applications
book

RODNAY ZIAKS $302 (/>

6502
applications
book

AAAAAAAAAA

EEEEEEEEEEEEEEEEEE

Every effort has been made to supply complete and accurate information. How-
ever, Sybex assumes no responsibility for its use; nor any infringements of patents or
other rights of third parties which would result. No license is granted by the equipment
manufacturers under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice.

In particular, technical characteristics and prices are subject to rapid change.
Comparisons and evaluations are presented for their educational value and for guidance
principles. The reader is referred to the manufacturer’s data for exact specifications.

Copyright © 1979 SYBEX Inc. World Rights reserved. No part of this publica-
tion may be stored in a retrieval system, copied, transmitted, or reproduced in any way,
including, but not limited to, photocopy, photography, magnetic or other recording,
without the prior written permission of the publisher.

Library of Congress Card Number: 78-73740
ISBN 0-89588-015-6

Printed in the United States of America
Printing 109876543

ACKNOWLEDGEMENTS

Many persons have contributed to the checkout, development or improvement of
these programs. Special acknowledgements are due by the author to: Pierre Le Beux,
Daniel David, Jaff Lin, Eric Martinot, Tricourt, and to Eric Novikoff (ASM6S
assembler).

The following persons have also contributed valuable comments on the final draft of
the manuscript, and their contribution is gratefully acknowledged: John McClenon,
Doug Trusty, Philip Hooper, Daniel David, Robert Chitsum, and John Smith.

The following companies have provided access to valuable information or resources
at an early date, and their contribution is gratefully acknowledged: Rockwell Interna-
tional, Synertek Systems, Apple.

The listings of Chapter Four, part 1 have been produced on a Rockwell System 65.
The listings of part 2 have been produced with the ASM65 assembler listed in
Appendix A.

Art Credits:
Daniel Lenoury (Cover Design)
Barry Janoff and Renate Woodbury (Technical Art)

THE 6502 SERIES

BOOKS
Vol. I—Programming the 6502 (Ref. C202)
Vol. 2—Programming Exercises for the 6502 (Ref. C203)
Vol. 3—6502 Applications Book (Ref. D302)
Vol. 4—6502 Games Book

SOFTWARE
6502 Assembler in BASIC
Games Cassette for SYM
Application Programs
8080 Simulator for 6502 (KIM and APPLE versions)

EDUCATIONAL SYSTEM

Computeacherm™
Games Board™

PREFACE

This book presents practical application techniques for the 6502
microprocessor. It assumes an elementary knowledge of microproces-
sor programming on the level of the preceding book in this series (Ref-
erence C202: Programming the 6502). Understanding how to program
the microprocessor chip itself (the 6502) is only a prerequisite for the
actual programming of a microprocessor board connected to real
devices. The next problem is to learn how to write actual applica-
tion programs involving the input/output ports and other facilities
available in a real system. This book addresses itself to this problem.
It will present the techniques and programs required for typical appli-
cations, using the actual input-output chips available on a board.

The programs presented in this book will require a minimum of ac-
tual hardware to be effectively implemented. The user is therefore en-
couraged to practice the concepts and techniques presented here on
actual hardware. A realistic description of possible applications boards
will be presented. The programs are applicable to any 6502-based mi-
crocomputer board such as the KIM, the SYM, the AIM 65, or others.
Many programs can be run directly on one or more of these boards
while others will require some changes. However, the concepts and
techniques are common to all.

The application programs presented in this book will allow the reader
to build a complete home alarm system, which includes fire detection and
other features, an electronic piano, a motor speed regulator, an appli-
ance or hobby-train controller, a time-of-day clock, a simulated traf-
fic control system, a morse code generator, an industrial control loop
for temperature control, including analog-to-digital conversion, and
more.

This book is intended to teach all the basic skills required to apply
the 6502 to real life applications. It is preceded in our 6502 series by
““C202 - Programming the 6502, and followed by ‘G402 - 6502
Games.”’

TABLE OF CONTENTS

TABLE OF ILLUSTRATIONSccovviiinnnee.

I.
II.

III.

Iv.

VI.

INTRODUCTIONccvviiinnnnnne.l 11
THE INPUT OUTPUT CHIPS15

Introduction. Basic Definitions. The 6520 PIA. The 6522. Programming
the 6522. The 6530 ROM-RAM 1/0 Timer (RRIOT). The 6532. Summary.

6502 SYSTEMS........ciiivviiiiiennnn....64

Introduction. Standard 6502 System. The KIM-1. The SYM-1. The AIM 65.
Other boards.

BASICTECHNIQUES78

Introduction

SECTION 1: THE TECHNIQUES

Relays. Switches. Speaker. A Morse Generator. Time of Day Clock. A
Home Control Program. A Telephone Dialer.

SECTION 2: COMBINATIONS OF TECHNIQUES

Introduction. Generating a Siren Sound. Sensing an Input Pulse. Pulse
Measurement. A Simple Music Program. KIM Traffic Control. Learn the
Multiplication Table. Summary.

INDUSTRIAL AND HOME APPLICATIONS 145

Introduction. A Traffic Control System. Dot Matrix LED. Displaying
Switch Values. Tone Generation. Music. A Burglar Alarm. DC Motor
Control. Analog to Digital Conversion (A Heat Sensor). Summary.

THE PERIPHERALS216

Introduction. Keyboard. Paper Tape Reader or ASCII Keyboard. Micro-
printer. Summary. :

VII. CONCLUSIONS. ... c.iiiiiiviennnenennes 241
APPENDIX A - A 6502 ASSEMBLER IN BASIC.... 243

Introduction. General Description. Using the Assembler. Syntax.
HP2000F BASIC.

APPENDIX B -MULTIPLICATION GAME:

THEPROGRAMcciiiitiennnanacnnes 259
APPENDIX C - PROGRAM LISTINGS
(Chapterd Partl)cocvvvveeennnnnnes 262

- Program 4-1: Morse

- Program 4-2: Time of Day -
- Program 4-3: Home Control
- Program 4-4: Phone Dialer

APPENDIX D - HEXADECIMAL
CONVERSIONTABILEccovvieennnn 273

APPENDIX E - ASCII CONVERSIONTABIE..... 274

APPENDIX F - 6502 INSTRUCTIONS 275

1-1
2-1

2-27

2-30

2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40

TABLE OF
ILLUSTRATIONS

Standard Programming Form
Typical P1O.....

The 6520 PIA
6520 Internal Architecture

6520 Memory Map
6520 Register Selection
6520 Control Registers
6520 CA2 CONLIOl ...uvvvieniinriniiinriiiiienieneenereenenneaes
6520 CB2 Control
Interrupt Control (CAl, CBI Inputs)
Identifying the PIOccoviiviniiiiiiiiirninicireninceeen
Identifying the Ports..........
6522 Internal Architecture ...
6522 VIAMEMOTY Map ..cvivevniiiiiinceiareinienirnconianianans
6522 REZISLETS cevuvruernrinneneiniarieneernrenseieenaeneeseniennees
Using the 6522: STADDRA ...coviviiiniiiiieiniiniineinineens
Using the 6522: STADDRB
Using the 6522: STAORA
Using the 6522: LDA ORB..............
Peripheral Control Registercccceeeuvininnee
Interrupt Flag Enable Register (IFR/IER)
Control Lines Function (ACR)cecevevennenen
PCR Detailed Operation (courtesy:Rockwell)
Continued: PCR Detailed Operation
Reading Data When Ready
6522-Auxiliary Control Register
Interrupt REGIStErS ... cvvviriniiniiiiniiiiiicinenieinieeanans
6522-Auxiliary Control Register Controls Timer 1 Modes...
6522-Auxiliary Control Register Selects Timer 1

Operating Modescoevvviininiiiiniieninieeeecenees
Timer Addressingocoveveiieneeenininineiiieieiiniinneninn.
Timer 1 in Free Running Mode
Shift Register Control
6522 Register Selection is Direct.......c.oocveveeveneiiienrenieninns
Connecting Multiple 6522’s-Generating an IRQ
6530 Internal Architecture
6530 MemoryMapceeeeeet
6532 Internal Architecture
6532 AdAressingceoeueeeririiininniiiiiiiicrieen e,
Comparison Chart of the Four PIO’s ...c..ocvcviiniininnininns

Organization of a ‘‘Standard’’6520 System
Photo Of KIM-1 ...oiviiiiiiiiiiiiiiin vt cane s

[SN U USSR I PR Y. SV SRR

OO0 AWN—=O

Auuuuwuuv}»uwuwwwuww

o
]

4-15

4-35
4-36

KIM-1 Internal Organizationccceeeuveievuennennnnnen.
KIM-1 Memory Map
KIM Application Connectorccoveveeiireeeennencernennen.
KIM Expansion CONNECtOrcvuuviuinenneeninnsineenneenees
SYMPhOtO ...ccevvenveniiniinninnee :
SYM-1 Internal Organization ...
System Memory Mapcociviininemeereinieniirenenenneecisneenes
RAMMEMOIrYy Map ..covivininiiiniiiieniniiniieinineninenenenense
Expansion Connector (E)

Application Connector (A)
Auxiliary Application Connector (AA)ccccevevevnrnenranens
Memory Map for the 6522°sceeeveiinienieieieniiniennans
Memory Map for the 6532coevuneneen

The Four Buffered Outputscc.......

Keyboard and LED Connection
AIM 65 is a Board with Mini-Printer and Full Keyboard
KIM/SYM/AIM Connector Compatibility.

Complete System with Power Supply, Microcomputer
Board, Tape Recorder and Applications Board
V002 1013 (- o J T OO PO PN
6530 Relay INterface ...oevveeinvinriieninieninniniiiicnnn.
Connecting a Simple Relay erereeeenra
Precautions on Device Sidecoccvivinianiniiiiniiiinininnnn,
Connecting a Double Pole Relayc..ccevvvvinneniinannes
Connecting Two Relaystothe PIOcoovviieiiiiininnnss
External Circuit for the Relays
Memory Map for 6522 #3ccuieneee cerreeen
Port Bof6522#3 ...vviniininiiiiiiininieiiiiiicire e
Detail of Relay Connection on the Applications Board
Connecting an SPSToeviiiiiiiiiiiiiiniiiiinns
Connecting an SPDTcovivieieiiiiiiiiiniiiiiininiienenene
Connecting Four SPDT Switches to the SYM
An SPDT Switch ..c.ccuviniiiiniiiiiiiiiinianes
Connection Detail for Four SPDT’s e,
Connecting the Speaker F .
Obtaining a Louder Outputcccevviureninreieniensnieencnens
Memory Allocation for the Morse Program
Morse Transmission Flowchart
Converting Morse to Binary
Converting ASCII to Morse
Morse Equivalence Tablecoovvenriiiniininiiiininieninnnns
Flowchart for Generating Hexadecimal Morse Code
Square Wave Generates Tone in Speakerccccveenenans
6522 Auxiliary Registercooevivniiniiiiiiiiininnenninnnnn,
Timing Diagram for Tone Generationc........
Program for Using Timer 1..........c.ccovenvennenen.
Generating Tone of Set Duration with Timer 1...
6522 ACR Selects Timer Modes ...
Bits6and 7 of ACRc.cueee.
The MOrse Programcccviviiiinererniiicrniniereninninenns
Using Indexed Addressing to Retrieve Morse Code
Memory Map for Timer 1c..cocvevieiiiinieninninincnninian
Flow Chart for Delay
Time-of-Day Memory Map ...
Time-0f Day ClOCK ..vuvviiiieniiiniininieriiiiiieniiniieiinen

4-37
4-38
4-39
4-40
4-41
4-42

4-43

4-44
4-45

4-48

— et ks bt pk bt et bt bt \D) OO

1
[S53
SV IAVNBRWLWN—-O

A A A A A A LA A A LA A A A A A A A A e e

i
[]
—

5-22

The Time-of-Day Programcccceveueencinieneeneencenne.
Home Control Program
The Telephone Frequenciesccceeeviviiniinirnereceneeeneans
Phone Dialer Flow Chartccouveveiinriinieninirnnieniionnnes
Phone Dialer Programccceeevveeiiiiveeeninninriiensenenennes
Telephone Dialer: Indirect Indexed Access and

MeEMOTY MaAP ..eiviuiiinieiiieieerienenearieniacnterecnrenecnrasnsncnes
Loading the TIMercccuiirieiienieiiiririeeeeerieeaneieenenes
Computing the Timer Constantscceeeeeeniariecnneneeniess
Suggested Hardware Improvement for Cleaner Frequencies
A SIren Soundcccoveviiiieiiiiiiieieerrereiea e rereenaens
Siren Flowchart-Up Ramp
Stopping at Nmaxcceueeieiienieniniininienicinennene.
Siren Program for the Flowchart of Fig 4-47.
Connecting a Speaker (Improved)ccccvveereenininnnnens
Connecting Switch and Speakercoccevviinieniinninnian..
Detailed Flowchartcccooveenieiiiiiiniinninoeioniceneenes
Switch Closure Measurement Programcccovuveiananens
Switch Time Measurec.cvvieeieiiiiineieniinnenrnenrennenns
The Switch Time Program: Measurement and

Tone Generationcc.eeueuierenenrenenereenrecassncecrasassnsnnns
250 ms Delay Flowchartccccoevvvviiiieciiiinninnineannnes
250ms Delayccceeniiiiiiniinneiiciiineaees ereseesrasenaniens
Time 10 Flow Chart
Generating a 0.1 Second Delay
Mozart SONALINE c..vuerieninreeriricnriiriieieereoriesieasensenenes
Bach Choralcoviviininiiiriiiiic e
‘“‘Au clair de la lune”

Play Sound Flowchart
Playing a Tunec.ocevunenrenenes

Traffic Flowchart

Traffic Controllerccccevvviiiiinieiiiiiniiininiiininininn

The Application Board #2ccoocevveiiiiiiiiiiiininnnennns
Underside Shows Wire-Wrapcocoeviiiiiiiniininninnnens
For Convenience, Application Cables Connect to Board
Board Layoutcceiviiiniiiinieiiiiiiieieci s
H1 & H2 Connectors
H3 & H4 Connectors
The Traffic Control System
Connecting the LED’S c...couviviviiiiiiniiiiiiinininicnnenns
Actual LED Connection
Night Pattern ...ocuvviieiiieiiieneiiieiaeereenerernesennresnesnennes
Traffic Light Simulation—Night Mode (Program 5-1).......
Pattern for Addressing the LED Pairs
Loop Tuningccccevuniinnienniennniennns
DayModec.ovvuniiiiiiiiiiiiinii e
Traffic Light Simulation—Day Mode (Program 5-2)
ASXTDotMatrix LEDcoouiiuiiiiiiiiniiiiiiicniinienenes
Connecting the 5 X7 LEDccciiviiiiiiieniiniiniinniieennen,
The Connectors to the LEDccoocviiviniiniiiniininneannen,
Displaying a ¢‘0”’)
Displaying ““1””cveiiicinennnnns .
Driving a Dot Matrix LED ... ceerereaens
A Dot Matrix Tableccccccvniinicninnaanns
Basic LED Matrix Display (Program 5-3)ccccvuuueee.

114
118
119
120
121

123
124
126
127
128
128
128
129
130
131
132
133
134

134
135
136
136
137
138

146

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
6-1

6-2

6-3

6-4

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-2
A-3

Displaying a Switch Valueccoeieiiiiniiniiiiincenicnnnns
Advanced LED Matrix Display (Program 5-4)
Speaker CONNECtIONuvuvvnieeiniiinrernrernrrenenenrnreeranones
Basic Speaker Activation (Program 5-5) ..
Binary Switches Specify Tone................
Music Frequency Tablecccceiviiinieiiirininnenenninenennes
Music Program Flowchart ccooeevivviiiieenieeennenn.
The Music Program (Program 5-6)
Connections for Music Program
The Photo-Transistor Circuit (on Socket M3)......
Alarm FIowchart ..occvevininiceiiiiiiirneiiircinerien e
A SIrenSoundcccoviiiiiiiiiiiii e
Burglar Alarm (Program 5-7)ccooevievicricniinieenninianines
Motor Circuit et rerreereerenaenranes
Digital Speed Controlcceceviviiiiiciiceiiirieinrinineneens
Simplified Speed Diagramc.coccevecinenieniniecenineiennnee
DC Motor Speed CUIVEcvuvevenenrnerereernrenenennenieniess
The Connections
DC Motor Flowchart
The Waveformsc..ccovvuniniinnns .
Motor Control (Program 5-8)ccecvvvvviriienenneneniennnes
Connection for ADCcuiiiiiiiiiniiiiiiiiiienereenneienens
Successive AppProximationsc.vcucveereernneineenns
Successive Approximation Flowchart
ADC INterfacecc.eveenirinniiieniirrienreniinicererenaneraenns
Connectionto Hac.ooviiiiiiiiiiiiiiiiiiiieicncceieer e enens
ADC Memory Map
ADC Flowchartc.ccovevieiienninnannnn.
Analog-Digital Converter (Program 5-9).c.cocevvveneens

Connecting the Keyboardc.cceeuinee
Step 2: Reading IORA after Key Closure ...
Step 3: Writing IORA '
Step 4: Read back IORA
Keyboard Character Codes Table
Keyboard Flowchartcccceeenee,
Keyboard Program (Program 6:1)
Indexed Addressing for Table Access
Converting the Character ID # to ASCII
Punched 8-Level Paper Tapecccovvvieiencennnnn
Paper Tape Reader Hardware
PTR Connection Details
Paper-Tape Reader Interface...................
PTR Flowchartccccoevvencenincninnnnnnnes
PTRMemoryMapcccceeveenenienrnnnnnnnns
PTR/Keyboard Program (Program 6-2)
Indirect Indexed Access: STA ($00), Y
Basic Printer Interfaceco.ecvevevnreninnens

Printer Connection ereteereiraernenearaeaes
Flowchart for Printer Program N
Printer Memory Mapc.ccceernirrenerenenorenennenereneennns
Printer Program (Program 6-3)cccceeveienieiinnneenenniens
Indexed Indirect Access
Actual 20-Character Printoutc..ccccuveenenes

Sample Run with ASM65ccoeviiviiininnnnnne.
The Symbol Tablecceuveiinniiriienineiernreninnens cere
6502 Assembler Listing (copyright ©1979,SybexInc.)c.cevuen..s

237
239

CHAPTER1

INTRODUCTION

When learning how to program, understanding the operation of the
microprocessor itself is only the first problem which must be solved.
This is the problem addressed by our book, ref C202, Programming
the 6502. The next problem is to learn how to program effectively, us-
ing input/output devices connected to the microprocessor board. This
is the purpose of this book. Naturally, no book can completely cover
all possible devices. A selection, therefore, has been made among the
.Aimportant input/output devices usually connected to a 6502, and ap-
plication programs are presented, which are likely to fit a majority of
applications.

First, you will learn how to effectively program a PIO, the parallel
input/output chip. You will learn to use polling or interrupts. You will
learn to generate pulses, measure delays, and control actual input/
output devices such as switches, relays, or more complex devices such
as a digital to analog converter, a motor, and others. You will also
learn how to use more complex input/output chips such as a program-
mable timer. Additional interfaces will be presented for simple de-
vices, so that you may actually build an applications board and prac-
tice on it.

In order to learn programming effectively, you are strongly encour-
aged to practice. It is indeed the only real way of becoming a proficient
programmer. In order to practice, you will need a microcomputer
board such as the KIM, the SYM, the AIM65, or any other 6502
board. Because all boards normally provide at least one PIO (often 2),
and at least 2 timers (sometimes more), all programs presented in this
book should run on any of these boards with minor variations, if any.

11

6502 APPLICATIONS BOOK

The additional hardware which you will need in order to run speci-
fic programs will be discussed in Chapters 4, 5 and 6. It is minimal and
easily obtainable. In particular, you will find in Chapters 4, 5 and 6 the
description of suggested applications boards which can be constructed
from common components at low cost. It will allow you to run the |
programs in the chapter, using your microcomputer board and the s
applications board. It is suggested that you consider building it in |
order to practice. |

However, it is not indispensable. You will learn all the basic tech-
niques by merely reading the book. If you wish to grow from there,
then actual practice is strongly recommended.

Connecting Your Microprocessor to the Real World

Connecting the microprocessor itself to the real world first involves
building a basic microprocessor board, then connecting it to actual de-
vices. Both hardware and software interfaces will be required to con-
nect actual devices to the board. This book will present in detail both
the hardware components and the programs required for the most
commonly used devices. In order to design industrial programs nor-
mally involving expensive devices such as traffic signals, simulated
devices will be used on the applications board, using LED’s for exam-
ple. If the program were to be applied to a real traffic system, only the
interface hardware would usually be changed. The program would re-
main essentially identical. The skills you will learn are, therefore, ap-
plicable to real life situations.

The Pedagogy

When reading this book, you will usually ‘‘learn by doing.”
Each program will be presented in detail: its purpose, its flow-chart,
the hardware interface, the devices, the program itself, and the com-
plete analysis of the techniques used. Each chapter is essentially self-
contained. For example it is not necessary that you understand all the
PIO features of Chapter 2 to read Chapter 3. However, sequential read-
ing is recommended for a complete understanding. The contents of
Chapter 2 introduce all the usual parallel I/O chips used in a 6502
system, from the 6520 to the 6532. Since all existing 6502 boards to
date use these standard chips, this chapter should be read by all those
who are not familiar with them.

12

INTRODUCTION

Chapter Three presents the ‘‘Standard 6502 Board’’, and some well-
known variations: KIM, SYM, AIM65 (others exist). Most examples
presented in the book will run directly on a SYM, and with simple
changes, on a KIM, or other boards.

Chapter Four introduces the basic application techniques for con-
necting simple devices: relays, switches, speaker. The first applica-
tions board will be used for applications ranging from a Morse gen-
erator to a telephone dialer.

Chapter Five presents more complex home and industrial applica-
tions. The second applications board will be used for applications
ranging from simulated traffic control and analog-to-digital conver-
sion to a complete home burglar alarm or an electronic piano.

In Chapter Six actual low-cost peripherals are connected to a micro-
computer board: from paper-tape-reader to keyboard and printer.

Finally, a summary and synthesis are presented in Chapter Seven.

You will also find in Appendix A a complete assembler for the 6502,
written in BASIC, to facilitate your development of complex programs
requiring an assembler.

You will find on the next page a Standard Programming Form de-
signed to facilitate writing your 6502 programs.

13

141

1-L By

w104 BujwwpiBoid paDpunysg

PROGRAMMING FORM

STANDARD

PROGRAM

AUTHOR DATE [[/

HEXADECIMAL

ADDRESS

1

2 3

LABEL

SYMBOLIC ASSEMBLER INSTRUCTIONS
MNEM | OPERAND

COMMENT

copyright © SYBEX 1978

%008 SNOILVYII1ddY 2059

CHAPTER 2

THE INPUT
OUTPUT CHIPS

INTRODUCTION

In this book, we will connect a variety of input-output devices to a
6502 board in order to realize practical microcomputer applications. It
is therefore essential to understand the input-output resources of a
6502 system. The reader who is not familiar with the basic terms or
with the basic techniques (such as ‘‘polling’’) is encouraged to review
them in the previous volume of this series, reference C202 (Program-
ming the 6502).

