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Would it be wonderful if, under the
pressure of all these difficulties, the
Convention should have been forced
into some deviations from that artifi-
cial structure and regular symmetry
which an abstract view of the subject
might lead an ingenious theorist to
bestow on a constitution planned in
his closet or in his imagination?
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Introduction

ComMoN Lisp is a new dialect of Lisp, a successor to MACLIsp [12, 15], influenced
strongly by ZETALISP [21, 13] and also to some extent by SCHEME [18] and INTERLISP
[20].

1.1. Purpose

CoMMON LisP is intended to meet these goals:

Commonality

CoMMON Lisp originated in an attempt to focus the work of several implementation
groups, each of which was constructing successor implementations of MAcLIsp
for different computers. These implementations had begun to diverge because of
the differences in the implementation environments: microcoded personal com-
puters (ZETALISP, SPICE Lisp), commercial timeshared computers (NIL), and su-
percomputers (S-1 Lisp). While the differences among the several implementation
environments of necessity will continue to force certain incompatibilities among
the implementations, COMMON LisP serves as a common dialect to which each
implementation makes any necessary extensions.

Portability

ComMoN Lisp intentionally excludes features that cannot be implemented easily
on a broad class of machines. On the one hand, features that are difficult or
expensive to implement on hardware without special microcode are avoided or
provided in a more abstract and efficiently implementable form. (Examples of this
are the invisible forwarding pointers and locatives of ZETALISP. Some of the prob-



2 COMMON LISP

lems that they solve are addressed in different ways in CoMMON Lisp.) On the
other hand, features that are useful only on certain “ordinary” or “commercial”
processors are avoided or made optional. (An example of this is the type declaration
facility, which is useful in some implementations and completely ignored in others.
Type declarations are completely optional and for correct programs affect only
efficiency, not semantics.) COMMON Lisp is designed to make it easy to write
programs that depend as little as possible on machine-specific characteristics, such
as word length, while allowing some variety of implementation techniques.

Consistency

Most Lisp implementations are internally inconsistent in that by default the inter-
preter and compiler may assign different semantics to correct programs. This se-
mantic difference stems primarily from the fact that the interpreter assumes all
variables to be dynamically scoped, whereas the compiler assumes all variables to
be local unless explicitly directed otherwise. This difference has been the usual
practice in Lisp for the sake of convenience and efficiency, but can lead to very
subtle bugs. The definition of CoMMON LisP avoids such anomalies by explicitly
requiring the interpreter and compiler to impose identical semantics on correct
programs so far as possible.

Expressiveness

CoMMoON Lisp culls what experience has shown to be the most useful and under-
standable constructs from not only MACLISP, but also INTERLISP, other Lisp dia-
lects, and other programming languages. Constructs judged to be awkward or less
useful have been excluded. (An example is the store construct of MAcLISP.)

Compatibility

Unless there is a good reason to the contrary, COMMON LISP strives to be compatible.
with ZETALISP, MACLIsP, and INTERLISP, roughly in that order.

Efficiency

CoMMON Lisp has a number of features designed to facilitate the production of
high-quality compiled code in those implementations whose developers care to
invest effort in an optimizing compiler. One implementation of COMMON Lisp,
namely S-1 Lisp, already has a compiler that produces code for numerical com-
putations that is competitive in execution speed with that produced by a FORTRAN
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compiler [3]. The S-1 Lisp compiler extends the work done in MACLISP to produce
extremely efficient numerical code [7].

Power

CoMMON Lisp is a descendant of MACLISP, which has traditionally placed emphasis
on providing system-building tools. Such tools may in turn be used to build the
user-level packages such as INTERLISP provides; these packages are not, however,
part of the COMMON LisP core specification. It is expected such packages will be
built on top of the ComMON LisP core.

Stability

It is intended that CoMMON Lisp will change only slowly and with due deliberation.
The various dialects that are supersets of COMMON Lisp may serve as laboratories
within which to test language extensions, but such extensions will be added to
CoMMON Lisp only after careful examination and experimentation.

The goals of COMMON LisP are thus very close to those of STANDARD Lisp [11]
and PORTABLE STANDARD Lisp [16]. ComMoN Lisp differs from STANDARD Lisp
primarily in incorporating more features, including a richer and more complicated
set of data types and more complex control structures.

This book is intended to be a language specification rather than an implemen-
tation specification (although implementation notes are scattered throughout the
text). It defines a set of standard language concepts and constructs that may be
used for communication of data structures and algorithms in the COMMON Lisp
dialect. This set of concepts and constructs is sometimes referred to as the “core
CoMMON LisP language” because it contains conceptually necessary or important
features. It is not necessarily implementationally minimal. While many features
could be defined in terms of others by writing LisP code, and indeed may be
implemented that way, it was felt that these features should be conceptually prim-
itive so that there might be agreement among all users as to their usage. (For
example, bignums and rational numbers could be implemented as LisP code given
operations on fixnums. However, it is important to the conceptual integrity of the
language that they be regarded by the user as primitive, and they are useful enough
to warrant a standard definition.)

For the most part, this book defines a programming language, not a programming
environment. A few interfaces are defined for invoking such standard programming
tools as a compiler, an editor, a program trace facility, and a debugger, but very
little is said about their nature or operation. It is expected that one or more extensive
programming environments will be built using CoMMON LIsP as a foundation, and
will be documented separately.
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1.2. Notational Conventions

A number of special notational conventions are used throughout this book.

1.2.1. Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit indication
to the contrary. (Decimal notation is normally taken for granted, of course.
Unfortunately, for certain other dialects of Lisp, MACLISP in particular, the default
notation for numbers is octal (base 8) rather than decimal, and so the use of decimal
notation for describing COMMON LISP is, taken in its historical context, a bit unusual!)

1.2.2. Nil, False, and the Empty List

In CoMMON Lisp, as in most Lisp dialects, the symbol nil is used to represent
both the empty list and the “false” value for Boolean tests. An empty list may, of
course, also be written (); this normally denotes the same object as nil. (It is
possible, by extremely perverse manipulation of the package system, to cause the
sequence of letters nil to be recognized not as the symbol that represents the empty
list but as another symbol with the same name. This obscure possibility will be
ignored in this manual.) These two notations may be used interchangeably as far
as the Lisp system is concerned. However, as a matter of style, this manual uses
the notation () when it is desirable to emphasize the use of an empty list, and uses
the notation nil when it is desirable to emphasize the use of the Boolean “false.”
The notation “nil (note the explicit quotation mark) is used to emphasize the use
of a symbol. For example:

(defun three () 3) ;Emphasize empty parameter list.
(append ‘() “()) > () ;Emphasize use of empty lists
(not nil) = t ;Emphasize use as Boolean “false”
(get ‘nil ‘color) ;Emphasize use as a symbol \

Any data object other than nil is construed to be Boolean “not false,” that is,
“true.” The symbol t is conventionally used to mean “true” when no other value
is more appropriate. When a function is said to “return false” or to “be false” in
some circumstance, this means that it returns nil. However, when a function is
said to “return frue” or to “be true” in some circumstance, this means that it returns
some value other than nil, but not necessarily t.

1.2.3. Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of code
normally results in a data object called the value produced by the code. The symbol
= is used in examples to indicate evaluation. For example,
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(+ 45) >9

means “the result of evaluating the code (+ 4 5) is (or would be, or would have
been) 1.”
The symbol — is used in examples to indicate macro expansion. For example,

(push x v) — (setf v (cons x v))

means “the result of expanding the macro-call form (push x v) is (setf v (cons
x v)).” This implies that the two pieces of code do the same thing; the second
piece of code is the definition of what the first does.

The symbol = is used in examples to indicate code equivalence. For example,

(ged x (gcd y z)) = (gcd (gcd x y) 2)

means “the value and effects of evaluating the form (gcd x (gcdyz)) are always
the same as the value and effects of (gcd (gcd x y) z) for any values of the
variables x, y, and z.” This implies that the two pieces of code do the same thing;
however, neither directly defines the other in the way macro expansion does.

1.2.4. Errors

When this manual specifies that it “is an error” for some situation to occur, this
means that:

* No valid ComMON Lisp program should cause this situation to occur.

* If this situation occurs, the effects and results are completely undefined as far
as adherence to the COMMON LisP specification is concerned.

* No ComMON Lisp implementation is required to detect such an error. Of course,
implementors are encouraged to provide for detection of such errors wherever
reasonable.

This is not to say that some particular implementation might not define the effects
and results for such a situation; the point is that no program conforming to the
CoMMoN Lisp specification may correctly depend on such effects or results.

On the other hand, if it is specified in this manual that in some situation “an
error is signalled,” this means that:

¢ If this situation occurs, an error will be signalled (see error and cerror).
* Valid COMMON LIsP programs may rely on the fact that an error will be si gnalled.
* Every CoMMON Lisp implementation is required to detect such an error.
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Table 1-1: Sample Function Description

sample-function argl arg2 soptional arg3 argd [Function]

The function sample-function adds together argl and arg2, and then muitiplies the result
by arg3. If arg3 is not provided or is ni1, the multiplication isn’t done. sample-function
then returns a list whose first element is this result and whose second element is arg4 (which
defaults to the symbol foo). For example:

(sample-function 3 4) > (? foo)
(sample-function 1 2 2 ‘bar) = (b bar)

In general, (sample-function x y) = (list (+ X y) ‘foo).

Table 1-2: Sample Variable Description

*sample-variable+ [Variable]

The variable *sample-variablex specifies how many times the special form sample-
special-form should iterate. The value should always be a non-negative integer or nil
(which means iterate indefinitely many times). The initial value is 0.

Table 1-3: Sample Constant Description

sample-constant [Constant]

The named constant sanple-constant has as its value the height of the terminal screen in
furlongs times the base-2 logarithm of the implementation’s total disk capacity in bytes, as
a floating-point number.

In places where it is stated that so-and-so “must” or “must not” or “may not”
be the case, then it “is an error” if the stated requirement is not met. For example,
if an argument “must be a symbol,” then it “is an error” if the argument is not a
symbol. In all cases where an error is to be signalled, the word “signalled” is
always used explicitly in this manual.

1.2.5. Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described
using a distinctive typographical format. Definition 1-1 illustrates the manner in
which CoMMON Lisp functions are documented. The first line specifies the name
of the function, the manner in which it accepts arguments, and the fact that it is a
function. If the function takes many arguments, then the names of the arguments
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Table 1-4: Sample Special Form Description

sample-special-form [name] ({var}*) {form}* [Special form]
This evaluates each form in sequence as an implicit progn, and does this as many times as
specified by the global variable *sample-variables. Each variable var is bound and
initialized to 43 before the first iteration, and unbound after the last iteration. The name
name, if supplied, may be used in a return-fron form to exit from the loop prematurely.
If the loop ends normally, sanple-special-form returns nil. For example:

(setq *sample-variablex 3)
(sample-special-forn () forml form2)

This evaluates forml, form2, forml, Sform2, forml, form2 in that order.

Table 1-5: Sample Macro Description

sample-macro var {tag | statement}* [Macro]

This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro x (return (+ x x))) = 8&
(sample-macro var . body) — (prog ((var 43)) . body)

may spill across two or three lines. The paragraphs following this standard header
explain the definition and uses of the function and often present examples or related
functions.

Sometimes two or more related functions are explained in a single combined
description. In this situation the headers for all the functions appear together,
followed by the combined description.

In general, actual code (including actual names of functions) appears in this
typeface: (cons a b). Names that stand for pieces of code (metavariables) are
written in ifalics. In a function description, the names of the parameters appear in
italics for expository purposes. The word soptional in the list of parameters
indicates that all arguments past that point are optional; the default values for the
parameters are described in the text. Parameter lists may also contain srest, in-
dicating that an indefinite number of arguments may appear, or skey, indicating
that keyword arguments are accepted. (The soptional/srest/skey syntax is ac-
tually used in CoMMON Lisp function definitions for these purposes.)

Definition 1-2 illustrates the manner in which a global variable is documented.
The first line specifies the name of the variable and the fact that it is a variable.
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Purely as a matter of convention, all global variables used by CoMMON Lisp have
names beginning and ending with an asterisk.

Definition 1-3 illustrates the manner in which a named constant is documented.
The first line specifies the name of the constant and the fact that it is a constant.
(A constant is just like a global variable, except that it is an error ever to alter its
value or to bind it to a new value.)

Definitions 1-4 and 1-5 illustrate the documentation of special forms and macros,
which are closely related in purpose. These are very different from functions.
Functions are called according to a single, specific, consistent syntax; the
soptional/srest/skey syntax specifies how the function uses its arguments in-
ternally, but does not affect the syntax of a call. In contrast, each special form or
macro can have its own idiosyncratic syntax. It is by special forms and macros
that the syntax of CoMMON LisP is defined and extended.

In the description of a special form or macro, an italicized word names a cor-
responding part of the form that invokes the special form or macro. Parentheses
stand for themselves, and should be written as such when invoking the special
form or macro. Brackets, braces, stars, plus signs, and vertical bars are metasyn-
tactic marks. Brackets, [ and ], indicate that what they enclose is optional (may
appear zero times or one time in that place); the square brackets should not be
written in code. Braces, { and }, simply parenthesize what they enclose, but may
be followed by a star, *, or a plus sign, +; a star indicates that what the braces
enclose may appear any number of times (including zero, that is, not at all),
whereas a plus sign indicates that what the braces enclose may appear any non-
zero number of times (that is, must appear at least once). Within braces or brackets,
a vertical bar, I, separates mutually exclusive choices. In summary, the notation
{x}* means zero or more occurrences of x, the notation {x}* means one or more
occurrences of x, and the notation [x] means zero or one occurrence of x. These
notations are also used for syntactic descriptions expressed as BNF-like productions,
as in Table 22-2.

In the last example in Definition 1-5, notice the use of dot notation. The dot
appearing in the expression (sample-macro var . body) means that the name
body stands for a list of forms, not just a single form, at the end of a list. This
notation is often used in examples.

1.2.6. The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this manual, nor to some
person reading Lisp code, but specifically to a LiSp procedure, namely the function
read, that reads characters from an input stream and interprets them by parsing as
representations of LISP objects.
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1.2.7. Overview of Syntax

Certain characters are used in special ways in the syntax of CoMMON Lisp. The
complete syntax is explained in detail in chapter 22, but a quick summary here
may be useful:

(

A left parenthesis begins a list of items. The list may contain any number of
items, including zero. Lists may be nested. For example, (cons (car X) (cdr
y)) is a list of three things, of which the last two are themselves lists.

A right parenthesis ends a list of items.

An acute accent (also called single quote or apostrophe) followed by an expression
form is an abbreviation for (quote form). Thus ‘foo means (quote foo)
and “(cons ‘a ‘b) means (quote (cons (quote a) (quote b))).
Semicolon is the comment character. It and all characters up to the end of the
line are discarded.

Double quotes surround character strings: *This isa th irty-nine character
string."™.

Backslash is an escape character. It causes the next character to be treated as
a letter rather than for its usual syntactic purpose. For example, a\( B denotes
a symbol whose name is consists of the three characters A, (, and B. Similarly,
“\"" denotes a character string containing one character, a double quote,
because the first and third double quotes serve to delimit the string, and the
second double quote serves as the contents of the string. The backslash causes
the second double quote to be taken literally, and prevents it from being
interpreted as the terminating delimiter of the string.

