
T H E P E T E R N O R T O N

PROGRAMMER'S GUIDE

1

®

PC
The ultimate reference

guide to the entire
family of IBM"
personal computers.

PRES S

T H E P E T E R N 0 R T 0 H

FKOGRAMMERSGUirC

TOTHEIMPC

T H E P E T E R N O R T O N

PROGRAMMERS GUIDE

TOTHEIMPC
The ultimate reference

guide to the entire
family of IBM®
personal computers.

KIHaosofL
P R K S S

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
16011 N.E. 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1985 by Peter Norton
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data
Norton, Peter, 1943-

The Peter Norton Programmer's Guide to the IBM PC.
Includes index.

I. IBM Personal Computer—Programming. I. Title.
II. Title: Programmer's guide to the IBM PC.
QA76.8.I2594N68 1985 001.64'2 85-8872
ISBN 0-914845-46-2

Printed and bound in the United States of America.

18 19 20 21 FGFG 8 9 0 9 8

Distributed to the book trade outside the United States of America
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10,
New Zealand

Penguin ISBN 0-14-087-144-6

British Cataloging in Publication Data available

Framework™ is a trademark of Ashton-Tate. UNIX™ is a trade
mark of AT&T Bell Laboratories. COMPAQ® is a registered
trademark and COMPAQ PLUS™ and DESKPRO™ are trade
marks of COMPAQ Computer Corporation. CP/M® is a regis
tered trademark of Digital Research Incorporated. Intel® is a reg
istered trademark of Intel Corporation. IBM® is a registered
trademark and PC-AT™, PC-DOS™, PC/r™, PC-XT™, and Top-
view™ are trademarks of International Business Machines Corpo
ration. Microsoft® and XENIX® are registered trademarks and
GW-BASIC™ is a trademark of Microsoft Corporation.
Motorola® is a registered trademark of Motorola, Incorporated.
Norton Utilities™ and TimeMart™ are trademarks of Peter Nor
ton. Tandy® is a registered trademark of Radio Shack, a division of
Tandy Corporation. ProKey® is a registered trademark of Rose-
Soft. TI® is a registered trademark and TI Professional™ is a trade
mark of Texas Instruments.

CONTENTS

Acknowledgments vii

Introduction ix

1 Anatomy of the PC 1

2 The Ins and Outs 19

3 The ROM Software 41

4 Video Basics 67

5 Disk Basics 99

6 Keyboard Basics 127

7 Sound Generation 145

8 ROM-BIOS Basics 159

9 ROM-BIOS Video Services 171

10 ROM-BIOS Diskette Services 187

11 ROM-BIOS Keyboard Services 203

12 Miscellaneous Services 209

13 ROM-BIOS Service Summary 225

14 DOS Basics 241

15 DOS Interrupts 247

16 Universal DOS Functions 269

17 New DOS Functions 295

18 DOS Service Summary 325

19 Program Building 337

20 Programming Languages 349

Appendix A: Installable Device Drivers 385

Appendix B: Hexadecimal Arithmetic 391

Appendix C: About Characters 401

Index 413

ACKNOWLEDGMENTS

So many people have contributed to the making of this book that it
would be impossible to Ust them all. There is one person, however, who
has earned special mention and thanks for her efforts and dedication to
this project: Suzanne Ropiequet.

INTRODUCTION

My goal in writing this book is a simple but an ambitious one: to
help you master the principles of programming the IBM personal com
puter family. From the time that the first IBM Personal Computer (known
to us as "the PC") was introduced in the fall of 1981, it was clear that it
was going to be a very important computer. Later, as PC sales zoomed
beyond the expectations of everyone, IBM included, and as the original
model was joined by a sibling or two, the PC became recognized as the
standard for serious desktop computers. From the original PC, a whole
family of computers—a family with many branches—has evolved. And
at the same time, the importance of the PC family has also grown.

The success and significance of the PC family has made the develop
ment of programs for it very important. However, the fact that each mem
ber of the family differs in its details and characteristics from its relatives
has also made the development of programs for the family increasingly
complex.

This book is about the knowledge, skills, and concepts that are
needed to create programs for the PC family—not just for one member
of the family, though we might perhaps cater to the peculiarities and
quirks of one member, but for the family as a whole, in a way that is uni
versal enough that our programs should work not only on all the present
family members, but on future members as well.

I've written this book for anyone involved in the development of
programs for the PC family. It is for programmers, but not just for pro
grammers. It is for anyone who is involved in or needs to understand the
technical details and working ideas that are the basis for PC program de
velopment, including anyone who manages programmers, anyone who
plans or designs PC programs, and anyone who uses PC programs and
wants to understand the details behind them.

SOME COMMENTS ON PHILOSOPHY

One of the most important elements of this book is the discussion
of programming philosophy. You will find throughout this book expla
nations of the ideas underlying IBM's design of the PC family, and of the
principles of sound PC programming, viewed from my own experience.

PROGRAMMER'S GUIDE TO THE IBM PC

If this book were to provide you with only facts—tabulations of
technical information—it would not serve you well. That's why I've in
terwoven with the technical discussion an explanation of what the PC
family is all about, of the principles that tie the various family members
together, and of the techniques and methods that help us produce pro
grams that can endure and prosper along with the PC family.

HOW TO USE THIS BOOK

This book is both a reading book and a reference book, and there
are at least two ways that you might approach it. You may wish to read
it, like any other book, from front to back, digging in where the discus
sion is useful to you and quickly glancing through the material you don't
yet need. This approach provides a grand overview of the workings and
the ideas behind the workings of PC programs. You can also use this book
as a pure reference, dipping into specific chapters for specific informa
tion. We've provided detailed tables of contents at the beginning of each
chapter and an extensive index to help you find what you need.

When you use this book as a random-access reference to the details
of PC programming, you'll find that much of the material is intricately in
terrelated. To help cope with the interrelationships, you'll see that 1 have
repeated some details each time they came up where it was practical to
duplicate information, and have used a (•- symbol to refer you to other
sections when it was not practical. 1 have also used the following self-
explanatory symbols to help you zone in on material that is specific to a
particular machine;

PC
and EQI the original PC

XT

JRl

and ia the PC XT

and ill!i the PCjr

PR
and Uil the Portable PC

1 w—1 ||||b=3|AllllMi iMimy and EQI the PC AT

Introduction

The marhinfi icons are displayed beside paragraphs and whole sections
that apply to a specific machine, while the initials are used to draw your
attention to machine-specific comments within a discussion that applies
to the family as a whole. I hope this system will enable you to more easily
zone in on the information you need for your programs.

OTHER RESOURCES

One book, of course, can't provide you with all the knowledge that
you might possibly need. I've made this book as rich and complete as I
reasonably can, but there will always be a need for other kinds of infor
mation. Here are some of the places you might look for material to sup
plement what you find here:

For detailed technical information about the PC family, the ultimate
source is IBM's series of Technical Reference manuals. There are specific
Technical Reference manuals for the original PC, for the XT, for the PCjr,
for the AT, and for other specific models. The majority of the program-
ming-related information in these manuals is essentially repeated, and
any one manual could serve as a reference for the entire family. You should
know a few things about these model-specific manuals: First, information
that is specific to one model is not differentiated from general informa
tion for the whole PC family. To be sure of the differences, you should use
common sense, compare the different manuals, and consult this book.
Second, you should keep in mind that each new model of PC adds new
features. If you turn to the manual for a later PC model, you will find
information on a wide variety of features; if you turn to the manual for
an earlier model, you'll avoid being distracted by features that do not ap
ply to all models in the family.

There is also an IBM Options Adapters Technical Reference manual
for the various options and adapters, such as different disk drives or dis
play screens, used by the PC family. Technical information about this kind
of equipment is gathered into that one book, which is updated period
ically (the updates are available by subscription). Much of the informa
tion in this Technical Reference manual is not of use to programmers, but
you'll find some parts that may be.

IBM also publishes Technical Reference manuals for special exten
sions to the PC, such as PC Network.

Perhaps the most important of the IBM Technical Reference man
uals is the series for DOS. These manuals contain a wealth of detailed
technical information, which I have summarized in this book. If you find
that you need more specific details about the operation of DOS, you
should turn to this manual.

PROGRAMMER'S GUIDE TO THE IBM PC

Besides these IBM manuals, there is a host of other places to turn to
for supplemental information. For a somewhat broader perspective on
the IBM Personal Computer, one that is not focused on programming, see
my Inside the IBM Personal Computer, published by Robert J. Brady Com
pany. For a similarly broader perspective on DOS, see Van Wolverton's
Running MS-DOS, published by Microsoft Press. For more details on the
peculiarities and the ins and outs of the PCjr, see my Exploring the PCjr,
also published by Microsoft Press.

Because this book covers the subject of PC programming in a broad
fashion, it can't provide you with more than a few key details about indi
vidual programming languages. For any particular programming lan
guage, and for the many specific compilers for those languages, you will
need more books than I could begin to list or recommend.

With these introductory remarks completed, it's time for us to plunge
into our task of mastering the principles of programming the PC family!

1

Anatomy of the PC

The 8088 Microprocessor 2
The 80286 Microprocessor 6

The 8087 Math Coprocessor 8

The Support Chips 9
The 8259 Interrupt Controller 9
The 8237A DMA Controller 10

The 8284A Clock Generator 10

The 8255 Programmable Peripheral Interface 11
The 8253 Programmable Timer 11
The 6845 CRT Controller 11

The PD765 Diskette Controller 12

Linking the Parts; The Bus 12
The Address Bus 13

The Data Bus 13

The Memory Chips 14

Design Philosophy 17

PROGRAMMER'S GUIDE TO THE IBM PC

From the programmer's point of view, all the members of the PC
family consist of a processor, memory chips, and several smart,
or programmable, circuit chips. All the main circuit components
necessary to make the computer work are located on the system

board; other important parts are located on expansion boards, which
may be plugged into the system board.

The system board contains the microprocessor—either the 8088 or
the 80286—which is tied to at least 64K bytes of memory, some built-in
ROM programs, such as BASIC and the ROM-BIOS, and several very im
portant support chips. Some of these chips control external devices, such
as the disk drive or the display screen, and others help the micro
processor perform its tasks.

In this section, we discuss each major chip and give a few impor
tant technical specifications. The margin symbols tell which PCs use each
chip. These chips are frequently known by more than one name. For ex
ample, some peripherals, such as the keyboard, are supervised by a chip
known as the 8255. This chip is also referred to as the 8255A and the
8255A-5. The suffixes A and 5 refer to revision numbers and to parts
rated for operation at different speeds. For programming purposes, any
Intel chip part number that starts with 8255 is identical to any other chip
whose part number starts with 8255, regardless of the suffix. Ffowever,
when you replace one of these chips on a circuit board, note the suffix. If
the suffixes are different, the part may not operate at the proper speed.

THE 8088 MICROPROCESSOR

PC

XT

The 8088 is the 16-bit microprocessor that controls the standard IBM
personal computers, including the original PC, the XT, the Portable PC,
and the PCjr. It is the central processing unit (CPU) of the computer—the
brains behind the machine. Almost every bit of data that enters or leaves
the computer passes through the CPU to be processed or redirected.

The 8088 controls the computer's basic operation by sending and re
ceiving control signals, memory addresses, and data from one part of the
computer to another along a network of interconnecting electronic path
ways called a bus. Located along the bus are input and output (I/O) ports
that connect the various memory and support chips to the bus. Data
passes through these I/O ports while it travels to and from the CPU and
the other parts of the computer.

Inside the 8088, 14 registers provide a working area for data transfer
and processing. These internal registers, forming an area 28 bytes in size,
are able to temporarily store data, memory addresses, instruction point
ers, and status and control flags. Through these registers, the 8088 can
access over one million bytes of memory and up to 64K I/O ports. (•'See
Chapter 2 for an overview of the operating characteristics of the 8088.

8259A

interrupt
controller 8088

microprocessor

8087

math coprocessor
plugs in here

00)4#0<9 SKI

Q Ul

8253

programmable

Figure 1-1. The PC system board
8237A

DMA controller

TI SN76469N

sound chip

6845

CRT controller

8255

programmable
peripheral
interface

8253

programmable
timer

Ihm

nfl

'tWitlYVxl- ..

tt i - (—■If-*j f ^i\ ^1.-.
Etel -

■ ■77G irGr

01 c
01 %
w

his p'W'

I il" ■ Y
• • • •—•

V f* • ;;

feD-i"

i'

•<«c«7«asscss

_;r«l
vf "dfcf"

. a il

%")'
3 c:

•• 1*1 ■ -

r-—
'•••a aa*** ' '*■

"g^.* " ::T
•" ■"ai;[i;""-

a3 :i ar

1 .,^1 • **• • a a **a

'Q1 ['
laisttmwif

—S

«[IllilH! S It.liitllHH
Mlllllllll

microprocessor

Figure 1-2. The PCjr system board

80286

microprocessor
80287

math coprocessor ■ 8254
plugs in here I programmable

interrupt

controllers

If;
r i * r—T t, j' i It

I i I' CSSi

2SS/S\2 K
SrSTEM aOARO

9
■n eeft

"cutf *••<? ■' ^ '

<Slf» " iVivV »in*' C»tt

m »•'

IW/WS b g 21!!" 411

3" ill

8237
DMA controllers

8284
clock generator
(under shield)

Figure 1-3. The AT system board

1 1 (ja |||i 1
at|

PROGRAMMER'S GUIDE TO THE IBM PC

The 8088's family tree. The 8088 is just one member of a closely re
lated family of 16-bit microprocessors designed by Intel Corporation. The
founding member of this microprocessor family is the 8086. The 8088 dif
fers from the 8086 in only one minor respect: Although the 8088 is a 16-bit
microprocessor, it uses an 8-bit data bus instead of the 16-bit bus that the
8086 uses, {m- The difference between 8-bit and 16-bit buses is discussed
on page 13.) Virtually anything that you read about the 8086 also applies
to the 8088; for programming purposes, consider them identical.

Although the 8088 microprocessor has long been the main brain for
the PC family, it isn't the only one available. Other Intel microprocessors
are being used to power some of the PC family's distant cousins. For ex
ample, the 8086 is the brain of the Compaq Deskpro, a well-known por
table PC-compatible computer. A pair of microprocessors known as the
80188 and 80186 (they're usually called the 188 and the 186), which are
more advanced versions of the original 8088 and 8086 microprocessors,
have been used in a variety of computers related to the IBM PC family,
such as the Tandy 2000 computer. These two microprocessors have more
computing power than their predecessors, but their chief asset is that
they combine, in one chip, both a microprocessor and many important
and necessary support operations—operations that are handled exter
nally by older chips like the 8088 and the 8086. But in spite of their many
improvements, the 186 and 188 are still not the last word as far as the 8086
family is concerned.

The 80286 Microprocessor

The most advanced Intel microprocessor currently used in the IBM
personal computers is the 80286 (or 286). It is this chip that controls the
operation of the AT. The 80286 is a true 16-bit microprocessor that uses a
full 16-bit data bus and adds extra programming features to the 8086 de
sign. Perhaps the 286's most important enhancements are its ability to
allow multitasking and virtual memory storage—two concepts that are
familiar to anyone experienced in mainframe computing.

Multitasking is the ability of a CPU to perform several tasks at a
time—such as printing a document or calculating a spreadsheet—by
quickly switching its attention among the controlling programs. A reg
ular PC, which uses the 8088 microprocessor, can do a limited amount of
multitasking with the help of very sophisticated software, such as IBM's
Topview or Microsoft's Windows. But a true multitasking processor, like
the 286, performs task switching internally—with some help from the
operating system. Since the multitasking capabilities in the 286 are largely
a part of the hardware design, they are much faster and more reliable
than software-driven multitasking.

Chapter 1: Anatomy of the PC

Virtual memory allows a computer to act as if it has much more
memory than is physically present. Through an extremely sophisticated
software and hardware design, a program may be led to beUeve that it
has up to one gigabyte (one billion bytes) of memory at its disposal, even
though the hardware memory chips account for only a fraction of that
size. This deception is achieved through an elaborate memory addressing
scheme that involves storing some parts of a program on disk and some
parts in main memory. When particular instructions or program data are
needed that are not in physical memory, they are loaded from the disk.
The 286 and the operating system have the weighty task of figuring out
where the information is and where it must go so that the program runs
smoothly and efficiently, even though it is scattered throughout the com
puter system.

Virtual storage has been used in mini- and mainframe computers
for a long time, but has only recently come of age in the microcomputer
world. Its introduction through the 286 in the AT should have a profound
effect on application programming since it allows us to write programs
whose sizes are, for all practical purposes, hmited only by the physical
capacity of the disks.

The AT is often seen as just a faster, more powerful member of the
8086 family—able to run almost all the popular PC programs, including
the DOS operating systems and most DOS programs. However, both multi
tasking and virtual memory storage change the operating characteristics
of the 286. When we use these features, the AT actually becomes a differ
ent computer, requiring different programs and a different operating sys
tem. This makes the AT the first of an entirely new generation of personal
computers, a generation apart from the original PC family.

With this in mind, it is best to leave the discussion of the AT's ad
vanced capabilities to another book and focus in this one on the standard
PC capabilities. You will find that most of the programming techniques
discussed in this book focus on the 8088, with annotations on the 80286
where appropriate.

All members of the 8086 family are designed to work with addi
tional processors. They also work with two special coprocessors: the 8087
math coprocessor and the 8089 I/O coprocessor. These optional chips can
be wired together to help reduce the workload of the main CPU. IBM pro
vides the circuitry to support only the 8087 math coprocessor, so we'll
take a moment to discuss this chip in more detail.

PROGRAMMER'S GUIDE TO THE IBM PC

The 8087 Math Coprocessor

The 8088 can work only with integers, or whole numbers. "Real" or
floating-point numbers must be handled by special means. This is usually
done with subroutines, which carry out the floating-point operations ef
fectively enough, but at great cost to efficiency and speed.

The 8087 math coprocessor performs floating-point calculations in
the neighborhood of 10 to 50 times faster than can be achieved with the
8088. In addition, it performs arithmetic with a much higher degree of
precision than is usually achieved with the 8088 (or even with most multi
million-dollar mainframe computers). The 8087, besides doing simple
add/subtract/multiply/divide arithmetic, has the built-in ability to perform
trigonometric calculations (sine, cosine, tangent, etc.), which greatly sim
plify some complex programming. Furthermore, it can work with num
bers that come in different formats, including integer, floating-point, and
even decimal formats. Finally, it can do all this while the 8088 proceeds
with other work.

Every 8088-based PC model except the PCjr can accommodate the
8087, though it does require special software support. (fiTl The AT uses
the 80287 math coprocessor, a variation of the 8087 that is tailored to
work with the 80286 microprocessor.) But though the 8087 greatly en
hances the arithmetic performance of the IBM personal computers, rela
tively little software takes advantage of it. This unfortunate situation is
due to a simple historical fact: Although provision for the use of the 8087

Approximate Range Significant Digits
Data Type (from) (to) Bits (decimal)

Word integer -32,768 + 32,767 16 4

Short integer -2X10E9 + 2X10E9 32 9

Long integer -9X10E18 + 9X10E18 64 18

Packed decimal -99...99 + 99...99 80 18

Short real 8.43 X lOE-37 3.37 X10E38 32 6-7

Long real 4.19X10E-307 1.67 X 10E308 64 15-16

Temporary real 3.4X10E-4932 1.2X10E4932 80 19

Figure 1-4. The range of numeric data types
that can be operated on in the eight 80-bit
registers of the 8087 or 80287 math
coprocessors

Chapter 1: Anatomy of the PC

was designed into the original model of the PC (and into most other
models), IBM did not support the 8087—or even acknowledge its poten
tial benefits—until the standards for PC hardware and software were
well established. This meant that a large percentage of the original hard
ware and software developed for the PC family did not incorporate the
use of the 8087, depriving us all of some remarkable computing power.

Although 8087 chips and software have so far sold in only limited
numbers, we are beginning to see more programs, such as Ashton-Tate's
Framework, that not only take advantage of the 8087, but also detect its
presence and automatically use it or bypass it depending on the require
ments of the program. Unfortunately, there are still only a handful of such
programs available.

Since the use of the math coprocessor in the PC family is rare, we
won't be covering the special problems of programming it in this book.

THE SUPPORT CHIPS

The microprocessor cannot control the entire computer without
some help—nor should it. By delegating certain control functions to
other chips, the CPU is free to attend to its own work. These support
chips may be responsible for such processes as controlling the flow of in
formation throughout the internal circuitry, as the interrupt controller
and the DMA controller are, or for controlling the flow of information to
or from a particular device attached to the computer, such as a video dis
play or disk drive. These so-called device controllers are often housed on
a separate board that is plugged into one of the PC's expansion slots.

Many of the support chips in the IBM PC are programmable, which
means they can be manipulated to perform specialized tasks. For the
most part, direct programming of these chips is not a good idea, but in
the discussion of each chip that follows, I will point out which are safe to
program and which aren't. Since this book does not cover direct hard
ware control, you should look in the IBM Technical Reference manual for
details about programming individual chips.

The 8259 Interrupt Controller
The 8259 supervises the operation of interrupts. Interrupts are sig

nals sent to the CPU by the hardware either to request attention or to
request that some action be taken. The 8259 intercepts the signals, deter
mines their level of importance in relation to the other signals it is receiv
ing, and issues an interrupt to the CPU based on this determination.
When the CPU receives the interrupt signal, it calls a specific program

10 PROGRAMMER'S GUIDE TO THE IBM PC

associated with that particular peripheral device. It is this program that
actually performs the required action, m- We discuss interrupts more
thoroughly in Chapters 2 and 3.

The 8259 can handle eight interrupt requests at a time, and can be
linked to other 8259s for higher capacity. [Q IBM has made use of this
expansion capability by hooking two of them together in the AT so it can
handle fifteen interrupts at a time.

Generally, we do not program the 8259, since any changes to it are
likely to interfere with the computer's basic operation. However, it is pos
sible to reconfigure the priority levels of the interrupts at any time during
the execution of the main program. This means that the program can
change the order in which the requests are processed by the 8259 to
match its own needs.

Other names for the 8259 include the INTR and the PIC, for pro
grammable interrupt controller.

The 8237 DMA Controller

To avoid harassing the microprocessor, some parts of the computer
are able to transfer data to and from the computer's memory without
passing through the CPU. This operation is called direct memory access,
or DMA, and it is handled by a chip known as the 8237, or DMA control
ler. The main purpose of the DMA controller is to allow the disk drive to
read or write data without involving the microprocessor. Since disk I/O is
a relatively slow operation, DMA can speed up the computer's overall per
formance quite a bit.

All members of the PC family, with the important exception of the
PCjr, use either the 8237 or its equivalent for direct memory access.
PTH The lack of DMA is one reason why the PCjr is slower than its cous
ins. Without a DMA controller to help out, the PCjr's 8088 has to take care
of disk operations whenever they occur, which is indirectly why we can
not type on the Junior keyboard while the disk is in use.

The DMA controller contains four separate channels to carry data
back and forth from memory, and 344 bits of internal memory to store
the data that is in transit. Theoretically, it is possible for several DMA con
trollers to be connected to one another and, in fact, fi^l the AT uses two
DMA controllers in its circuitry.

The 8284 Clock Generator

The clock generator supplies the multiphase clock signals that are
needed to drive the microprocessor and the peripherals. Its base fre
quency is 14.3128 megahertz (MHz, or million cycles per second). The

Chapter 1: Anatomy of the PC 11

Other chips generally divide the base frequency by a constant to obtain
the frequency they need to accomplish their tasks. The standard PC fam
ily's 8088 is driven at 4.77 MHz, one-third of the base frequency. The new
additions to the 8086 family can run faster. For example, the 8088-2, used
on some variations of the PC, can be run at a clock speed of 8 MHz, pro
viding nearly twice the raw computing power of the 8088, and the 80286
runs at 6 MHz, providing roughly one and a half times the computing
power of the 8088. The internal bus and the 8253 programmable timer
(t*' discussed shortly) use a frequency of 1.193 MHz, running at a quarter
of the 8088 rate, and one-twelfth of the base rate.

The 8255 Programmable Peripheral Interface

The 8255 is used to connect some of the computer's peripheral de
vices to the bus. Information that is sent to or from devices such as the

speaker and the cassette travels through the I/O ports via this chip.
The 8255 is also called the PPI (for programmable peripheral inter

face). It is normally programmed by the system software, so although
possible, it is not necessary for us to program this chip.

The 8253 Programmable Timer

The 8253 (EH the 8254 in the AT) is a multipurpose timer and
counter that can generate up to three accurate time delays under software
control. It gets its signal from the 8284 clock generator and oscillates at a
frequency of 1.193 MHz.

The 8253 is mainly used to generate sounds on the PC's internal
speaker, but is also used for other frequency-dependent functions, such as
cassette data I/O and timekeeping, i*' See Chapter 7's discussion of sound
for more information about this chip.

Other names for the 8253 include the timer, and sometimes the
clock. Keep in mind that "clock" also refers to the 8284 chip, which gen
erates the computer's 14.3-MHz heartbeat.

The 6845 CRT Controller

The 6845, also called the Motorola CRT chip, is generally located on
an expansion board known as the video display adapter. It has 19 internal
registers that are used to define and control a raster-scan CRT. Although
we can program this chip ourselves, it is wisest by far to leave it under the
control of the PC's BIOS, i*" See Chapter 4 for more information on video
displays and video display adapters.

12 PROGRAMMER'S GUIDE TO THE IBM PC

The PD765 Diskette Controller

The PD765 supervises and controls the operation of the diskette
drive. It is more commonly called the FDC (floppy-disk controller) or the
NEC (Nippon Electric Company) controller. As with the 6845 CRT con
troller, we should leave this chip under the BIOS's control.

LINKING THE PARTS: THE BUS

As we mentioned, the PC family of computers links all internal con
trol circuitry together by a circuit design known as a bus. A bus is simply
a shared path on the main circuit board to which all the controlling parts
of the computer are attached. When data is passed from one component
to another it travels along this common path to reach its destination.

Every control chip and every byte of memory in the PC is connected
directly or indirectly to the bus. When a new component is plugged into
one of the expansion slots, it is actually plugged directly into the bus,
making it an equal partner in the operation of the entire unit.

Any information that enters or leaves a computer system is tem
porarily stored in at least one of several locations along the bus. Most of
the time data is placed in main memory, which in the PC family consists
of thousands of 8-bit memory cells. But some data may end up in a port
or register for a short time while it waits for the CPU to send it to its
proper location. Generally, ports and registers hold only one or two bytes
of information at a time and are usually used as stopover sites for data
that is being sent from one place to another. ((•- Ports and registers are
discussed in detail in Chapter 2.)

Whenever a memory cell or port is used as a storage site, its loca
tion is marked by an address that uniquely identifies it. When data is
ready to be transferred, its destination address is first transmitted along
the address bus; the data follows along behind on the data bus. So the
bus carries more than just data. It carries power and control information,
such as timing signals (from the system clock) and interrupt signals, as
well as the addresses of the thousands of memory cells and the many de
vices attached to the bus. To accommodate these four different functions,
the bus is divided into four parts: the power lines, the control bus, the
address bus, and the data bus. We're going to delve deeper into the ad
dress and data buses because they conduct information in a way that
helps to explain some of the unique properties of the PC family.

Chapter 1: Anatomy of the PC 13

The Address Bus

The address bus in the standard PC family uses 20 signal lines to
transmit the addresses of the memory cells and devices attached to the
bus. (i** Memory addressing is discussed more fully on page 14 and in
Chapter 3.) Since there are two possible values (either 1 or 0) that can
travel along each of the 20 address lines, the standard PC computers are
able to specify 220 addresses. This amounts to over a million possible ad
dresses. EO The AT uses 24 address lines, allowing it to specify 2^4 or
over 16 million addresses.

The Data Bus

The data bus works in conjunction with the address bus to carry
data throughout the computer. The PC's 8088-based system uses a data
bus that has 8 signal lines, each of which carries a single binary digit (bit).
This means that data is transmitted across the 8-line bus in 8-bit (l-byte)
units. EH The 80286 microprocessor of the AT uses a 16-bit data bus, and
therefore passes data in 16-bit (1-word) units.

The 8088, being a 16-bit microprocessor, can work with 16 bits of
data at a time, just like its relative the 80286. Although the 8088 can work
with 16-bit numbers internally, it passes data only 8 bits at a time when
working with the circuitry around it because of the size of its data bus.
This has led some people to comment that the 8088 is not a true 16-bit
microprocessor. Rest assured that it is, even though it is less powerful
than the 80286. The 16-bit data bus of the 80286 does help it move data
around more efficiently than the 8088, but the real difference in speed
between the 8088 and the AT comes from the AT's faster clock rate and its

more powerful internal organization.
There is an important practical reason why so many computers, in

cluding the older members of the PC family, use the 8088 with its 8-bit
data bus, rather than the 8086 with its 16-bit bus. The reason is simple
economics. A host of 8-bit circuitry elements is available in large quan
tities at low prices. When the PC was being designed, 16-bit circuitry was
more expensive and was less readily available. The use of the 8088, rather
than the 8086, was important not only to hold down the cost of the PC,
but also to avoid a shortage of parts. The price of 16-bit circuitry ele
ments has decreased significantly since then, however, and it has become
economically feasible to use the more efficient 80286 with its 16-bit bus.
Furthermore, the 286 is able to use a mixture of 8-bit parts and 16-bit
parts, thereby maintaining compatibility within the PC family.

14 PROGRAMMER'S GUIDE TO THE IBM PC

THE MEMORY CHIPS

So far, we've discussed the CPU, the support chips, and the bus, but
we've only touched on memory. We've left our discussion of memory to
the end of this chapter because memory chips, unlike the other chips we
have discussed, don't control or direct the flow of information through a
computer system; they just store it until it is needed.

The number of memory chips that physically exist inside the com
puter determines the amount of memory we can use for programs and
data. Although this may vary from one computer to another, a standard
PC usually comes with around 40K of read-only memory (ROM)—with
space for more—and from 128K to 256K of random-access memory
(RAM). Since only 256K of RAM can be accommodated on the system
board, it is possible to add memory cards of varying capacities via the PC's
expansion slots. But this is just the physical view of the standard PC's mem
ory. To the computer, the memory chips are nothing more than a few thou
sand 8-bit (1-byte) storage cells, each one with its own unique address.

Programmers must also think of memory in this way—not in
terms of how much physical memory there is, but in terms of how much
addressable memory there is. The 8088 can address up to 1,024K, or ex
actly 1,048,576 bytes of memory. In other words, that's the maximum
number of addresses, and therefore the maximum number of individual
bytes of information it can refer to. m- Memory addressing is discussed
in more detail on page 24.

Each byte is referred to by a 20-bit numeric address. In the 8088's
memory scheme, the addresses are 20 bits "wide" because they must
travel along the 20-bit address bus. We tend to use hex notation rather
than binary notation in determining memory locations, so we usually
translate this 20-bit address into its 5-hex-digit equivalent. This allows
address values to range from hex 00000 to hex FFFFF (0 to 1,048,576 in
decimal notation). (•' If you have trouble understanding hex notation,
you might want to take a quick look at Appendix B.

When we discuss the PC's l,024K-byte addressable memory space,
we usually divide it into 16 blocks of 64K bytes each. We identify each
64K block by the first hex digit, or the high-order part, of all the memory
addresses in the block. For example, the first 64K of memory is the 0
block, with bytes at addresses 00000 through OFFFF; the last block of
memory is the F block, at addresses FOOOO through FFFFF.

For nearly all purposes, there is no functional boundary between
blocks. We refer to memory in these blocks partly for convenience, and
partly because the overall scheme for memory use in all the IBM personal
computers assigns different uses block by block.

Chapter 1: Anatomy of the PC 15

F 0 0 0 0 Permanent ROM area: ROM-BIOS, BASIC, diagnostics
E 0 0 0 0 Cartridge ROM area
D 0 0 0 0 Cartridge ROM area
C 0 0 0 0 BIOS extensions (XT Disk)
B 0 0 0 0 Conventional display memory (the PC, XT, and AT)
A 0 0 0 0 Display memory expansion
9 0 0 0 0 Working RAM, up to 640K
8 0 0 0 0 Working RAM, up to 576K
7 0 0 0 0 Working RAM, up to 512K
6 0 0 0 0 Working RAM, up to 448K
5 0 0 0 0 Working RAM, up to 384K
4 0 0 0 0 Working RAM, up to 320K
3 0 0 0 0 Working RAM, up to 256K
2 0 0 0 0 Working RAM, up to 192K
1 0 0 0 0 Working RAM, up to 128K; maximum allowed in PCjr
0 0 0 0 0 Working RAM, up to 64K; generally used by system software

Figure 1-5. The memory block outline for
the PC family

In theory, any area can contain either permanently recorded ROM,
or changeable RAM. By convention, the first ten blocks (blocks 0 through
9), totaling 640K, are set aside for RAM in the IBM PCs and are used as
ordinary working memory. Any memory that is installed in these com
puters is placed here, starting in the first block. Since RAM always oc
cupies a contiguous space, no blocks are skipped. Any addresses in this
640K area with values larger than the actual memory installed are not
ordinarily used. If a program tries to use an address where there is no
actual memory, the results can vary. Usually no overt error is detected,
and the program will continue running.

All IBM personal computers have memory installed in at least the
first 64K block, block 0. Of course, 64K is a minimum amount of mem
ory and it's rare for a PC to have only this amount. (At the time the PC
was introduced, memory on the system board was expandable in 16K in
crements, and IBM offered a 16K minimum system; current boards are
expandable in 64K minimum increments.) The lowest addresses in the 0
block are traditionally reserved for use by the system software. These ad
dresses store such things as status information, address tables, character
tables, and operating system routines. Chapter 3 explores these low-
memory locations in greater detail.

The A block of memory is set aside for expansions to the video
memory and is used by IBM's Enhanced Graphics Adapter (EGA) and the
Professional Graphics Adapter. The use of the A block is rather special

16 PROGRAMMER'S GUIDE TO THE IBM PC

JR

and also oddly quirky—so quirky, in fact, that there is little useful and
reliable information that we'll be able to tell you about it. The best way to
view the A block is as a provisional scratch pad that is used for brief in
stants in advanced video modes.

The B block is used for the ordinary video memory in every model
except the PCjr. It is divided into two 32K halves, whose addresses begin
at BOOOO and B8000; for convenience, these areas are simply referred to as
BO and B8. The IBM Monochrome Adapter, the add-on circuit board that
drives the IBM Monochrome Monitor, uses 4K of memory located at the
beginning of the BO area (the area's remaining 28K is unused). The IBM
Color/Graphics Adapter, the add-on board that drives most other moni
tors, uses 16K of memory located at the beginning of the B8 area (the re
maining 16K is unused).

Although the other IBM PC models can have either or both of these
display adapters installed, the PCjr has the functional equivalent of the
Color/Graphics Adapter built into it and cannot accommodate a mono
chrome adapter. The PCjr simulates the use of B8, but actually uses the
high end of RAM (the 0 block for the entry-model PCjr and the 1 block
for the 128K enhanced model) to support the video data. Through some
special circuitry called a video gate array (VGA), the Junior manages to
simulate the PC's video functions exactly, and makes our programs think
it is using the B block, the standard location for PC video memory. The
result is that a PCjr acts like a PC that has a Color/Graphics Adapter in
stalled. Fortunately, the PCjr goes to great lengths to disguise its dif
ferences from the other members of the PC family. From a programming
point of view, this means we can ignore the Junior's peculiarities and
treat it just like a standard PC.

It is important to keep in mind that the use of the B block, and its
division into the BO half for monochrome use and the B8 half for color/
graphics use, is a universal standard for the PC family. All models of the
PC, including the PCjr, and all PC display adapters, including the En
hanced and Professional Graphics Adapters, either use or appear to use
the standard B-block memory locations.

The C block is set aside for any additions that need to be made to
permanently installed ROM programs. IBM first used this area to hold the
ROM-BIOS routines for the fixed disk that comes with the XT model (and
that can be added to the PC model). They did not place the routines at the
beginning or end of tbe C block, as we might expect, but instead they
placed them in the middle, starting at C8. We can probably assume most
BIOS additions will also be placed in this general area, particularly those
that support new hardware extensions.

JR

Chapter 1: Anatomy of the PC 17

The D and E blocks are set aside for ROM memory in software car
tridges, which were introduced with the PCjr. Cartridge support can be
added to nearly any model of PC, but cartridges are rarely used except in
the Junior. Cartridge memory actually plugs into the beginning or middle
of either of these blocks, at DO, D8, EG, or E8. In the PCjr only, cartridges
can also plug into the next block, at either EG or F8.

Normally, the F block is used for permanently installed ROM pro
grams. These include the ROM "cassette" BASIC, the ROM-BIOS, and the
test and diagnostic routines. W' See Chapter 3 for more details. Hi] The F
block is used for a special purpose by the PCjr; plugging cartridges into the
F block overrides the conventional ROM-BIOS programs that are placed
there. ̂ There is more on cartridge use in the Junior in Chapter 3.

DESIGN PHILOSOPHY

Before we leap into the following chapters, we ought to discuss the
control philosophy behind the PC family. This will help you understand
what is (and what isn't) important or useful to you.

Part of the design philosophy of the IBM personal computer family
centers around a set of BIOS service routines ((•" see Chapters 8 through 13)
that provide essentially all the control functions and operations that IBM
considers necessary. The basic philosophy of the PC family is: Let the BIOS
do it; don't mess with direct control. In my judgment, this is a sound idea
that has several beneficial results. Using the BIOS routines encourages
good programming practices and it avoids some of the kludgy tricks that
have been the curse of many other computers. It also increases the
chances of our programs working on every member of the PC family. In
addition, it gives IBM more flexibility in making improvements and addi
tions to the line of PC computers. However, it would be naive for me to
simply say to you, "Don't mess with direct control of the hardware." For
good reasons or bad, you may wish or may need to have your programs
work as directly with the computer hardware as possible, doing what is
colorfully called programming down to the bare metal.

When you consider directly controlling the hardware with your
programs, you should understand that the basic mechanism for doing
this lies in the use of ports discussed in Chapter 2). With the single
exception of sending output directly to the display screen (which is done
through the use of memory), all direct control of the PC's hardware is
done by sending data through hardware ports. With only a few excep
tions, direct use of the ports to control the PC runs against IBM's design
philosophy, and again I would urge you to avoid doing it. The exceptions
to this rule involve those features that IBM did not provide BIOS control
for, specifically sound generation ((•' see Chapter 7).

2

The Ins and Outs

How the 8088 Communicates 22

The 8088 Data Formats 23

How the 8088 Addresses Memory 24
Expanding Memory with Segmented Addresses 24
The 8088's Fourteen Registers 25

How the 8088 Uses Ports 36
Family Differences in the Use of Ports 37

How the 8088 Uses Interrupts 37

19

20 PROGRAMMER'S GUIDE TO THE IBM PC

Generally speaking, the more each of us learns about program
ming, the more we begin to realize the limitations of our pro
gramming languages. High-level programming languages,
such as BASIC or C, are not designed to include every possible

function that we might need while programming—though admittedly,
some are better than others. At some point, we will want to go deeper
into our system and use some of the routines the languages themselves use;
or perhaps go even deeper and program at the hardware level.

Although some languages provide limited means to talk directly to
memory (as with PEEK and POKE in BASIC) or even to some of the chips
(as with BASIC'S INP and OUT statements), most programmers eventually
resort to assembly language, the basic language from which all other lan
guages and operating systems are built. The 8088 assembly language, like
all other assembly languages, is composed of a set of symbolic instruc
tion codes as shown in Figure 2-1. Inside the 8088, these codes and the
data that is associated with them are translated into a binary form, called
machine language, so that they can reside in memory and move through
the electronic circuitry to accomplish specific tasks.

The operations the 8088 instructions can perform break down into
just a few categories. They can do simple, four-function arithmetic on 8-
or 16-bit integers. They can move data around. They can, using only
slightly clumsy methods, manipulate individual bits. They can test values
and take logical action based on the results. And last but not least, they
can interact with the circuitry around them. The size of each instruction
varies from one byte to six bytes. By design, the most basic and often-
used instructions are the shortest.

Assembly-language programming may be carried out on one of two
levels: to create interface routines that will tie high-level programs to the
lower-level DOS and ROM-BIOS routines; or to create full-fledged assembly-
language programs that perform exotic tasks at the hardware level, per
haps accomplishing a feat that is accomplished nowhere else. Either way,
in order to understand how to use assembly language, we must under
stand how the 8088 processes information and how it works with the rest
of the computer. The focus of our discussion for the rest of this chapter
will be the way the 8088 and the computer's other parts communicate.

Mnemonic Full Name

AAA ASCII adjust for addition
AAD ASCII adjust for division
AAM ASCII adjust for multiplication
AAS ASCII adjust for subtraction
ADC Add with carry
ADD Add

AND AND

CALL CALL

CBW Convert byte to word
CLC Clear carry flag
CLD Clear direction flag
CLI Clear interrupt flag
CMC Complement carry flag
CMP Compare
CMPS Compare byte or word (of string)
CMPSB Compare byte string
CMPSW Compare word string
CWD Convert word to double word

DAA Decimal adjust for addition
DAS Decimal adjust for subtraction
DEC Decrement

DIV Divide

ESC Escape
HLT Halt

IDIV Integer divide
IMUL Integer multiply
IN Input byte or word
INC Increment

INT Interrupt
INTO Interrupt on overflow
IRET Interrupt return

JA Jump on above
JAE Jump on above or equal
JB Jump on below
JBE Jump on below or equal
JC Jump on carry
JCXZ Jump on CX zero

JE Jump on equal
JG Jump on greater
JGE Jump on greater or equal
JL Jump on less than
JLE Jump on less than or equal
JMP Jump
JNA Jump on not above

Mnemonic Full Name

JNAE Jump on not above or equal
JNB Jump on not below
JNBE Jump on not below or equal
JNC Jump on no carry
JNE Jump on not equal
JNG Jump on not greater
JNGE Jump on not greater or equal
JNL Jump on not less than
JNLE Jump on not less than or equal
JNO Jump on not overflow
JNP Jump on not parity
JNS Jump on not sign
JNZ Jump on not zero
JO Jump on overflow
JP Jump on parity
JPE Jump on parity even
JPO Jump on parity odd
JS Jump on sign
JZ Jump on zero
LAHF Load AH with flags
LDS Load pointer into DS
LEA Load effective address

LES Load pointer into ES
LOCK LOCK bus

LCDS Load byte or word (of string)
LODSB Load byte (string)
LODSW Load word (string)
LOOP LOOP

LOOPE LOOP while equal
LOOPNE LOOP while not equal
LOOPNZ LOOP while not zero

LOOPZ LOOP while zero

MOV Move

MOVS Move byte or word (of string)
MOVSB Move byte (string)
MOVSW Move word (string)
MUL Multiply
NEC Negate
NOP No operation
NOT NOT

OR OR

OUT Output byte or word
POP POP

POPE POP flags , ,,

Figure 2-1. The 8088 instruction set

22 PROGRAMMER'S GUIDE TO THE IBM PC

Mnemonic Full Name Mnemonic Full Name

PUSH PUSH SCASB Scan byte (string)
PUSHF PUSH flags SCASW Scan word (string)
RCL Rotate through carry left SHE Shift left
RCR Rotate through carry right SHR Shift right
REP Repeat STC Set carry flag
REPE Repeat if equal STD Set direction flag
REPNE Repeat if not equal STI Set interrupt flag
REPNZ Repeat if not zero STOS Store byte or word (of string)
REPZ Repeat if zero STOSB Store byte (string)
RET Return STOSW Store word (string)
ROE Rotate left SUB Subtract
ROR Rotate right TEST TEST

SAHE Store AH into flags WAIT WAIT

SAL Shift arithmetic left XCHG Exchange
SAR Shift arithmetic right XEAT Translate
SBB Subtract with borrow XOR Exclusive OR
SCAS Scan byte or word (of string)

Figure 2-1. The 8088 instruction set
(continued)

HOW THE 8088 COMMUNICATES

The 8088 interacts with the circuitry world around it in three ways:
via direct and indirect memory access, through ports, and with signals
called interrupts.

Memory is used by reading or writing values that are stored in
memory locations and identified with numeric addresses. The memory
locations can be accessed in two ways: directly, through the 8237A chip,
commonly known as the direct memory access (DMA) controller, or indi
rectly, through the 8088's internal registers. The disk drives and the serial
communications ports can directly access memory through the DMA
controller. All other devices transfer data to and from memory by way of
the 8088's registers. (•'For more information about the DMA controller,
see page 10. For more on registers, see page 25.

Ports are the 8088's general means of communicating with any com
puter circuitry other than memory. Like memory locations, ports are
identified by number, and data can he read from or written to any port.
Port assignment is unique to the design of any particular computer. Gen
erally, all members of the IBM PC family use the same port specifications,
with just a few variations among the different models ((«-see page 38).

Interrupts are the means by which the circuitry outside the 8088
reports that something (such as a keystroke) has happened and requests
that some action he taken. Although interrupts are essential to the 8088's

Chapter 2: The Ins and Outs 23

interaction with the world around it, the concept of an interrupt is useful
for other purposes as well. For example, the system BIOS or the operating
system can produce software interrupts to request and execute special
service programs. Interrupts will be quite important to us when pro
gramming the PC family, so we'll devote a special section to them at the
end of this chapter.

The 8088 Data Formats

Numeric data. The 8088 is able to work with only four simple nu
meric data formats, all of which are integer values. The formats are
founded on two building blocks: the 8-bit byte and the 16-bit (2-byte)
word. Both of these basic units are derived from the 16-bit processing ca
pacity of the 8088 and its 8-bit data bus. The byte is the more fundamen
tal unit, and when the 8088 addresses memory, bytes are the basic unit
addressed. In a single byte, the 8088 can work with unsigned positive
numbers ranging in value from 0 through 255 (that is, 2^ possibilities). If
the number is a signed value, a byte can represent values ranging from
-128 through -1-127. ((*- see Figure 2-2.)

When we need integer values larger than one byte, the 8088 simply
uses two adjacent bytes and treats them as a single unit. The 2-byte word
is the most common format. A 2-byte word interpreted as an unsigned,
positive number can have a value ranging from 0 through 65,535. As a
signed number, the value can range from - 32,768 through -t- 32,767.

Character data. Character data is stored in the standard ASCII for

mat, with each character occupying one byte. The 8088 knows nothing
about ASCII characters and treats them as arbitrary bytes, with one par
tial exception: The 8088's instruction set accommodates decimal addition
and subtraction performed on ASCII numeral characters. The actual
arithmetic is done in binary, but the combination of the AF flag {m- see
page 33) and a few special instructions makes it practical to work on
decimal characters and get decimal results.

Size Signed?

Range

Dec Hex

8 No 0 to 255 GO to FF

8 Yes -128 to 0 to -1-127 80 to 00 to 7F

16 No 0 to 65,535 0000 to FFFF

16 Yes -32,768 to 0 to -t 32,767 8000 to 0000 to 7FFF

Figure 2-2. The four data formats used by
the 8088

24 PROGRAMMER'S GUIDE TO THE IBM PC

m- See Appendix C for more information on ASCII and the PC fam
ily's extended ASCII character set.

HOW THE 8088 ADDRESSES MEMORY

The 8088 is a 16-bit microprocessor and cannot therefore work di
rectly with numbers larger than 16 bits, the largest decimal value being
65,535 or 64K. Theoretically, this means that the 8088 should be able to ac
cess only 64K memory addresses. But, as we learned in the previous chap
ter, it can in fact access much more than that—1,024K to be exact. This
is possible because of the 20-bit addressing scheme used with the 8088,
which expands the full range of memory locations that the 8088 can work
with from 2i6 (65,535) to 2^° (1,048,576). But the 8088 is still limited by its
16-bit processing capacity. To access the 20-bit addresses, it must use an
addressing method that fits into the 16-bit format.

Expanding Memory with Segmented Addresses

The 8088 divides the addressable memory space into an arbitrary
number of segments, each containing no more than 64K bytes. Each seg
ment begins at a location that is evenly divisible by 16 bytes, known as its
segment address or segment paragraph. To access individual bytes or
words, we use an additional address called an offset address that points
to an exact byte location within the 64K segment designated by the seg
ment paragraph. Because offset addresses are always measured relative to
the beginning of a segment paragraph, they are also called relative ad
dresses or relative offsets.

Addresses are created and manipulated by combining a 16-bit seg
ment paragraph and a 16-bit relative offset. The segment paragraph is
treated as if it were shifted to the left by four bits. When added to the
relative offset, it yields a complete, 20-bit address, as we have shown in
Figure 2-3. Together, the two 16-bit words are usually called a segmented
address; they are also called a vector, particularly when referring to in
terrupts ((«- see page 39 for more on interrupt vectors).

Segment paragraphs are written as 5-digit hex values and always
have a zero in the last place, such as FFE40 or B8120. The zero comes
from multiplying the original 16-bit, 4-digit hex number by 16. (We get
the same shifted effect when we multiply a decimal value by its base
number 10, as in 23 x 10 = 230.) The fact that the segment part of a seg
mented address is shifted left by four bits (which is the same as if it were
multiplied by 16) is the reason why the segment part alone can only point

Chapter 2: The Ins and Outs 25

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0

1 0 1 1 1 0 10 0 11 0 0 111

1 1 0 0 0 1 1 1 0 100100 1 0 111

Segment paragraph address
• Relative offset address

■ 20-bit segmented address

Figure 2-3. The segment paragraph, tahich
points to the beginning of a 64K memory
segment, and the relative offset, which
points to a specific byte within the segment,
are combined by the CPU to form a 20-bit
physical address.

to actual memory addresses that are a multiple of 16, and why the relative
offset is needed to define the precise location within the segment. Offset
addresses are written as 4-digit hex values. When added together these
two numbers form one 5-digit hex number which converts to the 20-bit
address. For example, if we take a hex segment paragraph such as 1234
and multiply it by 16, we get 12340. Then if we add to this the relative
offset of the byte we are looking for, such as 4321, we get our 5-digit hex
result, as shown in the following example:

12340 The segment address in hex notation, shifted hy four bits

-I- 4321 The offset address in hex notation

16661 The 20-bit segmented address in hex notation

When we write a 20-bit address broken down into its segment and
relative-offset parts, we use the notation 0000:0000, with the segment on
the left side of the colon and the relative offset on the right. For example,
a 20-bit address written as FFE6E could be written as FFE4:002E in seg
mented notation. As shown in Figure 2-4, we can express a single 20-bit
address in a variety of ways using segmented notation, depending upon
which segment paragraph we choose.

The 8088's Fourteen Registers

The 8088 was designed to execute instructions and perform arith
metic and logical operations at the same time it receives instructions and
passes data to and from memory. To do this, it uses 16-bit registers.

There are fourteen registers in all, each with a special use. Four
scratch-pad registers are used by programs to temporarily hold the inter
mediate results and operands of arithmetic and logical operations. Four

26 PROGRAMMER'S GUIDE TO THE IBM PC

00000 00010 00020 00030 FFFFF
[23456789ABCDEF 1 23 45 6 789ABCDEF 1 23 45 h789ABCDEF 1 (FOOOiFFFF)

0000000:0000 0:0010 0000:0020 0000:0030

T
0001:00200001:0000 0001:0010

0002:0000 0002:0010

0003:0000

Segment paragraph address

Figure 2-4. The offset address is always de
termined relative to the segment paragraph
address. For this reason, there may be sev
eral different segmented addresses for
exactly the same location in memory.

segment registers hold the starting addresses of certain segments in mem
ory. Five pointer and index registers hold the offset addresses that are
used with the segment paragraphs to pinpoint data in memory. Finally,
there is one flag register containing nine 1-bit flags that are used to record
8088 status information and control 8088 operations, {m- see Figure 2-5.)

The Scratch-Pad Registers

When a computer is processing data, a great deal of the micro
processor's time is spent fetching data hack and forth from memory. This
access time can be greatly reduced by keeping frequently used operands
and results inside the 8088. Four 16-bit registers, usually called the
scratch-pad or data registers, are designed for this purpose.

The scratch-pad registers are known as AX, BX, CX, and DX. Each
of them can also be subdivided and separately addressed as two 8-bit
half-registers. The high-order half-registers are known as AH, BH, CH,
and DH and the low-order half-registers are known as AL, BE, CL, and
DL. Use of the full- and half-registers can be freely intermixed, as needed.

The scratch-pad registers are used mostly as convenient temporary
working areas, particularly for arithmetic operations. Addition and sub
traction can be done in memory without using the registers, but the re
gisters are faster.

Chapter!: The Ins and Outs 27

Scratch-pad registers
0 7

AX (accumulator)
BX (base)
CX (count)
DX (data)

CS (code segment)
DS (data segment)
SS (stack segment)
ES (extra segment)

IP (instruction pointer)
SP (stack pointer)
BP (base pointer)
SI (source index)
D1 (destination index)

AH AL

BH BL

CH CL

DH DL

15

Segment registers

15

Offset registers

Flags
15

Flag register

OF pF IF TF SF ZF

Figure 2-5. The 8088 registers and flags

Although these registers are available for any kind of scratch-pad
work, each also has some special uses. For example:

■ The AX register is an accumulator and is the main register used
to perform arithmetic operations.

■ The BX (base) register is often used to point to the beginning of a
translation table in memory. It may also be used to hold the offset
part of a segmented address.

■ The CX (count) register is used as a repetition counter for loop
control and repeated data moves. For example, the LOOP instruc
tion in assembly language uses CX to store the count for the num
ber of loop iterations. None of the other registers can perform
this function.

■ The DX register is used to store 16-bit data for general purposes.

Although the scratch-pad registers are used for temporary storage
of data and operands, or for the specific tasks just mentioned, their
"scratch-pad" nature opens them up for other uses as well. For example,
all four are often used to house the relative offset addresses of data that

are passed as parameters from a program.

PROGRAMMER'S GUIDE TO THE IBM PC

Back-Words Storage
While the PC's memory is addressed in units of individual 8-bit bytes,

many operations involve 16-bit words. In memory, a 16-bit word is stored in
any two adjacent 8-bit bytes. I he least-significant byte of the word is stored in
the lower memory location and the most significant byte is stored in the higher
memory location. From some points of view, storing a word this way is the op- =
posite of what we might expect. Due to the back ward appearance of this sti .r-
age scheme, it is sometimes whimsically called "back-words" storage.

Higher
addresses

B Higl-

C Low-order byte |
6 High-order byte j

jw-order byte

igh-order byte

Value of word is hex E69C

Value of word is hex .5154 A

If you are working with bytes and words in memory, you should take care
not to be confused by the back-words storage. The source of the confusion has
mostly to do with how we write data. For example, if we are writing a word
value in hex, we write it like this: ABCD. The order of significance is the same
as if we are writing a decimal number: The most-significant digit is written
first. But when we write a word the way it is stored in memory, we write the
lowest address location first. So, in memory, we would write the number
ABCD as CDAB, with the bytes switched.

The Segment Registers

As we discussed earlier, the complete address of a memory location
consists of the address of a 64K segment and an offset address within the
segment. Four registers, called CS, DS, SS, and ES, are used to identify
four specific 64K segments of memory. Five offset registers, which we'll
discuss shortly, are then used to store the relative offset address of the
data within the 64K segment.

Of the four segment registers, the following three are dedicated to
special purposes:

■ The CS register locates the code segment, which contains the pro
gram that is being executed.

Chapter 2: The Ins and Outs 29

■ The DS register locates the data segment, the area of memory
where the current data is stored.

■ The SS register locates the stack segment, a temporary workplace
that keeps track of the parameters and addresses currently in use
by the active program (<•' see page 32 for more information about
stacks).

The fourth segment register, the ES register, points to an extra seg
ment that is normally used to supplement the data segment so that more
than 64K of memory can be used to store data. It is also used for interseg
ment data transfers.

It is common for the four segments to overlap or even be identical.
It is also common for only one part of a 64K segment to actually be used
for its intended purpose; for example, a program may require only 16K of
a 64K segment. Figure 2-6, below, illustrates how memory may actually
be allocated.

64K available

to code and stack

segments if needed

Free memory

Code segment 30K

Stack segment 15 K

Data segment 64K

Extra segment 64K

Free memory

i- Actual space occupied

\ Actual space occupied

Figure 2-6. Segments may comprise a
separate 64K area or they may overlap. We
can indicate the starting paragraph of the
stack, data, or extra segments by loading the
appropriate segment register (either SS, DS,
or ES) tvith the appropriate segment
paragraph address.

30 PROGRAMMER'S GUIDE TO THE IBM PC

All 8088 instructions that use memory have an implied use of the
appropriate segment register for the operation being performed. For ex
ample, the MOV instruction, since it acts on data, uses the DS register.
The JMP instruction, which affects the flow of a program, automatically
uses the CS register. In most cases, we can, if we need to, override the
implied segment register with another. In assembly language, this can be
done with segment-override prefixes.

Understanding the segment registers and how they are used will
give you insight into the practical limits of memory use in a 16-bit system.
If your programs or data require blocks of memory larger than 64K, you
will need to apply this knowledge to manipulate the segment registers.
Here are a few hints.

If we leave the CS register alone, the maximum size of our programs
is the 64K limit of an offset address. The 8088 was designed to retain con
trol of a program, so it is not easy to directly manipulate the CS register
and change the code-segment address if you need more memory. How
ever, by using certain 8088 program-control instructions, such as far calls
and far jumps, it is possible to indirectly update the CS register. This is
how many programming languages allow programs to grow to any size.
(Interpreted BASIC and Microsoft C, Version 1 do not allow such expan
sion; Pascal and Version 2 of C do.)

On the other hand, it is relatively easy to manipulate the DS register,
or to use the ES register, to allow us to use more than 64K of data. But
although, theoretically, this capability should allow for unlimited data
size, in practice, most programming languages can only work with 64K
of data in memory because of the way they're designed. For the most
part, this does not present problems, since most programs can get by
very comfortably within the 64K limit. Although the most sophisticated
programs make good use of large amounts of memory, few programs
need anywhere near 64K, and fewer still can use it.

□ NOTE: For interpreted BASIC, there are a few things worth noting
about the segment registers. The CS register actually points to the BASIC
interpreter. A BASIC program and its data are both considered data from
the 8088's point of view and both use the DS register. For this reason, there
is a 64K limit to the combined size of BASIC programs and their data.

BASIC'S DEF SEG statement lets us do the equivalent of setting the DS
register for certain BASIC operations, such as PEEK and POKE, although it
always maintains BASIC's original DS segment address. (PEEK and POKE
are used to specify the offset address within the data segment.) m- See
page 57 for how to access BASIC's true DS value.

Chapter!: The Ins and Outs

The Offset Registers

Five offset registers are used to locate a precise byte or word within
a specific 64K segment. One register, called the instruction pointer (IP),
locates the current instruction in the code segment; two, called the stack
registers, are intimately tied to the stack, a place in memory where the
8088 keeps a record of the addresses and data it needs to remember for
later use («• for more on stacks see page 32); and the remaining two regi
sters, called the index registers, are used to point to the current operands
in the data segment.

The instruction pointer (IP), also called the program counter (PC),
provides the offset address within the code segment where the current
program is executing. It is used with the CS register to track the exact
location of the next instruction to be executed.

Programs do not have direct access to the IP register, but there are a
number of instructions, such as JMP and CALL, that change the IP setting
indirectly or save and restore the setting to and from the stack.

The stack pointer registers, called the stack pointer (SP) and the
base pointer (BP), provide offsets into the stack segment. The SP gives the
location of the current top of the stack and is analogous to the IP. The BP
is used to take a "snapshot" of a current top-of-the-stack location, so that
later on we will know exactly where in the stack certain information is
located. The BP is particularly important to assembly-language interface
routines. We'll see it used quite often in the assembly-language examples
that appear in Chapters 8 through 20.

The index registers, called the source index (SI) and the destination
index (DI), are commonly used with another register (AX, BX, CX, or DX)
or an instruction offset, which provides the relative offset to the begin
ning of a data field within the data segment. The SI and DI registers then
provide relative offsets within the data field. They are used most often
when transferring lengthy strings of data between memory locations.
The string instructions that use the SI and DI registers transfer the string
data one byte or word at a time. Both SI and DI usually increment their
offset values automatically as each transfer occurs so that we don't have
to add 1 to them each time we want to move on to the next byte.

The Flag Register

The fourteenth and last 8088 register, called the flag register, is
really a collection of individual control bits called flags. The flags are
available in the form of a register so they can either be saved and restored
as a coordinated set or inspected as ordinary data. Normally, however,
the flags are set and tested as independent items—not as a set.

PROGRAMMER'S GUIDE TO THE IBM PC

The Stack

The stack is a built-in feature of the 8088. It provides programs with a
place to store and keep track of work in progress. The most important use of
the stack is to keep a record of where subroutines were invoked from and what
parameters were passed to them. The stack can also be used for temporary
working storage, though this is less fundamental and less common.

The stack gets its name from an analogy to a spring-loaded stack of plates
in a cafeteria: New data is "pushed" onto the top of the stack and old data is
"popped" off. A stack always operates in last-in-first-out (LIFO) order. This
means that when the stack is used to keep track of where to return to a pro
gram, the most recent calling program is returned to first. This way, a stack
maintains the orderly workings of programs, subroutines, and interrupt han
dlers, no matter how complex their operation.

A stack is used from the bottom (highest address) to the top (lowest ad
dress) so that when data is pushed onto the top of the stack, it is stored at the
memory addresses just below the current top of the stack. The stack grows
downward, so that as data is added, the location of the top of the stack moves
to lower and lower addresses, decreasing the value of SP each time. This has
the advantage of making displacements into old stack contents positive. We
need to keep this in mind when we access the stack—as is commonly done in
assembly-language interface routines.

.008 5E00

006 4D00

.004 3COO

• Bottom of

stack :

stack (SP=10i

-.1008 5E00

;1006 4D00

:1004 3COO

:1002 2B00

:1000

■ Bottom of

stack

Old top of Stack

Top of
stack (SP = 1002)

:ack before a PUSH b. Stack after a PUSH

r»- Bottom of

;1008 5E00 s,aci<.

1006

1004 3C00 —stack (SP = 1004)

c. Stack after a POP

Chapter 2: The Ins and Outs

Any part of any program can create a new stack space at any time, but
this is not usually done. Normally when a program is run, a single stack is cre
ated for it and that stack is used throughout the operation of the program—by
the program itself, by its subroutines, and by any DOS and BIOS services that
are invoked during program execution. When not running a program, DOS
uses its own private stack.

There is no simple way to estimate the size of stack that a program might
need, and the 8088's design does not provide any automatic way of detecting
when stack space is in short supply or exhausted. This can make programmers
nervous about the amount of space that should be set aside for a stack. It is
common for programming languages to automatically use a stack size of 512
to 2K bytes, unless another amount is requested. You may safely assume that |
this size is ample, unless you have special reasons to expect otherwise. : ;

There are nine 1-bit flags in the 16-bit flag register, leaving seven bits
unused. The flags can be logically divided into two groups; six status
flags, which are set to record processor status information (usually indi
cating what happened with a comparison or arithmetic), and three con
trol flags, which direct some of the 8088 instructions. Be prepared to see
a variety of notations for the flags, including distinct names for whether
they are set (1) or clear (0). The terms used in Figures 2-7 and 2-8 are the
most common.

Addressing Memory Through Registers

We've seen that memory is always addressed by a combination of a
segment-paragraph value and a relative-offset value, and that the segment-
part of an address always comes from one of the four segment registers.

Code Name Use

CF Carry flag Indicates an arithmetic carry-out bit

OF Overflow flag Indicates arithmetic overflow

ZF Zero flag Indicates zero result, or equal comparison

SF Sign flag Indicates negative result/comparison

PF Parity flag Indicates even number of 1 bits

AF Auxiliary carry flag Indicates adjustment needed in binary-coded
decimal (BCD) arithmetic operations

Figure 1-7. The six status flags in the
flag register

34 PROGRAMMER'S GUIDE TO THE IBM PC

Code Name Use

DF Direction flag Controls left/right direction in repeated
operations (e.g. using SI and Dl)

IF Interrupt flag Controls whether interrupts are enabled
TF Trap flag Controls single-step operation (used by DEBUG)

by generating a software trap at the end of every
instruction

Figure 2-8. The three control flags in the
8088's flag register

The offset part can come from any combination of one, two, or three of
the following sources:

■ A relative-offset value in the instruction itseh.

■ Register BX or BP.

■ An index register, SI or DI.

You should be aware of the range of possibilities when you are either
writing or reading assembly-language code. Not all instructions accom
modate all possible ways of forming an offset address. One way to find
out if a combination is allowed is to try it and see if it is accepted by ei
ther your assembler or DEBUG's A-assemble command.

You should also be aware of the notation conventions used for both
memory addresses and for registers. Brackets, [], are used to indicate
that the enclosed item is to be used as a relative-offset address. This is a
key element of memory addressing: Without brackets, the actual value
stored in the register is used in whatever operation is specified. Here are
some examples:

ADDAX,BX

ADD AX,[BX]

ADD [BX],AX

ADD AX,123

Adds the contents of BX into AX; no
memory addressing

Indirect addressing: Adds a value from
memory into AX; BX gives the relative offset
of the value

Adds the AX value into a memory location;
BX gives the relative offset of the value to
which the AX value will be added

Immediate addressing: Adds 123 to the
value in AX

Chapter 2; The Ins and Outs 35

ADD AX,[123] Adds the value located at relative offset 123
to the value in AX

ADD AX,[BX + SI +123] Indexed indirect addressing: Adds the value
located at the relative offset generated by
adding two registers and a number to the
value in AX

Rules for Using Registers

It is important to know that various rules apply to the use of regis
ters, and it is essential to be aware of these rules when writing assembly-
language interface routines. The rules and conventions of usage vary by
circumstance and by programming language, so unfortunately, exact
guidelines are not always available, but here are some general rules that
will apply in most cases, You will find additional guidance, and
working models to copy, in the examples in Chapters 8 through 20.)
Keep in mind, though, that the following rules are general, not absolute.

In an assembly-language interface routine, there are three general
ways to use registers: Some registers can be freely changed; some regis
ters can be changed, but should be restored at the end of the routine; and
some registers should not be changed at all.

Generally, the scratch-pad registers (AX through DX) can be freely
changed, with no harm to the calling program. Keep in mind that the AX
register is commonly used to return results, and that under some circum
stances parameters are passed via these registers and discarded after use.

Particular rules apply to the four segment registers (CS, DS, SS, and
ES). The CS register should never be changed directly, although it may be
changed indirectly through far and near subroutine calls. The DS register
may be changed, hut should usually be restored afterward. The original
SS register value should be preserved whenever changes are made to the
register. Normally, subroutines continue to use the stack that SS points
to, but if they create their own stack, they should restore the original
value of SS when they are through. Note that changing the SS value can
interfere with the use of the base pointer (BP) to access parameters. The
ES register can usually be changed at will.

The instruction pointer (IP/PC) should not be directly changed; as
with the CS register, indirect changes occur automatically and correctly.

The stack pointer (SP) may be changed, but normally, all changes to
the SP are made as the indirect result of using the stack. Cleaning up the
stack (which implies resetting the SP) is an important part of the interface
conventions for using subroutines; the rules for this vary {m- see the ex
amples in Chapters 8 through 20).

PROGRAMMER'S GUIDE TO THE IBM PC

The base pointer (BP) is usually changed to gain access to param
eters, and often it should be restored.

The index registers (SI and DI) can be freely changed as needed.
In the flag register, the status flags can also be routinely changed.

Remember that some of the status flags are occasionally used to signal a
result, so their setting can be important. The CP and ZF flags are most
often used for this purpose. As for the control flags, the interrupt flag (IF)
should be left set (interrupts enabled); it is probably also wise to leave the
direction flag (DF) set; setting the trap flag (TF) is suicidal.

HOW THE 8088 USES PORTS

The 8088 communicates with and controls many parts of the com
puter through the use of input and output (I/O) ports. The I/O ports are
doorways through which information passes as it travels to or from an
I/O device, such as a keyboard or a printer. Most of the support chips we
described in Chapter 1 use the I/O ports; in fact, each chip may use sev
eral port addresses for different purposes.

Each port is identified by a 16-bit port number, which can range
from 0 through 65,535. The CPU sends data or control information to a
particular port by specifying the port's number, and the port responds by
passing data or status information back to the CPU.

As when accessing memory, the CPU uses the data and address
buses as conduits for communication with the ports. To access a port,
first the CPU sends a signal on the control bus which notifies all I/O de
vices that the address on the bus is that of a port, and then sends the port
address. The device with the matching port address responds.

The port number addresses a memory location that is part of the
I/O device but is not part of main memory. Special input/output instruc
tions are used to signal a port access and send information back and
forth to the I/O devices. Some I/O devices, such as the video controllers,
also use the main memory addresses in addition to their I/O ports and
make the CPU think they are part of RAM memory. This is blown as
memory-mapped I/O. Generally, memory-mapped devices are easier to
program because they allow us to use the more flexible memory instruc
tions instead of the rather inflexible and limited input/output instructions
in the 8088 instruction set.

□ NOTE: The 8088 instruction set includes the IN and OUT instruc
tions to read or write data to a port. BASIC includes the INP and OUT in
structions to read or write data to ports in the same way, allowing us to
experiment with different ports using simple BASIC routines and then in
corporate them into our programs without having to resort to assembly-
language programming.

Chapter!: The Ins and Outs 37

Family Differences in the Use of Ports

The uses of specific ports are determined by the hardware design
ers. Programs that make use of these ports need to be aware of the port
numbers, as well as their use and meaning. Since the port assignments
differ slightly among the PC family members, we have included a list of
the standard ports, their numbers, and their uses in Figure 2-9. In many
cases, the uses are common to the whole PC family. However, you will
notice that the PCjr and AT have introduced a few changes to the port
number assignments.

'•* Before using these port addresses, read the descriptions of the
chips in Chapter 1. Chapter 7, which covers the use of the ports for sound
generation, shows how the ports can be used for some direct hardware
programming to control sound output.

Writing to certain ports can disrupt the operation of the computer,
but reading a port may also have an adverse effect. Don't assume that
simply reading a port will not interfere with the computer's operation, or
that what is safe on one PC model is safe for the entire family. For exam
ple, the following program works perfectly well on most models of the
PC, but locks up a PCjr.

10 FOR I = 50 TO 75

20 IF I = 04 THEN PRINT "What happens next?"
30 PRINT I, INP (I)

40 NEXT I

This program simply uses BASIC'S INP command to read data from a port
(INP stands for IN from a Port). It tries to read data from ports 50
through 75, a seemingly innocuous endeavor. However, this little pro
gram locks up the PCjr when it reaches port number 64, although it
works quite smoothly on the other PCs. The reasons are buried in the
details of hardware design, and to be honest, I don't know them. How
ever, this sort of curiosity is interesting to know about.

HOW THE 8088 USES INTERRUPTS

Whenever a hardware device or a program needs the assistance of
the CPU, it sends a signal or instruction called an interrupt to the micro
processor, identifying the particular task it wants performed. When the
microprocessor receives the interrupt signal, it generally stops all other
activities and activates a subroutine stored in memory, called an inter
rupt handler, that corresponds to that particular interrupt number. After
tbe interrupt handler has performed its task, the computer's activities con
tinue from where they were when the interrupt occurred.

jrI

PC

XT

AT

Range
Description PCjr PC/XT AT

DMA controller (8237) n/a OOO-OOF OOO-OIF

Interrupt controller (8259) 020-027 020-021 020-03F

Timer (8253; 8254.2 in AT) 040-047 040-043 040-05F

PPI (8255) 060-067 060-063 n/a

Keyboard (8042) n/a n/a 060-06F

DMA page register (74LS612) n/a 080-083 080-09F

NMI (non-maskable interrupt) mask 0A0-0A7 OA 070-07F

register

Interrupt controller 2 (8259) n/a n/a OAO-OBF

Sound generator (SN76496N) 0C0-0C7 n/a n/a

DMA controller 2 (8237) n/a n/a OCO-ODF

Clear/reset math coprocessor n/a n/a OFO-OFl

Math coprocessor n/a n/a 0F8-0FF

Joystick (game controller) 200-207 200-20F 200-207

Expansion unit n/a 210-217 n/a

Parallel printer (secondary) n/a n/a 278-27F

Serial port (primary) 2F8-2FF 3F8-3FF 3F8-3FF

Serial port (secondary) n/a 2F8-2FF 2F8-2FF

Prototype card n/a 300-31F 300-31F

Fixed disk n/a 320-32F 1F0-1F8

Parallel printer (primary) n/a 378-37F 378-37F

SDLC (secondary bisynchronous n/a 380-38F 380-38F

communications in AT only)

Bisynchronous communications n/a n/a 3A0-3AF

(primary)

Monochrome adapter/printer n/a 3B0-3BF 3B0-3BF

Color/graphics adapter n/a 3D0-3DF 3D0-3DF

Diskette controller OFO-OFF 3F0-3F7 3F0-3F7

Figure 2-9. The ports and port addresses
used in the PCjr, the PC/XT, and the AT
computers

Chapter 2: The Ins and Outs 39

There are three main categories of interrupts. First, there are inter
rupts generated by the computer's circuitry in response to some event,
such as a key-press on the keyboard. These interrupts are managed by
the interrupt controller chip (the 8259), which prioritizes them in order of
importance before sending them on to the CPU to be acted on. Second,
there are interrupts that are generated by the CPU as a by-product of
some unusual program result, such as division by zero. And third, there
are interrupts deliberately generated by programs as a way of invoking
distant subroutines stored in either RAM or ROM. These interrupts, often
called software interrupts, are usually part of the ROM-BIOS and DOS ser
vices. (•' They are covered thoroughly in Chapters 8 through 18.) It is
possible to change software interrupt-handling routines or even write
new ones if our application requires it.

In addition to these interrupts, there is also one special type of inter
rupt, called the non-maskable interrupt (NMI), that is used to demand
immediate attention from the CPU. It often signals an emergency, such as
a drop in voltage or a memory error. When an NMI is sent, it is given top
priority and the CPU acts on it before all other interrupts.

However an interrupt is generated, the originator of the interrupt
doesn't need to know the memory address of the required interrupt han
dler; it only needs to know the number of the interrupt. The number
points to a table stored in the lowest memory locations, which contains
the segmented address of the interrupt-handling subroutine. The inter
rupt handler's address is called its interrupt vector, and the table is called
the interrupt vector table. The vector table is normally supervised by the
BIOS and DOS. ('•'We'll discuss this more in Chapter 3.) When we create
new interrupt-handling subroutines, we either have them use an existing
interrupt number and vector, or we assign new ones.

Interrupts automatically save the current code segment (CS) and in
struction pointer (IP) values on the stack, so the computer can return to
where it was working when the interrupt occurred. In addition, the inter
rupt process saves the flag register on the stack and clears the interrupt
flag (IF), temporarily preventing further interrupts. Normally, an inter
rupt-handling subroutine turns interrupts back on as soon as possible,
usually within the first few instructions. There is a special interrupt re
turn instruction, IRET, which performs this function; it corresponds to
the RET instruction used with subroutine calls. IRET also restores the

flags, the CS, and the IP.

40 PROGRAMMER'S GUIDE TO THE IBM PC

It is quite common to link assembly-language subroutines to pro
grams or even to programming languages so that we can gain access to
DOS and BIOS service routines or otherwise enhance a program's perfor
mance. For such interface routines, especially those that call DOS or BIOS
services, it is necessary to be able to program in assembly language. But
for most purposes, these interfaces will consist of simple subroutine calls
and returns, or interrupt calls using the INT instruction. Only the most
advanced assembly-language programming involves the creation of inter
rupt handlers and the use of the IRET instruction.

3

The ROM Software

The Start-up ROM 42

The ROM-BIOS 44
Interrupt Vectors 45

Key Low-Memory Addresses 51
The ROM Version and Machine ID Markers 58

The ROM-BASIC 61

The ROM Extensions 62

The Software Cartridges 63

Comments 65

41

42 PROGRAMMER'S GUIDE TO THE IBM PC

It takes software to make a computer go. And getting a computer
going and keeping it going is much easier if some of that software is
permanently built into the computer. That's what the ROM pro
grams are all about. ROM stands for read-only memory—memory

that is permanently recorded in the circuitry of the PC's ROM chips and
that can't be changed, erased, or lost.

Our PCs come with a substantial amount of ROM that contains the

programs and data needed to start and operate the computer and its pe
ripheral devices. The advantage of having a computer's fundamental pro
grams stored in ROM is that they are right there—built into the com
puter—and there is no need to load them into memory from disk the
way that DOS must be loaded. Because they are permanent, the ROM pro
grams are very often the foundation upon which other programs (includ
ing DOS) are built.

There are four elements to the ROM in IBM's PC family: the start-up
programs, which do the work of getting the computer started; the ROM-
BIOS—an acronym for Basic Input/Output System—which is a collec
tion of machine-language routines that provide support services for the
continuing operation of the computer; the ROM-BASIC, which provides
the core of the BASIC programming language; and the ROM extensions,
which are programs that are added to the main ROM when certain op
tional equipment is added to the computer. We'll be examining each of
these four major elements throughout the rest of this chapter.

The highest memory block is set aside to hold the ROM programs,
starting at segment paragraph hex FOOD. Different models of the PC fam
ily use different amounts of this 64K space depending upon how complex
their needs are for ROM software. For example, the original PC model,
with its relatively simple hardware, used only 40K of the 64K F block for
the ROM programs, while both the PCjr and the AT, with their much
more complex hardware, use the full 64K space.

THE START-UP ROM

The first job the ROM programs have is to supervise the start-up of
the computer. Unlike other aspects of the ROM, the start-up routines have
little to do with programming the PC family—but it is still worthwhile to
understand what they do.

There are several tasks performed by the start-up routines. For ex
ample, they run a quick reliability test of the computer (and the ROM
programs) to make sure everything is in working order; they initialize the
chips and the standard equipment attached to the computer; they set up

Chapter 3: The ROM Software 43

the interrupt vector table; they check to see what optional equipment is
attached and, if a disk drive is attached, they often end by loading the
operating system from disk.

The reliability test, part of a process known as the Power On Self
Test (POST), is an important first step in making sure the computer is
ready. All of the POST routines are quite brief except for the memory
tests, which can be annoyingly lengthy when the computer contains a
large amount of memory.

The initialization process is slightly more complex. One routine sets
the default values for interrupt vectors. These default values either point
to the standard interrupt handlers located inside the ROM-BIOS, or they
point to do-nothing routines that our programs will later supply. Another
initialization routine determines what equipment is attached to the com
puter, and then places a record of it at standard locations in low memory.
[m- We'll be discussing this equipment list in more detail later in the chap
ter.) How this information is acquired varies from model to model—for
example, B3 in the PC it is taken mostly from the settings of two banks of
switches located on the computer's system board; Pl;i in the PCjr, it is
mostly determined by a logical inspection and test (in effect, the initializa
tion program shouts to each possible option, "Are you there?" and listens
for a response); E9 and in the AT, the information is read out of a special
nonvolatile memory area (which can be set by the diagnostic programs).

Whatever method is used, the status information is recorded and
stored in the same way for every model so that our programs can moni
tor it. The initialization routines also check for new equipment and ex
tensions to ROM. If they find any, they momentarily turn control over to
the ROM extensions so that they can initialize themselves. The initializa
tion routines then continue executing the remaining start-up routines
(more on this later).

The final part of the start-up procedure, after the POST tests, the
initialization process, and the incorporation of ROM extensions, is called
the boot-strap loader. It's a short routine that is used to load a program
from disk. In essence, the ROM boot loader attempts to read a record,
called a boot record, from a disk, and if successful, passes control of the
computer to the program stored in that record. The program in the disk's
boot record has the job of loading the rest of the disk program. Usually,
this program is a disk operating system such as DOS, but it could be a
self-contained and self-loading program, such as Microsoft's Flight Sim
ulator. If the ROM boot loader cannot read a disk's boot record, it simply

44 PROGRAMMER'S GUIDE TO THE IBM PC

activates the built-in ROM "cassette" BASIC. (For non-IBM members of the
extended PC family, a non-boot error message is displayed instead.) As
soon as either of these two processes occurs, the system start-up proce
dure is finished and the other programs are ready to take over.

□ NOTE; The ROM extensions can alter or prevent the booting pro
cess. jiiil As we will see toward the end of this chapter, this is most no
ticeable in some of the PCjr's software cartridges.

THE ROM-BIOS

The ROM-BIOS is the part of ROM that is in active use all the time
the computer is at work. The role of the ROM-BIOS is to provide the fun
damental services that are needed for the operation of the computer. For
the most part, the BIOS controls the computer's peripheral devices, such
as the display screen, keyboard, and disk drives. When we use the term
BIOS in its narrowest sense, we are referring to the device control pro
grams—the programs that translate a simple command, such as read-
something-from-the-disk, into all the steps needed to actually perform
the command, including error detection and correction. In the broadest
sense, the BIOS not only refers to the routines that are needed to control
the PC's devices, but also to the routines that contain information or per
form tasks that are fundamental to other aspects of the computer's oper
ation, such as keeping track of the time of day.

Conceptually, the BIOS programs lie between our programs (includ
ing DOS) and the hardware. In effect, this means that the BIOS works in
two directions in a two-sided process. One side receives requests from
programs to perform the standard BIOS input/output services. These ser
vices are invoked by our programs with a combination of an interrupt
number (which indicates the subject of the service request, such as
printer services) and a service number (which indicates the specific ser
vice to be performed). The other side of the BIOS communicates with the
computer's hardware devices (display screen, disk drives, etc.), using
whatever detailed command codes each device requires. This side of the
BIOS also handles any hardware interrupts that a device generates to get
attention. For example, whenever we press a key, the keyboard generates
an interrupt to let the BIOS know.

Of all the ROM software, the BIOS services are probably the most in
teresting and useful to programmers—as a matter of fact, we have de
voted five chapters to the BIOS services in Chapters 8 through 13. Since
we deal with them so thoroughly later on, we'll skip any specific discus
sion of what the BIOS services do and instead focus on how the BIOS as a
whole keeps track of the computer's input and output processes.

Chapter 3; The ROM Software 45

Interrupt Vectors

The IBM PC family, like all computers based on the Intel 8086 family
of microprocessors, is controlled largely through the use of interrupts,
which can be generated by hardware or software. The BIOS service rou
tines are no exception; each one is assigned an interrupt number that we
must call when we want to use the service.

When an interrupt occurs, control of the computer is turned over to
an interrupt-handling subroutine that is often stored in the system's ROM
(a BIOS service routine is nothing more than an interrupt handler). The
interrupt handler is called by loading its segmented address into the regis
ters that control program flow: the CS (code segment) register and the IP
(instruction pointer) register—together known as the CS;IP register pair.
The segmented addresses used to locate interrupt handlers are called in
terrupt vectors.

The interrupt vectors are preset during the system start-up process
to point to the interrupt handlers in ROM. They are stored in a table in
RAM as a pair of words, with the relative-offset portion first, and the seg
ment portion second (the 8088 stores them in backward order in mem
ory; m- see page 27 for an explanation of the "back-words" storage for
mat). The interrupt vectors can be changed to point to a new interrupt
handler simply by locating the vector and changing its value.

As a general rule, the PC family's interrupts can be divided into seven
categories: microprocessor, hardware, software, DOS, BASIC, address,
and general use.

The microprocessor interrupts, often called logical interrupts, are
designed into the microprocessor. Four of them (interrupts 0,1, 3, and 4)
are generated by the microprocessor itself, and another (interrupt 2, the
non-maskable interrupt) is activated by a signal generated by one of the
external devices.

The hardware interrupts are built into the PC hardware. Eight of
these hardware interrupts are hard-wired into either the microprocessor
or the main system board and cannot be changed. All hardware inter
rupts are supervised by the 8259A PIC chip. The reserved codes are 2, 8, 9,
and 11 through 15.

The software interrupts incorporated into the PC design are part of
the ROM-BIOS programs. The BIOS routines invoked by these interrupts
cannot themselves be changed, but the vectors that point to the routines
can be changed to point to different routines. The reserved codes are 5,
16 through 28, and 72.

46 PROGRAMMER'S GUIDE TO THE IBM PC

The Part DOS Plays
After the ROM boot-strap loader turns control over to a disk's boot

record, the boot record checks to see if DOS is stored on the disk by looking
for two hidden program files named IBMBIO.COM and IBMDOS.COM.
If it finds them, it loads them into memory along with the DOS command
interpreter, COMMAND.COM. During this loading process, optional parts
of DOS, such as installable device drivers, may also be loaded.

The IBMBIO.COM file contains extensions to the ROM-BIOS. These

extensions may be changes or additions to the basic I/O operations and often
include corrections to the existing ROM-BIOS, new routines for new equip
ment, or customized changes to the standard ROM-BIOS routines. Since they
are part of disk software, the lBMBIO.COM routines provide a convenient
way to modify tlie ROM-BIOS. All that is necessary, besides the new routine,
is that the interrupt vectors for the previous routines be changed to point to
the location in memory where the new routines are placed. Whenever any new
devices are added to the computer, their support programs can be included in
the IBMBIO.COM file or as installable device drivers, eliminating the need to
replace ROM chips. See Appendix A for more on device drivers.

We can think of the ROM-BIOS routines as the lowest-level system soft
ware available to us, performing tbe most fundamental and yet primitive input
and output operations. The IBMBIO.COM routines, being extensions of tbe
ROM-BIOS, are essentially on the same low level, also providing basic func
tions. By comparison, the IBMDOS.COM routines are more sophisticated,
and we can think of them as occupying the next level up, with our program
ming languages on top.

The IBMDOS.COM file contains the DOS service routines. The DOS

services, like the BIOS services, can be called by our programs through a set of

The DOS interrupts are always available when DOS is in use. Many
programs and programming languages use the services provided by DOS
through the DOS interrupts to handle their basic operations, especially
disk I/O. The reserved codes are 32 through 255 (32 through 96 are used;
the others are set aside).

The BASIC interrupts are assigned by BASIC itself and are always
available when BASIC is in use. The reserved codes are 128 through 240.

The address interrupts are part of the interrupt vector table and are
used to store segmented addresses. There are no actual interrupts or in-
terrupt-handling subroutines associated with these interrupts. Three of
them are associated with three very important tables; the video initializa
tion table, the disk base table, and the graphics characters table. These
tables contain parameters that the ROM-BIOS uses in start-up procedures
and for graphics character generation. The reserved codes are 29 through
31, 68, and 73 (El 68 and 73 are used in the PCjr only).

Chapter 3: The ROM Software

interrupts whose vectors are placed in the interrupt vector table in low mem
ory. One of the DOS interrupts, interrupt 33 (hex 21), is particularly important
because when invoked, it gives us access to a rather large group of secondary
routines, called DOS functions. The DOS functions provide us with more so
phisticated and efficient control over the I/O operations than the BIOS routines
do, especially with regard to disk file operations. All of the standard disk pro
cesses—formatting diskettes; reading and writing data; opening, closing, and
deleting files; performing directory searches—are included in the DOS func
tions and provide the foundation for many of the higher-level DOS programs,
such as FORMAT, COPY, and DIR. Our programs can use the DOS services
when we need more control of I/O operations than our programming lan
guages allow, and when we are reluctant to dig all tlie way down to the BIOS
level. The DOS services are a very important part of this book and we have de
voted five chapters to them, Chapters 14 through 18.

The COMMAND.COM file is the third and most important part of
DOS, at least from a utilitarian standpoint. This file contains the routines that
interpret what we type in through the keyboard when we are in the DOS com
mand mode. By comparing our input to a table of command names, the
COMM AND.COM program is able to differentiate between internal com
mands that are part of the COMMAND.COM file, such as RENAME or
ERASE, and external commands such as the DOS utility programs (like
DEBUG) or one of our own programs. It acts on our input by executing the
required routines for internal commands or by searching for the requested
programs on disk and loading them into memory. The whole subject of the
COMMAND.COM file and how it works is intriguing and well worth inves
tigating—as are the other DOS programs. I recommend you read the DOS
Technical Reference manual or Inside the IBM PC for additional information.

The general-use interrupts are established by our programs for
temporary use. The reserved codes are 96 through 103.

The interrupt vectors are stored at the lowest memory locations;
the very first location in memory contains the vector for interrupt num
ber 0, and so on. Since each vector is two words in length, we find a partic
ular interrupt's location in memory by multiplying its interrupt number
by 4. For example, the vector for interrupt 5, the print-screen service in
terrupt, would be at byte offset 20 (5 x 4 = 20). You can examine the inter
rupt vectors by translating this decimal number into hex notation and
using DEBUG (which only accepts hex values). For interrupt 5, location 20
translates into the hex address 14, and the following commands;

DEBUG

D 0000:0014 L 4

will show four bytes, in hex, like this:

54 FF 00 FO

48 PROGRAMMER'S GUIDE TO THE IBM PC

Converted to a segmented address and allowing for "back-words" stor
age, we can see that the interrupt vector for the entry point in ROM of the
print-screen service routine (interrupt 5) is F000:FF54. The same DEBUG
instruction can be used to find any other interrupt vector just as easily.

Figure 3-1 is a listing of the main interrupts and their vector loca
tions. These are the interrupts that programmers will probably find most
useful, Details are available for most of these interrupts in Chapters 8
through 18. Interrupts that are not mentioned in this list are, for the most
part, reserved for future development by IBM.

Changing Interrupt Vectors

The main programming interest in interrupt vectors is not to read
them but to change them so that they point to a new interrupt-handling
routine. To do this, we must write a routine that performs a different
function than the standard ROM-BIOS or DOS interrupts perform, store
the routine in RAM, and then assign a new address to an existing inter
rupt in the table.

A vector can be changed byte by byte on an assembly-language
level, or by using a programming-language instruction like the POKE
statement in BASIC. In some cases, there may be a danger of an interrupt
occurring in the middle of a change to the vector. If you are not con
cerned about this, you may as well use the POKE method. Otherwise,
there are two separate ways to change a vector while taking precautions
against its being used while we're in the middle of changing it.

In the first method, we'll change the vector by hand and suspend
interrupts while we're doing it, using the clear interrupt instruction (CLI).
CLI suspends all interrupts except for the non-maskable interrupt (NMI).
NMI is supposed to be used only to signal a truly urgent, the-machine's-
on-fire type of situation, but unfortunately it has come to be used for
some very ordinary situations as well, such as signaling keyboard action
on the PCjr. As a consequence, while masking interrupts with CLI gives
us reasonable insurance against being disrupted in the middle of chang
ing an interrupt vector, it's not perfect.

