PROGRAMMERS GUIDE

TOTHE [BM PC

The ultimate reference
guide to the entire
family of IBM"
personal computers.

EEEEEEEEEEEEEE

PROGRAMMERS GUIDE

TOTHE IBM PC

PROGRAMMERS GUIDE
TOTHE IBM PC

The ultimate reference
guide to the entire
family of IBM®
personal computers.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 N.E. 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1985 by Peter Norton

All rights reserved. No part of the contents of this book may

be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data
Norton, Peter, 1943 —

The Peter Norton Programmer’s Guide to the IBM PC.
Includes index.
1. IBM Personal Computer—Programming. I. Title.
IL. Title: Programmer’s guide to the IBM PC,
QA76.8.12594N68 1985 001.64'2 85-8872
ISBN 0-914845-46-2

Printed and bound in the United States of America.
18 19 20 21 FGFG 89098

Distributed to the book trade outside the United States of America
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10,
New Zealand

Penguin ISBN 0-14-087-144-6
British Cataloging in Publication Data available

Framework™ is a trademark of Ashton-Tate. UNIX™ is a trade-
mark of AT&T Bell Laboratories. COMPAQ® is a registered
trademark and COMPAQ PLUS™ and DESKPRO™ are trade-
marks of COMPAQ Computer Corporation. CP/M® is a regis-
tered trademark of Digital Research Incorporated. Intel® is a reg-
istered trademark of Intel Corporation. IBM® is a registered
trademark and PC-AT™, PC-DOS™, PCjr™, PC-XT™, and Top-
view™ are trademarks of International Business Machines Corpo-
ration. Microsoft® and XENIX® are registered trademarks and
GW-BASIC™ is a trademark of Microsoft Corporation.
Motorola® is a regiStered trademark of Motorola, Incorporated.
Norton Utilities™ and TimeMart™ are trad ks of Peter Nor-
ton. Tandy® is a registered trademark of Radio Shack, a division of
Tandy Corporation. ProKey® is a registered trademark of Rose-
Soft. TI® is a registered trademark and T1 Professional ™ is a trade-
mark of Texas Instruments.

CONTENTS

Acknowledgments vii

Introduction ix

1 Anatomy of the PC 1
2 The Ins and Outs 19
3 The ROM Software 41
4 Video Basics 67
5 Disk Basics 99
6 Keyboard Basics 127
7 Sound Generation 145
8 ROM-BIOS Basics 159
9 ROM-BIOS Video Services 171
10 ROM-BIOS Diskette Services 187
11 ROM-BIOS Keyboard Services 203
12 Miscellaneous Services 209
13 ROM-BIOS Service Summary 225
14 DOS Basics 241
15 DOS Interrupts 247
16 Universal DOS Functions 269
17 New DOS Functions 295
18 DOS Service Summary 325
19 Program Building 337

20 Programming Languages 349

Appendix A: Installable Device Drivers 385
Appendix B: Hexadecimal Arithmetic 391
Appendix C: About Characters 401

Index 413

ACKNOWLEDGMENTS

So many people have contributed to the making of this book that it
would be impossible to list them all. There is one person, however, who
has earned special mention and thanks for her efforts and dedication to
this project: Suzanne Ropiequet.

INTRODUCTION

My goal in writing this book is a simple but an ambitious one: to
help you master the principles of programming the IBM personal com-
puter family. From the time that the first IBM Personal Computer (known
to us as “the PC”) was introduced in the fall of 1981, it was clear that it
was going to be a very important computer. Later, as PC sales zoomed
beyond the expectations of everyone, IBM included, and as the original
model was joined by a sibling or two, the PC became recognized as the
standard for serious desktop computers. From the original PC, a whole
family of computers—a family with many branches—has evolved. And
at the same time, the importance of the PC family has also grown.

The success and significance of the PC family has made the develop-
ment of programs for it very important. However, the fact that each mem-
ber of the family differs in its details and characteristics from its relatives
has also made the development of programs for the family increasingly
complex.

This book is about the knowledge, skills, and concepts that are
needed to create programs for the PC family—not just for one member
of the family, though we might perhaps cater to the peculiarities and
quirks of one member, but for the family as a whole, in a way that is uni-
versal enough that our programs should work not only on all the present
family members, but on future members as well.

I’ve written this book for anyone involved in the development of
programs for the PC family. It is for programmers, but not just for pro-
grammers. It is for anyone who is involved in or needs to understand the
technical details and working ideas that are the basis for PC program de-
velopment, including anyone who manages programmers, anyone who
plans or designs PC programs, and anyone who uses PC programs and
wants to understand the details behind them.

SOME COMMENTS ON PHILOSOPHY

One of the most important elements of this book is the discussion
of programming philosophy. You will find throughout this book expla-
nations of the ideas underlying IBM’s design of the PC family, and of the
principles of sound PC programming, viewed from my own experience.

PROGRAMMER'’S GUIDE TO THE IBM PC

If this book were to provide you with only facts— tabulations of
technical information—it would not serve you well. That’s why I’ve in-
terwoven with the technical discussion an explanation of what the PC
family is all about, of the principles that tie the various family members
together, and of the techniques and methods that help us produce pro-
grams that can endure and prosper along with the PC family.

HOW TO USE THIS BOOK

This book is both a reading book and a reference book, and there
are at least two ways that you might approach it. You may wish to read
it, like any other book, from front to back, digging in where the discus-
sion is useful to you and quickly glancing through the material you don’t
yet need. This approach provides a grand overview of the workings and
the ideas behind the workings of PC programs. You can also use this book
as a pure reference, dipping into specific chapters for specific informa-
tion. We’ve provided detailed tables of contents at the beginning of each
chapter and an extensive index to help you find what you need.

When you use this book as a random-access reference to the details
of PC programming, you’ll find that much of the material is intricately in-
terrelated. To help cope with the interrelationships, you’ll see that I have
repeated some details each time they came up where it was practical to
duplicate information, and have used a @ symbol to refer you to other
sections when it was not practical. I have also used the following self-
explanatory symbols to help you zone in on material that is specific to a
particular machine:

PC and 3 the original PC

it

1 (I = and Bl the PC XT
JR m I and Ll the PCjr
PP- and [[dd the Portable PC

i

— =
Al and [[1ll the PC AT

Introduction

xi

The machine icons are displayed beside paragraphs and whole sections
that apply to a specific machine, while the initials are used to draw your
attention to machine-specific comments within a discussion that applies
to the family as a whole. I hope this system will enable you to more easily
zone in on the information you need for your programs.

OTHER RESOURCES

One book, of course, can’t provide you with all the knowledge that
you might possibly need. I've made this book as rich and complete as I
reasonably can, but there will always be a need for other kinds of infor-
mation. Here are some of the places you might look for material to sup-
plement what you find here:

For detailed technical information about the PC family, the ultimate
source is IBM’s series of Technical Reference manuals. There are specific
Technical Reference manuals for the original PC, for the XT, for the PCjr,
for the AT, and for other specific models. The majority of the program-
ming-related information in these manuals is essentially repeated, and
any one manual could serve as a reference for the entire family. You should
know a few things about these model-specific manuals: First, information
that is specific to one model is not differentiated from general informa-
tion for the whole PC family. To be sure of the differences, you should use
common sense, compare the different manuals, and consult zhis book.
Second, you should keep in mind that each new model of PC adds new
features. If you turn to the manual for a later PC model, you will find
information on a wide variety of features; if you turn to the manual for
an earlier model, you’ll avoid being distracted by features that do not ap-
ply to all models in the family.

There is also an IBM Options Adapters Technical Reference manual
for the various options and adapters, such as different disk drives or dis-
play screens, used by the PC family. Technical information about this kind
of equipment is gathered into that one book, which is updated period-
ically (the updates are available by subscription). Much of the informa-
tion in this Technical Reference manual is not of use to programmers, but
you’ll find some parts that may be.

IBM also publishes Technical Reference manuals for special exten-
sions to the PC, such as PC Network.

Perhaps the most important of the IBM Technical Reference man-
uals is the series for DOS. These manuals contain a wealth of detailed
technical information, which I have summarized in this book. If you find
that you need more specific details about the operation of DOS, you
should turn to this manual.

xti

PROGRAMMER’S GUIDE TO THE IBM PC

Besides these IBM manuals, there is a host of other places to turn to
for supplemental information. For a somewhat broader perspective on
the IBM Personal Computer, one that is not focused on programming, see
my Inside the IBM Personal Computer, published by Robert J. Brady Com-
pany. For a similarly broader perspective on DOS, see Van Wolverton’s
Running MS-DOS, published by Microsoft Press. For more details on the
peculiarities and the ins and outs of the PCjr, see my Exploring the PCjr,
also published by Microsoft Press.

Because this book covers the subject of PC programming in a broad
fashion, it can’t provide you with more than a few key details about indi-
vidual programming languages. For any particular programming lan-
guage, and for the many specific compilers for those languages, you will
need more books than I could begin to list or recommend.

With these introductory remarks completed, it’s time for us to plunge
into our task of mastering the principles of programming the PC family!

Anatomy of the PC

The 8088 Microprocessor 2
The 80286 Microprocessor 6
The 8087 Math Coprocessor 8

The Support Chips 9
The 8259 Interrupt Controller 9
The 8237A DMA Controller 10
The 8284A Clock Generator 10
The 8255 Programmable Peripheral Interface 11
The 8253 Programmable Timer 11
The 6845 CRT Controller 11
The PD765 Diskette Controller 12

Linking the Parts: The Bus 12
The Address Bus 13
The Data Bus 13

The Memory Chips 14
Design Philosophy 17

2 PROGRAMMER’S GUIDE TO THE IBM PC

rom the programmer’s point of view, all the members of the PC

family consist of a processor, memory chips, and several smart,

or programmable, circuit chips. All the main circuit components

necessary to make the computer work are located on the system
board; other important parts are located on expansion boards, which
may be plugged into the system board.

The system board contains the microprocessor—either the 8088 or
the 80286 —which is tied to at least 64K bytes of memory, some built-in
ROM programs, such as BASIC and the ROM-BIOS, and several very im-
portant support chips. Some of these chips control external devices, such
as the disk drive or the display screen, and others help the micro-
processor perform its tasks.

In this section, we discuss each major chip and give a few impor-
tant technical specifications. The margin symbols tell which PCs use each
chip. These chips are frequently known by more than one name. For ex-
ample, some peripherals, such as the keyboard, are supervised by a chip
known as the 8255. This chip is also referred to as the 8255A and the
8255A-5. The suffixes A and $ refer to revision numbers and to parts
rated for operation at different speeds. For programming purposes, any
Intel chip part number that starts with 8255 is identical to any other chip
whose part number starts with 8255, regardless of the suffix. However,
when you replace one of these chips on a circuit board, note the suffix. If
the suffixes are different, the part may not operate at the proper speed.

THE 8088 MICROPROCESSOR

The 8088 is the 16-bit microprocessor that controls the standard IBM
personal computers, including the original PC, the XT, the Portable PC,
and the PCjr. It is the central processing unit (CPU) of the computer— the
brains behind the machine. Almost every bit of data that enters or leaves
the computer passes through the CPU to be processed or redirected.

The 8088 controls the computer’s basic operation by sending and re-
ceiving control signals, memory addresses, and data from one part of the
computer to another along a network of interconnecting electronic path-
JR m S I ways called a bus. Located along the bus are input and output (1/0) ports
that connect the various memory and support chips to the bus. Data
passes through these 1/O ports while it travels to and from the CPU and
the other parts of the computer.

Inside the 8088, 14 registers provide a working area for data transfer
and processing. These internal registers, forming an area 28 bytes in size,
are able to temporarily store data, memory addresses, instruction point-
ers, and status and control flags. Through these registers, the 8088 can
access over one million bytes of memory and up to 64K /O ports. @ See
Chapter 2 for an overview of the operating characteristics of the 8088.

S

o

Rt

<

b

L

=

9]

< &0

33

o0

L

o0 O

S

e}

w

8
28
= L
a-=
o c
3.8
w

SE®

o &2

o £

—
S
o
(2]
[72]
(5]
Q
o)
b
a,
o 2
x.8
» E
—

8259A
interrupt
controller

(G5

wansonnnaffannsannnsn

sy

TERIIELIYE

ke €,
:::.:\

— R
. s 3

TR TR TR TR
S e R TR R

H
X

ARRR AR PR TAFARAAREERREEHRECR AN

G R R R

O L e e e AL L Ll
P A e e R R R L L

AR RN W TR RN AW W
B

RN

..(a >

CERR A ¢
ssasbase
Atsgpess

sesasvEanst

i’

gregecarey LL0

YYYYYYYYY

e\\\\\\\\

v

-

—

501480 xm

4

W

b4
i

LEL LA

fivril

sarsrri Sasrrrrst x\ﬁ.m&...\w

|

rerrRl
Avrusasy
‘hh!ﬁihh
avaaaas ey
\m L
s
oo

ceuauuny
e kb and

Vi Vi
& i

vrrrr.r..-

aveneva®/

n.f.rli.rai

ERRERe

programmable

peripheral
interface

8237A

DMA controller

8253

ammable |

progr
timer

ROM

RAM

Figure 1-1. The PC system board

8259
6845 interrupt
CRT controller controller
8255
programmable
TISN76469N perlpheral
sound chip interface
8253
programmable
timer

ROM

RAM
8088

microprocessor

Figure 1-2. The PCjr system board

8259

80286

microprocessor

interrupt
controllers

\

programmable

8254
timer

80287
math coprocessor
plugs in here

e RS

NIL9ST0LNS &ww

arvsevaninnn

P

DMA controllers

8237

al <

espeerey m

WVEVETTC, bebievovir

Sanedow DNV ananeil

2
56/512 K

iiiii¥

8284

clock generator

(under shield)

-

3 . T
e - R
z ., .
q....:,.l «..::.2.(2:.5
. . .

& °

SYSTEM BOARD

e e 50 ey RS e

erarrREEY

£ A Fy
0 OO0 T
1 0500000 40000400408 50090000 A0 0089 00 p i
rerrere

ROM

PR ———

.ﬂ g [k

9000000009000 080 0000 1 o “ | £ ¥ g > e

5= s

swmnmaedd

i

L ; =

J_
0 0 110 1

000000000 900 9040 €0 0000 0108 0108 00,0 0009 00 400 9808 00

RAM

Figure 1-3. The AT system board

6 PROGRAMMER’S GUIDE TO THE IBM PC

The 8088’s family tree. The 8088 is just one member of a closely re-
lated family of 16-bit microprocessors designed by Intel Corporation. The
founding member of this microprocessor family is the 8086. The 8088 dif-
fers from the 8086 in only one minor respect: Although the 8088 is a 16-bit
microprocessor, it uses an 8-bit data bus instead of the 16-bit bus that the
8086 uses. (@ The difference between 8-bit and 16-bit buses is discussed
on page 13.) Virtually anything that you read about the 8086 also applies
to the 8088; for programming purposes, consider them identical.

Although the 8088 microprocessor has long been the main brain for
the PC family, it isn’t the only one available. Other Intel microprocessors
are being used to power some of the PC family’s distant cousins. For ex-
ample, the 8086 is the brain of the Compaq Deskpro, a well-known por-
table PC-compatible computer. A pair of microprocessors known as the
80188 and 80186 (they’re usually called the 188 and the 186), which are
more advanced versions of the original 8088 and 8086 microprocessors,
have been used in a variety of computers related to the IBM PC family,
such as the Tandy 2000 computer. These two microprocessors have more
computing power than their predecessors, but their chief asset is that
they combine, in one chip, both a microprocessor and many important
and necessary support operations—operations that are handled exter-
nally by older chips like the 8088 and the 8086. But in spite of their many
improvements, the 186 and 188 are still not the last word as far as the 8086
family is concerned.

The 80286 Microprocessor

Fe— The most advanced Intel microprocessor currently used in the IBM
AT B personal computers is the 80286 (or 286). It is this chip that controls the
operation of the AT. The 80286 is a true 16-bit microprocessor that uses a
full 16-bit data bus and adds extra programming features to the 8086 de-
sign. Perhaps the 286’s most important enhancements are its ability to
allow multitasking and virtual memory storage—two concepts that are
familiar to anyone experienced in mainframe computing.

Multitasking is the ability of a CPU to perform several tasks at a
time—such as printing a document or calculating a spreadsheet—by
quickly switching its attention among the controlling programs. A reg-
ular PC, which uses the 8088 microprocessor, can do a limited amount of
multitasking with the help of very sophisticated software, such as IBM’s
Topview or Microsoft’s Windows. But a true multitasking processor, like
the 286, performs task switching internally—with some help from the
operating system. Since the multitasking capabilities in the 286 are largely
a part of the hardware design, they are much faster and more reliable
than software-driven multitasking.

Chapter 1: Anatomy of the PC 7

Virtual memory allows a computer to act as if it has much more
memory than is physically present. Through an extremely sophisticated
software and hardware design, a program may be led to believe that it
has up to one gigabyte (one billion bytes) of memory at its disposal, even
though the hardware memory chips account for only a fraction of that
size. This deception is achieved through an elaborate memory addressing
scheme that involves storing some parts of a program on disk and some
parts in main memory. When particular instructions or program data are
needed that are not in physical memory, they are loaded from the disk.
The 286 and the operating system have the weighty task of figuring out
where the information is and where it must go so that the program runs
smoothly and efficiently, even though it is scattered throughout the com-
puter system.

Virtual storage has been used in mini- and mainframe computers
for a long time, but has only recently come of age in the microcomputer
world. Its introduction through the 286 in the AT should have a profound
effect on application programming since it allows us to write programs
whose sizes are, for all practical purposes, limited only by the physical
capacity of the disks.

The AT is often seen as just a faster, more powerful member of the
8086 family—able to run almost all the popular PC programs, including
the DOS operating systems and most DOS programs. However, both multi-
tasking and virtual memory storage change the operating characteristics
of the 286. When we use these features, the AT actually becomes a differ-
ent computer, requiring different programs and a different operating sys-
tem. This makes the AT the first of an entirely new generation of personal
computers, a generation apart from the original PC family.

With this in mind, it is best to leave the discussion of the. AT’s ad-
vanced capabilities to another book and focus in this one on the standard
PC capabilities. You will find that most of the programming techniques
discussed in this book focus on the 8088, with annotations on the 80286
where appropriate.

All members of the 8086 family are designed to work with addi-
tional processors. They also work with two special coprocessors: the 8087
math coprocessor and the 8089 /O coprocessor. These optional chips can
be wired together to help reduce the workload of the main CPU. IBM pro-
vides the circuitry to support only the 8087 math coprocessor, so we’ll
take a moment to discuss this chip in more detail.

PROGRAMMER’S GUIDE TO THE IBM PC

The 8087 Math Coprocessor

The 8088 can work only with integers, or whole numbers. “Real” or
floating-point numbers must be handled by special means. This is usually
done with subroutines, which carry out the floating-point operations ef-
fectively enough, but at great cost to efficiency and speed.

The 8087 math coprocessor performs floating-point calculations in
the neighborhood of 10 to 50 times faster than can be achieved with the
8088. In addition, it performs arithmetic with a much higher degree of
precision than is usually achieved with the 8088 (or even with most multi-
million-dollar mainframe computers). The 8087, besides doing simple
add/subtract/multiply/divide arithmetic, has the built-in ability to perform
trigonometric calculations (sine, cosine, tangent, etc.), which greatly sim-
plify some complex programming. Furthermore, it can work with num-
bers that come in different formats, including integer, floating-point, and
even decimal formats. Finally, it can do all this while the 8088 proceeds
with other work.

Every 8088-based PC model except the PCjr can accommodate the
8087, though it does require special software support. (J[{fl The AT uses
the 80287 math coprocessor, a variation of the 8087 that is tailored to
work with the 80286 microprocessor.) But though the 8087 greatly en-
hances the arithmetic performance of the IBM personal computers, rela-
tively little software takes advantage of it. This unfortunate situation is
due to a simple historical fact: Although provision for the use of the 8087

Approximate Range Significant Digits
Data Type (from) (to) Bits (decimal)

Word integer —32,768 Y2767 16

Short integer —2x10E9 +2x10E9 32 9
Long integer —9 X 10E18 +9x10E18 64 18
Packed decimal =99...99 +99...99 80 18
Short real 8.43X10E-37 3.37x10E38 32 67
Long real 4.19X10E-307 1.67x10E308 64 15-16
Temporary real 3.4%xX10E-4932 1.2x10E4932 80 19

Figure 1-4. The range of numeric data types
that can be operated on in the eight 80-bit
registers of the 8087 or 80287 math

coprocessors

Chapter 1: Anatomy of the PC 9

was designed into the original model of the PC (and into most other
models), IBM did not support the 8087—or even acknowledge its poten-
tial benefits—until the standards for PC hardware and software were
well established. This meant that a large percentage of the original hard-
ware and software developed for the PC family did not incorporate the
use of the 8087, depriving us all of some remarkable computing power.

Although 8087 chips and software have so far sold in only limited
numbers, we are beginning to see more programs, such as Ashton-Tate’s
Framework, that not only take advantage of the 8087, but also detect its
presence and automatically use it or bypass it depending on the require-
ments of the program. Unfortunately, there are still only a handful of such
programs available.

Since the use of the math coprocessor in the PC family is rare, we
won’t be covering the special problems of programming it in this book.

THE SUPPORT CHIPS

The microprocessor cannot control the entire computer without
some help—nor should it. By delegating certain control functions to
other chips, the CPU is free to attend to its own work. These support
chips may be responsible for such processes as controlling the flow of in-
formation throughout the internal circuitry, as the interrupt controller
and the DMA controller are, or for controlling the flow of information to
or from a particular device attached to the computer, such as a video dis-
play or disk drive. These so-called device controllers are often housed on
a separate board that is plugged into one of the PC’s expansion slots.

Many of the support chips in the IBM PC are programmable, which
means they can be manipulated to perform specialized tasks. For the
most part, direct programming of these chips is not a good idea, but in
the discussion of each chip that follows, I will point out which are safe to
_program and which aren’t. Since this book does not cover direct hard-
ware control, you should look in the IBM Technical Reference manual for
details about programming individual chips.

The 8259 Interrupt Controller

The 8259 supervises the operation of interrupts. Interrupts are sig-
nals sent to the CPU by the hardware either to request attention or to
request that some action be taken. The 8259 intercepts the signals, deter-
mines their level of importance in relation to the other signals it is receiv-
ing, and issues an interrupt to the CPU based on this determination.
When the CPU receives the interrupt signal, it calls a specific program

PROGRAMMER’S GUIDE TO THE IBM PC

associated with that particular peripheral device. It is this program that
actually performs the required action. @ We discuss interrupts more
thoroughly in Chapters 2 and 3.

The 8259 can handle eight interrupt requests at a time, and can be
linked to other 8259s for higher capacity. IBM has made use of this
expansion capability by hooking two of them together in the AT so it can
handle fifteen interrupts at a time.

Generally, we do not program the 8259, since any changes to it are
likely to interfere with the computer’s basic operation. However, it is pos-
sible to reconfigure the priority levels of the interrupts at any time during
the execution of the main program. This means that the program can
change the order in which the requests are processed by the 8259 to
match its own needs.

Other names for the 8259 include the INTR and the PIC, for pro-
grammable interrupt controller.

The 8237 DMA Controller

To avoid harassing the microprocessor, some parts of the computer
are able to transfer data to and from the computer’s memory without
passing through the CPU. This operation is called direct memory access,
or DMA, and it is handled by a chip known as the 8237, or DMA control-
ler. The main purpose of the DMA controller is to allow the disk drive to
read or write data without involving the microprocessor. Since disk VO is
a relatively slow operation, DMA can speed up the computer’s overall per-
formance quite a bit.

All members of the PC family, with the important exception of the
PCjr, use either the 8237 or its equivalent for direct memory access.
ET The lack of DMA is one reason why the PCjr is slower than its cous-
ins. Without a DMA controller to help out, the PCjr’s 8088 has to take care
of disk operations whenever they occur, which is indirectly why we can-
not type on the Junior keyboard while the disk is in use.

The DMA controller contains four separate channels to carry data
back and forth from memory, and 344 bits of internal memory to store
the data that is in transit. Theoretically, it is possible for several DMA con-
trollers to be connected to one another and, in fact, [[Yll the AT uses two
DMA controllers in its circuitry.

The 8284 Clock Generator

The clock generator supplies the multiphase clock signals that are
needed to drive the microprocessor and the peripherals. Its base fre-
quency is 14.3128 megahertz (MHz, or million cycles per second). The

Chapter 1: Anatomy of the PC 11

other chips generally divide the base frequency by a constant to obtain
the frequency they need to accomplish their tasks. The standard PC fam-
ily’s 8088 is driven at 4.77 MHz, one-third of the base frequency. The new
additions to the 8086 family can run faster. For example, the 8088-2, used
on some variations of the PC, can be run at a clock speed of 8 MHz, pro-
viding nearly twice the raw computing power of the 8088, and the 80286
runs at 6 MHz, providing roughly one and a half times the computing
power of the 8088. The internal bus and the 8253 programmable timer
(@ discussed shortly) use a frequency of 1.193 MHz, running at a quarter
of the 8088 rate, and one-twelfth of the base rate.

The 8255 Programmable Peripheral Interface

The 8255 is used to connect some of the computer’s peripheral de-
vices to the bus. Information that is sent to or from devices such as the
speaker and the cassette travels through the I/O ports via this chip.

The 8255 is also called the PPI (for programmable peripheral inter-
face). It is normally programmed by the system software, so although
possible, it is not necessary for us to program this chip.

The 8253 Programmable Timer

The 8253 (XM the 8254 in the AT) is a multipurpose timer and
counter that can generate up to three accurate time delays under software
control. It gets its signal from the 8284 clock generator and oscillates at a
frequency of 1.193 MHz.

The 8253 is mainly used to generate sounds on the PC’s internal
speaker, but is also used for other frequency-dependent functions, such as
cassette data /O and timekeeping. @ See Chapter 7’s discussion of sound
for more information about this chip.

Other names for the 8253 include the timer, and sometimes the
clock. Keep in mind that “clock” also refers to the 8284 chip, which gen-
erates the computer’s 14.3-MHz heartbeat.

The 6845 CRT Controller

The 6845, also called the Motorola CRT chip, is generally located on
an expansion board known as the video display adapter. It has 19 internal
registers that are used to define and control a raster-scan CRT. Although
we can program this chip ourselves, it is wisest by far to leave it under the
control of the PC’s BIOS. @ See Chapter 4 for more information on video
displays and video display adapters.

PROGRAMMER'’S GUIDE TO THE IBM PC

The PD765 Diskette Controller

The PD765 supervises and controls the operation of the diskette
drive. It is more commonly called the FDC (floppy-disk controller) or the
NEC (Nippon Electric Company) controller. As with the 6845 CRT con-
troller, we should leave this chip under the BIOS’s control.

LINKING THE PARTS: THE BUS

As we mentioned, the PC family of computers links all internal con-
trol circuitry together by a circuit design known as a bus. A bus is simply
a shared path on the main circuit board to which all the controlling parts
of the computer are attached. When data is passed from one component
to another it travels along this common path to reach its destination.

Every control chip and every byte of memory in the PC is connected
directly or indirectly to the bus. When a new component is plugged into
one of the expansion slots, it is actually plugged directly into the bus,
making it an equal partner in the operation of the entire unit.

Any information that enters or leaves a computer system is tem-
porarily stored in at least one of several locations along the bus. Most of
the time data is placed in main memory, which in the PC family consists
of thousands of 8-bit memory cells. But some data may end up in a port
or register for a short time while it waits for the CPU to send it to its
proper location. Generally, ports and registers hold only one or two bytes
of information at a time and are usually used as stopover sites for data
that is being sent from one place to another. (@ Ports and registers are
discussed in detail in Chapter 2.)

Whenever a memory cell or port is used as a storage site, its loca-
tion is marked by an address that uniquely identifies it. When data is
ready to be transferred, its destination address is first transmitted along
the address bus; the data follows along behind on the data bus. So the
bus carries more than just data. It carries power and control information,
such as timing signals (from the system clock) and interrupt signals, as
well as the addresses of the thousands of memory cells and the many de-
vices attached to the bus. To accommodate these four different functions,
the bus is divided into four parts: the power lines, the control bus, the
address bus, and the data bus. We’re going to delve deeper into the ad-
dress and data buses because they conduct information in a way that
helps to explain some of the unique properties of the PC family.

Chapter 1: Anatomy of the PC 13

The Address Bus

The address bus in the standard PC family uses 20 signal lines to
transmit the addresses of the memory cells and devices attached to the
bus. (@ Memory addressing is discussed more fully on page 14 and in
Chapter 3.) Since there are two possible values (either 1 or 0) that can
travel along each of the 20 address lines, the standard PC computers are
able to specify 220 addresses. This amounts to over a million possible ad-
dresses. The AT uses 24 address lines, allowing it to specify 224 or
over 16 million addresses.

The Data Bus

The data bus works in conjunction with the address bus to carry
data throughout the computer. The PC’s 8088-based system uses a data
bus that has 8 signal lines, each of which carries a single binary digit (bit).
This means that data is transmitted across the 8-line bus in 8-bit (1-byte)
units. [[1ll The 80286 microprocessor of the AT uses a 16-bit data bus, and
therefore passes data in 16-bit (1-word) units.

The 8088, being a 16-bit microprocessor, can work with 16 bits of
data at a time, just like its relative the 80286. Although the 8088 can work
with 16-bit numbers internally, it passes data only 8 bits at a time when
working with the circuitry around it because of the size of its data bus.
This has led some people to comment that the 8088 is not a true 16-bit
microprocessor. Rest assured that it is, even though it is less powerful
than the 80286. The 16-bit data bus of the 80286 does help it move data
around more efficiently than the 8088, but the real difference in speed
between the 8088 and the AT comes from the AT’ faster clock rate and its
more powerful internal organization.

There is an important practical reason why so many computers, in-
cluding the older members of the PC family, use the 8088 with its 8-bit
data bus, rather than the 8086 with its 16-bit bus. The reason is simple
economics. A host of 8-bit circuitry elements is available in large quan-
tities at low prices. When the PC was being designed, 16-bit circuitry was
more expensive and was less readily available. The use of the 8088, rather
than the 8086, was important not only to hold down the cost of the PC,
but also to avoid a shortage of parts. The price of 16-bit circuitry ele-
ments has decreased significantly since then, however, and it has become
economically feasible to use the more efficient 80286 with its 16-bit bus.
Furthermore, the 286 is able to use a mixture of 8-bit parts and 16-bit
parts, thereby maintaining compatibility within the PC family.

PROGRAMMER'’S GUIDE TO THE IBM PC

THE MEMORY CHIPS

So far, we’ve discussed the CPU, the support chips, and the bus, but
we’ve only touched on memory. We’ve left our discussion of memory to
the end of this chapter because memory chips, unlike the other chips we
have discussed, don’t control or direct the flow of information through a
computer system; they just store it until it is needed.

The number of memory chips that physically exist inside the com-
puter determines the amount of memory we can use for programs and
data. Although this may vary from one computer to another, a standard
PC usually comes with around 40K of read-only memory (ROM)—with
space for more—and from 128K to 256K of random-access memory
(RAM). Since only 256K of RAM can be accommodated on the system
board, it is possible to add memory cards of varying capacities via the PC’s
expansion slots. But this is just the physical view of the standard PC’s mem-
ory. To the computer, the memory chips are nothing more than a few thou-
sand 8-bit (1-byte) storage cells, each one with its own unique address.

Programmers must also think of memory in this way—not in
terms of how much physical memory there is, but in terms of how much
addressable memory there is. The 8088 can address up to 1,024K, or ex-
actly 1,048,576 bytes of memory. In other words, that’s the maximum
number of addresses, and therefore the maximum number of individual
bytes of information it can refer to. @ Memory addressing is discussed
in more detail on page 24.

Each byte is referred to by a 20-bit numeric address. In the 8088’
memory scheme, the addresses are 20 bits “wide” because they must
travel along the 20-bit address bus. We tend to use hex notation rather
than binary notation in determining memory locations, so we usually
translate this 20-bit address into its S-hex-digit equivalent. This allows
address values to range from hex 00000 to hex FFFFF (0 to 1,048,576 in
decimal notation). @ If you have trouble understanding hex notation,
you might want to take a quick look at Appendix B.

When we discuss the PC’s 1,024K-byte addressable memory space,
we usually divide it into 16 blocks of 64K bytes each. We identify each
64K block by the first hex digit, or the high-order part, of all the memory
addresses in the block. For example, the first 64K of memory is the 0
block, with bytes at addresses 00000 through OFFFF; the last block of
memory is the F block, at addresses F0000 through FFFFF.

For nearly all purposes, there is no functional boundary between
blocks. We refer to memory in these blocks partly for convenience, and
partly because the overall scheme for memory use in all the IBM personal
computers assigns different uses block by block.

Chapter 1: Anatomy of the PC 15

Permanent ROM area: ROM-BIOS, BASIC, diagnostics
Cartridge ROM area

Cartridge ROM area

BIOS extensions (XT Disk)

Conventional display memory (the PC, XT, and AT)
Display memory expansion

Working RAM, up to 640K

Working RAM, up to 576K

Working RAM, up to 512K

Working RAM, up to 448K

Working RAM, up to 384K

Working RAM, up to 320K

Working RAM, up to 256K

Working RAM, up to 192K

Working RAM, up to 128K; maximum allowed in PCjr
Working RAM, up to 64K; generally used by system software

ORMNWhuaoaNwwOTmOD M

O 0O OO O0 00U OoOOOO
C OO OO DO OO OoOCO
O OCOOODDOOOC OO OO
OO0 OO0 OOOOOOO

Figure 1-5. The memory block outline for
the PC family

In theory, any area can contain either permanently recorded ROM,
or changeable RAM. By convention, the first ten blocks (blocks 0 through
9), totaling 640K, are set aside for RAM in the IBM PCs and are used as
ordinary working memory. Any memory that is installed in these com-
puters is placed here, starting in the first block. Since RAM always oc-
cupies a contiguous space, no blocks are skipped. Any addresses in this
640K area with values larger than the actual memory installed are not
ordinarily used. If a program tries to use an address where there is no
actual memory, the results can vary. Usually no overt error is detected,
and the program will continue running.

All IBM personal computers have memory installed in at least the
first 64K block, block 0. Of course, 64K is a minimum amount of mem-
ory and it’s rare for a PC to have only this amount. (At the time the PC
was introduced, memory on the system board was expandable in 16K in-
crements, and IBM offered a 16K minimum system; current boards are
expandable in 64K minimum increments.) The lowest addresses in the 0
block are traditionally reserved for use by the system software. These ad-
dresses store such things as status information, address tables, character
tables, and operating system routines. @ Chapter 3 explores these low-
memory locations in greater detail.

The A block of memory is set aside for expansions to the video
memory and is used by IBM’s Enhanced Graphics Adapter (EGA) and the
Professional Graphics Adapter. The use of the A block is rather special

16 PROGRAMMER’S GUIDE TO THE IBM PC

and also oddly quirky—so quirky, in fact, that there is little useful and
reliable information that we’ll be able to tell you about it. The best way to
view the A block is as a provisional scratch pad that is used for brief in-
stants in advanced video modes.

The B block is used for the ordinary video memory in every model
except the PCjr. It is divided into two 32K halves, whose addresses begin
at B0000 and B8000; for convenience, these areas are simply referred to as
B0 and B8. The IBM Monochrome Adapter, the add-on circuit board that
drives the IBM Monochrome Monitor, uses 4K of memory located at the
beginning of the BO area (the area’s remaining 28K is unused). The IBM
Color/Graphics Adapter, the add-on board that drives most other moni-
tors, uses 16K of memory located at the beginning of the B8 area (the re-

_ maining 16K is unused).

Although the other IBM PC models can have either or both of these
display adapters installed, the PCjr has the functional equivalent of the
Color/Graphics Adapter built into it and cannot accommodate a mono-
chrome adapter. The PCjr simulates the use of B8, but actually uses the
high end of RAM (the 0 block for the entry-model PCjr and the 1 block
for the 128K enhanced model) to support the video data. Through some

m | special circuitry called a video gate array (VGA), the Junior manages to
JR simulate the PC’s video functions exactly, and makes our programs think
it is using the B block, the standard location for PC video memory. The
result is that a PCjr acts like a PC that has a Color/Graphics Adapter in-
stalled. Fortunately, the PCjr goes to great lengths to disguise its dif-
ferences from the other members of the PC family. From a programming
point of view, this means we can ignore the Junior’s peculiarities and
| treat it just like a standard PC.

It is important to keep in mind that the use of the B block, and its
division into the B0 half for monochrome use and the B8 half for color/
graphics use, is a universal standard for the PC family. All models of the
PC, including the PCjr, and all PC display adapters, including the En-
hanced and Professional Graphics Adapters, either use or appear to use
the standard B-block memory locations.

The C block is set aside for any additions that need to be made to
permanently installed ROM programs. IBM first used this area to hold the
ROM-BIOS routines for the fixed disk that comes with the XT model (and
that can be added to the PC model). They did not place the routines at the
beginning or end of the C block, as we might expect, but instead they
placed them in the middle, starting at C8. We can probably assume most
BIOS additions will also be placed in this general area, particularly those
that support new hardware extensions.

Chapter 1: Anatomy of the PC 17

The D and E blocks are set aside for ROM memory in software car-

tridges, which were introduced with the PCjr. Cartridge support can be

m I added to nearly any model of PC, but cartridges are rarely used except in

JR =3 | the Junior. Cartridge memory actually plugs into the beginning or middle

of either of these blocks, at D0, D8, E0, or ES. In the PCjr only, cartridges
| can also plug into the next block, at either F0 or F8.

Normally, the F block is used for permanently installed ROM pro-
grams. These include the ROM “cassette” BASIC, the ROM-BIOS, and the
test and diagnostic routines. @ See Chapter 3 for more details. EIl The F
block is used for a special purpose by the PCjr; plugging cartridges into the
F block overrides the conventional ROM-BIOS programs that are placed
there. @ There is more on cartridge use in the Junior in Chapter 3.

DESIGN PHILOSOPHY

Before we leap into the following chapters, we ought to discuss the
control philosophy behind the PC family. This will help you understand
what is (and what isn’t) important or useful to you.