Vertical bars are used in pairs to surround the name (or part of the name) of
a symbol that has many special characters in it. It is roughly equivalent to
putting a backslash in front of every character so surrounded. For example,
{R(B)4, Bi(!B!)!, and A\ (B\) all mean the symbol whose name consists of
the four characters 2, (, B, and ).

The number sign signals the beginning of a complicated syntactic structure.
The next character designates the precise syntax to follow. For example, #0105
means 1055 (105 in octal notation); #x105 means 105, (105 in hexadecimal
notation); #b1011 means 1011, (1011 in binary notation); #\L denotes a char-
acter object for the character L; and # (a b ¢) denotes a vector of three elements
a, b, and c. A particularly important case is that # ‘fnmeans (function fin),
in a manner analogous to ‘form meaning (quote form).

Grave accent (‘‘backquote™) signals that the next expression is a template that

may contain commas. The backquote syntax represents a program that will
construct a data structure according to the template.
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Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example,
network:reset denotes the symbol named reset in the package named
network. A leading colon indicates a keyword, a symbol that always evaluates
to itself. The colon character is not actually part of the print name of the
symbol. This is all explained in chapter 11; until you read that, just keep in
mind that a symbol notated with a leading colon is in effect a constant that
evaluates to itself.

Brackets, braces, question mark, and exclamation point (that is, [, 1, {, }, 2,
and ) are not used for any purpose in standard COMMON Lisp syntax. These
characters are explicitly reserved to the user, primarily for use as macro characters
for user-defined lexical syntax extensions. See section 22.1.3.

All code in this manual is written using lowercase letters. COMMON LISP is
generally insensitive to the case in which code is written. Internally, names of
symbols are ordinarily converted to and stored in uppercase form. There are ways
to force case conversion on output if desired; see *print-case+. In this manual,
wherever an interactive exchange between a user and the Lisp system is shown,
the input is exhibited with lowercase letters and the output with uppercase letters.



Data Types

ComMON Lisp provides a variety of types of data objects. It is important to note
that in LIsp it is data objects that are typed, not variables. ‘Any variable can have
any LisP object as its value. (It is possible to make an explicit declaration that a
variable will in fact take on one of only a limited set of values. However, such a
declaration may always be omitted, and the program will still run correctly. Such
a declaration merely constitutes advice from the user that may be useful in gaining
efficiency. See declare.)

In CoMMON Lisp, a data type is a (possibly infinite) set of Lisp objects. Many
Lisp objects belong to more than one such set, and so it doesn’t always make sense
to ask what the type of an object is; instead, one usually asks only whether an
object belongs to a given type. The predicate typep may be used to ask whether
an object belongs to a given type, and the function type-of returns a type to which
a given object belongs.

The data types defined in COMMON Lisp are arranged into a hierarchy (actually
a partial order) defined by the subset relationship. Certain sets of objects, such as
the set of numbers or the set of strings, are interesting enough to deserve labels.
Symbols are used for most such labels (here, and throughout this book, the word
“symbol” refers to atomic symbols, one kind of Lisp object, elsewhere known as
literal atoms). See chapter 4 for a complete description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type, which
contains no objects, is denoted by nil. A type called common encompasses all the
data objects required by the CoMMON Lisp language. A COMMON Lisp implemen-
tation is free to provide other data types that are not subtypes of common.

The following categories of COMMON Lisp objects are of particular interest:
numbers, characters, symbols, lists, arrays, structures, and functions. There are
others as well. Some of these categories have many subdivisions. There are also
standard types defined to be the union of two or more of these categories. The
categories listed above, while they are data types, are neither more nor less “real”

11
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than other data types; they simply constitute a particularly useful slice across the
type hierarchy for expository purposes.

Here are brief descriptions of various COMMON LisP data types. The remaining

sections of this chapter go into more detail, and also describe notations for objects
of each type. Descriptions of Lisp functions that operate on data objects of each
type appear in later chapters.

Numbers are provided in various forms and representations. COMMON LISP pro-
vides a true integer data type: any integer, positive or negative, has in principle
a representation as a COMMON Lisp data object, subject only to total memory
limitations (rather than machine word width). A true rational data type is pro-
vided: the quotient of two integers, if not an integer, is a ratio. Floating-point
numbers of various ranges and precisions are also provided, as well as Cartesian
complex numbers.

Characters represent printed glyphs such as letters or text formatting operations.
Strings are one-dimensional arrays of characters. COMMON Lisp provides for a
rich character set, including ways to represent characters of various type styles.

Symbols (sometimes called atomic symbols for emphasis or clarity) are named
data objects. Lisp provides machinery for locating a symbol object, given its
name (in the form of a string). Symbols have property lists, which in effect
allow symbols to be treated as record structures with an extensible set of named
components, each of which may be any Lisp object. Symbols also serve to name
functions and variables within programs.

Lists are sequences represented in the form of linked cells called conses. There
is a special object (the symbol nil) that is the empty list. All other lists are built
recursively by adding a new element to the front of an existing list. This is done
by creating a new cons, which is an object having two components called the
car and the cdr. The car may hold anything, and the cdr is made to point to the
previously existing list. (Conses may actually be used completely generally as
two-element record structures, but their most important‘use is to represent lists.)

Arrays are dimensioned collections of objects. An array can have any non-negative
number of dimensions and is indexed by a sequence of integers. A general array
can have any LIsP object as a component; other types of arrays are specialized
for efficiency and can hold only certain types of LISP objects. It is possible for
two arrays, possibly with differing dimension information, to share the same set
of elements (such that modifying one array modifies the other also) by causing
one to be displaced to the other. One-dimensional arrays of any kind are called
vectors. One-dimensional arrays of characters are called strings. One-dimensional
arrays of bits (that is, of integers whose values are 0 or 1) are called bit-vectors.
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* Hash tables provide an efficient way of mapping any LisP object (a key) to an
associated object.

* Readtables are used to control the built-in expression parser read.

* Packages are collections of symbols that serve as name spaces. The parser rec-
ognizes symbols by looking up character sequences in the current package.

* Pathnames represent names of files in a fairly implementation-independent man-
ner. They are used to interface to the external file system.

* Streams represent sources or sinks of data, typically characters or bytes. They
are used to perform I/O, as well as for internal purposes such as parsing strings.

* Random-states are data structures used to encapsulate the state of the built-in
random-number generator.

* Structures are user-defined record structures, objects that have named compo-
nents. The defstruct facility is used to define new structure types. Some COMMON
Lisp implementations may choose to implement certain system-supplied data
types, such as bignums, readtables, streams, hash tables, and pathnames, as
structures, but this fact will be invisible to the user.

* Functions are objects that can be invoked as procedures; these may take argu-
ments and return values. (All LisP procedures can be construed to return values
and therefore every procedure is a function.) Such objects include com-
piled-functions (compiled code objects). Some functions are represented as a list
whose car is a particular symbol such as lanbda. Symbols may also be used as
functions.

These categories are not always mutually exclusive. The required relationships
among the various data types are explained in more detail in section 2.15.

2.1. Numbers

Several kinds of numbers are defined in CoMMON Lisp. They are divided into
integers; ratios;, floating-point numbers, with names provided for up to four different
floating-point representations; and complex numbers.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most
programming languages, COMMON LIsP in principle imposes no limit on the magnitude
of an integer; storage is automatically allocated as necessary to represent large
integers.
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In every CoMMON Lisp implementation there is a range of integers that are
represented more efficiently than others; each such integer is called a fixnum, and
an integer that is not a fixnum is called a bignum. CoMMON Lisp is designed to
hide this distinction as much as possible; the distinction between fixnums and
bignums is visible to the user in only a few places where the efficiency of repre-
sentation is important. Exactly which integers are fixnums is implementa-
tion-dependent; typically they will be those integers in the range —2" to 2" —1,
inclusive, for some n not less than 15. See most-positive-fixnum and
most-negative-fixnunm.

Integers are ordinarily written in decimal notation, as a sequence of decimal
digits, optionally preceded by a sign and optionally followed by a decimal point.
For example:

0 ;Zero
-0 ; This always means the same as 0
+b ; The first perfect number
28 ; The second perfect number
1024. ; Two to the tenth power
-1 ; e’rri
15511210043330965984000000. ;25 factorial (25!), probably a bignum

Compatibility note: MacLisp and ZeTaLisp normally assume that integers are written in
octal (radix-8) notation unless a decimal point is present. INTERLISP assumes integers are
written in decimal notation and uses a trailing ¢ to indicate octal radix; however, a decimal
point, even in trailing position, always indicates a floating-point number. This is of course
consistent with FORTRAN. ADA does not permit trailing decimal points, but instead requires
them to be embedded. In CommMON Lisp, integers written as described above are always
construed to be in decimal notation, whether or not the decimal point is present; allowing
the decimal point to be present permits compatibility with MAcLIsp.

Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRrddddd

means the integer in radix-nn notation denoted by the digits ddddd. More precisely,
one may write #, a non-empty sequence of decimal digits representing an unsigned
decimal integer n, r (or R), an optional sign, and a sequence of radix-» digits, to
indicate an integer written in radix n (which must be between 2 and 36, inclusive).
Only legal digits for the specified radix may be used; for example, an octal number
may contain only the digits O through 7. For digits above 9, letters of the alphabet
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“of either case may be used in order. Binary, octal, and hexadecimal radices are
! . . .

useful enough to warrant the special abbreviations #b for #2r, #o for #8r, and #x

for #1tr. For example:

#2r11010101 ; Another way of writing 213 decimal
#b11010101 ; Ditto
#b+11,010101 ; Ditto
#0325 ;Ditto, in octal radix
#xDS ; Ditto, in hexadecimal radix
#1br+DS ; Ditto
#0-300 ;Decimal — 192, written in base 8
#3r-21010 ;Same thing in base 3
#25R-7H ;Same thing in base 25
#XACCEDED ; 181202413, in hexadecimal radix

2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers
and ratios collectively constitute the type rational. The canonical representation
of a rational number is as an integer if its value is integral, and otherwise as the
ratio of two integers, the numerator and denominator, whose greatest common
divisor is one, and of which the denominator is positive (and in fact greater than
1, or else the value would be integral). A ratio is notated with / as a separator,
thus: 3/5. It is possible to notate ratios in non-canonical (unreduced) forms, such
as 4/, but the Lisp function prini always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such that the
denominator evenly divides the numerator, then the result is immediately converted
to the equivalent integer. This is called the rule of rational canonicalization.

Rational numbers may be written as the possibly signed quotient of decimal
numerals: an optional sign followed by two non-empty sequences of digits separated
by a /. This syntax may be described as follows:

ratio ::= [sign] {digit}* / {digit}*

The second sequence may not consist entirely of zeros. For example:

2/3 ; This is in canonical form

4/6 ; A non-canonical form for the same number
-17/23 ;A not very interesting ratio
-30517578125/32764 ; This is (—5/2)!5

10/5 ; The canonical form for this is 2
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To notate rational numbers in radices other than ten, one uses the same radix
specifiers (one of #nnRr, #0, #B, or #x) as for integers. For example:

#0-101/75 ; Octal notation for -&5/61

#3rl20/21 ; Ternary notation for 15/7

#Xbc/ad ; Hexadecimal notation for 1887173
#XFADED/FACADE ; Hexadecimal notation for 1027565/16435934

2.1.3. Floating-Point Numbers

CoMMON Lisp allows an implementation to provide one or more kinds of floating-point
number, which collectively make up the type float. A floating-point number is a
(mathematical) rational number of the form sf-b°~7, where s is +1 or —1, the
sign; b is an integer greater than 1, the base or radix of the representation; p is a
positive integer, the precision (in base-b digits) of the floating-point number; f is
a positive integer between b? ! and b” — 1 (inclusive), the significand; and e is an
integer, the exponent. The value of p and the range of e depends on the implementation
and on the type of floating-point number within that implementation. In addition,
there is a floating-point zero; depending on the implementation, there may also be
a “minus zero.” If there is no minus zero, then 0.0 and -0.0 are both interpreted
as simply a floating-point zero.

Implementation note: The form of the above description should not be construed to require
the internal representation to be in sign-magnitude form. Two’s-complement and other rep-
resentations are also acceptable. Note that the radix of the internal representation may be
other than 2, as on the 1BM 360 and 370, which use radix 16; see float-radix.

Floating-point numbers may be provided in a variety of precisions and sizes,
depending on the implementation. High-quality floating-point software tends to
depend critically on the precise nature of the floating-point arithmetic, and so may
not always be completely. portable. To aid in writing programs that are moderately
portable, however, certain definitions are made here:

A short floating-point number (type short-float) is of the representation of
smallest fixed precision provided by an implementation.

* A long floating-point number (type long-float) is of the representation of the
largest fixed precision provided by an implementation.

+ Intermediate between short and long formats are two others, arbitrarily called
single and double (types single-float and double-float).
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Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Formar Minimum Precision Minimum Exponent Size
Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

The precise definition of these categories is implementation-dependent. However,
the rough intent is that short floating-point numbers be precise to at least four
decimal places or so (but also have a space-efficient representation); single float-
ing-point numbers, to at least seven decimal places; and double floating-point
numbers, to at least fourteen decimal places. It is suggested that the precision
(measured in “bits,” computed as p log,b) and the exponent size (also measured
in “bits,” computed as the base-2 logarithm of one plus the maximum exponent
value) be at least as great as the values in Table 2-1.

Floating-point numbers are written in either decimal fraction or computerized
scientific notation: an optional sign, then a non-empty sequence of digits with an
embedded decimal point, then an optional decimal exponent specification. If there
is no exponent specifier, then the decimal point is required, and there must be
digits after it. The exponent specifier consists of an exponent marker, an optional
sign, and a non-empty sequence of digits. For preciseness, here is a modified-BNF
description of floating-point notation.

floating-point-number : := [sign] {digit}* decimal-point {digit}* [exponent]
| [sign] {digit}* [decimal-point {digit}*] exponent

sign z:= + | -

decimal-point ::= .

digit ::= o|1|alala]|s|c|2|a]a

exponent : : = exponent-marker [sign] {digit}*

exponent-marker ::= e|s|t|al1|e|s|r|p]|L

If no exponent specifier is present, or if the exponent marker e (or E) is used, then
the precise format to be used is not specified. When such a representation is read
and converted to an internal floating-point data object, the format specified by the
variable *read-default-float-format# is used; the initial value of this variable
iS'single-float.

The letters s, £, d, and 1 (or their respective uppercase equivalents) explicitly
specify the use of short, single, double, and long format, respectively.
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Examples of floating-point numbers:

0.0 ; Floating-point zero in default format
OEOD ; Also floating-point zero in default format
-.0 ; This may be a zero or a minus zero,

; depending on the implementation
o. ; The integer zero, not a floating-point zero!
0.0sO ;A floating-point zero in short format
0s0 ; Also a floating-point zero in short format
3.141592653589793238440 ; A double-format approximation to
t.02E+23 ; Avogadro’s number, in default format
EO2E+21 ; Also Avogadro’s number, in default format
3.1010299957£-1 ;logo 2, in single format
-0.000000001s9 ;€™ in short format, the hard way

The internal format used for an external representation depends only on the
exponent marker, and not on the number of decimal digits in the external repre-
sentation.