I'll show you two examples of this first method—how to set an in
terrupt vector with interrupts suspended. The first example sets the vec
tor with two MOV instructions, which move the two words of the vector
into place:

XOR AX , AX ; zero segment register
MOV ES,AX ; zero segment register

CLI ; suspend interrupts
MOV WORD PTR ES:36,XX ; move vector offset part
MOV WORD PTR ES:38,YY ; move vector segment part
STI ; activate interrupts

Interrupt Interrupt
Dec Hex Address Use Dec Hex Address Use

0 0 0000 Generated by CPU when
division by zero is attempted

26 lA 0068 Invokes time and date services

in BIOS

1 1 0004 Used to single-step through
programs (as with DEBUG)

27 IB 006C Interrupt generated on
keyboard break under BIOS;

2 2 0008 Non-maskable interrupt;
in PCjr, NMI has some

a routine is invoked if we

create it

special uses 28 IC 0070 Interrupt generated at each

3 3 OOOC Used to set break-points in
programs (as with DEBUG)

clock tick; a routine is invoked
if we create it

4 4 0010 Generated when arithmetic

result overflows

29 ID 0074 Points to table of video control
parameters

5 5 0014 Invokes print-screen service 30 IE 0078 Points to disk base table

routine in BIOS 31 IF 007C Points to high video graphics

8 8 0020 Generated by hardware characters

clock tick 32 20 0080 Invokes program-terminate

9 9 0024 In most models, generated by service in DOS

keyboard action; simulated on 33 21 0084 Invokes all function-call
PCjr for model compatibility services in DOS

13 D 0034 Generated during CRT vertical
retrace, for video control

34 22 0088 If we create it, an interrupt
routine is invoked at program

14 E 0038 Signals diskette attention end under DOS

(e.g. to signal completion) 35 23 008C If we create it, an interrupt
routine is invoked on keyboard
break under DOS

15 F 003C Used in printer control

16 10 0040 Invokes video display services
36 24 0090in BIOS If we create it, an interrupt

0044
routine is invoked at critical

17 11 Invokes equipment-list service
in BIOS

error under DOS

18 12 0048
37 25 0094 Invokes absolute diskette read

Invokes memory-size service
in BIOS

service in DOS

19 13 004C
38 26 0098 Invokes absolute diskette write

Invokes diskette services in BIOS service in DOS

20 14 0050 Invokes communications

services in BIOS
39 27 009C Ends program, but keeps it in

memory under DOS
21 15 0054 Invokes cassette tape services

in BIOS
68 44 0110 Points to low video graphics

characters; only on PCjr
22 16 0058 Invokes standard keyboard

services in BIOS
72 48 0120 Invokes program to translate

PCjr keyboard into PC
23 17 005C Invokes printer services in BIOS keyboard

24 18 0060 Activates ROM-BASIC language,
or override for it

73 49 0124 Points to translation table for

keyboard-supplement devices

25 19 0064 Invokes boot-strap start-up
routine in BIOS

Figure 3-1. The main interrupts used in the
IBM personal computer family

50 PROGRAMMER'S GUIDE TO THE IBM PC

While this technique is straightforward, it runs a small risk of an
NMl coming between the two MOV instructions (admittedly a very small
risk). The risk can be reduced by combining the two moves into a single
repeated, or string, move instruction (MOVS). Using the string move in
struction is much clumsier, because it requires a lot of register set-up.
We'll use it, though, to give you an example of an alternate way of coding
that yields the same result as the first example.

; first set up numerous registers for repeated move
XOR DI, DI ; get a zero word
MGV ES, DI ; set paragraph-to (= 0)
MGV DI»36 ; set offset-to
MGV SI,XXXX ;set offset-from
MGV C X , 2 ; count of words
CLD ; set forward direction

; now do move with interrupts suspended
CLI ; suspend interrupts
REP MGVSW ; repeated move of words
ST I ; reactivate interrupts

Unfortunately, there's an error in some revisions of the 8088 such
that the MOVS instruction can be interrupted.

We've shown you two different ways to change an interrupt vector
using the do-it-yourself method. The other method is to let DOS do it for
you using DOS service number 37, which was designed for this purpose.
There are two very important advantages to letting DOS set interrupts for
us instead of doing it ourselves. One advantage is that DOS takes on the
task of putting the vector into place in the safest possible way. The other
advantage is more far-reaching. With the appearance of the 80286 proces
sor chip in the AT model, the PC family is beginning to pass into realms
where such familiar items as interrupt vectors and segment registers
aren't what they used to be. Using a DOS service to set an interrupt vec
tor instead of setting it ourselves is just one of the many ways that we can
reduce the risk that our new programs will be incompatible with new
machines or new operating-system environments.

So, here is an example of how to use DOS service 37 to set an inter
rupt vector:

MGV DX , X X ; load vector offset part
MGV DS,YY ; load vector segment part
MGV AH, 3 7 ; request set-interrupt function
MGV AL, 9 ; change interrupt number 9
INT 33 ; DOS function-call interrupt

This example shows, in the simplest possible way, how to use the
DOS service. However, it glosses over an important and subtle difficulty:
We have to load one of the addresses that we're passing to DOS into the
DS (data segment) register—which effectively blocks normal access to

Chapter 3; The ROM Software 51

our data through the DS register. Getting around that problem calls for
some fancy footwork. Here is one way it can be done, using a real exam
ple taken from my own Norton Utilities programs:

PUSH DS ; save current data segment
MOV DX,OFFSET PGRGUPrXXX ; get vector offset
PUSH CS ; move our own code segment...
POP DS ; ... into the data segment
MOV AH,37 ; request set-interrupt function
MGV AL,9 ; change interrupt number 9
INT 33 ; DOS function-call interrupt
PGP DS ; restore our original data segment

Key Low-Memory Addresses

Much of the operation of the PC is controlled by data that is stored
in low-memory locations, particularly in the two adjacent 256-byte areas
beginning at hex 400 and 500. Data is loaded into these areas from the
BIOS during the start-up process. Although the control data is supposed
to be the private reserve of the BIOS, our programs are allowed to inspect
or even change it. Even if you do not intend to use the information in the
BIOS control area, it is worth studying because it reveals a great deal
about what makes the PC family tick.

To avoid confusion about these low-memory addresses, keep in
mind that memory address 400 might also be expressed in segmented for
mat as either 0040:0000 or 0000:0400. All three notations refer to exactly
the same location.

The Control Information Area

Some of the memory locations in the hex 400 and 500 areas are par
ticularly interesting. Most of them contain data that is vital to the opera
tion of various BIOS and DOS service routines. In many instances, our
programs can return the information stored in these locations by invok
ing a BIOS interrupt; in all cases, they can access the information direcdy.
You can easily check out the values at these locations on your own com
puter, using either DEBUG or BASIC.

To use DEBUG, enter these commands:

DEBUG

D 0:XXXX L 1

In this example, XXXX represents the hex address you want to examine.
The L1 tells DEBUG to display one byte. To see two or more bytes, enter
the number of bytes (in hex) you wish to see after the L instruction.

52 PROGRAMMER'S GUIDE TO THE IBM PC

To display the data with BASIC, you can use the simple program that
is shown below, making the necessary substitutions for address.in.hex and
number.of.bytes:

10 DEF SEG = 0

20 FOR I = 0 TO number.of.bytes.in.decimal - 1
30 VALUE = PEEK(JHaddress.in.hex + I)

40 IF VALUE < 16 THEN PRINT "0"; ' needed for leading zero
50 PRINT HEX$ (VALUE)

60 NEXT I

I have listed the most useful addresses on the next few pages. All
addresses are given in hex.

410 (a 2-byte word). This word holds the equipment-list data that is
reported by the equipment-list service, interrupt 17 (hex 11). The format of
this word, shown in Figure 3-2, was established for the PC and XT; certain
parts may appear in a different format in later models, including the PCjr.

412 (one byte). This byte is used only on the PCjr to count the num
ber of errors detected in the infrared keyboard link. Other models use

JRll|||jj|IB|_T_Jj| this byte only during initialization. An interesting byte, but it has no pro
gramming significance for us.

413 (a 2-byte word). This word contains the usable memory size in
K. In the PCjr, it returns the amount of memory that remains after setting
aside memory for the display. In other models, this word has a slightly
different meaning: It represents the total memory size. Regardless of the
model, the use of this word has the same purpose: It tells you how much
memory there is to use. BIOS interrupt service 18 (hex 12) reports the value
in this word.

417 (two bytes of keyboard status bits). These bytes are actively
used to control the interpretation of keyboard actions by the ROM-BIOS
routines. Changing these bytes actually changes the meaning of key
strokes. You may freely change the first byte, at address 417, but it is not a
good idea to change the second byte. (El A third byte, unique to the
PCjr, is located at 488). See pages 137 and 206 for the bit settings of
these two bytes.

419 (one byte). This byte is set aside in order to control alternate
keyboard input. It is intended for future use.

41A (a 2-byte word). This word points to the current head of the
BIOS keyboard buffer at 41E, where the key actions are stored until used.

41C (a 2-byte word). This word points to the current tail of the
buffer.

41E (32 bytes, used as sixteen 2-byte entries). The keyboard buffer is
used to hold up to sixteen keyboard actions until they are read via the

Chapter 3: The ROM Software 53

Bit

FEDCBA98 76543210 Meaning

XX Number of printers installed

. . X 1 if serial printer installed (PCjr only)

. . . X 1 if game adapter installed

. . ..XXX Number of RS-232 serial ports

X 0 if DMA chip installed; DMA is stan
dard in all models but PCjr

XX -1-1= number of diskette drives: 00 = 1

drive; 01=2 drives; 10 = 3 drives;
11=4 drives (see bit 0)

XX Initial video mode: 01 = PCjr 40-
column color; 10 = 80-column color,
11 = 80-column monochrome for

other models; 00 = none of the above

XX . . System board RAM: 00 = 16K;
01 = 32K; 10 = 48K; 11 = 64K (not
used on AT)

X . 1 if math coprocessor installed (not
used in PCjr)

X 1 if any diskette drives present (if so,
see bits 7 and 6)

Figure 3-2, The coding of the equipment-list
word at hex 410

BIOS services through interrupt 22 (hex 16). This is a circular queue
buffer, which is why there are two pointers to indicate the head and tail
(at 41A and 41C). It is not wise to mess with any of this data.

43E (one byte). This byte indicates if diskettes need to be recali
brated before seeking to a track. Bits 0 through 3 correspond to drives 0
through 3. If a bit is set to 0, recalibration is needed. Generally, you will
find that a bit is set to 0 if there was any problem with the most recent use
of a drive. For example, the recalibration bit will be 0 if you try to request
a directory (DIR) on a drive with no diskette, and then type A in response
to the display:

Not ready reading error B:
Abort, Retry, Ignore?

43F (one byte). This byte returns the diskette motor status. Bits 0
through 3 correspond to drives 0 through 3. If the bit is 1, the diskette
motor is running.

54 PROGRAMMER'S GUIDE TO THE IBM PC

440 (one byte). This byte holds the count down until the diskette
motor is shut off. The count is set to 37 (roughly 2 seconds) at the begin
ning of each diskette operation. At each clock tick, the count is decre
mented. The diskette motor is shut off when the count reaches zero.

441 (one byte). This byte indicates the diskette status, with each hit
representing a particular kind of error {m- see Figure 3-3). A hit value of 1
signals that the error occurred; a value of 0 indicates no error occurred.

442 (seven bytes). These seven bytes hold diskette controller status
information.

Beginning at hex 449 is a 30-hyte area that is used for video control.
The BIOS uses this area to keep track of critical video information. It is
safe for programs to inspect any of this data, hut in most cases, it is risky
to modify it. Changing any of this data can interfere erratically with the
computer's operation—my own experiments have produced some won
derfully bizarre results. The only bytes that appear to be both safe to
change and useful are the cursor-location fields. {<«- For more on cursors,
see address 450H and page 92.)

449 (one byte). A value of 0 through 10 or 13 through 16 in this byte
specifies the current video mode ((•^ see Figure 3-4). This is the same
video-mode coding used in the BIOS video services, (i#' See Chapter 9 for
more on these services, and page 73 for general information concerning
video modes.)

Our BASIC programs can read this byte to learn the video mode
with these instructions:

DEF SEG = 0

VIDEO.MODE = PEEK(4H449)

' set DS register to 0
' look at location hex 449

■ See page 78 for a special discussion on modes 4 and 5 in BASIC.

Bit

76543210 Meaning

X Diskette timed out: failed to respond in time

.X Seek to track failed

. . X Diskette controller chip failed

. . . X Cyclical redundancy check (CRC): error in data

. . . . X . . . DMA diskette error

X . . Sector not found: diskette damaged or not formatted

X . Address mark on diskette not found

X Invalid diskette command requested

Figure 3-3. The coding of the diskette-status
byte at hex 441

Chapter 3: The ROM Software 55

Code Meaning Code Meaning

0

1

2

3

4

40-column text, no color (EGA: 64 colors)

40-column text, 16-color (EGA: 64 colors)

80-column text, no color (EGA: 64 colors)

80-colunin text, 16-color (EGA: 64 colors)

Medium-resolution graphics, 4-color

9

10

13

Medium-resolution graphics, 16-color (not
on standard Color/Graphics Adapter)

High-resolution graphics, 4-color (not on
standard Color/Graphics Adapter)

Medium-resolution graphics, 16-color (not
on standard Color/Graphics Adapter)

5 Medium-resolution graphics, no color
(4 shades of grey)

14 High-resolution graphics, 16-color (not on
standard Color/Graphics Adapter)

6

7

High-resolution graphics, 2-color

Monochrome adapter mode
15 Special high-resolution graphics, 4-color

(not on standard Color/Graphics Adapter)

8 Low-resolution graphics, 16-color (not on
standard Color/Graphics Adapter)

16 Special high-resolution graphics, 64-color
(not on standard Color/Graphics Adapter)

Figure 3-4. The coding of the video-mode
byte at hex 449

44A (a 2-byte word). This word holds the screen width in text col
umns. Column widths are stored in the hex equivalent of 20, 40, or 80
columns (video mode 8, low-resolution graphics, has a text width of 20).

44C (a 2-byte word). The screen regeneration length. This is the
number of bytes used for the screen page, which varies by mode.

44E (a 2-byte word). The screen location offset. This is the starting
offset address into video display memory of the current display page. In
effect, this address indicates which visual page is in use by giving the off
set to that page.

450 (eight 2-byte words). These words give the cursor locations for
eight separate visual pages, beginning with page 0. The first byte of each
word gives the column (0 through 19,39, or 79) and the second byte gives
the row (0 through 24). The location of the cursor can be controlled by
modifying this information. For programming languages that do not pro
vide built-in cursor control, this can be a handy way to control the cursor
without creating an assembly-language interface to the BIOS routines.

"When changing the data in this byte, note that the change does not
go into effect immediately, but waits until the next screen output. To
demonstrate this, start DEBUG, and enter this command:

F 0:450 L 2 8 8

The cursor jumps to row 8, column 8 after you press return. Needless to
say, this isn't a good programming technique—but it's one you might
find worth knowing about.

56 PROGRAMMER'S GUIDE TO THE IBM PC

JR

460 (a 2-byte word). These two bytes hold the size of the cursor
based on the range of cursor scan lines. The first byte gives the ending
scan line, the second byte the starting scan line. Unlike the cursor-location
fields, changing these values will not automatically change the cursor.

462 (one byte). This byte holds the current display page number.
463 (a 2-byte word). This word stores the port address of the 6845

video controller chip. Normally, it is set to hex 3D4.
465 (one byte). This byte contains the current setting of the CRT

mode register.
466 (one byte). This byte contains the color-palette mask bit setting.

(•■For more on palettes see page 76.
467 (five bytes). These bytes are used for cassette tape control.
46C (four bytes stored as two 2-byte words but treated as one

4-byte number). This area is used as a master clock count, which is incre
mented once for each clock tick. It is treated as if it began counting from
0 at midnight. When the count reaches the equivalent of 24 hours, it is re
set to 0 and the byte at hex 470 is set. DOS or BASIC calculates the current
time by calculating from this value and sets the time by putting the ap
propriate count in this field. This value is reported or set by BIOS inter
rupt 26 (hex lA).

470 (one byte). This byte indicates that a clock roll-over has oc
curred. When the clock count passes midnight (and is reset to 0), this
byte is set to 1, which means that the date should be incremented. The
value is set by the clock-tick routine to indicate midnight has passed. It is
reset to 0 whenever the clock is read using interrupt 26 (hex lA). This
automatic reset is based on the assumption that any program that reads
the clock will increment the date when it reads this signal.

□ NOTE: This byte is set to 1 at midnight and is not incremented.
There is no indication if two midnights pass before the clock is read.

471 (one byte). This byte is used to indicate a break keyboard ac
tion within the BIOS. If bit 7 is 1, the break-key combination was pressed.

472 (a 2-byte word). This word is set to hex 1234 after the initial
power-up memory check. When a warm boot is instigated from the key
board (via Ctrl-Alt-Del), the memory check will be skipped if this loca
tion is already set to 1234.

474 (four bytes). This area is used only in the PCjr for special dis
kette control.

478 (eight bytes, in two 4-byte fields). These bytes are used only in
the PCjr to control time-out signals for the parallel printer and the serial
port (or serial printer).

Chapter 3: The ROM Software 57

480 (a 2-byte word). This word points to the physical start of the
keyboard buffer area.

482 (a 2-byte word). This word points to the physical end of the
keyboard buffer area.

485 (one byte). This byte holds the character that will be repeated if
a typematic repeat-key action takes effect. It is unique to the PCjr.

486 (one byte). This byte is used in timing the initial delay before
repeat-key action begins. It is unique to the PCjr.

487 (one byte). This byte is used to hold the current Fn function
code. It is unique to the PCjr.

488 (one byte). This byte is a third keyboard status byte that only
applies to the PCjr's keyboard. (The other two keyboard status bytes at
locations hex 417 and 418 are used in all other models, including the
PCjr.) '•'The bit settings for this byte are listed on page 142.

500 (one byte). This byte is used by DOS and BASIC to control the
print-screen operation. There are three possible hex values stored in this
location:

00 Indicates OK status

01 Indicates a print-screen operation is currently in progress
FF Indicates that an error occurred during a print-screen

504 (one byte). This byte is used by DOS when a single-diskette sys
tem, such as an XT or a PCjr, mimics a two-diskette system. The value
indicates whether the one real drive is acting as drive A or drive B. These
values are used:

00 Acting as drive A

01 Acting as drive B

510 (a 2-byte word). This area is used by BASIC to hold the default
data segment (DS) value. This is BASIC'S default data segment pointer.

BASIC allows us to set our own data segment value with the DBF
SEG = value statement. (The offset into the segment is specified by the
PEEK or POKE functions.) We can also reset the data segment to its de
fault setting by using the DEE SEG statement without = value. Although
BASIC does not give us a simple way to find the default value stored in
this location, we can get it by using this little routine:

DEF SEG = 0

DATA.SEGMENT = PEEK{tH511) » 256 + PEEK(&H510)

□ NOTE: BASIC administers its otvn internal data based on the de
fault data segment value. Attempting to change it is likely to sabotage
BASIC'S operation.

58 PROGRAMMER'S GUIDE TO THE IBM PC

512 (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC'S clock-tick interrupt service routine.

□ NOTE: In order to perform better, BASIC runs the system clock at
four times the standard rate, so BASIC must replace the BIOS clock inter
rupt routine with its own. The standard BIOS interrupt routine is in
voked hy BASIC at the normal rate; that is, once for every four fast ticks,
m- There's more about this on page 149.

516 (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC'S break-key handling routine.

51A (four bytes). This area is used by BASIC as an interrupt vector
that points to BASIC'S diskette error handling routine.

The Intra-Application Communications Area
Although the BIOS control information comprises the largest and

most important part of the 400-block area, the intra-application com
munications area, or ICA, is also located there. The ICA is a 16-byte re
served area from locations 4F0 through 4FF that is used to store data that
can be shared by several different programs. It is particularly useful for
programs that are executed as separate DOS programs but have to leave
information for other parts of the program set. The ICA is not used exten
sively. Among the lew programs that are known to use it are some ver
sions of IBM's Asynchronous Communications, Lifetree's Volkswriter,
and my TimeMark.

Since any number of programs may store data in the ICA, it may
contain information from several programs. This may mean that some
data will be overwritten. If your programs make use of the ICA, I recom
mend that you include a check-sum and also a signature so that you can
identify that the data in the ICA is yours and that it has not been changed
by another program.

□ WARNING: The ICA is definitely located in the 16 bytes from 4F0
through 4FF. A typographic error in some editions of the IBM Technical
Reference manual places it at 500 through SFF. This is incorrect.

The ROM Version and Machine ID Markers

Since the BIOS programs are fixed in memory, they can't be easily
changed when additions or corrections are needed. This means that ROM
programs must be tested very carefully before they are frozen onto mem
ory chips. Although there is a good chance for serious errors to exist in a
system's ROM programs, IBM has a fine track record; so far, only small
and relatively unimportant errors have been found in the PC family's ROM
programs, and all of them have been corrected in the new machines.

Chapter 3: The ROM Software

The different versions of ROM software could present a small chal
lenge to programmers who discover that the differences affect the operat
ing characteristics of their programs. But an even greater challenge for
programmers is that some family members (the PCjr and the AT in partic
ular) use a slightly different set of ROM-BIOS routines than those that
come with the standard IBM PC.

To ensure that our programs are working with the appropriate
ROM programs and the right computer, IBM has supplied us with two
identifying markers that are permanently available at the end of memory
in the system ROM. One marker identifies the ROM release date, which
can be used to identify the BIOS version, and the other gives the machine
model. These markers are always present in IBM's own machines and
we'll also find them supplied by the manufacmrers of a few of the mem
bers of the extended PC family.

The ROM release date can be found in an 8-byte storage area from
F000:FFF5 to FOOO;FFFC (two bytes before the machine ID byte). It con
sists of ASCII characters in the common American date format; for exam
ple, 06/01/83 stands for June 1, 1983. This release marker is a common
feature of the IBM personal computers, but is only present in a few IBM
compatibles. For example, the Compaq computers do not have it, but the
Panasonic Senior Farmer does.

The only use of dates in the release marker is to identify the differ
ent versions of ROM ((•■ see Figure 3-5). I suggest that it be used only
when you have found a problem that requires your programs to work
differently with different ROM releases. (Programs will more likely need
to identify the machine ID byte to respond to the unique feamres of dif
ferent models.)

Release Marker Machine

04/24/81 Original PC
10/19/81 Revised PC (some bugs fixed)
08/16/82 Original XT
10/27/82 Upgrade of PC to XT BIOS level
11/08/82 Original Portable PC
06/01/83 Original PCjr
01/10/84 Original AT

Figure 3-5. The release dates of the various
versions of ROM

60 PROGRAMMER'S GUIDE TO THE IBM PC

You can look at the release date with DEBUG, using the following
commands:

DEBUG

D F000:FFF5 L 8

Or you can let your program look at the bytes using this technique:

10 DEF SEG ,= &HFOOO

20 FOR I = 0 TO 7

30 PRINT CHR$(PEEK(4HFFF5 + I));

40 NEXT

50 END

Here's an example of what you may encounter: I have three PCs and
each came with a different ROM. One has the 04/24/81 version, another
the 10/19/81 version, and the last the 10/27/82 version.

BIOS upgrades are available under some circumstances; for exam
ple, the PC expansion unit that brings a PC up to XT specifications comes
with the 10/27/82 upgrade. Occasionally, the BIOS upgrade is available sep
arately as well.

The machine ID is a byte located at FOOOtFFFE. Figure 3-6 lists the
pubhshed ID values for five IBM PC models. We can probably expect this
pattern to continue in future models.

Beware that there are some inconsistencies in the way machine IDs
are assigned. FE was the value announced originally as the identifier for
the XT and later for the Portable PC, yet many XTs actually have the PC
signature FF. In general, we can't count on these signature assignments to
be rock-solid; IBM has definitely waffled a bit about some of them, both
in what it published the signatures as and in what they have actually
been. I believe, though, that there is a simple rule that we can follow in
interpreting the machine signatures. Where the differences between the
models are significant enough to require that a program be able to un
equivocally identify the machine, then the signatures are rock-solid and

Dec

ID

Hex Machine

255 FF PC (the original IBM personal computer)

254 FE XT and Portable PC

253 FD PCjr

252 FC AT

Figure 3-6. The machine IDs for the five
IBM PC models

Chapter 3: The ROM Software

ID

Dec Hex Machine

45 2D Compaq (PC-equivalent)

154 9A Compaq-Plus (XT-equivalent)

Figure 3-7. Unofficial machine IDs for two
Compaq models

as advertised; cases in point: the PCjr and the AT, which each have their
own special characteristics. But when the variations between machine
models are minor, such as between the original PC, the standard PC, the
PC-2 (which accepts 256K of memory on its system board), the XT, and
the Portable PC, Aen signatures may vary. For all practical purposes, we
can consider both the FF and the FE signatures as identifying one ma
chine: the more-or-less standard PC.

It is possible that IBM-compatible computers can be identified in the
same way, but I do not know of any reliable pubfished information. My
own programs identify two signatures for the first two Compaq comput
ers, but you should not consider them official.

You can explore the machine ID byte with DEBUG, using the follow
ing commands:

DEBUG

D FOOO:FFFE L 1 ' displays one byte at specified location

A program can inspect this byte using techniques such as this:

10 DEF SEG = tHFOOO ' defines segment FOOO in DX register
20 IF PEEK(*HFFFE) = 253 THEN PRINT "I should be a Junior"
30 IF PEEK(4HFFFE) = 254 THEN PRINT "I should be an XT"
40 IF PEEK(»HFFFE) = 255 THEN PRINT "I should be a PC"
50 IF PEEK(»HFFFE) = 252 THEN PRINT "I should be an AT"
60 END

THE ROM-BASIC

Now we move on to the third element of ROM: the ROM-BASIC. The
ROM-BASIC acts in two ways. First, it provides the core of the BASIC lan
guage, which includes most of the commands and the underlying founda
tion, such as memory management, that BASIC uses. The disk versions of
BASIC, which we see in the program files BASIC.COM and BASICA.COM,
are essentially supplements to the ROM-BASIC, and they rely on the ROM-
BASIC to get much of their work done. The second role of the ROM-BASIC
is to provide what IBM calls "cassette" BASIC—the BASIC that is activated
when we start-up our computers without a disk.

PROGRAMMER'S GUIDE TO THE IBM PC

Whenever we use any of the interpreted BASICs, such as cassette
BASIC, the PCjr's cartridge BASIC, or either of the disk BASICs (BASIC or
BASICA), the ROM-BASIC programs are also used—although there's noth
ing to make us aware of it. On the other hand, compiled BASIC programs
don't make use of the ROM-BASIC.

This ROM-BASIC is unique to IBM's own PC family. None of the
members of the extended PC family, such as the Compaq computers, has
a ROM-BASIC; instead, the equivalent parts of BASIC are included in their
disk-based BASIC programs.

THE ROM EXTENSIONS

The fourth element of the ROM has more to do with the PC's design
than the actual contents of its memory. The PC was designed to allow for
two kinds of extensions to the built-in software in ROM: one for perma
nent extensions to the ROM-BIOS software, and the other for extensions
provided by removable software cartridges. Special areas of memory are
set aside for each.

Permanent ROM-BIOS extensions are programs that operate like
the built-in ROM-BIOS, but add features not supported by the basic ROM-
BIOS. Usually, these are support programs for new peripheral devices.
The best example of this kind of ROM extension is the ROM-BIOS support
for the IBM fixed disk, which was introduced with the XT. Another is
found in the Enhanced Graphics Adapter. Since the original ROM-BIOS
could not anticipate providing support programs for future hardware,
ROM extensions are obviously a necessary and helpful addition.

Two memory areas are to be used for the permanent ROM-BIOS ex
tensions. One is the unused part of the F block of memory, which, unfor
tunately, can vary from model to model. On most models, the 24K area
from segment paragraph FOOO to F600 is available (the non-IBM hard-disk
ROM-BIOS for one of my PCs plugs into paragraph F400). The other mem
ory area for ROM extensions is the C block of memory, firom segment
paragraph COOO through CFFF. The IBM XT hard-disk ROM-BIOS plugs
into this area, at segment paragraph C800, and the IBM Enhanced Graph
ics Adapter plugs in at paragraph COOO. Although the permanent ROM
extensions provided by IBM have predictable locations, there is always
some potential for conflict between BIOS extensions provided by other
manufacturers.

Normally, the permanent ROM extensions are semipermanently in
stalled in a computer, either plugged in as part of an expansion board or
plugged into an available ROM socket in the computer's system board.

Chapter 3: The ROM Software

Software cartridges, on the other hand, are intended to be freely
plugged in and removed. Generally, cartridges are used in the same way
as iskettes: to load temporary programs for a specific purpose. A large
128K area of memory, filling the entire D and E blocks of memory, is set
aside for software cartridges to use.

Both kinds of ROM extensions are integrated into the rest of ROM
during the start-up process. To find the ROM extensions, the standard
ROM starts at the COOO block and examines every 2K block for the sig
nature (hex 55 AA) that identifies the ROM extensions. When the identify
ing signatures are found, the start-up routine passes control temporarily
to the ROM extension so that the extension can do whatever it needs to
do to merge itself into the operation of the computer. At this point, the
ROM extension can do anything it pleases, including seize complete con
trol of the computer. Some software cartridges do exactly that. However,
a more normal thing for an extension to do is to simply test any equip
ment that it supervises (for example, a hard-disk ROM-BIOS extension
might fire up the hard disk and metaphorically shake hands through the
low-memory data areas with the rest of the BIOS, so that each BIOS section
knows who its working partners are). Once any initialization is done, a
ROM extension customarily returns control to the main BIOS, which then
finishes the business of starting up the computer.

The Software Cartridges

Since we can't paint a complete picture of ROM extensions without
discussing software cartridges, we'll devote a short section to providing
just the bare essentials about them. You'll find more detailed information
in Exploring the IBM PCjr and in IBM's Technical Reference manual.

ROM software cartridges contain prerecorded programs, stored in
ROM chips, which can be plugged into any PC model that will accommo
date them (such as the PCjr). Each software cartridge can contain as little
as 2K bytes or as much as 64K bytes, depending on the hardware design.

A cartridge can make itself appear in any one of six memory loca
tions—the actual location it chooses is written into the cartridge pro
gram. In segment-paragraph notation, the six possible locations are DOOO,
D800, EOOO, E800, FOOO, and F800. The four addresses in the D and E mem
ory blocks are conventional cartridge locations. The two addresses in the F
block are ROM-BIOS override addresses, which may allow a cartridge to
temporarily replace the computer's built-in ROM-BIOS.

There is a standard cartridge header format, which the ROM-BIOS
uses to identify cartridges in memory and determine their contents. The
information stored in the header also indirecdy identifies the type of car
tridge that is plugged in and what it will be used for.

64 PROGRAMMER'S GUIDE TO THE IBM PC

The Cartridge Header

Each cartridge begins with the standard ROM extension 2-byte sig
nature, hex 55 AA, followed by a 1-byte length code. The length is given
in cartridges and other ROM extensions in units of 512 bytes, or ViK. For
example, an 8K game cartridge has a length code of 16, while a 32K BASIC
language cartridge has a length code of 64.

Following the length code are three bytes that are set aside for a
single cartridge initialization instruction. The three bytes allowed for this
field are enough to contain any instruction of three bytes or less; nor
mally they contain either a 1-byte FAR RETurn instruction or a 3-byte
JMP instruction. The instruction here controls what initialization—if
any—is done for the cartridge. With a BASIC program cartridge (a car
tridge containing a program written in BASIC that must therefore be used
with the BASIC language cartridge), these three bytes contain a special
code: the standard FAR RETurn instruction (hex CB), followed by the re
versed signature (hex AA 55). To avoid being confused with a BASIC pro
gram cartridge, any other type of cartridge must have something other
than hex AA 55 in the last two bytes of this field.

Following the initialization field, beginning at the seventh byte of
the cartridge, is a DOS table of contents that identifies any DOS command
programs that may be on the cartridge. If there are such programs on the
cartridge, they effectively become additions to the internal commands,
such as DIR, COPY, and TIME at DOS's disposal. If there are no such pro
grams, the cartridge should have an empty table of contents (explained in
a moment), rather than no table of contents. The format of the DOS table
of contents is a series of command-name entries, followed by a zero byte,
which identifies the end of the table. An empty table of contents simply
has the zero byte.

The command-name entries each consist of three fields: a 1-byte
field recording the length of the name; a field containing the same num
ber of bytes for the command name, in ASCII capital-letter characters;
and a 3-byte jump-instruction field, which jumps to the program that
carries out the command.

Q WARNING: Some IBM Technical Reference manuals incorrectly
identify the last command-name field as a 2-byte offset word; it is in fact
a 3-byte jump instruction.

Following the cartridge header are the actual contents of the car
tridge—usually machine-language programs. If the cartridge is a BASIC
program cartridge, then the contents are a tokenized BASIC program,
stored in the same format as that used for storing BASIC programs on
disk. Keep in mind that the first byte of a tokenized BASIC program iden
tifies it as either normal (hex FF) or protected (hex FE).

Chapter 3: The ROM Software 65

Offset Contents Description

0 55 AA Signature

2 40 Length: hex 40 = 64^^ l/zK = 32K

3 E9 ID 00 JMP 0023: jump to initialization code

6 05 Length (5) of following command name

7 "BASIC" Command name, in ASCII

12 E9 91 01 JMP 0191: jump to start BASIC

15 06 Length (6) of following command name

16 "BASICA" Command name, in ASCII

22 E9 91 01 JMP 0191: jump to start BASICA (same as start
of BASIC)

25 00 End of table of contents

Figure 3-8. A specific example of a cartridge
header, taken from the PCjr's BASIC lan
guage cartridge. Note that the table of
internal DOS commands (DIR, TIME, etc.)
that is stored inside the command inter
preter, COMMAND.COM, is quite similar
to this cartridge's DOS command table.

COMMENTS

The ROM program listings could fill volumes, and in fact do take up
a fair amount of space in the IBM Technical Reference manual. Although
IBM frowns on direct use of any of the information foimd in ROM list
ings, particularly the BIOS listings, it can be fun and very enlightening to
browse through it on occasion. Since I have made every effort in this
book to point out the ROM-BIOS routines that are safe to use, I also rec
ommend that you read through what I have to say before venturing out
on your own.

4

Video Basics

The Display Adapters 68
Memory and the Display Adapters 69
Creating the Screen Image 70

The Video Display Formats 71
Display Resolution 73
Video Mode Control 74

The Use of Color 75
Color-Suppressed Modes 77
Color in Text and Graphics Modes 78

Inside the Display Memory 83
Display Pages in Text Modes 85
Display Pages in Graphics Modes 86
Displaying Characters in Text and Graphics Modes 86

Controlling the Video Display 90
Direct Hardware Control 93

Compatibility Considerations 96

67

PROGRAMMER'S GUIDE TO THE IBM PC

TO many people, the video display is the computer. Programs are
often judged by their display quality and visual design alone. In
this chapter, we'll see what kinds of displays the IBM PC family
uses and how they are produced. More importantly, we'll

learn how to manipulate the video displays to get the effects we want.

THE DISPLAY ADAPTERS

To produce the video display, most members of the PC family (in
cluding the PC, the XT, and the AT) require a display adapter—a special
circuit board that is normally plugged into one of the computer's expan
sion slots. Display adapters were designed into the PCjr, and models such
as the Portable PC and the Compaq also come with display adapters,
though, in their case, we can change the adapters.

The display adapter connects the computer to the display monitor
through a chip called the CRT controller. The adapter also has a set of pro
grammable I/O ports, a ROM character generator, and RAM memory to
hold the display information.

There are several kinds of display adapters, but they are all modeled
after the two adapters originally released by IBM for the PC: the Color/
Graphics Adapter and the Monochrome Adapter. We'll mostly be discuss
ing these two adapters, with additional remarks on others.

Video displays are produced by two fundamentally different modes,
called text mode and graphics mode by IBM. Text mode displays only
characters, though many of these characters are suitable for producing
simple line drawings see Appendix C for more on characters). Graph
ics mode is mainly used to produce complex drawings but can produce
text characters in a variety of shapes and sizes equally well.

The Color/Graphics Adapter can operate in both text and graphics
modes to produce both drawings and characters in several formats and
colors. It is designed to work with all kinds of displays, from standard
TVs to high-resolution color monitors.

By contrast, the Monochrome Adapter can operate only in text
mode, using a stored set of ASCII alphanumeric and graphics characters
and displaying them in only one color. Designed for serious business ap
plications, the Monochrome Adapter only works with the IBM Mono
chrome Monitor (or its equivalent), which is a special, high-resolution
display monitor. (•- See page 72 for more on monitors.) Many business
and professional users prefer a monochrome display to a color/graphics
display because it is easier to read. But in choosing monochrome, they
sacrifice graphics and color, two valuable assets for any display.

To overcome these limitations, some hardware manufacturers have
come up with variations of the IBM Monochrome Adapter, such as the

Chapter 4: Video Basics 69

popular Hercules display adapter, which successfully combines the graph
ics (but not the color) capabilities of the Color/Graphics Adapter with the
higher-quality text display of the Monochrome Adapter, and adds unique
features of its own. The resulting graphics quality is even better than the
Color/Graphics Adapter can produce. The IBM Enhanced Graphics Adap
ter can create graphics on the monochrome screen in a similar way.

Roughly two-thirds of all PCs are equipped with the standard Mono
chrome Adapter and therefore have no graphics or color capability. While
there are real advantages to using color and graphics, most PCs get along
nicely without either. When you are planning computer applications, keep
in mind that most computers and most PCs display text only.

The best way to understand the PC's display capabilities is to cover
the features of the original Color/Graphics Adapter, noting where the
Monochrome Adapter differs (mostly small details). We'll also point out
where extensions to the Color/Graphics Adapter have been made in the
Enhanced Graphics Adapter and in the PCjr.

Memory and the Display Adapters
The display memory is physically located with the other display cir

cuitry on the adapter card. However, it is logically (to the CPU) a part of
the computer's main memory address space. A full 128K of the memory
address space is set aside for display use in the A and B memory blocks, at
hex addresses AOOOO through BFFFF, but the two original display adapters
use only two small parts of this memory area. The Monochrome Adapter
provides 4K of display memory located at hex paragraph address BOOO.
The original Golor/Graphics Adapter provides 16K of display memory lo
cated at address B800. The remaining space, particularly the 64K block
from AOOO up to BOOO, is set aside for advanced display use; for example,
by the Enhanced Graphics Adapter.

The PCjr strays from the family tradition by using low address loca
tions in main memory for its display memory. However, special circuitry
in the PCjr closely mimics the conventional Golor/Graphics Adapter. This
circuitry, called the video gate array (VGA), makes it appear as though the1 PCjr's display memory is located at the Golor/Graphics Adapter's B800
address. References to the B800 area are rerouted by the VGA's circuitry

~ to whatever location is actually in use as display memory. The PCjr can
use any part of the first 128K of RAM for video memory; the VGA keeps
track of the actual location. Eor all practical programming purposes, the
PCjr should be treated as a PC equipped with a Golor/Graphics Adapter,
which uses the display memory address beginning at B800.

70 PROGRAMMER'S GUIDE TO THE IBM PC

Creating the Screen Image

The Monochrome and Color/Graphics Adapters store display infor
mation in memory-mapped display, so called because each address in the
display memory corresponds to a specific location on the screen (•* see
Figure 4-1). The display circuitry repeatedly reads information from mem
ory and places it on the screen. The information can be changed as fast
as the computer can write new information from our programs into
memory. The CRT controller is the link between the display memory and
the display monitor, translating the stream of bits it receives from mem
ory into bursts of light at particular locations on the screen.

These dots or dashes of light are generally called pixels and they are
produced by an electron beam striking the phosphorescent surface of the
CRT. The electron beam is produced by an electron gun that scans the
screen line by line. As the gun moves across and down the screen in a
fixed path called a raster scan, the CRT controller generates a video con
trol signal that turns the beam on and off, matching the pattern of the
hits in memory.

The video circuitry refreshes the screen 60 times a second making
the changing images appear clear and steady. At the end of each screen
refresh cycle, the electron beam must move from the bottom right corner
to the top left corner of the screen to begin a new cycle. This movement

p .- -1
Screen

O

V J O

/

RAM locations

Figure 4-1. The memory-mapped display

Chapter 4: Video Basics 71

is called the vertical retrace. During the retrace, the beam is blanked and
information cannot be written to the screen.

The vertical retrace period (1.25 milliseconds) is important to the
programmer for one main reason, which requires some explanation. The
special dual-ported design of the display adapter's memory gives the CPU
and the CRT controller equal access to the display memory. This allows
the CPU and the CRT controller to access video memory at the same time.
If the CPU happens to access a memory byte while the CRT controller is
writing to the screen, a "snow" effect may briefly appear on the screen.
However, if we instruct the CPU to access memory only during the ver
tical retrace, when the CRT controller is not accessing memory, then snow
can be eliminated. For systems using the Color/Graphics Adapter, our
programs can poll a status bit, called the vertical sync signal, in one of
the adapter's I/O ports (location hex 3DA). This bit is set on at the begin
ning of a retrace and then set off at the end. During this 1.25-millisecond
pause, we can have our programs write as much data as possible to the
video display memory. At the end of the retrace, the CRT controller can
write this data to the screen without snow. This technique is useful for
any application that requires a rapid succession of clear images.

THE VIDEO DISPLAY FORMATS

Originally, there were eight video formats, or modes, defined for
the IBM personal computers. Another seven or more have been added.
The video modes define the display characteristics, including the amount
of text that can be displayed, the resolution or detail of the graphics, and
the display colors. The Color/Graphics Adapter accommodates several
different format options in both text and graphics modes. The Mono
chrome Adapter offers only a single, one-color text format. Both the PCjr
and the Enhanced Graphics Adaptor (EGA) support a variety of old and
new formats.

Each of the fifteen modes we'll be discussing is identified by a num
ber from 0 through 16 (•-see Figure 4-2). Modes 0 through 3 are the text
modes and modes 4 through 6 are the graphics modes for the Color/
Graphics Adapter. Mode 7 is a monochrome text mode that can be used
only with the IBM Monochrome Adapter (or its equivalent). Modes 8
through 10 were introduced with the PCjr (which also uses modes 0 through
6) and cannot be used with the standard IBM display adapters. Modes 13
through 16 apply to the EGA (which also uses modes 0 through 7).

Color may be used in any display mode except the one provided for
the Monochrome Adapter (mode 7). Through the modes available with

PROGRAMMER'S GUIDE TO THE IBM PC

Monitors

The type of display screen, or monitor, that might be used has an impor
tant effect on program design. Many monitors cannot produce color or graph
ics, and some produce such a poor quality image that we can only use the
40-column text display format. There are many kinds of monitor that can be
used with the PC family of computers. The two major categories are the
monochrome monitor and the color monitor, which can be broken down
into four basic types.

Direct-drive monochrome monitors. These monitors are designed to dis
play high-resolution text and character graphics, but no pixel graphics. The
direct-drive monochrome monitors only work with the Monochrome Adapter.
Graphics screens that will display on any other type of monitor will not show
at all on the direct-drive monitor unless a special interface is used, such as the
Hercules adapter card.

Monochrome composite monitors. These monitors are among the most
widely used and least expensive monitors available. They are connected to the
composite video output on the Color/Graphics Adapter and provide a fairly
clear one-color image (usually green or amber). The Compaq portable and the
IBM Portable PC use this type of monitor. A monochrome composite monitor
can display graphics but not colors. Some monochrome monitors provide lim
ited "color" support, with shades of intensity replacing the colors. However,
most of them produce an illegible and sometimes invisible display when we
give them a color signal. Don't confuse the composite monitor with the direct-
drive monochrome monitor. The composite monochrome monitor uses the
Color/Graphics Adapter, whereas the direct-drive monochrome monitor uses
the Monochrome Adapter.

Composite color monitors and TV sets. Composite displays are produced
by a single combined signal that travels through the composite video output on
the Color/Graphics Adapter. The composite monitor produces color and
graphics but has limitations: An 80-column display is often unreadable; only
certain color combinations work well; and graphics resolution is low in qual
ity, so graphics must be kept simple by using low-resolution graphics modes.

Although the standard television set (color or black-and-white) is techni
cally a composite monitor, it usually produces an even lower-quality image
than the dedicated composite monitor. Text displays must be in 40-column
or even 20-column mode to ensure that the display is readable. TVs are con
nected to the composite video output of the Color/Graphics Adapter or its
equivalent (in the case of the PCjr, there is a special TV output), but the com
posite signal must be converted by an RE adapter before going into the IV.

RGB color monitors. The RGB monitors are considered the best of both

worlds. They combine the high-quality text display of the monochrome moni
tors with high-resolution graphics and color. RGB stands for red-green-blue
and RGB monitors are so named because they use separate wires for each of
the color signals (unlike the composite monitors, which use only one wire).
These wires are connected to the RGB output of the Color/Graphics Adapter
or its equivalent. A top-quality RGB monitor can produce the clearest, most
legible images, second only to the IBM Monochrome Monitor. The image and
color quality is usually much better than that available through any screen that
connects to the composite video output.

Chapter 4: Video Basics 73

Mode Type Dimensions Colors Adapter Display

0 Text 40x25 16 (grey)
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

1 Text 40x25 16 foreground,
8 background
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

2 Text 80x25 16 (grey)
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

3 Text 80x25 16 foreground,
8 background
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

4 Graphics 320 x 200 4 CGA, EGA, PCjr Enhanced Color

5 Graphics 320x200 4(grey) CGA, EGA, PCjr Enhanced Color

6 Graphics 640x200 2 CGA, EGA, PCjr Enhanced Color

7 Text 80x25 b/w EGA, MA Monochrome

8 Graphics 160x200 16 PCjr Enhanced Color

9 Graphics 320 X 200 16 PCjr Enhanced Color

10 Graphics 640x200 4 PCjr Enhanced Color

11 Apparently internal
to the EGA

12 Apparently internal
to the EGA

13 Graphics 320 X 200 16 EGA Enhanced Color

14 Graphics 640x200 16 EGA Enhanced Color

15 Graphics 640x350 b/w EGA Monochrome

16 Graphics 640x350 16/64 EGA Enhanced Color

Figure 4-2. The format characteristics of the
fifteen video modes

the Color/Graphics Adapter, we can choose from two to sixteen color
combinations, including a selection of grey tones, called color-suppressed
modes. Although no color choices are available with the Monochrome
Monitor, there are some character-display variations that are partially
equivalent to color: bright and dim intensity, underlining, and reverse
video, m- We'll discuss the use of color with text and graphics displays, as
well as the Monochrome Adapter's answer to color, in the section en
titled "The Use of Color" on page 75.

Display Resolution
Graphics images are built up from individual dots, called picture

elements, or pixels. The display resolution is defined by the number of
rows, or scan lines, from top to bottom and the number of pixels from

74 PROGRAMMER'S GUIDE TO THE IBM PC

left to right in each line. The number of rows a monitor can display is
determined by the hardware and the video signals, which we have little
or no control over; a standard PC display always has 25 text rows and 200
graphics rows. So to change the screen's resolution, we have to change
the number of pixels on each line.

The PC graphics modes have three resolutions—low, medium, and
high—with 160, 320, and 640 pixels on each line. Low resolution
(160 X 200 pixels) was introduced with the PCjr and is not available with ei
ther the original Color/Graphics Adapter or the Enhanced Graphics Adap
ter. Since text characters can also be displayed in the graphics modes, the
medium and high graphics resolutions each have an equivalent text size
(iwsee Figure 4-3).

A narrow character that fits in an 80-column-by-25-line format uses
640 X 200 pixel resolution, and a broader character that fills a 40-column-
by-25-line format uses a 320 x 200 pixel resolution. (The 80 x 25 character
display of the Monochrome Adapter shows clearer text because its char
acters are built from a higher pixel resolution—720 x 350.)

You will notice that low-resolution graphics have their own unique
20-column text format, which has no equivalent in the standard text
modes. Wl!l Text width 20, along with the low-resolution mode, was in
troduced with the PCjr and neither format exists in the other adapters.

Video Mode Control

Video modes are controlled by the ROM-BIOS through interrupt 16
(hex 10), service 0. ((•'See Chapter 9.) BASIC gives us full control over the
video modes through the SCREEN statement, but refers to them in its
own way, using different mode numbers than the ROM-BIOS routines. We
can also control some of the video modes through DOS. But at the com
mand level, DOS insists on a text mode and there are no DOS commands
that switch to any of the graphics modes, as we can see in Figure 4-4.

Resolution Pixels Characters

Low 160x200 20x25

Medium 320x200 40x25

High 640x200 80x25

Figure 4-3. The resolution of text characters
drawn in graphics modes

Chapter 4: Video Basics 75

BASIC Statement DOS Statement

Mode to Change Mode to Change Mode

0 SCREEN 0,0 : WIDTH 40 MODE BW40

1 SCREEN 0,1: WIDTH 40 MODE CO40

2 SCREEN 0,0 : WIDTH 80 MODE BW80

3 SCREEN 0,1 : WIDTH 80 MODE CO80

4 SCREEN 1,0 or SCREEN 4 n/a

5 SCREEN 1,1 n/a

6 SCREEN 2 n/a

7 n/a MODE MONO

8 SCREEN 3 n/a

9 SCREEN 5 n/a

10 SCREEN 6 n/a

Figure 4-4. The BASIC and DOS com
mands used to change video modes

THE USE OF COLOR

There is a variety of colors available in every display mode except
the mode provided for the Monochrome Adapter. You may have noticed
that among the various modes there are substantial differences in the
number of colors available. In this section, tve will describe the color op
tions for the video modes.

Colors for the PC's display screens are produced by combinations of
four elements: three color components—red, green, and blue—plus an
intensity, or brightness, component. Text and graphics modes use the
same colors and intensity options but they combine them in different
ways to produce their colored displays. The text modes, whose basic unit
is a character composed of several pixels, use an entire byte to set the
color, the intensity, and the blinking characteristics of the character and
its background. The graphics modes, having a much smaller basic unit
(the pixel), use only one to four bits to define the color and brightness
because the pixel does not have blinking or background characteristics.
m- We'll see how to set the attributes for text and graphics modes on
page 79. First, a word about the colors themselves.

The color numbers (0 through 15) used by BASIC, and used in gen
eral to identify the PC colors, can be derived by interpreting the four
color elements as the bits of a binary number. (•- The colors and their bit
codes are listed in Figure 4-5. When we use a sixteen-color mode, we get

76 PROGRAMMER'S GUIDE TO THE IBM PC

all the colors, from 0 through 15. When we use an eight-color mode, we
get colors 0 through 7; that is, all the colors without bright intensity.
With a four-color mode, we get a selection of four colors from the list of
sixteen. This four-color selection is called a palette. In a two-color mode,
we get colors 0 and 7—black and ordinary white.

So far we've described the basic 16-color palette of the standard PC,
which is built of the three RGB colors and the intensity setting (I). We
might call this basic color scheme IRGB. A 64-color palette has been
added to the PC family, but is only available with the combination of the
Enhanced Graphics Adapter and Enhanced Color Display—the EGA/ECD
combination. This 64-color palette is built out of the standard three col
ors (red, green, and blue), but each color has two independent signals: a
brighter one and a dimmer one. The notation for the 64-color palette is
RrGgBb, where the capital letters stand for the dimmer colors. Note that
we're not talking about two intensity levels but about two separate color
signals, which allow for a total of four intensities of each of the three col
ors. For the reds, the four intensities would be Rr (most intense), R., .r, and
.. (no red). All possible combinations of RrGgBb work out to 64 colors.

1I J CQ Number Description

0 0 0 0 0 Black

0 0 0 1 1 Blue

0 0 1 0 2 Green

0 0 1 1 3 Cyan (blue-green to civilians)

0 1 0 0 4 Red

0 1 0 1 5 Magenta

0 1 1 0 6 Brown (or dark yellow)

0 1 1 1 7 Light grey (or ordinary white)

1 0 0 0 8 Dark grey (black on many screens)

1 0 0 1 9 Light blue

1 0 1 0 10 Light green

1 0 1 1 11 Light cyan

1 1 0 0 12 Light red

1 1 0 1 13 Light magenta

1 1 1 0 14 Yellow (or light yellow)

1 1 1 1 15 Bright white

Figure 4-5. The PC family's full color array,
with the four bit codes that specify them

Chapter 4: Video Basics 77

We won't be discussing the 64-color palette of the EGA/ECD combo in
any detail because it's quite rare and specialized and doesn't really fit into
the mainstream of the PC family. (If we really wanted to treat all the exotic,
non-mainstream elements of the PC family, we would fill a wonderful book
several times the size of this one.) Another even more specialized adapter
and display combination, the IBM Professional Graphics Adapter and Dis
play has a palette of 256 colors and remarkably high resolution; but it is
even farther removed from the PC mainstream, so we won't be discussing
it, either. Instead, we'll go back to a more detailed discussion of the stan
dard color palettes.

There are several things to keep in mind when choosing colors. The
four color elements (IRCB) all actively produce light. The more elements in
use, the brighter the color will be, but also the more washed out it will
seem. To the eye, the pure single colors (red, green, and blue) are more
visually intense than either the mixed colors (cyan, magenta, and yellow)
or the so-called "intense" (brightened) versions of the pure colors. Here
are three other factors that should be considered when choosing colors:

■ Some color display screens do not respond to the intensity bit.
This deficiency makes color 8 the same as color 0, color 9 the
same as color 1, and so on.

■ When a composite monochrome display screen is used with a
color/graphics adapter, colors other than black (0) and white (7)
may produce illegible information.

■ Finally, programs that are run on a PC or XT with the IBM Mono
chrome Adapter must take into account the unusual way the
monochrome display treats color ((•'see page 81).

In considering color, check the discussions in each of the remaining
sections. There are important color-related items in each section.

Color-Suppressed Modes

In an effort to make the graphics modes compatible with a wide
range of monitors, both color and monochrome, IBM included a few
modes that do not produce color, called color-suppressed modes. There
are three color-suppressed modes: modes 0, 2, and 5. In these modes,
colors are converted into shades of grey, or whatever color the screen
phosphor produces. There are four even shades in mode 5, and a variety
of shades in modes 0 and 2. Color is suppressed in the display adapter's
composite output but not in its RCB output. This inconsistency is the re
sult of an unavoidable technical limitation.

78 PROGRAMMER'S GUIDE TO THE IBM PC

□ NOTE; For each color-suppressed mode, there is a corresponding
color mode, so modes 0 and 1 correspond to 40-column text, modes 2
and 3 to 80-column text, and modes 4 and 5 to medium-resolution
graphics. The fact that modes 4 and 5 reverse the pattern of modes 0 and
1 and modes 2 and 3, where the color-suppressed mode comes first, has
lead to a complication in BASIC. The burst parameter of the BASIC
SCREEN statement controls color. The meaning of this parameter is re
versed for modes 4 and 5, so that the statement SCREEN,! activates color
in the text modes (0, 1, 2, and 3) but suppresses color in the graphics
modes (4 and 5). This inconsistency may have been a programming error
at first, but it is now part of the official definition of the SCREEN state
ment. Figure 4-6 shows the proper SCREEN statement syntax for modes
0 through 5.

Color in Test and Graphics Modes
We need to be aware of the differences in the use of color between

text and graphics modes, particularly the apparent inconsistencies in the
way text colors are handled. In text mode, we have completely indepen
dent control over the color of each character position: We can freely use
the full sixteen-color palette in the foreground and the eight-color palette
in the background. In graphics mode, we have complete control over the
color of each pixel and over the color of any graphics drawing operations
(as provided by BASIC, for example).

In theory, the graphics modes should give us richer use of color over
the entire screen. However, when we write text in a graphics mode, we
do not have control over the background color: It is always set to the

Mode Color Suppressed Color Active

0 SCREEN 0,0:WIDTH 40

1 SCREEN 0,1

2 SCREEN 0,0:WIDTH 80

3 SCREEN 0,1-.WIDTH 80

4 SCREEN 1,0

5 SCREEN 1,1

Figure 4-6. The color burst parameters of
modes 0 through 5. Notice that modes 0
through 3 and modes 4 through 5 follow
different patterns

Chapter 4: Video Basics 79

universal background color that is in effect. ((•■ See the discussion of pal
ette value 0 under the four-color modes, page 83.) This means that even
though the graphics modes provide more control of color in principle,
they actually provide less control of color when we are displaying text.
This is an inherent characteristic of the text-writing services in the graph
ics modes. ((•' See Chapter 9.)

Setting Color in Text Modes
In the text modes, each character position on the display screen is

controlled by two adjacent bytes in memory (•* see page 87 for more
about the location of these bytes in memory). The first byte contains the
ASCII code for the character that will be displayed. ((•' See Appendix C
for a chart of characters.) The second byte controls how the character
will appear, specifying its colors and so forth. This second byte is called
the character attribute.

Before we go any further, we need to explain a couple of terms that
may present some confusion. In IBM PC display terminology, the terms
color and attribute are used interchangeably. Although there are precise
technical meanings to these two terms, which are distinct but closely re
lated, you'll often find the two terms used imprecisely to mean roughly
the same thing. To avoid confusion, think of both words as slightly vague
terms that refer both to the way things appear on the screen and to the
data coding in memory that controls the character's appearance.

There are three components to the text character attribute: the
foreground color (the color of the character itself), the background color
(the color of the area not covered by the character), and the character
blink component. The foreground color can be any of the sixteen colors
in the full PC range. The background color can be one of only eight col
ors: color numbers 0 through 7 (the basic colors without bright intensity).

Each character position on the screen has its own attribute control,
independent of all other screen characters. The eight bits in the attribute
byte act independently to control one element of the display attribute.
(•- The bit settings are shown in Figure 4-7. The default attribute used by
DOS and BASIC is hex 07, normal white (7) on black (0), without blinking.

80 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

76543210 Use

JR

Blinking of foreground character

Red component of background color

Green component of background color

Blue component of background color

Intensity component of foreground color

Red component of foreground color

Green component of foreground color

Blue component of foreground color

Figure 4-7. The coding of the color
attribute byte

With the PCjr, when we use text characters in a stxteen-color
graphics mode (modes 8 or 9) we can use any one of the sixteen colors for
the background color, but that one background color will apply to all
text characters written in the graphics mode. Though this may seem
rather limiting, it can actually be quite useful. For example, characters
can be displayed on the screen, yet made invisible by setting the fore
ground color to match the background color. This is the ideal way to
allow passwords or other confidential information to be invisibly entered
on the screen. (There is also an invisible mode for the Monochrome Adap
ter; see page 81.)

Color quality varies with the monitor. For many color displays, the
bright, high-intensity colors are clearly legible when displayed on a back
ground of the same color but without the intensity. On the other hand,
some color displays do not act on the intensity setting. With these dis
plays, otherwise legible foreground and background combinations, such
as yellow on brown, are simply not distinguishable.

Although the graphics modes can display text quite nicely, there are
several obvious advantages to using the text modes for text displays. Per
haps the most important advantage of text-mode characters is that they
can be displayed faster than graphics characters. This is due in part to the
fact that text-mode characters are taken from a table of characters, while
the graphics characters must be drawn bit-by-bit from memory. The text
modes use less memory than the graphics modes, so they have extra mem
ory available for display pages, allowing us to store several "pages" of
text information directly in the video display memory and call them up

Chapter 4: Video Basics 81

one at a time in quick succession. There are also more special effects
available for text-mode characters. For one thing, there is a wider choice
of colors. And for another, text modes can blink characters, while graph
ics modes have no blinking capability at all.

Setting Attributes in the Monochrome Mode

The monochrome mode (mode 7) used by the IBM Monochrome
Adapter has a limited selection of display variations that are the equiv
alent of color. The same general coding scheme is used to set the display
attributes for monochrome characters as is used for text-mode characters
in graphics modes 0 through 3.

The blinking and intensity bits are used in the monochrome mode.
However, only four foreground and background "color" combinations
produce distinct results:

■ Normal white-on-black, produced by selecting white (foreground
bits 111) on black (background bits 000), or hex 07.

■ Underlined characters, produced by setting the attribute byte to
hex 01, which selects blue (foreground bits 001) on black (back
ground bits 000).

■ Reverse video, or black (foreground bits 000) on white (back
ground bits 111), produced with hex 70.

■ Invisible characters, created using black (foreground bits 000) on
black (background bits 000), or hex 00.

All other color combinations show the same as normal white-on-black,
hex 07. Other color combinations that might seem logical, such as invisi
ble white-on-white or a reverse video/underlined combination, do not ex
ist in monochrome mode; only the four results mentioned exist. Note
that the blinking and intensity attribute bits are independent of these four
"color" combinations.

Setting Color in Graphics Modes

So far, we've seen how to set color (and the monochrome equiv
alent of color) in the text modes. Setting color in the graphics modes is
quite different. In the graphics modes (modes 4 through 6, 8 through 10,
and 13 through 16), each pixel on the screen has a color associated with
it. The color is set the same way attributes are set in text mode, but there
are important differences. First, graphics pixels cannot blink. Second,
since each pixel is a discrete dot of color, there is no foreground and
background—each pbcel is simply one color or another. When text is

82 PROGRAMMER'S GUIDE TO THE IBM PC

written in graphics mode, one color is used for the pixels that make up
the "background" and any of the colors can be used for the pixels that
make up the characters.

□ NOTE: The use of graphics mode in BASIC gives us the impression
that there is a background color for graphics. But this is simply a conve
nient convention that BASIC adopts: Any pixels that aren't explicitly set
to some "foreground" color are given the "background" color. The ROM-
BIOS video services ^ Chapter 9) also make use of this background-
color convention.

For each graphics mode, there are predefined color choices, known
as palettes. The standard palettes can be changed in the PCjr or the EGA,
but not in the original Color/Graphics Adapter. Once the palette colors
for any graphics mode are set, each pixel color can be selected from the
available colors by setting the color value of the bits assigned to each
pixel. In a two-color mode, there is one bit for each pixel and the pixel's
color value is given as 0 or 1. In a four-color mode, there are two bits with
the color values of 0 through 3. In a sixteen-color mode, there are four
bits and color values of 0 through 15. The color values used to define a
pixel are not necessarily the same as the numbers (0 through 15) used to
identify the acmal colors that appear on the screen.

In two-color mode 6, there is only one standard palette, shown in
Figure 4-8. In four-color modes 4 and 5, there are two standard palettes:
palette 0, shown in Figure 4-9, and palette 1, shown in Figure 4-10. Two
things should be noted about these palettes. First, palette value 0 can be
changed from black (color 0) to any color. Second, palette value 0 is the
"background" color and palette value 3 is the "foreground" color when
writing text characters. In four-color mode 10 there is one standard pal
ette, which is the same as palette 1. In sixteen-color modes 8,9,13, and 14,
there is one standard palette. This palette matches the palette values 0
through 15 to the actual color numbers, as you might expect. Remember,
color modes 8 and 9 are only available with the PCjr, and 13 and 14 are
only available with the EGA.

Bit Value Color

0 0 0 Black

0 1 1 White

Figure 4-8. The standard palette for the
tivo-color graphics mode (mode 6)

Chapter 4: Video Basics 83

Bit Value Color

0 0 0 Black (default; may be changed to any color)

0 1 1 Green

1 0 2 Red

1 1 3 Brown

Figure 4-9. Palette 0, one of two standard
palettes for the four-color graphics modes
(modes 4 and 5}

Bit Value Color

0 0 0 Black (default; may be changed to any color)

0 1 1 Cyan

1 0 2 Magenta

1 1 3 Normal white

Figure 4-10. Palette 1, one oftivo standard
palettes for the four-color graphics modes
(modes 4 and 5)

Remapping Palettes in the PCjr and EGA

Up to this point, we've been discussing the standard colors that are
produced using the standard palettes. With the original Color/Graphics
Adapter, the palette color assignments are fixed and cannot be changed.
However, in the PCjr and in any display adapter, such as the EGA, de
signed to provide it, the palettes can have their colors remapped. By re
mapping a color, we merely reassign a color value so that a request for
color 1 (blue) might actually display color 4 (red).

The mapping of any requested palette value into an actual color
number is under the control of the palette currently in effect. The palettes
can he changed in BASIC with the palette statements, or with the BIOS
video services (<•' see page 181).

INSIDE THE DISPLAY MEMORY

Now we come to the inner workings of the video map. In this sec
tion, we'll see how the information in the display memory is related to
the display screen.

84 PROGRAMMER'S GUIDE TO THE IBM PC

We should be aware that for the video modes that have their display
memory in the B block (color/graphics modes 0 through 6 and mono
chrome mode 7), we can have our programs safely tinker with the display
memory. This is true even for the PCjr, which only appears to use the B
block for modes 0 through 6. IBM didn't want our programs to directly
touch the display memory at first, but since most worthwhile programs
do, IBM is now resigned to it and fully intends to support it in all present
and future display adapters. But IBM is drawing the line with these modes.
For new enhanced modes, such as the PCjr's modes 8 through 10 and the
EGA's modes 13 through 16, IBM is making the display memory as hands-
off as possible. In the case of the EGA, the display memory is theoretically
located in the A block but can't actually he found at that address by our
programs. We'd be fools to try to break through this barrier.

The use and coding of the video display memory varies according
to which of video modes 0 through 10 is being used. (Recall that modes 0
through 6 apply to the original IBM Color/Graphics Adapter and mode 7
to the IBM Monochrome Adapter. Modes 8 through 10 were introduced
with the PCjr model, which also uses modes 0 through 6; these modes
cannot he used with the standard IBM Color/Graphics Adapter or any of
its equivalents. Modes 11 through 16 apply only to the EGA.)

In modes 0 through 6 and also 8, the display map occupies 16K
bytes; in modes 9 and 10, the display map fills 32K. In the Monochrome
Adapter's mode 7, it uses only 4K bytes. The text-mode displays of both
the monochrome and graphics display adapters use less memory than do
the graphics-mode displays because only two bytes are needed to store
one character ('•" more about this on page 87). Consequently, an 80- by
25-character text display requires only 4,000 bytes. A graphics display, as
we can see in Figure 4-11, may require anywhere from 16K bytes to 32K
bytes, depending on the number of colors we use. In the two-color graph
ics modes, a pixel uses one bit. In the four- and sixteen-color modes, each
pixel requires from two to four bits in order to store the larger color values.
This means that a 320 x 200 sixteen-color bit-mapped display requires a
full 32K (two pixels per byte).

Since a typical text display occupies 4,000 bytes (only 2,000 bytes in
40-column mode), there is some space left over in the Color/Graphics
Adapter's 16K display memory. We can use this space for more text by
dividing it into display pages.

Chapter 4: Video Basics 85

Mode

Minimum Memory
Used (K) Starting Paragraph Address (hex) Adapter

0 2 B800 (location varies on PCjr) CCA

1 2 B800 (location varies on PCjr) CCA

2 4 B800 (location varies on PCjr) CGA

3 4 B800 (location varies on PCjr) CGA

4 16 B800 (location varies on PCjr) CGA

5 16 B800 (location varies on PCjr) CGA

6 16 B800 (location varies on PCjr) CGA

7 4 BOOO MA

8 16 PCjr main memory (location varies) n/a

9 32 PCjr main memory (location varies) n/a

10 32 PCjr main memory (location varies) n/a

13 32 AOOO EGA

14 32 AOOO EGA

15 64 AOOO EGA

16 64 AOOO EGA

Figure 4-11. Minimum amount of memory
needed by each video mode and its starting
location in memory

Display Pages in Text Modes

In text modes 0 through 3, less than 16K is actually used by the
screen at any one time. Modes 0 and 1 use 2K, and modes 2 and 3 use 4K.
For these modes, the 16K of available memory is divided into multiple
screen images, called pages. At any given time, one page is actively dis
played. Information can be written into the displayed page or any of the
other pages. Using this technique we can build a screen on an invisible
page while another page is being displayed, then switch to the new page
when the appropriate time comes. Switching screen images this way
makes them appear to regenerate instantaneously.

The display pages are numbered 0 through 7 in modes 0 and 1, or 0
through 3 in modes 2 and 3, with page 0 starting at the beginning of the
16K display memory area. Each page begins on an even K memory bound
ary. m- The display page offset addresses are shown in Figure 4-12. The
EGA doesn't abide by these conventions; use the word at hex 44E to find the
offset of the current video page.

We set the display page by changing the starting address used by
the 6845 controller chip. Normally, we do this by using ROM-BIOS video
service 5 through interrupt 16 (hex 10). ((•'See Chapter 9.)

86 PROGRAMMER'S GUIDE TO THE IBM PC

Modes 0 and 1 Modes 2 and 3
Page 2K displacements 4K displacements

0 B800 B800

1 B880 B900

2 B900 BAOO

3 B980 BBOO

4 BAOO

5 BA80

6 BBOO

7 BB80 (See text for note on EGA)

Figure 4-12. Offset addresses for display
pages in modes 0 through 3

In any of these modes, if the pages are not actively used (actually
displayed on the screen), then the unused part of the display memory can
conceivably be used for another purpose, although it is not normal (or
advisable) to do so. Making any other use of this potentially free memory
is just asking for trouble in the future.

Display Pages in Graphics Modes
For the PCjr, the EGA, and any other display adapter that has the

memory to accommodate it, the page concept is just as readily available
in the graphics modes as in the text modes. Obviously there is no reason
not to have graphics pages if the memory is there to support them.

The main benefit of using multiple pages for either graphics or text
is to be able to instandy switch from one display screen to another with
out taking the time to build the display information from scratch. In the
ory, multiple pages could be used in graphics mode to produce smooth
and fine-grained animation effects, but there wouldn't be enough display
pages to take the animation very far. However, the potential for using
display pages in graphics mode is there with the newer display adapters.

Displaying Characters in Text and Graphics Modes

As we have learned, the text modes of the Monochrome and Color/
Graphics Adapters do not store a character image in display memory, but
instead store only the ASCII values of the character and its display attri
butes. The character is drawn on the screen by a character generator that
is part of the adapter. The Color/Graphics Adapter has a character gener
ator that produces characters in an 8-by-8 pixel block format, while the

Chapter 4: Video Basics 87

Monochrome Adapter's character generator uses a 9-by-14 pixel block
format. The larger format is one of the factors that makes the Mono
chrome Adapter's display output easier to read.

The standard ASCII characters (CHR$(1) through CHR$(127)) repre
sent only half of the ASCII characters that we can use in the text modes.
We also have 128 graphics characters available through the same charac
ter generator (CHR$(128) through CHR$(255)). Over half of them can be
used to make simple line drawings, m- A complete list of both the stan
dard ASCII characters and the graphics characters provided by IBM is
given in Appendix C.

The graphics modes can also display characters, but they are pro
duced quite differently. The graphics modes can only store information
bit-by-bit and characters are no exception: They must be drawn one bit at
a time. The big advantage to a bit-mapped display as far as characters are
concerned is that you can design your own characters. In the original
IBM Color/Graphics Adapter, the table for the second 128 characters is lo
cated in RAM and can therefore be modified. Having modified the table,
we can directly access and display a custom set of characters instead of
the standard IBM set. With the PCjr, all 256 characters are in RAM, so all
of them can be modified.

Mapping Characters in Text Modes

In text modes, the memory map begins with the top left corner of
the screen, using two bytes per screen position. The memory bytes for
succeeding characters immediately follow in the order we would read
them—from left to right and from top to bottom.

Modes 0 and 1 are text modes with a screen format of 40 columns

by 25 rows. Each row occupies 40 x 2 = 80 bytes. A screen occupies only
2K bytes in modes 0 and 1, which means the 16K memory can accommo
date eight display pages. If the rows are numbered 0 through 24 and the
columns numbered 0 through 39, then the offset to any screen character
in the first display page is given by the BASIC formula;

CHARACTER.OFFSET = (ROW.NUMBER • 80) + (COLUMN.NUMBER ♦ 2)

Since the attribute byte for any character is in the memory location next
to the ASCII character value, we can locate it by simply adding 1 to the
character offset.

Modes 2, 3, and 7 are also text modes with 80 columns in each row
instead of 40. The byte layout is the same, but each row requires twice as

PROGEIAMMER'S GUIDE TO THE IBM PC

many bytes, or 80x2=160 bytes. Consequently, the 80-by-25 screen for
mat uses 4K bytes and the 16K memory can accommodate four display
pages. The offset to any screen location in the first display page is given
by the BASIC formula:

CHARACTER.OFFSET = (ROW.NUMBER ♦ 160) + (COLUMN.NUMBER • 2)

When using the Color/Graphics Adapter, the beginning of each text
display page traditionally starts at an even K boundary. Since each screen
page in the text modes actually uses only 2,000 or 4,000 bytes, there are
some unused bytes following each page: either 48 or 96 bytes depending
on the size of the page. So, to locate any screen position on any page in
text mode, use this general formula:

LOCATION = (SEGMENT.PARAGRAPH ♦ 16) + (PAGE.NUMBER • PAGE.SIZE)
+ (ROW.NUMBER • ROW.WIDTH • 2) + (COLUMN.NUMBER » 2) + WHICH

where:

LOCATION is the 20-bit address of the screen information.

SEGMENT.PARAGRAPH is the location of the video display memory
(for example, hex BOOO or B800).

PAGE.NUMBER is in the range 0 through 3 or 0 through 7.

PAGE.SIZEis2Kor4K.

ROW.NUMBER is from 0 through 24.

ROW.WIDTHis40or80.

COLUMN.NUMBER is from 0 through 39 or 0 through 79.

WHICH is 0 for the display character or 1 for the display attribute.

Mapping Pixels in Graphics Modes

WTien we use a graphics mode, pixels are stored as a series of bits,
with a one-to-one correlation between the bits in memory and the pixels
on the screen. We generally use one of three schemes to map out the dis
play memory in graphics modes.

The original Color/Graphics Adapter organizes the display into 200
lines, numbered 0 through 199. The number of pfacels in each line varies
with the mode we use. Modes 4, 5, and 9 are medium resolution, with
320 pixels in each line. Modes 6 and 10 are high resolution, with 640 in
each line. Mode 8, which was introduced in the PCjr and is not available
for use with the standard IBM Color/Graphics Adapter, is low resolution,
with 160 pixels in each line. The pixel columns for low-, medium-, and
high-resolution graphics modes are numbered 0 through 199,319, or 639.

Chapter 4: Video Basics 89

The storage for the rows is divided into "banks" of lines that oc
cupy contiguous memory locations. For modes 4, 5, 6, and 8, there are
two banks, the first bank holding the memory for the even-numbered
hues 0, 2, 4... through 198, and the second holding the memory for the
odd-numbered lines 1, 3, 5... through 199. Modes 9 and 10 have four
banks, with similarly staggered lines:

1st bank 0, 4, 8,12... 196

2nd bank 1, 5, 9,13... 197

3rd bank 2, 6,10,14... 198

4th bank 3, 7,11,15... 199

These banks of lines are similar to text-mode display pages in two
respects: The lines within each bank run one right after another without
any gap in memory, and each bank begins on an even K boundary, leav
ing some unused bytes at the end of each bank. However, unlike the dis
play pages, all banks of lines are actively used by the display screen. Each
bank is 8K in size, so the offsets to the beginning of the banks are 0, 8K,
16K, and 24K.

As we can see in Figure 4-13, the amount of memory used to sup
port each pixel varies by mode. Mode 6 uses one bit, which can select
from two colors; modes 4, 5, and 10 use two bits, selecting from four
colors; and modes 8 and 9 use four bits, selecting from sixteen colors.

Except for mode 10, which is treated specially, the bits needed for
each pixel in each row are taken in consecutive order from memory. For
example, in mode 6, which uses one bit per pixel, the eight bits in the first
byte of the display memory control the first eight pixels on the screen.

Mode Columns Colors Bits Banks Memory (K)

4 320 4 2 2 16

5 320 4 2 2 16

6 640 2 1 2 16

8 160 16 4 2 16

9 320 16 4 4 32

10 640 4 2 4 32

Figure 4-13. The formats and memory
requirements for the graphics modes

90 PROGRAMMER'S GUIDE TO THE IBM PC

The first (high-order) bit controls the first pixel, and so forth. In mode 4,
with two bits per pixel, the eight bits of each byte control four pixels. In
mode 8, with four bits per pixel, each byte controls two pixels. («-All
three bit formats are shown in Figure 4-14.

In mode 10, bit-mapping is different ((«-see Figure 4-15). Like modes
4 and 5, mode 10 requires two bits for each pixel, but unlike modes 4 and
5, the pixel information is not stored adjacent within one byte. Instead, it
is stored in corresponding bits from two adjacent bytes. The bit from the
first byte is the higher-order bit. When it is combined with the corre
sponding bit in the second byte, the two bits produce a color number
from 0 through 3.

In modes 4, 5, 6, and 8, each line of pixels uses 80 bytes; in modes 9
and 10, each line uses 160 bytes.

CONTROLLING THE VIDEO DISPLAY

In general, control of the display screen, like most other computer
operations, can be done in four ways:

■ By using the programming-language services (for example,
BASIC'S SCREEN statement).

■ By using the DOS services ((•'see Chapters 16 and 17).

■ By using the ROM-BIOS video services (•'see Chapter 9).

■ By direct manipulation of the hardware, via memory or ports.

The video services that are available through programming lan
guages, DOS, and the ROM-BIOS automatically place screen output data

Bit Bit

76543210 Pixel 76543210 Pixel

Mode 6 Modes 4 and 5

X 1 XX 1

.X 2 ..XX.. . . 2

. . X 3XX.. 3

. . . X 4 XX 4

. . . . X . . . 5

X . . 6 Modes 8, 9,13, and 14

X . 7 X X X X 1

X 8 X X X X 2

Figure 4-14. A bit map of the first pixels in
three graphics formats

Chapter 4: Video Basics 91

1st Byte
76543210

2nd Byte
76543210 Pixel

X .

X

X . . .

. X . .

. . X .

. . . X

X .

. X

X .

. X

1

2

3

4

5

6

7

Figure 4-15. A bit map of the first pixels in
mode 10 graphics format

in the display memory, each type of service offering varying levels of con
trol. Seventeen ROM-BIOS services are particularly powerful, providing
nearly all the services that are needed to generate display-screen output,
control the cursor, and manipulate screen information. (<•' All sixteen
services are fully described in Chapter 9). For maximum control over the
video display, we also have the option of bypassing the software services
and placing data directly in the display memory—when we feel we have
good reason to.

Before opting for direct video output, you should know that it does
interfere with windowing systems and more advanced multitasking oper
ating environments. All the same, many important programs for the PC
family generate direct video output—so many, in fact, that this has be
come a standard and accepted way of creating output. So, even though
in the long run it's probably not wise to place video output directly on the
screen, everyone seems to be doing it.

Basically, we can't mix programs that write directly into the display
memory and windowing systems because two programs would be fight
ing over the control of the same memory and messing up each other's
data. But because so many programs now generate direct video output,
IBM's own multitasking windowing system, Topview, goes to great
lengths to accommodate programs that write directly to the display
memory. A system like Topview can make this accommodation simply by
keeping a separate copy of the program's display memory; when the pro
gram is running, the copy is moved into the display buffer, and when the
program is stopped, a fresh copy of the display buffer is made. This tech
nique allows Topview to run programs that work with the display mem
ory, but at an enormous cost: First, computing and memory overhead go

PROGRAMMER'S GUIDE TO THE IBM PC

About the Cursor

A blinking cursor is a feature of the text modes that is used to indicate the
active location on the display screen. The cursor is actually a group of scan
lines that fill the entire width of the character box. The size of the character
box varies with the display adapter; the Monochrome Adapter uses a 9-pixels-
wide-by-14-scan-lines-high format, and the Color/Graphics Adapter uses an 8-
pixels-by-8-scan-lines format. (The extra scan lines in the monochrome mode
allow for a more detailed character drawing, as you'll see in Appendix C).

The default cursor format uses every scan line, but it may be changed to
display any number of lines within its small range. For example, we can set the
cursor to start and stop on any set of scan lines and even to wrap around from
a lower scan line to a higher one. This allows us to make a one-part cursor lo
cated anywhere in the character box, or a two-part cursor located at the top
and bottom of the character box. (•- See page 174 for a discussion of the char
acter box and the relationship of the scan lines to the characters.)

Since the blinking cursor used in text modes is a hardware-created fea
ture, software has only limited control over it. We can change its format and
we can change its location on the screen in a number of ways. To read or
change the location of the cursor we can use some of the ROM-BIOS services
{•■ see Chapter 9) or we can read or write directly to memory see the dis
cussion of location hex 450 on page 55). Likewise, we can read and change the
cursor format by using the ROM-BIOS services or we can read the format di
rectly by inspecting memory (<•- see the discussion of location hex 460 on
page 56). Most programming languages also offer these services.

If we ever want to bypass this hardware-controlled blinking cursor (and
many of us do), we can use the reverse-video display attribute (hex 70) when
ever the real cursor is located. This will produce a block cursor that doesn't
blink. Another way to do this is to use the ASCII block characters, either
CHRS(219) or CHR$(254).

So far, we've been talking about the text-mode cursor. In the graphics
modes, there is no displayed cursor, but a logical cursor location is recorded
that tells us the active screen location. As in the text modes, to find out the cur
sor's location, we can either use the ROM-BIOS services or read the location
word (hex 450) directly.

To create a cursor in graphics modes, many programs, including BASIC,
simulate the block cursor by using a distinctive background color at the cursor
location or by using the ASCII block characters.

up; second, the program can't run in the background simultaneously
with other programs; and third, the display information can't be "win
dowed"; that is, it can't be moved or adjusted in size.

Programmers are faced with a conflict here: Direct output to the
screen has the benefit of speed and power, while using BIOS or higher-
level services for screen output has the benefit of more flexibility for

Chapter 4: Video Basics

adapting to windowing systems, new display adapters, etc. The solution
that I adopted for my own programs was to use both techniques, activat
ing one or the other as needed.

Direct Hardware Control

Much of the information that we've provided in this chapter, partic
ularly the information on the internal mapping of the display memory, is
meant to help you write video information directly into the display mem
ory. But remember, there is a risk in any kind of direct programming,
and you'll find that it is both safer and easier to use the highest available
means to control the video display. Lower means, particularly direct ma
nipulation, can be very disruptive. There are only a few instances when
direct control is safe and reliable. Wherever possible, I will point out
these circumstances.

Monochrome Adapter I/O Ports

The Monochrome Adapter uses four I/O ports: the CRT control and
status ports and the 6845 CRT controller registers.

The CRT control port (hex 3B8). We can set three of this port's eight
bits: the high-resolution, video, and blink bits. The high-resolution bit
must always be on to use the Monochrome Adapter. The video and blink
settings turn the video display and the character blink on and off. Send
ing the value hex 29 to this port will set the three bits to their normal
setting. ((•" See Figure 4-16.)

The CRT status port (hex 3BA). This port stores the state of the
horizontal sync signal in bit 0 and the video bit stream to the display in
bit 3. Although we can read these two bits, neither one is particularly
useful. The other bits are not used.

Bit

76543210 Use

X High-resolution mode: must be set to 1

. . .XX. Not used

. . X . . . 0 = disable video signal; 1 = enable video signal

. X Not used

X 0 = blinking function off; 1 = blinking function on

XX Not used

Figure 4-16. The coding for the CRT
control port

94 PROGRAMMER'S GUIDE TO THE IBM PC

The 6845 CRT controller (start address hex 3B0). There are 19
programmable internal registers in the 6845. They specify such things as
the timing of the vertical and horizontal sync signals, the number of dis
play lines, and the number of characters per line. Only four registers are
safe to use: registers (hex) OA, OB, OE, and OF. Registers OA and OB deter
mine the lines on which the cursor starts and ends, and registers OE and
OF determine the screen position of the cursor, with a value ranging from
0 to 1,999. Both functions are also available through interrupt 16 (hex 10)
in the ROM-BIOS services. Don't mess around with the other values; they
can be disruptive. (For example, you can damage a monochrome display
if you program the 6845 video controller incorrectly.) If you want to
know more about them, refer to the IBM PC Technical Reference manual.

Color/Graphics Adapter I/O Ports

In order to accommodate the graphics functions, the Color/Graph
ics Adapter has more I/O ports than the Monochrome Adapter. We will
list the most important aspects of each of the seven ports.

The mode select register (hex 3D8). We set this byte to change from
one display mode to another, {m- See Figure 4-17.)

The color select register (hex 3D9), We set this byte to change the
screen border colors for the text modes and the background and fore
ground colors for the graphics modes, (m- See Figure 4-18.)

Bit

76543210 Use

. . X

. X .

X . .

X . . .

X X

0 = select 40 x 25 text mode; 1 = select 80 x 25 text mode

0 = select text mode; 1 = select 320 x 200 graphics mode

0 = select color mode; 1 = select b/w mode

0 = disable video signal; 1 = enable video signal

1 = 640 X 200 b/w graphics

0 = blinking function off; 1 = blinking function on

Not used

Figure 4-17. The coding for the mode
select register

Chapter 4: Video Basics 95

Bit

76543210 Use

. . X

. X .

X . .

X X

Selects blue foreground, background, or border

Selects green foreground, background, or border

Selects red foreground, background, or border

Selects intensity setting

Selects alternate, intensified palette

0 = palette 0; 1 = palette 1

Not used

Figure 4-18. The coding for the color
select register

The status register (hex 3DA). This register stores useful informa
tion for those of us who prefer a flicker/snow-free screen update. When
bit 0 is set to 1, we can access the buffer memory without disturbing the
display. When bit 3, the vertical sync, is set to 1, the raster is in vertical
retrace and we can update the screen. This register also has two light-pen
status signals. ((•" See Figure 4-19.)

The Ught-pen latch ports (hex 3DB and 3DC). Writing to either of
these ports clears or sets a toggle switch that is connected to the 6845's
light-pen input.

The 6845 video controller (start address hex 3D0). The controller
functions the same way with the Color/Graphics Adapter as it does with
the Monochrome Adapter.

Control of the video display is complicated, and has been made
much more complicated by the steady stream of additions to the list of PC
display features. Whatever you decide to do, it is a very good idea to test
your understanding of any part of video control by experimenting with it
before you incorporate it into your programming efforts.

Bit

76543210 Use

X

X .

X . .

. . . . X . . .

X X X X

1 = memory access can occur without display interference

1 = light-pen trigger set

0 = light pen on; 1 = light pen off

1 = raster is in vertical retrace

Not used

Figure 4-19. The coding of the status register

96 PROGRAMMER'S GUIDE TO THE IBM PC

COMPATIBILITY CONSIDERATIONS

For our programs to be compatible with all the IBM personal com
puter models, we need to keep several things in mind. First, a standard
PC model cannot create graphics displays if it is equipped only with the
Monochrome Adapter. In addition, graphics modes 8 through 10 cannot
be used with the original or the enhanced version of the Color/Graphics
Adapter; they are part of the PCjr color enhancements. Likewise, modes
13 through 16 belong to the EGA. These restrictions also apply to any re
mapping of the color palettes, as this capability is also linked to the PCjr
and the EGA. It is also important to remember that the Monochrome
Adapter for the PC and XT models treats the text-mode color attributes in
a special way ((*r as discussed on page 79).

It's a good idea for a program to adapt its use of color, or the choice
between the text and graphics mode, to accommodate either the IBM
Monochrome Monitor or a composite monochrome monitor, which
usually doesn't show color well. Keep in mind that composite mono
chrome monitors may often be used with PCs, especially when the pri
mary work is with text—such as word processing or accounting. There
are many PCs equipped this way and it is wise for our programs to ac
commodate them.

In order to accommodate these systems, our programs should find
out the video mode and act accordingly. For programs that are already
using an assembly-language interface to the BIOS, the preferred way to do
this is to use BIOS video service 15 {m- see Chapter 9). For other pro
grams, service 15 is a stumbling block. The problem can be circumvented
by reading memory location 0000:0449, where the video mode is stored
{m- see page 54). We can read this location in BASIC like this:

DEF SEG = 0

VIDEO.MODE = PEEK (4H449)

Video mode 7 identifies the use of the IBM Monochrome Monitor. There
is no automatic way to identify the use of a composite monochrome dis
play; however, if a knowledgeable user of such a display uses the DOS
MODE command to suppress color, our programs can detect it in a video
mode of 0 or 2.

When we wish to consider the working compatibility of our pro
grams with the IBM personal computers and the different kinds of dis
play screens, we can lay out several compatibility criteria to consider.
These criteria are not completely consistent with each other, reflecting
the internal inconsistency in the design of the IBM personal computer

Chapter 4: Video Basics 97

and the variety of display formats that can be used. Still, there are overall
guidelines for compatibility, which we'll outline here.

First, text-only display output increases compatibility. There are
many PCs equipped with Monochrome Adapters, which cannot show
graphic output. If you are weighing a text-versus-graphics. decision in the
design of a program, there are two factors to consider, one for the use of
a text-only display and one against. On the one hand, as many programs
have dramatically demonstrated, it is possible to create very effective
drawings using just standard IBM text characters, (m- See Appendix C for
more information on the effective use of text characters for drawing.) On
the other hand, it is more and more common for computers to include
graphics capability. For example, both the PCjr and the IBM Portable PC,
as well as the Compaq model, come with built-in graphics capability. So,
in the future, text-only output will probably lose its importance and we'll
be able to design graphics directly into our programs without worrying
about compatibility.

Second, the less our programs depend on color, the wider the range
of computers with which they will be compatible. This does not mean
that we need to avoid color for compatibility; it simply means that for
maximum compatibility, our programs should use color as an enhance
ment, not as an essential ingredient. If programs can get along without
color, then they will be compatible with computers that use monochrome
displays, induing PCs with Monochrome Adapters, as well as Compaq
and IBM Portable PC computers with their built-in monochrome displays.

In considering these guidelines in the light of the particulars of your
own programs, you must weigh the advantage of broad compatibility
against the convenience and simplicity of writing programs for a nar
rower range of displays. My own experience and judgment tell me that
far too often programmers err by opting for a narrower range of dis
plays, thereby gravely reducing the variety of computers their programs
can be used on. Be forewarned.

5

Disk Basics

The Disk's Physical Structure 100

DOS Disk Formats 102
Standard DOS Formats 102

Quad-Density Formats 103
The Hafd-Disk Format 104

The Disk's Logical Structure 105

How DOS Organizes the Disk 106
Diskette Space Allocation 107
Hard-Disk Space Allocation 109

The Logical Structure in Detail 109
The Boot Record 112

The Directory 113

The Data Space 119
The File Allocation Table 120

Comments 124

99

100 PROGRAMMER'S GUIDE TO THE IBM PC

Most computer systems have some way to store information
permanently, whether it is on cassette tapes, floppy disks,
or hard disks. These storage devices come in various sizes
and capacities but operate in basically the same way:

They magnetically encode information on their surfaces in patterns deter
mined by the device itself and by the software that controls the device.

When the PC family was introduced in 1981, it used one main type
of storage device: the standard iiA-inch floppy disk, which was double-
density, single-sided, and soft-sectored, and stored only 160K bytes. Since
then, IBM has increased the diskette's storage capacity and has added 10-
and 20-megabyte hard disks to some of their PC systems. In the future,
we can expect to see continued advances in disk technology by IBM and
others, including higher-capacity hard disks and 3T2-inch mini-diskettes.

Although the type of storage device is important, as programmers,
it is the way stored information is laid out and managed that concerns us.
In this chapter, we will focus on how information is organized and stored
on floppy disks, since they are the most common storage medium for the
PC family. Although we will primarily be discussing floppy disks, we will
really be painting a portrait that represents all disk-type storage devices.
The information provided in this chapter applies equally well to RAM
disks—that is, the simulation of disk storage in memory—as it does to
conventional diskettes, hard disks, disk cartridges, and mini-diskettes.

THE DISK'S PHYSICAL STRUCTURE

The disk drives and operating system of the computer establish the
capacity of the disks used, but a disk's structure is essentially the same,
regardless of the setup. Data is always recorded on the disk surface in a
series, of concentric circles, called tracks. Each track is further divided
into segments, called sectors. See Figure 5-1.) The amount of data that
can be stored on each side of a disk depends on the number of tracks (its
density), the number of sectors, and the size of the sectors. Disk density
may vary considerably from drive to drive: The standard double-density
drives can record 40 tracks of data, while the new quad-density drives
can record 80 tracks.

For the PC's standard 5 iA-inch diskettes, the location of each track
and the number of usable sides are set by the hardware characteristics of
the disks and disk drives, and as such, they are fixed and unchangeable.

Chapter S: Disk Basics 101

Sector

Tracks

Figure 5-1. The disk's physical structure

However, the location, size, and number of the sectors within a track are
under software control. This is why the PC's diskettes are known as soft-
sectored. The characteristics of a diskette's sectors (their size, and the
number per track) are set when each track is formatted. Disk formatting
can be done either by the operating system or by the ROM-BIOS format
service. In most of this chapter, we will discuss the DOS formats. How
ever, we can easily create unusual formats and make them part of a work
able copy-protection scheme by using the ROM-BIOS diskette services
(<•' see service 5 on page 192).

The 5T4-inch diskettes supported by the standard PC BIOS may have
sectors that are 128, 256, 512, or 1,024 bytes in size. DOS, from versions
1.00 through 3.1, has consistently used sectors of 512 bytes, and it is quite
possible that this will continue. However, any program which depends
upon or makes use of the 512-byte DOS sectors should allow for future
changes in sector size, particularly for larger sectors.

A diskette, of course, has two sides, and the sectors and tracks can
be placed on one or both sides. Hard-disk systems can have one or more
disks (called platters) in them, so they may contain more than two sides.
ED For example, the 10-megabyte hard disk introduced with the XT has
two platters and it uses all four sides of those platters.

