant pool of the compilation unit - please
note that scalar constants are embedded in the code, and composite constants ame not always
placed in the constant pool. because the constant is not considered constant by the compiler,

194

DACS-O0x86 User's Guide
*zplmem on-Depeuiden Characteristics

.a supog name. i.e. a name of a subpogram defined in this compilation unit - please
notice that separate subprogram specificaions cannot be used, the code for the subprogram

must be present in the compilation unit code, and where the <external name> is a string
specifying the external name associated the <adaeenity>. The <external names> should be
unique. Specifying identical spellings for different <ada_entities> will generate errors at compile
aWn/or link time, and the responsibility for this is left w the user. Also the user should avoid
spellings similar to the spellings generated by the compiler. e.g. Exxxxx.yyyyy. P xxxxx.
C.xxxxx and other internal idenifications. The target debug type information associated with
such extemal names is hie null type.

F.1.33 Restrictions

Objects that ar local variables to subprogmms or blocks cannot have extemal names associated.
The entity being made external ("public") must be defined in the compilation unit itself. Attempts
to name entities from ocher compilation units will be fejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.1.3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len : integer;
val : stringlo;

end record;

global-s : 3;
const_s : constant stringlO :- "1234567890";

pragma EXTERNALNAME (globals, "GLOBAL S OBJECT");
pragma EXTERNALNAME(consts, "CONST S" ;

procedure handle C...) is

end handle;

pragma EXTERNALNAME (handle, "HANDLEPROC");

end example;

The objects GLOBAL-S and CONST-S will have associated the names "GLOBAL_S_OBJECT"
and "CONSTS". The procedure HANDLE is now also known as "HANDLE-PROC". It is

195

DACS-80x86 User's Guide
* Implementation-Dependent Characteristics

• - allowable to assig more than one external name to an Ada entity.

F.3AS Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the
address of the first element: the anry constraint(s) are NOT passed. and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.I.3A Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects are passed by reference. Records are passed via the address of the first byte
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only: composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to bc on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.A.4 Pragma INTERRUPT-HANDLER

This pragma will cause the compiler to generate fast interriup handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPT_HANDLER;

The pragma must appear as the first thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80x86 User's Guide
Implmentmaon-Dependent Chiacierisucs

F.l Pragma MONITOR-TASK

FI.J Function

The pragma MONITOR-TASK is used to specify that a task with a certain smtcture can be
handled in a special way by the Run-Time System. enabling a very efficient context switch
operation.

F.142 Format

The format of the pragma is

pragma MONITOR-TASK;

The pragma must be given in a task specification before any entry declarations.

F.1.S.3 Restrictions

The following rstrictions apply on tasks containing a pragma MONITOR-TASK:

"* Only single anonymous tasks can be "monitor tasks".

"* Entries in "monitor tasks" must be single entries (i.e. not family entres).

"* The task and entry attributo are not allowed for "monitor tasks" and "monitor task" entries.

"* The <declarative part> shou7ld only contain declaration of objects; no types or nested sturctures
must be used.

" The stnucture of the task body must be one of the following:
1.

task body WO tAWS i.
<declagar ave past>

begin
<statement list>
loop

select
accept ENTY lqwamaeter..list> (do

acrcept ETRY 2<paramete:_ Ilat> [do

or
tepminate

end select;
end l10p;

end;

where each entry declated in the specification must be accepted unconditionally exactly once.

197

DACS-8OxS6 User's Guide
"Implemenmion.Dependem Characteristcs

• 2.

task body MOM _TAM is
<declarative part>

begin
<Statement ±±stD
loop

accept MN= hYY<pazameterllst> do
<8tatement-list>

end) ;

end loop;
end;

where the task only has one entry.

In both cases the declarative pari, the statemenr lists and the parameter lists may be empty.
The statement list can be arbitranly complex, but no nested select or accept statements are
allowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions ame propagated out of the accepts.

F.1.S.4 Example

The following tasks can be defined

task LIST 3*MOL• Is
pragia MOMTOR TASK;
entry =SZRT (E.LD: ZEIM TYPZ);
entry PDIOV(ZLDI:oUt ZL4ETPE) ;
entry %S PR.ZST (Lf.M: ZLZDTYPZ;

USULT: out 300LZI.N);
end LIST- AMLDM;

task body LZSTU NCLEP Is
Idefino list-

b-In
"initialize list*

select
accept 1)1S51T (Z4LU: ZIE4_TYPE) do

",insect in list"
end INSERT;

or
accept RIMOVE(EZL:out EL.M TYPE)do

"find in li•t and remove from lis't
end PDIOVI

or
accept Zs PRUZSUIT (ti: .Lý4 TYPE

- lES: out SOOLEAM)do

end 1SPUIVZST;
or

tegminate,
end select

end NMOWTAMS;

The task can be used

task type LZST-VSZR is

end LIST SIR;

task body LlZ? "_ER is

198

DACS-80x86 User's Guide
• Implementation-Dependent Characteristics

begin
select

LISTUAIILUR. INUlhT (FIWST 1) ;
else

raise INS2RTZMR;
end select;
loop

LIST UANDLER. INSERT (X.T.ELD));
end lo1p;

end LISTUSZR;

F.I.6 Pragma TASKSTORAGESIZE (T, N)

This pragma may be used as an alternative to the attribute 'TASK_STORAGESIZE to designate
the storage size (N) of a partcular task object (M) (see section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dependent attibuzes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant System_.Name vary:

Comoiler System System Name

DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.

package System is

type Word Is now Inteqe:;
type OWord is new Longjinteger;

type ansignedord Is range 0..65535;
for OnsegnedWo-d'SIZZ us* 16;

type byte is rang* 0..255;

for byte'S3ZZ use 8;

subtype Sementlid Is Onsigneduord;

type Address is
record

offset :ns U gneduord;
segment Segmentld;

end record;

subtype Priority is Integer range 0..31;

199

* DACS-80x86 User's Guide
mmenladctton-Dependent Ohanceristics

type vme is (ILAMXi);

SYSTUE WIJ : constant Nam : 1A1X346;
STRA =IT: constant :- 16;

mit4RY SIZz constant :1 10415 76;
NfI fir : constant - -21 47 43 647-1;
4AX cIIr constant :- 2 47 83 47;
NAXDZGITS constant :- 15;
MAX _NAPTSSA constant : 31;
rII;DELTA constant :- 201.01E-31;
TICK constant :- 0.0000001_25;

type Znteorace lanquage is
(AS04, PLi6, C86, Cos IZVES.,

SPAc?. lINAC?. C._•C. CVEusAcr,
AS_•NOAC, _MNNO=c. CUOcU, c;_WZW S1_HQACT);

type zxceptionzd is record
unit number OnsLgaedlord;
unique number Onsdgneclord;

end record;

type TaskValue is nov integer;
type AccTaskVaIue is access TaskValue;
type SemaphoroValue is now Znteger;

type Semaphore is record
counter Integer;
first TaskValue;
last T&skVa&lue;
SQ*ext SemaphoreValue;

-- only used in MDS.
end record;

InitSemaphore : constant Semaphore :- Semaphore' (1,0.0,0);

end System;

The package SYSTEM specification for DACS-80386PM package systm is:

packagqe System is

type Word Is now Short Integer;
type DWord is now Integer;
type QOord is now Longnteger;

type OnsLgnedvoard Is range 0..63535;
for OnsignodWord'SIZE use 16;
type OnsignedDWord is rang* O.. 1ffTFrlFF rfl;
for OnsLgnedDuord' SIZE use 32;
type Dyte is range 0..255;
for Byte'SIZE use 8;

subtype Sogmentld is OnsignedNord;

type Address is
record

offset : 0ns tgneO ord;
segment : Segmentld;

end record;

for Address use
record

offset at 0 range 0..31;
segment at 2 range 0..15;

end record;

subtype Priority is Integer range 0..31;

200

DACS-80x86 User's Guide
Implemnemation-Dependent h-acte-stics

type Name Is (L niX3O46PH;

ssni_~Aau constant memoe :-LAIXaIG P;
STO3A• _ZT c constant : 14;
140RY _SUzz constant : 16#1000000006;
NM lINT constant : -16#6000 0000 0000000#;
MAX N.? constant 16#7F7T7517 FIST 7 117;
MAX OZGZTS constant :- 15;
MAX HANTISSA constant : 31;

FZu oZT : Constant : 201.0#9-31;
TCIC constant :- 0.0000000625;

type Znteoface lanql•go is

(AMsW' PUES6. C96, CUE UZVZRSZ,
AS"_AC1, P&MAM, cas, cRZvrqAszAC.
AMENAOr, PtMMOAcT, C.o0ACF, C.RZV~ZM0NA:r);

type Exceptionld is record
unit number Onsiqn*dDord;
unicque nub.er OnslqnedD•ord;

end record;

type ?askValuo Is now Integer;
typo ACCTcskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first, last TaskValue;
SQ0?ext SemaphoroValue;

-- only used in I30.
end r*ecnrd;

InitSemapho-e : constant Semaphore :- Semaphore' (1.,0,0));

end System;

F.4 Representation Clauses

The DACS-8Ox86Th fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types ame described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

" When using the SIZE atibute for discrete types. the maximum value that can be specified is
16 bits. For DACS-80386PM/80486PM the maximum is 32 bits.