While COMMON LisP provides terminology and notation sufficient to accom-
modate four distinct floating-point formats, not all implementations will have the
means to support that many distinct formats. An implementation is therefore per-
mitted to provide fewer than four distinct internal floating-point formats, in which
case at least one of them will be “shared” by more than one of the external format
names short, single, double, and long according to the following rules:

* If one internal format is provided, then it is considered to be single, but serves
also as short, double, and long. The data types short-float, single-float,
double-float, and long-float are considered to be identical. An expression
such as (eql 1.0s01.040) will be true in such an implementation because the
two numbers 1.0s0 and 1.040 will be converted into the same internal format
and therefore be considered to have the same data type, despite the differing
external syntax. Similarly, (typep 1.0LO “short-float) will be true in such
an implementation. For output purposes all floating-point numbers are assumed
to be of single format, and so will print using the exponent letter £ or F.

+ If two internal formats are provided, then either of two correspondences may be
used, depending on which is the more appropriate:

* One format is short; the other is single and serves also as double and long.
The data types single-float, double-float, and long-float are consid-
ered to be identical, but short-float is distinct. An expression such as (eql
1.0s0 1.0d0) will be false, but (eql 1.0£0 1.040) will be true. Similarly,
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(typep1.0LD “short-float) will be false, but (typep 1.0LD ‘single-float)
will be true. For output purposes all floating-point numbers are assumed to
be of short or single format.

* One format is single and serves also as short; the other is double and serves
also as long. The data types short-float and single-float are considered
to be identical, and the data types double-float and long-float are con-
sidered to be identical. An expression such as (eql 1.0s0 1.040) will be
false, as will (eql 1.0f0 1.0d0); but (eql 1.040 1.0L0) will be true.
Similarly, (typep 1.0LD ‘short-float) will be false, but (typep 1.0LD
"double-float) will be true. For output purposes all floating-point numbers
are assumed to be of single or double format.

* If three internal formats are provided, then either of two correspondences may
be used, depending on which is the more appropriate:
* One format is short; another format is single; and the third format is double
and serves also as long. Similar constraints apply.

* One format is single and serves also as short; another is double; and the third
format is long.

Implementation note: It is recommended that an implementation provide as many distinct
floating-point formats as feasible, given Table 2-1 as a guideline. Ideally, short-format
floating-point numbers should have an “immediate” representation that does not require heap
allocation; single-format floating-point numbers should approximate IEEE proposed standard
single-format floating-point numbers; and double-format floating-point numbers should ap-
proximate IEEE proposed standard double-format floating-point numbers [9, 5, 6].

2.1.4. Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with a real
part and an imaginary part each of which is a non-complex number (integer, ratio,
or floating-point number). It should be emphasized that the parts of a complex
number are not necessarily floating-point numbers; in this, COMMON Lisp is like
PL/I and differs from FORTRAN. However, both parts must be of the same type:
either both are rational, or both are of the same floating-point format.

Complex numbers may be notated by writing the characters #c followed by a
list of the real and imaginary parts. If the two parts as notated are not of the same
type, then they are converted according to the rules of floating-point contagion as
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described in chapter 12. (Indeed, #c(a b) is equivalent to #; (complex a b); see
the description of the function complex.) For example:

#C(3.0s1 2.0s-1)

#C(5 -3) ;A Gaussian integer
#C(5/3 7.0) ; Will be converted internally to #C(1.666b6 7.0)
#C(0 1) ; The imaginary unit, that is, i

The type of a specific complex number is indicated by a list of the word complex
and the type of the components; for example, a specialized representation for
complex numbers with short floating-point parts would be of type (complex
short-float). The type complex encompasses all complex representations.

A complex number of type (complex rational), thatis, one whose components
are rational, can never have a zero imaginary part. If the result of any computation
would be a complex rational with a zero imaginary part, the result is immediately
converted to a non-complex rational number by taking the real part. This is called
the rule of complex canonicalization. This rule does not apply to complex numbers
whose parts are floating-point numbers; #c(5.0 0.0) and 5.0 are different.

2.2. Characters

Characters are represented as data objects of type character. There are two subtypes
of interest, called standard-char and string-char.

A character object can be notated by writing #\ followed by the character itself.
For example, #\g means the character object for a lowercase g. This works well
enough for printing characters. Non-printing characters have names, and can be
notated by writing #\ and then the name; for example, #\Space (or #\SPACE or
#\space Or #\sPaCE) means the space character. The syntax for character names
after #\ is the same as that for symbols. However, only character names that are
known to the particular implementation may be used.

2.2.1. Standard Characters

ComMMON Lisp defines a “standard character set” (subtype standard-char) for two
purposes. COMMON Lisp programs that are written in the standard character set
can be read by any COMMON Lisp implementation; and COMMON LISP programs
that use only standard characters as data objects are most likely to be portable. The
CoMMON Lisp character set consists of a space character #\Space, a newline
character #\Newline, and the following ninety-four non-blank printing characters
or their equivalents:
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P #3538 ¢ ) *+ , - . /D012345¢L 7 89 :; ¢<=>7?
@ABCDEFGHIUJKTL MNOPQRSTUVWIXXY?Z AN
‘abcdefghijklmnopqrstuvwxyz{:}’"

The CoMMON Lisp standard character set is apparently equivalent to the ninety-five
standard ASCII printing characters plus a newline character. Nevertheless, COMMON
Lisp is designed to be relatively independent of the ASCII character encoding. For
example, the collating sequence is not specified except to say that digits must be
properly ordered, the uppercase letters must be properly ordered, and the lowercase
letters must be properly ordered (see char< for a precise specification). Other
character encodings, particularly EBCDIC, should be easily accommodated (with
a suitable mapping of printing characters).

Of the ninety-four non-blank printing characters, the following are used in only
limited ways in the syntax of COMMON Lisp programs:

L1 {r?21~_~33

All of these characters except ! and _ are used within fornat strings as formatting
directives. Except for this, [, 1, <, }, 2, and ! are not used in CoMMON Lisp and
are reserved to the user for syntactic extensions; ~ and _ are not yet used in
CoMMoON Lisp, but are part of the syntax of reserved tokens, and are reserved to
implementors; ~ is not yet used in COMMON LisPp, and is reserved to implementors;
and $ and % are normally regarded as alphabetic characters, but are not used in the
names of any standard COMMON Lisp functions, variables, or other entities.
The following characters are called semi-standard:

#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of ComMMON Lisp need to support them; but those
implementations that use the standard ASCII character set should support them,
treating them as corresponding respectively to the ASCII characters Bs (octal code
010), Hr (011), LF (012), FF (014), CR (015), and DEL (177). These characters are
not members of the subtype standard-char unless synonymous with one of the
standard characters specified above. For example, in a given implementation it
might be sensible for the implementor to define #\Linefeed or #\Return to be
synonymous with #\Newline, or #\Tab to be synonymous with #\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing
portable software, simply because there is so little agreement among operating
systems. Some use a single character to delimit lines; the recommended ASCII
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character for this purpose is the line feed character LF (also called the new line
character, NL), but some systems use the carriage return character CR. Much more
common is the two-character sequence cr followed by LF. Frequently line divisions
have no representation as a character but are implicit in the structuring of a file
into records, each record containing a line of text. A deck of punched cards has
this structure, for example.

ComMON Lisp provides an abstract interface by requiring that there be a single
character, #\Newline, that within the language serves as a line delimiter. (The
language C has a similar requirement.) An implementation of CoMMON LISP must
translate between this internal single-character representation and whatever external
representation(s) may be used.

Implementation note: How the character called #\Newline is represented internally is not
specified here, but it is strongly suggested that the ASCII LF character be used in COMMON
Lisp implementations that use the ASCII character encoding. The ASCII cr character is a
workable, but in most cases inferior, alternative.

The requirement that a line division be represented as a single character has
certain consequences. A character string written in the middle of a program in such
a way as to span more than one line must contain exactly one character to represent
each line division. Consider this code fragment:

(setq a-string "This string
contains
forty-two characters.™)

Between g and c there must be exactly one character, #\Newline; a two-character
sequence, such as #\Return and then #\Newline, is not acceptable, nor is the
absence of a character. The same is true between s and £.

When the character #\Newline is written to an output file, the CoMMON Lisp
implementation must take the appropriate action to produce a line division. This
might involve writing out a record or translating #\Newline to a CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding, uses the
CR/LF sequence externally to delimit lines, uses LF to represent #\Newline internally, and
supports #\Return as a data object corresponding to the ASCII character CRr, the ques-
tion arises as to what action to take when the program writes out #\Return followed by
#\Newline. It should first be noted that #\Return is not a standard CommON Lisp character,
and the action to be taken when #\Return is written out is therefore not defined by the
CoMMON Lisp language. A plausible approach is to buffer the #\Return character, and
suppress it if and only if the next character is #\Newline (the net effect is to generate a
CR/LF sequence). Another plausible approach is simply to ignore the difficulty and declare
that writing #\Return and then #\Newline results in the sequence CR/CR/LF in the output.
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2.2.3. Non-standard Characters

Any implementation may provide additional characters, whether printing characters
or named characters. Some plausible examples:

#\TT £\ #\Break #\Home-Up #\Escape

The use of such characters may render COMMON LISP programs non-portable.

2.2.4 Character Attributes

Every object of type character has three attributes: code, bits, and font. The code
attribute is intended to distinguish among the printed glyphs and formatting functions
for characters; it is a numerical encoding of the character proper. The bits attribute
allows extra flags to be associated with a character. The font attribute permits a
specification of the style of the glyphs (such as italics). Each of these attributes
may be understood to be a non-negative integer.

The font attribute may be notated in unsigned decimal notation between the #
and the \. For example, #3\a means the letter a in font 3. This might mean the
same thing as #\« if font 3 were used to represent Greek letters. Note that not all
CoMMON Lisp implementations provide for non-zero font attributes; see
char-font-limit.

The bits attribute may be notated by preceding the name of the character by the
names or initials of the bits, separated by hyphens. The character itself may be
written instead of the name, preceded if necessary by \. For example:

#\Control-Meta-Return #\Meta-Control-Q
#\Hyper-Space #\Meta-\a
#\Control-A #\Meta-Hyper-\:
#\C-M-Return #\Hyper-\m

Note that not all CoMMON Lisp implementations provide for non-zero bits attributes;
8€€ char-bits-limit. '

2.2.5. String Characters

Any character whose bits and font attributes are zero may be contained in strings.
All such characters together constitute a subtype of the characters; this subtype is
called string-char.

2.3. Symbols

Symbols are Lisp data objects that serve several purposes and have several interesting
characteristics. Every object of type symbol has a name, called its print name.
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Given a symbol, one can obtain its name in the form of a string. Conversely, given
the name of a symbol as a string one can obtain the symbol itself. (More precisely,
symbols are organized into packages, and all the symbols in a package are uniquely
identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By convention this
is always a list whose even-numbered components (calling the first component
zero) are symbols, here functioning as property names, and whose odd-numbered
components are associated property values. Functions are provided for manipu-
lating this property list; in effect, these allow a symbol to be treated as an extensible
record structure.

Symbols are also used to represent certain kinds of variables in Lisp programs,
and there are functions for dealing with the values associated with symbols in this
role.

A symbol can be notated simply by writing its name. If its name is not empty,
and if the name consists only of uppercase alphabetic, numeric, or certain
“pseudo-alphabetic” special characters (but not delimiter characters such as paren-
theses or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name. Any
uppercase letters that appear in the (internal) name may be written in either case
in the external notation (more on this below). For example:

FROBBOZ ; The symbol whose name is FROBBOZ
frobboz ; Another way to notate the same symbol
fRObBOZ ; Yet another way to notate it
unwind-protect ;A symbol with a - in its name
+$ ; The symbol named +$
1+ ; The symbol named 1+
+1 ; This is the integer 1, not a symbol.
pascal_style ; This symbol has an underscore in its name.
br2-4raxc ;This is a single symbol!

; It has several special characters in its name.
file.rel.43 ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

In addition to letters and numbers, the following characters are normally considered
to be “alphabetic” for the purposes of notating symbols:

+ - % /@5 ZF & _ N>

Some of these characters have conventional purposes for naming things; for ex-
ample, symbols that name special variables generally have names beginning and
ending with . The last character listed above, the period, is considered alphabetic
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provided that a token does not consist entirely of periods. A single period standing
by itself is used in the notation of conses and dotted lists; a token consisting of
two or more periods is syntactically illegal. (The period also serves as the decimal
point in the notation of numbers.)

The following characters are also alphabetic by default, but are explicitly re-
served to the user for definition as reader macro characters (see section 22.1.3) or
any other desired purpose, and therefore should not be used routinely in names of
symbols:

2L 0Y {0y

A symbol may have uppercase letters, lowercase letters, or both in its print
name. However, the Lisp reader normally converts lowercase letters to the corre-
sponding uppercase letters when reading symbols. The net effect is that most of
the time case makes no difference when notating symbols. Case does make a
difference internally and when printing a symbol. Internally the symbols that name
all standard CoMMON Lisp functions, variables, and keywords have uppercase
names; their names appear in lower case in this manual for readability. Typing
such names with lowercase letters works because the function read will convert
lowercase letters to the equivalent uppercase letters.

If a symbol cannot be simply notated by the characters of its name because the
(internal) name contains special characters or lowercase letters, then there are two
“escape” conventions for notating them. Writing a \ character before any character
causes the character to be treated itself as an ordinary character for use in a symbol
name; in particular, it suppresses internal conversion of lowercase letters to their
uppercase equivalents. If any character in a notation is preceded by \, then that
notation can never be interpreted as a number. For example:

\( ; The symbol whose name is (

\+1 ; The symbol whose name is +1

+\1 ; Also the symbol whose name is +1

\frobboz ; The symbol whose name is £ROBB0Z
3.14159265\s0 ; The symbol whose name is 3.141592L5s0
3.14159265\s0 ;A different symbol, whose name is 3.1415926550
3.14159265s0 ;A short-format floating-point approximation to
APLA\3LD ; The symbol whose name is apL\350

apl\\350 ; Also the symbol whose name is apL\3t0
\N(b*2\)\ -\ 4xaxc ; The name is (B~2) - 4+nscC.

i It has parentheses and two spaces in it.
V(\b"2\)\ -\ 4x\ax*\c  ;The name is (b~2) - 4raxc.
;  The letters are explicitly lowercase.
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It may be tedious to insert a \ before every delimiter character in the name of a
symbol if there are many of them. An alternative convention is to surround the
name of a symbol with vertical bars; these cause every character between them to
be taken as part of the symbol’s name, as if \ had been written before each one,

excepting only ¢ itself and \, which must nevertheless be preceded by \. For
example:

"t ; The same as writing \*

(b*2) - 4raxc! ;The name is (b*2) - 4*axc
{frobboz! ; The name is frobboz, not FROBBOZ
{APL\3LD! ; The name is APL3L0O, because
; the \ quotes the 3
{APLA\3GO! ; The name is APL\3&0O
tapl\\3&0! ; The name is ap1\3&0
AN AN ;Same as \i\i: the name is ¢
1(B"2) - 4*Ax*C! ;The name is (B~2) - 4+*A*C.
; It has parentheses and two spaces in it.
1(b"2) - 4xaxc! ; The name is (b”*2) - 4+axc.