102 PROGRAMMER'S GUIDE TO THE IBM PC

DOS DISK FORMATS

In the early versions of DOS used by IBM, a limited number of disk
formats could be used, even though the disk drives themselves could read
and write many formats. Beginning with DOS 2.00 and continuing with
all subsequent versions, DOS has been equipped with only a few standard
formatting options but allows virtually any physical disk format to be
integrated. (The logical format, as we'll see, is more tightly constrained
to a standard set by DOS.) This integration is possible because DOS pro
vides us with the necessary tools to write an installable device driver—a
machine-language routine that can configure our disk drive to read or
write different formats, or allow us to hook up a non-IBM disk drive to our
system ((«- see Appendix A for more on installable device drivers).

Because there are many potential disk formats, we cannot possibly
consider all of them. We will examine seven common disk formats, in
cluding four regular 51/4-inch diskette formats, one special il/t-inch dis
kette format, one 31/2-inch mini-diskette format, and one hard-disk format.
Together, these seven common formats should serve as examples to pro
vide you with enough guidance to work with any disk type.

Standard DOS Formats

We'll begin with the four most common PC formats, those used as
standard formats by IBM for 51/4-inch diskettes. The four formats are de
rived from the number of sides and the number of sectors on each track:

single- or double-sided and eight or nine sectors ((•' see Figure 5-2).
The reason why there are four standard formats is quite simple: IBM

has to make sure that all versions of DOS support all earlier PC models.
The first PCs came equipped with single-sided diskette drives. Later, IBM
introduced double-sided drives and discontinued using single-sided drives.
Now, although relatively few PCs have single-sided drives, the single-sided
formats are supported by all versions of DOS for compatibility with the
early machines.

In the earliest releases of DOS, only eight 512-byte sectors were
placed on each track, even though up to ten sectors of that size could be
squeezed in successfully. Later, nine 512-byte sectors were accepted as
safe and reliable, and the nine-sector format became the standard. Once
again, the other formats were preserved to maintain compatibility.

The format expansions are tied to the history and development of
DOS. The original DOS version 1.00 supported only what 1 call the S-8
format. The next release, 1.10, added D-8. Version 2.00 added the two
nine-sector formats, S-9 and D-9. No new formats were added with DOS
2.10, but DOS 3.0 added the quad-density format that we'll discuss shortly.

Chapter 5: Disk Basics 103

Our Notation Sides Sectors Tracks Nominal Size (bytes)

S-8 1 8 40 160K

D-8 2 8 40 320K

S-9 1 9 40 180K

D-9 2 9 40 360K

Figure 5-2. The standard DOS formats

Although there are many formats, only two are in widespread use:
S-8 and D-9. S-8 is the lowest common denominator, so it has traditionally
been used for commercial programs, since the use of S-8 guarantees that
a diskette can be read by any version of DOS. However, this practice is
going out of style, especially in companies that sell large programs need
ing more disk space. The D-9 format is the highest-capacity format that
most Sl^-inch drives can use, so that's the one most people use for their
acmal working diskettes. The other formats, D-8 and S-9, are not as com
mon, but they are used occasionally.

Quad-Density Formats

You will notice that the one constant factor in the four standard

formats is the number of tracks: All of them have 40. This is because the

Sli-inch diskette drives that we use most often with the PC family are
designed to read and write 40 tracks of data. But some Sli-inch diskette
drives, and many SVz-inch drives, can record 80 tracks of data in the same
space. This type of drive, and the diskettes used with it, is often referred
to as quad-density. Of the many possible quad-density formats, we are
going to discuss the two that are most common in the PC family. We'll
call them QD-9 and QD-15. ((•' See Figure 5-3.)

The QD-9 format is very much like the D-9, except that it has 80
tracks of data instead of 40. Like the D-9 format, the QD-9 format has two
sides, with nine sectors per track on each side.

Although IBM has avoided using the QD-9 format, it has been avail
able with other equipment, such as Data General's DG-1 lap computer, a

Our Notation Sides Sectors Tracks Nominal Size (bytes)

QD-9 2 9 80 720K

QD-15 2 15 80 1,200K

Figure 5-3. The quad-density formats

104 PROGRAMMER'S GUIDE TO THE IBM PC

AT

cousin of the PC family. The DG-1 uses 3T2-inch mini-diskettes rather than
the standard 5T4-inch diskettes, but the logical structure of their formats
is the same. Although the mini-diskette drives are quad-density, their
disks can be formatted not only in the QD-9 format but also in the other
four formats, S-8, S-9, D-8, and D-9. Quad-density drives can also be at
tached to regular PCs as nonstandard equipment, using a DOS device
driver (m- see Appendix A for more on device drivers). Many people be
lieve that this format will become widely used, so it's of real interest to us.

The high-capacity QD-15 format used by the AT follows the same
basic structure we've discussed; 80 tracks per side and standard 512-byte
sectors. The special characteristic of QD-15 is that each side of every track
holds fifteen sectors, instead of eight or nine. Fitting that many sectors
onto a track is only possible because the AT uses special high-capacity
diskettes, which have a different magnetic coating than ordinary dis
kettes. Only these special diskettes—which look the same as the regular
5T4-inch diskettes—and the special high-capacity diskette drives can ac
cept the QD-15 format.

The Hard-Disk Format

High-capacity hard-disk systems, such as the XT's 10-megabyte hard
disk or the AT's 20-megabyte hard disk, present some special problems
and opportunities.

There are two aspects to any disk: its physical format and its logical
format. The physical format of a disk determines the sector size in bytes,
the number of sectors per track (per cylinder for hard disks), the number
of tracks (cylinders), and the number of sides. The logical format deter
mines the way the information on the disk will be organized and where
different types of information will be placed.

When we format a floppy disk with DOS or any other operating
system, we set both the physical and the logical format of the diskette and
we're unaware of any distinction between them. Unlike a diskette, the
physical format of a hard disk is already established when it comes to
us—it's set by the manufacturer.((«- See Figure 5-4.) What is not present
in the factory-set physical format is the logical structure of the disk,
which we have to establish before the operating system can use it. This is
done in two stages. First, we must divide the hard disk into logical parti
tions to house the data and programs for each operating system we use.
(We can use several operating systems with our hard-disk system; m- see
page 110.) Then we must define the organization of the partitions so that
each individual operating system can locate the information within its
partition. It is this process of "organizing the disk" that is usually called
formatting.

Chapter 5: Disk Basics 105

Our Notation Sides Sectors Cylinders Nominal Size (megabytes)

XT 4 17 306 (See page 109) 10

AT 4 17 615 20

Figure 5-4. The physical formats of the XT
and AT hard disks

THE DISK'S LOGICAL STRUCTURE

Regardless of what disk we use, DOS disks are all logically format
ted in the same way: The disk's sides, tracks, and sectors are identified
numerically using the same notation, and certain sectors are always re
served for special programs and indexes that DOS uses to manage disk
operations. Before we find out how DOS organizes space on a disk, we
need to briefly cover the conventional notation used by DOS and the BIOS
to locate information.

As we have seen from earlier discussions, our 5!/4-inch diskette for
mats have 40 tracks, numbered from 0 (the outside track) through 39 (the
inside track, closest to the center). Other disk formats can have more
tracks. For example, the tracks on quad-density diskettes are numbered
0 through 79, |;ii the XT's hard-disk cylinders are numbered 0 through
305,13J and the AT's hard-disk cylinders are numbered 0 through 614.

On a double-sided diskette, the two sides are numbered 0 and 1 (the
two recording heads of a double-sided disk drive are also numbered 0
and 1). The one side of a single-sided diskette is referred to as side num
ber 0. m The XT's hard disk has four sides (and four recording heads)
numbered 0 through 3.

The sectors on floppy disks are numbered 1 through 8 or 9. l!il On
the XT's and AT's hard disk, they are numbered 1 through 17. Note
that sector numbers begin with 1, while track and side numbers begin
with 0.

The BIOS locates the sectors on a disk by a three-dimensional coor
dinate composed of a track number (also referred to as the cylinder num
ber), a side number (also called the head number), and a sector number.
DOS, on the other hand, locates information by sector number, and num
bers the sectors sequentially from outside to inside, {m- See Figure 5-5.)
The sequence begins with the first sector on the disk: sector 1 of side 0
and track 0, followed by the remaining sectors on the same side and
track. For double-sided diskettes, the ninth sector of side 0 and track 0 is
followed by the first sector of side 1 and track 0. The order proceeds
through all sectors of one side and track location, then through the next
side, at the same track location (so all sides at one track location come
before the next track location).

106 PROGRAMMER'S GUIDE TO THE IBM PC

BIOS notation:

side 0,
track 10,
sector 2

9

/ / ^ \ \

({ o\ \ ^ ^
/

a

5

DOS notation:

sector 181

Figure 5-5. The ROM-BIOS and DOS sector
notation

We can refer to particular sectors either by their three-dimensional
coordinates or by their sequential order. All ROM-BIOS operations use the
three-dimensional coordinates to locate a sector. All DOS operations and
tools such as DEBUG use the DOS sequential notation. (•- See page 250 for
how to convert DOS notation to ROM-BIOS notation and vice versa.

HOW DOS ORGANIZES THE DISK

As we've already seen, when we instruct DOS to format our dis
kettes, it divides each of the 40 tracks into either eight or nine 512-byte
sectors. In terms of raw storage capacity, this amounts to 368,640 bytes of
data space on our standard D-9 diskettes. But not all of that space can be
used to store data; a certain amount is used to store system control infor
mation and indexes that DOS uses to find the location and relationship
between individual sectors. So, in addition to dividing the disk into sec
tors, DOS performs several other operations when it formats our disks.

Chapter 5: Disk Basics 107

Diskette Space Allocation

The formatting process divides the sectors on a disk into four sec
tions, for four different uses. The sections, in the order they are stored,
are the boot record, the file allocation table (FAT), the directory, and the
data space see Figure 5-7 overleaf). The size of each section varies
between formats, but the structure and the order of the sections don't
vary. Hard disks, such as the 10-megabyte hard disk on the XT, follow the
same basic layout, though hard disks that can be partitioned present extra
complications because the partition sizes directly affect the size of each
section, See page 110 for a discussion of hard-disk partitions.

The boot record is always a single sector located at sector 1 of track
0, side 0. The boot record contains, among other things, a short program
to start the process of loading the operating system from a diskette that
has the operating system on it. All diskettes have the boot record on them
even if they don't have the operating system. Aside from the start-up pro
gram, the exact contents of the boot record vary from format to format.

The file allocation table, or FAT, follows the boot record, usually
starting at sector 2 of track 0, side 0. The FAT contains the official record
of the disk's format and maps out the location of the sectors used by the
disk files. DOS uses the FAT to keep a record of the data-space usage.
Each entry in the table contains a specific code to indicate what space is
being used, what space is available, and what space is unusable (due to
defects on the disk). Because the FAT is used to control the entire usable
data storage area of a disk, two identical copies of it are stored in case
one is damaged. Both copies of the FAT may occupy as many sectors as
needed: 2 or 4 on floppy disks, 14 on the QD-15 diskettes, up to 16 on the
XT's hard disk, and up to 82 on the AT's hard disk. On all types of hard
disk, the FAT size varies with the size of the partition.

Overhead Sectors

Format Total Sectors Boot FAT Directory Total Data Sectors

S-8 320 1 2 4 7 323

D-8 640 1 2 7 10 630

S-9 360 1 4 4 9 351

D-9 720 1 4 7 12 708

QD-9 1,440 1 10 7 18 1,422

QD-15 2,400 1 14 14 29 2,371

Figure 5-6. The sector allotment of the
standard floppy-disk formats

\ Dir. 4
Boot
record

Dir. 2

FAT 1 2

FAT 2

FAT 4

Track 0, side 0

Track 0, side 1

Figure 5-7. The four logical sections
of a diskette

Chapter 5: Disk Basics 109

XT

The file directory is the next item on the disk. It is used as a table of
contents, identifying each file on the disk with a directory entry that con
tains several pieces of information, including the file's name and size. One
part of the entry is a number that points to the first group of sectors used
by the file (this number is also the first entry for this file in the FAT). The
size of the directory varies with the disk format. It occupies four sectors
on single-sided diskettes and seven on double-sided diskettes. On hard
disks, the directory, like the FAT, varies with the size of the partition.

The data space, which occupies the bulk of the diskette (from the
directory through the last sector), is used to store data, while the other
three sections are used to support the data space. Sectors in the data
space are allocated to files on an as-needed basis, in units known as clus
ters. The size of a cluster varies by format. On single-sided diskettes, the
clusters are one sector long and on double-sided diskettes, they are a pair
of adjacent sectors. Diskettes with a higher capacity may have clusters
containing several sectors. EQ For example, the AT's 20-megabyte hard
disk uses a cluster size of four sectors, UJ and the XT's 10-megabyte
hard disk uses up to eight sectors per cluster.

Hard-Disk Space Allocation

For hard-disk systems, the amount of space that DOS allocates to
the FAT, directory, and data space varies depending upon the size of the
partition given to DOS. The boot record occupies one sector regardless of
the partition size, so we won't bother to mention it any further.

To get an idea of how DOS allocates space in a partition, we will
examine three different partition sizes. Our example focuses on the XT's
10-megahyte hard disk, which has 512 bytes per sector, 17 sectors per cyl
inder per side, 4 sides (heads) per cylinder, and 306 cylinders per disk.

The table in Figure 5-8 shows the specific space allocations for three
DOS partition sizes: 305 cylinders (an entire XT-disk—the first cylinder
is used for partition data, and is therefore not available for the DOS parti
tion), 100 cylinders, and 5 cylinders. In general, these figures can be inter
polated to determine the space allocations for other partition sizes.

THE LOGICAL STRUCTURE IN DETAIL

Now it's time to delve a little more deeply into each of the four sec
tions of a disk: the boot record, the directory, the data space, and the file
allocation table.

PROGRAMMER'S GUIDE TO THE IBM PC

Partitioning a Hard Disk
Every operating system has its own peculiar way of formatting and man

aging disk storage space, which is incompatible with other operating systems.
Although DOS is, by far, the dominant operating system for the PC family, it is
not the only one that is used and, in the years to come, it is quite possible that
DOS may be superseded by new operating systems, such as XENIX.

Since different operating systems may need to use the same disk, a scheme f
has been worked out to partition or divide a hard disk into logical sections so |
that several operating systems can each have their share of it. A partition is ac- ■'
tually a set of contiguous cylinders, the size of which is determined by the user ?
and laid out by the operating system. A hard disk must be partitioned before
an operating system can use it. After it is partitioned, the separate partitions I
must be formatted using the formatting procedures of the controlling operat
ing systems. Normally, an operating system uses only one partition. However, U
occasionally some vendors will partition their hard disks into the equivalent of
separate disk drives, with DOS using each partition. Fortunately, this is an ex
ception rather than a rule.

The DOS program FDISK is used to create the partitions and to mark one
of them as the DOS partition. We can specify whether we want the DOS parti- ' :
tion to comprise all or only part of the disk. The operating system is able to
adapt to whatever size disk partition it is assigned. If we do not expect to use
another operating system, we might as well partition the entire disk for DOS.

We can change the size and number of partitions any time we want.
However, changing the partition destroys any existing partition contents, so
when adjusting the size or number of partitions, we should first off-load any
data that needs to be saved, repartition the disk, and then reload the data.

Formatting the Partition |
A hard disk has two levels of logical structure. On one level, we have the y

division of the disk into partitions, a phenomenon that is common to all oper
ating systems. On another level, we have the specific format and location of the
information that is stored in each partition, which is different for every operat
ing system. Once a DOS partition has been established with FDISK, that parti
tion must be formatted with the DOS FORM AT command to establish the
logical structure that DOS needs to operate.

Just as a DOS disk has a boot record containing both a start-up program
and some general information about tlte disk in its first sector («■ see page 107
for details), the first sector of a partitionable disk has a master boot record
containing both a master start-up program and a record of how the disk is par
titioned. This partitioning information includes how many partitions there are
(there is often only one), the size and location of each partition, the partition
type, and which partition is active, as well as other information. The master
start-up program is a short program that finds out which partiiion is .Ktue
and then passes control to the start up, or boot, program for th.ii p.triition.

Chapter 5: Disk Basics

- Partition 1

Partition 2

I So far, these general remarks apply to any disk that can be partitioned to
work with several operating systems. To illustrate the mechanics of partition-

: ing, we will use the XT's 10-megabyte hard disk as an example.
The master boot record for the XT's hard disk contains a partition table

with room for up to four partitions. Each partition is marked in the table to
indicate whether or not it is the currently active partition, and has an ID byte

j to identify the operating system that governs it (hex 01 identifies DOS).
I The location and size of the partition are stored in the table in the masterI boot record in two equivalent ways. The first way gives the starting and ending

location of the partition using the cylinder (or track), head (or side), and sector
numbers of the first and last sectors in the partition. The second way gives the
sector number of the first sector in the partition relative to the first sector on
the disk, followed by the total number of sectors in the partition.

Each partition occupies a contiguous set of cylinders that begins at the
j first sector of the first cylinder in the set and ends on the last sector of the last

cylinder. One minor exception to this occurs in the partition that uses the yery
first cylinder on the disk. On this cylinder, the partition begins at the second
sector because the first sector is occupied by the disk's master boot record.

112 PROGRAMMER'S GUIDE TO THE IBM PC

Partition Size (cylinders)

305 (all) 100 5

FAT size (sectors) 8 5 1

Directory size (sectors) 32 16 4

Number of directory entries 512 256 64

Cluster size (sectors) 8 4 1

Number of clusters 2,587 1,699 333

Data space size (K) 10,348 3,372 166.5

Figure 5-8, The space allocation for three
partitions in the XVs 10-megabyte
hard disk

The Boot Record

The boot record consists primarily of a short machine-language
program that starts the process of loading DOS into memory. To perform
this task, the program first checks to see whether the disk is system-
formatted (contains the IBMBIO.COM and IBMDOS.COM files) and then
proceeds accordingly.

You can inspect the boot program by using the DOS DEBUG pro
gram, which combines the ability to read data from any sector on a disk
and the ability to disassemble—or unassemble—machine language into
assembly-language code. If you want to learn more about the boot pro
gram and you aren't intimidated by DEBUG's terse command format, try
entering these commands:

DEBUG

L 0 0 0 1 ; load first sector
U 0 L 2 ; unassemble and list first and second bytes
U 2E ; unassemble and list all bytes from 2E on

These commands allow you to see the first instructions of the boot pro
gram located on the disk in drive A.

□ NOTE: The code that begins at byte 2E is the beginning ofthe boot
program for the standard IBM PC only. For all models, the second byte of
the first sector stores the location of the first byte of the boot code, so if
you are not using a PC, when you enter the third command line, you
should use the byte value shown in the JMP instruction produced by the
second command line instead of the value 2E.

Chapter 5: Disk Basics 113

For all disk formats except S-8 and D-8 you will find some key pa
rameters in the boot record, beginning with the fourth byte (<•' see Fig
ure 5-9). These parameters are part of the BIOS parameter block used by
DOS to control any disk-type device. The rest of the boot program is lo
cated in the first three bytes (bytes 0,1, and 2) and continues in the bytes
following the BIOS parameter block. At the end of the boot records for
DOS-2 versions and beyond, there is a 2-byte signature, hex 55 AA.

The Directory

Disk directories are used to hold most of the basic information

about the files stored on the disk, including the file's name, its size, the
starting FAT entry, the time and date it was created, and a few special file
attributes ('•' see Figure 5-10). The only information that the directory
does not contain is the exact location of the individual clusters that make

up a file; these are stored in the file allocation table.
There is one directory entry for each file on the disk, including entries

for the subdirectory files and for the disk's volume ID label. Each of the
entries is 32 bytes long, so one sector in the directory can hold 16 entries.
Single-sided diskettes with four directory sectors can hold 64 entries. Dou
ble-sided diskettes with seven sectors can hold 112 directory entries. Sub
directories are treated like files and there is no limit to the number of

subdirectory entries they can hold. («•' For more on subdirectories, see
page 115.) Each 32-byte entry in the directory is divided into eight fields.

Offset Length Description

3 8 bytes System ID (e.g. IBM 2.1)

11 1 word Number of bytes per sector (e.g. 512, hex 0200)

13 1 byte Number of sectors per cluster (e.g. 01 or 02)

14 1 word Number of reserved sectors at beginning:
1 for diskettes

16 1 byte Number of copies of FAT: 2 for diskettes

17 1 word Number of root directory entries (e.g. 64 or 112)

19 1 word Total number of sectors on disk (e.g. 720 for D-9)

21 1 byte Format ID (e.g. F8, F9, or FC through FF; see
page 123)

22 1 word Number of sectors per FAT (e.g. 1 or 2)

24 1 word Number of sectors per track (e.g. 8 or 9)

26 1 word Number of sides (heads) (e.g. 1 or 2)

28 1 word Number of special reserved sectors

Figure 5-9. The parameters in the boot record

114 PROGRAMMER'S GUIDE TO THE IBM PC

Field Offset Description Size (bytes) Format

1 0 Filename 8 ASCII characters

2 8 Filename extension 3 ASCII characters

3 11 Attribute 1 Bit coded

4 12 Reserved 10 Unused; zeros

5 22 Time 2 Word, coded

6 24 Date 2 Word, coded

7 26 Starting cluster number 2 Word

8 28 File size 4 Integer

Figure 5-10. The eight parts of a
directory entry

The first eight bytes in the directory entry contain the filename,
stored in ASCII format. If the filename is less than eight characters, it is
filled out to the right with blanks (CHR$(32)). Letters should be upper
case, since lowercase letters will not be properly recognized. Normally,
there should not be any blanks embedded in the filename, as in AA BE.
Most DOS command programs, such as DEL or COPY, will not recognize
filenames with embedded blanks. However, BASIC can work successfully
with these filenames, and the DOS services [m- see Chapters 16 and 17)
usually can as well. This capability suggests some useful tricks, such as
creating files that cannot be easily erased.

Three codes, used to indicate special situations, may appear in the
first byte of the filename field. Completely unused directory entries have
hex 00 in the first byte. This makes it possible for DOS to know when
there are no further active directory entries, without searching to the end
of a directory. This convention began with DOS 2.00 and also applies to
later versions, but not to the earlier DOS-1 versions.

If the first byte of the filename field is hex E5, it normally indicates
that the file has been erased. However, since the DOS-1 versions did not
use the 00 (never-used) code, hex E5 in this field might indicate either that
a file has been erased or that the entry has never been used.

When a file is erased, only two things on the disk are affected: The
first byte of the filename is set to hex E5 and the file's space allocation
chain in the FAT is wiped out {m- we'll cover this in the section on the
EAT). All other directory information about the file is retained, including
the rest of its name, its size, and even its starting cluster number. The lost

Chapter 5: Disk Basics

Subdirectories

There are two r> pe^. ol directories: root directories and subdirectories.
I 'lu- contents and use of each type are essentially the same—both store the
names and locations of files on the disk—but their characteristics are differ

ent. The root directory (we've just been calling it the directory) has a fixed size
and is stored in a fixed location on the disk. A subdirectory is an addition to
the root directory, has no fixed size, and can be stored anywhere on the disk.
Any disk used with DOS 2.00 or later may use subdirectories.

A subdirectory is stored in the disk's data space, just like any other file.
The field format and contents of a subdirectory are identical to those of the
root directory, except that a subdirectory is not limited in size. Like an ordi
nary file, a subdirectory can grow without bounds as long as there is disk
space available. Subdirectories can be created and used with any type of disk.
However, since subdirectories take up precious data space, they are primarily
intended for use with high-capacity hard disks; their use with diskettes is gen
erally avoided.

Subdirectories are always attached to a parent directory, which can be
either the root directory or another subdirectory, and can branch from several
other levels of directories, forming a tree structure.

Root Directory

Programs Word-processing data
subdirectory subdirectory

letters

subdirectory

Reporti
subdirecti

Accounting data
subdirectory

Current year
subdirectory

Prior year
subdirectory

The parent directory has one entry for each of its subdirectories, which
is like every other file entry, except that the attribute byte marks the entry as a
subdirectory and the file-size field is set to zero. The actual size of the subdirec
tory is found by tracing its allocation chain through the FAT.

When subdirectories are created, two special entries are placed in them,
with and as filenames. These act like entries for further subdirectories,
but actually refers to the present subdirectory itself and refers to its par
ent directory. The starting cluster number in each of these directory entries
gives the location of the subdirectory or its parent. When the starting cluster
number is zero, it means that the parent of this directory is the root directory.

If a file is reduced in size, DOS can generally be counted on to release any
unused space. However, in the case of subdirectories, clusters of space that are
no longer used (because the directory entries that once occupied that space
are now erased) will not be released until the entire subdirectory is destroyed.

116 PROGRAMMER'S GUIDE TO THE IBM PC

information can be recovered, with suitably sophisticated methods, pro
vided that the directory entry has not been reused for another file. Be
forewarned that whenever a new directory entry is needed, DOS uses the
first available entry, quickly recycling an erased file's old entries and mak
ing recovery impossible.

The third code that might be found in the filename byte is the
period character, hex 2E, which is used to specify a subdirectory (•- see
page 115). If the second byte is also hex 2E, we know that we are looking
at the parent directory entry of the current subdirectory, in which case
the starting cluster field (field 7) contains the cluster number of the par
ent directory.

Field 2: The Filename Extension

Directly following the filename is the standard filename extension,
stored in ASCII format. It is three bytes long and, like the filename, it is
padded with blanks if it is less than the full three-character length. "While
a filename must have at least one ordinary character in it, the extension
can be all blanks. Generally, the same rules apply to the filename exten
sion as apply to the filename.

□ NOTE: When the directory contains a volume ID label entry, the
filename and extension fields are treated as one combined field of eleven
bytes. In this case, embedded blanks are permitted. Normally, lowercase
letters are not used in labels, but they can be.

Field 3: The File Attribute

The third field of the directory entry is one byte long, each bit of
which is used to categorize the directory entry. The bits of the attribute
byte are individually coded as bits 0 through 7, as shown in Figure 5-11.

Bit Value
76543210 Dec Hex Meaning

1 1 1 Read-only
1 . 2 2 Hidden

1 . . 4 4 System

. . . . 1 . . . 8 8 Volume label

16 10 Subdirectory
. . 1 32 20 Archive

. 1 64 40 Unused

1 128 80 Unused

Figure 5-11. The eight file-attribute hits

Chapter 5: Disk Basics 117

Bit 0, the low-order bit, marks a file as read-only. In this state, the
file is protected from being changed or deleted by any DOS operation. We
should point out that the DOS-1 versions ignore this attribute, so while it
can provide a worthwhile protection of data, it is not foolproof.

Bits 1 and 2 mark files as either hidden or system files. Files marked
as hidden or system or both cannot be seen by ordinary DOS operations,
such as the DIR command. Our programs can gain access to such files by
setting these attribute bits in the file control block, or FOB {m- see page
288). The two DOS files IBMBIO.COM and IBMDOS.COM (which may also
appear under the names lO.SYS and MSDOS.SYS) are both hidden and sys
tem files. There is no particular significance to the system attribute; it
exists to perpetuate a feature of CP/M and has absolutely nothing to do
with DOS.

Bit 3 marks a directory entry as a label, meaning that the entry
holds the disk's volume ID label. A label entry is only properly recognized
in the root directory, and it only uses a few of the eight fields available in
the entry. The label itself is stored in the filename and extension fields,
which are treated as one unified field for this purpose. The size and start
ing cluster fields are not used, but the date and time fields are.

Bit 4, the subdirectory attribute, is used to identify directory entries
which, in turn, identify subdirectories. Since subdirectories are stored on
disk like ordinary data files, they need a supporting directory entry. All
the directory fields are used for these entries, except for the file-size field,
which is zero. The actual size of a subdirectory is found simply by fol
lowing its space allocation chain in the FAT.

Bit 5, the archive attribute, was created to assist in making backup
copies of the many files that can be stored on a hard disk. This bit is off
on all files that haven't changed since they were last backed up; the bit is
normally on for all diskette files. The archive attribute serves no particu
larly useful purpose for diskettes.

Field 4: Reserved

This 10-byte area is set aside for possible future uses. All 10 bytes
are normally set to hex 00.

Field 5: The Time

Field 5 contains a 2-byte value that marks the time that the file was
created or last changed. It is used in conjunction with the date field and
the two together can be treated as a single 4-byte unsigned integer. This
4-byte integer can be compared with those in other directory entries for

118 PROGRAMMER'S GUIDE TO THE IBM PC

greater-than, less-than, or equal values. The time, by itself, is treated as
an unsigned word integer that is built out of the hour, minutes, and sec
onds using this formula:

Time = Hour x 2048 + Minutes x 32-1- Seconds ̂ 2

The hour is based on a 24-hour clock, with a value ranging from 0
through 23. Since the 2-byte word used to store the time is one bit too
short to store all the seconds, they are stored in units of 2 seconds from 0
through 29; a value of 5, for example, would represent 10 seconds. The
time of 11:32:10 would be stored as the value 23557.

Field 6: The Date

Field 6 contains a 2-byte value that marks the date the file was cre
ated or last changed. It is used in conjunction with the time field and the
two together can be treated as a single 4-byte unsigned integer that can
be compared with those in other directory entries for greater-than, less-
than, or equal values. The date, by itself, is treated as an unsigned word
integer that is built out of the year, month, and day using this formula:

Date = (Year —1980) x 512 -t- Month x 32 -I- Day

You will notice that this formula compresses the year by subtracting
1980 from it. Thus, the year 1984 will be calculated as a value of 4. Using
this formula, a date such as December 12,1984 will be stored by the for
mula as 2828:

(1984 -1980) X 512 -I-12 X 32 -H2 = 2828

Although this scheme allows for years up to 2108, the highest year
supported by DOS is 2099.

Field 7: The Starting Cluster Number

The seventh field is a 2-byte value that gives the starting cluster
number for the file's data space. It acts as the entry point into the file's
space allocation chain in the FAT. For files with no space allocated and
for volume-label entries, the starting cluster number is zero, rather than
the hex FFF value used in the FAT to indicate the end-of-file.

Field 8: The File Size

The last field of a directory entry gives the size of the file in bytes. It
is coded as a 4-byte unsigned integer, which allows file sizes to grow very
large—much larger in fact than the capacity of our disks.

As far as DOS knows, the size indicated by this field is the true size
of a file. However, sometimes this stored value may be larger than the

Chapter 5: Disk Basics 119

actual file size. For example, some ASCII text files created by word pro
cessors mark the true end-of-file with the Ctrl-Z character (CHR$(26),
hex lA). For these files, the file-size attribute may report a larger number,
such as the next multiple of 128 bytes. This is a common occurrence in
most text-editor programs, which read and write data in large blocks
rather than one byte at a time. It is important to point out that when DOS
is reading a file for us, it reports the end of the file when it comes to either
the end of the file size or the end of the FAT space allocation chain (de
noted by hex FFF)—whichever comes first.

The Data Space

All data files and subdirectories (which act much like data files) are
stored in the space that occupies the last and largest part of each disk.

Space is given to files on an as-needed basis, one cluster at a time.
(Remember, a cluster is one or more consecutive sectors; the number of
sectors per cluster is a fixed characteristic of each disk format.) As a file
is being created, or when an existing file is extended, the file's allocated
space grows. When more space is needed, a cluster is allocated to the file.
In DOS versions 1 and 2, the first available cluster is always allocated to
the file. Later versions of DOS select clusters by more compUcated rules
that we won't go into.

Under many circumstances, a file is stored in one contiguous block
of space. However, a file may be broken into several noncontiguous
blocks, especially when information is added to an existing file, or when
a new file is stored in the space left by an erased file. It's not unusual for
one file's data to be scattered throughout the disk.

This sort of file fragmentation slows access to the file's data to some
degree. Also, it is much harder to "unerase" a file that we have uninten
tionally erased if it is fragmented, simply because we have to do a lot
more searching for the individual sectors that make up the file's data
space. But fragmentation has no other effect. In general, programs do not
need to be concerned about where on a disk their data is stored. But if
you want to know whether a file is firagmented, there are two simple
ways to find out. You can use the rv option of the CHKDSK command to
test for file fragmentation, or you can use a program such as the Norton
Utilities to see a graphic map of the location of each file on your disk.

If your diskette files are fragmented, you can clean them up by
copying them to a newly formatted, empty diskette. Naturally, the file
can become fragmented again if there is a lot of update activity on the
disk. On a hard disk, you can do litde to eliminate fragmentation. Don't
worry too much about it. We've mentioned it so that you'll understand it,
but in practice, a fragmented file is harmless.

120 PROGRAMMER'S GUIDE TO THE IBM PC

Whether you ever look at your fragmented files or not, it will help if
you understand how DOS uses the file allocation table (FAT) to allocate
disk space, and how the FAT forms a space allocation chain to connect all
of the clusters that make up a file.

The File Allocation Table

The file allocation table holds a record that shows how the disk

space is utilized. We will make a distinction between how the FAT is or
ganized, which is relatively simple and straightforward, and how it is
stored on disk, which is more convoluted.

As we've mentioned, standard disk formats store two copies of the
FAT, although there can be more than two copies, or even only one copy.
Each copy of the FAT occupies one sector on eight-sector diskettes and
two sectors on nine-sector diskettes. With the high-capacity diskette for
mat that we called QD-15, the FAT uses seven sectors.

For most disk formats, DOS writes two copies of the FAT just in case
one of them is damaged or unreadable. The CHKDSK program, which
tests for most errors that can occur in the FAT and directory, does not
even notice if the two FATs are different.

There are two FAT formats: a 12-bit format and a 16-bit format. The

12-bit FAT format is the more common and the more complicated of the
two. The 16-bit FAT is used only with disks that exceed the capacity of a
12-bit FAT, such as the AT's 20-megabyte hard disk. We'll discuss the stan
dard 12-bit FAT first, and then explain how the 16-bit FAT differs.

The FAT is organized as a table of up to 4,086 numbers ranging
from 0 through 4,095 (hex 0 through FFF), with an entry for each cluster
in the data space. The number in each entry indicates the status and use
of the cluster that corresponds to the FAT entry. Notice that the range of
numbers kept in the FAT table is defined so that it does not exceed three
hex digits. This is a key element in how the 12-bit FAT is stored, as we will
see shortly.

If the FAT entry is 0, it indicates that the cluster is free and available
for use. If the FAT entry is 4,087 (hex FF7) and this FAT entry is not part of
any space allocation chain, then the cluster is marked as unusable due to
a formatting error; this is also called bad-track marking.

□ NOTE: It's worth pausing here to note that there is nothing un
usual or alarming about having "bad tracks" marked on a disk, particu
larly a hard disk. In fact, it is quite common for a hard disk to have a few
bad patches on it. For example, the hard disk in the AT that I used to

Chapter 5: Disk Basics 121

write this book has three small bad-track areas. The disk formatting pro
cedure notices bad tracks and marks them as such in the FAT, as we've
just discussed. Later, the bad-track marking tells DOS that these areas
should be bypassed. Bad tracks are also common on floppy disks; with a
floppy, unlike a hard disk, we have the option of throwing it away and
only using perfect disks.

The clusters are numbered sequentially from 2 to a number that is
one greater than the total number of clusters on the disk ((•' see Figure
5-12). A 12-bit FAT entry containing any number between 2 and 4,080 (hex
02 and FFO) indicates that the corresponding cluster is used by a file. A
FAT value of 4,095 (hex FFF) indicates that the corresponding cluster con
tains the last part of the file's data. The values 4,088 through 4,094 (hex FF8
through FFE) may be similarly used, but in my experience, they aren't.

With all of this in mind, we can see that the FAT entries form a space
allocation chain; the file's directory entry contains the starting cluster
number [m- see page 118) and the FAT entries indicate further clusters used
by the file and the end of the file {m- see Figure 5-13). When a file is erased,
all the FAT entries for its space allocation chain are marked as available
(set to 0); but the actual file data in the data space is not changed and
most of the information in the file's directory entry is maintained.

Although the FAT is organized as a fairly simple table of numeric
values, it is stored in a rather convoluted form in order to make the table
as compact as possible. To do this, it makes use of some tricks of the
8088's data format, specifically "back-words" storage. For the FAT, sim
plicity is sacrificed for efficiency.

The range of cluster numbers is defined so that FAT entries are 4,095
(hex FFF) or less. This makes it possible to store each 3-bex-digit entry in
12 bits, or \Vi bytes. The FAT entries are organized in pairs, where each pair

Sectors Cluster-Number

Format Sectors per Cluster Clusters Range

S-8 313 1 313 2 to 314

D-8 630 2 315 2 to 316

S-9 351 1 351 2 to 352

D-9 708 2 354 2 to 355

QD-9 1,422 2 711 2 to 712

QD-15 2,371 1 2,371 2 to 2,372

Figure 5-12. The number of clusters for
different DOS formats

122 PROGRAMMER'S GUIDE TO THE IBM PC

Value

FAT Entry Dec Hex Meaning

0 253 FD Disk is double-sided, double density,
9 sectors/track

1 4,094 FFE Entry unused; not available

From directory entry;
beginning of file's

space allocation chain

-2

3

4

3

5

4,087

3

5

FF7

File's next cluster is cluster 3

File's next cluster is cluster 5

Cluster is unusable; bad track

5 6 6 File's next cluster is cluster 6

6 4,095 FFF Last cluster in file, and end of this file's
space allocation chain

7 0 0 Entry unused; available

Figure 5-13, The space allocation chain for
one file in the file allocation table

occupies three bytes (0 and 1 occupy the first three bytes, 2 and 3 the next
three bytes, and so forth). The three bytes decode by the following pat
tern: If a pair of FAT entries is hex 123 and 456, then the three bytes con
taining them would be, in hex, 23 61 45. Reversing the pattern, if the
three bytes are AB CD EE, then the two FAT values are DAB and EEC. As
we see in Figure 5-12, in formats S-8, S-9, D-8, QD-9 and QD-15, the last
cluster number is even and is consequendy paired with a dummy entry in
the FAT.

This pattern seems curious when we work it out in our terms, but it
is quick and efficient when done with machine-language instructions.
Given any cluster number, we can find the FAT value by multiplying the
cluster niunber by 3, dividing by 2, and then using the whole number of
the result as a displacement into the FAT. By grabbing a word at that ad
dress, we have the three hex digits of the FAT entry, plus one extraneous
hex digit, which can be removed by any one of several quick machine-
language instructions. If the cluster number is even, we discard the high-
order digit; if odd, the low-order digit. The value derived from all of this
is the next cluster number in the file, unless it's FEE, which indicates the
last cluster in the file.

This complex scheme was originally designed for 8-sector diskette
formats. It is not quite so ideal when used for other formats, including
the 9-sector formats, where the FAT becomes slightly larger than one sec
tor. Overall, though, it is a very tight and efficient plan.

The details we've covered so far are for 12-bit FATs, which can ac
commodate up to 4,080 clusters. If a disk format has more clusters than
that, then we need the 16-bit FAT.

Chapter S: Disk Basics 123

AT

A 16-bit FAT works just the same as a 12-bit one, except it's simpler.
The entries in a 16-bit FAT are obviously four bits larger, which allows for
a wider range of cluster numbers. Since sixteen bits are exactly two
bytes, or one word, a 16-bit FAT doesn't need the convoluted storage ar
rangement used with a 12-bit FAT. Instead, a 16-bit FAT is a straightfor
ward table of word values, one stored right after another.

The special values for a 16-bit FAT (for such things as bad-track
marking) are a logical extension of those used for 12-bit FATs; they just
have a high-order hex F added on. For example, the end-of-file value is hex
FFFF (instead of FFF) and the bad-cluster value is hex FFF7 (instead of FF7).

As we have said, the actual data clusters are numbered from 2,
while each FAT begins with entries 0 and 1. These first two FAT entries, in
both 12- and 16-bit formats, are not used to indicate the status of the clus
ters; instead, they are set aside, so that the very first byte of the FAT can
be used as an ID byte, indicating the format of the disk; see Figure 5-14.
However, you should not assume that these IDs uniquely identify for
mats: They don't necessarily. If we considered every disk format in use,
we'd find quite a few duplications. Beware.

Our programs can learn the format of a disk by reading and in
specting the FAT ID byte. However, the official way of finding out the
format is to use DOS function 27 (hex IB), i#* For more information about
this function, see page 282.

Special Notes on the FAT

Normally, our programs do not look at or change a disk's FAT; the
FAT is left completely under the supervision of DOS. The only exceptions
are programs that perform space allocation functions not supported by
DOS; for example, programs that recover erased files, such as the Un-
Erase program in my Norton Utilities program set.

Format ID Byte

D-8 FF

S-8 FE

D-9 FD

S-9 FC

QD-9 F9

QD-15 F9

Fixed disk F8

Figure 5-14. The ID byte values of common
disk formats

124 PROGRAMMER'S GUIDE TO THE IBM PC

It is important to note that a FAT can be logically damaged; for ex
ample, an allocation chain can be circular, referring back to a previous
link in the chain; or two chains can converge on one cluster; or a cluster
can be orphaned, meaning that it is marked as in use even though it is not
part of any valid allocation chain. Also, an end-of-file marker (hex EPF or
FFFF) may be missing. The DOS programs CHKDSK and RECOVER are
designed to detect and repair most of these problems, as well as can rea
sonably be done.

For special notes on the interaction of the space allocation chain
in the FAT and DOS's record of a file's size, see page 118.

COMMENTS

Although this chapter has included detailed information for the di
rect use of the disk itself, including the boot record, the FAT, and the
directories, it is not a good idea to use it directly unless you have a com
pelling reason. In fact, except where completely unavoidable, as in a
copy-protection program, it is unwise to incorporate any knowledge of
the disk format into your programs. On the whole, the best thing to do is
to consider the standard hierarchy of operations and use the highest level
of services that can satisfy your needs:

■ First choice: Language services (the facilities provided by your
programming language, such as BASIC'S OPEN and CLOSE state
ments).

■ Second choice: DOS services (described in Chapters 16 and 17).

■ Third choice: ROM-BIOS disk services (described in Chapter 10).

■ Last choice: Direct control (for example, direct programming of
the floppy-disk controller (FDC) through commands issued via
ports).

Most disk operations for the PC family can be accomplished quite
nicely with the services that your programming language provides. How
ever, there are two obvious circumstances that may call for more exotic
methods. One, which we've already mentioned, is when your program
ming involves the control of a disk on the same level as the control that
DOS exercises. This would be called for if you were writing a program
similar to DOS's CHKDSK, or to my Norton Utilities. The other circum
stance involves copy protection. All copy-protection schemes, in one way
or another, involve some variety of unconventional diskette I/O. This usu
ally leads to the use of the ROM-BIOS services, but it may lead to the ex
treme measure of directly programming the floppy-disk controller.

Chapter 5; Disk Basics

Copy Protection
There is a variety of commercially available copy-protection schemes,

including a quite unsophisticated one that is part of my software set, Access
Tools for the IBM/PC. However, you may want to devise your own scheme.

There are dozens of ways to approach copy protection. Perhaps the most
common methods involve reformatting the sectors in certain tracks on the disk
by using the ROM-BIOS format routines. Since DOS cannot read sectors that
do not conform to its specific formats, the DOS COPY program is unable to
copy a disk that has an occasional odd sector size interspersed with normal
sectors. Naturally, this DOS limitation has inspired a number of companies to
produce copy programs that can read and copy sectors of any size, so it is not
a particularly effective method of copy protection.

On a more advanced level, there are two special things that are worth
noting about copy protection. First, some of the most exotic and unbreakable
protection schemes have been based on the discovery of undocumented abil
ities hidden in the floppy-disk controller (FDC). Second, some protection
schemes are intentionally or unintentionally dependent upon the particular
characteristics of different diskette drives. Or they may be dependent upon the
details of the software control of the drive, which can differ within the PC fam
ily. For example, the PCjr drive control software works in a very different way
from that of the PC and XT. The AT's software is also different. So a copy
protected program may function on one model of computer but fail to func
tion on another model, even though the copy protection has not been tam
pered with. If you use a copy-protection scheme, you should keep this in mind.

There is no particular additional guidance that I can give you here, ex
cept to remind you that variety and ingenuity are the keys to successful copy
protection.

6

Keyboard Basics

The Keyboard Operation 128
Communicating with the ROM-BIOS 130
Translating the Scan Codes 130
Entering ASCII Codes Directly 133

Keyboard Data Format 134
The ASCII Keys 134

The Special Keys 134

Keyboard Control 136
The Status Bytes 136

Comments 139

How the PCjr Is Different 140
PCjr Keyboard Operation 140
The PCjr Keyboard Status Byte 142

How the AT Is Different 143

127

128 PROGRAMMER'S GUIDE TO THE IBM PC

This chapter is mainly about the standard IBM PC keyboard, al
though we have scattered a few comments about the slightly
different PCjr and AT keyboards throughout the text. We avoid
a thorough discussion of the specialty models of the IBM PC,

such as the 3270 PC, the AT, and the PCjr, as well as some non-IBM mem
bers of the extended PC family, because they have keyboards that do not
exactly match the standard PC keyboard. In most cases, these nonstan-
dard keyboards are either enhanced or scaled-down versions of the PC
standard. For example, IBM moved a few keys around on the AT and
added one new key and some fancier hardware, but fortunately they
didn't change the operating characteristics much. The PCjr has fewer keys
than the standard PC keyboard, yet it, too, manages a convincing simula
tion of the standard keyboard. Fortunately, this practice of matching or
simulating the regular PC keyboard seems to be standard among the ex
tended PC family members, making the slight differences between them
of little concern to programmers.

The first part of this chapter explains how the keyboard interacts
with the computer on a hardware and software level. In the second part,
we'll see how the ROM-BIOS treats keyboard information and makes it
available to our programs. If you plan to play around with keyboard
control, I urge you to consider the recommendations on page 139 first,
and not apply the information in this chapter to your programs unless
there is a particular reason to do so. One example of an appropriate use
for the information here is to create a program that modifies the opera
tion of the keyboard, such as the popular and highly regarded ProKey
keyboard-enhancer program, m- If you have any such application in mind,
take a look at the ROM-BIOS keyboard services in Chapter 11.

THE KEYBOARD OPERATION

The PC keyboard contains the 8048 keyboard controller, which per
forms a variety of jobs, all of which help cut down on system overhead.
The main duty of the 8048 is to watch the keys and report to the ROM-
BIOS whenever a key has been pressed or released. If any key remains
pressed for longer than a half second, the 8048 sends out a repeat action
at specific intervals. The 8048 controller also has limited diagnostic and
error-checking capabilities, and has a buffer that can store 20 key actions
should the main computer be unable to accept them (this rarely hap
pens). EH The AT model uses a different keyboard-controller chip, the
8042, but it performs essentially the same functions as the 8048.

Chapter 6: Keyboard Basics

Keyboard-Enhancer Programs
Thanks to the flexible software design of the PC, it's possible to create

programs that manipulate the keyboard. There are many programs of this type
available, but the best known and most popular is probably ProKey.

Keyboard-enhancer programs monitor the data that comes in from the
keyboard and change it in any way we want. Typically, these programs are fed
instructions, called keyboard macros, that tell them what keystrokes to look
for and what changes to make. The change might involve suppressing a key
stroke (acting as if it never happened), replacing one keystroke with another,
or replacing one keystroke with a long series of keystrokes. The most common
use of keyboard macros is to abbreviate phrases we commonly type; for exam
ple, we might instruct ProKey to convert a key combination, such as Alt-S, into
the salutation we use in our correspondence, such as Sincerely yours. We can
also use keyboard macros to abbreviate program commands so that a three-
or four-keystroke command can be condensed to a single keystroke.

Keyboard enhancers work by combining the powers of two special facili
ties—one that's part of DOS and one that's part of the PC's ROM-BIOS. The
DOS facility allows the enhancer program to remain resident in the computer's
memory, quietly monitoring the operation of the computer while the ordinary
control of the computer is turned over to a conventional program, such as a
word processor. The ROM-BIOS facility makes it possible for programs to
divert the stream of keyboard information so that it can be inspected and
changed before it is passed on to a program. A program like ProKey uses the
DOS "resident program" facility to stay active in memory while other pro
grams are run; then it uses the ROM-BIOS keyboard-monitoring facility to
preview keyboard data and change it as needed.

Every time we press or release one of the keys on the PC keyboard,
the keyboard circuits generate a 1-byte number, called a scan code, that
uniquely identifies the keystroke. The keyboard produces a different scan
code for each key press and key release. Whenever we press a key, the
scan-code byte contains a number ranging from 1 through 83 (on a stan
dard PC keyboard). When we release the same key, the keyboard gener
ates a scan code 128 (hex 80) higher than the key-press scan code, by
setting bit 7 of the scan-code byte to 1. For example, when we press the
letter Z, the keyboard generates a scan code of 44; when we release it, the
keyboard generates a scan code of 172 (44-1-128). The keyboard dia
gram in Figure 6-1 shows the standard keyboard keys and their associated
scan codes.

130 PROGRAMMER'S GUIDE TO THE IBM PC

F1 F2

59

F3 F4

F5 F6

H 113
F7 F8

65 6^
F9 F10

[I][2][3][4][5][6][7][I][2][^[i
!X; qwe r t y u i o

~|l^[i|[l9]|23[2l]|^[23
A S D F G H J

15

K L

p [IDQi
Num Scroll

Lock Lock

69 70

[]
26

29

o

42

^ 33
C

34J [37 38
B N M

45 46 47 48 49 50 51

28

PgUp

54

72 73

-►

76 77

I ^gDn

80 81
Caps
Lock

56 57 58 82 83

78

Figure 6-1. The standard PC keyboard
layout and scan codes

As we type, the keyboard doesn't know the meaning of the key
strokes; it merely reports the actions that take place. It is the job of the
ROM-BIOS keyboard routines to translate the key actions into meaningful
information that programs can use. As we will see, the keyboard com
municates with the ROM-BIOS by way of ports and interrupts.

Communicating with the ROM-BIOS
Each time any key on the PC keyboard is either pressed or released,

the action is reported to the PC's r6m-BIOS as an interrupt 9, the key-
board-action interrupt. The interrupt 9 calls an interrupt-handling sub
routine, which responds by reading port 96 (hex 60) to find out which
key action took place. The awaiting scan code is then returned to the
BIOS where the keyboard service routines translate it into a 2-byte code.
The low-order byte of this code usually contains the ASCII value of the
key, and the high-order byte usually contains the keyboard scan code.
Special keys, such as the function keys and the numeric keypad keys,
have a zero in the low-order byte with the keyboard scan code in the
high-order byte (•■more about this later, on page 134).

The BIOS routines then place th^ translated codes in a queue, which
is kept in low memory in location 0000:041E. The codes are stored here
until they are requested by a program, such as DOS or BASIC, that ex
pects to read keyboard input.

Translating the Scan Codes
The scan-code translation job is moderately complicated because the

IBM keyboard has several shift options that can change the meaning of a
key press. If we press the Shift key and a c we get a capital C; if we press

Chapter 6; Keyboard Basics 131

the Ctrl key and a c we generate the Ctrl-C or "break" signal. These are
both examples of different shift states. We can change the shift state
while we type by pressing the Shift key, the Alt key, or the Ctrl key. When
one of these keys is pressed and not released, the ROM-BIOS recognizes
that all subsequent key actions will be influenced by that shift state.

The Shift and Toggle Keys

In addition to the normal Shift key, the Ctrl key, and the Alt key,
there are two toggle keys that also affect the keyboard's shifting mecha
nism: the Caps Lock key and the Num Lock key. When Caps Lock is
activated, it reverses the meaning of the Shift key for the alphabet keys,
but not for the rest of the keys. The Num Lock key switches between
numbers and cursor-control functions on the numeric keypad.

The shift-key or toggle-key status information is kept by the ROM-
BIOS in low-memory locations (hex 417 and 418), where we can use or
change it. When we press a shift key or a toggle key, the ROM-BIOS sets a
specific bit in one of these two bytes. As soon as the ROM-BIOS receives
the release scan code of a shift key, it switches the status bit back to its
original shift state.

Whenever the ROM-BIOS receives a scan code for an ordinary key
stroke, such as the letter z or a right arrow key, it first checks the shift
state, then translates the key into the appropriate 2-byte code. {»■ We'll
discuss the status bytes in more detail on page 136.)

The Combination Keys

While the ROM-BIOS routine is translating scan codes, it constantly
checks for certain shift-key combinations; specifically, the Ctrl-Alt-Del,
Shift-PrtSc, Ctrl-Num Lock, and Ctrl-Break combinations. These four
command-like key actions cause the ROM-BIOS to act immediately and
perform a specific task, rather than buffering the characters.

Ctrl-Alt-Del causes the computer to reboot, or reload the com
mand program. Ctrl-Alt-Del is probably used more often than any other
key combination. It works dependably as long as the keyboard interrupt
service is working. If the interrupt service is not working, there are two
possible reasons: Either the keyboard interrupt vector (in memory loca
tions hex 36 through 39) has been changed or a clear interrupt instruc
tion (CLI), which disables interrupts, has been performed without an
accompanying start interrupt instruction (STI). In either of these cases,
the only recourse you have is to turn the power off, wait a few seconds,
and then turn it on again; the power-on program resets all interrupt vec
tors and services.

132 PROGRAMMER'S GUIDE TO THE IBM PC

JR

□ NOTE: Some programs may leave the interrupts disabled by mis
take. This is not possible on the PCjr since the keyboard interrupt is a
non-maskable interrupt (NMI).

Shift-PrtSc writes the screen contents to the standard printer de
vice. The operation is done on a primitive BIOS level through interrupt 5.
To redirect the printer output to different devices (which is not a normal
thing to do), you must change the PrtSc interrupt vector to point to a
new subroutine. The GRAPHICS.COM routine in DOS 2.00 and subsequent
versions circumvents the PrtSc operation by first checking the video mode
that is in effect. If it turns out to be a graphics mode, a routine takes over
and sends the screen output, pixel-ljy-pixel, to an IBM-compatible graph
ics printer (if it's attached). Otherwise, the conventional print-screen op
eration is called and the information is sent out character-by-character.

Ctrl-Num Lock suspends operation of the program until another
keystroke occurs.

Ctrl-Break causes the computer to issue a "break" signal by gener
ating an interrupt 27. If our programs have established a new interrupt 27
handler, they can intercept the break interrupt and act on it (or ignore it)
according to the requirements of the program. If our programs don't
change the interrupt routine, DOS will use its default routine, and shut
down the program.

These are the only key combinations that are specially meaningful
to the ROM-BIOS. When an invalid combination is reported from the key
board, the ROM-BIOS simply ignores it and moves on to work on the next
sensible key action.

There are two more things abbut the PC keyboard that we need to
discuss before passing on to the details of keyboard coding: repeat key
action and duplicated keys.

Repeat Key Action

The PC keyboard features aufomatic repeat key action, a process
called typematic by IBM. The circuitry inside the PC keyboard watches
how long each key is pressed, and if a key is held down more than half a
second, it automatically generates repeat key actions ten times per sec
ond. The typematic action is reported as successive key-press scan codes,
without the intervening key-release codes. This makes it possible for a
clever interrupt 9 handler to distinguish between actual key presses and
typematic action. However, the ROM-BIOS does not always distinguish
between the two. The ROM-BIOS keyboard-handling routine treats each
automatic repeat key action as though the key had actually been pressed,
and interprets the key accordingly. For example, if we press and hold the

Chapter 6: Keyboard Basics 133

A key long enough for the keyboard to begin generating successive key
press signals, then the ROM-BIOS will create a series of As to be passed on
to whatever program is reading keyboard data. On the other hand, if we
press and hold a shift key—as we often do—the ROM-BIOS will recog
nize the first shift-press signal and put us in the shifted state. But it will
ignore the subsequent shift-press signals generated by the auto-repeat
mechanism until it gets a shift-release signal. All this boils down to the
simple fact that the ROM-BIOS treats repeat key actions in a sensible way,
acting on them or ignoring them as needed.

Duplicated Keys

Another thing that we should be aware of is that there are duplicate
keys on the keyboard. There are, for example, two asterisks: one on the
upper row, above the 8 key, and one on the right, on the PrtSc key. There
are also duplicate periods, pluses, minuses, and digits (0 through 9), and
two seemingly identical Shift keys.

The ROM-BIOS, quite sensibly, translates these duplicate keys into
the same character codes; for example, either asterisk key gets us the as
terisk character, CHR$(42). The ROM-BIOS also lets our programs tell the
difference between them, in case it matters. The duplicated character
keys retain their scan codes in the high-order byte; our programs need
only check the scan code in this byte to see which key was pressed. As
for the two Shift keys, each one sets a different bit in the shift-status byte
(location hex 417). If we want our programs to know which Shift key was
pressed, we need to look at the appropriate bit value, (m- See the discus
sion of location hex 417 on pages 52 and 136.)

Generally, it is best for programs to ignore the distinction between
duplicate keys, although some of the most sophisticated programs make
use of this information for special purposes. Notable among them are
Microsoft's Flight Simulator and Ashton-Tate's Framework.

Entering ASCII Codes Directly

We should mention that the PC keyboard, in conjunction with the
ROM-BIOS, provides us with an alternate way to enter nearly any ASCII
character code. This is done by holding down the Alt key and then enter
ing the decimal ASCII character code from the numeric keypad on the
right side of the keyboard. This method allows any of the ASCII codes to
be entered, from CHR$(1) through CHR$(255). The only ASCII code that
can't be keyed in directly is CHR$(0), because it is reserved to signal
non-ASCII characters, such as cursor-control and function keys, s®- In the
next section we'll discuss this in more detail.

134 PROGRAMMER'S GUIDE TO THE IBM PC

KEYBOARD DATA FORMAT

Once a keyboard action has been translated, it is stored as a pair of
bytes in the ROM-BIOS buffer. We call the low-order byte the main byte
and the high-order byte the auxiliary byte.

The ASCII Keys

When the main byte is an AjSCII character value from CHR$(1) to
CHR$(255), we know either that orie of the standard keyboard characters
was pressed, or that an extended ASCII character was entered using the
Alt-number method mentioned above, {m- See Appendix C for the com
plete ASCII character set.) For these ASCII characters, the auxiliary byte
contains the keyboard scan code of the pressed key. Under ordinary cir
cumstances, this scan code has no use (the BASIC INKEY$ function does
not report the auxiliary byte). However, the auxiliary byte can be used to
distinguish between duplicate keyboard characters with different scan
codes. When ASCII characters have been entered "artificially" by the Alt-
number method, the scan code in the auxiliary byte is zero.

The Special Keys

When the main byte is zero (CHR$(0)), it means that a special key is
being reported. The special keys include function keys, shifted function
keys, cursor-control keys such as Home and End, and many of the Ctrl
and Alt key combinations. When any of these keys are pressed by them
selves or in combination with other keys, the auxiliary byte contains a
single value that represents the key press. This makes it possible for us to
define our own special key codes, without interfering with the extended
ASCII characters (CHR$(128) through CHR$(255)). All of the 97 special
key values are arranged in Figure 6-2 in a rough mixture of logical and
numerical order.

Auxiliary-Byte Auxiliary-Byte Auxiliary-Byte
Keys PressedValue (dec) Keys Pressed Value (dec) Keys Pressed Value (dec)

59 F1 110 Alt-F7 44 Alt-Z

60 F2 111 Alt-F8 45 Alt-X

61 F3 112 Alt-F9 46 Alt-C

62 F4 113 Alt-FlO 47 Alt-V

63

64

65

F5

F6

F7

120

121

122

Alt-1

Alt-2

Alt-3

48

49

50

Alt-B

Alt-N

Alt-M

66 F8 123 Alt-4 3 Would-be null
67 F9 124 Alt-5 character
68 FIO 125 Alt-6 CHR$(0)
84 Shift-Fl 126 Alt-7

85 Shift-F2 127 Alt-8

86 Shift-F3 128 Alt-9 15 Reverse Tab
87 Shift-F4 129 Alt-0 (Shift-Tab)
88 Shift-F5 130 Alt-Hyphen

71
89 Shift-F6 131 Alt- = Home

90

91

Shift-F7

Shift-F8
16

17

Alt-Q
Alt-W

72

73

Up arrow
PgUp

92 Shift-F9 18 Alt-E 75 Left arrow

93 Shift-FlO 19 Alt-R 77 Right arrow
94 Ctrl-Fl 20 Alt-T

79

80

81

82

83

End

Down arrow

PgDn
Insert

Delete

95

96

97

98

99

Ctrl-F2

Ctrl-F3

Ctrl-F4

Ctrl-F5

Ctrl-F6

21

22

23

24

25

Alt-Y

Alt-U

Alt-I

Alt-0

Alt-P

100 Ctrl-F7 30

32

32

33

Alt-A
114 Echo

101 Ctri-F8 Alt-S

Alt-D

Alt-F

(Ctrl-PrtSc)

102 Ctrl-F9 115 Ctrl-Left arrow

103 Ctrl-FlO 116 Ctrl-Right

104

105

106

107

Alt-Fl

Alt-F2

Alt-F3

Alt-F4

34

35

36

37

Alt-G

Alt-H

Alt-J
Alt-K

117

118

119

arrow

Ctrl-End
Ctrl-PgDn
Ctrl-Home

108 Alt-F5 38 Alt-L 132 Ctrl-PgUp
109 Ait-F6

Figure 6-2, The auxiliary byte value of the
97 special keys on the standard IBM PC
keyboard. The main byte value is always 0,

136 PROGRAMMER'S GUIDE TO THE IBM PC

The codes for the complete set of characters and special keys are
generated by the ROM-BIOS, but different programming languages vary
in the way they handle the codes. BASIC, for example, takes a mixed ap
proach to the special keys. When we use ordinary input statements,
BASIC hands over the regular ASCII characters to the BIOS and filters out
any special keys. Some of these keys can be acted on with the ON KEY
statement, but we can use the BASIC INKEYS function to get directly to
the ROM-BIOS coding for keyboard characters and find out immediately
what special key was pressed. If the INKEYS function returns a 1-byte
string, it is reporting an ordinary or extended ASCII keyboard character.
If INKEY$ returns a 2-byte string, the first byte in the string is the ROM-
BIOS's main byte and will always be CHR$(0); the second byte is the aux
iliary byte and will indicate which special key was pressed.

KEYBOARD CONTROL

The keyboard operation and keyboard data collection that is super
vised by the ROM-BIOS makes use of a data area in low memory, from
hex 417 through 43D, hex 471 and 472, hex 480 to 483, and for the PCjr
only, hex 412 and 485 through 488. Our programs can make use of these
locations to check the keyboard status or to modify the keyboard opera
tion. Now we'll discuss the locations that are useful for our programs to
read and the locations that are safe to change.

The Status Bytes

We'll begin with the two standard keyboard status bytes, at loca
tions hex 417 (shown in Figure 6-3) and 418 (shown in Figure 6-4). These
status bytes are coded with individually meaningful bits that indicate
which shift keys and toggle keys are active. All the standard models of
the PC family have these two bytes, m Currently, the only individual
difference between the models is bit 2 of byte 2. This bit, called the click
bit, is unique to the PCjr. The other aspects of the bit format are common
to all standard PC models.

The Insert State

The ROM-BIOS keeps track of the insert state in bit 7 of byte 1. Every
program that I know of ignores this bit and keeps its own record of
whether the insert state is on or off, so although it is possible, it is not a
standard practice to use the ROM-BIOS insert-status bit in our programs.

Chapter 6: Keyboard Basics 137

Bit

76543210 Meaning

Insert state: 1 = active; 0 = inactive

Caps Lock: 1 = active; 0 = inactive

X Num Lock: 1 = active; 0 = inactive

. X Scroll Lock: 1 = active; 0 = inactive

. . X . . . Alt shift: 1 = active (Alt depressed); 0 = inactive

. . . X . . Ctrl shift: 1 = active (Ctrl depressed); 0 = inactive

Normal shift: 1 = active (left Shift depressed); 0 = inactive

Normal shift: 1 = active (right Shift depressed); 0 = inactive

Figure 6-3, The coding of the first keyboard
status byte, at location hex 417

The Caps-Lock State

Many programmers force the Caps-Lock state to be active by set
ting bit 6 of byte 1 on. This can confuse or irritate some program users,
so I don't recommend it. However, it works reliably and there is plenty of
precedent for using this trick.

The Keyboard-Hold State

The keyboard-hold state is an interesting feature of the PC although
it has no practical relationship to our programs. As we mentioned before,
one of the special key combinations that the keyboard BIOS monitors is

Bit

76543210 Meaning

1 = Ins depressed

1 = Caps Lock depressed

X 1 = Num Lock depressed

. X 1 = Scroll Lock depressed

. . X . . . 1 = hold state active (Ctrl-Num Lock)

. . . X . . 1 = PCjr keyboard click active

Not used

Not used

Figure 6-4. The coding of the second
keyboard status byte, at location hex 418

138 PROGRAMMER'S GUIDE TO THE IBM PC

Ctrl-Num Lock. When the BIOS detects the Ctrl-Num Lock combina
tion, it goes into a state known as keyboard hold by setting bit 3 in status
byte 1. During keyboard bold, the BIOS program waits until a printable
key is pressed; it doesn't return conixol of the computer to whatever pro
gram is running until this happens, This feature is used to suspend the
operation of the computer.

During keyboard bold, all interrupts are bandied normally. For ex
ample, if the disk drive generated an interrupt (signaling the completion
of a disk operation), the disk interrupt handler would receive the inter
rupt and process it normally. But, when the interrupt handler finished
working, it would pass control back to whatever was happening when
the interrupt took place—which would be that endless do-nothing loop
inside the keyboard BIOS. So, during the keyboard hold, the computer
can respond to external interrupts but programs are normally com
pletely suspended. The keyboard BIOS continues to handle interrupts that
signal key actions, and when it detects a normal keystroke (for example.
the Spacebar or a function key, but not just a shift key), it ends the key
board hold, finally returning control to whatever program was running
and letting it continue.

The keyboard-hold state is of no practical use to us in program
ming, except that it provides a standard way for users of our programs to
suspend the program's operation.

Be aware that the keyboard-hiold state is not "bullet-proof." It is
possible for a program to continue working through the keyboard hold
by acting on an external interrupt, such as the clock-tick interrupt. If a
program really wanted to avoid being put on hold, it could set up an
interrupt handler that would work through the hold state, or it could
simply turn the hold state off whenever it was turned on.

The To^e-Key State

Notice that bits 4 through 7 in each byte refer to the same keys. In
the first byte, the bits show the current state of the toggle keys; in the sec
ond byte, they show whether the corresponding toggle key is depressed.

You may read the status of any of these bits to your heart's content,
but few, if any, are likely to be useful to your programs. With the partial
exception of controlling the Caps-Lock state, I don't think it's wise to
change any of the shift-state bits (bits 4 through 6 of byte 1). And it is
potentially very disruptive to change any of the key-is-pressed bits (bits 0
through 3 of byte 1; bits 4 through 7 of byte 2).

Chapter 6: Keyboard Basics 139

Interrupt
Dec Hex Origin of Interrupt Use

9 9 Keyboard Signals keyboard action

22 16 ROM-BIOS Invokes standard BIOS keyboard
services (see Chapter 11)

27 IB ROM-BIOS Generates an interrupt when break-key
combination is pressed under BIOS con
trol; a routine is invoked if we create it

35 23 DOS If we create it, an interrupt routine is
invoked when break-key combination
is pressed under DOS control

Figure 6-5. The interrupts related to
keyboard action

COMMENTS

If you wish to gain a deeper understanding of the PC's keyboard
operation, study the ROM-BIOS program listing in the IBM Technical Ref
erence manual. When you do this, be careful to avoid making a simple
mistake that is common when anyone first sets out to study the ROM-
BIOS, particularly the interrupts used by the ROM-BIOS. The ROM-BIOS
provides two different interrupts for the keyboard: one that responds to
keyboard interrupts (interrupt 9) and collects keyboard data into the
low-memory buffer, and one that responds to an interrupt requesting
keyboard services (interrupt 22, hex 16) and passes data from the low-
memory buffer to DOS and our programs. It is very easy to confuse the
operation of these two interrupts, and it is just as easy to further confuse
them with the break-key interrupts, 27 and 35 (hex IB and 23). The table
in Figure 6-5 lists the keyboard interrupts.

A general theme running throughout this book advises you not to
play fast and loose, but to play by the rules. This means, again, to write
programs that are general to the IBM PC family rather than tied to the
quirks of any one model, and to write programs that use official means,
such as the ROM-BIOS services to manipulate data, instead of direct hard
ware programming. These rules apply to keyboard programming as
much as they do to any other type of programming.

140 PROGRAMMER'S GUIDE TO THE IBM PC

HOW THE PCjr IS DIFFERENT

JR
The PCjr is designed to mimic, as closely as possible, the operation

of the original 83-key PC. But as
native keyboard has only 62 keys

we can see in Figure 6-6, the Junior's
, which means that it does not exactly

match the PC keyboard. Resolving this problem has resulted in some
clever keyboard fakery.

The PCjr has 61 keys in common with the PC, plus one new key, the
Fn (function) key. Each of the 22 missing keys is mimicked in one way or
another by various key combinations on the PCjr keyboard. However, it's
not quite as easy as it sounds becapse the PCjr equivalents of PC keyboard
actions are not particularly straightforward (•* see Figure 6-7).

The PCjr also has five special key combinations that are unique to it
and have no equivalent in the PC. These are listed in Figure 6-8. The fifth
one, Shift-Fn-Esc, is rarely mentioned in the Junior's documentation.

PCjr Keyboard Operation

The PC keyboard stages of operation that we outlined on page 128
are followed closely by the PCjr. However, since the Junior's keyboard is
different, an entirely new (but familiar) layer of operations has been
added up front.

Each PCjr key action, like the PC key actions, causes an interrupt,
but it's a special one: interrupt 2, the non-maskable interrupt (NMI). This
in turn calls interrupt hex 48, which translates the 62-key scan codes into
their corresponding 83-key scan c|)des. The interrupt hex 48 routine also
generates an interrupt 9 (simulating a PC keyboard interrupt) and every
thing follows from there, as close to the PC standard as is possible, with
the ROM-BIOS translating the PC action codes into their end meanings.

Esc 1 Backspace Fn

mmmnnnirTiiTirTinnri^ririr^R^i 14 1 on
Tab'2 W

16 I [tt] nn im im rin im im im im rn] itti im
Enter^

ctrj A s p F G H J K L \ ■

10 rin im \jr\ \i7] [w\ rqi 1
Shifts z X C y B N M l . / Shift❖

[44] [45] [4^ [47] [4^ [W
Alt

43 50 51 52 53 54

Caps Lock Ins

29

55 56

57 58 19] [IT] [^^

Figure 6-6. The IBM PCjr keyboard layout
and scan codes

PC Key PCjr Equivalent

F1 through FIO Fn key, followed by 1 through 0

1 Alt-[

\ Alt-/

Alt-]
N

Alt-'

PrtSc Fn-P

* (on PrtSc key) Alt-, (not the same as Shift-8 asterisk)

Ctrl-PrtSc (echo) Fn-E

Num Lock Alt-Fn-N

Ctrl-Num Lock (pause) Fn-Q

Scroll Lock Fn-S

Break Fn-B

Home Fn-Up arrow

Ctrl-Home Ctrl-Fn-Up arrow

PgUp Fn-Left arrow

Ctrl-PgUp Ctrl-Fn-Up arrow

5 (on numeric keypad) No replacement

End Fn-Down arrow

Ctrl-End Ctrl-Fn-Down arrow

PgDn Fn-Right arrow

Ctrl-PgDn Ctrl-Fn-Right arrow

- (on numeric keypad) Fn-Hyphen

+ (on numeric keypad) Fn- =

Figure 6-7, The PCjr key equivalents
of the 22 missing PC keys

Key Combination Use

Ctrl-Alt-Left arrow Shifts display screen left

Ctrl-Alt-Right arrow Shifts display screen right

Ctrl-Alt-Caps Lock Turns keyboard clicking on and off

Ctrl-Alt-Ins Invokes diagnostics programs

Shift-Fn-Esc Makes digit keys act as function keys

Figure 6-8, Special key combinations
unique to the PCjr

142 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

76543210 Meaning

X

. X . . .

. . X . .

. . . X .

. . . . X

X

Function flag

Signals break-^ey action (Fn-B)
Function pending: Fn depressed

Function lock: makes numeric keys function keys

Controls typeLatic repeat-key action: 0 = enable; 1 = disable
Controls full- pr half-speed repeat-key action: 0 = half speed,
1 = full speed

Controls longer delay before starting repeat action:
0 = enable, 1 = disable

Signals that repeat key is due to be generated

Figure 6-9. The coding of the PCjr keyboard
status byte at location hex 488

The reason why all this up-front processing is necessary is because
the Junior's keyboard has no 8048 microprocessor to help it out. The PC
keyboard is smart enough to be aWe to store several key actions, which
makes it practical to temporarily tnask off the keyboard-action interrupt
whenever other parts of the computer need attention. The PCjr doesn't
have this ability, so its keyboard-action interrupt is more urgent and su
persedes all other interrupts.

One of the biggest differences between the Junior and its more pow
erful relatives is that the ROM-BIOS manages the operation of both the
keyboard and the disk drive. A j:onflict arises because the ROM-BIOS
favors the disk drive, since the disks have no direct memory access. Con
sequently, if the disk drive is in operation, the entire system is masked and
keyboard input can't take place (asynchronous communications through
the serial port can't take place, either).

The PCjr Keyboard Status Byte
The PCjr has a third keyboard status byte in addition to the two stan

dard status bytes mentioned earlier. It is located at memory address hex
488. This byte is peculiar to the operation of the PCjr's 62-key keyboard.

The meaning of the individual bits in the status byte are shown in
Figure 6-9. Generally, you will gain nothing by reading or changing these
bits, but you should know that we can suppress the typematic (the re
peat-key operation) by setting bit 3 to 1. Additionally, we can double the
time-repeat or begin-repeating mechanisms by setting bits 2 and 1 to 1. If

Chapter 6: Keyboard Basics 143

you want to experiment and suppress key repetition on a PCjr, you can
insert your DOS utilities disk and try entering these commands (this will
only work on a PCjr):

DEBUG

F 0:488 L 1 08

PCjr Programming Recommendations

The Junior keyboard is designed to emulate a full PC keyboard, and
it is clearly intended to be replaced or augmented by other keyboard-like
devices, such as a mouse or a full keyboard. This design makes it particu
larly shortsighted to integrate the peculiarities of the PCjr keyboard into
our programs.

However, for one exception, I would recommend that your pro
grams take the peculiarities of the Junior keyboard into account: when
you are selecting which special keys to use in a program. Many programs
created for the original PC bad their key use (especially function-key use)
fine-tuned to the full PC keyboard. With the emergence of the PCjr key
board, it is wise to rethink key selection because the two keyboards are
so different. You might decide to choose the best use for either the Junior
or the PC, to compromise between the two, or to adjust the program's
operation to the machine it is working on. {m- See page 60 for how to
find the machine ID.) The choice you make depends on the scope and the
potential market of your program.

HOW THE AT IS DIFFERENT

The AT's keyboard also differs from the standard PC keyboard. In
contrast with the PCjr keyboard, the differences in the AT keyboard that
are visible to the user and to our programs are very slight. However, as
far as the hardware and BIOS are concerned, the AT keyboard is similar
to the PCjr keyboard in that it does not actually function like the PC key
board, but rather is made to simulate it. Since the internal differences in
the AT keyboard are essentially invisible to our programs, we won't need
to cover them in much detail.

The AT keyboard layout is almost the same as that of the original
PC keyboard, with a few keys repositioned and one key added. The re
positioning of some of the keys doesn't call for any changes in the way we
program for keyboard use or in our selection of keys to use, but it is
worth noting that one key that is used very heavily for program control,
the Esc key, has been moved to an entirely new location, from the top left
area to the top right area—a real nuisance for anyone who has to use
both the PC and the AT keyboards.

1 lEZZI llll ifat|■lllliii

144 PROGRAMMER'S GUIDE TO THE IBM PC

The one new key on the AT keyboard is the Sys Req key. This key
has no use within the operation of any program. Instead, it was created
to activate switching between programming system tasks when the AT is
working in a multitasking mode and using the special capabiUties of the
AT's 286 microprocessor. This is a hands-off key for our PC programs.

The hardware Unk between the AT and the AT keyboard is two-way,
so that the keyboard can send information to the AT and the AT can send
commands back to the keyboard, including commands to set the key
board indicator lights. It would be very fooUsh of us to fiddle with these
keyboard-control commands.

It is worth noting that French, German, Spanish, ItaUan, and British
variations on the American-oriented AT keyboard were introduced at the
same time as the AT itself.

Second-guessing IBM's future moves is a very risky business, but it is
my opinion that the AT keyboard layout (and its international variations)
will become and remain the new standard for all future PC-family prod
ucts introduced by IBM. "Whether or not this happens isn't of much im
portance to us here, though, because from a programming point of view,
the AT keyboard is not truly different from the PC keyboard (unlike the
PCjr keyboard, which does have some truly practical differences).

7

Sound Generation

The Physics of Sound 146

How the Computer Produces Sound 147
Timer-Chip Sound Control 148
Direct Speaker Control 151

Speaker Volume and Sound Quality 152

Sound and the PCjr 152
The TI Sound Chip 153
Controlling the Sound Chip 155
Sound Output in the PCjr 156

145

146 PROGRAMMER'S GUIDE TO THE IBM PC

All Standard members of the PC family are able to create simple
sounds using the computer's programmable timer chip (the
8253-5) and the computer's built-in speaker. lU The PCjr also
has extended sound capabilities that include a special sound-

generating chip, additional sound sources, and additional sound outputs.
Since these features are unique to the PCjr, we'll save a brief discussion of
them for the last part of the chapter and devote the first part to the sound
features that are universal to the PC family.

To understand how to make sounds on our computers, we need to
know some of the basic principles of sound, which we'll outline here.

THE PHYSICS OF SOUND

Sounds are simply regular pulses or vibrations in air pressure.
Sound is produced when air particles are set into motion by a vibrating
source. When the vibrating source pushes out, it compresses the air parti
cles around it. As it pulls in, the pressure release pulls the particles apart.
A vibration composed of both the pressing and the pulling actions causes
air particles to bump into each other. This motion begins a chain reac
tion that carries the vibration through the air away from the original
source. Such a motion is called a sound wave.

The speaker in the IBM PCs is made to vibrate by the electrical im
pulses sent to it by the computer. Since computers normally deal with
binary numbers, the voltages they produce are either high or low. Every
transition from one voltage state to another either pushes the speaker
cone out or relaxes it. A sound is produced when the voltage to the
speaker goes from low to high to low again, causing the speaker to move
out, then in. This single vibration, consisting of a pulse out and a pulse
in, is called a cycle and is measured in hertz (a hertz is simply one cycle
per second). Through the PC speaker, a single cycle of sound is heard as a
click. A continuous sound is produced when a number of cycles per sec
ond are sent to the speaker. As the cycles per second increase, the clicks
blend together and become a tone of a certain frequency. For example, if
we pulse the speaker in and out 261.63 times a second (that is, at a rate of
261.63 hertz), we hear the musical note known as middle C.

The average person can hear sounds ranging from 20 to 20,000
hertz. The IBM PC can generate sounds through its speaker at frequencies
that could theoretically range from about 18 to over a million hertz, far
beyond the range of human hearing. To give this frequency range some
perspective, compare it to an average human voice, which has a range of
only 125 to 1,000 hertz.

Chapter 7: Sound Generation 147

Note Frequency Note Frequency Note Frequency Note Frequency

Co 16.35 Ci 65.41 a 261.63 C6 1046.50

C#o 17.32 C#2 69.30 C#4 277.18 C#6 1108.73
Do 18.35 Dz 73.42 D4 293.66 D6 1174.66
D#o 19.45 D#2 77.78 D#4 311.13 D#6 1244.51
Eo 20.60 F2 82.41 F4 329.63 F6 1328.51
Fo 21.83 F2 87.31 F4 349.23 F6 1396.91
F#o 23.12 F#2 92.50 F#4 369.99 F#6 1479.98

Go 24.50 G2 98.00 G4 392.00 G6 1567.98
G#o 25.96 G#2 103.83 G#4 415.30 G#6 1661.22
Ao 27.50 Az 110.00 A4 440.00 A6 1760.00
A#o 29.14 A#2 116.54 A#4 466.16 A#6 1864.66
Bo 30.87 Bz 123.47 B4 493.88 B6 1975.53
Ci 32.70 C3 130.81 C5 523.25 Ci 2093.00
C#i 34.65 C#3 138.59 C#5 554.37 C#7 2217.46
Di 36.71 D3 146.83 Ds 587.33 D7 2349.32
D#i 38.89 D#3 155.56 D#5 622.25 D#7 2489.02
Fi 41.20 F3 164.81 F5 659.26 F7 2637.02
Fi 43.65 F3 174.61 Fs 698.46 F7 2793.83
F#i 46.25 F#3 185.00 F#5 739.99 F#7 2959.96
Gi 49.00 G3 196.00 G5 783.99 G7 3135.96
G#i 51.91 G#3 207.65 G#5 830.61 G#7 3322.44
Ai 55.00 A3 220.00 Ai 880.00 A? 3520.00
A#i 58.27 A#3 233.08 A#5 932.33 A#7 3729.31
Bi 61.74 B3 246.94 Bi 987.77 B7 3951.07

Cs 4186.01

Note: Equal Tempered Chromatic Scale; A4= 440
American Standard pitch-—adopted by the American Standards Association in 1936

Figure 7-1. Eight octaves of musical note
frequencies

The speaker that comes with the standard IBM personal computers
has no volume control and is not really intended for accurate sound re
production. As a result, different frequencies will produce different ef
fects; some may sound louder than others and some may have a more
accurate pitch. This fluctuation is a by-product of the speaker design, and
is not something we can control.

HOW THE COMPUTER PRODUCES SOUND

We can generate sounds through the speaker in two ways, using one
or both of two different sound sources. One method is to write a pro
gram that turns the speaker on and off by manipulating two speaker bits
in the programmable peripheral interface chip (the PPI). When using this
method, our program controls the timing of the pulse and the resulting

148 PROGRAMMER'S GUIDE TO THE IBM PC

sound frequency. The other method is to use the PC's built-in program
mable timer chip (the 8253-5) to pulse the speaker at a precise frequency.
Using the timer chip is a more popular method for two reasons: Because
the speaker pulses are controlled by the timer chip instead of a program,
the CPU is free to devote its time to the other demands of the computer
system; and the timer chip is not dependent on the working speed of the
CPU (which is faster for the AT and slower for the PCjr).

Both the program method and the timer method can be used to
gether or separately to create a variety of simple and complex soimds.
We'll explain timer-chip sound control and direct speaker control more
thoroughly in the next few pages, and then move on to describe some of
the enhancements the PCjr has brought to the PC family.

Timer-Chip Sound Control
The 8253-5 programmable timer is the heart of the standard PC

models' sound-making abilities—but it is also the heart of the system's
real time clock. Although we'll be concentrating mainly on its use as a
sound generator, the 8253-5 is called a timer chip because its primary
function is to keep time—in much the same way as a metronome keeps
time for a musician.

Here is how it works. The 8253 gets a signal from the computer's
main clock (the 8284A) that oscillates at a frequency of 1,193,180 times a
second, or 1.193 megahertz (MHz). The timer is programmed to produce
a clock interrupt (interrupt 8) once every 65,536 main clock cycles, or
about 18.2 times a second. This clock interrupt is usually called a clock
tick. The ROM-BIOS keeps track of the clock ticks, calculates the time of
day by incrementing its clock counter at each tick, and also issues its
own interrupt, called a clock-tick interrupt (interrupt 28).

The ROM-BIOS clock-tick interrupt is often used by programs to
keep time, although some programs bypass this interrupt and work
directly with the timer chip. For example, BASIC uses the timer chip di
rectly to count the duration of a sound, which is measured in clock ticks.
However, since the standard rate of 18.2 ticks per second is often not fast
enough to provide the precision that some kinds of music demand, BASIC
reprograms the timer to tick four times faster, which causes interrupt 8
(the clock tick) to occur 72.8 times per second instead of 18.2. When
BASIC counts against the quadruple rate, it is able to more accurately re
produce the proper tempo of a piece of music.

Chapter 7: Sound Generation 149

□ NOTE: BASIC quadruples the clock rate during the execution of
the PLAY command. It avoids interfering tvith the BIOS clock-tick inter
rupt number 28, ivhich is vital to many other system functions, by reset
ting the vector for interrupt 8 to point to a routine that then signals the
ROM-BIOS on every fourth tick. On the fourth tick, the interrupt handler
momentarily turns control over to the BIOS, enabling it to increment its
counter and issue an interrupt 28 on schedule, after which it returns
control to BASIC.

Programming the Timer Chip
Creating sounds with the timer chip involves two basic steps: First,

we must program the timer to generate a frequency, then we must direct
the output of the timer to the speaker. These two steps can be performed
separately. A sound is emitted when both steps have been performed, and
the soimd stops when either of the two steps is ended.

The timer can be programmed to produce pulses at whatever fre
quency we want, but since it does not keep track of how long the sound
continues, the sound will continue forever unless it is turned off. There
fore, our programs must choose when to end a sound through some sort
of timing instruction.

We program the timer to generate sounds in the same way BASIC
programs it to generate clock ticks: by giving it a number. On command,
the timer counts the system clock pulses (which are oscillating at 1.193
MHz) until the total matches our number. Then it outputs a pulse (in
stead of an interrupt) and begins counting again from zero. In effect, the
timer "divides" our number into the clock frequency to produce an out
put frequency. The result is that the timer sends out a series of pulses that
produce a soimd of a certain frequency when we turn on the speaker.

Our controlling count and the resulting frequency are in a re
ciprocal relationship, as shown by these formulas:

Count = 1,193,180 Frequency
Frequency = 1,193,180 h- Count

From these formulas, we see that a low-frequency (low-pitched) sound is
produced by a high count and that a high-frequency (high-pitched) sound
is produced by a low count. A count of 100 would produce a high pitch of
roughly 11,931 cycles per second, and a count of 10,000 would produce a
low pitch of about 119 cycles per second.

We can produce just about any frequency, within the limitations of
16-bit arithmetic. The lowest frequency is 18.2 hertz (with a divisor of
65,535, hex FFFF) and the highest is 1.193 megahertz (with a divisor of 1).

150 PROGRAMMER'S GUIDE TO THE IBM PC

BASIC holds this to a practical range of 37 to 32,767 hertz. The program be
low demonstrates that the actual frequency range of the internal speaker
is even less than BASIC provides.

Once we have calculated the count that we need for the frequency
we want, we send it to the 8253 timer registers. This is done with three
port outputs. The first port output notifies the timer that the count is
coming by sending the value 182 (hex B6) to port 67 (hex 43). The next
two outputs send the low- and high-order bytes of the count, a 16-bit un
signed word, to port 66 (hex 42)—the low-order byte followed by the
high-order byte. This BASIC program illustrates the process:

10 COUNT = 1193280! / 3000

20 LG.CGUNT =CGUNT MOD 258

30 HI.COUNT = COUNT / 258

40 OUT 87, 182

50 OUT 88, LG.CGUNT

80 OUT 88, HI.COUNT

' 3000 is our frequency
' calculate low-order byte value
' calculate high-order byte value
' get timer ready
' load low-order byte
' load high-order byte

Activating the Speaker

After we have programmed the timer, we still need to activate the
speaker circuitry in order to use the signal that the timer is generating. As
with most other parts of the PC, the speaker is manipulated by sending
certain values to a specific port, a process that is illustrated in Figure 7-2.
The speaker is supervised by the programmable peripheral interface (PPI)
chip and uses port 97 (hex 61). Only two of the port's eight bits are used
by the speaker: the low-order bits numbered 0 and 1. The other bits are
used for other purposes, so it is important that we don't disturb them
while working with the speaker.

Memory

Get
timer

ready

Load
frequency
count

Turn on
speaker

Port

67^

Port

8253

Programmable
timer

Send pulses
to

speaker

Port

97^

PPI

chip Speaker

Figure 7-2. How sound frequencies are
generated through the 8253 timer
and speaker

Chapter?; Sound Generation 151

The lowest bit, bit 0, controls a timer signal used to drive the speaker.
The second bit, bit 1, controls the pulsing of the speaker. Both bits must
be turned on (set to 1) to make the speaker respond to the timer. We can
turn them on without disturbing the non-speaker bits with an operation
like this:

70 OLD. PORT = IMP (97) ' assign value of port 97 to old.port
80 NEW. PORT = (OLD.PORT OR »H03) ' set bits 0 and 1 to on
90 OUT 97, NEW. PORT ' turn speaker on

Direct Speaker Control
The timer controls the speaker by sending periodic signals that

pulse the speaker in and out. We can do the same thing a different way:
with a program that sends in or out signals directly to the speaker. We do
this by setting bit 0 of port 97 (hex 61) to zero to turn the speaker on, and
then alternately setting bit 1 on and off, which pulses the speaker. When
we use this method, the timing of the program determines the frequency
of the sound—the faster the program executes, the higher the pitch. This
BASIC program demonstrates how it's done (the example assumes that
port 97 (hex 61) has a value of 76):

10 X = INP (97) AND 4HFC ' change port value, turn off last 2 bits
20 OUT 97, X ' pull speaker in
30 OUT 97, X + 2 ' push speaker out
40 GOTO 20

The two actions in lines 20 and 30 pulse the speaker in and out. Each one
is a half-cycle, and the two together produce one complete sound cycle.

This example runs as fast as BASIC can process it, producing as high
a note as possible. If we needed more range in our application, we would
probably use a faster language and insert deliberate delays equal to half
the frequency cycle time between each complete cycle (half the cycle
time, because each ON or OFF operation is a half cycle). Whatever lan
guage we use, we have to include a duration count to end the sound. To
produce different sounds at a particular frequency, such as clicking or
buzzing soimds, we just vary the delays between pulses.

Despite all these wonderful possibilities, generating sounds through
the speaker by direct program action is not a good way to make sounds.
It has three big disadvantages over the use of the timer:

■ A program requires the constant attention of the CPU, so the
computer has a hard time getting any other work done.

■ The frequency is at the mercy of the speed of the computer; that
is, the same program would make a lower or higher sound on a
slower or faster model.

152 PROGRAMMER'S GUIDE TO THE IBM PC

■ The clock-tick interrupts interfere with the smoothness of the
sound, making a warble. The only way to avoid this is to suspend
the clock tick by disabling the interrupts—and that disrupts the
computer's sense of time.

As far as I know, there is only one advantage to making sounds
using the direct method over the timer method: With the proper control
over the program delays, it is possible to make a rich polyphonic sound.
Be forewarned, though, that this requires some very clever and tedious
programming and, all in all, it may not be worth the trouble.

SPEAKER VOLUME AND SOUND QUALITY

There is no volume control of any kind in the computer's internal
speaker. However, the computer's speaker—like all speakers—varies in
how well it responds to different frequencies, and some frequencies may
sound louder than others. In the case of a crude speaker like that found
on most PCs, the loudness of the sound varies widely with the frequency.
You can use the following program to test this—it may help you choose
the best sound pitch for your purpose:

10 PLAY "NF" ' plays each sound separately
20 FREQUENCY = 37

30 WHILE FREQUENCY < 32000 ' use all frequencies to 32000 Hz
40 PRINT USING "##,###"; FREQUENCY ' display frequency
50 SOUND FREQUENCY, 5 ' produce sound with duration of 5
GO FREQUENCY = FREQUENCY » 1 .1 ' increment frequency by Mo
70 WEND

You should also be aware that the speakers in the various PC mod
els may not sound alike, partly because the materials of each system
housing resonate differently as speaker enclosures. For example, the tim
bre of the PCjr is quite different from that of the Portable PC and from the
PC and XT models. Be prepared for these variations in sound.

JR w||j|||j|gj

SOUND AND THE PCjr

The PCjr has the standard programmable timer chip and a built-in
speaker, just like the rest of the family, but it also has other sources of
sounds and other outputs for the sound signals.