" SIZE is only otcyed for discrete types when the type is a pan of a composite object, e.g.
arrays or records, for example:

type byte is range 0..255;
for byte'size use 8:

3ixteen bi3tsallocated : byte; -- one word allocated

201

DACS-80z86 User's Guide
ImplaKazion-Dependent Characteristics

eight bitpee lement array(O..7) of byte: -- four words allocated
type ;Oc is

record
clc2 : byte; -- eight bits per component
end record;

"• Using the STORAGES-ZE attribute for a collection will set an upper limit on the total size
of objects allocated in this collection. If funher allocadon is attempted. the exception
STORAGE-.ERROR is raised.

"* When STORAGESIZE is specified in a length clause for a task type, the process stack area
will be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGESIZE may not be specified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or
- 16T7FFF.. 16#7FFE).

F.4.3 Record Representation Clauses

When representation clauses am applied to records the following restrictions are imposed:

"* if the component is a record or an unpacked array. it must stan on a storage unit boundary
(16 bits)

" a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

"• a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

" if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1....) from the beginning of the record, and
M the required number of storage units (I,2,..)

"* the elements in an army component should always be wholly contained in one storage unit

"• if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

DACS-80x86 User's Guide
mp eao-Dependent Characteristics

" component at N range X .. Y;

where N is as in previous paragraph, and 0 <- X <- Y <= 15. Note that for this restriction
a component is not required to start in an integral number of storage units from the beginning
of die record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma pack an a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.4.3.1 MAlignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package. any
alignment is accepted.

"* If the record declaration is done at a given static level higher than the outermost library level,
i.e., the permanent area), only word alignments are accepted.

"* Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment, an
error message will be issued.

"• If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

F.S Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-80x86 User's Guide
linplememtation-Dependent Characteristics

"F.6.1 Objects

Addes clauses are supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to a hardware interrupt through
an address clause:

1) Direct transfer of control to a task accept statement when an interrupt occurs. This form
requires the use of pragma IVEPRRUPTHANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt
entry to be called from other tasks (without special actions), as wel as being called when
an interrupt occurs.

F.6.2.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPT_HANDLER to tell the compiler thas "e task is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

"* Provide the fastest possible response time to an interrupt.

"* Allow entry calls to other tasks during interrupt servicing.

"* Allow procedure and function calls during interrupt servicing.

"* Does not require its own stack to be allocated.

"* Can be coded in packages with other declarations so that desired visiblity to appropriate parts
of the program can be achieved.

" May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

DACS-8Ox86 User's Guide
mpiemesauon-Dependen Characterstucs

"F.6I.3 Limitations

By using the fast interrupt feature, the user is agreeing to place certain restrictions on the task in
order to speed up the software response to the interrupt. Consequently, use of this method to
capture interrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

" It must be a task object. not a task type.

"* The pragmna must appear firt in the specification of the task object.

"* All entries of the task object must be single enries (no families) with no parameters.

"* The entries must not be called from any task.

"* The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the accept(s), but this is meaningless because no code outside
the accept statements will be executed.

"* The task may make one entry call to another task for every handled interrupt, but the call must
be single and parametertess and must be made to a normal tasks, not another fast interrupt
task.

"* The task may only reference global variables; no data local to the task may be defrined.

"• The task must be declared in a library package, i.e., at the outermost level of some package.

"* Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.L.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normn as long as the enries are single (no
indexes) and parameterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

TE;
else

null;
end select;

endE;

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

DACS-80x86 User's Guide
*I wetation-Dependet Characteristics

If an unconditional entry call is made and the called task is not waiting at the corresponding
accept statement, then the interrupt task will wait at the entry call. Alternatively, if a timed entry
call is made and the called task does not accept the call before the delay expires. then the call
will be dropped. The conditional entry call is the preferred method of making task entry calls
from fast interrupt handlers because it allows the interrupt service routine to complete straight
through and it guarantees queueing of the entry call if the called task is not waiting.

When using this method, make sure that the interrupt is included in the -interrupt_entry_4ble
specified at link time. See Section 74.15 for more details.

F.6.2 Impleuenttadon of Fast Inerrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state, ptiority. or a task control block associated with them, and ar not scheduled
to "run" by the run-time system.

Since a fast interrupt handler is not really a task. to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop constmct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
COr•rutrUCL

F.6±.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as mtum address.

at the very end:
code that resto•s registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to ather task, the interrupt handler is
completed through the IRDT before the rendezvous is actually completed. After the rendezvous
completes. normal Ada task priority rules will be obeyed. and a task context switch may occur.

Normally. the interrupting device must be reenabled by receiving End-Of-lnrrupt messages. These
ca be sent from machine code insertion statements as demonstrated in Examplie 7.

206

DACS-80x86 User's Guide
Impimemraon-Dependent Chracteristics

- FA.�.7 Savin- NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coprocessor, calls to the appropriate save/restore
routines must be made in the statement list of the accept statement. These routines ae located
in package RTS EntryPoints and are called RTS_StomeNPXState and RTSRestoreNPXStae.
See example 6 for more information.

F.6.2.S Storage Used

This section details the storag requirements of fast interrupt handlers.

F.6.29 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt.
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters anr permitted. use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.LO Run-Timne System Data

No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CDV4ERRUPT_VECIOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entny is only 10 words for 80386/80,86
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interruptentrytable. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x86 User's Guide
. lmplemenrmion-Dependent CharActensucs

FAa.I Source Code

The prupna Th'TERRUPTHANDLER which indicates that the interrupt handler is the fast form
of interrupt handling and not the normal type. must be placed in the task specificaton as the first
statement.

When specifying an address clause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the interrupt vector into the ITERRUPTVECTORTABLE segmenL For
real address mode programs, the interrupt vector must always be in segment 0 at execution tune.
For protected mode programs, the user specifies the interrupt vector location at build time.

Calls to RTSStoreNPXState and RTSRestomNPXState must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTSEntryPoinhs in the root library. See example 6 for more information.

F.6.32 Compiling the Program

No special compilation options am required.

F.6.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there ame no normal tasks in the application, the program
can be linked without tasks.

This also means that the linker options -it stack size. -itsegment size. -mp_segment size, and
-task storagesize do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task nnming at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interruptentrytable option at link time. This option builds a table in the run-time system data
segment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number.
which is bounded by the low and high interrupt numbers specified at link time.

F.63.4 Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time; the compiler
creates the appropriate entry in the INTERRUPTVECTORTABLE segment. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

DACS-80x86 User's Guide
lmplmentation-Depedent Chacetrisics

F.A Examples

These examples illustrate how to write fast interrupt tasks and then how to build the application
using the fast interrupt tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler that does not make any task entry calls.

but simply performs some interrupt handling code in the accept body.

Ada source:

with System,;
package P is

<poentially other declarations>

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 10);

end;

<potentially other declarations>

end P;

package body P is

<potentially other declarations>

task body FastInterruptHandler is
begin

accept E do
<handle interrupt>

end F.
end:

<potentially other declarations>

end P,

with P,
procedure Example! is
begin

<main pfogram>
end Example!l;

Compilation and Linking:

209

DACS-80x86 User's Guide
* lmlcmntaionDependent Characteritiscs

S ada Example _
$ adaflink Exampll ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to write a fast interrupt handler that services mom thn one interrupL

Ada source:

with System;
package P is

task FastInterruptHandler is
pragrna INTERRUPTHANDLER;

entry El;
entry E2.
entry E3;

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0. offset => 9);
for E3 use at (segment => 0. offset => 11);

end;

end P,

package body P is

task body Fast_InterruptHandler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt 11>

end E3;
end;

end P,

Compilation and Linking:

210

DACS-80x86 User's Guide
[mpleauaton-Dependent Characteristics

S ada Example 2
"S ada-Jink -tasks. Example 2 # assumes application also has normal tasks (not shown)

F.6.4.3 Example 3

This example shows how to access global data and make a procedure call from within a fast
inemapt handler.

Ada source:

with System;

package P is

A : Integer.

task FastInernptHandler is
pragma INTERRUPTHANDLER;
entry E:
for E use at (segment => 0. offset => 16#127#);

end.

end P;

package body P is

B : Integer:

procedure P (X : in out Integer) is
begin

X :=X+ 1;
end:

task body FastInterruptHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Linking:

$ ada Example 3
S ada-iink Example3

211

DACS-80x86 User's Guide
Implemeanuion-Dependent Characteristics

"F.6.4.4 Example 4

This example shows how to make a task entry call and force it to be queued if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast intemipr handier is making an entry call to T, the techniques used guarantee that
it will be queued. if necessary. This is accomplished by using the conditional call consutua in
the accept body of the fast interrupt handler and by including the inteirpt in the -
interrupt_entry table at link time.