Part of the design philosophy of the IBM personal computer family
centers around a set of BIOS service routines (@ see Chapters 8 through 13)
that provide essentially all the control functions and operations that IBM
considers necessary. The basic philosophy of the PC family is: Let the BIOS
do it; don’t mess with direct control. In my judgment, this is a sound idea
that has several beneficial results. Using the BIOS routines encourages
good programming practices and it avoids some of the kludgy tricks that
have been the curse of many other computers. It also increases the
chances of our programs working on every member of the PC family. In
addition, it gives IBM more flexibility in making improvements and addi-
tions to the line of PC computers. However, it would be naive for me to
simply say to you, “Don’t mess with direct control of the hardware.” For
good reasons or bad, you may wish or may need to have your programs
work as directly with the computer hardware as possible, doing what is
colorfully called programming down to the bare metal.

When you consider directly controlling the hardware with your
programs, you should understand that the basic mechanism for doing
this lies in the use of ports (@ discussed in Chapter 2). With the single
exception of sending output directly to the display screen (which is done
through the use of memory), all direct control of the PC’s hardware is
done by sending data through hardware ports. With only a few excep-
tions, direct use of the ports to control the PC runs against IBM’s design
philosophy, and again I would urge you to avoid doing it. The exceptions
to this rule involve those features that IBM did not provide BIOS control
for, specifically sound generation (@ see Chapter 7).

The(Ins and Outs

How the 8088 Communicates 22
The 8088 Data Formats 23

How the 8088 Addresses Memory 24
Expanding Memory with Segmented Addresses 24
The 8088’s Fourteen Registers 25§

How the 8088 Uses Ports 36
Family Differences in the Use of Ports 37

How the 8088 Uses Interrupts 37

19

20

PROGRAMMER’S GUIDE TO THE IBM PC

enerally speaking, the more each of us learns about program-

ming, the more we begin to realize the limitations of our pro-

gramming languages. High-level programming languages,

such as BASIC or C, are not designed to include every possible
function that we might need while programming—though admittedly,
some are better than others. At some point, we will want to go deeper
into our system and use some of the routines the languages themselves use;
or perhaps go even deeper and program at the hardware level.

Although some languages provide limited means to talk directly to
memory (as with PEEK and POKE in BASIC) or even to some of the chips
(as with BASIC’s INP and OUT statements), most programmers eventually
resort to assembly language, the basic language from which all other lan-
guages and operating systems are built. The 8088 assembly language, like
all other assembly languages, is composed of a set of symbolic instruc-
tion codes as shown in Figure 2-1. Inside the 8088, these codes and the
data that is associated with them are translated into a binary form, called
machine language, so that they can reside in memory and move through
the electronic circuitry to accomplish specific tasks.

The operations the 8088 instructions can perform break down into
just a few categories. They can do simple, four-function arithmetic on 8-
or 16-bit integers. They can move data around. They can, using only
slightly clumsy methods, manipulate individual bits. They can test values
and take logical action based on the results. And last but not least, they
can interact with the circuitry around them. The size of each instruction
varies from one byte to six bytes. By design, the most basic and often-
used instructions are the shortest.

Assembly-language programming may be carried out on one of two
levels: to create interface routines that will tie high-level programs to the
lower-level DOS and ROM-BIOS routines; or to create full-fledged assembly-
language programs that perform exotic tasks at the hardware level, per-
haps accomplishing a feat that is accomplished nowhere else. Either way,
in order to understand how to use assembly language, we must under-
stand how the 8088 processes information and how it works with the rest
of the computer. The focus of our discussion for the rest of this chapter
will be the way the 8088 and the computer’s other parts communicate.

Mnemonic Full Name Mnemonic Full Name
AAA ASCII adjust for addition JNAE Jump on not above or equal
AAD ASCII adjust for division JNB Jump on not below
AAM ASCII adjust for multiplication JNBE Jump on not below or equal
AAS ASCII adjust for subtraction JNC Jump on no carry
ADC Add with carry JNE Jump on not equal
ADD Add JNG Jump on not greater
AND AND JNGE Jump on not greater or equal
CALL CALL JNL Jump on not less than
CBW Convert byte to word JNLE Jump on not less than or equal
CLC Clear carry flag JNO Jump on not overflow
CLD Clear direction flag JNP Jump on not parity
CLI Clear interrupt flag JNS Jump on not sign
CMC Complement carry flag JNZ Jump on not zero
CMP Compare Jo Jump on overflow
CMPS Compare byte or word (of string) JP Jump on parity
CMPSB Compare byte string JPE Jump on parity even
CMPSW Compare word string JPO Jump on parity odd
CWD Convert word to double word JS Jump on sign
DAA Decimal adjust for addition JZ Jump on zero
DAS Decimal adjust for subtraction LAHF Load AH with flags
DEC Decrement LDS Load pointer into DS
DIV Divide LEA Load effective address
ESC Escape LES Load pointer into ES
HLT Halt LOCK LOCK bus
IDIV Integer divide LODS Load byte or word (of string)
IMUL Integer multiply LODSB Load byte (string)
IN Input byte or word LODSW Load word (string)
INC Increment LOOP LOOP
INT Interrupt LOOPE LOOP while equal
INTO Interrupt on overflow LOOPNE LOOP while not equal
IRET Interrupt return LOOPNZ LOOP while not zero
JA Jump on above LOOPZ LOOP while zero
JAE Jump on above or equal MoV Move
JB Jump on below MOVS Move byte or word (of string)
JBE Jump on below or equal MOVSB Move byte (string)
JC Jump on carry MOVSW Move word (string)
JCXZ Jump on CX zero MUL Multiply
JE Jump on equal NEG Negate
JG Jump on greater NOP No operation
JGE Jump on greater or equal NOT NOT
JL Jump on less than OR OR
JLE Jump on less than or equal ouT Output byte or word
MmP Jump POP POP
JNA Jump on not above POPF POP flags

(continued)

Figure 2-1. The 8088 instruction set

22

PROGRAMMER’S GUIDE TO THE IBM PC

Mnemonic Full Name Mnemonic Full Name
PUSH PUSH SCASB Scan byte (string)
PUSHF PUSH flags SCASW Scan word (string)
RCL Rotate through carry left SHL Shift left
RCR Rotate through carry right SHR Shift right
REP Repeat STC Set carry flag
REPE Repeat if equal STD Set direction flag
REPNE Repeat if not equal STI Set interrupt flag
REPNZ Repeat if not zero STOS Store byte or word (of string)
REPZ Repeat if zero STOSB Store byte (string)
RET Return STOSW Store word (string)
ROL Rotate left SUB Subtract
ROR Rotate right TEST TEST
SAHF Store AH into flags WAIT WAIT
SAL Shift arithmetic left XCHG Exchange
SAR Shift arithmetic right XLAT Translate
SBB Subtract with borrow XOR Exclusive OR
SCAS Scan byte or word (of string)

Figure 2-1. The 8088 instruction set
(continued)

HOW THE 8088 COMMUNICATES

The 8088 interacts with the circuitry world around it in three ways:
via direct and indirect memory access, through ports, and with signals
called interrupts.

Memory is used by reading or writing values that are stored in
memory locations and identified with numeric addresses. The memory
locations can be accessed in two ways: directly, through the 8237A chip,
commonly known as the direct memory access (DMA) controller, or indi-
rectly, through the 8088’s internal registers. The disk drives and the serial
communications ports can directly access memory through the DMA
controller. All other devices transfer data to and from memory by way of
the 8088’s registers. @ For more information about the DMA controller,
see page 10. For more on registers, see page 25.

Ports are the 8088’s general means of communicating with any com-
puter circuitry other than memory. Like memory locations, ports are
identified by number, and data can be read from or written to any port.
Port assignment is unique to the design of any particular computer. Gen-
erally, all members of the IBM PC family use the same port specifications,
with just a few variations among the different models (@ see page 38).

Interrupts are the means by which the circuitry outside the 8088
reports that something (such as a keystroke) has happened and requests
that some action be taken. Although interrupts are essential to the 8088’

Chapter 2: The Ins and Outs 23

interaction with the world around it, the concept of an interrupt is useful
for other purposes as well. For example, the system BIOS or the operating
system can produce software interrupts to request and execute special
service programs. Interrupts will be quite important to us when pro-
gramming the PC family, so we’ll devote a special section to them at the
end of this chapter.

The 8088 Data Formats

Numeric data. The 8088 is able to work with only four simple nu-
meric data formats, all of which are integer values. The formats are
founded on two building blocks: the 8-bit byte and the 16-bit (2-byte)
word. Both of these basic units are derived from the 16-bit processing ca-
pacity of the 8088 and its 8-bit data bus. The byte is the more fundamen-
tal unit, and when the 8088 addresses memory, bytes are the basic unit
addressed. In a single byte, the 8088 can work with unsigned positive
numbers ranging in value from 0 through 255 (that is, 28 possibilities). If
the number is a signed value, a byte can represent values ranging from
—128 through +127. (e see Figure 2-2.)

When we need integer values larger than one byte, the 8088 simply
uses two adjacent bytes and treats them as a single unit. The 2-byte word
is the most common format. A 2-byte word interpreted as an unsigned,
positive number can have a value ranging from 0 through 65,535. As a
signed number, the value can range from — 32,768 through +32,767.

Character data. Character data is stored in the standard ASCII for-
mat, with each character occupying one byte. The 8088 knows nothing
about ASCII characters and treats them as arbitrary bytes, with one par-
tial exception: The 8088’ instruction set accommodates decimal addition
and subtraction performed on ASCII numeral characters. The actual
arithmetic is done in binary, but the combination of the AF flag (e see
page 33) and a few special instructions makes it practical to work on
decimal characters and get decimal results.

Range
Size Signed? Dec Hex
8 No 0to 255 00 to FF
8 Yes —128to0to +127 80 to 00 to 7F
16 No 0to 65,535 0000 to FFFF
16 Yes —32,768 to 0 to +32,767 8000 to 0000 to 7FFF

Figure 2-2. The four data formats used by
the 8088

PROGRAMMER’S GUIDE TO THE IBM PC

@ See Appendix C for more information on ASCII and the PC fam-
ily’s extended ASCII character set.

HOW THE 8088 ADDRESSES MEMORY

The 8088 is a 16-bit microprocessor and cannot therefore work di-
rectly with numbers larger than 16 bits, the largest decimal value being
65,535 or 64K. Theoretically, this means that the 8088 should be able to ac-
cess only 64K memory addresses. But, as we learned in the previous chap-
ter, it can in fact access much more than that—1,024K to be exact. This
is possible because of the 20-bit addressing scheme used with the 8088,
which expands the full range of memory locations that the 8088 can work
with from 216 (65,535) to 220 (1,048,576). But the 8088 is still limited by its
16-bit processing capacity. To access the 20-bit addresses, it must use an
addressing method that fits into the 16-bit format.

Expanding Memory with Segmented Addresses

The 8088 divides the addressable memory space into an arbitrary
number of segments, each containing no more than 64K bytes. Each seg-
ment begins at a location that is evenly divisible by 16 bytes, known as its
segment address or segment paragraph. To access individual bytes or
words, we use an additional address called an offset address that points
to an exact byte location within the 64K segment designated by the seg-
ment paragraph. Because offset addresses are always measured relative to
the beginning of a segment paragraph, they are also called relative ad-
dresses or relative offsets.

Addresses are created and manipulated by combining a 16-bit seg-
ment paragraph and a 16-bit relative offset. The segment paragraph is
treated as if it were shifted to the left by four bits. When added to the
relative offset, it yields a complete, 20-bit address, as we have shown in
Figure 2-3. Together, the two 16-bit words are usually called a segmented
address; they are also called a vector, particularly when referring to in-
terrupts (a~ see page 39 for more on interrupt vectors).

Segment paragraphs are written as S-digit hex values and always
have a zero in the last place, such as FFE40 or B8120. The zero comes
from multiplying the original 16-bit, 4-digit hex number by 16. (We get
the same shifted effect when we multiply a decimal value by its base
number 10, as in 23 x10=230.) The fact that the segment part of a seg-
mented address is shifted left by four bits (which is the same as if it were
multiplied by 16) is the reason why the segment part alone can only point

Chapter 2: The Ins and Outs 25

101110111010001 1{0 0 0 0= Segment paragraph address
p
[1011101001100 11 1je Relative offset address

[11700011101001001011 1}e—20-bit segmented address

Figure 2-3. The segment paragraph, which
points to the beginning of a 64K memory
segment, and the relative offset, which
points to a specific byte within the segment,
are combined by the CPU to form a 20-bit
physical addpress.

to actual memory addresses that are a multiple of 16, and why the relative
offset is needed to define the precise location within the segment. Offset
addresses are written as 4-digit hex values. When added together these
two numbers form one 5-digit hex number which converts to the 20-bit
address. For example, if we take a hex segment paragraph such as 1234
and multiply it by 16, we get 12340. Then if we add to this the relative
offset of the byte we are looking for, such as 4321, we get our 5-digit hex
result, as shown in the following example:

12340 The segment address in hex notation, shifted by four bits
+ 4321 The offset address in hex notation
16661 The 20-bit segmented address in hex notation

When we write a 20-bit address broken down into its segment and
relative-offset parts, we use the notation 0000:0000, with the segment on
the left side of the colon and the relative offset on the right. For example,
a 20-bit address written as FFE6E could be written as FFE4:002E in seg-
mented notation. As shown in Figure 2-4, we can express a single 20-bit
address in a variety of ways using segmented notation, depending upon
which segment paragraph we choose.

The 8088’s Fourteen Registers

The 8088 was designed to execute instructions and perform arith-
metic and logical operations at the same time it receives instructions and
passes data to and from memory. To do this, it uses 16-bit registers.

There are fourteen registers in all, each with a special use. Four
scratch-pad registers are used by programs to temporarily hold the inter-
mediate results and operands of arithmetic and logical operations. Four

26

PROGRAMMER’S GUIDE TO THE IBM PC

00000 00010 00020 00030 FFFFF
| 123456789aBCDEF| 123456789 ABCDEF | 123456789aBcoEF| (FOOO:FFFF)
0000:0000 0000:0010 0000:0020 0000:0030

0001:0000 0001:001Q 0001:0020

0002:0000 0002:0010

Segment paragraph address

Figure 2-4. The offset address is always de-
termined relative to the segment paragraph
addpress. For this reason, there may be sev-
eral different segmented addresses for
exactly the same location in memory.

segment registers hold the starting addresses of certain segments in mem-
ory. Five pointer and index registers hold the offset addresses that are
used with the segment paragraphs to pinpoint data in memory. Finally,
there is one flag register containing nine 1-bit flags that are used to record
8088 status information and control 8088 operations. (@ see Figure 2-5.)

The Scratch-Pad Registers

When a computer is processing data, a great deal of the micro-
processor’s time is spent fetching data back and forth from memory. This
access time can be greatly reduced by keeping frequently used operands
and results inside the 8088. Four 16-bit registers, usually called the
scratch-pad or data registers, are designed for this purpose. '

The scratch-pad registers are known as AX, BX, CX, and DX. Each
of them can also be subdivided and separately addressed as two 8-bit
half-registers. The high-order half-registers are known as AH, BH, CH,
and DH and the low-order half-registers are known as AL, BL, CL, and
DL. Use of the full- and half-registers can be freely intermixed, as needed.

The scratch-pad registers are used mostly as convenient temporary
working areas, particularly for arithmetic operations. Addition and sub-
traction can be done in memory without using the registers, but the re-
gisters are faster.

Chapter 2: The Ins and Outs 27

Scratch-pad registers

7 0.7 0
AX (accumulator) AH AL
BX (base) - BH BL
CX (count) CH CL
DX (data) DH DL
Segment registers
15 0
CS (code segment)
DS (data segment)
SS (stack segment)
ES (extra segment)

Offset registers

15 0
IP (instruction pointer)
SP (stack pointer)
BP (base pointer)
SI (source index)
DI (destination index)

Flag register

15

Flags | |oF|or| e | TE|sFze| [aF| |pF] |cF|

Figure 2-5. The 8088 registers and flags

Although these registers are available for any kind of scratch-pad
work, each also has some special uses. For example:

m The AX register is an accumulator and is the main register used
to perform arithmetic operations.

m The BX (base) register is often used to point to the beginning of a
translation table in memory. It may also be used to hold the offset
_part of a segmented address.

m The CX (count) register is used as a repetition counter for loop
control and repeated data moves. For example, the LOOP instruc-
tion in assembly language uses CX to store the count for the num-
ber of loop iterations. None of the other registers can perform
this function.

® The DX register is used to store 16-bit data for general purposes.

Although the scratch-pad registers are used for temporary storage
of data and operands, or for the specific tasks just mentioned, their
“scratch-pad” nature opens them up for other uses as well. For example,
all four are often used to house the relative offset addresses of data that
are passed as parameters from a program.

28

PROGRAMMER’S GUIDE TO THE IBM PC

The Segment Registers

As we discussed earlier, the complete address of a memory location
consists of the address of a 64K segment and an offset address within the
segment. Four registers, called CS, DS, SS, and ES, are used to identify
four specific 64K segments of memory. Five offset registers, which we’ll
discuss shortly, are then used to store the relative offset address of the
data within the 64K segment.

Of the four segment registers, the following three are dedicated to
special purposes:

B The CS register locates the code segment, which contains the pro-
gram that is being executed.

Chapter 2: The Ins and Outs 29

m The DS register locates the data segment, the area of memory
where the current data is stored.

m The SS register locates the stack segment, a temporary workplace
that keeps track of the parameters and addresses currently in use
by the active program (@ see page 32 for more information about
stacks).

The fourth segment register, the ES register, points to an extra seg-
ment that is normally used to supplement the data segment so that more
than 64K of memory can be used to store data. It is also used for interseg-
ment data transfers.

It is common for the four segments to overlap or even be identical.
It is also common for only one part of a 64K segment to actually be used
for its intended purpose; for example, a program may require only 16K of
a 64K segment. Figure 2-6, below, illustrates how memory may actually
be allocated.

Free memory

ZATE available Code segment 30K Actual space occupied
to code and stack .
segments if needed Stack segment 15K Actual space occupied

Extra segment 64K

Free memory

Figure 2-6. Segments may comprise a
separate 64K area or they may overlap. We
can indicate the starting paragraph of the
stack, data, or extra segments by loading the
appropriate segment register (either SS, DS,
or ES) with the appropriate segment
paragraph address.

30

PROGRAMMER’S GUIDE TO THE IBM PC

All 8088 instructions that use memory have an implied use of the
appropriate segment register for the operation being performed. For ex-
ample, the MOV instruction, since it acts on data, uses the DS register.
The JMP instruction, which affects the flow of a program, automatically
uses the CS register. In most cases, we can, if we need to, override the
implied segment register with another. In assembly language, this can be
done with segment-override prefixes.

Understanding the segment registers and how they are used will
give you insight into the practical limits of memory use in a 16-bit system.
If your programs or data require blocks of memory larger than 64K, you
will need to apply this knowledge to manipulate the segment registers.
Here are a few hints.

If we leave the CS register alone, the maximum size of our programs
is the 64K limit of an offset address. The 8088 was designed to retain con-
trol of a program, so it is not easy to directly manipulate the CS register
and change the code-segment address if you need more memory. How-
ever, by using certain 8088 program-control instructions, such as far calls
and far jumps, it is possible to indirectly update the CS register. This is
how many programming languages allow programs to grow to any size.
(Interpreted BASIC and Microsoft C, Version 1 do not allow such expan-
sion; Pascal and Version 2 of C do.)

On the other hand, it is relatively easy to manipulate the DS register,
or to use the ES register, to allow us to use more than 64K of data. But
although, theoretically, this capability should allow for unlimited data
size, in practice, most programming languages can only work with 64K
of data in memory because of the way they’re designed. For the most
part, this does not present problems, since most programs can get by
very comfortably within the 64K limit. Although the most sophisticated
programs make good use of large amounts of memory, few programs
need anywhere near 64K, and fewer still can use it.

() NOTE: For interpreted BASIC, there are a few things worth noting
about the segment registers. The CS register actually points to the BASIC
interpreter. A BASIC program and its data are both considered data from
the 8088’s point of view and both use the DS register. For this reason, there
is a 64K limit to the combined size of BASIC programs and their data.

BASIC's DEF SEG statement lets us do the equivalent of setting the DS
register for certain BASIC operations, such as PEEK and POKE, although it
always maintains BASIC’s original DS segment address. (PEEK and POKE
are used to specify the offset address within the data segment.) @& See
page 57 for how to access BASIC’s true DS value.

Chapter 2: The Ins and Outs 31

The Offset Registers

Five offset registers are used to locate a precise byte or word within
a specific 64K segment. One register, called the instruction pointer (IP),
locates the current instruction in the code segment; two, called the stack
registers, are intimately tied to the stack, a place in memory where the
8088 keeps a record of the addresses and data it needs to remember for
later use (@ for more on stacks see page 32); and the remaining two regi-
sters, called the index registers, are used to point to the current operands
in the data segment.

The instruction pointer (IP), also called the program counter (PC),
provides the offset address within the code segment where the current
program is executing. It is used with the CS register to track the exact
location of the next instruction to be executed.

Programs do not have direct access to the IP register, but there are a
number of instructions, such as JMP and CALL, that change the IP setting
indirectly or save and restore the setting to and from the stack.

The stack pointer registers, called the stack pointer (SP) and the
base pointer (BP), provide offsets into the stack segment. The SP gives the
location of the current top of the stack and is analogous to the IP. The BP
is used to take a “snapshot” of a current top-of-the-stack location, so that
later on we will know exactly where in the stack certain information is
located. The BP is particularly important to assembly-language interface
routines. We'll see it used quite often in the assembly-language examples
that appear in Chapters 8 through 20.

The index registers, called the source index (SI) and the destination
index (DI), are commonly used with another register (AX, BX, CX, or DX)
or an instruction offset, which provides the relative offset to the begin-
ning of a data field within the data segment. The SI and DI registers then
provide relative offsets within the data field. They are used most often
when transferring lengthy strings of data between memory locations.
The string instructions that use the SI and DI registers transfer the string
data one byte or word at a time. Both SI and DI usually increment their
offset values automatically as each transfer occurs so that we don’t have
to add 1 to them each time we want to move on to the next byte.

The Flag Register

The fourteenth and last 8088 register, called the flag register, is
really a collection of individual control bits called flags. The flags are
available in the form of a register so they can either be saved and restored
as a coordinated set or inspected as ordinary data. Normally, however,
the flags are set and tested as independent items—not as a set.

32

PROGRAMMER’S GUIDE TO THE IBM PC

Chapter 2: The Ins and Outs 33

There are nine 1-bit flags in the 16-bit flag register, leaving seven bits
unused. The flags can be logically divided into two groups: six status
flags, which are set to record processor status information (usually indi-
cating what happened with a comparison or arithmetic), and three con-
trol flags, which direct some of the 8088 instructions. Be prepared to see
a variety of notations for the flags, including distinct names for whether
they are set (1) or clear (0)..The terms used in Figures 2-7 and 2-8 are the
most common.

Addressing Memory Through Registers

We’ve seen that memory is always addressed by a combination of a
segment-paragraph value and a relative-offset value, and that the segment:
part of an address always comes from one of the four segment registers.

Code Name Use
CF Carry flag Indicates an arithmetic carry-out bit
OF Overflow flag Indicates arithmetic overflow
ZF Zero flag Indicates zero result, or equal comparison
SF Sign flag Indicates negative result/comparison
PF Parity flag Indicates even number of 1 bits
AF Auxiliary carry flag Indicates adjustment needed in binary-coded

decimal (BCD) arithmetic operations

Figure 2-7. The six status flags in the 8088’s
flag register

34

PROGRAMMER’S GUIDE TO THE IBM PC

Code Name Use
DF Direction flag Controls left/right direction in repeated
operations (e.g. using SI and DI)
IF Interrupt flag Controls whether interrupts are enabled
TF Trap flag Controls single-step operation (used by DEBUG)
by generating a software trap at the end of every
instruction

Figure 2-8. The three control flags in the
8088’s flag register

The offset part can come from any combination of one, two, or three of
the following sources:

B A relative-offset value in the instruction itself.
® Register BX or BP.
® An index register, SI or DI.

You should be aware of the range of possibilities when you are either
writing or reading assembly-language code. Not all instructions accom-
modate all possible ways of forming an offset address. One way to find
out if a combination is allowed is to try it and see if it is accepted by ei-
ther your assembler or DEBUG’s A-assemble command.

You should also be aware of the notation conventions used for both
memory addresses and for registers. Brackets, [], are used to indicate
that the enclosed item is to be used as a relative-offset address. This is a
key element of memory addressing: Without brackets, the actual value
stored in the register is used in whatever operation is specified. Here are
some examples:

ADD AX,BX Adds the contents of BX into AX; no
memory addressing

ADD AX,[BX] Indirect addressing: Adds a value from
memory into AX; BX gives the relative offset
of the value

ADD [BX],AX Adds the AX value into a memory location;

BX gives the relative offset of the value to
which the AX value will be added

ADD AX,123 Immediate addressing: Adds 123 to the
value in AX

Chapter 2: The Ins and Outs

35

ADD AX,[123] Adds the value located at relative offset 123
to the value in AX

ADD AX,[BX +SI+123] Indexed indirect addressing: Adds the value
located at the relative offset generated by

adding two registers and a number to the
value in AX

Rules for Using Registers

It is important to know that various rules apply to the use of regis-
ters, and it is essential to be aware of these rules when writing assembly-
language interface routines. The rules and conventions of usage vary by
circumstance and by programming language, so unfortunately, exact
guidelines are not always available, but here are some general rules that
will apply in most cases. (@ You will find additional guidance, and
working models to copy, in the examples in Chapters 8 through 20.)
Keep in mind, though, that the following rules are general, not absolute.

In an assembly-language interface routine, there are three general
ways to use registers: Some registers can be freely changed; some regis-
ters can be changed, but should be restored at the end of the routine; and
some registers should not be changed at all.

Generally, the scratch-pad registers (AX through DX) can be freely
changed, with no harm to the calling program. Keep in mind that the AX
register is commonly used to return results, and that under some circum-
stances parameters are passed via these registers and discarded after use.

Particular rules apply to the four segment registers (CS, DS, $S, and
ES). The CS register should never be changed directly, although it may be
changed indirectly through far and near subroutine calls. The DS register
may be changed, but should usually be restored afterward. The original
$S register value should be preserved whenever changes are made to the
register. Normally, subroutines continue to use the stack that SS points
to, but if they create their own stack, they should restore the original
value of SS when they are through. Note that changing the SS value can
interfere with the use of the base pointer (BP) to access parameters. The
ES register can usually be changed at will.

The instruction pointer (IP/PC) should not be directly changed; as
with the CS register, indirect changes occur automatically and correctly.

The stack pointer (SP) may be changed, but normally, all changes to
the SP are made as the indirect result of using the stack. Cleaning up the
stack (which implies resetting the SP) is an important part of the interface
conventions for using subroutines; the rules for this vary (@ see the ex-
amples in Chapters 8 through 20).

36

PROGRAMMER’S GUIDE TO THE IBM PC

The base pointer (BP) is usually changed to gain access to param-
eters, and often it should be restored. ,

The index registers (SI and DI) can be freely changed as needed.

In the flag register, the status flags can also be routinely changed.
Remember that some of the status flags are occasionally used to signal a
result, so their setting can be important. The CF and ZF flags are most
often used for this purpose. As for the control flags, the interrupt flag (IF)
should be left set (interrupts enabled); it is probably also wise to leave the
direction flag (DF) set; setting the trap flag (TF) is suicidal.

HOW THE 8088 USES PORTS

The 8088 communicates with and controls many parts of the com-
puter through the use of input and output (IO) ports. The /O ports are
doorways through which information passes as it travels to or from an
1/0 device, such as a keyboard or a printer. Most of the support chips we
described in Chapter 1 use the I/O ports; in fact, each chip may use sev-
eral port addresses for different purposes.

Each port is identified by a 16-bit port number, which can range
from 0 through 65,535. The CPU sends data or control information to a
particular port by specifying the port’s number, and the port responds by
passing data or status information back to the CPU.

As when accessing memory, the CPU uses the data and address
buses as conduits for communication with the ports. To access a port,
first the CPU sends a signal on the control bus which notifies all /0 de-
vices that the address on the bus is that of a port, and then sends the port
address. The device with the matching port address responds.

The port number addresses a memory location that is part of the
1/O device but is not part of main memory. Special input/output instruc-
tions are used to signal a port access and send information back and
forth to the /O devices. Some 1/O devices, such as the video controllers,
also use the main memory addresses in addition to their 1/O ports and
make the CPU think they are part of RAM memory. This is known as
memory-mapped I/0. Generally, memory-mapped devices are easier to
program because they allow us to use the more flexible memory instruc-
tions instead of the rather inflexible and limited input/output instructions
in the 8088 instruction set.

O NOTE: The 8088 instruction set includes the IN and OUT instruc-
tions to read or write data to a port. BASIC includes the INP and OUT in-
structions to read or write data to ports in the same way, allowing us to
experiment with different ports using simple BASIC routines and then in-
corporate them into our programs without having to resort to assembly-
language programming.

Chapter 2: The Ins and Outs 37

Family Differences in the Use of Ports

The uses of specific ports are determined by the hardware design-
ers. Programs that make use of these ports need to be aware of the port
numbers, as well as their use and meaning. Since the port assignments
differ slightly among the PC family members, we have included a list of
the standard ports, their numbers, and their uses in Figure 2-9. In many
cases, the uses are common to the whole PC family. However, you will
notice that the PCjr and AT have introduced a few changes to the port
number assignments.

@ Before using these port addresses, read the descriptions of the
chips in Chapter 1. Chapter 7, which covers the use of the ports for sound
generation, shows how the ports can be used for some direct hardware
programming to control sound output.

Writing to certain ports can disrupt the operation of the computer,
but reading a port may also have an adverse effect. Don’t assume that
simply reading a port will not interfere with the computer’s operation, or
that what is safe on one PC model is safe for the entire family. For exam-
ple, the following program works perfectly well on most models of the
PC, but locks up a PCjr.

10 FOR I = 50 T0O 75

20 IF I = 64 THEN PRINT "What happens next?"
30 PRINT I, INP (I)

40 NEXT 1

This program simply uses BASIC’s INP command to read data from a port
(INP stands for IN from a Port). It tries to read data from ports 50
through 75, a seemingly innocuous endeavor. However, this little pro-
gram locks up the PCjr when it reaches port number 64, although it
works quite smoothly on the other PCs. The reasons are buried in the
details of hardware design, and to be honest, I don’t know them. How-
ever, this sort of curiosity is interesting to know about.

HOW THE 8088 USES INTERRUPTS

Whenever a hardware device or a program needs the assistance of
the CPU, it sends a signal or instruction called an interrupt to the micro-
processor, identifying the particular task it wants performed. When the
microprocessor receives the interrupt signal, it generally stops all other
activities and activates a subroutine stored in memory, called an inter-
rupt handler, that corresponds to that particular interrupt number. After
the interrupt handler has performed its task, the computer’s activities con-
tinue from where they were when the interrupt occurred.

Range

Description PCjr PC/XT AT
DMA controller (8237) n/a 000—00F 000-01F
Interrupt controller (8259) 020-027 020-021 020-03F
Timer (8253; 8254.2 in AT) 040-047 040-043 040-0SF
PPI (8255) 060-067 060—-063 n/a
Keyboard (8042) n/a n/a 060—06F
DMA page register (74L5612) n/a 080-083 080—09F
NMI (non-maskable interrupt) mask 0A0-0A7 0A 070—07F
register
Interrupt controller 2 (8259) n/a n/a 0A0O—0BF
Sound generator (SN76496N) 0C0-0C7 n/a n/a
DMA controller 2 (8237) n/a n/a 0C0—O0DF
Clear/reset math coprocessor n/a n/a 0F0—0F1
Math coprocessor ‘ n/a n/a OF8—0FF
Joystick (game controller) 200-207 200-20F 200-207
Expansion unit n/a 210-217 n/a
Parallel printer (secondary) n/a n/a 278-27F
Serial port (primary) 2F8—2FF 3F8—3FF 3F8—-3FF
Serial port (secondary) n/a 2F8—2FF 2F8—2FF
Prototype card nfa - 300—-31F 300-31F
Fixed disk n/a 320-32F 1F0—1F8
Parallel printer (primary) n/a 378-37F 378-37F
SDLC (secondary bisynchronous n/a 380-38F 380-38F
communications in AT only)
Bisynchronous communications n/a n/a 3A0-3AF
(primary)
Monochrome adapter/printer n/a 3B0-3BF 3B0O—3BF
Color/graphics adapter n/a 3D0-3DF 3D0-3DF
Diskette controller OFO—OFF 3F0-3F7 3F0-3F7

Figure 2-9. The ports and port addresses
used in the PCjr, the PC/XT, and the AT
computers

Chapter 2: The Ins and Outs 39

There are three main categories of interrupts. First, there are inter-
rupts generated by the computer’s circuitry in response to some event,
such as a key-press on the keyboard. These interrupts are managed by
the interrupt controller chip (the 8259), which prioritizes them in order of
importance before sending them on to the CPU to be acted on. Second,
there are interrupts that are generated by the CPU as a by-product of
some unusual program result, such as division by zero. And third, there
are interrupts deliberately generated by programs as a way of invoking
distant subroutines stored in either RAM or ROM. These interrupts, often
called software interrupts, are usually part of the ROM-BIOS and DOS ser-
vices. (@ They are covered thoroughly in Chapters 8 through 18.) It is
possible to change software interrupt-handling routines or even write
new ones if our application requires it.

In addition to these interrupts, there is also one special type of inter-
rupt, called the non-maskable interrupt (NMI), that is used to demand
immediate attention from the CPU. It often signals an emergency, such as
a drop in voltage or a memory error. When an NMI is sent, it is given top
priority and the CPU acts on it before all other interrupts.

However an interrupt is generated, the originator of the interrupt
doesn’t need to know the memory address of the required interrupt han-
dler; it only needs to know the number of the interrupt. The number
points to a table stored in the lowest memory locations, which contains
the segmented address of the interrupt-handling subroutine. The inter-
rupt handler’s address is called its interrupt vector, and the table is called
the interrupt vector table. The vector table is normally supervised by the
BIOS and DOS. (@ We’ll discuss this more in Chapter 3.) When we create
new interrupt-handling subroutines, we either have them use an existing
interrupt number and vector, or we assign new ones.

Interrupts automatically save the current code segment (CS) and in-
struction pointer (IP) values on the stack, so the computer can return to
where it was working when the interrupt occurred. In addition, the inter-
rupt process saves the flag register on the stack and clears the interrupt
flag (IF), temporarily preventing further interrupts. Normally, an inter-
rupt-handling subroutine turns interrupts back on as soon as possible,
usually within the first few instructions. There is a special interrupt re-
turn instruction, IRET, which performs this function; it corresponds to
the RET instruction used with subroutine calls. IRET also restores the
flags, the CS, and the IP.

40

PROGRAMMER'’S GUIDE TO THE IBM PC

It is quite common to link assembly-language subroutines to pro-
grams or even to programming languages so that we can gain access to
DOS and BIOS service routines or otherwise enhance a program’s perfor-
mance. For such interface routines, especially those that call DOS or BIOS
services, it is necessary to be able to program in assembly language. But
for most purposes, these interfaces will consist of simple subroutine calls
and returns, or interrupt calls using the INT instruction. Only the most
advanced assembly-language programming involves the creation of inter-
rupt handlers and the use of the IRET instruction.

The ROM Software

The Start-up ROM 42

The ROM-BIOS 44
Interrupt Vectors 45
Key Low-Memory Addresses 51
The ROM Version and Machine ID Markers 58

The ROM-BASIC 61

The ROM Extensions 62
The Software Cartridges 63

Comments 65

41

42

PROGRAMMER’S GUIDE TO THE IBM PC

t takes software to make a computer go. And getting a computer

going and keeping it going is much easier if some of that software is

permanently built into the computer. That’s what the ROM pro-

grams are all about. ROM stands for read-only memory—memory
that is permanently recorded in the circuitry of the PC’s ROM chips and
that can’t be changed, erased, or lost.

Our PCs come with a substantial amount of ROM that contains the
programs and data needed to start and operate the computer and its pe-
ripheral devices. The advantage of having a computer’s fundamental pro-
grams stored in ROM is that they are right there—built into the com-
puter—and there is no need to load them into memory from disk the
way that DOS must be loaded. Because they are permanent, the ROM pro-
grams are very often the foundation upon which other programs (includ-
ing DOS) are built.

There are four elements to the ROM in IBM’s PC family: the start-up
programs, which do the work of getting the computer started; the ROM-
BIOS—an acronym for Basic Input/Output System—which is a collec-
tion of machine-language routines that provide support services for the
continuing operation of the computer; the ROM-BASIC, which provides
the core of the BASIC programming language; and the ROM extensions,
which are programs that are added to the main ROM when certain op-
tional equipment is added to the computer. We’ll be examining each of
these four major elements throughout the rest of this chapter.

The highest memory block is set aside to hold the ROM programs,
starting at segment paragraph hex F000. Different models of the PC fam-
ily use different amounts of this 64K space depending upon how complex
their needs are for ROM software. For example, the original PC model,
with its relatively simple hardware, used only 40K of the 64K F block for
the ROM programs, while both the PCjr and the AT, with their much
more complex hardware, use the full 64K space.

THE START-UP ROM

The first job the ROM programs have is to supervise the start-up of
the computer. Unlike other aspects of the ROM, the start-up routines have
little to do with programming the PC family—but it is still worthwhile to
understand what they do.

There are several tasks performed by the start-up routines. For ex-
ample, they run a quick reliability test of the computer (and the ROM
programs) to make sure everything is in working order; they initialize the
chips and the standard equipment attached to the computer; they set up

Chapter 3: The ROM Software 43

the interrupt vector table; they check to see what optional equipment is
attached and, if a disk drive is attached, they often end by loading the
operating system from disk.

The reliability test, part of a process known as the Power On Self
Test (POST), is an important first step in making sure the computer is
ready. All of the POST routines are quite brief except for the memory
tests, which can be annoyingly lengthy when the computer contains a
large amount of memory.