In this chapter, we will review systematically the parallel input-
output chips used on nearly every 6502 board to provide the required
input-output facilities. It is indispensable to understand at least how a
“PIO,’* such as a 6522 works, before proceeding to the application
chapters. The exact details of the timer operation or other exotic
resources (such as a shifter) are not essential in a first reading and
could ‘be skipped. Also, the exact details and formats of the various
registers inside the 6520, 6522, 6530, and 6532 are not important to
memorize. They are provided here as a reference for the following
chapters.

It is therefore suggested that you read carefully at least one of the
sections on a PIO such as the 6520 or the 6522, without trying to
remember all the details, but focussing on the way they operate. Nearly
every application will make use of a PIO, i.e. of one of the chips
presented in this section.

15

—

6502 APPLICATIONS BOOK

In addition to these chips, most microcomputer boards will provide
some other specialized input-output interfaces, such as a cassette in-
terface or a CRT interface. The interested reader is referred to the
manufacturer’s literature or to the reference book C207 (‘‘Micro-
processor Interfacing Techniques’’) for details on these specific
interfaces.

BASIC DEFINITIONS

This section is a reminder of the terms we will use in this chapter.

The three essentiat input-output facilities on nearly every micro-
computer board, are the ‘“‘P10O,”’ the ““UART,’’ and the ‘‘timer. Let
us examine them:

CRA DORA PDRA [e— CAl
e— CA2
=4 R 8
3 82s| [BeZ
para Bus N ég §§; g;gc:bponm
CRB DDRB PDRB
Ve 8
REGISTER| —{RSO § 3 C:::> PORTB
SELECT | ——»{RS! s |
IRQA <—] e CB2
RQB *+— [e—— CBI

Fig. 2-1: Typical PIO

The PIO

The ““PIO’’ or ““parallel input-output chip,”’ is a component which
provides at least two parallel eight-bit ports. In a PIO, the use of
each line of each port is usually programmable in direction. The direc-
tion of each line is usually determined by the contents of a ‘‘data-
direction register’’ associated with each port. Whenever a specific bit

16

THE INPUT OUTPUT CHIPS

of the data direction register is ‘‘0’’, for example, the corresponding
line on the port will be an input. Prior to using the PIO, the program-
mer will first have to load the contents of the data-direction register of
each port, in order to define in which direction the lines will be used.
Specific additional constraints may be imposed by manufacturer such
as restricting lines to be programmable in direction in groups of four,
or else assigning special functions to some bit positions such as bit six
and bit seven. Some of these restrictions will be encountered in the
chips presented in this chapter. The internal block diagram of the
‘‘standard PIO”’ is shown in Fig 2-1. The two buffers for port A and
port B appear on the right of the illustration. The data-direction regis-
ter associated with each port appears to the left of these buffers. Addi-
tionally, two control registers are provided in this simplified diagram.
The control register is required to specify the function of the control
signals which are provided by this PIO. In particular, it must deter-
mine and control the ‘‘hand-shaking’’ procedure, and whether the
control signals will trigger flags or interrupts, and also whether a low-
to-high transition, or a high-to-low transition, should be used for ex-
ample. Typically, the programmer will have to specify the contents of
the control register prior to making any use of the control lines sup-
plied by the component. Also the programmer will look up the con-
tents of the control register to determine whether an internal interrupt
or other special condition has been detected (status information).

In addition to the two data ports, a PIO should also supply control
lines to allow automated hand-shaking with a peripheral. These con-
trol lines are shown on the right side of the standard PIO of Fig 2-1,
and are labeled respectively CA1l, CA2 for port A, and CB1, CB2 for
port B.

As an example of a hand-shaking procedure, the external peripheral
might supply a “DATA READY”’ signal on CAl. The microproces-
sor would then respond with a “DATA REQUEST”’ signal on CA2.
Additionally, when a ‘‘data ready’’ signal is received on CAl, it should
be flagged in the control register, and an interrupt request might be
generated externally in order to alert the 6502 to this event. This is a
typical simple example of the control sequence required for effective
hand-shaking. Much of this procedure is automated inside the stan-
dard PIO, and the options are defined by the contents of the control
register. The specific details will be presented for each of the PIO’s we
will describe, beginning on page 20.

17

R R ————

6502 APPLICATIONS BOOK

The Timer

A basic requirement in most practical applications is the ability to
generate specific delays. Delays can be measured by software tech-
niques or else by hardware timers. As long as no interrupts are used in
the system, delays can usually be generated conveniently by software
loops (see reference C202 for details). However, in more complex
situations, or in situations where interrupts may occur, it is desirable
to use one or more external hardware timers to generate or measure
fixed delays.

Using the Timer on Output

In its simplest form, a hardware timer is a counter equipped with a
register (8 bits or 16 bits). When used in output mode, the timer’s
register is loaded with a given value by the program. It is then given a
‘‘go ahead” signal and it starts counting. Most timers will use the
system clock, but not necessarily (usually a one MHz clock =one-
microsecond pulses). The number placed in the counter’s register will
be decremented by one for every successive clock pulse. If the value
placed in the register was N, the contents of the counter will have
decremented to zero after N pulses, that is after N microseconds,
assuming one-microsecond pulses. Whenever the counter decrements
to zero, a signal will be generated which will set a status flag in the timer
chip and/or generate an external interrupt. Depending on the preci-
sion required, the program will either poll timer devices or else accept
interrupts. Typical programs will be presented in this chapter.

If the timer were equipped with a single 8-bit register, it could count
only from one to 256. The maximum delay would only be 256 micro-
secpnds with a standard clock. This delay is too short for most appli-
cations. Naturally, it would be possible to use the interrupt generated
at the end of the 256 microseconds to update a memory location, then
test whether this memory location had reached a specific value.
However, this would result in inaccurate time measurement and a
somewhat cumbersome process. Therefore, a timer which is equipped
with an 8-bit register would be insufficient. Two techniques are
used to overcome this limitation. Conceptually, the simpplest one
is to use a 16-bit register for the counter. The counter may then
count from 1 to 64K, i.e., from one microsecond to 65,536 micro-
seconds or approximately 65 milliseconds. This is indeed sufficient for
most applications. However, this technique requires that the timer be

18

THE INPUT QUTPUT CHIPS

loaded in at least two operations, since the data-bus is only 8-bit wide.
First, the program must load one half of the register, then it must
load the other half, an inconvenience.

The other technique to generate delays over a wide range is to use
internal divide circuits within the timer. Such a timer will then appear
to the programmer as a device equipped with perhaps four registers.
For example, if the first register is used, then the delay generated will
be expressed in clock units (1 microsecond typical). If the second
register is used, then the delay unit will be 8 times the clock cycle; in
the third one the timing unit will be 64 times the clock cycle, and in the
next one the timing will be 1,024 times the clock cycle (or approximately
one millisecond, assuming a 1 MHz clock). This approach is somewhat
more convenient to the programmer and offers the possibility of load-
ing the timer in a single operation, yet using it over a wide range. How-
ever, the internal complexity of the device is increased.

Using the Timer On Input

A timer may be used on input to measure the duration of an exter-
nal pulse, or else the time elapsed between two successive pulses. In
this case, the initial contents of the timer counter are zero and the
counter will increment its internal register with each timing interval.
Once the delay has been measured, a flag will be set by the device or
else an external interrupt may be generated, and the program will be
responsible for reading the contents of the counter register which in-
dicate the external event duration.

Pulse Trains

A timer may be used not only to generate or measure a pulse, but also
to generate or count a train of pulses. Whenever a delay is generated or
measured for a pulse, the timer mode is usually called a ‘‘one-shot”’
mode. When a train of pulses is generated, it is often called a
‘“‘free-running’’ mode. Additionally, a number of options can be pro-
vided to specify whether a high-to-low transition or else a low-to-high
transition of the signal should be used to activate or stop the timer, or
else whether levels should be considered rather than pulses. Addi-
tionally, the timing and logical value of interrupt flags can be
specified. Further, the conditions under which the internal status is set
and reset are usually programmable. Because of the large number of
possible variations, each timer device tends to have a strong personal-
ity and needs to be studied in detail before being used.

19

6502 APPLICATIONS BOOK

The UART

“UART”’ stands for ‘‘Universal Asynchronous Receiver Trans-
ceiver.”’ The essential function of the UART is to perform serial-to-
parallel, and parallel-to-serial conversions. Additionally, the standard
UART provides a number of options usually required for serial com-
munications with external devices such as parity (checking, inhibition
or generation) and start and stop bits. The conversion is performed by
an internal shifter. Such a shifter may also be incorporated in some
input-output chips. ;

Actual 6502 Input-Output Devices

Virtually every 6502-based board will require at least 2 PIO’s and
one timer. These functions will be typically provided by a combination
of 6520 and 6530 chips or by a combination of 6522 and 6532 chips.
The 6520 and 6530, which will be described below, are the original
input-output chips which were introduced by MOS Technology. The
6502 is now manufactured by several other manufacturers, such as
Synertek and Rockwell, and additional support chips have been intro-
duced, such as the 6522 and the 6532. Still other support chips will
probably be introduced in the future.

At this time, however, the most important chips are the 6520, the
6530, the 6522, and the 6532. These four essential input-output chips
will be described now.

-———— CAl
DATA ": w} CONTROL(A)
BuS o7 - -
PAG | +———a
-—
———> | %0} ragister pam——
i | RS1 | s@lect — } PORTA
ADORESS —
8US = | CS1 -—
cs2 chip PA | +———a
select red
—_— —
-—
(§2)——n={ encble 6520 T eomre
-—
—_ | PIA —
CONTROL | . | RS P87 | ———e
sus
- | A = B2
CONTROL (B)
e | ROE ~4——— CBI

Fig 2-2: The 6520 PIA

20

THE INPUT OUTPUT CHIPS
THE 6520 (PIA)

The 6520 is almost a pure ‘‘PI0O,’’ as we have defined it. it has been
designed as a pin-for-pin replacement for the Motorola M6820, and
has been called by the manufacturer a ‘‘peripheral interface adapter’’
or ‘““PIA.” The signals of the 6520 are shown on Fig 2-2. Its internal ar-

chitecture is shown in Fig 2-3.

Referring to Fig 2-3, it can be seen that this device provides two
parallel input-output ports, port A and port B. Each port is equipped
with a buffer. However, the two ports are not quite identical, and the
buffer really works only as an output buffer, not as an input one. A
data-direction register (‘*‘DDR’’) is available for each port, and
specifies the direction of each line of the port. A value ‘“‘0’’ in this
DDR specifies an input, and a value ““1°’ specifies an output. The
choice of conventions stems from a safety consideration: whenever a
“RESET?” is applied, the contents of all registers will be zeroed and

8
L]

8
[

R/W
enable —

Fig 2-3: 6520 Internal Architecture

21

6502 APPLICATIONS BOOK

. the data-direction register will become all zeroes. As a result, all lines
will be configured as inputs; this is the safe way to start a system. No
external pulse can be generated until the program has started execu-
tion.

Additionally, each port is equipped with two registers, the control
register and the output register. The data sent by the 6502 to the
device are gated to the output register (ORA) of the specified port,
where they are held. The function of the control register (CRA) will
be explained below. It specifies the role of various control options
and contains status information for each port.

Finally, each port is equipped with two external control lines, la-
beled CAl, and CA2 for port A. CAl is a monodirectional line from the
device to the 6520. CA2 is a bidirectional line, which may be used
either as an input or an output.

The two ports are logically equivalent and symmetrical, as indicated
on Fig 2-3. However, practical differences exist. In particular, the
drive capability of port B is superior to port A, and the role of the con-
trol signals is not completely symmetrical.

Looking now at the left of Fig 2-3, or at Fig 2-2, the data bus con-
nects the internal buffer of the 6520 to the system data bus. Two in-
terrupt requests may be generated by the device, if so specified by the
contents of the control registers for port A and B; they are respectively
IRQA and IRQB. Finally, three chip-select inputs must be specified
for the device, and are labeled CS1, CS2, and CS3. This design was
used by Motorola in order to allow the convenient direct connection
of up to 8 separate devices to the data bus, without the necessity of an
external address decoder. In practice, the high number of chip-select
inputs on the chip may have resulted in a disadvantage which will be
pointed out below (one register-select missing). Two register-select in-
puts are provided, and connected to the address bus. They are labeled
RSO and RS1. This means that the 6520 device appears to the pro-
grammer as four memory locations. This may seem surprising since
we have just determined (see Fig 2-3) that there are four registers per
port, i.e. a total of eight registers. How can one address 8 registers with
only 4 addresses? This is a problem brought about by the pin number
limitation of the device. One bit of the control-register, bit 2, is used
to multiplex between the two sets of registers. When bit 2 of the con-
trol register is equal to ¢‘0,” the data-direction for that port is selected.
Wheniitis *‘1,”” the peripheral-interface buffer is selected.

Finally, three more control lines are available: ‘‘R/W*’ (read or
write), ‘‘enable’’ (usually phase two of the clock), and finally ‘‘reset.”’

22

THE INPUT OUTPUT CHIPS

+5v
9 output
= o
-—»' 1

passive pull-up resistor
1.6 m A sink = 1Tl lood

+5v +5v

~— input

r

resistor pull-up
1 TTL load

Fig. 2-4: Buffer A

+fV
| L. N
L

ecurrent drive:

no pull-up. 1mA sink at 1.5V
high-Z input. soutput is high impedance
when lines are “input”’

+
[¢,)
<

= oulput
““1” may not be> 2.4V

,,M-Lrj%__

Fig. 2-5: Buffer B

Differences between Port A and Port B

Port A and port B, even though they are logically equivalent, are
physically dissimilar. The buffers of port A use passive pull-ups. They
can sink 1.6 mA, making the buffers capable of driving a standard

23

e ———————————— .
6502 APPLICATIONS BOOK

TTL load. On port B, the buffers are push-pull devices (see Fig 2-4
and 2-5). Since they are active devices, the logic ‘‘1’’ voltage may not
be higher than 2.4 volts (versus Voo in the case of port A). However
they have a superior current drive (ImA at 1.5v), so that they can be
directly connected to LED’s, or to Darlington transistor switches.
Finally, when port B is used as input, the output buffer enters a high-
impedance mode, so that the input will have a high impedance (more
than one Megohm). The details of the port A buffer are shown on
Fig 2-4, and the details of the port B buffer are shown on Fig 2-5.

DDRA / IORA

CRA

DDRB / IORB

CRB

Fig. 2-6: 6520 Memory Map

The Internal Registers

Let us consider now in more detail the specific resources and
peculiarities of the 6520. First, as we have already noted, the 6520 is
equipped with 6 internal registers: the two buffers (which share the
address of the output register), the two data direction registers, and
the two control registers. However, because of the pin number limita-
tion, only two register-select pins are available on the device, called
respectively RSO and RS1. The resulting 6520 memory map is shown
on Fig 2-6. It shows that registers DDRA and IORA for example,
share the same logical memory address. The control-register is
addressed independently. The 6520 differentiates internally between
the DDRA and the IORA by the value of bit 2 of the control register.
The register selection is presented on Fig 2-7. Whenever bit 2 of the
control register is *‘0,”’ the DDR is selected. Whenever it is ‘‘1,”’ the
10 register or buffer-register, is selected. The control register is the on-
ly register which can be addressed directly by RSO and RS1 since it is

24

THE INPUT OUTPUT CHIPS

logically necessary to specify the contents of this control register prior
to accessing the other registers.

RS1 RSO |CRA-2 | CRB-2 | REGISTER SELECTED

0 [o} 1 - BUFFER A
0 0 0 - DDRA

0 1 - - CRA

1 0 - 1 BUFFER B
¥ 0 - [DDRB

1 1 - - CRB

Fig. 2.7: 6520 Register Selection

This scheme implies that the initialization of this device is somewhat
more complex than it should be, and that, if the program should need
to access successively the DDRA and the IORA, additional instruc-
tions must be inserted to modify the contents of bit 2 of the CRA
every time. This is indeed inconvenient.

The Control Register

The contents of the control register are shown on Fig 2-8. It has al-
ready been pointed out that bit 2 of this register performs a special
function: it differentiates between the DDR and the IOR register for
that port. The other bits within the register provide control options for
the two control lines available on each port, and 2 bits are reserved for
status or interrupt information. The control register A functions are
controlled by bits 3, 4, and 5 and are shown on Fig 2-9.

IRQ1 | IRQ2 CA/B2 control |DDRA/B| CA/BI
select control

Fig. 2-8: 6520 Control Registers

25

6502 APPLICATIONS BOOK

CRABIT MODE EFFECT
5 4 3
1 0 0 | Handshake [*CAl interrupt input fransi-

onread |[tion sets CA2 high.
*Read Port A instruction
sets CA2 low.

1 0 1 | Pulse output|*Read Port A data sets CA2
low for one cycle (=
acknowledge to device).

1 1 0 Manual |sets CA2 low
Output

1 1 1 Manual |sets CA2 high
Output

Fig. 2-9: 6520 CA2 Control

CRBBIT MODE EFFECT
5 4 3
1 0 0 Handshake | ®CB1 interrupt input transi-

on write' | tion sets CB2 high.
*Write Port B data sets
CB2 low.

1 o] 1 | Pulse Output] *Write Port B data sets CB2
low for one cycle (=
acknowledge to device).

1 1 0 Manual sets CB2 low
Qutput

1 1 1 Manual sets CB2 high
Output

Fig. 2-10: 6320 CB2 Control

The functions of the two control lines of port B are controlled by
bits 3, 4, and 5 of its control register and shown on Fig 2-10. Bits 0 and
| 1 provide interrupt control for the CAl and CB1 inputs. They are
| shown on Fig 2-11.

26

THE INPUT OUTPUT CHIPS

CRBIT ACTIVE TRANSITION IRQ OUTPUT
1 0 OF INPUT SIGNAL
0 negative disable (high)
1 negative enable (will go low
when CRA bit 7 set
by CA1/CB1
transition)
1 0 positive disable (high)
1 1 positive enable (as above)

Fig 2-11: Interrupt Control (CA1, CB1 Inputs)

Using the 6520

After a “RESET”’ has been applied, the contents of all the registers
will be zero. The 6520 must, therefore, first be initialized to specify the
input and output configurations on both its ports. The control op-
tions of the control register must also be specified and the 6520 should
normally be left with a ““1”” in bit position 2 of the control register, so
that the IOR register can be accessed directly by the 6502.

A typical sequence is:

LDA #$0F 00001111 = 4 INPUTS, 4
OUTPUTS

STA DDRA CONFIGURE DIRECTION

LDA #CONTROL CONTROL OPTIONS:
BIT 2=1 TO ADDRESS
IORA

STA CRA

Input-Output

Sending data out on port A would be accomplished by the following
two instructions (assuming CRA-bit2 =*“1""):
LDA #DATA OR ELSE LDA $20 (FROM
MEMORY)

STA IORA

27

6502 APPLICATIONS BOOK

Reading an input connected to the 6520 is accomplished by:

LDA IORA _
STA $20 SAVE IT IN MEMORY

We are saving here the contents of the accumulator immediately in
memory location 20 (hexadecimal). However, this line is not indispen-
sable. In many cases, we will simply read the contents of IORA in the
accumulator and then perhaps check their value but not necessarily
store them.

6520 Warnings

In addition to the dissimilarities between port A and port B, some
specific features of the control functions should be remembered. In
particular, bits 6 and 7 are cleared on A or B if 6 is input and if read-
ing. Also, to clear bit 7, one reads port B data. The CB2 handshake,
unlike the CA2 handshake, is for writing B data (CA2 operates for
read or write). Finally, bit 6 or 7 may cause an interrupt.

Polling the 6520’s

The simplest way to poll several 6520’s is to check the status of bits
6 and 7 of the control register. When both bits 6 and 7 are ‘0,”’ the de-
vice does not require any service. If either bit is *“1,’’ an internal inter-
rupt has been generated, and service is required.

Technique 1

In order to identify quickly which one of four devices has requested
service, a sequential table access technique may be used, provided the
addresses of the 4 devices are sequential in the memory. Address n will
be allocated to CRAI, address n + 1 to CRBI, address n + 2 to
CRA2, address n + 3 to CRB3, etc. The program can then make use
of the indexed indirect addressing feature and is shown below:

START LDX #8 INDEX
NEXT LDA (BASE-1,X) ACCESSNEXT CR
BMI SERVICE IRQ ON?
DEX X=X-1
- BEQ START
BNE NEXT

28

THE INPUT OUTPUT CHIPS

BASE -WORD CRA1 PIO #1 PORTA

-WORD CRB 1 PORT B
-WORD CRA 2 PIO #2 PORT A
-WORD CRB 2 PORT A
-WORD CRA 3 PIO #3 PORTA
-WORD CRB 3 PORT B
-WORD CRA 4 PIO # PORT A
-WORD CRB 4 PORT B

Fig. 2-12: Identifying the PIO

Index register X is set to the initial value ‘“8”’ and will be successively
decremented by 1, every time we go through the polling loop. The
accumulator is loaded with the contents of the last enrty in the table
first:

LDA (BASE-I, X)

If bit 7 was set (bit 7 is the sign bit or *‘N’’ flag), a branch will occur to
the service routine:

BMI SERVICE
If the N flag was not set, X is decremented, and the next CR is checked:

DEX
BEQ START RESTART IF X=0
BNE NEXT GO ONIF X IS NOT 0

Improvement: would switching the last two instructions speed up the
program?

Technique 2

Within each CRA, two status bits must be checked: bits 6 and 7.
The ““BIT”’ instruction of the 6502 has been created for this specific
purpose. It is a nondestructive comparison which will check the con-
tents of bits 6 and 7. The program for polling the 6520’s appears on
Fig 2-13. '

BIT CRA

29

e .

6502 APPLICATIONS BOOK
BMI IRQA7
BVC NOTAl
IRQA6 ce A2 IRQ FOUND (Bit 6)
iRQA7 < A1l IRQ FOUND (BIT 7)

NOTAl BIT CRB SAME FOR PORT B

BMI IRQB7
BVC NEXT2

IRQB6 e B2 IRQ FOUND (BIT 6)

IRQBT y B1 IRQ FOUND (BIT 7)

NEXT2 BIT .. NEXT 6520

Fig. 2-13: Identifying the Ports

The “‘BIT”’ instruction is used to test whether either bits 6 or 7 are a
“1”’. This is performed by:

BIT CRA

We must then test whether bit 6 or 7 was set to ‘“1.”” The BIT
instruction sets V flag and the N flag, so that these two flags can now
be tested;

BMI IRQA7 BIT7 =1
BVC NOTAl NO INTERRUPT FOUND

If none of the flags were set, a branch will occur to NOT Al, where
the CRB will be checked. Bit 7 is tested with the BMI instruction. If
bit 7 was one, the sign bit N will have been set, and the routine at
address IRQA7 will be executed.

Otherwise, bit 6 was the bit that was set and the routine at address
IRQAG, following the BMI, will be executed. '

This sequence can be executed for any number of 6520’s. Note that
this procedure gives higher priority to A7 than A6.

30

THE INPUT OUTPUT CHIPS

DATA BUS

N

LATCH (T21-1) |
) “PORTB
Hleoms ; ; Qu—
3 fcounms. — N
) Presen

H

Fig 2-14: 6522 Internal Architecture

THE 6522

The 6522, introduced by MOS Technology, and also manufactured
by Rockwell International and Synertek, is the successor device to the 6520.