2.4. Lists and Conses

A cons is a record structure containing two components called the car and the cdr.
Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose cdr
component is a list. A list is therefore a chain of conses linked by their cdr
components and terminated by nil, the empty list. The car components of the
conses are called the elements of the list. For each element of the list there is a
cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank
space (space, tab, or return characters), and surrounded by parentheses. For ex-
ample:

(a b c) ; A list of three symbols
(2.0s0 (a 1) #\*) ; A list of three things: a short floating-point
; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no
clements.

A dotted list is one whose last cons does not have nil for its cdr, rather some
other data object (which is also not a cons, or the first-mentioned cons would not
be the last cons of the list). Such a list is called “dotted” because of the special
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notation used for it: the elements of the list are written between parentheses as
before, but after the last element and before the right parenthesis are written a dot
(surrounded by blank space) and then the cdr of the last cons. As a special case,
a single cons is notated by writing the car and the cdr between parentheses and
separated by a space-surrounded dot. For example:

(a . 4) ;A cons whose car is a symbol
; and whose cdr is an integer
(abc . d ; A dotted list with three elements whose last cons

; has the symbol 4 in its cdr

Compatibility note: In MacLisp, the dot in dotted-list notation need not be surrounded by

white space or other delimiters. The dot is required to be delimited in CoMMON Lisp, as in
ZETALIsp.

It is legitimate to write something like (a b . (c a) y; this means the same as
(abcd). The standard Lisp output routines will never print a list in the first
form, however; they will avoid dot notation wherever possible.

Often the term list is used to refer either to true lists or to dotted lists. When
the distinction is important, the term “true list” will be used to refer to a list
terminated by nil. Most functions advertised to operate on lists expect to be given
true lists. Throughout this manual, unless otherwise specified, it is an error to pass
a dotted list to a function that is specified to require a list as an argument.

Implementation note: Implementors are encouraged to use the equivalent of the predicate
endp wherever it is necessary to test for the end of a list. Whenever feasible, this test should
explicitly signal an error if a list is found to be terminated by a non-nil atom. However,
such an explicit error signal is not required, because some such tests occur in important
loops where efficiency is important. In such cases, the predicate aton may be used to test
for the end of the list, quietly treating any non-nil list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other conses
transitively accessible to it through car and cdr links until non-conses are reached;
these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply
useful points of view about structures of conses. There are yet other terms, such
as association list. None of these are true Lisp data types. Conses are a data type,
and nil is the sole object of type nu11. The Lisp data type list is taken to mean
the union of the cons and null data types, and therefore encompasses both true
lists and dotted lists.
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2.5. Arrays

An array is an object with components arranged according to a Cartesian coordinate
system. In general, these components may be any Lisp data objects.

The number of dimensions of an array is called its rank (this terminology is
borrowed from APL); the rank is a non-negative integer. Likewise, each dimension
is itself a non-negative integer. The total number of elements in the array is the
product of all the dimensions.

An implementation of COMMON Lisp may impose a limit on the rank of an array,
but this limit may not be smaller than 7. Therefore, any COMMON Lisp program
may assume the use of arrays of rank 7 or less. (A program may determine the
actual limit on array ranks for a given implementation by examining the constant
array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other prop-
erties of the array, such as the dimensions themselves, may be used. If the rank is
zero, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the se-
quence must equal the rank of the array. Each index must be a non-negative integer
strictly less than the corresponding array dimension. Array indexing is therefore
zero-origin, not one-origin as in (the default case of) FORTRAN.

As an example, suppose that the variable foo names a 3-by-5 array. Then the
first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3, or 4. One
may refer to array elements using the function aref; for example, (aref foo
2 1) refers to element (2, 1) of the array. Note that aref takes a variable number
of arguments: an array, and as many indices as the array has dimensions. A zero-rank
array has no dimensions, and therefore aref would take such an array and no
indices, and return the sole element of the array.

In general, arrays can be multidimensional, can share their contents with other
array objects, and can have their size altered dynamically (either enlarging or
shrinking) after creation. A one-dimensional array may also have a fill pointer.

Multidimensional arrays store their components in row-major order; that is, in-
ternally a multidimensional array is stored as a one-dimensional array, with the
multidimensional index sets ordered lexicographically, last index varying fastest.
This is important in two situations: (1) when arrays with different dimensions share
their contents, and (2) when accessing very large arrays in a virtual-memory im-
plementation. (The first situation is a matter of semantics; the second, a matter of
efficiency.)

An array that is not displaced to another array, has no fill pointer, and is not to
have its size adjusted dynamically after creation is called a simple array. The user
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may provide declarations that certain arrays will be simple. Some implementations
can handle simple arrays in an especially efficient manner; for example, simple
arrays may have a more compact representation than non-simple arrays.

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON Lisp and constitute the type
vector (which is therefore a subtype of array). Vectors and lists are collectively
considered to be sequences. They differ in that any component of a one-dimensional
array can be accessed in constant time, whereas the average component access
time for a list is linear in the length of the list; on the other hand, adding a new
element to the front of a list takes constant time, whereas the same operation on
an array takes time linear in the length of the array.

A general vector (a one-dimensional array that can have any data object as an
element, but has no additional paraphernalia) can be notated by notating the com-
ponents in order, separated by whitespace and surrounded by #( and ). For example:

#(a b c) ;A vector of length 3
#(2 357 11 13 1?7 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50
#() ;An empty vector

Note that when the function read parses this syntax, it always constructs a simple
general vector, '

Rationale: Many people have suggested that brackets be used to notate vectors, as [a b c3
instead of #(a b c). This notation would be shorter, perhaps more readable, and certainly
in accord with cultural conventions in other parts of computer science and mathematics.
However, to preserve the usefulness of the user-definable macro-character feature of the
function read, it is necessary to leave some characters to the user for this purpose. Expe-
rience in MACLIsP has shown that users, especially implementors of languages for use in
artificial intelligence research, often want to define special kinds of brackets. Therefore
ComMoN Lisp avoids using brackets and braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays for
efficiency in the case where all the components are of the same specialized (typi-
cally numeric) type. All implementations provide specialized arrays for the cases
when the components are characters (or rather, a special subset of the characters);
the one-dimensional instances of this specialization are called strings. All imple-
mentations are also required to provide specialized arrays of bits, that is, arrays of
type (array bit); the one-dimensional instances of this specialization are called
bit-vectors.
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2.5.2. Strings

A string is simply a vector of characters. More precisely, a string is a specialized
vector whose elements are of type string-char. The type string is therefore a
subtype of the type vector. A string can be written as the sequence of characters
contained in the string, preceded and followed by a * (double quote) character.
Any " or \ character in the sequence must additionally have a \ character before
“it. For example:

"Foo" ; A string with three characters in it
nu ;An empty string

"\"APL\\3L0?\" he cried." ; A string with twenty characters
"ixl o= d-xiv ;A ten-character string

Notice that any vertical bar i in a string need not be preceded by a \. Similarly,
any double quote in the name of a symbol written using vertical-bar notation need
not be preceded by a \. The double-quote and vertical-bar notations are similar but
distinct: double quotes indicate a character string containing the sequence of characters,
whereas vertical bars indicate a symbol whose name is the contained sequence of
characters.

The characters contained by the double quotes, taken from left to right, occupy
locations within the string with increasing indices. The leftmost character is string
element number 0, the next one is element number 1, and so on.

Note that the function prini will print any character vector (not just a simple
one) using this syntax, but the function read will always construct a simple string
when it reads this syntax.

2.5.3 Bit-Vectors

A bit-vector can be written as the sequence of bits contained in the string, preceded
by #+; any delimiter character, such as whitespace, will terminate the bit-vector
syntax. For example:

#+10110 ; A five-bit bit-vector; bit 0 is a 1
#4 ;An empty bit-vector

The bits notated following the #+, taken from left to right, occupy locations within
the bit-vector with increasing indices. The leftmost notated bit is bit-vector element
number 0, the next one is element number 1, and so on.

The function prin1 will print any bit-vector (not just a simple one) using this
syntax, but the function read will always construct a simple bit-vector when it
reads this syntax.
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2.6. Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key) to an
associated object. They are provided as primitives of COMMON LIsP because some
implementations may need to use internal storage management strategies that would
make it very difficult for the user to implement hash tables himself in a portable
fashion. Hash tables are described in chapter 16.

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the Lisp
expression parser. In particular, a readtable indicates for each character with syntax
macro character what its macro definition is. This is a mechanism by which the
user may reprogram the parser to a limited but useful extent. See section 22.1.5.

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes
symbols by looking up character sequences in the current package. Packages can
be used to hide names internal to a module from other code. Mechanisms are
provided for exporting symbols from a given package to the primary “user” package.
See chapter 11.

2.9. Pathnames

Pathnames are the means by which a COMMON LIsP program can interface to an
external file system in a reasonably implementation-independent manner. See section
23.1.1.

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all
functions that perform I/O do so with respect to a specified stream. The function
open takes a pathname and returns a stream connected to the file specified by the
pathname. There are a number of standard streams that are used by default for
various purposes. See chapter 21.

2.11. Random-States

An object of type random-state is used to encapsulate state information used by
the pseudo-random number generator. For more information about randon-state
objects, see section 12.9.
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2.12, Structures

Structures are instances of user-defined data types that have a fixed number of
named components. They are analogous to records in PASCAL. Structures are declared
using the defstruct construct; defstruct automatically defines access and
constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure
type may specify a print procedure to use for objects of that type (see the
:print-function option to defstruct). The default notation for structures is:

#S (Structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2
<)

where #s indicates structure syntax, structure-name is the name (a symbol) of the
structure type, each slot-name is the name (also a symbol) of a component, and
each corresponding slot-value is the representation of the Lisp object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall or apply function,
and is to be executed as code when arguments are supplied.

A compiled-function is a compiled code object.

A lambda-expression (a list whose car is the symbol lanbda) may serve as a
function. Depending on the implementation, it may be possible for other lists to
serve as functions. For example, an implementation might choose to represent a
“lexical closure” as a list whose car contains some special marker.

A symbol may serve as a function; an attempt to invoke a symbol as a func-
tion causes the contents of the symbol’s function cell to be used. See
symbol-function and defun.

The result of evaluating a function special form will always be a function.

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects cannot
necessarily be reliably reconstructed from a printed representation, and so they are
usually printed in a format informative to the user but not acceptable to the read
function:

# cuseful information>
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The Lisp reader will signal an error on encountering #«<.
As a hypothetical example, an implementation might print

#<stack-pointer si: rename-within-new-definition-maybe #0311037552>

for an implementation-specific “internal stack pointer” data type whose printed
representation includes the name of the type, some information about the stack slot
pointed to, and the machine address (in octal) of the stack slot.

2.15. Overlap, Inclusion, and Disjointness of Types

The CoMMON Lisp data type hierarchy is tangled and purposely left somewhat
open-ended so that implementors may experiment with new data types as extensions
to the language. This section explicitly states all the defined relationships between
types, including subtype/supertype relationships, disjointness, and exhaustive
partitioning. The user of COMMON Lisp should not depend on any relationships
not explicitly stated here. For example, it is not valid to assume that because a
number is not complex and not rational that it must be a float, because
implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object of type
y is also of type x, and y is said to be a subtype of x. If types x and y are disjoint,
then no object (in any implementation) may be both of type x and of type y. Types
a, through a, are an exhaustive union of type x if each a; is a subtype of x, and
any object of type x is necessarily of at least one of the types a; a, through q, are
furthermore an exhaustive partition if they are also pairwise disjoint.

* The type t is a supertype of every type whatsoever. Every object belongs to
type t.

* The type nil is a subtype of every type whatsoever. No object belongs to type
nil.

* The types cons, symbol, array, number, and character are pairwise
disjoint.

* The types rational, float, and complex are pairwise disjoint subtypes of

number.

* The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive partition
of the type rational. This is purposely avoided here in order to permit compatible exper-
imentation with extensions to the CoMMON Lisp rational number system.
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* The types fixnun and bignun are disjoint subtypes of integer.

Rationale: It might be thought that £ixnum and bignun should form an exhaustive partition
of the type integer. This is purposely avoided here in order to permit compatible experi-
mentation with extensions to the COMMON Lisp integer number system, such as the idea of
adding explicit representations of infinity or of positive and negative infinity.

* The types short-float, single-float, double-float, and long-float are
subtypes of float. Any two of them must be either disjoint or identical; if
identical, then any other types between them in the above ordering must also be
identical to them (for example, if single-float and long-float are identical
types, then double-float must be identical to them also).

* The type null is a subtype of symbol; the only object of type null is nil.
* The types cons and null form an exhaustive partition of the type 1ist.

* The type standard-char is a subtype of string-char; string-char is a sub-
type of character.

» The type string is a subtype of vector, for string means (vector
string-char).

* The type bit-vector is a subtype of vector, for bit-vector means (vector
bit).

* The types (vector t), string, and bit-vector are disjoint.

* The type vector is a subtype of array; for all types x, the type (vectorX) is
the same as the type (array x (*)).

* The type simple-array is a subtype of array.

* The types simple-vector, simple-string, and simple-bit-vector are dis-
joint subtypes of sinple-array, for they respectively mean (simple- array t
(*)), (simple-array string-char (*)), and (simple- array bit (*)).

* The type simple-vector is a subtype of vector, and indeed is a subtype of
(vector t).

* The type sinple-string is a subtype of string. (Note that although string
is a subtype of vector, simple-string is not a subtype of simple-vector.)

Rationale: The type simple-vector might better have been designated simple-
general-vector, but in this instance euphony and user convenience were deemed more
important to the design of CommoN Lisp than a rigid symmetry.
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* The type simple-bit-vector is a subtype of bit-vector. (Note that although
bit-vector is a subtype of vector, simple-bit-vector is not a subtype of
simple-vector.)

* The types vector and list are disjoint subtypes of sequence.

* The types hash-table, readtable, package, pathname, stream, and
random-state are pairwise disjoint.

* Any two types created by defstruct are disjoint unless one is a supertype of
the other by virtue of the :include option.

* An exhaustive union for the type conmon is formed by the types cons, symbol,
(arrayx) where x is either t or a subtype of conmon, string, fixnum, bignum,
ratio, short-float, single-float, double-float, long-float, (complex
x) where x is a subtype of comnon, standard-char, hash-table, readtable,
package, pathname, stream, random-state, and all types created by the user
via defstruct. An implementation may not unilaterally add subtypes to common;
however, future revisions to the COMMON Lisp standard may extend the defi-
nition of the conmon data type.

Note that a type such as nunber or array may or may not be a subtype of conmon,
depending on whether or not the given implémentation has extended the set of
objects of that type.