The initialization process is slightly more complex. One routine sets
the default values for interrupt vectors. These default values either point
to the standard interrupt handlers located inside the ROM-BIOS, or they
point to do-nothing routines that our programs will later supply. Another
initialization routine determines what equipment is attached to the com-
puter, and then places a record of it at standard locations in low memory.
(@ We’ll be discussing this equipment list in more detail later in the chap-
ter.) How this information is acquired varies from model to model— for
example, [in the PC it is taken mostly from the settings of two banks of
switches located on the computer’s system board; B[in the PCjr, it is
mostly determined by a logical inspection and test (in effect, the initializa-
tion program shouts to each possible option, “Are you there?” and listens
for a response); and in the AT, the information is read out of a special
nonvolatile memory area (which can be set by the diagnostic programs).

Whatever method is used, the status information is recorded and
stored in the same way for every model so that our programs can moni-
tor it. The initialization routines also check for new equipment and ex-
tensions to ROM. If they find any, they momentarily turn control over to
the ROM extensions so that they can initialize themselves. The initializa-
tion routines then continue executing the remaining start-up routines
(more on this later).

The final part of the start-up procedure, after the POST tests, the
initialization process, and the incorporation of ROM extensions, is called
the boot-strap loader. It’s a short routine that is used to load a program
from disk. In essence, the ROM boot loader attempts to read a record,
called a boot record, from a disk, and if successful, passes control of the
computer to the program stored in that record. The program in the disk’s
boot record has the job of loading the rest of the disk program. Usually,
this program is a disk operating system such as DOS, but it could be a
self-contained and self-loading program, such as Microsoft’s Flight Sim-
ulator. If the ROM boot loader cannot read a disk’s boot record, it simply

44

PROGRAMMER’S GUIDE TO THE IBM PC

activates the built-in ROM “cassette” BASIC. (For non-IBM members of the
extended PC family, a non-boot error message is displayed instead.) As
soon as either of these two processes occurs, the system start-up proce-
dure is finished and the other programs are ready to take over.

O NOTE: The ROM extensions can alter or prevent the booting pro-
cess. Bl As we will see toward the end of this chapter, this is most no-
ticeable in some of the PCjr’s software cartridges.

THE ROM-BIOS

The ROM-BIOS is the part of ROM that is in active use all the time
the computer is at work. The role of the ROM-BIOS is to provide the fun-
damental services that are needed for the operation of the computer. For
the most part, the BIOS controls the computer’s peripheral devices, such
as the display screen, keyboard, and disk drives. When we use the term
BIOS in its narrowest sense, we are referring to the device control pro-
grams—the programs that translate a simple command, such as read-
something-from-the-disk, into all the steps needed to actually perform
the command, including error detection and correction. In the broadest
sense, the BIOS not only refers to the routines that are needed to control
the PC’s devices, but also to the routines that contain information or per-
form tasks that are fundamental to other aspects of the computer’s oper-
ation, such as keeping track of the time of day.

Conceptually, the BIOS programs lie between our programs (includ-
ing DOS) and the hardware. In effect, this means that the BIOS works in
two directions in a two-sided process. One side receives requests from
programs to perform the standard BIOS input/output services. These ser-
vices are invoked by our programs with a combination of an interrupt
number (which indicates the subject of the service request, such as
printer services) and a service number (which indicates the specific ser-
vice to be performed). The other side of the BIOS communicates with the
computer’s hardware devices (display screen, disk drives, etc.), using
whatever detailed command codes each device requires. This side of the
BIOS also handles any hardware interrupts that a device generates to get
attention. For example, whenever we press a key, the keyboard generates
an interrupt to let the BIOS know.

Of all the ROM software, the BIOS services are probably the most in-
teresting and useful to programmers—as a matter of fact, we have de-
voted five chapters to the BIOS services in Chapters 8 through 13. Since
we deal with them so thoroughly later on, we’ll skip any specific discus-
sion of what the BIOS services do and instead focus on how the BIOS as a
whole keeps track of the computer’s input and output processes.

Chapter 3: The ROM Software 45

Interrupt Vectors

The IBM PC family, like all computers based on the Intel 8086 family
of microprocessors, is controlled largely through the use of interrupts,
which can be generated by hardware or software. The BIOS service rou-
tines are no exception; each one is assigned an interrupt number that we
must call when we want to use the service.

When an interrupt occurs, control of the computer is turned over to
an interrupt-handling subroutine that is often stored in the system’s ROM
(a BIOS service routine is nothing more than an interrupt handler). The
interrupt handler is called by loading its segmented address into the regis-
ters that control program flow: the CS (code segment) register and the IP
(instruction pointer) register—together known as the CS:IP register pair.
The segmented addresses used to locate interrupt handlers are called in-
terrupt vectors.

The interrupt vectors are preset during the system start-up process
to point to the interrupt handlers in ROM. They are stored in a table in
RAM as a pair of words, with the relative-offset portion first, and the seg-
ment portion second (the 8088 stores them in backward order in mem-
ory; @ see page 27 for an explanation of the “back-words” storage for-
mat). The interrupt vectors can be changed to point to a new interrupt
handler simply by locating the vector and changing its value.

As a general rule, the PC family’s interrupts can be divided into seven
categories: microprocessor, hardware, software, DOS, BASIC, address,
and general use.

The microprocessor interrupts, often called logical interrupts, are
designed into the microprocessor. Four of them (interrupts 0, 1, 3, and 4)
are generated by the microprocessor itself, and another (interrupt 2, the
non-maskable interrupt) is activated by a signal generated by one of the
external devices.

The hardware interrupts are built into the PC hardware. Eight of
these hardware interrupts are hard-wired into either the microprocessor
or the main system board and cannot be changed. All hardware inter-
rupts are supervised by the 8259A PIC chip. The reserved codes are 2, 8, 9,
and 11 through 15.

The software interrupts incorporated into the PC design are part of
the ROM-BIOS programs. The BIOS routines invoked by these interrupts
cannot themselves be changed, but the vectors that point to the routines
can be changed to point to different routines. The reserved codes are S,
16 through 28, and 72.

46

PROGRAMMER’S GUIDE TO THE IBM PC

The DOS interrupts are always available when DOS is in use. Many
programs and programming languages use the services provided by DOS
through the DOS interrupts to handle their basic operations, especially
disk 1/0. The reserved codes are 32 through 255 (32 through 96 are used;
the others are set aside).

The BASIC interrupts are assigned by BASIC itself and are always
available when BASIC is in use. The reserved codes are 128 through 240.

The address interrupts are part of the interrupt vector table and are
used to store segmented addresses. There are no actual interrupts or in-
terrupt-handling subroutines associated with these interrupts. Three of
them are associated with three very important tables: the video initializa-
tion table, the disk base table, and the graphics characters table. These
tables contain parameters that the ROM-BIOS uses in start-up procedures
and for graphics character generation. The reserved codes are 29 through
31, 68, and 73 ([68 and 73 are used in the PCjr only).

Chapter 3: The ROM Software 47

The general-use interrupts are established by our programs for
temporary use. The reserved codes are 96 through 103.

The interrupt vectors are stored at the lowest memory locations;
the very first location in memory contains the vector for interrupt num-
ber 0, and so on. Since each vector is two words in length, we find a partic-
ular interrupt’s location in memory by multiplying its interrupt number
by 4. For example, the vector for interrupt 5, the print-screen service in-
terrupt, would be at byte offset 20 (5 x4 =20). You can examine the inter-
rupt vectors by translating this decimal number into hex notation and
using DEBUG (which only accepts hex values). For interrupt $, location 20
translates into the hex address 14, and the following commands:

DEBUG
D 0000:0014 L 4

will show four bytes, in hex, like this:

54 FF 00 FO

48

PROGRAMMER’S GUIDE TO THE IBM PC

Converted to a segmented address and allowing for “back-words” stor-
age, we can see that the interrupt vector for the entry point in ROM of the
print-screen service routine (interrupt 5) is F000:FF54. The same DEBUG
instruction can be used to find any other interrupt vector just as easily.

Figure 3 is a listing of the main interrupts and their vector loca-
tions. These are the interrupts that programmers will probably find most
useful. @ Details are available for most of these interrupts in Chapters 8
through 18. Interrupts that are not mentioned in this list are, for the most
part, reserved for future development by IBM.

Changing Interrupt Vectors

The main programming interest in interrupt vectors is not to read
them but to change them so that they point to a new interrupt-handling
routine. To do this, we must write a routine that performs a different
function than the standard ROM-BIOS or DOS interrupts perform, store
the routine in RAM, and then assign a new address to an existing inter-
rupt in the table.

A vector can be changed byte by byte on an assembly-language
level, or by using a programming-language instruction like the POKE
statement in BASIC. In some cases, there may be a danger of an interrupt
occurring in the middle of a change to the vector. If you are not con-
cerned about this, you may as well use the POKE method. Otherwise,
there are two separate ways to change a vector while taking precautions
against its being used while we’re in the middle of changing it.

In the first method, we’ll change the vector by hand and suspend
interrupts while we’re doing it, using the clear interrupt instruction (CLI).
CLI suspends all interrupts except for the non-maskable interrupt (NMI).
NMI is supposed to be used only to signal a truly urgent, the-machine’s-
on-fire type of situation, but unfortunately it has come to be used for
some very ordinary situations as well, such as signaling keyboard action
on the PCjr. As a consequence, while masking interrupts with CLI gives
us reasonable insurance against being disrupted in the middle of chang-
ing an interrupt vector, it’s not perfect.

I’ll show you two examples of this first method—how to set an in-
terrupt vector with interrupts suspended. The first example sets the vec-
tor with two MOV instructions, which move the two words of the vector
into place:

XOR AX,AX ; Zero segment register
MoV ES,AX ; Zero segment register

CLI ; suspend interrupts

MoV WORD PTR ES:36,XX ; move vector offset part
MoV WORD PTR ES:38,YY ; move vector segment part

STI ; activate interrupts

Interrupt Interrupt
Dec Hex Address Use Dec Hex Address Use
0 0 0000 Generated by CPU when 26 1A 0068 Invokes time and date services
division by zero is attempted in BIOS
1 1 0004 Used to single-step through 27 1B 006C Interrupt generated on
programs (as with DEBUG) keyboard break under BIOS;
2 2 0008 Non-maskable interrupt; a r°;m¥:° is invoked if we
in PCjr, NMI has some create 1
special ’uses 28 1C 0070 Interrupt generated at each
3 3 000C Used to set break-points in Flock tick; a routine is invoked
programs (as with DEBUG) if we create it
4 4 0010 Generated when arithmetic 29 1D 0074 Points to table of video control
result overflows parameters
5 5 0014 Invokes print—screen service 30 1E 0078 Points to disk base table
routine in BIOS 31 IF 007C Points to high video graphics
8 8 0020 Generated by hardware characters
clock tick 32 20 0080 Invokes program-terminate
9 9 0024 In most models, generated by service in DOS
keyboard action; simulated on 33 21 0084 Invokes all function-call
PCjr for model compatibility services in DOS
13 D 0034 Generated during CRT vertical 34 22 0088 If we create it, an interrupt
retrace, for video control routine is invoked at program
14 E 0038 Signals diskette attention end under DOS
(e.g. to signal completion) 35 23 008C If we create it, an interrupt
15 F 003C Used in printer control routine is invoked on keyboard
. . . break under DOS
16 10 0040 Invokes video display services . .
in BIOS 36 24 0090 If we create it, an interrupt
17 11 0044 Invokes equipment-list service ;‘:ﬁ:ﬂ;;:glgg at critical
in BIOS
n . . 37 2§ 0094 Invokes absolute diskette read
18 12 0048 Invokes memory-size service service in DOS
in BIOS 38 26 0098 Invokes absolute diskette wri
19 13 004C Invokes diskette services in BIOS s::\?ic:sin]s)oouste skette write
20 14 0050 Invokes communications 39 27 s
services in BIOS 009C i‘fnso‘f;ﬁfd“e‘; ‘,’;gg"eps ftin
21 15 0054 !nvokes cassette tape services 68 44 0110 Points to low video graphics
in BIOS characters; only on PCjr
22 16 0058 Invokes §tar];<ilaxgi keyboard 72 48 0120 Invokes program to translate
services in BIO PCjr keyboard into PC
23 17 005C Invokes printer services in BIOS keyboard
24 18 0060 Activates ROM-BASIC language, 73 49 0124 Points to translation table for
or override for it keyboard-supplement devices
25 19 0064 Invokes boot-strap start-up

routine in BIOS

Figure 3-1. The main interrupts used in the
IBM personal computer family

50

PROGRAMMER’S GUIDE TO THE IBM PC

While this technique is straightforward, it runs a small risk of an
NMI coming between the two MOV instructions (admittedly a very small
risk). The risk can be reduced by combining the two moves into a single
repeated, or string, move instruction (MOVS). Using the string move in-
struction is much clumsier, because it requires a lot of register set-up.
We'll use it, though, to give you an example of an alternate way of coding
that yields the same result as the first example.

; first set up numerous registers for repeated move

XOR DI,DI ; get a zero word

Mov ES,DI ; set paragraph-to (= 0)
MoV DI,36 ; set offset-to

Mov SI,XXXX ; set offset-from

Mov cxX,2 ; count of words

CLD ; set forward direction

; now do move with interrupts suspended

CLI ; suspend interrupts

REP MOVSH ; repeated move of words
STI ; reactivate interrupts

Unfortunately, there’s an error in some revisions of the 8088 such
that the MOVS instruction can be interrupted.

We’ve shown you two different ways to change an interrupt vector
using the do-it-yourself method. The other method is to let DOS do it for
you using DOS service number 37, which was designed for this purpose.
There are two very important advantages to letting DOS set interrupts for
us instead of doing it ourselves. One advantage is that DOS takes on the
task of putting the vector into place in the safest possible way. The other
advantage is more far-reaching. With the appearance of the 80286 proces-
sor chip in the AT model, the PC family is beginning to pass into realms
where such familiar items as interrupt vectors and segment registers
aren’t what they used to be. Using a DOS service to set an interrupt vec-
tor instead of setting it ourselves is just one of the many ways that we can
reduce the risk that our new programs will be incompatible with new
machines or new operating-system environments.

So, here is an example of how to use DOS service 37 to set an inter-
rupt vector:

Mov DX, XX ; load vector offset part
MOV~ DS,YY ; load vector segment part
MoV AH, 37 ; request set-interrupt function
MoV AL,9 ; change interrupt number 9
INT 33 ; DOS function-call interrupt

This example shows, in the simplest possible way, how to use the
DOS service. However, it glosses over an important and subtle difficulty:
We have to load one of the addresses that we’re passing to DOS into the
DS (data segment) register—which effectively blocks normal access to

Chapter 3: The ROM Software 51

our data through the DS register. Getting around that problem calls for
some fancy footwork. Here is one way it can be done, using a real exam-
ple taken from my own Norton Utilities programs:

PUSH DS ; save current data segment

mov DX ,0FFSET PGROUP:XXX ; get vector offset

PUSH €S ; move our own code segment...

POP DS ; ...into the data segment

MoV AH,37 ; request set-interrupt function

mav AL,9 ; change interrupt number 9

INT 33 ; DOS function-call interrupt

POP DS ; restore our original data segment
Key Low-Memory Addresses

Much of the operation of the PC is controlled by data that is stored
in low-memory locations, particularly in the two adjacent 256-byte areas
beginning at hex 400 and 500. Data is loaded into these areas from the
BIOS during the start-up process. Although the control data is supposed
to be the private reserve of the BIOS, our programs are allowed to inspect
or even change it. Even if you do not intend to use the information in the
BIOS control area, it is worth studying because it reveals a great deal
about what makes the PC family tick.

To avoid confusion about these low-memory addresses, keep in
mind that memory address 400 might also be expressed in segmented for-
mat as either 0040:0000 or 0000:0400. All three notations refer to exactly
the same location.

The Control Information Area

Some of the memory locations in the hex 400 and 500 areas are par-
ticularly interesting. Most of them contain data that is vital to the opera-
tion of various BIOS and DOS service routines. In many instances, our
programs can return the information stored in these locations by invok-
ing a BIOS interrupt; in all cases, they can access the information directly.
You can easily check out the values at these locations on your own com-
puter, using either DEBUG or BASIC.

To use DEBUG, enter these commands:

DEBUG
D 0:XXXX L 1

In this example, XXXX represents the hex address you want to examine.
The L 1 tells DEBUG to display one byte. To see two or more bytes, enter
the number of bytes (in hex) you wish to see after the L instruction.

52

(R

PROGRAMMER’S GUIDE TO THE IBM PC

To display the data with BASIC, you can use the simple program that
is shown below, making the necessary substitutions for address.in.hex and
number.of.bytes:

10 DEF SEG = 0

20 FOR I = 0 TO number.of.bytes.in.decimal - 1
30 VALUE = PEEK(&Haddress.in.hex + I)

40 IF VALUE < 16 THEN PRINT ™0"; > needed for leading zero
50 PRINT HEX$ (VALUE);"™ ";
60 NEXT I

[have listed the most useful addresses on the next few pages. All
addresses are given in hex.

410 (a 2-byte word). This word holds the equipment-list data that is
reported by the equipment-list service, interrupt 17 (hex 11). The format of
this word, shown in Figure 3-2, was established for the PC and XT; certain
parts may appear in a different format in later models, including the PCjr.

412 (one byte). This byte is used only on the PCjr to count the num-
ber of errors detected in the infrared keyboard link. Other models use
this byte only during initialization. An interesting byte, but it has no pro-
gramming significance for us.

413 (a 2-byte word). This word contains the usable memory size in
K. In the PGjr, it returns the amount of memory that remains after setting
aside memory for the display. In other models, this word has a slightly
different meaning: It represents the total memory size. Regardless of the
model, the use of this word has the same purpose: It tells you how much
memory there is to use. BIOS interrupt service 18 (hex 12) reports the value
in this word.

417 (two bytes of keyboard status bits). These bytes are actively
used to control the interpretation of keyboard actions by the ROM-BIOS
routines. Changing these bytes actually changes the meaning of key
strokes. You may freely change the first byte, at address 417, but it is not a
good idea to change the second byte. (B[} A third byte, unique to the
PCjr, is located at 488). @ See pages 137 and 206 for the bit settings of
these two bytes.

419 (one byte). This byte is set aside in order to control alternate
keyboard input. It is intended for future use.

41A (a 2-byte word). This word points to the current head of the
BIOS keyboard buffer at 41E, where the key actions are stored until used.

41C (a 2-byte word). This word points to the current tail of the
buffer.

41E (32 bytes, used as sixteen 2-byte entries). The keyboard buffer is
used to hold up to sixteen keyboard actions until they are read via the

Chapter 3: The ROM Software 53

Bit
FEDCBA98 76543210 Meaning

XX oo v v v e e e e e e Number of printers installed
X e e e e e e e 1 if serial printer installed (PCjr only)
X e e e e 1 if game adapter installed
XXX . e Number of RS-232 serial ports

....... X oo 0 if DMA chip installed; DMA is stan-
dard in all models but PCjr

........ XX oo o oo + 1 =number of diskette drives: 00=1
drive; 01 =2 drives; 10 =3 drives;
11=4 drives (see bit 0)

........ LDLXX L. Initial video mode: 01 =PCjr 40-
column color; 10 =80-column color,

11 = 80-column monochrome for
other models; 00 = none of the above

........ e XX L. System board RAM: 00=16K;
01=32K; 10 =48K; 11 =64K (not
used on AT)

.............. X . 1 if math coprocessor installed (not
used in PCjr)

............... X 1 if any diskette drives present (if so,
see bits 7 and 6)

Figure 3-2. The coding of the equipment-list
word at hex 410

BIOS services through interrupt 22 (hex 16). This is a circular queue
buffer, which is why there are two pointers to indicate the head and tail
(at 41A and 41C). It is not wise to mess with any of this data.

43E (one byte). This byte indicates if diskettes need to be recali-
brated before seeking to a track. Bits 0 through 3 correspond to drives 0
through 3. If a bit is set to 0, recalibration is needed. Generally, you will
find that a bit is set to 0 if there was any problem with the most recent use
of a drive. For example, the recalibration bit will be 0 if you try to request
a directory (DIR) on a drive with no diskette, and then type A in response
to the display:
Not ready reading error B:
Abort, Retry, Ignore?

43F (one byte). This byte returns the diskette motor status. Bits 0
through 3 correspond to drives 0 through 3. If the bit is 1, the diskette
motor is running.

54

PROGRAMMER'’S GUIDE TO THE IBM PC

440 (one byte). This byte holds the count down until the diskette
motor is shut off. The count is set to 37 (roughly 2 seconds) at the begin-
ning of each diskette operation. At each clock tick, the count is decre-
mented. The diskette motor is shut off when the count reaches zero.

441 (one byte). This byte indicates the diskette status, with each bit
representing a particular kind of error (@ see Figure 3-3). A bit value of 1
signals that the error occurred; a value of 0 indicates no error occurred.

442 (seven bytes). These seven bytes hold diskette controller status
information.

Beginning at hex 449 is a 30-byte area that is used for video control.
The BIOS uses this area to keep track of critical video information. It is
safe for programs to inspect any of this data, but in most cases, it is risky
to modify it. Changing any of this data can interfere erratically with the
computer’s operation—my own experiments have produced some won-
derfully bizarre results. The only bytes that appear to be both safe to
change and useful are the cursor-location fields. (@ For more on cursors,
see address 450H and page 92.)

449 (one byte). A value of 0 through 10 or 13 through 16 in this byte
specifies the current video mode (@ see Figure 3-4). This is the same
video-mode coding used in the BIOS video services. (@ See Chapter 9 for
more on these services, and page 73 for general information concerning
video modes.)

Our BASIC programs can read this byte to learn the video mode
with these instructions:

DEF SEG = 0 > set DS register to 0
VIDED.MODE = PEEK(&H449) > look at location hex 449

@ See page 78 for a special discussion on modes 4 and § in BASIC.

Bit
76543210 Meaning

XMoo & § Diskette timed out: failed to respond in time
I Seek to track failed
D Diskette controller chip failed
aX s e Cyclical redundancy check (CRC): error in data
F DMA diskette error
..... X . . Sector not found: diskette damaged or not formatted
...... X Address mark on diskette not found

....... X Invalid diskette command requested

Figure 3-3. The coding of the diskette-status
byte at hex 441

Chapter 3: The ROM Software

55

Code Meaning Code Meaning
0 40-column text, no color (EGA: 64 colors) 9 Medium-resolution graph‘ics, 16-color (not
1 40-column text, 16-color (EGA: 64 colors) on sl:anda;'d Color/G;aphlcs Acllap ter)
] . 10 High-resolution graphics, 4-color (not on
2 80-column text, no color (EGA: 64 colors) standard Color/Graphics Adapter)
3 80-c?lumn text,.16~color _(EGA: 64 colors) 13 Medium-resolution graphics, 16-color (not
4 Medium-resolution graphics, 4-color on standard Color/Graphics Adapter)
5 Medium-resolution graphics, no color 14 High-resolution graphics, 16-color (not on
(4 shades of grey) standard Color/Graphics Adapter)
6 High-resolution graphics, 2-color 15 Special high-resolution graphics, 4-color
7 Monochrome adapter mode (not on standard Color/Graphics Adapter)
8 Low-resolution graphics, 16-color (not on 16 Special high-resolution graphics, 64-color

standard Color/Graphics Adapter)

(not on standard Color/Graphics Adapter)

Figure 3-4. The coding of the video-mode
byte at bex 449

44A (a 2-byte word). This word holds the screen width in text col-
umns. Column widths are stored in the hex equivalent of 20, 40, or 80
columns (video mode 8, low-resolution graphics, has a text width of 20).

44C (a 2-byte word). The screen regeneration length. This is the
number of bytes used for the screen page, which varies by mode.

44E (a 2-byte word). The screen location offset. This is the starting
offset address into video display memory of the current display page. In
effect, this address indicates which visual page is in use by giving the off-
set to that page.

450 (eight 2-byte words). These words give the cursor locations for
eight separate visual pages, beginning with page 0. The first byte of each
word gives the column (0 through 19, 39, or 79) and the second byte gives
the row (0 through 24). The location of the cursor can be controlled by
modifying this information. For programming languages that do not pro-
vide built-in cursor control, this can be a handy way to control the cursor
without creating an assembly-language interface to the BIOS routines.

When changing the data in this byte, note that the change does not
go into effect immediately, but waits until the next screen output. To
demonstrate this, start DEBUG, and enter this command:

F 0:450 L 288

The cursor jumps to row 8, column 8 after you press return. Needless to
say, this isn’t a good programming technique—but it’s one you might
find worth knowing about.

56

[

PROGRAMMER'’S GUIDE TO THE IBM PC

460 (a 2-byte word). These two bytes hold the size of the cursor
based on the range of cursor scan lines. The first byte gives the ending
scan line, the second byte the starting scan line. Unlike the cursor-location
fields, changing these values will not automatically change the cursor.

462 (one byte). This byte holds the current display page number.

463 (a 2-byte word). This word stores the port address of the 6845
video controller chip. Normally, it is set to hex 3D4.

465 (one byte). This byte contains the current setting of the CRT
mode register.

466 (one byte). This byte contains the color-palette mask bit setting.
@ For more on palettes see page 76.

467 (five bytes). These bytes are used for cassette tape control.

46C (four bytes stored as two 2-byte words but treated as one
4-byte number). This area is used as a master clock count, which is incre-
mented once for each clock tick. It is treated as if it began counting from
0 at midnight. When the count reaches the equivalent of 24 hours, it is re-
set to 0 and the byte at hex 470 is set. DOS or BASIC calculates the current
time by calculating from this value and sets the time by putting the ap-
propriate count in this field. This value is reported or set by BIOS inter-
rupt 26 (hex 1A).

470 (one byte). This byte indicates that a clock roll-over has oc-
curred. When the clock count passes midnight (and is reset to 0), this
byte is set to 1, which means that the date should be incremented. The
value is set by the clock-tick routine to indicate midnight has passed. It is
reset to 0 whenever the clock is read using interrupt 26 (hex 1A). This
automatic reset is based on the assumption that any program that reads
the clock will increment the date when it reads this signal.

O NOTE: This byte is set to 1 at midnight and is not incremented.
There is no indication if two midnights pass before the clock is read.

471 (one byte). This byte is used to indicate a break keyboard ac-
tion within the BIOS. If bit 7 is 1, the break-key combination was pressed.

472 (a 2-byte word). This word is set to hex 1234 after the initial
power-up memory check. When a warm boot is instigated from the key-
board (via Ctrl-Alt-Del), the memory check will be skipped if this loca-
tion is already set to 1234.

474 (four bytes). This area is used only in the PCjr for special dis-
kette control.

478 (eight bytes, in two 4-byte fields). These bytes are used only in
the PCjr to control time-out signals for the parallel printer and the serial
port (or serial printer).

Chapter 3: The ROM Software 57

480 (a 2-byte word). This word points to the physical start of the
keyboard buffer area.
482 (a 2-byte word). This word points to the physical end of the
keyboard buffer area.
0 485 (one byte). This byte holds the character that will be repeated if
a typematic repeat-key action takes effect. It is unique to the PCjr.

486 (one byte). This byte is used in timing the initial delay before
repeat-key action begins. It is unique to the PCjr.

. 487 (one byte). This byte is used to hold the current Fn function
JR w | code. It is unique to the PCjr.

488 (one byte). This byte is a third keyboard status byte that only
applies to the PCjr’s keyboard. (The other two keyboard status bytes at
locations hex 417 and 418 are used in all other models, including the
| PCjr.) @ The bit settings for this byte are listed on page 142.

500 (one byte). This byte is used by DOS and BASIC to control the
print-screen operation. There are three possible hex values stored in this
location:

00 Indicates OK status

01 Indicates a print-screen operation is currently in progress
FF Indicates that an error occurred during a print-screen

504 (one byte). This byte is used by DOS when a single-diskette sys-
tem, such as an XT or a PCjr, mimics a two-diskette system. The value
indicates whether the one real drive is acting as drive A or drive B. These
values are used:

00 Acting as drive A
01 Actingas drive B

510 (a 2-byte word). This area is used by BASIC to hold the default
data segment (DS) value. This is BASIC’s default data segment pointer.

BASIC allows us to set our own data segment value with the DEF
SEG =wvalue statement. (The offset into the segment is specified by the
PEEK or POKE functions.) We can also reset the data segment to its de-
fault setting by using the DEF SEG statement without = value. Although
BASIC does not give us a simple way to find the default value stored in
this location, we can get it by using this little routine:

DEF SEG = 0
DATA.SEGMENT = PEEK(&HS511) * 256 + PEEK(&H510)

Q NOTE: BASIC administers its own internal data based on the de-
fault data segment value. Attempting to change it is likely to sabotage
BASIC's operation.

58

PROGRAMMER’S GUIDE TO THE IBM PC

512 (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC’s clock-tick interrupt service routine.

Q NOTE: In order to perform better, BASIC runs the system clock at
four times the standard rate, so BASIC must replace the BIOS clock inter-
rupt routine with its own. The standard BIOS interrupt routine is in-
voked by BASIC at the normal rate; that is, once for every four fast ticks.
@& There’s more about this on page 149.

516 (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC’s break-key handling routine.

51A (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC’s diskette error handling routine.

The Intra-Application Communications Area

Although the BIOS control information comprises the largest and
most important part of the 400-block area, the intra-application com-
munications area, or ICA, is also located there. The ICA is a 16-byte re-
served area from locations 4F0 through 4FF that is used to store data that
can be shared by several different programs. It is particularly useful for
programs that are executed as separate DOS programs but have to leave
information for other parts of the program set. The ICA is not used exten-
sively. Among the few programs that are known to use it are some ver-
sions of IBM’s Asynchronous Communications, Lifetree’s Volkswriter,
and my TimeMark.

Since any number of programs may store data in the ICA, it may
contain information from several programs. This may mean that some
data will be overwritten. If your programs make use of the ICA, I recom-
mend that you include a check-sum and also a signature so that you can
identify that the data in the ICA is yours and that it has not been changed
by another program.

O WARNING: The ICA is definitely located in the 16 bytes from 4F0
through 4FF. A typographic error in some editions of the IBM Technical
Reference manual places it at 500 through SFE. This is incorrect.

The ROM Version and Machine ID Markers

Since the BIOS programs are fixed in memory, they can’t be easily
changed when additions or corrections are needed. This means that ROM
programs must be tested very carefully before they are frozen onto mem-
ory chips. Although there is a good chance for serious errors to exist in a
system’s ROM programs, IBM has a fine track record; so far, only small
and relatively unimportant errors have been found in the PC family’s ROM
programs, and all of them have been corrected in the new machines.

Chapter 3: The ROM Software 59

The different versions of ROM software could present a small chal-
lenge to programmers who discover that the differences affect the operat-
ing characteristics of their programs. But an even greater challenge for
programmers is that some family members (the PCjr and the AT in partic-
ular) use a slightly different set of ROM-BIOS routines than those that
come with the standard IBM PC.

To ensure that our programs are working with the appropriate
ROM programs and the right computer, IBM has supplied us with two
identifying markers that are permanently available at the end of memory
in the system ROM. One marker identifies the ROM release date, which
can be used to identify the BIOS version, and the other gives the machine
model. These markers are always present in IBM’s own machines and
we’ll also find them supplied by the manufacturers of a few of the mem-
bers of the extended PC family.

The ROM release date can be found in an 8-byte storage area from
F000:FFFS5 to FO00:FFFC (two bytes before the machine ID byte). It con-
sists of ASCII characters in the common American date format; for exam-
ple, 06/01/83 stands for June 1, 1983. This release marker is a common
feature of the IBM personal computers, but is only present in a few IBM
compatibles. For example, the Compaq computers do not have it, but the
Panasonic Senior Partner does.

The only use of dates in the release marker is to identify the differ-
ent versions of ROM (@ see Figure 3-5). I suggest that it be used only
when you have found a problem that requires your programs to work
differently with different ROM releases. (Programs will more likely need
to identify the machine ID byte to respond to the unique features of dif-
ferent models.)

Release Marker Machine
04/24/81 Original PC
10/19/81 Revised PC (some bugs fixed)
08/16/82 Original XT
10/27/82 Upgrade of PC to XT BIOS level
11/08/82 Original Portable PC
06/01/83 Original PCjr
01/10/84 Original AT

Figure 3-5. The release dates of the various
versions of ROM

60

PROGRAMMER’S GUIDE TO THE IBM PC

You can look at the release date with DEBUG, using the following
commands:

DEBUG
D FOOO:FFFS L 8

Or you can let your program look at the bytes using this technique:
10 DEF SEG = &HF000

20 FOR I = 0 TO 7

30 PRINT CHR$(PEEK(&HFFF5 + I));
40 NEXT

50 END

Here’s an example of what you may encounter: I have three PCs and
each came with a different ROM. One has the 04/24/81 version, another
the 10/19/81 version, and the last the 10/27/82 version.

BIOS upgrades are available under some circumstances; for exam-
ple, the PC expansion unit that brings a PC up to XT specifications comes
with the 10/27/82 upgrade. Occasionally, the BIOS upgrade is available sep-
arately as well. ,

The machine ID is a byte located at FO00:FFFE. Figure 3-6 lists the
published ID values for five IBM PC models. We can probably expect this
pattern to continue in future models.

Beware that there are some inconsistencies in the way machine IDs
are assigned. FE was the value announced originally as the identifier for
the XT and later for the Portable PC, yet many XTs actually have the PC
signature FF. In general, we can’t count on these signature assignments to
be rock-solid; IBM has definitely waffled a bit about some of them, both
in what it published the signatures as and in what they have actually
been. I believe, though, that there is a simple rule that we can follow in
interpreting the machine signatures. Where the differences between the
models are significant enough to require that a program be able to un-
equivocally identify the machine, then the signatures are rock-solid and

ID
Dec Hex Machine
255 FF PC (the original IBM personal computer)
254 FE XT and Portable PC
253 FD PCjr
252 FC AT

Figure 3-6. The machine IDs for the five
IBM PC models

Chapter 3: The ROM Software 61

ID
Dec Hex Machine
45 2D Compaq (PC-equivalent)
154 9A Compagq-Plus (XT-equivalent)

Figure 3-7. Unofficial machine IDs for two
Compaq models

as advertised; cases in point: the PCjr and the AT, which each have their
own special characteristics. But when the variations between machine
models are minor, such as between the original PC, the standard PC, the
PC-2 (which accepts 256K of memory on its system board), the XT, and
the Portable PC, then signatures may vary. For all practical purposes, we
can consider both the FF and the FE signatures as identifying one ma-
chine: the more-or-less standard PC.

It is possible that [BM-compatible computers can be identified in the
same way, but I do not know of any reliable published information. My
own programs identify two signatures for the first two Compaq comput-
ers, but you should not consider them official.

You can explore the machine ID byte with DEBUG, using the follow-
ing commands:

DEBUG
D FOOO:FFFE L 1 > displays one byte at specified location

A program can inspect this byte using techniques such as this:

10 DEF SEG = &HF000 > defines segment FOOO in DX register
20 IF PEEK(&HFFFE) 253 THEN PRINT "I should be a Junior"
30 IF PEEK(&HFFFE) 254 THEN PRINT "I should be an XT"

40 IF PEEK(&HFFFE) 255 THEN PRINT "I should be a PC"

50 IF PEEK(&HFFFE) 252 THEN PRINT "I should be an AT"

60 END

THE ROM-BASIC

Now we move on to the third element of ROM: the ROM-BASIC. The
ROM-BASIC acts in two ways. First, it provides the core of the BASIC lan-
guage, which includes most of the commands and the underlying founda-
tion, such as memory management, that BASIC uses. The disk versions of
BASIC, which we see in the program files BASIC.COM and BASICA.COM,
are essentially supplements to the ROM-BASIC, and they rely on the ROM-
BASIC to get much of their work done. The second role of the ROM-BASIC
is to provide what IBM calls “cassette” BASIC—the BASIC that is activated
when we start-up our computers without a disk.

62

PROGRAMMER'’S GUIDE TO THE IBM PC

Whenever we use any of the interpreted BASICs, such as cassette
BASIC, the PCjr’s cartridge BASIC, or either of the disk BASICs (BASIC or
BASICA), the ROM-BASIC programs are also used—although there’s noth-
ing to make us aware of it. On the other hand, compiled BASIC programs
don’t make use of the ROM-BASIC.

This ROM-BASIC is unique to IBM’s own PC family. None of the
members of the extended PC family, such as the Compaq computers, has
a ROM-BASIC; instead, the equivalent parts of BASIC are included in their
disk-based BASIC programs.

THE ROM EXTENSIONS

The fourth element of the ROM has more to do with the PC’s design
than the actual contents of its memory. The PC was designed to allow for
two kinds of extensions to the built-in software in ROM: one for perma-
nent extensions to the ROM-BIOS software, and the other for extensions
provided by removable software cartridges. Special areas of memory are
set aside for each. :

Permanent ROM-BIOS extensions are programs that operate like
the built-in ROM-BIOS, but add features not supported by the basic ROM-
BIOS. Usually, these are support programs for new peripheral devices.
The best example of this kind of ROM extension is the ROM-BIOS support
for the IBM fixed disk, which was introduced with the XT. Another is
found in the Enhanced Graphics Adapter. Since the original ROM-BIOS
could not anticipate providing support programs for future hardware,
ROM extensions are obviously a necessary and helpful addition.

‘Two memory areas are to be used for the permanent ROM-BIOS ex-
tensions. One is the unused part of the F block of memory, which, unfor-
tunately, can vary from model to model. On most models, the 24K area
from segment paragraph F000 to F600 is available (the non-IBM hard-disk
ROM-BIOS for one of my PCs plugs into paragraph F400). The other mem-
ory area for ROM extensions is the C block of memory, from segment
paragraph C000 through CFFF. The IBM XT hard-disk ROM-BIOS plugs
into this area, at segment paragraph €800, and the IBM Enhanced Graph-
ics Adapter plugs in at paragraph C000. Although the permanent ROM
extensions provided by IBM have predictable locations, there is always
some potential for conflict between BIOS extensions provided by other
manufacturers.

Normally, the permanent ROM extensions are semipermanently in-
stalled in a computer, either plugged in as part of an expansion board or
plugged into an available ROM socket in the computer’s system board.