Ada source:

with System;
package P is

task FastIntermupP.Handler is
pragma INrEýR.UPT_..HA"DLER..
entry E;
for E use at (segment => 0. offset => 8);

end,

task T is
enuy E;

end;

endP .

package body P is

task body FastInterruptHandler is
begin

accept E do
select

T.E;
else

null-
end select:

end E
end;
task body T is
begin

loop
select

accept E;
or

delay 3.0;
end select;

end loop;
end;

end P;

212

DACS-80x86 User's Guide
Implememtation-Dependent Characteristics

Compilation and Linking:

$ ada Example.4
S adaJink -tasks 2 -interruptentrytable 8,8 Example 4

F.6.4.5 Example S

This example shows how to build an application for 80386/80486 protected mode programs using
fast interrupt handlers.

Ada source:

with System;
package P is

task FastInterrupt_Handler is
pragma NERRUVErHANDLER;
entry E;
for E use at (segment => 0. offset => 17);

end;

end P•

package body P is

task body FastjnterrupLHandler is
begin

accept E do
null;

end E;
end;

end P;

Compilation and Linking:

$ ada Example 5
$ ada-.ink -tasks - Example S

213

DACS-8Ox86 User's Guide
Implememation-Dependen Charcteristics

F.6.4.6 Example 6

This example shows how to save and rs-oi the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks are using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time
of the interrupt.

Ada source:

with System:
package P is

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0. offset => 25);

end:

end P.

with RTSEntryPoints;
package body P is

task body FastinterruptHandler is
begin

accept E do
RTSEntryPoints.StoreNPXSmte;

<user code>

RTSEnryPoints.RestoreNPXState;
end E;

end:

end P;

Compilation and Linking:

S ada Example_6
$ ada-link -npx -tasks - Example.6

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

DACS-S0x86 User's Guide
mlnplementation-Dependent Characteristics

with System:
package P is

task FastInterruptHandler is
pragma INERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 5);

end;

end1•.

with Machine-Code; use Machine-Code;
package body P is

procedure SendoEOI is
begin

machinejinsuuction'
(registerjmmediate, m_MOV, AL, 16#66#);

ma. hine instructon'
(immediate_register. meOUT, 16#Oe0*. AL);

end;
pragma inline (SendEOI);

task body FastInterruptHandler is
begin

accept E do
<user code>
Send.EOI;

end E;
end;

end R,

Compilation and Linking:

S ada Example_7
S ada-link -tasks. Example_7

F.6.5 Normal Interrupt Tasks

"Normal" interrupt tasks are the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6.5.l Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

215

DACS-8Ox86 User's Guide
Implementaion-Dependent Characteristics

"2) May be called by other tasks with no restrictions.

3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6.5,2 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the

involved entries and tasks:

1) The affected entries must be defined in a task object only, not a task type.

2) The entries must be single and parameterless.

F.6.S.3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is bi'en a priority and runs as any other
task, obeying the normal priority rules and any time-slice as configured by the user.

F.6..4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an imerrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system. where the appropriate interrupt task and entry are determined from the
information in the _CDINTERRUPT_VECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon remtum from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt.
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period. the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users are cautioned that if from within
the body of the accept statement corresponding to an interrupt, an unconditional entry call is made,
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

DACS-80x86 User's Guide
Implementanon-Dependem Characteristics

F.6AS Saving NPX State

Because normal interrupt tasks are standard tasks, the state of the NPX numeric coproccssor is
saved automatically by the run-time system when the task executes. Therefore, no special actions
are necessary by the user to save the slate.

F.6..6 Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.S.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.S.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system _CDJNTERRUVT_VECrOR
table to "define" the standard interrupt. This mechanism is used by the run-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interruptentry table option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives ame required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a no,'nal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segment is not
applicable (although some value must be specified) because it is not used by the compiler for
interrupt addresse& The compiler will place the interrupt vector into the
INTERRUPTVECTORTABLE segment. For real address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 User's Guide
Implementaton-Depende- Characteristics

the address to locate the nERRUPTVECTORTABLE segment with the loc86 command. or at
run aime. by having the startup code routine of the UCC copy down the
INTERRUMVECFORTABLE segment to segment 0 and the compiler will put it there
automatically. For protected mode programs, the user specifies the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilatio options ame required.

F.6.&3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It stack size. --
tseqgnient•_e. -mp_segmentsize, and -task-storagesize apply to normal interrupt tasks and

must be set to appropnate values for your application.

Every interrupt task must be accounted for in the -interrupt entrytable option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example 1

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment => 0, offset => 10);

end;

end P,

package body P is

task body Normal Interrupt _andler is

218

DACS-•0x86 User's Guide
Il~mmxii-Dependent Characuterscs

begin
accept E do

<andle intanpx>
endE.

end;

end R.

with P-
procedure Example) is
begin

<main program>
end Example)l;

Compilation and Linking:

$ ada Examples
$ ada-.ink -tasks 2 4nterrupt entry table 10,10 Example!

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt
and has other standard task entries.

Ada source:

with System;
package P is

task Normal_Task is

entry El;
entry E2; - standard entry
entry E3;

for El use at (segment => 0, offset -> 7);
for E3 use at (segment -> 0, offset => 9);

end;

endP,

package body P is

task body Normal-Task is
begin

loop
select

accept El do
<service imenwqx 7>

219

DACS-80x36 User's Guide
memu-Dependem aracterstics

end El;
or

accept E2 do
<standard rendezvous>

end E2.
or

accept E3 do
<service interrux 9>

end E3;
end select

end loop;
end NormaliTask

endPR

Compilatioa and Linking:

$ ada Example 2
S adasJink -tasks -interrupt entry_table 7,9 Example_2

F.6.7.3 Example 3

This example shows how to build an application for 80386 pmtected mode programs using normal
interrupt handlers.

Ada source:

with System.
package P is

task Normal _LntefmptHandler is
entry F
for E use at (segment => O, offset -> 20);

end;

end P.

package body P is

task body NonmalIntemzptHandler is
begin

accept E do
null;

endEý
end;

end P',

220

DACS-80x$6 User's Guide
-. iDependem• • Chancteristics

Compilation and Linking:

s ads Example 3
S adaUnk -tasks .interrupt.entryTable 20,20 Example.3

F.6.7.4 Example 4

This example shows how an End-Of-Inerru message may be sent to the imenupting device.

Ada murce:

with System;
package P is

task NormalInterruptHandler is
entry £;
for E use at (segment -> 0, offset -> 7);

end;

end P;

with Machine-Code; use Machine-Code;
package body P is

procedure SendEOI is
begin

machine instruction'
(register iuediate, m MOV, AL, 16#66#);

machine instruction'
(iimnediate register, m OUT, 16#OeO, AL);

end;
pragma inline (Send EO!);

task body Normal Interrupt Handler is
begin

accept E do
<user code>
Send EOI;

end E;
end;

end P;

Compilation and Linking:

S ads Example_4
$ ada-link -tasks -interruptentryjtable 7,7 Example_4

221

DACS-80x86 User's Guide
lmplemeMation-Dependent Characteristics

F.63S Interrupt Queuing

DDC-I provides a useful feature that allows task entry calls made by interrupt handlers (fast and
nonral variant) to be queued if the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-l's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt morm than once is considerably
mome expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functonality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous sitation. Queuing the
same interrupt more than once represents this situaaon.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
ifn a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design. the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task, then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the MET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using LowL.vellO will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle iL

If the fast interrupt handler does not make an entry call to another task, then placing the

222

DACS-O0x86 User's Guide
ImpemetazonDependent Characteristics

end-of-ineript code in the accept body of the fast interrupt task will guarantee that the interrupt
is completely serviced before another interupt happens.

F.69.2 Normal Interrupt Handler

Place the code that reenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done, the interrupt will not be reenabled before the rendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the interrupt "completes" in the sense that the IRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are used for either variant of interrupt handlers, caution must be taken that
other tasks do not call the task enny which reenables interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However. if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional 1/0 system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented I/0 system. This 1/0 system
consists essentially of TEXT-1O adapted with respect to handling only a terminal and not file I/0
(file I/0 will cause a USE error to be raised) and a low Level package called
TERMINALDRIVER. A BASIC-1O package has been provided for convenience purposes,
forming an interface between TEXT-1O and TERMINAL_DRIVER as illustrated in the following
figure.

TXT O

(al/* interfaer)

The TE7MINALDRIVER package is the only package that is target dependent, i.e., it is the only

223

DACS-80x86 User's Guide
"lmplemenaion-Dependev Characterisucs

package that need be changed when changing communications conrollers. The actual body of the
TERMINALDRIVER is writen in assembly language and is pan of the UCC modules DI[PUT
and DIIGET. The user can also call the terminal driver routines direcy, i.e. from an assembly
language routine. TEXTJO and BASICO am written completely in Ada and need not be
changed.