The 6522 chip, called the VIA (Versatile Interface Adapter), is a
PIO-timer-shifter combination. It is equipped internally with 16 regis-
ters which are shown on Fig 2-14. The corresponding memory map is
on Fig 2-15.

Four sets of registers can be distinguished as to their function:

. The PIO registers (addresses 0 through 3, plus address F).
. The timer registers (two timers, addresses 4 through 9.

. The shift register (address A).

. The control registers (addresses B through E).

B oW N —

These four sets will now be examined in detail to explain the capa-
bilities of the 6522.

31

32

used for control-affects handshake

6502 APPLICATIONS BOOK
00 ORB (PBO TO PB7) 170 data, port A
o1 ORA (PAQ TO PA7)
02 DDR B data direction
registers
03 DDR A
04 TiLl-L/TICL counter-low
05 TIC-H counter-high
06 TIL-L latch-low
07 TIL-H latch-high
latch-low
08 T2L-L/T2C-L counter-low
09 T2C-H counter-high
0A SR shift register
08 ACR auxiliary
oC PCR (CA1,CA2,CB2,CBY) peripheral }
ob IFR flags }
OE IR enable
outputregister A
OF ORA (does not affect handshake)
Fig. 2-15: 6522 VIA Memory Map
RS3 RS2 RSI RSO
©c o o0 o 00 ore | T
[} [} [1 o1 ORA + hondahoke
o o 1 o 2 DDRE
o o 1 03 ODRA
4] 1 0 4] 04 TI-LW/TICLR) "I,T!;;T—]:ITI;:E)_
0 1 0 1 05 | TICHRYTILH+ TIC-HW) ”"ﬁml‘; (;)"—'-
o 1 1 0 o md
o) ¥ ' (% TH-H +clear T1 ini Flog(W)
T o o o o8 TA4WYT2CAR) ¥ clear 12 Int Flog(W)
' ° o ® Sl + u:e?rci}m‘ri;:;m
voo 1 o Ga s |
v o 1 8 ax | T
1 1 0 o oc PCR
R ® ~
T 1 1 o0 o€ ® o
R o orA no handshoke

Fig. 2-16: 6522 Registers

timer }

timer 2 i

function
control

interrupt
control

TIMER T

THE INPUT OUTPUT CHIPS

The PIO Section

The PIO Section provides two 8-bit bidirectional ports. Each port is
equipped with an input/output register. They are called respectively
ORA and ORB for port A and port B. They are shown on Fig 2-14.
Each register is associated with a direction register, respectively DDRA
AND DDRB. Whenever the corresponding bit of the data direction
register is set to “‘1”’ the line connected to the OR will be an output.
Whenever the data direction bit is ‘0’’, the corresponding line will be
an input. The polarity has been chosen so that all lines are iniput when
a ‘“‘reset’’ is applied.

There is an asymmetry in this PIO: Port A is equipped with two OR
registers, with and without the handshake feature.

Using the PIO

Before using the PIO as input or output, the data-direction registers
must be loaded with the proper value to configure the corresponding
bits of the 1/0 registers as input or output. As an example, let us con-
figure here Port A as an output and Port B as an input.

DATA BUS

l

OUIFGT
ORA

INTERRUPT CONTROL

FORT & Al

s e =

P

- g S —

[FERIPHERAL (PCR)|
SHIFT REG
FUNCTION CONTROL SR

(T1i-m)
_patoH o oo
H [LLN]) P S—
¥
z acH
<counTER— —
1C-4)
N EEED 2 i PORT B
3 (12¢.w) pA—— A o
2 | countte- — — 5 815 =B O3 * N
(24} ’: 2
< 2 (P87 Tt
[y—
S;W-— CHIP
c&:—-— CONTROL
[}

I S

RSO &S| RS2 RS3 +5v

Fig 2-17: Using the 6522: STA DDRA

33

R R E———————————————

6502 APPLICATIONS BOOK

DATA BUS = 2NN ORI A
2 <[« -
5| e g5l :>0urpu1
2 <8R
INTERRUPT CONTROL
—————l
HAGS (IFR) contao @
—d
RQ e ENABLE (IER) CoRROL éz;
RIPHERAL (PCR)
IXIIARY(ACR|
SHIFT REG
FUNCTION CONTROL SR
{TiL-m)
_RAICH - m e
I [{INE)
H
= (TIC.H)
-COUNTER — -
3]
pwickazg § = roRTS
H < of
< (12C-H) S ql H A
Z | counter: - — s IR ¢ J NPUT
ey S (P87 = 1M
[y—
P— CHIP
S —— CONTROL
&2
RS0 RS} RS2 RS) +5v

Fig 2-18: Using the 6522: STA DDRB

LDA #3FF “11111111” = OUTPUT
STA DDRA

LDA #0

STA DDRB BisINPUT

(see Fig 2-17 and 2-18)
Let us now output the value ‘‘00000001’’ on Port A (see Fig 2-19):

LDA #5301 “00000001°°
STA ORA

34

THE INPUT OUTPUT CHIPS

OuTPUT
INTIRRUPT CONTROL
b CAT
A2
ENABLE (1R} e
o =
o
im)
= Ty
e
H (MC-H)
[COUNTER— —
me-1y
ATOH (1L 3 z PORTB
H 2 H e 3 o2
Hleowi 4L T Gmm— Y
a4 <8 ©
3 1PB7 = TunE)
+5v
Fig 2-19: Using the 6522: STA ORA
DATA BUS 3 | PORT A
REPEN S L
2 8|5 *38|3¢)
5§§ 3°|= L 4
INTERRUPT CONTROL
e CA)
FLAGS (IFR) coNTROL caz
(1)
RQ ENABLE (IER) CONTROL _—..—‘ 2
RIP-ERAL (PCR)
XILARY(ACR]|
P
FUNCTION CONTROL b3
{Tiemy
- RA CH = - - -
- M-t}
H
B 1C-H)
| COUNTER— —
mc.1)
TCH 5
LT Ry ¥ PORTB
5
oot SoEEREe
axy 2 (787 = Tt
I
ga/w-_‘-
& — CONTROL
fas]

RSO RS} RS2 RSY +5v

Fig 2-20: Using the 6522: LDA ORB

35

R R

6502 APPLICATIONS BOOK

Finally, let us read the value of Port B into the accumulator (see Fig
2-20).
LDA ORB

Whenever using the OR registers, it is usually necessary to check a status
signal to make sure that the device being spoken to is ready to listen or to
transmit. This is call handshaking. The operation of the control
signals required to implement it will be explained now.

The Two Control Signals (Peripheral Control Register)

Each port is equipped with two control lines, named CAl, CA2,
and CB1, CB2 (see Fig 2-14, on the right side). For example, before
sesnding data to a printer device, such as a Teletype, the micro-
processor must ascertain that the printer is not busy, and is ready
to accept the next character. This will be accomplished by a hand-
shaking procedure.

Whenever the printer is no longer busy, it is ready to accept the next
character, and it will send a pulse or a level transition to the 6522. This
level transition, or pulse, must be detected and latched by the device,
then tested by the program. The signal will be transmitted to one of
the two control inputs, CA1 or CB1.

The 6522 allows great flexibility in specifying the nature of the signal
coming in or out.

It is possible to specify whether a high-to-low (or ‘‘negative’’) tran-
sition (a falling edge) or alow-to-high (or ‘“positive’’) transition (arising
edge) will trigger the internal interrupt flag. This is specified by bit 0 (for
CALl) and bit 4 (for CB1) of the peripheral control register (PCR). <‘0”’
corresponds to the high-to-low transition, and ‘‘1°’’ corresponds to the
low-to-high transition (see Fig 2-21).

7 6 5 4 3 2 1 0
CB2 CB1 CA2 CA1l
control control contro! control

Fig. 2-21: Peripheral Control Register

36

THE INPUT OUTPUT CHIPS

IRQ(R
EN(\(N T T2 | CB! | CB2 | SR | CAl | CA2

Fig. 2-22: Interrupt Flag Enable Register (IFR/IER)

CRBIT ACTIVE TRANSITION IRQ OUTPUT
1 0 OF INPUT SIGNAL
0 0 negative disable (high)
1 negative enable (will go low
when CRA bit 7 set
by CA1/CBI
transition)
1 0 positive disable (high)
1 1 positive enable (as above)

Fig. 2-23: Control Lines Function (ACR)

Once the nature of the signal has been specified, it becomes possible
to test it.

Checking status: It is possible to detect whether a transition has oc-
curred by testing the contents of bits 1 or 4 (for CA1 and CB1 respec-
tively) of the interrupt-flag register (IFR) (see Fig 2-22). This bit will be
“‘0’’ as long as no signal has been received, and will become ‘‘1’’ once
the appropriate transition has been detected. After reading a ‘1’
status, it must be possible to reset it so that one can move on to the detec-
tion of the next event. This will be accomplished either by writing a ‘1"’
into the appropriate bit position of the register, or else by reading, or
writing, the corresponding input/output data register.

37

6502 APPLICATIONS BOOK
PCR3 PCR2 PCR1 Mode
0 0 0 | CA2 Negative Edge Interrupt (IFRO/ORA Clear)

Mode—Set CA2 interrupt flag (IFRO) on a negative
transition of the input signal. Clear IFRO on a read or
write of the Peripheral A Output Register (ORA) or by
writing logic 1 into IFRO.

0 0 0 |CA2 Negative Edge Interrupt (IFRO Clear) Mode—Set
IFRO on a negative transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic 1 into IFRO.

0 1 0 | CA2 Positive Edge Interrupt (IFRO/ORA Clear) Mode—
Set CA2 interrupt flag on a positive transition of the CA2
input signal. Clear IFRO with a read or write of the
Peripheral A Qutput Register.

0 1 1 |CA2 Positive Edge Interrupt (IFRO Clear) Mode—Set
IFRO on a positive transition of the CA2 input signal. |
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic 1 into IFRO.

1 0 0 |CA2 Handshake Output Mode—Set CA2 output low on a
read or write of the Peripheral A Output Register. Reset
CA2 high with an active transition on CAl.

1 0 1 | CA2 Pulse Output Mode—CA2 goes low for one cycle
following a read or write of the Peripheral A Output
Register.

1 1 0 | CA2 Output Low Mode—The CA2 output is held low in
this mode. .

1 1 1 | CA2 Output High Mode—The CA2 output is held high in
this mode.

Fig. 2-24: PCR Detailed Operation (courtesy: Rockwell)

PCR7 PCR6 PCRS Mode

0 0 0 | CB2 Negative Edge Interrupt (IF3/ORB Clear) Mode—Set
CB?2 interrupt flag (IFR3) on a negative transition of the
CB2 input signal. Clear IFR3 on a read or write of the
Peripheral B Output Register (ORB) or by writing logic 1
into IFR3.

0 0 1 | CB2 Negative Edge Interrupt (IFR3 Clear) Mode—Set
IFR3 on a negative transition of the CB2 input signal.
Reading or writing ORB does not clear the interrupt flag.
Clear IFR3 by writing logic 1 into IFR3.

Fig. 2-25: Continued - PCR Detailed Operation

38

THE INPUT OUTPUT CHIPS

CB2 Positive Edge Interrupt (IFR3/0ORB Clear) Mode—
Set CB2 input signal. Clear the CB2 interrupt flag on a
read or write of ORB or by writing logic 1 into IFR3.

CB2 Positive Edge Interrupt (IFR3 Clear) Mode—Set IFR3
on a positive transition of the CB2 input signal. Reading or|
writing ORB does not clear the CB2 interrupt flag. Clear
IFR3 by writing logic 1 into IFR3.

CB2 Handshake Output Mode—Set CB2 low on a write
ORB operation. Reset CB2 high with an active transition
of the CBI input signal.

CB2 Pulse Output Mode—Set CB2 low for one cycle
following a write ORB operation.

CB2 Manual Output Low Mode—The CB2 output is held
low on this mode.

CB2 Manual Output High Mode—The CB2 output is held
high in this mode.

Fig. 2-25: PCR Detailed Operation (continued)

6522

L

CAl ready

DEVICE

DDRA ORA

Fig. 2-26: Reading Data When Ready

A Simple Input Example

Let us specify a low-to-high ‘‘ready’’ transition from the peripheral,
and an input configuration on Port A (see Fig 2-26). Whenever the data
is ready, it will be read into the accumulator. The program is:

LDA #0
STA DDRA SETINPUTS

39

6502 APPLICATIONS BOOK
LDA #1
STA PCR CA1 INTERRUPT LOW-TO-
HIGH
WAIT LDA IFR READ INT FLAGS
AND #3502 00000010 MASK BIT 1
FOR CAl

BEQ WAIT READY?
LDA ORA READ DATA IN

Improvement: Can you modify the two instructions ‘“LDA IFR AND #302” to

improve efficiency?
7,6 5 4,3, 2 1 0 |
i T | l
n g | PA]
n CON- SHIFT REGISTER LATCH [LATCH
CONTROL | 1RO CONTROL ENABLE {ENABLE

Fig. 2-27: 6522 - Auxiliary Control Register

Latching the Input/Output

The input and output of the 6522 are not symmetrical. Outputs are
always latched. This is why the input/output register is called OR (out-
put register). Inputs are not necessarily latched. This is specified by bits
““0’” and ‘“1”’ (respectively port A ‘and port B) of the auxiliary control
register (ACR). Whenever these bits are ‘0, no latching oc-
curs on input. Whenever these bits are set to ‘‘1,”” the inputs are latched
(see Fig 2-27). When an input is not latched, the program is actually
reading the value of the input lines connected to the port it is reading.
When the inputs are latched, the latch is enabled by the active transi-
tion of CAl or CBI1, depending on the port used. The value is then
preserved in the latch register until the next pulse is received on the
control line. Danger: on output, the program reads the latch controls,
which may or may not be the same as the contents of OR.

Sending a Control Signal Out

CA2 or CB2 are used to provide a control strobe (see Fig 2-14).

40

THE INPUT OUTPUT CHIPS

Since these lines are bidirectional, they must be configured for output
by setting the peripheral control register bit 3 or 7 respectively (for A2
or B2) (see Fig 2-24).

The nature of the signal can be specified to be either a level or a
pulse. ““0”’ in bits 2 or 6 respectively (for A or B) corresponds to a
pulse. ‘‘1”’ corresponds to a level. Whenever a level is specified, it is
possible to specify either a positive value or a negative value. This is
accomplished by setting or clearing bits 1 and 5 respectively (for A2
and B2) (see Fig 2-24).

Finally, when a pulse is generated, its duration can be controlled
with bits 1 and 5 (respectively for A2 and B2) of the control register.
Whenever the bit is set to “‘0,”’ a single cycle strobe will be generated.
Whenever this bit is set to ‘‘1,”’ an output pulse will be generated,
which will remain low from the time the OR register is accessed (read
or write) until the next signal transition on CAl or CBI.

Summary of Control Output

A pulse of virtually any duration and polarity can be specified. It
can be used to poll an external device (interrogate it), to acknowledge
a data transfer, to move on to another device connected to the same
line, or to control the state of the device (on, off, or other option).

A summary of the peripheral control register bits is shown on Fig
2-21, and the details are shown on Fig 2-24 and 2-25.

7) 5 4 3 2 1 0

R | IRQ

ser T 4 72 4 cB1 4 CB2 4+ SR —-CAl 4 CA2

clear
conirol

IER

Fig. 2-28: Interrupt Registers

Interrupts

Interrupts are controlled by two registers, the interrupt enable reg-
ister (IER), and the interrupt flag register (IFR). The registers are

41

e
6502 APPLICATIONS BOOK

shown on Fig 2-28. They share the same memory address. One is an
input register, the other an output register.

The interrupt flag register IFR is an input register. Each bit position
from 0 to will be set whenever an interrupt is detected on any of the
external lines (CAl1, CA2, CB1, CB2), on the shift register (SR), on
any of the two timers (T1 and T2). Bit 7 is set whenever any other bit is
set in the register.

The interrupt enable register (IER) will enable or disable interrupts
from any of the sources. The bit positions in IER match the ones of
IFR (see Fig 2-28). Whenever a bit position is “‘0,”’ the corresponding
interrupt is disabled and will not be sent. Whenever it is ““1,”’ it is en-
abled, and if an interrupt occurs, it will be recorded. It becomes then
possible for the program to read the contents of the IFR register and
test any relevant bit to determine whether an interrupt has occurred.
In order to set or clear conveniently any of the IER bitq, bit position 7
of IER is used in conjunction with a read or write signal and the con-
tents of the data bus are then copied into the IER register. If IER bit 7
is <“0”’, each ‘1>’ will clear an enable flag. If bit 7 is **1°’, each *“1”’
written into IER will set an enable.

Example: Let us enable CAl and CA2 interrupts, and disable all
others (see Fig 2-28):

LDA #$7C ‘01111100 = CLEAR BITS

2TO 6

STA IER

LDA #3$83 10000011 = ENABLE BITS
0 AND 1

STA IER

Exercise 2-1: Write a program-to enable CBI interrupts, and disable
others.

Exercise 2-2: Disable CBI and CB2, leaving others unchanged.
Identifying the Interrupt

i Whenever several interrupts can occur simultaneously, i.e., when-
ever several bits of the IFR are used, the program will have to check

the contents of IFR and determine which interrupt has occurred. The
order in which it checks these bits will determine the priority of the

42

e ——————
THE INPUT OUTPUT CHIPS

corresponding interrupt. For example, if an interrupt from T1 has
highest priority, then this is the bit which should be checked first. The
simplest way to check the contents of IFR is to shift its contents right
or left by one position and check the value of the bit which falls off
(into the Carry bit) by testing the carry bit. This technique assigns pri-
orities in a right-to-left or left-to-right manner to the signals of Fig
2-28.

Exercise 2-3: Look at Fig 2-28. List the devices in order of effective
priority, assuming that the contents of IFR are shifted left by the poll-
ing program.

Naturally it is also possible to check for combinations of interrupts
by checking the values of specific bits in the IFR register. For more
details on interrupts and polling, refer to Chapter 3 of ref. C202.

The Timers

The 6522 is equipped with two interval timers. These timers can be
used as inputs or as outputs.

When used as an output, a timer may generate either an output sig-
nal or a train of pulses.

When used as an input, a timer will measure the duration of a pulse,
or else will count the number of pulses received. When generating or
reading a pulse of set duration, the timer is said to be in ‘‘one-shot”’
mode. Either timer 1 or timer 2 of the 6522 can be used in this manner.

When used to generate or to count a continuous train of pulses, the
timer is said to be in a ‘‘free-running mode.”’ Only timer 1 may be used
in this manner.

Prior to using any timer in output mode, its counter register must be
loaded with a value: when generating pulses, the counter will either
contain the number of clock pulses to be generated, or the duration of
the pulse.

When using the timer on input, its register must be cleared. When
counting pulses, it will contain the number of pulses so far. When
sensing a pulse, it will contain its duration.

Timer 1 versus Timer 2

Timer 2 may be used on input to count pulses applied to PB6 of
IORB (see Fig 2-14). When used on output, it can only generate a

43

4

Fig 2-29: 6522: Auxiliary Control Register Controls T1 Modes

6502 APPLICATIONS BOOK

pulse of set duration on PB6. It cannot generate a train of pulses.
Either one of these two modes is selected by bit § of the auxiliary con-
trol register (ACR) (see Fig 2-27).
mode, and ‘“1”’ to the pulse-counting mode.

6

T
|

0 ONE-SHOT MODE
1 FREE RUNNING MODE

ACR

I —e

0 OUTPUT 1O PB7 DISABLED
1: OUTPUT 1O PBY ENABLED

Timer 1 is different from Timer 2 and offers additional possibilities.
It has four operating modes which are shown on Fig 2-29. It can be
used either in one-shot mode or in free-running mode. Additionally, it
may either enable or disable an output on PB7. The mode is specified
by bit 6 of the auxiliary control register. It is ‘‘0>’ for one-shot opera-
tion and ¢‘1”’ for free-running mode.

Bit 7 specifies whether PB7 is enabled or disabled. When ‘0,”’ PB7
is disables, when ‘‘1,”” PB7 is enabled (see Fig 2-30).

““0” corresponds to the one-shot

ACR7 ACR 6 MODE
OUTPUT FREE RUN
ENABLE ENABLE
0 0 Generate time out INT when T1 loaded
(ONE-SHOT) PB7 disabled.
0 1 Generate continuous INT
(FREE RUN) PB7 disabled.
1 0 Generate INT and output pulse on PB7 everytime
(ONE-SHOT) T1 is loaded. '
=one-shot and programmable width pulse.
1 1 Generate continuous INT and square wave
(FREE RUN) output on PB7.

Fig. 2-30: 6522 - Auxiliary Control Register Selects

Timer 1 Operating Modes

2ttt

THE INPUT OUTPUT CHIPS

Loading the Counters

Each timer uses a 16-bit counter. The low part must be loaded first
and the high part must be loaded next. Loading the high part of the
counter automatically clears the timer interrupt flag and starts the
timer running. Timer 1 is also equipped with a true 16-bit latch, while
Timer 2 is not. This enables Timer 1 to operate continuously, in ‘“‘free-
running’’ mode; the latch is automatically transferred to the counter
when the counter reaches zero. For Timer 1, the values of the latches
may be read or written without affecting the counters. This is used to
generate waveforms of arbitrary complexity.

The details of timer addressing are shown on Fig 2-31.

ADDRESS WRITE READ

--04 TIL-L TiC-L/
+ clear T1 int flag
--05 TIL-H + TIC-H TIC-H
+ TIL-L»TIC-L
TIMER 1 + clear Tl int flag

--06 TIL-L THL-L
--07 TIL-H TiL-H

+ clear Tl int flag

--08 T2l-L T2C-C
+ clear T2int flag
TIMER 2 -
--09 T2C-H T2C-H
T2L-L »T2CL

+ clear T2 int flag

Fig. 2-31: Timer Addressing

Real Duration

The actual waveform from Timer 1 is shown on Fig 2-32. Note that
the real duration is the value of the count (‘‘N”’) plus 2, or the value of
the count plus 1.5. In order to obtain a more exact timing, the user
should therefore load in the counter register the desired number of
periods minus 2.

45

6502 APPLICATIONS BOOK

N+ 15
WRITE ; :)
TICM
b} l-——————N+I5ty:|n ; N + 2 cycl 4
! L S

Fig. 2-32: Timer 1 in Free Running Mode

The Shift Register

The shift register is provided for serial-to-parallel or parallel-to-
serial conversion. The shifting speed can be controlled by three time
sources: Timer 2, Phase 2 of the clock ($2), and an external clock. The
external timing source is specified by bits 2 and 3 of the auxiliary con-
trol register (see Fig 2-27). Bit 4 of the auxiliary control register speci-
fies input or output. The complete table showing the function of these
bits appears on Fig 2-33.

ACR4 | ACR3 | ACR2 Mode
0 0 0 |Shift register disabled.
0 0 1 |Shift in under control of Timer 2.
0 1 0 |Shift in under control of @2 pulses.
0 1 1 |Shift in under control of external clock pulses.
1 0 0 |Free-running output at rate determined by Timer 2.
1 0 1 |Shift out under control of Timer 2.
1 1 0 |Shift out under control of the @2 pulses.
1 1 1 |Shift out under control of external clock pulses.

Fig. 2-33 Shift Register Control

On output, the user will load the shift register. This will automati-
cally start the timing and shifting process. Whenever 8 bits will have
been shifted out of the register, the interrupt flag (bit 2 of the interrupt
flag register) will be set automatically. It can then be tested by the
program.