The best-known source of sound in the Junior is the TI SN76496A
sound-generator chip, an addition that is great for special effects in
games and educational applications. But the Junior also has two lesser-
known sound sources: the cassette tape input and the audio line (line
B30) of the I/O channel connector. The selection among these four sound

Chapter 7: Sound Generation 153

Bits Bit 6 Value Sound Source

0 0 0 8253 timer (standard IBM sound source)

0 1 1 Cassette tape interface

1 0 2 I/O channel

1 1 3 TI sound chip

Figure 7-3. The settings for the four PCjr
sound sources for bits 5 and 6 of port 97
in the 8255

sources is controlled by the 8255 programmable peripheral interface, or
the PPI (•■see page 11). Our programs can control what source is used by
setting bits 5 and 6 in the 8255, which is done through port 97 (hex 61).
((•■See Figure 7-3.)

The cassette tape and I/O channel sound sources can be hooked up
to a stereo amplifier to produce better sound quality than the internal
speaker, but since they are not widely used, we will not consider them
any further in this chapter. Instead, we'll briefly focus our attention on
the TI sound chip.

The TI Sound Chip
The TI sound chip has four separate sound generators, or voices.

Three of these voices are completely independent, and generate pure
tones (as does the timer chip). The fourth voice is a "noise" source that
generates irregular noise sounds in a variety of ways. All four voices have
an independent volume control, providing an evenly graduated set of 15
volume levels, plus a zero volume (off). Each of the three pure voices has
an independently selected frequency. The noise voice has three pre
selected frequencies and a fourth option, which borrows the frequency of
the third pure voice. We'll cover each of the sound elements separately,
then explain how they are used together to program the TI sound chip.

The Tone Generators

Each of the three tone generators, or voices, is controlled by a 10-bit
number that our programs send to the TI sound chip. The TI sound chip
follows the same philosophy to create frequencies as the programmable
timer: Tbe fast system clock is divided by a count and the quotient deter
mines the frequency. However, the details are different. For the timer, the

154 PROGRAMMER'S GUIDE TO THE IBM PC

frequency count is a 16-bit number divided into the 1.193 megahertz bus
clock frequency. For the TI sound chip, the count is a 10-bit number di
vided into V32 of the system clock frequency (3.579 MHz), which turns
out to be 111,860 Hz.

The only limitation of the 10-bit controlling number is that it re
duces the number of frequencies we can choose from by a factor of 32.
For example, if we use a count of 100, the TI sound chip produces a fre
quency of 1118.6 Hz, and the next divisor, 101, gives us 1107.5 Hz; we can't
get any of the frequencies in between. By contrast, the timer chip would
give us 32 frequencies in that same range. In practice, this limitation is
only a problem for the most musically demanding sounds, such as three-
part chords—they may sound off-key.

Attenuation

Each voice in the TI sound chip has an independent sound-level
control, which is calculated in terms of decibels of attenuation, or soften
ing. There are four bits used to control the volume. These bits, labeled AO
through A3, can be set independently or added together to produce six
teen volume levels, as shown in Figure 7-4, When a bit is set on, the sound
is attenuated (reduced) by a specific amount: either 2,4, 8, or 16 decibels.
When all four bits are set on, the sound is turned completely off. When
all four bits are set off, the sound is at its fullest volume. Although the
sound levels can be calculated, it is easier to choose the sound we want
by experimentation.

The Noise Generator

There are two modes for the noise operation, besides the four fre
quency selections. One, called periodic noise, produces a steady sound;
the other, called white noise, produces a hissing sound. These two modes
are controlled by a bit known as the FB bit. When FB is 0, the periodic
noise is generated; when FB is 1, the white noise is produced.

A A A A

0 12 3 Value Attenuation (decibels)

. . . 1 1 2

. . 1 . 2 4

. 1 . . 4 8

1 . . . 8 16

1 1 1 1 32 Volume off

Figure 7-4, The attenuation bit settings

Chapter?: Sound Generation 155

NFO NFl Noise Frequency

0 0 1,193,1804-512=2,330

0 1 1,193,1804-1024 = 1,165

1 0 1,193,1804-2048 = 583

1 1 Borrowed from Voice 3

Figure 7-S. Noise-generator frequencies produced
by NFO and NFl bit combinations

Two bits, known as NFO and NFl, control the frequency at which
the noise generator works. Three of the four possible combinations of
NFO and NFl set an independent noise frequency based on the timer. The
fourth combination borrows the frequency from the third of the three
pure voices made by the tone generators. Figure 7-5 shows the possible
noise bit values and their associated frequencies.

Controlling the Sound Chip
We program the TI sound chip by passing to it 3-bit register ad

dresses (which select voice frequencies, attenuation control, and noise
voice control), 10-bit frequency divisors, 4-bit attenuation settings, a 2-bit
noise frequency selection, and a 1-bit noise type selection—all through
port 192 (hex CO). Not a tidy set to shoehorn into an 8-bit port!

The TI sound chip has eight registers that control what it does.
Three bits, known as RO through R2, select the registers and identify the
parameter that's being set. The register values are shown in Figure 7-6.

RO R1 R2 Parameter

0 0 0 Voice 1 frequency control number (10 bits)

0 0 1 Voice 1 attenuation (4 bits)

0 1 0 Voice 2 frequency control number (10 bits)

0 1 1 Voice 2 attenuation (4 bits)

1 0 0 Voice 3 frequency control number (10 bits)

1 0 1 Voice 3 attenuation (4 bits)

1 1 0 Noise voice control (4 bits; 3 used)

1 1 1 Noise voice attenuation (4 bits)

Figure 7-6. The parameter indentifica-
tion bits

156 PROGRAMMER'S GUIDE TO THE IBM PC

All programming of the TI sound chip is done by writing out to
port 192 (hex CO). Don't read this port: If you do, you will lock up the
machine. This byte contains the ID bit (identifying it as the command
byte), three register bits (RO through R2), and some data bits. The com
mand byte may be used to load the frequency, attenuation, or noise con
trol bits, along with the register bits. The data bit formats will vary de
pending on their purpose. In the case of the pure voice frequency counts,
this first byte is followed by a second byte that contains an ID bit, along
with the sbc remaining frequency bits that couldn't fit into the first byte.
By deliberate design, the TI sound chip will accept the second byte over
and over again, without the first command byte preceding each one. This
allows for quick frequency changes without the program overhead that
would be necessary to load both bytes. Figures 7-7 through 7-10 show the
bit formats for the various byte settings.

□ NOTE: Before you attempt to program the TI chip, you should be
aware of an irritating difference in the design approaches of Texas
Instruments and Intel. They don't use the same bit order notation. As a
result, in the PCjr Technical Reference manual, you will find the sound-
chip bits referred to in the opposite order from the notation usually used
in the manual (and used by us in this book). For example, what would
otherwise be referred to as bit 7 of a byte, you find called bit 0 MSB (for
most significant bit). If you use the reference manual, follow the MSB/LSB
notation and ignore the bit numbering—and then grumble about the
inconsiderate switch of notation.

It should be pretty obvious from this overview that programming
the TI sound chip is annoyingly complex. Whenever I've tried it, I've been
reduced to counting bits on my fingers and toes. A further drawback is
that programs using the sound chip can only be fully utilized on the PCjr
and will not make music on the other members of the PC family—defi
nitely something to keep in mind before you go through all the trouble of
learning to program the sound chip!

Sound Output in the PCjr
There are two sound destinations for the PCjr's sound signals: the

internal speaker, and the external paths. The external paths are three of
the sockets on the back of the PCjr: the A-audio output (which is usually
connected to a hi-fi system), the D-direct driving output (which can be
connected to an RGB monitor, where the sound signal is usually ignored),
and the T-television output (which can be connected to a TV set through
an RF modulator).

7 6 5

Bit

4 3 2 1 0 Use

1 Identifies first byte (command byte)

•

RO R1 R2

. F6 F7 F8 F9

Register number in TI chip (0,2, or 4)

4 of 10 bits in frequency count

Figure 7-7. The bit setting for the first byte of
a frequency count

7 6 5

Bit
4 3 2 1 0 Use

0

X

•

Identifies second byte (completing count)

Unused, ignored; we can set to 0 or 1

• •

FO F1 F2 F3 F4 F5 6 of 10 bits in frequency count

Figure 7-8. The bit setting for the second
byte of a frequency count

7 6 5

Bit
4 3 2 1 0 Use

1 Identifies first byte (command byte)

RO R1 R2

. AO A1 A2 A3

Register number in TI chip (1,3,5, or 7)

4 attenuation bits

Figure 7-9. The coding of the attenuation
bits in the first byte of a frequency count

7 6 5

Bit

4 3 2 1 0 Use

1 Identifies first byte (command byte)

•

1 1 0

X . . .

. FB .

. NFO NFl

Register number in TI chip (6)

Unused, ignored; we can set to 0 or 1

1 for white noise, 0 for periodic

2 noise frequency control bits

Figure 7-10. The coding of the noise control
bits in the first byte of a frequency count

158 PROGRAMMER'S GUIDE TO THE IBM PC

The PCjr's internal speaker, like all other PC internal speakers, can
only get its sound signals from the timer. The external paths get their
sound from any of the four sources that generate sound. It's important to
note that the sounds made by the TI sound chip cannot be directed to the
computer's internal speaker. This is because the internal speaker is driven
in a way that is completely incompatible with the rich capabilities of the
TI sound chip—a shame, but that's the way it is.

If you study the PCjr Technical Reference manual for material re
lated to this, you may notice that bit 4 of port 97 can be used to control
the internal speaker. Setting this bit to 1 will disable the speaker, but
don't do it! For one thing, there are other ways to control the speaker, as
we have seen in the previous section. But more importantly, this bit has a
radically different use in the other PC models: When this bit is set, the use
of memory is disabled, which shuts down the computer quite thoroughly.

8

ROM-BIOS Basics

The BIOS Philosophy 160

The ROM-BIOS Services Interrupts 161

BIOS-Service Operating Characteristics 161

Creating an Assembly-Language Interface 164
The Basic Form of an Interface Routine 164

159

160 PROGRAMMER'S GUIDE TO THE IBM PC

One secret of successful programming for the PC family lies in
the effective use of the software that is built right into the
machine: the ROM-BIOS services. Conceptually, the ROM-
BIOS services are sandwiched between the hardware and the

high-level languages (including the operating system). They work di
rectly with the computer's hardware and peripheral devices, performing
some of the system's most fundamental tasks, such as reading and writ
ing individual bytes of data to the display screen or disk. Programming-
language services and DOS services are often built from these basic func
tions and enhanced to make a particular process more efficient. We can
enhance our programs in the same way by plugging them directly into the
ROM-BIOS, thereby gaining access to an extremely powerful set of tools
and using our computers in the way that IBM intended them to be used.

That last point is worth emphasizing. IBM has gone to considerable
lengths to create a clean and well-defined method for directing the oper
ation of the computer through the ROM-BIOS services. As each new PC
model is designed, IBM (and any other computer maker who is faithfully
extending the PC family) makes sure its ROM-BIOS services are thoroughly
compatible with those of the other members of the family. As long as we
control our computers through the ROM-BIOS, whether directly or in
directly, we are safe from any compatibility problems. If we bypass the
ROM-BIOS and program directly to the hardware, we are not only asking
for trouble, but we are also severely limiting the range and viability of
our programs.

In the next five chapters, we will discuss the BIOS service routines.
Fortunately, the routines fall namrally into groups that are derived from
the hardware devices they support, so the video services, disk services,
and keyboard services can all be reviewed separately. But before we take
a closer look at the individual services, we need to find out how we can
incorporate them into our programs. This chapter sets the stage by ex
plaining what goes into writing an interface routine, the bridge between
our programming language and the ROM-BIOS services. First, a word on
how the ROM-BIOS operates.

THE BIOS PHILOSOPHY

All ROM-BIOS services are invoked by interrupts. The interrupt in
structions point to a particular location in the interrupt vector taWe in
low memory that contains an interrupt vector: the address of the service
routine stored in ROM. This design makes it possible for any program to
request a service without knowing the specific memory location of the
ROM-BIOS service routine. It also allows the services to be moved around.

Chapter 8: ROM-BIOS Basics 161

expanded, or adapted without affecting the programs that use the ser
vices. Although IBM has tried to maintain the absolute memory location
of some parts of the ROM-BIOS, we would be foolish to use these ad
dresses since there is always a chance they may be changed in the future.
The standard, preferred, and most reliable way to invoke a ROM-BIOS
service is to use its interrupt rather than its absolute location.

The ROM-BIOS services could be supervised by one master inter
rupt, but instead they are divided into subject categories, each category
having its own controlling interrupt. The primary benefit of this design is
that it allows each interrupt handler to be replaced with a minimum
amount of disruption. For example, if a hardware manufacturer created
a radically different video display, printer, or anything else that required a
completely new BIOS program to operate it, the manufacturer could pro
vide us with a new BIOS program along with the hardware. The new BIOS
program might be stored in RAM rather than ROM and it would replace
just that one part of IBM's ROM-BIOS that was used with the old hard
ware. By making the ROM-BIOS modular, IBM has made it easier to im
prove and extend the capabilities of our computers.

THE ROM-BIOS SERVICES INTERRUPTS

There are twelve ROM-BIOS interrupts in all, falling into five groups:
Six of the twelve interrupts serve specific peripheral devices; two report
on the computer's equipment; one works with the time/date clock; one
performs the print-screen operation; and finally, two interrupts wrench
the computer into another state altogether, activating ROM-BASIC and the
system start-up routine. As we'll see, most of the interrupts are tied to a
group of subservices that actually do the work. For example, the video
services interrupt 16 (hex 10) has seventeen subservices that do everything
from setting the video mode to changing the size of the cursor. We call a
subservice by invoking its governing interrupt and specifying the subset-
vice number in register AH. (•- This process is explained in the example
at the end of this chapter.

BIOS-SERVICE OPERATING CHARACTERISTICS

The ROM-BIOS services use some common calling conventions that
provide consistency in the use of registers, flags, the stack, and memory.
We'll outline the characteristics of these operating conventions, begin
ning with the segment registers.

162 PROGRAMMER'S GUIDE TO THE IBM PC

Interrupt
Dec Hex Use

Peripheral Devices Services

16 10 Video-display services (see Chapter 9)

19 13 Diskette services (see Chapter 10)

20 14 Communications services (see Chapter 12)

21 15 Cassette-tape services (see Chapter 12)

22 16 Standard keyboard services (see Chapter 11)
23 17 Printer services (see Chapter 12)

Equipment Status Services

17 11 Equipment-list service (see Chapter 12)

18 12 Memory-size service (see Chapter 12)

TimelDate Service

26 lA Time and date services (see Chapter 12)

Print-Screen Service

5 5 Print-screen service (see Chapter 12)

Special Services

24 18 Activate ROM-BASIC language (see Chapter 12)

25 19 Activate bootstrap start-up routine (see Chapter 12)

Figure 8-1, The twelve ROM-BIOS services

The code segment register (CS) is automatically reserved, loaded, and
restored as part of the interrupt process. Consequendy, we don't have to
worry ahout our program's CS. The DS and ES registers are preserved by
the ROM-BIOS service routines, except in the few cases where they are
explicidy used. The stack segment register (SS) is left unchanged, and the
ROM-BIOS services depend upon us to provide a working stack. (Every
thing depends upon a working stack!)

The stack requirements of the ROM-BIOS services are not spelled
out and they can vary considerably, particularly since some services in
voke other services. (One of the flaws of the IBM personal computers,
and all computers based on the Intel 8088, is the very fuzzy specification
of stack usage and stack boundaries.) Generally, most programs ought to
be working with a much larger stack than the ROM-BIOS services need.

Chapter 8: ROM-BIOS Basics 1^3

In connection with the segment registers, the program counter (PC
or IP) is preserved by the same mechanism that preserves the code seg
ment. In effect, the stack pointer (SP) is preserved because all the ROM-
BIOS services leave the stack clean, POPping off anything that was PUSHed
on during the service-routine execution.

As usual, the general-purpose registers, AX through DX, are consid
ered fair game. The standard rule is not to expect any contents of these
registers to be maintained when you pass control to another routine, and
that applies to the ROM-BIOS services as well. If you closely inspect the
coding of the services in the IBM Technical Reference manual, you will
find that one or more registers are left undisturbed in one service or an
other, but you would be foolish to try to take advantage of this. As a
general rule, when a simple result is returned from a subroutine, it is left
in the AX register; this applies to both the ROM-BIOS and to all program
ming languages. We'll see how often this really happens when we cover
the ROM-BIOS services in detail.

The index registers (SI and DI) may be changed, just like the AX
through DX registers.

The various flags in the flag register are routinely changed as a by
product of the instruction steps in the ROM-BIOS routines. You should
not expect any of them to be preserved. In a few instances, the carry flag
(CF) or the zero flag (ZF) are used to signal the overall success or failure
of a requested operation.

The details that we have been poring over are important but rather
tedious, and there is little reason for you to pay much attention to them.
If your programs follow the general interface rules given in the next sec
tion, and if they follow the specific requirements of your programming
language {m- covered in Chapters 19 and 20), you may not need to be con
cerned with them at all.

□ NOTE: If you set out to use the ROM-BIOS services in your pro
grams, you'll naturally be concerned about the possible conflicts be
tween the services and the operating conventions that your language
follows. Put your mind at ease. You will find that you do not have to
take any extraordinary precautions to protect your programming lan
guage from the ROM-BIOS, or vice versa.

164 PROGRAMMER'S GUIDE TO THE IBM PC

CREATING AN ASSEMBLY-LANGUAGE INTERFACE

In order to make direct use of the ROM-BIOS services from our pro
grams, we need to create an assembly-language interface routine to link
our programming language to the ROM-BIOS. When we say "interface
routine," we are referring to conventional program-development subrou
tines—subroutines that are assembled into object modules (.OBJ files) and
then linked into working programs (.EXE or .COM files in DOS), m- For
more on this subject, see Chapter 19.

Working with assembly language can seem a fearsome task if you
are not already comfortable with it. While there are plenty of good rea
sons to be intimidated by assembly language—after all, it is the most
difficult and demanding kind of programming—it's really not that diffi
cult to create an assembly-language interface routine. As I have often re
lated, when I first needed to create an interface routine for the Norton
Utility programs that I was writing in Pascal, I had absolutely no prior
experience with either the IBM Assembler or the 8088 machine and as
sembly language. Even though I started out cold, I had my first working
and tested interface done in 45 minutes flat. I mention this not to brag,
but to emphasize that it's just not as hard as many people think.

To create your own interfaces, you will need to have an assembler
that is compatible with the DOS standards for object files. The one I use is
the IBM Macro Assembler, but there are others available. Do not, how
ever, plan to use the justly famous "cheap assembler" CHASM, by David
Whitman. CHASM and some other assemblers are set up to produce only
complete assembly-language programs rather than modules that can be
linked to other programs, such as the interface routines that we are inter
ested in. All the examples we give here are for the IBM Macro Assembler.

□ NOTE: BASIC can work with machine-language subroutines put
directly into memory. In interpreted BASIC they are CALLed and in com
piled BASIC they are CALLed absolute. Preparing the sort of assembler
subroutine that will work with BASIC can be done as easily with DEBUG s
A-assemble command as it can with an ordinary assembler.

The Basic Form of an Interface Routine
The exact form an interface routine must take varies with its even

tual use. An assembly-language interface is a handshaker between our
programming language and a ROM-BIOS service, so it has to be tailored
to meet the needs of both ends. It matters which programming language
is being used; it matters which ROM-BIOS service is being invoked; and it
matters whether any data is being passed in one direction or the other.

Chapter 8: ROM-BIOS Basics 165

However, the general outline of an assembly-language interface is basi
cally the same, no matter what we are doing.

One of the best ways to understand how an assembly-language in
terface is coded is to view it as five nested parts, which are outlined here:

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke ROM-BIOS service

Level 4: Pass back results to caller

Level 3: Exit code

Level 2: Finishing up subroutine assembler overhead

Level 1: Finishing up general assembler overhead

In this outline, levels 1 and 2 are needed to tell the assembler what's
going on, but they don't produce any working instructions. Levels 3
through 5 produce the actual machine-language instructions.

We'll dig our way down through each of these levels to show you
the rules and explain what's going on. Don't forget that the specific re
quirements of an interface routine change for different circumstances.
We'll point out the few design elements that are universal to all routines.

Level 1: General Assembler Overhead

Here is an outline of a typical level-1 section of an interface routine,
with the lines numbered for reference:

1-1 INTERFACE SEGMENT 'CODE'

1-2 ASSUME CS: INTERFACE

; levels 2 through 5 appear here
1-3 INTERFACE ENDS

1-4 END

In line 1-1, INTERFACE is an arbitrary name we have given this as
sembly routine; SEGMENT is essential and is used to define an assembly
routine; CODE is a category that may vary by language (we'll see another
example shortly).

Line 1-2 is not always needed, and assembler experts will recognize
it as a piece of illegal fakery. Quite simply, the ASSUME instruction allows
us to do some if-then type programming without getting into trouble;
we'll make use of it in later chapters.

Line 1-3 ends the segment started in line 1-1, and line 1-4 ends the
whole assembly routine.

166 PROGRAMMER'S GUIDE TO THE IBM PC

The format conventions we have shown here are taken from

IBM/Microsoft Pascal {m- which we'll cover in Chapter 20). For an exam
ple of something different, C needs these two lines in place of line 1-1:

PGROUP GROUP PROG

INTERFACE SEGMENT BYTE PUBLIC 'PROG'

Level 2: Subroutine Assembler Overhead

Next, let's look at an outline of a typical level 2, the assembler over
head for a subroutine (called a procedure in assembler parlance). Here is
some typical level-2 coding:

2-1 PUBLIC MEMSIZE

2-2 MEMSIZE PROC FAR

; levels 3 through 5 appear here
2-3 MEMSIZE ENDP

Line 2-1 instructs the assembler to make the name of our procedure,
MEMSIZE, public information, which means that the link program can
then connect it to its users.

Lines 2-2 and 2-3 bracket our procedure, which has arbitrarily been
named MEMSIZE. PROC and ENDP are mandatory and surround any pro
cedure, with PROC defining the beginning of the procedure and ENDP
signaling the end of it. FAR tells the assembler that the procedure is lo
cated outside of the current segment. We could have used either FAR or
NEAR in this position. If we had used NEAR, it would have indicated the
procedure was located inside the current segment instead of outside. FAR
calls are the most common, but some languages do (C) or can (Pascal)
use NEAR calls. Except for FAR or NEAR, what you see here is universal
for all languages and all purposes.

Level 3: Entry Code

Level 3 begins the actual working instructions. It takes care of the
housekeeping overhead that is needed for a subroutine to work cooper
atively with the language that called it. Here is an example:

3-1 PUSH BP

3-2 MOV BP,SP

; levels 4 and 5 appear here

3-3 POP BP

3-4 RET 0

Lines 3-1 and 3-2 are used to gain access to and preserve any param
eters that the caller has passed. These will appear one way or another on
the stack. The base pointer register (BP) is used universally to keep track
of the entry-point location on the stack. Our calling program will have its

Chapter 8: ROM-BIOS Basics 167

own BP, which we preserve in line 3-1 by PUSHing it onto the stack and
restore in line 3-3 by POPping it off.

In line 3-2, we get our own stack frame reference by grabbing the
current stack pointer (SP) and moving it to the BP. From that point on, no
matter what gets pushed onto the stack, we'll have kept track of where
our caller's parameters are on the stack. If we needed to preserve any
other registers for our caller, they would be PUSHed to the stack immedi
ately following line 3-2, and POPped, in reverse order, just before line 3-3.
Normally this would not be necessary.

Line 3-4 is used to pass control back to our caller; the assembler
translates our terse RET into a NEAR or FAR return, depending upon
whether our PROC was declared NEAR or FAR. The 0 in line 3-4 is clean

up work that we usually have to do to remove any caller's parameters
from the stack. If there were no parameters or if the conventions of the
programming language have the caller clean parameters off the stack, as
C does (i^-see pages 381-382), then this value will be zero. If there were
parameters and the programming language doesn't clean up the stack,
we have to know how big to make this value so as to remove every pa
rameter. The value must be increased by 2 for every 1- or 2-byte param
eter (byte, word, or offset address), and by 4 for each 4-byte parameter
(segmented address) that was passed to the procedure. As long as we can
identify the nature of our parameters (they are sure to be one of these
four types), we'll be OK.

Level 4: Get Parameter Data from Caller

Level 4 deals with the parameters by passing them from the caller to
the ROM-BIOS, and with the results by passing them from the ROM-BIOS
to the caller. The caller's parameters are on the stack, either in the form
of data or addresses ((•-see Chapter 20 for help with this). The registers,
mostly AX through DX, are used for ROM-BIOS input and output. The
trick here—and it can be tricky—is to use the correct stack offsets to
find the parameters. We'll sneak up on this problem in stages.

First, we get to the parameters on the stack by addressing relative to
the BP frame reference that we snatched earlier. Here's a typical layout;

Location Contents

BP Caller's saved BP

BP -I- 2 Return address, offset and segment

BP -I- 6 One parameter

BP -I- 8 Another parameter

BP +10 Yet another parameter

168 PROGRAMMER'S GUIDE TO THE IBM PC

The return address at BP+2 is four bytes for a FAR procedure, as
we've shown it, but only two bytes for a NEAR procedure. If yours is a
NEAR procedure, all the subsequent offsets should be 2 less than shown
here. Most languages PUSH their parameters onto the stack in the order
they are written. This means that the fast parameter is the one closest to
the top of the stack, at BP+6. However, Lattice/Microsoft C uses the re
verse order, so that the closest parameter is the first one written in the
calling program.

Parameters normally take up two or four bytes on the stack, though
two bytes is the most common. Our example here has the locations
BP+6, +8, and +10 two bytes apart. If any of these parameters were four
bytes in size, we would adjust the subsequent references accordingly.

If data was placed on the stack, then we can get it immediately by
addressing it like this: [BP+6]. If an address was placed on the stack, two
steps are needed: First, get the address, and second, get the data. Here is
a level-4 example showing both data ([BP+6]) and address {[BP+8]) re-
trieval:

4-1 MOV AX,[BP+6] ; value of parameterl
4-2 MOV BX,[BP+8] ; address of parameterl
4-3 MOV DX,[BX] ; value of parameterl

; level 5 appears here
4-4 MOV BX,[BP+8] ; address of parameterl (again)
4-5 MOV [BX],DX ; pass back new value

All of these MOV instructions move data from the second operand
to the first operand. Line 4-1 grabs data right off the stack and slaps it
into the AX register. Lines 4-2 and 4-3 get data via an address on the
stack; line 4-2 first gets the address (parking it in BX), and then line 4-3
uses that address to get to the actual data, which is moved into DX. Lines
4-4 and 4-5 reverse this process; line 4-4 gets the address again, and then
line 4-5 moves the contents of DX into that memory location.

□ NOTE: A crucial bit of assembler notation is demonstrated here:
BX refers to what's in BX, and [BX] refers to a memory location whose
address is in BX.

While I don't claim that sorting out these references is a snap, if you
think it through carefully, it works out right.

Level 5: Invoke ROM-BIOS Service

Level 5 is our final step: It simply invokes the ROM-BIOS service.
Typically, this step involves two simple instructions, like this:
5-1 MOV AH, 15 ; function 15
5-2 INT 16 ; call BIOS routine

Chapter 8: ROM-BIOS Basics 169

Line 5-1 selects the interrupt subservice. Typically, there are several
subservices numbered from 0 on up. They are always selected with a
code in the AH register.

Line 5-2 generates the interrupt that requests the service; in this ex
ample, it's interrupt 16 (hex 10), the video-services interrupt.

This five-step process outlines the basic principles of nearly all as
pects of an assembly-language interface. In the following chapters, we'll
see how this design is used in specific examples.

9
ROM-BIOS

Video Services

Accessing the BIOS Video Services 172
Service 0: Set Video Mode 173

Service 1: Set Cursor Size 174

Service 2: Set Cursor Position 175

Serviced: Read Cursor Position 175

Service 4: Read Light-Pen Position 176
Serviced: Set Active Display Page 176
Service 6: Scroll Window Up 177
Service 7: Scroll Window Down 178

Service 8: Read Character and Attribute 178

Service 9: Write Character and Attribute 179

Service 10 (hex A): Write Character 180
Service 11 (hex B): Set Color Palette 181
Service 12 (hex C): Write Pixel Dot 182
Service 13 (hex D): Read Pixel Dot 182
Service 14 (hex E): Write Character as TTY 183
Service 15 (hex F): Get Current Video Mode 184
Service 19 (hex 13): Write Character String 184

Comments and Example 185

171

172 PROGRAMMER'S GUIDE TO THE IBM PC

In this chapter, we will discuss each of the video or screen-control
services provided by the ROM-BIOS. We have devoted most of the
chapter to detailed descriptions of each video service. Beginning on
page 185, we have included some programming hints and an assem

bly-language routine that makes use of some of the video services. For
a more general discussion of video-display characteristics in the PC fam
ily, see Chapter 4. For information on the low-memory locations used by
the ROM-BIOS for video status information, turn to page 54.

ACCESSING THE BIOS VIDEO SERVICES

The ROM-BIOS video services are all requested by generating inter
rupt 16 (hex 10). There are sixteen principle services and one AT service
available under this interrupt (•- see Figure 9-1). Like all other ROM-BIOS
services, the video services are numbered from 0 and are selected by plac
ing the service number in the AH register. The services often need addi
tional parameters from the caller, which are placed in BX, CX, or DX,
depending on the specifications of the service routine. We'll cover the
purpose and placement of the parameters under each service description.

Service

Dec Hex Description

0 0 Set video mode

1 1 Set cursor size

2 2 Set cursor position

3 3 Read cursor position

4 4 Read light-pen position

5 5 Set active display page

6 6 Scroll window up

7 7 Scroll window down

8 8 Read character and attribute

9 9 Write character and attribute

10 A Write character

11 B Set color palette

12 C Write pixel dot

13 D Read pixel dot

14 E Write character as TTY

15 F Get current video mode

19 13 Write character string

Figure 9-1. The seventeen video services

Chapter 9: ROM-BIOS Video Services 173

Service 0: Set Video Mode

Service 0 is used to select from the fifteen video modes shown in

Figure 9-2. m- For details of the video modes, see page 71.
You may recall from our discussion in Chapter 4 that modes 0

through 6 apply to the standard Color/Graphics Adapter; mode 7 applies
to the Monochrome Adapter; modes 8 through 10 were introduced with
the PCjr; and modes 13 through 16 were added for the Enhanced Graph
ics Adapter, which also supports all other modes except 8,9 and 10.

Something else you may want to keep in mind if you are working
with the black-and-white or color-suppressed modes (modes 0, 2, and 5)
is that they only suppress color on the composite output and not on the
RGB output of a display adapter.

Mode Type Size Colors Adapter Display

0 Text 40x25 16 (grey)
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

1 Text 40x25 16 foreground,
8 background
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

2 Text 80x25 16 (grey)
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

3 Text 80x25 16 foreground,
8 background
EGA: 64 color

CGA, EGA, PCjr Enhanced Color

4 Graphics 320 X 200 4 CGA, EGA, PCjr Enhanced Color

5 Graphics 320 X 200 4 (grey) CGA, EGA, PCjr Enhanced Color

6 Graphics 640 X 200 2 CGA, EGA, PCjr Enhanced Color

7 Text 80x25 b/w EGA, MA Monochrome

8 Graphics 160x200 16 PCjr Enhanced Color

9 Graphics 320 X 200 16 PCjr Enhanced Color

10 Graphics 640 X 200 4 PCjr Enhanced Color

11 Apparently internal
to the EGA

12 Apparently internal
to the EGA

13 Graphics 320 X 200 16 EGA Enhanced Color

14 Graphics 640 X 200 16 EGA Enhanced Color

15 Graphics 640 X 350 b/w EGA Monochrome

16 Graphics 640 X 350 16/64 EGA Enhanced Color

Figure 9-2. The video-mode settings for
service 0

174 PROGRAMMER'S GUIDE TO THE IBM PC

Normally, the ROM-BIOS clears the screen memory buffer when the
mode is set, even if it is set to the same mode again and again. In fact,
setting the same mode repeatedly can be an easy and effective way to
clear the screen. However, it is not an ideal clear-screen operation for the
Compaq PC-compatibles, as they show a noticeable delay when this tech
nique is used.

See Chapter 4, page 71 for more on video modes. See page 54,
memory location hex 449, for more on how a record of the mode is
stored in memory. See service 15 (hex F) to find out how to read the cur
rent video mode.

Service 1: Set Cursor Size

Service 1 controls the form and size of the blinking cursor that ap
pears in the text modes. The standard IBM cursor normally appears as
one or two blinking scan lines at the bottom of a character display posi
tion. We can change the default cursor size by redefining the number of
lines that are displayed.

The Color/Graphics Adapter can display a cursor that has eight scan
lines, numbered from 0 at the top to 7 at the bottom. The Monochrome
Adapter and the EGA can display a cursor that has fourteen scan lines,
also numbered from the top, from 0 through 13. We set the cursor size by
specifying the starting and ending scan lines. (These are the same as the
start and stop parameters of BASIC'S LOCATE statement.) The start line
number is loaded into the CH register and the stop line number into the
CL register. The default cursor setting is CH = 6, CL = 7 for the Color/
Graphics Adapter, and CH = 11, CL = 12 for the Monochrome Adapter.

If the start line is less than the stop line, a normal one-part cursor
appears. If the start line is greater than the stop line, the cursor will wrap
around and produce a two-part cursor.

You will notice that the valid line numbers occupy only four of the
bits (bits 0 through 3) placed in these registers. If bit 5 of CH is set on

• with a value of 32 (hex 20), the cursor will disappear. When a graphics
mode is set, bit 5 is automatically set on to keep the cursor mechanism
from interfering with the graphics display. This is one of two techniques
that we can use to remove the cursor in the text modes. The other tech

nique is to actually move it off the screen, say to row 26, column 1. Since
there is no true cursor in the graphics modes, any cursor that we see is
simulated with the solid-block character, CHR$(223), or with a change of
background attributes.

Chapter 9: ROM-BIOS Video Services 175

Service Number Parameters

AH = 1 CH = starting scan line of cursor

CL = ending scan line of cursor

Figure 9-3. The registers used to set the
cursor size using service 1

Service Number Parameters

AH = 2 DH = row number

DL = column number

BH = page number (set to 0 in graphics modes)

Figure 9-4. The registers used to set the
cursor position using service 2

For more on cursors, see page 92. See service 3 for the reverse
operation: Read cursor position.

Service 2: Set Cursor Position

Service 2 sets the position of the cursor using row and column co
ordinates. In text modes, there can be multiple display pages, each one
having an independently recorded cursor position. Even though the
graphics modes do not have a visible cursor, they keep track of the logical
cursor position in the same way as the text modes. This logical cursor
position is used to supervise character I/O.

The cursor position is specified by placing a row number in register
DH, a column number in DL, and a page number in BH. The numbering
for the rows and columns begins with coordinates 0,0 in the top left cor
ner. The graphics modes also use the character row and column coordi
nates to identify the cursor location, rather than the pixel coordinates. The
page number is the conventional display page number used by BASIC:
pages 0 through 7 in 40-column modes and pages 0 through 3 in 80-
column modes. The page number must be set to 0 in the graphics modes.

See Figure 9-4 for a summary of register settings. See page 85 for
more on display pages. See page 86 for more on text display formats. See
service 3 for the reverse operation: Read cursor position.

Service 3: Read Cursor Position

Service 3 is the opposite of services 1 and 2. When we specify the
page number in BH, the ROM-BIOS reports the cursor size by returning

176 PROGRAMMER'S GUIDE TO THE IBM PC

Service Number Parameters

AH = 3 BH = page number (set to 0 in graphics modes)

DH = row number

DL = column number

CH = starting scan line of cursor

CL = ending scan line of cursor

Figure 9-5. The registers used to read the
cursor position using service 3

Service Number Parameters

AH = 4 DH = character row number

DL = character column number

CH = pixel line number (0 through 199)

CX = pixel line number for new EGA graphics modes

BX = pixel column number

Figure 9-6. The registers used to read the
light-pen position using service 4

the starting scan line in CH and the ending scan line in CL. It reports the
cursor position by returning the row in DH and the column in DL. As with
service 2, the page must be specified as 0 in the graphics modes.

(•"See Figure 9-5 for a summary of register settings. See page 85 for
more on display pages. See page 86 for more on text display formats.

Service 4: Read Light-Pen Position

Service 4 reports the light-pen status, specifically whether or not it
has been triggered, and where it is on the screen if it has been triggered.

Register AH is set to indicate triggering: If AH is 1, the light pen has
been triggered; if AH is 0, it has not been triggered. The light pen's pixel
location on the screen is sensed by the hardware, and the ROM-BIOS re
ports it to us translated into two forms: the character position (row in
DH, column in DL), and the pixel location (raster line in CH, column/dot
in BX). Since the pixel column location can be larger than 255, it is re
ported in a full-word register. All other values are handled as bytes.

Service 5: Set Active Display Page

Service 5 sets the active display page for text modes 0 through 3. We
specify the page number in register AL. In the 40-column modes, we may

Chapter 9: ROM-BIOS Video Services 177

Service Number Parameters

AH = 5 AL = new display page number (0-3 for modes 2
and 3, 0-7 for modes 0 and 1)

Figure 9-7. The registers used to set the
active display page using service 5

choose from pages 0 through 7, and in the 80-column modes, from pages
0 through 3. Page 0 is used by default. Page 0 is located at the beginning
of display memory, with each subsequent page following either 2K bytes
(in 40-column modes) or 4K bytes (in 80-column modes) behind. The
higher page numbers are in higher memory locations.

(•■See page 85 for more on display pages.

Service 6: Scroll Window Up
Service 6 and companion service 7 are used to define a rectangular

text-window area on the screen and to scroll its contents up or down one
or more lines. To accomplish the scrolling effect, blank lines are inserted
at the bottom of the window area with service 6 (at the top with service
7) and the top lines of the window (the bottom lines with service 7) are
scrolled off and disappear.

The number of lines to be scrolled is specified in AL. If AL is 0, the
entire window is blanked (the same thing would happen if we scrolled
more lines than the window size allowed). The location or size of the
window is specified in the CX and DX registers: CH is the top row, and
DH is the bottom row; CL is the left column, and DL is the right column.
The display attribute for the new blank lines inserted by the two services
is taken from BH. Figure 9-8 shows a summary of the register settings for
both services 6 and 7:

Service Number Parameters

AH = 6 AL = number of lines to scroll

CH = row number of upper left corner
CL = column number of upper left corner
DH = row number of lower right corner
DL = column number of lower right corner
BH = display attribute for blank lines

Figure 9-8. The registers used to set the win
dow size for scrolling using services 6 and 7

178 PROGRAMMER'S GUIDE TO THE IBM PC

Window scrolling is normally a two-stage process: When a new line
is ready to be written in the window, service 6 (or service 7) is used to
scroll the current window contents. Then the new information is written

to the new line using the cursor-positioning and character-writing ser
vices. The following example demonstrates this window action.

DEBUG

INT 10

[Return]

R AX

0603

R CX

050A

R DX

1020

D 0 L 180

G = 100 102

invoke DEBUG from DOS utilities

ask to assemble instructions

create interrupt hex 10 instruction
finish assembling
ask to see and change contents of AX
specify service 6 (scroll up), using 3-line window
ask to see and change contents of CX
specify top left corner: row 5, column 10
ask to see and change contents of DX
specify bottom right corner: row 16, column 32
fill screen with nonsense

execute INT 10, then stop

m- See Chapter 8 for more on assembly-language routines. See the
IBM DOS reference manual for more on DEBUG.

Service 7: Scroll Window Down

Service 7 is, as we've already mentioned, the mirror image of service
6. The primary difference between the two services is the scrolling ac
tion. In service 7, the new blank lines appear at the top of the window
and the old lines disappear at the bottom. The opposite scrolling action
takes place in service 6. m- See the description under service 6 for the
parameter settings.

Service 8: Read Character and Attribute

Service 8 is used to read characters "off the screen," that is, directly
out of the display memory. This service is unusually spiffy because it
works in both text and graphics modes.

In graphics modes, the same character drawing tables that are used
to write characters are also used to recognize them by a pattern match
ing operation. Even if we create our own character set in graphics mode,
this service will be able to recognize them. In text mode, of course, the
ASCII character codes are directly available in the display memory.

Chapter 9: ROM-BIOS Video Services 179

Service Number Parameters

AH = 8 BH = active display page number (not needed in
graphics modes)

AL = ASCII character read from cursor location

AH = attribute of text character

Figure 9-9. The registers used to read a text
character and attribute using service 8

Service 8 returns the ASCII character code of the character read from
the screen in AL. In graphics mode, if the character does not match any
standard ASCII code, it is reported as hex 00. In the text modes, the service
also returns the text color attributes in AH. The text-mode display page
number must be specified in BH. The display-page setting is not needed in
the graphics modes.

I*- See page 79 for more on text characters and attribute bytes. See
page 86 for more on text- and graphics-mode characters. See Appendix C
for more on ASCII characters.

Service 9: Write Character and Attribute

Service 9 writes one or more copies of a single character and its color
attribute. The character is specified in AL, and the text-mode attribute or
graphics-mode color is specified in BL. The number of times the charac
ter is to be written (one or more times) is placed in CX.

For the text modes, the display page number must be specified in
BH; it need not be given for the graphics modes.

The character and its color attributes are written as many times as
requested, starting at the current cursor location. Although the cursor is
not moved, duplicate characters are written at subsequent screen loca
tions. In text mode, the duplicated characters will successfully wrap
around from line to line, which increases the usefulness of this service. In
graphics mode, the characters will not wrap around.

Service 9 is quite useful both for writing individual characters and
for replicating a character. The repeat operation is most often used to
rapidly lay out blanks or other repeated characters, such as the horizon
tal lines that are part of box drawings {(•' see Appendix C). When you
wish to make a single copy of the character, be sure to set the count in
CX to 1. If it's set to 0, the number of repetitions will run away.

Service 9 has an advantage over the similar service 14, in that we
can control the color attributes. However, its one disadvantage is that the
cursor is not automatically advanced.

180 PROGRAMMER'S GUIDE TO THE IBM PC

Service Number Parameters

AH = 9 AL = ASCII character to write to screen

BL = character attribute to write to screen

BH = active display page number (not needed in graphics
modes)

CX = number of times to write character and
attribute

Figure 9-10. The registers used to write a
text character and attribute using service 9

In graphics mode, the color specified in BL is the foreground
color—the color of the pixels that make up the character drawing. If bit
7 is 1 (with the value of 128 or hex 80), then the color bits in BL are com
bined with the current pixel color bits with an exclusive-or (XOR) opera
tion. This is a convenient way to ensure that the resulting color is differ
ent from what was there before—a near-guarantee of legibility. If bit 7 of
BL is 0, then the color in BL simply replaces the existing pixel colors. The
same feature also applies to the character and pixel writing services, ser
vices 10 and 12.

See page 79 for more on display attributes in text modes. See
page 81 for more on color attributes in graphics modes.

Service 10 (hex A): Write Character

Service 10 is the same as service 9 (write character and attribute to
cursor location) with one exception: Service 9 allows us to change the
existing screen color attribute in text mode while service 10 does not.

Service Number Parameters

AH = 10 AL = ASCII character to write to screen

BL = color attribute for graphics modes

BH = active display page number

CX = number of times to write character

Figure 9-11. The registers used to write a
character using service 10

Chapter 9: ROM-BIOS Video Services 181

However, in the graphics mode, the color still needs to be specified in BL,
making the description of this service as only a character-writing service
partly incorrect. The same graphics color rules apply as with services 9
and 12: The color can be used directly, or XORed with the existing color.
((•' See service 9 for an explanation.)

I#" See page 79 for more on display attributes in text modes. See
page 81 for more on color attributes in graphics modes.

Service 11 (hex B): Set Color Palette

Service 11 is used to select one of the two medium-resolution graph
ics palettes. To use this service, we load BH with the palette color ID and
BL with a color value, (i#* See page 82 for more on color palettes.)

One variation of this service applies to the text modes; all others
apply only to the graphics modes. In the text modes, if BH is 0, then BL
specifies the color of the border around the text area—a color selected
from the full 16-color palette. In any graphics mode, if BH is 0, then BL
specifies the default color of the background and of the border area as
well. The border area is merged with any part of the working screen area
that is set tp the background color. The BL value can be selected from the
full 16-color palette.

On the other hand, if BH is 1, then BL selects the palette being used.
For the Color/Graphics Adapter, this applies only to mode 4 (medium-
resolution, four-color graphics). For more advanced display adapters, in
cluding the PCjr's, it can apply to other modes as well. In this discussion,
we will cover just the standard four-color palettes that are provided by

Service Number Parameters

AH = 11 BH = palette color ID (0 or 1 in 320 x 200 graphics)

BL = color or palette value to be used with color ID

Figure 9-12. The registers used to set the
color palette using service 11

182 PROGRAMMER'S GUIDE TO THE IBM PC

mode 4: palettes 0 and 1. The palette number is selected with BL. Palette 0
has these four colors:

0: Current background color

1: Green (2)

2: Red (4)

3: Brown (6)

Palette 1 has these four colors:

0: Current background color

1: Cyan (3)

2: Magenta (5)

3: White (7)

Service 12 (hex C): Write Pixel Dot

Service 12 writes an individual pixel. Since the cursor position used
in services 9,10, and 14 applies only to characters, this service requires a
raster line and column/pixel specification. As usual, the locations are
numbered from 0,0 starting at the top left corner of the screen.

The row (raster) number is specified in DX. The column number is
specified in CX. The color is given in AL, with the option of direct color or
XORed color ((•'see service 9 for an explanation).

(•■See page 88 for more on pixels in graphics modes.

Service 13 (hex D): Read Pixel Dot
Service 13 is the reverse of service 12: It reads the pixel contents

rather than writing them. A pixel has only a single color attribute, which
is exactly the information that is returned through service 13. (The read-
character service 8 returns both a color and an ASCII character code.)
The row is specified in DL, not DX ((•'see the note in service 12), and the
column in CX. The pixel color code is returned in AL. All high-order bits
are set to 0, as you would expect.

Service Number Parameters

AH = 12 AL = pixel color code (0—15)
DX = row number of pixel
CX = column number of pixel

Figure 9-13. The registers used to write a
pixel using service 12

Chapter 9: ROM-BIOS Video Services 183

Service Number Parameters

AH = 13 AL=pixel color code (0—15)

DX = row number of pixel

CX = column number of pixel

Figure 9-14, The registers used to read a
pixel using service 13

Service 14 (hex E): Write Character as TTY

Service 14 is the workhorse service of conventional character out
put. It writes individual characters to the screen in what is known as tele
type (TTY) mode. This makes the screen act as the simplest and crudest
form of printer—exactly what is needed for routine text output. As such,
it has no regard for such niceties as color, blinking characters, or control
over the cursor location.

When this service is used, the character is written at the current
cursor location and the cursor is advanced one position, wrapping to
new lines or scrolling the screen as needed. The character to be written is
specified in AL.

In text mode, the current screen attributes are maintained from one
character to the next. In graphics mode, the foreground color must be
specified each time in the BL register.

There are four characters that service 14 reacts to according to their
ASCII meaning: CHR$(7)—beep, CHR$(8)—backspace, CHR$(10)—line
feed, and CHR$(13)—carriage return. All other characters are simply
displayed normally.

The primary advantage of this service over service 9 is that the cur
sor is automatically moved; the advantage of service 9 is that we can con
trol the color attribute. Now, if we could only combine the two

Service Number Parameters

AH = 14 AL = ASCII character to write

BL = foreground color of character (in graphics
modes only)

BH = active display page (not needed in graphics
modes)

Figure 9-15. The registers used to write a
character as TTY using service 14

184 PROGRAMMER'S GUIDE TO THE IBM PC

Service Number Parameters

AH = 15 AL = current display mode

AH = number of characters per line

BH = active display page (0 in graphics modes)

AT

Figure 9-16. The registers used to read the
video mode using service 15

Service 15 (hex F): Get Current Video Mode

Service 15 returns the current video mode and two other useful

pieces of information; the screen width in characters (80, 40, or 20) and
the display page number.

The video mode, as explained under service 0, is returned in AL. The
screen width is returned in AH in number of characters per line (low-
resolution graphics mode will be correctly reported as 20 characters wide).
The display page will be returned in BH. Figure 9-16 summarizes the regis
ter settings.

See page 72 for more on video modes. See page 54, memory loca
tion hex 449, for more on how a record of the mode is kept.

Service 19 (hex 13): Write Character String

Service 19, available only with the AT, allows us to write a string of
characters to the display screen. Through the four subservices that make
up this service, we can specify the character attributes individually or as
a group. We can also move the cursor to the end of the string or leave it in
place, depending on which subservice we choose.

The subservice number is placed in AL; the pointer to the string in
ES:BP; the length of the string in CX; the starting position where the
string is to be written in DX; and the display page number in BH.

Subservices 0 and 1 write a string of characters to the screen using
the attribute specified in register BE. With subservice 0, the cursor is not
moved from the location specified in register DX; with subservice 1, the
cursor is moved to the location following the last character in the string.

Subservices 2 and 3 write a string of characters and attributes to
the screen, writing first the character and then the attribute. With subser
vice 2, the cursor is not moved from the location specified in register DX;
with subservice 3, the cursor is moved to the location following the last
character in the string.

Chapter 9; ROM-BIOS Video Services 185

COMMENTS AND EXAMPLE

In cruising through the ROM-BIOS video services, we've shown how
they work individually. With that information in mind, the next question
usually is: Given a choice between using the ROM-BIOS services directly
or using higher-level services such as the DOS services or the services built
into your programming language, which is best? The general advice that
we always give is to use the highest-level services that will accomplish what
you want to do. In this case, there is no specific reason for you to avoid
using the ROM-BIOS video services—you can't do any great harm by using
them. But in the next chapter on the diskette services, we'll argue the case
the other way, advising you to avoid using the ROM-BIOS diskette services
since there is more risk associated with them.

The video capabilities of the PC models are remarkable, and the
ROM-BIOS services give us the full use of them. The DOS services, as you'll
see in Chapters 14 through 18, are rather weak and provide only the sim
plest sort of character services. Likewise, many programming languages
(for example, Pascal and C) only provide a dressed-up version of the DOS
services and nothing more. So, if you need to use the PC's fancy screen
capabilities and if you aren't using a language such as BASIC that provides
the services you need, you should be using the ROM-BIOS services. Getting
control of the display screen is one of the very best reasons for using the
ROM-BIOS services.

Using the ROM-BIOS services directly usually calls for an assembly-
language interface, so we'll give you an example of how one can be set up.
For our example, we'll set up a module in a format that would be called by
Pascal. We'll make the module switch to mode 1 (40-column text in color)
and set the background color to blue.

Flere is our assembly module ((•' see Chapter 8, page 164, for general
notes on the format):

MODULE SEGMENT 'CODE'

PUBLIC BLUE40

BLUE40 PRGC FAR

PUSH BP ; save old base pointer
MGV BP,SP ; establish our base pointer

; set video mode

MGV AH,0 ; service 0: set mode

MGV AL,1 ; mode 1: 40-column text, in color
INT 16 ; request video service

186 PROGRAMMER'S GUIDE TO THE IBM PC

; set background color

MOV AH,11 ; service 11: set color
MOV BH,0 ; set background
MOV BL,1 ; use color 1 = blue
INT 16 ; request video service
POP BP ; restore old base pointer
RET 0 ; return to caller

BLUE40 ENDP

MODULE ENDS

END

10
ROM-BIOS

Diskette and Fixed Disk Services

The Standard ROM-BIOS Disk Services 188
Service 0; Reset Disk System 189
Service 1: Get Disk Status 189

Service 2: Read Disk Sectors 189

Serviced: Write Disk Sectors 191

Service 4: Verify Disk Sectors 191
Service 5: Format Disk Track 192

The AT Diskette and Fixed-Disk Services 194
Service 8: Get Current Drive Parameters 194

Service 9: Initialize Fixed-Disk Parameter Tables 195

Service 10 and 11 (hex A and B): Read and Write Long 195
Service 12 (hex C): Seek to Cylinder 195
Service 13 (hex D): Alternate Disk Reset 195
Service 16 (hex 10): Test for Drive Ready 195
Service 17 (hex 11): Recalibrate Drive 195
Service 20 (hex 14): Controller Diagnostics 195
Service 21 (hex 15): Get Disk Type 195
Service 22 (hex 16): Change of Disk Status 196
Service 23 (hex 17): Set Disk Type 196

The Disk Base Table 196

Comments and Examples 199

187

188 PROGRAMMER'S GUIDE TO THE IBM PC

We're now going to cover the disk services provided by the
ROM-BIOS. ̂ To understand the logical structure of the
contents of a disk, see Chapter 5, particularly pages 106
through 124. For information about the higher-level disk

services provided by DOS, see Chapters 15 through 18.
Generally speaking, disk operations are best left to disk operating

systems. If you decide to use any of the ROM-BIOS disk services, I recom
mend that you read the section entitled "Comments and Examples" on
page 199 of this chapter.

THE STANDARD ROM-BIOS DISK SERVICES

Since a disk drive can do only a few simple things, there are only six
standard BIOS disk services common to all PC models. EH The AT, hav
ing introduced a more complicated disk drive, has added several new ser
vices to the ROM-BIOS. We will discuss these additions separately, begin
ning on page 194.

All ROM-BIOS disk services are invoked with interrupt 19 (hex 13)
and selected by loading the service number into the AH register. The six
standard services, shown in Figure 10-1, are numbered from 0 through 5,
as is customary.

The disk services operate under the supervision of the disk base
table, which is a set of over a dozen disk control parameters stored in
ROM that specify such things as the sector size, the step-rate time, and the
head-settle time. For most programmers, the disk base table is an invisi
ble part of the disk services. However, occasionally some of its param
eters may need to be changed for special purposes. For this reason we
included a brief description of it toward the end of this chapter
{m~ see page 196).

Service Description

0 Reset disk system

1 Get disk status

2 Read disk sectors

3 Write disk sectors

4 Verify disk sectors

5 Format disk track

Figure 10-1. The six standard disk services
provided by the ROM-BIOS

Chapter 10: ROM-BIOS Diskette and Fixed Disk Services 189

□ While the ROM-BIOS diskette services for the PCjr are iden
tical to those for the other IBM personal computer models, the perfor
mance of the PCjr's diskette drives is radically different. This is primarily
because the Junior's diskette controller does not use direct memory ad
dressing (DMA), which allows data to be transferred directly between
diskette and memory. Instead, the ROM-BIOS software does the transfer
work, which ties up the computing power of the PCjr during diskette
operations, making the timing and performance of the diskette services
distinctly different from that of the other models. Among other things,
this means that some copy-protection schemes designed on the other
models will not operate successfully on the Junior.

Service 0: Reset Disk System
Service 0 is used to reset the disk controller and drive. This service

does not affect the disk itself. Instead, a reset through service 0 forces the
ROM-BIOS disk support routines to start from scratch for the next disk
operation by recalibrating the disk drive's read/write head—an opera
tion that positions the head on a certain track. In our programs this reset
service is normally used after an error in any other drive operation.

Service 1: Get Disk Status
Service 1 reports the disk status in the eight bits of register AH. The

status is preserved after each disk operation including the read, write,
verify, and format operations described below. By preserving the disk sta
tus, it is possible for an error-handling or error-reporting routine to be
completely independent of the routines that operate the disk. This can be
very useful. Under the right circumstances, we can rely on DOS or our
programming language to drive the disk (a wise choice; tm- see "Com
ments and Examples" on page 199), and at the same time have our pro
gram find out and report the intimate details of what went wrong, m- See
Figure 10-2 for details of the status byte.

Service 2: Read Disk Sectors
Service 2 reads one or more disk sectors into memory. If we want to

read more than one sector, every sector must be on the same track and
on the same side. This is largely because the ROM-BIOS doesn't know
how many sectors there might be on a track, so it can't know when
to switch from one side or track to another. Usually, this service is used

190 PROGRAMMER'S GUIDE TO THE IBM PC

Value Value

(hex) Meaning (hex) Meaning

1 bad command A bad sector flag (F)
2 address mark not found 10 bad CRC or FCC
3 write attempted on 11 FCC corrected data error (F)

write-protected disk (D) 20 Controller failed
4 sector not found 40 seek failed
5 reset failed (F) 80 time out

6 diskette removed (D) AA drive not ready (F)
7 bad parameter table (F) BB undefined error (F)
8 DMA overrun (D) CC write fault (F)
9 DMA across 64 K boundary EO status error (F)

(F) = for fixed disk only
(D) = for diskette only

Figure 10-2. The value of the disk status byte
returned to register AH by service 1

for reading either individual sectors or one side of an entire trackful of
sectors for bulk operations such as DISKCOPY in DOS. Various registers
are used for control information in a read operation. They are sum
marized in Figure 10-3 on page 192.

DL contains the drive number.

DH contains the disk side or read/write head number.

CH contains the track number. For diskettes, the track number nor
mally has a value from 0 through 39 (hex 00 through 27) but it can be
higher, and is higher for some copy-protection schemes. Many diskette
drives work successfully with up to 42 tracks.

CL contains the sector number. For diskettes, the sector number
normally ranges from 1 through 8 or 9, although sector numbers greater
than 9 are sometimes used for copy-protection schemes. Note that sec
tors are numbered from 1, unlike drives, tracks, or heads (sides).

AL contains the number of sectors to be read. For diskettes, tbis is
normally either 1, 8, or 9. We are warned by IBM not to request 0 sectors.

ES:BX contains the buffer location. The location of the memory
area where the data will be placed is provided by a segmented address
given in this register pair. The ES:BX register pair is normally used for all
segmented addresses in the ROM-BIOS services.

Chapter 10: ROM-BIOS Diskette and Fixed Disk Services 191

The data area should be big enough to accommodate as much as is
read; keep in mind that while normal DOS sectors are 512 bytes, sectors
can be as large as 1,024 bytes ((*• see the format service that follows).
When this service reads more than one sector, it lays the sectors out in
memory one right after another.

CF contains the error status of the operation. The result of the oper
ation is actually reported through a combination of the carry flag (CF)
and the AH register. If CF is 0, it means there was no error and AH will
also be 0, in which case the number of sectors read will be returned in
AL. If CF is 1, it means there was an error and AH will contain the status
bits detailed under service 1, the status service.

When using service 2 with a diskette drive, or any other active dis
kette service, remember that the diskette drive motor takes some time to
reach a working speed and that none of these services waits for it to hap
pen. Although my own experience with the ROM-BIOS diskette services
suggests that this is rarely a problem, IBM recommends that any program
using these services try three times before assuming an error is real and
that it use the reset service between tries. The logic of the suggested oper
ation is as follows, partly expressed in BASIC:

10 ERROR.COUNT = 0

20 NHILE ERROR.COUNT < 3

30 'do read/write/verify/format operation
4 0 ' error checking here; if no error goto 90
50 ERROR.COUNT = ERROR.COUNT + 1

GO 'do reset operation
70 WEND

80 'act on error

90 ' carry on after success

m- Be sure to see the section on page 197 for the effect of the disk
base table on the reset operation.

Service 3: Write Disk Sectors

Service 3 writes one or more sectors to a disk—the reverse of ser
vice 2. All the registers, details, and comments given for service 2 apply
to service 3. ((•-Also see Figure 10-3.) The disk sectors must be formatted
before they can be written to.

Service 4: Verify Disk Sectors

Service 4 "verifies" the contents of one or more disk sectors. This op
eration is not what many people think it is: No comparison is made be
tween the data on the disk and the data in memory. The verification per
formed by this service simply checks that the sectors can be found and
read and that the cyclical redundancy check (CRC) is correct. The CRC

192 PROGEIAMMER'S GUIDE TO THE IBM PC

Parameters Status Results

DL = drive number If CP=0, then no error and AH = 0

DH=side or head number If CP = 1, then error and AH contains
service 1 status bits

CH = track number

CL = sector number

AL = number of sectors to be
read

ES;KX = address of buffer

Figure 10-3. The registers used for control
information by the read, unite, verify, and
format services

acts as a sophisticated parity check for the data in each sector and will
detect most errors, such as lost or scrambled bits, very reliably.

We most often use the verify service to check the results of a write
operation after using service 3, but we can verify any part of a disk at any
time. However, many people regard verification as an unnecessary opera
tion because the disk drives are so reliable and because ordinary error
reporting works so well. DOS doesn't even verify a write operation unless
we ask it to with the VERIFY ON command.

The verify service operates just like the read and write services and
uses the same registers. The only difference between them is that the ver
ify operation does not use any memory area and therefore does not use
the register pair ES;BX.

Service 5: Format Diskette Track

Service 5 formats one track. The format service operates very much
like the read and write services except that the sector number held in
register CL is not used. All other parameters shown in Figure 10-3 are
passed and returned in the registers.

Since formatting is done one full track at a time, we cannot format
individual sectors. However, we can specify individual characteristics for
each sector on a track.

Every sector on a track has four descriptive bytes associated with it
that are located in the data area pointed to by the register pair ES:BX.
They become the address marks that are later used to identify individual
sectors during the read, write, and verify operations. These four address

Chapter 10: ROM-BIOS Diskette and Fixed Disk Services 193

N Sector Size (bytes) Sector Size (K)

0 128 Vs

1 256 1/4

2 512 1/2

3 1,024 1

Figure 10-4. The four standard sizes of the
N size code

bytes are referred to as C for cylinder (which is a more general term for
track), H for head (or disk side), R for record (or sector number), and N
for number of bytes per sector (also called the size code). There should
he a 4-hyte field for every sector specified in AL.

When a sector is being read or written, the ROM-BIOS searches the
disk track for the sector's ID, the essential part of which is R, the record
or sector number. The cylinder and head parameters are not actually
needed in this address mark since the read/write head is seeked mechan

ically to the proper track and the side is selected electronically, hut they
are recorded and tested as a safety check.

The size code (N) can take on any one of the four standard values
shown in Figure 10-4. The normal setting is code 2—512 bytes.

Sectors are written on the disk in the order specified by the address
bytes and need not he written sequentially. In fact, the order of the sec
tors can he rearranged (interleaved), either for better performance or to
create timing differences for copy-protection purposes. The XT's fixed
disk has its sectors interleaved so that consecutive sectors are physically
located six sectors apart. DOS diskettes have their sectors recorded in se
quential order: 1, 2, 3, etc.

For a conventional nine-sector DOS diskette, the format addressing
for track 0, side 1 would he like this:

CHRN CHRN CHRN ... CHRN

0112 0122 0132 ... 0192

When a diskette track is formatted, the diskette drive pays attention to
the diskette's index hole and uses it as a starting marker to format the
track. The index hole is ignored in all other operations (read, write, or
verify), and tracks are simply searched for by their address marks.

Note that nothing in this format service specifies the initial data
value that is written into each formatted sector. That is controlled by the
disk base table {m- see page 196).

194 PROGRAMMER'S GUIDE TO THE IBM PC

Using Service 5 for Copy-Protection

Tracks can be formatted in all sorts of screwy ways, but most oper
ating systems can only read certain formats. Consequently, most copy
protection schemes are based on an unconventional format that prevents
an operating system from successfully reading and copying data. We can
choose from several different copy-protection methods:

■ We can rearrange the order of the sectors, which alters the access
time in a way that the copy-protection scheme can detect.

■ We can squeeze more sectors onto a track (ten is about the out
side limit for 512-byte sectors).

■ We can simply leave out a sector number.

■ We can add a sector with an oddball number (for example, we
can make R = 22).

■ We can specify one or more sectors to be an unconventional size.

■ We can record the wrong C and H values.

Any of these techniques can be used either for copy protection or for
changing the operating characteristics of the diskette. Depending on
what options are used, a conventionally formatted diskette may have its
unusual characteristics completely hidden from DOS in such a way that a
copy-protection mechanism is transparent to ordinary detection.

THE AT DISKETTE AND FIXED-DISK SERVICES

The AT uses disk drives that are different enough from the drives
used in the other models that several new BIOS diskette services were
added. They are designed to support the high-capacity diskettes and the
variety of fixed disks that the AT can use. We'll outline the new services
here, but we won't go into any great detail for the same reason we have
passed lightly over many other model-dependent features: Our main con
cern in this book is to explore the general principles and programming
practices that apply to the entire PC family, not to the peculiarities of one
model or another.

Service 8: Get Current Drive Parameters

Service 8 returns disk-drive parameters. DL reports the number of
disk drives (from 0 to 2); DH reports the maximum head-side number;
CH returns the maximum cylinder/track number; and CL returns the
highest sector number.

m

Chapter 10: ROM-BIOS Diskette and Fixed Disk Services 195

Service 9: Initialize Fixed-Disk Parameter Tables

Service 9 is used to set the disk base tables for two hard-disk drives.
The interrupt vectors for interrupts 65 (hex 41) and 70 (hex 46) are used
to provide the table addresses. This service would be used only to install
a "foreign" disk drive.

Service 10 and 11 (hex A and B): Read and Write Long
Service 10 reads, and service 11 writes, "long" sectors on 20-megabyte

fixed disks. A long sector includes an ECC (error correction code), a 4-
byte error code that provides high-level error checking and error correc
tion of the sector's data.

Service 12 (hex C): Seek to Cylinder

Service 12 performs a seek operation that positions the disk read/
write heads over a particular cylinder on the hard disk. Register DL pro
vides the drive ID, DH the head number, and CH the cylinder number.

Service 13 (hex D): Alternate Disk Reset

Service 13 performs an alternate drive-reset operation for the fixed-
disk drives. The drive is specified in register DL. This service operates the
same way as diskette service 0.

Service 16 (hex 10): Test for Drive Ready
Service 16 tests to see if the fixed-disk drive is ready. The drive is

specified in register DL and the status is returned in register AH.

Service 17 (hex 11): RecaUbrate Drive

Service 17 recalibrates individual fixed-disk drives. The drive is spec
ified in register DL and the status is returned in register AH.

Service 20 (hex 14): Controller Diagnostics
Service 20 invokes an internal diagnostic routine in the AT's disk

controller. The status of the controller is returned in register AH.

Service 21 (hex 15): Get Disk Type
Service 21 is used to inquire about the type of disk drive installed.

Given the drive ID in register DL, it returns in register AH one of four
disk-type indicators: If AH is 0, it means there is no drive present; if AH is
1, it indicates the presence of a diskette drive that cannot sense when the
disk has been changed (typical of most disk drives); if AH is 2, it indicates

196 PROGRAMMER'S GUIDE TO THE IBM PC

the presence of a diskette drive that can sense a change of disks (drives
like the AT's high-capacity diskette drives); finally, if AH is 3, it means that
a fixed-disk drive is installed. When the drive type is 3, the register pair
CX:DX acts as a 4-byte integer that gives the total number of disk sectors
on the drive.

Service 22 (hex 16): Change of Disk Status

Service 22 is used to inquire about a change of disks for drives that
can sense when a disk has been changed, like the AT's high-capacity
drives. Register AH is set to 0 to indicate no disk change and to 6 to indi
cate a change of disk. Register DL returns the number of the drive that
had a disk change.

The change-of-disk sensing in services 21 and 22 is very useful to
programs that need to know if a disk has been changed. For certain crit
ical disk operations, such as reading a file allocation table (FAT), it helps
to know if the disk has been changed or not. If it has been changed, then
any disk data held in memory may have to be discarded and reread.
When a disk drive can't report a diskette change, the program usually
has to assume that it might have been changed and react accordingly, at a
cost to program efficiency. If we are designing programs that control a
disk drive, it is clearly useful and more efficient for them to be able to
check this sort of information.

Service 23 (hex 17): Set Disk Type

Service 23 is used to set the diskette and drive combination for the
AT. If AL is 0, there is no drive; if AL is 1, it indicates a regular diskette in a
regular drive; if AL is 3, it indicates a high-capacity diskette in a high-
capacity drive. This service is used with the format service (service 5) to
set the disk type to be formatted.

THE DISK BASE TABLE

The overall operation of the diskette drive is controlled by a set of
parameters called the disk base table. Although a default version of the
disk base table is stored in ROM at the now-standard address of
F000:EFC7, we can create a new table. The new table can be put into
effect by placing it in ordinary memory and then changing the disk base
table interrupt vector to point to it. The vector for interrupt 30 (hex IE) is
reserved to point to the new table. Every release of DOS since the very
first 1.00 version has created its own disk base table rather than using the
one in the ROM.

Chapter 10: ROM-BIOS Diskette Services 197

Offset Use

0 Specify byte 1: step-rate time, head-unload time

1 Specify byte 2: head-load time, DMA mode

2 Wait time until motor turned off

3 Bytes per sector: 0 = 128; 1 = 256; 2 = 512; 3 = 1,024

4 Last sector number

5 Gap length between sectors for read/write operations

6 Data length when sector length not specified

7 Gap length between sectors for formatting operations

8 Data value stored in formatted sectors

9 Head-settle time

A Motor start-up time

Figure 10-5. The use of the eleven bytes in
the disk base table

The disk base table is composed of the eleven bytes shown in Figure
10-5. We'll go over them byte by byte and compare the values used by
DOS 2.10 with the default tables in the original version of the PC. Most of
the information stored in the disk base table is of little use to us unless we
plan to write a new disk base table to override the one used by DOS.

Bytes 0 and 1 are referred to as the specify bytes. They are part of
the command strings sent to the floppy-disk controller (FDC), which is
also known as the NEC (Nippon Electric Company) controller. The first
four bits of the first byte are the step-rate time, or SRT, which is the time
the ROM-BIOS allows for the diskette drive to move from track to track.

The default value is 8 milliseconds for each track. DOS 2.10 reduces this to

6 milliseconds, which speeds up the drive performance. There is also a
mode setting for DMA in the first byte because the PCjr does not have
DMA for disk data transfer. As a result, the DMA mode bit is not set in the
PCjr's default disk base table. Oddly enough, in the disk base set up by
DOS 2.10, this bit is set to indicate that DMA is present. (It's a mystery to
me why this doesn't cause any problems on the Junior.)

Byte 2, at offset 2, specifies how long the diskette motor is to be left
running after each operation. The motor is left on in case the diskette is
needed again. The value is in units of clock ticks (roughly 18 ticks per
second). All versions of the table have this set to 37 (hex 25)—meaning
that the motor stays on for roughly 2 seconds.

198 PROGRAMMER'S GUIDE TO THE IBM PC

Byte 3, at offset 3, gives the sector length code—the same N code
that is used in the format operation (•' see page 193 under service 5).
This is normally set to 2, representing the customary sector length of 512
bytes. In any read, write, or verify operation, the length code in the disk
base must be set to the proper value, especially when working with sec
tors of unconventional length.

Byte 4, at offset 4, gives the record number of the last sector on the
track. This value is 8 in the ROM's default table and 9 in DOS 2.10's table.

Byte 5, at offset 5, specifies the gap size between sectors, which is
used when reading or writing data. In effect, it tells the ROM-BIOS how
long to wait before looking for the next sector's address marking, so it
can avoid looking at nonsense on the diskette. In each standard disk base,
the gap size is set to 42 (hex 2A).

Byte 6, at offset 6, is called the data transfer length (DTL) and is set
to 255 (hex FF). This byte sets the maximum data length when the sector
length is not specified.

Byte 7, at offset 7, sets the size of the gap between sectors when a
track is formatted. Naturally, it is bigger than the search gap at offset 5.
The normal value for this is 80 (hex 50).

Byte 8, at offset 8, provides the data value that will be stored in each
byte of the sectors when a track is formatted. The standard value is hex
F6, the division symbol. We can change it to anything we want, if we can
think of a good reason to do so.

Byte 9, at offset 9, sets the head-settle time, which is how long the
system waits for vibration to end after seeking to a new track. The de
fault time for the head to settle is 25 (hex 19) milliseconds, but DOS 2.10
reduces it to 15 (hex F) milliseconds.

Byte 10, the final byte of the disk base at offset hex A, sets the
amount of time allowed for the diskette-drive motor to get up to speed
and is measured in Vs seconds. The default value is 4, or Vz second; DOS
2.10 changes this to 2, or V4 second.

It's fun to tinker with the disk base values; there are enough of them
to give us an opportunity for all sorts of excitement and mischief. The
following program illustrates how to change the data value stored in a
sector when it is formatted. We'll change it from hex F6 to hex AA just to
show how it's done:

10 DEF SEG

20 OFFSET = PEEK (120+0)+256*PEEK(1 20+1) ' disk base vector's offset
30 SEGMENT = PEEK (1 20 + 2)+256*PEEK (120 + 3) ' disk base vector's segment
40 DEF SEG = SEGMENT

Chapter 10: ROM-BIOS Diskette Services 199

50 'if the segment is in high memory then it's in ROM and can't be changed
60 IF SEGMENT >= JHFOOO THEN PRINT "RDM disk base in use."

70 FORMAT.DATA = PEEK(OFFSET+8) 'getolddata
80 PRINT "Format sets data to " HEX$(FORMAT.DATA)

90 POKE OFFSET+8, 4HAA ' change data value to hex AA

COMMENTS AND EXAMPLES

In the last chapter, where we covered the video ROM-BIOS services
for the display screen, I was able to recommend that you make direct use
of the ROM-BIOS services whenever you wished. But in the case of the
diskette ROM-BIOS services, things are different.

For the diskette operations that a program would normally want per
formed, the manipulation and supervision of diskettes should be left to
DOS and performed either through the conventional file services of a pro
gramming language or through the DOS services ((•- see Chapters 14
through 18). There are many reasons for this. The main reason is that it is
far easier to let DOS do the work. The DOS facilities take care of almost

every basic diskette function from interpreting the diskette format to re
directing data with the ASSIGN (drive) command. Most of the time it just
isn't necessary to go any deeper into the system software. However, there
are times when we want to work with the diskette contents in an abso

lute and precise way, usually for copy protection. This is when we should
use the ROM-BIOS services.

For our example, we'll use Pascal to write a couple of subroutines
that will read and write absolute diskette sectors. We start by defining
how we want the interface to look from the Pascal side, which the follow
ing program will illustrate. If you are not familiar with Pascal and don't
want to decipher this routine, you can pass over it and still get full benefit
from studying the assembly-language interface example that follows it.

PROGRAM DISKETTE.INTERFACE;

{this defines our segment read/write area: }
TYPE

SEGMENT_TYPE = ARRAY CO..511 I OF BYTE;

VAR

SEGMENT_DATA : SEGMENT_TYPE;

(this defines the assembly read/write routines: }
FUNCTION SEGREAD (

VAR S : SEGMENT_TYPE; {data area}
D : INTEGER; {drive number}
C : INTEGER; {track number}
H : INTEGER; {head number}
R : INTEGER) {segment number}

■ BYTE; {status code returned as a byte}

200 PROGRAMMER'S GUIDE TO THE IBM PC

EXTERNAL;

FUNCTION SEGWRITE (

VfiR S : SEGMENT.TYPE; {data area}
D : INTEGER; {drive number}
C : INTEGER; {track number}
H : INTEGER; {head number}
R : INTEGER) {segment number}

: BYTE; {status code returned as a byte}
EXTERNAL;

(this short program reads the disk boot record segment: }
BEGIN

IF SEGREAD (SEGMENT_DATA, 0, 0, 0, 1) = 0

THEN {no error}
ELSE ; {error}

END.

With these two routines prepared, the stage is set and we can go on
to the assembly-language interface routine. The form of the interface
routine should be familiar to anyone who has read the general remarks in
Chapter 8 on page 164 or studied the example in Chapter 9 on page 185.

In each of these examples, we're trying to show a variety of new
things. Here we have two separate assembly-language routines combined
into one. In this case, the two routines are identical except for their
names and the ROM-BIOS service code that they use. You'll also notice
that the methods used to take the parameters off the stack use addressing
references of the form [BP]-Fx. In the case of this interface, the first pa
rameter on the stack is an offset address, while the others are actual
values (drive number, etc.). Even though the first parameter is an address
and not a value, we handle it the same way because we are interested in
the address itself, not the value stored at that address. Once we have the
address, we simply hand it over to the ROM-BIOS service.

This is our segment read/write interface to Pascal. There are two
nearly identical procedures for reading and writing disk data.

INTERFACE SEGMENT 'CODE'

PUBLIC SEGREAD

PUBLIC SEGWRITE

the read service;; this is

SEGREAD PROC

PUSH

MOV

PUSH

POP

MOV

MOV

MOV

FAR

BP

BP,SP

DS

ES

BX , [BP + 14]

DL,[BP+12]

CH,IBP+IO]

; move DS...

;... to ES

; get data offset
; get drive number
; get track number

Chapter 10: ROM-BIOS Diskette Services 201

MOV DH,[BP+08] ; get side number
MOV CL,[BP+06] ; get sector number
MDV AL,1 ; ask for 1 sector
MQV AH,2 ; ask for read service
INT 19 ; request diskette service
MOV AL,AH ; put status where expected
POP BP

RET 10 ; 10 is size of parameters on stack
ENDP

the write service (only service number differs)

PROC FAR

PUSH BP

MOV BP,SP

PUSH DS ; move DS...

POP ES ;... to ES
MOV BX,[BP+14] ; get data offset
MOV DL,[BP+12] ; get drive number
MOV CH,[BP+10] ; get track number
MOV DH,[BP+08] ; get side number
MOV CL,CBP+06] ; get sector number
MOV AL,1 ; ask for 1 sector
MOV AH,3 ; ask for write service
INT 19 ; request diskette service
MOV AL,AH ; put status where expected
POP BP

RET 10 ; 10 is size of parameters on stack
ENDP

ENDS

END

11

ROM-BIOS

Keyboard Services

Accessing the Keyboard Services 204
Service 0: Read Next Keyboard Character 204
Service 1: Report Whether Character Ready 205
Service 2: Get Shift Status 205

Comments and Example 206

203

204 PROGRAMMER'S GUIDE TO THE IBM PC

Although the ROM-BIOS services for the keyboard are not as
numerous or as complicated as those for the display screen
(Chapter 9) and for the diskette drive (Chapter 10), the ROM-
BIOS keyboard services are important enough to warrant our

covering them in their own chapter. All other ROM-BIOS services are
gathered together in Chapter 12.

ACCESSING THE KEYBOARD SERVICES

The keyboard services are invoked with interrupt 22 (hex 16). There
are three services, numbered 0 through 2. As with all other ROM-BIOS
services, the keyboard services are selected in register AH.

Service 0: Read Next Keyboard Character

Service 0 reports the next keyboard input character. If a character is
ready in the ROM-BIOS keyboard buffer, it is reported immediately. If not,
the service waits until one is ready. As described on page 134, each key
board character is reported as a pair of bytes, which we call the main
and auxiliary bytes. The main byte, returned in AL, is either 0 for special
characters (such as the function keys) or else an ASCII code for ordinary
ASCII characters. The auxiliary byte, returned in AH, is either the charac
ter ID for special characters or the standard PC-keyboard scan code for
ASCII characters.

If no character is waiting in the keyboard buffer when service 0 is
called, the service waits until there is one, which essentially freezes the
program. The service we'll discuss next allows a program to test for key
board input without the risk of suspending program execution.

Contrary to what some versions of the IBM Technical Reference
manual suggest, services 0 and 1 apply to both ordinary ASCII characters
and special characters, such as function keys.

Service Description

0 Read next keyboard character

1 Report whether character ready

2 Get shift status

Figure 11-1. The three ROM-BIOS
keyboard services

Chapter 11: ROM-BIOS Keyboard Services 205

Service 1: Report Whether Character Ready
Service 1 reports whether a keyboard input character is ready. This

is a sneak-preview or look-ahead operation: Even though the character is
reported, it remains in the keyboard input buffer of the ROM-BIOS until it
is removed by service 0. The zero flag (ZF) is used as the signal: 1 indi
cates no input is ready; 0 indicates a character is ready. Take care to not
be confused by the apparent reversal of the flag numbers—1 means no
and 0 means yes, in this instance. When there is a character (ZF = 0), it is
reported in AL and AH, just as it is with service 0.

This service is particularly useful for two commonly performed pro
gram operations. One is test-and-go, where a program checks for keyboard
action but needs to continue running if there is none. Usually, this is done
to allow an ongoing process to be interrupted by a keystroke. The other
common operation is clearing the keyboard buffer. Generally, it's nice for
programs to allow users to type ahead, entering commands in advance,
however, in some operations (for example, at safety-check points, such as
"OK to end?") this can be unwise. In these circumstances, our programs
need to be able to flush the keyboard buffer, clearing it of any input. The
keyboard buffer is flushed by using services 0 and 1, as this program out
line demonstrates:

1 0 ' call service 1, to test whether the character is ready
20 WHILE ZF = 0

30 ' call service 0, to remove character
4 0 ' call service 1, to test for another character

50 WEND

Contrary to what some technical reference manuals suggest, ser
vices 0 and 1 apply to both ordinary ASCII characters and special charac
ters, such as function keys.

Service 2: Get Shift Status

Service 2 reports the shift status in register AL. The shift status is
taken bit by bit from the first keyboard status byte, which is kept at mem
ory location hex 417. Figure 11-2 on the next page describes the set
tings of each bit. {m- See pages 137 and 142 for information about the
other keyboard status bytes, at hex 418 and hex 488.)

Generally, service 2 and the stams bit information are not particu
larly useful. If you are planning to do some fancy keyboard programming,
however, they can come in handy. You'll frequently see them used in pro
grams that do unconventional things, such as differentiating between the
left and right Shift keys.

206 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

76543210 Meaning

X Insert state: 1 = active

X Caps Lock: 1 = active

X Num Lock: 1 = active

. X Scroll Lock: 1 = active

. . X . . . Alt shift: 1 = active (Alt depressed)

. . . X . . Ctrl shift: 1 = active (Ctrl depressed)

. . . . X . Normal shift: 1= active (left Shift depressed)

X Normal shift: 1 = active (right Shift depressed)

Figure 11-2. The keyboard status bits
returned to register AL using keyboard
service 2

COMMENTS AND EXAMPLE

If you are in a position to choose between the keyboard services of
your programming language or the ROM-BIOS keyboard services, I feel
that you could safely and wisely use either one. While in some cases there
are arguments against using the ROM-BIOS services directly, as with the
diskette services, those arguments do not apply as strongly to the key
board services. However, as always, I recommend that you fully examine
the potential of the DOS services before resorting to the BIOS services;
you may find all you need there, and the DOS services are more long-lived
in the ever-changing environments of personal computers.

Most programming languages depend on the DOS services for their
keyboard operations, a factor that has some distinct advantages. The pri
mary advantage is that the DOS services allow the use of die standard
DOS editing operations on string input (input that is not acted on until
the Return key is pressed). Provided that you do not need input control of
your own, it can save you a great deal of programming effort (and user
education) to let DOS handle the string input, either direcdy through the
DOS services or indirecdy through your language's services. But if you
need full control of the keyboard input, you'll probably end up using the
ROM-BIOS routines in the long run. Either way, the choice is yours.

For our assembly-language example of the use of keyboard services,
we'll get a litde fancier than we have in previous examples and show you
a complete buffer flusher. This routine will perform the action oudined
under keyboard service 1, the report-whether-character-ready service.

Chapter 11: ROM-BIOS Keyboard Services 107

Among the new things this buffer-flusher routine will illustrate is
the use of labels and branching. When we discussed the generalities of
assembly-language interface routines in Chapter 8, we mentioned that an
ASSUME CS statement is necessary in some circumstances, and you will
see one in action here.

When we use ASSUME CS here, we are actually misinforming the
assembler about the contents of the CS register, since CS will not neces
sarily be pointing to where we say it is. This Httle act of deception is
completely harmless, as long as all the branching instructions (such as
JNZ in our example) are short jumps. This is because a short jump takes
place relative to the current program location, which is indicated by the
combination CS:IP. To perform a short jump, the assembler generates an
address relative to IP, not to CS, and therefore doesn't really need to know
anything about CS. In effect, what we are doing is telling the assembler to
ASSUME something about the CS register only because the assembler is
too thick-headed to realize that it doesn't need to know it. Here is our
example:

; KBCLEAR, a routine to clear the keyboard buffer
INTERFACE SEGMENT

PUBLIC

ASSUME

'CODE'

KBCLEAR

CS:INTERFACE

KBCLEAR PRDC

PUSH

MDV

FAR

BP

BP,SP

MDV AH,1 ; first test for data

INT 22

WHILE:

JNZ SHORT RETURN ; while ZF = 0

MDV AH,0 ; discard data

INT 22

MDV AH,1 ; repeated test for data
INT 22

JMP SHORT WHILE ; wend

RETURN:

PGP

RET

BP

; return to caller

KBCLEAR ENDP

INTERFACE ENDS

END

12

Miscellaneous Services

RS-232 Serial Communications Services 210

Service 0: Initialize Serial Port Parameters 211

Service 1: Send Out One Character 212

Service 2: Receive One Character 213

Service 3: Get Serial Port Status 213

Cassette Tape Services 214
Service 0: Turn On Cassette Motor 215

Service 1: Turn Off Cassette Motor 215

Service 2: Read Data Blocks 215

Service 3: Write Data Blocks 215

Extended Services for the AT 216

Printer Services 217

Service 0: Send One Byte to Printer 217
Service 1: Initialize Printer 217

Service 2: Get Printer Status 217

Other Services 218

Interrupts: Print-Screen Service 219
Interrupt 17 (hex 11): Equipment-List Service 219
Interrupt 18 (hex 12): Memory-Size Service 220
Interrupt 24 (hex 18): BASIC Loader Service 221
Interrupt 25 (hex 19): Bootstrap Loader Service 221
Interrupt 26 (hex lA): Time-of-Day Services 222

209

210 PROGRAMMER'S GUIDE TO THE IBM PC

In this chapter, we'll be covering all the ROM-BIOS services that are
either not important enough or not complex enough to be treated
in their own chapters: RS-232 serial communications services, cas
sette tape services, AT extensions, and printer services. We'll also

cover some services that are odd enough to be considered miscellaneous,
even in a chapter of miscellany.

RS-232 SERIAL COMMUNICATIONS SERVICES

This section discusses the RS-232 asynchronous serial communica
tions port services in the ROM-BIOS. Before we begin describing the ROM-
BIOS services in detail, there are a few important things to know about the
serial communications port, particularly in the terminology department.
We assume you have a basic understanding of data communications, but
if you discover that you don't understand the following information, turn
to one of the many specialty books on communications for some back
ground information.

Many words are used to describe the RS-232 data path in and out of
the computer. One of the most common is port. However, this use of the
word port is completely different from our previous use of the word.
Throughout most of this book, we have used port to refer to the address
able paths used by the 8088 microprocessor to talk to other parts of the
computer within the confines of the computer's circuitry. All references
to port numbers, the BASIC statements INP and OUT, and the assembly-
language operations IN and OUT refer to these addressable ports. The
RS-232 asynchronous serial communications port differs because it is a
general-purpose I/O path, which can be used to interconnect many kinds
of information-processing equipment outside the computer. Typically, the
serial ports in the PC are used primarily for telecommunications (mean
ing a telephone connection through a modem) and also to send data to a
serial-type printer.

The serial communications services are invoked with interrupt 20
(hex 14). There are four services common to all IBM models. They're num
bered 0 through 3 and selected through register AH. («• See Figure 12-1.)

The original design of the IBM personal computers allowed up to
seven serial ports to be added, although it is rare for a computer to use
more than one or two. No matter how many serial ports there are, the se
rial port number is specified in the DX register. A single serial port adapter
is indicated by a zero in DX.

Chapter 12: Miscellaneous Services 211

Service Description

0 Initialize serial port parameters

1 Send out one character

2 Receive one character

3 Get serial port status

Figure 12-1. The four RS-232 serial
port services available through interrupt 20
{hex 14)

Service 0: Initialize Serial Port Parameters

Service 0 sets the various RS-232 parameters and initializes the serial
port. It sets four parameters: the baud rate, the parity, the number of stop
bits, and the character size (also called the word length). The parameters
are combined into one 8-bit code, which is placed in the AL register in the
order shown in Figure 12-2. The bit settings for each code are shown in
Figure 12-3. When the service is finished, the communication status is re
ported in AX, just as it is for service 3 ((•^ee service 3 for the details).

□ NOTE: Though it is painfully slotv, 300 baud used to be the most
commonly used baud rate for personal computers using modems. A rate
of 1,200 baud is now the most common, particularly for serious applica
tions that require faster transmission, though we're likely to see a shift
toward 2,400 baud. BlMThe PCjr has a maximum baud rate of 4,800. If
we try to set it to 9,600 baud, it will still transmit at only 4,800 baud.

Bit
76543210 Use

XXX Baud-rate code

. . .XX. . . Parity code
X . . Stop-bit code

XX Character-size code

Figure 12-2. The bit order of the serial port
parameters returned in register AL by
service 0

212 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

7 6 5

BAUD RATE

Value Bits per Second
Bit

4 3

PARITY

Value Meaning

0 0 0 0 110 0 0 0 None

0 0 1 1 150 0 1 1 Odd parity

0 10 2 300 1 0 2 None

0 1 1 3 600 1 1 3 Even parity

1 0 0 4 1,200

10 1 5 2,400 CHARACTER SIZE

1 1 0

111

6

7

4,800

9,600

Bit

1 0 Value Meaning

Bit

STOP BITS
0 0

0 1

0

1

Not used

Not used

2 Value Meaning 1 0 2 I'hix*

1 1 3 8-bit
One

Two
*There are only 128 standard ASCII characters, so they can be transmit
ted as 7-bit characters, rather than the more conventional 8-bit byte.

Figure 12-3. The bit settings for the four
serial port parameters

Service 1: Send Out One Character

Service 1 transmits one character out the serial port. The character
is placed in AL and AH is used to report the results. If AH is 0, then die
service was successful. If not, bit 7 of AH reports an error and the other
bits of AH report the type of error. These bits are oudined in the dis
cussion of service 3, the status service.

There is one anomaly in the error report supplied through this ser
vice: Since bit 7 reports that an error has occurred, it is not available to
indicate a time-out error (as the details in service 3 would suggest). Con-
sequendy, when this service, or service 2, reports an error, the simplest
and most reliable way to check the nature of the error is to use the com
plete status report given by service 3, rather than relying upon the less-
complete status code returned with the error through services 1 and 2.

Chapter 12: Miscellaneous Services 213

Service 2: Receive One Character

Service 2 receives one character from the communications line spec
ified in DX and returns it in the AL register. The service waits for a char
acter or any signal that indicates the completion of the service, such as a
time-out. AH reports the success or failure of the service in bit 7, as ex
plained in the discussion of service 1. Again, consider the advice under
service 1 for error handling and see service 3 for the error codes.

Service 3: Get Serial Port Status

Service 3 returns the complete serial port status in the AX register.
Each of the 16 bits individually reports a possible problem. The status bits
are divided into two groups: AH reports the line status (which is also
reported when errors occur with services 1 and 2) and AL reports the
modem status, when applicable. Figure 12-4 contains the bit codings of
the status bits. You will notice that some codes report errors, while oth
ers simply report a condition.

□ NOTE: There is one special thing ivorth noting about the time-out
error (AH, bit 7). The earliest version of the ROM-BIOS for the original PC
had a programming error that caused a serial-port time-out to be re
ported as a transfer-shift-register-emptylbreak-detect-error combination
(bits 01010000 rather than 10000000). This has been corrected on all sub
sequent versions of the ROM-BIOS, but it has caused many communica
tions programs to treat these error codes skeptically. You may wish to
keep this in mind, m- See page 59 for details on identifying the ROM-BIOS
version dates and machine ID codes.

Bit
76543210 Meaning (when set to 1)

Bit
76543210 Meaning (when set to 1)

AH Register (line status)
1 Time-out error

AL Register (modem status)

1

1 . . .

1 . .

. 1 .

. . 1

Transfer shift register empty
Transfer holding register empty
Break-detect error

Framing error
Parity error
Overrun error

1 Data ready

1 Received line signal detect
Ring indicator
Data-set-ready
Clear-to-send

Delta receive line signal detect
Trailing-edge ring detector
Delta data-set-ready
Delta clear-to-send

Figure 12-4. The bit coding for the status
bytes returned in register AX by service 3

214 PROGRAMMER'S GUIDE TO THE IBM PC

CASSETTE TAPE SERVICES

The cassette tape services are used when working with the cassette
tape connection, which is a part of some PC models, such as the original
PC and the PCjr, but is not part of the XT, the Portable PC, the AT, the
3270-PC, and some other PC family members. So the cassette port is
largely an orphaned feature—something that was created with the orig
inal PC on the assumption that there might be some demand for it. There
wasn't, and it has remained almost totally unused.