BASIC-1O provides a mapping between TEXTJO control characters and ASCII as follows:

TEXT_1O ASCII Character

LINETERMINATOR ASCII.CR
PAGETERMINATOR ASCIIFF
FILE-TERMINATOR ASCI.SUB (CTRLMZ
NEW-LINE ASCILLF

The ser,-ices provided by the terminal driver are:

1) Reading a character from the communications port. Get.Character.

2) Writing a character to the communications port. PuLCharacter.

F-8.I Package TEXT-1O

The specification of package TEXT-1O:

pragmas page;
with BASIC.10;

wlith TOEXCaTIONS;

package TEXT I0 ,s

type FILZE T-E is limited private;

type FILE MODE is (INFILE. OUT-rLE);

type COUNT is rang. 0 .. INTZGXR'ILAST;
subtype POSITIVECOUNT is COUNT range I .. COUNT, LAST;
UNBOUNDED: constant COUNT:- 0; -- line and page length

-- max. size of an Integer output field 20.... 0

subtype FZELD Is •ITEGER range 0 .. 35;

subtype lWUER BASE is INTEGER range 2 .. 16;

type TYPlE.ST is (LOWIRCASZE, U•PrCASE);

pragna PAGe;
-- Filo Management

procedure CREATE (FILE : In out FILE .;TE;
MOD : in FILZ NODE :-,T FILZ;
"M516 In STRI :
am :i STRING

);

procedure OPEN (FILE : In out FILE TYPE;
MODE in FILZE ODE;
3516 : In STRING;

224

DACS-80x86 User's Guide

azpiancmation-Depeudem Chnc~enstics

rOam in mST NG ,

procedure CLOSE (FILE in out FILETYPz);
procedure DLZETE (FILE in out FILE TYPE);
procedure RitfE (FILE in out FmIE -TYE;

mOtE in FILE NOdE);
procedure RZSET (FILE in out FILEtYPE);

function WOE (FILE in FILt TYPE) return FILE NOrD;
function NME (FILE in TILE TYPE) return STRI;G;
function FOR4 (FILE in FILE TYPE) return STRING;

funct.ion islOPEN (FILE in FILZETYPE return UDOLEAM;

pragma PAM.;
-- control of default input and output file&

procedure SET INPUT (FILE in FILE TYPE);
procedure SE OUTPIUT (FiLE in FILE TYPE);

function STXDAW _INP• T return rFLE TYPE;
function SnJomAMDA OUT=PT return FILE-TYPE;

function CURRENT IPUT return rILZE TYPE;
function CURRENT-OUTPUT return 7.4. -TYPE;

praque PAGE;
-- specification of line and page lengths

procedure SE LINELEEIGTN (FILE in FILE-TYPE;
TO in COUNT);

procedure SET LINE_LENGTH (TO : in COUNT);

p:ocedure SET..PAGELELGTI (FILE in FILE TYPE;
TO in COONT);

procedure SET"PAGE LEZNOT (TO : in COUNT);

function LINE LUG (FILE : in FILZTYPE)

return COUNT;
function LZIE•LING? return COONT;

function PAGE LENG?! (FILE : in FILE TYPE)
return COUNT;

function PAGM-LUG?! return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW LINE (FILE : in FILETYPE;
SFACING in P3SZTIVE COUNT : 1);

procedure NZWLINE (SPACING in POSTIVECOUNT :- 1);

procedure SKIPT LIE (FILE : in FILE TYPE;
SPACING in POSI2TVECOUNT - 1);

prr.cedure SKIP LINZ (SPACING in POSITIV COUNT :- 1);

fur.ction END Or LINE (FILE in rILE T"PE) return DOOLEAN;
function END OF/ LIE return SOOLEAI;

procedure NE••PAU (FILE in FILE TYPE);
procedure xmm.E;

procedure SKIP PAGE (FILE In FILZTYPE);
procedure SKI••PAGE;

function END Or PAGE (FILE in FILE TYlE) return DOOLEAN;

function END OFPAGE return BOOLEAN;

function END Or TILE (FILE in rILE TYPE) return UDOOLEAN;
function ED= OFFILE return wOOLEsA;

225

DACS-80x86 User's Guide
Implememation-Dependenm Charncscuics

procedure SET COL (FILE in FrIE TYPE;
TO in POSITIVE COURT);

procedure SET COL (TO : in POSITIVE COONr);

procedure SETLINE (FILE : In FILE TYPE;
TO in POSITIME-COUN?);

procedure E-TLINE (TO In POSITIVE COONT);

function COL (FILE in FILE TYPE)
return POSITIVE COUNT;

function COL return POSITIVE COON?;

function LINE (F=LE in FILE T•PE)
return POSITIVE COOT;

function LINE return POSITIVEr CONT;

function PAE (FILZE In FILE TYPE)
return POSITIVE COON?;

function PAGE return POSITIVECONT;

prague PAGE;
-- Character Input-Output

procedure GET (FILE In FILETYPE; ITEM out CAUACTER);
procedure GET (ITEM out CZARACTER);
p.ocedure PUT (FILE In FILE TYIE; ITEM in CWUMACTER);
procedure POT (ITEM In CHARACTER);

-- String Input-Output

procedure GET (FILE in rILETTPE; ITEM out CHARACTZR);
procedure GET (ITEM out CZARACTER);
procedure POT (FILE in FILoTYPrE; IT=M in CHARACTER);
procedure PUT (ITEM In CNARACTER);

procedure GET LINE (FILE In FILE TYPE;
ITEM out STRING;
LAST out NATURAL);

procedure GCET•.nE (ITEM out STRING;
ILST: out NAUT•KA);

procedure PU? LINE (FILE In FILE TYPE;
ITEM In STRING);

procedure PUT LINE (ITEM In STRING);

prague PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERI O is

DEFAULT- 31?: FIELD -MI WZ3'0?;
DEFAULTBASE N:UMR-ASE :- 10;

procedure GET (FILE in FILE TYPE;
IT : out NONC
v1im in FIED :-0);

procedure GET (MTEN out NON;
3 : in FIELD : 0);

procedure PUT (FILE in FILE TYPE;
ITEM in NON;
w30?! in FIELD :- 0OUALTWIr/D ;
BASE In WmU ERAS :- D--AOLEASE);

procedure PUT (rI in NUM;
310i? in FIELD :- OWMEADT 3W1D;

UASE In NUM•EnAS :- DEAv•%.? EASE);

procedure GET (FRO in STRING;
Im out NON;

226

DACS48Ox86 User's Guide
Implememahion-Depwidem Chancteristics

UAST out POSITIVE).

prz:-eftre POT (TO out STRING;
1234H In NON;
flASM In I m ER-ASE -. DEFULT ESE);

end 1523033 10.;

prag" PAGE;

-- Generic Packages fat Input-Output of Real Types

generic
type NON Is digits 4C>;

packq." FLOAT-10 Is

DEFMO.T IOM FIELD a2;
DEFAULT AlT FIEL sm.ON DIGITS - 1;
DEFAULT-32W FIE=D 2 ;

procedure GET (FILE In FILE 2213E;
ITEM out WON.
vimT in FIELD 0);

procedure GET (ITEM out VWOW
1110" In FIELD 0);

procedure PUT (FILE In FILE -TYPE;
ITEM in lIO;
FrE In FIELD DEFAULT FORE;
AFT in FIELD -DEFAULT Ar;
32W in FIELD -DUAULTE2P);

procedure PUT (ITEM In NON;
FMR In FIELD -DEFAULT FOR;
Al"? in FIELD -DEFAOLT-MV;
32W In FIELD aDEFAULT ES?);

procedure GET (FRN In STRING;
ITEM out mON;
LAST out POSITI1E);

procedure PUT (TO out STRING6;
ITEM In MON;
AnT in FIELD V DEAULT AFT;
32W in FIELW: DEFAULT 3W);

end FLOK!T 10;

pragme PAGE;

generic
type NM is delta <:I,

package rmmq10 Iis

DEFAULT FOM FIZLD NONI FrU;
DEFAULTm An FLD mm m7W A;
DEFAULTZX 32 XFELD a0;

procedure GET (FIL in FILETYPE;
1231 out mm;
51023 In FIELD 0);

procedure GET (1=3 out WON;
51023 In FIZZD a0);

procedure POT (FI= in FILE TYPE;
ITEM In MON;
FMR in FIELD DEFAULT FORE;
AnT In FIELDW DEFAULT _An;
32WP In FIEL :- DEAmLT 32W)

procedure PUT (MEN In NW:;
FOE ;In FIELD aDEFAULT FORE;
AnT In FIEL : DEFAULT An;

227

DACS-80x6 User's Guide
iMplemnemation-Deperidcn Cmanceuistics

E2P In rZl= :- DFAflLTEXP);

procedure GET MACH in STVING;
rM out MUM.