Scope and Extent

In describing various features of the CoMMoN Lisp language, the notions of scope
and extent are frequently useful. These notions arise when some object or construct
must be referred to from some distant part of a program. Scope refers to the spatial
or textual region of the program within which references may occur. Extent refers
to the interval of time during which references may occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is no
way to refer to this parameter from any other place but within the body of the
defun. Similarly, the extent of the parameter x (for any particular call to copy-cell)
is the interval from the time the function is invoked to the time it is exited. (In the
general case, the extent of a parameter may last beyond the time of function exit,
bt that cannot occur in this simple case.)

Within CoMMON LISP, a referenceable entity is established by the execution of
some language construct, and the scope and extent of the entity are described
relative to the construct and the time (during execution of the construct) at which
the entity is established. For the purposes of this discussion, the term “entity” refers
not only to COMMON Lisp data objects, such as symbols and conses, but also to
variable bindings (both ordinary and special), catchers, and go targets. It is im-
portant to distinguish between an entity and a name for the entity. In a function
definition such as

(defun foo (x y) (* x (+ y 1))

there is a single name, x, used to refer to the first parameter of the procedure
whenever it is invoked; however, a new binding is established on every invocation.
A binding is a particular parameter instance. The value of a reference to the name
x depends not only on the scope within which it occurs (the one in the body of
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foo in the example occurs in the scope of the function definition’s parameters) but
also on the particular binding or instance involved. (In this case, it depends on the
invocation during which the reference is made). More complicated examples appear
at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing
CoMMON Lisp:

* Lexical scope. Here references to the established entity can occur only within
certain program portions that are lexically (that is, textually) contained within
the establishing construct. Typically the construct will have a part designated
the body, and the scope of all entities established will be (or include) the body.

Example: the names of parameters to a function normally are lexically scoped.
* Indefinite scope. References may occur anywhere, in any program.

* Dynamic extent. References may occur at any time in the interval between es-
tablishment of the entity and the explicit disestablishment of the entity. As a
rule, the entity is disestablished when execution of the establishing construct
completes or is otherwise terminated. Therefore entities with dynamic extent
obey a stack-like discipline, paralleling the nested executions of their establishing
constructs.

Example: the with-open-file construct opens a connection to a file and creates
a stream object to represent the connection. The stream object has indefinite
extent, but the connection to the open file has dynamic extent: when control
exits the with-open-file construct, either normally or abnormally, the stream
is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

* Indefinite extent. The entity continues to exist so long as the possibility of ref-
erence remains. (An implementation is free to destroy the entity if it can prove
that reference to it is no longer possible. Garbage collection strategies implicitly
employ such proofs.)

Example: most COMMON Lisp data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have indef-
inite extent. (By contrast, in ALGOL the bindings of lexically scoped parameters
of a procedure have dynamic extent.) The function definition

(defun compose (f g)
#’(lambda (x) (funcall £ (funcall g x))))

when given two arguments, immediately returns a function as its value. The
parameter bindings for £ and g do not disappear because the returned function,
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when called, could still refer to those bindings. Therefore
(funcall (compose #’sqrt #‘abs) -9.0)

produces the value 3.0. (An analogous procedure would not necessarily work
correctly in typical ALGOL implementations, or, for that matter, in most Lisp
dialects.)

In addition to the above terms, it is convenient to define dynamic scope to mean
indefinite scope and dynamic extent. Thus we speak of “special” variables as having
dynamic scope, or being dynamically scoped, because they have indefinite scope
and dynamic extent: a special variable can be referred to anywhere as long as its
binding is currently in effect.

The above definitions do not take into account the possibility of shadowing. Remote
reference of entities is accomplished by using names of one kind or another. If two
entities have the same name, then the second may shadow the first, in which case an
occurrence of the name will refer to the second and cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with the
same name are textually nested, then references within the inner construct refer to
the entity established by the inner one; the inner one shadows the outer one. Outside
the inner construct but inside the outer one, references refer to the entity established
by the outer construct. For example:

(defun test (x z)

(let ((z (* x 2))) (print z))

z)

The binding of the variable z by the let construct shadows the parameter binding
for the function test. The reference to the variable z in the print form refers to
the 1et binding. The reference to z at the end of the function refers to the parameter
named z.

In the case of dynamic extent, if the time intervals of two entities overlap, then
one interval will necessarily be nested within the other one. This is a property of
the design of COMMON Lisp.

Implementation note: Behind the assertion that dynamic extents nest properly is the as-
sumption that there is only a single program or process. CoMMON Lisp does not address the
problems of multiprogramming (timesharing) or multiprocessing (more than one active
processor) within a single Lisp environment. The documentation for implementations that
extend CommoN Lisp for multiprogramming or multiprocessing should be very clear on what
modifications are induced by such extensions to the rules of extent and scope. Implementors
should note that CoMMON Lisp has been carefully designed to allow special variables to be
implemented using either the “deep binding” technique or the “shallow binding” technique,
but the two techniques have different semantic and performance implications for multipro-
gramming and multiprocessing.
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A reference by name to an entity with dynamic extent will always refer to the
entity of that name that has been most recently established that has not yet been
disestablished. For example:

(defun funl (x)
(catch ‘trap (+ 3 (fun? X))))

(defun funeé (y)
(catch ‘trap (+ 5 (fun3 y))))

(defun fun3i (z)
(throw ‘trap z))

Consider the call (fun1 7). The result will be 1.0. At the time the throw is executed,
there are two outstanding catchers with the name trap: one established within
procedure funi, and the other within procedure funz. The latter is the more recent,
and so the value 7 is returned from the catch form in funz. Viewed from within
fun3, the catch in funz shadows the one in fun1. Had funa been defined as

(defun fune (y)
(catch ‘snare (* 5 (fun3d y))))

then the two catchers would have different names, and therefore the one in fun1
would not be shadowed. The result would then have been 7.

As a rule this manual simply speaks of the scope or extent of an entity; the
possibility of shadowing is left implicit.

The important scope and extent rules in COMMON Lisp follow:

* Variable bindings normally have lexical scope and indefinite extent.

* Variable bindings that are declared to be special have dynamic scope (indefinite
scope and dynamic extent).

* A catcher established by a catch or unwind-protect special form has dynamic
scope.

* An exit point established by a block construct has lexical scope and dynamic
extent. (Such exit points are also established by do, prog, and other iteration
constructs.)

* The go targets established by a tagbody, named by the tags in the tagbody,
and referred to by go have lexical scope and dynamic extent. (Such go targets
may also appear as tags in the bodies of do, prog, and other iteration constructs. )

* Named constants such as ni1 and pi have indefinite scope and indefinite extent.

The rules of lexical scoping imply that lambda-expressions appearing - in the
function construct will, in general, result in “closures” over those non-special
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variables visible to the lambda-expression. That is, the function represented by a
lambda-expression may refer to any lexically apparent non-special variable and get
the correct value, even if the construct that established the binding has been exited
in the course of execution. The compose example shown earlier in this chapter
provides one illustration of this. The rules also imply that special variable bindings
are not “closed over” as they may be in certain other dialects of Lisp.

Constructs that use lexical scope effectively generate a new name for each es-
tablished entity on each execution. Therefore dynamic shadowing cannot occur
(though lexical shadowing may). This is of particular importance when dynamic
extent is involved. For example:

(defun contorted-example (f g Xx)
(if (= x 0)
(funcall f£f)
(block here
(+ 5 (contorted-example g
#’(lambda ()
(return-from here 4))

(- x 1))

Consider the call (contorted-example nil nil 2). This produces the result 4.
During the course of execution, there are three calls on contorted-exanmple,
interleaved with two establishments of blocks:

(contorted-example nil nil &)

(block hereg e

(contorted-example nil
#’(lambda () (return-from here; 4))
1)

(block here; ...)

(contorted-example #‘(lambda () (return-from here; 4))
#’(lambda () (return-from here, 4))
o)
(funcall f)
where £ = #‘(lambda () (return-from here; 4))

(return-£from here; 4)
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At the time the funcall is executed there are two block exit points outstanding,
each apparently named here. In the trace above, these exit points are distinguished
for expository purposes by subscripts. The return-from form executed as a result
of the funcall operation refers to the outer outstanding exit point (here,), not the
inner one (here,). This is a consequence of the rules of lexical scoping: it refers
to that exit point textually visible at the point of execution of the function construct
(here abbreviated by the # syntax) that resulted in creation of the function object
actually invoked by the funcall.

If, in this example, one were to change the form (funcall £) to (funcall g),
then the value of the call (contorted-example nil nil 2) would be 9. The value
would change because the funcall would cause the execution of (return-from
here, 4), thereby causing a return from the inner exit point (here,). When that
occurs, the value 4 is returned from the middle invocation of contorted-example,
5 is added to that to get g, and that value is returned from the outer block and the
outermost call to contorted-exanple. The point is that the choice of exit point
returned from has nothing to do with its being innermost or outermost; rather, it
depends on the lexical scoping information that is effectively packaged up with a
lambda-expression when the function construct is executed.

This function contorted-exanple works only because the function named by
f is invoked during the extent of the exit point. Block exit points are like non-special
variable bindings in having lexical scope, but differ in having dynamic extent rather
than indefinite extent. Once the flow of execution has left the block construct, the
exit point is disestablished. For example:

(defun illegal-example ()
(let ((y (block here #‘(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following
incorrect reasoning: the let statement binds the variable y to the value of the block
construct; this value is a function resulting from the lambda-expression. Because
y is not a number, it is invoked on the value 5. The return-from should then
return this value from the exit point named here, thereby exiting from the block
again and giving y the value 5 which, being a number, is then returned as the
value of the call to illegal-exanple.

The argument fails only because exit points are defined in COMMON Lisp to have
dynamic extent. The argument is correct up to the execution of the return-from.
The execution of the return-from is an error, however, not because it cannot
refer to the exit point, but because it does correctly refer to an exit point and that
exit point has been disestablished.



Type Specifiers

In CommoN Lisp, types are named by LISP objects, specifically symbols and lists,
called type specifiers. Symbols name predefined classes of objects, whereas lists
usually indicate combinations or specializations of simpler types. Symbols or lists
may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4-1. In
addition, when a structure type is defined using defstruct, the name of the structure
type becomes a valid type symbol.

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list
is subsidiary type information. In many cases a subsidiary item may be unspecified.
The unspecified subsidiary item is indicated by writing *. For example, to completely
specify a vector type, one must mention the type of the elements and the length
of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write
(vector double-float *#)

To leave the element type unspecified, one would write
(vector * 100)

Suppose that two type specifiers are the same except that the first has a » where
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Table 4-1: Standard Type Specifier Symbols

array fixnum package simple-vector
atom float pathname single-float
bignum function random-state standard-char
bit hash-table ratio stream
bit-vector integer rational string
character keyword readtable string-char
common list sequence symbol
compiled-function long-float short-float t

complex nil simple-array vector

cons null simple-bit-vector

double-float number simple-string

the second has a more explicit specification. Then the second denotes a subtype
of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such
items may simply be dropped rather than writing an explicit » for each one. If
dropping all occurrences of » results in a singleton list, then the parentheses may
be dropped as well (the list may be replaced by the symbol in its car). For example,
(vector double-float *) may be abbreviated to (vector double-float), and
(vector » ») may be abbreviated to (vector) and then to simply vector.

4.3. Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects
that satisfy the predicate named by predicate-name, which must be a symbol whose
global function definition is a one-argument predicate. (A name is required;
lambda-expressions are disallowed in order to avoid scoping problems.) For ex-
ample, the type (satisfies numberp) is the same as the type number. The call
(typep x “(satisfiesp)) results in applying p to x and returning t if the result
is true and nil if the result is false.
As an example, the type string-char could be defined as

(deftype string-char ()
‘(and character (satisfies string-char-p)))

See deftype.
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It is not a good idea for a predicate appearing in a satisfies type specifier to
cause any side effects when invoked.

4.4. Type Specifiers That Combine

The following type specifier lists define a data type in terms of other types or
objects.

(member objectl object2 ...)

This denotes the set containing precisely those objects named. An object is of this
type if and only if it is eql to one of the specified objects.

Compatibility note: This is approximately equivalent to what the INTERLISP DECL package
calls menmgq.

(not type)
This denotes the set of all those objects that are not of the specified type.

(and typel type2 ...)
This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to what the INTERLISP DECL package calls
allof.

When typep processes an and type specifier, it always tests each of the com-
ponent types in order from left to right and stops processing as soon as one com-
ponent of the intersection has been found to which the object in question does not
belong. In this respect an and type specifier is similar to an executable and form.
The purpose of this similarity is to allow a satisfies type specifier to depend on
filtering by previous type specifiers. For example, suppose there were a function
primep that takes an integer and says whether it is prime. Suppose also that it is
an error to give any object other than an integer to primep. Then the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not be
invoked unless the object in question has already been determined to be an integer.
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(or typel type2 ...)

This denotes the union of the specified types. For example, the type list by
definition is the same as (or null cons ). Also, the value returned by the function
position is always of type (or null (integern *)) (either nil or a non-negative
integer).

Compatibility note: This is roughly equivalent to what the INTERLIsp DECL package calls
oneof.

As for and, when typep processes an or type specifier, it always tests each of
the component types in order from left to right and stops processing as soon as
one component of the union has been found to which the object in question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols.
These specializations may be reflected by more efficient representations in the
underlying implementation. As an example, consider the type (array short-float).
Implementation A may choose to provide a specialized representation for arrays of
short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only
short-float objects, you may optionally specify to nake-array the element type
short-float. This does not require nake-array to create an object of type (array
short-float); it merely permits it. The request is construed to mean, “Produce
the most specialized array representation capable of holding short-floats that the
implementation can provide.” Implementation A will then produce a specialized
array of type (array short-float), and implementation B will produce an or-
dinary array of type (array t).

If one were then to ask whether the array were actually of type (array-
short-float), implementation A would say “yes,” but implementation B would
say “no.” This is a property of make-array and similar functions: what you ask
for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrim-
ination. Declaring to make-array that elements will always be of type short-float
permits optimization. Similarly, declaring that a variable takes on values of type
(array short-float) amounts to saying that the variable will take on values that
might be produced by specifying element type short-float to nake-array. On
the other hand, if the predicate typep is used to test whether an object is of type
(array short-float), only objects actually of that specialized type can satisfy
the test; in implementation B no object can pass that test.
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The valid list-format names for data types are as follows:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of the
type element-type and whose dimensions match dimensions. For declaration pur-
poses, this type encompasses those arrays that can result by specifying element-type
as the element type to the function make-array; this may be different from what
the type means for discrimination purposes. element-type must be a valid type
specifier or unspecified. dimensions may be a non-negative integer, which is the
number of dimensions, or it may be a list of non-negative integers representing the
length of each dimension (any dimension may be unspecified instead), or it may
be unspecified. For example:

(array integer 3) ; Three-dimensional arrays of integers
(array integer (* * *)) ; Three-dimensional arrays of integers
(array * (4 S b)) ;4-by-5-by-6 arrays

(array character (3 *)) ; Two-dimensional arrays of characters
; that have exactly three rows
(array short-float ()) ; Zero-rank arrays of short-format
; floating-point numbers

Note that (array t) is a proper subset of (array +). The reason is that (array
t) is the set of arrays that can hold any COMMON Lisp object (the elements are of
type t, which includes all objects). On the other hand, (array ») is the set of all
arrays whatsoever, including for example arrays that can hold only characters. Now
(array character) is not a subset of (array t); the two sets are in fact disjoint
because (array character) is not the set of all arrays that can hold characters,
but rather the set of arrays that are specialized to hold precisely characters and no
other objects. To test whether an array foo can hold a character, one should not use

(typep foo ‘(array character))
but rather
(subtypep ‘character (array-element-type fo0o0))

See array-element-type.