46

THE INPUT OUTPUT CHIPS

On input, the shift register must be initialized to some value such as
0’ in order to start the timing process. It will then start capturing
bits at the frequency of the specified timing source, such as timer 2,
phase 2 of the clock, or an external clock, as specified by bits 2, 3, 4 of
the ACR. Whenever 8 bits have been accumulated, the corresponding
interrupt flag of IFR will be triggered. The program will deposit a
value such as ‘‘0”’ in the SR, then test continuously the value of IFR
bit 2. Whenever an interrupt is detected, the shift is complete. The
shift register should then be disabled by zeroing bits 2, 3, 4 of ACR,
while the program is storing data away. Naturally if data is coming in
continuously, the shift register will not be disabled and the program
should “‘come back’’ quickly enough not to lose data.

PROGRAMMING THE 6522

The 6522 is a combination PIO, timer, and shifter. The basic input-
output operations on the PIO are performed essentially as on the
6520, except that the registers may be selected directly and that one
does not need to switch bit 2 of the control register to differentiate be-
tween them. This leads to simpler and shorter programming. How-
ever, the control facilities provided by the 6522 are extensive, and
quite different from those of the 6520. Let us therefore examine first
some examples of basic input-output, then some examples of the con-
trol options.

Basic Input

Input is accomplished by loading all zeroes in the data direction reg-
ister of the port which is to act as input, then reading the contents of
the OR. In this simple program, we will, in addition, store the data,
which has just been read, into memory location 20. The program ap-
pears below:

INPUT LDA #0
STA DDRA PORT A IS INPUT
LDA ORA READ DATA (IF VALID)
STA $20 SAVE THEM IN MEMORY

47

6502 APPLICATIONS BOOK
RS3| RS2} RS1 | RSO | R/W] REGISTER COMMENT
0 0 0 0 w ORB
0 0 0 0 R IRB
0 0 0 1 w ORA controls handshake
0 0 0 i R IRA
0 0 1 0 - DDRB
0 0 i 1 - DDRA
8 1 8 8 w TiL-L latch
0 1 0 1 R TiC-L counter
0 1 0 i TIC-H Til-Linto TIC-L
0 1 1 0 TIL-L
0 1 1 1 Tit-H
1 0 0 0 w T2L-L latch
! 0 0 0 R T2C-L counter
11olol T2C-H | triggers T2L-L into T2C-L
1 0 1 0 SR
1 0 1 1 ACR
1 1 0 0 PCR
1 1 0 1 IFR
1 1 1 0 IER
1 1 1 1 ORA no effect on handshakes

Fig. 2-34: 6522 Register Selection is Direct

Basic Output

Output is performed in exactly the same way as input; the data
direction register for port B will be loaded for all ones, thus specifying
all outputs. The data to be sent to port B is assumed to reside at mem-
ory location 20 so that it will be first loaded into the accumulator, then
transferred to the ORB. The reader will remember that there is no in-
struction in the 6502 which allows transferring directly from memory
location 20 to ORB. An extra instruction is therefore required to
transfer first the data from memory into the accumulator, and then
from the accumulator to ORB. The program appears below:

OUTPUT LDA #$FF
STA DDRB B = OUTPUT
LDA $20 GET DATA FROM MEMORY
STA ORB OUTPUT IT

48

THE INPUT OUTPUT CHIPS

Using the Control Options

We will configure here port A as all inputs. It will be assumed that
the peripheral or device connected to port A will send the ‘‘data
ready’’ strobe on line CA1l. The strobe will be active during its low-to-
high transition. The 6522 will have to detect this ‘‘data ready’’ strobe
transition, and the program will poll the 6522 to determine whether
any data has been received. If data has been received, it will read it
and store it at location 20 in memory. The program has already been
developed (see “‘Basic Input’’ page 39) and appears again below:

READYIN LDA #0 A = INPUT
STA DDRA
LDA #1 CAl INTLO TO H’
STA PCR
TEST LDA IFR TEST BIT 1
AND #8$2 00000010 BINARY
BEQ TEST =1?
LDA ORA READ DATA
STA $20 SAVE IN MEMORY

As usual, the data direction register is set to all zeroes to configure
ORA as inputs: :

LDA #0
STA DDRA

The control register PCR will now be conditioned so that an internal
interrupt is generated whenever a low-to-high transition occurs:

LDA #1
STA PCR

The two instructions above load the binary value 00000001 into PCR.
Referring to Fig 2-23, the reader should verify that this is indeed the
correct value. Bit zero of the peripheral control register PCR specifies
which active transition of the input signal will be recognized. Since we
want the CAl interrupt flag to be set by a positive transition (low-to-
high), PCRO must be set to the value 1.

Bits 6 and 7 of the ACR relate to the timer 1 operating mode. Since
the timer is not being used, their contents are irrelevant here. Bits 2, 3,

49

R ——

6502 APPLICATIONS BOOK

and 4 of ACR specify the operation of the shift register. Since the shift
register is not used here, they should be zero, as specified on Fig 2-33.
Bit 5 of the ACR is T2 control, and therefore unused here. Bit 1 is the
PB latch enable, and is unused here. Bit zero is the port A latch en--
able. When specified (by writing a ‘‘1’’), data present on the A input
will be latched whenever the CAl interrupt flag is set. This would be
accomplished by:

LDA #1
STA ACR

Since we assume here that polling is used, instead of a hardware in-
terrupt, the program will be responsible for reading the contents of the
interrupt flag and determining whether an interrupt has occurred. The
contents of the interrupt flag register are shown in Fig 2-28. Bit position
1 of the IFR needs to be tested in order to determine whether the CA1l
‘““data ready’’ signal has been received. This is performed by the fol-
lowing three instructions:

TEST LDA IFR
AND #3$2
BEQ TEST

The AND instruction masks out all bits except bit position 1 so that it
can be tested.

As long as bit 1 is zero, this program will remain in this polling
loop. Once the ‘‘data ready’’ signal has been recognized, data can be
read from the ORA and transferred to their final memory location,
which we will assume to be, as usual, memory location 20:

LDA ORA
STA §20

Reading the contents of ORA into the accumulator will also automati-
cally clear bit 1 of IFR (the CA1 status indicator), so that the internal
interrupt will be automatically reset.

It is important to remember that interrupt flags must explicitly be
cleared every time they are used. The 6522 is organized in such a way
that the ‘‘normal’’ operation, such as reading the contents of ORA
after detecting an interrupt, will take care of it automatically. How-
ever, the reader should be alert to the fact that if he should use ‘‘non-
standard programming,’’ errors might occur as the interrupt flag
might remain continuously on. A technique which may be used in such
a case is to write back the contents of IFR after reading it:

50

THE INPUT OUTPUT CHIPS

STA IFR

This ‘‘programming trick’’ will reset only the bit which had been set to
‘1, >’ thus effectively clearing the bit without modifying any other
(unless more than one bit was ‘“1”’).

A Handshake Protocol on Input

We will assume here that the complete handshake sequence is used:
first the program is responsible for sending a ‘‘start” pulse (active
high) to the device. Later, the device will respond with a ‘‘data ready”’
strobe (active high-to-low here), and the program will be responsible
for determining that the signal has been received, then transferring the
data into memory location 20. The program appears below:

NSHAKE LDA #0
STA DDRA A ISINPUT
STA ACR
LDA #30C BITS 2 AND 3 ON
STA PCR CLEAR START PULSE
LDA #$0E BITS 1, 2, 3 ON
STA PCR GENERATE START ON CA2

LDA #30C
STA PCR CLEARIT
WAIT LDA IFR INTERRUPT?

AND #302 (START PULSE?)
BEQ WAIT POLLING LOOP
LDA ORA DATA READY
STA $20 SAVE IN MEMORY

Let us examine the program. As usual, port A is conditioned as input
by storing zeroes in the DDRA:

LDA #0
STA DDRA ZERO DDRA
STA ACR

We will assume here that no latching is necessary on input (see previ-
ous program if you wish to latch data on input). The PCR register
must now be conditioned so that a start pulse will be generated, active
high. The level of CA2 (the line which we will use to provide the start
signal CAl can only be used as input) will first be set low, then high,
to guarantee a low-to-high transition. Conditioning the CA2 output

51

6502 APPLICATIONS BOOK

low is accomplished by loading the value ‘110"’ respectively in bits 3,
2, and 1 of PCR (see Fig 2-24). This is accomplished by the following
instructions:

LDA #$0C 00001100
STA PCR

Next, the level on the CA2 output must be specified as high. This is ac-
complished by loading the value ““111”" in bits 3, 2, 1 of PCR:

LDA #S0E 00001110
STA PCR "

We will assume here that a brief pulse is sufficient to provide the
“start’’ signal. Some devices might require that this pulse be of a long-
er duration. In such a case, a delay would have to be added at this
point to guarantee that the pulse remains high for a specific duration
of time. Here, we will simply turn the signal off again:

LDA #0C 00001100
STA PCR

At this point, we proceed, as in the previous program, by polling bit
one of the IFR to detect whether the CA1 has been set to one:

WAIT LDA IFR
AND #$02 00000010
BEQ WAIT

Then, as above, the data is read from ORA and stored in memory
location 20:

LDA ORA
STA %20

6502
139
o522 6522 s

il bl

Fig. 2-35: Connecting Multiple 6522's -
Generating an IRQ

52

THE INPUT OUTPUT CHIPS

Using Multiple 6522’s

In the case in which multiple 6522’s are used, their interrupt request
output IRQ is usually connected to the IRQ line as shown in Fig 2-35.
However, once an IRQ is received by the 6502, the program must
determine which 6522 originated it. A polling loop is generally used.
This polling loop will interrogate in turn each IFR of the devices to
determine which one has generated an interrupt. This information is
readily -available in bit 7 of the interrupt flag register, as shown in Fig
2-22. The reader will recall that bit 7 is universally used as a preferred
position for polling, since once the contents of the register under test
are loaded into the accumulator, the contents of bit 7 will condition
the sign bit of the microprocessor flags register (bit N). The next in-
struction in the program may readily test bit N and determine whether
it was “‘0”’ or “‘1.”” This is exactly what the polling program does here.
A typical polling program appears below:

LDA IFRI

BPL NEXTI
INTFOUND{ - - - (IDENTIFY 1 OF 7 CAUSES)
NEXTI LDA IFR2

BPL NEXT2

The program loads the contents of the IFR of the first 6522 and tests
whether it is positive. If it is positive, no interrupt has been generated
by the device and the program tests the next one, and so on. However,
if the device is found to have generated an interrupt, a specific routine
must then determine what to do next. Let us examine it.

Identifying One of 7 Possible Internal Interrupts for the 6522

Referring to Fig 2-22, it can be seen that seven possible conditions may
set an internal interrupt in the IFR register of the 6522: T1, T2, CBI,
CB2, SR, CAl, CA2. If all of the internal resources of the 6522 are
used simultaneously, as is often the case, then all possibilities should
be checked. A simple program which will identify one out of 7 inter-
rupts appears below:

53

S
6502 APPLICATIONS BOOK

ONEOF7 ASL A
BMI TIMERI

ASL A
BMI TIMER2

ASL A

The program checks successively bit 6, bit 5, bit 4, etc., by simply
shifting the contents of the accumulator left by one bit position every
time. It should be noted that the order in which the shifts occur estab-
lish a priority of the interrupts within the device. Using the program
as shown above, Timer 1 will have the highest priority, then Timer 2,
etc. The user might want to assign different priorities to the interrupts
by testing the bits in a different order.

Generating Delays with a Timer

The reader should study the details of the timers in the manufac-
turer’s data sheets before using them. Timer 2 is simpler than Timer 1.
Both timers are not identical, and it is important to understand their
specific characteristics before using them. Since a complete study of
the timer operating modes is not necessary for the purposes of this
book, we will show here two typical examples of the generation of de-
lays, using respectively Timer 2 and Timer 1. Other examples will be
presented in the applications chapters.

Generating a One-Shot Delay with Timer 2
The program appears below:

ONESHOT2 LDA #0 '
STA ACR SELECT MODE
STA T2LL LOW-LATCH=0
LDA #$01 DELAY DURATION
STA T2CH HIGH PART =01HEX. START
LDA #3$20 MASK

LOOP BIT IFR TIME OUT?

BEQ LOOP
LDA T2CL CLEAR TIMER 2 INTERRUPT

Bits 6 and 7 of the ACR must be set to zero to specify the one-shot

54

THE INPUT OUTPUT CHIPS

mode (PB7 not used with T2). Since we assume here that none of the
other resources such as the shift register are being used, we simply
load all zeroes into the ACR register:

LDA #0
STA ACR

Timer 2, like Timer 1, contains a 16-bit OR so that the two halves of
the register must be loaded separately. We will first load the low half,
then the high half:

STA T2LL
LDA #301
STA T2CH

Loading the value $01 into T2C-H also results in clearing any inter-
rupt flag and starting the counter automatically.

Fig 2-28 shows that bit 5 of the IFR is the one indicating that Timer
2 has timed out. Bit S of the IFR therefore must be tested for the value
““1.”” This is accomplished by the next three instructions:

LDA #$20 BIT 5=1
LOOP BIT IFR
BEQ LOOP

The value 20 hexadecimal is equal to ‘‘00100000.”’ It is used to test
whether bit § is indeed a‘‘1.”’ The BIT instruction performs a logical
AND, without modifying the contents of the accumulator. As long as
bit 5 remains ¢‘0,”’ the program loops, waiting for the Timer 2 inter-
rupt. Whenever Timer 2 generates the interrupt, it is detected, and the
program exits the loop.

Finally, the program must explicitly clear the Timer 2 interrupt be-
fore branching to another task. This could be accomplished by reload-
ing a new value into the counter register. However, since this program
should be useful in any environment, we make no assumption as to
what will be done after this program terminates. The interrupt flag
will be cleared either by writing into T2C-H or by reading T2C-L.
Since we do not want to start the counter running again, we will not
write in T2C-H, but instead read T2C-L, simply to clear the interrupt:

LDA T2CL

55

6502 APPLICATIONS BOOK

Generating a One-Shot Delay with Timer 1

We will use Timer 1 here in a manner essentially analogous to Timer:
2 above. However, Timer 1 is equipped with a true 16-bit latch regis-
ter, unlike Timer 2. Ther program appears below:

ONESHOT1 LDA #0
STA ACR 1-SHOT MODE - NO PB7
PULSES
STA TILL LOW LATCH
LDA #301 DELAY
STA TICH LOADS ALSO TI1CL AND

STARTS
LDA #320

LOOP BIT IFR TIME OUT?
BEQ LOOP

LDA TILL CLEAR INT FLAG

The program is essentially analogous to the one above, and should be
self explanatory. The only difference is that the low latch is loaded
first, then the program writes into T1C-H, the high part of the counter
proper. This instruction also results in transferring the contents of
TIL-L into T1C-L (see Fig 2-34 showing the 6522 internal registers)
and starts the counter. The rest of the program is identical.

Generating a Pulse

The above programs will generate a delay for a program. If an ac-
tual pulse must be generated, then the proper output pin must be spe-
cified. For Timer 1, the PB7 pin will be used to provide the output
pulse PB7 will be an output if either DDRB7 or ACR7 equals ““1.”

Timer 2 does not send a direct pulse on a pin for output. The pulse
must be generated by adding instructions which explicitly turn on and
off one of the bits of the port. However, Timer 2 may count pulses
easily in its pulse-counting mode. Pin PB6 is then used for this pur-
pose. This underlines again the practical differences between these
timers. In any practical application, the reader is encouraged to review
the manufacturer’s data sheets to take best advantage of them.

56

THE INPUT OUTPUT CHIPS

Shifting in and out

The shift register SR is connected to pin CB2 of the 6522. All pulses
will be generated or sensed on this specific pin. The combination of
bits 2, 3, and 4 of the ACR determines the way in which the shifter
operates. The 8 combinations are shown on Fig 2-33 above.

In our examples so far, the contents of bits 2, 3, 4 of the ACR have
always been zero, so that the shifter register was disabled. The shifter
will shift in or shift out under control of one of three possible timing
sources: Timer 2, Phase 2 of the clock, or an external clock. In addi-
tion, it provides a special mode with a free running output at the rate
determined by Timer 2. The reader is again referred to the manufac-
turer’s data sheets for the complete specifications on the shifter. We
will simply present here two typical examples of shifting in and shift-
ing out.

Shifting in With an External Clock
The program appears below:

SHIFTIN LDA #0
STA ACR CLEAR SR
LDA #3$0C EXTERNAL CLOCK MODE
STA ACR START SHIFTER

LOOP LDA IFR DONE FLAG?

AND #304 TEST BIT 2
BEQ LOOP WAITING LOOP
LDA SR READ 8 BITS INTO ACC
STA $20 SAVE IN MEMORY

The shift register is first cleared by loading zeroes into the ACR:

LDA #0
STA ACR

Then the correct operating mode is specified by loading the value
““011”” in bits 4, 3, 2, respectively of the ACR:

LDA #$0C
STA ACR

57

6502 APPLICATIONS BOOK

This specifies a shift-in under control of an external clock (see Fig
2-33).

Once the 8 shifts have occurred, the shifting mechanism is auto-
matically disabled, and the SR interrupt flag is set in the IFR register.
After the shifting has been started, the program therefore simply
checks the contents of bit position 2 of the IFR (see Fig 2-28) to verify
whether it is ‘“1.>” The polling loop appears below:

LOOP LDA [IFR
AND #3$04
BEQ LOOP

At this point, the contents of shift register SR simply need to be
transferred into memory location 20 as usual:

LDA SR
STA 320

Shifting out Under Phase 2 Control

The program is essentially similar to the one above except that the
control bits to be loaded in the ACR are different, in order to specify
the proper operating mode. Assuming that we simply have to send one
word of 8 bits out, no waiting loop is necessary here to determine
whether the shift is finished or not. The program appears below:

SHIFTOUT LDA #0
STA ACR CLEAR SR
LDA #$18
STA ACR $2 OUT MODE
LDA $20 READ DATA FROM
MEMORY
STA SR

As above, the shift register is first cleared, then the ACR is loaded
with the value ‘“18”’ hexadecimal, which specifies the combination
‘110" into bit positions 4,3 and 2. This specifies the shift out at a rate
controlled by phase 2 of the system clock:

LDA #0
STA ACR

58

THE INPUT OUTPUT CHIPS

LDA #$18
STA ACR

The data is then fetched from memory location 20, and deposited into
the shift register. Depositing the data into the shift register automati-
cally starts it.

LDA $20
STA SR

If we had to send a succession of 8-bit words, the program here should
wait for one shift to be completed before starting the next one. This
would be accomplished by a waiting loop like the one above. Once 8
bits have been shifted out, the 6522 automatically sets bit 2 of the IFR
(see Fig 2-28) . The program therefore would simply test continuously
bit 2 of the IFR until it takes the value ‘‘1.”” Once the value ‘“1°’ has
been detected, the shift will be resumed.

Summary of the 6522

The three functions of this component are: PI1O, timer, shift. Addi-
tionally, complex control signals can be specified for the PIO and the
timer. The function of the possible control signals and options has
been described. This component should be viewed as a set of three sep-
arate functions. The functions of Port A and Port B are essentially
similar but not symmetric'al: the two timers have some common fea-
tures but offer different possibilities. Finally, the shift register is
essentially symmetrical on input and output and can be used to receive
or transmit bits or words at any set frequency from a number of exter-
nal clock sources.

Exercise 2-4: Save in a 2-word memory table at location BUFFER two
successive data words from DEVICE 1. DEVICE 1 supplies an active
low-to-high READY strobe. It requires an acknowledge signal (high
pulse).

Exercise 2-5: Same as 2-4, except DEVICE 1 requires an active-low
START pulse, and responds with the READY signal.

Exercise 2-6: Send data to DEVICE 2 from memory location BUF-
FER. DEVICE 2 supplies a BUSY signal when not ready.

59

6502 APPLICATIONS BOOK

Exercise 2-7: Same as 2-5, but DEVICE 2 requires a STATUS strobe
to supply a READY/BUSY answer.

Exercise 2-8: Turn a printer on witha ‘‘1°’ on the control line, wait for
READY, send a character, turn it off.

Exercise 2-9: Count 10 input pulses on PB6.
Exercise 2-10: Generate a pulse of 1 ms on PB7.

Exercise 2-11: Shift out 8 bits from memory location BUFFER at
Timer 2 rate.

DATA
BUS

X8
[} o
o
&
& PORT B
2
o
ADDRESS (PB&/PBS = C51/C52;
ADDRESS
Bus C:> pecooer | P87 =IRQ)
A -A9
s
2
@2 CONTROL
W
S

Fig. 2-36: 6530 Internal Architecture

60

THE INPUT OUTPUT CHIPS

THE 6530 ROM-RAM 1/0 TIMER (RRIOT)
(RRIOT stands for ROM-RAM-1/0-Timer).

The 6530 is a special combination component which combines four
functions usually distinct: a PIO, a timer, a RAM and a ROM. The in-
ternal architecture of the 6530 is shown on Fig2-36. It is equipped
with the usual two PIO ports, each one of them with its own data-di-
rection register. However, there are no control lines or interrupt logic
associated with the ports. The timer is connected to port B. The RAM
memory provides 64 bytes, the ROM provides 1K bytes. A ROM, once
programmed, cannot be changed. Since it is uneconomical to produce
ROM’s in small quantities, the 6530 is only used in situations where a
large number of identical components is going to be produced. As an
example, the KIM board uses two 6530’s which contain the internal
control program or ‘‘monitor.”’

Three pins on this component have a dual function: CS1 and CS2
are mask options intead of PB6 and PBS. Also, PB7 may be used as
an interrupt request IRQ.

The Interval Timer

The interval timer is equipped with an 8-bit register, and may be
used in one of four modes. Depending on the values AO and Al of the

A2 Al A0
0O 0 0 BUFFER A
o 0 1 -
DDRA Note: A3 specifies
whether interrupt
o 1 0 BUFFER B is used.
o T 1 DDRB
10 0 TIMER 1T +IRQ to PB7
1 o 1 (W) TIMER 8T NO IRQ to PB7
(R)INT FLAG
1 1 0 TIMER 64T +IRQ to PB7
1 1 1 TIMER 10247 NO IRQ to OB7
(R)INT FLAG

Fig. 2-37: 6530 Memory Map

61

6502 APPLICATIONS BOOK

address lines, it will count in increments of 1, 8, 64, 1024 times the sys-
tem clock. To the programmer, the timer appears as a set of 4 memory
locations as shown in Fig 2-37.

When using the timer, pin PB7 may be used as an interrupt pin.
When used as an interrupt, pin PB7 must be programmed as an input.
When not used as an interrupt, it may be used for any usual purpose.
For details on the utilization of PB7 as interrupt, the reader is referred
to the manufacturer’s data sheets.

THE 6532 RIOT

The 6532 is essentially a 6530 without the ROM. The RAM, how-
ever, is larger: it provides 128 words. In addition, the PA7 line on this
device may be used an an edge-detecting input. When this mode is used,
an active transition will set an internal interrupt flag (bit 6 of the inter-
rupt flag register).

The internal architecture of the 6532 is shown in Fig 2-38. The ad-
dressing of the chip is shown in Fig 2-39. The rest of the operation of
the 6532 is essentially like that of the 6530.