Chapter 3: The ROM Software 63

Software cartridges, on the other hand, are intended to be freely
plugged in and removed. Generally, cartridges are used in the same way
as diskettes: to load temporary programs for a specific purpose. A large
128K area of memory, filling the entire D and E blocks of memory, is set
aside for software cartridges to use.

Both kinds of ROM extensions are integrated into the rest of ROM
during the start-up process. To find the ROM extensions, the standard
ROM starts at the C000 block and examines every 2K block for the sig-
nature (hex 55 AA) that identifies the ROM extensions. When the identify-
ing signatures are found, the start-up routine passes control temporarily
to the ROM extension so that the extension can do whatever it needs to
do to merge itself into the operation of the computer. At this point, the
ROM extension can do anything it pleases, including seize complete con-
trol of the computer. Some software cartridges do exactly that. However,
a more normal thing for an extension to do is to simply test any equip-
ment that it supervises (for example, a hard-disk ROM-BIOS extension
might fire up the hard disk and metaphorically shake hands through the
low-memory data areas with the rest of the BIOS, so that each BIOS section
knows who its working partners are). Once any initialization is done, a
ROM extension customarily returns control to the main BIOS, which then
finishes the business of starting up the computer.

The Software Cartridges

Since we can’t paint a complete picture of ROM extensions without
discussing software cartridges, we’ll devote a short section to providing
just the bare essentials about them. You’ll find more detailed information
in Exploring the IBM PCjr and in IBM’s Technical Reference manual.

ROM software cartridges contain prerecorded programs, stored in
ROM chips, which can be plugged into any PC model that will accommo-
date them (such as the PCjr). Each software cartridge can contain as little
as 2K bytes or as much as 64K bytes, depending on the hardware design.

A cartridge can make itself appear in any one of six memory loca-
tions—the actual location it chooses is written into the cartridge pro-
gram. In segment-paragraph notation, the six possible locations are D000,
D800, E000, E800, F000, and F800. The four addresses in the D and E mem-
ory blocks are conventional cartridge locations. The two addresses in the F
block are ROM-BIOS override addresses, which may allow a cartridge to
temporarily replace the computer’s built-in ROM-BIOS.

There is a standard cartridge header format, which the ROM-BIOS
uses to identify cartridges in memory and determine their contents. The
information stored in the header also indirectly identifies the type of car-
tridge that is plugged in and what it will be used for.

64

PROGRAMMER’S GUIDE TO THE IBM PC

The Cartridge Header

Each cartridge begins with the standard ROM extension 2-byte sig-
nature, hex 55 AA, followed by a 1-byte length code. The length is given
in cartridges and other ROM extensions in units of 512 bytes, or ¥:K. For
example, an 8K game cartridge has a length code of 16, while a 32K BASIC
language cartridge has a length code of 64.

Following the length code are three bytes that are set aside for a
single cartridge initialization instruction. The three bytes allowed for this
field are enough to contain any instruction of three bytes or less; nor-
mally they contain either a 1-byte FAR RETurn instruction or a 3-byte
JMP instruction. The instruction here controls what initialization —if
any—is done for the cartridge. With a BASIC program cartridge (a car-
tridge containing a program written in BASIC that must therefore be used
with the BASIC language cartridge), these three bytes contain a special
code: the standard FAR RETurn instruction (hex CB), followed by the re-
versed signature (hex AA 55). To avoid being confused with a BASIC pro-
gram cartridge, any other type of cartridge must have something other
than hex AA 55 in the last two bytes of this field.

Following the initialization field, beginning at the seventh byte of
the cartridge, is a DOS table of contents that identifies any DOS command
programs that may be on the cartridge. If there are such programs on the
cartridge, they effectively become additions to the internal commands,
such as DIR, COPY, and TIME at DOS’s disposal. If there are no such pro-
grams, the cartridge should have an empty table of contents (explained in
a moment), rather than 7o table of contents. The format of the DOS table
of contents is a series of command-name entries, followed by a zero byte,
which identifies the end of the table. An empty table of contents simply
has the zero byte.

The command-name entries each consist of three fields: a 1-byte
field recording the length of the name; a field containing the same num-
ber of bytes for the command name, in ASCII capital-letter characters;
and a 3-byte jump-instruction field, which jumps to the program that
carries out the command.

(WARNING: SomeIBM Technical Referencemanualsincorrectly
identify the last command-name field as a 2-byte offset word; it is in fact
a 3-byte jump instruction.

Following the cartridge header are the actual contents of the car-
tridge—usually machine-language programs. If the cartridge is a BASIC
program cartridge, then the contents are a tokenized BASIC program,
stored in the same format as that used for storing BASIC programs on
disk. Keep in mind that the first byte of a tokenized BASIC program iden-
tifies it as either normal (hex FF) or protected (hex FE).

Chapter 3: The ROM Software 65

Offset Contents Description
0 55 AA Signature
2 40 Length: hex 40 = 64* /2K =32K
3 E9 1D 00 JMP 0023: jump to initialization code
6 0s Length (5) of following command name
7 “BASIC” Command name, in ASCII
12 E9 9101 JMP 0191: jump to start BASIC
15 06 Length (6) of following command name
16 “BASICA” Command name, in ASCII
22 E99101 JMP 0191: jump to start BASICA (same as start
of BASIC)
25 00 End of table of contents

Figure 3-8. A specific example of a cartridge
header, taken from the PCjr's BASIC lan-
guage cartridge. Note that the table of
internal DOS commands (DIR, TIME, etc.)
that is stored inside the command inter-
preter, COMMAND.COM, is quite similar
to this cartridge’s DOS command table.

COMMENTS

The ROM program listings could fill volumes, and in fact do take up
a fair amount of space in the IBM Technical Reference manual. Although
IBM frowns on direct use of any of the information found in ROM list-
ings, particularly the BIOS listings, it can be fun and very enlightening to
browse through it on occasion. Since I have made every effort in this
book to point out the ROM-BIOS routines that are safe to use, I also rec-
ommend that you read through what I have to say before venturing out
on your own.

Video Basics

The Display Adapters 68
Memory and the Display Adapters 69
Creating the Screen Image 70

The Video Display Formats 71
Display Resolution 73
Video Mode Control 74

The Use of Color 7§

Color-Suppressed Modes 77
Color in Text and Graphics Modes 78

Inside the Display Memory 83
Display Pages in Text Modes 85
Display Pages in Graphics Modes 86
Displaying Characters in Text and Graphics Modes 86

Controlling the Video Display 90
Direct Hardware Control 93

Compatibility Considerations 96

67

PROGRAMMER’S GUIDE TO THE IBM PC

o many people, the video display is the computer. Programs are
often judged by their display quality and visual design alone. In
this chapter, we’ll see what kinds of displays the IBM PC family
uses and how they are produced. More importantly, we’ll
learn how to manipulate the video displays to get the effects we want.

THE DISPLAY ADAPTERS

To produce the video display, most members of the PC family (in-
cluding the PC, the XT, and the AT) require a display adapter—a special
circuit board that is normally plugged into one of the computer’s expan-
sion slots. Display adapters were designed into the PCjr, and models such
as the Portable PC and the Compaq also come with display adapters,
though, in their case, we can change the adapters.

The display adapter connects the computer to the display monitor
through a chip called the CRT controller. The adapter also has a set of pro-
grammable 1/O ports, a ROM character generator, and RAM memory to
hold the display information.

There are several kinds of display adapters, but they are all modeled
after the two adapters originally released by IBM for the PC: the Color/
Graphics Adapter and the Monochrome Adapter. We’ll mostly be discuss-
ing these two adapters, with additional remarks on others.

Video displays are produced by two fundamentally different modes,
called text mode and graphics mode by IBM. Text mode displays only
characters, though many of these characters are suitable for producing
simple line drawings (@ see Appendix C for more on characters). Graph-
ics mode is mainly used to produce complex drawings but can produce
text characters in a variety of shapes and sizes equally well.

The Color/Graphics Adapter can operate in both text and graphics
modes to produce both drawings and characters in several formats and
colors. It is designed to work with all kinds of displays, from standard
TVs to high-resolution color monitors.

By contrast, the Monochrome Adapter can operate only in text
mode, using a stored set of ASCII alphanumeric and graphics characters
and displaying them in only one color. Designed for serious business ap-
plications, the Monochrome Adapter only works with the IBM Mono-
chrome Monitor (or its equivalent), which is a special, high-resolution
display monitor. (@ See page 72 for more on monitors.) Many business
and professional users prefer a monochrome display to a color/graphics
display because it is easier to read. But in choosing monochrome, they
sacrifice graphics and color, two valuable assets for any display.

To overcome these limitations, some hardware manufacturers have
come up with variations of the IBM Monochrome Adapter, such as the

Chapter 4: Video Basics 69

popular Hercules display adapter, which successfully combines the graph-
ics (but not the color) capabilities of the Color/Graphics Adapter with the
higher-quality text display of the Monochrome Adapter, and adds unique
features of its own. The resulting graphics quality is even better than the
Color/Graphics Adapter can produce. The IBM Enhanced Graphics Adap-
ter can create graphics on the monochrome screen in a similar way.

Roughly two-thirds of all PCs are equipped with the standard Mono-
chrome Adapter and therefore have no graphics or color capability. While
there are real advantages to using color and graphics, most PCs get along
nicely without either. When you are planning computer applications, keep
in mind that most computers and most PCs display text only.

The best way to understand the PC’s display capabilities is to cover
the features of the original Color/Graphics Adapter, noting where the
Monochrome Adapter differs (mostly small details). We’ll also point out
where extensions to the Color/Graphics Adapter have been made in the
Enhanced Graphics Adapter and in the PCjr.

Memory and the Display Adapters

The display memory is physically located with the other display cir-
cuitry on the adapter card. However, it is logically (to the CPU) a part of
the computer’s main memory address space. A full 128K of the memory
address space is set aside for display use in the A and B memory blocks, at
hex addresses A0000 through BFFFF, but the two original display adapters
use only two small parts of this memory area. The Monochrome Adapter
provides 4K of display memory located at hex paragraph address B00O.
The original Color/Graphics Adapter provides 16K of display memory lo-
cated at address B800. The remaining space, particularly the 64K block
from A000 up to B00O, is set aside for advanced display use; for example,
by the Enhanced Graphics Adapter.

i The PCjr strays from the family tradition by using low address loca-
tions in main memory for its display memory. However, special circuitry
in the PCjr closely mimics the conventional Color/Graphics Adapter. This
circuitry, called the video gate array (VGA), makes it appear as though the

: PCjr’s display memory is located at the Color/Graphics Adapter’s B800

JR m I address. References to the B800 area are rerouted by the VGA’s circuitry

to whatever location is actually in use as display memory. The PCjr can

use any part of the first 128K of RAM for video memory; the VGA keeps
track of the actual location. For all practical programming purposes, the

PCjr should be treated as a PC equipped with a Color/Graphics Adapter,

| which uses the display memory address beginning at B800.

PROGRAMMER’S GUIDE TO THE IBM PC

Creating the Screen Image

The Monochrome and Color/Graphics Adapters store display infor-
mation in memory-mapped display, so called because each address in the
display memory corresponds to a specific location on the screen (@ see
Figure 4-1). The display circuitry repeatedly reads information from mem-
ory and places it on the screen. The information can be changed as fast
as the computer can write new information from our programs into
memory. The CRT controller is the link between the display memory and
the display monitor, translating the stream of bits it receives from mem-
ory into bursts of light at particular locations on the screen.

These dots or dashes of light are generally called pixels and they are
produced by an electron beam striking the phosphorescent surface of the
CRT. The electron beam is produced by an electron gun that scans the
screen line by line. As the gun moves across and down the screen in a
fixed path called a raster scan, the CRT controller generates a video con-
trol signal that turns the beam on and off, matching the pattern of the
bits in memory.

The video circuitry refreshes the screen 60 times a second making
the changing images appear clear and steady. At the end of each screen
refresh cycle, the electron beam must move from the bottom right corner
to the top left corner of the screen to begin a new cycle. This movement

L1 | [] | L 1 =

RAM locations

Figure 4-1. The memory-mapped display

Chapter 4: Video Basics

71

is called the vertical retrace. During the retrace, the beam is blanked and
information cannot be written to the screen.

The vertical retrace period (1.25 milliseconds) is important to the
programmer for one main reason, which requires some explanation. The
special dual-ported design of the display adapter’s memory gives the CPU
and the CRT controller equal access to the display memory. This allows
the CPU and the CRT controller to access video memory at the same time.
If the CPU happens to access a memory byte while the CRT controller is
writing to the screen, a “snow” effect may briefly appear on the screen.
However, if we instruct the CPU to access memory only during the ver-
tical retrace, when the CRT controller is not accessing memory, then snow
can be eliminated. For systems using the Color/Graphics Adapter, our
programs can poll a status bit, called the vertical sync signal, in one of
the adapter’s 1/O ports (location hex 3DA). This bit is set on at the begin-
ning of a retrace and then set off at the end. During this 1.25-millisecond
pause, we can have our programs write as much data as possible to the
video display memory. At the end of the retrace, the CRT controller can
write this data to the screen without snow. This technique is useful for
any application that requires a rapid succession of clear images.

THE VIDEO DISPLAY FORMATS

Originally, there were eight video formats, or modes, defined for
the IBM personal computers. Another seven or more have been added.
The video modes define the display characteristics, including the amount
of text that can be displayed, the resolution or detail of the graphics, and
the display colors. The Color/Graphics Adapter accommodates several
different format options in both text and graphics modes. The Mono-
chrome Adapter offers only a single, one-color text format. Both the PCjr
and the Enhanced Graphics Adaptor (EGA) support a variety of old and
new formats.

Each of the fifteen modes we’ll be discussing is identified by a num-
ber from 0 through 16 (e see Figure 4-2). Modes 0 through 3 are the text
modes and modes 4 through 6 are the graphics modes for the Color/
Graphics Adapter. Mode 7 is a monochrome text mode that can be used
only with the IBM Monochrome Adapter (or its equivalent). Modes 8
through 10 were introduced with the PCjr (which also uses modes 0 through
6) and cannot be used with the standard IBM display adapters. Modes 13
through 16 apply to the EGA (which also uses modes 0 through 7).

Color may be used in any display mode except the one provided for
the Monochrome Adapter (mode 7). Through the modes available with

72

PROGRAMMER'’S GUIDE TO THE IBM PC

Chapter 4: Video Basics

73

Mode Type Dimensions Colors Adapter Display
0 Text 40 %25 16 (grey) CGA, EGA, PCjr Enhanced Color
EGA: 64 color
1 Text 40%25 16 foreground, CGA, EGA, PCjr Enhanced Color
8 background
EGA: 64 color
2 Text 80 %25 16 (grey) CGA, EGA, PCjr Enhanced Color
EGA: 64 color
3 Text 80x25 16 foreground, CGA, EGA, PCjr Enhanced Color
8 background
EGA: 64 color
- Graphics 320200 -4 CGA, EGA, PCjr Enhanced Color
S Graphics 320 %200 4 (grey) CGA, EGA, PCjr Enhanced Color
6 Graphics 640 %200 2 CGA, EGA, PCjr Enhanced Color
7 Text 80 %25 b/w EGA, MA Monochrome
8 Graphics 160 %200 16 PCjr Enhanced Color
9 Graphics 320%200 16 PCjr Enhanced Color
10 Graphics 640 x200 4 PCjr Enhanced Color
11 Apparently internal
to the EGA
12 Apparently internal
to the EGA
13 Graphics 320 %200 16 EGA Enhanced Color
14 Graphics 640 %200 16 EGA Enhanced Color
15 Graphics 640 %350 b/w EGA Monochrome
16 Graphics 640 %350 16/64 EGA Enhanced Color
Figure 4-2. The format characteristics of the
fifteen video modes
the Color/Graphics Adapter, we can choose from two to sixteen color
combinations, including a selection of grey tones, called color-suppressed
modes. Although no color choices are available with the Monochrome
Monitor, there are some character-display variations that are partially
equivalent to color: bright and dim intensity, underlining, and reverse
video. @ We’ll discuss the use of color with text and graphics displays, as
well as the Monochrome Adapter’s answer to color, in the section en-
titled “The Use of Color” on page 75.
Display Resolution

Graphics images are built up from individual dots, called picture
elements, or pixels. The display resolution is defined by the number of
rows, or scan lines, from top to bottom and the number of pixels from

74

PROGRAMMER’S GUIDE TO THE IBM PC

left to right in each line. The number of rows a monitor can display is
determined by the hardware and the video signals, which we have little
or no control over; a standard PC display always has 25 text rows and 200
graphics rows. So to change the screen’s resolution, we have to change
the number of pixels on each line.

The PC graphics modes have three resolutions—low, medium, and
high—with 160, 320, and 640 pixels on each line. [} Low resolution
(160X 200 pixels) was introduced with the PCjr and is not available with ei-
ther the original Color/Graphics Adapter or the Enhanced Graphics Adap-
ter. Since text characters can also be displayed in the graphics modes, the
medium and high graphics resolutions each have an equivalent text size
(@ see Figure 4-3).

A narrow character that fits in an 80-column-by-25-line format uses
640 X 200 pixel resolution, and a broader character that fills a 40-column-
by-25-line format uses a 320 X 200 pixel resolution. (The 80 X 25 character
display of the Monochrome Adapter shows clearer text because its char-
acters are built from a higher pixel resolution—720 X 350.)

You will notice that low-resolution graphics have their own unique
20-column text format, which has no equivalent in the standard text
modes. L Text width 20, along with the low-resolution mode, was in-
troduced with the PCjr and neither format exists in the other adapters.

Video Mode Control

Video modes are controlled by the ROM-BIOS through interrupt 16
(hex 10), service 0. (@ See Chapter 9.) BASIC gives us full control over the
video modes through the SCREEN statement, but refers to them in its
own way, using different mode numbers than the ROM-BIOS routines. We
can also control some of the video modes through DOS. But at the com-
mand level, DOS insists on a text mode and there are no DOS commands
that switch to any of the graphics modes, as we can see in Figure 4-4.

Resolution Pixels Characters
Low 160 x 200 20% 25
Medium 320 %200 40%x 25
High 640 % 200 80 x 25

Figure 4-3. The resolution of text characters
drawn in graphics modes

Chapter 4: Video Basics

75

BASIC Statement DOS Statement
Mode to Change Mode to Change Mode
0 SCREEN 0,0 : WIDTH 40 MODE BWA40
1 SCREEN 0,1 : WIDTH 40 MODE C0O40
2 SCREEN 0,0 : WIDTH 80 MODE BW80
3 SCREEN 0,1 : WIDTH 80 MODE CO80
4 SCREEN 1,0 or SCREEN 4 n/a
5 SCREEN 1,1 n/a
6 SCREEN 2 n/a
7 n/a MODE MONO
8 SCREEN 3 n/a
9 SCREEN 5§ n/a
10 SCREEN 6 n/a

Figure 4-4. The BASIC and DOS com-
mands used to change video modes

THE USE OF COLOR

There is a variety of colors available in every display mode except
the mode provided for the Monochrome Adapter. You may have noticed
that among the various modes there are substantial differences in the
number of colors available. In this section, we will describe the color op-
tions for the video modes.

Colors for the PC’s display screens are produced by combinations of
four elements: three color components—red, green, and blue—plus an
intensity, or brightness, component. Text and graphics modes use the
same colors and intensity options but they combine them in different
ways to produce their colored displays. The text modes, whose basic unit
is a character composed of several pixels, use an entire byte to set the
color, the intensity, and the blinking characteristics of the character and
its background. The graphics modes, having a much smaller basic unit
(the pixel), use only one to four bits to define the color and brightness
because the pixel does not have blinking or background characteristics.
@ We’ll see how to set the attributes for text and graphics modes on
page 79. First, a word about the colors themselves.

The color numbers (0 through 15) used by BASIC, and used in gen-
eral to identify the PC colors, can be derived by interpreting the four
color elements as the bits of a binary number. @ The colors and their bit
codes are listed in Figure 4-5. When we use a sixteen-color mode, we get

76

PROGRAMMER’S GUIDE TO THE IBM PC

all the colors, from 0 through 15. When we use an eight-color mode, we
get colors 0 through 7; that is, all the colors without bright intensity.
With a four-color mode, we get a selection of four colors from the list of
sixteen. This four-color selection is called a palette. In a two-color mode,
we get colors 0 and 7—black and ordinary white.

So far we’ve described the basic 16-color palette of the standard PC,
which is built of the three RGB colors and the intensity setting (I). We
might call this basic color scheme IRGB. A 64-color palette has been
added to the PC family, but is only available with the combination of the
Enhanced Graphics Adapter and Enhanced Color Display— the EGA/ECD
combination. This 64-color palette is built out of the standard three col-
ors (red, green, and blue), but each color has two independent signals: a
brighter one and a dimmer one. The notation for the 64-color palette is
RrGgBb, where the capital letters stand for the dimmer colors. Note that
we’re not talking about two intensity levels but about two separate color
signals, which allow for a total of four intensities of each of the three col-
ors. For the reds, the four intensities would be Rr (most intense), R., .r, and
.. (no red). All possible combinations of RrGgBb work out to 64 colors.

Intensity
Red
Green
Blue

Number Description
0000 0 Black
0001 1 Blue
0010 2 Green
0011 3 Cyan (blue-green to civilians)
0100 4 Red
0101 N Magenta
0110 6 Brown (or dark yellow)
0111 7 Light grey (or ordinary white)
1000 8 Dark grey (black on many screens)
1001 9 Light blue
1010 10 Light green
1011 11 Light cyan
1100 12 Light red
1101 13 Light magenta
1110 14 Yellow (or light yellow)
1111 15 Bright white

Figure 4-5. The PC family’s full color array,
with the four bit codes that specify them

Chapter 4: Video Basics

77

We won'’t be discussing the 64-color palette of the EGA/ECD combo in
any detail because it’s quite rare and specialized and doesn’t really fit into
the mainstream of the PC family. (If we really wanted to treat all the exotic,
non-mainstream elements of the PC family, we would fill a wonderful book
several times the size of this one.) Another even more specialized adapter
and display combination, the IBM Professional Graphics Adapter and Dis-
play has a palette of 256 colors and remarkably high resolution; but it is
even farther removed from the PC mainstream, so we won’t be discussing
it, either. Instead, we’ll go back to a more detailed discussion of the stan-
dard color palettes.

There are several things to keep in mind when choosing colors. The
four color elements (IRGB) all actively produce light. The more elements in
use, the brighter the color will be, but also the more washed out it will
seem. To the eye, the pure single colors (red, green, and blue) are more
visually intense than either the mixed colors (cyan, magenta, and yellow)
or the so-called “intense” (brightened) versions of the pure colors. Here
are three other factors that should be considered when choosing colors:

® Some color display screens do not respond to the intensity bit.
This deficiency makes color 8 the same as color 0, color 9 the
same as color 1, and so on.

® When a composite monochrome display screen is used with a
color/graphics adapter, colors other than black (0) and white (7)
may produce illegible information.

B Finally, programs that are run on a PC or XT with the IBM Mono-
chrome Adapter must take into account the unusual way the
monochrome display treats color (@ see page 81).

In considering color, check the discussions in each of the remaining
sections. There are important color-related items in each section.

Color-Suppressed Modes

In an effort to make the graphics modes compatible with a wide
range of monitors, both color and monochrome, IBM included a few
modes that do not produce color, called color-suppressed modes. There
are three color-suppressed modes: modes 0, 2, and 5. In these modes,
colors are converted into shades of grey, or whatever color the screen
phosphor produces. There are four even shades in mode 5, and a variety
of shades in modes 0 and 2. Color is suppressed in the display adapter’s
composite output but 7ot in its RGB output. This inconsistency is the re-
sult of an unavoidable technical limitation.

78

PROGRAMMER’S GUIDE TO THE IBM PC

Q NOTE: For each color-suppressed mode, there is a corresponding
color mode, so modes 0 and 1 correspond to 40-column text, modes 2
and 3 to 80-column text, and modes 4 and 5 to medium-resolution
graphics. The fact that modes 4 and S reverse the pattern of modes 0 and
1 and modes 2 and 3, where the color-suppressed mode comes first, has
lead to a complication in BASIC. The burst parameter of the BASIC
SCREEN statement controls color. The meaning of this parameter is re-
versed for modes 4 and S, so that the statement SCREEN, 1 activates color
in the text iodes (0, 1, 2, and 3) but suppresses color in the graphics
modes (4 and 5). This inconsistency may have been a programming error
at first, but it is now part of the official definition of the SCREEN state-
ment. Figure 4-6 shows the proper SCREEN statement syntax for modes
0 through S.

Color in Text and Graphics Modes

We need to be aware of the differences in the use of color between
text and graphics modes, particularly the apparent inconsistencies in the
way text colors are handled. In text mode, we have completely indepen-
dent control over the color of each character position: We can freely use
the full sixteen-color palette in the foreground and the eight-color palette
in the background. In graphics mode, we have complete control over the
color of each pixel and over the color of any graphics drawing operations
(as provided by BASIC, for example).

In theory, the graphics modes should give us richer use of color over
the entire screen. However, when we write text in a graphics mode, we
do not have control over the background color: It is always set to the

Mode Color Suppressed Color Active
0 SCREEN 0,0: WIDTH 40
1 SCREEN 0,1
2 SCREEN 0,0: WIDTH 80
3 SCREEN 0,1: WIDTH 80
4 SCREEN 1,0
5 SCREEN 1,1

Figure 4-6. The color burst parameters of
modes 0 through 5. Notice that modes 0
through 3 and modes 4 through $ follow
different patterns

Chapter 4: Video Basics

79

universal background color that is in effect. (@ See the discussion of pal-
ette value 0 under the four-color modes, page 83.) This means that even
though the graphics modes provide more control of color in principle,
they actually provide less control of color when we are displaying text.
This is an inherent characteristic of the text-writing services in the graph-
ics modes. (@ See Chapter 9.)

Setting Color in Text Modes

In the text modes, each character position on the display screen is
controlled by two adjacent bytes in memory (@ see page 87 for more
about the location of these bytes in memory). The first byte contains the
ASCII code for the character that will be displayed. (@ See Appendix C
for a chart of characters.) The second byte controls how the character
will appear, specifying its colors and so forth. This second byte is called
the character attribute.

Before we go any further, we need to explain a couple of terms that
may present some confusion. In IBM PC display terminology, the terms
color and attribute are used interchangeably. Although there are precise
technical meanings to these two terms, which are distinct but closely re-
lated, you'll often find the two terms used imprecisely to mean roughly
the same thing. To avoid confusion, think of both words as slightly vague
terms that refer both to the way things appear on the screen and to the
data coding in memory that controls the character’s appearance.

There are three components to the text character attribute: the
foreground color (the color of the character itself), the background color
(the color of the area not covered by the character), and the character
blink component. The foreground color can be any of the sixteen colors
in the full PC range. The background color can be one of only eight col-
ors: color numbers 0 through 7 (the basic colors without bright intensity).

Each character position on the screen has its own attribute control,
independent of all other screen characters. The eight bits in the attribute
byte act independently to control one element of the display attribute.
@ The bit settings are shown in Figure 4-7. The default attribute used by
DOS and BASIC is hex 07, normal white (7) on black (0), without blinking,.

80 PROGRAMMER'’S GUIDE TO THE IBM PC

Bit
7:6:54:32 10 Use

L ooy ms dares Blinking of foreground character
B e S Red component of background color
o ol i e Green component of background color
B Blue component of background color
: 1 3a Intensity component of foreground color
..... j [Red component of foreground color
...... 1% Green component of foreground color

....... 1 Blue component of foreground color

Figure 4-7. The coding of the color
attribute byte

With the PCjr, when we use text characters in a sixteen-color
graphics mode (modes 8 or 9) we can use any one of the sixteen colors for
the background color, but that one background color will apply to all
text characters written in the graphics mode. Though this may seem
IR w I rather limiting, it can actually be quite useful. For example, characters

==—2J | can be displayed on the screen, yet made invisible by setting the fore-

ground color to match the background color. This is the ideal way to

allow passwords or other confidential information to be invisibly entered

on the screen. (There is also an invisible mode for the Monochrome Adap-
| ter; @ see page 81.)

Color quality varies with the monitor. For many color displays, the
bright, high-intensity colors are clearly legible when displayed on a back-
ground of the same color but without the intensity. On the other hand,
some color displays do not act on the intensity setting. With these dis-
plays, otherwise legible foreground and background combinations, such
as yellow on brown, are simply not distinguishable.

Although the graphics modes can display text quite nicely, there are
several obvious advantages to using the text modes for text displays. Per-
haps the most important advantage of text-mode characters is that they
can be displayed faster than graphics characters. This is due in part to the
fact that text-mode characters are taken from a table of characters, while
the graphics characters must be drawn bit-by-bit from memory. The text
modes use less memory than the graphics modes, so they have extra mem-
ory available for display pages, allowing us to store several “pages” of
text information directly in the video display memory and call them up

Chapter 4: Video Basics

81

one at a time in quick succession. There are also more special effects
available for text-mode characters. For one thing, there is a wider choice
of colors. And for another, text modes can blink characters, while graph-
ics modes have no blinking capability at all.

Setting Attributes in the Monochrome Mode

The monochrome mode (mode 7) used by the IBM Monochrome
Adapter has a limited selection of display variations that are the equiv-
alent of color. The same general coding scheme is used to set the display
attributes for monochrome characters as is used for text-mode characters
in graphics modes 0 through 3.

The blinking and intensity bits are used in the monochrome mode.
However, only four foreground and background “color” combinations
produce distinct results:

® Normal white-on-black, produced by selecting white (foreground
bits 111) on black (background bits 000), or hex 07.

® Underlined characters, produced by setting the attribute byte to
hex 01, which selects blue (foreground bits 001) on black (back-
ground bits 000).

® Reverse video, or black (foreground bits 000) on white (back-
ground bits 111), produced with hex 70.

B Invisible characters, created using black (foreground bits 000) on
black (background bits 000), or hex 00.

All other color combinations show the same as normal white-on-black,
hex 07. Other color combinations that might seem logical, such as invisi-
ble white-on-white or a reverse video/underlined combination, do not ex-
ist in monochrome mode; only the four results mentioned exist. Note
that the blinking and intensity attribute bits are independent of these four
“color” combinations.

Setting Color in Graphics Modes

So far, we’ve seen how to set color (and the monochrome equiv-
alent of color) in the text modes. Setting color in the graphics modes is
quite different. In the graphics modes (modes 4 through 6, 8 through 10,
and 13 through 16), each pixel on the screen has a color associated with
it. The color is set the same way attributes are set in text mode, but there
are important differences. First, graphics pixels cannot blink. Second,
since each pixel is a discrete dot of color, there is no foreground and
background—each pixel is simply one color or another. When text is

82

PROGRAMMER’S GUIDE TO THE IBM PC

written in graphics mode, one color is used for the pixels that make up
the “background” and any of the colors can be used for the pixels that
make up the characters.

(Q NOTE: The use of graphics mode in BASIC gives us the impression
that there is a background color for graphics. But this is simply a conve-
nient convention that BASIC adopts: Any pixels that aren’t explicitly set
to some “foreground” color are given the “background” color. The ROM-
BIOS video services (@ Chapter 9) also make use of this background-
color convention.

For each graphics mode, there are predefined color choices, known
as palettes. The standard palettes can be changed in the PCjr or the EGA,
but not in the original Color/Graphics Adapter. Once the palette colors
for any graphics mode are set, each pixel color can be selected from the
available colors by setting the color value of the bits assigned to each
pixel. In a two-color mode, there is one bit for each pixel and the pixel’s
color value is given as 0 or 1. In a four-color mode, there are two bits with
the color values of 0 through 3. In a sixteen-color mode, there are four
bits and color values of 0 through 15. The color values used to define a
pixel are not necessarily the same as the numbers (0 through 15) used to
identify the actual colors that appear on the screen.

In two-color mode 6, there is only one standard palette, shown in
Figure 4-8. In four-color modes 4 and S, there are two standard palettes:
palette 0, shown in Figure 4-9, and palette 1, shown in Figure 4-10. Two
things should be noted about these palettes. First, palette value 0 can be
changed from black (color 0) to any color. Second, palette value 0 is the
“background” color and palette value 3 is the “foreground” color when
writing text characters. In four-color mode 10 there is one standard pal-
ette, which is the same as palette 1. In sixteen-color modes 8, 9, 13, and 14,
there is one standard palette. This palette matches the palette values 0
through 15 to the actual color numbers, as you might expect. Remember,
color modes 8 and 9 are only available with the PCjr, and 13 and 14 are
only available with the EGA.

Bit Value Color
00 0 Black
01 1 White

Figure 4-8. The standard palette for the
two-color graphics mode (mode 6)

Chapter 4: Video Basics

83

Bit Value Color

00 0 Black (default; may be changed to any color)
01 1 Green

10 2 Red

11 3 Brown

Figure 4-9. Palette 0, one of two standard
palettes for the four-color graphics modes

(modes 4 and 5)
Bit Value Color
00 0 Black (default; may be changed to any color)
01 1 Cyan
10 2 Magenta
11 3 Normal white

Figure 4-10. Palette 1, one of two standard
palettes for the four-color graphics modes
(modes 4 and 5)

Remapping Palettes in the PCjr and EGA

Up to this point, we’ve been discussing the standard colors that are
produced using the standard palettes. With the original Color/Graphics
Adapter, the palette color assignments are fixed and cannot be changed.
However, in the PCjr and in any display adapter, such as the EGA, de-
signed to provide it, the palettes can have their colors remapped. By re-
mapping a color, we merely reassign a color value so that a request for
color 1 (blue) might actually display color 4 (red).

The mapping of any requested palette value into an actual color
number is under the control of the palette currently in effect. The palettes
can be changed in BASIC with the palette statements, or with the BIOS
video services (@ see page 181).

INSIDE THE DISPLAY MEMORY

Now we come to the inner workings of the video map. In this sec-
tion, we’ll see how the information in the display memory is related to
the display screen.

84

PROGRAMMER’S GUIDE TO THE IBM PC

We should be aware that for the video modes that have their display
memory in the B block (color/graphics modes 0 through 6 and mono-
chrome mode 7), we can have our programs safely tinker with the display
memory. This is true even for the PCjr, which only appears to use the B
block for modes 0 through 6. IBM didn’t want our programs to directly
touch the display memory at first, but since most worthwhile programs
do, IBM is now resigned to it and fully intends to support it in all present
and future display adapters. But IBM is drawing the line with these modes.
For new enhanced modes, such as the PCjr’s modes 8 through 10 and the
EGA’s modes 13 through 16, IBM is making the display memory as hands-
off as possible. In the case of the EGA, the display memory is theoretically
located in the A block but can’t actually be found at that address by our
programs. We'd be fools to try to break through this barrier.

The use and coding of the video display memory varies according
to which of video modes 0 through 10 is being used. (Recall that modes 0
through 6 apply to the original IBM Color/Graphics Adapter and mode 7
to the IBM Monochrome Adapter. Modes 8 through 10 were introduced
with the PCjr model, which also uses modes 0 through 6; these modes
cannot be used with the standard IBM Color/Graphics Adapter or any of
its equivalents. Modes 11 through 16 apply only to the EGA.)

In modes 0 through 6 and also 8, the display map occupies 16K
bytes; in modes 9 and 10, the display map fills 32K. In the Monochrome
Adapter’s mode 7, it uses only 4K bytes. The text-mode displays of both
the monochrome and graphics display adapters use less memory than do
the graphics-mode displays because only two bytes are needed to store
one character (@ more about this on page 87). Consequently, an 80- by
25-character text display requires only 4,000 bytes. A graphics display, as
we can see in Figure 4-11, may require anywhere from 16K bytes to 32K
bytes, depending on the number of colors we use. In the two-color graph-
ics modes, a pixel uses one bit. In the four- and sixteen-color modes, each
pixel requires from two to four bits in order to store the larger color values.
This means that a 320 X 200 sixteen-color bit-mapped display requires a
full 32K (two pixels per byte).

Since a typical text display occupies 4,000 bytes (only 2,000 bytes in
40-column mode), there is some space left over in the Color/Graphics
Adapter’s 16K display memory. We can use this space for more text by
dividing it into display pages.

Chapter 4: Video Basics

85

Minimum Memory

Mode Used (K) Starting Paragraph Address (hex) Adapter
0 2 B800 (location varies on PCjr) CGA
1 2 B800 (location varies on PCjr) CGA
2 4 B800 (location varies on PCijr) CGA
3 4 B800 (location varies on PCjr) CGA
4 16 B800 (location varies on PCjr) CGA
5 16 B800 (location varies on PCjr) CGA
6 16 B800 (location varies on PCjr) CGA
7 4 B00O MA
8 16 PCjr main memory (location varies) n/a
9 32 PCjr main memory (location varies) n/a

10 32 PCjr main memory (location varies) n/a

13 32 A000 EGA
14 32 A000 EGA
15 64 A000 EGA
16 64 A000 EGA

Figure 4-11. Minimum amount of memory
needed by each video mode and its starting
location in memory

Display Pages in Text Modes

In text modes 0 through 3, less than 16K is actually used by the
screen at any one time. Modes 0 and 1 use 2K, and modes 2 and 3 use 4K.
For these modes, the 16K of available memory is divided into multiple
screen images, called pages. At any given time, one page is actively dis-
played. Information can be written into the displayed page or any of the
other pages. Using this technique we can build a screen on an invisible
page while another page is being displayed, then switch to the new page
when the appropriate time comes. Switching screen images this way
makes them appear to regenerate instantaneously.

The display pages are numbered 0 through 7 in modes 0 and 1, or 0
through 3 in modes 2 and 3, with page 0 starting at the beginning of the
16K display memory area. Each page begins on an even K memory bound-
ary. @ The display page offset addresses are shown in Figure 4-12. The
EGA doesn’t abide by these conventions; use the word at hex 44E to find the
offset of the current video page.

We set the display page by changing the starting address used by
the 6845 controller chip. Normally, we do this by using ROM-BIOS video
service 5 through interrupt 16 (hex 10). (@ See Chapter 9.)