LAST out POSZTrVE);

procedure PUT (TO out STRING;
ITEM in NWK;
AIT In FILEW : DUALT AFT;*
WX In FIELD :DUAULTWM);

end FZ2U TO;

Pragua PAWE;
-- Generic Package for Input-output of Enumeration Types

generic
type ZXUK is ()

package WNlCATIOl!_0 is

DEFAULT ' DITZ FIELD :0
DEFAuLT' SETTING TYPE SC? O PPER CASE;

procedure GZ? (TILE in FILE?_YPE; MMD out EDN);
procedure GE? (ITEM out DONU);

procedure PUT (rILE MZE TOZ;
IT'D In ENWE;
WDT Iin MILD - DEAULT HID?!;
SECT in TYPEýSECT :DEFAULT SETTInG)

procedure PUT (lTZM In ZUMU;
HIZITS In FIELD -DEFAULT IMD?;
SET in TYPE SET -DEFAULT SETTWING:

procedure GE? (FROM In STRINIG;
ITZM out CON;
W=S out POSITIVE)

procedure PUT (TO out STRING;
ITEM in EWNW;
SET In TYPE;SET :-DEFAULTSETTING);

end DIUUMRATZOU 10;

pragma PAGE;

-- Exceptions

STATUS ERROR exception renames1 IOXCZPTI0MS.STAXUSCR;
mNzOEbitO exception renames OZd7CzTows .3wDE E~RROR
XNl§;_RROR exception renamesX I XCERETIOS .NMS ERROR;
USE ERROR exception renames0 EXdKCEPTOMS. USE ERROR;
DEVCEE= RRO exception renames IOEXCZPTIONS.DEVCEEZRROR;
END ERRR exception renames IOjXCEPTXOKS .DD ERROCR;
ORAARROR exception renames 10 2CCEPTIUS .DATAE RROR;
I.&YOUEROTR exception renames ldOXCEPTIOVS. LKY65OTERMOR;

praglMa page;
private

type FILEýTTPE Is
record

IrT :INTEZ : -1;
end record;

end TWJO_1;

228

DACS-80x6 User's Guide

Implemenmaion-Dependent Characteistics

F.S.2 Package IOEXCEPTIONS

Tie speciftcion of the package 10-EXCEPIMONS:

pack-ge ZO...ZXIPTI(IS is

ST&YTS.ZRJA : exception;
CO ZmaORt "xcaption;

Khaai;zmRo "xCaption;
OSU CumA exception;
OzvTCzýza exception;
zoo adiM :exception;
mO mftA : exception;

LAYOUT 13Ut : exception;

end ZO imCZFC1MS;

F83 Package BASIC-1O

The specification of package BASICIO:

with ZOXCEPAXS.

package SISC-1O Is

typo count is range 0 .. integer'last;

subtype poaitivecount is count range 1 count' lst;

function get_Lnteger return string;

-- Skips any leading blanks, line tezmLnators or page
terminator*. Then reads a plus Or A minus sign If

-- present, then reads according to the Syntax of an
-- integer literal, which may be based. Stores in Item
-- a string containing an optional sign and an Integer
-- literal.

-- The exception DATA DOR is raised If the sequence
-- of characters does not correspond to the syntax
00 described above.

-- The exception DIS DZMOR is raised if the file terminator
-- is read. This neans that the starting sequence of an
-- Integer has not been met.

-- Kote that the character terminating the operation muast
-- be available for the next get operation.

function getrea1 return string;

-- Corresponds to get integer except that It reads according
to the syntax of a real literal, which mwy be based.

function get enmeration return string;

-- Corresponds to got Integer except that It reads according
0to the syntax of an Identifier. whore upper and lower
-- case letters ame equivalent to a character literal

-- including the apostrophes.

229

DACS-8Ox86 User's Guide
lmgnp 2kad -Depmdend C cartisics

function getItes (length i In integer) return string;

- tead. a string from the current line and Stores It In
-- iten. if the remaining nvmer of ctaracters on the

current line is less than length then only these
-- characters are returned. The line terminator is not
-- skipped.

procedure put .ten (item : in string);

-- I the length of the string is greater than the Current
Smaximu line (1neloength), the exception L&LCUT_O@TE

-- is raised.

-- I the string does not fit on the current line a line
-- teminator is output, then the Item is output.

-- Line and page lengths - AM 14.3.3.

procedure setline length (to In count);

procedure set~paqe lenqth (to In count);

function line length return count;

function pagelengqth return count;

o- Operations on colums, lines end pages - AJM 14.3.4.

procedure now•line;

proceduro skplpino;

function end of line return boolea;

procedure noewpege;

procedure skip-page;

function end ofpae return boolean;

function end of•file return boolean;

procedure setc€ol (to in positive-caunt);

procedure set lno (to In positivecount);

function col return posLtiveocount;

function line return positive count;

function page return positive count;

-Character and string procedures.
-- Corresponds to the procedures defined In AIM 14.3.6.

procedure getcharacter (item out character);

procedure getstring item: out string);

procedure getýlin (item out string;
last out natural);

procedure putchacacter (to : in character);

procedure put8tring (item : in string);

230

DACS-80x86 User's Guide
ImniemzwaionDependent Characteristics

procedure putILne (item in string);

-- exceptionsa:

us& Zan= exceptio "e name z!O3XCZVlOU3.S OsZ3ROP
0940ý-U : except ion renames IOECXWZCUS. D3zClý-jmR;

ZED spit except ion renames zO3C1?!OPS UIOZ33-~j03
vmkvw *=o3 xcptiton renaimes, ZXhZC!Z0US .OAZR330
l,&YV?3T_30FR :except ion rensmes Z0KInWICWS-hWZF

end DASZC ZO:

F.8.4 Package TERMINAL-DRIVER

The specification of package TERMINAL-.DRIVER:

package T ~lWI=iR~rVZA is

procedure put-character (ch In character);

procedure get-character (ch out character);

private

praqus. interface (AIHSS put character);
pragma interface spelling (put character. DlZPmput-character-);

pragma interface (A"6I. get character);
pragma intorfaceapellinq get character. 01ZgT?qet-charecter*);

end TEzanUL.OR~zmf;

F.&5 Packages SEQUENTIAL-10 and DIRECT-10

Tie specifications of SEQUENTIAL-10 and DIRECT-O are specified in the ARM:C

Since riles, are not supported the subprogramzs in these units reaise USE-.ERROR or
STATUSERROR.

231

DACS-8006 User's Guide
i am i Dqpmxnm Oaceuisuics

F.SA6 Pakauge LOW-LEVEL-1O

The secificanon of LOW-LEVEL-1O (16 bits) is:

With Syste:

package LCM.LZVZL_10 is

subtype port address is System. Onsigned"ord.

type 11 i1 1 is new integer ran"e -124..127
type 11iO_@14 is new integer;

procedure send control(device in port_ addr-es;
data :In Systemnmyte);

-- unsigned a bit entity

procedure sendcontrtol (device in port address;
data : in Systn. Onsignedabrd);

-- unsigned 1i bit entity

procedure s0endcontrol(device in port address;
data in lii.l);

-- signed I bit entity

procedure send controlidevice :in port address;
data in 1iol 16);

*- signed 14 bit entity

procedure receive.control(device in port address;
data out System.syte);

-- unsigned 8 bit entity

procedure receivecontrol (device In port"_address;
data : out System.Onsignecgord);

-- unsigned 16 bit entity

procedure receive control (device in portadiress;
data : out 1 1o08);

-- signed I bit entity

procedure receivecontrolc(device in port address;
data : out 111o 16);

-- signed 16 bit entity

private

pragme inline (sed control, receiveocontrol);

end LWILZVL 10;

The specification of LOW LZVElrI0 (32 bits) is:

with SYSTD(;

package LOWJ.ZZVILIO is

subtype portaddress is System. UnsigmedNord;

type Ii 1o a is new short integer range -18..127;
type 11-io-16 is new sbortinteger;
type iio•32 is new integor;

procedure smndoontrol(device : in portaddress;
data : In Systm.Syteo;

-- unsigned a bit entity

procedure sendocontrol(device : In poetaddress;
data : In Systemn. signedord)J;

232

DACS-80x86 User's Guide
Im m on-Depende Characteristics

-- unsigned Is bit entity

procedure sead€centro l(devico in portaddross;
data In Systen.unsignedDoord);

-- "Si9gned 32 bit entity

procedure send control(device In port_address;
data in 11_Lo.));

-- signed I bit entity

procedure send control (device in portaddresas;
data in 111.16);

-- signed 1i bit entity

procedure sendcontrol (device in port address;
data in 11_Io_32);

- signed 32 bit entity

procedure recaive control(device: In port address;
data out Systembyte);

-- unsigned I bit entity

procedure receive control(device in portaddross;
data out System.Onsiqnesord);

-- unsigned 16 bit entity

procedure receivecontrol(device in portaddress;
data out Systm.UnsignedDord);

-- usigned 32 bit entity

procedure receivecontrol (device in port addres8;

-- signed i1 bit entity

procedure receivecontrol (device In portaddress;
dat:a :out: l1•olio;

-- signed 16 bit: entilty

procedur.e receivec€ontrol (device i •n portaddress;
data : out 11_1o32) ;

-- signed 32 bit entity

private

praqsa inlino(send-control. receve*control);

and LOW JL-E• .O

F3 Machine Code Insertions

The reader should be familiar with the code generation strategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the APM [DoD 831 it is possible to write procedures containing
only code statements using the predefined package MACHI3NCODE. The package
MACHINE-CODE defines the type MACHINENSTRUC1ION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE-INSTRUCTION
and types on which it depends, give the resuictions, and show an example of how to use the
package MACHINE-CODE.