The intended purpose of the cassette port was to allow data and
programs, particularly BASIC programs, to be recorded on standard au
dio cassette tapes, as is done with many inexpensive diskless home com
puters. I have never encountered a PC program on tape for sale. In fact,
about the only use of the cassette port that I am aware of is the homespun
and jerry-rigged use of this port as a poor-man's serial port. Nevertheless,
IBM does support the use of the cassette port, both through the ROM-
BIOS services discussed here and through BASIC, which gives us the abil
ity to read and write either data or BASIC programs on tape.

Keep in mind that any use of the cassette tape port brings with it
certain inherent problems. First of all, not all PC models have this port.
Secondly, few PCs are equipped with the proper cable connections neces
sary to work with a cassette tape recorder. And third, the use of a cas
sette tape recorder involves considerably more manual intervention than
you might expect. For example, rewinding a tape cannot be done under
program control.

The cassette services are invoked with interrupt 21 (hex 15). There
are four services, numbered 0 through 3. As always, the service is spec
ified in register AH. ((•' See Figure 12-5.)

Service Description

0 Turn on cassette motor

1 Turn off cassette motor

2 Read data blocks

3 Write data blocks

Figure 12-5. The four ROM-BIOS
cassette services invoked through
interrupt 21 (hex 15)

Chapter 12: Miscellaneous Services 215

Service 0: Turn On Cassette Motor

Service 0 turns on the cassette motor, which is not an automatic
operation of the ROM-BIOS services as it is with the diskette services. Any
program using this service should be prepared for a slight delay while
waiting for the motor to start.

Service 1: Turn Off Cassette Motor

Service 1 turns off the cassette motor, also not an automatic opera
tion of the ROM-BIOS services as it is with the diskette services.

Service 2: Read Data Blocks

Service 2 reads one or more cassette data blocks. Cassette data is

transferred in standard-sized 256-byte blocks, just as diskette data nor
mally uses a standard 512-byte sector. The number of bytes to be read
is placed in the CX register. Although data is placed on tape in 256-byte
blocks, any number of bytes can be read or written. Consequently, the
number of bytes placed in the CX register need not be a multiple of 256.
The register pair EStBX is used as a pointer to the memory area where the
data is to be placed.

After the service is completed, DX contains the actual number of
bytes read, ES:BX points to the byte immediately after the last byte trans
ferred, and the carry flag (CF) is set to 0 or 1 to report the success or fail
ure of the operation. On failure, AH is set to report the nature of the
error using the code shown in Figure 12-6.

Service 3: Write Data Blocks

Service 3 writes one or more cassette data blocks of 256 bytes each
((•- see service 2). As with service 2, the CX register gives the count of
bytes requested and ES:BX points to the data area in memory. If the
amount of data being written is not a multiple of 256 bytes, the last data
block is padded out to full size.

Code Meaning

1 Cyclical redundancy check (CRC) error

2 Lost data transitions; bit signals scrambled

3 No data found on tape

Figure 12-6. The error code in register AH if
CF reports a failure to read the data blocks;
returned by service 2

216 PROGRAMMER'S GUIDE TO THE IBM PC

AT

After the service is completed, CX should be decremented to zero
and ES:BX should point just past the last memory byte that was written.

Curiously, there are no error signals provided for this service, essen
tially because a cassette tape recorder is not able to inform our computer
of any difficulties. This forces the ROM-BIOS to write data in blind faith
that all is well. Needless to say, it would be a good idea to read back any
data written, just to check it.

EXTENDED SERVICES FOR THE AT

Several new BIOS services, listed below, were introduced with the
AT to support the AT's extended memory and some of its more advanced
features. They are called through interrupt 21 (hex 15) just like the cas
sette I/O services, with the service number (ranging from hex 80 through
91) placed in the AH register. We will not go into detail about these ser
vices in this chapter, m- but suggest you see Chapter 13 and the BIOS list
ing in the AT Technical Reference manual for more information.

Service (hex) Description

80 Device open

81 Device close

82 Program termination

83 Event wait

84 Joystick support

85 SysReq-key press

86 Wait

87 Move block

88 Get extended memory size

89 Switch to virtual memory
{CAUTION: See BIOS listing before use)

90 Device busy loop

91 Set flag and complete interrupt

Figure 12-7. The twelve extended services
for the AT available through interrupt 21
(hex 15)

Chapter 12: Miscellaneous Services 217

PRINTER SERVICES

The ROM-BIOS printer services support printer output. In the stan
dard PC world, these services apply strictly to the parallel printer adapter.
On some PC models, however, printer output can be automatically re
routed to a serial port. The PCjr's ROM-BIOS provides this feature.

The ROM-BIOS printer services are invoked with interrupt 23 (hex
17). There are three services, numbered 0 through 2, requested through
the AH register. ((•- See Figure 12-8.) The general PC-family design allows
more than one printer to be installed, so a printer number should be spec
ified in register DX for all these services. Printer number 0 is automat
ically used by the print-screen service ((•■ see page 218).

Service 0: Send One Byte to Printer
Service 0 sends one byte to the printer, placing the byte that is to be

printed in AL. When the service is completed, AH is then set to report
the printer status {»■ see service 2), which can be used to determine the
success or failure of the operation, m- See the special notes on printer
time-out under service 2.

Service 1: Initialize Printer
Service 1 initializes the printer. To do this, the service simply sends

two control codes (hex 08 and OC) to the printer control port (normally
port 762, hex 2FA). As with the other two services, the printer status is
reported in AH.

Service 2: Get Printer Status
Service 2 reports the printer status in the AH register. The individ

ual bit codes are shown in Figure 12-9.

Service Description

0 Send one byte to printer
1 Initialize printer
2 Get printer status

Figure 12-8. The three ROM-BIOS
printer services invoked through interrupt
23 (hex 17)

218 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

76543210 Meaning (when set to 1)

1 Printer not busy (0 = busy)

. 1 Acknowledgment from printer

. . 1 Out-of-paper signal

. . . 1 Printer selected

. . . . 1 . . . I/O error

1 . . Not used

1 . Not used

1 Time-out

Figure 12-9. The printer status bits reported
in the AH register by services 0,1 and 2

The printer time-out has caused some difficulty in the IBM personal
computers. Any I/O driver needs to set a time limit for a response from
the device being controlled. Ideally, this time limit should not be exces
sively long, so that an unresponsive device can be reported in a timely
manner. Unfortunately, there is a normal printer operation that can take
a surprisingly long time: a page eject (or a skip to the top of the next
page from near the top of the current page). The time allowed varies from
version to version of the ROM-BIOS. Treat a time-out signal with care.

OTHER SERVICES

We now come to the grab bag of all other ROM-BIOS services: some
services that IBM intended for us to use and some—most notably a ser
vice that sends a carriage-return/line-feed character combination to the

Interrupt
Dec Hex Description

5 5 Print-screen service routine

17 11 Equipment-list service

18 12 Memory-size service

24 18 Activates ROM-BASIC language
25 19 Activates bootstrap start-up routine

26 lA Time-of-day services

Fig^re 1240. Six miscellaneous ROM-BIOS
services supported by IBM, and their
associated interrupts

Chapter 12: Miscellaneous Services

display screen—that IBM didn't intend for us to use (I don't recommend
it either). In this section, we'll cover the six interrupts shown in Figure
12-10, one by one.

Interrupt 5: Print-Screen Service
Interrupt 5 activates the print-screen service. It is used by the key

board support routines in response to the Shift-PrtSc combination. Any
other program that wishes to perform a print-screen operation may
safely and conveniently do so by generating interrupt 5. The print-screen
subroutine was specifically made to be interrupt-driven so that we could
incorporate the service into our own programs.

The print-screen service will maintain the current cursor position
on the screen and successfully print any printable characters from the
screen in either the text or graphics mode. It makes use of the standard
video services (those that waltz the cursor around the screen and read
characters from the screen buffer), and also makes use of the standard
printer services.

This service directs all of its output to printer number 0, the default
printer. There are no input or output registers for this service. However,
a status code is available at low-memory location hex 500 (m- see page
57). If the byte at that location has a value of 255 (hex FF), then a previous
print-screen operation was not completed successfully. A value of 0 indi
cates there was no error and the print-screen operation is ready to go. A
value of 1 indicates that a print-screen is currently in progress; any re
quest for a second one will be ignored.

Interrupt 17 (hex 11): Equipment-List Service
Interrupt 17 returns a basic report of the equipment installed in the

computer. It is exactly the same as the information stored at low-memory
location hex 410 (•- see Chapter 3, page 52). The report is coded as
shown in Figure 12-11, in the bits of a 16-bit word, which is placed in regis
ter AX. m- See interrupt 18 for a complementary service.

The equipment information is gathered on an accurate-as-possible
basis and may not be exactly correct. Different methods are used for ac
quiring the information in the various models.

The equipment list is assembled only once at power-up time and is
then left in memory. This means that we can change the equipment list

220 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

FEDCBA98 76543210 Meaning

XX Number of printers installed

• ■ X Serial printer: 1 = installed (PCjr only; not PC or XT)

• • • X Came adapter: 1 = installed (always true for PCjr)

.. ..XXX. Number of RS-232 serial ports

X DMA chip: 0 = installed (1 = not installed in ordinary PCjrs)

XX +1= number of diskette drives: 0 = 1 drive (see bit 0)

..XX.. . . Initial video mode: 10 = 80-column color, 11= monochrome
(PC or XT); 01 =40-column (PCjr); 00 = none of the above

. . . . XX . . System board RAM: 11 = 64K (normal for all models)

X . 1 if math co-processor installed

X 1 if any diskettes (if so, see bits 7 and 6)

Figure 12-11. The bit coding for the
equipment list reported in register AX
and invoked by interrupt 17 (hex 11)

under software control. For example, we could take some equipment off
line so that it is not used. However, modifying the equipment list is risky
business—don't bet on its success. (•- See interrupt 25, page 221, for com
ments on how to tamper with the equipment list and get reliable results.

The format of the equipment list was defined for the original PC
model. As a result, some parts of the list are curiously mismatched to
other models. Bit 13 (the serial-printer bit) is unused and undefined for all
IBM models before the PCjr. On the Junior, this bit is set whenever
the power-up routines in the ROM-BIOS find no parallel-printer option in
stalled and find anything reasonable plugged into the serial port.

Interrupt 18 (hex 12): Memory-Size Service

Interrupt 18 invokes the service that reports the available memory
size in kilobytes. It is exactly the same as the information stored at low-
memory location hex 413 (:•- see page 52). The value is reported in AX.

See interrupt 17 for a complementary service.
In the standard models of the PC, this value is taken from the setting

of the physical switches inside the system unit. These switches are sup
posed to reflect the actual memory installed, although under some cir
cumstances they are set to less memory than is acmally present.

Chapter 12: Miscellaneous Services

In the PCjr, the memory size is determined by software exploration
during power up. The Junior adjusts the reported memory size by 16K to
set aside memory for the display screen. When a program uses video
modes 9 and 10, the display screen uses 32K, which reduces the usable
memory. However, this is not reflected in the ROM-BIOS record of avail
able memory reported by this interrupt service. The use of video modes 9
and 10 is a transitory phenomenon that only takes place within the opera
tion of a program, and is not an ongoing state. So, there is very little
reason for the ROM-BIOS to change its record of memory size when these
modes are used.

Interrupt 24 (hex 18): BASIC Loader Service
Interrupt 24 is normally used to activate ROM-BASIC. It is made

available as an interrupt service primarily to allow the default BASIC to be
overridden. Wl:i This is the technique used by the PCjr to load the BASIC
cartridge as the default power-on BASIC instead of loading the computer's
built-in ROM "cassette" BASIC.

Any program that wishes to do so may activate BASIC (or whatever
has replaced it) by generating interrupt 24. This can be done to inten
tionally bring up BASIC, or, alternatively, to abruptly dead-end a program.
(•- However, see the next interrupt, number 25, for a better way to dead
end a program.

Interrupt 25 (hex 19): Bootstrap Loader Service
Interrupt 25 activates the standard bootstrap routine for the com

puter, which produces a similar result to powering on and nearly the
same net result as the Ctrl-Alt-Del key combination. However, this boot
strap interrupt bypasses both the lengthy memory check of the power-on
routines and the reset operations of Ctrl-Alt-Del.

There are two uses that I know of for this interrupt service. One is
to immediately shut down, or dead-end, the operation of the computer.
This can be done by a program when it encounters a situation that it
finds intolerable, such as an apparent violation of copy protection. Many
copy-protected programs end a program in exacdy this way when they
detect some hanky-panky.

The other use for this operation is to reboot the computer without
going through the reset and restart operations, which would, for exam
ple, recalculate the memory size and equipment list reported by inter
rupts 17 and 18. This interrupt is particularly useful for any program that
modifies either of these two items. The reasoning is simple: If we wish to

222 PROGRAMMER'S GUIDE TO THE IBM PC

change the equipment list or the memory size (for example, to set aside
some memory for a RAM-disk), we cannot reliably count on all pro
grams—including DOS—to check the actual memory or equipment
specifications each time they are used. But a program could set aside
some memory, change the memory specification, and then use this inter
rupt to reboot the system. When that is done and DOS is activated, DOS
would take its own record of the available memory from the value set by
our program. Neither DOS nor any civilized DOS program would be
aware of, or interfere with, the memory area that was set aside.

To give you a brief example, here's a fragment of assembler code
that will change the BIOS's record of the memory size and then use inter
rupt 25 to reboot the computer:

MOV AX,40H ; get BIOS data segment of hex 40...
MOV ES,AX .into ES segment register
MDV WORD PTR ES:19,256 ; set memory to 256K
INT 25 ; reboot system

Interrupt 26 (hex lA): Time-of-Day Services

Interrupt 26 provides the time-of-day services. Unlike any of the
other interrupts covered in this section, but like all other ROM-BIOS ser
vices, more than a single service can be activated by this interrupt. The
two normal services, numbered 0 and 1, are specified, as usual, in register
AH. ((•'See Figure 12-12.)

The ROM-BIOS maintains a time-of-day clock that is based on a
count of system-clock ticks since midnight. The system clock "ticks" by
generating interrupt 8 at specific intervals. On each clock tick, the ROM-
BIOS interrupt-8 service routine increments the clock count by 1. When

Service Description Register Settings

0 Read current clock count CX = high-order part of clock count

DX = low-order part of clock count

AL = 0 if timer has not passed
24-hour period

AL <> 0 if timer is counting new day

1 Set current clock count CX = high-order part of clock count

DX = low-order part of clock count

Figure 12-12. The two ROM-BIOS time-
of-day services invoked by interrupt 26,
and their register settings

Chapter 12: Miscellaneous Services

the clock count passes 24 hours' worth of ticks, the count is reset to 0
and a record is made of the fact that midnight has been passed. This rec
ord is not in the form of a count, so there is no way to detect if two
midnights have passed.

The clock ticks at a rate that is almost exactly 1,193,180 ̂ 64K, or
roughly 18.2 times a second. The count is kept as a 4-byte integer at low-
memory location hex 46C. The midnight count value, used to compare
against the rising clock count, is 1,573,040 (hex 1800B0); when the clock
hits the midnight count value, the byte at location 470 is incremented (see
page 56), and the timer is reset. When DOS needs to know the time, it reads
the clock count through the time-of-day service and calculates the time
from this raw count. If it sees that the timer has been reset, it also in
crements the date.

We can calculate the current time of day from the clock count using
these BASIC formulas:

HOUR = CLOCK \ 65543 (hex 10007)
REMAINDER = CLOCK MOD 65543

MINUTES = REMAINDER \ 1092 (hex 444)

REMAINDER = REMAINDER MOD 1092

SECONDS = REMAINDER \ 18.21 ' for precision; otherwise use 18
REMAINDER = REMAINDER MOD 18.21

HUNDREDTHS = CINT(REMAINDER ♦ 100)

In reverse, we can calculate a nearly correct clock count from the time,
by this formula:

COUNT = (HOUR • 65543.33) + (MINUTES • 1092.38)
+ (SECONDS ♦ 18.21) + (HUNDREDTHS • .182)

D] As we will see shortly, the BIOS enhancements that come with the AT
include time-of-day and date services that perform some of these tasks
automatically.

Service 0: Read Current Clock Count

Service 0 returns the current clock count in two registers: the high-
order portion in CX and the low-order portion in DX. AL is 0 if midnight
has not passed since the last clock value was read or set, and AL is 1 if
midnight has passed. The midnight signal is always reset when the clock
is read. It is the responsibility of any program using this service to use the
midnight signal to keep track of date changes. DOS programs normally
should not use this service directly. If they do, they must undertake the
tedious chore of calculating and setting a new date.

□ NOTE: I think it curious that version 2.00 of DOS did not consis
tently update the date on the midnight signal. The next version of DOS,
2.10, and all other versions of DOS, do.

224 PROGRAMMER'S GUIDE TO THE IBM PG

AT

Service 1: Set Current Clock Count

Service 1 sets the clock count in location hex 46C.

The AT Time-of-Day Services

Services 2 through 7, also invoked through interrupt 26, were intro
duced in the AT version of the BIOS. Services 2, 3,4 and 5 read and set the
real time clock, providing both time-of-day and date information, and
services 6 and 7 set an alarm to interrupt up to 24 hours from the present
time, For more information on these services, see page 239 or the BIOS
listing in the AT Technical Reference manual.

13

ROM-BIOS

Service Summary

Short Summary 226

Long Summary 228

225

226 PROGRAMMER'S GUIDE TO THE IBM PC

This chapter presents a summary of the ROM-BIOS service rou
tines discussed in Chapters 8 through 12 to provide you with a
quick reference guide. Once you understand the ROM-BIOS ser
vices, these tables should provide you with all the program

ming information you need.

SHORT SUMMARY

In this section, we briefly list all the ROM-BIOS services, so that they
can be seen together, at a glance.

Interrupt
Subject Dec Hex Service (hex) Description Model Specific

Print screen 5 5 n/a Send screen contents to printer
Video 16 10 0 Set video mode

Video 16 10 1 Set cursor size

Video 16 10 2 Set cursor position

Video 16 10 3 Read cursor position

Video 16 10 4 Read light-pen position

Video 16 10 5 Set active display page

Video 16 10 5(AL;128) Get display page registers

Video 16 10 5(AL:129) Set CPU display page register
Video 16 10 5(AL:130) Set CRT display page register
Video 16 10 5(AL:131) Set both display page registers
Video 16 10 6 Scroll window up

Video 16 10 7 Scroll window down

Video 16 10 8 Read character and attribute

Video 16 10 9 Write character and attribute

Video 16 10 A Write character

Video 16 10 B Set color palette

Video 16 10 C Write pixel dot

Video 16 10 D Read pixel dot

Video 16 10 E Write character as TTY

Video 16 10 F Get current video mode

Video 16 10 10(AL;0) Set one palette register in
Video 16 10 10(AL;1) Set border register m

Video 16 10 10(AL:2) Set all palette registers in

Video 16 10 13 Write character string EH

Figure 13-1. A short summary of the
ROM-BIOS services

Chapter 13: ROM-BIOS Service Summary 227

Subject

Interrupt

Dec Hex Service (hex) Description Model Specific

Equipment 17 11 n/a Get list of petipherai equipment

Memory 18 12 n/a Get usable memory size (in K-bytes)

Disk 19 13 0 Reset disk system

Disk 19 13 1 Get disk status

Disk 19 13 2 Read disk sectors

Disk 19 13 3 Write disk sectots

Disk 19 13 4 Vetify disk sectors

Disk 19 13 5 Format disk ttack

Disk 19 13 8 Get cutrent dtive parameters EH

Disk 19 13 9 Initialize fixed-disk parameter tables m

Disk 19 13 A Read long m

Disk 19 13 B Write long m

Disk 19 13 C Seek to cylinder m

Disk 19 13 D Alternate disk reset Eg

Disk 19 13 10 Test for drive ready Eg

Disk 19 13 11 Recalibrate drive Eg

Disk 19 13 14 Controller diagnostics Eg

Disk 19 13 15 Get disk type Eg

Disk 19 13 16 Change of disk status Eg

Disk 19 13 17 Set disk type Eg

Serial port 20 14 0 Initialize serial port parameters

Serial port 20 14 1 Send out one chatactet

Serial port 20 14 2 Receive one chatactet

Serial port 20 14 3 Get serial port status

Cassette 21 15 0 Tutn on cassette motor

Cassette 21 15 1 Turn off cassette motor

Cassette 21 15 2 Read data blocks

Cassette 21 15 3 Write data blocks

Devices 21 15 80 Device open m

Devices 21 15 81 Device close Eg

Devices 21 15 82 Device program termination Eg

Devices 21 15 83 Event wait Eg

Joystick 21 15 84 Joystick support Eg

System Request 21 15 85 Sys Req key press Eg

Devices 21 15 86 Wait Eg

Devices 21 15 87 Move block Eg

Figure 13-1. A short summary of the
ROM-BIOS services (continued)

228 PROGRAMMER'S GUIDE TO THE IBM PC

Subject
Interrupt

Dec Hex Service (hex) Description Model Specific

Memory ^ 21 15 88 Get extended memory size Eg
Memory 21 15 89 Switch to virtual memory Eg
Devices 21 15 90 Device busy loop Eg
Devices 21 15 91 Set flag and complete interrupt Eg
Keyboard 22 16 0 Read next keyboard character

Keyboard 22 16 1 Report whether character ready

Keyboard 22 16 2 Get shift status

Keyboard 22 16 3{AL:0) Reset typematic PTil

Keyboard 22 16 3(AL:1) Increase initial delay fn

Keyboard 22 16 3(AL;2) Increase continuing delay in-1

Keyboard 22 16 3(AL:3) Increase both delays Plil

Keyboard 22 16 3(AL:4) Turn off typematic Plil

Keyboard 22 16 4(AL:0) Click off PTil

Keyboard 22 16 4(AL:1) Click on Plil

Printer 23 17 0 Send one byte to printer

Printer 23 17 1 Initialize printer

Printer 23 17 2 Get printer status

BASIC 24 18 n/a Switch control to BASIC

Bootstrap 25 19 n/a Reboot computer

Time 26 lA 0 Read current clock count

Time 26 lA 1 Set current clock count

Time 26 lA 2 Read real time clock Eg
Time 26 lA 3 Set real time clock Eg
Time 26 lA 4 Read date from real time clock Eg
Time 26 lA 5 Set date in real time clock Eg
Time 26 lA 6 Set alarm Eg
Time 26 lA 7 Reset alarm Eg

Figure 13-1. A short summary of the
ROM-BIOS services (continued)

LONG SUMMARY

In this section, we expand the previous summary table to show the
register usage for input and output parameters. The previous section is
best used to quickly find which service you need; this section is best used
to quickly find how to use each service.

Chapter 13: ROM-BIOS Service Summary 229

Service

Interrupt

(hex)

Register
Input Output Description

Print screen 05 AH = 05 n/a Send screen contents to

printer. Status and result
byte at low-memory
address hex 500

(0050:0000)

Video Services

Set video mode 10 AH = 00

AL=video mode

Video modes in AL:

00:40 X 25 text, 16 grey
01: 40 X 25 text, 16/8 color
02: 80 X 25 text, 16 grey
03: 80 X 25 text, 16/8 color
04: 320 X 200 graphics,
4 color

05: 320 X 200 graphics,
4 grey

06: 640 X 200 graphics,
b/w

07: 80 X 25 text, b/w
08: 160 X 200 graphics,
16 color

09: 320 X 200 graphics,
16 color

OA: 640 X 200 graphics,
4 color

Set cursor size 10 AH = 01

CH = starting scan line
CL = ending scan line

none Color/Graphics Adapter uses
lines 0-7

Monochrome Adapter uses
lines 0-13

Set cursor position 10 AH = 02

BH = display page number
DH = row

DL = column

none

Read cursor position 10 AH = 03

BH = display page number
CH = starting scan line
CL=ending scan line
DH = row

DL = column

Read light-pen position 10 AH = 04 AH = pen trigger signal
BX = pixel column
CH = pixel row
DH = character row

DL = character column

Set active display page 10 AH = 05

AL = page number
(continued)

Figure 13-2. A complete summary of the
ROM-BIOS services

230 PROGRAMMER'S GUIDE TO THE IBM PC

Interrupt Register
Service (hex) Input Output Description

Wideo Services (continued)

Get display page
register

10 AH = 05

AL = 80

BH = CRT page register
BL = CPU page register ITil

Set CPU display page
register

10 AH = 05

AL = 81

BL = CPU page register

BH = CRT page register
BL = CPU page register PTil

Set CRT display page
register

10 AH = 05

AL = 82

BH = CRT page register

BH = CRT page register
BL = CPU page register ca

Set both display page
registers

10 AH = 05

AL = 83

BH = CRT page register
BL = CPU page register

BH = CRT page register
BL = CPU page register

EE]

Scroll window up 10 AH = 06

AL = lines to scroll up
BH = filler attribute

CH = upper row
CL = left column

DH = lower row

DL = right column

none

Scroll window down 10 AH = 07

AL = lines to scroll down

BH = filler attribute

CH = upper row
CL = left column

DH = lower row

DL = rigbt column

none

Read character and
attribute

10 AH = 08

BH = display page number
AH = attribute

AL = character

Write character and

attribute
10 AH = 09

AL = character

BH = page number
BL = attribute

CX = number of characters

to repeat

none

Write character 10 AH = OA

AL = character

BH = page number
BL = color in graphics
mode

CX = count of characters

none

Set color palette 10 AH = OB

BH = palette color ID
BL = color to be used with

palette ID

none

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

Chapter 13: ROM-BIOS Service Summary 231

Interrupt Register

Service (hex) Input Output Description

Video Services (continued)

Write pixel dot 10 AH = OC

AL = color

CX = pbcel column
DL = pixel row

none

Read pixel dot 10 AH = OD

CX = pixel column
DL = pixel row

AL = color read

Write character as TTY 10 AH = OE

AL = character

BH = page number
BL = color for graphics
mode

none

Get current video mode 10 AH = OF AH = width in characters

AL = video mode

BH = page number

iTil 10
Set one palette register

AH = 10

AL = 00

BH = palette value
BL = palette register

none

in 10
Set border register

AH = 10

AL = 01

BH = border color

none

iTil 10
Set all palette registers

AH = 10

AL = 02

ESiDX = pointer to
palette values

none

EH 10
Write string; don't
move cursor

AH = 13

AL = 00

BL = attribute

BH = display page number
DX = starting cursor
position

CX = length of string
ES;BP = pointer to start

of string

EH 10
Write string; move
cursor after string

AH = 13

AL = 01

BL = attribute

BH = display page number
DX = starting cursor
position

CX = length of string
ES;BP = pointer to start
of string

none

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

111 PROGRAMMER'S GUIDE TO THE IBM PC

Interrupt Register
Service (hex) Input Output Description

Video Services (continued)

1

o

AH = 13 none

Write string of AL = 02

alternating char BH = display page number
acters, attributes; don't DX = starting cursor
move cursor position

CX = length of string
ESiBP = pointer to start
of string

ES
Write string of
alternating char
acters, attributes;
move cursor

10 AH = 13

AL = 03

BH = display page number
DX = starting cursor
position

CX = length of string
ESiBP = pointer to start
of string

none

Equipment-List Service

Get list of peripheral
attached equipment

11 AX = equipment list,
bit-coded

Bit settings in AX;
00 = diskette drive

01 = math coprocessor
02, 03 = system board
RAM in 16K blocks

04, 05 = initial video mode:
00 = unused;
01 =40 x25 color;
10 = 80 X 25 color;
11 = 80x25 b/w

06, 07 = number of
diskette drives — 1

08 = DMA present?
00 = yes; 01 =no

09, 10, 11= number of
RS-232 cards in system

12 = game I/O attached (not
used on AT)

13 = serial printer attached
(Jr. only)

14,15 = number of printers
attached

Memory Service

Get usable memory size 12 none AX = memory size
(in K-bytes)

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

Chapter 13: ROM-BIOS Service Summary 233

Service

Interrupt
(hex) Input

Register
Output Description

Disk Services

Reset disk system 13 AH = 00 none

Get disk status 13 AH = 01 AH = status code (hex)

Status values:

AH = A: bad sector flag (F)
AH = AA: drive not ready (F)
AH = BB: undefined error (F)
AH = CC: write fault (F)
AH = EO: status error (F)
AH = 1: bad command

AH = 2: address mark not

found

AH = 3: write attempted on
write-protected disk (D)

AH = 4: sector not found

AH = 5: reset failed (F)

AH = 6: diskette removed (D)
AH = 7: bad parameter

table (F)
AH = 8: DMA overrun (D)
AH = 9: DMA across 64K

boundary
AH = A: bad sector flag (F)
AH = 10: bad CRC or ECC

AH= 11: ECC corrected data
error (F)

AH = 20: Controller failed
AH = 40: seek failed
AH = 80: time out

(F) = fixed disk only
(D) = for diskette only

Read disk sectors 13 AH = 02

AL=number of sectors

CH = track number

CL = sector number
DH = bead number

DL = drive number

ES:BX = pointer to buffer

CF = success/failure flag
AH = status code

AL = number of sectors

read

Status codes in AH:

see diskette service 01

Write disk sectors 13 AH = 03

AL = number of sectors

CH = track number
CL = sector number

DH=bead number

DL = drive number

ES:BX = pointer to buffer

CF = success/failure flag
AH = status code

AL = number of sectors

written

Status codes in AH:

see disk service 01

Verify disk sectors 13 AH = 04

AL = number of sectors

CH = track number

CL = sector number

DH = bead number

DL=drive number

CF = success/failure flag
AH = status code

AL = number of sectors

verified

Status codes in AH:

see disk service 01

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

234 PROGRAMMER'S GUIDE TO THE IBM PC

Service

Interrupt
(hex)

Register
Input Output Description

Disk Services (continued)

Format disk track 13 AH = 05 CF = success/failure signal Status codes in AH:
AL = number of sectors AH = status code see disk service 01
CH = track number

CL = sector number

DH = head number

DL = drive number

ES:BX = pointer to list of
4-byte address fields:
Byte 1 = track
Byte 2 = head
Byte 3 = sector
Byte 4 = bytes/sector: 00= 128 01 = 256

10 =̂ 512 11 = 1024

m 13 AH = 08 DL = number of drives Status codes in AH:
Get current drive DH = max. number of sides see diskette service 01
parameters CL = max. number of

sectors

CH = max. number of

tracks

CF = success/failure flag
AH = stams code

m 13 AH = 09 CF = success/failure flag Interrupt 41 points to table
Initialize two fixed-disk AH = status code for drive 0
base tables Interrupt 46 points to table

for drive 1

Status codes in AH:

see diskette service 01

Eg 13 AH = OA CF = success/failure flag Status codes in AH:
Read long DL = drive ID AH = status code see diskette service 01

DH = head number

CH = cylinder number
CL = sector number

ES:BX = pointer to buffer

Eg 13 AH = OB CF = success/failure flag Status codes in AH:
Write long DL = drive ID AH = status code see diskette service 01

DH = head number

CH = cylinder number
CL = sector number
ES:BX = pointer to buffer

Eg 13 AH = OC CF = success/failure flag Stams codes in AH:
Seek to cylinder DL = drive ID AH = status code see diskette service 01

DH = head number

CH = cylinder number

Eg 13 AH = OD CF = success/failure flag Stams codes in AH:
Alternate disk reset DL = drive ID AH = status code see diskette service 01

Eg 13 AH =10 CF = success/failure flag Stams codes in AH:
Test for drive ready DL = drive ID AH = status code see diskette service 01

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

Chapter 13: ROM-BIOS Service Summary 235

Interrupt Register

Service (hex) Input Output Description

Diskette Services (continued)

EH
Recalibrate drive

13 AH = 11

DL = drive ID

CF = success/failure flag
AH = status code

Status codes in AH:

see diskette service 01

EH
Controller diagnostics

13 AH = 14 CF = success/failure flag
AH = status code (see
service)

Status codes in AH:

see diskette service 01

m
Get disk type

13 AH = 15

DL = drive ID

AH = disk type
CX, DX = number of
512-byte sectors
when AH = 3

Disk types:
AH = 0: disk not there

AH = 1: diskette, no change
detection present
AH = 2: diskette, change
detection present
AH = 3: fixed disk

EH
Change of disk status

13 AH = 16 DL = drive that had disk

change
AH = disk change status:
00 = no disk change
06 = disk changed

EH
Set disk type

13 AH = 17

AL = disk type
Disk type set in AL:
AL = 00: no disk

AL = 01: regular diskette in
regular drive

AL = 03: high-capacity
(1.2-megabyte) diskette in
high-capacity drive

Serial Port Services

Initialize serial port
parameters

14 AL = serial port parameters
AH = 00

DX = serial port number

AX = serial port status Serial port parameter
bit settings;
00,01 = word length
10 = 7 bits; 11=8 bits
02 = stop bits: 0 = 1; 1 = 2
03,04 = parity:
00,10 = none; 01 = odd;
11= even

05, 06, 07 = baud rate;
000 = 110;
001 = 150;
010 = 300;
011 = 600;
100 = 1,200;
101=2,400;
110 = 4,800;
111=9,600 (4,800 on
PCjr)

Figure 13-2. A complete summary of the
ROM-BIOS services {continued}

236 PROGRAMMER'S GUIDE TO THE IBM PC

Interrupt Register
Service (hex) Input Output Description

Serial Fort Services (continued)

Send out one character 14 AH = 01

AL = character

DX=serial port number

AH = success/failure status

code
Status bit settings: see serial
port service 03

Receive one character 14 AH = 02

DX = serial port number
AH=success/failure status
code

AL = character

Status bit settings: see serial
port service 03

Get serial port status 14 AH = 03

DX = serial port number
AX = status code Status code bit settings:

AH bit settings:
00 = data ready;
01 = overrun error;
02=parity error;
03 = framing error;
04 = break detected;
05 = transmission buffer

register empty;
06 = transmission shift
register empty;
07 = time out

AL bit settings:
00 = delta clear-to-send
01 = delta data-set-ready;
02 = trailing edge ring
detected;
03 = change, receive line
signal detected;
04 = clear-to-send;
05 = data-set-ready;
06 = ring detected;
07 = receive line signal
detected

Cassette Tape Services

Turn on cassette motor 15 AH = 00 none

Turn off cassette motor 15 AH = 01 none

Read data blocks 15 AH = 02

CX = count of bytes
ES:BX = pointer to data
area

CF = error signal
DX = count of bytes read
ES:BX=pointer past last
byte read

IF CF = 1:

AH = 1:CRC error

AH = 2: Lost transition

AH = 3: No date on tape

Write data blocks 15 AH = 03

CX = count of bytes to
write

ES:BX=pointer to data
area

ES:BX = pointer past last
byte written

cx=o

Figure 13-2, A complete summary of the
ROM'BIOS services (continued)

Chapter 13: ROM-BIOS Service Summary 237

Interrupt Register
Service (hex) Input Output Description

Extended Services for the AT

Ell
Device open

15 AH = 80

BX = device ID

CX = process type

none

EH
Device close

15 AH = 81

BX = device ID

CX = process type

none

Ea
Device program
terminate

15 AH = 82

BX = device ID

none

EH
Event wait

15 AH = 83

AL = subservice;

0 = set interval;
1 = cancel

ES:BX = pointer to wait bit
in caller's memory

CX, DX = number of
microseconds to wait

none

EH
Joystick support

15 AH = 84

DX = 0 get current switch
settings

AL = switch settings

EH
Joystick support

15 AH = 84

DX = 1 read inputs
AX = A(x) value
BX = A(y) value
CX = B(x) value
DX = B(y) value

EH
System Request
key press

15 AH = 85

AL = 00 press
AL = 01 break

none

Ea
Wait

15 AH = 86

CX, DX = number of
microseconds to wait

before return

none

Ei
Move block

15 AH = 87

CX = number of words

to move

ES:SI = pointer to
descriptor table

none

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

238 PROGRAMMER'S GUIDE TO THE IBM PC

Interrupt Register
Service (hex) Input Output Description

Extended Services for the AT (continued)

'i

Go

>
X

1!

00
00

AX = number of IK
Get extended memory memory blocks above

size address 1024K

Eg
Switch to virtual mode

15 AH = 89

ES:SI = address of GDT

(Global Descriptor Table)
BH = offset to level 1

interrupt descriptor table
BL = offset to level 2

interrupt descriptor table

Gaution; See BIOS listing
before use

m
Device busy loop

15 AH = 90

AL = type code
none See BIOS listing

Eg
Set flag and complete
interrupt

15 AH = 91

AL = type code
none See BIOS listing

Keyboard Services

Read next keyboard
character

16 AH = 00 AH = scan code (auxiliary
byte)

AL = character code (main
byte)

Report whether
character ready

16 AH = 01 ZF = 0 if code available
AH = scan code (auxiliary
byte)

AL = character code (main
byte)

Get shift status 16 AH = 02 AL = shift status bits Shift status bits:

Bit 0 = 1: right Shift
depressed

Bit 1 = 1: left Shift

depressed
Bit 2 = 1; Ctrl depressed
Bit 3 = 1: Alt depressed
Bit 4 = 1: Scroll Lock active

Bit 5 = 1: Num Lock active

Bit 6 = 1: Caps Lock active
Bit 7 = 1: Insert state active

EH
Reset typematic

16 AH = 03

AL = 00

none

iTil
Increase initial delay

16 AH = 03

AL = 01

none

EE]
Increase continuing
delay

16 AH = 03

AL = 02

none

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

Chapter 13: ROM-BIOS Service Summary 239

Interrupt Register
Service (hex) Input Output Description

Keyboard Services (continued)

■fin
Increase both delays

16 AH = 03
AL = 03

none

>ll8
Turn off typematic

16 AH = 03
AL = 04

none

iTil
Click off

16 AH = 04
AL = 00

none

na
Click on

16 AH = 04
AL = 01

none

Printer Services

Send one byte to printer 17 AH = 00
AL = character
DX = printer number

AH = success/failure
status code

Status bit settings:
0 = time out
1=unused
2 = unused
3 = 1: I/O error
4 = 1: selected
5 = 1: out of paper
6 = 1: acknowledge
7 = 1; not busy

Initialize printer 17 AH = 01
DX = printer number

AH = status code Status code bit settings:
see printer service 00

Get printer status 17 AH = 02
DX = printer number

AH = status code Status code bit settings:
see printer service 00

Miscellaneous Services

Switch control to
BASIC

18 none n/a No return, so no possible
output

Reboot computer 19 none n/a No return, so no possible
output

Time-of-Day Services

Read the current clock
count

lA AH = 00 AL = midnight signal
CX = tick count, high

portion
DX = tick count, low

portion

Set current clock count lA AH = 01
CX = tick count, high

portion
DX = tick count, low

portion

none

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

240 PROGRAMMER'S GUIDE TO THE IBM PC

Register
Service (hex) Input Output Description

Time-of-Day Services (continued)

m
Read real time clock

lA AH = 02 CH = hours (in BCD)
CL = minutes (in BCD)
DH = seconds (in BCD)
CF = 1 if clock not

operating

Set real time clock lA AH = 03

CH = hours

CL = minutes

DH = seconds

DL = 1 if daylight saving
time; 0 if standard time

Input values in BCD

Read date from real

time clock

lA AH = 04 DL = day (in BCD)
DH = month (in BCD)
CL = year (in BCD)
CH = century (19 or 20)
(in BCD)
CF = 1 if clock not

operating

Set date in real time

clock

lA AH = 05

DL = day
DH = month

CL = year
CH = century (19 or 20)

Input values in BCD

Set alarm lA AH = 06

CH = hours

CL = minutes

DH = seconds

CF = 1 if clock not

operating, or alarm
already set.

Place address for alarm

routine in interrupt 4A
location

Input values in BCD

Reset alarm lA AH = 07

Figure 13-2. A complete summary of the
ROM-BIOS services (continued)

14

DOS Basics

The Pros and Cons of Using the DOS Services 242
DOS: A Disk-Service Cornucopia 243
DOS and Video: A Difficult Match 243

DOS Version Differences 244

Disk Format Considerations 246

Comments 246

241

242 PROGRAMMER'S GUIDE TO THE IBM PG

Chapters 15 through 18 are going to focus on the program sup
port services provided by DOS. The last chapter in the series,
Chapter 18, is a summary of the technical details of each ser
vice. In this chapter, we will introduce some of the main con

cerns a programmer often faces when working with the DOS services.
We use the term DOS services to define the entire set of operations

that DOS provides for our programs, but you will not find this term used
in the DOS manual. In DOS's own terminology, these services are divided
into two categories; DOS interrupts and DOS function calls. As far as I
know, this separation was not based on any design decision, but rather
emerged from a desire to achieve a reasonable degree of compatibility
with DOS's predecessor, the CP/M operating system.

DOS interrupts are invoked by individual interrupt codes with the
INT instruction. DOS function calls, on the other hand, are invoked in
much the same way as the ROM-BIOS services: through one umbrella in
terrupt, interrupt 33 (hex 21). As with the ROM-BIOS services, the individ
ual functions are selected through the AH register.

From the standpoint of both programming and design, the func
tion-call mechanism is actually more efficient than a group of individual
interrupts. Its main benefit is that it allows an unlimited number of new
services to be added, since every service is called through a single inter
rupt. All the services introduced with the DOS-2 versions are additions to
the function calls and not to the interrupts. Most of the services that were
introduced with DOS-3 versions are also function calls, although there is
one new interrupt.

THE PROS AND CONS OF USING THE DOS SERVICES

The question of whether or not to use the DOS services arises natu
rally during the design and development of sophisticated programs. My
general advice, echoed throughout this book, is for you to use the highest
available services that will accomplish what you need. This means that,
whenever possible, you should use the built-in services of your program
ming language first, resorting only when necessary to the direct use of
the DOS services or the ROM-BIOS services, and resorting only in extreme
circumstances to direct programming of the computer's hardware.

In practical terms, either a program can be written entirely within
the confines of the programming language's facilities or nearly all of its
I/O work must be done outside of the programming language, at a lower
level. When a lower level of programming is needed, I feel that, with very
few exceptions, the DOS services are best suited for disk operations. When

Chapter 14: DOS Basics 243

working with the keyboard or other I/O devices, either the DOS routines or
the ROM-BIOS routines will be adequate, depending on the application. But
for low-level video-display programming, the situation is more complex.
Satisfactory screen output almost always seems to call for the ROM-BIOS
services and direct-hardware programming, even though in some cases it
may be best to leave it in the hands of DOS. We'll see why in a moment.

DOS: A Disk-Service Cornucopia

When we inspect the full range of tools and services that are placed
in our hands by programming languages, by DOS, by the ROM-BIOS, and
by the computer's hardware, it becomes quite clear that the richest con
centration of disk-oriented services exists at the DOS level. This almost

goes without saying since DOS, as a disk operating system, is inherently
strongest in its support of disk operations.

As detailed in Chapters 16 and 17, the majority of services that DOS
will perform for us are directly connected to the manipulation of disk
files. Even some of the nominally program-controlled services, such as
loading and executing another program (function 75 (hex 4B)), involve
disk file operations. From this perspective, DOS is not so much a disk op
erating system as it is a system of disk services designed for use by our pro
grams. When we are developing programs for the IBM personal computer
family, it is a good idea to approach DOS from exactly this point of view;
Think of DOS as a cornucopia of disk operations placed at our service.

DOS and Video: A Difficult Match

It has become a PC programming convention for most sophisticated
programs to perform their screen output at a low level. Often, all display
output is done at the very lowest level, with output placed directly into
the display's memory area. Other operations, such as cursor movement,
are usually done at the next highest level through the ROM-BIOS services.

In the beginning, this was necessary because DOS did not provide
adequate video services. But starting with version 2.00, it became possi
ble to perform most of the needed screen work through the DOS services
enhanced with the ANSI driver program, also known as ANSI.SYS (•" see
Appendix A for more details). This program uses a set of commands that,
when translated, will perform just about anything the screen is capable of
doing. However, the ANSI driver services can be somewhat clumsy to
work with because they not only require that our programs run under a

244 PROGRAMMER'S GUIDE TO THE IBM PC

DOS-2 version but also that DOS be configured to include the ANSI driver.
My experience is that many novice computer users are thoroughly con
fused by the procedures necessary to incorporate the ANSI driver, and
this factor alone argues strongly against using any DOS facility that re
quires this driver.

If faced only with this factor, we could easily conclude that we should
avoid using the DOS video services altogether, but it's not quite that sim
ple. Many of the more sophisticated operating-system environments that
are appearing, particularly windowing systems, expect the programs run
ning under them to use officially available operating-system services and
not work direcdy with the hardware. With these environments in mind,
there is a strong argument to be made for the strict use of the DOS services
whenever possible.

In trying to decide what is wisest to do, a great deal depends on the
probable lifetime of your programs and the range of machines they might
be used on. For a PC-specific game program with an expected life of a
few months (common for games) you have little reason to worry about
these things. The situation is completely different for a generalized busi
ness or professional application, which should be usable for many years
and in many environments. Make your choice and place your bets.

DOS VERSION DIFFERENCES

DOS version 3.10 represents the sixth official release of DOS. Even
though there have been both improvements and bug-fixes in every re
lease, the driving force behind each release has been hardware, and a
hardware change has usually involved a disk-drive change.

Version Date Hardware Change

1.00 .8/04/81 Original PC model (single-sided drive)

1.10 5/07/82 Double-sided diskette drive

2.00 3/08/83 XT model (hard-disk drive)

2.10 10/20/83 PCjr and Portable PC models (half-high drives)

3.00 8/14/84 AT model (high-capacity diskette drive)

3.10 3/07/85 Networking (network disk drive) .

Figure 14-1. The six DOS releases and the
associated changes to hardware

Chapter 14: DOS Basics 245

In all but versions 2.10 and 3.10, changes to DOS involved significant
modifications to disk support (including new disk-storage formats). The
main change to 2.10 was a relatively minor one, hut disk-related: The dis
kette control head settle time was adjusted to allow for differences in the
performance of the half-high drives used in the PCjr and Portable PC. Ver
sion 2.10 also corrected a few of the known hugs in 2.00. Version 3.10
incorporated networking functions that were designed for version 3.00,
hut were not ready when 3.00 was released. Here is a simple summary of
the main differences between versions:

Version 1.00 supported the single-sided, eight-sector diskette for
mat. All the basic DOS services were included in this release.

Version 1.10 added support for double-sided diskettes. The DOS ser
vices remained the same.

Version 2.00 added support for nine-sector diskettes (both single-
and double-sided) and for the fixed hard disk. The DOS services were en
hanced extensively in this version ((•- see Chapter 17). Cartridge support
was also added in 2.00, although this was not known until the release of
the PCjr.

Version 2.10 added neither new disk formats nor new DOS services;
it did, however, adjust its disk operation timing to benefit the PCjr and
the Portable.

Version 3.00 added the high-capacity diskette and additional hard-
disk formats. It also laid the groundwork for network disks.

Version 3.10 added network disks, which include a file-sharing ca
pability.

□ NOTE: Each version of DOS is upwardly compatible with prior
versions, except in some very detailed respects (these sorts of details al
ways seem to be unavoidable).

With each release of DOS, there has been a question among soft
ware developers about which version of DOS to target, because use of the
larger diskette formats and the extended DOS services precludes the use
of earlier DOS versions. This has been a messy situation and has led to
some difficult decisions for program developers in the past. DOS-2 ver
sions have been the usual choice for quite some time. Sales of all PC mod
els have been accelerating, so the number of people using DOS-1 versions
is becoming an increasingly smaller proportion of the PC community.
This makes it relatively painless for us to target our programs on DOS-2
versions and take full advantage of the DOS-2 extended services. Even
with the appearance of DOS-3 versions, DOS-2 remains the best choice for
the time being—but who can say for how long?

246 PROGRAMMER'S GUIDE TO THE IBM PC

DISK FORMAT CONSIDERATIONS

Besides deciding which DOS services or which version of DOS our
programs should use, we also need to consider which diskette format we
will use to deliver our programs. The convention has been for PC pro
grams to be delivered on diskettes with the single-sided eight-sector for
mat, since this format is the lowest common denominator of all DOS
formats and can be used by any DOS version. Although the universal
nature of the single-sided eight-sector format is useful, there is not much
reason for it anymore. For one thing, single-sided drives are now all but
extinct on PCs, the double-sided formats having taken their place long
ago. And for another, any programs that require DOS-2 can use the nine-
sector format; in fact, that is the format that DOS 2.00 and 2.10 themselves
use. To accommodate the last of the DOS-1 owners, you may want to use
the double-sided eight-sector format, but you should be able to use the
double-sided nine-sector format without guilt or regret.

A program can, in an imperfect way, detect which version of DOS it
is running under, using DOS function call 48 (hex 30). Unless you can be
sure of your audience, you should include this safeguard in your pro
grams and always check to make sure the correct DOS version is in
stalled. m- See Chapter 17 for more details.

COMMENTS

In general, technical information about DOS is scarce; there are a
great many details that IBM and Microsoft seem to keep the world in the
dark about. Unfortunately, there is not much you and I can do about this
dearth of information, except try to pass on what we've discovered and
point out the gaps wherever they occur. We will attempt to do that in the
following chapters.

□ NOTE: The official source of information about the DOS services
is the DOS Technical Reference manual, which was introduced with ver
sion 2.10. For the previous versions of DOS, the equivalent information is
found in the main DOS manual.

15

DOS Interrupts

The Five Main DOS Interrupts 249
Interrupt 32 (hex 20): Program Terminate 249
Interrupts 37 and 38 (hex 25 and 26); Absolute Disk Read and Write 249
Interrupt 39 (hex 27): Terminate-but-Stay-Resident 252
Interrupt 47 (hex 2F): Print Spool Control 253

The Three DOS Address Interrupts 255
Interrupt 34 (hex 22): Terminate Address 255
Interrupt 35 (hex 23): Break Address 256
Interrupt 36 (hex 24): Critical-Error Handler Address 257

The Program Segment Prefix (PSP) 260
The Internal Structure of the PSP 261

An Example 266

247

248 PROGRAMMER'S GUIDE TO THE IBM PC

In this chapter we'll be covering the DOS services that are invoked
with their own individual interrupts, See Chapters 16 and 17 for
information about the DOS function calls, which are selected by a
function number under one umbrella interrupt.) There are nine in

terrupt services in all, which are listed below in Figure 15-1. Five of them,
interrupts 32, 37 through 39, and 47 (hex 20, 25 through 27, and 2F), are
true DOS interrupt services, each one having a specifically defined task as
sociated with it. The other interrupts have more general uses. Perhaps the
most important one is interrupt 33 (hex 21), which is used to invoke DOS
function calls ((•- discussed in Chapters 16 and 17). The three remaining
interrupts, 34 through 36 (hex 22 through 24), are used to hold segmented
addresses. Our programs set these addresses (preferably using DOS func
tion call 37) to point to special routines. Then, when the appropriate cir
cumstances arise, DOS invokes the routines located at these addresses
through these three address interrupts (i** see page 255).

□ NOTE: Official IBM DOS doctrine disapproves of programmers
using the DOS interrupt services. Consequently, IBM supplies alternate
function calls through interrupt 33 (hex 21). Since there is always the
possibility that new releases of DOS will not support the use of these
"disapproved" interrupt services, it is wise to avoid using them and to
rely mostly on the DOS function calls for special services.

Interrupt
Dec Hex Description

32 20 Program terminate: come to normal ending
33 21 Function-call umbrella interrupt
34 22 Terminate address

35 23 Break address

36 24 Critical error-handler address

37 25 Absolute disk read

38 26 Absolute disk write

39 27 Terminate-but-stay-resident
47 2E Print spool control (DOS-3 versions only)

Figure 15-1. The nine DOS interrupt
services

Chapter 15: DOS Interrupts 249

THE FIVE MAIN DOS INTERRUPTS

Of the nine DOS interrupts, five are true interrupts, meaning that
they have built-in interrupt-handling programs associated with them,
each of which performs a particular task.

Interrupt 32 (hex 20): Program Terminate
Interrupt 32 is used to exit from a program and pass control back to

DOS. It is identical to DOS function call 0 {m- see page 271). These services
can be used interchangeably with any version of DOS to end a program.

Interrupt 32 does not automatically close files when it terminates a
program, so you should always use DOS function 16 or 62 to close all
changed files before exiting. If a file that has been changed is not for
mally closed, its new length will not be recorded in the file directory.

A program can set three operational addresses through DOS inter
rupts 34, 35, and 36, as we will see shortly. As part of the clean-up opera
tions performed by DOS for interrupt 32, these addresses are reset to the
values they had before the program was executed. Resetting these ad
dresses is essential if the program that invoked interrupt 32 was executed
as the "child" of another program. It serves to protect the "parent" pro
gram from using routines intended for the "child." {m- See DOS function
75 (hex 4B) in Chapter 17.)

□ NOTE: When DOS executes a program, it constructs a program
segment prefix (PSP) at a zero offset address in the code segment pointed
to by the CS register. The PSP contains control information that, among
other things, tells DOS tvhere to go tuhen a program is terminated,
(m- We discuss the PSP in detail at the end of this chapter.) DOS depends
on the CS register to point to the PSP when the interrupt 32 terminate
service is invoked. If the CS register has been changed, it will interfere
with the operation of this service.

□ WARNING: If control is passed to a subroutine by a FAR call, the
CS register will be changed. Such subroutines should not use interrupt 32
to end program operation.

Interrupts 37 and 38 (hex 25 and 26):
Absolute Disk Read and Write

Interrupt 37 and its companion, interrupt 38, are used to read and
write specific disk sectors. They are the only DOS services that ignore the
logical structure of a disk and work only with individual sectors, paying

2-50 PROGRAMMER'S GUIDE TO THE IBM PC

no attention to the files, file directory, or FAT. All other DOS services
work within the context of a disk's logical structure.

Interrupts 37 and 38 are similar to the corresponding ROM-BIOS
disk services, except that the sectors are located by a different numbering
method. With the ROM-BIOS services, the sectors are selected by their
three-dimensional coordinate locations (track/cylinder, side/head, and
sector), whereas with interrupts 37 and 38, the sectors are selected by
their sequential sector numbers. («- DOS's sector-numbering system is
discussed on page 105.)

The BASIC formula that converts the three-dimensional coordinates
used by the ROM-BIOS to the sequential sector numbers used by DOS is as
follows:

DOS.SECTOR.NUMBER = (BIOS.SECTOR - 1) + BIOS.SIDE
* SECTORS.PER.TRACK + BIOS.TRACK • SECTORS.PER.TRACK

* SIDES.PER.DISK

And here are the formulas for converting sequential sector numbers to
three-dimensional coordinates:

BIOS.SECTOR = 1 + DOS.SECTOR.NUMBER MOD SECTORS.PER.TRACK

BIOS.SIDE = (DOS.SECTOR.NUMBER / SECTORS.PER.TRACK)
MOD SIDES.PER.DISK

BIOS.TRACK = DOS.SECTOR.NUMBER / (SECTORS.PER.TRACK

* SIDES.PER.DISK)

□ NOTE: For double-sided nine-sector diskettes, the PC's most com
mon disk format, the value of SECTORS.PER.TRACK is 9 and the value of
SIDES.PER.DISK is 2. Also note that sides and tracks are numbered differ
ently in the ROM-BIOS numbering system: The sides and tracks are num
bered from 0, but the sectors are numbered from 1.

To select a block of sectors, the necessary parameters are all loaded
into separate registers. The number of sectors is specified in the CX regis
ter, the starting sector number is specified in DX, and the memory ad
dress for data transfer is specified in DS:BX. The disk drive is selected by
placing a number in the AL register: Drive A is 0 and drive B is 1.

Although the ROM-BIOS services work with true physical drives, the
DOS services work with logical drives. DOS assumes that every computer
has at least two logical drives. If there is no physical drive B, DOS will
simulate it by using the one physical drive as either A or B, whichever one
is needed. We can then remap these logical drives using DOS's ASSIGN
command.

The results of interrupt services 37 and 38 are reported in a combi
nation of the carry flag (CP) and the AL and AH registers. If there is no
error, CF is 0. If there is an error (CF = 1), AL and AH contain the error

Chapter IS: DOS Interrupts

Error Code

Dec Hex Meaning

12 OC General, nonspecific error

11 OB Read error

10 OA Write error

8 08 Sector not found

7 07 Unknown media: disk format not recognized

6 06 Seek error: move to requested track failed

4 04 CRC (cyclical redundancy check) error: parity error

2 02 Drive not ready (e.g. no disk, or door open)

1 01 Unknown unit: invalid drive number

0 00 Write-protect error: attempt to write on protected diskette

Figure 15-2. The error-code values and
meanings returned to the AL register
folloiving an error in a disk read or write
through DOS interrupts 37 or 38

codes in two separate and somewhat redundant groups. The AL codes in
Figure 15-2 are DOS's own and are based on those used with the critical-
error handler through interrupt 36 (m^ see page 257), while the AH codes
in Figure 15-3 are based on the error codes reported by the ROM-BIOS
((•" see page 190).

Error Code

Dec Hex Meaning

128 80 Time out: drive did not respond

64 40 Bad seek: move to requested track failed

32 20 Controller failed: diskette controller malfunction

16 10 Bad CRC: read found invalid parity check of data

8 08 DMA (direct memory access) failure

4 04 Bad sector: requested sector not on diskette

3 03 Write-protect error: attempt to write on protected diskette

2 02 Bad address mark: sector ID marking invalid or not found

0 00 Other errors

Figure 15-3. The error-code values and
meanings returned to the AH register
following an error in a disk read or write
through DOS interrupts 37 or 38

252 PROGRAMMER'S GUIDE TO THE IBM PC

Normally, interrupt handlers and other service routines leave the
stack clean when they exit, returning it to its original size and contents.
DOS interrupts 37 and 38 deliberately do not clean up the stack. Instead,
they finish and return to the program with one word left on the stack.
This word holds the contents of the flag register, showing how the flags
were set when the program invoked the service. This is purportedly done
to preserve the program's flag status before the service was used, since
interrupts 37 and 38 use the flags for their return codes. I think this is a
silly precaution, since any program that needs to preserve the flags can
do what programs normally do when they need something saved: PUSH
them onto the stack themselves. Any program that uses interrupts 37 and
38 should POP the two extra flag status bytes off the stack after this ser
vice returns. They can either be placed in the flag register with a POPE
command (which should be done after testing CP for an error) or be dis
carded by using the POP command to move them to some extraneous
location, such as the DX register.

Interrupt 39 (hex 27): Terminate-but-Stay-Resident

Interrupt 39 invokes one of the most interesting of all the services
provided by DOS. In fact, it's so interesting and important that we have
used it in the assembly-language example at the end of the chapter.

Like interrupt 32, interrupt 39 ends a program, but it does not erase
it from memory. Instead, it leaves a specified portion of the program in
memory (the program stays resident), and DOS's record of the first usable
part of memory is changed to the paragraph address immediately follow
ing the resident program. The information that is made resident using
interrupt 39 becomes an extension of DOS and will not be overwritten by
other programs. In keeping with IBM's consistent effort to move away
from using DOS interrupts, a DOS function call, function 49 (hex 31), also
performs this service («- see page 302).

Interrupt 39 (or its function-call equivalent) is used by a number of
sophisticated programs that act as loadable enhancements to DOS. One
of the best-known of these programs is ProKey, a keyboard enhancer.
Programs typically use this service to establish a new interrupt-handling
routine meant to stay in effect indefinitely. Most often, these interrupt-
handling routines replace existing interrupt handlers in order to change
or extend their operation. But the resident item is not limited to interrupt
handlers and program instructions; it could just as easily be data. For
example, the same programming technique could be used to load status
information into a common area that various programs would share, al
lowing them to communicate indirectly with each other.

Chapter 15: DOS Interrupts

Normally, a program that uses this technique will want to leave
only part of itself resident, discarding, for example, the initialization
code. So the program must have the portion that will stay resident at the
beginning and must specify in the DX register the offset within the code
segment of the first byte beyond the resident portion. (m- See the pro
gram example on page 267.)

Anything left resident by this service normally remains resident as
long as DOS is also resident. It is not unusual for several different pro
grams to leave part of themselves resident. Since programs that use this
technique are usually sophisticated and complicated, it is also not un
usual for them to interfere with each other. To operate such a group of
resident programs successfully, they must sometimes be loaded in a par
ticular order and the order may have to be discovered experimentally (an
unfair trick to play on an unsuspecting user). If you write a program
using this technique, you should take great care to ensure that it is civi
lized in its behavior.

As with interrupt 32, the ordinary terminate service, DOS resets the
address vectors for interrupts 34 through 36 (hex 22 through 24) when it
performs this terminate-but-stay-resident service. This means that this
service cannot be used to create resident interrupt handlers for the ad
dress interrupts. Although this may seem to be a limitation, it is actually
fairly reasonable; the address interrupts are not meant to be used glob
ally; they are only meant to be used by individual programs (see the
DOS address interrupts section that follows for further discussion).

□ NOTE; When an EXE-type program is link edited, it may be
marked to be loaded into the highest available memory location rather
than the lowest, as is conventional. Such programs cannot use interrupt
39, since it is designed only for low-memory residency. m-See page 342
for more on link editing and EXE-type programs.

Interrupt 47 (hex 2F): Multiplex Interrupt
□ NOTE: Most of the material in this chapter applies to all versions

of DOS; however, interrupt 47 is only available with DOS version 3.00
and later versions.

A new DOS interrupt, interrupt 47 (hex 2F), was introduced with
DOS version 3.00. This interrupt sets up a common interface between
two processes.

Although this interrupt is in theory by no means limited to the print
spooler, the only documented DOS use of it is for the print spooler.
Therefore, the rest of this description will use the print spooler as an
example.

PROGRAMMER'S GUIDE TO THE IBM PC

Six separate functions make up the print spooler control services
that are available through interrupt 47. These functions, coded 0 through
5, are invoked by first placing a function code in register AL and then
issuing interrupt 47 (hex 2F).

□ NOTE: Before any of these functions are used, the multiplex
number must be loaded into the AH register. The multiplex number for
the printer spooler is 1; multiplex numbers 0 and 2-127 are reserved for
DOS.

Function code 0 reports whether or not the print spooler is in
stalled. The return code is passed back in register AL. A value of 255 (hex
FF) indicates that the print spooler is installed and can presumably be
used. A value of 0 indicates that the spooler is not currently installed, but
that it can be installed; a value of 1 indicates that the spooler is not in
stalled and cannot be installed.

These last two return codes may seem rather curious until we ex
amine them closely. A returned value of 0 seems to be a message from the
print spooler that says, "I'm not here." We might respond, "If you're not
there, how are you replying?" The answer is that a reply of 0 happens
automatically when there is no interrupt handler installed to deal with
our request. A returned value of 1 seems to say, "I'm here, but you can't
use me." Strange as it may seem, that's exactly what is going on. A return
code of 1 means we're not allowed to install the print spooler because
interrupt 47 is being used for some other purpose by some other inter
rupt handler. This is a fascinating bit of business to contemplate.

Function code 1 is used to submit a file to the print spooler for
_ printing. To tell the spooler what is to be printed, we set the register pair

DS:DX to point to a 5-byte area called a submit packet. The first byte of
the submit packet is a level code (which I know nothing about). The re
maining four bytes of the submit packet are the segmented address of an
ASCIIZ string [m- see page 298) that defines the path name of the file to be
printed. The path name must be a single file. The global filename charac
ters * and ? are not allowed.

When a file is submitted using this function, it is added to the end
of the queue, or list, of files to be printed. The files are printed in turn
and are dropped from the queue when they've been printed.

Function code 2 cancels individual files that are queued for print
ing. The register pair DS:DX points to the ASCIIZ string that defines
which file is to be removed from the queue. In this case, the global file
name characters and ? may be used. Note that DS:DX in function 2,
unlike in function 1, points directly to the filename string, rather than
pointing to a submit packet that points to the string.

Function code 3 cancels all files queued for printing. For both func
tions 2 and 3, if the file currently being printed is canceled, DOS stops
printing the file and prints a short message to that effect.

Chapter 15: DOS Interrupts 2,55

Function code 4 gives programs access to the print queue so they
can inspect it. The queue is frozen when this function is requested, so
that we don't have to worry about the list changing while we inspect
it. Issuing any other interrupt 47 function call will unfreeze the queue.
Function 4 returns a pointer in the register pair DS:SI that points to a list
of the filenames queued for printing. The entries in the list are strings
with a fixed length of 64 bytes. The end of the list is indicated by an entry
that begins with a zero byte.

The queue freeze imposed by function 4 doesn't need to halt the
printing operation because it isn't necessary. But, it will suspend the re
moval from the queue of a file that is finished printing.

Function code 5 is essentially a null function that does nothing but
unfreeze the queue of filenames frozen by function 4. (The other four
functions can do this, too.)

THE THREE DOS ADDRESS INTERRUPTS

DOS uses three interrupts, 34 through 36 (hex 22 through 24), to
handle three exceptional circumstances: the end of a program; a "break"
keyboard action (Ctrl-Break or Ctrl-C on the standard PC keyboard;
Fn-B on the PCjr), and any "critical error" (usually a disk error of some
kind). Our programs can affect the action taken in each of these three
circumstances by changing the corresponding interrupt vector to point
to any operation we choose. This is why we call these interrupts the ad
dress interrupts.

DOS maintains a default address setting for each of these interrupts,
which is preserved at the beginning of a program's operation and re
stored after the program is finished. This allows our programs to freely
change these vectors according to their needs without disturbing the op
eration of subsequent programs or the operation of DOS itself.

It is also possible for our programs to change the preserved default
settings, which would then make a semipermanent change in DOS's oper
ation. The default settings are saved in the program's program segment
prefix ((•- see page 260). Modifying the value in the PSP automatically
changes the default setting that is restored when the program ends.

It's a normal and accepted practice for a program to change the inter
rupt addresses during its own operation; it's not normal for a program to
change the default setting that will be in effect after the program ends.

Interrupt 34 (hex 22): Terminate Address
The address associated with interrupt 34 specifies where control of

the computer will be passed when the program ends. This address is also
copied into the program's PSP.

256 PROGRAMMER'S GUIDE TO THE IBM PC

Normally, this service is used to pass control back to DOS's com
mand interpreter, COMMAND.COM, when a program ends. Although
the other two interrupt vectors covered in this section may be freely
changed by our programs to point to new routines, this vector is not
used that way. How it is used is best explained through an example.

A program—let's call it Progl—may request that DOS set up and
run another program—which we'll call Progl. When Progl ends, DOS
returns control to wherever interrupt 34's vector indicates. Consequently,
if the default setting of this interrupt is in effect, it returns control to DOS
and not back to Progl. This may be what Progl wants, but if Progl
wishes to continue operation after Progl is finished, Progl must change
this terminate-address interrupt vector to point to a location within
Progl, before it runs Progl. Later, Progl must reset this interrupt vector
so that Progl can end normally and pass control back to DOS.

Unlike the other address interrupts, this interrupt is never actually
generated. Instead, the interrupt vector is used as a place to store a seg
mented address. Interrupts 19 through 31, 68, and 73 (hex ID through IF,
44, and 49) are similarly used to store addresses ('•'see page 46).

This is exotic smff. Don't mess with it if you don't understand it. If
you are qualified to use this feature, then you probably understand it bet
ter than I can explain it.

Interrupt 35 (hex 23): Break Address

The address associated with interrupt 35 points to the interrupt-
handling routine that will be invoked whenever DOS responds to a break-
key action. The break key is generated on a standard PC keyboard by
Ctrl-Break, and on any keyboard by Ctrl-C (a fact that is not widely
advertised).

DOS is a bit quirky about when it will respond to a break-key ac
tion. In standard operation, DOS only acts on a break during certain key
board and screen functions. However, the BREAK ON command allows
DOS versions 1.00 and higher to act on a break at any opportunity.

DOS's default response to the break interrupt is to terminate the
program or batch command file that is being executed. If our programs
set up their own break interrupt handler, they can have DOS take any
action they wish, no matter how extensive or complex. Through this in
terrupt, our programs can invoke any DOS services and they need not
return control to DOS (though they should, to avoid stack growth).

The two most common actions are to completely ignore the break-
key action or to use it as a signal to break out of a repeated operation.

Chapter 15: DOS Interrupts

Several DOS programs illustrate this second use. For example, the rudi
mentary Edlin text-editing program uses the break key to signal the end
of the I (insert lines) subcommand. If you want a program to ignore the
break key, use an interrupt handler that returns control to the active pro
gram. ̂OCHien using the break key to signal the end of a repeated opera
tion, the interrupt handler should set a data signal switch, which the nor
mal part of the program will inspect and act on, and then return control.

There are two ways an interrupt handler for this interrupt can re
turn control. The normal method, for any interrupt handler, is to use the
IRET (interrupt return) instruction. There is another method peculiar to
this interrupt that gives the interrupt handler the option of telling DOS
either to carry on or to end the program (the same way the default DOS
interrupt handler terminates programs on a break-key action). To use this
method, the interrupt handler sets the CF (carry flag) and ends with a
FAR RET instruction; if CF is 1, it signals that DOS is to abort the program
and if CF is 0, it signals that the program is to continue.

□ NOTE: Programs can simulate a break-key action by generating
this interrupt.

Interrupt 36 (hex 24): Critical-Error Handler Address
The address associated with interrupt 36 points to the interrupt-

handling routine that is invoked whenever DOS detects a "critical error"—
an emergency situation that prevents it continuing. Typically, the critical
error is a disk error but other errors are also reported, as we'll see.

When an error handler is invoked, several sources of information
about the error itself, and about the state of things before the error oc
curred, are available. These sources include the register pair BP:SI, the
stack, the AH register, and the DI register. We will cover them one-by-one
because the whole business is quite comphcated.

If we are operating under DOS version 2.00 or higher, the register
pair BP:SI is set to point to a device header control block. Our error han
dler can inspect this control block to learn more about the device (disk
drive, printer, etc.) that experienced the error. (See the DOS Technical
Reference manual for more about the device header.)

The stack contains the complete register set of the program that is
sued the DOS function call that ended in the critical error. This informa
tion may be quite useful to an error handler that is intimately integrated
with the active program. Assuming that our error handler is going to

PROGRAMMER'S GUIDE TO THE IBM PC

BP Offset Stack Contents

0 BP that we pushed

2 IPrCS of DOS service invoking this handler

6 Flags of DOS service invoking this handler

8 AX of program invoking DOS service

10 BX of program invoking DOS service

12 CX of program invoking DOS service

14 DX of program invoking DOS service

16 SI of program invoking DOS service

18 DI of program invoking DOS service

20 BP of program invoking DOS service

22 DS of program invoking DOS service

24 ES of program invoking DOS service

26 IP:CS of program invoking DOS service

30 Flags of program invoking DOS service

Figure 15-4. The stack contents of a
program that issued the DOS function call
that ended in a critical error

gain access to the stack by traditional means, we can locate the stack
with an offset address from the BP using these two instructions:

PUSH BP

MDV BP,SP

which first saves the old BP (base pointer) and then sets the BP equal to
the SP (stack pointer). ̂ For more discussion about these instructions,
see page 166 (the section entitled "Level 3: Entry Code"). Having done
this, we'll find the stack contents shown in Figure 15-4.

The nature of a critical error is signaled primarily through a combi
nation of the high-order bit of the AH register and the low-order byte of
the DI register (a curious choice, for sure). If the high-order bit of AH is 0
(AH<128), then the error is related to a disk operation; but if the same bit
is 1 (AH>127), then the error may be something other than a disk error, as
we shall see shortly. When the error is a disk device error (AH<128),
register AL gives the drive ID number (0 is drive A, 1 is B, etc.). Bits 0
through 2 of AH indicate further information about the error, as shown
in Figure 15-5.

Chapter IS: DOS Interrupts

Bit

2 1 0 Value Meaning

. . 0 0 Read error

. . 1 1 Write error

0 0 . 0 Error involved DOS system files

0 1 . 1 Error involved FAT

1 0 . 2 Error involved directory

1 1 . 3 Error involved data area of disk

Figure 15-5. The bit values and associated
errors returned in bits 0 through 2 of the
AH register after interrupt 36 is invoked

If AH is greater than 127, then the error is not necessarily a disk er
ror, though it may be. One disk error that is normally reported when AH
is greater than 127 is an error in the disk's FAT. For DOS-1 versions, this is
always the case. For versions 2.00 and higher, the error-handler program
should inspect the device header control block (pointed to by BP:SI). If
the returned value indicates that the device is a disk, then you'll know the
error is a FAT error. Besides this one exception, AH>127 indicates a garden-
variety error for a non-disk device and we have to rely on the basic error

Error Code

Dec Hex Meaning

12 OC General, nonspecific error

11 OB Read error

10 OA Write error

9 09 Printer out of paper

8 08 Sector not found

7 07 Unknown media: disk format not recognized

6 06 Seek error: move to requested track failed

5 05 Bad request structure length

4 04 CRC error

3 03 Unknown command requested

2 02 Drive not ready (e.g. no disk, or door open)

1 01 Unknown unit: invalid drive number

0 00 Write-protect error: attempt to write on protected diskette

Figure 15-6. The error code values returned
in register DI after interrupt 36 is invoked

260 PROGEIAMMER'S GUIDE TO THE IBM PC

AL DOS Action

0 Ignore the error and press onward

1 Retry the operation (we may have fixed the problem)

2 Kill the program (DOS issues interrupt 35 (hex 23), in effect
generating a break-key action)

Figure 15-7, The values that can be loaded
into the AL register to tell DOS what to do
following an error-handler routine

codes relayed in the low-order byte of DI to define the exact problem (the
high-order byte should be ignored). The DI error-code values shown in
Figure 15-6 are essentially the same as those reported in AL for interrupts
37 and 38 (hex 25 and 26).

Depending on the circumstances, an error handler may need to use
some of the DOS function-call services to report what's going on to the
program's user. The simple keyboard and display services, function num
bers 0 through 12 (hex 0 through C), may be used, but the services with
higher function numbers, which mostly involve disk and other device op
erations, should not be used. Using the higher-numbered services while
in the middle of an error handler for a previous operation will make a
muddle of things that DOS is unlikely to recover from.

Normally, an error-handler routine will return to DOS after it has
done whatever it chooses to do. DOS can then take three courses of ac
tion: It can ignore the error, try the operation again, or terminate the
program. We tell DOS which course we want it to take by loading one of
the values shown in Figure 15-7 into the AL register.

□ NOTE: Since the set-up process required before generating this in
terrupt is rather complex, it is not appropriate for our programs to simu
late a critical error by generating an interrupt 36.

THE PROGRAM SEGMENT PREFIX (PSP)
When DOS loads a program, it first sets aside a section of memory

for the program called the program segment, or code segment. Then it
constructs a control block called the program segment prefix, or PSP, in
the first 256 (hex 00 through FF) bytes. Usually, the program is loaded
directly after the PSP at the hex 100 offset.

The PSP contains a hodgepodge of information that DOS uses to
help run the program. It is part of every DOS program, regardless of the
language the program is written in. However, for programming purposes.

Chapter IS: DOS Interrupts 261

the information stored in the PSP is more relevant to programs written in
assembly language than programs written in high-level languages. This is
because with high-level languages, the language is normally in charge of
the program's working environment, memory usage, and file control—
all the things that the PSP is concerned with. Therefore, we are normally
only interested in and able to make good use of the PSP if our program is
assembly-language based (although any program that can find out the
setting of the CS register can use it to gain access to the PSP; i*-more on
this on page 266).

Before we describe the different elements of the PSP, we need to
look at the relationship between the PSP and the program it supports.

The PSP is always located at offset 0 within the code segment. Even
though the program location is typically located directly after the PSP at
offset hex 100, its location may vary depending on the program com
mand format we use. Regardless of its location, as soon as the program
receives control, certain registers are set to point to the PSP. For a simple
.COM-format program, all the segment registers are set to point to the
beginning of the PSP and the program begins at offset hex 100. For a
more complex .EXE-format program, which uses the DOS LINK opera
tion, only the DS and ES registers are set to point to the PSP. The LINK
program passes the settings for the CS, IP, SS, and SP registers and conse
quently may set the program's starting location in CS:IP to a location
other than offset hex 100.

Wherever the program is located, the essential relationship between
the program and its PSP remains the same. The important point is that
at the beginning of a program's execution, we have access to the PSP
through one of the segment registers. This means that even if the segment
registers are changed in the course of a program's execution, a pointer to
the PSP can be captured in the program's early stages, allowing us to main
tain access to the PSP throughout the program's execution.

The best way to explain how the PSP and the program work to
gether is to jump right into the PSP's internal structure. We will reveal the
purpose and potential use of each element as we explain it.

The Internal Structure of the PSP

As you will soon discover, the PSP contains a rather confusing mix
ture of items. (•'See Figure 15-8.) The background and history of DOS
pull it in different directions—backward to the earlier CP/M system and
forward to UNIX-type operating environments. As a result, the PSP con
tains elements that serve different purposes and are oriented to different
programming methods. Don't be confused by any of this—it's just the

262 PROGRAMMER'S GUIDE TO THE IBM PC

Field Dec

Offset

Hex Length Description

1 0 0 2 INT 32 instruction

2 2 2 2 Size of memory (in paragraphs)

3 4 4 1 Reserved; normally 0

4 5 5 5 Call to DOS function dispatcher

5 A 10 4 Terminate vector

6 E 14 4 Break vector

7 12 18 4 Error vector

8 16 22 22 Used by DOS

9 2C 44 2 Environment strings pointer

10 2E 46 34 DOS work area

11 50 80 3 INT 33, RETF instructions

12 53 83 2 Reserved

13 55 85 7 Reserved, or FCB #1 extension

14 5C 92 9 FCB #1

15 65 101 7 FCB #2 extension

16 6C 108 20 FCB #2

17 80 128 1 Parameter length

18 81 129 127 Parameters

19 80 128 128 Disk transfer area (DTA)

Figure lS-8. The parts of the program
segment prefix (PSP)

nature of a critter like the PSP, which has such a diverse history behind it.
We'll discuss the elements in the order they may appear.

Field 1 contains hex bytes CD 20, the interrupt 32 (hex 20) instruc
tion. As we saw in the discussion of interrupt 32 in this chapter, this in
terrupt is just one of several standard ways for a program to end itself.
This instruction is placed at the beginning of the PSP (at offset 0), so that
a program can end itself simply by jumping to this location when the CS
points to the PSP. As you might guess, this is not the most sensible thing
for a program to do—it's always best to go through the appropriate in
terrupt or function call. I would guess that this odd-seeming scheme was
designed as a safety note. If a linked program has an unresolved external
reference, it will end up as a call to offset 0, which means it will go to this
instruction and terminate the program.

Field 2 tells how much memory is available by listing the segment-
paragraph address of the end of DOS memory. Multiplying this number

Chapter 15: DOS Interrupts 263

by 16 gives the total bytes that DOS considers usable. The DOS command
CHKDSK reports the same amount. Keep in mind that the amount of
memory reported in this field may not be the actual physical size of mem
ory; for example, many RAM disks use the memory in high locations and
reset DOS's record of where usable memory ends. Any program that
needs to make use of all available memory should use this memory in
dicator to find out how much memory it can use, instead of the similar
BIOS interrupt service 18.

The conventional DOS working environment dedicates all available
memory to each separately running program. In windowing or multi
tasking environments, where individual programs must share memory
with other programs, a program can take what it needs and return the
rest through the use of DOS function 74 (hex 4A), the SETBLOCK func
tion. This function satisfies the DOS conventions for memory usage, but
it may not work ideally with some windowing systems; such systems can
use field 4 as another indicator of available memory.

Field 4 is more than it seems. Superficially, it is a long call to the
DOS function dispatcher, which could be (but really shouldn't be) used to
invoke DOS functions. But what this field is really good for is to indirectly
determine whether our programs have less than 64K to work in. As a call,
this instruction contains the address of the DOS function dispatcher rou
tine; as a long call, it contains the address in segmented format. By a
process too bizarre and complicated to explain, the segmented address is
set so that it serves two purposes: Not only does it point to the DOS func
tion dispatcher, but the offset part also indicates how much of the code
segment we can use (up to hex FFFO, 16 bytes short of 64K). The offset
part of the address, the part we are interested in, is located at offset 6
within the PSP, following the instruction's op-code at offset 5.

The upshot of this is that if DOS has less than 64K to give our pro
grams, we can use this field to learn how many bytes are available—a
technique that should work with most or all windowing and multitask
ing systems. If DOS can give us more than 64K, we can learn how much
more by looking at field 2, the paragraph address fimit. However, as we
said earlier, this field may not give us an accurate answer in some win
dowing or multitasking environments.

Fields 5, 6, and 7 contain the default segmented addresses for the
three address interrupts that we discussed earlier in this chapter. The de
fault addresses are preserved at the beginning of a program's operation
and restored when the program ends. You may recall that this allows our
programs to use different service vectors while the program is running
without disturbing the operation of subsequent programs or of DOS it
self. If we do not provide new vectors, DOS uses the default setting stored

264 PROGRAMMER'S GUIDE TO THE IBM PC

in the PSP to point to the default service routine. If we tamper with the
addresses stored in these fields, we can change the default values (and
their associated service routines) that are restored when the program ends,
thereby making a semipermanent change in DOS's operation. Under nor
mal circumstances, there is no good reason for us to change or even to
read these settings.

Field 9 contains a segment address that points to the environment
strings supported by DOS 2.00 and later versions. The environment be
gins at offset 0 from this address.

□ NOTE: To avoid confusion about terminology, we use the word
"environment" in this context to refer to the set of strings (defined in a
moment) that DOS uses to communicate certain kinds of information
between programs. Elsewhere in this book we've used the word "en
vironment" to loosely refer to the operating conventions under which a
program works.

This DOS environment is a collection of ASCIIZ strings—that is,
strings of ASCII characters with CHR$(0) marking their ends—that can
define various kinds of information. The end of each environment setting
is marked by a zero-length string (CHR$(0)) where we would expect to
find the first byte of the next string. If an environment setting begins with
CHR$(0), then there are no strings in it.

By convention, each individual environment string is in the form
l>iAME = value, where NAME is capitalized and of any reasonable length
and value can be just about anything. DOS sets an environment for the
command processor, which is then passed to every program it invokes.
Normally, this environment will contain at least the name COMSPEC
(used by DOS to find the COMMAND.COM file on disk), and may also
contain such names as PATH or SWITCHAR. The DOS command SET can
be used to add, change, or delete strings in the environment.

Field 11 contains two instructions that will invoke a DOS function
(interrupt 33, hex 21) and return to the caller (RETF or FAR return). This
is another kludge that allows us to invoke DOS functions semi-indirectly.
To use this feature, we set up everything necessary to invoke a DOS func
tion (selecting the function in AH, etc.) and then, instead of bravely per
forming an interrupt 33 (a 2-byte instruction), we do a far call to offset
hex 50 in the PSP (a 5-byte instruction).

You might expect that this feature is another flash from the past, a
bit of CP/M compatibility, but actually it was introduced with DOS 2.00
and will not work with previous versions of DOS. So we can take this as
an indication that this approach to invoking DOS services, as clumsy as it
appears, looks to the future, not the past.

Chapter IS: DOS Interrupts 265

Fields 13,14,15, and 16 support old-fashioned file processing, using
file control blocks, or FCBs. FCBs may be used for file I/O with any
version of DOS, but their use is discouraged with DOS 2.00 and later ver
sions, where more modern file I/O is available through the use of file han
dles. '•* See page 288 for more on file control blocks, and page 298 for
more on file handles.

This area of the PSP was set up as it is to make life easier for pro
grams that receive one or two filenames as parameters. The basic idea,
and a nice one I think, is to let DOS construct the necessary FCBs out of
the first two program parameters (the parameters given on the command
line, following the program name). If a program needs either or both
FCBs, it can open and use them without having to decode the command
parameters and construct the FCBs itself.

If you use this feature of the PSP, there are some complications that
you should be aware of. First, the two FCBs overlap where they are
placed. If your program needs only the first, fine; but if it needs the sec
ond one as well, one or both of them should be moved elsewhere before
they are used. Also, you should be aware that these FCBs can involve FCB
extensions, a fact that is overlooked in most DOS documentation for the
PSP. I have called attention to the fact by documenting the location of the
implied FCB extensions in Figure 15-8.

Keep in mind that the use of FCBs is considered somewhat obsolete,
but if you want to use them, this information should help.

Fields 17 and 18 give our programs access to the parameters entered
on the command line. Field 17 gives the entire length of the parameter
string (which could be as short as 0 or as long as 127), and field 18 gives
the contents.

Here are some peculiarities about the string that is passed: It does
not contain the name of the program that was invoked. Instead, it begins
with the character that immediately follows the program name, which is
usually a blank. Separators, such as blanks or commas, are not stripped
out or compressed. If we use the command line, we have to be prepared
to scan through it, recognizing standard separators. Starting with DOS
2.00, the command line is tampered with in a particular way: Any re
direction parameters (such as < INPUT or > OUTPUT) are extracted by
DOS and the parameter line is reconstructed as if these items were not
there. As a result of these two operations on the command string, a pro
gram cannot find out if its standard I/O is being redirected, nor can it find
out its own name.

□ NOTE: Fields 17 and 18 overlap ivith field 19 in the PSP, so get your
parameters while you can—the next field could wipe them out.

266 PROGRAMMER'S GUIDE TO THE IBM PC

Field 19 is the DOS default disk transfer area (DTA). It is a default
buffer area of 128 bytes starting at PSP offset hex 80 and is established just
in case we use a DOS service that calls for a DTA and haven't yet set up
our own buffer area. (•■ See Chapters 16 and 17 for descriptions of the
services that use or manipulate the DTA.

In considering the PSP as a whole, note that DOS makes use of sev
eral areas in the first 85 bytes of the 256-byte PSP (fields 1 through 12,
offsets hex 0 through 54). If we want to tamper with any of the PSP, we
should restrict ourselves to fields 13 through 19 (offsets hex 55 through
FF). The program example that follows illustrates how the first part of the
PSP can be left intact while the second part is reclaimed and used by a
resident program.

AN EXAMPLE

For this chapter's interface example, we will create a program that
uses the terminate-but-stay-resident DOS interrupt. Most of our assembly-
language examples are set up as interfaces between a high-level language
and ROM-BIOS or DOS service routines. This example is quite different: It
is a stand-alone assembly-language program that uses interrupt 27B to
leave part of itself resident.

Any program, and most especially terminate-but-stay-resident pro
grams, must perform certain initialization functions when they are first
loaded. In a terminate-but-stay-resident program, where compact size is
highly desirable, a quick way to trip excess bytes is simply to discard this
one-time initialization code before becoming resident; in other words, we
want to keep all of the code except the initialization code.

DOS has just the function we need to perform this fat-trimming oper
ation. Interrupt 27 hex terminates a program; as part of the interrupt call,
we can stipulate (in the DX register) the first memory location of our
program that is to be released. We can use this feature to release the mem
ory taken by the initialization code, while keeping the rest of the program
resident: we simply specify the first byte of the initialization code as the
first memory location to be released.

Chapter IS: DOS Interrupts 267

;Illu5trate5 interrupt 39 (hex27); terminate-but-stay-resident
PROGRAM SEGMENT PUBLIC

ASSUME CS:PROGRAM, DS:PRGGRAM

DRG 100h ;Reserve room for program segment
prefix

TBSR PROG

JMP INITIALIZE ;Start by skipping to initialization
code

START.RESIDENT:

here would appear whatever we wanted to leave resident

END.RESIDENT:

7

INITIALIZE: ;the initialization code would follow

here

here's the one-shot initialization code

and now we terminate, keeping all code resident up to
"INITIALIZE" LEA DX, INITIALIZE

•jFirst available location after resident code INT 27H

TBSR ENDP

PROGRAM ENDS

END TBSR

16

Universal DOS Functions

Summary of the Universal Functions 270
Function 0: Terminate 271

Function 1: Keyboard Input with Echo 272

Function 2: Display Output 273

Functions: Seriallnput 273

Function 4: Serial Output 273

Functions: Printer Output 273

Function 6: Direct Keyboard/Display I/O 274

Function 7: Direct Keyboard Input Without Echo 274

Functions: Keyboard Input Without Echo 275

Function 9: Display String 275

Function 10 (hex A): Buffered Keyboard Input 275

Function 11 (hex B): Check Keyboard Input Status 276

Function 12 (hex C): Clear Keyboard and
Do Function 277

Function 13 (hex D): Reset Disk 277

Function 14 (hex E): Select Current Drive 277

Function 15 (hex F): Open File 278

Function 16 (hex 10): Close File 278

Function 17 (hex 11): Search for First Matching File 279

Function 18 (hex 12): Search for Next Matching File 280

Function 19 (hex 13): Delete File 280

Function 20 (hex 14): Read Sequential File Record 280

Function 21 (hex 15): Write Sequential File Record 280

Function 22 (hex 16): Create File 281

Function 23 (hex 17): Rename File 281

Summary of Universal Functions (continued)
Function 24 (hex 18): Used Internally by DOS 281

Function 25 (hex 19): Report Current Drive 282

Function 26 (hex lA): Set Disk Transfer Area 282

Function 27 (hex IB): Get FAT Information, Current
Drive 282

Function 28 (hex IC): Get FAT Information, Any
Drive 283

Function 33 (hex 21): Read Random File Record 283

Function 34 (hex 22): Write Random File Record 283

Function 35 (hex 23): Get File Size 284

Function 36 (hex 24): Set Random Record Field 284

Function 37 (hex 25): Set Interrupt Vector 284

Function 38 (hex 26): Create Program Segment 284

Function 39 (hex 27): Read Random File Records 285

Function 40 (hex 28): Write Random File Records 285

Function 41 (hex 29): Parse Filename 286

Function 42 (hex 2A): Get Date 287

Function 43 (hex 2B): Set Date 287

Function 44 (hex 2C): Get Time 287

Function 45 (hex 2D): Set Time 288

Function 46 (hex 2E): Set Disk Write Verification 288

The File Control Block 288

An Example 292

269

270 PROGRAMMER'S GUIDE TO THE IBM PC

In this chapter, we are going to discuss the functions that are univer
sal to all versions of DOS. In DOS terminology, the old (or universal)
services covered in this chapter are called the "traditional func
tions." The new services, introduced with DOS 2.00 and covered in

Chapter 17, are called the "extended functions."

SUMMARY OF THE UNIVERSAL FUNCTIONS

All of the DOS function calls are invoked by interrupt 33 (hex 21).
Individual functions are selected by placing the function number in the
AH register.

The traditional DOS function calls are organized into the logical
groups shown in Figure 16-1. In an effort to make this figure as clear as
possible, I have organized and described these function calls in a slightly
different manner than the DOS Technical Reference manual. Figure 16-2
lists the individual function calls.

Before we get into the details of these functions, I should warn you
that some aspects of the design and organization of a few of these func
tions, particularly numbers 1 through 12, are screwball—to put it mildly.
They are this way for historical reasons. Many of the details of DOS, and
especially the details of the DOS function calls, were designed to closely
mimic the services provided by CP/M. This was an important and deliber
ate choice, made to make it much easier for 8-bit CP/M software to be
converted to the 16-bit IBM PC and DOS. Although the creation of DOS
provided a timely opportunity to break with and clean up the mistakes of
the past, the opportunity was not taken (unfortunate, but wise, in my
opinion). The clean (or cleaner) redesign of the DOS services was really
started during the development of version 2.00 and realized in the ex
tended functions ((•-see Chapter 17).