(simple-array element-type dimensions)

This is equivalent to (array element-type dimensions) except that it additionally
specifies that objects of the type are simple arrays. (See section 2.5.)
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(vector element-type size)

This denotes the set of specialized one-dimensional arrays whose elements are all
of type element-type and whose lengths match size. This is entirely equivalent to
(array element-type (size)). For example:

(vector double-float) ; Vectors of double-format
; floating-point numbers
(vector * §) ; Vectors of length 5
(vector t 5) i General vectors of length 5
(vector (mod 32) ) ; Vectors of integers between 0 and 31

The specialized types (vector string-char) and (vector bit) are so useful
that they have the special names string and bit-vector. Every implementation
of COMMON LisP must provide distinct representations for these as distinct specialized
data types. '

(simple-vector size)

This is the same as (vector t size ) except that it additionally specifies that its
elements are simple general vectors.

(complex ftype)

Every element of this type is a complex number whose real part and imaginary
part are each of type type. For declaration purposes, this type encompasses those
complex numbers that can result by giving numbers of the specified type to the
function complex; this may be different from what the type means for discrimi-
nation purposes. As an example, Gaussian integers might be described as (complex
integer), even in implementations where giving two integers to the function
complex results in an object of type (complex rational).

(function (argl-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep will
signal an error if it encounters a specifier of this form. Every element of this type
is a function that accepts arguments at least of the types specified by the argj-type
forms and returns a value that is a member of the types specified by the value-type
form. The soptional, srest, and skey markers may appear in the list of argument
types. The value-type may be a values type specifier in order to indicate the types
of multiple values.

As an example, the function cons is of type (function (t t) cons), because
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it can accept any two arguments and always returns a cons. The function cons is
also of type (function (float string) list), because it can certainly accept
a floating-point number and a string (among other things), and its result is always
of type 1ist (in fact a cons is never null, but that does not matter for this type
declaration). The function truncate is of type (function (number number) (values
number number)), as well as of type (function (integer (mod 8)) integer).

(values valuel-type value2-type ...)

This type specifer is extremely restricted: it may be used only as the value-type in
a function type specifier or in a the special form. It is used to specify individual
types when multiple values are involved. The soptional, srest, and skey mark-
ers may appear in the value-type list; they thereby indicate the parameter list of a
function that, when given to multiple-value-call along with the values, would
be suitable for receiving those values.

4.6. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type
specifiers that would be far too verbose to write out explicitly (using, for example,
member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each be
an integer, a list of an integer, or unspecified. An integer is an inclusive limit, a
list of an integer is an exclusive limit, and » means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively. The type fixnum is
simply a name for (integer smallest largest) for implementation-dependent values
of smallest and largest (see most-negative-fixnum and most-positive-fixnum).
The type (integer 0 1) is so useful that it has the special name bit.

(mod n)

Denotes the set of non-negative integers less than n. This is equivalent to (integer
0n—1)orto (integer 0 (n)).

(signed-byte )

Denotes the set of integers that can be represented in two’s-complement form in a
byte of s bits. This is equivalent to (integer —2°7! 27! —1). Simply signed-byte
Or (signed-byte ») is the same as integer.
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(unsigned-byte &)

Denotes the set of non-negative integers that can be represented in a byte of s bits.
This is equivalent to (nod 2°), that is, (integern 2°—1 ). Simply unsigned-byte
Or (unsigned-byte ») is the same as (integer 0 «), the set of non-negative
integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must each
be a rational, a list of a rational, or unspecified. A rational is an inclusive limit, a
list of a rational is an exclusive limit, and » means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively.

(float low high)

Denotes the set of floating-point numbers between low and high. The limits low
and high must each be a floating-point number, a list of a floating-point number,
or unspecified; a floating-point number is an inclusive limit, a list of a floating-point
number is an exclusive limit, and * means that a limit does not exist and so
effectively denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)
(single-float low high)
(double-float low high)
(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be one
of the appropriate format.

(string size)

Means the same as (array string-char (size)): the set of strings of the indicated
size.

(simple-string size)

Means the same as (simple-array string-char (size)): the set of simple strings
of the indicated size.

(bit-vector size)

Means the same as (array bit (size)): the set of bit-vectors of the indicated size.
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(simple-bit-vector size)

This means the same as (simple-array bit (size)): the set of bit-vectors of the
indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new
structure type with defstruct automatically causes the name of the structure to
be a new type specifier symbol. Second, the deftype special form can be used to
define new type-specifier abbreviations.

deftype name lambda-list {declaration | doc-string}* {form}* [Macro]

This is very similar to a defmacro form: name is the symbol that identifies the
type specifier being defined, lambda-list is a lambda-list (and may contain soptional
and srest markers), and the forms constitute the body of the expander function.
If we view a type specifier list as a list containing the type specifier name and
some argument forms, the argument forms (unevaluated) are bound to the
corresponding parameters in lambda-list. Then the body forms are evaluated as an
implicit progn, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation. The name is returned as the
value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an soptional
parameter, the default value is », not nil.

If the optional documentation string doc-string is present, then it is attached to
the name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

(deftype mod (n) ‘(integer O (,n)))
(deftype list () ‘(or null cons))

(deftype square-matrix (&optional type size)
"“"SQUARE-MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (x* *))

If the type name defined by deftype is used simply as a type specifier symbol, it
is interpreted as a type specifier list with no argument forms. Thus, in the example
above, square-matrix would mean (array * (* *)), the set of two-dimensional



TYPE SPECIFIERS 51

arrays. This would unfortunately fail to convey the constraint that the two dimensions
be the same; (square-matrix bit) has the same problem. A better definition is:

(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #’= (array-dimensions a))))

(deftype Square-matrix (&optional type size)
‘(and (array rtype (,size ,size))
(satisfies equidimensional)))

4.8. Type Conversion Function

The following function may be used to convert an object to an equivalent object
of another type.

coerce object result-type [Function)

The result-type must be a type specifier; the object is converted to an “equivalent”
object of the specified type. If the coercion cannot be performed, then an error is
signalled. In particular, (coerce x ‘nil) always signals an error. If object is
already of the specified type, as determined by typep, then it is simply returned.
It is not generally possible to convert any object to be of any type whatsoever;
only certain conversions are permitted:

* Any sequence type may be converted to any other sequence type, provided the
new sequence can contain all actual elements of the old sequence (it is an error
if it cannot). If the result-type is specified as simply array, for example, then
(array t) is assumed. A specialized type such as string or (vector (complex
short-float)) may be specified; of course, the result may be of either that
type or some more general type, as determined by the implementation. Elements
of the new sequence will be eq1 to corresponding elements of the old sequence.
If the sequence is already of the specified type, it may be returned without
copying it; in this, (coerce sequence type) differs from (concatenate type
sequence), for the latter is required to copy the argument sequence. In particular,
if one specifies sequence, then the argument may simply be returned if it already
is a sequence.

(coerce ‘(a b c) ‘vector) > #(a b c)

* Some strings, symbols, and integers may be converted to characters. If object
is a string of length 1, then the sole element of the string is returned. If object
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is a symbol whose print name is of length 1, then the sole element of the print
name is returned. If object is an integer n, then (int-char n) is returned. See
character.

(coerce "a'" ‘character) = #\a

* Any non-complex number can be converted to a short-float, single-float,
double-float, Or long-float. If simply f£loat is specified, and object is not
already a float of some kind, then the object is converted to a single-float.

(coerce 0 ‘short-float) = 0.0S0O
(coerce 3.5L0 ‘float) = 3.SLO
(coerce ?/2 ‘float) > 3.5

* Any number can be converted to a complex number. If the number is not already
complex, then a zero imaginary part is provided by coercing the integer zero to
the type of the given real part. (If the given real part is rational, however, then
the rule of canonical representation for complex rationals will result in the im-
mediate re-conversion of the result from type conplex back to type rational.)

(coerce 4.5s0 ‘complex) => #C(4.5S50 D0.0S0)

(coerce ?/2 ‘complex) > ?/2

(coerce #C(?/2 D) ’‘(complex double-float))
= #C(3.5D0 0.0DDO)

* Any object may be coerced to type t.

(coerce x ‘t) = (identity x) = x

Coercions from floating-point numbers to rationals and from ratios to integers
are purposely not provided because of rounding problems. The functions rational,
rationalize, floor, ceiling, truncate, and round may be used for such pur-
poses. Similarly, coercions from characters to integers are purposely not provided,
char-code or char-int may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

The following function may be used to obtain a type specifier describing the type
of a given object.

type-of object [Function]

(type-of object) returns an implementation-dependent result: some type of which
the object is a member. Implementors are encouraged to arrange for type-of to
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return the most specific type that can be conveniently computed and is likely to be
useful to the user. If the argument is a user-defined named structure created by
defstruct, then type-of will return the type name of that structure. Because the
result is implementation-dependent, it is usually better to use type-of primarily
for debugging purposes; however, in a few situations portable code requires the
use of type-of, such as when the result is to be given to the coerce or nap
function. On the other hand, often the typep function or the typecase construct
is more appropriate than type-of. -

Compatibility note: In MacLisp the function type-of is called typep, and anomalously
so, for it is not a predicate. ‘




Program
Structure

In chapter 2 the syntax was sketched for notating data objects in COMMON LisP.
The same syntax is used for notating programs because all COMMON LISp programs
have a representation as COMMON LisP data objects.

Lisp programs are organized as forms and functions. Forms are evaluated (rel-
ative to some context) to produce values and side effects. Functions are invoked
by applying them to arguments. The most important kind of form performs a
function call; conversely, a function performs computation by evaluating forms.

In this chapter forms are discussed first, and then functions. Finally, certain “top
level” special forms are discussed; the most important of these is defun, whose
purpose is to define a named function.

5.1. Forms

The standard unit of interaction with a CoMMON Lisp implementation is the form,
which is simply a data object meant to be evaluated as a program to produce one
or more values (which are also data objects). One may request evaluation of any
data object, but only certain ones are meaningful. For instance, symbols and lists
are meaningful forms, while arrays normally are not. Examples of meaningful
forms are 3, whose value is 3, and (+ 3 4), whose value is ?. We write 3 = 3
and (+ 3 4) > 7 to indicate these facts. (= means “evaluates to.”)

Meaningful forms may be divided into three categories: self-evaluating forms
such as numbers; symbols, which stand for variables; and lists. The lists in turn
may be divided into three categories: special forms, macro calls, and function calls.

Any COMMON Lisp data object not explicitly defined here to be a valid form is
not a valid form. It is an error to evaluate anything but a valid form.

54
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Implementation note: An implementation is free to make implementation-dependent ex-
tensions to the evaluator, but is strongly encouraged to signal an error on any attempt to
evaluate anything but a valid form or an object for which a meaningful evaluation extension
has been purposely defined.

S.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms. When
such an object is evaluated, that object (or possibly a copy in the case of numbers
or characters) is returned as the value of the form. The empty list (), which is
also the false value ni1, is also a self-evaluating form: the value of nil is nil.
Keywords (symbols written with a leading colon) also evaluate to themselves: the
value of :start is :start. .

5.1.2. Variables

Symbols are used as names of variables in COMMON Lisp programs. When a symbol
is evaluated as a form, the value of the variable it names is produced. For example,
after doing (setq items 3), which assigns the value 3 to the variable named
items, then items = 3. Variables can be assigned to, as by setq, or bound, as
by let. Any program construct that binds a variable effectively saves the old value
of the variable and causes it to have a new value, and on exit from the construct
the old value is reinstated. ' :

There are actually two kinds of variables in CoMMON Lisp, called lexical (or
static) variables and special (or dynamic) variables. At any given-time either or
both kinds of variable with the same name may have a current value. Which of
the two kinds of variable is referred to when a symbol is evaluated depends on the
context of the evaluation. The general rule is that if the symbol occurs textually
within a program construct that creates a binding for a variable of the same name,
then the reference is to the variable specified by the binding; if no such program
construct textually contains the reference, then it is taken to refer to the special
variable of that name. ‘ :

The distinction between the two kinds of variable is one of scope and extent. A
lexically bound variable can be referred to only by forms occurring at any place
textually within the program construct that binds the variable. A dynamically bound
(special) variable can be referred to at any time from the time the binding is made
until the time evaluation of the construct that binds the variable terminates. There-
fore lexical binding of variables imposes a spatial limitation on occurrences of
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references (but no temporal limitation, for the binding continues to exist as long
as the possibility of reference remains). Conversely, dynamic binding of variables
imposes a temporal limitation on occurrences of references (but no spatial 11m1ta-
tion). For more information on scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that
variable is called the global value of the (special) variable. A global value can be
given to ‘a variable only by assignment, because a value given by bmdlng is by
definition not global.

It is possible for a special variable to have no value at all, in which case it is
said to be unbound. By default, every global variable is unbound unless and until
explicitly assigned a value, except for those global variables defined in this manual
or by the implementation already to have values when the Lisp system is first
started. It is also possible to establish a binding of a special variable and then cause
that binding to be valueless by using the function makunbound. In this situation
the variable is also said to be “unbound,” although this is a misnomer; precisely
speaking, it is bound but valueless. It is an error to refer to a variable that is
unbound. '

‘Certain global variables are reserved as “named constants.” They have a global
value and may not be bound or assigned to. For example, the symbols t and ni1
are reserved. One may not assign a value to t or nil, and one may not bind t or
nil. The global value of t is always t, and the global value of nil is always nil.
Constant symbols defined by defconstant also become reserved and may not be
further assigned to or bound (although they may be redefined, if necessary, by
using defconstant again). Keyword symbols, which are notated with a leading
colon, are reserved and may never be assigned to or bound; a keyword always
evaluates to itself. :

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element
of the list. If the first element is one of the symbols appearing in Table 5-1, then
the list is called a special form. (This use of the word “special” is unrelated to its
use in the phrase “special variable.”)

Special forms are generally environment and control constructs. Every special
form has its own idiosyncratic syntax. An example is the if special form: (if p
(+x 4) 5) in COMMON Lisp means what “if p then x+4 else 5” would mean in
ALGOL. : :

The evaluation of a special form normally produces a value or values, but the
evaluation may instead call for a non-local exit; see return-from, go, and
throw.
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Table 5-1: Names of All Common Lisp Special Forms

block if progv

catch labels . . quote
compiler-let let return-from
declare lets : setq
eval-when macrolet tagbody

flet multiple-value-call {hev~

function multiple-value-progil throw

go progn unwind-protect

The set of special forms is fixed in COMMON Lisp; no way is provided for the
user to define more. The user can create new syntactic constructs however by
defining macros.