233

DACS-80x86 User's Guide
Implementsion-Dependent Charactreistics

F.9.1 Predefimed Types for Machim Code Insertions

The following types ame defined for use when making machine code insertions (their type
declarations am given on the following pages):

type opcode-type
type openand-type
type regiszer-.type
type segment-gtsiser
type mactiine~instructon

The type REGISTER5-YPE defines registers. The registers STI describe registers on the floating
stack. (ST is the top of the floating stack).

The type MACHINE-JNSTRUCFION is a discriminant record type with which every kind of
instruction cun be described. Symbolic names may be used in the fourm

name 'ADDRESS

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386/80486 addresses In case of other
targets the scale factor should be set to "scale-.l".
type opcode-type is I

-- 2046 Instruzctionsa:
aAAA, 1mAND, _AAMN. aA&S, vkADC, aADD. a-AND, a-CALL,

vflnCvw. 1aCic. umCLa. RaCLX, mO-cC, mOý_w. w-mOS. M-C"D. muk
mOM.AS JRpC. 01pwv mEL?, _Z1DIV, a DML am19. a1iSC. LM)
mllITO. mi31?. 53,33. 5 a 33a2Aimzoj. aJ, MLJCKZ, JMrX
sk36, m363ja. m7A. aciLS. a.41M. a 333. .333.- %=.331
M.333. .336. .3363. aJL.J11 M3LE." a 330. .331, "rS, mA.
ML3O. 333.I E3JP1. 331..J Ok35. 10l.z a 316, a-LAn. NMu
leLES, akLES. a LOCK OLLOOS, akLoor, a WM-S

aLOOPIIE.M zmLOOPUZ.
aj.LOOFZ. m3NOV. a MOVS. milk. .3. aUM gO?. 330?I mOP,* IL=
3)01PO. m10FF. mUrsE. a_1083?. a RCL. a XCR, a30L. maRO,
.3.31, I mUDS. .3313. xiý_=T .35W. .35Th, sk35T31O
a -SAL. aSAR OLS1L.aE. miI a-S32. .5SCMs . STC. uMSTD. mM.

-- 6097/90187/80287 Floating Point Processor Instructions:

EflAWS uFrADO mmwPa . aLFADP. skFaLD. ELF1sTP. a ICES
amjUCLzX ajcom, ejrco16. strco. skrcaws). mFCOWmp. aVrDSCS?1
sm-mV. aIV. .101W. a10I~IR. N .102330. a7231 rDM jr ,ALFlI
ajIADD, mIZADOC. aýFlcIl, LICM -rcc OLPICOP. stnaewo, m-IDly.
uFIrDmO mFOIR r SFIOarxzm, 1aJzwD aFIrum, aFLOLo., afL)UL.
M.3230W, lmý_PlCS, IN 3133?L, aUrIS?. .FUSTD,auFISTi. a rZS~TD.
aFIPsL. a 2503, arz~sao. skFisnit. a FZSUson amW :nw.D,

LrU=c. a~rW=V. 1kJyL4L2, UijLDL32. *FwL2z. smFLDL2?. anx
aILDI. ORawl. aflWL 3136W mi_ Uw o3Ln . mafnlO. SIPATAK.
.1336.1 a31?3MA. aUZnmT. sk-FaTOR, aSA~sVEc. MuJsc3x.S 315213.

aLPTM 15253.M" 335Ul .5 . O 1530, aIOUP, mISODI a- rig550.
.150331 NJ=5? MIWIM. sk-xAN. mFXC. aXMIFAC?. EILZI.l

50lavS/02u:/2038 Instructions:

Ifttleethat a s Imdiate Versions of the $046
-- instructions only "exit on thene targets
-- shifts~rotates~push~umul,...)

33000. auCLS. a In a 3135 LS. OLM ýLzAYz. s-aD.L2
=aLZM. ELSL. .0025, 8:OPk. akPosah uS. f .s-.3820.

234

DACS48OxS6 User's Guide
Impemnnaaio-Depwendn Charmceriszics

If 1 bit always...

-the 30356 specific instructions:

aSETA, anm=-z. em-m. a-STz mz. =C asu. S=m
aflU mVP, aSEA , MISKT.I a SZLZ, aSZTiIA. aUSETNAE.
u:SETU * aSEIMU. aUSMTC. amSM9U. aSETUG,
mR.SE!IU. aESETL. austULE a SEMO. a-SzmIW aýSEUs.
mIZMS. a SCAO .3? mrm* ES??. eSV . aurnS.

SZZ1 grow, aUS3.3 aml. M5?C, aU-h
m-STS. a LFS, a LGS, miLSS. aICYZI e-14VSX.
!.ýcvca a-mOVs, am;-oTU. a~SnlD a-SEW.

-- the $0367 specific instructions:

a -ruce". RJOea.. a.jOCOMi. am-TPNi, mrSz. ajcs
mjm-Pocs.

-- byte/u Ord/dvord variants (to be used. when
-- not deductible from context):

aAoc. a50DCU. RA=oco 13*006. mRADAM, aS-Ac
v.mASN. 35DM a AM, CM "5T". aUTO, EUSTCN.
"alCO, mU-TiuW, aRSTRDO * 5SU, aDISOS, a-Cam,
a-CIUOE aiCSOW aQ.=0 .05W, MLaW, sOSO.D
cskOSZ. a OSK. a OSD, a DiCB. a-0ECM, a-ozCo,

"rZig, a0?VU. m30V0. uZOIVI, aIIOV". aZOZ0m.
afl4OLS, wmZmy?, aflQLD, afliCB, a INM azun=.
.1353. aflhSM, a-ZUSIO a-L=S3 .,aw mLOOSU. ILOO
aNOu . aNYW UMOVO, aýmm NOV5W3, 3NOV53. a NMOV5,
RMOVS53. a NDVSX 0 mNOVZ, a-MOVZXW, a-NULS. uNOLW,
IRlW, MZ. .3363. MaSEGD I allOTS, .3NTN.
muOT, aOU. a 03,Z a 030. OOTS2. MUOTSWK.
aCUTaC. .-PoU, Asoso.D MuPaon, EL.usmo. MaRCLB.
aLRCiW. a R=, as PA= aRCRM. a SCMD, aEUOLD.
vjOiW, .50W.LD .5033. .303. .5030, a S&iLB
amSALW, UýSALD, a.SSAD. M5533, .8*30. aiSALS.
ikUSLM. OR SWJIO a 533, a SIRS. a-Sm O3DM SMSS
a-S35l a 5350. .50555,I u-Sd53, u-Sd50, MRSTOWS
a-STOSM. OrSTOSO. a-SunS, 0S03m, aS=DA. a TESTS.
auTEST, 1aTESTO 33033. RXOIW, XOLRA, U aXAS.
aDATAMP a_0ATAD,

-- Special 'instructions,: a ae. A reset.

848106 temp real load/store -and~po: ajL0rT. aFrSTVT2;

pragee page;
tYPe operand .type Is (none. -- no operands

Immdiate. -- one imediate operand
register, - one register operand
address, one address operand
system address. m oe ' Address operand

name. -CALL amm
register imediate, -two Operands

-- destination Is
-- register

reqlsmý reister source Is immediate
regitereqiser.-- wo register operands

reqister a&ddress. - two operands
-- destination Is
-- register
-source is address

address register. - two operands

235

DACS4OxS6 User's Guide
Implemanion-Dewiesd Cbuaruleisuics

-- destination is
-- address
-- source is register

rogister~system-addreass,- two operands
-- destination in
-- register
-- source is 'address

system-addreSS-register. - two operands:
-- destination Is
-- address
-- source 1s register

--At*e SImmediatc.- two operands:
-- destination Is
-address

-- source is Lmedlate
systenaddzassimmediate. - two operands

-destination is
I- address

-source is Immediate
iedilatereq~ister. - only allo We for OUT

-- port Is immdiate
-- source is register

ioediatelImed.ate. -- only allowed for
In fr

reqister regists-er inedAte. alloed for DIMLI.

register address imeditate, -- allowe@ for ?ULIms
registir system addrssiLmediate. -- Alowe for DWLisin
address register-LMOdiace, -- allowed for SMLMi.