Ports A and B are not symmetrical. The main difference between
the two ports is that port B is equipped with push-pull buffers which
are capable of sourcing 3 mA at 1.5 volts. This allows the direct con-
nection of this port to LED’s or Darlington transistors. Further, port
A reads directly from the pins. On port B, data is read from the output
register instead of the peripheral pins.

—
S
ey H i pl
® <~ (A7 moy be control)
1286x8
e
ADDRESS
BUS :3 ADORESS
(AO-A8) DECODER
= ; K—. o
g; § (87 moy be control}
CONTROL ‘
o2 GE
RES -
L o

Fig. 2-38: 6532 Internal Architecture

62

THE INPUT OUTPUT CHIPS

rad
w

Ad | A3

9
2
>
o
o

SELECTION

- RAM
- ORA
- DDRA
ORB
DDRB

WRITE TIMER +1T

+87

+ 641

+ 10247

READ TIMER

READ INTERRUPT FLAG
WRITE EDGE DETECT CONTROL

0O—~0=0 "

-t - ot - - O
P = =00 —~=00 ¢

« -0 -0 —

- ———-—_-—_D OO0

O~=0000 "+

0

.

disable (O) enable (1) INT from timer 10 IRQ
** disable (O) enable (1} INT from PA7 10 IRQ *
*** negative (0)/positive (1) edge detect

Fig. 2-39: 6532 Addressing

SUMMARY

Most applications will require at least the use of two or more ports
on one or more PIO’s, and the use of a programmable timer. Still
more complex applications will require the use of control signals and
the possible use of automated shifts. All the components we have re-
viewed - the 6520, the 6522, the 6530 and the 6532 - provide two PIO
ports. Except for the 6520, they all provide at least one programmable
timer. A comparison table of the four input-output devices appears
on Fig 2-40.

One or more of the above PI1O’s will be used in all the applications
in this book.

6520 6522 6530 6532
PORT A LINES 8 8 8 8
PORT B LINES 8 8 5t08 8
CONTROLLINES, A 2 2 o] 0
CONTROL LINES, B 2 2 o 0
DDRA 1 1 yes yes
DDRB 1 1 yes yes
TIMER - yes yes yes
TIMER 2 - yes - -
ROM - - 1K X 8 -
RAM - - 64 X 8 128 X 8
OTHER - add ‘| control registers 4 timer ratios 4 timer ratios
INTERRUPT 2 1 optional 1

Fig 2-40: Comparison Chart of the Four PIO's

63

CHAPTER 3

6502 SYSTEMS

INTRODUCTION

The applications presented in this volume will be connected to a
‘“‘standard’’ 6502 system. The organization of such a ‘‘standard
system’’ will therefore be presented first. Then, some real 6502 boards
will be described and will be shown to be consistent with the standard
model just introduced.

In order to present realistic applications, it is necessary to define an
exact hardware configuration to which the applications are effectively
connected. The majority of the examples presented in the book are di-
rectly applicable to the SYM board, and can be readily adapted to the
KIM board. One section of the next chapter will specifically present
KIM programs. SYBEX does not endorse any board or any manufac-
turer. Simply, for educational purposes, it is more practical to present
applications directly applicable to existing boards, rather than invent a
fictitious one. Most programs written for the SYM are compatible with
the KIM, and can be readily adapted to other boards, such as the
AIMBG65. The reader is encouraged to exercise his own judgment in deter-
mining which board will be best suited to his needs.

The architecture of the KIM, SYM, and AIM 65 are presented in this
chapter. SYM is presented in more detail so that the reader who does not
have a SYM can understand the interconnections used in the application
programs presented in the following chapters. However, it should be
stressed again that any other board can be used, and that the changes re-
quired in the programs are usually minor.

64

6502 SYSTEMS

A “STANDARD” 6502 SYSTEM

Any standard microprocessor system includes at least the microproc-
essor unit (MPU) and its clock circuit, the ROM, the RAM, and one or
more PIO’s. The organization of such a standard system, using the
6502, is shown in Fig 3-1.

oo "ADDRESS BUS > EXPANSION

= U o Ul

PORT A

RAM ROM PIO

6502 : : s 10 DEVICES
<:>co~m01
o1 U1 $9p

¢ DATA BUS >
< CONTROL BUS [iz j>

IL'@'

A CONTROL
10GIC

EXPANSION

Fig. 3-1: Organization of a "‘Standard" 6520 System

The 6502 incorporates most of the clock’s circuitry within the micro-
processor chip, so that only an external crystal and an oscillating circuit are
necessary. The 6502 and its clock circuit are shown on the left of the
illustration. The 6502, like any *‘standard’’ microprocessor, creates three
busses: the address bus (16 lines), the data bus (8 lines, bi-direc-
tional), and finally the control bus.

In the standard system, the RAM memory (read-write memory), the
ROM memory (read-only memory), and the PI1O are shown as separate
chips connected to the 3 busses. The ROM will typically contain a moni-
tor program necessary for using the microprocessor board resources, or
else user programs (in industrial applications). The PIO will create two
ports (8 lines each) for communicating with external devices, plus perhaps
some additional control lines. In any practical application, at least two
PIO’s will be necessary to provide a sufficient number of 1/0 lines. Some

65

6502 APPLICATIONS BOOK

additional logic is usually required for address decoding and other
functions. _

Because several combination-chips are available in the 6502 family,
the ROM, the RAM, and the PIO may be combined on one or more
chips. However, any system using the 6502 will normally incorporate all
the logical elements of Fig 3-1.

Let us now examine some real boards and how they relate to our stan-
dard board.

Fig. 3-2: Photo of KIM-1

THE KIM-1

The KIM-1 was an early board introduced by MOS Technology in
support of their 6502 microprocessor. It incorporates a minimal number
of components, is equipped with a hexadecimal keyboard and with 6
LED’s, so that it can be used as a low-cost stand-alone complete micro-
computer board. It is shown on Fig 3-2. Its internal organization is
shown on Fig 3-3.

The KIM-1 includes a separate 1K by 8 RAM (for the user) and two
6530 combination chips. The reader will recall from the previous chap-

66

6502 SYSTEMS

ter that the 6530 is a combination chip providing a PIO, a programma-
ble timer, a ROM, and a RAM. On this board, thereis no need for an ex-
ternal ROM memory since the amount of ROM memory provided by
the two 6530’s is sufficient to contain the system monitor. Each 6530
also contains 64 bytes of RAM which are partly used by the system
monitor.

aocx EXPANSION
et ADORESS 8US > CONNECIOR

1K X8 6530 0%

6502 RAM #2 #

’ <: 6530
-

ROM

- ﬁi W@QJHI T
U

CONTROL BUS >
CONTROL
L0GIC

0s)

Fig. 3-3: KIM-1 Internal Organization

Additionally, the board is equipped with a keyboard, 6 LED’s, a tape
recorder interface, and a teletype interface. It can be expanded exter-
nally through two edge connectors, called respectively the expansion
connector and applications connector, as shown on Fig. 3-3. The
system memory-map is shown on Fig 3-4. The signals for the two con-
nectors of the KIM are shown on Fig 3-5 and 3-6.

The reader should ascertain that the organization of this board does
meet the description of our standard 6502 system as shown on Fig 3-1.
The details of the pin interconnects are useful to those readers who will
want to connect the applications presented here to this particular board.

67

6502 APPLICATIONS BOOK

REGISTER BUFFER

STACK POINTER

4K
EXPANSION

64 Byte RAM, 653041 KIM RAM +Applications RAM
64 Byte RAM, 653042

1/0 & Timer, 653041 (KIM 1/0)

170 & Timer, 6530#2 (Applications 1/0)

1C00 Kim
ROM
6530 #1
N "\j Fig. 3-4: KIM-1 Memory Map
(EXPANSION)

22 KB Col D Z KB Row 1
21 KB Col A Y KBColC
20 KB Col E X KB Row?2
19 KBColB W KB Col G
18 KBColF V KB Row 3
17 KBRowO U TTY PTR
16 PBS T TTY KYBD
15 PB7 S TTY PTR RTRN (+)
14 PAO R TTY KYBD RTRN (+)
13 PB4 P AUDIO OUT HI
12 PB3 N +12V
11 PB2 M AUDIO OUT LO
10 PBI1 L AUDIO IN
9 PBO K DECODE ENAB
8 PA7 J K7
7 PA6 H KS
6 PAS F K4
5 PA4 E K3
4 PAIl D K2
3 PA2 C Kl
2 PA3 B KO
1 Vss(GND) A Ve (+5V)

Fig 3-5: KIM Application Connector

(=)
-]

ool el R R SR O B N T NS Y
O = N WH WU J0\OO —

N W A LN 0O

Fig. 3-6: KIM Expansion Connector

Vss (GND)
Vee (+5)

SST OUT
K6
DBO
DBI
DB2
DB3
DB4
DB5
DB6
DB7
RST
NMI
RO
IRQ
g1
RDY
SYNC

Fig. 3.7: SYM

PEWOUMNMI-REZZOURu-HC <E X <N

6502 SYSTEMS

RAM/R/W
(17}
PLL TEST
R/W
R/W
2
ABIS
ABl4
ABI3
ABI2
ABI1
ABI0
AB9
ABS
AB7
AB6
ABS
AB4
AB3
AB2
ABI
ABO

69

6502 APPLICATIONS BOOK

THE SYM-1

The SYM-1 board was introduced by Synertek Systems as an expand-
ed version of the previous board. A photo of the SYM appears on Fig
3-7. Its internal organization is shown on Fig 3-8.

XTAL

Tl BT

g

8

H
CONNECTOR

L

CONNECTOR

KEYPAD

CONNECTOR
AUX PORTS OPTIONAL PORTS
) L] ®)

Fig. 3-8: SYM-1 Internal Organization

The essential differences from the previous board are:

* Itis equipped with a separate 4K by 8 ROM. A larger ROM size al-
lows a more complex monitor to reside on the board.

e Itis equipped with more complex input-output chips and has three
of them instead of two, thereby offering more IO ports and resources.
Because of the extra ports, it also has one more applications connector
than the previous board.

¢ Additional input-output facilities are available such as four input-
output buffers and part of a CRT interface.

Other miscellaneous differences exist between these boards but are
not relevant for the purposes of this book.

The system memory map is shown on Fig 3-9, and a more detailed
RAM memory map is shown on Fig 3-10. The details of the three con-
nectors are shown respectively on Fig 3-11, 3-12, and 3-13.

70

mz
;

ON BOARD RAM
{1K TO 4K}

8000 ON BOARD ROM
MONITOR (4K)

170 DEVICES
6522 #1, 6522 #2, 6532 RAM,
6532170, 6522 #3

€000, OPTIONAL ROM
8K BASIC
E000 OPTIONAL ROM

ASSEMBLER/EDITOR

INTERRUPT VECTORS (6532)

Fig. 3-9: System Memory Map

0000 ON-BOARD RAM
B
O1FF STACK
ON-BOARD RAM
o2FF | _ DT
03FF ON-BOARD RAM
0400
OPTIONAL
ON-BOARD
RAM
O7FF
0800
OPTIONAL
ON-BOARD
RAM
OBFF
0C00
OPTIONAL
ON-BOARD
RAM
OFFF

Fig. 3-10: RAM Memory Map

feact o
’ PAGE 1

! PAGE 2
, PAGE 3

6502 SYSTEMS

g) |

S —

6502 APPLICATIONS BOOK

1 SYNC A ABO
2 RDY B ABI
3) C AB2
4 IRQ D AB3
5 RO E AB4
6 NMI F ABS
7 RES H AB6
8 DB7 J AB7
9 DB6 K ABS8
10 DBS L AB9
11 DB4 M ABI10
12 DB3 N ABI1
13 DB2 P ABI12
14 DBI R AB13
15 DBO0 S AB14
16 18 T ABI5
17 DBOUT (1) u
18 POR \% R/W
19 Unused w R/W
20 Unused X AUD TEST
21 +5V Y [73
22 GND Z RAM-R/W
Fig. 3-11: Expansion Connector (E)
1 GND A +5V
2 APA3 B 00
3 APA2 C 04
4 APALI D- 08
5 APA4 E 0C
6 APAS F 10
7 APA6 H 14
8 APA7 J IC
9 APBO K 18
10 APBI1 L Audio In
Fig. 3-12: Application Connector (A)
72

11
12
13
14
15
16
17
18
19
10
21
22

APB2
APB3
APB4
APAO
APB7
APBS
KBROW 0
KB COL F
KB COL B
KB COL E
KB COL A
KB COL D

(1): Jumper Option

O 00 3O\ WL ph W —

10
11
12
13
14
15
16
17
18
19
20
21
22

N~ XE<<odTvmvwzZZ

6502 SYSTEMS

Audio Out (LO)

RCN-1 (1)

Audio Out (HI)

TTY KB RTN (+)

TTY PTR (+)

TTY KB RTN (-)

TTY PTR (-)

KB ROW 3
KB COL G
KB ROW 2
KB COL C
KB ROW 1

Fig. 3-12: Application Connector (A) - (continued)

GND
— VN
2PA 1
2CA2
2CB2
2PB7
2PBS
2PB3
2PB1
2PA7
2PAS
2PA3
RES
3CB1
3PB2
3PBO
3PA6
3PA3
3PA4
3PAS
3 PB5 (B)
3 PB7(B)

(B): Buffered
Fig. 3-13: Auxiliary Application Connector (AA)

N~ XE<cOCHIwZIrtRaITmmMmOO®»

+5V
+Ve
2PA2
2PAO
2CA1l
2CB2
2PB6
2PB4
2PB2
2PBO
2PA 6
2PA4
3CA 1
SCOPE
3PB3
3PB1
3PA7
3PAO
3PA I
3PA2
3 PB4 (B)
3 PB6(B)

73

ABOO ORS (P8O TO PB7) 1/0 data, port A
ABO! ORA (PAQ TO PA7) ied for conrol-offecn hondshoke
02 bor 8 doto direction
registers
ABGY OOR A
AbO4 nLUnct counter-low
AbOS TICH counter-high
timer |
Ab0s L Jateh-low ‘
ApO7 TIiLH laich-high |
|
lotch-low |
Ax00 TZUT2CL caunter-low i
timer 2
AbO? T2C-H counler-low
ABOA SR shift register
Ab08 ACR ouliliory
} tunction
ABOC FCR (CA1,CA2,CB2.CB1) peripheral cantrol
ALOD L flogs } N
ALOE ® enable control
ABOF output regisier A
ORA {does nol atfect handshake)
b=0for VIAFI,
b= g for VIA 2,
b=Clor VIA 3,

Fig. 3-14: Memory Map for the 6522's

A4IF TIMER + 1024
A41E TIMER + 64T
A41D TIMER + 8T
A41C TIMER 1T

(W) EDGE DETECT
Ad07 (R)INT FLAGS
Ad06 | (W) EDGE DETECT
(R) TIMER
Ad0s | (W)EDGE DETECT
(R) INT FLAGS
(W) EDGE DETECT
A404 (R) TIMER
A403 DDRB
A402 ORB
A401 DDRA
A400 ORA

Fig. 3-15: Memory Map for the 6332

74

6502 SYSTEMS

The memory map for the 6522’s is shown on Fig 3-14, while the mem-
ory map for the 6532 is shown on Fig 3-15.

Since some implementation details will be used (or worked around) in
some of the application programs, two relevant details are presented
below.

Fig 3-16 shows the four buffered outputs available on PB4 through
PB7 of 6522 #3. Fig 3-17 shows the connection to the LED’s and the
keyboard.

6522
#3

AA CONNECTOR

pB5 p—————{ BUFFER_}——o0 21
P |——— (B }—o 2
O 22

PB7 BUFFER

Fig. 3-16: The Four Buffered Outputs

THE AIM 65

The AIM 65 is shown on Fig 3-18. This unit, developed by Rockwell
International, consists of two boards. One of them is the microcompu-
ter board, equipped with a 20-column dot-matrix printer, and a 20-char-
acter alphanumeric display. The second board is a full ASCII keyboard,
which is attached directly to the other one. The printer operates at up to
120 lines per minute, using a five-by-seven dot matrix to print the com-
plete ASCII 64-character set (upper case only). In its minimal version,
the AIM 65 is equipped with a comprehensive monitor (8K) 1K of RAM,
two 6522’s, one 6532, plus the usual interfaces (teletype, two audio cas-
sette interfaces, and naturally the keyboard interface). Several addi-
tional chips can easily be placed on the board. Further, the user appli-

75

6502 APPLICATIONS BOOK

o >
<
o
?
4
>
0 <

ERERIBEINE RS

L

EE oE mE EEiEnin
BEEETEERING RS N)

® c SR e

L] R
d J J wd

PA7 W] F—A[

S | 1
=

2
mrhrhrhrhrhrmh
It
mhrhrhrmaraoh
COCo ottt

LiC

3
o N o >

BND AN -

f

Fig. 3-17: Keyboard and LED Connection

Fig 3-18 : AIM 65 is a Board with Mini-Printer
and Full Keyboard

76

6502 SYSTEMS

cations connector is identical to those described for the previous
boards. A user developing applications for this specific board will there-
fore only have to modify the programs presented here to fit the memory
assignments of the AIM 65 PIO’s.

OTHER BOARDS

Other boards are manufactured by various manufacturers such as
Ohio Scientific.

Overall, all 6502 boards fit the description of our “‘standard system.”’
As long as they use the same 1/0 chips (and nearly all do, as these chips
offer strong advantages), there should be virtually no modification
needed to the programs presented in this book, except for the PIO ad-
dresses, and the possible unavailability of specific 1/0 lines.

The SYM A and E connectors are equivalent to the KIM and AIM
edge connectors. The vertical board, on the left of the power supply of
Fig 3-19 below, is a 16K memory expansion board connected through the
E connector.

At the foreground, two experiments are connected through the A con-
nector: a hexadecimal keyboard, and a microprinter. They are described
in chapter 6.

,”39.

Fig 3-19: KIM/SYM/AIM Connector Compatibility

77

CHAPTER 4

BASIC TECHNIQUES

INTRODUCTION

In this chapter, we will connect a 6502 board to basic input-output
devices. We will connect it to simple output devices such as light-emit-
ting-diodes (LED’s), relays, and a loudspeaker. On input, we will con-
nect it to a set of switches. Then, we will use these resources to start
developing simple application programs, such as a Morse generator, a
time-of-day clock, a simple home control program, and even an auto-
matic telephone dialer. We will then present direct applications of
these techniques: a siren, a pulse meter, a music program, a mathe-
matical game. Then, in the following chapter we will develop more
complex programs using these basic input-output devices and more
complex ones.

Few components are needed to actually realize the applications
board for this chapter. A picture of the board is shown in Fig 4-0.
All the components can be purchased at low cost from any electronics
store. The reader is strongly encouraged to acquire these few electronic
components and to wire them as indicated in this chapter, in order to
effectively apply the programs that will be described. Naturally, this
will require access to a 6502-based board.

In order to present real programs, the hardware configuration of
the SYM board is used in the first part, and the KIM for the second
one. However, all of these programs should run with minimal modifi-
cations on any other 6502 board (see Chapter 2).

78

BASIC TECHNIQUES

The programs to be developed in this chapter are simple, but they as-
sume a basic understanding of the 6502 instructions, as provided by
the preceding book in the series, reference C202 (‘‘Programming the
6502°’).

The list of components required for the applications programs in
this chapter is:

perforated board (1)

switches 4

LED driver (1)

LED’s (1 or more)

12 V relays 3)

speaker (1) (high impedance preferred)
variable resistor (1)

resistors

male 120 V AC plug (1)
female 120 AC plugs 2)

The hardware connection of the various components on the board
will be described for each application.

1t is not indispensable to assemble an applications board to understand
this chapter. However, many exercises will be suggested in this chapter
and the following ones. Although they can be developed on paper, true
programming expertise is best acquired through actual experimenta-
tion. The reader is therefore again encouraged, either before or after
reading this book, to start programming on real hardware.

The goal of this chapter is to teach the basic hardware and software
interfacing techniques which are required to connect any ‘‘standard”’
6502 board to simple external devices. At the end of this chapter, you
should know how to use the main resources of the input-output chips,
and how to write programs which will sense and control input-output
devices. We will build upon this knowledge in the next chapter and
develop more complex industrial and home applications.

79

6502 APPLICATIONS BOOK

Fig. 4-0: Complete System with Power Supply, Micro-
computer Board, Tape Recorder and Applications Board

80

BASIC TECHNIQUES

SECTION 1: THE TECHNIQUES
RELAYS

A relay is used to control an external high voltage or high current
circuit: the control circuit is isolated from the external one through the
relay. A relay requires DC current. The current flows through a coil,
producing a magnetic field. This field will provoke in turn the closure
of a movable contact. The external circuit may be alternating current
(AQ) or direct current (DC). In order to control external devices using
a significant current of voltage, such as appliances, we will use relays.

The SYM board has a special provision for high current or high
voltage devices. Four buffered output ports are available on the
board. They are respectively connected to bits 4, 5, 6, and 7 of the in-
put-output register B of the PIO (6522-U29) (see Fig 4-1). We will,
therfore, directly use these special outputs which can control relays.
On any other board which has only PIO outputs (such as KIM) a tran-
sistor or buffer must be used. The use of a 7404 Hex Inverter is
shown on Fig 4-2 to control three external relays from two output lines
of a 6530.

6522
#3

AA CONNECTOR

PBS 2
pes |——(BUFER }—o 2
P87 f————— BUFFER |—o0 22

Fig. 4-1:1/0O Buffers

81

6502 APPLICATIONS BOOK

RILAY)
- S e eyt &
7404 i

1 NI N]

GNN ’ " VELAYD

L

RILAY 2

> a & =~

Fig. 4-2: 6330 Relay Interface

The Hardware Interface

The connection diagram for a single relay appears on Fig 4-3. This
relay may be, for example, a 12 volt relay with a 50 to 500 ohms coil.
The contact can be SPST (Single pole, single throw = one contact) or
SPDT (Single pole, double throw = two contacts) at 10-15 amps. The
current rating of the relay contacts should be sufficient to handle the
external device connected to it. Most house appliances do not draw
more than 10 to 15 amps so that the above specifications should be
sufficient for home applications.

OUTPUT ———e—1 é
%u N EXTERNAL
DEVICE
+12v

Fig. 4-3: Connecting a Simple Relay

Note on the illustration that a clipping diode is connected in parallel
to the coil. This is an important precaution with any relay to avoid
damage to the P10 buffer or amplifier. A reverse voltage spike occurs
when the relay is turned off. Any diode which will handle the voltage
may be used. For example, an IN914 should be sufficient for our pur-
poses.

82

BASIC TECHNIQUES

e DI INES

RESISTOR

Fig. 4-4: Precautions on Device Side

On the device side of the relay, two precautions can be taken: a
capacitor may be placed in parallel to the output to absorb the surge
due to contact closure (this insures a longer life for the relay contacts);
also, if a significant current may be drawn, a resistor should be placed
in series (see Fig 4-4).

A double-pole relay can be connected in exactly the same manner,
and the connection diagram appears in Fig 4-5. Such a relay is capa-
ble of switching two independent, separate circuits simultaneously.