Function

Dec Hex Group

0 00 Non-device function

1-12 Ol-OC Character device I/O

13-36 OD-24 File management

37-38 25-26 More non-device functions

39-41 27-29,2E More file management

42-46 2A-2D More non-device functions

Figure 16-1. The logical groups of traditional
DOS function calls

Chapter 16: Universal DOS Functions 271

Function Function

Dec Hex Description Dec Hex Description

0 0 Terminate: end program 24 18 Used internally by DOS

1 1 Keyboard input with echo 25 19 Report current drive

2 2 Display output 26 lA Set disk transfer area

3 3 Serial input 27 IB Get FAT information, current drive

4 4 Serial output 28 IC Get FAT information, any drive

5 5 Printer output 29 ID Used internally by DOS

6 6 Direct keyboard/display I/O 30 IE Used internally by DOS

7 7 Direct keyboard input without echo 31 IF Used internally by DOS

8 8 Keyboard input without echo 32 20 Used internally by DOS

9 9 Display string 33 21 Read file random

10 A Buffered keyboard input 34 22 Write file random

11 B Check keyboard input status 35 23 Get file size

12 C Clear keyboard and do function 36 24 Set random record

13 D Reset disk 37 25 Set interrupt vector

14 E Select current drive 38 26 Create program segment

15 F Open file 39 27 Read file records random

16 10 Close file 40 28 Write file records random

17 11 Search for first matching file 41 29 Parse filename

18 12 Search for next matching file 42 Ik Get date

19 13 Delete file 43 2B Set date

20 14 Read sequential file record 44 2C Get time

21 15 Write sequential file record 45 2D Set time

22 16 Create file 46 2E Set disk write verification

23 17 Rename file

Figure 16-2. The traditional DOS function
calls invoked by interrupt 33 and selected in
the AH register

On the pages that follow we will detail the 46 original DOS function
calls, universally used in all versions of DOS.

Function 0: Terminate

DOS function 0 is used to end a program and pass control back to
DOS. It is functionally identical to DOS interrupt 32 (hex 20) discussed on
page 249. Either service can be used interchangeably to exit a program.

272 PROGRAMMER'S GUIDE TO THE IBM PC

DOS versions 2.00 and higher provide an enhanced terminate ser
vice through function 76 (hex 4C), which leaves a return code (an error
code) in register AL when a program ends. Batch-processing files can act
on the return codes using the DOS subcommand ERRORLEVEL. Use func
tion 76 instead of function 0 if you wish to record any errors that occur
when a program ends (s®- see page 317).

Like DOS interrupt 32, this function does not close files automat
ically when the program ends. To ensure that the proper length of a
changed file is recorded in the file directory, use the close-file functions 16
or 62 before calling this function. Also, it is up to the program to make
sure the PSP address is in the CS register before exiting. (As you may re
call from our discussion in Chapter 15, the PSP contains the terminate
address that tells DOS where to go when a program is terminated.)

Function 1; Keyboard Input with Echo
Function 1 waits for character input from the standard input device

and returns it in the AL register when available. It should be compared
with the other keyboard function calls, particularly functions 6, 7, and 8.

Here is how function 1 works; Key actions that result in an ASCII
character are returned as one byte in AL and immediately reported by
this service. The 97 special key actions that result in something other than
an ASCII character ((•- see page 134) generate two bytes, which are passed
to us through two consecutive calls to this service.

The standard way to use this service is to test for a 0 in AL. If AL is
not 0, we have an ASCII character. If AL is 0, we have a special character
(which should be recorded), and this function should be repeated imme
diately to get the pseudo-scan code that represents the special key action

see page 135 for a list of the actions, codes, and their meanings). As
with all the DOS keyboard input services, the scan code for ASCII charac
ters is not available, even though the ROM-BIOS services make it available
in what we call the auxiliary byte {m- see page 134).

The various DOS keyboard service functions are distinguished pri
marily by three criteria: whether they wait for input, or report no input
when none is available; whether they echo input onto the display screen;
and whether the standard break-key operation is active for that service.
(Recall that standard DOS operation calls for DOS to act on a break-key
action—Ctrl-Break or Ctrl-C—only during a limited number of opera
tions. However, beginning with version 2.00, DOS introduced the BREAK
ON command, which gives DOS authority to act on the break key under
any circumstances.) Function 1 performs all three of these operations: It
waits for input, echoes input to the screen, and if it detects a break-key
operation, it executes interrupt 35, the break address interrupt.

Chapter 16: Universal DOS Functions 273

□ NOTE: For DOS versions 2.00 and higher, this "keyboard" service
is actually connected to the DOS standard input device. This is the key
board by default, but it can be redirected to other input devices.

(•* If you wish to avoid waiting when input is not ready, but wish to
use this service, see function 11, which also reports whether or not input
is ready. See functions 8 and 12 for variations on this service.

Function 2: Display Output
Function 2 writes a single ASCII character to the display screen (or,

for DOS 2.00 and later, to the standard output device, which can be re
directed from the display screen). The character written is placed in DL.

In general, this service acts on the ASCII control characters, such as
backspace or carriage return. In the case of the backspace character, the
display screen cursor is moved backward one column. Contrary to the
information given in the DOS Technical Reference manual (and in all
DOS manuals since the very first), a blank character (hex 20) is not writ
ten after the cursor is moved, which would effectively erase any previous
character. Instead, any information that has been backspaced over re
mains intact.

Function 3: Serial Input
Function 3 inputs one character into AL from the standard auxil

iary device, which is normally known as AUX: or COMl:. By the magic of
the DOS MODE command, we can change the setting to receive input
from other devices, such as COM2:. Normally, the source of this input is
the first RS-232 serial port.

□ NOTE: This service tvaits for input. It does not report status infor
mation about the many miseries that a serial port can suffer. If you want
to know the status of the serial port, use the ROM-BIOS serial services
(<*" see page 210).

Function 4: Serial Output
Function 4 outputs one character from register DL to the standard

auxiliary device. ^ See the remarks under function 3.

Function 5: Printer Output
Function 5 outputs one byte from DL to the standard printer device,

which is normally known as PRN: or LPTl: (but, with the DOS MODE
command, can be other devices). In the absence of any DOS redirection,
the standard printer is always the first parallel adapter, even if a serial
port is used for printer output.

274 PROGRAMMER'S GUIDE TO THE IBM PC

Function 6: Direct Keyboard/Display I/O

Function 6 is a complex and screwball service that combines the op
erations of keyboard input and display output into one untidy package.
As with everything else in DOS 2.00 and later, the I/O is not connected
to the keyboard and display, but rather to the standard input and output
devices (which default to the keyboard and display).

Here is how this service works: The AL register is used for input
and the DL register for output. If DL is 255 (hex EE), then AL is ready to
accept an input character. The zero flag (ZE) signals whether input is
ready. If ZE is 1, no input is ready; if ZE is 0, an input byte is placed in AL.
If DL is not 255, then it is assumed to contain a legitimate output character,
which, on request, is sent out to the standard output device through DL.

Function 6 does not wait for keyboard input, it does not echo input
to the display screen, and the break-key operation is not active, {m- See
function 1 for an explanation.)

m- Compare this service with functions 1, 7, and 8. See function 12
for a variation of this service.

Function 7: Direct Keyboard Input Without Echo

Function 7 waits for character input from the standard input device
and returns it in the AL register when available. It does not echo input to
the display screen and it does not use the break-key operation.

Function 7 works the same way as function 1: ASCII character key
actions are returned as single bytes in AL and are immediately reported
by this service. The 97 special key actions that result in something other
than an ASCII character («- see page 134) generate two bytes, which are
passed to us through two consecutive calls to this service.

The standard way to use this service is to test for a 0 in AL. If AL is
not 0, we have an ASCII character. If AL is 0, we have a special character.
This character should be recorded and then the function should be re

peated at once to get the pseudo-scan code that represents the special key
action (•- see page 135 for a list of the actions, the codes, and their mean
ings). As with all the DOS keyboard input services, the scan code for ASCII
characters is not available, even though the ROM-BIOS services make it
available in what we call the auxiliary byte see page 134).

m- Compare this service with functions 1, 6, and 8. If you want to
use this service but avoid waiting when input is not ready, see function 11,
which reports whether or not input is ready. See function 12 for a varia
tion of this service.

Chapter 16: Universal DOS Functions 275

Function 8: Keyboard Input Without Echo

Function 8 waits for input, does not echo, and breaks on a break-
key action. It is identical to function 1, except it does not echo the input
to the display screen (or standard output device).

m- See the discussion under function 1 for a description of this func
tion. Compare this service with functions 1, 6, and 7. If you want to use
this service but avoid waiting when input is not ready, see function 11,
which reports whether or not input is ready. See function 12 for a varia
tion of this service.

Function 9: Display String

Function 9 sends a string of characters to the display screen or to
the standard output device (which defaults to the display screen). The
register pair DS:DX provides the address of the string. A $ character,
CHR$(36), is used to mark the end of the string.

□ NOTE: For bad historical reasons, this function is referred to as
"print string" in the DOS literature. We ivould he better off thinking of it
as "display string," as it is called here.

While this service can be tremendously more convenient than the
byte-by-byte display services (functions 2 and 6), it is flawed by the use of
a real, displayable character, $, as its string delimiter. This is not a recent
mistake; it's another by-product of CP/M compatibility. Unless you know
there is absolutely no possibility of ever outputting a dollar sign, you
should avoid this service.

Incidentally, the extended DOS functions ((•- see Chapter 17) use
CHR$(0) as a string delimiter. This practice follows the convention set by
the UNIX operating system and the C programming language.

Function 10 (hex A): Buffered Keyboard Input
Function 10 is a wonderful service that puts the power of the DOS

editing keys to work in our programs. The service gets a complete string
of input, which is presented to our programs whole, rather than charac
ter by character. Assuming that the input is actually from live keyboard
action and is not redirected elsewhere, the full use of the DOS editing
keys is available to the person who is typing the input string. When the
Return key is pressed (or a carriage return, CHR$(13), is encountered in
the input file), the input operation is complete and the entire string is
presented to our program.

176 PROGRAMMER'S GUIDE TO THE IBM PC

There are many advantages to using this service, particularly when
our programs need complete, coherent strings of keyboard input, rather
than byte-by-byte input. The two foremost benefits are that we are
spared the effort of writing detailed input-handling code, and our pro
grams' users are given a familiar set of input editing tools: the DOS edit
ing conventions.

To use this service, we must provide DOS with an input buffer area,
where the input string will be built. The register pair DS:DX points to this
buffer. We inform DOS of the working size of the buffer in the buffer's
first byte; this is the number of bytes that DOS can use for input. The
second byte of the buffer is used for DOS to report the actual number of
bytes that were input. DOS places the input string, which consists entirely
of ASCII characters, beginning at the third byte in the buffer. The end of
the input string is signaled by the carriage-return character, CHR$(13).
The carriage return is placed in the buffer so there must be room for it,
but it is not included in the character count that DOS returns to us in the
second byte.

By these rules, the longest buffer we can give DOS is 255 working
bytes, and the longest string that DOS can return to us is one less than the
working length. Since the first two bytes of the buffer are used for status
information, the actual working size of the buffer is two bytes less than
the buffer's overall size. This may explain some of the mysteries of the
input conventions in both DOS and BASIC.

If input continues beyond what DOS can place in the buffer (which
is one byte short of its working length), then DOS will discard any further
input, beeping all the while, until a carriage return is encountered.

You can test some elements of this function by counting the input
that the DOS command interpreter will accept. Simple experiments will
reveal that the command interpreter uses a working buffer size of 128
bytes (the total length is 130 bytes). DOS will complain about any input
other than a carriage return beyond the 127th byte.

m- See function 12 for a variation of this service.

Function 11 (hex B): Check Keyboard Input Status
Function 11 reports whether input is ready from the keyboard (or

standard input device). An input-ready signal is reported when AL is set
to 255 (hex FF). But if no input is ready, AL is set to 0.

The standard break-key operation is active for this service (•■ see
the discussion under function 1 for an explanation).

Chapter 16: Universal DOS Functions 277

Function 12 (hex C): Clear Keyboard and Do Function
Function 12 clears the keyboard buffer in RAM and then invokes

one of five DOS services: function 1, 6, 7, 8, or A. The AL register is used
to select which of these functions will be performed after tihe keyboard
buffer is flushed. With the keyboard buffer clear of extraneous charac
ters, this function forces the system to wait for new input before it acts
on the invoked function.

Note that since function 6 is supported, the follow-up service need
not be keyboard input: It may be display output.

Function 13 (hex D): Reset Disk

Function 13 resets the disk and flushes all file buffers. It doesn't auto

matically close files when the program ends. To ensure that the proper
length of a changed file is recorded in the file directory, use the close-file
functions 16 or 62 before calling this function.

Contrary to what earlier DOS manuals indicate, this service doesn't
change the default drive back to A (or make any other such change), not
even with the versions of DOS that make this claim.

Function 14 (hex E); Select Current Drive

Function 14 selects the current default drive and reports the number
of drives installed. The drive is selected in DL, with 0 indicating drive A,
1 drive B, and so on. The number of drives is reported in AL. Once DOS
knows the number of drives installed, any number can be used for the
default drive number, from 0 to one less than the total number reported.

There are a few things to keep in mind when using this service. First,
there are never any gaps in the drive IDs used by DOS; they are consecu
tively numbered. Second, if there is only one physical disk drive, DOS will
simulate a second drive, drive number 1 (drive B). And third, the drive ID
letter is found by adding the drive number to the character A, CHR$(65).
In the unusual case that there are more than 26 drives, some rather pecu
liar drive "letters" can result.

Function 25 (hex 19) reports the current drive number, and func
tions 14 and 25 can be combined to learn the number of drives without

disturbing the current default drive setting. This is done in assembly lan
guage like this:

MOV AH,25

INT 33

MOV DL,AL

MGV AH,14

INT 33

report current drive
function call

copy current drive number
set current drive

function call

278 PROGRAMMER'S GUIDE TO THE IBM PC

At this point, AL will contain the number of drives, without any change
to the current drive. To convert the number to the highest drive letter, we
can add this instruction:

ADD AL,'A'-1

Function 15 (hex F): Open File

Function 15 opens a file in the traditional DOS manner, by using a
file control block (FCB). The FCB is a group of 128 logical records within
a file. It contains a set of information supplied by our program about the
open file that DOS uses to locate the file and the file's data ((•' see page
288 for FCB details). Our programs point to the FCB using the register
pair DS:DX. DOS will attempt to open the file given the specifications in
the FCB. The result is reported with AL set to 255 (hex FF) for failure to
open the file and AL set to 0 for success. Remember, a file must exist in
order to be opened (i^see function 22 for a create-file service). Normally,
this function would be used when opening an input file and function 22
would be used when opening an output file.

On a successful open, several fields in the FCB are set by DOS. If we
specify the default drive through function 14, DOS will fill in the actual
drive used. (This is done with an unconventional drive ID number. In this
case, drive A is indicated by 1, rather than 0 as in most drive operations.)
DOS also fills in the file's date and time, and sets the current block to 0.

Something unusual happens with the FCB record-size field, which
indicates the record size we wish to use in reading and writing the file.
Normally, we supply this field after the file is opened. However, on open
ing the file, DOS will set this field to a default record size of 128 (hex 80)
bytes. We can either use this record size or change it, depending on our
application. Many text-editing programs use the 128-byte record-size for
efficient I/O operations. Ironically, DOS's editor, Edlin, does not. See
page 291 for more on the record-size field.

Function 16 (hex 10): Close File

Function 16 closes a file when given a pointer to the FCB in the regis
ter pair DS:DX. If the operation is successful, AL is set to 0; if the opera
tion fails, AL is set to 255 (hex FF).

A file must be closed after any operation to update the file directory.
DOS makes an intelligent attempt to detect that we are closing the same
file on the same disk that we opened by comparing the drive specifier in
the file directory with that in the open FCB. This offers some protection
against the scrambling of diskette information that can occur when a
user changes diskettes and writes to the new disk before the old file has
been closed.

Chapter 16: Universal DOS Functions 279

Function 17 (hex 11): Search for First Matching File
Function 17 begins the operation of searching for multiple files that

match a file specification. The register pair DS:DX points to the FCB con
taining the filename to be searched for. The intended use of this service is
to handle filenames that include the global characters ? and *. This ser
vice begins the process and the next service, function 18, continues the
search for subsequent files.

AL signals failure (255, hex FF) or success (0). If a matching filename
is found, a new FCB is created at the current disk transfer address (DTA),
and the filename is entered into the FGB's filename field.

If the FCB has an FCB extension {m- see page 289), then we can name
the attributes of the file that we wish to search for. There is a particular
logic that is followed for this attribute search. If we specify any combina
tion of the hidden, system, or directory attribute bits, the search will
match normal files and also any files with those attributes. If we specify
the volume-label attribute, this function will only search for a directory
entry with that attribute. With DOS versions prior to 2.00, neither the di
rectory nor the volume-label attributes can be used in the file search op
eration. The archive and read-only attributes cannot be used as search
criteria in any DOS release.

This is a good service to use, even when we do not intend for our
programs to operate on more than one file. Even if the first matching file
is the only one that will be worked on, by using this service before open
ing a file, we give our programs the flexibility to accept global filenames.

Function 18 (hex 12): Search for Next Matching File

Function 18 finds the next of a series of files, following the set-up
preparation performed by function 17. (•- See function 17 for details of
the set-up operation and return codes.

280 PROGRAMMER'S GUIDE TO THE IBM PC

Function 19 (hex 13): Delete File

Function 19 deletes files that match the FCB pointed to by the regis
ter pair DS:DX. AL is 0 if the operation is a success and all matching file
directory entries have been deleted. AL is 255 (hex EE) if the operation is a
failure, meaning that there were no matching directory entries.

m- See page 288 for details on the EGB.

Function 20 (hex 14): Read Sequential File Record

Function 20 is used to read the next sequential record in a file. Be
fore calling this function, we must use the DS:DXpair to point to the file's
EGB. The sequential record number is taken from the values in the cur
rent block and current record fields of the EGB. Then the file is read, and
on a successful or partially successful operation, the data is placed in the
current disk transfer area {(•- see function 26).

DOS increments the EGB record address fields after each read to ex

pedite the sequential read of the file. We can change the address fields
ourselves if we want to skip around in the file, but this is not wise in
sequential files; it is best to use the random I/O functions, 33 and 34, if we
need random access to a file's records, {m- See page 291 for a discussion
of the curious difference in the accounting methods of sequential and
random record numbers.)

AL is used to report the results of the read. Complete success is sig
naled when AL is 0; if AL is 1, it signals an end-of-file, indicating that no
data was read; if AL is 2, it signals that data could have been read, but the
DTA (disk transfer area) did not have sufficient space for a full record;
and if AL is 3, it signals an end-of-file with a partial record read (the rec
ord is padded with zero bytes).

Function 21 (hex 15): Write Sequential File Record

Function 21 writes a sequential record and is the companion to the
previous service, function 20. Registers DS:DX point to the EGB, where
the record address is stored. After reading the address, DOS takes the
data from the DTA {m- see function 26) and writes it to the disk.

After the service is finished, AL contains a return code: AL = 0 re
ports success; AL = 1 reports disk full; AL = 2 reports not enough space in
the disk transfer segment to write the record. Note that DOS's internal

Chapter 16: Universal DOS Functions 281

disk transfer segment must have enough room to accommodate the rec
ords in our disk transfer area.

It's important to note that data is logically written by this service,
but not necessarily physically written. DOS will buffer output data until it
has a complete disk sector to write—at which time it will write it. Until
a file is closed, there may be data in DOS's buffer that our programs con
sider written, but which has not yet been transferred to disk. This can be
a problem if a program is terminated abnormally.

Function 22 (hex 16): Create File

Function 22 finds or creates a directory entry for a file. The service
first searches the directory for a matching filename and if none is found,
it searches for an empty entry. Then, when given an FOB pointer in
DS:DX, the file is opened. Normally, this function is used to open an out
put file and function 15 is used to open an input file.

If AL is 0, it indicates a successful operation. If AL is 255 (hex FF), it
signals failure, usually due to a lack of directory space. When a file is
opened with this function, its length is set to 0. If we write new informa
tion to an existing file and then follow this function with function 16,
which closes the file, then the old contents of the file will be lost. This
would not happen if we opened the file using function 15, which sets the
FCB file-size field to match the file size found in the directory.

Function 23 (hex 17): Rename File
Function 23 renames files in a modified FCB pointed to by DS:DX.

For the rename operation, the FCB is specially handled. Although the
drive and original filename are located in their usual positions, the new
filename is placed at offset 16 in the FCB, beginning in the field normally
set aside for the file size ((•' see page 291).

AL = 0 signals complete success, and AL = 255 (hex FF) signals either
no files were found to rename, or the new filename is already in use.

If the new filename contains global characters, such as or ?, they
are interpreted to mean ditto-from-old-name and the characters in the
original name that correspond to the positions of the global characters
are not changed.

Function 24 (hex 18): Used Internally by DOS
Function 24 and functions 29 through 32 are used by DOS for its own

internal purposes. Although there is limited information about these ser
vices available, it is unwise to use this information or spread it around.
Any DOS function that is not publicly advertised as an available service
cannot be relied upon to be usable in future revisions of DOS.

282 PROGRAMMER'S GUIDE TO THE IBM PC

Function 25 (hex 19): Report Current Drive

Function 25 reports the current drive in AL, using the standard nu
meric code of drive A=0, drive B = 1, etc. See function 14 for an exam
ple of how this function may be used in assembly language.

Function 26 (hex lA): Set Disk Transfer Area

Function 26 sets the disk transfer area that will be used by DOS for
file I/O. The location of the DTA is specified by the register pair DS:DX.
There is a default DTA of 128 bytes available in the PSP at offset hex 80.

Function 27 (hex IB): Get FAT Information, Current Drive

Function 27 returns key information about the disk in the current
drive. Function 28 performs the identical service for any drive. Function
54, covered in the next chapter, performs a nearly identical service.

The following information is returned through this function call:
AL contains the number of sectors per allocation unit (1 sector for single-
sided diskettes, 2 for double-sided). CX contains the size in bytes of the
disk sectors (512 bytes for all standard PC formats). DX contains the total
number of allocation units (clusters) on the disk. And DS:BX points to a
byte in DOS's work area containing the FAT ID («r see page 120 for details
on the FAT). Prior to DOS version 2.00, the DS:BX register pair pointed to
the complete disk FAT (which could be guaranteed to be in memory, com
plete), whose first byte would be the ID byte. In later DOS versions, the
FAT is not necessarily present all in one place, so it's safest to assume that
DS:BX only points to the single ID byte.

Beware of one dangerous possibility: This function sets DS:BX to
point to the FAT ID byte, which is not located in the data segment area.
This means that our current use of the data segment register (DS) will be
reset by this function. Normally, this disrupts the operation of our pro
grams, which rely on the DS register setting to remain stable. To avoid
such a problem, it's best to preserve and restore the DS value around this
service. Flere is an example of how it might be done:

PUSH DS ; save the DS address
MDV AH, 27 ; ask for this function
181 33 ; invoke the DOS function call
MOV AH,[BX] ; grab the FAT ID byte
POP PS ; replace the DS address

This little problem is an example of how easy it is to make short
sighted mistakes in program design. If this function used the extra seg
ment (ES) register instead of DS, then there would not be a pitfall for our
programs to stumble into.

Chapter 16: Universal DOS Functions 283

Function 28 (hex IC): Get FAT Information, Any Drive
Function 28 works in the same way as function 27 except that it will

report on any drive, not just the current drive. Before calling this service,
set DL to the special drive ID number, where 0 = the current drive,
1 = drive A, 2 = drive B, etc. (Notice that we do not use the conventional
drive numbering method, which specifies drive A as 0 and drive B as 1.)

Function 33 (hex 21): Read Random File Record
Function 33 reads one record from a random location in a file. After

locating the FCB of the file through DS:DX, we must specify the random
record we want to read by setting the random record field in the FCB.
After setting the record field, data is then read into the current DTA.

AL is set with the same codes as it is for a sequential read; AL = 0
indicates a successful read; AL = 1 indicates end-of-file, with no more data
available; AL = 2 means there is insufficient space in the disk transfer seg
ment; and AL = 3 is an end-of-file, with a partial data record available.

□ NOTE; Our program must continually set the random record field
to correspond to every random record we read. By contrast, DOS auto
matically increments the sequential fields, setting them to match the next
record in line. Because of this, it is often more convenient to combine the
two processes by following a random read with sequential reads.

m- Contrast this function with function 39, which can read more
than one random record, or with function 20, which reads sequential rec
ords. See function 36 for more on setting the random record field.

Function 34 (hex 22): Write Random File Record
Function 34 writes one record to a random location in a file. After

the register pair DSiDX points to the FCB for the file, our program must
set the random record field in the FCB to correspond to the random rec
ord we want written. After the random record field is set, data is written
from the current DTA.

AL is set with the same codes as it is for a sequential write: 0 indi
cates a successful write; 1 means the disk is full; 2 indicates insufficient
space in the disk transfer segment.

□ NOTE: Our program must continually set the random record field
to correspond to every random record we write. By contrast, DOS auto
matically increments the sequential fields, setting them to match the next
record in line. Because of this, it is often more convenient to combine the
two processes by following a random write with sequential writes.

284 PROGRAMMER'S GUIDE TO THE IBM PC

(•- Contrast this function with function 40, which can write more
than one random record, or with function 21, which writes sequential
records. See function 36 for more on setting the random record field.

Function 35 (hex 23): Get File Size

Function 35 reports the size of a file in terms of the number of rec
ords in the file. DS:DX points to the ECB of the file we want to know
about. Before calling the function, the FCB should be left unopened and
the record-size field in the FCB filled in. If we set the record size to 1, the
file size will be reported in bytes, which is most likely what we will want.

If the operation is successful, AL is 0 and the file size is inserted into
the FCB. If the file is not found, AL is 255 (hex FF).

Function 36 (hex 24): Set Random Record Field

Function 36 sets the random record field to correspond to the cur
rent sequential block and record fields in the FCB. This facilitates switch
ing from sequential to random I/O. The DS:DX registers point to the FCB
of an open file.

Function 37 (hex 25): Set Interrupt Vector
Function 37 is used to set an interrupt vector. The register pair

DS:DX contains the vector address of an interrupt-handling subroutine
and AL contains the interrupt number. The 4-byte interrupt vector is
placed in the vector table and is called when the interrupt number is re
quested through the INT instruction.

While any program that knows enough to create interrupt vectors
could set them itself, this service relieves us of some of the trickery neces
sary to set an interrupt vector safely. For vectors that point to interrupt
handlers instead of pointing to tables, the segment portion would nor
mally be our current code segment (CS), which must be transferred to DS.
Again, note the poor choice of DS rather than ES, which tampers with
our program users' access to data.

To examine the contents of the interrupt vector, see function 53
(hex 35) in the next chapter.

Function 38 (hex 26): Create Program Segment
Function 38 is used to create a new program segment to prepare a

separately loaded subprogram, or overlay, for execution. DX is used to
provide the segment paragraph for the new program. The current pro
gram's program segment prefix (PSP) is copied to the first 256 (hex 100)

Chapter 16: Universal DOS Functions 285

bytes of the new segment area, creating a new PSP. This new PSP is up
dated with new memory and interrupt vector information. After this ser
vice sets up the PSP, we can use conventional DOS input services to read a
COM-type program file into the area immediately following the PSP. With
advanced versions of DOS (2.00 and later), the whole process of setting up
and using overlays is much easier.

(•- See the next chapter, particularly function 75. For an explana
tion of the program segment prefix (PSP), see page 260.

Function 39 (hex 27): Read Random File Records
Unlike function 33, function 39 reads one or more records, starting

at a random file location. DS:DX points to the FCB for the file to he read
and the random record number is then taken from this FCB. CX contains
the number of records desired, which should he more than 0.

The return codes are the same as they are for function 33: AL = 0
means the read was successful; AL = 1 indicates end-of-file, with no more
data (if the records were read, the last record is complete); AL = 2 indicates
disk transfer segment problems (often a wrap-around of the segment offset
past hex FFFF, which is not allowed); and AL = 3 indicates the end-of-file,
where the last record read is incomplete and padded with zeros.

No matter what the result, CX is set to the number of records read,
including any partial record, and the random record field in the FCB is set
to the next sequential record.

(•-Contrast this with function 33, which reads only one record.

Function 40 (hex 28): Write Random File Records
Unlike function 34, function 40 writes one or more records, starting

at a random file location. DS:DX points to the FCB for the file to he writ
ten and the random record number is then taken from this FCB. CX con
tains the number of records desired and in this case, CX can he 0. When
CX is 0, it is used as a signal to DOS to adjust the file's length to the posi
tion of the specified random record. This makes it easier for our pro
grams to manage random files: If we have logically deleted records at the
end of a file, this service allows our programs to truncate the file at that
point by setting the file's length in CX, thereby freeing disk space.

The return codes are the same as they are for function 34: AL = 0
indicates a successful write and AL = 1 means there is no more disk space
available. No matter what the result, CX is always set to the number of
records written.

m- Contrast this function with function 34, which writes only one
random record.

PROGRAMMER'S GUIDE TO THE IBM PC

Function 41 (hex 29): Parse Filename

Function 41 parses a command line for a filename with the form
DRIVE:FILENAME.EXT. If a filename is found, it creates an FCB. Fimc-
tion 41 is particularly useful for processing the filename parameters pre
sented to a program when it is invoked. The parsing parameters are care
fully designed to make it convenient for a program to set up a default
drive, a filename, and an extension, which can be overridden in a com
mand specification. This forms the foundation for some commonly expe
rienced program behavior.

The register pair DS:SI points to the string where the filespec string
is located. The register pair ES:DI points to the memory location to be
filled with an unopened FCB. Bits 0 through 3 of AL control how the file
name will be parsed.

If bit 0 is 1, the function scans past the separators (for example,
leading blank spaces) to find the filespec. If bit 0 is 0, the scan operation is
not performed and the filespec is expected to be in the first byte location
of the command line.

If bit 1 is 1, then the drive byte in the FCB will only be set if it is
specified in the filespec being scanned. This allows the FCB to have its
own default drive (which can be overridden), rather than using the DOS
default drive.

If bit 2 is 1, the filename in the FCB will be changed only if a valid
filename is found in the filespec. This allows our programs to set up a de
fault filename, which can be overridden by the command input.

If bit 3 is 1, the filename extension in the FCB will be changed only if
a valid filename is found in the filespec.

When the parsing is done, the conventional punctuation preceding,
inside, and ending a filespec is recognized. If the global character is
encountered, it is translated into the more elaborate ? format.

As usual, AL reports the results: AL = 0 signals success with a single
filename; AL = 1 signals success wdth global characters (* or ?), which
alerts us to the need for find-first-find-next processing (see functions 17
and 18); AL=255 (hex FF) signals failure (which generally means some
problem in the filespec).

To facilitate repeated processing, DS:SI (just SI, really) will be up
dated to point past the parsed input. If the parse was unsuccessful, the
second byte of the FCB (ESrDI +1) will be blank.

As an old-style universal DOS service, this function cannot handle
path names, which limits—but doesn't eliminate—its usefulness to us.

Chapter 16: Universal DOS Functions 287

Function 42 (hex 2A): Get Date

Function 42 reports DOS's record of the current date. The date is
reported in CX and DX. DH contains the month number (1 through 12);
DL contains the day of the month (1 through 28, 29, 30, or 31, as appropri
ate); and CX contains the year (1980 through 2099).

The day of the week is reported by this service by returning a value
from 0 through 6 in register AL, which signifies Sunday through Satur
day. This day-of-the-week feature is something of an orphan. It has been
present in DOS since release 1.10, but it was not even mentioned until DOS
version 2.00. In both the 2.00 and 2.10 manuals, it is incorrectly described
as a part of the get-time function and not as part of the get-date function.
Starting with DOS 3.0, the manual tells it as it is. Turn to the example
on page 292 to see how this service can be used.

Function 43 (hex 2B): Set Date

Function 43 sets DOS's record of the current date, in the same form
as the date is reported in function 42. The date is set in CX and DX. DH
contains the month number (1 through 12); DL contains the day of the
month (1 through 28, 29, 30, or 31, as appropriate); CX contains the year
(1980 through 2099).

See function 42 for further explanation. Turn to the example on
page 292 to see how this service can be used.

Function 44 (hex 2C): Get Time

Function 44 reports the time of day. The time is calculated from the
ROM-BIOS clock-tick count ('•■ see page 222). DOS responds to the ROM-
BIOS's midnight-passed signal and updates the date every 24 hours.

The tick count is converted into a meaningful time and placed in
registers CX and DX. CH contains the hour (0 through 23, on a 24-hour
clock); CL contains the minutes (0 through 59); DH contains the seconds
(0 through 59); and DL contains hundredths of seconds (0 through 99).

The actual rate of the clock tick is approximately .054 second, so
the time cannot be reported accurately to hundredths of seconds and no
event can be timed finer than to roughly Vzo second. Nevertheless, I have
confirmed that the algorithm used by DOS to calculate the hundredths
does produce an even distribution of all 100 values. Because of this, it is
reasonable to use the hundredths value in the seed for a pseudo-random
number generator.

288 PROGRAMMER'S GUIDE TO THE IBM PC

Contrary to what appears in the DOS Technical Reference manual,
the day of the week is not reported by this get-time function. Instead, it is
reported by function 42, the get-date function, as common sense would
expect.

Function 45 (hex 2D): Set Time

Function 45 sets the time of day. The time is specified in registers
CX and DX. CH contains the hour (0 through 23, on a 24-hour clock); CL
contains the minutes (0 through 59); DH contains the seconds (0 through
59); DL contains hundredths of seconds (0 through 99).

Function 46 (hex 2E): Set Disk Write Verification

Function 46 controls verification of disk write operations. When
verification is on, each disk write will be followed by a verify read. This
does not compare the written data, but instead checks the CRC, the com
plex parity check of proper data recording.

When using this service, DL must be set to 0, which suggests that
there are some unadvertised variations on this function. AL is set to 0 or
1, which turns verification off or on.

With DOS versions 2.00 and higher, extended function 84 (hex 54)
can be used to report the current setting of the verification switch ('•' see
page 319).

THE FILE CONTROL BLOCK

For the old, traditional DOS function calls, work with disk files cen
ters around the DOS file control block (FOB), a 44-byte area that contains
descriptive information about the files we are using. As we can see from
many of the function calls, we not only have access to the FOB, we also
have nearly complete control over it. We'll find that the new DOS func
tion calls introduced with version 2.00 (<•' and covered in Chapter 17),
keep most of the control information about a file (or other device) hidden
from us. Instead, we'll work only with a simple file identification number,
called a file handle—and DOS will do all the rest. But we'll save the dis
cussion of file handles until the next chapter. Here we'll cover the format
and use of the FCB.

There are two main parts to the FCB: the FCB itself, which is a 37-
byte area, and the extended FCB, which is a quasi-optional 7-byte prefix
to the FCB. The larger part of the FCB stores control information about
the files, including the filename and drive specification, as well as record
sizes and numbers. The 7-byte extension indicates that the file has special
file attributes. ('•'See page 116 for more on file attributes.)

Chapter 16: Universal DOS Functions

The situation with the FCB extension is more than a little peculiar.
The extension is only used when we are working with files that have un
conventional attributes, such as hidden or system files. Supposedly, the
extension is only needed under those circumstances and if we are not
using the special files, we do not need to reserve the 7-byte storage space.
Ha! In practice, it is all but mandatory to set aside space for the FCB
extension because the presence of the extension is signaled by the value
255 (hex FF) in its first byte. To make matters worse, if we're not using
the FCB extension we have to make sure that it is marked as not being
used—which means that the 7-byte memory area is in use, busy telling
DOS that it isn't needed. This is the sort of clumsy design that drives re
sponsible programmers wild, and makes everyone, including the DOS de
signers, long for the cleaner setup of the extended functions discussed in
Chapter 17.

The FCB is addressed from the beginning of the main part, and all
fields within the FCB are referred to in terms of their offset from this ad
dress. This places the FCB extension at a negative offset of -7. We'll fol
low DOS conventions and describe the various fields in these terms.

Offset

(dec)
Size

(bytes) Set by Description

-7 1 Us-1 Extension active signal: FF = yes,
otherwise no

-6 5 Us-1 Nominally unused: should be set to zeros

-1 1 Us-1 File attribute, when extension active

0 1 Us-1 Special drive number

1 8 Us-1 Filename or device name

9 3 Us-1 Filename extension

12 2 Us-2 Current block number

14 2 Us-2 Record size

16 4 DOS File size in bytes

20 2 DOS File date (bit-coded, as in file directory)

22 10 DOS Miscellaneous DOS control work area

32 1 Us-2 Current record number ("signed" byte,
see text)

33 4 Us-2 Random record number

Figure 16-3. The file control block field
descriptions

290 PROGRAMMER'S GUIDE TO THE IBM PC

The fields shown in Figure 16-3 that are set and controlled by DOS
should not be changed by our programs. The other fields should be set by
us: The ones marked Us-1 should be set before the file is opened for use;
those marked Us-2 should be set before the file is read from or written to.
We will discuss the use and coding of the parts of the FCB in the order
they appear in the table.

Offsets -7 and -6. The extension active signal must be set to 255
(hex EE) if we are using the ECB extension, or to any other value if we are
not. The DOS literature indicates that the 5-byte field following it should
be set to zero, though it may not matter.

Offset -1. The file-attribute field must be set to the special attri
butes of the file being opened. This is not needed for ordinary files, which
have an attribute of 0. The attributes that must be specified are the hid
den, system, and directory attributes. The label attribute is irrelevant,
and the attribute specification is not needed to access a read-only file.

See page 116 for more on attribute coding.
Offset 0. The special drive number in the byte at offset 0 is used to

indicate which drive we wish to work with. This is not the same as the
standard drive ID number, in which 0 indicates drive A, 1 indicates drive
B, etc. Instead, this drive number is set up in a more flexible format,
where 1 indicates drive A, 2 drive B, and so forth. The added flexibility
comes from the use of 0 to indicate the current default drive, whatever
that might be. Before a file is opened, we can specify the drive we want,
or indicate the default drive with a 0. When the file is opened, DOS will
change the 0 to the specific drive number, which we can then inspect
using function 25 (hex 19). When working with this field, take care not to
get the special drive values confused with the more conventional drive
numbers, which are one less than the numbers used here.

Offsets 1 and 9. The two fields at byte offsets 1 and 9 give the file
name and extension. Following the standard DOS conventions, these
fields are left-justified and padded on the right with blanks (CHR$(32),
hex 20). Also following DOS convention, either upper- or lowercase let
ters may be used. If the filename is a device name that DOS recognizes,
such as CON:, AUX:, COMl:, COM2:, LPTl:, LPT2:, PRN:, or NUL:, DOS
will use that device rather than a disk file.

□ NOTE: This is a reasonably good place to point out that the FCB
mechanism has no provision for working with path names. Whenever
we use FCBs, they always apply to the current directory in any drive.
'•* For flexible use of paths and subdirectories, see the new, extended
functions in Chapter 17.

Chapter 16: Universal DOS Functions

Offsets 12 and 32. For sequential file operations, the current block
and current record fields are used to keep track of the location in the file.
The use of these fields is typically rather odd. Instead of using one inte
grated record number, the record number is divided into a high and low
portion, referred to as the block and record numbers. Just to make things
screwier, blocks consist of 128 records instead of the 256 records that a
1-byte record number would allow. This is why I described the record
number as a "signed" byte in Figure 16-3. It actually is not signed, since
negative values are not allowed; this is simply a warning that the allowed
values range from 0 through 127, and not 0 through 255.

The first record of a file is record 0 of block 0. This format is de
signed to allow quick calculation of the location of each sequential rec
ord. With this record-locating system, DOS actually performs sequential
file operations as a variation on random file operations. We set these two
fields before the first sequential file operation, whether read or write.
DOS automatically increments the field with each subsequent operation.
We can skip aroimd in a sequential file by modifying the fields—a tactic
that is dandy for an input file, and dicey for an output file.

Offset 14. The record-size field, beginning at byte offset 14, gives
the size in bytes of the logical records of the file. When our programs ask
DOS to read or write a record, the logical size of the record is the number
of bytes transferred between DOS's disk buffers and our program's data
area. This value has nothing to do with the file as seen by DOS or with
the file stored on disk; it indicates how this program wishes to view the
file at this time.

The same file data can be worked on under a variety of record sizes.
Unless a file is actually built of fbced-length records, we normally treat the
file as though it has a record length of one byte in order to conserve
space. It is customary for some of the common text-editing programs to
use a record size of 128 bytes for ASCII files. This reduces the number of
DOS function calls that are needed to work with the file to less than a
hundredth of what they would be with a declared record size of one byte.
Naturally, there is a small price to pay for this trick: The file size re
corded by DOS can be too high by as much as 127 bytes, and these pro
grams must do a little extra footwork to keep the data straight. When a
file is opened through function 15, DOS sets the record size to 128 bytes
by default. If we want another size, such as 1 for single-byte operations,
we must change it after the file is opened.

Offset 16. The file-size field at byte offset 16 indicates the file size in
bytes. The value is taken from the file's directory entry and is placed in the
FCB when DOS opens a file. For an output file, this field is changed by
DOS as the file grows. When the file is closed, the value is placed in the

PROGRAMMER'S GUIDE TO THE IBM PC

file's directory entry. Changing this field can give us some last-minute
control over the size of an output file, but be careful when doing this. If
we attempt to read a subdirectory as a file (which requires the use of the
FCB extension to indicate a directory's file attribute), this field will be 0
when the file is opened because a subdirectory's directory entry indicates
a zero length. To read the subdirectory successfully, we need to set this
field to some arbitrarily high value. And here's something else to keep in
mind: When using the rename operation (function 23), the new filename
will be placed at offset 16, exactly where the file-size field is located.

Offset 20. The file's date is coded in a 2-byte field in the same form
as the file directory entries, using the MM/DD/YY format. This field is set
by DOS when the file is opened, with information taken from the file di
rectory. ((•'See page 118 for more on date coding.)

Offset 33. The random record field is used during direct or random
read and write operations, just as the current record and block numbers
are used during sequential operations. This field is in the form of a 4-
byte, 32-bit integer, which can easily be broken down into bytes or words.
Records are numbered from 0, which makes it easy to calculate the file
offset to any record by multiplying the random record number by the
record size. We must set this field before any random file operation. DOS
leaves it undisturbed.

AN EXAMPLE

For our assembly-language example in this section, I've chosen
something rather interesting and foxy. It's a routine that I developed for
use within my own Norton Utility programs, so you'll be seeing some
actual production code, modified only to enhance the comments.

The purpose of this routine is to calculate the day of the week for
any day within DOS's working range, which is stated to be from Tuesday,
January 1, 1980, through Thursday, December 31, 2099. Occasionally, it's
valuable for a program to be able to report the day of the week, either for
the current date, or for any other date that may be in question. For exam
ple, DOS keeps track of the date and time each file was last changed.
Since we often use this information to find out when we last worked with a
file, it can be handy to know the day of the week as well. In fact, the day
of the week is often more immediately meaningful than the actual date.

Chapter 16; Universal DOS Functions 293

Although there are several interesting and clever algorithms pub
lished for calculating the day of the week, the actual work of writing a
day-of-the-week program is usually rather tedious. It seems we rarely
have these published algorithms on hand when we need them, and if we
do they are often expressed in a language that is unsuitable for our pur
poses. Beginning with release 2.00, DOS incorporated a day-of-the-week
calculation, which can spare us the chore of writing our own. DOS's pro
gram is only available to us in a form that reports the current day of the
week, but that is no obstacle: We can temporarily change DOS's date to
the date we're interested in and then have DOS report the day of the
week. That is what the following assembly-language routine does for us.

Besides being slightly foxy, this routine is interesting because it illus
trates the use of three DOS function calls operating together to produce
one result. It also nicely illustrates the minor intricacies involved in saving
and restoring things on the stack. As we will see here, stack use occasion
ally has to be carefully orchestrated so that different values don't get in
the way of each other.

This particular subroutine, named WEEKDAY, is set up in the form
needed for use with the Lattice/Microsoft C compiler. The routine is
called with three integer variables, which give the month, day, and year
we are interested in. The routine returns the day of the week in the form
of an integer in the range of 0 through 6 (signifying Sunday through Sat
urday). This conforms nicely to the C language convention for arrays,
providing an index to an array of strings that give the names of the days.
Therefore, we could use this subroutine in this way:

DAY.NAMES (WEEKDAY (MONTH,DAY,YEAR))

It is important to note that this routine works blindly with the date,
checking neither for a valid date nor for the range of dates accepted by
DOS. Also, note that this routine requires DOS version 2.00 or higher.
Here is our subroutine:

PGROUP GROUP PROG

PUBLIC WEEKDAY

PROG SEGMENT BYTE PUBLIC 'PROG'

ASSUME CS:WEEKDAYS

WEEKDAY PROC NEAR

294 PROGRAMMER'S GUIDE TO THE IBM PC

Strategy: get and save old date
set new date

get date, which reports day of week
reset old date

PUSH BP

MOV BP,SP

MQV AH,2AH ; get date (to save)
INT 21H ; DOS function call

PUSH CX ; save old date...
PUSH DX i ... on the stack

MQV CX,[BP+8] year

MQV DL,[BP+6] day
MOV DH,[BP+4] month

MGV AH,2BH set date temporarily
INT 21H DOS function call

MGV AH,2AH get date, to get day-of-week
INT 21H DOS function call

PGP DX restore old date...

PGP CX ... from the stack

PUSH AX save weekday on stack
MGV AH,2BH reset old date

INT 21H DOS function call

PGP AX regain weekday from stack
MGV AH,0 clear high part so OK as integer
PGP BP

RET

WEEKDAY ENDP

PRGG ENDS

END

17

New DOS Functions

DOS-2 Enhancements 296

Enhancements to the Extended DOS Functions 296

Installable Device Drivers 299

Summary of the Extended DOS Functions 299
Function 47 (hex 2F): Get DTA Address 300

Function 48 (hex 30): Get DOS Version Number 300

Function 49 (hex 31): KEEP—Advanced
Terminate-but-Stay-Resident 302

Function 51 (hex 33): Get/Set Ctrl-Break 302

Function 53 (hex 35): Get Interrupt Vector 303

Function 54 (hex 36): Get Disk Free Space 303

Function 56 (hex 38): Get Country-Dependent
Information 304

Function 57 (hex 39): MKDIR—Make Directory 306

Function 58 (hex 3A): RMDIR—Remove Directory 307

Function 59 (hex 3B): CHDIR—Change Current
Directory 307

Function 60 (hex 3C): GREAT—Create File 307

Function 61 (hex 3D): Open File 308

Function 62 (hex 3F): Close File Handle 309

Function 63 (hex 3F): Read from File or Device 309

Function 64 (hex 40): Write to File or Device 309

Function 65 (hex 41): Delete File 310

Function 66 (hex 42): Move File Pointer 310

Function 67 (hex 43): CHMOD—Get/Set File
Attributes 311

Function 68 (hex 44): lOGTL—I/O Control for
Devices 311

Extended DOS Functions (continued)
Function 69 (hex 45): DUP—Duplicate File Handle 313

Function 70 (hex 46): CDUP—Force Handle
Duplication 313

Function 71 (hex 47): Get Current Directory 314

Function 72 (hex 48): Allocate Memory 314

Function 73 (hex 49): Free Allocated Memory 315

Function 74 (hex 4A): SFTBLOCK—Modify
Allocated Memory Block 31S

Function 75 (hex 4B): FXFC—Load/Execute
Program 315

Function 76 (hex 4C): Terminate Process 317

Function 77 (hex 4D): Get Return Code of
Subprogram 317

Function 78 (hex 4F): FIND FIRST—Start File
Search 318

Function 79 (hex 4F): Continue File Search 319

Function 84 (hex 54): Get Verify State 319

Function 86 (hex 56): Rename File 319

Function 87 (hex 57): Get/Set File Date and Time 319

DOS 3.00 Additions 320

Function 89 (hex 59): Get Extended Error Code 320

Function 90 (hex 5A): Create Temporary File 323

Function 91 (hex 5B): Create New File 323

Function 92 (hex 5C): Lock/Unlock File Access 324

Function 98 (hex 62): Get PSP Address 324

295

296 PROGRAMMER'S GUIDE TO THE IBM PC

Having focused on the DOS interrupts in the last chapter, in
this chapter we'll discuss the DOS functions that are new to
the advanced versions of DOS, version 2.00 and beyond. Ac
cording to DOS terminology, the "old" or "universal" ser

vices covered in Chapter 16 are the traditional functions, and the "new"
services covered in this chapter are the extended functions.

The extended functions of DOS 2.10 are identical to those of DOS

2.00. DOS version 3.00 introduced some changes to a few of the existing
functions and also added six new functions. In this chapter, you will find
each DOS-2 function described in detail, with the DOS 3.00 enhance
ments described wherever they occur. The new DOS 3.00 extended func
tions are described in detail at the end of the chapter.

(•- See Chapter 15 for the DOS interrupts, which are the services
and related items that are not categorized as function calls. Then see
Chapter 16 for the traditional DOS function calls that can be used with
any release of DOS.

DOS-2 ENHANCEMENTS

With almost every DOS upgrade, there are changes in the way DOS
operates and in the number of services it provides to programmers. The
introduction of DOS 2.00 brought about the most dramatic changes: It
added 33 new services to the existing 42; it changed the way we access
file information as a result of these new services; and it made it possible
to adapt DOS to work with almost any hardware device through the use
of programs called installable device drivers. Before discussing the ex
tended functions in detail, we'll briefly cover how some of these enhance
ments affect our programming practices.

Enhancements to the Extended DOS Functions

Many of the extended services introduced with DOS 2.00 and DOS
3.00 have three important new features that directly affect the way we use
the services. First, most of the functions return a set of standard error
codes in the AX register. Second, all of the functions that use string input
require a special string format known as the ASCIIZ format—a string
followed by a byte of zeros. And third, many of these extended DOS func
tions use a 16-bit number called a file handle, instead of an FCB, to keep
track of the files and I/O devices that a program communicates with.
We'll discuss each of these enhancements in turn on the next few pages.

Chapter 17; New DOS Functions 297

The Standard Error Codes

Many of the new extended DOS functions return a standard set of
binary error codes, called return codes, when the service has finished op
erating. These are listed in Figure 17-1. Generally, the return codes signal
that a service has failed for some reason. They can be used by our pro
grams to determine the nature of the problem and the appropriate action
that should be taken.

The standard return codes are reported in the AX register (though
a single half-register could be used, since all the codes have values that
are well vmder 255). The carry flag (CF) is used to signal an error—at
least that's what it's for in theory; I have discovered by experimenting
with these services that you cannot depend on CF to signal conditions
that you or I might think call for an error signal. Fortunately, the stan
dard return codes are reliable and you can count on the values shown in
Figure 17-1 to be used whenever a function returns an error. Whether or
not you can expect to use the CF flag as a signal is another matter. I
would advise that you either test the function experimentally to see what
happens with the CF flag, or else completely ignore the flag and just test
for the specific codes that might occur in the AX register. In the descrip
tions of the functions that supply return codes, you'll find a short list of
the codes that are most likely to be returned by a function error.

□ NOTE: DOS 3.00 offers not only the standard error codes, but also
more extensive error codes through function 89. ^See page 320.

Error Code Error Code
Dec Hex Meaning Dec Hex Meaning

1 1 Invalid function number 10 A Invalid environment (see SET

2 2 File not found command of DOS)

3 3 Path not found 11 B Invalid format

4 4 No handle available: all in use 12 C Invalid access code

5 5 Access denied 13 D Invalid data

6 6 Invalid handle 14 E Not used

7 7 Memory control blocks destroyed 15 F Invalid drive specification

8 8 Insufficient memory 16 10 Attempt to remove current directory

9 9 Invalid memory block address 17 11 Not same device

18 12 No more files to be found

Figure 17-1. The standard error codes
returned in register AX after an un
successful function operation, and their
assigned meanings

298 PROGRAMMER'S GUIDE TO THE IBM PC

The ASCIIZ String

Whenever any of the extended functions require variable length
■ strings, such as a path name, we use a format known as an ASCIIZ string.
An ASCIIZ string consists of a series of conventional ASCII characters fol
lowed by a zero byte, which marks the end of the string. A typical path
name string may have a form something like this:

A:\DIRECTDRY1\DIRECTDRY2\FILENftME.EXT(BYTE DF ZEROS)

The drive specifier is optional and either the forward slash or backslash
are accepted as path separators.

The ASCIIZ string format is commonly used by both the UNIX oper
ating system and the C programming language; it is just one of many
new elements with a C/UNIX flavor introduced with the DOS-2 versions.

File Handles

The new extended functions of DOS deal with files in a more inter

nal way than the traditional DOS services. The traditional services make
use of a file control block (FCB), which we have access to and nearly com
plete control over. The extended services keep most of the control infor
mation about a file (or device) quite private and hidden from us.

In the traditional services, we indicate which file we are working
with by pointing DOS to an FCB. We use the same services to perform rou
tine file management tasks, such as locating the file, pointing to the file's
data, and determining the file size. In contrast, in the extended services
we work with a file handle, which is nothing more than a simple 16-bit
number returned through the AX register. This number identifies the file
or device we are working with and automatically performs most of the
routine file management operations.

DOS maintains complete control over the file handles, and issues the
handle numbers to us whenever we create or open a file. There are five
standard handles, numbered 0 through 4, which are automatically avail
able to every program ((•' see Figure 17-2). Other handles, with higher
handle numbers, are issued by DOS as they are needed.

The traditional functions allow up to 99 files (and file FCBs) to be
open at the same time using the FILES command in DOS (EH 255 are
allowed in the AT). However, the extended functions, operating under
DOS-2 versions, issue a maximum of 20 file handles to any one program,
thereby limiting the number of files that a program can actually open.
On request, DOS 3.00 provides more handles, but defaults to the DOS-2
limit of 20 files. This limitation in the extended functions is likely to af
fect only highly complex programs that require a large number of open
files at one time.

Chapter 17; New DOS Functions 299

Handle Use Default Setting

0 Standard input (normally keyboard input) CON:

1 Standard output (normally screen output) CON:

2 Standard error output (always to the screen) CON:

3 Standard auxiliary device (AUX: device) AUX:

4 Standard printer (LPTl: or PRN: device) PRN:

Figure 17-2. The five standard handles
available to every file

Installable Device Drivers

Two additional features that were introduced with DOS 2.00 also

deserve some attention: the installable device drivers, and specifically, the
ANSI driver (usually called ANSI.SYS), a device driver that comes standard
with many adaptations of DOS.

The DOS device drivers are programs that we create to link hard
ware devices to our computer system without rewriting the BIOS. A de
vice driver may be a routine that supports the addition of new hardware,
such as a joystick or a mouse, or it may be a routine that modifies the
operation of standard hardware so that it can perform tasks that are not
available through the DOS services. (The ANSI driver is an example of the
latter type; it lets us modify screen output or keyboard input without
using the BIOS service routines.) Since the device drivers are created as a
part of DOS, our programs need not reach down to the BIOS or the hard
ware level to accommodate new devices, an important feature for pro
grams that operate in windowing or multitasking environments.

The device drivers are not directly related to the extended DOS func
tions, so we will save a more detailed discussion of them for Appendix A.
Keep in mind that by placing the discussion of device drivers at the end of
the book, I in no way mean to diminish their importance. All program
mers who are concerned with the range and longevity of their programs
should at least be familiar with the use and operation of device drivers.
m- See Appendix A.

SUMMARY OF THE EXTENDED DOS FUNCTIONS

All the extended DOS function calls are invoked through interrupt
number 33 (hex 21). The individual functions are selected by placing the
function number in the AH register. Any program that uses the extended
functions should test the DOS version number first to make sure the func

tions are available. Extended function 48 (hex 30) provides this service.

300 PROGRAMMER'S GUIDE TO THE IBM PC

Function

Dec Hex Group

47-56 2F-38 Extended function group

57-59 39-3B Directory group

60-70 3C-46 Extended file management group

71 47 Directory group

72-75 48-4B Extended memory management group

76-79 4C-4F Extended function group

84-87 54-57 Extended function group

88-98 58-62 DOS 3.00 additions

Figure 17-3. The logical groups of extended-
DOS function calls

The functions are organized into the logical groups shown in Fig
ure 17-3. In an effort to make the logical groupings of the function calls as
clear as possible, I have organized and described them in a slightly differ
ent manner than the DOS Technical Reference manual. You may want to
compare my organization with IBM's, just to make sure there is no mis
understanding. Figure 17-4 lists the individual function calls.

Function 47 (hex 2F): Get DTA Address

Function 47 returns the address of the disk transfer area, or DTA,
which is currently in use by DOS. The address is returned in the register
pair ES:BX. Since the ES segment register is used to return the segment
portion instead of the DS register, this service will not conflict with the
normal operation of a program. (•* Contrast this with function 26, dis
cussed on page 282.

Function 48 (hex 30): Get DOS Version Number

Function 48 returns the DOS major and minor version numbers.
The major version number is in AL (for DOS version 2.10, this would be
2), and the minor version number is in AH (which would be 10 for DOS
2.10); BX and CX are both set to 0000 on return from this function. This
service is new to advanced DOS versions and does not exist in DOS-1 ver

sions. Fortunately, when function 48 is used with any DOS-1 version, a
consistently identifiable result will occur; The major version number will
be reported as 0 in the AL register. Unformnately, the minor version num
ber is not reliable in the DOS-1 versions.

Chapter 17: New DOS Functions 301

Function Function

Dec Hex Description Dec Hex Description

47 2F Get DTA address 73 49 Free allocated memory

48 30 Get DOS version number 74 4A SETBLOCK: Modify allocated

49 31 KEEP: Advanced terminate- memory block

but-stay-resident 75 4B EXEC: Load/execute program

50 32 Not used 76 4C Terminate process

51 33 Get/set Ctrl-Break 77 4D Get return code of subprogram

52 34 Not used 78 4E FIND FIRST: Start file search

53 35 Get interrupt vector 79 4F Continue file search

54 36 Get disk free space 80 50 Not used

55 37 Not used 81 51 Not used

56 38 Get country-dependent information 82 52 Not used

57 39 MKDIR: Make directory 83 53 Not used

58 3A RMDIR: Remove directory 84 54 Get verify state

59 3B CHDIR: Change current directory 85 55 Not used

60 3C GREAT: Create file 86 56 Rename file

61 3D Open file 87 57 Get/set file date and time

62 3E Close file handle 88 58 Not used

63 3F Read from file or device 89 59 Get extended error

64 40 Write to file or device 90 5A Create temporary file

65 41 Delete file 91 5B Create new file

66 42 Move file pointer 92 5C Lock/unlock file access

67 43 CHMOD: Get/set file attributes 93 5D Not used

68 44 lOCTL: I/O control for devices 94 5E Not used

69 45 DUP: Duplicate file handle 95 5F Not used

70 46 CDUP: Force handle duplication 96 60 Not used

71 47 Get current directory 97 61 Not used

72 48 Allocate memory 98 62 Get PSP address

Figure 17-4. The extended DOS function
calls invoked by interrupt 33 and selected in
the AH register

Any program that makes use of the advanced DOS features can use
this function to determine if the appropriate DOS version is being used.
The preferred test is simply to check for a major version greater than or
equal to 2 (or 3, if DOS-3 services are being used). If the function reports
a number less than 2 (or 3), the program should politely end.

302 PROGRAMMER'S GUIDE TO THE IBM PC

Function 49 (hex 31): KEEP—Advanced
Terminate-but-Stay-Resident

Function 49 is the advanced version of the universal DOS interrupt
39 terminate-but-stay-resident service. In addition to ending a program,
function 49 allows the terminating program to report a return code,
which is placed in the AL register and can be tested with the ERROR-
LEVEL feature of DOS batch processing.

Any program that ends this way must tell DOS how much of itself
to keep in memory and how much to throw away. This is done by passing a
segment-paragraph value in DX that specifies the memory paragraph just
beyond the end of the resident portion. This controls how much of the
program's initial memory allotment is to be kept and how much is to be
released.

A program can request additional memory by using the memory-
allocation services, functions 72 through 75. Any memory that is allo
cated by these services is not released hy the value specified in DX. DX
only keeps track of the memory that DOS allocated when the program
was first loaded, an allocation that is not under the program's control.
Generally, we're skating on thin ice if we freely allocate memory in a res
ident program—but with care, it can be done.

Function 51 (hex 33): Get/Set Ctrl-Break

Function 51 either reports on or controls the state of Ctrl-Break
processing. You'll recall that DOS acts on Ctrl-Break only under a limited
and quirky set of circumstances ((•■ see page 256). One of the nice im
provements that began with DOS version 2.00 is that Ctrl-Break checking
can be extended to take place during any DOS operation. For compatibil
ity with DOS-1 versions, this extended Ctrl-Break checking must be op
tional. It can be controlled three ways; through the BREAK command,
through the CONFIG.SYS initialization file, and through this DOS func
tion, which lets any program do Ctrl-Break checking.

If AL is set to 0, then we can request the current break state, which
is reported in DL: DL = 0 means the break check is off; DL = 1 means it is
on (extra checking is in effect). If AL is set to 1, then we can set the break
state using the same coding in DL: DL = 0 disables the break check; and
DL = 1 enables the break check.

Chapter 17: New DOS Functions 303

Function 53 (hex 35): Get Interrupt Vector
Function 53 returns the interrupt vector for the interrupt number

specified in register AL. The vector is returned in the register pair ES:BX.
There are several uses for this service. The most obvious is to pre

serve the current interrupt vector before changing it with function 37
(hex 25), so that it can be restored later. Another use is simply to check
the current vector setting; for example, we may use this function to see
if the default vector setting has been changed. One particularly useful
application is to find out the setting of the interrupt vectors that point to
tables rather than interrupt-handling subroutines. With the vector setting
in hand, it is a simple matter to access the table information.

Function 54 (hex 36): Get Disk Free Space
Function 54 provides a host of interesting and useful information

about the space status of a disk—much more than just the free space that
the name of the service implies. Before calling this service, we select the
drive that we are interested in with the DL register: DL=0 indicates the
default drive; DL = 1 indicates drive A; DL=2 indicates drive B; etc. Notice
the difference between this notation and the more conventional 0 = drive
A notation. Like all DOS services, and imlike the ROM-BIOS services,
these are logical drives, not physical drives.

If there is an error—for example, an invalid drive—it is reported
with hex FFFF in the AX register. Otherwise, AX contains sectors-per-
allocation unit (cluster), CX contains bytes per sector, BX contains num
ber of available clusters, and DX contains total number of clusters.

From these numbers we can calculate a lot of interesting things
about the disk. For example, we can use these formulas to calculate the
following:

CX ♦ AX ' bytes-per-allocation unit (cluster)
CX ♦ AX • BX ' total number of free bytes
CX ♦ AX » DX ' total storage space
(BX • 100) / DX ' percentage of free space

If S were the size of a file in bytes, then we could calculate the number of
occupied sectors in this way:

(S + CX • AX - 1) / (CX • AX)

Similar formulas would give us the number of allocation units and the
amount and proportion of space that is allocated to a file but not used
(the "slack space").

304 PROGRAMMER'S GUIDE TO THE IBM PC

Function 56 (hex 38): Get Country-Dependent Information
Function 56 provides an interesting service that allows programs to

automatically adjust to different international currency and time format
conventions by using a table of country-specific information supplied by
DOS. The DOS-2 version of this service reports a very small set of country
information. The DOS-3 extension reports the information for any coun
try code in the DOS table.

Register AL must be set to 0 to get the standard country informa
tion. For DOS 3.00 or later versions, register AL can be set to a predefined
country code. (The country code is the same 3-digit code used in the
telephone system.) To access more than 254 country codes, AL can be set
to 255 (hex FF) and the country code can be put into register EX. If the
requested country code is invalid, DOS sets the carry flag (CF) and places
an error code in AX. Otherwise, EX contains the country code and 32-
byte area is filled in with the country-specific information shown in Fig
ures 17-5 and 17-6; the register pair DS:DX points to the beginning of the
32-byte area. To set the current country code under DOS 3.0, set DX
equal to FFFF and issue function 56 with AL equal to the country code
(or if the code is greater than 254, set AL equal to 255 and EX equal to the
country code); register DS will be ignored.

Programs operating under DOS-2 versions can use only the stan
dard set of country-specific information coded into DOS, by setting AL to
0. Programs operating under DOS-3 versions can request the standard in
formation for any country whose code exists in the table (AL = code), or
they can simply go exploring for valid codes. If you want to explore the
codes, you can write a fairly simple program that tests all possible coun
try codes and displays the valid ones.

The 32-byte information area is coded somewhat differendy for
DOS-2 versions than it is for DOS-3 and later versions. Although the cod
ing may appear to be similar, the two formats are not compatible.

Field Offset Size (bytes) Description

1 0 2 Date and time code

2 2 2 Currency symbol string

3 4 2 Thousands separator string

4 6 2 Decimal separator string

5 8 24 Unused

Figure 17-5. The country-dependent
information provided by DOS-2 versions
and located in the 32-byte area pointed to
by DS:DX

Chapter 17: New DOS Functions 305

Field Offset Size (bytes) Description

1 0 2 Date and time code

2 2 5 Currency symbol string (ASCIIZ format)

3 7 2 Thousands separator string (ASCIIZ format)

4 9 2 Decimal separator string (ASCIIZ format)

5 11 2 Date separator string (ASCIIZ format)

6 13 2, Time separator string (ASCIIZ format)

7 15 1 Currency symbol location: 1 = before;
0 = after)

8 16 1 Currency decimal places

9 17 1 Time format: 1 = 24-hour clock; 0 = 12 hour

10 18 4 Upper/lowercase map call address

11 22 2 List separator string (ASCIIZ format)

12 24 8 Reserved

Figure 17-6. The country-dependent
information provided by DOS-3 versions
through function 56 (hex 38) when
AL = country code

Field 1 (both formats) holds an integer word whose value specifies
the display format for the time and date. There are three predefined val
ues for this word and three corresponding date and time formats see
Figure 17-7). Others might be added in the future.

In the DOS-2 format, the next three fields hold three ASCIIZ strings,
consisting of two bytes each: one data byte followed by the standard zero
byte that ends all ASCIIZ strings.

Field 2 holds the first string, which gives the currency symbol (this
is a dollar sign ($) for the United States).

Value Use Time Date

0 American h:m:s m-d-y

1 European h:m:s d.m.y

2 Japanese h:m:s y-m-d

Figure 17-7. The three predefined time and
date formats whose codes are specified in
the first two bytes of the 32-hyte area
pointed to by DS.DX

306 PROGRAMMER'S GUIDE TO THE IBM PC

Field 3 holds the second string, which gives the symbol used to punc
tuate the thousands mark in numbers (in the US, this is a comma, as in the
number 12,345; other countries use a period or a blank).

Field 4 holds the third string, which gives the decimal point symbol
(in the US, this is a period as in 3.00; other countries use a comma).

The remaining 24 bytes of the 32-byte information area are unused
in the DOS-2 format.

The DOS-3 format begins with the same integer word that indicates
the date and time format in DOS-2. Following that are the same three
ASCIIZ strings that define the symbols for currency, thousands, and deci
mals—with one important difference: The currency-symbol ASCIIZ
string in field 2 is allotted five bytes, allowing the currency symbol to be
as short as a single symbol (for example, a dollar or yen sign) or as long as a
four-letter abbreviation (for example, one of the currency strings used by
DOS 3.00 is DKR, which stands for Danish kroner).

Fields 5 and 6 are also two bytes in length. The first gives the punc
tuation used in dates (for example, - as in 7-4-1985); the second gives the
symbol used to punctuate time (for example,: as in 12:34).

Field 7 is a single byte that is used to indicate where the currency
symbol should be placed on output. A zero places the symbol after the
amount (10 DKR); a one places the symbol before the amount ($10.00).

Field 8 contains a 1-byte integer that specifies how many decimal
places are used in the currency. For example, the value would be 2 for US
currency (dollars and cents) and 0 for Italian currency (lire).

Field 9 is a 1-byte field that is bit-coded to specify a time format.
Only the first bit (bit 0) is currently used; if the bit is 0, a 12-hour clock
is used, and if it is 1, a 24-hour clock is used.

Field 10 holds a 4-byte segmented address of a subroutine that is
used to determine the usage of upper- and lowercase letters.

Field 11 contains a 2-byte ASCIIZ string that gives the symbol used
to separate items in a list, such as the commas in the list A, B, C, and D.

Field 12 holds the remaining eight bytes of the 32-byte area, which
are reserved for future use.

Function 57 (hex 39): MKDIR—Make Directory

Function 57 creates a subdirectory, just as the DOS command MKDIR
does. To invoke this service, we input an ASCIIZ string containing the
path name of the new directory, followed by a zero byte to delimit the
string. The register pair DS:DX points to the address of the ASCIIZ string.
Errors are reported through AX in the standard format for extended com
mands ((«- see page 297). The possible error codes are 3 (path not found)
and 5 (access denied).

Chapter 17: New DOS Functions 307

Function 58 (hex 3A): RMDIR—Remove Directory

Function 58 removes (deletes) a subdirectory, just as the DOS com
mand RMDIR does. To invoke this service, we input an ASCIIZ string
containing the path name of the directory we want to remove, followed
by a zero byte to delimit the ASCIIZ string. The register pair DS:DX
points to the address of the ASCIIZ string. Errors are reported through
AX in the standard format for extended commands ((•'see page 297).
The possible error codes are 3 (path not found) and 5 (access denied).

DOS will not remove either the current directory or any directory
that has files or subdirectories in it. In these cases code 5 (access denied) is
signaled—or so says the DOS documentation. Common sense says that
attempting to remove the current directory ought to result in the more
specific error code 16 (attempt to remove current directory).

Function 59 (hex 3B): CHDIR—Change Current Directory
Function 59 changes the current directory, just as the DOS com

mand CHDIR does. To invoke this service, we input an ASCIIZ string con
taining the path name of the new directory, followed by a zero byte to
delimit the ASCIIZ string. DS:DX contains the address for the input
string. Errors are reported through AX in the standard format for ex
tended commands ((•'see page 297). The one possible error code is 3 (path
not found).

Function 60 (hex 3C): CREAT—Create File

Function 60 opens an existing file or creates a new one, which is the
standard find-or-create operation for output files. It closely parallels func
tion 22 ((•'discussed on page 281).

To invoke this service, we provide an ASCIIZ string that contains the
path name and filename, followed by a zero byte to delimit the string.
The register pair DS:DX points to the address of the ASCIIZ string. CX, or
really CL, contains the file attribute. (•' See page 116 for more on file
attributes and attribute bit settings.) The file handle is returned in AX.

This function opens any new or old file for read/write access, but
assumes we are writing to an output file, and sets the length of any exist
ing file to zero.

Possible return codes are 3 (path not found), 4 (no handle available),
and 5 (access denied). Code 5 can indicate either that there is no room for
a new directory entry or that the existing file is marked read-only and
can't be opened for output. Since the AX register is used to return either
the file handle or the return code, we can and must rely on the CF flag to
indicate an error ((•'see page 297 for an explanation).

308 PROGRAMMER'S GUIDE TO THE IBM PC

Function 61 (hex 3D): Open File

Function 61 is the most general-purpose way to open a file. We pro
vide the path name and filename in the form of an ASCIIZ string, fol
lowed by a zero byte. As with all other file I/O functions, DS:DX points to
this string. We also indicate how we want to use the file by placing a
mode code in register AL. The eight bits of AL are divided into the four
fields shown in Figure 17-8.

The open mode for DOS-2 versions is simple: Only the access bits
(AAA in Figure 17-8) are used and all other bits are set to zero. The three
access-code settings are defined in Figure 17-9.

DOS 3.00 uses the inheritance and sharing codes as well as the access
code. DOS-3 codes are more complicated, because they must take into
account the problems of file sharing (a feature introduced with DOS 3.00).

Bit 7, the inheritance bit, indicates whether or not "child processes"
(programs run as semi-independent subprograms under this program)
will inherit the use of this file. If bit 7 is 0, the child processes will have the
use of the file. If bit 7 is 1, the file is private to this program and child
processes will not have automatic access to it. (But, like any other pro
gram, they could request the program themselves, on a shared basis.)

Bits 4 through 6, the sharing-mode bits (SSS in Figure 17-8), define
what will happen when an attempt is made to reopen the same file more
than once. There are five sharing modes: compatibility mode (SSS = 000),
deny read/write mode (SSS = 001), deny write mode (SSS = 010), deny read
mode (SSS = 011), and deny none mode (SSS = 100). The sharing mode is
rather complex and is best left to the DOS Technical Reference manual
for an explanation.

Bit 3, marked as reserved in Figure 17-8, should be set to 0.
Notice that we do not specify either the file attribute or the record

size. This service will find any existing file, including a hidden one, and
sets the record size to one byte, by default.

Bit

76543210 Use

I Inheritance flag (DOS-3)

. SSS Sharing mode (DOS-3)

. . . . R . . . Reserved for future use (DOS-3)

AAA Access code (DOS-2 and DOS-3)

Figure 17-8. The codes placed in register AL
to specify the open mode for function 61

Chapter 17; New DOS Functions 309

Bit

2 10 Use

0 0 0 Read (only) access

0 0 1 Write (only) access

0 1 0 Read or write access

Figure 17-9. The function 61 access-code
settings in register AL

The possible return codes are 2 (file not found), 3 (path not found),
4 (no handles available), 5 (access denied), and 12 (invalid access code).
Since the same register (AX) is used to return either the file handle or the
return code, we can and must rely on the CF flag to indicate an error.
{m- See page 297 for an explanation.)

Function 62 (hex 3E): Close File Handle

Function 62 closes a file and flushes all file buffers associated with

the file handle given in the BX register. BX should contain the file handle
that was returned by the last open-file operation. The one possible error
code is 6 (invalid handle).

Function 63 (hex 3F): Read from File or Device

Function 63 reads the file or device (which acts like a file) associated
with the file handle given in BX. The CX register specifies the number of
bytes to read. DS:DX points to the buffer address where the data that is
read will be placed. After the function is performed, AX contains the ac
tual number of bytes read. If this value is zero, it means the program has
tried to read from the end of a file.

The possible error codes are 5 (access denied) and 6 (invalid han
dle). Since the same register (AX) is used to return either the number of
bytes that were read or the return code, we can and must rely on the CF
flag to indicate an error {m- see page 297 for an explanation).

Function 64 (hex 40): Write to File or Device

Function 64 writes to the file or device with the file handle given in
BX. CX specifies the number of bytes to be written and DS:DX points to
the address of the data bytes. After the function is completed, AX con
tains the actual number of bytes written.

310 PROGRAMMER'S GUIDE TO THE IBM PC

There are two ways to detect errors. One way is through a true
error code signaled by CF. If CF signals an error, the possible error codes
returned in AX are 5 (access denied) and 6 (invalid handle). If no overt
error is detected but the function still ended in an error, it could mean
there was not enough disk space to write the entire file. To test for this,
see if fewer bytes are written (in AX) than were requested (in CX).

Function 65 (hex 41): Delete File

Function 65 deletes the directory entry of a file. The file is specified
by an ASCIIZ string, with the path name and filename followed by a ter
minating zero byte. The register pair DS:DX points to the string.

Read-only files cannot be deleted by this function. To delete a read
only file, the file's attribute must be changed to 0 using function 67 (hex
43). The global filename characters ? and '=■ may not be used.

The error codes that may he returned in AX are 2 (file not found)
and 5 (access denied).

Function 66 (hex 42): Move File Pointer
Function 66 is used to change the logical read/write position in a

file. To invoke this service, we load BX with a fi le handle and then specify
the new pointer location by loading the pointer's starting location in AL
and the number of bytes we want to move it in register pair CX;DX. The
byte offset in CX:DX is a 32-bit unsigned long integer. CX is the high-
order part of the offset (which is 0, unless the offset amount is over
65,535) and DX is the low-order part.

The starting location specified in AL is called a "method code," and
there are three options. If AL = 0, the offset is taken from the beginning
of the file and the pointer is moved CX:DX bytes from that point; if AL = 1,
the offset is taken from the current location; if AL = 2, the offset is taken
from the current end-of-file. In this last case, we usually set the offset in
CX:DX to 0 to find out the current size of the file. If we set the offset to 0
and ask for method 0, we'll return to the beginning of the file.

After the function has been performed, the register pair DX:AX
contains the current file pointer as an offset in bytes from the beginning
of the file. The pointer is remrned as a 32-bit long integer, with the high-
order part in DX and the low-order part in AX.

Possible error codes are 1 (invalid function number, which refers to
the method code subfunction) and 6 (invalid handle). Since the same reg
ister (AX) is used to return either part of the new location or the return
code, we can and must rely on the CF flag to indicate an error ((•-see
page 297).

Chapter 17: New DOS Functions 311

Function 67 (hex 43): CHMOD—Get/Set File Attributes

Function 67 gets or sets the attributes of a file ((•" see page 116 for
details about file attributes). DS:DX points to an ASCIIZ string, which
provides the filespec of the file in question (the global filename characters
? and 'i- may not be used). A setting of AL = 0 will return the attribute
values found in CX; AL = 1 will set the attribute values found in CX. In
both cases, the values are actually taken from the CL register.

The possible error codes in AX are 2 (file not found), 3 (path not
found), and 5 (access denied).

Function 68 (hex 44): lOCTL—I/O Control for Devices

Function 68 performs a number of input/output control operations,
mostly for devices, which are all gathered together into one rumpled
package. (i«-See Figure 17-10.) AL selects one of ten subfunctions, num
bered 0 through 8 and 11. (Subfunctions 8 and 11 apply to DOS-3 ver
sions.) The file handle is specified in BX.

Subfunctions 0 and 1. These subfunctions get and set device infor
mation that is formatted in DX by a complicated set of bit coding. Bit 7 is
set to 1 for devices and to 0 for disk files. For devices, bits 0 through 5 are
listed as shown in Figure 17-11. For disk files, bits 0 through 5 provide the
disk-drive number: A value of 0 represents drive A, a value of 1 represents
drive B, and so on.

Code Description

0 Get device information (returned in DX)

1 Set device information (from DX, DH part must be 0)

2 Read (see notes)

3 Write (see notes)

4 Read from drive (see notes)

5 Write to drive (see notes)

6 Get input status (see notes)

7 Get output status (see notes)

8 Indicates if device has removable media; DOS-3 versions only
(see notes)

11 Change sharing entry; DOS-3 versions only (see notes)

Figure 17-10. The ten HO control operations
provided by function 68 through the AL
register

312 PROGRAMMER'S GUIDE TO THE IBM PC

Bit

FEDCBA98 76543210 Use

X 1 = standard console input

X . 1 = standard console output

X. . 1 = null device (need not do I/O)

X. . . 1 = clock device

. . . X 1 = special device (= 0 means device is CON: output device; will
not be supported in future versions)

X 1 = data is passed "raw"; 0 = data is passed processed ("cooked")

X 0 = end of file; 1 = not end of file (for input)

X 1 = device; 0 = disk drive file

R Reserved

R Reserved

R Reserved

. . . . R Reserved

. . . R Reserved

. . R Reserved

.X 1 = device can process control strings during read/write

R Reserved

Figure 17-11. The bit settings of register DX
for subfunctions 0 or 1 of function 68

Subfunctions 2 through 5. In all four of these functions, CX spec
ifies the number of bytes to read or write to the drive control channel
{not to a file within the drive), and the register pair DS;DX points to the
data area. For subfunctions 4 and 5, BL contains the special drive number
(0 = default, 1 = drive A, 2 = drive B, etc.).

Data can only be read and written using these subfunctions if the
device or disk drive can process control strings. The read/write status is
indicated by bit E (bit 14) in the DX status bits.

Subfunctions 6 and 7. For these subfunctions, the input or output
status is reported in the AX register. If AX=255 (hex FF), the device/drive
is ready for I/O; if AX = 0, it is not ready.

Subfunction 8. This subfunction, which applies only to DOS-3 and
later versions, indicates whether a device has removable media or not (the
floppy diskettes in a diskette drive are removable; the hard disk in a fixed
disk drive is not). Subfunction 8 can be extremely useful because it lets a
program know if it has to check for a disk change or if it can rely on the

Chapter 17: New DOS Functions 313

same disk always being there. A removable device is indicated with
AX = 0, a fixed disk is indicated with AX = 1, and an invalid device code is
indicated with AX=15 (hex F).

Subfunction 11 (hex B). This subfunction only applies to DOS-3 and
later versions, and is used to control the attempts that are made to resolve
file-sharing conflicts. Problems in sharing a file can be very transitory,
since some programs use files only briefly. DOS can try more than once to
gain access to a shared file before reporting a conflict, in the hope that,
in the mean time, the access blockage has gone away. This subfunction
sets the number of times that DOS will retry, which we specify in register
DX, and the time interval between tries (in some unspecified unit), which
we indicate with a count value in register CX.

Function 69 (hex 45): DUP—Duplicate File Handle
Function 69 duplicates an open file handle and returns a new han

dle number that refers to the same file or device. All actions performed
with one handle will be automatically reflected in the other handle—the
new handle does not act independently in any way. See function 70 for a
related service.

The BX register contains the old file handle and AX remrns the new
file handle. The possible error codes are 4 (no handle available) and 6
(invalid handle). This function effectively opens a file without knowing
its name. Having two handles to one file lets you refer to the same sectors
on a disk as if they were two different files; you can open, read, write,
close and, most importantly, position them independently. Just be careful
when you do this; make sure one routine knows how the other is chang
ing the file.

Function 70 (hex 46): CDUP—Force Handle Duplication
Function 70, similar to function 69, duplicates a file handle. How

ever, in this case, we provide an existing second handle (one that has pre
sumably been used for some other purpose), instead of having DOS create
a new handle. If the second handle refers to an open file, the file is closed
before any action occurs. Once this function is invoked, all actions that
are performed with one handle are automatically reflected in the other
hanie, so the new handle does not act independently in any way.

The BX register contains the old file handle and CX contains the
second handle. When the operation is complete, the file handle in CX will
refer to the same device or file as BX. The only possible error code is 6
(invalid handle).

314 PROGRAMMER'S GUIDE TO THE IBM PC

Although this service seems rather peculiar, it does have some clear
uses. For example, a program can redirect any of the standard I/O de
vices ((•- see page 299 for a list and description) by using the following
method. Let's suppose that the program wishes to dynamically redirect
printer output to a file. First, the file is opened, which returns a handle in
EX. Then this handle can be duplicated onto the standard printer handle
by loading handle number 4 into CX. After this, any standard printer
output will actually go to the file that was opened. To restore the normal
direction of the printer but maintain the handle for later use, we need to
save the normal printer handle by duplicating it using function 69 before
we copy the new file handle onto the printer handle. If you followed that,
consider yourself qualified to try it. (•'See function 75 (hex 4B) for one
use of this technique.

Function 71 (hex 47): Get Current Directory

Function 71 reports the current directory in the form of an ASCIIZ
string. We specify the drive number in DL (0 = default, 1 = drive A,
2 = drive B). The register pair DS:SI points to a data area that contains the
full path name, which can be up to 64 bytes long. DOS returns the full
path name of the current directory for the specified drive, including the
root directory. The path name is always followed by a zero byte—the
ASCIIZ string delimiter.

Although this function returns the entire path name, the name does
not include either the drive ID (as in A:) or the start-from-the-root back
slash (as in A: \). By these rules, if the current directory is the root direc
tory (a common occurrence in diskettes), then the current directory will
be reported as nothing—a null string. If you want an intelligible display
of the current directory, you may prefix the information returned by this
function with the drive-and-root indicators (as in A: \). The only possible
error code is 15 (invalid drive specification).

Function 72 (hex 48): Allocate Memory
Function 72 dynamically allocates memory. We request the number

of paragraphs (16-byte units) we want allocated in BX. On return, AX
points to the segment paragraph of the allocated memory block.

The possible error codes are 7 (memory control blocks destroyed)
and 8 (insufficient memory). If the function fails to allocate memory, the
BX registers will return the size of the largest available block.

Chapter 17: New DOS Functions 315

Function 73 (hex 49); Free Allocated Memory
Function 73 returns memory to DOS that was allocated by function

72. The ES register points to the segment address of the block that is
being returned. This is the same value that function 72 (hex 48) returns
in register AX.

The possible error codes are 7 (memory control blocks destroyed)
and 9 (invalid memory block address).

Function 74 (hex 4A): SETBLOCK—Modify
Allocated Memory Block

Function 74 is used to increase or decrease the size of a block of
memory that was allocated by function 72. Register ES points to the seg
ment address of the block that will be changed. Register BX contains the
new size of the block in paragraphs (units of 16 bytes).

If a request for increased space cannot be fulfilled, then BX returns
the size of the largest available block of memory (in paragraphs).

The possible return codes are 7 (memory control blocks destroyed),
8 (insufficient memory), and 9 (invalid memory block address).

Function 75 (hex 4B): EXEC—Load/Execute Program
The EXEC function allows a program to load a subprogram into

memory and, optionally, execute the subprogram. The register pair
DS:DX points to an ASCIIZ string with the path name and filename of the
file to be loaded. The register pair ES:BX points to a parameter block that
contains the control information for the load operation. AL specifies
whether the subprogram is to be executed after it is loaded.

If AL is 0, the subprogram is loaded, a program segment prefix (PSP)
is created, and the program is executed. At this time, control passes to
the subprogram, and only returns to the program when the subprogram
ends. If AL is 3, the subprogram is loaded, no PSP is created, and the pro
gram is not automatically executed, although we can jump to it. The
AL=3 variation is normally used to load a program overlay. It is also a
simple and effective way to load data into memory.

When AL is 0, the block pointed to by ES:BX is fourteen bytes long
and contains the information shown in Figure 17-12 on the following
page. W^en AL is 3, the block pointed to by ES:BX is four bytes long and
contains the information shown in Figure 17-13.

316 PROGRAMMER'S GUIDE TO THE IBM PC

Offset Size (bytes) Description

0 2 Segment address of environment string

2 4 Segmented pointer to command line

6 4 Segmented pointer to first default FCB

10 4 Segmented pointer to second default FCB

Figure 17-12.The information in the EXEC
control block that is pointed to by ES:BX
when AL = 0. Each of these Hems relates to
the information built into the PSP of the
program that is being loaded.

When a program is loaded and executed, any file handles that are
currently active are available to the subprogram. As mentioned under
function 70 (hex 46), a program can redirect the standard I/O handles,
and use this technique to influence the operation of a subprogram. For
example, we can invoke the standard sort filter program to sort a set of
files, and leave its output, messages, and error messages wherever we
want them.

Before using this function, we must make sure there is sufficient
memory to load the program by using function 74 (hex 4A). Since the
program-loading process is performed by part of the command inter
preter, the semi-resident portion of the interpreter must be intact, or
must be reloaded from the disk if it has been disturbed.

Among the programs that we can load and execute is the DOS com
mand interpreter. If we wish, we can load it and pass it a command
string, which in turn could invoke a batch file—a batch file that our orig
inal program might well have constructed dynamically. This batch file
could invoke its programs and then perform the EXIT command, which

Offset Size (bytes) Description

0 2 Segment address where file is to be loaded

2 2 Relocation factor for program (applies only to
EXE-format programs)

Figure 17-13. The information in the EXEC
control block that is pointed to by ES:BX
when AL=1

Chapter 17: New DOS Functions

would end the execution of the secondary command interpreter. At that
point, our original program would be back in control. This facility opens
up vast and complicated possibilities.

□ WARNING: The load-and-execute function clobbers all of the
registers except CS. Therefore, the only place to save needed registers
before making this call is in your code segment, so make sure to
reserve space.

The possible return codes from this function are 1 (invalid function
number), 2 (file not found), 5 (access denied), 8 (insufficient memory), 10
(invalid environment), and 11 (invalid format).

Function 76 (hex 4C): Terminate Process
Function 76 ends a program and passes back a return code. If the

program was invoked as a subprogram, the return code can be found
through fimction 77. If the program was invoked as a DOS command,
then the return code can be tested in a batch file using the DOS ERROR-
LEVEL option. The return code is reported in register AL.

When this fimction is performed, DOS automatically closes any files
that were opened with function 61 (hex 3D)—and presumably with func
tion 60, as well.

Function 77 (hex 4D): Get Return Code of Subprogram
Fimction 77 goes and gets the return code of a subprogram that

was invoked with function 75 and that has ended. There are two parts to
the information returned. AL reports the return code issued by the pro
gram. AH reports how the program ended and has four possible results:
AH = 0 indicates a normal voluntary end; AH=1 indicates termination by
DOS due to a Ctrl-Break; AH=2 indicates termination by DOS due to a
critical device error; and AH=3 indicates a voluntary end using the ter-
minate-but-stay-resident function 49 (hex 31).

318 PROGRAMMER'S GUIDE TO THE IBM PC

Function 78 (hex 4E): FIND FIRST—Start File Search

Function 78 searches for the first marching file or files that march a
filespec. We set DS;DX to point to an ASCIIZ string that gives the path
name and filename we want to search for. The filename may contain the
global filename characters ? and The CX register (CL, really) gives the
file-attribute specification that will be used to search for the file. If a file is
found, DOS formats 43 bytes of information about it in the current disk
transfer area (DTA). ((•* See Figure 17-14.)

The ASCIIZ string at the end of the information area stores the file
name in its conventional notation, including a period between filename
and extension. If the extension is blank, the period does not appear.

This service is similar to the traditional DOS function 17 (hex 11).
The use of the file attributes in this search function are the same as they
are in function 17 (•^ see page 279).

The attribute search follows a particular logic. If we specify any
combination of the hidden, system, or directory attribute bits, the search
will match normal files and also any files with those attributes. If we
specify the volume-label attribute, the search will only match a directory
entry with that attribute. The archive and read-only bits do not apply to
the search operations. The directory, volume-label, archive, and read
only attributes do not apply to versions of DOS before 2.00.

The error codes normally returned in AX are 2 (file not found) and
18 (no more files to be found). CP is not set to signal the error.

Offset Size (bytes) Description

0 21 Area used by DOS for find-next (see function 79)

21 1 Attribute of file found

22 2 Time stamp of file (see page 118)

24 2 Date stamp of file (see page 118)

26 4 File size in bytes

30 13 Filename and extension (ASCIIZ string)

Figure 17-14. The information returned
in the DTA after invoking function 78
(hex 4E)

Chapter 17: New DOS Functions 319

Function 79 (hex 4F): FIND NEXT—Continue File Search
Function 79 continues the file search that was begun by function 78

or continued by a previous function 79. It relies on the information for
matted at the beginning of the DTA, which should not be disturbed.

The one normal error code is 18 (no more files to be found). For this
code, CF is not set to the error signal.

(•- See also function 78.

Function 84 (hex 54): Get Verify State
Function 84 tells us the current state of the verify switch, which

controls whether or not the disk write operations are verified. AL = 0 indi
cates that they will not be verified; AL = 1 indicates that they will be.
Function 46 (hex 2E) sets the verification switch ((•- see page 288).

This function brings up an annoying inconsistency in DOS services:
While some get/set service pairs are integrated into one function (like the
following function 87), others are split into two separate functions, like
function 84 and function 46.

Function 86 (hex 56): Rename File

Like the standard DOS RENAME command, function 86 changes
the name of a file. But, it can also move a file's directory entry from one
directory to another. The file itself is not moved, just the directory entry,
which means the new and old directory paths must be on the same drive.
This is a truly fabulous and useful feature, and it is rather disappointing
that it's not a part of the RENAME command.

The function needs two inputs: the filespecs for both the old and
the new filenames. These can be full-blown filespecs, with drive and path
components. The specified or implied drives must be the same, so that
the new directory entry will be on the same drive as the file. The global
filename characters «• and ? cannot be used, since this function works on
single files only.

As usual, both filespecs are supplied in the form of ASCIIZ strings,
with a zero byte marking the end. The register pair DS:DX points to the
old name string and ES:DI points to the new string.

The possible error codes are 2 (file not found), 3 (path not found),
5 (access denied), and 17 (not same device).

Function 87 (hex 57): Get/Set File Date and Time
Function 87 gets or sets a file's date and time. Recall that each file is

marked with the date and time it was created or last changed. AL is used
to select the operation: AL = 0 gets the date and time, and AL = 1 sets the
date and time.

320 PROGRAMMER'S GUIDE TO THE IBM PC

The file is selected by placing the file handle in BX, which means
that this service applies only to files that have been opened using the ex
tended DOS functions covered in this chapter. Note, therefore, that set
ting a file's time stamp with this service will only take effect if the file is
successfully closed.