-- sEuDiOW
system-addrossreqi~ster-imediate 41101owe for SIPDI.

type register-type Ls (Ax. CX. OX. UI 8P, W1. S1. L.-1- word togs
AL. CL. 01., 31, An. CU. on 3. on, byte Cegs
MAX. ECU, DX. 131,E8.331,Esz, 3D!-- deord Cegs
as. CS, 88. as, 18, as. - selectors

sal..s. 3x-1p BP 8?. B1P Z - 8086/80186/60286 combaatiove
ST. 82I1. 822. 323., - floating registers (stack)
814. 525. Sri. 817.
nil);

-- the extended reisters MEAX .. =D?) plus IS and =8 are only
-- allowed In 60366 targets

type scale-type is (scalei.l scale~2. scale 4. 2"a041;

subtype machine-strinq Is string(l. .100);

praga page.
type asehineisnstruction (opersndkkInd :operand type) Is

record
* opcode :opcode type;

case operand kind is
when ismadlate -ý,

ismdiatal : nteger; -- immediate

when register -)I
rregialter :reqisterýtype: -- source sadvor destination

when address -),
asegeet : cogstexrtyrpe, - seurce and/or destination

a address bag* zegIster-type;
aaddreSSinadex registr type;
iaad messscalo scalektypei
a~addreassoffset Integer;

when system address a)
saaddress : ysten.address. - destination

236

DACS-WUx~o User's Guide
imalememmtioub.Dependenl Cmauicteristics

a~strinq m achine-strinq; - C&LL diestination

when regIster iLmedate, -)I
Xriregister-to register type; d- estination~
r-IIinediAte integer; source

when regIster register -:i
;_;registor-to :register type; -- destination

reg-Csister- Zn" regtater type; -- source

when register sderes -ý
Vraregister-to register type; - estil~ation
ra_&segeent register type; - source
nýsa addrss base register type;

-a-address-inu4x 16*gister type;
"raadoresasscale scale-tyie;
raýaddress-ofsat : iteger.

when address register -

sar~segeent register type; -- destination
arzýaddreasabase register type.
ajn addreassindex :register type;
a-, ,address -scale scale -type;
arFaddreas offset, integer;

ajreis~rf rm :reglster type; - source

when register sYat.. ~address -2-
r a. register-to register týVo; -- destination
:tea address sys-.am&ddresa; -- source

when sysaten address register -z
s-r-address systam.addresa; - destination
sarr-eg fro COegCister type; -- source

when address Lomediate -:P
a-i-seient :reogister type; - destination
a-iadidreassbase register -type.
aIaddess index register type;
aiLaddreas scale, :Scala type;
a~iaddresAof fast Integer;
aiimmediate Integer; -- Source

when systum address -imemdiate, -2
:ai1adaresS : system. address; -- destination
sA-iisediat. : integer;.- source

when iinediate register ->
ir2ýLemdiato Integer; -destination

it register register type; -- source

when ieodiatse mediate ->
liitfmediatel Integer; *- iediatoi
iiLiinedIate2 integer; - immdate2

When register register Imediat. -
rriregisterl register-type; -destination

vrrI-regIstet2 r~gistor -type;. - sourrel
rr-ILsmedate : iteger; -- sourced

when register a4ddressLvmediateG -2-
Cr &-iregIster registeir type; destination

raiegest : register type; -- sourcel
ra&i-address base : register type;

r-a-ieddressijdex register -type;
:aiadress cale scale-type;

r -a Iaddress Off set: integer.
r-Ai:Imediate : integer; - sorce2

when register -syatmom ddress i0Medate ->
rýSaireg"ister :register-type; - destination
adri10 systm.address; - sourcel

r- *a-iiinediate :Integer; -- source2

237

DACS-80x86 User's Guide
tmplem unaon-Dependent Chanacteristcs

when addsa8 reagi ste :_Iumediate ->
4_r i eent regiater type; -- destination
aU rAddressaese :09egte.: type;
Si1_addreAs_Indax reqIste:typ.;
a -:L-address scale seal*etype;
a r-i addess- offset: Intege:;
a-ri:eq.Isto: reiste: otype; -- sourcel
S:. medlate : .inteqer; -- source2

when system addess :eiqSta*: -maedIate ->
sa-riaddress : systemi.address; -- destination
sar r Leqste: reister type: -- sourcel
Sa :::i=medat integer; -- Source2

when others ->

null;
end case;

end record;

end inachineCode;

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal paramcter. or
by static renaming.

2) x is an array with static constraints declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The reCALL can be used with "name" to call (for) a routine.

Two opcodes to hartde labels have been defined:

m_label: defines a label. The label number must be in the range I <= x <= 999 and is put
in the offset field in the first operand of the MACHINE_INSTRUCTION.

m-naet: used to enable use of more than 999 labels. The label number after a mRESET
must be in the range I<= x <= 999. To avoid errors you must make sumre that all
used labels have been defined before a reset, since the reset operation clears all used
labels.

All floating instructions have at most one operand which can be any of the following:

"• a memory address
"* a register or an immediate value
"* an enty in the floatng stack

238

DACS-80x#6 User's Guide
Implemenzazion-Depetident Characteristics

F-93 Examples

7he following section contains examples of how to use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code insertions as shown.

NOV cz, 4
CM Ax. Cx

.3! 2
NOW CxAx

1: AM Ax. CZ
2. NOV SS: 1514.DZ. AX

packcageexampe Me Is

procedure test -labels;
pragma Inline (test-labels);

end example NC;

with NwaCn lCODE; use M&CzflXZ CODE;

packaqe body example-MC is

procedure test~lakels is

beqin

4hCUZUZZUrST3OCT.10N' (reqlater;_Lnedlate. aNOY. AX, 7);
H=3CI%_K4SThUCTOW' (reqlaterImesdIate. aNOV, CZ, 4);

Sft% lnZUSThOCC?01 (registei;rreglate: z**O. AX, CX);
MCIG~UflNS7XUC.ZOV' (Imwadlate. sk3G. l);
M&C!DZIISTRUCTbON' (Imediate, a.3.J 2);
MACNfIEIU-rSTRUCTZOV' (reqlatecrreqlster. WaOv. Cz. AM);
MhCNII% ZUSTRvCTICOW (Immediate. a-label, 1);
MACNfIM ZNSTIWCTZOOI' (register-register. x-AD, AX. CX);
NhCNINE INSThOCTION' laomdiate. a label. 2);
I4ACRIN~flS=hUCTZOW' (address regIs2ter. aNOY. SS. ai,

01, acale-l. 0. Ax);

end test-lebels;

end ex&le C;

F.9.S Advanced Topics

This section describes some of the mome intricate details of the workings of the machine
code insertion facility. Special attiention is paid to the way the Ada objects ame referenced in
the machine code body. and various alterniatives ame shown.

239

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9..1 Address Specifications

Package MACHINE_CODE provides two alternative ways of specifying an address for an
instruction. The first way is referred to as SYSTEMADDRESS and the parameter associated
this one must be specified via OBJECT'ADDRESS in the actual MACHINECODE insertion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NIL for segment, base, and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale)l. scale_2. scale..4, or scale_8. For
16 bit targets, scale)l is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.5.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEMADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified;
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEM-ADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user's responsibility since the
user obviously atempts to address using register values obtained via other machine insertions. It
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA, which will only give the offset. If coding requires access to addresses like this. one
cannot INLINE expand the machine insertions. Cam should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will,
however, be calculated at the entry to the INLINE expanded mutine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to. in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for comect parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions ame summarized below.

240

DACS-80x86 User's Guide
Implemematzion-Dependent Characteristics

F-9.5.3 Parameter Transfer

It may be a problem to figure out the correct number of words which the parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least I storage uniL 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets, 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs are transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the record parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition
of an VNTEGER bit offset as the highest word(s):

+H: BIT_OFFSET
+L: DATA_ADDRESS
+0: CONSTRAINTADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint addres and the sizes of
constraint and data addresses.

In the two later cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.A..4 Example

A small example is shown below (16 bit target):

procedur unsigned-add

(opI : in integer;,
op2 : in integer.
rea out integer);

241

DACS.8Ox86 User's Guide
Impcmaazon-Dependent Characteuistics

Notice that machine subprograms cannot be functiom.