1R

&
a

(3 CONTACT DUAL OUTPUT)

Fig. 4-5: Connecting a Double Pole Relay

Let us now consider a practical application. We will connect two re-
lays, R1 and R2 respectively, to bits 6 and 7 of port B of the SYM PIO.
These two relays will be used to control AC devices. In the simplest
case, we will assume that these AC devices are two independent lamps.
This will allow us to test the program easily, by merely verifying
whether the lamps are turned on and off correctly. Naturally, instead
of a lamp, the device could be any household device or appliance
which does not overload the relay. The interconnect diagram appears
in Fig 4-6.

83

6502 APPLICATIONS BOOK

RELAY R1
AA-22 ’
(PB7) ot
EXTERNAL
CIRCUIT
o——
+12v /
RELAY R2
AA-Z oO——t—0
(PBe) =2
[T © EXTERNAL
O—4———0 CIRCUITS
+12v o =% m— 1

Fig. 4-6: Connecting Two Relays to the PIO

Let us inspect Figs 3-11, 3-12 and 3-13 showing the connection points
for the three SYM connectors: we see that the four buffered oputputs,
called PB4, PBS, PB6 and PB7, are available repectively on pins Y,
21, Z and 22. The connection points marked PBS through PB7 on our
illustration, therefore, simply need to be connected by a wire to the
appropriate pin of the ‘‘auxiliary application connector.”’

CONNECT
TO 120V AC | RELAY 2
OUTLET
o]

CTRL2

G RELAY 1

(ANY OTHER RELAY)

3 V
']

[[
[[
1l o

¥

120v 120V
FEMALE FEMALE
UG UG

Fig. 4-7: External Circuit for the Relays

84

BASIC TECHNIQUES

On the external circuit side of the relay, one AC plug is used which
will be connected into a wall outlet and supply power to the two out-
lets which will be controlled by the microcomputer. These two female
outlets are connected to the relays as indicated on Fig 4-7. They are
powered in parallel from the AC plug. However, either one of them
can be turned on independently under microcomputer control. Let us
now implement the software control for these relays.

AC00 IOR-B
ACO05 TIC-H
ACO06 Ti-L
AC07 TIL-H
ACOB ACR
ACOF

Fig 4-8: Memory Map for 65322 #3 (Third 6522 of SYM)

The Software Interface

Each of the two circuits connected to relays R1 and R2 will be
turned on whenever the corresponding relay is actuated. The relay will
be turned on by setting the corresponding control bit to 1. By inspect-
ing Fig 4-8, it can be seen that Port B for the 6522 #3 is located at
Memory Address AC00. The contents of memory location AC00 are
illustrated on Fig 4-9. Let us now turn the relays on and off.

85

6502 APPLICATIONS BOOK

MEMORY ADDRESS
acoo | 71 el s| 4 3] 2] o

—> PB4 (UNUSED)
PB5 (RELAY R3)
PB6 (RELAY R2)
PE7 (RELAY R1)

Yvyy

Fig. 4-9: Port B of 6522 #3

First, we must configure Port B as an output port. To simplify, we
will specify that bits O through 7 be outputs, even though we use here
only bits 5, 6, and 7. The convention could be changed in a different
application. It will be remembered from Chapter 2 that, in order to
specify the direction in which input-output lines will be used, the
corresponding bit position of the Data Direction Register must be
loaded with a zero or a one. A one in the Data Direction Register will
specify an output. A zero will specify an input. Loading all ones in the
Data Direction Register guarantees that all bits will be used as out-

puts.

r—-
o T o
Vo u
[]]
w
CTRL
o i1 o— CMN2
1 %‘
1"
[X]
tH
H
21 RELAY |
Y RELAY 2
Z RELAY3

Fig. 4-10: Detail of Relay Connection
on the Applications Board
As a remark, when programming, it is a good policy to always make
things as simple and consistent as possible. Since we assume here that
(for the time being) no other devices are connected to the other lines of
Port B, it is safer to configure all lines as either inputs or outputs.

86

BASIC TECHNIQUES

Specifying all bits as outputs will be accomplished by the following
two instructions: .

LDA #$FF LOAD A IMMEDIATE WITH 11111111
STA $AC02 STORE A INTO ADDRESS AC02
HEXADECIMAL

It can be verified on Fig 4-8 that AC02 is the address of the Data Di-
rection Register for Port B of the 6522 device #3. ““FF’’ hexadecimal is
equivalent to ““11111111”’ binary. Let us now turn on the relay con-
nected to PB6.

LDA $AC00 READ CURRENT VALUE OF PB
ORA #$40 FORCE PB6 TO 1
STA SAC00 OUTPUT

The first instruction is used to read the current value of Port B. Be-
cause several devices or relays may be presently connected to Port B,
we do not want to simply write a pattern such as ‘01000000’ into
Port B; this would turn on the relay connected to PB6, but would also
turn off all the other relays! Therefore, we want to read the present
status of PB and only change a single bit, PB6. The change is accom-
plished with the logical OR instruction, the second in our program
(ORA). The logical OR respects the integrity of all the bits, and forces
to ““1”’ the specified bit location. If we wanted to turn on PB7 instead
of PB6, the pattern ‘80’ (hexadecimal) would be used, instead of
‘“40.”’ Finally, the resulting bit pattern is stored at address ACO00,
which corresponds to PB; the relay connected to PB6 is then turned on.

Exercise 4-1: Write the three-instruction program which will turn on
the relays connected to PB6 and PB7 simultaneously.

Let us now turn off the relay connected to PB6:
LDA $AC00 READ THE CURRENT STATUS OF PB
AND #3BF - SET BIT 6 TO 0
STA $ACO00 STORE RESULTING VALUE IN PB
The logical-AND instruction is used to force a ‘‘0”’ at the specified bit

location. All other bit locations are not affected. (‘‘BF’’ hexadecimal
is “10111111”’ in binary.)

87

R R R R

6502 APPLICATIONS BOOK

Note: The AND instruction is traditionally used to zero a specified
bit location. However, an identical result may be obtained using the
EOR instruction. The program remains the same except that the AND
instruction becomes:

EOR #8$40

The advantage is that the pattern used to turn off is the same as the
one used to turn on. This eliminates a possible mistake. The reader
should naturally verify that this is a legitimate way to force a zero.
This is because the exclusive OR of ““1’’ and ¢“1”’ is ¢‘0.”’ If bit 6 was
a‘“l1,” the ‘40" pattern will therefore force it to a zero. All other bits -
will be unaffected.

Verification

Let us verify now that these simple instructions are indeed sufficient
to turn our relays on and off. We will connect two lamps, or two de-
vices, to the two relays and type in these instructions at the keyboard,
then verify that the lamps are turned on or off. Since the keyboard re-
quires that input be in hexadecimal form, here is the hexadecimal
equivalent of the two above programs:

To turn the relay on:

AD 00 AC

09 PATTERN (PATTERN stands for an 8 bit pattern)
8D 00 AC

The program to turn the relay off is:
AD 00 AC

49 PATTERN

8D 00 AC

If you have a board you should now key in these two programs and
verify their correct operation.

SWITCHES

Two main types of switches may be connected: a push-button
(SPST switch) or a two-position switch (SPDT). The connection of an
SPST is illustrated in Fig 4-11. With the connection indicated, the
switch is in the logical state ‘‘1°’ when the contact is open and in state
«“0** when the contact is closed. If the opposite should be desirable,
the polarities would simply be reversed on the switch contact.

BASIC TECHNIQUES

The connection of an SPDT switch (a two position switch) is illus-
trated in Fig 4-12. The connection is straightforward. One of the con-
tact positions will be logical state ‘‘1,”” while the other one will be logi-
cal state “‘0.”

+5v

% 10K
INPUT /
PORT ¢ T

GND

Fig. 4-11: Connecting an SPST

+5v

$

GND

Fig. 4-12: Connecting an SPDT

Connecting Four Switches

We will use lines 1, 2, 3, and 4 of Port B of the 6522, as four input
lines used to sense the status of the external switches. The actual con-
nection appears on Fig 4-13. Let us examine the program.

+5V—0
PB)
(A—10) o <)Iswivch S1
GND +5v—0
(APB?I) o ls itch 52
_ ‘_O° w
- +5V ——0 GND
(A—12) ORwirchs3
PB4 GND +v—o0
(A—13) © olswiich s4

GND

Fig. 4-13: Connecting Four SPDT Switches to the SYM

89

6502 APPLICATIONS BOOK

GRNO =

H
-+
H

Fig. 4-14: An SPDT Switch

MAIN

| | |
| H] H | H I
R e

' A 13 12 " 10

Fig. 4-15: Connection Detail for Four SPDT’s

The Software Interface

We first need to configure PB1, PB2, PB3, and PB4 as input lines
on Port B. This is accomplished by loading the appropriate pattern in
address ‘°A002,”’ the data direction register for Port B.

LDA #$EO SET BITS 01234 AS INPUTS
STA $A002

The pattern ‘“E0’’ is used to configure lines 0, 1, 2, 3, 4 as inputs
and lines 5, 6, 7 as outputs (they may be connected to external relays).
““E0’’ hexadecimal is ““11100000”’ in binary. Each ‘‘0”’ sets an input.
Each ¢‘1”’ sets an output. ‘‘E1’’ could also be used.

Let us now read the value of the switch and branch to a specified
memory location determined by this value.

LDA #SWITCHPTR “02” FOR SI, ‘04’ FOR S2, ‘08"’
FOR 83, ‘10’ FOR $4

BIT $A000 A000 IS ADDRESS

BEQ ANYADDRESS WILL BRANCH TO SPECIFIED
ADDRESS IF SWITCH WAS ZERO
(OFF)

90

BASIC TECHNIQUES

Alternatively, if we wish to branch to a specified memory location if
the switch is ‘‘1”’ (on), we would substitute the instruction BNE in-
stead of the BEQ in the last line of the program.

Testing the Program on the Board
The hexadecimal code for the above program is:

A9 SWITCHPTR
2C 00 AO
FO ANYADDRESS or ‘“‘DO’’ ANYADDRESS

SPEAKER

An external speaker may be connected directly to a pin of one of the
PIO devices. Pin 7 is often more powerful and is generally used. On
the 6522 device, the polarity of the PB7 output signal can be controlled
by one of the internal interval timers. The timer will be used to gener-
ate a tone of given frequency. The preferred position for connecting
the speaker will therefore be PB7. The connection diagram appears

on Fig 4-16.
-
PB7 _—
(A—15) ~
~

+5v

Fig. 4-16: Connecting the Speaker
When the buffered output of the SYM is used (6522 #3) a resistor
should be placed in series with the speaker to limit the output current.

Instead of connecting the speaker directly to a PIO output pin, the
circuit of Fig 4-17 may be used to provide a louder sound.

pa—
1

Fig. 4-17: Obtaining a Louder Output

ouTPUT
AN © A

+5v

Warning: a variable resistor is shown on Fig 4-17 for convenience.
However, if it is set to zero, it will probably burn, and destroy the cor-
responding output transistor (this applies also to SYM).

91

e e

6502 APPLICATIONS BOOK

The Software Interface

A sound can be generated by the speaker by merely turning it on
and off at the desired frequency. The sound will not be as ‘‘clean
sounding’’ as one from a musical instrument since it will have been
generated by a square wave. However, it will be sufficient for our
needs and can be clearly identified by its frequency. We will now build
a practical application

A MORSE GENERATOR

We will develop here a program capable of generating a Morse code
corresponding to any letter of the alphabet. Ths program will activate
a loudspeaker, so that we can verify that the proper Morse code is be-
ing generated. In addition, it will have the capability of turning on or
off an external device so that this morse code could for example be
transmitted over a communications link.

2001 W
o

Fig. 4-18: Memory Allocation for the Morse Program

The conventions used by this program are the following:

The program itself will be stored in Page 3 of the RAM, i.e., start-
ing at location 300. This is illustrated on Fig 4-18. This program con-
tains a Morse equivalence table which will serve to generate the proper
bit pattern for any given ASCII character. It will be shown below how
this table is generated. It is assumed that the first character to be con-
verted to Morse is contained in the accumulator at the time the pro-
gram is started.

92

BASIC TECHNIQUES

Further, the speed of the transmission will be adjustable through
the variable SPEED, stored in Page 0 at memory location FO (See Fig
4-18). Each time unit (such as the duration of a dot in Morse code) is
expressed internally in milliseconds. Putting the value 100 into vari-
able ‘‘SPEED’’ will result in the duration being 1/10th of a second.

Before the program is started, it is assumed that CHAR and SPEED
‘have valid contents, and that the accumulator contains the first
character to be transmitted. An external subroutine could call this
subroutine repeatedly in order to transmit a string of characters. It is the
responsibility of this subroutine to deposit a character in the
accumulator every time it calls the Morse transmitter.

Let us now examine the algorithm used to transmit the Morse code.

{

GET ASCH CHARACTER

IN ACCUMULATOR
YES
SPACE?
SPACE
NO DELAY
VALID ASCI1?
[2C.5A) HEX ExiT 7 PERIODS

CONVERT TO
MORSE CODE

— 3% |

SHIFT OUT NEXT
MORSE BIT

!

GENERATE SHORT
OR LONG TONE

]

DELAY 1 PERIOD

i
e >

'yss

DELAY 2 PERIODS
=SPACE BITS

t f

DELAY BETWEEN
SUCCESSIVE CHARACTERS

Exit Fig. 4-19: Morse Transmission Flow Chart

93

B R ———

6502 APPLICATIONS BOOK

This algorithm is illustrated on the flow-chart of Fig 4-19. The pro-
gram first checks for a space character. If found, it will generate no
signal for seven time periods, plus the delay between successive char-
acters.

It then verifies that the ASCII character contained in the accu-
mulator has a valid hexadecimal code. Legal codes must be between
“2C”’ and “‘5A”’ inclusive, in hexadecimal (assuming a 7-bit ASCII
code). Otherwise, an error exit occurs. After validation of character
code, this ASCII code must be converted to its morse equivalent.
The technique will be explained later.

The binary encoding of the morse code will consist of a ““START”’
bit (a ‘1), followed by a ‘0"’ for a ¢.”’, and a “1’’ for a ““—"",
All unused bits within the 8-bit word, to the left of the start bit,
will be set to ““0.>” This conversion will be performed by the program
by a table lookup described later. Let us now assume that the binary
version of the morse code has been obtained. The sequence of tones
must be generated. The contents of the accumulator will be shifted out
left until the START is found. Following the detection of the START
bit, every ““0”’ will be interpreted as a ‘‘-”> and every ‘“1”’ will be inter-
preted as a ‘“‘—"’, up to the eighth bit. For every ‘‘0”’ shifted out, a
short tone will be generated. For every ““1’’ shifted out, a long tone will
be generated. The tone generation will also be described later in detail.

After generating the tone corresponding to a bit, a 1-period waiting
time is inserted, and the next bit of the Morse code is checked until the
last one (the eighth) has been found.

Following the transmission of the squence of tones for a Morse
character, a two period delay is generated. This corresponds to “‘space”’
bits which are normally inserted at the end of every transmission for a
character. A one-period delay is then generated which separates suc-

cessive characters.
IN A BINARY CODE:
BINCO0E = 00000001~

GET NEXT SIGNAL

OF MORSE CODE
i
@ Yo pone
NO

YES

NO @
{DASH) ‘ (DOT)
SHIFT BINCODE LEFT SHIFT BINCODE LEFT
ENTER A 1" ON RIGHT ENTER A "0 ON RIGHT

Fig. 4-20: Converting Morse to Binary

94

BASIC TECHNIQUES

The sequence is clearly illustrated on the flow-chart of Fig 4-20 and
should be verified by the reader. Let us now examine in detail the spe-
cific problems which we have not yet resolved.

Converting ASCII to Binary Morse

We want to establish here a correspondance table between the ASCII
character and the binary representation of its Morse code. Let us illus-
trate this in an example.

The character ““‘B’’ has a Morse codeof “‘— ... >,

Every ““ -’ will be encoded by a “‘1,”” and every ‘-’ by a “‘0’’. The
binary equivalent of ¢“— - . .”’ is, therefore, ‘“1000°’.

In addition, by convention, we will add a START bit (a ‘1°’) to the
left of the code we have just generated. The resulting code at this point
is: ““11000.”’ Finally, every binary Morse code will be contained in an
eight-bit word. The remaining bits to the left of the START bit will now
be set to zero. Our resulting eight-bit code is therefore: ““00011000.°’
In hexadecimal, this is <“18°.

The hexadecimal representation of the binary morse encoding for B
is: <“18”,

As an example, the table below shows the hexadecimal equivalent
of A, B, C, D. A complete equivalence table for all legal morse characters
appears on Fig 4-22. The algorithm corresponding to the technique
just described is illustrated by the flow-chart of Fig 4-23.

Letter ASCII Morse binary hexadecimal
A 41 . — 00000101 05
B 42 —_— 00011000 18
C 43 ——. 00011010 1A
D 44 — 00001100 oC

Fig. 4-21: Converting ASCIl to Morse

95

R R

6502 APPLICATIONS BOOK

We now have established an equivalence table for all the ASCII
characters. This table will be called the ‘“Morse table’’ and will be
stored at the end of the program (see Fig 4-18). Whenever we re-
quire the Morse code equivalent of a specific character, we will access
the proper entry table and find there the binary code. This will be de-
.scribed later when we discuss the actual program.

Hex
Character Morse Code ASCl Table Value
...... 2C 73
— —_— e — 2D 31
[[— 2E 55
/ —_—e— 2F 32
g | ————- k1] 3F
T] === 31 2F
2l === 32 27
3 cee— — 33 23
4 e — 34 21
s 1 L. 35 20
6 —_—e 36 k1"
7 —_— - 37 38
8 | @ ———-.. 38 3C
9 | ——=—=-—. 39 3E
: User definable 3A 21
: “ " 3B 21
< ‘" ” 3C a1
= . . 3D a1
> “ ” 3E z1
2) ee=— 3F 4C
@ User definable 42 21
A — 41 a5
B — 42 18
C —_— 43 1A
D —_ 4 2C
E 45 @2
F — 46 12
G —_ 47 SE
H 48 12
1 49 24
J _—— 4A 17
K —_— 4B 2D
L - 4C 14
M _—— 4D a7
N — 4E 26
(o] _——— 4F @F
P - — 50 16
Q —_—— 51 1D
R —_ 52 A
S 53 28
T — 54 23
U — s 29
v - 56 11
w —_—— 57 2B
X — — 58 19
Y —— - 59 1B
z —— SA 1C

Fig. 4-22: Morse Equivalence Table

96

EXAMINE RIGHT SYMBOL
OF MORSE CODE

NEXTBI =1

BASIC TECHNIQUES

NEXTBIT=0

YES

—

SHIFT NEXT BIT RIGHT
INTO RESULT

!

EXAMINE NEXT MORSE
SYMBOL

ANY LEFT?

JNO

SHIFTIN A 1"

1

SHIFTIN QS UP TO 8 BITS

!

ourt

r___._l

Fig. 4-23: Flow Chart for Generating Hexidecimal

Morse Code

Generating a Tone with the Timer

Our next problem will be to generate a tone of set duration and fre-
quency. We will use here a timer.

-——

T/2

<—/—N=1/T
~

Fig. 4-24: Square Wave Generates Tone in Speaker

97

R
6502 APPLICATIONS BOOK

The tone will be generated at the speaker by sending it a square
wave of the required frequency. This is illustrated by Fig 4-24. The
timer can be used to generate this waveform automatically. In order to
obtain this result, we will set the appropriate bits in the control register
ACR (see Fig 4-25), then simply control the length of time during
which this tone or wave form is generated. The actual timing diagram
appears in Fig 4-26. §2 at the top of the illustration is Phase 2 of the
system clock. In most standard 6502 systems the clock has a 1 micro-
second period. The pulse generated by this timer appears on the PB7
output pin. It will last N + 1.5 subcycles, where N is the value depos-
ited in the counter. This is because the counter of the timer decrements
from N down to 0, and inverses the output port with the next high-to-
low transition of the clock. This is illustrated on Fig 4-26. An interrupt
(IRQ) is also generated at the same time, but will not be used here.

7 4, 6 5 4 3, 2 1 0
T T LI
T2 PB PA
1l CON- SHIFT REGISTER | |aTCH |tATCH
CONTROL | TROL CONTROL ENABLE [ENABLE

Fig. 4-25: 6522 Auxiliary Register

~ N+15

N I 0) 5
¢ J_L/—Lﬂ'\.ﬂﬂS‘LJ’L
WRITE . .
TICH
Pw—_—_T} R’L
our

] N+ 1 S eycles N + Zcycles———of

out [

Fig. 4-26: Timing Diagram for Tone Generation

98

BASIC TECHNIQUES

In order to use the timer, we must, therefore, deposit an appropri-
ate value N in its counter. However, as soon as the contents of the
counter are written, the counter starts running. Since the counter is a
16-bit register, we cannot load it in a single data transfer from the
microprocessor. It must be latched. The timer is, therefore, equipped
with an internal 16-bit latch called T1L. The low part of the latch is
called T1L-L, while the high part of the latch is called TIL-H. The
value N will be deposited in TIL-L and in TIL-H. At this point the
16-bit contents are specified but nothing happens yet. In order to start
the timer, we will give a special. command which will transfer the con-
tents of the latch into the actual counter. This is the ““write TIC-H”
command which appears on the fourth line of Fig 4-27:

LDA #VALUE LO

STA $A006 LOAD LOW LATCH

LDA #VALUE HI

STA $A007 LOAD HI LATCH

STA $A005 TRANSFER LATCH=START

Fig 4-27: Program to use Timer 1

{

SET ACR6 AND
ACR7TO"1”"
= SET FREE RUNINING MODE

{

STORE VALUE
IN LATCH

K|

LOAD IT
INTO COUNTER
=START TONE

f

PLAY TONE FOR
DURATION “'DELAY""

|

TURN OFF ACR7
= STOP TONE

f

out

Fig 4-28: Generate Tone of Set Duration with Timer 1

929

6502 APPLICATIONS BOOK

The sequence of events to use the timer should now be clear. It is de-
scribed on the flow chart of Fig 4-28. First, we will set the appropriate
bits of the control register ACR to the required values. The timer
operates in ‘‘free-running’’ mode where it generates a square output
on PB7. This is obtained by setting bits 6 and 7 of ACR to “‘0”” and
““1” (see Fig 4-29 and 4-30). Next, the appropriate value N will be
stored in the latch. Then, it will be transferred into the counter itself to
start it. This will be the starting point for the tone being generated.
Every time that the counter decrements to zero, it will reload the value
stored in its latch register automatically. The timer will therefore from
now on automatically generate a square wave with a half-period of
approximately N+2. (This is approximate because the low part of the
pulse hasan N + 1.5 duration whereas the upper part of it hasan N +
2 duration).

ACR7 ACR 6 MODE

OUTPUT FREE RUN
ENABLE ENABLE

0 0 Generate time out INT when Tl loaded
(ONE-SHOT) PB7 disabled.

0 1 Generate continuous INT
(FREE RUN) PB7 disabled.

1 0 Generate INT and output pulse on PB7 everytime
{ONE-SHOT) T1 is loaded.

=one-shot and programmable width pulse.

1 1 Generate continuous INT and square wave
(FREE RUN) output on PB7.