PROGRAMMER’S GUIDE TO THE IBM PC

Modes 0 and 1 Modes 2 and 3
Page 2K displacements 4K displacements

0 B800 B800

1 B880 B900

2 B900 BA0O

3 B980 BB0O

4 BAOO

5 BASO

6 BB0O

7 BB80 (See text for note on EGA)

Figure 4-12. Offset addresses for display
pages in modes 0 through 3

In any of these modes, if the pages are not actively used (actually
displayed on the screen), then the unused part of the display memory can
conceivably be used for another purpose, although it is not normal (or
advisable) to do so. Making any other use of this potentially free memory
is just asking for trouble in the future.

Display Pages in Graphics Modes

For the PCjr, the EGA, and any other display adapter that has the
memory to accommodate it, the page concept is just as readily available
in the graphics modes as in the text modes. Obviously there is no reason
not to have graphics pages if the memory is there to support them.

The main benefit of using multiple pages for either graphics or text
is to be able to instantly switch from one display screen to another with-
out taking the time to build the display information from scratch. In the-
ory, multiple pages could be used in graphics mode to produce smooth
and fine-grained animation effects, but there wouldn’t be enough display
pages to take the animation very far. However, the potential for using
display pages in graphics mode is there with the newer display adapters.

Displaying Characters in Text and Graphics Modes

As we have learned, the text modes of the Monochrome and Color/
Graphics Adapters do not store a character image in display memory, but
instead store only the ASCII values of the character and its display attri-
butes. The character is drawn on the screen by a character generator that
is part of the adapter. The Color/Graphics Adapter has a character gener-
ator that produces characters in an 8-by-8 pixel block format, while the

Chapter 4: Video Basics

87

Monochrome Adapter’s character generator uses a 9-by-14 pixel block
format. The larger format is one of the factors that makes the Mono-
chrome Adapter’s display output easier to read.

The standard ASCII characters (CHR$(1) through CHR$(127)) repre-
sent only half of the ASCII characters that we can use in the text modes.
We also have 128 graphics characters available through the same charac-
ter generator (CHR$(128) through CHR$(255)). Over half of them can be
used to make simple line drawings. @ A complete list of both the stan-
dard ASCII characters and the graphics characters provided by IBM is
given in Appendix C.

The graphics modes can also display characters, but they are pro-
duced quite differently. The graphics modes can only store information
bit-by-bit and characters are no exception: They must be drawn one bit at
a time. The big advantage to a bit-mapped display as far as characters are
concerned is that you can design your own characters. In the original
IBM Color/Graphics Adapter, the table for the second 128 characters is lo-
cated in RAM and can therefore be modified. Having modified the table,
we can directly access and display a custom set of characters instead of
the standard IBM set. With the PCjr, all 256 characters are in RAM, so all
of them can be modified.

Mapping Characters in Text Modes

In text modes, the memory map begins with the top left corner of
the screen, using two bytes per screen position. The memory bytes for
succeeding characters immediately follow in the order we would read
them—from left to right and from top to bottom.

Modes 0 and 1 are text modes with a screen format of 40 columns
by 25 rows. Each row occupies 40 x2=80 bytes. A screen occupies only
2K bytes in modes 0 and 1, which means the 16K memory can accommo-
date eight display pages. If the rows are numbered 0 through 24 and the
columns numbered 0 through 39, then the offset to any screen character
in the first display page is given by the BASIC formula:

CHARACTER.OFFSET = (ROW.NUMBER * 80) + (COLUMN.NUMBER * 2)

Since the attribute byte for any character is in the memory location next
to the ASCII character value, we can locate it by simply adding 1 to the
character offset.

Modes 2, 3, and 7 are also text modes with 80 columns in each row
instead of 40. The byte layout is the same, but each row requires twice as

88

PROGRAMMER'’S GUIDE TO THE IBM PC

many bytes, or 80x2=160 bytes. Consequently, the 80-by-25 screen for-
mat uses 4K bytes and the 16K memory can accommodate four display
pages. The offset to any screen location in the first display page is given
by the BASIC formula:

CHARACTER.OFFSET = (ROW.NUMBER # 160) + (COLUMN.NUMBER * 2)

When using the Color/Graphics Adapter, the beginning of each text
display page traditionally starts at an even K boundary. Since each screen
page in the text modes actually uses only 2,000 or 4,000 bytes, there are
some unused bytes following each page: either 48 or 96 bytes depending
on the size of the page. So, to locate any screen position on any page in
text mode, use this general formula:

LOCATION = (SEGMENT.PARAGRAPH * 16) + (PAGE.NUMBER * PAGE.SIZE)
+ (ROW.NUMBER # ROW.WIDTH # 2) + (COLUMN.NUMBER #* 2) + WHICH

where:

LOCATION is the 20-bit address of the screen information.
SEGMENT.PARAGRAPH is the location of the video display memory
(for example, hex BOOO or B800).

PAGE.NUMBER is in the range 0 through 3 or 0 through 7.
PAGE.SIZE is 2K or 4K.

ROW.NUMBER is from 0 through 24.

ROW.WIDTH is 40 or 80.

COLUMN.NUMBER is from 0 through 39 or 0 through 79.
WHICH is 0 for the display character or 1 for the display attribute.

Mapping Pixels in Graphics Modes

When we use a graphics mode, pixels are stored as a series of bits,
with a one-to-one correlation between the bits in memory and the pixels
on the screen. We generally use one of three schemes to map out the dis-
play memory in graphics modes.

The original Color/Graphics Adapter organizes the display into 200
lines, numbered 0 through 199. The number of pixels in each line varies
with the mode we use. Modes 4, 5, and 9 are medium resolution, with
320 pixels in each line. Modes 6 and 10 are high resolution, with 640 in
each line. Mode 8, which was introduced in the PCjr and is not available
for use with the standard IBM Color/Graphics Adapter, is low resolution,
with 160 pixels in each line. The pixel columns for low-, medium-, and
high-resolution graphics modes are numbered 0 through 199, 319, or 639.

Chapter 4: Video Basics

89

The storage for the rows is divided into “banks” of lines that oc-
cupy contiguous memory locations. For modes 4, 5, 6, and 8, there are
two banks, the first bank holding the memory for the even-numbered
lines 0, 2, 4... through 198, and the second holding the memory for the
odd-numbered lines 1, 3, S... through 199. Modes 9 and 10 have four
banks, with similarly staggered lines:

1st bank 0, 4, 8,12...196
2nd bank 1, 5, 9,13...197
3rd bank 2, 6,10,14...198
4th bank 3, 7,11,15...199

These banks of lines are similar to text-mode display pages in two
respects: The lines within each bank run one right after another without
any gap in memory, and each bank begins on an even K boundary, leav-
ing some unused bytes at the end of each bank. However, unlike the dis-
play pages, all banks of lines are actively used by the display screen. Each
bank is 8K in size, so the offsets to the beginning of the banks are 0, 8K,
16K, and 24K.

As we can see in Figure 4-13, the amount of memory used to sup-
port each pixel varies by mode. Mode 6 uses one bit, which can select
from two colors; modes 4, 5, and 10 use two bits, selecting from four
colors; and modes 8 and 9 use four bits, selecting from sixteen colors.

Except for mode 10, which is treated specially, the bits needed for
each pixel in each row are taken in consecutive order from memory. For
example, in mode 6, which uses one bit per pixel, the eight bits in the first
byte of the display memory control the first eight pixels on the screen.

Mode Columns Colors Bits Banks Memory (K)

4 320 4 2 2 16
5 320 4 2 2 16
6 640 2 1 2 16
8 160 16 4 2 16
9 320 16 4 4 32
10 640 4 2 4 32

Figure 4-13. The formats and memory
requirements for the graphics modes

90

PROGRAMMER’S GUIDE TO THE IBM PC

The first (high-order) bit controls the first pixel, and so forth. In mode 4,
with two bits per pixel, the eight bits of each byte control four pixels. In
mode 8, with four bits per pixel, each byte controls two pixels. @ All
three bit formats are shown in Figure 4-14.

In mode 10, bit-mapping is different (@ see Figure 4-15). Like modes
4 and 5, mode 10 requires two bits for each pixel, but unlike modes 4 and
5, the pixel information is not stored adjacent within one byte. Instead, it
is stored in corresponding bits from two adjacent bytes. The bit from the
first byte is the higher-order bit. When it is combined with the corre-
sponding bit in the second byte, the two bits produce a color number
from 0 through 3.

In modes 4, S, 6, and 8, each line of pixels uses 80 bytes; in modes 9
and 10, each line uses 160 bytes.

CONTROLLING THE VIDEO DISPLAY

In general, control of the display screen, like most other computer
operations, can be done in four ways:

B By using the programming-language services (for example,
BASIC’s SCREEN statement).

B By using the DOS services (@ see Chapters 16 and 17).
B By using the ROM-BIOS video services (@ see Chapter 9).
® By direct manipulation of the hardware, via memory or ports.

The video services that are available through programming lan-
guages, DOS, and the ROM-BIOS automatically place screen output data

Bit Bit
76543210 Pixel 76543210 Pixel
Mode 6 Modes 4 and §

D A S I 1 XX 2w o o 1
W A 2 XX . 2
ol XER S e 3 XX s 3
v Kos 4 o 0 T G e XX 4

D, Sk S
..... >~ e i 6 Modes 8, 9,13, and 14
...... Xins 7 XXX o . o s 1
....... X 8 5 @B 2

Figure 4-14. A bit map of the first pixels in
three graphics formats

Chapter 4: Video Basics 91

1st Byte 2nd Byte
76543210 76543210 Pixel
> ISR NS i . s R 1
) QPG A s e, attis 2.
X e i g X n wteow o 3
X X 4
DG X S
..... X SR G ¢ 6
...... X R R > 7
....... X g T e X 8

Figure 4-15. A bit map of the first pixels in
mode 10 graphics format

in the display memory, each type of service offering varying levels of con-
trol. Seventeen ROM-BIOS services are particularly powerful, providing
nearly all the services that are needed to generate display-screen output,
control the cursor, and manipulate screen information. (@ All sixteen
services are fully described in Chapter 9). For maximum control over the
video display, we also have the option of bypassing the software services
and placing data directly in the display memory—when we feel we have
good reason to.

Before opting for direct video output, you should know that it does
interfere with windowing systems and more advanced multitasking oper-
ating environments. All the same, many important programs for the PC
family generate direct video output—so many, in fact, that this has be-
come a standard and accepted way of creating output. So, even though
in the long run it’s probably not wise to place video output directly on the
screen, everyone seems to be doing it.

Basically, we can’t mix programs that write directly into the display
memory and windowing systems because two programs would be fight-
ing over the control of the same memory and messing up each other’s
data. But because so many programs now generate direct video output,
IBM’s own multitasking windowing system, Topview, goes to great
lengths to accommodate programs that write directly to the display
memory. A system like Topview can make this accommodation simply by
keeping a separate copy of the program’s display memory; when the pro-
gram is running, the copy is moved into the display buffer, and when the
program is stopped, a fresh copy of the display buffer is made. This tech-
nique allows Topview to run programs that work with the display mem-
ory, but at an enormous cost: First, computing and memory overhead go

92

PROGRAMMER’S GUIDE TO THE IBM PC

up; second, the program can’t run in the background simultaneously
with other programs; and third, the display information can’t be “win-
dowed”; that is, it can’t be moved or adjusted in size.

Programmers are faced with a conflict here: Direct output to the
screen has the benefit of speed and power, while using BIOS or higher-
level services for screen output has the benefit of more flexibility for

Chapter 4: Video Basics 93

adapting to windowing systems, new display adapters, etc. The solution
that I adopted for my own programs was to use both techniques, activat-
ing one or the other as needed.

Direct Hardware Control

Much of the information that we’ve provided in this chapter, partic-
ularly the information on the internal mapping of the display memory, is
meant to help you write video information directly into the display mem-
ory. But remember, there is a risk in any kind of direct programming,
and you'll find that it is both safer and easier to use the highest available
means to control the video display. Lower means, particularly direct ma-
nipulation, can be very disruptive. There are only a few instances when
direct control is safe and reliable. Wherever possible, I will point out
these circumstances.

Monochrome Adapter 1/0 Ports

The Monochrome Adapter uses four I/O ports: the CRT control and
status ports and the 6845 CRT controller registers.

The CRT control port (hex 3B8). We can set three of this port’s eight
bits: the high-resolution, video, and blink bits. The high-resolution bit
must always be on to use the Monochrome Adapter. The video and blink
settings turn the video display and the character blink on and off. Send-
ing the value hex 29 to this port will set the three bits to their normal
setting. (@ See Figure 4-16.)

The CRT status port (hex 3BA). This port stores the state of the
horizontal sync signal in bit 0 and the video bit stream to the display in
bit 3. Although we can read these two bits, neither one is particularly
useful. The other bits are not used.

Bit
76543210 Use
....... X High-resolution mode: must be set to 1
..... XX s Not used
i T 0 =disable video signal; 1 =enable video signal
23K e e B Not used
X s e oo 0 =blinking function off; 1 =blinking function on
XKoo v e, a s Not used

Figure 4-16. The coding for the CRT
control port

94

PROGRAMMER’S GUIDE TO THE IBM PC

The 6845 CRT controller (start address hex 3B0). There are 19
programmable internal registers in the 6845. They specify such things as
the timing of the vertical and horizontal sync signals, the number of dis-
play lines, and the number of characters per line. Only four registers are
safe to use: registers (hex) 0A, 0B, OE, and OF. Registers 0A and 0B deter-
mine the lines on which the cursor starts and ends, and registers OE and
OF determine the screen position of the cursor, with a value ranging from
0 to 1,999. Both functions are also available through interrupt 16 (hex 10)
in the ROM-BIOS services. Don’t mess around with the other values; they
can be disruptive. (For example, you can damage a monochrome display
if you program the 6845 video controller incorrectly.) If you want to
know more about them, refer to the IBM PC Technical Reference manual.

Color/Graphics Adapter I/O Ports

In order to accommodate the graphics functions, the Color/Graph-
ics Adapter has more 1/O ports than the Monochrome Adapter. We will
list the most important aspects of each of the seven ports.

The mode select register (hex 3D8). W set this byte to change from
one display mode to another. (@ See Figure 4-17.)

The color select register (hex 3D9). We set this byte to change the
screen border colors for the text modes and the background and fore-
ground colors for the graphics modes. (@ See Figure 4-18.)

Bit
76543210 Use

....... X 0=select 40 x 25 text mode; 1 =select 80 X 25 text mode
...... X 0 =select text mode; 1 =select 320 x 200 graphics mode
..... X 0=select color mode; 1 =select b/w mode
D S 0 =disable video signal; 1 =enable video signal
. ST 1=640 %200 b/w graphics
55 R 0=blinking function off; 1 =blinking function on
D' (o o BN s Not used

Figure 4-17. The coding for the mode
select register

Chapter 4: Video Basics

95

Bit
76543210 Use

....... X Selects blue foreground, background, or border
...... X% Selects green foreground, background, or border
..... X Selects red foreground, background, or border
% T Selects intensity setting
o Xigie os Selects alternate, intensified palette
B R 0= palette 0; 1 =palette 1
5,30 (R SURPIIENE PR Not used

Figure 4-18. The coding for the color
select register

The status register (hex 3DA). This register stores useful informa-
tion for those of us who prefer a flicker/snow-free screen update. When
bit 0 is set to 1, we can access the buffer memory without disturbing the
display. When bit 3, the vertical sync, is set to 1, the raster is in vertical
retrace and we can update the screen. This register also has two light-pen
status signals. (@ See Figure 4-19.)

The light-pen latch ports (hex 3DB and 3DC). Writing to either of
these ports clears or sets a toggle switch that is connected to the 6845’
light-pen input.

The 6845 video controller (start address hex 3D0). The controller
functions the same way with the Color/Graphics Adapter as it does with
the Monochrome Adapter.

Control of the video display is complicated, and has been made
much more complicated by the steady stream of additions to the list of PC
display features. Whatever you decide to do, it is a very good idea to test
your understanding of any part of video control by experimenting with it
before you incorporate it into your programming efforts.

Bit
76543210 Use
....... X 1=memory access can occur without display interference
...... X 1 =light-pen trigger set
..... X5 % 0 =light pen on; 1 =light pen off
X 1 =raster is in vertical retrace
XXX Xz 5 et Not used

Figure 4-19. The coding of the status register

PROGRAMMER’S GUIDE TO THE IBM PC

COMPATIBILITY CONSIDERATIONS

For our programs to be compatible with all the IBM personal com-
puter models, we need to keep several things in mind. First, a standard
PC model cannot create graphics displays if it is equipped only with the
Monochrome Adapter. In addition, graphics modes 8 through 10 cannot
be used with the original or the enhanced version of the Color/Graphics
Adapter; they are part of the PCjr color enhancements. Likewise, modes
13 through 16 belong to the EGA. These restrictions also apply to any re-
mapping of the color palettes, as this capability is also linked to the PCjr
and the EGA. It is also important to remember that the Monochrome
Adapter for the PC and XT models treats the text-mode color attributes in
a special way (@ as discussed on page 79).

It’s a good idea for a program to adapt its use of color, or the choice
between the text and graphics mode, to accommodate either the IBM
Monochrome Monitor or a composite monochrome monitor, which
usually doesn’t show color well. Keep in mind that composite mono-
chrome monitors may often be used with PCs, especially when the pri-
mary work is with text—such as word processing or accounting. There
are many PCs equipped this way and it is wise for our programs to ac-
commodate them.

In order to accommodate these systems, our programs should find
out the video mode and act accordingly. For programs that are already
using an assembly-language interface to the BIOS, the preferred way to do
this is to use BIOS video service 15 (@~ see Chapter 9). For other pro-
grams, service 15 is a stumbling block. The problem can be circumvented
by reading memory location 0000:0449, where the video mode is stored
(@~ see page 54). We can read this location in BASIC like this:

DEF SEG = 0
VIDED.MODE = PEEK (&H449)

Video mode 7 identifies the use of the IBM Monochrome Monitor. There
is no automatic way to identify the use of a composite monochrome dis-
play; however, if a knowledgeable user of such a display uses the DOS
MODE command to suppress color, our programs can detect it in a video
mode of 0 or 2.

When we wish to consider the working compatibility of our pro-
grams with the IBM personal computers and the different kinds of dis-
play screens, we can lay out several compatibility criteria to consider.
These criteria are not completely consistent with each other, reflecting
the internal inconsistency in the design of the IBM personal computer

Chapter 4: Video Basics

97

and the variety of display formats that can be used. Still, there are overall
guidelines for compatibility, which we’ll outline here.

First, text-only display output increases compatibility. There are
many PCs equipped with Monochrome Adapters, which cannot show
graphic output. If you are weighing a text-versus-graphics.decision in the
design of a program, there are two factors to consider, one for the use of
a text-only display and one against. On the one hand, as many programs
have dramatically demonstrated, it is possible to create very effective
drawings using just standard IBM text characters. (@ See Appendix C for
more information on the effective use of text characters for drawing.) On
the other hand, it is more and more common for computers to include
graphics capability. For example, both the PCjr and the IBM Portable PC,
as well as the Compaq model, come with built-in graphics capability. So,
in the future, text-only output will probably lose its importance and we’ll
be able to design graphics directly into our programs without worrying
about compatibility.

Second, the less our programs depend on color, the wider the range
of computers with which they will be compatible. This does not mean
that we need to avoid color for compatibility; it simply means that for
maximum compatibility, our programs should use color as an enhance-
ment, not as an essential ingredient. If programs can get along without
color, then they will be compatible with computers that use monochrome
displays, including PCs with Monochrome Adapters, as well as Compaq
and IBM Portable PC computers with their built-in monochrome displays.

In considering these guidelines in the light of the particulars of your
own programs, you must weigh the advantage of broad compatibility
against the convenience and simplicity of writing programs for a nar-
rower range of displays. My own experience and judgment tell me that
far too often programmers err by opting for a narrower range of dis-
plays, thereby gravely reducing the variety of computers their programs
can be used on. Be forewarned.

Disk Basics

The Disk’s Physical Structure 100

DOS Disk Formats 102
Standard DOS Formats 102
Quad-Density Formats 103
The Hard-Disk Format 104

The Disk’s Logical Structure 105

How DOS Organizes the Disk 106
Diskette Space Allocation 107
Hard-Disk Space Allocation 109

The Logical Structure in Detail 109
The Boot Record 112
The Directory 113
The Data Space 119
The File Allocation Table 120

Comments 124

99

100

PROGRAMMER’S GUIDE TO THE IBM PC

ost computer systems have some way to store information
permanently, whether it is on cassette tapes, floppy disks,
or hard disks. These storage devices come in various sizes
and capacities but operate in basically the same way:
They magnetically encode information on their surfaces in patterns deter-
mined by the device itself and by the software that controls the device.
When the PC family was introduced in 1981, it used one main type
of storage device: the standard 5¥%-inch floppy disk, which was double-
density, single-sided, and soft-sectored, and stored only 160K bytes. Since
then, IBM has increased the diskette’s storage capacity and has added 10-
and 20-megabyte hard disks to some of their PC systems. In the future,
we can expect to see continued advances in disk technology by IBM and
others, including higher-capacity hard disks and 3%-inch mini-diskettes.
Although the type of storage device is important, as programmers,
it is the way stored information is laid out and managed that concerns us.
In this chapter, we will focus on how information is organized and stored
on floppy disks, since they are the most common storage medium for the
PC family. Although we will primarily be discussing floppy disks, we will
really be painting a portrait that represents all disk-type storage devices.
The information provided in this chapter applies equally well to RAM
disks—that is, the simulation of disk storage in memory—as it does to
conventional diskettes, hard disks, disk cartridges, and mini-diskettes.

THE DISK’S PHYSICAL STRUCTURE

The disk drives and operating system of the computer establish the
capacity of the disks used, but a disk’s structure is essentially the same,
regardless of the setup. Data is always recorded on the disk surface in a
series. of concentric circles, called tracks. Each track is further divided
into segments, called sectors. (@ See Figure 5-1.) The amount of data that
can be stored on each side of a disk depends on the number of tracks (its
density), the number of sectors, and the size of the sectors. Disk density
may vary considerably from drive to drive: The standard double-density
drives can record 40 tracks of data, while the new quad-density drives
can record 80 tracks.

For the PC’s standard 5V-inch diskettes, the location of each track
and the number of usable sides are set by the hardware characteristics of
the disks and disk drives, and as such, they are fixed and unchangeable.

Chapter 5: Disk Basics

101

Figure 5-1. The disk’s physical structure

However, the location, size, and number of the sectors within a track are
under software control. This is why the PC’s diskettes are known as soft-
sectored. The characteristics of a diskette’s sectors (their size, and the
number per track) are set when each track is formatted. Disk formatting
can be done either by the operating system or by the ROM-BIOS format
service. In most of this chapter, we will discuss the DOS formats. How-
ever, we can easily create unusual formats and make them part of a work-
able copy-protection scheme by using the ROM-BIOS diskette services
(@ see service 5 on page 192).

The 5%-inch diskettes supported by the standard PC BIOS may have
sectors that are 128, 256, 512, or 1,024 bytes in size. DOS, from versions
1.00 through 3.1, has consistently used sectors of 512 bytes, and it is quite
possible that this will continue. However, any program which depends
upon or makes use of the 512-byte DOS sectors should allow for future
changes in sector size, particularly for larger sectors.

A diskette, of course, has two sides, and the sectors and tracks can
be placed on one or both sides. Hard-disk systems can have one or more
disks (called platters) in them, so they may contain more than two sides.
For example, the 10-megabyte hard disk introduced with the XT has
two platters and it uses all four sides of those platters.

102 PROGRAMMER’S GUIDE TO THE IBM PC

DOS DISK FORMATS

In the early versions of DOS used by IBM, a limited number of disk
formats could be used, even though the disk drives themselves could read
and write many formats. Beginning with DOS 2.00 and continuing with
all subsequent versions, DOS has been equipped with only a few standard
formatting options but allows virtually any physical disk format to be
integrated. (The logical format, as we’ll see, is more tightly constrained
to a standard set by DOS.) This integration is possible because DOS pro-
vides us with the necessary tools to write an installable device driver—a
machine-language routine that can configure our disk drive to read or
write different formats, or allow us to hook up a non-IBM disk drive to our
system (@ see Appendix A for more on installable device drivers).

Because there are many potential disk formats, we cannot possibly
consider all of them. We will examine seven common disk formats, in-
cluding four regular 5¥%-inch diskette formats, one special 5¥%-inch dis-
kette format, one 3%-inch mini-diskette format, and one hard-disk format.
Together, these seven common formats should serve as examples to pro-
vide you with enough guidance to work with any disk type.

Standard DOS Formats

We’ll begin with the four most common PC formats, those used as
standard formats by IBM for S¥%-inch diskettes. The four formats are de-
rived from the number of sides and the number of sectors on each track:
single- or double-sided and eight or nine sectors (@ see Figure 5-2).

The reason why there are four standard formats is quite simple: IBM
has to make sure that all versions of DOS support all earlier PC models.
The first PCs came equipped with single-sided diskette drives. Later, IBM
introduced double-sided drives and discontinued using single-sided drives.
Now, although relatively few PCs have single-sided drives, the single-sided
formats are supported by all versions of DOS for compatibility with the
early machines.

In the earliest releases of DOS, only eight 512-byte sectors were
placed on each track, even though up to ten sectors of that size could be
squeezed in successfully. Later, nine 512-byte sectors were accepted as
safe and reliable, and the nine-sector format became the standard. Once
again, the other formats were preserved to maintain compatibility.

The format expansions are tied to the history and development of
DOS. The original DOS version 1.00 supported only what I call the $-8
format. The next release, 1.10, added D-8. Version 2.00 added the two
nine-sector formats, -9 and D-9. No new formats were added with DOS
2.10, but DOS 3.0 added the quad-density format that we’ll discuss shortly.

Chapter S: Disk Basics

103

Our Notation Sides Sectors Tracks Nominal Size (bytes)
S-8 1 8 40 160K
D-8 2 8 40 320K
S-9 1 9 40 180K
D-9 2 9 40 360K

Figure 5-2. The standard DOS formats

Although there are many formats, only two are in widespread use:
S-8 and D-9. S-8 is the lowest common denominator, so it has traditionally
been used for commercial programs, since the use of S-8 guarantees that
a diskette can be read by any version of DOS. However, this practice is
going out of style, especially in companies that sell large programs need-
ing more disk space. The D-9 format is the highest-capacity format that
most 5V-inch drives can use, so that’s the one most people use for their
actual working diskettes. The other formats, D-8 and S-9, are not as com-
mon, but they are used occasionally.

Quad-Density Formats

You will notice that the one constant factor in the four standard
formats is the number of tracks: All of them have 40. This is because the
Svs-inch diskette drives that we use most often with the PC family are
designed to read and write 40 tracks of data. But some S¥%-inch diskette
drives, and many 3%-inch drives, can record 80 tracks of data in the same
space. This type of drive, and the diskettes used with it, is often referred
to as quad-density. Of the many possible quad-density formats, we are
going to discuss the two that are most common in the PC family. We’ll
call them QD-9 and QD-15. (@ See Figure 5-3.)

The QD-9 format is very much like the D-9, except that it has 80
tracks of data instead of 40. Like the D-9 format, the QD-9 format has two
sides, with nine sectors per track on each side.

Although IBM has avoided using the QD-9 format, it has been avail-
able with other equipment, such as Data General’s DG-1 lap computer, a

Our Notation Sides Sectors Tracks Nominal Size (bytes)
QD-9 2 9 80 720K
QD-15 2 15 80 1,200K

Figure 5-3. The quad-density formats

104

AT

o)

AT

— =
T —

!

PROGRAMMER’S GUIDE TO THE IBM PC

cousin of the PC family. The DG-1 uses 3}-inch mini-diskettes rather than
the standard 5¥%-inch diskettes, but the logical structure of their formats
is the same. Although the mini-diskette drives are quad-density, their
disks can be formatted not only in the QD-9 format but also in the other
four formats, S-8, S-9, D-8, and D-9. Quad-density drives can also be at-
tached to regular PCs as nonstandard equipment, using a DOS device
driver (@ see Appendix A for more on device drivers). Many people be-
lieve that this format will become widely used, so it’s of real interest to us.

The high-capacity QD-15 format used by the AT follows the same
basic structure we’ve discussed: 80 tracks per side and standard 512-byte
sectors. The special characteristic of QD-15 is that each side of every track
holds fifteen sectors, instead of eight or nine. Fitting that many sectors
onto a track is only possible because the AT uses special high-capacity
diskettes, which have a different magnetic coating than ordinary dis-
kettes. Only these special diskettes—which look the same as the regular
S¥-inch diskettes—and the special high-capacity diskette drives can ac-

cept the QD-15 format.

The Hard-Disk Format

(==
I||||IIIMIIIIIIIIIIIIIIIIIIII ';

High-capacity hard-disk systems, such as the XT’s 10-megabyte hard
disk or the AT’s 20-megabyte hard disk, present some special problems
and opportunities.

There are two aspects to any disk: its physical format and its logical
format. The physical format of a disk determines the sector size in bytes,
the number of sectors per track (per cylinder for hard disks), the number
of tracks (cylinders), and the number of sides. The logical format deter-
mines the way the information on the disk will be organized and where
different types of information will be placed.

When we format a floppy disk with DOS or any other operating
system, we set both the physical and the logical format of the diskette and
we’re unaware of any distinction between them. Unlike a diskette, the
physical format of a hard disk is already established when it comes to
us—it’s set by the manufacturer. (e See Figure 5-4.) What is not present
in the factory-set physical format is the logical structure of the disk,
which we have to establish before the operating system can use it. This is
done in two stages. First, we must divide the hard disk into logical parti-
tions to house the data and programs for each operating system we use.
(We can use several operating systems with our hard-disk system; @ see
page 110.) Then we must define the organization of the partitions so that
each individual operating system can locate the information within its
partition. It is this process of “organizing the disk” that is usually called
formatting.

Chapter 5: Disk Basics

105

Our Notation Sides Sectors Cylinders Nominal Size (megabytes)
XT 4 17 306 (See page 109) 10
AT 4 17 615 20

Figure 5-4. The physical formats of the XT
and AT hard disks

THE DISK’S LOGICAL STRUCTURE

Regardless of what disk we use, DOS disks are all logically format-
ted in the same way: The disk’s sides, tracks, and sectors are identified
numerically using the same notation, and certain sectors are always re-
served for special programs and indexes that DOS uses to manage disk
operations. Before we find out how DOS organizes space on a disk, we
need to briefly cover the conventional notation used by DOS and the BIOS
to locate information.

As we have seen from earlier discussions, our 5%-inch diskette for-
mats have 40 tracks, numbered from 0 (the outside track) through 39 (the
inside track, closest to the center). Other disk formats can have more
tracks. For example, the tracks on quad-density diskettes are numbered
0 through 79, the XT’s hard-disk cylinders are numbered 0 through
305, gl and the AT’s hard-disk cylinders are numbered 0 through 614.

On a double-sided diskette, the two sides are numbered 0 and 1 (the
two recording heads of a double-sided disk drive are also numbered 0
and 1). The one side of a single-sided diskette is referred to as side num-
ber 0. The XT’s hard disk has four sides (and four recording heads)
numbered 0 through 3.

The sectors on floppy disks are numbered 1 through 8 or 9. On
the XT’s gl and AT’ hard disk, they are numbered 1 through 17. Note
that sector numbers begin with 1, while track and side numbers begin
with 0.

The BIOS locates the sectors on a disk by a three-dimensional coor-
dinate composed of a track number (also referred to as the cylinder num-
ber), a side number (also called the head number), and a sector number.
DOS, on the other hand, locates information by sector number, and num-
bers the sectors sequentially from outside to inside. (@ See Figure 5-5.)
The sequence begins with the first sector on the disk: sector 1 of side 0
and track 0, followed by the remaining sectors on the same side and
track. For double-sided diskettes, the ninth sector of side 0 and track 0 is
followed by the first sector of side 1 and track 0. The order proceeds
through all sectors of one side and track location, then through the next
side, at the same track location (so all sides at one track location come
before the next track location).

106

PROGRAMMER’S GUIDE TO THE IBM PC

BIOS notation:
side 0,

track 10,
sector 2

9

DOS notation:
sector 181

Figure 5-5. The ROM-BIOS and DOS sector
notation

We can refer to particular sectors either by their three-dimensional
coordinates or by their sequential order. All ROM-BIOS operations use the
three-dimensional coordinates to locate a sector. All DOS operations and
tools such as DEBUG use the DOS sequential notation. @ See page 250 for
how to convert DOS notation to ROM-BIOS notation and vice versa.

HOW DOS ORGANIZES THE DISK

As we’ve already seen, when we instruct DOS to format our dis-
kettes, it divides each of the 40 tracks into either eight or nine 512-byte
sectors. In terms of raw storage capacity, this amounts to 368,640 bytes of
data space on our standard D-9 diskettes. But not all of that space can be
used to store data; a certain amount is used to store system control infor-
mation and indexes that DOS uses to find the location and relationship
between individual sectors. So, in addition to dividing the disk into sec-
tors, DOS performs several other operations when it formats our disks.

Chapter S: Disk Basics 107

Diskette Space Allocation

The formatting process divides the sectors on a disk into four sec-
tions, for four different uses. The sections, in the order they are stored,
are the boot record, the file allocation table (FAT), the directory, and the
data space @ see Figure 5-7 overleaf). The size of each section varies
between formats, but the structure and the order of the sections don’t
vary. Hard disks, such as the 10-megabyte hard disk on the XT, follow the
same basic layout, though hard disks that can be partitioned present extra
complications because the partition sizes directly affect the size of each
section. @~ See page 110 for a discussion of hard-disk partitions.

The boot record is always a single sector located at sector 1 of track
0, side 0. The boot record contains, among other things, a short program
to start the process of loading the operating system from a diskette that
has the operating system on it. All diskettes have the boot record on them
even if they don’t have the operating system. Aside from the start-up pro-
gram, the exact contents of the boot record vary from format to format.

The file allocation table, or FAT, follows the boot record, usually
starting at sector 2 of track 0, side 0. The FAT contains the official record
of the disk’s format and maps out the location of the sectors used by the
disk files. DOS uses the FAT to keep a record of the data-space usage.
Each entry in the table contains a specific code to indicate what space is
being used, what space is available, and what space is unusable (due to
defects on the disk). Because the FAT is used to control the entire usable
data storage area of a disk, two identical copies of it are stored in case
one is damaged. Both copies of the FAT may occupy as many sectors as
needed: 2 or 4 on floppy disks, 14 on the QD-15 diskettes, up to 16 on the
XT’s hard disk, and up to 82 on the AT’s hard disk. On all types of hard
disk, the FAT size varies with the size of the partition.

Overhead Sectors

Format Total Sectors Boot FAT Directory Total Data Sectors
S-8 320 1 2 4 7 323
D-8 640 1 2 7 10 630
S-9 360 1 4 4 9 351
D-9 720 1 4 7 12 708
QD-9 1,440 1 10 7/ 18 1,422
QD-15 2,400 1 14 14 29 2,371

Figure 5-6. The sector allotment of the
standard floppy-disk formats

Track 0, side 1

Figure 5-7. The four logical sections
of a diskette

Chapter S: Disk Basics

109

The file directory is the next item on the disk. It is used as a table of
contents, identifying each file on the disk with a directory entry that con-
tains several pieces of information, including the file’s name and size. One
part of the entry is a number that points to the first group of sectors used
by the file (this number is also the first entry for this file in the FAT). The
size of the directory varies with the disk format. It occupies four sectors
on single-sided diskettes and seven on double-sided diskettes. On hard
disks, the directory, like the FAT, varies with the size of the partition.

The data space, which occupies the bulk of the diskette (from the
directory through the last sector), is used to store data, while the other
three sections are used to support the data space. Sectors in the data
space are allocated to files on an as-needed basis, in units known as clus-
ters. The size of a cluster varies by format. On single-sided diskettes, the
clusters are one sector long and on double-sided diskettes, they are a pair
of adjacent sectors. Diskettes with a higher capacity may have clusters
containing several sectors. For example, the AT’s 20-megabyte hard
disk uses a cluster size of four sectors, and the XT’s 10-megabyte
hard disk uses up to eight sectors per cluster.

Hard-Disk Space Allocation

X Ry -Em

For hard-disk systems, the amount of space that DOS allocates to
the FAT, directory, and data space varies depending upon the size of the
partition given to DOS. The boot record occupies one sector regardless of
the partition size, so we won’t bother to mention it any further.

[To get an idea of how DOS allocates space in a partition, we will
examine three different partition sizes. Our example focuses on the XT’s
10-megabyte hard disk, which has 512 bytes per sector, 17 sectors per cyl-
inder per side, 4 sides (heads) per cylinder, and 306 cylinders per disk.
The table in Figure 5-8 shows the specific space allocations for three
DOS partition sizes: 305 cylinders (an entire XT-disk—the first cylinder
is used for partition data, and is therefore not available for the DOS parti-
tion), 100 cylinders, and $ cylinders. In general, these figures can be inter-

polated to determine the space allocations for other partition sizes.

THE LOGICAL STRUCTURE IN DETAIL

Now it’s time to delve a little more deeply into each of the four sec-
tions of a disk: the boot record, the directory, the data space, and the file
allocation table.

110 PROGRAMMER’S GUIDE TO THE IBM PC

Chapter S: Disk Basics 11

112

PROGRAMMER’S GUIDE TO THE IBM PC

Partition Size (cylinders)

305 (all) 100 5
FAT size (sectors) 8 N 1
Directory size (sectors) 32 16 4
Number of directory entries 512 256 64
Cluster size (sectors) 8 4 1
Number of clusters 2,587 1,699 333
Data space size (K) 10,348 3,372 166.5

Figure 5-8. The space allocation for three
partitions in the XT’s 10-megabyte
bard disk

The Boot Record

The boot record consists primarily of a short machine-language
program that starts the process of loading DOS into memory. To perform
this task, the program first checks to see whether the disk is system-
formatted (contains the IBMBIO.COM and IBMDOS.COM files) and then
proceeds accordingly.