The date and time are placed in registers CX and DX in the same for
mat as they are stored in the disk directory entries, though in a slightly dif
ferent order. In this function, the time is placed in CX and the date in DX.

Contrary to what the DOS documentation says, the time and date
information is placed in its conventional format, with the high-order
parts in CH or DH and the low-order parts in CL and DL.

The date and time can be built or broken down using the following
formulas:

CX = HOUR • 2048 + MINUTE » 32 + SECOND / 2

DX = (YEAR - 1980) » S12 + MONTH • 32 + DAY

The possible error codes for this service are 1 (invalid function
number—based on the subfunction selected in AL, not the main func
tion number) and 6 (invalid handle).

DOS 3.00 ADDITIONS

So far in this chapter, we've discussed the new DOS functions that
were introduced with DOS 2.00. DOS 3.00 brought enhancements to a few
of the DOS-2 functions and brought five new functions to the extended
function family.

Function 89 (hex 59): Get Extended Error Code

Function 89 is used after an error has occurred. It provides detailed
information about the errors that occur under these circumstances: in
side a critical-error interrupt handler; after a DOS function call invoked
with the standard interrupt 33 (hex 21) has reported an error by setting
the carry flag (CF); and after the old-style FCB file operations that report a
return code of 255 (hex FF). It will not work with DOS functions that do
not report errors in CF, even though they may have ended in an error.

This service is called in the standard way, by placing function code
89 (hex 59) in register AH. To allow for the inevitable changes that occur
in this sort of function, we must also specify a version code in the BX
register. For DOS 3.00, we set this code to 0.

Four separate information signals are returned on completion of
this service: AX contains the extended error code; BH indicates the class
of error; BL gives the code of any suggested action that our program
should take; and CH gives a locus code, which attempts to show where
the error occurred.

Chapter 17: New DOS Functions 321

The error codes reported in AX are organized into three groups:
Codes 1 through 18 are used for function-call errors (interrupt 33 func
tions), codes 19 through 31 are used for critical-error handler errors (from
interrupt 36), and codes 32 through 83 are used for errors that are new to
DOS-3 services. A code of 0 indicates that there is no error for this service
to report on.

(•" Figure 17-15 lists the extended error codes. Figure 17-16 lists the
error classes. Figure 17-17 lists the action codes, and Figure 17-18 lists the
locus codes.

Code Meaning Code Meaning

20 Unknown unit ID

21 Disk drive not ready

22 Command not defined

23 Disk data error

24 Bad request strucmre length

25 Disk seek error

26 Unknown disk media type

27 Disk sector not found

28 Printer out of paper

29 Write error

30 Read error

31 General failure

32 File sharing violation

33 File locking violation

34 Improper disk change

35 No FCB available

80 File already exists

81 Reserved

82 Cannot make directory entry

83 Critical-error interrupt failure

1 Invalid function number

2 File not found

3 Path not found

4 No handle available

5 Access denied (e.g. attempt made to write
a read-only file)

6 Invalid handle

7 Memory control blocks are invalid

8 Not enough memory

9 Invalid memory block address

10 Invalid SET command strings
("environment")

11 Invalid format (of what, we aren't told)

12 Invalid file access code

13 Invalid data

14 Reserved

15 Invalid drive specification

16 Requested removing current directory

17 Not same device

18 No further files to find

19 Disk write protected

Figure 17-15. The extended error codes
returned in register AX following execution
of function 89 (hex 59)

Code Meaning Code

1 Out of resource: no more of whatever we
asked for

2 Temporary situation: try again later

3 Authorization: we aren't allowed;
someone else might be

4 Internal error in DOS: not our fault

5 Hardware failure

6 System software error: other DOS
problems

7 Application software error: it's our fault

8 Item requested not found

9 Bad format (e.g. unrecognizable disk)

10 Item locked

11 Media error (e.g. disk reports CRC error)

12 Already exits

13 Error class is unknown

Figure 17-16, The error classes returned in
register BH following execution of function
89 (hex 59)

Code Meaning Code Meaning

1 Try again now

2 Try again later, after waiting

3 Ask the user to fix it (e.g. change the disk);
see also code 7

4 Shut down the program, but OK to clean
up (close files etc.)

5 Shut down immediately: don't try to
clean up

6 Ignore the error: it doesn't matter

7 Retry after user action; see also code 3

Figure 17-17, The suggested action codes
returned in register EL following execution
of function 89 (hex 59)

Code Meaning Code Meaning

1 Unknown: sorry 4 Serial device error (e.g. printer)

2 Block device error (e.g. disk drive) 5 Memory error

3 Reserved

Figure 17-18, The locus codes returned in
register CH following execution of function
89 (hex 59)

Chapter 17: New DOS Functions

Function 90 (hex 5A): Create Temporary File
Function 90 creates a file for temporary use, presumably, taking

care of the chore of finding a filename that does not conflict y/ith any
existing file. We provide two parameters: the file attribute, placed in the
CX register, and the path name of the directory where the file will be
created. If we don't want to specify a particular path, we can give DOS a
null string, which tells it to use the current directory of the current drive.

The path name must be an ASCIIZ string and is pointed to by the
register pair DS:DX. The path-name string must be ready to have the file
name of the created file appended to it: This means that the string must
end with the backslash character that is used to punctuate directory
paths (if we give an explicit path string). We must also add 12 bytes to
allow enough room for DOS to add a filename to the string.

On return, if there is an error in this operation, the carry flag (CF)
will be set and the error code will be in AX. Also, the filename will be
appended to the path string we provided.

This service is called "create temporary file" only to suggest its in
tended purpose. Actually, there is nothing temporary about the file that is
created since DOS does not automatically delete it; our programs must
look after that chore.

Function 91 (hex 5B): Create New File
Function 91 is similar to function 60 (hex 3C), which is (inac

curately) called the create-file function. Function 60 is actually designed
to find a file, and to create one if the requested file does not exist. By
contrast, function 91 is a pure create-file function and will fail if the file
already exists.

As with function 60, the CX register is set to the file attribute and
DS:DX points to the address of the path name and filename (which is
stored as an ASCIIZ string). On return, if CF = 0 then AX = file handle for
the new file; if CF=1 then AX contains the error code.

There are many circumstances when a program will use a standard
filename, intending to reuse a file with that name if it exists or to create
a file with that name if it doesn't exist. This is the sort of situation that
function 60 is best suited for. However, there are other circumstances
when a program may not wish to disturb existing files, but only to open
a file that does not already exist. This is the sort of situation function 91 is
best suited for.

324 PROGRAMMER'S GUIDE TO THE IBM PC

Function 92 (hex 5C): Lock/Unlock File Access

Function 92 is used to lock certain parts of a file so that it can be
shared by several programs without one program interfering with the op
erations of another. If one program locks one part of a file, it can use or
change that part of the file while it is locked, safe in the knowledge that
no other program \vill be able to use that part while it remains locked. As
you may have guessed, file locking is used only in conjunction with file-
sharing operations.

There are six parameters that determine what portion of a file will
be locked. AL indicates whether we are locking (AL = 0) or unlocking
(AL=1) a portion of a file. BX gives the file han(Be. CX and DX together
are treated as a 4-byte long integer that specifies the byte offset into the
file of the locked portion. SI and DI also form a 4-byte long integer that
specifies the length of the locked portion. The first register in each of
these register pairs (CX or SI) gives the high-order part of the integer.

We are not allowed to unlock file portions piecemeal, or in combi
nation; an unlock request should exactly match a previous lock request.
We are warned that locks should be removed before closing a file; con
trary to what we might hope, closing a file will not necessarily clean up
the locks that remain in our file.

Function 98 (hex 62): Get PSP Address

Function 98 gets the address of the program segment prefix and re
turns it in BX as a segment paragraph address.

In the conventional world of DOS, programs place their PSP in the
first 256 bytes of the code segment. This means that the paragraph ad
dress of the PSP is the same as the code segment (CS) register contents.
However, as personal computers and DOS become more complex, it may
not always be this simple. For example, in the protected mode of the
80286 microprocessor in the AT, the segment registers are treated in an
exotic new way. This service exists to provide (we can hope) a permanent
and reliable way to touch the segment registers in the future.

18
DOS

Service Summary

Short Summary 326

Long Summary 328

325

326 PROGRAMMER'S GUIDE TO THE IBM PC

This chapter is a summary of the DOS service routines and is de
signed to be used as a quick reference guide. For details about
the specific operation of each service and some comments about
their operation, see Chapters 15 through 17. Once you under

stand the DOS services, these tables should provide you with all the pro
gramming information that you will need.

SHORT SUMMARY

Nine DOS interrupts are called by their interrupt numbers. Five of
these interrupts are listed in Figure 18-1. The four interrupts not shown in
the table are used for specialized purposes: Interrupt 33 (hex 21) is the
function-call interrupt that is used to invoke one of the 80 DOS functions;
and interrupts 34 through 36 are address interrupts that are used to point
to special subroutines. See Chapter 15 for more information.

The DOS universal functions, shown on the next page in Figure 18-2,
are called through interrupt 33 (hex 21); the function number is placed in
the AH register. The universal functions can be used with any version of
DOS. See Chapter 16 for more information.

The new, extended DOS function calls can only be used with DOS
versions 2.00 or higher. They are called through interrupt 33 (hex 21) and
the function number is placed in the AH register, i*' See Chapter 17 for
more information. Figure 18-3 lists all the new DOS functions, including
those that were introduced with DOS version 3.00. (These functions can
not be used with earlier versions.)

Chapter 18: DOS Service Summary 317

Interrupt
Dec Hex Description

32 20 Program terminate: come to a normal ending

37 25 Absolute disk read

38 26 Absolute disk write

39 27 Terminate-but-stay-resident

47 2F Print spool control (DOS 3.00 and higher)

Figure 18-1. The five main DOS interrupts

Function

Dec Hex Description
Function

Dec Hex Description

0 0 Terminate: end program 21 15 Write sequential file record

1 1 Keyboard input with echo 22 16 Create file

2 2 Display output 23 17 Rename file

3 3 Serial input 25 19 Report current drive

4 4 Serial output 26 lA Set disk transfer area

5 5 Printer output 27 IB Get FAT information, current drive

6 6 Direct keyboard/display I/O 28 IC Get FAT information, any drive

7 7 Direct keyboard input without echo 33 21 Read random file record

8 8 Keyboard input without echo 34 22 Write random file record

9 9 Display string 35 23 Get file size

10 A Buffered keyboard input 36 24 Set random record field

11 B Check keyboard input status 37 25 Set interrupt vector

12 C Clear keyboard and do function 38 26 Create program segment

13 D Reset disk 39 27 Read random file records

14 E Select current drive 40 28 Write random file records

15 F Open file 41 29 Parse filename

16 10 Close file 42 2A Get date

17 11 Search for first matching file 43 2B Set date

18 12 Search for next matching file 44 2C Get time

19 13 Delete file 45 2D Set time

20 14 Read sequential file record 46 2E Set disk write verification

Figure 18-2. The universal DOS functions

328 PROGRAMMER'S GUIDE TO THE IBM PC

Function Function

Dec Hex Description Dec Hex Description

47 2F Get DTA address 70 46 CDUP: Force handle duplication

48 30 Get DOS version number 71 47 Get current directory

49 31 KEEP: Advanced terminate-but-stay- 72 48 Allocate memory
resident 73 49 Free allocated memory

51 33 Get/set control break 74 4A SETBLOCK: Modify allocated
53 35 Get interrupt vector memory block

54 36 Get disk free space 75 4B EXEC: Load/execute program

56 38 Get country-dependent information 76 4C Terminate process

57 39 MKDIR: Make directory 77 4D Get return code of subprogram

58 3A RMDIR: Remove directory 78 4E FIND FIRST: Start file search

59 3B CHDIR: Change current directory 79 4F FIND NEXT: Continue file search

60 3C GREAT: Create file 84 54 Get verify state

61 3D Open file 86 56 Rename file

62 3E Close file handle 87 57 Get/set file date and time

63 3F Read from file or device DOS 3.00 Functions
64 40 Write to file or device 89 59 Get extended error code
65 41 Delete file 90 5A Create temporary file
66 42 Move file pointer 91 5B Create new file
67 43 CHMOD: Get/set file attributes 92 5C Lock/unlock file access

68 44 lOCTL: I/O control for devices 98 62 Get PSP address
69 45 DUP: Duplicate file handle

Figure 18-3. The new DOS functions
available with DOS 2.00 and later versions

LONG SUMMARY

In the last section, we briefly listed all the DOS services, so that indi
vidual services can be found by their function number. In this section, we
have expanded the listing to show the register settings for the input and
output parameters.

Since every new version of DOS introduces a few functions that can
not be used with earlier versions, we have included the DOS version num
ber in this table. The DOS versions are coded in the following manner:

DOSl Function may be used with all DOS versions

DOS2 Function may be used with DOS versions 2.00 and up

DOS3 Function may be used with DOS 3.00 and up

Chapter 18: DOS Service Summary 329

Function Register

Service (hex) Input Output Version

Program Control Functions

Terminate: end program 0 AH = 00 DOSl

Create program segment 26 AH = 26

DX = segment address
DOSl

KEEP: Advanced

terminate-but-stay-
resident

31 AH = 31

AL = return code

DX = segment address of
memory to free

AX = return code D0S2

Get/set control break 33 AH = 33

AL = 00 to get
AL = 01 to set

DL = code if set

AX = return code

DL = current state:

00 = off; 01 = on

DOS2

EXEC: Load/execute

program

4B AH = 4B

AL = subfunction code

(see page 316)
DS:DX = pointer to ASCIIZ string
ES:BX = pointer to control block

AX = return code D0S2

Terminate process 4C AH = 4C

AL = return code

DOS2

Get return code of

subprogram
4D AH = 4D AL = return code

AH = ending code
D0S2

Get PSP address 62 AH = 62 BX = segment address of PSP D0S3

Keyboard Control Functions

Keyboard input with echo 1

O
II

X
c

AL = input character DOSl

Direct keyboard input
without echo

7 AH = 07 AL = input character DOSl

Keyboard input without
echo

8

00
O

II

X
<

AL = input character DOSl

Buffered keyboard input A AH = OA

DS:DX = pointer to input buffer
DOSl

Check keyboard input
status

B

PQ
O

II

X
<

AL = FF if character available

AL = 00 if no character available

DOSl

Clear keyboard and do
function

C AH = OC

AL = function number (1,6,7, 8,
or A)

DOSl

(continued)

Figure 18-4. A summary of the DOS
services (continued)

330 PROGRAMMER'S GUIDE TO THE IBM PC

Function Register
Service (hex) Input Output Version

Screen Control Functions

Display output 2 AH = 02

DL = output character
DOSl

Display string 9 AH = 09

DS:DX=pointer to output
string

DOSl

Console I/O Functions

Direct keyboard/display
I/O character

6 AH = 06

DL = input character if FF,
output request if 00-FE

AL = input character DOSl

Miscellaneous I/O Functions

Serial input 3 AH = 03 AL = input character DOSl

Serial output 4 AH = 04

DL = output character
DOSl

Printer output 5 AH = 05

DL = output character
DOSl

Disk Functions

Reset disk D

Q
o

II

X
<

DOSl

Select current drive E AH = OE

DL = drive ID
AL = drive count DOSl

Report current drive 19 AH = 19 AL = default drive code DOSl

Set disk transfer area lA AH = 1A

DS:DX = pointer to DTA
DOSl

Get FAT information,
current drive

IB AH = 1B AL = sectors per allocation unit
CX = bytes per sector
DX = number of allocation units

DS:BX=pointer to FAT ID byte

DOSl

Get FAT information,
any drive

IC AH = 10

DL = drive ID
CX = bytes per sector
AL = sectors per allocation unit
DX = number of allocation units
DS:BX = pointer to FAT ID byte

DOSl

Set disk write verification 2E AH = 2E

AL = verify switch:
00 = off;
01 =on

DL = 00

DOSl

Figure 18-4, A summary of the DOS
services (continued)

Chapter 18: DOS Service Summary 331

Function Register
Service (hex) Input Output Version

Disk Functions (continued)

Get DTA address 2F AH = 2F AX = return code

ES:BX = pointer to DTA
DOS2

Get disk free space 36 AH = 36

DL = drive code
AX = FFFF: Drive code in DL

bad; else
AX = sectors per cluster
BX = available cluster count

CX = bytes per sector
DX = total clusters

DOS2

Get verify state 54 AH = 54 AL=verify state: 00 = off;
01 =on

DOS2

File I/O Functions

Open file F AH = OF

DS:DX = pointer to FCB
AL = return code DOSl

Close file 10 AH = 10

DSiDX = pointer to FCB
AL = return code DOSl

Search for first matching
file

11 AH = 11

DS:DX = pointer to FCB
AL = return code DOSl

Search for next matching
file

12 AH = 12

DS:DX = pointer to FCB
AL = return code DOSl

Delete file 13 AH =13

DS:DX = pointer to FCB
AL = return code DOSl

Read sequential file
record

14 AH =14

DS:DX = pointer to FCB
AL = return code DOSl

Write sequential file
record

15 AH = 15

DS:DX = pointer to FCB
AL = return code DOSl

Create file 16 AH = 16

DS:DX = pointer to FCB
AL = return code DOSl

Rename file 17 AH = 17

DS:DX = pointer to FCB
AL = return code DOSl

Read random file record 21 AH = 21

DS:DX = pointer to FCB
AL = return code DOSl

Write random file record 22 AH = 22

DS:DX = pointer to FCB
AL = return code DOSl

Get file size 23 AH = 23

DS:DX = pointer to FCB
AL = return code DOSl

tigure 18-4. A summ
services (continued)

332 PROGRAMMER'S GUIDE TO THE IBM PC

Function Register

Service (hex) Input Output Version

File HO Functions (continued)

Set random record field 24 AH = 24

DS:DX = pointer to FCB
DOSl

Read random file records 27 AH = 27

CX = record count

DSiDX = pointer to FCB

AL = return code

CX = actual record count

DOSl

Write random file records 28 AH=28

CX = record count

DS:DX=pointer to FCB

AL = return code

CX = actual record count

DOSl

Parse filename 29 AH = 29

DS:SI=pointer to command line
ES:DI = pointer to FCB
AL = parsing control bits
(see page 286)

DS:SI = pointer to following
place in command line

AL = return code

ES:DI = pointer to FCB

DOSl

GREAT: Create file 3C AH = 3C

CX = file attribute
DS:DX=pointer to ASCIIZ
string

AX = file handle or return code

If CF = 1 AX=error code else

DOS2

Open file 3D AH = 3D

AL = access code (see page 308)
DS:DX=pointer to ASCIIZ
string

AX = file handle

If CF = 1 AX = error code else
DOS2

Close file handle 3E AH = 3E

BX = file handle
AX = return code if CF = 1 DOS2

Read from file or device 3F AH = 3F

BX = file handle
CX = number of bytes to read
DS:DX = pointer to DTA buffer

If CF = 0 AX = number of bytes
read else AX = return code

DOS2

Write to file or device 40 AH=40

BX = file handle

CX = number of bytes to write
DS:DX = pointer to DTA buffer

If CF = 0 AX = number of bytes
written else AX = return code

DOS2

Delete file 41 AH = 41

DS:DX=pointer to ASCIIZ
string

AX = return code if CF set DOS2

Move file pointer 42 AH = 42

AL = method code (see 17.xx)
CX:DX = offset value

BX = file handle

AX = return code if CF set

DX: AX = new pointer
location if CF not set

DOS2

Figure 18-4, A summary of the DOS
services (continued)

Chapter 18: DOS Service Summary 333

Function Register
Service (hex) Input Output Version

File I/O Functions (continued)

CHMOD: Get/set file

attributes
43 AH = 43

AL = get/set code:
00 = get into CX;
01 = set as in CX

CX = attribute if set used

DS:DX = pointer to ASCIIZ
string

AX = return code if CF set

CX = attribute if get used
DOS2

DUP: Duplicate file
handle

45 AH = 45

BX = file handle
If CF = 0, AX = file handle or
return code else

AX = return code

DOS2

COUP: Force handle

duplication
46 AH = 46

BX = existing file handle
CX = second file handle

AX = return code if CF set

CX = file handle
DOS2

FIND FIRST: start file

search

4E AH = 4E

CX = attribute to search on

DS:DX = pointer to ASCIIZ
string

AX = return code if CF set DOS2

FIND NEXT:

Continue file search
4F AH = 4F

DS:DX = pointer to info, from
FIND FIRST or previous find
next call

AX = return code if CF set DOS2

Rename file 56 AH = 56

DS:DX = pointer to ASCIIZ
string (old name)

ES:DI = pointer to ASCIIZ string
(new name)

AX = return code if CF set D0S2

Get extended error code 59 AH = 59

BX = 0000

AX = extended error code
BH = error class

BL = action

CH = locus (see page 322)

DOS3

Create temporary file 5A AH = 5A

DS.DX = pointer to ASCIIZ
directory path name

CX = file attribute

AX = error code if CF set

DS:DX = pointer to pathname
with filename appended, if CF
not set

DOS3

Create new file 5B AH = 5B

DS:DX = pointer to ASCIIZ file
path name

CX = file attribute

If CF set AX = return code else
AX = file handle

DOS3

Lock/unlock file access 5C AH = 5C

AL = 0 (lock) or 1 (unlock)
BX = file handle
CX:DX = offset to lock

SI:DI = amount to lock

AX = error code if CF set DOSS

Figure 18-4, A summary of the DOS
services (continued)

334 PROGRAMMER'S GUIDE TO THE IBM PC

Function Register

Service (hex) Input Output Version

Directory Functions

MKDIR: Make directory 39 AH = 39

DS:DX = pointer to ASCIIZ
string

AX = return code if CF set DOS2

RMDIR; Remove

directory
3A AH = 3A

DS:DX = pointer to ASCIIZ
string

AX = return code if CF set DOS2

CHDIR: Change current
directory

3B AH = 3B

DS:DX = pointer to ASCIIZ
string

AX = return code if CF set DOS2

Get current directory 47 AH = 47

DL = drive ID

DS;SI = pointer to data area

AX = return code if CF set

DS:SI = pointer to full path name
if CF not set

DOS2

Date! Time Functions

Get date 2A AH = 2A AL = day of week:
0 = Sun; 6 = Sat
CX = year (1980-2099)
DH = month

DL = day

DOSl

Set date 2B AH = 2B

CX=year (1980-2099)
DH = mon A

DL = day

AL = return code if date valid
AL = FF if date invalid

DOSl

Get time 2C AH = 2C CL = minutes

CH=hours

DL = hundredths of seconds
DH = seconds

DOSl

Set time 2D AH = 2D

CL = minutes

CH = hours

DL = hundreds of seconds
DH = seconds

AL = 00 if time valid, FF if time
invalid

DOSl

Get/set file date and time 57 AH = 57

AL = get/set indicator:
00 = get; 01 = set
BX = file handle
CX = time, if AL = 01
DX = date,ifAL = 01

AX = extended error code if

CF set

CX = time, if AL = 00
DX = date, ifAL = 00

DOS2

Figure 18-4. A summary of the DOS
services (continued)

Chapter 18: DOS Service Summary 335

Function Register
Service (hex) Input Output Version

Miscellaneous Functions

Set interrupt vector 25 AH = 25

AL = interrupt number
DS:DX=pointer to interrupt
handler

DOSl

Get DOS version number 30 AH = 30 AL = major version number
AH = minor version number

BX = 0000

cx=oooo

D0S2

(see page 300)

Get interrupt vector 35 AH = 35

AL = interrupt number
ES:BX = interrupt vector DOS2

Get/Set country-dependent
information

38 AH = 38

DS:DX = pointer to 32-byte
buffer for Get; DX = FFFF for
Set

AL = 00 for standard

information if DOS2; AL = 00
for current country, if DOS3

AL = country code or
AL = FF if country code ̂255
BX = country code if AL = FF

AX = return code, if CF set
DS:DX = pointer to information
(see page 305)
BX = country code

DOS2

lOCTL: I/O control for

devices
44 AH = 44

AL = sub-function code (see
page 311)

BL = drive number

BX = file handle
CX = number of bytes to read
or write; of time count if
AL = OB

AX = return code, if CF set
AX = number of bytes read or
written, if CF not set

DX = control data bits

DOS2

Memory Functions

Allocate memory 48 AH = 48

BX = memory requested in
paragraphs

AX = segment address of
allocated memory, or return
code, if CF set

BX = largest block size
available, if allocation failed

DOS2

Free allocated memory 49 AH = 49

ES = segment address of
block to return

AX = return code if CF set DOS2

SETBLOCK: Modify
allocated memory block

4A AH = 4A

BX = requested size in
paragraphs

ES = segment address of block

AX = return code if CF set

BX = maximum possible size if
request to increase block size
failed

DOS2

Figure 18-4. A summary of the DOS
services (continued)

19

Program Building

Program Interfaces 338

Combining Program Modules 341
Step 1: Writing the Source Code 341
Step 2; Translating the Source Code 342
Step 3: Linking Programs 342
Step 4: Converting File Formats 342
Step 5: Creating Object-Code Libraries 343

Using the DOS LINK Program 345
Linking a Single Program 345
Linking a Program to the Compiler Library 346
Combining Programs 346

337

338 PROGRAMMER'S GUIDE TO THE IBM PC

AS we've stated throughout this book, the wisest approach to
programming the PC family is to write nearly all of our pro
grams in a high-level language (such as BASIC, Pascal, or C)
and when necessary use the DOS or BIOS services for whatever

the high-level languages don't provide. On occasion, we may also want to
create our own assembly-language routines to perform specialized tasks
not available from our programming language or the system services.

When creating programs within the confines of a single program
ming language, we really don't need to know anything more about a lan
guage than what we can find in the manuals that come with it. However,
if we need to break out of the bounds of a single language to access some
of the system routines, or perhaps to tie into a program that's written in a
different language, we'll need to dig deeper into the technical aspects of
both DOS and the programming languages—of DOS to learn how to link
programs together; and of the programming languages to find out the re
quirements for the program interfaces that allow the different languages
to communicate with each other.

This chapter presents some overall considerations that apply to the
advanced use of most programming languages; that is, to building pro
gram interfaces and linking programs with the DOS LINK utility. The fol
lowing chapter. Chapter 20, covers five specific types of programming
language and the language translators that make them come alive. In that
chapter, we will point out some of the technical characteristics of the five
languages that must be considered whenever we are connecting them to
assembly-language subroutines.

PROGRAM INTERFACES

A program interface is a layer of assembly-language code that makes
it possible for a program written in a high-level language to communi
cate with an assembly-language subroutine. There are two key parts to a
program interface: the control interface and the data interface.

The control interface handles the business of calling and returning;
that is, of passing control of the computer from one module to another
and back again without anything going amiss. The control interface, by
the way, can be tricky to program. It is remarkably simple if you know
how to do it right, and can create incredible messes if you get even minor
details wrong.

The data interface allows the two sides of an interface to touch and

correctly understand common data. Doing this successfully involves an
understanding of how each side of the interface finds and works with
data, and an understanding of how data is formatted so that each side

Chapter 19: Program Building 339

can interpret it in the same way. We'll be covering these topics in more
detail in the next chapter.

Designing program interfaces is only one part of the program link
ing process. All three program elements—the calling program, the called
subroutine, and the interface—must accomplish the following in order
to work together successfully:

The program must be able to find its way to the subroutine. In the
8088-based system of the standard PC family, a subroutine can be called
in one of two ways: through an interrupt or through a CALL instruction.
As we already know, the DOS and BIOS services are called through inter
rupts using the INT instruction, and the addresses of the service routines
are implicit in the interrupt number. Most ordinary assembly-language
programs and subroutines are called by the CALL instruction from our
programming language. The addresses are associated with the program
or subroutine names and established during the linking process ((•-read
on for more about linking).

There are two kinds of CALL instruction: the NEAR CALL and the
FAR CALL. The NEAR CALL locates a subroutine within the current 64K
code segment (CS) and does not require the CS register to be changed. By
contrast, the EAR CALL locates a subroutine outside of the current CS
using a complete segmented address in the CALL instruction (which
changes the CS setting). Some languages use both instructions and some
use only one.

The subroutine must know what to do when finished. Most often a
subroutine will return to the calling program using either a NEAR or FAR
RETurn instruction, but there are other options—for example, we may
want to terminate the program and return to DOS from the subroutine.
The subroutine's RET instruction does more than just return to the caller;
it also cleans the stack, as we will soon see.

The subroutine must know what supporting framework it is get
ting from the caller. This supporting framework involves such things as
how the segment registers are set and whether there is a stack that can be
used. In general, the segment registers are just as they should be: CS has
the right code segment; DS points to the location of the calling program's
data; and SS and SP are set up with the caller's stack.

The called subroutine can usually continue to use the caller's stack
but there is no practical way to know how much working space is avail
able. If its needs are reasonable—say, less than 64 bytes—the caller's
stack space should be adequate. However, if it should need more, the sub
routine should set up its own data space in memory.

340 PROGRAMMER'S GUIDE TO THE IBM PC

If the program needs to pass information (parameters) to the sub
routine, both the program and the subroutine must know how many
parameters there are, where they should be placed, and whether or not
they need to be changed and passed back. Most commonly, programs
and subroutines work with a fixed number of parameters, although there
are ways to handle a variable number of parameters in some languages.
The parameters are always passed through the stack, either directly or
indirectly. The direct method passes the actual value of the parameter
through the stack; the indirect method passes the value's address through
the stack. In either case, the called program absolutely must know which
method is being used.

Which parameter-passing method is used depends primarily on the
language; some languages cannot place values on the stack, only ad
dresses. With those languages that can handle both addresses and values,
we have a lot more freedom to decide which method to use, and the
method we use determines how the parameters are dealt with as they are
passed from one program to another. For example, if we want to protect
the caller's parameters from being changed by the called subroutine, we'll
want to pass the original value on the stack to make sure we maintain a
copy of it. But if we want the caller's parameters to be changed by the
called subroutine, we must send the address of the original value via the
stack so that the subroutine will change the parameter's value by modify
ing what is stored at the specified address.

Parameter passing is the most complicated part of an interface rou
tine, made even more complicated by the different ways programming
languages deal with data and stack information. Because of its complex
ity and variability from one language to another, this is the main issue
we'll discuss in our language comparisons in the next chapter.

The subroutine must preserve certain information. Although the
requirements may vary in different situations, there are a few ground rules
governing what information should be preserved, and what can and can
not be done when calling a subroutine. We've included some useful tips
here, m- but you will find a few more in Chapter 3, particularly on page 39.

Interrupts can be suspended, although it is usually not a good idea,
except briefly when segment registers are changed; they must be turned
back on before returning. {(•- See page 48.)

If any segment register is modified, the original setting should be
preserved on the stack. Another important register to preserve, under
most circumstances, is the base pointer (BP) register, since it is often used
to keep track of the parameters' location on the stack. By convention, a

Chapter 19: Program Building 341

calling program does not expect its working register values to be pre
served, so all the working registers, AX, BX, CX, DX, DI, and SI can be
changed freely, as can all the flags. The caller's stack has to be preserved,
although just how that's done is part of the clean-up process.

The stack must be cleaned up after the subroutine is finished. There
are four things that might be cluttering up the stack when a subroutine is
finished: some parameters; the return address from the CALL instruction;
register values saved from before the CALL; and finally, some working
storage from the subroutine.

Three of these leftovers are not a problem: Subroutines are expected
to remove their own working storage from the stack; saved registers are
removed by POP instructions; and the return address is removed by the
RET instruction. It's the parameters that usually compUcate the clean-up
process, because the method of removal varies in different languages.
Some languages expect the subroutine to remove the parameters by spec
ifying in the RET instruction the number of bytes to remove from the stack.
Other languages expect the caller to remove them. We'll point out these
differences as we discuss the languages in detail in Chapter 20.

With all of these program design elements in mind, let's step back a
bit farther and see how the whole process works—from creating a pro
gram or subroutine, to combining it with others.

COMBINING PROGRAM MODULES

In this section, we're going to cover the general rules for putting
pieces of a program together or for combining program modules. We'll
be using a standard DOS programming procedure that applies to all of
the programming languages used as examples in the next chapter (except
for interpreted BASIC, which always seems to be a special case). First, let's
review the steps that are involved in creating a working program.

Step 1: Writing the Source Code
To begin with, we have to write our program using the commands

and syntax of our programming language. This form of the program is
known as the source code. For programming languages that use the stan
dard DOS conventions, the source code must be in the form of an ASCII
text file {m- see Appendix C, page 410). Interpreted BASIC does not nor
mally use the ASCII text file format for its source files, but it can. (To cre
ate ASCII text files with the BASIC interpreter, we use the A option of the
SAVE command.)

By convention, source-code files have a filename extension that re
flects the name of the programming language used, such as BAS or C.

342 PROGRAMMER'S GUIDE TO THE IBM PC

Step 2: Translating the Source Code
On command, source files are given to our language translators,

called compilers for anything other than assembly language, or as
semblers for assembly language. (Again, interpreter BASIC is a special
case that we are not considering here.) The translator (compiler or as
sembler) converts the source code into machine-language instructions;
but, it doesn't convert it into a form that is ready to be executed. Instead,
compilers and assemblers put their results into a form known as object
code. The object-code format is designed with a particular purpose in
mind: to combine separate object modules into a single larger program.
Object-code files, by convention, have a filename extension of OBJ.

Step 3: Linking Programs

The next basic step is to link the programs together. The linker, or
link-editor program, known as LINK in DOS, performs two main tasks: It
combines separate object modules (as needed), making all the necessary
connections between them; and it converts the modules from an object-
code format to a loadable program in the .EXE format.

The actual combining, or linking, of program modules to create an
.EXE file is the most important apect of this discussion. We'll take it up
again later in this chapter, after we've covered two other steps that are
involved in preparing programs.

So far, we've mentioned the three principal steps of program prepa
ration: writing the program to produce source code; compiling or assem
bling the program to produce object code; and linking the program to
produce a loadable program. There are two other related steps in the pro
cess: converting the .EXE format created by the LINK program to the
.COM format; and using object libraries to store a number of modules.

Step 4: Converting File Formats

Programs that are stored on disk in the .EXE file format are not
completely ready to go to work. When they are loaded from disk into
memory, DOS performs a few last-minute operations to prepare the pro
gram for execution. These operations do such things as tell the program
where it is located in memory, calculate its size, and set up a stack for it
to use. But if the operating conventions of a program are sufficiently sim
ple, and if the start-up stages of a program are sufficiently savvy, this
loading preparation can be done in advance by converting the file to a
.COM file format.

Chapter 19: Program Building 343

A .COM file is an exact image of the program as it will appear in the
computer's memory. While DOS must do a good deal of work to prepare
an .EXE-format program, it only has to do two things for a .COM-format
program: It creates the program segment prefix {m- see page 260); and it
sets the segment registers.

We use the DOS program EXE2BIN to convert an .EXE file to a
.COM file format. Not all programs can be converted to the .COM format.
For those programs that qualify, we can freely convert them or leave
them in the .EXE format. Either form is functionally the same, but the
.COM format is more compact and loads slightly faster.

We can very simply and safely find out if a program can be con
verted from .EXE format to .COM format just by trying to do it. If it
works, it works. If EXE2BIN or LOCATE says it can't be done, however, it
can't be done.

Step 5: Creating Object-Code Libraries

Most high-level programming languages make use of dozens of pre
pared subroutines that support the operation of our programs. Naturally,
these subroutines are in the translated, object-code form. However, it is
very inconvenient to have dozens of these object files lying about on our
disks. It is also inconvenient to have to determine for ourselves which

ones need to be combined with our own program's object files. To solve
this problem there are object libraries, which are collections of object
code gathered together into one file. By convention, libraries have the file
name extension LIB.

Most high-level programming languages come with a ready-to-use
library of standard supporting subroutines. Occasionally, a compiler will
have several libraries that provide different versions of standard routines.
For example, they may come with floating-point routines that may or
may not make use of the 8087 math coprocessor.

344 PROGRAMMER'S GUIDE TO THE IBM PC

The DOS linker is able to search through a Ubrary to find and use
the subroutines that it needs in order to complete a program. Without
this library mechanism, we would be faced with the annoying task of
telling the linker which object files were needed. If we left any out, the
Unk-editing would fail; if we included any that weren't actually needed,
our program would become unnecessarily large. The use of a library en
ables us to avoid these problems.

Object libraries are mostly used to support compilers in a way that
is completely out of our hands. We don't create or modify the libraries
and we don't even directly select what will be used in a Ubrary. Instead,
we select files from a library indirectly by using particular features of our
programming language, or directly by using the LIB program.

□ NOTE: The LIB program is not part of every version of DOS, al
though it should be. The IBM versions of DOS from 1.00 through 3.1 do
not include LIB. LIB is included in some non-IBM versions of DOS, and it
accompanies some (but not all) compilers and assemblers. Getting your
hands on a working copy of LIB is a catch-as-catch-can proposition.

If you have a copy of LIB, you can use it for three main purposes:
simply to explore the contents of existing libraries (which can be a very
illuminating experience); to selectively replace modules in existing librar
ies if you want to change or improve the library that comes with a pro
gramming language; or to create your own libraries.

The documentation for LIB in the DOS manual will fully explain its
operation, but just to give you a taste of the ways LIB can be used, we
have included a few examples to try out. To create a new library named
TESTLIB, enter this command:

LIB TESTLIB;

To list the contents of an existing library, directing the listing to the
printer LPTl: (or to any file, or to the screen), enter:
LIB TESTLIB,LPT1: ;

To add the module X.OBJ to a library, enter:
LIB TESTLIB+X;

To replace an existing module with a new version, enter:
LIB TESTLIB-X+X;

With later versions of LIB, type - +X instead of -X+X. To extract a
module for disassembly or other separate use, enter:
LIB TESTLIB»X;

Chapter 19; Program Building 345

Our programs are usually composed of a number of subroutines.
Whether or not you are likely to benefit from the services of the LIB pro
gram depends upon one basic decision that you make about the way you
organize these subroutines. If you prefer to combine the source code for
your subroutines into one source file, which means they will all be com
piled together, then you have little need for LIB. On the other hand, if you
prefer to compile your subroutines separately, which produces separate
object files, then LIB performs exactly the job you need done; It gathers
together and organizes your object files. I personally have no recommen
dation for either style of operation; I have used both of them in my PC
programming and found each one practical and effective. It's mainly a
matter of preference—though your choice may have some consequences
if you program in Pascal ((•- see page 369).

USING THE DOS LINK PROGRAM

We're now ready to return to our discussion of combining program
modules and using the LINK program. The documentation for LINK in
the IBM DOS Technical Reference manual fully explains its operation, in
cluding the complexity of its control switches. Here, we'll summarize the
most common and useful operations, particularly where they pertain to
the programming languages discussed in the following chapter.

Just to give you some background information, the LINK program
takes four parameters, which might be written like this;

LINK 1 ,2,3,4;

The first parameter, 1, stands for an explicit list of object modules (such
as PROG1 + PROG2-I-PROG3); 2 stands for the name of the finished pro
gram; 3 stands for where the linker's display output should be sent (such
as to the printer or display screen); and 4 stands for an explicit list of
libraries, if they are used (such as BASCOM -i- MYLIB).

Linking a Single Program

Now for some practical examples. To start with, let's consider a
completely self-contained program, such as the BEEP program shown on
page 355. To link it, we simply type;

LINK BEEP;

Linking a single program such as this simply creates an .EXE file.

346 PROGRAMMER'S GUIDE TO THE IBM PC

Linking a Program to the Compiler Library
Next, let's consider what is surely the most common linking cir

cumstance. Say we've compiled a program in a high-level language, such
as compiled BASIC and we need to link it with its standard library. In this
simple case, we're not using any interfaces or other modules that we've
created. Our program's name is X and the compiler library's name is
BASCOM.LIB. This is how we would write the LINK command:

LINK X,.,BASCDM;

Usually, a compiler generates an object module that goes to the li
brary to find anything else that is needed. In the case of Lattice/Microsoft
C ((•- which we cover on page 377), there is a standard start-up routine
called a prefix module that must be linked ahead of our program. Sup
posing that the prefix module is named C, our program is named X, and
the library is named MC, we would link them this way:

LINK C+X,X,,MC

Note two new items in this example. First, we explicitly asked the
linker to combine two object files, C.OBJ and X.OBJ (which is the pro
gram we compiled). Second, we explicitly gave a name to the finished
.EXE program, naming it X. We have to give it this name or the linker will
use the name of the first object module, which is C. If we allow that to
happen, all of our programs will end up with the same name, C, rather
than their individual names (in this case, X). We can give the finished
program any name we wish, including a name completely unrelated to
any of the object-module names. In this example, however, we did the
normal thing, which is to give our finished program X.EXE the same
name as our object file X.OBJ.

Combining Programs

Now we're ready to illustrate how to combine program modules
with the linker. First, let's consider a situation in which we have made use
of a private object library to hold either our assembly-language interfaces,
or our separately compiled subroutines, or both. Here is how we would
link such a library using Pascal. The program is named X and our library
is named OURLIB:

LINK X , , .PASCAL+DURLIB ;

Next, let's consider the case where we have not created an object-
module library. Instead, we simply want to combine two object files: one
from our high-level language compiler and one from the assembler for

Chapter 19: Program Building 347

interfaces to DOS and the BIOS. Here is how we would Unk such a pro
gram. In this example, the language is Pascal, the program is named X,
and the assembly-language interface is named INTFACE:

LINK X+INTFACE,.PASCAL

There are, of course, endless variations on how program modules
can be combined. However, these basic examples should provide you
with the necessary core of information. Armed with the general informa
tion in this chapter, you should be ready to proceed to the next, and
learn something about how the programming languages work.

20

Programming Languages

Language Specifics 351

Assembly Language 352
Logical Organization 353
Learning About Interface Conventions 353
Writing and Linking Assembler Programs 355

Interpreted and Compiled BASIC 356
BASIC Data Formats 357

Interpreted BASIC Assembler Interfaces 362
Compiled BASIC Assembler Interfaces 365

Pascal 369
Pascal Data Formats 369

Pascal Assembler Interfaces 375

The C Language 377
C Data Formats 378

C Assembler Interfaces 380

A Parting Comment 383

349

350 PROGRAMMER'S GUIDE TO THE IBM PC

In the last chapter, we briefly discussed the general principles of
building program modules and linking them using the DOS Link
program. In this chapter, we're going to discuss the programming
languages we use to build the program modules, particularly those

aspects of the languages that we need to be concerned with if we plan to
link the modules to assembly-language subroutines.

The title of this chapter implies that we are going to discuss pro
gramming languages in general, but that's really not the case. It's all very
well to discuss any topic in the abstract, but when we actually want to
get anything done, we have to get down to specifics. If we want to create
computer programs, we have to work with a specific programming lan
guage—and a programming language is much more specific than many
people are led to believe.

First of all, there is no such thing as a generic programming lan
guage. We can only create working programs with a compiler or inter
preter for a programming language that is designed for a particular ma
chine. Although academic experts on computers would like to pretend
otherwise, the practical truth is that the general definitions of program
ming languages lack many of the essential features that we need to create
real programs that work on real computers. So, when a compiler or an
interpreter is created for a particular programming language, such as
BASIC, to run on a particular computer, such as the PC, the fundamental
language is altered and extended to provide the things that are really
needed. The alterations are often quite significant, and in every case, they
create a programming language that is related to but is truly distinct
from all other programming languages traveling under the same name.

This discussion is meant to set the stage for the simple announce
ment that this chapter does not and could not possibly cover every PC
programming language that exists now or that might be created in the
future. Since each compiler, in effect, creates its own unique programming
language, using this chapter to cover the general aspects of the main lan
guages would not serve our needs. We must select just a few languages,
since we can't cover them all. I have chosen to discuss four popular and
representative languages: assembly language, BASIC, Pascal, and C. Then,
within these categories, I have selected five specific versions or implemen
tations of these languages: IBM Macro Assembler, IBM interpreted BASIC,
IBM compiled BASIC, IBM Pascal, and Lattice/Microsoft C.

My decision to choose these particular languages is guided by the
past and the future. Past experience has shown me which language ver
sions have the most widespread use in the PC family. Concern about the

Chapter 20: Programming Languages 351

potential for interfacing new work and new compilers has led me to be
lieve it is unwise to use programming languages that are not compatible
with the standard DOS link editor. Unfortunately, a great many compilers
and assemblers either don't produce linkable object code (for example,
the admirable "cheap assembler" CHASM, Borland's Turbo Pascal, and
Logitech's Modula-2), or use an object format that is not compatible with
the DOS linker (for example, the Digital Research family of languages,
and Computer Innovation's C-86). Personally, I am quite conservative
about the matter of linking and object-code compatibility, and I fear that
in straying away from the de facto standard established by DOS, we run a
serious risk of encountering problems in the future, as the PC family of
computers evolves.

LANGUAGE SPECIFICS

The five programming languages that I have chosen are really fam
ilies in themselves. There are various versions of each one, and in most
cases they are available from several sources. Fortunately, the differences
between the versions are minor—minor enough that we don't need to
think of them as separate languages in the same sense that BASIC and
Pascal are separate languages.

Assembly language. Our discussion of assembly languages will be
based on IBM's version 1.00 Macro Assembler, created by Microsoft. A
number of other versions are available from Microsoft, firom IBM, and
from other computer manufacturers who have licensed the use of Micro
soft's basic assembler. These versions vary only in their most sophisti
cated elements, which need not concern us here.

Interpreted BASIC. The interpreted BASIC that we'll cover in this
chapter has taken on a thousand faces and minor variations. To IBM PC
users, the version we'll discuss is known simply as BASIC or BASICA, and
is further defined by version names such as Cl.lO, Jl.OO, and A2.10, among
others. Outside the IBM world, it may be known as BASIC, Microsoft
BASIC, or GW-BASIC. We're not concerned with the differences here; we're
concerned with the common elements.

Compiled BASIC. For our discussion of compiled BASIC, we'll be
guided by version 1.00 of the IBM BASIC Compiler. The principles we dis
cuss will also apply to other specialized Microsoft BASIC compilers, such
as Business BASIC.

Pascal. For Pascal, we'll use IBM's version 1.00 as a basis. The details
we discuss will apply equally well to IBM's version 2.00 and to various
Microsoft versions.

352 PROGRAMMER'S GUIDE TO THE IBM PC

The C language. For our discussion of C, we will be using the Lat-
tice/lvlicrosoft C compiler version 1.04, created by Lattice. There are
other closely related versions available from Microsoft, Lattice, and Life
boat, which all share the characteristics that we will be covering. This
compiler, by the way, should not be confused with the Microsoft C com
piler (version 3 and above) that was created after the Lattice/Microsoft C
version was released.

ASSEMBLY LANGUAGE

There are two fundamental types of assembly-language program:
the assembly-language subroutine, which is called by other programs that
may be written in a high-level language; and the freestanding assembly-
language program. Subroutines depend largely upon the calling program
to provide their structure and support, while the freestanding assembly-
language programs must provide their own structure and support, and
must cope with all the fundamental operating issues that stand-alone
programs face. Assembler subroutines are relatively easy to construct,
while assembler programs can be quite complicated. Subroutines have
more immediate appeal to those of us who need to build interface rou
tines between our high-level language and some of the system's BIOS or
DOS services, while stand-alone programs are usually tackled by pro
grammers who must accomplish something that neither their conven
tional programming language nor the system services provide.

In this brief discussion of assembly language, we'll be showing you
some techniques that will help you figure out the high-level language in
terface conventions for your assembly-language subroutines. We'll also
lead you through the process of creating a stand-alone assembler pro
gram. However, we will not even try to teach you how to use assembly
language—that is far too large and complex a subject. If you are not
particularly proficient at assembly language, one way to learn about it is
to study some of the readily available sources of assembly-language cod
ing. One dandy source is the assembler code published by computer
manufacturers, such as the BIOS listings that are part of IBM's Technical
Reference manuals. Another source, available with most compilers, is the
assembler-like listing that the compiler can be asked to produce. This is
useful both for learning how the compiler handles particular coding
problems (which you can control by selecting appropriate statements in
the high-level language), and also for learning the subroutine interface
conventions the compiler uses. A related, but less useful way to learn
about assembly language is to load an existing program using the DOS
DEBUG program, and then use DEBUG's U-unassemble command to snoop
through sections of the program. (The section that follows shows how to

Chapter 20: Programming Languages 353

perform a related operation for snooping inside program libraries.) Each
of these methods can help you learn different programming techniques
and tricks. In fact, these are the methods I used to learn nearly everything
that I know about assembly-language programming for the PC family.

Logical Organization
The elements of an assembly-language subroutine are easy to under

stand if they are laid out in the order they occur. As you may recall, the
logical organization was fully explained in Chapter 8 (page 164), where
we described an interface routine as five nested parts:

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke the ROM-BIOS or DOS service

Level 4: Pass results back to caller

Level 3: Exit code

Level 2: Finishing up subroutine assembler overhead

Level 1; Finishing up general assembler overhead

This basic organization is one that can be followed for most inter
face routines written for system services, or for conventional assembly
language subroutines, but the actual coding will vary with every pro
gramming language.

The standard tool for creating assembler subroutines in the PC fam
ily is the Microsoft Macro Assembler, named MASM, which is available
in different versions from a variety of sources. For example, the IBM Per
sonal Computer was introduced with a version numbered 1.00, which in
cluded both a small assembler (without macro capability) and a macro
assembler. Except for advanced assembly-language work—far over our
heads here—any version of the assembler will work for our purposes.

Learning About Interface Conventions
Once you have your assembly language in hand, you'll need to ex

amine the assembly-language conventions and interface customs that ap
ply to your programming language. Your assembly-language interface
will have to know how to gain access to the parameters passed by the
railing program, how to interpret the data format, and how to send the
parameters back—among other things. If there is not adequate informa
tion of this sort in the language documentation, there are some rather
simple ways to pry it out of the language itself.

354 PROGRAMMER'S GUIDE TO THE IBM PC

To learn the conventions for both a calling and a called program—
that is, to see both sides of the program call interface—you can study the
compiler's assembler-style listing, as we mentioned earlier. You can also
study the innards of the assembly-language subroutines provided with the
language compiler, which may provide a somewhat different perspective
from what can be learned by studying a compiler's listing. This technique
not only gives you the details of the interface conventions for assembly-
language routines but also gives you specific programming examples that
may serve as models.

The first thing we must do is select an appropriate subroutine. The
subroutines that are most accessible for study are often those that are
part of the library that accompanies our compiler. Usually, it is easiest to
simply choose a compiler feature that we're interested in, such as I/O,
screen control, or arithmetic, and then figure out which subroutines are
invoked for that feature.

Next, we have to look at the names of the library modules (which
might not be the names of the subroutines inside those modules). We can
do this by using the LIB program ((•'discussed in Chapter 19) to list the
contents of the library. Let's assume there's a library named LANG.LIB on
file. We can direct the library listing to another file named LISTING with
the following DOS instruction (we could also direct it to the screen or
printer):

LIB LANG,LISTING;

Looking over the library listing, we find the subroutine we're inter
ested in and the name of the module that it's a part of; let's say it's named
XMOD. Next, we ask LIB to separate XMOD out of the library, so we can
work with it:

LIB LANG»XMDD;

The operator tells LIB to create a copy of the module as a separate ob
ject file; in this case, the file will be named XMOD.OBJ.

At this point, we could try to snoop around inside XMOD.OBJ, but
this file contains extraneous link-editor information that would only get
in our way. Instead, we're going to turn XMOD.OBJ into a set of pure ma
chine instructions using two steps. First we link it, to convert it into an
.EXE program file:

LINK XMOD;

This gives us a file named XMOD.EXE. (Ignore any no-stack error mes
sage that the linker gives you.) Then, to get rid of the .EXE-file overhead,
we convert XMOD.EXE into a .COM file like this:

EXE2BIN XMOD.EXE XMOD.COM

Chapter 20: Programming Languages 355

At this point, we have a file named XMOD.COM, which should con
sist of nothing but pure machine-language instructions, with all overhead
removed. Now we are ready to use DEBUG to convert the instructions
into a readable assembler format. First, we note the size of XMOD.COM,
and then we fire up DEBUG, telling it to load XMOD.COM:

DEBUG XMOD.COM

Then we tell DEBUG to convert XMOD into a readable form with the
U-unassemble command, like this:

U 100 L XXX

(The XXX is the length of the file in hex.)
All these steps may seem overly elaborate and cumbersome, but

once you have learned them, they can be performed quickly and easily,
and they will give you an inside look at how your own programming lan
guage uses assembly-language interface routines.

The next section wiU repeat the key steps of this exercise as we
demonstrate the mechanics of creating a small but complete assembly-
language program.

Writing and Linking Assembler Programs
To illustrate the process involved in writing and linking an as

sembler program, we will create an incredibly simple and yet useful pro
gram that sounds a tone on the computer's speaker. To do this on any PC
family computer or any DOS computer, we just output the bell character,
CHR$(7), to the screen. In this example, we'll do diis by using DOS ser
vice 2, which is invoked with interrupt 33. Then we'll end the program
and return program control to DOS using interrupt 32. Follow this exam
ple and you'll learn quite a bit about creating self-contained assembly-
language programs. Here is the source code for this little program:

; DOS generic beep program
BEEPSEG SEGMENT

ASSUME

BYTE PUBLIC

CS:BEEPSEG

'PRGG'

BEEP PROC

MGV DL,7 ; bell character

MGV AH,2 ; output character function
INT 33 ; DOS function interrupt

INT 32 ; return to DOS interrupt

BEEP ENDP

BEEPSEG ENDS

END

356 PROGRAMMER'S GUIDE TO THE IBM PC

As you see, the program is only four instructions long, filling only
eight bytes. We can assemble the program with this step:

MASM BEEP;

The MASM command creates an object file that is ready for linking. In
this case, we'll link the program without subroutines, libraries, or other
object files, Uke this:

LINK BEEP;

The linker program usually expects to find a stack segment in the
programs it links, but our very simple program doesn't have one—a key
characteristic that makes it possible to convert it into a .COM file, as we
shall soon see. The linker will complain, but we can ignore its complaint.

Linking will give us an executable program called BEEP.EXE. It is
very common to write assembly-language programs in such a way that
they can be converted into the more compact .COM format. We convert
this simple program using the DOS command EXE2BIN, as in:

EXE2BIN BEEP.EXE BEEP.COM

Now we have a finished beeper program, that can be used on any com
puter that runs DOS.

It is worthwhile to pause and note what happens to the size of our
program when it gets transformed from an idea to an executable .COM
file. The source code for this program is approximately 378 bytes (de
pending upon the use of spaces in the comments, etc.). When we assem
ble it, we discover that just 8 bytes of working machine-language instruc
tions are created. However, the object file, which includes some standard
linker information as overhead, is 54 bytes—much smaller than our
source file, but much larger than the 8 bytes of actual instruction. After
linking, the 54-byte object file swells to a 520-byte .EXE file. This is be
cause the .EXE format contains a prefix that describes how programs are
to be loaded, and this prefix is created in 512-byte records—in this case,
it's 512 bytes of overhead, followed by our 8 bytes of instructions. Con
verting the program to .COM format eliminates the 512 bytes of overhead
and we end up with a .COM file that's just 8 bytes of pure machine code.

INTERPRETED AND COMPILED BASIC

To be candid and blunt, let me admit right away that I can't give you
everything you need here. Working with BASIC and interfacing to BASIC
are very, very complicated subjects—complex enough to fill several
books just by themselves. Frankly, interfacing with BASIC is a particularly
messy area, made even messier by the number of BASIC versions used

Chapter 20: Programming Languages 357

with the different models of the extended PC family. Even within the IBM-
made trunk of this family tree, there are more versions of BASIC than we
have fingers or toes for counting them.

In this discussion, we will focus on the issues that relate to interfac
ing BASIC programs with external routines. The two items that we will
concentrate on are BASIC'S data formats (which are relevant to external
routines because they need to he able to exchange data with BASIC) and
the interface conventions that specify how BASIC and assembly language
talk to each other.

BASIC Data Formats

BASIC uses four data formats: integers, variable-length strings, and
floating-point numbers in long and short form, known in BASIC termi
nology as single-precision and double-precision numbers. BASIC variables
can be explicitly given one of these four format types by appending an
identifying suffix to the variable name: % for integer, ! for single preci
sion (short floating point), # for double precision (long floating point),
and $ for string. Numeric constants can be similarly classified. Implicit
typing can be controlled with the DEF statement and defaults to single
precision. For reference, here are some simple examples:

A% Integer variable

A! Single-precision variable

A# Double-precision variable

A$ String variable

1% Integer constant

1! Single-precision constant

1# Double-precision constant

String constant

□ IMPORTANT NOTE: While the three numeric data formats are the
same for both interpreted BASIC and compiled BASIC, string formats are
different for compiled BASIC.

Integer Data Formats

The integer format is the standard 16-bit signed 2-byte word univer
sally used by the PC family. The range of values is from -32,768 through
0 to -t-32,767. I*" See page 23 for a general discussion of this data format.
BASIC does not accommodate the standard variation on this format: un
signed 16-bit integers with a range of values from 0 through 65,535. Since
the unsigned integer format is fundamental to memory addressing and
address calculation in the PC, some care must be used when handling

358 PROGRAMMER'S GUIDE TO THE IBM PC

addresses. It is customary to use BASIC'S signed integer format to store
unsigned integer addresses; in fact, this is the preferred way to pass ad
dresses to assembler interfaces. However, care must be exercised when
displaying or calculating unsigned addresses that are stored in the signed
integer format. To avoid miscalculation, it is wisest to perform address
calculations in double precision, using the long floating-point format.

If you are using the BASIC integer format to hold and pass unsigned
word addresses, there are some interesting points to keep in mind. In
theory, a BASIC integer cannot accept any number over its range limit
of 32,767; for example, we cannot assign a decimal integer a constant of
50,000 or a floating-point variable with an equivalent value. However, the
hex constant format can be used to assign values from 0 through 65,535
(or &H0 through &HFFFF in BASIC'S hex constant notation). This means
that BASIC does not allow 1% = 50,000, but it does allow the equivalent in
hex: 1% = &HC350. Also, BASIC provides the hex display function HEX$,
making it easy for us to convert decimal values to their hexadecimal equiv
alents. These two features make it reasonably convenient to work with
addresses in hex notation.

You can safely convert address values from integer to floating-point
format, to perform simple arithmetic operations, by using this method:

IF 1% < 0 THEN D# = IX + 65536# ELSE D# = IX

where 1% is an integer and D# is its equivalent in double precision. To
convert address values from double precision to integer, we would use
this method:

IF D# > 32767 THEN IX = D# - 65536 ELSE IX = D#

The BASIC function VARPTR directly provides the offset addresses
of integer variables. (<•' As we'll see shortly, it also provides them for
floating-point variables; for string values, VARPTR is an indirect connec
tion to the address of the variable values.) VARPTR gives us the offset ad
dress within BASIC'S default data segment, which can then be used to
PEEK or POKE at the variable's value. We can demonstrate this with the

following example:

IX = 999 ' or any other value
I.POINTER = VARPTR (IX)

JX = PEEK (I.POINTER) • 256 + PEEK (I.POINTER + 1)

PRINT IX, JX

This process of using VARPTR to capture the offset address of a
variable has little practical value, but it demonstrates how to find and use
addresses. Examples like this one are designed to build your confidence

Chapter 20: Programming Languages 359

and help you understand the use of memory addresses in BASIC—both of
which are important, as you'll reaUze when you start creating assembly-
language interfaces.

Floating-Point Data Formats

Floating-point values, both single precision and double precision,
are stored in a common format that is peculiar to BASIC. Not only is
BASIC'S floating-point format different than that used by most other pro
gramming languages for the PC, it is also incompatible with the formats
used by the 8087 and 80287 math coprocessors.

To help you make use of the BASIC floating-point data format, we'll
describe its key elements. But be forewarned that the subject of floating
point formats is a complex one. The following discussion assumes that
you have a strong general understanding of how computers store and use
floating-point numbers.

In BASIC, the single- and double-precision data formats differ only
in the number of mantissa digits. The rest of the formats, including the
range of the mantissa, is the same. Single-precision data occupies four
bytes and double-precision data occupies eight bytes. The mantissa is
stored in the first three (or seven) bytes, with the least-significant bytes
first (following the custom of the PC's microprocessor). The exponent is
stored last, occupying the last byte. We could oudine the four or eight
bytes like this:

M7 M6 M5 M4 MS M2 Ml E

The exponent (E) is stored as a power of 2, biased 128. This means that
an exponent of 0 would be stored as 128 (hex 80) and an exponent of —3
would be stored as 125 (hex 7D).

The mantissa is stored as a normaUzed binary firaction, with the
first, or high-order, bit impfied. The high-order bit of the high-order byte
(byte Ml), is used to store the sign: 0 for positive values, and 1 for nega
tive values. The sign bit occupies the place that belongs to (but isn't used
by) the implied high-order mantissa bit.

The program on the next page shows how to decode a floating
point number. This example illustrates the above discussion and ought to
help you understand the format if you are having trouble.

360 PROGRAMMER'S GUIDE TO THE IBM PC

100 INPUT "Enter any value SINGLE
110 ADDRESS = VARPTR (SINGLE)

120 PRINT "The hex bytes are "
130 FOR I = 0 TO 3

140 H = PEEK (ADDRESS + I)

150 IF H < 16 THEN PRINT "0";

160 PRINT HEX$ (H);" ";

170 NEXT

180 PRINT

190 E# = PEEK (ADDRESS + 3)

200 Ml# = PEEK (ADDRESS + 2)

210 M2# = PEEK (ADDRESS + 1)

220 M3# = PEEK (ADDRESS + 0)

230 EXPONENT# = E# - 128

240 SIGN = Ml# / 128

250 Ml# = 128 + Ml# MOD 128

260 MANTISSA# = Ml# / 256 + M2# / (256 * 256)

+ M3# / (256 * 256 * 256)

270 VALUE# = MANTISSA# * 2 EXPONENT#

280 IF SIGN THEN VALUE# = - VALUE#

290 PRINT "This decoded value is "; VALUE#

300 PRINT

310 GOTO 100

Note that lines 190 through 220 isolate the four bytes with the single-
precision format, using variable names that correspond to the notation
we used to represent the mantissa bytes. We stated earlier that the expo
nent is stored in a biased format; line 230 removes the bias, giving us an
exponent ranging from -128 to +127. Lines 240 and 250 take care of the
high-order bit of the most-significant mantissa byte: 240 records the bit
setting as the sign, and line 250 puts the implied 1-bit into place. Then,
line 260 puts the three mantissa bytes together into a single value, which
has its decimal point (or binary point, if you will) just before the first bit
place. Line 270 then factors in the exponent value, line 280 applies the sign,
and—voila!—we've successfully decoded the value of BASIC'S floating
point format.

With the floating-point formats done, we can now take a look at
how BASIC stores strings.

String Data Formats in Interpreted BASIC

String values are stored in two parts: a string descriptor that holds
the length and offset location of the string; and the string value itself,
which is a series of ASCII characters.

Chapter 20: Programming Languages 361

The string descriptor is three bytes long. The first byte contains the
string length, which limits the maximum size of a string to 255 bytes.
The next two bytes provide the data-segment offset to the actual string
value. The actual string value has no special format; it is simply stored as
a series of bytes at the indicated address.

When the VARPTR function is applied to a string, it returns the off
set location of the string descriptor. From the string descriptor, we can
get the offset address of the string itself. The following program demon
strates the process of finding and decoding this information:

100 INPUT "Enter any string OUR.STRING!
110 DESCRIPTOR.ADDRESS = VARPTR (OUR.STRING!)

120 PRINT "The string pointer is at hex
130 PRINT HEX$ (DESCRIPTOR.ADDRESS)

140 STRING.LENGTH = PEEK (DESCRIPTOR.ADDRESS)

150 PRINT "The length of the string is";
160 PRINT STRING.LENGTH

170 STRING.ADDRESS = PEEK (DESCRIPTOR.ADDRESS + 1)

+ 256 * PEEK (DESCRIPTOR.ADDRESS + 2)

180 PRINT "The string value is at hex ";
190 PRINT HEX$ (STRING.ADDRESS)

200 PRINT "The string value is ";
210 FOR I = 0 TO STRING.LENGTH - 1

220 PRINT CHR$ (PEEK (I + STRING.ADDRESS));

230 NEXT I

240 PRINT : PRINT

250 GOTO 100

String Data Formats in Compiled BASIC

The format for string data is quite different for compiled BASIC.
WTiile there is no difference in the type of string data allowed, there is a
difference in the amount of string data allowed. In interpreted BASIC, the
length of the string is recorded as an unsigned 1-byte integer, which al
lows a length of 0 to 255 characters. In compiled BASIC, the length is re
corded as a signed 2-byte integer, which allows a length of 0 to 32,767
characters (the possible negative values are ignored).

As in interpreted BASIC, strings in compiled BASIC are accessed in
directly through a string descriptor. The memory address associated
with the variable name—the address given by VARPTR (NAMES)—
points to the string descriptor rather than to the string itself. The string
descriptor consists of two fields containing the string length and the data-
segment offset of the actual string value. The only difference between
compiled and interpreted BASIC is that the length field is two bytes for
compiled BASIC and only one byte for interpreted BASIC.

362 PROGRAMMER'S GUIDE TO THE IBM PC

We can examine compiled strings with the following program. To
belabor what should be obvious, note that the details of this program are
peculiar to compiled BASIC and so cannot be tested with interpreted
BASIC. This program differs from the interpreted BASIC program given in
the previous section only in line 140 (where we pick up the string length)
and in line 170 (in the PEEK offsets used to pick up the string location).

100 INPUT "Enter any string ",OUR.SIR ING$
110 DESCRIPTOR.ADDRESS = VARPTR (OUR.STRING$)

120 PRINT "The string pointer is at hex
130 PRINT HEX$ (DESCRIPTOR.ADDRESS)

140 STRING.LENGTH = PEEK (DESCRIPTOR.ADDRESS)

+ 256 ♦ PEEK (DESCRIPTOR.ADDRESS + 1)
150 PRINT "The length of the string is";
160 PRINT STRING.LENGTH

170 STRING.ADDRESS = PEEK (DESCRIPTOR.ADDRESS + 2)

+ 256 • PEEK (DESCRIPTOR.ADDRESS + 3)

180 PRINT "The string value is at hex
190 PRINT HEX$ (STRING.ADDRESS)

200 PRINT "The string value is
210 FOR I = 0 TO STRING.LENGTH - 1

220 PRINT CHR$ (PEEK (I + STRING.ADDRESS));

230 NEXT I

240 PRINT : PRINT

250 GOTO 100

Interpreted BASIC Assembler Interfaces

In this section, we'll be covering the interface rules that apply to
assembly-language interfaces called from interpreted BASIC programs.
We will discuss only CALLed subroutines, not USR functions. In my opin
ion, USR functions involve annoying and unnecessary complications, and
inherently possess special problems that may vary enormously between
IBM and non-IBM members of the extended PC family. In general, I do not
advise the use of USR functions.

Interpreted BASIC makes use of a standard interface convention that
fits nicely into the customary pattern for assembly-language connections.
Here is the essence of BASIC'S interface convention:

■ All parameters are passed by placing their offset addresses on the
stack, a format known as call-by-name. This means that assembly-
language subroutines can both access and change the values of
parameters; it also means that addresses and not values appear
on the stack, so accessing the values requires several steps.

■ Parameters are passed in the order they are written, as they are in
most other languages (except C; see page 377). This means that

Chapter 20: Programming Languages 363

the first parameter is closer to the bottom of the stack and the last
parameter is closer to the top.

■ Subroutines are invoked by a FAR CALL and must therefore finish
with a FAR RETurn instruction.

■ The subroutine is responsible for removing parameters from the
stack, as in most other languages (except C; see page 377). This
means, among other things, that the subroutine must be passed a
fixed number of parameters, which is known in advance.

■ The AX register is not used to return values or error codes, unlike
many other languages. Any information passed back by the sub
routine must be passed by a change of the parameter data.

■ BASIC sets up and maintains the segment, code, and stack regis
ters. The other registers may be changed as needed.

We'll describe details of an assembly-language interface routine in
terms of the five logical levels that we discussed earlier in this chapter and
in Chapter 8 ((•' see page 165). Levels 1 and 2, the assembler overhead,
can be coded like this:

MY_SEG SEGMENT

ASSUME CS:MY_SEG

MY_PROC PRQC FAR

; levels 3 through 5 appear here

MY.PROC ENDP

MY_SEG ENDS

END

The names MY_SEG and MY_PROC are arbitrary. In interpreted BASIC,
we can choose any workable names to identify the subroutine, hut in
compiled BASIC, there are restrictions.

If you compare this routine with the general interface routine dis
cussed in Chapter 8, you will notice two differences. First, in this exam
ple the SEGMENT statement is not followed by the classification 'CODE';
furthermore, it does not have a PUBLIC MY_PROC statement. Both of
these changes, and the fact that the procedure name is irrelevant to
BASIC, have to do with the fact that assembly-language interfaces are not
linked with interpreted BASIC. For programs that are linked, such as the
rest of the languages covered in this chapter, these items are important.

The next level to consider, level 3, provides the entry and exit code
for the subroutine. The form of the code is as follows.

364 PROGRAMMER'S GUIDE TO THE IBM PC

PUSH BP

MOV BP,SP

; levels 4 and 5 appear here
POP BP

RET XXX

All four of these instructions are standard and should be the same for all
assembly-language interfaces. The one changeable item, shown as XXX
in this example, represents the number of parameter bytes to be popped
off the stack. The value of XXX must be twice the number of parameters
that were passed when BASIC CALLed the subroutine because each pa
rameter causes two bytes to be pushed onto the stack. So, for example, if
three parameters were passed we would replace XXX with 6 to clean the
stack; if there were no parameters, then we'd use a zero. Incidentally, the
RET instruction used in this example is assembled into a FAR RETurn in
struction based on the PROG FAR command that appeared at the begin
ning of the routine.

The next level, level 4, concerns accessing and changing the param
eters. As we discussed on page 167, the address of the last parameter will
be on the stack at the location referred to as [BP+ 6], the parameter be
fore that at [BP+8], and so on.

By way of illustration, let's assume there are three parameters, all
integers, and that we want to load them into the AX, BX, and CX registers
(for whatever reason). Here is the level 4 code that would get those pa
rameters:

MOV SI, [BP+1 01 ; get address of first parameter
MOV A X , t SI] ; get first value
MOV SI, [BP+8] ; get address of second parameter
MOV B X, [SI] ; get second value
MOV SI, [BP+6] ; get address of third parameter
MOV C X. [SI] ; get third value

Note that we get the parameter values in two steps: First we get the ad
dress (which we park in the SI register, just because it's a convenient place
to put it), and then we use the address to get the value (which we put
where we actually want it).

That illustrates just the first half of level 4; the second half concerns
moving values back to the BASIC program by storing them in the param
eters. We do this by getting the parameter address (again), and using that
address to store the new value. For example, let's assume that we have
calculated a new value and have it in the DX register. We wish to pass it
back to BASIC as a new value for the first parameter. We can do it using
two simple instructions.

Chapter 20: Programming Languages 355

MOV SI , C BP+1 0] ; get address of first parameter (again)
MGV [SI], DX ; pass value back, from DX

To provide a complete example, here is an assembly-language sub
routine that passes back the values of the SS and SP registers, a technique
that makes it possible for a BASIC program to investigate its own stack.
Normally, there would be no good reason to do that, but we might want
to play with it for the simple reason that it can be very educational. The
subroutine assumes that it is called with two integer parameters; it places
the current stack segment (SS) and stack pointer (SP) values into these pa
rameters. Here is our routine:

OETSTACK

SEGMENT

ASSUME CSrSTACKINFG

PRGC FAR

PUSH BP

MGV BP,SP

MGV SI,[BP+8]

MGV [SI],SS

MGV SI,[BP+6]

MGV [SI],SP

PGP BP

RET 4

ENDP

ENDS

END

GETSTACK

Compiled BASIC Assembler Interfaces

Anyone who has worked extensively with BASIC for the PC family is
no doubt familiar with the sometimes maddening differences and incom
patibilities between compiled and interpreted BASIC. Here we'll note only
the significant difference that applies to assembly-language interfacing,
and then work through an example.

In interpreted BASIC, the normal way of working with assembly-
language interfaces is to stuff them into some memory location (one of
the most annoying and error-prone programming chores in BASIC), set a
variable to the memory offset address of the interface, then CALL the vari
able name.

By contrast, compiled BASIC gives us two primary methods for work
ing with assembly-language interfaces—one Aat closely matches the in
terpreted BASIC method, and one that follows the standard conventions
for compiled languages.

366 PROGRAMMER'S GUIDE TO THE IBM PC

The first method closely follows the interpreted BASIC method in
substance, although the form differs. To illustrate, we'll let LOCATION%
stand for the BASIC variable name that has been set to the memory offset
location of the assembly-language interface, and we'll let PARAMETERS
stand for any parameters passed to the interface. With that setup, in in
terpreted BASIC we would invoke the interface like this:

CALL LDCATIQN% (PARAMETERS)

In compiled BASIC, the format used to invoke the interface would be quite
different, although the net result is exacdy the same. It is done like this:

CALL ABSOLUTE (PARAMETERS,LGCATION%)

One critical difference in the compiled BASIC version is that the variable
LOCATION% must be an integer. In interpreted BASIC, any numeric vari
able is acceptable.

Some of the mechanics of this CALL ABSOLUTE operation are worth
discussing. In compiled BASIC, all calls are actually conventional calls to
external routines that are linked to the compiled programs. This is the
standard mechanism that is used by all compiled languages. Compiled
BASIC actually simulates the equivalent of interpreted BASIC'S CALL LOCA-
TION% through a library subroutine named ABSOLUTE. In other words,
ABSOLUTE is not part of the BASIC language, in the sense that ON ERROR
or CHAIN are parts of the BASIC language. Instead, ABSOLUTE is simply
the name of an external subroutine residing in BASIC'S linking library.
The subroutine ABSOLUTE performs a simple operation: It uses its pa
rameters (including the LOCATION% parameter) to simulate the CALL
LOCATION% operation that interpreted BASIC performs.

Before we continue on to the other method of invoking assembly-
language interfaces in compiled BASIC, we should comment on the prob
lems involved in placing an assembly-language interface into memory.
The mechanisms used to place these interfaces into memory are the same
for both interpreted and compiled BASIC: It is usually done either with
the BLOAD statement to load the interface from a file, or by POKEing it
into memory, byte-by-byte. Although the mechanisms are the same for
both compiled and interpreted BASIC, the problems of finding an appro
priate memory location can be quite different, depending on circum
stances and programming techniques. You will note that so far I have
successfully ducked treating this topic, and I will continue to do so here.
This particular subject is a messy one and really a specialty area for
books on BASIC.

Chapter 20: Programming Languages 367

The other method for using assembly-language interfaces in com
piled BASIC is the standard method used by all normal DOS programming
languages. Modules, such as assembly-language interfaces, are separately
prepared and are stored either in the form of distinct object files (with a
filename extension of .OBJ) or inside an object-file library (with a file
name extension of .LIB). In either case, separate modules, such as com
piled BASIC programs and assembled assembly-language interfaces, are
combined by the LINK program as we described in the previous chapter.

We're going to look at how this interface routine is used from both
sides—from the BASIC side and from the assembly-language side. From
the BASIC side, an assembly-language interface is invoked like this:

CALL NAME (PARAMETERS)

The PARAMETERS are the same as those used in the previous method or
in interpreted BASIC. The NAME is the same name that appears in the
assembly-language interface and identifies the desired routine.

The steps followed by the compiled BASIC code in calling a sub
routine are the same as those followed by interpreted BASIC; the same
interface rules apply to how the stack is used, how parameters are placed
on the stack, and how the call is made (a FAR CALL, requiring a FAR
RETurn). Because of this, we will use the routine from the previous sec
tion about interpreted BASIC (the one that passes back the current stack-
segment and stack-pointer settings) and point out the differences:

STACKINFO SEGMENT

ASSUME

PUBLIC

GETSTACK PROC

PUSH

MOV

MDV

MOV

MDV

MGV

PGP

RET

GETSTACK ENDP

STACKINFO ENDS

END

CS:STACKINFO

GETSTACK

FAR

BP

BP,SP

SI,[BP+8]

[SI],SS

SI,[BP+6]

[SI],SP

BP

4

368 PROGRAMMER'S GUIDE TO THE IBM PC

The one new requirement to link this sort of assembly-language in
terface to a compiled BASIC program is that the name of the subroutine
must be made "public"; that is, it must be declared as an official name for
use by the assembler. This is done in the third hne of this routine, which
reads PUBLIC GETSTACK. This is the one difference between this routine
and the one on page 365. (Actually, the PUBLIC statement would do no
harm in the previous routine but it would serve no purpose, since inter
preted BASIC does not use it.)

To show the use of this sort of assembly-language interface, here is a
compilable BASIC program that uses it and displays the results:

100 ' demonstrate the use of linked interfaces

110 '

120 1% = 0

130 J% = 0

140 CALL GETSTACK (I%,J%)

150 PRINT "In the midst of a program"
160 PRINT " the stack segment is ";HEX$(I%)
170 PRINT " the stack pointer is ";HEX$(J%)
180 GOSUB 200

190 GOTO 270

200 ' our qo-sub subroutine

210 '

220 CALL GETSTACK (I%,J%)

230 PRINT "In the GO-SUB subroutine"

240 PRINT " the stack segment is ";HEX$(I%)
250 PRINT " the stack pointer is ";HEX$(J%)
260 RETURN

270 END

There are several things worth noting in this program. When we
call the assembly-language subroutine (in lines 140 and 220), we call it by
its name, GETSTACK, which is the name that appears in the PUBLIC state
ment of the assembly-language code. The names must agree for the link
ing process to work. (On the other hand, the name of the segment in the
assembly-language program, STACKINFO, is arbitrary and does not mat
ter, as long as it is used consistently inside of the assembly.) Also note that
both the calling BASIC program and the called assembly-language pro
gram should agree on the number of parameters being used. The RET 4
statement, which is the last working instruction in the assembly, pops
four bytes of parameters off the stack, which corresponds to two param
eters with two bytes per parameter. (A sophisticated and tricky assembly-
language routine can accept a variable number of parameters, but the
methods are too advanced for us to do justice to here.)

Chapter 20: Programming Languages ' 369

This particular sample program reports on the state of the stack
twice (as encountered inside the assembly-language routine): once in the
linear flow of statements, and once in a GOSUB routine. The difference
between the two stack-pointer values allows us to discover how the use of
GOSUBs affects BASIC'S stack. Run this example to learn the answer.

Here are the steps necessary to prepare and combine compiled
BASIC programs and assembly-language interfaces, using the preceding
programs as an example. First, assuming that we have our assembly-
language source code in a file named GETSTACK.ASM, we would assem
ble it with this command:

MASM GETSTACK;

This would result in the creation of an object file named GETSTACK.OBJ.
Next, assuming that we have our BASIC source code in a file named
TEST.BAS—which must be an ASCII file, not a tokenized BASIC file—we
would compile it with this command:

BASCOM TEST;

This would result in the creation of an object file named TEST.OBJ. Next,
we would link the two together with this command:

LINK TEST+GETSTACK

This would result in the creation of a program file named TEST.EXE.

PASCAL

In this section, we'll discuss the IBM PC Pascal compiler and its ge
neric cousin, Microsoft Pascal. When we discuss Pascal data formats, we
will generally indicate which items are peculiar to these compilers and
which are standard Pascal. If you are using any version of these com
pilers, the information we give here will apply in detail; otherwise, you
should be able to use the discussion here as a basis for determining the
specifics of your particular compiler.

You should be aware that there are a few significant differences be
tween version 1 and version 2 of the IBM PC Pascal compiler. We will note
them when discussing data formats.

Pascal Data Formats

There are three familiar data formats used by Pascal: integer, float
ing point (known as REAL in Pascal terminology), and string. There is
also a specialty type known as set. Within the types, there are quite a few
variations, particularly within the integer type.

370 PROGRAMMER'S GUIDE TO THE IBM PC

Integer Data Formats

We'll begin with the integer type, in all its variations. Integers are
stored as binary numbers and placed in memory with the least-significant
byte first. Integers can be one, two, or four bytes long, either signed or
unsigned. Of the six formats that this description suggests, five are actu
ally used (4-byte unsigned is not), and several of the formats do double
duty from Pascal's point of view.

Single-byte integers are available in signed and unsigned forms. The
signed form has a range of -128 through +127, and is called SINT (ap
parently for short integer) in Pascal; the unsigned form has the range of
0 through 255 and is called BYTE. Neither SINT nor BYTE are a part of
standard Pascal, and since they are not discussed very much in the com
piler's documentation, it's easy to overlook them.

Two-byte integers are also available in signed and unsigned forms.
The signed form has a range of -32,768 through +31,767 and is called
INTEGER; it is a standard Pascal format. The unsigned form has the
range of 0 through 65,535 and is called WORD; it is not a standard Pascal
format. The INTEGER format is, of course, the most universal one for
programming languages in the PC family; for example, it exactly matches
the format used by BASIC. The unsigned 16-bit WORD format also has its
own special importance. All address facilities in Pascal, such as ADR and
ADS, are based on the WORD format. (•' See further notes about ad
dresses in Pascal on page 375.) Pascal's WORD format is the same as the
standard unsigned 16-bit integers used in the PC family and the same as
the UNSIGNED INT format used in C.

Four-byte integers are available only in signed format and only in
versions of the compiler numbered 2.0 and later. This format has the
range of -2,147,483,647 through -1-2,147,483,647 and is called INTEGER4.
(Note that there should be—and probably is—one additional negative
value, although there isn't one the way the compiler defines this format. If
you think that you need it, you're probably in trouble anyway.) This 32-bit
integer format is not a part of standard Pascal nor is it used by many
other PC languages. However, it is a part of C, where it is called LONG
INT (•- see page 378). The INTEGER4 format is not fully integrated with
the other Pascal integer formats; in many circumstances where any other
integer format can be used, INTEGER4 cannot.

Chapter 20: Programming Languages 371

The standard Pascal language provides for a generalization of the
integer in a data type known as an enumeration data type. For all prac
tical purposes, each enumeration data type consists of unsigned integers,
from 0 up, that have been given new names. The actual data format for
all enumeration data types consists of unsigned integers in either 1-byte
(BYTE) or 2-byte (WORD) format, depending upon whether the number
of values will fit into a byte. BOOLEAN, the most common specialty type,
is simply a predeclared, two-value enumeration type. As such, it occupies
one byte and takes on the values of 0 or 1 only.

String Data Formats

Standard Pascal has a character type called CHAR, which consists
of a single ASCII character stored in a single byte. Depending upon our
viewpoint, we can consider the CHAR data type either as a special case of
the BYTE type or as an element of the string data types. However, Pascal
treats CHAR as its own distinct format.

There are two string formats: One, a part of standard Pascal, is
called STRING and holds fixed-length strings of ASCII characters; the
other, an extension to Pascal, is called LSTRING and holds variable-
length strings of characters. The majority of Pascal compilers have added
variable-length strings to the standard language, but they have done it in
several different ways. We will be covering the format used by the IBM/
Microsoft compilers.

Fbced-length strings are simply stored as a string of bytes, with no
special delimitation or format. Note that if S is a fixed-length string, then
in Pascal notation, the first character of that string is S[l]. The address of
a fixed-length string is the same as the address of its first character.

Variable-length strings are stored as a string of character bytes, pre
ceded by a 1-byte length code in the form of an unsigned integer (a BYTE,
in the notation of this compiler); therefore, variable-length strings can
range from 0 through 255 characters. For a variable-length string, as for a
fixed-length one, S[l] is the first character of the string and S[0] refers to
the byte that holds the string's current length. The address of a variable-
length string is the address of its length byte (S[0]), rather than of its first
data byte (S[l]).

□ NOTE: The length of any string must be declared in Pascal. For a
fixed-length string, the length matches the number of bytes in the string;
variable-length strings use one additional byte.

372 PROGRAMMER'S GUIDE TO THE IBM PC

The SET Data Format

The SET type is a specialty item for Pascal, something not shared
with most other languages. Sets must be based on an enumeration data
type, and the enumeration type must have no more than 256 elements.
The data format for sets assigns one distinct bit for each element in the
underlying enumeration data type. If the element in the enumeration type
is in the set, then the corresponding bit is set to 1. The size of set data
depends upon how many bits are needed; that is, on how many elements
are in the enumeration data type. However, unlike what you might ex
pect, set data is sized in 2-byte units, so a set of eight elements occupies
two bytes, rather than the single byte that it could be stored in. The mini
mum size of set data is two bytes (used for sets with from one to sixteen
elements); the maximum is 32 bytes (used for sets based on an enumera
tion data type of from 241 through 256 elements).

The bits in set data are assigned from left to right and the bit coding
corresponds to the order of the elements declared in the enumeration
data type. For example, the first element in the enumeration type corre
sponds to the high-order bit of the first byte (in hex, 80); the next element
in the enumeration type is the next bit (in hex, 40), and so on. Unused
bits—which round the size of the data to two bytes, or 16 bits—are set
to 0, as you might expect.

Floating-Point Data Formats

Floating-point data formats, called REAL in Pascal terminology,
present some interesting complications. There are three formats that we
must consider. The first format applies to version 1 of the compiler and it
exactly matches the format used by BASIC for single-precision numbers;
for this discussion only, we'll call this format old-real. The other two for
mats apply to version 2 (and later versions) of the compiler; these formats
correspond to a standard form also used by the 8087 math coprocessor.
These two formats are known, in the terminology of this Pascal compiler,
as REAL4 and REAL8; for this discussion, we'll call them new-real.

□ NOTE: There is no good, uniform way to convert data between
the old-real format used by the old compiler and the new-real formats
used by the new compiler.

We'll first discuss the old-real format briefly, so we can compare it
with the other two formats, tr- For more detailed coverage, see the dis
cussion of Basic's single-precision format on page 357 since the two for
mats are the same. We assume you are familiar with both floating-point
arithmetic and the general data formats used to store them; we will be

Chapter 20: Programming Languages 373

covering the particulars of these floating-point data formats, not the basic
principles of floating-point numbers.

The old-real format is stored in four bytes, which we can summa
rize hke this:

M3 M2 Ml E

where the M bytes are the mantissa, stored with the least-significant
bytes first. The high-order bit of Ml contains the sign of the value (1 indi
cates negative); in place of the sign bit is an impUed high-order mantissa
bit. The E byte contains the binary exponent in excess-128 form (that is,
E-128 gives us the true exponent). The mantissa is treated as a fraction;
that is, the "decimal" point (binary point, really) is to the left of the im
plied high-order bit.

The new-real formats differ in all essential details from the old-real.

Between themselves, they follow the same design and only differ in the
number of bits given to each part.

Each format consists of three fields: a sign, an exponent, and a man
tissa. They are stored in that order, with the least significant bits first. In
other words, the high-order bit of the last, or rightmost, byte contains the
sign, followed by the high-order bit of the exponent, and so forth. Fol
lowing this pattern, the least-significant bits of the mantissa will be fotmd
in the first, or leftmost, byte.

The sign field, for both formats, is one bit, with 1 indicating nega
tive numbers and 0 positive numbers.

The exponent field is in the form of an excess-notation integer. In
the case of REAL4, the exponent fills eight bits and is in excess-127 form
(that is, subtracting 127 firom the apparent exponent value will give the
true exponent value). In the case of REAL8, the exponent occupies 11 bits
and is in excess-1,023 form. Therefore, the range of exponents for REAL4
is from -127 through +128, and for REAL8 is from -1,023 through
+1,024. Note, by way of comparison, that the old-real format (which is
also used by BASIC) is in excess-128 form, instead of 127 as we see here.
The new-real formats give slighdy more dynamic range for very large
numbers, while the old-real format gives more dynamic range to very
small numbers. Note that, unlike BASIC'S single- and double-precision
formats, REAL4 and REAL8 differ in the dynamic range of their expo
nents as well as in the precision of the mantissa.

The mantissa field is in the form of a binary fraction, with the high-
order 1-bit implied (as it is with the old-real format and with BASIC). The
logical decimal (or binary) point is located to the right of the impfied
high-order bit of the mantissa. For REAL4, there are 23 mantissa bits
(plus the implied high-order bit), and for REAL8, there are 52 mantissa
bits (plus the implied bit).

374 PROGRAMMER'S GUIDE TO THE IBM PC

The parts of REAL4 add up to 32 bits, or four bytes; those of REALS
add up to 64 bits, or eight bytes. Note, however, that unlike old-real and
the BASIC formats, the parts of REAL4 and REALS do not fit neatly into
bytes. Here is a crude diagram of these two formats:

REAL4 REALS

M3M2E2M1SE1 M7 M6 M5 M4 M3 M2 E2M1 SEl

The mantissa bytes, M2 through M7, are pure mantissa bits. The other
bytes contain a mixture of fields and parts. The bytes labeled SEl in both
formats contain the sign bit and the first seven bits of the exponent, like
this:

Bit

76543210 Description

S Sign bit

. E E E E E E E High-order exponent bits

The bytes labeled E2M1 contain the remainder of the exponent bits (one
bit for REAL4, four bits for REALS), and the first seven or four bits of the
mantissa, fike this:

REAL4 REALS

Bit Bit

76543210 76543210 Description

E EEEE Low-order
exponent bits

.MMMMMMMMMMM Mantissa bits

Note that while these two new-real formats and the old-real format oper
ate on the same principles, they differ in nearly every detail: order and
size of parts, exponent excess notation, and byte boundaries.

Earlier in this chapter, as an aid to understanding BASIC'S single-
precision floating-point format (which is the same as Pascal version I's
old-real format), we showed a program that decodes the bits of a number
and constructs the value that they represent. The same exercise can be
performed in Pascal version 1 to interpret old-real, or in Pascal version 2
to interpret REAL4 and REALS formats. The principles are the same for
all three formats, though the details are more complicated for REAL4 and
REALS because the fields do not fit so neatly within byte boundaries.

For compatibility reasons, note that version 1 of the compiler has a
floating-point format compatible with BASIC, and that version 2 has for
mats compatible with most other languages, including IBM/Microsoft
Fortran and Lattice/Microsoft C, and with the S0S7 and S02S7 math co
processors.

Chapter 20: Programming Languages 375

Pascal Assembler Interfaces

Here we will cover important details needed for using parameters
in Pascal. We will borrow from the Pascal-specific example shown on
page 199, stripped down to its key components:

1 INTERFACE SEGMENT 'CODE'

2 PUBLIC SEGREAD

3 SEGREAD PROC FAR

4 PUSH BP

5 MOV BP,SP

6 . ..

7 POP BP

8 RET 10

9 SEGREAD ENDP

10 INTERFACE ENDS

11 END

In line 1, the name INTERFACE is arbitrary; however, the classifica
tion 'CODE', in single quotes, is necessary to link this routine successfully
to this Pascal compiler.

In line 2, the name of any routine, such as SEGREAD, must be de
clared PUBLIC in order for the linker to connect it to the routines that use

it. In line 3, the PROCedure must be declared FAR because Pascal makes
far-type calls to external routines.

Lines 4 and 5, and 7 and 8 represent the standard entry and exit
code, which maintains the stack. The value 10 in Une 8 represents the
amount of stack space the parameters used, a subject we'll discuss next.

In the standard calling conventions for the PC family, subroutine pa
rameters, in one form or another, are placed on the stack. There are two
basic approaches that programs can take to placing parameters on the
stack: Either the parameter value can be placed on the stack, or a pointer
to the value in memory can be placed on the stack. There are advantages
to both approaches; the first allows easier access to values; the second
allows a subroutine to pass data back by modifying parameter variables.
Pascal uses both methods, and within limits, allows us to choose which is
used. (By contrast, BASIC only uses the second method, placing the ad
dress of the parameter on the stack.)