The pmameters take up:

opl integer : I word
op2 : integer : I word
res :imeger : !word

Total : 3 words

The body of the procedure might then be the following assuming that the procedure is
defined at outermost package level:

procedure u=Ilned-.M
(apI in integer:
Op2 in integer;
Ces out Integer) is

begin
pragmu abstracteacode insortions (true);
aseinstr' (aacreate.alOck.3,.,0.0,0). -- x a 3, y , 1
aa-instr' (aa End of declpart. 0.0 0.0, 0);

pragma abstract acoed._InsoztIons (failae);

machineInsatruction' (reqlsterjesysatnýaddress. a 1OV,
AX. apo'address);

aachineinsetruction' (ir"ister systoo caddress, U AmD,
X. oap2'addess) ;

machine Instruction' (mdiaItle aJNC, 1);
machLine.Lnstruct.on' (nieciate, CIUT, 5) ;
aschine Instruction' (umeALote, a-label, 1);
mlachine instruction' (s•stsaLaddreasr"est•er, ...MOV,

res address. AX);

Prag"as~caoenezin eo)aaiJnstr. (aa g.Lg subpr~gz. 0, 0, 0, nii axg, nil etg); -- (2)

aesItst:' (&a&Setblock level,0.0,0,,0); -- y-1 - 0
prag"a abstract.acod ,ins-ertions (~alse);

end as L~gnedSadd;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machinenstrucion' statements a•e required. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record

low : integer.
high : integer~

end record;

procedure add-,32 is
(opi : in integer.
OP2 : in kmeWe,
res : out tee);

The parameters ake up I + I + 2 words a 4 words. The RES parameter will be
addressed directly when INLINE expanded. i.e. it is possible to write:

242

DACS-80x6 User's Guide
Implementation-Dependent Characterstcs

mlchinejinsmcdon&(syszem.addressegiszr. m-MOV.
es'address, AX);

This would, in the not INLINED version, be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must read:

machineinsuuction'(resister-system-addmss, m-LES.,
SI, res'address):

- LES S1,BP+...I
machine-instmction'(addressegister, mMOV,

ES. SI, nil, scalecl. 0, AX);
- MOV ES:[SI+,O]AX

As may be seen, great care must be taken to ensure correct machine code insertions. A help
could be to first write the routine in Ada. then disassemble to see the involved addressings, and
finally write the machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the -nocheck option is applied to the compilation. Also not
INLINED procedures using the AAINSTR insertion, which is explained above, will automatically
get a storage-check call (as do all Ada subprograms). On top of that. 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The soragecheck call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to crea any blocks at all. but then he should be certain that
the rentum from the routine is made in the proper way (use the RETP instruction (return and pop)
or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAME") a full virtual address (offset and selector) of the
symbol MYNAME (no additional offset is possible).

(name. mDATAW, "MYNAME") the offset pan of the symbol MYNAME (no additional
offset is possible).

(name, mDATAB, "MYNAME") the selector value of symbol MYNAME

In inlned machine instructions it may be a problem to obtain the address of a parameter (rate
than the value). The LEA instruction may be used to get the offset par, but now the following
form allows a way to load a selector value as wil:

(systemaddress, LES, param'address) ES is loaded with the sdec of PARAM. If this
selector was e.g. SS, it would be pushed md popped
into ES. LES may be subiutted for LFS and LOS
for 80386.

243

DACS-80x86 User's Guide
lmplemnentataon-Dependent Characteristics

F.1O Packag Takypes

Th TukTypes packages defines the TaskControlB lock type. This data suumcue could be useful
in debugging a askmg ptogrm. The folowing package Tasktypes is for all DACS-80x86 except
for DACS-80386PM/DACS-80486PM.

with System;

package T&asTypeS is

subtype Otfset is System.uaAigned;ard;
subtype Blockid is Syste.0asiquelord

type TakZAtry is new System.OnasIueord;
type antryladex is new System.Onaigue~r~rd;
type Alte.rnatved is new System.Onalgnecord;
type Ticks is new System.Ovod
type Iool Is new Doolean:
for Dooel &Lze use S;
type Mnatq is new System.Onsignedlord;

type TaskState is (natial.,
-- The task is Created, but activation
-- ha not started yet.

Engaged.
-- The task haa called an entry, and the
-- call is now accepted, Ie. the rendezvous
-- Is In progress.

Running,
-- Covers all other states.

Delayed.
-- The task awaits a tLmeout to expire.

EntrycallLingTiL d,

-- The task has called an entry which
-I not yet accepted.

Eatr yCallingOncondit ional.
-The task hba Called an entry unconditionally,

-- Which Is not yet accepted.

SelectingTimed.
-- The task is waiting in a select statement
-- with an open delay alternative.

SelectiLngncondLtional,
-- The task waits in a select statement
-- entirely with accept statements.

SelectingT•minLable,
-- The task waits In a select statement
-- with an open terminate alternative.

Accepting,
-- The task Waits In an accept statement.

Synchresai"in
- The task waits in an accept statent
- with no statement list.

Coempleted,
-- The task has Completed the emecutioe of
- its statement list., but not all dependent

-- tasks ame terminated.

Teminated);
o, The task and all its descedaents
-- are terminated.

244

DACS-80x86 User's Guide
Izn~emm~i.IDependem cwmncwrisics

for ?eashtate us* (initial -)1 16000#
&"saed 160060
Running 160100
Delayed 160180
ZatzyCaIlIing9i..ed a> 16#20#
ZntryCallingunconditional -16#230

Seiectingftied -> 160310
SelectLi9gfnconditioftAl -> 16039#
SelectingTeminehle* 160410
Accepting -2 1600.0
synchronising -2 1605330
Competed -30 16#5C#
Terminated -% 160640);

for Taskstate size use 4;

typ. ?askTypeaoscxiPtor is
record

priority Systm.Priority;
entry-count Clato;
block i slockUd:
firstpwnAddress Syste.Address;
mofnd umbner Olatg;

entr i~mer ufto;
code _address Systax.Address;
stackaisez Systeu.Dword;
dummy Integer;
s?.ack sequent Si.o: oxnto;

end record.

type &ccfaskType~escriptor is access TaskTypecoscriptor;

type UllSaveAree is array (1. .48) of System. Onaigeedohod;

type rIaqafype Is
record

SEvlag zood;
atetcwrrutlaq Deal;

end record;
pragna pack(Flags~ype);

type StatesType is
record

state TaskState;
is abnormal awl;
iinactivated NMI.;
failuxe . ool;

and record;
peague pack(Statesfype);

type Acrýtype is
record

bp Offset;
addr Systan.Addreass

end record.
pragm pack (ACF7type);

prev" page
type Taskcomtrel~lock is

record
900 Systaf.Somaphore:
Iafheitor integer;

-Delay queue handling

doext :Systo..Taskalue;
dpeow :Syston.TaskValue
"silay :ticks

-- Saved registers

SS System.unfignelword;

245

DACS-80d6 User's Guide
Implememuadan-Dependent caracterstics

II Offset

-- eedy queue bandl Ing

Best 57cm ?yte askValuo

-Semaphore handling

5omext Systme. ?askalue;

P- riority fields

saved-Prio:ity :Systee.priozity;

-- ISCelleeMeus fields

time slice Sysmcm.unsignedwozg.
f lag~s Flawype;
Meedycount : 573m. word.

-- Stack specification

stack start :Offset;
saeck-end Off set,

-- State filelds

States StatesType;

-- Activatioa handling fields

activator :Systm.Taskfalue;
act-chain :Syatem.TaskValue;
next chain :System.Taskalue;
ft-oit-act Syatm en.1od;
act block S lockld;

-- Acept queue fields

partner 3 yoten.!aakalue;
nexctjaztmar SYStee. Thatolus;

-- atzy queue fields

nentcaller : 3Sytm.?as&kValue;

-- Randesvous filelds

called task Systm.Taskvalue;
ikA~ynch Lnteger;

task entry Tasklntry:
entry ,index g atrynadex;
entry"See Syaten. Address;

callarma SYstin.Aiz~sa;
alt Idaltereativeld;

exopijd Systaft.zXceptionld:

-- epeondeecy fieolds

pazent-task : System.!aakwalue;
pecet block : 2ckId;
chiLdtaak :Systeft.!ask~alue:

asmchild : systmf. !askvaJue;
fInstchild : Systan.Task~alue;
prey child :system. TaxXVaiue
chIl~act : Systmeswerd;
block6act : Systemerdi
terminated task: SystM.TaskValue;

A bortion handling fields

busy :System-1ard:

246

DACS-8Ox86 User's Gurde
Imphlemamion-Dependent Charmctenstcs

-- A••Iliary fields

ttd : AcclaskTyp.oscriptor;

Vtirstc.ller Systsm.TaskValuo;

-- Run-Tine Systen flolds

Acr : Aý_type. -- cf. Cser's guids 9.4.2
Sfitsat Znteger; -- Only used in Nts
Seoritfst Integer; -- Only used In iNS
Talockinggask : Systim.TaskValue; -- only used in Nps
PllockngTask : Systea.TaskValue; -- Only used in Ntd
collection Systen.Addresa;

partition : Integer;

TaskChockLiL:it Offset; t- to aasure inline storage check
Lastaxceptioa : Sysyam.Dod; -- 2 * 16 bit&
SavedAdakddr Off set; -- to l.mov readezvou' a

-- DPX save area

-- then the application Is linked with -Wl, a special
-- s&ve zeo& for the DPX Is allocated at the very end
-- of every TC2.

-- case IGX Present is
-- when Tbt a> IlPsave :PXISaveAza;
-- when ALU -> nBull;
-- end case;

end record;

-- The following is to assure that the TCV has th. expected size:

TCS sizo : Constant ••T•M. :- TaskContrao2lock'site / 8;

subtype TCVokSvalue aisis nTR range 136 .. 134;
TCB-ok : constant TC3 oh value :- TaakContreolfloo' sizo / 8;

end TaskTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run trsking applicadons by means of Rare Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by default. Pleae conuact
DDC-I for more information regarding RMS nd your system. RMS allows the programmer to
guarantee popetes of a tasking system, i.e. that tasks will meet their hard deadlines. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

248