The set of special forms in COMMON LisP is purposely kept very sthall because
any program-analyzing program must have special knowledge about every type of
special form. Such a program needs no special knowledge about macros because
it is simple to expand the macro and operate on the resu]tmg expansion. (This is
not to say that many such programs, particularly compilers, will not have such
special knowledge. A compiler may be able to produce. much better code if it
recognizes such constructs as typecase and multiple-value-bind. and gives
them customized treatment. ) : :

An implementation is free to implement as a macro any construct descrlbed
herein as a special form. Conversely, an implementation is free to implement. as a
special form any construct described herein as a macro if an equivalent macro
definition is also provided. The practical consequence. is that the predicates
macro-function and special-form-p may both be true of the same symbol. It
is recommended that a program-analyzing program process a form that is a list
whose car is a symbol as follows:

1. If the program has particular knowledge about the symbol, process the form
using special-purpose code. All of the symbols listed in Table 5-1 should fall
into this category.

2. Otherwise, if macro-function is true of the symbol, apply either nacroexpand
Or macroexpand-1, as appropriate, to the entire form and then start over.

3. Otherwise, assume it is a function call..

5.1.4. Macros

If a form is a list and the first element is not the name of a special form, it may
be the name of a macro, if so, the form is said to be a macro call. A macro is
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essentially a function from forms to forms that will, given a call to that macro,
compute a new form to be evaluated in place of the macro call. (This computation
is sometimes referred to as macro expansion.) For example, the macro named
return will take a form such as (return x) and from that form compute a new
form (return-fromnil x). We say that the old form expands into the new form.
The new form is then evaluated in place of the original form; the value of the new
form is returned as the value of the original form.

There are a number of standard macros in COMMON LisP, and the user can define
more by using defmacro.

Macros provided by a CoMMON Lisp implementation as described herein may
expand into code that is not portable among differing implementations. That is, a
macro call may be implementation-independent because the macro is defined in
this manual, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros defined in
this manual, as far as is possible, in such as way that the expansion will not contain any
implementation-dependent special forms, nor contain as forms data objects that are not
considered to be forms in CoMMON Lisp. The purpose of this restriction is to ensure that
the expansion can be processed by a program-analyzing program in an implementa-
tion-independent manner. There is no problem with a macro expansion containing calls to
implementation-dependent functions. This restriction is not a requirement of COMMON Lisp;
it is recognized that certain complex macros may be able to expand into significantly more
efficient code in certain implementations by using implementation-dependent special forms
in the macro expansion.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that
names a special form or macro, then the. list is assumed to be a function call. The
first element of the list is taken to name a function. Any and all remaining elements
of the list are forms to be evaluated; one value is obtained from each form, and
these values become the arguments to the function. The function is then applied
to the arguments. The functional computation normally produces a value, but it
may instead call for a non-local exit; see throw. A function that does return may
produce no value or several values; see values. If and when the function returns,
whatever values it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (+ 4 5)). The symbol
+ names the addition function, not a special form or macro. Therefore the two
forms 3 and (* 4 5) are evaluated to produce arguments. The form 3 evaluates
to 3, and the form (* 4 5) is a function call (to the multiplication function).
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Therefore the forms 4 and s are evaluated, producing arguments 4 and s for the
multlphcatxon The multiplication function calculates the number 20 and returns it.
The values 3 and 20 are then given as arguments to the addition function, which

calculates and returns the number 23. Therefore we say (+ 3 (~ 4 5)) > 23.

$.2. Functions

There are two ways to indicate a function to be used in a function call form. One
is to use a symbol that names the function. This use of symbols to name functions
is completely independent of their use in naming special and lexical variables. The
other w:—iy is to use a lambda-expression, which is a list whose first element is the
symbol ‘lambda A lambda-expression is not a form; it cannot be meaningfully
evaluate‘d Lambda-expressions and symbols, when used in programs as names of
functlons can appear only as the first element of a function-call form, or as the
second ‘element of the function special form. Note that symbols and
lambda-expressmns are treated as names of functions in these two contexts. This
should be distinguished from the treatment of symbols and lambda-expressions as
Junction objects, that is, objects that satisfy the predicate functionp, as when

giving such an object to apply or funcall to be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be
given to a function by using the defun construct. A local name can be given to a
function by using the flet or labels special form. When a function is named, a
lambda-expression is effectively associated with that name along with information
about the entities that are lexically apparent at that point. If a symbol appears as
the first element of a function-call form, then it refers to the definition established
by the innermost flet or labels construct that textually contains the reference,
or to the global definition (if any) if there is no such containing construct.

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:
(lanbda lambda-list . body)

The first element must be the symbol 1ambda. The second element must be a list.
It is called the lambda-list, and specifies names for the parameters of the function.
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When the function denoted by the lambda-expression is applied to arguments, the
arguments are matched with the parameters specified by the lambda-list. The body
may then refer to the arguments by using the parameter names. The body consists
of any number of forms (possibly zero). These forms are evaluated in sequence,
and the results of the last form only are returned as the results of the application
(the value nil is returned if there are zero forms in the body). The complete syntax
of a lambda-expression 1s

(lambda ({var}*
[soptional {var | (var [initform [svar]])}*]
[¢rest var]
[skey {var | ({var | (keyword var)} [mzzform [svar]])}*
[¢allow-other-keys]]
[saux {var | (var [initform])}*])
{declaration | documentation-string}*

{form}*)

Each element of a lambda-list is either a parameter specifier or a lambda-list
keyword; lambda-list keywords begin with &. (Note that lambda-list keywords are
not keywords in the usual sense; they do not belong to the keyword package. They
are ordinary symbols each of whose names begins ‘with an ampersand. This
terminology is unfortunately confusing but is retained for historical reasons.)

In all cases a var or svar must be a symbol, the name of a variable; each keyword
must be a keyword symbol, such as :start. An initform may be any form.

A lambda-list has five parts, any or all of which may be empty:

» Specifiers for the reqﬁired parameters. These are all the parameter specifiers up
to the first lambda-list keyword; if there is no such lambda-list keyword, then
all the specifiers are for required parameters.

« Specifiers for optional parameters. If the lambda-list keyword &optional is
present, the optional parameter specifiers are those following the lambda-list
keyword &optional up to the next lambda-list keyword or the end of the list.

* A specifier for a rest parameter. The lambda-list keyword srest, if present,
must be followed by a single rest parameter specifier, which in turn must be
followed by another lambda-list keyword or the end of the lambda-list. -

* Specifiers for keyword parameters. If the lambda-list keyword skey is present,
all specifiers up to the next lambda-list keyword or the end of the list are keyword

' parameter specifiers. The keyword parameter specifiers may optionally be fol-
lowed by the lambda-list keyword sallow-other-keys.
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* Specifiers for aux variables. These are not really parameters. If the lambda-list
keyword saux is present, all specifiers after it are auxiliary variable specifiers.

When the function represented by the lambda—expressmn is applied to arguments,
the argumerts and parameters are processed in order from left to right. In the
simplest case, only required parameters are present in the lambda-list; each is
specified simply by a name var for the parameter variable. then the function is
applied, there must be exactly as many arguments as there are parameters, and
each parameter is bound to one argument. Here, and in general, the parameter is
bound as a lexical variable unless a declaration has been made that it should be a
special binding; see defvar, proclaim, and declare.

In the more general case, if there are n required parameters (n may be zero),
there must be at least » arguments, and the required parameters are bound to the
first n arguments. The other parameters are then processed us1ng any remaining
arguments. :

. If optional parameters are spe01ﬁed then each one is processed as follows. If
any unprocessed arguments remain, then the parameter variable var is bound to
the rext remaining argument, just as for a required parameter. If no arguments
remain, however, then the initform part of the parameter specifier is evaluated, and
the par‘ameter variable is bound to the resulting value (or to nil if no initform
appears in the parameter specifier). If another variable name svar appears in the
specifier, it is bound to true if an argument was‘available, and to false“if no
argument remained (and therefore initform had to be evaluated). The variable svar
is called a supplied-p parameter; it is bourd not to an argument but to a value
indicating whether or not an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or
may not be a rest parameter. If there is a rest parameter, it is bound to a list of
all as-yet-unprocessed arguments. (If no unprocessed arguments remain, the rest
parameter is bound to the empty list.) If there is no rest parameter and there are
no keyword parameters, then there should be no unprocessed arguments (it is an
error if there are). _

Next, any keyword parameters are processed. For this purpose the same argu-
ments are processed that would be made into a list for a rest parameter. (Indeed,
it is permitted to specify both arest and skey. In this case the remaining arguments
are used for both purposes; that is, all remaining arguments are made into a list
for the «rest parameter, and are also processed for the skey parameters. This is
the only situation in which an argument is used in the processing of more than one
parameter specifier.) If skey is specified, there must remain an even number of
arguments;v these are considered as pairs, the first argument in each pair being
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interpreted as a keyword name and the second as the corresponding value. It is an
error for the first object of each pair to be anything but a keyword.

Rationale: This last restriction is imposed so that a compiler may issue warnings about
certain malformed calls to functions that take keyword arguments. It must be remembered
that the arguments in a function call that evaluate to keywords are just like any other
arguments, and may be any evaluable forms. A compiler could not, without additional
context, issue a warning about the call

(fill seq item x y)

because in principle the variable x mlght have as its value a keyword such as istart.
However, a compiler would be justified in issuing a wammg about the call

(fill seq item 0 10)

because the constant 0 is definitely not a keyword. Similarly, if in the first case the variable
x had been declared to be of type integer then type analysis could enable the compiler to
justify a warning. -

In each keyword parameter specifier must be a name var for the parameter
variable. If an explicit keyword is specified, then that is the keyword name for the
parameter. Otherwise the name var serves to indicate the keyword name, in that a
keyword with the same name (in the keyword package) is used as the keyword.
Thus

(defun foo (&key radixv (type ’integer)) cel)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ‘integer)) cel)

The keyword parameter specifiers are, like all parameter specifiers, effectively
processed from left to right. For each keyword parameter specifier, if there is an
argument pair whose keyword name matches that specifier’s keyword name (that
is, the names are eq), then the parameter variable for that specifier is bound to the
second item (the value) of that argument pair. If more than one such argument pair
matches, it is not an error; the leftmost argument pair is used. If no such argument
pair exists, then the initform for that specifier is evaluated and the parameter
variable is bound to that value (or to nil if no initform was specified). The variable
svar is treated as for ordinary optional parameters: it is bound to true if there was
a matching argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any
parameter specifier, unless at least one of the following two conditions is met:
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® &allow-other-keys was specified in the lambda-list.

* Among the keyword argument pairs is a pair whose keyword .is :allow-
other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to match no
parameter specified, and the argument pair is simply ignored (but such an argument
pair is accessible through the arest parameter if one was specified). The purpose
of these mechanisms is to allow sharing of argument lists among several functions
and to allow either the caller or the called function to specify that such sharing
may be taking place. ,

After all parameter specifiers have been processed, the auxiliary variable speci-
fiers (those following the lambda-list keyword saux) are processed from left to
right. For each one, the initform is evaluated and the variable var bound to that
value (or to nil if no initform was specified). Nothing can be done with saux
variables that cannot be done with the special form 1etx: .

(lambda (x y &aux (a (car x)) (b 2) ¢) ...)
= (lambda (x y) (let* ((a (car x)) (b 2) c) cee))

Which to use is purely a matter of style. o »

Whenever any initform is evaluated for any parameter specifier, that form may
refer to any parameter variable to the left of the specifier in which.the initform
appears, including any supplied-p variables, and may rely on the fact that no other
parameter variable has yet been bound (including its own parameter variable).

Once the lambda-list has been processed, the forms in the body of the
lambda-expression are executed. These forms may refer to the arguments to the
function by using the names of the parameters. On exit from the function, either
by a normal return of the function’s value(s) or by a non-local exit, the parameter
bindings, whether lexical or special, are no longer in effect. (The bindings are not
necessarily permanently discarded, for a lexical binding can later be reinstated if
a “closure” over that binding was created, perhaps by using function, and saved
before the exit occurred). ‘

Examples of soptional and arest parameters:

((lambda (a b) (+ a (* b 3))) 4 5) = 19

((lambda (a &optional (b 2)) (+ a (* b 3))) 4 5) > 19

((lambda (a &optional (b 2)) (+ a (* b.3))) 4) > 10

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
= (2 nil 3 nil nil) :
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((lambda (&optional (a 2 b) (¢ 3 4)

b) :
2 (L t I nil nil)

((lambda (&optional (a 2 b) (c 3 d)

b 3)
> (bt 3t nil)

((lambda (&optional (a 2 b) (c 3 4d)

& 3 8)
> (bt 3t (8))

((lanbda (&optional (a 2 b) (c 3 4d)

B 38910 11)
> (bt 3t (8910 11))

Examples of skey parameters:

((lambda (a b &key c d) (list a b

= .{(1 & nil nil) .
((lambda (a b skey c d) (list a b
> (1 2 & nil)
((lambda (a b &key ¢ d) (list a'b
> (12 nil &) '
((lambda (a b &key c d) (list a b
> (1 2 b 8)

((lambda (a b. &key c d) (list a b

> (k2 k8 . .

((lambda (a b #key ¢ d) (list a b
> (:a 1l b a)

((lambda (a-b &key c d) (list a b
2 (:a :b :d4 nil)

Examples of mixtures:

(flambda,(a &optional (b 3) s&rest
(list a b ¢ d x))
1) > (1 3 nil 1 ())

((lambda (a &optional (b 3) &resf
(list a b ¢ & x)) '
12 > (L2 nil 1 ()

((lambda (a &optional (b 3) &rest
(list a b ¢ d x))
tc 7) > (:c 7 nil :c ())

a))

drest
drest
&rest

&rest

da)) 1
dy) 1
d)i L

d)) 1

aj)

. &key

&key

skey

X) (list a b

X) (list a b

‘X) (lista b

ia

X) (list a b

2)

1:d 8 :cb)

(d a))
(d a))

(d a))

X))

X))
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((lambda (a &optiondl (b 3) &rest x ¢key ¢ (4 a))
(list a b c+d x))
1 b :c ?) A:? (L B 7 L (:c 7))

((lambda (a &optional (b 3) &rest x ¢key c (4 a))
(list a b ¢ d x))
L & :d 8) > (1 b nil 4 (:4 8))

((lambda (a &optional (b 3) &restvx dkey c (d a))
(list a b c 4 x))
1B :d 6 :c 9 :4 10) > (L b 98 (‘d 8 :c 9 :4 LU))

All  lambda-list keywords are permitted, but not terribly useful
lambda-expressions appearing explicitly as the first element of a function-call form.
They are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use as
lambda-list keywords and should not be used as variable names. Implementatrons
of COMMON Lisp are free to provide additional lambda-list keywords

lambda-list- keywords : : [Constant]

The value of 1ambda-1ist-keywords is a list of all the lambda-list keywords used
in the implementation, including the additional ones used only by defmacro. This
list must contain at least the symbols soptional, srest, skey, sallow-other-
keys,&aux,&body,&whole,and éenvironment.