Fig. 4-29: 6522 ACR Selects Timer Modes

L]
|

0: ONE-SHOT MODE
1: FREE RUNNING MODE

0: OUTPUT TO PB7 DISABLED
1: OUTPUT TO PB7 ENABLED

Fig. 4-30: Bits 6 and 7 of ACR

100

BASIC TECHNIQUES

LINE ¢ tCC LIND

9902 0500 STHIS 1S A SUFROUTINE MWHICH ACCEFTS ASCIT CHARACTERS

0007 0600 PIN THE RANGE 2CH Y0 SAH (FLUS 20H FOR SFACE' AND FLAYS
0004 0000 STHEIR MORSE COLE EBUIVILENT ON A SFEANER WOOIID UR T0

0005 0000 PFE7. 6522-U2S. IT ALSO TUSNS ON AND OFF FEO. 4522-

G004 0000 5U2Ss AND WITH A SUITAELE DRIVER. THIS RIT Cin REV &

0007 0000 STRANSMITTER. A MAIN FROGRAM WILL CALL THIS SUKFOUTINE
0008 0n00 FUITH THE ASCII MHARACTER TN THE ACCUMULATGE.

0009 €000 JEXAMFLES OF THE MAIN FROGRAM WOULD BE ONE THAT

0010 0000 SGETS INFUT FROM A'TERMINAL AND SENDS WORSE CODE OUT

Q011 0000 iTHROUGH THIS FROGRAM, OF A PROGRAM WHICH KANDOMTZES

0012 0000 i A SERIES A CHARACTERS AND' SENDS THEm FOR COLE FRACTICE.
0013 6000 iTHE FORMAT FOR THE MORSE CODE CAHRACTERS IN TeE TABKLE

0014 0000 31§ 1 MOVING FEC® LEFT TO RIGHT , THE FIRST HIGH .
0015 0000 SEIT (A ONE) IS THE START BIT. ANL AFTER THIS «

0014 0000 {EACH ONE IS A TASH, AND EACH ZERO IS A DOT.

0017 0000 SPEED=3F0

0018 0000 COUNT=3F 1

0019 0000 CHAR=$F2

0020 0000 .=$300

0021 0300: C? 20 MORSE CHF #320 $1F A SFACE, DO SPACE ROUTINE

0022 0302: FO 47 KEQD SFACE

0023 0304 C9 2C ChF #32C JSEE IF ASCLL COLE

0024 0308: 90 4E BCC EXIT i IS LESS THEN 2CH» AND RETURN IF SO.
0025 0308: C? SB CnF 35K 5SEE IF ASCIT1 CODE IS OVER

0026 030A: RO 4A BCS EXIT : “aH: AND REILRN IF SO

0027 030C: AA TAX JFUT CODE TN INDEX REGISTER

0028 030D: BL 45 03 LDA TAKLE-$2C,X ;GET MORSE CHARACTER

0029 0310: A0 08 LDY 938 FNUMEER OF EITS 1D BE ROIATED FROM ACCUMULATOR
0030 0312: 84 F1 STY COUNT

0031 0314: 0A STARTB ASL A

0032 031Si Cé F1 DEC COUNT

0033 0317: 90 FB BCC STARTE SSHIFT A UNTIL START RIT FOUND

0034 0319: BS F2 STA CHAR

0035 031B: AS F2 NEXT LDA CHAR

0035 031D: 0A asL A iNOW SHIFT DUT MORSE CODE (1xDASH, 0=DOT)
0037 031E: 85 F2 STA CHAR .

0038 0320: A0 O1 LOY 931 i00T= 1 TIAE FERIOD, DEFAULT TO NOT
0039 0322: 90 02 BCC SEND i1F CARRY CLEAR: 0NT

0040 0324: A0 03 LDY #$3 FELSE DASH (3 TIME FERIODS)

0041 ¥ THIS SECTION SENDS A MIGH OUTFUT FOR (Y REGISTER) NU
0042 7OF TIME FERIODS, AND THEN A LOW FOR 1 TIME FERIOD.

0043 0324: A9 CO SEND LDA #3C0

0044 0328: 8D OK AO STA $A0OK PSET TIMERK MODE TOFFEE KUNNING MDDE
0045 032B: A9 00 LA €30 i THIS valnE,

0046 0320% 8D 04 AO STA $A006

0047 0330: A9 04 LDA #304 3 AND THIZ YALUC PFTEFRING THE TONE
0048 ©0332: 8D 07 AD STAa $A007 OF THE DUTHUT (APERNC tannspy .
0049 0335: 8L 05 AO STA $A00% FTMIS STAATS TONE

0050 0338: A9 01 LuA 831 STURN ON NOTEUT KIT-FED

0051 033A: 8D 00 AO STA 34000

0052 033D: 20 57 03 JSR DELAY ¢DELAYFOR ELEMENT TIME FCRIND

0053 0340: A9 00 LbA #30

0054 03421 8L OB AO STA $A00K iTURN NFF TONF

0055 0345: 8D 00 A0 STA 34000 STURN OFF NUTFUT BIT 7FhO)

00S6 03481 A0 01 LDY #301

00%7 ‘034A: 20757 03 JSR DELAY ' FLELAY FOF | TIME FERIOL(SFACE LZTWCEN ELERENTS)
0058 034D €4 Fi DEC COUNT 4PECREMENT COUNT -SEE LF 8 BITS WFRE ROTATED
0059 034F: DO CA BNE NEXT } IF NDT. DD ANOTHER ELEMENT

0060 0351: A0 02 FINISH LDY 982 FDELAY FOR 3(TWO HERE PLUS PREVIOUS SPACE
0061 0333: 20 7 03 JSK DELAY # AT END OF LAST ELEMENI) TIME PERINDS(SPACE BET
0062 0356: 60 EXIT RIS

0043 i THIS DELAYS FOR (Y REGISTER) SSFEEDS.004 SECONDS

0044 0357: 98 DELAY Tva

0045 03s8: 0a ast A

0046 0339: OA asL A

0067 035a: AB TaY

0068 03SB: AS FO b3 LDA SFEED

0069 035n: a2 Fa b2 LDX #%Fa

0070 035F: Ca o BEX

0071 0380: DO Fb FNE DL

0072 0362 38 SEC

0073 0343: €9 01 SRE 931

0074 0363: DO Fé BNE D2 IDELAY FOK 7 TIME PERIODS

0075 0387: 88 nEY i (SPACE FETWEEN WOXDS)

0076 034B: DO F1 BNE D3 JRETURN FROM MORSE FRNGRAM

0077 038A: 60 RTS

0077 036B: a0 07 SPACE LDY

0077 036D: 20 %7 03 ISR

0077 0370: 00 KIS

0077 03713 73 TARLE .RYTE $73,331,955,832,83F,82F

0077 0372: 31

0078 0373: &4

0078 0374: 32

0078 o375: 3F

0078 0378: 2F

0078 0377: 27 BYTE $27:$23,921,%20+930,$38
0078 0378: 23

0079 0379: 21

0079 0374 20

0079 037B: 30

oory 037C: 38

0679 037D: 3C “RYTE $3C+$3E+301,3011801+301
0079 037€: 3E

0080 037F: 01

0080 0380: 01

0080 0381: OL

0080 0382: 01

0080 0383: 01 LBYTE $01,
0080 0384: 4C

0031 03es: o1

4Cr$01,30S,818,%14

Fig. 4-31: The Morse Program
(Full-size listing in Appendix C)

101

6502 APPLICATIONS BOOK

0081 0384: 05

©0n1 0387: 18

ocp1 0388: 1A

nogy 0389: oOC «BYTE $0C»$02+812,40E+910,804
0081 038A: 02

0og2 038B: 12

ona> 038C: OE

008> 038D: 10

0082 O3BE: 04

nosr 038F: 17 VBYTE $17,800:$14,407,308,80F
0082 0390: 0U

0083 0391: 14

0083 0392: 07

0083 0393: 06

0083 0394: OF

0083 0395: 14 LBYTE $165310:30A,308,$03+309
0083 0394: 1D

0084 0397: 0A

0084 0398: 08

0084 0399: 03

0084 039A: 09

0084 039B: 11 BYTE $11,80R+$1%.81K,81C
0085 039C: oR

00BY 039D: 19

Q085 03%E: 1B

ongs 0I9F: 1C

SYMKOL TABLE:
FEED

Si 0GF O COUNT 00F 1 CHAR 00F 2
MOKSE 0300 STARTE 0314 NEXT 031K
SEND 0326 FINISH 0351 EXIT 0358
DELAY 0357 D3 035K U 03sn
vi 035F SFACE 036K TAKLE 0371

Fig. 4-31: The Morse Program (continued)

The tone must be played during a set duration called here ‘“DE-
LAY.’”’ The duration of this delay can be implemented through soft-
ware or hardware techniques. A software loop will be used in this pro-
gram. Finally, the tone must be stopped when the specified delay has
been achieved. This will be performed by turning off bit 7 of ACR.

The reader should refer to the flow-chart of Fig 4-28 and make sure
that he understands the sequence of actions necessary to use the timer.
The actual implementation will be presented below along with the pro-
gram.

The Morse Program

We will follow here the flow-chart which has been presented on Fig
4-19 and develop the corresponding program. A number of specific
techniques will be used in this program:

Indexed addressing will be used to retrieve the binary encoding of
the Morse code for a given ASCII character.

The hardware timer will be used to generate a tone of fixed fre-
quency. A software delay will be implemented to regulate the duration
of the tone.

102

BASIC TECHNIQUES

Nested loops will be used to implement a multiplication in the delay
loop.

Let us now examine the program. It assumes that the accumulator
has been loaded with the value of the ASCII character whose Morse
code is to be transmitted. (See memory map on Fig 4-18). For flexibil-
ity, the speed of transmission is adjustable. It is expressed in units of 1
milliseconds (.001 second). The variable ““SPEED’’ at memory loca-
tion ““00F0’’ must be set prior to entering this program. For example,
if “SPEED”’ is set to the value 1000, the duration of a ‘*-*> will be
1000 x .001 = 1 second. The program will reside in Page 3, starting
at address ‘‘0300”’ hexadecimal.

The beginning of the program is:

SPEED = $00F0
COUNT = $00F1
CHAR = $00F2

* = 30300

The first four lines are assembler directives. The first three direc-
tives assign respectively the memory addresses 00F0, 00F1, 00F2, to
SPEED, COUNT, and CHAR respectively. The fourth directive spe-
cifies the value of the pseudo address-counter to be 0300 hexadecimal,
i.e., specifies that the first executable instruction in the program will
reside at memory address 0300.

We must first check that the character in the accumulator is a legal
code. This is accomplished by:

MORSE CMP #$20 IS IT A SPACE CODE?

BEQ SPACE _
CMP #32C ERROR IF LESS THAN 2C
BCC EXIT

CMP #3$5B OR MORE THAN 5B

BCS EXIT

The first two lines check whether the character in the accumulator is
a ‘‘space’’ character (20 hexadecimal). If so, a delay of seven time
periods is implemented followed by the normal delay between charac-
ters.

The next four instructions verify that the ASCII code is between
“2C” and ““5A” inclusive. This is the range of valid ASCII characters

103

6502 APPLICATIONS BOOK

for Morse transmission. If an illegal character is found, an error is
detected, and a jump occurs to location ‘‘EXIT.”’ In order to keep the
program simple and educational, no specific action is taken here at
location EXIT to flag the error. The reader is strongly encouraged (as
an exercise) to add specific instructions at location EXIT which will
flag the erroneous character found in the accumulator. In this pro-
gram, there will simply be no transmission for this erroneous char-
acter.

Once a legal ASCII character has been found in the accumulator, it
must be converted into the binary code which will be used to generate
the sequence of sounds. The binary Morse code corresponding to
every permissible ASCII character is stored at the end of the program,
from memory location 36B to memory location 399. We would like to
retrieve the first entry of the table for the ASCII character 2C, the
next entry of this table for the next sequential ASCII character, and so
on. This is a typical case where we wish to use indexed addressing.
However, an extra problem arises here: the ASCII characters are num-
bered from 2C on, rather than from ‘‘0’’ or from ‘‘1”’ on. The solu-
tion is quite simple, and appears below:

TAX
LDA TABLE-$2C,X

The ASCII is transferred into the index register X so that it may be
used as an offset. In order to take into account the fact that the charac-
ters are numbered from 2C on, the base of the table is simply specified
to be not the real base at address 36B, but the address table minus 2C
(hexadecimal). The binary code can then be loaded in the accumulator
with a single indexed memory access (see Fig 4-32).

TABIE—2C
CHARACTER
— ASCIl 2C
TABLE": 3A (FIRST CHARACTER)
MORSE
TABLE
TNDEX
o X: CHARACTER

Fig 4-32: Using Indexed Addressing to Retrieve Morse Code

104

BASIC TECHNIQUES

Our binary Morse code is now in the accumulator. Let us recall here
that this code contains a leading 1, which is the START bit, followed
by the 0’s and the 1’s representing the dashes and the periods. Any un-
used bits to the left of the START bit have been set to 0. The contents
of the accumulator will, therefore, be shifted left until a START bit is
found, then the “‘real” bits corresponding to the dashes and the periods
will be used to generate sounds. The program is:

LDY #3$08 NUMBER OF BITS TO BE ROTATED

FROM A
STY COUNT
STARTB ASL A
DEC COUNT
BCC STARTB SHIFT A UNTIL START BIT FOUND
STA CHAR
NEXT LDA CHAR
ASL A SHIFT OUR MORSE CODE (1 = DASH,
0=DOT)
STA CHAR DOT=1 TIME PERIOD, DEFAULT
TO DOT
LDY #3$01

BCC SEND IF CARRY CLEAR, DOT
LDY #303 ELSE DASH (THREE TIME PERIODS)

The index register Y would normally be used as a counter in order to
stop the successive left shifts of A, once 8 bits have been shifted out.
However, the SEND routine, which will generate the sound, requires
that the Y register be loaded with a duration of the sound to be gen-
erated. We can, therefore, not use index register Y for the purpose of
shifting out the bits. The next idea that comes to mind is to reuse the
index register X which is now available. Unfortunately, our conven-
tion in this program is that the DELAY routine uses index register X.
Since neither of the two Index Registers is available as a counter, we
will have to use a memory location. This is location COUNT. An im-
portant remark is that when writing the program, we might well have
coded this portion of the program before coding routines SEND or
DELAY. In such a case, we would probably have used index regis-
ter X or Y here to store the number of bits to be shifted from the accu-
mulator. Later on, we would have discovered the necessity of using
these same registers in the routines SEND or DELAY. This is when

105

6502 APPLICATIONS BOOK

programming discipline takes its full importance. If it is found that
other routines should require the use of X and Y, one must go back in
the coding and change the code in the program that precedes by using
a memory location named COUNT instead of a register. Forgetting to
do this is unfortunately a classical error. In that case, the other rou-
tines will accidentally destroy the contents of registers X and Y, and a
severe programming error will occur. As a programming discipline, it
is therefore strongly recommended fo write explicitly in the comments
at the beginning of every routine which registers are changed or de-
stroyed by this routine. The conventions for communicating and pass-
ing information between subroutines or segments of a program should
be completely clear before writing a new routine.

The left-most zeroes contained in the accumulator are ignored and its
contents are shifted out until a START bit is found. Once the START
bit has been found, every bit shifted out of the left of the accumulator
represents either a ‘>’ or a ‘“—’’ depending on whether it is ‘‘0’’ or
““1.”” Once the bit shifted out of the accumulator has been identified,
we will go to location SEND in order to generate the appropriate tone.
Since the contents of the accumulator will be changed by the subse-
quent processing, they must be preserved in memory prior to going to
SEND. This is the purpose of the second instruction STA CHAR.

ADDRESS WRITE READ
--04 TIL-L nc-/
+ clear T1 int flag
--05 TIL-H + T1C-H TIC-H
+ TiL-L»=TI1C-L
TIMER 1 + clear T1 int flag
--06 TiL-L TIL-L
--07 TIL-H TIL-H

+ clear T1 int flag

.- 08 T2L-L T2C-C
+ clear T2 int flag
TIMER 2 -
--09 T2C-H T2C-H
T2L-L »=T2CL

+ clear 72 int flag

Fig. 4-33: Memory Map for Timer 1

106

BASIC TECHNIQUES

Having thus preserved the accumulator’s contents at the memory loca-
tion CHAR, the Index Register Y is loaded with the duration corre-
sponding to the bit which just fell through the accumulator: a “‘1”” if it
was a dot, a “‘3”’ if it was a dash. The purpose of the STA CHAR, fol-
lowed by LDA CHAR, which seems useless, is due to our desire to re-
enter this program at ‘“NEXT”’ with an LDA CHAR instruction.

The SEND Routine

The SEND routine uses timer 1 of the 6522 to generate the tone of
set frequency. The memory map for the timer appears on Fig 4-33.
The timer must first be set in the free-running mode. This is accom-
plished by:

SEND - LDA #$CO
STA #A00B

The value CO is deposited at address AOOB which is the ACR or
Control Register. It turns on bits 6 and 7 as required by the timer (see
Fig 4-29 for details). The value 0400 hexadecimal is then deposited at
memory addresses A006,A007:

LDA #$00
STA $A006
LDA #3504
STA $A007

These memory locations are respectively the low and the high part
of the T1L or latch. It sets the frequency of the tone to be generated.
0400 hexadecimal is in binary: 00000100 00000000 or 1024. A half-
period of the clock is approximately N + 2 or 1026. The period is
therefore:

T = 2052 microseconds
And the frequency is N = 1 = T = approximately 500 HZ

We must now start the tone and stop it after the specified duration.
The tone is turned on by:

STA $A005

This instruction transfers the contents of the latch into the counter

107

6502 APPLICATIONS BOOK

register and starts the external waveform. We have indicated that
this program also turns on ‘‘manually’’ PBO0 so that an external device
such as a transmitter can be activated simultaneously with the genera-
tion of the tone in the speaker. This is accomplished by:

LDA #301
STA $A000

It is assumed here that PBO has been configured as an output port
prior to execution of this program.

The duration of the tone is implemented by the subroutine DELAY:
JSR DELAY. We will examine it below. Once the tone duration has
elapsed, it must be turned off. This is accomplished by:

LDA #$00
STA $A00B TURN OFF TONE
STA $A000 TURN OFF OUTPUT BIT (PB0)

Finally, we must leave one unit of silence between two tones. This
is implemented by:

- LDY #3501
JSR DELAY 1-PERIOD DELAY

Finally, we must decrement our bit counter, contained at memory
location COUNT, in order to check whether any more bits need to be
shifted from the accumulator. This is accomplished by:

DEC COUNT 8 BITS DONE?
BNE NEXT IF NOT, GO BACK

Once a complete character has been transmitted, two more units of
delay must be implemented to separate this character from the next
one. This is accomplished by:

FINISH LDY #8302

JSR DELAY
EXIT RTS

108

BASIC TECHNIQUES

The DELAY Subroutine

This subroutine will implement a delay of: (contents of Y
Register) X (SPEED) X .001 seconds. The delay will, therefore,
be computed as the multiplication of three numbers. We will use
here a special technique of nested loops in order to avoid performing
a classical multiplication. The routine appears below:

DELAY LDA SPEED
D2 LDX #$FA
D1 DEX
BNE DI
SEC
SBC #301
BNE D2
DEY
BNE DELAY
RTS

The corresponding flow-chart appears on Fig 4-34.

DELAY

&
_—".{ A= SPEED]
—

{

COUNTER=CT] D2

]m

I COUNTER = COUNTER— 1
=
OUTER DELAY

LOOP YES

i
[A=A]

Fig. 4-34: Flow Chart for Delay
109

6502 APPLICATIONS BOOK

The first delay loop is the one corresponding to D1. Let us compute
its duration (the time of each instruction is in parentheses):

(3) LDA SPEED

(2) LDX #3C6 C6 HEX = 198 DECIMAL
(2) DEX

(3) BNED1

The duration of the delay introduced by these first four instructions of
the programis: 3 + 2 + (2 + 3) X 198 — 1 = 994 microseconds.
The following two instructions are:

(2) SEC
(2) SBC #$01

Their durations are two microseconds each. These two instructions
add, therefore, an additional delay of 4 microseconds. They are used
to subtract 1 from the content of the accumulator. This is because
both Index Registers X and Y are already used in this program as
counters, so that the accumulator must be used as a third counter. Un-
fortunately, there is no decrement instruction which operates directly
on the accumulator and a formal subtract instruction must be used.
The reader will remember that the carry must be set prior to a sub-
tract. This is the purpose of the SEC instruction prior to the SBC. The
next instruction is:

(2/3) BNE D2

This is a second delay loop. Every time that the branch is successful,
it requires three microseconds, and when it is not successful it requires
2 microseconds. The total delay from the entry point DELAY to this
point in the subroutine is, therefore, 995 + 7 = 1002 microseconds =
1 millisecond.

A delay of 1 millisecond will be generated every time that the loop
D2 is executed. Since D2 contains the value of SPEED, these two
loops are implementing a delay of SPEED x .00l second, which is
what we wanted. Once this total delay of SPEED x .001 second has
been achieved, one more loop is implemented using the Y Register:

DEY '
BNE DELAY
RTS

110

BASIC TECHNIQUES

This final loop multiplies the previous delay by the value contained
in Register Y. At this point, we have obtained the desired total delay
Y x SPEED x .001 seconds, and we return (RTS).

Using the program. In order to use this program, it is suggested that
you choose a slow transmission speed initially, unless you are familiar
with Morse code, and that you generate a single character at a time.
Once you see that your program works correctly, you should write a
short subroutine which will feed characters to your Morse program.
You can then verify that the Morse transmission proceeds correctly
for any string of characters.

Exercise 4-2: Write a subroutine which will feed your program a string
of N characters contained in a table starting at address TABLE.

Exercise 4-3: Read the keyboard, and generate the corresponding
Morse signals.

TIME OF DAY CLOCK

We will develop here a Time of Day Clock routine which will main-
tain the time in hours, minutes, and seconds in three dedicated mem-
ory locations. If desired, this program could be readily extended to
store fractions of a second, or any other time unit desired. The mem-
ory map for this program appears on Fig 4-35. As usual, memory
locations in Page O (zero) are reserved for the variables. The hours,
minutes, and seconds are stored respectively at memory locations
00F4 (hexadecimal), 00F5, 00F6. One more memory location is used:
00F7 contains the variable COUNT.

oo

TG

T

[N
CURRENT s M

T Fo SCS vy
” COUNt
| ACOB. . WR
[** ADoE
PAGE § PAGE) TIMER

Fig. 4-35: Time-of-Day Memory Map

111

e ——
6502 APPLICATIONS BOOK

To start the clock, the program will be typed in, then the current
24-hour time plus one minute should be entered in locations SECS,
MIN, HOUR.

Then A7 must be entered in location A67E (for SYM), and 03 in
location A67F. This is an interrupt vector, and will be explained later.
Finally, enter ‘GO 0390; then, at the exact time which has been en-
tered in SECS, MIN, HOUR, press ‘“‘CR”’.

The correct time will be kept from now on by the clock in SECS,
MIN, HOUR.

The variable COUNT stores 20th of a second units. It is initialized
with the value 20, then decremented every 20th of a second. The decre-
mentation signal is a hardware interrupt generated by an interval timer
contained in the 6522. The flow-chart for the program appears on Fig
4-36. The first phase is the initialization phase where the timer is load-
ed with the appropriate counter value to generate an interrupt after
50 milliseconds (1/20th of a second). Variable COUNT is initialized to
the value 20, and the timer is started.