You can inspect the boot program by using the DOS DEBUG pro-
gram, which combines the ability to read data from any sector on a disk
and the ability to disassemble—or unassemble—machine language into
assembly-language code. If you want to learn more about the boot pro-
gram and you aren’t intimidated by DEBUG’s terse command format, try
entering these commands:

DEBUG

LOOO1 ; load first sector

uolL2 ; unassemble and list first and second bytes
U 2E ; unassemble and list all bytes from 2E on

These commands allow you to see the first instructions of the boot pro-
gram located on the disk in drive A.

Q NOTE: The code that begins at byte 2E is the beginning of the boot
program for the standard IBM PC only. For all models, the second byte of

the first sector stores the location of the first byte of the boot code, so if

you are not using a PC, when you enter the third command line, you
should use the byte value shown in the JMP instruction produced by the
second command line instead of the value 2E.

Chapter S: Disk Basics

113

For all disk formats except S-8 and D-8 you will find some key pa-
rameters in the boot record, beginning with the fourth byte (@ see Fig-
ure 5-9). These parameters are part of the BIOS parameter block used by
DOS to control any disk-type device. The rest of the boot program is lo-
cated in the first three bytes (bytes 0, 1, and 2) and continues in the bytes
following the BIOS parameter block. At the end of the boot records for
DOS-2 versions and beyond, there is a 2-byte signature, hex 55 AA.

The Directory

Disk directories are used to hold most of the basic information
about the files stored on the disk, including the file’s name, its size, the
starting FAT entry, the time and date it was created, and a few special file
attributes (@ see Figure 5-10). The only information that the directory
does not contain is the exact location of the individual clusters that make
up a file; these are stored in the file allocation table.

There is one directory entry for each file on the disk, including entries
for the subdirectory files and for the disk’s volume ID label. Each of the
entries is 32 bytes long, so one sector in the directory can hold 16 entries.
Single-sided diskettes with four directory sectors can hold 64 entries. Dou-
ble-sided diskettes with seven sectors can hold 112 directory entries. Sub-
directories are treated like files and there is no limit to the number of
subdirectory entries they can hold. (® For more on subdirectories, see
page 115.) Each 32-byte entry in the directory is divided into eight fields.

Offset Length Description
3 8 bytes System ID (e.g. IBM 2.1)

1 1 word Number of bytes per sector (e.g. 512, hex 0200)

13 1 byte Number of sectors per cluster (e.g. 01 or 02)

14 1 word Number of reserved sectors at beginning:
1 for diskettes

16 1 byte Number of copies of FAT: 2 for diskettes

17 1 word Number of root directory entries (e.g. 64 or 112)

19 1 word Total number of sectors on disk (e.g. 720 for D-9)

21 1 byte Format ID (e.g. F8, F9, or FC through FF; see
page 123)

22 1 word Number of sectors per FAT (e.g. 1 or 2)

24 1 word Number of sectors per track (e.g. 8 or 9)

26 1 word Number of sides (heads) (e.g. 1 or 2)

28 1 word Number of special reserved sectors

Figure 5-9. The parameters in the boot record

114

PROGRAMMER’S GUIDE TO THE IBM PC

Field Offset Description Size (bytes) Format
1 Filename 8 ASCII characters
2 8 Filename extension 3 ASCII characters
3 11 Attribute 1 Bit coded
4 12 Reserved 10 Unused; zeros
S 22 Time 2 Word, coded
6 24 Date 2 Word, coded
7 26 Starting cluster number 2 Word
8 28 File size 4 Integer

Figure 5-10. The eight parts of a
directory entry

The first eight bytes in the directory entry contain the filename,
stored in ASCII format. If the filename is less than eight characters, it is
filled out to the right with blanks (CHR$(32)). Letters should be upper-
case, since lowercase letters will not be properly recognized. Normally,
there should not be any blanks embedded in the filename, as in AA BB.
Most DOS command programs, such as DEL or COPY, will not recognize
filenames with embedded blanks. However, BASIC can work successfully
with these filenames, and the DOS services (@ see Chapters 16 and 17)
usually can as well. This capability suggests some useful tricks, such as
creating files that cannot be easily erased.

Three codes, used to indicate special situations, may appear in the
first byte of the filename field. Completely unused directory entries have
hex 00 in the first byte. This makes it possible for DOS to know when
there are no further active directory entries, without searching to the end
of a directory. This convention began with DOS 2.00 and also applies to
later versions, but not to the earlier DOS-1 versions.

If the first byte of the filename field is hex ES, it normally indicates
that the file has been erased. However, since the DOS-1 versions did not
use the 00 (never-used) code, hex ES in this field might indicate either that
a file has been erased or that the entry has never been used.

When a file is erased, only two things on the disk are affected: The
first byte of the filename is set to hex ES and the file’s space allocation
chain in the FAT is wiped out (@ we’ll cover this in the section on the
FAT). All other directory information about the file is retained, including
the rest of its name, its size, and even its starting cluster number. The lost

Chapter S: Disk Basics 115

116

PROGRAMMER’S GUIDE TO THE IBM PC

information can be recovered, with suitably sophisticated methods, pro-
vided that the directory entry has not been reused for another file. Be
forewarned that whenever a new directory entry is needed, DOS uses the
first available entry, quickly recycling an erased file’s old entries and mak-
ing recovery impossible.

The third code that might be found in the filename byte is the
period character, hex 2E, which is used to specify a subdirectory (@ see
page 115). If the second byte is also hex 2E, we know that we are looking
at the parent directory entry of the current subdirectory, in which case
the starting cluster field (field 7) contains the cluster number of the par-
ent directory.

Field 2: The Filename Extension

Directly following the filename is the standard filename extension,
stored in ASCII format. It is three bytes long and, like the filename, it is
padded with blanks if it is less than the full three-character length. While
a filename must have at least one ordinary character in it, the extension
can be all blanks. Generally, the same rules apply to the filename exten-
sion as apply to the filename.

[NOTE: When the directory contains a volume ID label entry, the
filename and extension fields are treated as one combined field of eleven
bytes. In this case, embedded blanks are permitted. Normally, lowercase
letters are not used in labels, but they can be.

Field 3: The File Attribute

The third field of the directory entry is one byte long, each bit of
which is used to categorize the directory entry. The bits of the attribute
byte are individually coded as bits 0 through 7, as shown in Figure 5-11.

Bit Value
76543210 Dec Hex Meaning
....... 1 1 1 Read-only
...... 1= 2 2 Hidden
..... 1 4 4 System
R P 8 8 Volume label
L [S 16 10 Subdirectory
sl Jueas s e s 32 20 Archive
S i R P 64 40 Unused
1 128 80 Unused

Figure 5-11. The eight file-attribute bits

Chapter 5: Disk Basics

117

Bit 0, the low-order bit, marks a file as read-only. In this state, the
file is protected from being changed or deleted by any DOS operation. We
should point out that the DOS-1 versions ignore this attribute, so while it
can provide a worthwhile protection of data, it is not foolproof.

Bits 1 and 2 mark files as either hidden or system files. Files marked
as hidden or system or both cannot be seen by ordinary DOS operations,
such as the DIR command. Our programs can gain access to such files by
setting these attribute bits in the file control block, or FCB (e see page
288). The two DOS files IBMBIO.COM and IBMDOS.COM (which may also
appear under the names I0.SYS and MSDOS.SYS) are both hidden and sys-
tem files. There is no particular significance to the system attribute; it
exists to perpetuate a feature of CP/M and has absolutely nothing to do
with DOS.

Bit 3 marks a directory entry as a label, meaning that the entry
holds the disk’s volume ID label. A label entry is only properly recognized
in the root directory, and it only uses a few of the eight fields available in
the entry. The label itself is stored in the filename and extension fields,
which are treated as one unified field for this purpose. The size and start-
ing cluster fields are not used, but the date and time fields are.

Bit 4, the subdirectory attribute, is used to identify directory entries
which, in turn, identify subdirectories. Since subdirectories are stored on
disk like ordinary data files, they need a supporting directory entry. All
the directory fields are used for these entries, except for the file-size field,
which is zero. The actual size of a subdirectory is found simply by fol-
lowing its space allocation chain in the FAT.

Bit 5, the archive attribute, was created to assist in making backup
copies of the many files that can be stored on a hard disk. This bit is off
on all files that haven’t changed since they were last backed up; the bit is
normally on for all diskette files. The archive attribute serves no particu-
larly useful purpose for diskettes.

Field 4: Reserved

This 10-byte area is set aside for possible future uses. All 10 bytes
are normally set to hex 00.

Field 5: The Time

Field 5 contains a 2-byte value that marks the time that the file was
created or last changed. It is used in conjunction with the date field and
the two together can be treated as a single 4-byte unsigned integer. This
4-byte integer can be compared with those in other directory entries for

118

PROGRAMMER’S GUIDE TO THE IBM PC

greater-than, less-than, or equal values. The time, by itself, is treated as
an unsigned word integer that is built out of the hour, minutes, and sec-
onds using this formula:

Time = Hour X 2048 + Minutes X 32 + Seconds = 2

The hour is based on a 24-hour clock, with a value ranging from 0
through 23. Since the 2-byte word used to store the time is one bit too
short to store all the seconds, they are stored in units of 2 seconds from 0
through 29; a value of 5, for example, would represent 10 seconds. The
time of 11:32:10 would be stored as the value 23557.

Field 6;: The Date

Field 6 contains a 2-byte value that marks the date the file was cre-
ated or last changed. It is used in conjunction with the time field and the
two together can be treated as a single 4-byte unsigned integer that can
be compared with those in other directory entries for greater-than, less-
than, or equal values. The date, by itself, is treated as an unsigned word
integer that is built out of the year, month, and day using this formula:

Date = (Year —1980) x 512 + Month x 32 + Day

You will notice that this formula compresses the year by subtracting
1980 from it. Thus, the year 1984 will be calculated as a value of 4. Using
this formula, a date such as December 12, 1984 will be stored by the for-
mula as 2828:

(1984 —1980) X 512+ 12 x32+12=2828

Although this scheme allows for years up to 2108, the highest year
supported by DOS is 2099.

Field 7: The Starting Cluster Number

The seventh field is a 2-byte value that gives the starting cluster
number for the file’s data space. It acts as the entry point into the file’s
space allocation chain in the FAT. For files with no space allocated and
for volume-label entries, the starting cluster number is zero, rather than
the hex FFF value used in the FAT to indicate the end-of-file.

Field 8: The File Size

The last field of a directory entry gives the size of the file in bytes. It
is coded as a 4-byte unsigned integer, which allows file sizes to grow very
large—much larger in fact than the capacity of our disks.

As far as DOS knows, the size indicated by this field is the true size
of a file. However, sometimes this stored value may be larger than the

Chapter S: Disk Basics

119

actual file size. For example, some ASCII text files created by word pro-
cessors mark the true end-of-file with the Ctrl-Z character (CHR$(26),
hex 1A). For these files, the file-size attribute may report a larger number,
such as the next multiple of 128 bytes. This is a common occurrence in
most text-editor programs, which read and write data in large blocks
rather than one byte at a time. It is important to point out that when DOS
is reading a file for us, it reports the end of the file when it comes to either
the end of the file size or the end of the FAT space allocation chain (de-
noted by hex FFF)—whichever comes first.

The Data Space

All data files and subdirectories (which act much like data files) are
stored in the space that occupies the last and largest part of each disk.

Space is given to files on an as-needed basis, one cluster at a time.
(Remember, a cluster is one or more consecutive sectors; the number of
sectors per cluster is a fixed characteristic of each disk format.) As a file
is being created, or when an existing file is extended, the file’s allocated
space grows. When more space is needed, a cluster is allocated to the file.
In DOS versions 1 and 2, the first available cluster is always allocated to
the file. Later versions of DOS select clusters by more complicated rules
that we won't go into.

Under many circumstances, a file is stored in one contiguous block
of space. However, a file may be broken into several noncontiguous
blocks, especially when information is added to an existing file, or when
a new file is stored in the space left by an erased file. It’s not unusual for
one file’s data to be scattered throughout the disk.

This sort of file fragmentation slows access to the file’s data to some
degree. Also, it is much harder to “unerase” a file that we have uninten-
tionally erased if it is fragmented, simply because we have to do a lot
more searching for the individual sectors that make up the file’s data
space. But fragmentation has no other effect. In general, programs do not
need to be concerned about where on a disk their data is stored. But if
you want to know whether a file is fragmented, there are two simple
ways to find out. You can use the /V option of the CHKDSK command to
test for file fragmentation, or you can use a program such as the Norton
Utilities to see a graphic map of the location of each file on your disk.

If your diskette files are fragmented, you can clean them up by
copying them to a newly formatted, empty diskette. Naturally, the file
can become fragmented again if there is a lot of update activity on the
disk. On a hard disk, you can do little to eliminate fragmentation. Don’t
worry too much about it. We’ve mentioned it so that you’ll understand it,
but in practice, a fragmented file is harmless.

120

PROGRAMMER’S GUIDE TO THE IBM PC

Whether you ever look at your fragmented files or not, it will help if
you understand how DOS uses the file allocation table (FAT) to allocate
disk space, and how the FAT forms a space allocation chain to connect all
of the clusters that make up a file.

The File Allocation Table

The file allocation table holds a record that shows how the disk
space is utilized. We will make a distinction between how the FAT is or-
ganized, which is relatively simple and straightforward, and how it is
stored on disk, which is more convoluted.

As we’ve mentioned, standard disk formats store two copies of the
FAT, although there can be more than two copies, or even only one copy.
Each copy of the FAT occupies one sector on eight-sector diskettes and
two sectors on nine-sector diskettes. With the high-capacity diskette for-
mat that we called QD-15, the FAT uses seven sectors.

For most disk formats, DOS writes two copies of the FAT just in case
one of them is damaged or unreadable. The CHKDSK program, which
tests for most errors that can occur in the FAT and diréctory, does not
even notice if the two FATs are different.

There are two FAT formats: a 12-bit format and a 16-bit format. The
12-bit FAT format is the more common and the more complicated of the
two. The 16-bit FAT is used only with disks that exceed the capacity of a
12-bit FAT, such as the AT’s 20-megabyte hard disk. We’ll discuss the stan-
dard 12-bit FAT first, and then explain how the 16-bit FAT differs.

The FAT is organized as a table of up to 4,086 numbers ranging
from 0 through 4,095 (hex 0 through FFF), with an entry for each cluster
in the data space. The number in each entry indicates the status and use
of the cluster that corresponds to the FAT entry. Notice that the range of
numbers kept in the FAT table is defined so that it does not exceed three
hex digits. This is a key element in how the 12-bit FAT is stored, as we will
see shortly.

If the FAT entry is 0, it indicates that the cluster is free and available
for use. If the FAT entry is 4,087 (hex FF7) and this FAT entry is not part of
any space allocation chain, then the cluster is marked as unusable due to
a formatting error; this is also called bad-track marking.

Q NOTE: It’s worth pausing here to note that there is nothing un-
usual or alarming about having “bad tracks” marked on a disk, particu-
larly a bard disk. In fact, it is quite common for a hard disk to have a few
bad patches on it. For example, the hard disk in the AT that I used to

Chapter 5: Disk Basics

121

write this book has three small bad-track areas. The disk formatting pro-
cedure notices bad tracks and marks them as such in the FAT, as we’ve
just discussed. Later, the bad-track marking tells DOS that these areas
should be bypassed. Bad tracks are also common on floppy disks; with a
floppy, unlike a bard disk, we have the option of throwing it away and
only using perfect disks.

The clusters are numbered sequentially from 2 to a number that is
one greater than the total number of clusters on the disk (@ see Figure
5-12). A 12-bit FAT entry containing any number between 2 and 4,080 (hex
02 and FFO) indicates that the corresponding cluster is used by a file. A
FAT value of 4,095 (hex FFF) indicates that the corresponding cluster con-
tains the last part of the file’s data. The values 4,088 through 4,094 (hex FF8
through FFE) may be similarly used, but in my experience, they aren’t.

With all of this in mind, we can see that the FAT entries form a space
allocation chain; the file’s directory entry contains the starting cluster
number (@ see page 118) and the FAT entries indicate further clusters used
by the file and the end of the file (@ see Figure 5-13). When a file is erased,
all the FAT entries for its space allocation chain are marked as available
(set to 0); but the actual file data in the data space is not changed and
most of the information in the file’s directory entry is maintained.

Although the FAT is organized as a fairly simple table of numeric
values, it is stored in a rather convoluted form in order to make the table
as compact as possible. To do this, it makes use of some tricks of the
8088’s data format, specifically “back-words” storage. For the FAT, sim-
plicity is sacrificed for efficiency.

The range of cluster numbers is defined so that FAT entries are 4,095
(hex FFF) or less. This makes it possible to store each 3-hex-digit entry in
12 bits, or 1% bytes. The FAT entries are organized in pairs, where each pair

Sectors Cluster-Number
Format Sectors per Cluster Clusters Range
S-8 313 1 313 2to0 314
D-8 630 2 315 2t0316
S-9 351 1 351 2t0352
D-9 708 2 354 2t0 355
QD-9 1,422 2 711 2t0712
QD-15 2,371 1 2,371 2t02,372

Figure 5-12. The number of clusters for
different DOS formats

122

space allocation chain

PROGRAMMER’S GUIDE TO THE IBM PC

Value
FAT Entry Dec Hex Meaning
0 253 FD Disk is double-sided, double density,
9 sectors/track

1 4,094 FFE Entry unused; not available

From directory entry; — 2 3 3 File’s next cluster is cluster 3
beginning of file’s 3 5 5 File’ next cluster is cluster S

4 4,087 FF7 Cluster is unusable; bad track

N 6 6 File’s next cluster is cluster 6

6 4,095 FFF Last cluster in file, and end of this file’s

space allocation chain
7 0 0 Entry unused; available

Figure 5-13. The space allocation chain for
one file in the file allocation table

occupies three bytes (0 and 1 occupy the first three bytes, 2 and 3 the next
three bytes, and so forth). The three bytes decode by the following pat-
tern: If a pair of FAT entries is hex 123 and 456, then the three bytes con-
taining them would be, in hex, 23 61 45. Reversing the pattern, if the
three bytes are AB CD EF, then the two FAT values are DAB and EFC. As
we see in Figure 5-12, in formats S-8, $-9, D-8, QD-9 and QD-15, the last
cluster number is even and is consequently paired with a dummy entry in
the FAT.

This pattern seems curious when we work it out in our terms, but it
is quick and efficient when done with machine-language instructions.
Given any cluster number, we can find the FAT value by multiplying the
cluster number by 3, dividing by 2, and then using the whole number of
the result as a displacement into the FAT. By grabbing a word at that ad-
dress, we have the three hex digits of the FAT entry, plus one extraneous
hex digit, which can be removed by any one of several quick machine-
language instructions. If the cluster number is even, we discard the high-
order digit; if odd, the low-order digit. The value derived from all of this
is the next cluster number in the file, unless it’s FFF, which indicates the
last cluster in the file.

This complex scheme was originally designed for 8-sector diskette
formats. It is not quite so ideal when used for other formats, including
the 9-sector formats, where the FAT becomes slightly larger than one sec-
tor. Overall, though, it is a very tight and efficient plan.

The details we’ve covered so far are for 12-bit FATs, which can ac-
commodate up to 4,080 clusters. If a disk format has more clusters than
that, then we need the 16-bit FAT.

Chapter S: Disk Basics

) ==
AT LTI, w—

123

A 16-bit FAT works just the same as a 12-bit one, except it’s simpler.
The entries in a 16-bit FAT are obviously four bits larger, which allows for
a wider range of cluster numbers. Since sixteen bits are exactly two
bytes, or one word, a 16-bit FAT doesn’t need the convoluted storage ar-
rangement used with a 12-bit FAT. Instead, a 16-bit FAT is a straightfor-
ward table of word values, one stored right after another.

The special values for a 16-bit FAT (for such things as bad-track
marking) are a logical extension of those used for 12-bit FATs; they just
have a high-order hex F added on. For example, the end-of-file value is hex

| FFFF (instead of FFF) and the bad-cluster value is hex FFF7 (instead of FF7).

As we have said, the actual data clusters are numbered from 2,
while each FAT begins with entries 0 and 1. These first two FAT entries, in
both 12- and 16-bit formats, are not used to indicate the status of the clus-
ters; instead, they are set aside, so that the very first byte of the FAT can
be used as an ID byte, indicating the format of the disk; see Figure 5-14.
However, you should not assume that these IDs uniquely identify for-
mats: They don’t necessarily. If we considered every disk format in use,
we’d find quite a few duplications. Beware.

Our programs can learn the format of a disk by reading and in-
specting the FAT ID byte. However, the official way of finding out the
format is to use DOS function 27 (hex 1B). @ For more information about
this function, see page 282.

Special Notes on the FAT

Normally, our programs do not look at or change a disk’s FAT; the
FAT is left completely under the supervision of DOS. The only exceptions
are programs that perform space allocation functions not supported by
DOS; for example, programs that recover erased files, such as the Un-
Erase program in my Norton Utilities program set.

Format ID Byte
D-8 FF
S-8 FE
D-9 FD
S-9 FC
QD-9 F9
QD-15 F9
Fixed disk F8

Figure 5-14. The ID byte values of common
disk formats

124

PROGRAMMER'’S GUIDE TO THE IBM PC

It is important to note that a FAT can be logically damaged; for ex-
ample, an allocation chain can be circular, referring back to a previous
link in the chain; or two chains can converge on one cluster; or a cluster
can be orphaned, meaning that it is marked as in use even though it is not
part of any valid allocation chain. Also, an end-of-file marker (hex FFF or
FFFF) may be missing. The DOS programs CHKDSK and RECOVER are
designed to detect and repair most of these problems, as well as can rea-
sonably be done.

@ For special notes on the interaction of the space allocation chain
in the FAT and DOS’s record of a file’s size, see page 118.

COMMENTS

Although this chapter has included detailed information for the di-
rect use of the disk itself, including the boot record, the FAT, and the
directories, it is not a good idea to use it directly unless you have a com-
pelling reason. In fact, except where completely unavoidable, as in a
copy-protection program, it is unwise to incorporate any knowledge of
the disk format into your programs. On the whole, the best thing to do is
to consider the standard hierarchy of operations and use the highest level
of services that can satisfy your needs:

B First choice: Language services (the facilities provided by your
programming language, such as BASIC’s OPEN and CLOSE state-
ments).

B Second choice: DOS services (described in Chapters 16 and 17).
® Third choice: ROM-BIOS disk services (described in Chapter 10).

® Last choice: Direct control (for example, direct programming of
the floppy-disk controller (FDC) through commands issued via
ports).

Most disk operations for the PC family can be accomplished quite
nicely with the services that your programming language provides. How-
ever, there are two obvious circumstances that may call for more exotic
methods. One, which we’ve already mentioned, is when your program-
ming involves the control of a disk on the same level as the control that
DOS exercises. This would be called for if you were writing a program
similar to DOS’s CHKDSK, or to my Norton Utilities. The other circum-
stance involves copy protection. All copy-protection schemes, in one way
or another, involve some variety of unconventional diskette 1/0. This usu-
ally leads to the use of the ROM-BIOS services, but it may lead to the ex-
treme measure of directly programming the floppy-disk controller.

Chapter S: Disk Basics 125

Keyboard Basics
[

The Keyboard Operation 128
Communicating with the ROM-BIOS 130
Translating the Scan Codes 130
Entering ASCII Codes Directly 133

Keyboard Data Format 134
The ASCII Keys 134
The Special Keys 134

Keyboard Control 136
The Status Bytes 136

Comments 139

How the PCjr Is Different 140
PCjr Keyboard Operation 140
The PCjr Keyboard Status Byte 142

How the AT Is Different 143

127

128

PROGRAMMER’S GUIDE TO THE IBM PC

his chapter is mainly about the standard 1BM PC keyboard, al-

though we have scattered a few comments about the slightly

different PCjr and AT keyboards throughout the text. We avoid

a thorough discussion of the specialty models of the IBM PC,
such as the 3270 PC, the AT, and the PCjr, as well as some non-IBM mem-
bers of the extended PC family, because they have keyboards that do not
exactly match the standard PC keyboard. In most cases, these nonstan-
dard keyboards are either enhanced or scaled-down versions of the PC
standard. For example, IBM moved a few keys around on the AT and
added one new key and some fancier hardware, but fortunately they
didn’t change the operating characteristics much. The PCjr has fewer keys
than the standard PC keyboard, yet it, too, manages a convincing simula-
tion of the standard keyboard. Fortunately, this practice of matching or
simulating the regular PC keyboard seems to be standard among the ex-
tended PC family members, making the slight differences between them
of little concern to programmers.

The first part of this chapter explains how the keyboard interacts
with the computer on a hardware and software level. In the second part,
we’ll see how the ROM-BIOS treats keyboard information and makes it
available to our programs. @ If you plan to play around with keyboard
control, I urge you to consider the recommendations on page 139 first,
and not apply the information in this chapter to your programs unless
there is a particular reason to do so. One example of an appropriate use
for the information here is to create a program that modifies the opera-
tion of the keyboard, such as the popular and highly regarded ProKey
keyboard-enhancer program. @~ If you have any such application in mind,
take a look at the ROM-BIOS keyboard services in Chapter 11.

THE KEYBOARD OPERATION

The PC keyboard contains the 8048 keyboard controller, which per-
forms a variety of jobs, all of which help cut down on system overhead.
The main duty of the 8048 is to watch the keys and report to the ROM-
BIOS whenever a key has been pressed or released. If any key remains
pressed for longer than a half second, the 8048 sends out a repeat action
at specific intervals. The 8048 controller also has limited diagnostic and
error-checking capabilities, and has a buffer that can store 20 key actions
should the main computer be unable to accept them (this rarely hap-
pens). The AT model uses a different keyboard-controller chip, the
8042, but it performs essentially the same functions as the 8048.

Chapter 6: Keyboard Basics

129

Every time we press or release one of the keys on the PC keyboard,
the keyboard circuits generate a 1-byte number, called a scan code, that
uniquely identifies the keystroke. The keyboard produces a different scan
code for each key press and key release. Whenever we press a key, the
scan-code byte contains a number ranging from 1 through 83 (on a stan-
dard PC keyboard). When we release the same key, the keyboard gener-
ates a scan code 128 (hex 80) higher than the key-press scan code, by
setting bit 7 of the scan-code byte to 1. For example, when we press the
letter Z, the keyboard generates a scan code of 44; when we release it, the
keyboard generates a scan code of 172 (44 +128). @ The keyboard dia-
gram in Figure 6-1 shows the standard keyboard keys and their associated
scan codes.

130

PROGRAMMER’S GUIDE TO THE IBM PC

@@@iitlﬁ 6 70]
nll“”"illl
l@l 73 b A
Iagﬂlillm
(36T 5 [R .

Figure 6-1. The standard PC keyboard
layout and scan codes ‘

As we type, the keyboard doesn’t know the meaning of the key-
strokes; it merely reports the actions that take place. It is the job of the
ROM-BIOS keyboard routines to translate the key actions into meaningful
information that programs can use. As we will see, the keyboard com-
municates with the ROM-BIOS by way of ports and i interrupts.

Communicating with the ROM-BIOS

Each time any key on the PC keyboard is either pressed or released,
the action is reported to the PC’s ROM-BIOS as an interrupt 9, the key-
board-action interrupt. The interrupt 9 calls an mterrupt—handlmg sub-
routine, which responds by reading port 96 (hex 60) to find out which
key action took place. The awaiting scan code is then returned to the
BIOS where the keyboard service routines translate it into a 2-byte code.
The low-order byte of this code usually contains the ASCII value of the
key, and the high-order byte usually contains the keyboard scan code.
Special keys, such as the function keys and the numeric keypad keys,
have a zero in the low-order byte with the keyboard scan code in the
high-order byte (@ more about this later, on page 134).

The BIOS routines then place the translated codes in a queue, which
is kept in low memory in location 0000:041E. The codes are stored here

until they are requested by a program, such as DOS or BASIC, that ex-
pects to read keyboard input.

Translating the Scan Codes

The scan-code translation job is moderately complicated because the
IBM keyboard has several shift options that can change the meaning of a
key press. If we press the Shift key and a ¢ we get a capital C; if we press

Chapter 6: Keyboard Basics 131

the Ctrl key and a ¢ we generate the Ctrl-C or “break” signal. These are
both examples of different shift states. We can change the shift state
while we type by pressing the Shift key, the Alt key, or the Ctrl key. When
one of these keys is pressed and not released, the ROM-BIOS recognizes
that all subsequent key actions will be influenced by that shift state.

The Shift and Toggle Keys

In addition to the normal Shift key, the Ctrl key, and the Alt key,
there are two toggle keys that also affect the keyboard’s shifting mecha-
nism: the Caps Lock key and the Num Lock key. When Caps Lock is
activated, it reverses the meaning of the Shift key for the alphabet keys,
but not for the rest of the keys. The Num Lock key switches between
numbers and cursor-control functions on the numeric keypad.

The shift-key or toggle-key status information is kept by the ROM-
BIOS in low-memory locations (hex 417 and 418), where we can use or
change it. When we press a shift key or a toggle key, the ROM-BIOS sets a
specific bit in one of these two bytes. As soon as the ROM-BIOS receives
the release scan code of a shift key, it switches the status bit back to its
original shift state.

Whenever the ROM-BIOS receives a scan code for an ordinary key-
stroke, such as the letter z or a right arrow key, it first checks the shift
state, then translates the key into the appropriate 2-byte code. (& We’ll
discuss the status bytes in more detail on page 136.)

The Combination Keys

While the ROM-BIOS routine is translating scan codes, it constantly
checks for certain shift-key combinations; specifically, the Ctrl-Alt-Del,
Shift-PrtSc, Ctrl-Num Lock, and Ctrl-Break combinations. These four
command-like key actions cause the ROM-BIOS to act immediately and
perform a specific task, rather than buffering the characters.

Ctrl-Alt-Del causes the computer to reboot, or reload the com-
mand program. Ctrl-Alt-Del is probably used more often than any other
key combination. It works dependably as long as the keyboard interrupt
service is working. If the interrupt service is not working, there are two
possible reasons: Either the keyboard interrupt vector (in memory loca-
tions hex 36 through 39) has been changed or a clear interrupt instruc-
tion (CLI), which disables interrupts, has been performed without an
accompanying start interrupt instruction (STI). In either of these cases,
the only recourse you have is to turn the power off, wait a few seconds,
and then turn it on again; the power-on program resets all interrupt vec-
tors and services.

132 PROGRAMMER’S GUIDE TO THE IBM PC

Q NOTE: Some programs may leave the interrupts disabled by mis-
JR W | take. This is not possible on the PCjr since the keyboard interrupt is a
non-maskable interrupt (NMI).

Shift-PrtSc writes the screen contents to the standard printer de-
vice. The operation is done on a primitive BIOS level through interrupt 5.
To redirect the printer output to different devices (which is not a normal
thing to do), you must change the PrtSc interrupt vector to point to a
new subroutine. The GRAPHICS.COM routine in DOS 2.00 and subsequent
versions circumvents the PrtSc operation by first checking the video mode
that is in effect. If it turns out to be a graphics mode, a routine takes over
and sends the screen output, pixel-by-pixel, to an IBM-compatible graph-
ics printer (if it’s attached). Otherwise, the conventional print-screen op-
eration is called and the information is sent out character-by-character.

Ctrl-Num Lock suspends operation of the program until another
keystroke occurs.

Ctrl-Break causes the computer to issue a “break” signal by gener-
ating an interrupt 27. If our programs have established a new interrupt 27
handler, they can intercept the break interrupt and act on it (or ignore it)
according to the requirements of the program. If our programs don’t
change the interrupt routine, DOS will use its default routine, and shut
down the program. ‘

These are the only key combmatlons that are specially meaningful
to the ROM-BIOS. When an invalid combination is reported from the key-
board, the ROM-BIOS simply ignores it and moves on to work on the next
sensible key action.

There are two more things about the PC keyboard that we need to
discuss before passing on to the details of keyboard coding: repeat key
action and duplicated keys.

Repeat Key Action

The PC keyboard features automatic repeat key action, a process
called typematic by IBM. The circuitry inside the PC keyboard watches
how long each key is pressed, and if a key is held down more than half a
second, it automatically generates repeat key actions ten times per sec-
ond. The typematic action is reported as successive key-press scan codes,
without the intervening key-release codes. This makes it possible for a
clever interrupt 9 handler to distinguish between actual key presses and
typematic action. However, the ROM-BIOS does not always distinguish
between the two. The ROM-BIOS keyboard-handling routine treats each
automatic repeat key action as though the key had actually been pressed,
and interprets the key accordingly. For example, if we press and hold the

Chapter 6: Keyboard Basics 133

A key long enough for the keyboard to begin generating successive key-
press signals, then the ROM-BIOS will create a series of As to be passed on
to whatever program is reading keyboard data. On the other hand, if we
press and hold a shift key—as we often do—the ROM-BIOS will recog-
nize the first shift-press signal and put us in the shifted state. But it will
ignore the subsequent shift-press signals generated by the auto-repeat
mechanism until it gets a shift-release signal. All this boils down to the
simple fact that the ROM-BIOS treats repeat key actions in a sensible way,
acting on them or ignoring them as needed.

Duplicated Keys

Another thing that we should be aware of is that there are duplicate
keys on the keyboard. There are, for example, two asterisks: one on the
upper row, above the 8 key, and one on the right, on the PrtSc key. There
are also duplicate periods, pluses, minuses, and digits (0 through 9), and
two seemingly identical Shift keys.

The ROM-BIOS, quite sensibly, translates these duplicate keys into
the same character codes; for example, either asterisk key gets us the as-
terisk character, CHR$(42). The ROM-BIOS also lets our programs tell the
difference between them, in case it matters. The duplicated character
keys retain their scan codes in the high-order byte; our programs need
only check the scan code in this byte to see which key was pressed. As
for the two Shift keys, each one sets a different bit in the shift-status byte
(location hex 417). If we want our programs to know which Shift key was
pressed, we need to look at the appropriate bit value. (@ See the discus-
sion of location hex 417 on pages 52 and 136.)

Generally, it is best for programs to ignore the distinction between
duplicate keys, although some of the most sophisticated programs make
use of this information for special purposes. Notable among them are
Microsoft’s Flight Simulator and Ashton-Tate’s Framework.

Entering ASCII Codes Directly

We should mention that the PC keyboard, in conjunction with the
ROM-BIOS, provides us with an alternate way to enter nearly any ASCII
character code. This is done by holding down the Alt key and then enter-
ing the decimal ASCII character code from the numeric keypad on the
right side of the keyboard. This method allows any of the ASCII codes to
be entered, from CHR$(1) through CHR$(255). The only ASCII code that
can’t be keyed in directly is CHR$(0), because it is reserved to signal
non-ASCII characters, such as cursor-control and function keys. &~ In the
next section we’ll discuss this in more detail.

134 PROGRAMMER’S GUIDE TO THE IBM PC

KEYBOARD DATA FORMAT

Once a keyboard action has been translated, it is stored as a pair of
bytes in the ROM-BIOS buffer. We call the low-order byte the main byte
and the high-order byte the auxiliary byte.

The ASCII Keys

When the main byte is an ASCII character value from CHR$(1) to
CHR$(255), we know either that one of the standard keyboard characters
was pressed, or that an extended ASCII character was entered using the
Alt-number method mentioned above. (@ See Appendix C for the com-
plete ASCII character set.) For these ASCII characters, the auxiliary byte
contains the keyboard scan code of the pressed key. Under ordinary cir-
cumstances, this scan code has no use (the BASIC INKEY$ function does
not report the auxiliary byte). However, the auxiliary byte can be used to
distinguish between duplicate keyboard characters with different scan
codes. When ASCII characters have been entered “artificially” by the Alt-
number method, the scan code in the auxiliary byte is zero.

The Special Keys

When the main byte is zero (CHR$(0)), it means that a special key is
being reported. The special keys include function keys, shifted function
keys, cursor-control keys such as Home and End, and many of the Ctrl
and Alt key combinations. When any of these keys are pressed by them-
selves or in combination with other keys, the auxiliary byte contains a
single value that represents the key press. This makes it possible for us to
define our own special key codes, without interfering with the extended
ASCII characters (CHR$(128) through CHR$(255)). All of the 97 special
key values are arranged in Figure 6-2 in a rough mixture of logical and
numerical order.

Auxiliary-Byte Auxiliary-Byte Auxiliary-Byte

Value (dec) Keys Pressed Value (dec) Keys Pressed Value (dec) Keys Pressed
59 F1 110 AleF7 44 Alt-Z
60 F2 111 AltF8 45 AleX
61 B 112 AltF9 46 Ale-C
62 F4 113 AltF10 47 Ale-V
63 FS 48 AleB
64 F6 32 ﬁ:_; 49 Alt-N
65 F7 122 Alt-3 50 Alt-M
66 E8 123 Alt-4 3 Would-be null
2; l;? 0 124 Alt-5 character
125 Ale-6 CHRS$(0)
84 Shift-F1 126 Ale7
85 Shift-F2 127 ﬁllt-8
86 Shift-F3 128 t9
87 Shift-F4 129 Alt-0 o R‘*{;ﬁfﬁ};ﬁ)
88 Shift-F5 130 Alt-Hyphen
89 Shift-F6 131 Alt-= ;; IL-Ilome
90 Shife-F7 p arrow
91 Shift-F8 1 A 73 PgUp
92 Shift-F9 18 Alt-E 75 Left arrow
93 Shift-F10 19 AltR 77 Right arrow
94 Ctrl-F1 20 AleT
95 Ctrl-F2 21 AlrY 79 gﬂd
9% CurlF3 22 AltU g" OWn arrow
97 Ctrl-F4 23 Alel 8; I’;lgD“
98 Curl-F5 24 Alt-O g DS;*“
99 Ctrl-F6 25 Alt-P 3 Ch“e
100 CrlF7 114 Echo
101 CerlF8 3 Alra (Cerk-PresSc)
102 Ctrl-F9 32 Alt-D 115 Ctrl-Left arrow
103 Ctrl-F10 33 AILF 116 Ctrl-Right
104 Alt-F1 34 Alt-G arrow
105 Alt-F2 35 AltH 117 C“{'E“d
106 Alt-F3 36 Alt] 118 C“I'PgD“
107 AltFa4 37 AltK 119 Ctrl-Home
108 AltFS 38 Alt-L 132 Curl-PgUp
109 AltF6

Figure 6-2. The auxiliary byte value of the
97 special keys on the standard IBM PC
keyboard. The main byte value is always 0.