376 PROGRAMMER'S GUIDE TO THE IBM PC

If, when we define a subroutine, we specify a parameter as VAR or
VARS, we are instructing Pascal to place the address of that parameter on
the stack. (From the point of view of Pascal, using VAR or VARS is giving
a subroutine permission to change the value of a variable; in practice, it
means we're giving the subroutine the address of a variable.) If we specify
VAR, then the address is passed as a data-segment offset, a single 2-byte
word. If we specify VARS, then the address is passed as a fully segmented
address, with segment-paragraph and relative-offset portions, occupying
two 2-byte words. The difference is of considerable importance because it
affects the number of parameter bytes to be removed from the stack in a
RETurn statement.

On the other hand, if we do not specify VAR, Pascal will defend the
parameter value from being permanently modified by the subroutine.
This can be done in two ways, and it matters greatiy which is used. If the
value is of the right type and can be placed on the stack (integers, for
example), then the value itself is placed on the stack; otherwise, a safe
copy of the value is made in memory and the address of the copy is
placed on the stack. The difference is very important for two reasons:
one is that the called routine will access the parameter differently, either
getting the value off the stack or getting the value through an address on
the stack; the other is that getting the value through an address on the
stack is much less efficient for the calling program.

When setting up an assembly-language interface routine, it is im
portant to know which parameter method is in effect. You may find out
by using the same simple method that 1 have used: taking the available
information and using common sense to figure out what you think is
happening for any given set of parameters. Or you might run tests, either
by running a couple of trial programs or by inspecting the compiler's
pseudo-assembler listing of the code it generates.

If you are imcertain, you can force all parameters to be passed
through simple addresses by declaring them as VAR. Using VAR uni
formly has the advantage of producing a simple, consistent pattern of pa
rameter handling. In fact, about the only advantage of not using VAR for
simple variables is that VARS can save two machine-language instruc
tions, a very minor benefit.

A subroutine can return a value if it is declared as a FUNCTION in

Pascal. If the subroutine returns a sufficiendy simple value, then the call
ing Pascal routine expects the return value to be placed in the AX regis
ter. Otherwise, the value is returned by storing it in memory at an offset
address that is placed on the stack following the function's parameters.

Chapter 20: Programming Languages 377

In effect, Pascal creates one additional VAR-type parameter for the func
tion subroutine, and the subroutine's function value is then returned into
that parameter.

To show how parameters are obtained through the stack, let's
create an example. Suppose an assembly-language interface routine is de
clared in Pascal like this:

PROCEDURE EXAMPLE (I : INTEGER; VAR J : INTEGER);

EXTERNAL;

The assembly-language subroutine would find that the first parameter, I,
was on the stack at an offset of [BP+ 8]. To put that value into the AX
register, we would code this instruction in assembly language:

MGV AX,[BP+8]

On the other hand, the second parameter, J, has its address placed on the
stack at an offset of [BP+6], since it's the next parameter. So to put that
value into the AX register takes two steps: one to get the address from the
stack, and the other to get the value of J, like this:

MGV BX,tBP+61

MGV AX.IBXI

Modifying the value of J would reverse that process:

MGV BX,tBP+e]

MGV IBXI.AX

The value of I can't be modified by our subroutine, since we don't know
where I is: we only know that a copy of its value was placed on the stack.

These principles, together with intelligence and some research into
the particulars of your situation, should provide you with all you need to
successfully create assembly-language interfaces for use with Pascal.

THE C LANGUAGE

Our discussion of C will center around version 1.04 of the Lattice/

Microsoft C compiler and the other related compilers (some of which are
available under the Lattice and Lifeboat names). As with our discussions
of other languages, the specific information that we give here is based on
this particular compiler, but also applies, in varying degrees, to other ver
sions and to completely different compilers.

It is worth pausing to note that the Lattice/Microsoft C compiler
uses what is called the small memory model, which means that a pro
gram's code and data are restricted to segments no larger than 64K each.

378 PROGRAMMER'S GUIDE TO THE IBM PC

By contrast, the medium memory model uses segmented code addresses
(which allows program code to grow to any size, while leaving data re
stricted to 64K), and the large memory model uses segmented addresses
for both code and data (which allows both to grow to any size). The
compiled BASIC and Pascal discussed earlier both use the medium model
(although Pascal makes limited use of segmented addresses for data, so it
has some aspects of the large model). Later versions of the Lattice C com
piler (a close relative of the compiler we are discussing) can use any of the
three memory models, at our option. The availability of three memory
models in one compiler greatly complicates the discussion of interfaces (a
complication that we will avoid here). Instead, we will concentrate on the
small model.

The use of the small model limits the size of program code and
data, but it is the most efficient format. We'll see the effects of the small
model in the data address format, mentioned on page 379, in subroutine
entry and exit, and in parameter access, mentioned on page 382.

C Data Formats

There are three main classes of data for C: integer, floating point,
and string. For the Lattice/Microsoft C compiler, there are four distinct
integer formats and two floating-point formats.

Integer Data Formats

We'll begin with the four integer formats: CHAR, INT, UNSIGNED,
and LONG. The CHAR format occupies one byte and is treated as an un
signed integer whose values can range from 0 through 255. The INT for
mat occupies a 2-byte word and is treated as a signed value, so it can
range from -32,768 through +32,767. The UNSIGNED format (also
known as UNSIGNED INT in more formal C terminology) occupies a 2-
byte word. It is treated as an unsigned value and can range from 0
through 65,535. The LONG format occupies four bytes and is treated as a
signed value, so it can range from -2,147,483,648 through +2,147,483,547.

While these four integer formats seem to be fairly straightforward,
there are several things worth discussing about them. First, we should
note that the general definition of the C language allows for LONG and
SHORT, and signed and UNSIGNED versions of most of the fundamental
data types. With this compiler, SHORT INT is a 2-byte signed value (the
same as INT), and there is neither an UNSIGNED version of the 4-byte
LONG, nor a signed version of the 1-byte CHAR. Address values appear in
the form of offsets to the data segment. As you would expect, they are
stored in the 16-bit UNSIGNED INT format.

Chapter 20: Programming Languages 379

The C language, in general, is a little fuzzy about the relationship
between characters and numbers, and particularly about the similarities
and differences between CHAR and ESTT. For this compiler, CHARs are
strictly numbers occupying one byte, with a range in value of 0 to 255.
However, CHARs can also be expressed in character form. For example,
the character constant Q translates into the numeric value 81; but if we
were to write 81 in a C program, it would be considered a type INT and
not a Tbyte CHAR—unless we did something to force it into CHAR for
mat. Because C does not make a firm distinction between characters and
numbers (unlike Pascal), we are able to convert values between integer
formats (such as INT or UNSIGNED) and character formats (CHAR, or
elements of strings).

String Data Formats

Strings are bandied in C in a way that reflects the ambiguous treat
ment of characters as either characters or numbers. In C, a character
string is an array of CHARs followed by a zero character, which marks
the string's end. Using a zero character to end a string means that strings
can have any length, since there isn't an explicit length indicator (as there
is in Pascal or BASIC) that could set a Umit to the maximum size. But be
cause there is no length indicator, the string must be scanned from begin
ning to end to find the length of a string. And since the string ends in a
zero character, the zero character, CHR$(0) in BASIC'S notation, cannot
be part of a string—hardly a loss at all. Using a zero character to end a
string also means that there is no distinction in form between fixed- and
variable-length strings.

The C compiler takes on the task of adding the ending zero byte to
any string that we show as a literal value; we don't have to put it there.
For example, if we write abc in a program, the C compiler creates a 4-
byte string which consists of the three bytes we wrote, followed by the
zero byte. Be aware that, although the C compiler will add the zero byte
to any string constant and the standard C string-handling subroutines
will take care of the zero byte as needed, the zero byte doesn't appear by
magic. If we write any string-handling programs of our own—a com
mon thing to do—we need to take this byte into account, looking for it
and creating it as needed.

Hoating-Point Data Formats

There are two floating-point formats used by this compiler: FLOAT
and LONG FLOAT (or DOUBLE). The FLOAT format is four bytes long; the
LONG FLOAT format is eight bytes long. They follow the standard format

380 PROGRAMMER'S GUIDE TO THE IBM PC

used by the 8087 and 80287 math coprocessors and by many program
ming languages. In this discussion, we'll just outline the two formats.
They are described in greater detail on page 373 under the names REAL4
and REAL8.

The two floating-point formats are easiest to understand if we view
them as a string of bits (32 bits for FLOAT, 64 bits for LONG FLOAT),
stored "back-words," with the most-significant bits in the last bytes.
We'll describe the floating-point formats in bit order, starting with the
most-significant bit.

The first, most-significant bit is a sign bit: 0 for positive, 1 for nega
tive. The next group of bits (eight for FLOAT, eleven for LONG FLOAT)
specifies the binary exponent in excess notation: excess 127 for FLOAT,
excess 1,023 for LONG FLOAT. If we take the unsigned binary integer of
the exponent bits and subtract the excess value (127 or 1,023), we obtain
the true exponent value. The remaining bits (23 or 52) are the mantissa,
or fractional portion. An implied high-order 1-bit belongs before the rest
of the mantissa bits. The decimal point (binary point, really) belongs be
tween the implied high-order bit and the remaining mantissa bits. On
page 374, there is a table showing the layout of the sign, exponent, and
mantissa bits in tbe four or eight bytes of these two formats.

C Assembler Interfaces

The general rules for the five-level approach to interface program
ming apply to our C compiler, just as they do to the other compilers
we've discussed. To demonstrate the basic structure of an interface rou
tine that will be used with the C compiler, we'll borrow a program from
a previous chapter and strip it down to show just the key elements. The
original program, listed on page 293, was designed to calculate the day of
the week by using the DOS date and time services.

1 PGRDUP GROUP PROG

2 PROG SEGMENT BYTE PUBLIC 'CODE'

3 PUBLIC WEEKDAY

4 ASSUME CSiPROG

5 WEEKDAY PRDC NEAR

6 PUSH BP

7
Q

MOV BP.SP

o

9 POP BP

10 RET

11 WEEKDAY ENDP

12 PROG ENDS

13 END

Chapter 20: Programming Languages 381

Line 1 is needed to help coordinate the assembly-language interface
with the linking conventions used by the C compiler. In line 2, the name
PROG and the classification 'CODE', in single quotes, are also needed to
satisfy the linking conventions.

In line 3, the name of any routine, such as WEEKDAY, must be de
clared PUBLIC in order for the linker to connect it to the routines that use
it. In line 4 the ASSUME is necessary to assemble this NEAR procedure,
even if we are not doing any program address references. In line 5, the
PROCedure must be declared NEAR because this particular C compiler
makes near-type calls to external routines. This feamre is unlike most
other languages, and it is the first of three important departures that this
C compiler makes from the most common interface rules.

Lines 6, 7, 9, and 10 represent the standard entry and exit code,
which maintains the stack.

You will note that in line 10 there is no value following the RET in
struction. Subroutine parameters are placed on the stack by the caller
and may be removed from the stack by either the called subroutine or the
caller (after the subroutine returns control). As we have seen, most pro
gramming languages have the called subroutine perform this task; we
specify the number of parameter bytes to be removed in the RET instruc
tion. However, this C compiler has the calling subroutine remove param
eters firom the stack, so our RET has no number following it. This is the
second of three ways that C departs firom conventional interface rules.

You should note that C also allows a subroutine to be called with a
variable number of parameters; this is a standard part of the C language
and is needed, for example, by the often-used PRINTF routine. A called
routine can determine how many parameters were pushed onto the stack
by checking the stack pointers and BP values.

Lines 11 through 13 are the standard items used to finish an inter
face routine.

Parameter Passing in C

Parameters are placed on the stack directly or indirecdy. Our C
compiler places parameters on the stack in reverse order from the way
they are written, so that the first parameter is pushed onto the stack last
and is thus nearest; that is, it has the least offset from the BP register. This
is opposite from the convention used by most languages, and it's the last
of the three unusual things about C interfaces.

As we've discussed elsewhere, parameters can be passed either by
placing their value on the stack or by placing their address on the stack.

382 PROGRAMMER'S GUIDE TO THE IBM PC

Unless we instruct it otherwise, our C compiler will attempt to place the
value on the stack, rather than the address. This statement may be
slightly deceptive because C considers many things to be addresses that
we might not. For example, if we have a string variable named S, C con
siders the value of the name S to be an address of a string—not a string.
If S is a string variable and I an integer variable, calling a subroutine with
this instruction:

SUBR (S.I)

will cause the values of both S and I to be placed on the stack; the value of
I is an integer, but the value of S is an address (of a string value).

In C, we can force an address to be passed as a parameter by prefix
ing the variable name with &, like this:

SUBR (S,&I)

which would pass the address of the variable I. In this example, the sub
routine SUBR would receive two addresses, each pointing to a value. If
we'd made the mistake of writing SUBR (&S,&I), we'd be passing the ad
dress of the address of a string—probably not something we'd want to do.

Newcomers to C can easily be confused by parameter passing. In
my experience, it is one of the greatest sources of mistakes in the use of
assembly-language interfaces with C. Use common sense and test your
routines thoroughly to make sure that what is actually happening with
interface parameters is what you think is happening.

For comparison with Pascal, using & in C before a subroutine pa
rameter is equivalent to declaring the parameter VAR in Pascal: It causes
an address to be passed on the stack and not a value.

Parameters are accessed from the stack and parameter values are
modified in the customary way, through parameter addresses placed on
the stack. The main peculiarity we need to discuss regarding C-specific
interfaces is that the stack offsets will be different than those we usually
encounter. Since subroutines are accessed with a NEAR call instead of a
FAR call, the closest parameter on the stack will be at offset [BP+4] in
stead of the more customary [BP+ 6]; also, as we've mentioned before,
the closest parameter will be the last one written, rather than the first one.

To provide a concrete example of accessing and modifying param
eters, let's consider a subroutine that is called with two integers like this:

SUBR (»I,J)

Chapter 20: Programming Languages 383

and whose job is to place the value from the second parameter into the
first one, making the subroutine the equivalent of the assignment state
ment I=J. The working code to do this would be as follows:

MOV AX,CBP+G] ; get J value
MOV BX , C BP+4] ; get I address
MOV tBX],AX ; put J value into I

In C, all subroutines normally return an integer value, even when a
return value isn't meaningful to us. The value can be used or ignored by
the caller. (Again, C is peculiar in this regard—most other languages
make a clear distinction between subroutines that do or do not return a

value.) Following the usual convention, C expects this return value in the
AX register. If we have a value to return, we place it in AX; if not, and we
wish to be meticulous, we might want to set AX to zero before we return,
to ensure that we return a consistent, non-accidental value.

A PARTING COMMENT

Although this has been a brief analysis of a very small number of
programming languages, we hope it has helped put their features in per
spective. To compare the merits of every language used in the PC family
would be ideal, but impossible in a book of this nature. However, you
may find that the criteria we used to compare our five languages can help
guide you in examining other languages.

A

Installable

Device Drivers

General Overview 386

The ANSI Driver 387

ANSI Screen Control 388

ANSI Keyboard Control 389
The Pros and Cons of the ANSI Driver 389

385

386 PROGRAMMER'S GUIDE TO THE IBM PC

Two features that were introduced with the DOS-2 versions call
for special discussion: the subject of installable device drivers
in general, and the ANSI driver (also called ANSI.SYS) in partic
ular. These subjects are related by their common introduction

in DOS version 2.00 and by the fact that the ANSI driver is itself an in
stallable device driver, but they are radically different topics from our
programming perspective. We'll begin by looking at the device drivers in
general and then move on to discuss the ANSI driver in more detail.

GENERAL OVERVIEW

DOS has the built-in capability to work with most common com
puter devices, such as ordinary disk drives, communications lines, print
ers, and, of course, the keyboard and display screen. However, many
other kinds of devices can be attached to our computers. All these attach
ments generally require is some additional software support—called de
vice drivers—that connect them to DOS and to DOS programs.

Since the release of version 2.00, DOS has been able to incorporate
into its own operations any device driver that follows a standard set of
integration rules. The device driver program is read from disk and inte
grated into DOS during DOS's start-up process. A disk file named CON
FIG.SYS tells DOS when there is a device driver to be loaded. The name
and file location of the device driver are identified by the command line
DEVICE = filespec in the CONFIG.SYS file. For each such command, DOS
locates the program file, loads it into memory, and goes through the se
ries of steps necessary to welcome the device driver into the DOS fold.

Typically, a device driver supports a new kind of device in an old
kind of way. For example, a device driver that supports a disk drive
whose detailed control commands are new to DOS but whose overall fea
tures are similar to other kinds of disk drives, will most likely follow the
program format laid down by its more common predecessors. Likewise,
a device driver that supports the addition of a mouse or joystick may
treat them as keyboard-like devices.

On the other hand, device drivers can perform functions that have
little or nothing to do with the addition of new hardware devices to the
computer; witness the ANSI device driver, which we'll be discussing in
the following section. The ANSI device driver doesn't add new hardware
to the computer; instead, it modifies the operation of the computer's stan
dard hardware (the keyboard and the display screen).

All the technical details of writing a device driver really belong in a
book specializing in DOS systems programming, but we can give you the
main points here.

Appendix A: Installable Device Drivers 387

The device driver file itself has a nearly standard program format
with some driver-specific identifying information added. There are two
kinds of device drivers: those for character devices, which, like the key
board, display screen, printer, or communications port, work with a se
rial stream of characters, and those for block devices, which, like a disk
drive, read and write random blocks of data identified by some form of
block address. Character devices are identified by their own names (sim
ilar to the names LPTl: or COMl:) and can be treated like files. Block de
vices are identified by a drive letter that DOS assigns and that are identical
to the drive ID letters A, B, C, etc.

The device-driver program file must provide DOS with several entry-
point addresses where the driver will be invoked for various purposes: for
initialization, for servicing command requests, and for performing strat
egy work. The driver program must be prepared to handle a standard set
of commands that DOS calls on all drivers to perform, and to report the
device status to DOS.

Writing a device driver is akin to writing the BIOS programs that
are at the heart of DOS and at the heart of the computer's built-in ROM-
BIOS. It is among the most sophisticated and intricate programming that
is ever undertaken.

THE ANSI DRIVER

One example of an installable device driver that comes as an op
tional part of DOS is the ANSI driver, a program that greatly enhances the
handling of keyboard input and screen output. For our IBM versions of
DOS, the ANSI driver is only active when we deliberately introduce it
into DOS through the CONFIG.SYS file that DOS loads during the start-up
operation. The specific command in the CONFIG.SYS file that is used to
activate the ANSI driver is:

DEVICE = ANSI.SYS

It is worth noting that while the ANSI driver is an optional part of
the IBM versions of DOS, the driver is an integral part of the DOS used on
some computers that are similar to (but not fully compatible with) the
IBM PC family. For example, both the Texas Instruments Professional
computer (commonly called the TI Pro) and the NEC Advanced Personal
Computer III (the NEC APC-III) automatically include the ANSI driver in
their DOS-2 versions.

The ANSI driver monitors both the screen output and the keyboard
input that pass through the standard DOS screen and keyboard services.
(It's important to note that any keyboard or screen data that bypasses
DOS is never seen or processed by the ANSI driver.)

388 PROGRAMMER'S GUIDE TO THE IBM PC

In monitoring the screen output, the ANSI driver looks for special
codes that identify commands for the driver. The driver takes note of
anything it recognizes as a command and then removes it, so that the
special command codes do not appear on the display screen. In effect,
this aspect of the driver acts as a two-way switch: It inspects output that
is headed for the display screen and passes on anything that is not a
driver command, while passing anything that is a driver command into
its command-processing part.

Commands for the ANSI driver are identified by a special 2-byte
code: The first byte is the "escape" character, hex IB or CHR$(27), and
the second is the left-bracket character [, hex 5B or CHR$(91). Following
these identifying bytes are the command parameters and finally the com
mand code itself. The command parameters are either numbers (in the
form of ASCII numeric characters interpreted as decimal digits) or strings
of ASCII characters enclosed in quotes, like this: "a string parameter". If
there is more than one parameter, they are separated by semicolons. The
command code itself, which completes the ANSI driver command, is al
ways a single alphabetic character. The case of the command letter mat
ters; for example, lowercase h is one command and uppercase H is an
entirely different one.

To show you what these commands look like, here are two exam
ples, one simple and one complex (the asterisk stands for the escape char
acter, hex IB):

• dc

• [85:32 ;66;"Re-tnappedB"p

The ANSI driver recognizes a large number of commands, but they
all fall into two broad categories: screen control commands and key
board translation commands. Let's look at screen control first.

ANSI Screen Control

Although the BIOS services for the PC let us move the cursor any
where on the screen and do other things that give us full-screen control,
the standard DOS services do not. In fact, the DOS screen output services
are completely oriented to TTY (or teletype) output—output that only
encompasses the sort of things that can be done with a printer. This, of
course, ignores the richer potential of a display screen. It's the lack of full
screen output in DOS that forces most programs to bypass the DOS ser
vices and use lower-level services, such as the BIOS services.

Appendix A: Installable Device Drivers 389

The screen control commands of the ANSI driver remedy this situa
tion by providing a set of full-screen commands that can be used to do
nearly anything that the display screen is capable of doing. The com
mands include moving the cursor, clearing the screen, setting the display
attributes (color, underscore, blinking, etc.), and changing the mode
from text to graphics and vice versa. As a further level of sophistication,
there are commands that can save the current cursor location, so that the
cursor can be moved to display information and then returned to its orig
inal position.

ANSI Keyboard Control

The other type of command accepted by the ANSI driver is a key
board translation command. When one of these commands is given to
the driver, the driver monitors keyboard input and replaces one key char
acter with another single character or even a whole string of characters.
This allows the ANSI driver to act as a crude but effective substitute for

popular keyboard-enhancer programs, such as ProKey {m-scc page 129).
Note that these two types of ANSI driver commands are very differ

ent in their purpose and use, but they are both passed to the driver the
same way—through a stream of screen output characters.

The Pros and Cons of the ANSI Driver

As I see it, there are two main ways to look at ANSI driver com
mands: from the perspective of the user, who can use the ANSI driver to
perform a few beneficial tricks, and from the perspective of the program
mer, who can use it as an aid to program development. This is a pro
grammer's book, but let me comment briefly on some common user's
tricks with the ANSI driver.

As far as I know, users most often regard the ANSI driver as a poor
man's ProKey and as a DOS command-prompt enhancer. By using the
keyboard translation commands, as we mentioned earlier, it is possible to
roughly simulate the ProKey program. Usually the keyboard commands
are activated by placing them in a text file and sending them to the screen
(and therefore to the ANSI driver) with the TYPE command. By embed
ding ANSI driver commands into the prompt string, it is possible to
launch the DOS command prompt into the fourth dimension. Such a
fancy prompt might move the cursor to the top of the screen, display the
date and time in reverse video, and then return the cursor to its regular
position, or—to get really fancy—even clear the screen and then paint a
complete menu display. The possibilities are endless (and also a little silly,
in my opinion).

390 PROGRAMMER'S GUIDE TO THE IBM PC

From a programmer's point of view, the ANSI driver looks quite dif
ferent. Use of the driver presents a programmer with two main benefits,
both of which can be quite important. For programmers who do not
have the skills and tools necessary to build assembly-language interfaces
into the BIOS services, the ANSI driver makes the most crucial BIOS-type
services available to any programming language. Furthermore, it can be
a great benefit to programmers who want to write programs that are not
tied to the PC family, but instead will work on any DOS computer using
the ANSI driver.

Despite these apparent advantages, I generally believe that the use
of the ANSI driver commands in our programs is not a good idea. For one
thing, it requires that the ANSI driver be installed in any computer that
our programs are used on, which adds considerably to the instructions
that we have to prepare to accompany the programs. It is difficult enough
trying to explain the setup and use of oiur programs to both novices and
experts, without adding extra layers of complexity, such as the explana
tion of how to install the ANSI driver.

A further argument against the use of the ANSI driver is that it is not
available under all circumstances. For example, IBM's windowing system,
Topview, does not support the features of the ANSI driver, so programs
that require the driver cannot be used with Topview. This may well turn
out to be true with other windowing environments as well.

But most important of all is the fact that, compared to other meth
ods that are available, the ANSI driver is pathetically slow in generating
full-screen output. You can get a direct comparison of the relative speed
of the ANSI driver, the PC BIOS services, and direct-to-memory screen
output by playing with the NU program that's in version 3 of my Norton
Utilities set. The NU program contains three screen drivers that use these
three output methods. If you try them all, you'll quickly see how much
slower the ANSI driver is. Unless there is very little screen output to be
displayed, the ANSI driver is just too slow to be satisfactory.

B
Hexadecimal

Arithmetic

Bits and Hexadecimal 393

Segmented Addresses and Hexadecimal Notation 394

Decimal-Hexadecimal Conversion 395

Using BASIC for Hex Arithmetic 398

Hex Addition 399

Hex Multiplication 400

391

392 PROGRAMMER'S GUIDE TO THE IBM PG

Hexadecimal numbers crop up in computer work for the sim
ple reason that everything a computer does is based on bi
nary numbers, and hexadecimal notation is a convenient
way to represent binary numbers.

Hexadecimal numbers are built on a base of 16, just as ordinary
decimal numbers are built on a base of 10; the difference is that hex num
bers are written with sixteen symbols while decimal numbers are written
with ten (0 through 9). (From here on, we'll use the terms "hexadecimal"
and "hex" interchangeably.) In hex notation, the ten symbols 0 through 9
are used to represent the ten values zero through nine, and the remain
ing six values, ten through fifteen, are represented by the symbols A
through F {m- see Figure B-1).

The hex digits A through F are usually written with capital letters,
but you may also see them with the lowercase letters a through f-, the
meaning is the same.

Hex numbers are built out of hex digits the same way that decimal
numbers are built. For example, when we write the decimal number 123,
we mean;

1 times 100 (10 times 10)

+ 2 times 10

+ 3 times 1

If we use the symbols 123 as a hex number, we mean:

1 times 256 (16 times 16)

+ 2 times 16

+ 3 times 1

There does not seem to be a standard way to write hex numbers
and you may find them expressed differently in different places. BASIC
uses the prefix 8cH to identify hex numbers and this notation is some
times used elsewhere, as well. Occasionally the prefix # or 16# is used.

Hex Dec Hex Dec Hex Dec Hex Dec

0 Zero 4 Four 8 Eight C Twelve

1 One 5 Five 9 Nine D Thirteen

2 Two 6 Six A Ten E Fourteen

3 Three 7 Seven B Eleven F Fifteen

Figure B-1. The decimal value of the sixteen
hex digits

Appendix B: Hexadecimal Arithmetic 393

but more often a hex number is simply followed by an H. However, the
most common way to express hex numbers, especially in reference infor
mation, is without any special notation at all. You are expected to under
stand from the context when a number is written in decimal notation

and when it is written in hex. When you see a number in any technical
reference information that seems to be a decimal number, check care
fully: It may actually be in hex. In this book we have usually identified
hex numbers by adding hex in front of them.

When you need to work with hex numbers, you can use BASIC as
an aid (!•' see page 398) or you can work with them by hand. Whichever
method you choose, you may find the conversion and arithmetic tables
located toward the end of this appendix helpful. But before we get to the
tables, we'll first explain why hex numbers and binary numbers are so
compatible. Then we'll describe one of the most common uses of hex
numbers in programming: segmented addressing.

BITS AND HEXADECIMAL

Hex numbers are primarily used as shorthand for the binary num
bers that our computers work with. Every hex digit represents four bits
of binary information see Figure B-2). In the binary (base 2) number
ing system, a 4-bit number can have sixteen different combinations, so
the only way to represent each of the 4-bit binary numbers with a single
digit is to use a base-16 numbering system, which is why hex arithmetic is
used with our computers. ('•'See Figure B-3.)

Hex Bits Hex Bits Hex Bits Hex Bits

0 0 0 0 0 4 0 10 0 8 10 0 0 C 110 0

1 0 0 0 1 5 0 10 1 9 10 0 1 D 110 1

2 0 0 10 6 0 110 A 10 10 E 1110

3 0 0 11 7 0 111 B 10 11 F 1111

Figure B-2. The bit patterns for each of the
sixteen hex digits

394 PROGRAMMER'S GUIDE TO THE IBM PC

Value

Bit Word Byte Dec Hex

0 1 1 1 1

1 1 1 . 2 2

2 1 1 . . 4 4

3 1 1 . . . 8 8

4 1 1 16 10

5 1 1 32 20

6 1 1 64 40

7 1 1 128 80

8 1 256 100

9 1 512 200

10 1 1,024 400

11 1 2,048 800

12 ... 1 4,096 1000

13 . . 1 8,192 2000

14 .1 16,384 4000

15 1 32,768 8000

Figure B-3. The hexadecimal and decimal
equivalents of each bit in a byte and each bit
in a 2-hyte tvord

When you're using 2-byte words, remember the reverse, or "back-
words," order in which they are stored in memory, See Chapter 3,
page 28.

SEGMENTED ADDRESSES AND
HEXADECIMAL NOTATION

One of the most common uses of hex numbers is for memory ad
dressing. You may recall from Chapters 2 and 3 that a complete address
is 20 bits, or 5 hex digits, wide. Since the PC's 8088 microprocessor can
work only with 16-bit numbers, addresses are broken down into two 16-
bit words, called the segment paragraph and the relative offset. The two
parts are written together as 1234:ABCD. The segment part is always
written first, and both parts are given in hex.

Appendix B: Hexadecimal Arithmetic 395

The segment part of an address is treated as if it were multiplied by
16, which is the same as if it had an extra hex 0 written after it. The two
parts, added together, yield the actual 20-bit address that they represent.
For example, the segmented address 1234:ABCD converts into a complete
address like this:

1 2 3 4 0 (note the zero added on the right)
+ ABCD

1 C F OD

If you need to calculate the actual address that a segmented address refers
to, follow this formula, i** The addition tables on page 399 may also help.

□ NOTE: Be atvare that the same actual address can be represented
by many distinctly different segmented addresses.

There is no one best way to break down an actual address into its
segmented format. One simple way is to take the first digit of the actual
address followed by three zeros as the segment-paragraph part, and the
remaining four digits as the relative part. Following this rule, the address
above, ICFOD, would be separated out as 1000:CF0D. IBM's listing for the
ROM-BIOS in the Technical Reference manual follows this convention, so
that all the relative addresses that appear there have the (unshown) seg
ment-paragraph part of FOOO.

When you are working with real segmented addresses, the segment-
paragraph part will represent the actual contents of one of the segment
registers and could point to nearly anywhere in memory. The relative off
sets vary with usage. Code offsets, which indicate program locations,
usually begin with hex 100, since 256 (hex 100) bytes are set aside before
every program for its program segment prefix. Data offsets, used for
data, usually start from 0. Stack offsets are usually large numbers, since
the stack works backward from within the stack segment.

To see a live example of the sort of segmented address that is in use
when a program is executed, run the DOS DEBUG program. When
DEBUG begins, it will give you a command prompt of -. When you enter
the single-letter command D, DEBUG will display part of memory; the ad
dresses that are shown on the left are the way segmented addresses typ
ically appear.

DECIMAL-HEXADECIMAL CONVERSION

The tables on the next page show the decimal equivalent of each
hex digit in the first five digit positions, which covers the complete ad-
dress-space arithmetic used in the PC. As we'll demonstrate, these tables
can be used to convert between hexadecimal and decimal numbers.

First Position Second Position

Hex Dec Hex Dec Hex Dec Hex Dec

. . . . 0 0 8 8 . . . 0 . 0 . . . 8 . 128

. . . . 1 1 9 9 . . . 1 . 16 . . . 9 . 144

. . . . 2 2 A 10 . . . 2 . 32 . . . A . 160

. . . . 3 3 B 11 . . . 3 . 48 . . . B . 176

. . . . 4 4 C 12 . . . 4 . 64 . . . C . 192

. . . . 5 5 D 13 . . . 5 . 80 . . . D . 208

. . . . 6 6 E 14 . . . 6 . 96 . . . E . 224

. . . . 7 7 F 15 . . . 7 . 112 . . . F . 240

Third Position Fourth Position

Hex Dec Hex Dec Hex Dec Hex Dec

. . 0 . 0
. . 8 . 2,048 . 0 . 0

. 8 . . 32,768

. . 1 . 256 . . 9 . 2,304 . 1 . . 4,096 . 9 . . 36,864

. . 2 . 512 . . A . 2,560 . 2 . . 8,192 . A . . 40,960

. . 3 . 768
. . B . 2,816 . 3 . . 12,288 . B . . 45,056

. . 4 . 1,024
. . C . 3,072 . 4 . . 16,384 . C . . 49,152

. . 5 . 1,280
. . D . 3,328 . 5 . . 20,480 . D . . 53,248

. . 6 . 1,536 . . E . 3,584 . 6 . . 24,576 . E . . 57,344

. . 7 . 1,792
. . F . 3,840 . 7 . . . 28,672 . F . . 61,440

Hex

Fifth Position

Dec Hex Dec

0 0 8 524,288

1 65,536 9 589,824

2 131,072 A 655,360

3 196,608 B 720,896

4 262,144 C 786,432

5 327,680 D 851,968

6 393,216 E 917,504

7 458,752 F 983,040

Figure B-4, The decimal equivalent of each
hex digit position

Appendix B: Hexadecimal Arithmetic 397

Here is how these tables can be used to convert a hex number to a
decimal number. We'll use the hex number A1B2 as an example. Look up
each hex digit in the table corresponding to its position and then add the
decimal values, bke this:

2 in the first position is 2

B in the second position is 176

1 in the third position is 256

A in the fourth position is 40,960

The total is 41,394

To convert a decimal number to hex using these tables, the process
is as simple to do, but it's sligbdy more complicated to describe. Once
again, things will be clearer if we work through an example. We'll use
the decimal number 1,492.

Work from the table for the fifth position over to the table for the
first. In the fifth-position table, find the biggest hex digit with a value that
isn't greater than 1,492, write down the hex digit, subtract its decimal
value from 1,492, and continue to the next table with the new value (that
is, the difference after subtracting). Go from table to table until the num
ber remaining is 0. The process is shown in Figure B-5. The result is 005D4,
or 5D4 without the leading zeros.

Position

Largest
Hex Digit

Decimal

Value

Remaining
Decimal Number

Starting 1,492

5 0 0 1,492

4 0 0 1,492

3 5 1280 212

2 D 208 4

1 4 4 0

Result 005D4

Figure B-5. Converting the decimal number
1,492 into a hexadecimal number

398 PROGRAMMER'S GUIDE TO THE IBM PC

USING BASIC FOR HEX ARITHMETIC

One easy way to manipulate hex numbers is to let BASIC do the
work. To do this, activate the BASIC interpreter and enter any operations
you want to perform using the command mode (without line numbers).

To display the decimal equivalent of a hex number, such as hex
1234, you can simply do this:

PRINT 4H1234

Be sure to prefix any hex number with 8cH, so that BASIC knows it is a
hex number. To get the best display of decimal numbers, particularly
large numbers, use the PRINT USING format, like this:

PRINT USING "###,###,###"; 4H1234

To display the hex equivalent of a decimal number, such as 1,234,
you can simply do this:

PRINT HEX$(1234)

The examples so far have only used decimal and hex constants. We
can just as easily have BASIC perform some arithmetic and show the re
sult in decimal or hexadecimal. Here are two examples:

PRINT USING "###,###,###"; &H1000 - 4H3A2 + 16 » 3

PRINT HEX$(177e - 1492 + 4H100)

Using variables to hold calculated results can save us from having to
rekey an expression or a complicated number. Variables that hold hex
numbers should always be written as double-precision variables (with a
at the end of the variable name) so that we get the maximum accuracy.
For example:

X# = 1776 - 1492 + 4H100

PRINT USING "###,###,###"; X#, 2 » X#, 3 • X#

Appendix B: Hexadecimal Arithmetic

HEX ADDITION

399

To add hex numbers, we work digit-by-digit, just as we do with dec
imal numbers. To make it easier, use Figure B-6, which calculates the sum
of any two hex digits. To use this table, find the row for one hex digit and
the column for the other. The hex number located at the row/column inter
section is the sum of the two digits.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 2 3 4 5 6 7 8 9 A B C D E F 10

2 4 5 6 7 8 9 A B C D E F 10 11

3 6 7 8 9 A B C D E F 10 11 12

4 8 9 A B C D E F 10 11 12 13

5 A B C D E F 10 11 12 13 14

6 C D E F 10 11 12 13 14 15

7 E F 10 11 12 13 14 15 16

8 10 11 12 13 14 15 16 17

9 12 13 14 15 16 17 18

A 14 15 16 17 18 19

B 16 17 18 19 lA

C 18 19 lA IB

D lA IB IC

E IC ID

F IE

Figure B-6. Addition of two hex numbers

400 PROGRAMMER'S GUIDE TO THE IBM PC

HEX MULTIPLICATION

To multiply hex numbers, we work digit-by-digit, just as we do with
decimal numbers. To make it easier, use Figure B-7, which calculates the
product of any two hex digits. To use the table, find the row for one hex
digit and the column for the other. The hex number located at the row/
column intersection is the product of the two digits.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 2 3 4 5 6 7 8 9 A B c D E F

2 4 6 8 A C E 10 12 14 16 18 lA IC IE

3 9 C F 12 15 18 IB IE 21 24 27 2A 2D

4 10 14 18 IC 20 24 28 2C 30 34 38 3C

5 19 IE 23 28 2D 32 37 3C 41 46 4B

6 24 2A 30 36 3C 42 48 4E 54 5A

7 31 38 3F 46 4D 54 5B 62 69

8 40 48 50 58 60 68 70 78

9 51 5A 63 6C 75 7E 87

A 64 6E 78 82 8C 96

B 79 84 8F 9A A5

C 90 9C A8 B4

D A9 B6 C3

E C4 D2

F .El

Figure B-7. Multiplication of two
hex numbers

c

About Characters

The Standard and Extended Character Set 402
The Character Format 405

The First Thirty-Two ASCII Characters 407
The Box Drawing Characters 409
The Graph and Block Characters 410

Text File Formatting Conventions 410
Ordinary Text File Formats 410
Word-Processor Text Formats 412

401

402 PROGRAMMER'S GUIDE TO THE IBM PC

There are 256 distinct characters used by the IBM personal com
puter family. They have numeric byte codes with values rang
ing from 0 through 255. Often these characters are referred to
by their numeric value using the BASIC notation CHR$(0)

through CHR$(255). The first 128 characters, CHR$(0) thrpugh CHR$(127)
are the true, standard ASCII characters. The last 128 characters, CHR$(128)
through CHR$(255) are special characters that make up an extended
ASCII character set.

Generally, computers treat the true ASCII characters in a similar
way, although there is some variety in the way the first 32 characters are
used. ((•' See page 407 for a discussion of these characters.) The com
puter manufacturer decides how to use the 128 special characters.

Fortunately, all models of the IBM personal computers use the same
extended ASCII character set. Computers that closely mimic the IBM per
sonal computers use this set as well, but other computers often have their
own special characters. This is important to consider when converting
programs from other computers, or when writing PC programs that you
plan to convert for use on other computers.

THE STANDARD AND EXTENDED CHARACTER SET

Here is a BASIC program that will display all 256 characters along
with their numeric codes in both decimal and hexadecimal notation. The
characters are also listed in Figure C-1, on page 404.

1000 ' display all the PC characters
1010 '

1020 MONOCHROME = 1

1030 IF MONOCHROME THEN WW = 80 : HH = 4HB000

ELSE WW = 40 : HH = tHBBOO

1040GDSUB2000 ' initialize DS register
1 050 FOR I = 0 TO 255 ' for all character codes

1 0 G 0 G 0 5 U B 3 0 0 0 ' display the information
1070 NEXT I

1080 PRINT "Done."

1090 GOSUB GOOO

1095 SYSTEM

1999 '

2000 ' initialize

2010 '

2020 DEF 5EG = HH ' set up DS register for poke
2030 KEY OFF : CLS ' set up the screen
2040 WIDTH WW : COLOR 14,1,1

2050 FOR I = 1 TO 25 : PRINT : NEXT I

2060 PRINT " Demonstrating all characters"

Appendix C: About Characters 403

2070GOSUB5000 ' periodic subheading
2080 RETURN

2099 '

3000 ' display character information

3010 '

3020 PRINT USING " ### ";I;

3030 IF I < 16 THEN PRINT "0";

3040 PRINT HEX$(I)

3050 POKE WW * 2 * 23 + 34, I ' insert the character

3060GOSUB4000 ' print any comments
3070 IF (I MOD 16) < 15 THEN RETURN ' pause after each 16 characters
3080 GOSUB 6000

3090 IF I < 255 THEN GOSUB 5000

3100 RETURN

3997 '

3998 ' character comments

3999 '

4000 IF I = 0 THEN PRINT "shows blank";

4007 IF I = 7 THEN PRINT "beep (bell)";
4008 IF I = 8 THEN PRINT "backspace";
4009 IF I = 9 THEN PRINT "tab";

4010 IF I = 10 THEN PRINT "line feed";

4012 IF I = 12 THEN PRINT "page eject";
4013 IF I = 13 THEN PRINT "carriage return";
4026 IF I = 26 THEN PRINT "end text file";

4032 IF I = 32 THEN PRINT "true blank space";
4255 IF I = 255 THEN PRINT "shows blank";

4997 PRINT ' finish!
4998 RETURN

4999 '

5000 ' periodic subheading

5010 '

5020 COLOR 15

5030 PRINT

5040 PRINT

5050 PRINT "Decimal - Hex - Char - Comments"

5060 PRINT

5070 COLOR 14

5080 RETURN

5999 '

6000 ' pause
6010 '

6020 IF INKEY$ <> "" THEN GOTO 6020

6030 PRINT

6040 COLOR 2

6050 PRINT "Press any key to continue..."
6060 COLOR 14

6070 IF INKEY$ = "" THEN GOTO 6070

6080 PRINT

6090 RETURN

404 PROGRAMMER'S GUIDE TO THE IBM PC

There are a few things to note about this program and the characters
that it shows:

The program is designed to automatically adjust itself to a mono
chrome or color/graphics adapter based on the value shown in line 1020;
use 1 (as shown) for a monochrome adapter; change the 1 to 0 for a

000 32 20 64 40 9 96 60 1 128 80 s 160 AO a 192 CO L 224 EO

1 01 @ 33 21 t 65 41 A 97 61 a 129 81 u 161 A1 i 193 C1 1 225 El

202 0 34 22
II 66 42 B 98 62 h 130 82 e 162 A2 6 194 C2 T 226 E2

3 03 ♦ 35 23 8 67 43 C 99 63 c 131 83 \ 163 A3 u 195 C3 y 227 E3

404 ♦ 36 24 $ 68 44 I) 100 64 i 132 84 a 164 A4 n 196 C4 - 228 E4

5 05 37 25 Z 69 45 E 101 65 e 133 85 a 165 A5 N 197C5 + 229 E5

6 06 38 26 & 70 46 F 102 66 f 134 86 & 166 A6 A 198 C6 1= 230 E6

707 « 39 27
1 71 47 G 103 67 9 135 87 % 167 A7 s 199C7 ll 232 E7

8 08 D 40 28(72 48 H 104 68 h 136 88 ? 168 A8 6 200 C8 232 E8

909 0 41 29) 73 49 I 105 69 i 137 89 e 169 A9 r 201 C9 Ir 233 E9

10 OA S 422A « 74 4A J 106 6A J 138 8A e 170 AA T 202CA Jl 234 EA

11 OB 43 2B + 75 4B K 107 6B k 139 8B i 171 AB 203 CB if 235 EB

12 OC 8 44 2C 76 4C L 108 6C 1 140 8C T 172 AC % 204CC II 236 EC

13 OD f 45 2D - 774D H 109 6D M 141 8D 1 173 AD
1

205 CD s 237 ED

14 OE 46 2E ■ 78 4E N 110 6E n 142 8E 174 AE « 206 CE
Jl

ir 238 EE

15 OF 47 2F / 79 4F 0 111 6F 0 143 8F
1

A 175 AF » 207CF X 239 EE

16 10 ► 48 30 e 80 50 P 112 70 P 144 90 E 176 BO 208 DO il 240 FO

17 11 i 49 32 1 81 51 Q 113 71 q 145 91 S 177 B1 i 209 Dl T 241 F1

18 12 t
II

50 32 2 82 52 R 114 72 p 146 92 ft 178 B2 i
1

210 D2 If 242 F2

19 13 51 33 3 83 53 S 115 73 s 147 93
A

0 179 B3 211 D3 11 243 F3

20 14 52 34 4 84 54 T 116 74 t 148 94 0 180 B4 212 D4 b 244 F4

21 15 53 35 5 85 55 U 117 75 u 149 95 b 181 B5 213 D5 F 245 F5

22 16 ■ 54 36 6 86 56 U 118 76 V 150 96
A

u 182 B6 214 D6 tr 246 F6

23 17 1 55 37 7 '87 57 U 119 77 M 151 97 11 183 B7 H 215 D7 247 F7

24 18 t 56 38 8 88 58 X 120 78 X 152 98 y 184 B8 1 216 D8 + 248 F8

25 19 57 39 9 89 59 V 121 79 9 153 99 ¥ 185 B9 ll 217 D9 J 249 F9

26 lA 4 58 3A
1

1 90 5A Z 122 7A Z 154 9A u 186 BA II 218 DA r 250 FA

27 IB f 59 3B 1 91 5B [123 7B { 155 9B 187 BB ll 219 DB 1 251 FB

28 IC L 60 3C < 92 5C \ 124 7C 1 156 9C £ 188 BC U 220 DC ■ 252 EC

29 ID # 61 3D - 93 5D] 125 7D } 157 9D * 189 BD Jl 221 DD 1 253 FD

30 IE A 62 3E > 94 5E A 126 7E M 158 9E R 190 BE dl 222 DE I 254 EE

31 IF f 63 3F ? 95 5F _ 127 7F 6 159 9F / 191 BE 1 223 DF ■ 255 FF

Figure C-1. The IBM PC family character set

Appendix C: About Characters 405

color/graphics adapter or its equivalent. Depending on the value in line
1020, the program makes two adjustments: one that changes where dis
play information is POKEd into the screen memory, and another that
changes the screen width to either 40 or 80 columns. For a color/graphics
adapter, 40-column mode is generally used for greater clarity.

The POKE statement in line 3050 is what causes the characters to be

displayed. This extra step is necessary because a few characters cannot
be displayed by the ordinary PRINT statement. «-See page 407, "The
First Thirty-Two ASCII Characters," for an explanation.

Each of the 256 distinct characters has its own unique appearance
except for the two characters CHR$(0) and CHR$(255), which appear the
same as the blank-space character, CHR$(32). ((•-See Figure C-1.)

The Character Format

All characters that appear on the display screen are composed of
dots drawn within a grid called a character box. There are two standard
grids, one for the Monochrome Adapter (and its equivalents) and one for
the Color/Graphics Adapter (and its equivalents). In either case, charac
ters are created by filling (or lighting) the appropriate dots in the grid.

Figure C-2. The dot-matrix pattern
produced by (a) the Color/Graphics Adapter
and (b) the Monochrome Adapter

406 PROGRAMMER'S GUIDE TO THE IBM PC

The Color/Graphics Adapter uses an 8- by 8-dot character box; the
Monochrome Adapter uses a 9- by 14-dot box, which allows a more re
fined character drawing. Most non-IBM members of the PC family use
only the color/graphics format, as does IBM's PCjr. A notable exception is
the Compaq PC-compatible computers, which successfully merge both
formats into the same display.

Dot-matrix printers, such as the IBM Compact printer, also draw
characters with a grid of dots. However, each model of printer may have
its own particular way of drawing characters that may not exactly match
the screen characters dot-for-dot. On the other hand, a graphics screen
dump to a graphics printer should match the screen dot-for-dot.

To see how characters appear, the three dot matrices in Figure C-3
illustrate aY, ay, and a semicolon, using the 8-by-8 character box.

There are several rules that apply to the character drawings. For
ordinary characters, the two right-hand columns are left unused to pro
vide separation between characters. These two columns are used only by
characters that are supposed to fill the entire character box, such as the
solid block character, CHR$(219). The top two rows are used for ascen
ders (the part of a character that is above the ordinary character height).
The ascender space is used for capital letters and for such lowercase let
ters as b, d, and k. The bottom row is used for descenders (the part of a
character that drops below the line), as in the lowercase letters g and y.
These general guidelines are occasionally compromised for the best over
all effect. For example, the semicolon, our third example in Figure C-3, is
shifted up one row from what we might expect so that it does not use the
descender row.

■■■■■■■■ ■■■■!
■■■■■■■■

■■■■■

■■■■■■■■ □□□□□■■■ ■■■■■

Figure C-3. The dot pattern of three
characters in an 8-by-8 character box

Appendix C: About Characters 407

Bit Value

76543210 (hex)

11001100 CC

11001100 CC

11001100 CC

01111000 78

00110000 30

00110000 30

01111000 78

00000000 00

Figure C-4. The coding of the eight
character bytes for the Y character

In graphics display modes 4 through 6 and 8 through 10 (screen
modes 1 through 6 in BASIC), we can create our own character drawing
tables using the above guidelines. The character drawing tables are coded
with eight bytes for each character—one byte for each row in the draw
ing. The eight bits of each byte indicate which dots in the row are to be
shown. For example, the Y character is coded in hex as CC CC CO 78 30
30 78 00. The individual bits in each byte are shown in Figure C-4 (look
closely and you'll see the Y pattern again).

The First Thirty-Two ASCII Characters
The first 32 ASCII characters, CHR$(0) through CHR$(31), have two

important uses that just happen to conflict with each other. On the one
hand, these characters have standard ASCII meanings; they are used for
both printer control (for example, CHR$(12) is the form-feed character)
and for commimications control. On the other hand, IBM also uses them
for some of the most interesting and useful display characters, such as
the card-suite characters (hearts, diamonds, clubs, and spades), CHR$(3)
through CHR$(6).

Generally, all computer devices, including the printer and the dis
play screen, act on the ASCII meaning of the characters instead of show
ing the character's picture. A simple way to demonstrate this is with the

408 PROGRAMMER'S GUIDE TO THE IBM PC

beep/bell character, CHR$(7), which has a dot for a picture. If we write
this character to the screen in BASIC, like this:

PRINT CHR$(7)

the PC's speaker will beep. But if we put the character directly onto the
screen by POKEing it into the screen buffer, like this:

DEF SEG = &HB800 : POKE 0, 7

the character's picture will appear. We can always make characters ap
pear on the screen by POKEing them into the screen buffer. However,
POKEing should be avoided whenever possible, since it makes our pro
grams harder to adapt to changes. It is always a better programming
practice to display information on the screen using ordinary methods,
such as the PRINT statement in BASIC.

Most of the first 32 characters can be written to the screen, but the
display characters may vary, depending upon which language is used.
Figure C-5 shows some of these differences. The characters not shown,
CHR$(0) through CHR$(6), and CHR$(14) through CHR$(27), can always
be written to the screen with predictable results.

Result
Character In BASIC In most other languages

CHR$(7) Beeps Beeps

CHR$(8) Character appears Backspace action

CHR$(9) Tab action Tab action

CHR$(10) Line-feed and Line-feed action

carriage-return action

CHR$(11) Cursor to top left Character appears

CHR$(12) Screen clears Character appears

CHR$(13) Carriage-return action Carriage-return action

CHR$(28) Cursor moves right Character appears

CHR$(29) Cursor moves left Character appears

CHR$(30) Cursor moves up Character appears

CHR$(31) Cursor moves down Character appears

Figure C-S. The results when certain
characters are written to the screen using
different languages

Appendix C: About Characters

The Box Drawing Characters
Among the most useful of the special extended ASCII characters are

the characters that are designed for drawing single- and double-lined
boxes. These characters have the codes CHR$(179) through CHR$(218).
Since they are difficult to combine properly, you may find the informa
tion in Figure C-6 helpful.

218 196 194

1791

+ \

201 205 203

It = if

200 202

214 210

207 190

Figure C-6. The box dratving characters

410 PROGRAMMER'S GUIDE TO THE IBM PC

CHR$(176) ;;;; CHR$(220) B

CHR$(177) i CHR$(221) 1
CHR$(178) is CHR$(222) 1
CHR$(219) 1 CHR$(223) B

Figure C-7. The two sets ofgraph and block
characters

The Graph and Block Characters

In addition to the box drawing characters, there are two series of
characters designed for graphs and block drawings. One series consists
of four characters that fill the entire character box, but are shaded in
different densities. For the three that are not solid, part of the character's
dots are on, or set to the foreground color, while the remaining dots are
off, or set to the background color. The other series consists of block
characters that provide a solid color covering half the character box. The
solid character, CHR$(219), is also used with these half characters.

TEXT FILE FORMATTING CONVENTIONS

Many programs work with files of text data. As a result, most pro
grammers have adopted some text file format conventions that make it
easier for data files to be used by different programs. The formats are
defined by characters embedded in the text that perform such functions
as carriage returns, line feeds, or backspaces, just to name a few.

Generally, it is a good idea for programs to be very tolerant of dif
ferent text data formats. It is also important to design programs that
create text data with simple formats, using just a few formatting charac
ters. This is not always possible for word-processing programs, which
must be able to format the text on screen in a variety of ways. In this
section, we'll first discuss the most ordinary sort of text file, and then go
on to discuss word-processor files.

Ordinary Text File Formats

Ordinary text files are made up of only the standard ASCII charac
ters and do not use any of the extended ASCII characters. In the ASCII
coding scheme, the first 32 characters, CHR$(0) through CHR${31), have
special meanings: Some of them are used for formatting text data and the
others are generally used for communications control. Since these charac
ters are used to control the format of the text, they don't need to appear
on a display; in fact, it's best if they do not appear, as they often have
rather unusual pictures associated with them.

Appendix C: About Characters 411

There is just a handful of formatting characters that are widely used
in ordinary text files. They were originally developed as commands to
tell a printer how to format a printed page and how to recognize when
the end of the file was reached. Now their use extends to all output de
vices. We'll discuss each of the main formatting characters in turn.

CHR$(26) is used to mark the true end of a text file. This character
may come before the end of the file indicated by the file size in the direc
tory entry. This is because many text-processing programs typically read
and write files, not byte by byte, but in larger chunks—128 bytes at a
time. When they transfer data at this rate, DOS sees only the end of the
128-byte block, and does not recognize the actual end of the file delimited
by the CHR$(26) character.

CHR$(13) and CHR$(10) normally divide a text file into lines by
marking the end of each fine with a carriage return (CHR$(13)) and a line
feed (CHR${10)), usually in that order. Many text-processing programs
have difficulty with lines over 255 characters in length and some are lim
ited to 80 character lines.

A carriage return may be used by itself. Unfortunately, this can be
interpreted as either of two things: the end of a line with a line feed that is
impUed and automatically provided by some printers, or a return to the
beginning of the current print line, which causes the entire line to be
overprinted. (The backspace character, CHR$(8), is also sometimes used
to make a printer overstrike a character.)

CHR$(9), the tab character, is sometimes used to represent one or
more spaces, up to the next tab-set location. Unfortunately, as yet, there
is no universal convention on tab settings, which makes the use of the tab
character uncertain. However, one of the most common tab settings is
every eight spaces.

CHR$(12), the form feed or page eject, is another format character.
This character is interpreted as a command to a printer that tells it to
skip to the top of the next page.

There are also other formatting characters available, such as the
vertical tab, CHR${11), but they are not generally in widespread use with
personal computers.

It is possible to avoid many difficulties by having programs create
text data with simple formats. The simplest formats allow lines no longer
than 255 characters and use only the carriage return (CHR$(13)), line feed
(CHR$(10)), and end-of-file (CHR$(26)) formatting characters. Most pro
gramming languages, including BASIC and Pascal, automatically generate

412 PROGRAMMER'S GUIDE TO THE IBM PC

these formatting characters when creating text data. Normally, they also
process the characters so we only have to deal with text formatting when
we have bypassed our language's usual data control.

Many programs, such as compilers and assemblers, expect to read
text data that has the ordinary, plain format that we have been discuss
ing. Often these programs cannot work with the more complex data for
mats that are created by some word processors.

Word-Processor Text Formats

Word-processing programs have special needs for formatting text
data. The files that these programs create are rarely simple and typically
have many exotic additions to the simplest ASCII format. GeneraUy, each
word processor has its own unique formatting rules; luckily there are
some common feamres.

Many of the special format codes used by word processors are cre
ated by using an extended ASCII code that is 128 greater than a normal
ASCII code. This is equmlent to setting the high-order bit of an other
wise ordinary byte. For example, a "soft" carriage return, CHR$(141), is
coded by adding 128 to an ordinary carriage return, CHR$(13). Soft car
riage returns are often used to indicate a tentative end-of-line, which can
be changed when a paragraph is reformatted. On the other hand, an
ordinary carriage return, CHR$(13), may be used to mark the end of a
paragraph that isn't changed by reformatting. This kind of coding in
word-processing text can cause some programs to treat an entire para
graph as one single fine.

"Soft" hyphens, CHR$(173), which are 128 higher than ordinary
hyphens, CHR$(45), are sometimes used to indicate where a word may
be split into syllables at the end of a line. Ordinary "hard" hyphens,
CHR$(45), are treated as regular characters and they cannot be used or
removed by the word-processing program in the same way as soft hy
phens can be.

Even ordinary alphabetic text may have 128 added to its character
code. This may be done by some programs to mark the last letter in a
word. For example, a lowercase a is CHR$(97); but when it appears at the
end of a word, such as America, it may be stored as CHR$(225), since 225
is the sum of 97 +128.

Programs that are intended to work with a variety of text and
word-processing data should be prepared, as much as possible, to cope
with the variety of coding that these examples suggest.

INDEX

6845 CRT controller, 11, 85

port address, 56, 94—95
setting display page, 85

8088

accessing memory, 22
data formats, 23

character, 23
numeric, 23

general discussion of, 2—6, 22
instruction set, 20—22

interrupts, use of, 22—23
memory addressing, 24—25
ports, use of, 22
registers, 25-36

80286, 6-7

8253 programmable timer
advantages of, 151
BASIC'S use of, 148-49
frequency source of, 148
oscillating frequency of, 11
in PCjr, 153
programming of, 149
registers in, 150
sound production with, 148

8255 PPl (programmable peripheral
interface), 11

8284 clock generator, 10-11
base frequency of, 11

Access codes, 308, 309
Address interrupts

automatic reset by DOS, 249, 253
break address interrupt, 256-57
critical-error handler, 257—58

Address interrupts (continued)
default settings of, 255, 263
terminate address interrupt, 255—56
use of, 255

Alt key. See Keyboard
ANSI driver, 387-90
ANSI.SYS, 242-43

keyboard control with, 389
pros and cons of use, 389—90
screen control with, 388—89

ASCII characters

box drawing characters, 409
character display format, 87,405—7
character set, 402—4

CHR$(0), 133,134
control characters, 407—8
direct entry of, 133
graph and block characters, 410
interpretation of, 134
text-file formatting, 410—12
in TTY mode, 183

ASCIIZ strings, 264, 298
Assembly language. See also Interface

routines

addressing notation in, 34,168
ASSUME, use of, 165, 207
CALL FAR and NEAR, 166
CHASM, 164

8088 instruction set, 20—22 {see also
8088)

IN/OUT, 210

LIB, use of to list programs, 354
MASM, 164,353,356

PSP, use of, 261
source code listings of, 352—53
types of, 164,351—52
writing and linking example, 355

413

414 PROGRAMMER'S GUIDE TO THE IBM PC

AT

extended services through INT 21,
216, 237-38

keyboard differences, 143-44
ROM-BIOS diskette services, 194—96,

234-35

disk controller diagnostics, 195
fixed disk status, 195-96
get parameters, 194
position cylinder, 195
read/write long, 195
recalibrate drive, 195
reset disk, 195
set disk base tables, 195
test for drive ready, 195

ROM-BIOS time of day services, 224,
239-40

ROM-BIOS video services, 184,231-32
AX register

general discussion of, 27
use with BIOS services, 163

B

Back-words storage, 28,121
Bad-track marking, 121
Base pointer (BP) register, 31,166

BASIC. See also Compiled BASIC,
Interpreted BASIC

assembly language, use with, 164
break-key handling in, 58
changing video modes in, 75
clock-tick interrupt, 58
data segment value in, 30,57
DEFSEC, 30,57
diskette error handling in, 58
hex arithmetic in, 398
INKEY$, 134,136
INP/OUT, 37,210
LOCATE statement, 174
ROM-BASIC, 221,239
SCREEN statement, 74,75,78

BASICA. See also Interpreted BASIC
BIOS (Basic Input/Output System)

assembly-language interface to, 164-69
cassette tape services, 236
diskette services, 188-96,233-35
equipment list service, 232

BIOS (continued)
general discussion of, 44,160
interrupts, 161,162
keyboard handling (see also Keyboard)

buffer, 52,130
duplicate keys, 133
key commands, 131-32
keyboard interrupt (INT 9), 130
repeat keys, treatment of, 132-33
scan code translation, 130,134-36
shift state, 131

keyboard services, 238-39
location in memory of, 16
memory service, 232
miscellaneous AT services, 216,237-38
parameter calling conventions, 161—63
reboot computer, 239
serial port services, 235-36
services, summary of, 226—40
switch to ROM-BASIC, 239
time of day services, 239-40
video services, 229—32

Bit-mapped display, 87
Bit-order notation, 27,156-57
Boot record, 112-13
Bootstrap loader service, 221,239
Box drawing characters, 179
BP (base pointer) register, 31,166
Break key

break address interrupt, 256
Ctrl-Break, 132, 256
Ctrl-C, 131-32,256
DOS control of, 257,272
interrupts, 132, 256
simulation of, 257
status of, 56
technique used to ignore, 257

Bus

address bus, 12-13
control bus, 12
data bus, 12
8-bit versus 16-bit bus, 13
expansion slots in, 12
power lines in, 12

BX register
general discussion of, 27
use with BIOS services, 163

Index 415

C language, 352
assembler interfaces, 380-81
data formats

floating-point, 379-80
integer, 378-79
string, 379

general discussion of, 352,377
memory model size, 377-78
parameter passing in, 381-83

Cartridge
memory location for, 17
software cartridges, 63

header format, 63—65
Cassette tape

extended services for AT, 216
general discussion of, 56
read/write data, 215-16,236
ROM-BIOS services for, 214—16,236
turn on/off motor, 215,236
use in PC family, 214

Character handling
BIOS services

read character/attribute from

screen, 178
write character/ attribute to screen, 179
write character only to screen, 180
write character string (AT), 184
write repeating characters, 179
write in TTY mode, 183

box drawing characters, 179
display attributes, 79
graphics character table, 87

Clear screen, 173
Clock

BASIC clock tick, 58
count, 56

location of, 56,223
midnight rollover, 56,223
read current count, 223
set current count, 224
system clock tick, 56,222—23

Clusters

cluster status on disk

number available, 303
sectors per cluster, 303
total number, 303

Clusters (continued)
location of, in FAT, 122
numbering of, 121
starting cluster, 118

Code segment. See CS register
Color/graphics adapter. See also Video

character generator, 86
default cursor size, 174
general discussion of, 68
mapping text mode characters on, 88
memory location of, 16,69

.COM files

converting .EXE files, 342
with PSP pointers, 261
relative size of, 356

Combining program modules, 341-47
COMMAND.COM file, 46
Compiled BASIC, 351

assembler interfaces with, 365-69
data formats

floating-point, 359-60
integer, 357-59
string, 361-62

.LIB or .OBJ files, 367
passing parameters in, 367—68
steps to compile, 369
subroutine CALL in, 366

CONFIG.SYS, 386
Coprocessors, 7-9
Copy protection

general discussion of, 124—25
using BIOS services, 199,221
using track format service, 193-94

Country-dependent information
under DOS-2,304-6,335
under DOS-3,304-5,335

CRC. See Cyclical redundancy check
Critical-error handling
DOS address interrupt for, 257-60
error codes, 259—60

CS register
changing code segment address, 30
during interrupt process, 162
general discussion of, 28

in BASIC, 30
with BIOS services, 162

as pointer to PSP, 249
Ctrl-Alt-Del, 56,131,221

416 PROGRAMMER'S GUIDE TO THE IBM PC

Ctrl-Break

get/set with DOS function, 302,329
Cursor, 55,92,174-75
CX register

general discussion of, 27
use with BIOS services, 163

Cyclical redundancy check (CRC), 191
in cassette tape I/O, 215
in disk write verification, 288

D

Data segment. See DS register
DEFSEC, 30,57
Destination index (DI), 31,163
Device header control block, 259
Device I/O control, 311-13,335
Direct memory access. See DMA
Directory
DOS services

change current directory, 307
create subdirectory, 306
get current directory, 314
remove subdirectory, 307
summary, 334

Disk base table

components of, 197-98
creating new table, 196,197-98
default version, location, 196
general definition, 188,196
interrupt vector for, 196

Disk drives

determine ID letter of, 277
determine number of, 277-78
DOS services

report current drive, 282
select current drive, 277

how DOS sees them, 277
indicator in PSP, 290

Disk I/O

BIOS services

get error status, 189,190
reset diskette system, 189
summary of, 188-207,233-35

DOS services

determine space available, 303
reset disk/flush buffers, 277
summary of, 269,295,330-31

Disk I/O (continued)
write verification status, 288,319

error codes, 251
technique to free disk space, 285

Disk transfer area (DTA), 266,282,300
Diskettes

AT (see AT ROM-BIOS diskette

services)

bad-track marking, 121
BIOS services

format track, 192-93
read sectors, 189-91,199-200
recalibration, 53,195
reset, 189,195
verify sectors, 191-92
write sectors, 191,199-200

changing format markers, 198-99
DOS services (see Disk I/O,

File I/O)
get FAT information, 283

error status, 54,189,190

formats

IBM history of, 102—3
quad-density, 103-4
standard DOS, 102-3

physical structure
density, 100
index hole, 193
sectors, 100 (see also Sectors)
soft-sectored, 101
tracks, 100,105,192-93

programming recommendations, 124,
199

sectors

BIOS location notation, 106,107
DOS location notation, 106,107
length in disk base table, 198
number of, 105
size of, 101

space allocation
boot record, 110,112-13
data space, 111, 119-20
file allocation table (FAT), 107-8,

110,120-24

file directory, 109, 111, 113,119
Display resolution, 73-74. See also Video
DMA (direct memory access)
DMA controller, 10

Index 417

DMA (continued)
lack of, in PCjr, 10
linking in AT, 10
mode setting in disk base table, 197

DOS

command line parameters, 265
commands

ASSIGN, 250
BREAK ON, 256,272
CHKDSK, 119,120,124,263
ERRORLEVEL,272,302

EXE2BIN, 343

FDISK,110
FILES, 298

LINK, 342,345-47
MKDIR, 306

MODE, 75,96

SET (environment), 264
disk formats, 102-3
enhancements, DOS-3

extended error codes, 320-22
extended functions, 320-24
printer control, 253-55

environment settings, 264
files

COMMAND.COM, 46

IBMBIO.COM, 46
IBMDOS.COM, 46

interrupts
address interrupts, 248,255-60
print spool control (DOS-3), 253-55
program terminate, 249
sector read/write, 249-52
terminate-but-stay-resident, 252—53
umbrella interrupt (INT 33), 242

services

DOS interrupts (see page 247)
new DOS-2, DOS-3 functions

(see pages 295,328)
pros and cons of use, 241-43
summary of, 325-35
universal DOS-1 functions (see pages

269, 271)
versions, 244-45

compatibility of, 102,245
diskette formats of, 102—3,246
get version number service
DOS-1, 300
DOS-2,300-1,335

DS register
changing data segment address, 30
DEFSEG, use of, 30,57
during BIOS service, 162
general discussion of, 29
use of, in BASIC, 30,57

DTA (disk transfer area), 266,282,300
DUP (duplicate file handle), 313
DX register

general discussion of, 27
use in BIOS services, 163

End-of-file marker, 118-19
in text files, 411

Enhanced Graphics Adapter, 69,71,
74,76-77

display pages in, 86
memory location of, 15, 84
modes in, 73, 82
remapping palettes in, 83

Equipment list
BIOS service for, 219-20,232
bit coding of, 53, 220
general discussion of, 52-53

Erased files

notation for in directory entry, 114
notation for in FAT, 121
recovery of, 123

Error codes

DOS critical-error handler, 259-60
returned by DOS-2 services, 297,

317, 329

using DOS ERRORLEVEL, 302
returned by DOS-3 services, 320-22

extended error codes and classes,
321-22

ES register
during BIOS service, 162
general discussion of, 29

.EXE format programs, 342-43
converting to .COM format, 343
LINK edited, 253,345
pointers to PSP, 261
relative size of, 356

EXEC-load execute program
DOS-2 service, 315-17,329

418 PROGRAMMER'S GUIDE TO THE IBM PC

EXEC-load execute program (continued)
effect on stack, 317
example of use, 316

Extended DOS functions. 295, 299,301
Extra segment register. See ES register

FAT (file allocation table)
bad-track marking in, 121
cluster allotment in, 120
damaged, 124, 259
decoding FAT value, 122
DOS services, 28,123

get FAT information, 282-83
erased files

markers in, 121
recovery of, 123

ID byte in, 123, 282
number of copies on disk, 120
organization on disk, 120
read-only status, 117
16-bit format, 123

storage of data in, 123
space allocation chain, 121
12-bit format, 120

storage of data in, 121
FOB (file control block). See also

File 1/0

allowable open files, 298
closing files through, 278
extension, 279,288-90
field descriptions, 289
file size in bytes, 291
general discussion of, 288-89
location and structure, 289
opening files through, 278
read/write random record(s), 283-84,

285, 292
programming hint, 283

read/write sequential record, 280—81
record size reported in, 278,291
set random record field, 284
support in PSP, 265

FDC (floppy-disk controller), 12
File allocation table. See FAT

File attributes. See also File directory
in directory, 116-19
DOS services

get/set attribute, 311
search for, 279,318

in FCB, 289
File control block. See FCB

File directory
date of file update, 118
formula for calculation, 118

disk volume ID field, 116-17
end-of-file marker in, 118
entry, size of, 113
erased file marker, 114,121
file attributes, 116-17

archive, 117
disk label, 117
hidden file, 117
subdirectory, 117
system file, 117

file size field, 118
filename extension field, 116
filename field, 114
purpose of, 113
starting cluster number, 118
subdirectories, 113,115-17
time of file update, 117-18
formula for calculation, 118

unused entry marker, 114
File fragmentation, 119-20
File handles

allowable open files, 298
definition of, 298
DOS-2 services

duplicate file handle, 313
force handle duplication, 313-14

FILES command, 298
standard handles, 298

File I/O

DOS-1 services using FCB
close file, 278
create file, 281
delete file, 280
get file size in records, 284
match file name, 279-80
open file, 278
parse filename, 286

Index 419

File I/O (continued)
read/write random record(s),

283-84,285

read/write sequential record, 280—81
rename file, 281

DOS-2 services using file handles
close file handle, 309
create output file, 307
delete file, 310
get/set file attributes, 311
input/output control operations,

311-13

move file pointer, 310
open file, 308—9
read/write file or device, 309—10

DOS-3 services

create new file, 323
create temporary file, 323
lock/unlock file access, 324

summary, 331, 333
File sharing in DOS-3

inheritance codes, 308
resolving conflicts, 313
sharing modes, 308

Filename, 114,116, See also File directory
DOS services

continue file search, 280,319
parsing, 286
rename file, 319
start search, 279, 318

in FOB, 290
Filename extension, 116. See also

File directory
Fixed disk. See Hard disk

Flag register
control flags, 33-34
status flags, 33
AF flag, use of, 23
CF flag, use of, 36,163,297
ZF flag, use of, 163

Floppy-disk controller (FDC), 12
Foreign country symbols and delimiters,

304-6,335

Global characters, 279,281

Graphics characters, 87,402-10. See also
\^deo, ASCII characters

H

Hard disk

formats, 104
logical, 105
physical, 104

organization (see also Diskettes)
master boot record, 107
space allocation, 111—12

partitions, 106-7
platters, 101
sectors, number of, 105
tracks, number of, 105

Hercules display adapter, 69
Hexadecimal numbers, 392-400

in BASIC, 398
decimal/hexadecimal conversion,

395-97

hex addition, 399
hex multiplication, 400
and segmented notation, 394-95

I

IBM BASIC compiler. See Compiled
BASIC

IBM Pascal version 1.00. See Pascal
IBMBIO.COM file, 46,112,117
IBMDOS.COM file, 46,112,117
ICA (intra-applications communications

area), 58
Index registers. See also Offset registers

designation index (DI) register, 31,163
source index (SI) register, 31,163

Infrared keyboard, PCjr
error detector, 52

Inheritance codes, 308
Installable device driver, 102,299,386-90
Instruction pointer (IP)

general discussion of, 31
use in BIOS services, 163

Interface routines

components of, 164—69,338—39

420 PROGRAMMER'S GUIDE TO THE IBM PC

Interface routines (continued)
examples

diskette service, 199-200
weekday (for use with C),

293-94

general discussion of, 164
general form, 164—69

assembler overhead, 165
entry code, 166-67
get parameter data, 167
invoke DOS or BIOS service, 168
subroutine overhead, 166

logical organization, 353
requirements of, 339—41

Interpreted BASIC, 351
accessing parameters, 364-65
assembler interfaces, 362-65
data formats

floating-point, 359-60
integer, 357—59
string, 360—61

passing parameters, 362—63
Interrupt vectors, 24, 39,45

changing/setting value using DOS,
50, 284

changing values of, 45,48,50-51
get vector with DOS-2,303,335
set interrupt vector with DOS-1, 335
technique for preserving, 303
vector table, 39, 47,160

Interrupts
address, 46,249,255-60,262-63
BASIC, 46
BIOS, 160—63. See pages 171,187,

203, 209

IBM design philosophy, 160—61
calling instructions
INT, 40

IRET, 39-40

CPU, 39,45

DOS, 46, 248-60,326
general discussion of, 22—23, 37, 49
hardware, 39, 45
how they work with stack, 39
interrupt handlers, 37
non-maskable (NMI), 39,48,132
software, 39,45,160

Intra-applications communication area
(ICA), 58

I/O Ports. See Ports

IP (instruction pointer). See Instruction
pointer

K

KEEP, 302,329

Keyboard, 128-44, 203-8
AT, 143-44

BIOS interpretation of keys, 52,130-32
BIOS services, 238-39

get shift status, 205-6
read character, 204
report character ready, 205,207

break key, 56,131-32,256-57,272
buffer

character present in, 204
flushing technique, 205, 277
memory location of, 52,130

controller chip, 128
data format, 134-36
ASCII codes, 133-34
auxiliary byte, 134, 204
CHR$(0), use of, 133-34
cursor keys, 134-35
function keys, 134—35
INKEYS, use of, 134,136
main byte, 134, 204
numeric keys, 134—35

DOS services

advantages of, 206
buffered input, 275—76,329
check input status, 276, 329
clear buffer, 277, 329
direct input without echo, 274,329
direct keyboard/display I/O, 274, 329
input without echo, 275, 329
keyboard input with echo, 272,329

keyboard action interrupts [see also
BIOS)

disabled, 131
general discussion of, 139—40
in PCjr, 132

keyboard layout, 130

Index 421

Keyboard (continued)
PCjr, 140-43
programming example, 207
programming hints, 206
scan codes

general discussion of, 129
standard codes, 130
storage of, 134
translation of, 130-33

shift states

Alt key, 131,133
Ctrl-Alt-Del, 131
Ctrl-Break, 132
Ctrl key, 131
Ctrl-Num-Lock, 137
get shift status, 205
Shift key, 131
Shift-PrtSc, 132

status bytes, 52,136-39
Caps Lock, 137
hold state, 137-38
insert state, 136
in PCjr, 57,142-43
toggle keys, 131,138

type-ahead capability, 205
typematic, 132

Keyboard enhancers, 129, 252

Lattice/Microsoft C. See also C language
parameter placement on stack, 168

LIB program, 343-45
Light pen, 176
LINK program

combining programs, 342,346—47
linking .EXE files, 253,342-45
linking to library, 346
linking one program, 345
parameters used by, 345

Low-memory control information, 51—58

M

Machine ID, 59—60
Macro Assembler 1.00. See Assembly

language

Memory
addressable memory, amount of, 14,

220-21

amount usable by DOS, 262
BIOS location in, 16

cartridge, use in, 17
color/graphics display, 16,69,84
display memory in PCjr, 84
DOS-2 services

allocate memory in paragraphs, 314
free allocated memory, 315
modify allocated memory block, 315

memory-mapped display, 70,87—90
monochrome display, 16, 69, 84
ROM-BIOS services

AT extensions, 228,238

usable memory, 220-21
64K blocks, 14
0 block, 15
A block, 15
B block, 16
C block, 16
D block, 17
E block, 17
F block, 17

size, actual, 52
20-bit addresses, 14
virtual, 7

Memory addressing
back-words storage, 28
interrupt vectors, 24 (see also

Interrupt vectors)
offset address, 24
through registers, 33-35
segment address, 24
segmented addresses, 24

notation, 25

in video display, 70, 87—90 (see also
Video)

Memory-mapped display, 70,87-90
Memory services

in BIOS, 220-21,232
in DOS, 314-15,335

Monitors

color quality, 80
color suppression in, 77-78
composite, 72

422 PROGRAMMER'S GUIDE TO THE IBM PC

Monitors (continued)
direct drive monochrome, 72
RGB, 72

Monochrome Display Adapter
character generator for, 87
default cursor size, 174
general discussion of, 68—69
I/O ports in, 93—94
mapping characters in text mode,

87-88

memory location of, 16, 69
memory requirements of, 84—85
monochrome mode

color equivalent in, 81
setting attributes in, 81
setting of, 71,73,173

programming hints, 90—91, 96—97
testing for presence of, 96,184

MS-DOS.SYS. See IBMDOS.COM

Multitasking
direct video output in multitasking

environment, 91

general discussion of, 6-7

N

NEC controller, 12
New DOS functions. See pages 295,328
Non-maskable interrupt (NMI), 39, 48,

132

o

Object code
creating libraries, 343—45
general discussion of, 342

Offset address, 24
Offset registers

base pointer (BP), 31,166
BIOS services, use in, 163

destination index (DI), 31,163
instruction pointer (IP), 31
rules for use of, 35
source index (SI), 31,163
stack pointer (SP), 31,163

Parameter passing
in BASIC, 362-63

in C, 377-83

in interface routines, 340
in Pascal, 375-77

Pascal

assembler interfaces, 200,
375-77

data formats, 369—75
floating-point, 372—74
integer, 370—71
SET, 372

string, 371
general discussion of, 351, 369

PCjr
baud rate width, 211
cassette tape services, 214—16
DMA, lack of, 10,189
keyboard

key equivalents, 140—41
NMI, use of, 141
operation of, 140—42
programming recommendations,

143

special key combinations, 141
status information, 57

memory size, 221

serial printer width, 220
sound, 152-58 (see also Sound)
video

character table, 87
color control, 80
display memory, 84,221
display pages, 86
display resolution, 74
remapping color palettes, 83
text width, 74
video gate array, 16, 69

Pixels

BIOS services

write/read pixel, 182,231
effect on display resolution, 73—74
general discussion of, 70
mapping pixels in graphics mode,

88-90

Index 423

Ports

accessing through BASIC, 36
INP/OUT, 37

cassette tape I/O, 214—16
family differences between, 37—38
general discussion of, 22, 36, 210
memory-mapped I/O, 36
serial (RS-232), 210-13
video I/O, 71, 93-95

Print screen

BIOS service for, 217-18,229
interrupt, 49
Shift-PrtSc key, 47,132
status of, 57

Printer services

BIOS services, 239

get printer status, 217—18
initialize printer, 217
output one byte, 217

DOS-3 services, 253—55

print screen, 57,132, 218—19
printer time-out, 218
serial printer, in PCjr, 220

Professional Graphics Adapter, 15, 77
Program interface. See Interface routines
Program overlay, 284—85
Program segment prefix. See PSP
Program termination
DOS services

get return code of subprogram, 317
program terminate, 249, 271—72
terminate-but-stay-resident, 252-53,

302

terminate handler address, 255—56
terminate with error code, 317,329

effect on DOS, 249
leave-resident-progtam example,

266-67

PSP, role in, 249
techniques for, 221,239, 249, 262,

271-72

Programming
diskettes, 124
IBM design philosophy, 160
interface routines, 164—71

Programming languages, 349—83
ProKey, 129, 252

PSP

access through segment registers, 261
address interrupt settings, 255
CS register, role of, 249,266
DOS services

create new PSP (DOS-1), 284—85

get PSP address (DOS-3), 324,329
location of, 249
program termination with, 262
structure of, 261-65
use of, 249,260-66

R

Raster scan, 70

Reboot system, 56,131,221,239
Registers

flag, 33-34, 36 {see also Flag register)
half, 26
offset, 31 {see also Offset registers)
rules for use, 35—36
scratch pad, 26-28 {see also Scratch

pad registers)
segment, 28—30 {see also Segment

registers)
use of, 25—36

Relative offset, 24
Repeat key action, 132
Resident progtams, 252—53,266—67
Return codes. See Error codes

ROM

BASIC, 61,221,239

cassette, 62

components, 42
extensions, 62

release date, 59
start-up programs, 42—44

bootstrap loader, 43
initialization, 43

power on self test (POST), 43
reliability test, 43

ROM-BIOS. See BIOS

Scan codes

general discussion of, 129

424 PROGRAMMER'S GUIDE TO THE IBM PC

Scan codes (continued)
keyboard action interrupt, 130
standard codes, 130
storage of, 134
translation of, 130-31

Scratch pad registers, 26-28,35. See aba
AX, BX, CX, and DX registers

Screen control functions

BIOS, 173-84,229-32
DOS, 329,273,275

Sectors. See also Diskettes

BIOS location notation, 105,250
bytes per, 303
DOS location notation, 105,250
DOS services

read, 189-91
verify, 191-92
write, 191,249-52

identification marker, 193
Segment paragraph, 24
Segment registers, 28-30,35. See also

CS, DS, ES, and SS registers
Segmented notation, 25

hexadecimal numbers in, 394-95
Serial communications

BIOS services

error status report, 212-13,236
receive one character, 213,236
send one character, 212,236
set port parameters, 211—12,235

DOS services,
serial input/output, 273

ports, use of in PC, 210
Sharing codes, 308
SI (source index), 31,163
SN76496A. See TI sound chip
Sound

activating speaker, 150-51
computer production of, 147—52
8253 timer chip, 148—50
frequency range in BASIC, 150
musical note frequencies, 147
physics of, 146—47
speaker control, 150—52

cassette tape interface, 152—53
8253 timer, use of, 153
I/O channel, 153

Sound (continued)
in PCjr, 152-58
sound output, 156-58
sound sources, 152-53
TI sound chip, 153—58

Source code

filename extension of, 341
translating to object code, 342
writing it, 341

Source index (SI), 31,163
SP register. See Stack pointer register
Space allocation chain, 121-22
Speaker. See also Sound

activation of, 150-51
control of, 147,151-52
frequency range of, 146-47
in PCjr, 157-58
PPI chip involvement, 147,150-51
quality of, 152
timer chip involvement, 148

SS (stack segment) register
during interrupt process, 162
use of, 29

Stack

accessing address on, 168
accessing data on, 168
in BASIC, 365,367-68
BP (base pointer) register, 31,166
cleaning up, 167,200,252,341
contents after critical error, 258
effect of EXEC service on, 317

frame reference, getting, 167
how to locate, 258
parameters

placement of, 167—68
preservation of, 340
removal of, 167,200,252

requirements of ROM-BIOS services,
162

stack pointer (SP) register, 31,167
stack segment (SS) register, 29 (see also

Segment registers)
Stack pointer (SP) register

general description of, 31
use with BIOS services, 163

Stack segment register. See SS register

Index 425

Step-rate time. See Disk base table
Subdirectory
DOS-2 services

create, 306, 334

remove, 307, 334

file attribute marker in directory
entry, 116-17

root directory of, 115
size of, 115
tree structure of, 115

System board
bus, 12—13
contents of, 2
AT, 5

PC, 3

PCjr, 4

XT, 3

8087 math coprocessor, 8—9
8237A DMA controller, 10 {see also DMA)

8253 programmable timer, 11,148—50,
(see also 8253 pro
grammable timer)

8255 programmable peripheral
interface, 11

8259 interrupt controller, 9-10
changing interrupt levels, 10
linking, in AT, 10

8284A clock generator, 104
microprocessor, 2—7
8088,2-6 (see a/so 8088)
80286,6-7

PD765 diskette controller, 12

6845 CRT controller, 11, 56
System reset, 56,131, 221, 239

Terminate-but-stay-resident
DOS-1 version, 252—53

DOS-2 version, 302, 329

example of, 266—67
Terminate program. See Program

termination

Text files

creating ASCII files in BASIC, 341
end-of-file marker, 119

formatting conventions
ordinary, 410

Text files (continued)
word processor, 412

T1 sound chip (SN76496A), 152-57
attenuation, 154

conttol of

attenuation, 157

frequency, 156
noise control, 157
parameter, 155

noise generator, 154—55
tone generator, 153—54

Time and date services

day-of-week program example, 292—94
DOS-1 services, 287—88
DOS-2 services, 319-20, 334-35

stored in FCB during file I/O, 292
Time of day

in AT, 224, 239-40

BIOS Services, 222—24,239
calculation of, 223
duting file update, 117-18

Timer. See 8253 programmable timer
Toggle keys. See also Keyboard
Caps Lock, 131,137
Num Lock, 131,137-38
status of, 52,131,136—38

Tracks. See also Diskettes

addressing, 192
index hole, 193

individual formatting of, 192
number of, 105

TTY (teletype) mode, 183
Typematic, 132

u

Universal DOS functions. See page 269

V

Vertical retrace, 71

Vertical sync signal, 71, 95
VGA (video gate array), 16, 69
Video

ANSI.SYS to control, 242—43
BIOS services, 173—86

example of, 185—86
interface routines and, 185

426 PROGRAMMER'S GUIDE TO THE IBM PC

Video (continued)
read character attribute, 178-79
set color, 81-83
write character attribute, 179—80
write/read pixels, 182

color

background, 79—80
in BASIC, 78

changing pixel, 180
components of, 75—77
foreground, 79-80
intensity of, 76—77
quality in monitors, 72, 80
suppression of, 77—78
in text modes, 78-81

color palettes
bit settings of mask, 56
general discussion of, 82,181
remapping in PCjr, 83
16-color palettes, 76
64-color palettes, 76
256-color palettes, 77

compatibility considerations, 96—97
control through DOS, 242—43
current mode status, 54—55,173,184
cursor

BIOS services, 174—75,183
default size, 174
simulated, 92,174
size, 55, 92

direct hardware control, 91—95
display memory, 69, 84—85, 87—91
display pages

current page status, 55
cursor locations, 55
general discussion of, 85
in graphics mode, 86
page location in memory, 55
screen size status, 55

scroll window, 177—78
set active page, 85,176
in text mode, 85—86

display resolution, 73—74
graphics modes

in BASIC, 82

bit-mapped display in, 87
character generation in, 86—87
display pages in, 86,178
mapping pixels in, 88—91
memory requirements of, 84—85
types of, 71,73

Video (continued)
programming hints, 90-91,185
raster scan, 70
screen width status, 55
services, summary of, 229—32
6845 CRT controller, 11,56,70
text modes

advantages of, 80
blink control in, 79
changing modes in DOS, 74—75
character attributes, 79
color control in, 79-80
display page in, 85-86
mapping characters in, 87-88
memory requirements of, 84
monochrome (mode 7), 71, 73,

81, 84

read character/attribute, 178
setting attributes in, 79-81
types of, 71,73-74
write character, 179—80

Video gate array (VGA), 16, 69
Video modes. See also Video

color-suppressed modes, 77—78
current status, 54-55,173,184

general discussion of, 71—73
graphics modes, 73, 81-84, 86-91,

178-80,182

memory requirements of, 84-85
mode settings, 55, 73,173
monochrome mode, 68, 71-73, 81,

84-85

set mode, 173
text modes, 71,73-75,79-80,84-88,

179-80

Video services

BIOS services, 173-84,229-32

DOS functions

display string, 275, 329
write character to screen, 273, 329

Virtual memory, 7, 216,238

w
Windowing systems, 6

direct video programming in, 91
importance of installable device

drivers, 299
test for usable bytes in segment, 263
test for usable memory, 263
use of operating system in, 244

PETER NORTON

Peter Norton was raised in Seattle, Washington, and educated at
Reed College in Portland, Oregon. Before discovering microcomputers,
he spent a dozen years working on mainframes and minicomputers for
companies including Boeing and the Jet Propulsion Laboratories. After
the debut of the IBM PC, Peter was among the first to buy one. Now rec
ognized as a principal authority on IBM personal computer technology,
Peter is the author of Inside the IBM PC and creator of the best-selling
Norton Utilities programs. He is also a popular featured columnist for
both PC and PC Week magazines.

The manuscript for this book was prepared on an IBM Personal
Computer. Submitted to Microsoft Press in electronic form, the text
files were processed and formatted using Microsoft Word.

Cover design by Ted Mader and Associates.
Cover photo by Tom Collicott.
Technical illustrations by Rick van Genderen.

Text composition in Sabon, with program listings in HP Monospace.
Typesetting by Microsoft Press, using the CCI system and the
Mergenthaler Linotron 202 digital phototypesetter.

Other Titles from Microsoft Press

Running MS-DOS, 2nd Edition
The Microsoft guide to getting the most out of the standard
operating system for the IBM PC and 50 other personal computers
Van Wolverton $21.95

Advanced MS-DOS

The Microsoft guide for assembly language and C programmers
Ray Duncan $21.95

Supercharging MS-DOS
The Microsoft guide to high performance computing for the
experienced PC user
Van Wolverton $18.95

Windows

The official guide to Microsoft's operating environment
Nancy Andrews $17.95

CD ROM 1: The New Papyrus
The current and future state of the art, Foreword by William H.
Gates

Edited by Steve Lambert and Suzanne Ropiequet $21.95

CD ROM 2: Optical Publishing
A practical approach to developing CD ROM applications
Edited by Suzanne Ropiequet $22.95

Command Performance: Lotus 1-2-3
The Microsoft desktop dictionary and cross-reference guide
Eddie Adamis $24.95

Command Performance: dBASE III

The Microsoft desktop dictionary and cross-reference guide
Douglas Hergert $22.95

Miriations in C

Programming techniques for developing efficient professional
applications
Steve Schustack $1995

Word Processing Power with Microsoft Word, 2nd edition
Peter Rinearson $ 1995

Programmers at Work
Interviews with 19 of today's most brilliant programmers
Edited by Susan hammers $14.95

XENIX at Work

Edited by JoAnne Woodcock and
Michael Halvorson $21.95

Available wherever fine books are sold.

Here s what reviewers have said about

E P E T E

l" . ..both a text to he read from fwnt to haek at id a re/ere nee hook to sit on the
shelf wait in<^ with immediate answers to questions.. .d must for every serious PC
user's technical lihrarv. PC Magazine

i 7/" vy^/y plan on some serious programming using an kBM PC, this hook will he a
good companion to ease you through the rough spots.'' BY!E ma^a/ine

i'77/t' advice on writing programs to run on a wide variety of configurations will
he valued hy authors of commercial software." /'C Tech journal

' ...a valuable reference for anyone, including non-programmers, who wants to
know what happens in the PC, its software systems, and its peripherals."

\ Online Today

\ ...a well-organized, highly readable replacement}or both the IBM PC DOS
Technical Reference and the IBM PC Hardware Reference manuals."

I Dr. Dohh's Journal

Here, from one ot the industry's most knowledgeable authorities, is the ulti
mate reference to the entire family of IBM PCs. It is truly a gold mine of in-
sights, techniques, technical data, and quick fetelrence charts. Of special
interest are the details ot the architectural similarities and differences amone
the IBM machines. It you want to create simple, cljean, and portable protes-
.sional and business programs, THE PETER NORTON PROGRAMMER'S
GUIDE TO ThlE IBM PC is where you want to start.

259.298

iiiiiiiiiihhiiltli Ilii
: nihillil isit

X0000400V i

dGoc d
Ti^v- ftarrc. ,v: t.ht -3^

MSKU: •298 0

U.S.A. $21.95
U.K. £19.95

Aust. .$33.95
(recoiiiineiuieti)