Whenever the timer times out, 1/20th of a second has elapsed and
an interrupt is generated. On receiving an interrupt, the microproces-
sor will preserve its registers, reload the counter register of the timer
with the appropriate constant for the generation of another interrupt
50 milliseconds later, and start the timer. The memory location
COUNT will be decremented, since a 20th of a second has elapsed.
The value of this location will be tested for the value ¢‘0.”’ If it is not
““0,” exit from this routine occurs. Whenever COUNT goes through
the value ¢‘0,”’ it is reset to ‘‘20,”’ and the memory location SECS (the
number of seconds) is incremented by 1.

Every time that SECS is incremented by 1, it is checked for the value
“60.”” If the value 60 is reached, SECS must be reset to “‘0’’ and MIN
(the number of minutes) must be incremented. Similarly, MIN must
be checked for the value ¢‘60.”” If MIN has reached ““60,’’ it is reset to
0’ and the number of hours is incremented. If the number of hours
reaches ‘‘24,”’ it is reset to ‘0.’ Exit from this routine then occurs.
The program will remain dormant until the next interrupt is received.
In order to display the contents of this time-of-day clock, the user
needs simply to examine the contents of memory locations F4, F5, and
F6. A display routine could also be written to display the value of
these memory locations automatically.

The program appears on Fig 4-37 and it is self-explanatory. The
first segment of the program is the initialization segment INIT which
sets the variable COUNT to ‘20’ decimal = ‘14’ hexadecimal. It

112

BASIC TECHNIQUES

INITIALIZE COUNT TO
20 (1/20th sec.) LOAD TIMER
WiTH 50 MS count

L START TIMER]

RETURN

CLOCK
(INTERRUPT)

[PRESERVE STATUS 1
I RELOAD TIMER j
WITH 50 MS

t
L START TIITAER]

[TICK OFF 1/20th sec. J
(DECREMENT COUNT)

1 =07 N
1 seccm ELAPSED) —2— EXIT
* YES
L RESTORE COUNT]
1020

l INCREMENT SECONDS
INDICATOR "“SECS”

INCREMENT MINUTES

NO
MINUTES = 60? - EXIT

YES

RESET MIN. TO ZERO
INCREMENT HOURS

Fig. 4-36: Time-of-Day ‘ NO
Clock _..Exn
* YES

I RESET HOUR TO I
ZERO

I RESTORE REGISTERS |

)

EXIT

113

6502 APPLICATIONS BOOK

LINE® LOC CODE LINE
(FIRST LOAD A7 IN LOCATION ASTE, AND 03 Ih AOTH
0002 w000 THIS IS A REAL TIME CLOCK ROUTINE W HICH MAINTAINS
0003 0000 STHE CURRENT TIME IN THE LOCATIONS SEC (00F$), MIN
0004 0000 400F3), AND HOUR w00F &) [24 HOUR TMLE). IT IS BRANCHED TO
0008 000 :BY THE TIME OUT OF THE INTERRUPT TIMER, WHICH
00Ds [“AUSES AN INTERRUPT AND BRANCH TO THE CLOCK
[SROUTINE TWENTY TIMES PER SECOND. THE CLOCK ROUTINE
o008 000D SAND INTERVAL TIMER MUST BE INITIALIZED FIRST THF
0009 QU0 :CODE "INIT* DOES THIS, AND IT MUST BE HRANCHED 10 TO
0010 0000 START THE CLOCK TO INITIALIZE, PUT THE CLRRENT TiMI
it w00 :THE CLOCK ROUTINE W ILL BE STARTED IN SEC. MIN, AND
{HOUR, THEN ISSUE THE COMMAND "GO 039 CR” AT THAT
SEXACT TIME. NOTHING ELSE MUST BE DONE
2 oo COUNT =300F7 {COUNTFR FOR TWENTIETHS O} A SEC
W) oo SECS = $00F6 CURRENT TIME
004 U0
0015 o000
0016 0000 :TIMER MODE REGISTER
0017 0000 LOW ORDER TIMER CONSTANT
0018 0000 :HIGH ORDER TIMER CONSTANT
w9 0000
W0 0% AV INIT LDA 14 SET TO FIRST TWENTY
0021 092 BF STA COUNT COUNTS
0022 03% SDOBAD STA ACR SET BITS 8 AND 7 LOW
IN ACR
0023 W1 A9CO LDA 10 SET BITS 8 AND 7 HIGH IN
0024 039 EDOEAD STA SAOE {THE INTERRUPT ENABLE
REGISTER (TO ENABLE
JINTERRUPTS FROM TIMER 1)
02s 0MC A930 LDA £330 STORE C3%0 IN TIMER
0026 QME SDOSAD STATILL (DELAY CONSTANT FOR
0027 WAL AICY LDA 13C3 . OMS)
002 @Al EDOSAO STA TIHC iTHIS STARTS TIMER
0B A6 © RTS {RETURN TO MONITOR
003 03AT 08 CLOCK PHP SAVE STATUS
) 0AS M PHA
0031 Ay FI SED
0033 WAA A0 LDA riso STORE C350 IN TIMER
M 0AC IDO6AD STATILE {DELAY CONSTANT FOR
0035 OIAF A9C3 LDA #5C3 L OMS)
003 03B1 EDOS AO STA TIHC THIS STARTS TIMER
0037 @B C6F7 DEC COUNT DECREMENT COUNT OF
STWENTY
03 mBs DO3) BNE EXIT EXIT IF WE HAVE NOT
:COUNTED TO TWENTY YET
0039 B3 A9Ie LDA 1514 ELSE RESTORE COUNT—
0060 OBA SF7 STA COUNT A FULL SECOND HAS PASSED
0041 03BC Aj01 LDA #3501
042 @mBE 18 cLe
043 QBF 65 F6 ADC SECS JADD 1 TO SEC
0D 03CI $5Fe STA SECS
0 B3 Ve CMP #3560 iSEE IF 60 SECONDS
0046 0CS D022 BNE EXIT IF NOT, EXIT
0047 0T A9OD LDA 1300 {ELSE RESET SECONDS TO0
e (e] 5Fe STA SECS
049 0CB A9} LDA 301
s 0XD 18 ac
0031 OCE 6SFS ADC MIN {AND ADD 1 TO MINUTES
0032 D0 B3FS STAMIN
w3 ;D2 e CMP 1360 SEE IF 60 MINUTES
0084 03D4 DO} BNE EXIT iIF NOT, EXIT
0035 0ID6 A900 LDA 1300
00 03D8 $SFS STAMIN {ELSE RESET MINUTES TO0
00s7 IDA A90) LDA 130!
00s8 03DC 18 cc
003 0IDD 65 Fa ADC HOUR :AND ADD | TO HOUR
0060 0IDF . 85F4 STA HOUR
we! OEI OM CMP U4 SEE IF 24 HOURS
0062 O03E3 DOO4 BNEEXIT JF NOT, EXIT
006} 03ES A900 LDA #3500
0064 OE7 F4 STA HOUR JELSE RESET HOURTOOQ
0065 0IE9 o EXIT PLA \RESTORE STATUS
e OEA B PLP
0067 MEER RT1
ERRORS = 0000 <0000>
SYMBOL TABLE
SYMBOL VALUE
ACR AgoB CQLOCK @A? COUNT ooF7 EXIT 0EY
HOUR 00Fa INFT %0 MIN [PLS WEA
SECS QOFe TIHC A0S TILL A0S
END OF ASSEMBLY

Fig. 4-37: The Time-of-Day Program
(Full-size Listing in Appendix C)

114

BASIC TECHNIQUES

also loads the timer with the appropriate count to generate a 50 milli-
second delay. The memory map for the timer appears on Fig 4-35.
Timer 1 of the 6522 is used. The table showing the bits for condi-
tioning this device appear on Fig 4-25 and 4-29. This timer can be used
in either a one-shot mode or a free-running mode. In a one-shot mode,
a single interrupt (and possibly an output pulse on PB7) will be gener-
ated every time that the internal timer’s counter decrements to 0
(zero). In the free-running mode, the counter will be automatically re-
loaded from the internal latch and continuous interrupts (and possibly
a pulse on PB7) will be generated. Since the output pin PB7 is not used
in this application, bit 7 of the ACR (auxiliary control register) will be
set to “‘0’’. There is then a choice between a one-shot mode and a free-
running mode. In the one-shot mode, the counter must be explicitly
reloaded every time an interrupt is generated. In the free-running
mode, the timer will automatically reload the internal counter from its
latch. However, the interrupt flag must be cleared explicitly either by
writing into T1C-H or by modifying the interrupt flag directly. The
two options are essentially identical in terms of programming effort.
The free-running mode may yield a more accurate time measurement,
since the timer runs continuously and automatically going from the
value ‘0’ to the value corresponding to the 50 millisecond delay.
Since a free-running mode has been used in the Morse program, we
~ will use here a one-shot mode. The reader is encouraged to try using
the alternative mode as an exercise. Using the one-shot mode is speci-
fied by setting bit ACR6 to ‘‘0”’. All other bits of the ACR register are
not used here and will be set to ‘‘0’’. Bits 7 and 8 are set to “‘0”’ in
ACR, specifying the one-shot mode with PB7 disabled.

Next, the interrupt flags register must be properly conditioned.
When read, this register is viewed as the Interrupt Flag Register, IFR.
When written into, it is called the Interrupt Enable Register, IER. In
order to set specific bits of the IER, bit 7 of IER must be set to 1. For
each ‘“1”’ specified in register locations O through 6, a ‘1’ will be
written in the register, enabling the appropriate condition. A “‘0’’ in
any bit position will not clear the specified bit position in the IER reg-
ister, but leave the contents unchanged. Clearing is accomplished by
specifying a ‘“0”’ in bit position 7 and then specifying a ‘‘1’’ for every
bit position that needs to be cleared. In this instance, we simply want
to enable an interrupt from timer T1. We will therefore write at the
memory location corresponding to IER the value ‘‘11000000,” or
““C0”’ hexadecimal (see Chapter 2 for detail).

115

6502 APPLICATIONS BOOK

Finally, we must load the appropriate constant in the timer to gen-
erate the delay which will generate and interrupt after 50 milli-
seconds. The value C350 hexadecimal (=50,000 decimal) is there-
fore loaded into the counter. It will be noted in the routine INIT that
first the low part of the latch is loaded, then the high part of the coun-
ter is loaded. Loading into the high part of the counter results in trans-
ferring the lower part of the latch automatically to the lower part of
the counter and starting the timer at the same time.

The INIT subroutine appears below:

COUNT = $00F7 1/20 THS OF A SECOND
SECS = $00F6

MIN = $00F5

HOUR = $00F4

ACR = $A00B TIMER MODE REGISTER
TILL = $A006 LOW ORDER TIMER CT
TICH = $A005 HIGH ORDER TIMER CT

INIT LDA #3$14 FIRST 20 COUNTS
STA COUNT
STA ACR BITS 8 AND 7 LOW IN ACR
LDA #3CO0 BITS 8 AND 7 HIGH

STA $SAO0OE IN INTERRUPT ENABLE REGISTER
LDA #3850 STORE-C350 IN TIMER

STATILL (CT FOR 50 MS)
LDA #$C3 ,
STA TICH START TIMER
RTS

The initialization has now been completed, and the main program is
executed from location CLOCK on. It will be noted that all additions
within the routine CLOCK are performed in decimal mode. This is
why the decimal flag is set with instruction SED. This way, when dis-
playing the contents of the memory locations, they will be displayed
one digit per LED in the usual decimal manner rather than in hexa-
decimal format.

Following execution of the INIT subroutine, a return occurs to the
monitor. Provided no key is touched on the keyboard, nothing will
happen until an interrupt time-out occurs. Upon detection of the

116

BASIC TECHNIQUES

interrupt, an automatic branch will occur to the clock. Whenever an
interrupt occurs in the 6502, it branches automatically to memory loca-
tion FFFE,FFFF where it finds the interrupt vector, i.e., the next
address to be installed in the program counter register. On the
SYM, the user pre-loads memory locations A67E and A67F with
the desired interrupt vector. The SYM monitor, which is in execu-
tion at all times that the user program is not running, duplicates
automatically the contents of memory locations A600 through A67F
at addresses FF80 to FFFF. Thus, the contents of A67E and A67F are
automatically copied by the SYM monitor to memory addresses
FFFE, FFFF. At the time the interrupt occurs, it will branch to FFFE,
FFFF, and it will find there the 16 bit contents to be installed in the
program counter register.

CLOCK is the interrupt routine which is entered every time the
interrupt is received. It saves the registers P (the status register) and
A (the accumulator). It does not need to save the other registers as
it will not be needing them.

It then reloads the timer counter with the value C350 hexadecimal
= 50,000 decimal and starts the timer again. Loading the counter
automatically clears the previous interrupt.

The routine then checks successively whether the variable COUNT
has reached the value ‘“20”’, the variable SECS has reached the value
““60”’, the variable MIN has reached the value ‘60’’, or the variable
HOUR has reached the value ‘“24’’. If any one of these variables has
reached its limit value, it is reset to ¢‘0’’, as indicated in the flow-chart
of Fig 4-36, or the program of Fig 4-37.

Finally, the routine exits by restoring the two registers it had saved,
A and P, and executing an RTI (Return From Interrupt).

A HOME CONTROL PROGRAM

A generalized home control program will monitor the status of a
Time of Day Clock, as well as the status of an alarm system, and take
various actions depending on the time of the day or on the alarm con-
dition detected. We will use here the time of day clock program which
has been developed above, display the time of the day, then depending
upon the time of the day, specific actions will be taken by closing one
or more relays. The program appears on Fig 4-38. The data-direction
register of Port B is set to OF hexadecimal in order to enable the four
low order bits for output (for the relays). Clearly, only those bit pcsi-
tions actually connected to relays should be specified as outputs. The

117

e —
6502 APPLICATIONS BOOK

others should remain inputs. As usual, as a precaution, an explicit in-
struction is included in the program to turn the relays off. This is per-
formed by depositing the value 00 hexadecimal at the memory loca-
tion for IORB (Address ACO00).

Two built-in routines of the SYM monitor are used by this program
to facilitate the output. The accumulator is loaded from memory loca-

LINE® 10K CODE LINE

W ww LTHIS IS A SIMPLE HOME CONTROL ROUTINE WHICH RUNS

ol o {THROUGH A LOOP EACH TIME THROUGH 1T DISPLAYS THE

e {CURRENT TIME AND BRANCHES TO A NUMBER OF USER

SUBROUHINES

s WHICH SLRVICE DLVICES.

ae ww IENAMPLES:

W ww 1) A SUBKOUTINE COULD CHECK THE CURRENT TIME AND

o o TURNON A LIGHT I} THE TIME WERE RIGHT

() i) A SUBROQUTINE COULD MOMITOR THE STATUS OF AN

Wi ww ALARM SYSTEM AND 1AKL APPRUPIIATE AUTION IF AN

ot e INTRUDER WERE DETECTED.

Wiz DDKE = $ALW

Wiy e IORB =3A0N

wie e HOUR = 300k

wis MIN = S00FS

wie aw QUTHYT = W2EA

w7 w SCAND = J906.

Wi o » = 3020

wiy w0 [CONTRL (LD B

w0 WL AYOF LDA #30F SET DATA DIRECTION

w2 oWy W02 AC STA DURB (REGISTER TO QUTPUT FOR
RELAYS

W uwe AW LDA 1500

w2 08 IDWAC STA I0RS ;TURN OFF RELAYS

M B ASKL LOOP 1DA HOUR STHIS IS THE MAIN CONTROL
LOOP

wis wD WEAW ISR OUTBY1 JOUTPUT CURRENT HOUR TO
DISPEAY

Wl ASES LDA MIN

w2y e WEHAR ISR OUTBYT HOUTPUT CURRENT MINUTE
10O DISPLAY

wa Wi wus ey JSK SCAND REFRESH (LIGHT) DISPLAY
WITH TIML

Wy Wis kA HYTE $EASEASEA

Wy W A

Wy WA LA

Wl oud LA BYTE SEASEA SEA

W ac kA

ww o ab rA

W Wik kA KYTE SEASEASEA

L TR [T Y

Wi ww EA

W Wl kA BYTE SEASEASLA

Wiz wn EA

w2 uny kA

wh W (2 BYTL SEA SEASEA

Wiy o kA iTHE USER CAN PLACE
JUMPS TO

o) W kA (SUBROUTINES HERE TO SER-
VICE DEVICES

W w2 EA BYTE SEASEA SEA

Wi ue kA
e oy EA
ws o2A kA BYTE SEA SEA SEA
wis w2 kA
wis WK kA

w020 kA BYTE SEASEASEA
wie unkt kA
W uwF EA
Wit ww o BA BYTE SEA SEASEA
wnr o oBi LA
Wi w kA
wie [D3}] EA BYTE SEA SEASEA

Wl WK kA

W wls kA

W e scoB@2 IMP LOOP
oMo o2

ERRONS = Us ou0us

Fig. 4-38: Home Control Proérum
(Full-size Listing in Appendix C)

118

BASIC TECHNIQUES

SYMBOL TABI|
SIMBUL VALUE

LONIML 02w LOLRY Acuz NHOUR wie 1ors Acw
Loop oy MiN wis QUTBYT s2bA SCAND w6

END OF ASSEMBLY

Fig 4-38: Home Control Program (continued)

tion HOUR which contains the time-of-day expressed in hours (see
the time of day routine), then a call is made to subroutine OUTBYT
which results in displaying the HOUR on the board’s display.
Similarly, the minutes are displayed by loading the accumulator
from memory location MIN and calling OUTBYT.

The OUTBYT routine is contained at memory location 82FA of the
monitor and displays the contents of A as two hex digits. Next, the
routine SCAND of the monitor (at memory address 8906) is used to
scan the display once. Once the time has been displayed, an appropri-
ate jump instruction will be executed if some set condition is met.
Since these conditions will vary with each application, they have been
left blank in the program and should be filled in by the reader. As an
exercise, it is suggested that the relays be turned on at 2 or 3 specified
times a few minutes apart. The noise made by the relays when closing
indicates that the program is working correctly. This should be done
prior to attaching any actual device to the relays. '

A TELEPHONE DIALER

We will develop here a program capable of dialing a number once it
has been deposited in the memory. With a regular telephone (rotary
dial), pulses are merely sent on the line. This should be simple at this

point, and we are going to develop here a program capable of generat-

LOW TONE

oo VTRBIITIRH 3778
Tone Pl2oBtiLIeN 478

b e e b e

Fig. 4-39: The Telephone Frequencies

119

6502 APPLICATIONS BOOK

ing the tone frequencies used in the U.S. for touch phones. The table
of telephone frequencies appears on Fig 4-39. Each digit will cause
two tones to be generated. The various frequencies have been chosen
carefully by the telephone company in order to avoid the possibility of
spurious harmonics, and to use the smallest bandwidth possible. They
range from 697 Hertz to 1477 Hertz as indicated on the illustration.

Our program will generate two tones simultaneously, which will be
fed into the same speaker. The frequencies will have to be accurate in

[DIGIT POINTER =0 l

—3 |
r GET;IGIT]

l INCREMENT DIGIT POINTER I

LAST {RIGHT

MOST) DIGIT? ourt

MULTIPLY NUMBER BY
4=|NDEX

i

SET TIMER MODES FOR
T1 AND T2

!

GET TONE 1
PUT IN TIMER 1

i

GET TONE 2
PUT IN TIMER 2

!

GENERATE TONE FOR
SET DURATION

!

TURN OFF
BOTH TIMERS

!

WAIT FOR SET
DURATION

L

Fig. 4-40: Phone Dialer Flow Chart

120

BASIC TECHNIQUES

order to be recognized by the telephone switching equipment. This
result can be obtained by using two timers. We will use here Timer A
and Timer B of our microprocessor board. Each timer will generate a
frequency, and the output of both timers will be sent to the loudspeak-
er. For more reliable results, the use of an operational amplifier for
the speaker is strongly recommended. However, the program would
remain unchanged. The flow-chart for the program appears on Fig
4-40. The number of digits for the telephone number is irrelevant.
This program will accommodate a telephone number of any length.
The first digit to be ‘“dialed’’ is obtained from the memory. An equiv-
alence table is kept in memory, which specifies the periods for the two
tones to be generated for each digit. More precisely, this table specifies
the half period, and since two tones are associated with every digit,
this table will use four bytes for every digit. The value of the digit
must therefore be multiplied by four in order to be used as an index
to this table.

The two table values will be obtained and loaded respectively in
Timer A and Timer B which will be started. The two tones will then be
generated automatically for a specified duration (say half a second or
one second). Then a silence interval will be enforced, and the next
digit will be fetched from memory. The process will be repeated until
all digits have been dialed. The flow-chart is straightforward. Let us
examine now the program. The complete program is shown on Fig
4-41.

LINE? LOC CODE LINE

00 oo :THIS IS A PROGRAM WHICH DIALS PRE STORED

Q03 . 0000 ;TELEPHONE NUMBERS. IT PRODUCES A TWO TONE OUTPUT

0004 0000 ;THROUGH A SPEAKER HOOKED UP IN CONFIGURATION 2

0003 0000 ATWO TONES—SEE SPEAKER). THESE TONES WILL ACTIVATE

0006 G000 A STANDARD TOUCH TONE PHONE WHEN THE SPEAKER IS

oo 0000 {PLACED DIRECTLY OVER THE MOUTH PIECE OF THE TELE.

0008 00U {PHONL. TO USE THE PROGRAM, PLACE THE PHONE

o0 u00 {NUMBER(S) ANYWHERE IN MEMORY, ONE DIGIT PEK BYTL,

0010 0000 :AND ENDING WITH OF (HEX). FOR EXAMPLE, THE NUMBER

0011 ouoo :435-1212 WOULD BE 05 05 05 01 02 01 02 OF (ALL HEX) IN

0012 0000 :MEMORY. THEN PLACE THE ADDRESS OF THE NUMBER,

0013 0000 ;LOW BYTE FIRST, IN THE LOCATIONS 00C0 AND 00C1.

0014 0000 THEN EITHER GO TO THIS ROUTINE FROM THE MONITOR

;OR JSR TO IT FROM ANOTHER PROGRAM.

1S 0000 NUMPTR = 30000 iTHIS POINTS TO THE ADDRESS OF
:THE TELEPHONE NUMBER

0016 0000 ONDEL = 340 ;THIS IS THE DELAY CONSTANT FOR
:THE TIME WHEN THE

0017 0000 OFFDEL = 520 {DELAY CONSTANT FOR THE TIME
:WHEN THE TONES ARE 0

0018 0000 DELCON « 3FF :GENERAL PURPOSE DELAY
:CONSTANT

0019 0000 ACRI = 3A00B :THESE ARE THE TIMER MODE
REGISTERS (TIMER 1)

0020 0000 ACR2= SACDB ATIMER 2)

0021 0000 TICH = 3A008 :THIS IS THE TIMER | COUNTER
A{HIGH BYTE)

022 0000 TILH « $A007 :TIMER | LATCH (HIGH BYTE)

001} 0000 TILL = SAG4 : (LOW BYTE)

0024 0000 T2CH = SACDS SAME AS TIMER | — FOR TIMER 2

o028 0000 T2LH =$ACDT

o 0000 TIL =3ACH

0027 0000 = $0300

0028 0W0 ADOO PHONE LDY #3500 ANDEX