136

PROGRAMMER’S GUIDE TO THE IBM PC

The codes for the complete set of characters and special keys are
generated by the ROM-BIOS, but different programming languages vary
in the way they handle the codes. BASIC, for example, takes a mixed ap-
proach to the special keys. When we use ordinary input statements,
BASIC hands over the regular ASCII characters to the BIOS and filters out
any special keys. Some of these keys can be acted on with the ON KEY
statement, but we can use the BASIC INKEY$ function to get directly to
the ROM-BIOS coding for keyboard characters and find out immediately
what special key was pressed. If the INKEY$ function returns a 1-byte
string, it is reporting an ordinary or extended ASCII keyboard character.
If INKEYS returns a 2-byte string, the first byte in the string is the ROM-
BIOS’s main byte and will always be CHR$(0); the second byte is the aux-
iliary byte and will indicate which special key was pressed.

KEYBOARD CONTROL

The keyboard operation and keyboard data collection that is super-
vised by the ROM-BIOS makes use of a data area in low memory, from
hex 417 through 43D, hex 471 and 472, hex 480 to 483, and for the PGjr
only, hex 412 and 485 through 488. Our programs can make use of these
locations to check the keyboard status or to modify the keyboard opera-
tion. Now we’ll discuss the locations that are useful for our programs to
read and the locations that are safe to change.

The Status Bytes

We'll begin with the two standard keyboard status bytes, at loca-
tions hex 417 (shown in Figure 6-3) and 418 (shown in Figure 6-4). These
status bytes are coded with individually meaningful bits that indicate
which shift keys and toggle keys are active. All the standard models of
the PC family have these two bytes. BTl Currently, the only individual
difference between the models is bit 2 of byte 2. This bit, called the click
bit, is unique to the PCjr. The other aspects of the bit format are common
to all standard PC models.

The Insert State

The ROM-BIOS keeps track of the insert state in bit 7 of byte 1. Every
program that I know of ignores this bit and keeps its own record of
whether the insert state is on or off, so although it is possible, it is not a
standard practice to use the ROM-BIOS insert-status bit in our programs.

Chapter 6: Keyboard Basics

137

Bit
76543210

Meaning

Insert state: 1 =active; 0 =inactive

Caps Lock: 1 =active; 0 =inactive

Num Lock: 1=active; 0 =inactive

Scroll Lock: 1 =active; 0 =inactive

Alt shift: 1 =active (Alt depressed); 0 =inactive

Ctrl shift: 1=active (Ctrl depressed); 0 =inactive

Normal shift: 1 =active (left Shift depressed); 0 = inactive
Normal shift: 1 =active (right Shift depressed); 0 = inactive

Figure 6-3. The coding of the first keyboard
status byte, at location hex 417

The Caps-Lock State

Many programmers force the Caps-Lock state to be active by set-
ting bit 6 of byte 1 on. This can confuse or irritate some program users,
so I don’t recommend it. However, it works reliably and there is plenty of
precedent for using this trick.

The Keyboard-Hold State

The keyboard-hold state is an interesting feature of the PC although
it has no practical relationship to our programs. As we mentioned before,
one of the special key combinations that the keyboard BIOS monitors is

Bit
76543210

Meaning

1 =1Ins depressed

1=Caps Lock depressed

1=Num Lock depressed

1 =Scroll Lock depressed

1 =hold state active (Ctrl-Num Lock)
1 =PCjr keyboard click active

Not used

Not used

Figure 6-4. The coding of the second
keyboard status byte, at location hex 418

138

|
PROGRAMMER’S GUIDE TO THE IBM PC

Ctrl-Num Lock. When the BIOS detects the Ctrl-Num Lock combina-

tion, it goes into a state known as keyboard hold by setting bit 3 in status

byte 1. During keyboard hold, the BIOS program waits until a printable
key is pressed; it doesn’t return control of the computer to whatever pro-
gram is running until this happens. This feature is used to suspend the

operation of the computer.

During keyboard hold, all mtérrupts are handled normally. For ex-
ample, if the disk drive generated an interrupt (signaling the completion
of a disk operation), the disk interrupt handler would receive the inter-
rupt and process it normally. But, when the interrupt handler finished
working, it would pass control back to whatever was happening when

the interrupt took place—which would be that endless do-nothing loop
inside the keyboard BIOS. So, duriﬁg the keyboard hold, the computer
can respond to external interrupts but programs are normally com-
pletely suspended. The keyboard BIOS continues to handle interrupts that
signal key actions, and when it detects a normal keystroke (for example,

the Spacebar or a function key, but

and letting it continue.
The keyboard-hold state is of

not just a shift key), it ends the key-

. board hold, finally returning control to whatever program was running

no practical use to us in program-

ming, except that it prov1des a standard way for users of our programs to

suspend the program’s operation. i
Be aware that the keyboard-l?

possible for a program to continue

by acting on an external interrupt,

old state is not “bullet-proof.” It is

working through the keyboard hold

such as the clock-tick interrupt. If a

program really wanted to avoid being put on hold, it could set up an

interrupt handler that would work

through the hold state, or it could

simply turn the hold state off whenever it was turned on.

The Toggle-Key State

Notice that bits 4 through 7 in
the first byte, the bits show the curre

each byte refer to the same keys. In
nt state of the toggle keys; in the sec-

ond byte, they show whether the corresponding toggle key is depressed.

You may read the status of any
but few, if any, are likely to be usefu

of these bits to your heart’s content,
1 to your programs. With the partial

exception of controlling the Caps-Lock state, I don’t think it’s wise to
change any of the shift-state bits (bits 4 through 6 of byte 1). And it is
potentially very disruptive to change any of the key-is-pressed bits (bits 0
through 3 of byte 1; bits 4 through 7 ;of byte 2).

Chapter 6: Keyboard Basics 139

Interrupt
Dec Hex Origin of Interrupt Use
9 9 Keyboard Signals keyboard action
22 16 ROM-BIOS Invokes standard BIOS keyboard
services (see Chapter 11)
27 1B ROM-BIOS Generates an interrupt when break-key
. combination is pressed under BIOS con-
trol; a routine is invoked if we create it
35 23 DOS If we create it, an interrupt routine is

invoked when break-key combination
is pressed under DOS control

Figure 6-5. The interrupts related to
keyboard action

COMMENTS

If you wish to gain a deeper understanding of the PC’s keyboard
operation, study the ROM-BIOS program listing in the IBM Technical Ref-
erence manual. When you do this, be careful to avoid making a simple
mistake that is common when anyone first sets out to study the ROM-
BIOS, particularly the interrupts used by the ROM-BIOS. The ROM-BIOS
provides two different interrupts for the keyboard: one that responds to
keyboard interrupts (interrupt 9) and collects keyboard data into the
low-memory buffer, and one that responds to an interrupt requesting
keyboard services (interrupt 22, hex 16) and passes data from the low-
memory buffer to DOS and our programs. It is very easy to confuse the
operation of these two interrupts, and it is just as easy to further confuse
them with the break-key interrupts, 27 and 35 (hex 1B and 23). The table
in Figure 6-5 lists the keyboard interrupts.

A general theme running throughout this book advises you not to
play fast and loose, but to play by the rules. This means, again, to write
programs that are general to the IBM PC family rather than tied to the
quirks of any one model, and to write programs that use official means,
such as the ROM-BIOS services to manipulate data, instead of direct hard-
ware programming. These rules apply to keyboard programming as
much as they do to any other type of programming.

140

(2R

PROGRAMMER’S GUIDE TO THE IBM PC

HOW THE PCjr IS DIFFERENT
[— I

The PCjr is designed to mimic, as closely as possible, the operation
of the original 83-key PC. But as we can see in Figure 6-6, the Junior’s
native keyboard has only 62 keys, which means that it does not exactly
match the PC keyboard. Resolving this problem has resulted in some
clever keyboard fakery.

The PCjr has 61 keys in common with the PC, plus one new key, the
Fn (function) key. Each of the 22 missing keys is mimicked in one way or
another by various key combinations on the PCjr keyboard. However, it’s
not quite as easy as it sounds because the PCjr equivalents of PC keyboard
actions are not particularly straightforward (® see Figure 6-7).

The PCjr also has five special key combinations that are unique to it
and have no equivalent in the PC. These are listed in Figure 6-8. The fifth
one, Shift-Fn-Esc, is rarely mentioned in the Junior’s documentation.

PCjr Keyboard Operation

The PC keyboard stages of éperation that we outlined on page 128
are followed closely by the PCjr. However, since the Junior’s keyboard is
different, an entirely new (but familiar) layer of operations has been
added up front.

Each PCjr key action, like the PC key actions, causes an interrupt,
but it’s a special one: interrupt 2, the non-maskable interrupt (NMI). This
in turn calls interrupt hex 48, which translates the 62-key scan codes into
their corresponding 83-key scan codes. The interrupt hex 48 routine also
generates an interrupt 9 (simulating a PC keyboard interrupt) and every-
thing follows from there, as close to the PC standard as is possible, with

the ROM-BIOS translating the PC action codes into their end meanings.

ENE 1|s||_J|ﬂ|6117Hslmlwnnlllﬂhﬂf“fi'mf[Ts_J
lTaqjl?lesllw FLTII_ZQIZZI@HMI%I zﬂlﬂl@]&im;J
i 1_31J|£II_3§]L§£II35H36J|_32WI39II40IL41]L [
t5 s i im s HSOWISHL&IIBI 54 (5 G
=M L 58 | [59] (6] (e1] ngu

Figure 6-6. The IBM PCjr keyboard layout
and scan codes

PC Key PCjr Equivalent
F1through F10 Fn key, followed by 1 through 0
| Al
\ Al
~ Al
Al
PrtSc Fn-P
* (on PrtSc key) Alt-. (not the same as Shift-8 asterisk)
Ctrl-PrtSc (echo) Fn-E
NumLock Alt-Fn-N
Ctrl-Num Lock (pause) Fn-Q
Scroll Lock Fn-S
Break Fn-B
Home Fn-Up arrow
Ctrl-Home Ctrl-Fn-Up arrow
PgUp Fn-Left arrow
Cul-PgUp Cutrl-Fn-Up arrow
S (on numeric keypad) No replacement
End Fn-Down arrow
Cul-End Cul-Fn-Down arrow
PgDn Fn-Right arrow
Cul-PgDn Curl-Fn-Right arrow
- (on numeric keypad) ~ Fn-Hyphen
+ (on numeric keypad) Fn-=

Figure 6-7. The PCjr key equivalents

of the 22 missing PC keys
Key Combination Use
Ctrl-Alt-Left arrow Shifts display screen left
Ctrl-Alt-Right arrow Shifts display screen right
Ctrl-Alt-Caps Lock Turns keyboard clicking on and off
Ctrl-Alt-Ins Invokes diagnostics programs
Shift-Fn-Esc Makes digit keys act as function keys

Figure 6-8. Special key combinations

unique to the PCjr

142

P:’ROGRAMMER’S GUIDE TO THE IBM PC

Bit
76543210 ‘ Meaning

Xo oo o Function flag i
X e e Signals break-F(ey action (Fn-B)
X e Function pending: Fn depressed

X Function lock: makes numeric keys function keys

XL Controls typematic repeat-key action: 0 =enable; 1 = disable
..... X. . Controls full- or half-speed repeat-key action: 0 =half speed,
1=full speed
...... X . Controls longer delay before starting repeat action:
0=enable, 1 =disable
....... X Signals that repeat key is due to be generated
Figure 6-9. The coding of the PCjr key‘board
status byte at location hex 488

The reason why all this up-front processing is necessary is because
the Junior’s keyboard has no 8048 !microprocessor to help it out. The PC
keyboard is smart enough to be able to store several key actions, which
makes it practical to temporarily mask off the keyboard-action interrupt
whenever other parts of the computer need attention. The PCjr doesn’t
have this ability, so its keyboard-action interrupt is more urgent and su-
persedes all other interrupts.

One of the biggest differences between the Junior and its more pow-
erful relatives is that the ROM- BIOS manages the operation of both the
keyboard and the disk drive. A conflict arises because the ROM-BIOS
favors the disk drive, since the disks have no direct memory access. Con-
sequently, if the disk drive is in operation, the entire system is masked and
keyboard input can’t take place (asynchronous communications through
the serial port can’t take place, either).

The PCjr Keyboard Status Byte

The PCjr has a third keyboard status byte in addition to the two stan-
dard status bytes mentioned earller It is located at memory address hex
488. This byte is peculiar to the operatlon of the PCjr’s 62-key keyboard.

The meaning of the individual bits in the status byte are shown in
Figure 6-9. Generally, you will gaiﬂ nothing by reading or changing these
bits, but you should know that w%e can suppress the typematic (the re-
peat-key operation) by setting bit 3 to 1. Additionally, we can double the

time-repeat or begin-repeating mechanisms by setting bits 2 and 1 to 1. If

Chapter 6: Keyboard Basics

143

you want to experiment and suppress key repetition on a PCjr, you can
insert your DOS utilities disk and try entering these commands (this will
only work on a PCjr):

DEBUG
F 0:488 L 1 08

PCjr Programming Recommendations

The Junior keyboard is designed to emulate a full PC keyboard, and
it is clearly intended to be replaced or augmented by other keyboard-like
devices, such as a mouse or a full keyboard. This design makes it particu-
larly shortsighted to integrate the peculiarities of the PCjr keyboard into
our programs.

However, for one exception, I would recommend that your pro-
grams take the peculiarities of the Junior keyboard into account: when
you are selecting which special keys to use in a program. Many programs
created for the original PC had their key use (especially function-key use)
fine-tuned to the full PC keyboard. With the emergence of the PCjr key-
board, it is wise to rethink key selection because the two keyboards are
so different. You might decide to choose the best use for either the Junior
or the PC, to compromise between the two, or to adjust the program’s
operation to the machine it is working on. (@ See page 60 for how to
find the machine ID.) The choice you make depends on the scope and the
potential market of your program.

HOW THE AT IS DIFFERENT

The AT’s keyboard also differs from the standard PC keyboard. In
contrast with the PCjr keyboard, the differences in the AT keyboard that
are visible to the user and to our programs are very slight. However, as
far as the hardware and BIOS are concerned, the AT keyboard is similar
to the PCjr keyboard in that it does not actually function like the PC key-
board, but rather is made to simulate it. Since the internal differences in
the AT keyboard are essentially invisible to our programs, we won’t need
to cover them in much detail.

The AT keyboard layout is almost the same as that of the original
PC keyboard, with a few keys repositioned and one key added. The re-
positioning of some of the keys doesn’t call for any changes in the way we
program for keyboard use or in our selection of keys to use, but it is
worth noting that one key that is used very heavily for program control,
the Esc key, has been moved to an entirely new location, from the top left
area to the top right area—a real nuisance for anyone who has to use
both the PC and the AT keyboards.

144

PROGRAMMER'’S GUIDE TO THE IBM PC

The one new key on the AT keyboard is the Sys Req key. This key
has no use within the operation of any program. Instead, it was created
to activate switching between programming system tasks when the AT is
working in a multitasking mode and using the special capabilities of the
AT’s 286 microprocessor. This is a hands-off key for our PC programs.

The hardware link between the AT and the AT keyboard is two-way;,
so that the keyboard can send information to the AT and the AT can send
commands back to the keyboard, including commands to set the key-
board indicator lights. It would be very foolish of us to fiddle with these
keyboard-control commands.

It is worth noting that French, German, Spanish, Italian, and British
variations on the American-oriented AT keyboard were introduced at the
same time as the AT itself.

Second-guessing IBM’s future moves is a very risky business, but it is
my opinion that the AT keyboard layout (and its international variations)
will become and remain the new standard for all future PC-family prod-
ucts introduced by IBM. Whether or not this happens isn’t of much im-
portance to us here, though, because from a programming point of view,
the AT keyboard is not truly different from the PC keyboard (unlike the
PCjr keyboard, which does have some truly practical differences).

Sound Generation

The Physics of Sound 146

How the Computer Produces Sound 147
Timer-Chip Sound Control 148
Direct Speaker Control 151

Speaker Volume and Sound Quality 152

Sound and the PCjr 152
The TI Sound Chip 153
Controlling the Sound Chip 155
Sound Output in the PCjr 156

145

146

PROGRAMMER’S GUIDE TO THE IBM PC

Il standard members of the PC family are able to create simple
sounds using the computer’s programmable timer chip (the
8253-5) and the computer’s built-in speaker. f[J}l The PCjr also
has extended sound capabilities that include a special sound-
generating chip, additional sound sources, and additional sound outputs.
Since these features are unique to the PCjr, we’ll save a brief discussion of
them for the last part of the chapter and devote the first part to the sound
features that are universal to the PC family.
To understand how to make sounds on our computers, we need to
know some of the basic principles of sound, which we’ll outline here.

THE PHYSICS OF SOUND

Sounds are simply regular pulses or vibrations in air pressure.
Sound is produced when air particles are set into motion by a vibrating
source. When the vibrating source pushes out, it compresses the air parti-
cles around it. As it pulls in, the pressure release pulls the particles apart.
A vibration composed of both the pressing and the pulling actions causes
air particles to bump into each other. This motion begins a chain reac-
tion that carries the vibration through the air away from the original
source. Such a motion is called a sound wave.

The speaker in the IBM PCs is made to vibrate by the electrical im-
pulses sent to it by the computer. Since computers normally deal with
binary numbers, the voltages they produce are either high or low. Every
transition from one voltage state to another either pushes the speaker
cone out or relaxes it. A sound is produced when the voltage to the
speaker goes from low to high to low again, causing the speaker to move
out, then in. This single vibration, consisting of a pulse out and a pulse
in, is called a cycle and is measured in hertz (a hertz is simply one cycle
per second). Through the PC speaker, a single cycle of sound is heard as a
click. A continuous sound is produced when a number of cycles per sec-
ond are sent to the speaker. As the cycles per second increase, the clicks
blend together and become a tone of a certain frequency. For example, if
we pulse the speaker in and out 261.63 times a second (that is, at a rate of
261.63 hertz), we hear the musical note known as middle C.

The average person can hear sounds ranging from 20 to 20,000
hertz. The IBM PC can generate sounds through its speaker at frequencies
that could theoretically range from about 18 to over a million hertz, far
beyond the range of human hearing. To give this frequency range some
perspective, compare it to an average human voice, which has a range of
only 125 to 1,000 hertz.

Chapter 7: Sound Generation

147

Note Frequency Note Frequency Note Frequency Note Frequency
Co 16.35 C2 65.41 Ca 261.63 Cs 1046.50
Cxo 17.32 C#2 69.30 Caa 277.18 C# 1108.73
Do 18.35 D2 73.42 D4 293.66 Ds 1174.66
D#o 19.45 D# 77.78 D#a 311.13 D#s 1244.51
Eo 20.60 E2 82.41 E4 329.63 Es 1328.51
Fo 21.83 F. 87.31 Fa 349.23 Fs 1396.91
Fxo 23.12 F#2 92.50 Fa4 369.99 F# 1479.98
Go 24.50 G2 98.00 Ga 392.00 Gs 1567.98
G#o 25.96 G#2 103.83 G4 415.30 G#s 1661.22
Ao 27.50 A 110.00 As 440.00 As 1760.00
Axo 29.14 An 116.54 Asa 466.16 A# 1864.66
Bo 30.87 B2 123.47 B4 493.88 Bs 1975.53
C1 32.70 Cs 130.81 Cs 523.25 C7 2093.00
C#1 34.65 C#3 138.59 Cu#s 554.37 Cs7 221746
D1 36.71 D3 146.83 Ds 587.33 D7 2349.32
D#1 38.89 D#3 155.56 Das 622.25 D#7 2489.02
E1 41.20 Es 164.81 Es 659.26 E7 2637.02
F1 43.65 F3 174.61 Fs 698.46 F7 2793.83
Fs1 46.25 Fas 185.00 Fa#s 739.99 F#7 2959.96
G1 49.00 G3 196.00 Gs 783.99 G7 3135.96
G#n 51.91 G#3 207.65 Gs#s 830.61 G#7 3322.44
A1 55.00 As 220.00 As 880.00 A7 3520.00
A# 58.27 A#3 233.08 As#s 932.33 A#7 372931
B1 61.74 B3 246.94 Bs 987.77 B7 3951.07

Cs 4186.01

Note: Equal Tempered Chromatic Scale; A4 =440
American Standard pitch—adopted by the American Standards Association in 1936

Figure 7-1. Eight octaves of musical note

frequencies

The speaker that comes with the standard IBM personal computers
has no volume control and is not really intended for accurate sound re-
production. As a result, different frequencies will produce different ef-
fects; some may sound louder than others and some may have a more
accurate pitch. This fluctuation is a by-product of the speaker design, and
is not something we can control.

HOW THE COMPUTER PRODUCES SOUND

We can generate sounds through the speaker in two ways, using one
or both of two different sound sources. One method is to write a pro-
gram that turns the speaker on and off by manipulating two speaker bits
in the programmable peripheral interface chip (the PPI). When using this
method, our program controls the timing of the pulse and the resulting

148

PROGRAMMER'’S GUIDE TO THE IBM PC

sound frequency. The other method is to use the PC’s built-in program-
mable timer chip (the 8253-5) to pulse the speaker at a precise frequency.
Using the timer chip is a more popular method for two reasons: Because
the speaker pulses are controlled by the timer chip instead of a program,
the CPU is free to devote its time to the other demands of the computer
system; and the timer chip is not dependent on the working speed of the
CPU (which is faster for the AT and slower for the PCjr).

Both the program method and the timer method can be used to-
gether or separately to create a variety of simple and complex sounds.
We’ll explain timer-chip sound control and direct speaker control more
thoroughly in the next few pages, and then move on to describe some of
the enhancements the PCjr has brought to the PC family.

Timer-Chip Sound Control

The 8253-5 programmable timer is the heart of the standard PC
models’ sound-making abilities—but it is also the heart of the system’s
real time clock. Although we’ll be concentrating mainly on its use as a
sound generator, the 8253-5 is called a timer chip because its primary
function is to keep time—in much the same way as a metronome keeps
time for a musician.

Here is how it works. The 8253 gets a signal from the computer’s
main clock (the 8284A) that oscillates at a frequency of 1,193,180 times a
second, or 1.193 megahertz (MHz). The timer is programmed to produce
a clock interrupt (interrupt 8) once every 65,536 main clock cycles, or
about 18.2 times a second. This clock interrupt is usually called a clock
tick. The ROM-BIOS keeps track of the clock ticks, calculates the time of
day by incrementing its clock counter at each tick, and also issues its
own interrupt, called a clock-tick interrupt (interrupt 28).

The ROM-BIOS clock-tick interrupt is often used by programs to
keep time, although some programs bypass this interrupt and work
directly with the timer chip. For example, BASIC uses the timer chip di-
rectly to count the duration of a sound, which is measured in clock ticks.
However, since the standard rate of 18.2 ticks per second is often not fast
enough to provide the precision that some kinds of music demand, BASIC
reprograms the timer to tick four times faster, which causes interrupt 8
(the clock tick) to occur 72.8 times per second instead of 18.2. When
BASIC counts against the quadruple rate, it is able to more accurately re-
produce the proper tempo of a piece of music.

Chapter 7: Sound Generation 149

QO NOTE: BASIC quadruples the clock rate during the execution of
the PLAY command. It avoids interfering with the BIOS clock-tick inter-
rupt number 28, which is vital to many other system functions, by reset-
ting the vector for interrupt 8 to point to a routine that then signals the
ROM-BIOS on every fourth tick. On the fourth tick, the interrupt handler
momentarily turns control over to the BIOS , enabling it to increment its
counter and issue an interrupt 28 on schedule, after which it returns
control to BASIC.

Programming the Timer Chip

Creating sounds with the timer chip involves two basic steps: First,
we must program the timer to generate a frequency, then we must direct
the output of the timer to the speaker. These two steps can be performed
separately. A sound is emitted when both steps have been performed, and
the sound stops when either of the two steps is ended.

The timer can be programmed to produce pulses at whatever fre-
quency we want, but since it does not keep track of how long the sound
continues, the sound will continue forever unless it is turned off. There-
fore, our programs must choose when to end a sound through some sort
of timing instruction.

We program the timer to generate sounds in the same way BASIC
programs it to generate clock ticks: by giving it a number. On command,
the timer counts the system clock pulses (which are oscillating at 1.193
MHz) until the total matches our number. Then it outputs a pulse (in-
stead of an interrupt) and begins counting again from zero. In effect, the
timer “divides” our number into the clock frequency to produce an out-
put frequency. The result is that the timer sends out a series of pulses that
produce a sound of a certain frequency when we turn on the speaker.

Our controlling count and the resulting frequency are in a re-
ciprocal relationship, as shown by these formulas:

Count =1,193,180 ~+ Frequency
Frequency =1,193,180 + Count

From these formulas, we see that a low-frequency (low-pitched) sound is
produced by a high count and that a high-frequency (high-pitched) sound
is produced by a low count. A count of 100 would produce a high pitch of
roughly 11,931 cycles per second, and a count of 10,000 would produce a
low pitch of about 119 cycles per second.

We can produce just about any frequency, within the limitations of
16-bit arithmetic. The lowest frequency is 18.2 hertz (with a divisor of
65,535, hex FFFF) and the highest is 1.193 megahertz (with a divisor of 1).

150

PROGRAMMER’S GUIDE TO THE IBM PC

BASIC holds this to a practical range of 37 to 32,767 hertz. The program be-
low demonstrates that the actual frequency range of the internal speaker
is even less than BASIC provides.

Once we have calculated the count that we need for the frequency
we want, we send it to the 8253 timer registers. This is done with three
port outputs. The first port output notifies the timer that the count is
coming by sending the value 182 (hex B6) to port 67 (hex 43). The next
two outputs send the low- and high-order bytes of the count, a 16-bit un-
signed word, to port 66 (hex 42)—the low-order byte followed by the
high-order byte. This BASIC program illustrates the process:

10 COUNT = 1193280! / 3000 > 3000 is our frequency

20 LO.COUNT =COUNT MOD 256 > calculate low-order byte value

30 HI.COUNT = COUNT / 256 > calculate high-order byte value

40 0OUT 67, 182) > get timer ready

50 OUT 66, LO.COUNT > load low-order byte

60 DUT 66, HI.COUNT > load high-order byte
Activating the Speaker

After we have programmed the timer, we still need to activate the
speaker circuitry in order to use the signal that the timer is generating. As
with most other parts of the PC, the speaker is manipulated by sending
certain values to a specific port, a process that is illustrated in Figure 7-2.
The speaker is supervised by the programmable peripheral interface (PPI)
chip and uses port 97 (hex 61). Only two of the port’s eight bits are used
by the speaker: the low-order bits numbered 0 and 1. The other bits are
used for other purposes, so it is important that we don’t disturb them
while working with the speaker.

Get Send pulses
timer Port to
ready 67 speaker
Load " 8253 o
frequency Port| Programmable
Memory count 66 timer c1;11:113 Speaker
Turn on Port
speaker 97

Figure 7-2. How sound frequencies are
generated through the 8253 timer
and speaker

Chapter 7: Sound Generation 151

The lowest bit, bit 0, controls a timer signal used to drive the speaker.
The second bit, bit 1, controls the pulsing of the speaker. Both bits must
be turned on (set to 1) to make the speaker respond to the timer. We can
turn them on without disturbing the non-speaker bits with an operation

like this:
70 OLD.PORT = INP (97) > assign value of port 97 to old.port
80 NEW.PORT = (OLD.PORT OR &H03) > set bits 0 and 1to on
90 OUT 97, NEW.PORT > turn speaker on
Direct Speaker Control

The timer controls the speaker by sending periodic signals that
pulse the speaker in and out. We can do the same thing a different way:
with a program that sends in or out signals directly to the speaker. We do
this by setting bit 0 of port 97 (hex 61) to zero to turn the speaker on, and
then alternately setting bit 1 on and off, which pulses the speaker. When
we use this method, the timing of the program determines the frequency
of the sound—the faster the program executes, the higher the pitch. This
BASIC program demonstrates how it’s done (the example assumes that
port 97 (hex 61) has a value of 76):

10 X = INP (97) AND &HFC > change port value, turn off last 2 bits
20 OUT 97, X > pull speaker in

30 OUT 97, X + 2 > push speaker out

40 G6OTO 20

The two actions in lines 20 and 30 pulse the speaker in and out. Each one
is a half-cycle, and the two together produce one complete sound cycle.

This example runs as fast as BASIC can process it, producing as high
a note as possible. If we needed more range in our application, we would
probably use a faster language and insert deliberate delays equal to half
the frequency cycle time between each complete cycle (half the cycle
time, because each ON or OFF operation is a half cycle). Whatever lan-
guage we use, we have to include a duration count to end the sound. To
produce different sounds at a particular frequency, such as clicking or
buzzing sounds, we just vary the delays between pulses.

Despite all these wonderful possibilities, generating sounds through
the speaker by direct program action is not a good way to make sounds.
It has three big disadvantages over the use of the timer:

® A program requires the constant attention of the CPU, so the
computer has a hard time getting any other work done.

® The frequency is at the mercy of the speed of the computer; that
is, the same program would make a lower or higher sound on a
slower or faster model.

152

w» [

PROGRAMMER’S GUIDE TO THE IBM PC

B The clock-tick interrupts interfere with the smoothness of the
sound, making a warble. The only way to avoid this is to suspend
the clock tick by disabling the interrupts—and that disrupts the
computer’s sense of time.

As far as I know, there is only one advantage to making sounds
using the direct method over the timer method: With the proper control
over the program delays, it is possible to make a rich polyphonic sound.
Be forewarned, though, that this requires some very clever and tedious
programming and, all in all, it may not be worth the trouble.

SPEAKER VOLUME AND SOUND QUALITY

There is no volume control of any kind in the computer’s internal
speaker. However, the computer’s speaker—like all speakers—varies in
how well it responds to different frequencies, and some frequencies may
sound louder than others. In the case of a crude speaker like that found
on most PCs, the loudness of the sound varies widely with the frequency.
You can use the following program to test this—it may help you choose
the best sound pitch for your purpose:

10 PLAY "MF" > plays each sound separately

20 FREQUENCY = 37

30 WHILE FREQUENCY < 32000 > use all frequencies to 32000 Hz
40 PRINT USING "##,###"; FREQUENCY ’display frequency

S0 SOUND FREQUENCY, § > produce sound with duration of 5
60 FREQUENCY = FREQUENCY * 1.1 ” increment frequency by Yo

70 WEND

You should also be aware that the speakers in the various PC mod-
els may not sound alike, partly because the materials of each system
housing resonate differently as speaker enclosures. For example, the tim-
bre of the PCjr is quite different from that of the Portable PC and from the
PC and XT models. Be prepared for these variations in sound.

SOUND AND THE PCjr

The PCjr has the standard programmable timer chip and a built-in
speaker, just like the rest of the family, but it also has other sources of
sounds and other outputs for the sound signals.

The best-known source of sound in the Junior is the TI SN76496A
sound-generator chip, an addition that is great for special effects in
games and educational applications. But the Junior also has two lesser-
known sound sources: the cassette tape input and the audio line (line
B30) of the 1/0 channel connector. The selection among these four sound

Chapter 7: Sound Generation 153

Bit 5 Bit 6 Value Sound Source
0 0 0 8253 timer (standard IBM sound source)
0 1 1 Cassette tape interface
1 0 2 [/O channel
1 1 3 TI sound chip

Figure 7-3. The settings for the four PCjr
sound sources for bits 5 and 6 of port 97
in the 8255

sources is controlled by the 8255 programmable peripheral interface, or
the PPI (@ see page 11). Our programs can control what source is used by
setting bits 5 and 6 in the 8255, which is done through port 97 (hex 61).
(@ See Figure 7-3.)

The cassette tape and /0 channel sound sources can be hooked up
to a stereo amplifier to produce better sound quality than the internal
speaker, but since they are not widely used, we will not consider them
any further in this chapter. Instead, we’ll briefly focus our attention on
the T1sound chip.

The TT Sound Chip

The TI sound chip has four separate sound generators, or voices.
Three of these voices are completely independent, and generate pure
tones (as does the timer chip). The fourth voice is a “noise” source that
generates irregular noise sounds in a variety of ways. All four voices have
an independent volume control, providing an evenly graduated set of 15
volume levels, plus a zero volume (off). Each of the three pure voices has
an independently selected frequency. The noise voice has three pre-
selected frequencies and a fourth option, which borrows the frequency of
the third pure voice. We’ll cover each of the sound elements separately,
then explain how they are used together to program the TIsound chip.

The Tone Generators

Each of the three tone generators, or voices, is controlled by a 10-bit
number that our programs send to the TI sound chip. The TIsound chip
follows the same philosophy to create frequencies as the programmable
timer: The fast system clock is divided by a count and the quotient deter-
mines the frequency. However, the details are different. For the timer, the

154

PROGRAMMER’S GUIDE TO THE IBM PC

frequency count is a 16-bit number divided into the 1.193 megahertz bus
clock frequency. For the TI sound chip, the count is a 10-bit number di-
vided into %32 of the system clock frequency (3.579 MHz), which turns
out to be 111,860 Hz.

The only limitation of the 10-bit controlling number is that it re-
duces the number of frequencies we can choose from by a factor of 32.
For example, if we use a count of 100, the TI sound chip produces a fre-
quency of 1118.6 Hz, and the next divisor, 101, gives us 1107.5 Hz; we can’t
get any of the frequencies in between. By contrast, the timer chip would
give us 32 frequencies in that same range. In practice, this limitation is
only a problem for the most musically demanding sounds, such as three-
part chords—they may sound off-key.

Attenuation

Each voice in the TI sound chip has an independent sound-level
control, which is calculated in terms of decibels of attenuation, or soften-
ing. There are four bits used to control the volume. These bits, labeled A0
through A3, can be set independently or added together to produce six-
teen volume levels, as shown in Figure 7-4. When a bit is set on, the sound
is attenuated (reduced) by a specific amount: either 2, 4, 8, or 16 decibels.
When all four bits are set on, the sound is turned completely off. When
all four bits are set off, the sound is at its fullest volume. Although the
sound levels can be calculated, it is easier to choose the sound we want
by experimentation.

The Noise Generator

There are two modes for the noise operation, besides the four fre-
quency selections. One, called periodic noise, produces a steady sound;
the other, called white noise, produces a hissing sound. These two modes
are controlled by a bit known as the FB bit. When FB is 0, the periodic
noise is generated; when FB is 1, the white noise is produced.

AAAA
0123 Value Attenuation (decibels)
.1 1 2
1 2 4
.1 4 8
1. .. 8 16
1111 32 Volume off

Figure 7-4. The attenuation bit settings

Chapter 7: Sound Generation 155

NF0 NF1 Noise Frequency

1,193,180 + 512 =2,330
1,193,180 + 1024 =1,165
1,193,180 2048 = 583
Borrowed from Voice 3

- O O
-0 =k O

Figure 7-5. Noise-generator frequencies produced
by NFO0 and NF1 bit combinations

Two bits, known as NF0 and NF1, control the frequency at which
the noise generator works. Three of the four possible combinations of
NF0 and NF1 set an independent noise frequency based on the timer. The
fourth combination borrows the frequency from the third of the three
pure voices made by the tone generators. Figure 7-5 shows the possible
noise bit values and their associated frequencies.

Controlling the Sound Chip

We program the TI sound chip by passing to it 3-bit register ad-
dresses (which select voice frequencies, attenuation control, and noise
voice control), 10-bit frequency divisors, 4-bit attenuation settings, a 2-bit
noise frequency selection, and a 1-bit noise type selection—all through
port 192 (hex C0). Not a tidy set to shoehorn into an 8-bit port!

The TI sound chip has eight registers that control what it does.
Three bits, known as RO through R2, select the registers and identify the
parameter that’s being set. The register values are shown in Figure 7-6.

RO R1 R2 Parameter

Voice 1 frequency control number (10 bits)
Voice 1 attenuation (4 bits)

Voice 2 frequency control number (10 bits)
Voice 2 attenuation (4 bits)

Voice 3 frequency control number (10 bits)
Voice 3 attenuation (4 bits)

Noise voice control (4 bits; 3 used)

o e O O O O
_ = O O o= O O
- O e O Rk O R,k O

Noise voice attenuation (4 bits)

Figure 7-6. The parameter indentifica-
tion bits

156

PROGRAMMER’S GUIDE TO THE IBM PC

All programming of the TI sound chip is done by writing out to
port 192 (hex C0). Don’t read this port: If you do, you will lock up the
machine. This byte contains the ID bit (identifying it as the command
byte), three register bits (R0 through R2), and some data bits. The com-
mand byte may be used to load the frequency, attenuation, or noise con-
trol bits, along with the register bits. The data bit formats will vary de-
pending on their purpose. In the case of the pure voice frequency counts,
this first byte is followed by a second byte that contains an ID bit, along
with the six remaining frequency bits that couldn’t fit into the first byte.
By deliberate design, the TI sound chip will accept the second byte over
and over again, without the first command byte preceding each one. This
allows for quick frequency changes without the program overhead that
would be necessary to load both bytes. Figures 7-7 through 7-10 show the
bit formats for the various byte settings.

Q NOTE: Before you attempt to program the TI chip, you should be
aware of an irritating difference in the design approaches of Texas
Instruments and Intel. They don’t use the same bit order notation. As a
result, in the PCjr Technical Reference manual, you will find the sound-
chip bits referred to in the opposite order from the notation usually used
in the manual (and used by us in this book). For example, what would
otherwise be referred to as bit 7 of a byte, you find called bit 0 MSB (for
most significant bit). If you use the reference manual, follow the MSB/LSB
notation and ignore the bit numbering—and then grumble about the
inconsiderate switch of notation.

It should be pretty obvious from this overview that programming
the TIsound chip is annoyingly complex. Whenever I’ve tried it, I've been
reduced to counting bits on my fingers and toes. A further drawback is
that programs using the sound chip can only be fully utilized on the PCjr
and will not make music on the other members of the PC family—defi-
nitely something to keep in mind before you go through all the trouble of
learning to program the sound chip!

Sound Output in the PCjr

There are two sound destinations for the PCjr’s sound signals: the
internal speaker, and the external paths. The external paths are three of
the sockets on the back of the PCjr: the A-audio output (which is usually
connected to a hi-fi system), the D-direct driving output (which can be
connected to an RGB monitor, where the sound signal is usually ignored),
and the T-television output (which can be connected to a TV set through
an RF modulator).

7 6 5 4 3 2 1 0 Use

1 Identifies first byte (command byte)

RO R1 R2 . . Register number in T1 chip (0, 2, or 4)
F6 F7 F8 F9 4 of 10 bits in frequency count

Figure 7-7. The bit setting for the first byte of

a frequency count
Bit
7 6 5 4 3 2 1 0 Use
0o . . . e Identifies second byte (completing count)
X Unused, ignored; we can set to 0 or 1
FO F1 F2 F3 F4 F5 6 of 10 bits in frequency count
Figure 7-8. The bit setting for the second
byte of a frequency count
Bit
7 6 5 4 3 2 1 0 Use
1 . . . Identifies first byte (command byte)
RO R1 R2 . . Register number in TI chip (1, 3, 5, or 7)
A0 A1l A2 A3 4 attenuation bits
Figure 7-9. The coding of the attenuation
bits in the first byte of a frequency count
Bit
7 6 5 4 3 2 1 0 Use
1 Identifies first byte (command byte)
i 1 0 Register number in TI chip (6)
X . . . Unused, ignored; we can set to 0 or 1

FB 1 for white noise, O for periodic

NF0 NF1 2 noise frequency control bits

Figure 7-10. The coding of the noise control
bits in the first byte of a frequency count

158

PROGRAMMER’S GUIDE TO THE IBM PC

The PCjr’s internal speaker, like all other PC internal speakers, can
only get its sound signals from the timer. The external paths get their
sound from any of the four sources that generate sound. It’s important to
note that the sounds made by the TIsound chip cannot be directed to the
computer’s internal speaker. This is because the internal speaker is driven
in a way that is completely incompatible with the rich capabilities of the
TIsound chip—a shame, but that’s the way it is.

If you study the PCjr Technical Reference manual for material re-
lated to this, you may notice that bit 4 of port 97 can be used to control
the internal -speaker. Setting this bit to 1 will disable the speaker, but
don’t do it! For one thing, there are other ways to control the speaker, as
we have seen in the previous section. But more importantly, this bit has a
radically different use in the other PC models: When this bit is set, the use
of memory is disabled, which shuts down the computer quite thoroughly.

ROM-BIOS Basics

The BIOS Philosophy 160
The ROM-BIOS Services Interrupts 161
BIOS-Service Operating Characteristics 161

Creating an Assembly-Language Interface 164
The Basic Form of an Interface Routine 164

159

160

PROGRAMMER’S GUIDE TO THE IBM PC

ne secret of successful programming for the PC family lies in
the effective use of the software that is built right into the
machine: the ROM-BIOS services. Conceptually, the ROM-
BIOS services are sandwiched between the hardware and the
high-level languages (including the operating system). They work di-
rectly with the computer’s hardware and peripheral devices, performing
some of the system’s most fundamental tasks, such as reading and writ-
ing individual bytes of data to the display screen or disk. Programming-
language services and DOS services are often built from these basic func-
tions and enhanced to make a particular process more efficient. We can
enhance our programs in the same way by plugging them directly into the
ROM-BIOS, thereby gaining access to an extremely powerful set of tools
and using our computers in the way that IBM intended them to be used.

That last point is worth emphasizing. IBM has gone to considerable
lengths to create a clean and well-defined method for directing the oper-
ation of the computer through the ROM-BIOS services. As each new PC
model is designed, IBM (and any other computer maker who is faithfully
extending the PC family) makes sure its ROM-BIOS services are thoroughly
compatible with those of the other members of the family. As long as we
control our computers through the ROM-BIOS, whether directly or in-
directly, we are safe from any compatibility problems. If we bypass the
ROM-BIOS and program directly to the hardware, we are not only asking
for trouble, but we are also severely limiting the range and viability of
our programs.

In the next five chapters, we will discuss the BIOS service routines.
Fortunately, the routines fall naturally into groups that are derived from
the hardware devices they support, so the video services, disk services,
and keyboard services can all be reviewed separately. But before we take
a closer look at the individual services, we need to find out how we can
incorporate them into our programs. This chapter sets the stage by ex-
plaining what goes into writing an interface routine, the bridge between
our programming language and the ROM-BIOS services. First, a word on
how the ROM-BIOS operates.

THE BIOS PHILOSOPHY

All ROM-BIOS services are invoked by interrupts. The interrupt in-
structions point to a particular location in the interrupt vector table in
low memory that contains an interrupt vector: the address of the service
routine stored in ROM. This design makes it possible for any program to
request a service without knowing the specific memory location of the
ROM-BIOS service routine. It also allows the services to be moved around,

Chapter 8: ROM-BIOS Basics 161

expanded, or adapted without affecting the programs that use the ser-
vices. Although IBM has tried to maintain the absolute memory location
of some parts of the ROM-BIOS, we would be foolish to use these ad-
dresses since there is always a chance they may be changed in the future.
The standard, preferred, and most reliable way to invoke a ROM-BIOS
service is to use its interrupt rather than its absolute location.

The ROM-BIOS services could be supervised by one master inter-
rupt, but instead they are divided into subject categories, each category
having its own controlling interrupt. The primary benefit of this design is
that it allows each interrupt handler to be replaced with a minimum
amount of disruption. For example, if a hardware manufacturer created
a radically different video display, printer, or anything else that required a
completely new BIOS program to operate it, the manufacturer could pro-
vide us with a new BIOS program along with the hardware. The new BIOS
program might be stored in RAM rather than ROM and it would replace
just that one part of IBM’s ROM-BIOS that was used with the old hard-
ware. By making the ROM-BIOS modular, IBM has made it easier to im-
prove and extend the capabilities of our computers.

THE ROM-BIOS SERVICES INTERRUPTS

There are twelve ROM-BIOS interrupts in all, falling into five groups:
Six of the twelve interrupts serve specific peripheral devices; two report
on the computer’s equipment; one works with the time/date clock; one
performs the print-screen operation; and finally, two interrupts wrench
the computer into another state altogether, activating ROM-BASIC and the
system start-up routine. As we’ll see, most of the interrupts are tied to a
group of subservices that actually do the work. For example, the video
services interrupt 16 (hex 10) has seventeen subservices that do everything
from setting the video mode to changing the size of the cursor. We call a
subservice by invoking its governing interrupt and specifying the subser-
vice number in register AH. @ This process is explained in the example
at the end of this chapter.

BIOS-SERVICE OPERATING CHARACTERISTICS

The ROM-BIOS services use some common calling conventions that
provide consistency in the use of registers, flags, the stack, and memory.
We’ll outline the characteristics of these operating conventions, begin-
ning with the segment registers.

162

PROGRAMMER’S GUIDE TO THE IBM PC

Interrupt
Dec Hex Use

Peripberal Devices Services

16 - 10 Video-display services (see Chapter 9)

19 13 Diskette services (see Chapter 10)

20 14 Communications services (see Chapter 12)

21 15 Cassette-tape services (see Chapter 12)

22 16 Standard keyboard services (see Chapter 11)

23 17 Printer services (see Chapter 12)
Equipment Status Services

17 11 Equipment-list service (see Chapter 12)

18 12 Memory-size service (see Chapter 12)
TimelDate Service

26 1A Time and date services (see Chapter 12)
Print-Screen Service

N N Print-screen service (see Chapter 12)

Special Services

24 18 Activate ROM-BASIC language (see Chapter 12)

25 19 Activate bootstrap start-up routine (see Chapter 12)

Figure 8-1. The twelve ROM-BIOS services

The code segment register (CS) is automatically reserved, loaded, and
restored as part of the interrupt process. Consequently, we don’t have to
worry about our program’s CS. The DS and ES registers are preserved by
the ROM-BIOS service routines, except in the few cases where they are
explicitly used. The stack segment register (SS) is left unchanged, and the
ROM-BIOS services depend upon us to provide a working stack. (Every-
thing depends upon a working stack!)

The stack requirements of the ROM-BIOS services are not spelled
out and they can vary considerably, particularly since some services in-
voke other services. (One of the flaws of the IBM personal computers,
and all computers based on the Intel 8088, is the very fuzzy specification
of stack usage and stack boundaries.) Generally, most programs ought to
be working with a much larger stack than the ROM-BIOS services need.

Chapter 8: ROM-BIOS Basics 163

In connection with the segment registers, the program counter (PC
or IP) is preserved by the same mechanism that preserves the code seg-
ment. In effect, the stack pointer (SP) is preserved because all the ROM-
BIOS services leave the stack clean, POPping off anything that was PUSHed
on during the service-routine execution.

As usual, the general-purpose registers, AX through DX, are consid-
ered fair game. The standard rule is not to expect any contents of these
registers to be maintained when you pass control to another routine, and
that applies to the ROM-BIOS services as well. If you closely inspect the
coding of the services in the IBM Technical Reference manual, you will
find that one or more registers are left undisturbed in one service or an-
other, but you would be foolish to try to take advantage of this. As a
general rule, when a simple result is returned from a subroutine, it is left
in the AX register; this applies to both the ROM-BIOS and to all program-
ming languages. We’ll see how often this really happens when we cover
the ROM-BIOS services in detail.

The index registers (SI and DI) may be changed, just like the AX
through DX registers.

The various flags in the flag register are routinely changed as a by-
product of the instruction steps in the ROM-BIOS routines. You should
not expect any of them to be preserved. In a few instances, the carry flag
(CF) or the zero flag (ZF) are used to signal the overall success or failure
of a requested operation.

The details that we have been poring over are important but rather
tedious, and there is little reason for you to pay much attention to them.
If your programs follow the general interface rules given in the next sec-
tion, and if they follow the specific requirements of your programming
language (@ covered in Chapters 19 and 20), you may not need to be con-
cerned with them at all.

Q NOTE: If you set out to use the ROM-BIOS services in your pro-
grams, you'll naturally be concerned about the possible conflicts be-
tween the services and the operating conventions that your language
follows. Put your mind at ease. You will find that you do not have to
take any extraordinary precautions to protect your programming lan-
guage from the ROM-BIOS, or vice versa.

164 PROGRAMMER’S GUIDE TO THE IBM PC

CREATING AN ASSEMBLY-LANGUAGE INTERFACE

In order to make direct use of the ROM-BIOS services from our pro-
grams, we need to create an assembly-language interface routine to link
our programming language to the ROM-BIOS. When we say “interface
routine,” we are referring to conventional program-development subrou-
tines—subroutines that are assembled into object modules (.OBJ files) and
then linked into working programs (.EXE or .COM files in DOS). & For
more on this subject, see Chapter 19.

Working with assembly language can seem a fearsome task if you
are not already comfortable with it. While there are plenty of good rea-
sons to be intimidated by assembly language—after all, it is the most
difficult and demanding kind of programming—it’s really not that diffi-
cult to create an assembly-language interface routine. As I have often re-
lated, when I first needed to create an interface routine for the Norton
Utility programs that I was writing in Pascal, I had absolutely no prior
experience with either the IBM Assembler or the 8088 machine and as-
sembly language. Even though I started out cold, I had my first working
and tested interface done in 45 minutes flat. I mention this not to brag,
but to emphasize that it’s just not as hard as many people think.

To create your own interfaces, you will need to have an assembler
that is compatible with the DOS standards for object files. The one I use is
the IBM Macro Assembler, but there are others available. Do not, how-
ever, plan to use the justly famous “cheap assembler” CHASM, by David
Whitman. CHASM and some other assemblers are set up to produce only
complete assembly-language programs rather than modules that can be
linked to other programs, such as the interface routines that we are inter-
ested in. All the examples we give here are for the IBM Macro Assembler.

Q NOTE: BASIC can work with machine-language subroutines put
directly into memory. In interpreted BASIC they are CALLed and in com-
piled BASIC they are CALLed absolute. Preparing the sort of assembler
subroutine that will work with BASIC can be done as easily with DEBUG's
A-assemble command as it can with an ordinary assembler.

The Basic Form of an Interface Routine

The exact form an interface routine must take varies with its even-
tual use. An assembly-language interface is a handshaker between our
programming language and a ROM-BIOS service, so it has to be tailored
to meet the needs of both ends. It matters which programming language
is being used; 7 matters which ROM-BIOS service is being invoked; and it
matters whether any data is being passed in one direction or the other.

Chapter 8: ROM-BIOS Basics 165

However, the general outline of an assembly-language interface is basi-
cally the same, no matter what we are doing.

One of the best ways to understand how an assembly-language in-
terface is coded is to view it as five nested parts, which are outlined here:

Level 1: General assembler overhead
Level 2: Subroutine assembler overhead
Level 3: Entry code
Level 4: Get parameter data from caller
Level 5: Invoke ROM-BIOS service
Level 4: Pass back results to caller
Level 3: Exit code
Level 2: Finishing up subroutine assembler overhead
Level 1: Finishing up general assembler overhead

In this outline, levels 1 and 2 are needed to tell the assembler what’s
going on, but they don’t produce any working instructions. Levels 3
through § produce the actual machine-language instructions.

We’ll dig our way down through each of these levels to show you
the rules and explain what’s going on. Don’t forget that the specific re-
quirements of an interface routine change for different circumstances.
We’ll point out the few design elements that are universal to all routines.

Level 1: General Assembler Overhead

Here is an outline of a typical level-1 section of an interface routine,
with the lines numbered for reference:

1-1 INTERFACE SEGMENT ‘CODE’
1-2 ASSUME CS:INTERFACE

; levels 2 through 5 appear here
1-3 INTERFACE ENDS
1-4 END

In line 1-1, INTERFACE is an arbitrary name we have given this as-
sembly routine; SEGMENT is essential and is used to define an assembly
routine; CODE is a category that may vary by language (we’ll see another
example shortly).

Line 1-2 is not always needed, and assembler experts will recognize
it as a piece of illegal fakery. Quite simply, the ASSUME instruction allows
us to do some if-then type programming without getting into trouble;
we’ll make use of it in later chapters.

Line 1-3 ends the segment started in line 1-1, and line 1-4 ends the
whole assembly routine.

166

PROGRAMMER’S GUIDE TO THE IBM PC

The format conventions we have shown here are taken from
IBM/Microsoft Pascal (@ which we’ll cover in Chapter 20). For an exam-
ple of something different, C needs these two lines in place of line 1-1:

PGROUP GROUP PROG
INTERFACE SEGMENT BYTE PUBLIC ‘PROG”

Level 2: Subroutine Assembler Overhead

Next, let’s look at an outline of a typical level 2, the assembler over-
head for a subroutine (called a procedure in assembler parlance). Here is
some typical level-2 coding:

2-1 PUBLIC MEMSIZE
2-2 MEMSIZE PROC FAR

; levels 3 through 5 appear here
2-3 MEMSIZE ENDP

Line 21 instructs the assembler to make the name of our procedure,
MEMSIZE, public information, which means that the link program can
then connect it to its users.

Lines 2-2 and 2-3 bracket our procedure, which has arbitrarily been
named MEMSIZE. PROC and ENDP are mandatory and surround any pro-
cedure, with PROC defining the beginning of the procedure and ENDP
signaling the end of it. FAR tells the assembler that the procedure is lo-
cated outside of the current segment. We could have used either FAR or
NEAR in this position. If we had used NEAR, it would have indicated the
procedure was located inside the current segment instead of outside. FAR
calls are the most common, but some languages do (C) or can (Pascal)
use NEAR calls. Except for FAR or NEAR, what you see here is universal
for all languages and all purposes.

Level 3: Entry Code

Level 3 begins the actual working instructions. It takes care of the
housekeeping overhead that is needed for a subroutine to work cooper-
atively with the language that called it. Here is an example:

3-1 PUSH BP
3-2 MoV BP,SP
; levels 4 and § appear here
3-3 POP BP
3-4 RET 0

Lines 3-1 and 3-2 are used to gain access to and preserve any param-
eters that the caller has passed. These will appear one way or another on
the stack. The base pointer register (BP) is used universally to keep track
of the entry-point location on the stack. Our calling program will have its

Chapter 8: ROM-BIOS Basics 167

own BP, which we preserve in line 3-1 by PUSHing it onto the stack and
restore in line 3-3 by POPping it off.

In line 3-2, we get our own stack frame reference by grabbing the
current stack pointer (SP) and moving it to the BP. From that point on, no
matter what gets pushed onto the stack, we’ll have kept track of where
our caller’s parameters are on the stack. If we needed to preserve any
other registers for our caller, they would be PUSHed to the stack immedi-
ately following line 3-2, and POPped, in reverse order, just before line 3-3.
Normally this would not be necessary.

Line 3-4 is used to pass control back to our caller; the assembler
translates our terse RET into a NEAR or FAR return, depending upon
whether our PROC was declared NEAR or FAR. The 0 in line 3-4 is clean-
up work that we usually have to do to remove any caller’s parameters
from the stack. If there were no parameters or if the conventions of the
programming language have the caller clean parameters off the stack, as
C does (@ see pages 381-382), then this value will be zero. If there were
parameters and the programming language doesn’t clean up the stack,
we have to know how big to make this value so as to remove every pa-
rameter. The value must be increased by 2 for every 1- or 2-byte param-
eter (byte, word, or offset address), and by 4 for each 4-byte parameter
(segmented address) that was passed to the procedure. As long as we can
identify the nature of our parameters (they are sure to be one of these
four types), we'll be OK.

Level 4: Get Parameter Data from Caller

Level 4 deals with the parameters by passing them from the caller to
the ROM-BIOS, and with the results by passing them from the ROM-BIOS
to the caller. The caller’s parameters are on the stack, either in the form
of data or addresses (@see Chapter 20 for help with this). The registers,
mostly AX through DX, are used for ROM-BIOS input and output. The
trick here—and it can be tricky—is to use the correct stack offsets to
find the parameters. We’ll sneak up on this problem in stages.

First, we get to the parameters on the stack by addressing relative to
the BP frame reference that we snatched earlier. Here’s a typical layout:

Location Contents

BP Caller’s saved BP

BP+2 Return address, offset and segment
BP+6 One parameter

BP+8 Another parameter

BP+10 Yet another parameter

168

PROGRAMMER’S GUIDE TO THE IBM PC

The return address at BP+2 is four bytes for a FAR procedure, as
we’ve shown it, but only two bytes for a NEAR procedure. If yours is a
NEAR procedure, all the subsequent offsets should be 2 less than shown
here. Most languages PUSH their parameters onto the stack in the order
they are written. This means that the last parameter is the one closest to
the top of the stack, at BP + 6. However, Lattice/Microsoft C uses the re-
verse order, so that the closest parameter is the first one written in the
calling program.

Parameters normally take up two or four bytes on the stack, though
two bytes is the most common. Our example here has the locations
BP+6, +8,and +10 two bytes apart. If any of these parameters were four
bytes in size, we would adjust the subsequent references accordingly.

If data was placed on the stack, then we can get it immediately by
addressing it like this: [BP+6]. If an address was placed on the stack, two
steps are needed: First, get the address, and second, get the data. Here is
a level-4 example showing both data ([BP+6]) and address ([BP +8]) re-
trieval:

4-1 mMov AX,[BP+6] ; value of parameterl
4-2 MoV BX,[BP+81 ; address of parameter2
4-3 MoV DX, [BX] ; value of parameter2
; level 5 appears here
4-4 MoV BX, [BP+8] ; address of parameter2 (again)
4-5 MoV [BX1,DX ; pass back new value

All of these MOV instructions move data from the second operand
to the first operand. Line 4-1 grabs data right off the stack and slaps it
into the AX register. Lines 4-2 and 4-3 get data via an address on the
stack; line 4-2 first gets the address (parking it in BX), and then line 4-3
uses that address to get to the actual data, which is moved into DX. Lines
4-4 and 4-5 reverse this process; line 4-4 gets the address again, and then
line 4-5 moves the contents of DX into that memory location.

O NOTE: A crucial bit of assembler notation is demonstrated here:
BX refers to what’s in BX, and [BX] refers to a memory location whose
address is in BX.

While I don’t claim that sorting out these references is a snap, if you
think it through carefully, it works out right.

Level 5: Invoke ROM-BIOS Service

Level § is our final step: It simply invokes the ROM-BIOS service.
Typically, this step involves two simple instructions, like this:

5-1 mov AH,15 ; function 15
5-2 INT 16 ; call BIOS routine

Chapter 8: ROM-BIOS Basics 169

Line 51 selects the interrupt subservice. Typically, there are several
subservices numbered from 0 on up. They are always selected with a
code in the AH register.

Line 5-2 generates the interrupt that requests the service; in this ex-
ample, it’s interrupt 16 (hex 10), the video-services interrupt. -

This five-step process outlines the basic principles of nearly all as-
pects of an assembly-language interface. In the following chapters, we’ll
see how this design is used in specific examples.

ROM-BIOS
Video Services

Accessing the BIOS Video Services 172
Service 0: Set Video Mode 173
Service 1: Set Cursor Size 174
Service 2: Set Cursor Position 175
Service 3: Read Cursor Position 175
Service 4: Read Light-Pen Position 176
Service 5: Set Active Display Page 176
Service 6: Scroll Window Up 177
Service 7: Scroll Window Down 178
Service 8: Read Character and Attribute 178
Service 9: Write Character and Attribute 179
Service 10 (hex A): Write Character 180
Service 11 (hex B): Set Color Palette 181
Service 12 (hex C): Write Pixel Dot 182
Service 13 (hex D): Read Pixel Dot 182
Service 14 (hex E): Write Character as TTY 183
Service 15 (hex F): Get Current Video Mode 184
Service 19 (hex 13): Write Character String 184

Comments and Example 185

171

172

PROGRAMMER'’S GUIDE TO THE IBM PC

n this chapter, we will discuss each of the video or screen-control

services provided by the ROM-BIOS. We have devoted most of the

chapter to detailed descriptions of each video service. Beginning on

page 185, we have included some programming hints and an assem-
bly-language routine that makes use of some of the video services. @ For
a more general discussion of video-display characteristics in the PC fam-
ily, see Chapter 4. For information on the low-memory locations used by
the ROM-BIOS for video status information, turn to page 54.

ACCESSING THE BIOS VIDEO SERVICES

The ROM-BIOS video services are all requested by generating inter-
rupt 16 (hex 10). There are sixteen principle services and one AT service
available under this interrupt (e see Figure 9-1). Like all other ROM-BIOS
services, the video services are numbered from 0 and are selected by plac-
ing the service number in the AH register. The services often need addi-
tional parameters from the caller, which are placed in BX, CX, or DX,
depending on the specifications of the service routine. We’ll cover the
purpose and placement of the parameters under each service description.

Service
Dec Hex Description
0 0 Set video mode
1 1 Set cursor size
2 2 Set cursor position
3 3 Read cursor position
e 4 Read light-pen position
5 5 Set active display page
6 6 Scroll window up
7 7 Scroll window down
8 8 Read character and attribute
9 9 Wrrite character and attribute
10 A Write character
11 B Set color palette
12 C Write pixel dot
13 D Read pixel dot
14 E Write character as TTY
15 F Get current video mode
19 13 Write character string

Figure 9-1. The seventeen video services

Chapter 9: ROM-BIOS Video Services 173

Service 0: Set Video Mode

Service 0 is used to select from the fifteen video modes shown in
Figure 9-2. @ For details of the video modes, see page 71.

You may recall from our discussion in Chapter 4 that modes 0
through 6 apply to the standard Color/Graphics Adapter; mode 7 applies
to the Monochrome Adapter; modes 8 through 10 were introduced with
the PCjr; and modes 13 through 16 were added for the Enhanced Graph-
ics Adapter, which also supports all other modes except 8, 9 and 10.

Something else you may want to keep in mind if you are working
with the black-and-white or color-suppressed modes (modes 0, 2, and 5)
is that they only suppress color on the composite output and not on the
RGB output of a display adapter.

Mode Type Size Colors Adapter Display
0 Text 40 x 25 16 (grey) CGA, EGA, PCjr Enhanced Color
EGA: 64 color
1 Text 40x25 16 foreground, CGA, EGA, PCjr Enhanced Color
8 background
EGA: 64 color
2 Text 80 %25 16 (grey) CGA, EGA, PCjr Enhanced Color
EGA: 64 color
3 Text 80 %25 16 foreground, CGA, EGA, PCjr Enhanced Color
8 background
EGA: 64 color
4 Graphics 320 %200 4 CGA, EGA, PCjr Enhanced Color
5 Graphics 320 %200 4 (grey) CGA, EGA, PCjr Enhanced Color
6 Graphics 640 x 200 2 CGA, EGA, PCjr Enhanced Color
7 Text 8025 b/w EGA, MA Monochrome
8 Graphics 160 %200 16 PCjr Enhanced Color
9 Graphics 320 %200 16 PCjr Enhanced Color
10 Graphics 640 %200 4 PCjr Enhanced Color
11 Apparently internal
to the EGA
12 Apparently internal
to the EGA
13 Graphics 320 %200 16 EGA Enhanced Color
14 Graphics 640 %200 16 EGA Enhanced Color
15 Graphics 640 % 350 b/w EGA Monochrome
16 Graphics 640 x 350 16/64 EGA Enhanced Color

Figure 9-2. The video-mode settings for
service 0

174

PROGRAMMER’S GUIDE TO THE IBM PC

Normally, the ROM-BIOS clears the screen memory buffer when the
mode is set, even if it is set to the same mode again and again. In fact,
setting the same mode repeatedly can be an easy and effective way to
clear the screen. However, it is not an ideal clear-screen operation for the
Compaq PC-compatibles, as they show a noticeable delay when this tech-
nique is used.

@ See Chapter 4, page 71 for more on video modes. See page 54,
memory location hex 449, for more on how a record of the mode is
stored in memory. See service 15 (hex F) to find out how to read the cur-
rent video mode.

Service 1: Set Cursor Size

Service 1 controls the form and size of the blinking cursor that ap-
pears in the text modes. The standard IBM cursor normally appears as
one or two blinking scan lines at the bottom of a character display posi-
tion. We can change the default cursor size by redefining the number of
lines that are displayed.

The Color/Graphics Adapter can display a cursor that has eight scan
lines, numbered from 0 at the top to 7 at the bottom. The Monochrome
Adapter and the EGA can display a cursor that has fourteen scan lines,
also numbered from the top, from 0 through 13. We set the cursor size by
specifying the starting and ending scan lines. (These are the same as the
start and stop parameters of BASIC’s LOCATE statement.) The start line
number is loaded into the CH register and the stop line number into the
CL register. The default cursor setting is CH=6, CL=7 for the Color/
Graphics Adapter, and CH=11, CL=12 for the Monochrome Adapter.

If the start line is less than the stop line, a normal one-part cursor
appears. If the start line is greater than the stop line, the cursor will wrap
around and produce a two-part cursor.

You will notice that the valid line numbers occupy only four of the
bits (bits 0 through 3) placed in these registers. If bit 5 of CH is set on
with a value of 32 (hex 20), the cursor will disappear. When a graphics
mode is set, bit § is automatically set on to keep the cursor mechanism
from interfering with the graphics display. This is one of two techniques
that we can use to remove the cursor in the text modes. The other tech-
nique is to actually move it off the screen, say to row 26, column 1. Since
there is no true cursor in the graphics modes, any cursor that we see is
simulated with the solid-block character, CHR$(223), or with a change of
background attributes.

Chapter 9: ROM-BIOS Video Services 175

Service Number Parameters

AH=1 CH =starting scan line of cursor

CL =ending scan line of cursor

Figure 9-3. The registers used to set the
cursor size using service 1

Service Number Parameters

AH=2 DH = row number
DL = column number

BH = page number (set to 0 in graphics modes)

Figure 9-4. The registers used to set the
cursor position using service 2

@ For more on cursors, see page 92. See service 3 for the reverse
operation: Read cursor position.

Service 2: Set Cursor Position

Service 2 sets the position of the cursor using row and column co-
ordinates. In text modes, there can be multiple display pages, each one
having an independently recorded cursor position. Even though the
graphics modes do not have a visible cursor, they keep track of the logical
cursor position in the same way as the text modes. This logical cursor
position is used to supervise character 1/O.

The cursor position is specified by placing a row number in register
DH, a column number in DL, and a page number in BH. The numbering
for the rows and columns begins with coordinates 0,0 in the top left cor-
ner. The graphics modes also use the character row and column coordi-
nates to identify the cursor location, rather than the pixel coordinates. The
page number is the conventional display page number used by BASIC:
pages 0 through 7 in 40-column modes and pages 0 through 3 in 80-
column modes. The page number must be set to 0 in the graphics modes.

@ See Figure 9-4 for a summary of register settings. See page 85 for
more on display pages. See page 86 for more on text display formats. See
service 3 for the reverse operation: Read cursor position.

Service 3: Read Cursor Position

Service 3 is the opposite of services 1 and 2. When we specify the
page number in BH, the ROM-BIOS reports the cursor size by returning

176

PROGRAMMER’S GUIDE TO THE IBM PC

Service Number Parameters

AH=3 BH = page number (set to 0 in graphics modes)
DH = row number
DL = column number
CH =starting scan line of cursor

CL =ending scan line of cursor

Figure 9-5. The registers used to read the
cursor position using service 3

Service Number Parameters

AH=4 DH = character row number
DL = character column number
CH = pixel line number (0 through 199)
CX = pixel line number for new EGA graphics modes
BX = pixel column number

Figure 9-6. The registers used to read the
light-pen position using service 4

the starting scan line in CH and the ending scan line in CL. It reports the
cursor position by returning the row in DH and the column in DL. As with
service 2, the page must be specified as 0 in the graphics modes.

@ See Figure 9-5 for a summary of register settings. See page 85 for
more on display pages. See page 86 for more on text display formats.

Service 4: Read Light-Pen Position

Service 4 reports the light-pen status, specifically whether or not it
has been triggered, and where it is on the screen if it has been triggered.

Register AH is set to indicate triggering: If AH is 1, the light pen has
been triggered; if AH is 0, it has not been triggered. The light pen’s pixel
location on the screen is sensed by the hardware, and the ROM-BIOS re-
ports it to us translated into two forms: the character position (row in
DH, column in DL), and the pixel location (raster line in CH, column/dot
in BX). Since the pixel column location can be larger than 255, it is re-
ported in a full-word register. All other values are handled as bytes.

Service 5: Set Active Display Page

Service § sets the active display page for text modes 0 through 3. We
specify the page number in register AL. In the 40-column modes, we may

Chapter 9: ROM-BIOS Video Services 177

Service Number Parameters

AH=35 AL =new display page number (0—3 for modes 2
and 3, 0—7 for modes 0 and 1)

Figure 9-7. The registers used to set the
active display page using service S

choose from pages 0 through 7, and in the 80-column modes, from pages
0 through 3. Page 0 is used by default. Page 0 is located at the beginning
of display memory, with each subsequent page following either 2K bytes
(in 40-column modes) or 4K bytes (in 80-column modes) behind. The
higher page numbers are in higher memory locations.

@ See page 85 for more on display pages.

Service 6: Scroll Window Up

Service 6 and companion service 7 are used to define a rectangular
text-window area on the screen and to scroll its contents up or down one
or more lines. To accomplish the scrolling effect, blank lines are inserted
at the bottom of the window area with service 6 (at the top with service
7) and the top lines of the window (the bottom lines with service 7) are
scrolled off and disappear.

The number of lines to be scrolled is specified in AL. If AL is 0, the
entire window is blanked (the same thing would happen if we scrolled
more lines than the window size allowed). The location or size of the
window is specified in the CX and DX registers: CH is the top row, and
DH is the bottom row; CL is the left column, and DL is the right column.
The display attribute for the new blank lines inserted by the two services
is taken from BH. Figure 9-8 shows a summary of the register settings for
both services 6 and 7:

Service Number Parameters

AH=6 AL = number of lines to scroll
CH =row number of upper left corner
CL = column number of upper left corner
DH = row number of lower right corner
DL = column number of lower right corner
BH =display attribute for blank lines

Figure 9-8. The registers used to set the win-
dow size for scrolling using services 6 and 7

178

PROGRAMMER’S GUIDE TO THE IBM PC

Window scrolling is normally a two-stage process: When a new line
is ready to be written in the window, service 6 (or service 7) is used to
scroll the current window contents. Then the new information is written
to the new line using the cursor-positioning and character-writing ser-
vices. The following example demonstrates this window action.

DEBUG ; invoke DEBUG from DOS utilities

A ; ask to assemble instructions

INT 10 ; create interrupt hex 10 instruction

[Return] ; finish assembling

R AX ; ask to see and change contents of AX

0603 ; specify service 6 (scroll up), using 3-line window
R CX ; ask to see and change contents of CX

050A ; specify top left corner: row §, column 10

R DX ; ask to see and change contents of DX

1020 ; specify bottom right corner: row 16, column 32
DOL 180 ; fill screen with nonsense

G =100 102 ; execute INT 10, then stop

@ See Chapter 8 for more on assembly-language routines. See the
IBM DOS reference manual for more on DEBUG.

Service 7: Scroll Window Down

Service 7 is, as we’ve already mentioned, the mirror image of service
6. The primary difference between the two services is the scrolling ac-
tion. In service 7, the new blank lines appear at the top of the window
and the old lines disappear at the bottom. The opposite scrolling action
takes place in service 6. @ See the description under service 6 for the
parameter settings.

Service 8: Read Character and Attribute

Service 8 is used to read characters “off the screen,” that is, directly
out of the display memory. This service is unusually spiffy because it
works in both text and graphics modes. A

In graphics modes, the same character drawing tables that are used
to write characters are also used to recognize them by a pattern match-
ing operation. Even if we create our own character set in graphics mode,
this service will be able to recognize them. In text mode, of course, the
ASCII character codes are directly available in the display memory.

Chapter 9: ROM-BIOS Video Services 179

Service Number Parameters

AH=38 BH = active display page number (not needed in
graphics modes)

AL = ASCII character read from cursor location

AH = attribute of text character

Figure 9-9. The registers used to read a text
character and attribute using service 8

Service 8 returns the ASCII character code of the character read from
the screen in AL. In graphics mode, if the character does not match any
standard ASCII code, it is reported as hex 00. In the text modes, the service
also returns the text color attributes in AH. The text-mode display page
number must be specified in BH. The display-page setting is not needed in
the graphics modes.

@ See page 79 for more on text characters and attribute bytes. See
page 86 for more on text- and graphics-mode characters. See Appendix C
for more on ASCII characters.

Service 9: Write Character and Attribute

Service 9 writes one or more copies of a single character and its color
attribute. The character is specified in AL, and the text-mode attribute or
graphics-mode color is specified in BL. The number of times the charac-
ter is to be written (one or more times) is placed in CX.

For the text modes, the display page number must be specified in
BH; it need not be given for the graphics modes.

The character and its color attributes are written as many times as
requested, starting at the current cursor location. Although the cursor is
not moved, duplicate characters are written at subsequent screen loca-
tions. In text mode, the duplicated characters will successfully wrap
around from line to line, which increases the usefulness of this service. In
graphics mode, the characters will not wrap around.

Service 9 is quite useful both for writing individual characters and
for replicating a character. The repeat operation is most often used to
rapidly lay out blanks or other repeated characters, such as the horizon-
tal lines that are part of box drawings (@ see Appendix C). When you
wish to make a single copy of the character, be sure to set the count in
CXto 1. If it’s set to 0, the number of repetitions will run away.

Service 9 has an advantage over the similar service 14, in that we
can control the color attributes. However, its one disadvantage is that the
cursor is not automatically advanced.

180

PROGRAMMER’S GUIDE TO THE IBM PC

Service Number Parameters

AH=9 AL = ASCII character to write to screen
BL = character attribute to write to screen

BH = active display page number (not needed in graphics
modes)

CX = number of times to write character and
attribute

Figure 9-10. The registers used to write a
text character and attribute using service 9

In graphics mode, the color specified in BL is the foreground
color—the color of the pixels that make up the character drawing. If bit
7 is 1 (with the value of 128 or hex 80), then the color bits in BL are com-
bined with the current pixel color bits with an exclusive-or (XOR) opera-
tion. This is a convenient way to ensure that the resulting color is differ-
ent from what was there before—a near-guarantee of legibility. If bit 7 of
BL s 0, then the color in BL simply replaces the existing pixel colors. The
same feature also applies to the character and pixel writing services, ser-
vices 10 and 12.

@ See page 79 for more on display attributes in text modes. See
page 81 for more on color attributes in graphics modes.

Service 10 (hex A): Write Character

Service 10 is the same as service 9 (write character and attribute to
cursor location) with one exception: Service 9 allows us to change the
existing screen color attribute in text mode while service 10 does not.

Service Number Parameters

AH=10 AL = ASCII character to write to screen
BL = color attribute for graphics modes
BH = active display page number
CX =number of times to write character

Figure 9-11. The registers used to write a
character using service 10

Chapter 9: ROM-BIOS Video Services 181

However, in the graphics mode, the color still needs to be specified in BL,
making the description of this service as only a character-writing service
partly incorrect. The same graphics color rules apply as with services 9
and 12: The color can be used directly, or XORed with the existing color.
(@ See service 9 for an explanation.)

@ See page 79 for more on display attributes in text modes. See
page 81 for more on color attributes in graphics modes.

Service 11 (hex B): Set Color Palette

Service 11 is used to select one of the two medium-resolution graph-
ics palettes. To use this service, we load BH with the palette color ID and
BL with a color value. (@ See page 82 for more on color palettes.)

One variation of this service applies to the text modes; all others
apply only to the graphics modes. In the text modes, if BH is 0, then BL
specifies the color of the border around the text area—a color selected
from the full 16-color palette. In any graphics mode, if BH is 0, then BL
specifies the default color of the background and of the border area as
well. The border area is merged with any part of the working screen area
that is set to the background color. The BL value can be selected from the
full 16-color palette.

On the other hand, if BH is 1, then BL selects the palette being used.
For the Color/Graphics Adapter, this applies only to mode 4 (medium-
resolution, four-color graphics). For more advanced display adapters, in-
cluding the PCjr’s, it can apply to other modes as well. In this discussion,
we will cover just the standard four-color palettes that are provided by

Service Number Parameters

AH=11 BH = palette color ID (0 or 1 in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>