As an exanqﬂe of the use of sallow-other-keys and :allow-other-keys,
consider a function that takes two keyword arguments of its own and also accepts
addmonal keyword arguments to be passed to make-array:

(defun array-of-strlngs (str dims &rest keyword-pairs
. 4key (start O) end &allow-other-keys)
(apply #‘make-array dims
tinitial-element (subseq str start end)
:allow-other-keys t
keyword-pairs))

'This function takes a string and dimensioning information and returns an array of
the specified dimensions, each of whose elements is the specified string. However,
:start and :end keyword arguments may be used in the usual manner (see chapter
14) to specify that a substring of the given string should be used. In addition, the
presence of sallow-other- -keys in the lambda-list indicates that the caller may
specify additional keyword arguments the srest argument provides access to



66 COMMON LISP

them. These additional keyword arguments are fed to nake-array. Now make-array
normally does not allow the keywords :start and :end to be used, and it would
be an error to specify such keyword arguments to make-array. However, the
presence in the call to nake-array of the keyword argument :allow-other-keys
with a non-ni1 value causes any extraneous keyword arguments, including :start
and :eng, to be acceptable and ignored.

lambda-parameters-limit ‘ - [Constant]

The value of lanbda-parameters-limit is a positive integer that is the upper
exclusive bound on the number of distinct parameter names that may appear in a
single lambda-list. This bound depends on the implementation but will not be
smaller than 50. Implementors are encouraged to make this limit as large as prac-
ticable without sacrificing performance. See call-arguments-limit.

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON Lisp implementation is
via a read-eval-print loop: the system repeatedly reads a form from some input
source (such as a keyboard or a disk file), evaluates it, and then prints the value(s)
to some output sink (such as a display screen or another disk file). Any form
(evaluable data object) is acceptable; however, certain special forms are specifically
designed to be convenient for use as top-level forms, rather than as forms embedded
within other forms in the way that (+ 3 4) is embedded within (if p (+ 3 4)
&). These top-level special forms may be used to define globally named functions,
to define macros, to make declarations, and to define global values for special
variables.

It is not illegal to use these forms at other than top level, but whether it is
meaningful to do so depends on context. Compilers, for example, may not rec-
ognize these forms properly in other than top-level contexts. (As a special case,
however, if a progn form appears at top level, then all forms within that progn
are conmdered by the compller to be top- -level forms. )

Compatibility note: In MAcLIsP, a top-level progn is considered to contain top-level forms
only if the first form is (quote compile). This odd marker is unnecessary in CoMMON
Lisp.

Macros are usually defined by using the special form defmacro. This facility is
fairly complicated, and is described in chapter 8.
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5.3.1. Defining Named Functions

The defun special form is the usual means of defining named functions.

defun name lambda-list {declaration | doc-string}* {form}* [Macro]

Evaluating a defun form causes the symbol name to be a global name for the
function specified by the lambda-expression

(lambda lambda-list {declaration | doc-string}* {form}*)

defined in the lexical environment in which the defun form was executed. Because
defun forms normally appear at top level, this is normally the null lexical environment.

If the optional documentation string doc-string is present, then it is attached to
the name as a documentation string of type function; see documentation. If
doc-string is not followed by a declaration, it may be present only if at least one
Jorm is also specified, as it is otherwise taken to be a form. It is an error if more
than one doc-string is present.

The forms constitute the body of the defined function; they are executed as an
implicit progn.

The body of the defined function is implicitly enclosed in a block construct
whose name is the same as the name of the function. Therefore return-fron may
be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well by
defun. The name is returned as the value of the defun form. For example:

(defun discriminant (a b c¢)
(declare (number a b c¢))
"Compute the discriminant for a'quadratic equation.
Given a, b, and c, the value b”2-4*a*c is calculated.
The quadratic equation a*x*d+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."

(= (* b Db) (» 4ac)))
= discriminant )
and now (discriminant 1 2/3 -2) > ?6/9

It is permissible to use defun to redefine a function, to install a corrected version
of an incorrect definition, for example! It is permissible to redefine a macro as a
function. It is an error to attempt to redefine the name of a special form (see Table
5-1) as a function.
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5.3.2. Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally defined variables. The defconstant special form is used for defining
named constants.

defvar name [initial-value [documentation] [Macro]
defparameter name initial-value [documentation) [Macro]
defconstant name initial-value [documentation) [Macro]

defvar is the recommended way to declare the use of a special variable in a
program.

(defvar variable)

proclaims variable to be special (see proclaim), and may perform other
system-dependent bookkeeping actions. If a second “argument” is supplied,

(defvar variable initial-value)

then variable is initialized to the result of evaluating the form initial-value unless
it already has a value. The initial-value form is not evaluated unless it is used; this
fact is useful if evaluation of the inirial-value form does something expensive like
creating a large data structure. The initialization is performed by assignmert, and
so assigns a global value to the variable unless there are currently special bindings
of that variable. Normally there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning of
the variable, whereas an ordinary special proclamation offers the temptation to
declate several variables at once and not have room to describe them all.

(defvar *visible-windows* O
"Number of windows at least partiadlly visible on the screen")

defparaneter is similar to defvar, but defparameter requires an initial-value
form, always evaluates the form, and assigns the result to the variable. The se-
mantic distinction is that detvar is intended to declare a variable changed by the
program, whereas defparameter is intended to declare a variable that is normally
constant but can be changed (possibly at run time), where such a charge is con-
sidered a change to the program. defparaneter therefore does not indicate that
the quantity never changes; in particular, it does not license the compiler to bu11d
assumptions about the value into programs being compxled ‘

defconstant is like defparameter but does assert that the value of the variable
name is fixed and does license the compiler to build assumptions about the value
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into programs being compiled. (However, if the compiler chooses to replaces ref-
erences to the name of the constant by the value of the constant in code to be
compiled, perhaps in order to allow further optimization, the compiler must take
care that such “copies” appear to be eql to the object that is the actual value of
the constant. For example, the compiler may freely make copies of numbers but
must exercise care when the value is a list.)

It is an ertor if there are any special bindings of the variable at the time the
defconstant form is executed (but implementations may or may not check for
this).

Once a name has been declared by defconstant to be constant, any further
assignment to or binding of that special variable is an error. This is the case for
such system-supplied constants as t and nost-positive-fixnum. A compiler may
also choose to issue warnings about bindings of the lexical variable of the same
name.

For any of these constructs, the documentation should be a string. The string is
attached to the name of the variable, parameter, or constant under the variable
documentation type; see the documentation function.

These constructs are normally used only as top-level forms. The value returned
by each of these constructs is the name declared.

5.3.3. Control of Time of Evaluation

The eval-when special form allows pieces of code to be executed only at compile
time, only at load time, or when interpreted but not compiled. Its uses are relatively
esoteric.

eval-when ({situation}*) {form}* - [Special Form]

The body of an eval-when form is processed as an implicit progn, but only in the
situations listed. Each sifuation must be a symbol, either conpile, load, or eval.

eval specifies that the interpreter should process the body. compile specifies
that the compiler should evaluate the body at compile time in the compilation
context. load specifies that the compiler should arrange to evaluate the forms in
the body when the compiled file containing the eval-when form is loaded.

The eval-when construct may be more precisely understood in terms of a model
of how the compiler processes forms in a file to be compiled. Successive forms
are read from the file using the function read. These top-level forms are normally
processed in what we shall call not-compile-time mode. There is another mode
called compile-time-too mode. The eval-when special form controls which of these
two modes to use. '
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Every form is processed as follows:

* If the form is an eval-when form:
* If the situation load is specified:

* If the situation compile is also specified, or if the current processing mode
is compile-time-too and the situation eval is also specified, then process
each of the forms in the body in compile-time-too mode.

* Otherwise, process each of the forms in the body in not-compile-time mode.

« If the situation load is not specified:

* If the situation conpile is specified, or if the current processing mode is
compile-time-too and the situation eval is specified, then evaluate each of
the forms in the body in the compiler’s executing environment.

* Otherwise, ignore the eval-when form entirely.

* If the form is not an eval-when form, then do two things. First, if the current
processing mode is compile-time-too mode, then evaluate the form in the com-
piler’s executing environment. Second, perform normal compiler processing of
the form (compiling functions defined by defun forms, and so on).

One example of the use of eval-when is that if the compiler is to be able to
properly read a file that uses user-defined reader macro characters, it is necessary
to write

(eval-when (compile load eval)
(set-macro-character #\$ #‘(lambda (stream char)
(declare (ignore char))
(list ‘dollar (read stream)))))

This causes the call to set-macro-character to be executed in the compiler’s
execution environment, thereby modifying its reader syntax table.



Predicates

A predicate is a function that tests for some condition involving its arguments and
returns nil if the condition is false, or some non-nil value if the condition is true.
One may think of a predicate as producing a Boolean value, where nil stands for
Jalse and anything else stands for true. Conditional control structures such as cond,
if, when, and unless test such Boolean values. We say that a predicate is true
when it returns a non-nil value, and is false when it returns nil; that is, it is true
or false according to whether the condition being tested is true or false.

" By convention, the names of predicates usually end in the letter p (which stands
for “predicate”). COMMON LIspP uses a uniform convention in hyphenating names
of predicates. If the name of the predicate is formed by adding a p to an existing
name, such as the name of a data type, a hyphen is placed before the final p if and
only if there is a hyphen in the existing name. For example, number begets nunberp
but standard-char begets standard-char-p. On the other hand, if the name of
a predicate is formed by adding a prefixing qualifier to the front of an existing
predicate name, the two names are joined with a hyphen and the presence or
absence of a hyphen before the final p is not changed. For example, the predicate
string-lessp has no hyphen before the p because it is the string version of lessp
(a MAcLisp function that has been renamed < in CoMMON Lisp). The name
string-less-p would incorrectly imply that it is a predicate that tests for a kind
of object called a string-less, and the name stringlessp would connote a
predicate that tests whether something has no strings (is “stringless™)!

The control structures that test Boolean values only test for whether or not the
value is nil, which is considered to be false. Any other value is considered to be
true. Often a predicate will return nil if it “fails” and some useful value if it
“succeeds”; such a function can be used not only as a test but also for the useful
value provided in case of success. An example is member.

If no better non-nil value is available for the purpose of indicating success, by
convention the symbol t is used as the “standard” true value.

71
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6.1. Logical Values

The names nil and t are constants in COMMON Lisp. Although they are symbols
like any other symbols, and appear to be treated as variables when evaluated it is
not permitted to modify their values. See defconstant.

nil , ' [Constant]

The value of nil is always nil. This object represents the logical false value and
also the empty list. It can also be written ().

t _ . ‘ o ' [Constant]
The value of t is alwéys t.

6.2. Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data types;
that is, given a data object one can determine whether or not it belongs to a given
type, or one can compare two.type specifiers.

6.2.1. General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then the
typep functlon is a set membershlp test, while subtypep is a subset test.

typep object type [Functzon]

typep is a predicate that is true if object is of type type and is false otherwise.
Note that an object can be “of” more than one type, since one type can include
another. The #ype may be any of the type specifiers mentioned in chapter 4 except
that it may not be or contain a type specifier list whose first element is function
or values. A specifier of the form (satisfiesfn) is handled simply by applying
the function fn to object (see funcall); the object is considered to be of the
specified type if the result is not nil.

subtypep typel type2 ) [Function]

The arguments must be type specifiers that are acceptable to typep. The two type
specifiers are compared; this predicate is true if fype! is definitely a (not necessarily
proper) subtype of zype2. If the result is nil, however, then typel may or may not
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be a subtype of fype2 (sometimes it is impossible to tell, especially when satis-
fies type specifiers are involved). A second returned value indicates the certainty
of the result; if it is true, then the first value is an accurate indication of the subtype
relationship. Thus there are three possible result combinations:

t ot _ typel is definitely a subtype of fype2
nil t ' ’ typel is definitely not a subtype of type2
nil nil ' subtypep could not determine the relationship

6.2.2. Specific Data Type Predicates

The following predicates test for individual data types.

null object . [Function}

null is true if its argument is (), and otherwxse is false. This is the same operation
performed by the function not; however, not is normally used to invert a Boolean
value, whereas null is normally used to test for an émpty list. The programmer
can therefore express intent by the choice of function name.

(null x) = (typep x ‘null) = (eq x “())

symbolp object [Function]
symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) = (typep x.‘symbol)

Compatibility note: The INTERLISP equivalent of symbolp is called Litaton.

atom bbject ‘ ' [Function]

The prédicate atonm is true if its argument is not a cons, and otherwise is false.
Note that (atom ‘()) is true, because () =nil.

(atom x) = (typep x ‘atom) = (not (typep x ‘cons))

Cdmpatibility note: In some Lisp dialects, tiotably INTERLISP, only symbols and numbers
are considered to be atoms; arrays and strings are considered to be neither atoms nor lists
(conses). .
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consp object [Function)

The predicate consp is true if its argument is a cons, and otherwise is false. Note
that the empty list is not a cons, so (consp “()) = (consp ‘nil) = nil.

(consp Xx) E (typep x ‘cons) = (not (ty'pepv X ‘atom))

Compatibility note: Some. Lisp implementations call this function pairp or 1istp. The
name pairp was rejected for CoMMON Lisp because it emphasizes too strongly the dot-
ted-pair notion rather than the usual usage of conses in lists. On the other hand, 1istp too
strongly implies that the cons is in fact part of a list, which after all it might not be; moreover,
() is a list, though not a cons. The name consp seems to be the appropriate compromise.

listp object v [Function)

listp is true if its argument is a cons or the empty list (), and otherwise is false.
It does not check for whether the list is a “true list” (one terminated by nil) or a
“dotted list” (one terminated by a non-null atom).

(1istp x) = (typep x ‘list) = (typep x ‘(or cons null))

numberp object ' ' ‘ [Function]

nunberp is true if its argument is any kind of number, and otherwise is false.

(numberp x) = (typep X ‘nunmber)

integerp object [Function]

integerp is true if its argument is an integer, and otherwise is false.

(integerp x) = (typep x ‘integer)

Compatibility note: In MacLisp this is called £ixp. Users have been confused as to whether
this meant integerp or fixnump, and so the name integerp has been adopted here.

rationalp object [Function]

rationalp is true if its argument is a rational number (a ratio or an integer), and
otherwise is false.

(rationalp x) = (typep x ‘rational)
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floatp object [Function)]
floatp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) = (typep x ‘float)

complexp object [Function)

complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) = (typep x ‘complex)

characterp object [Function]

characterp is true if its argument is a character, and otherwise is false.
(characterp x) = (typep x ‘character)

stringp object o : [Function)]
stringp is true if its argument is a string, and otherwise is false.

(stringp x) = (typep x ‘string)

bit-vector-p object [Function)

bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) = (typep x ‘bit-vector) .

vectorp object [Function]

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) = (typep x ‘vector)

simple-vector-p object ) : [Function]

vectorp is true if its argument is a simple general vector, and otherwise is false.
(simple-vector-p x) = (typep x ‘simple-vector)

simple-string-p object [Function]
simple-string-p is true if its argument is a simple string, and otherwise is false.

(simple-string-p x) = (typep x ‘simple-string)
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simple-bit-vector-p object [Function)
simple-bit-vector-p is true if its argument isa 51mple bit-vector, and otherw1se
is false.

(simple-bit-vector¥p X) = (typep x ‘simple-bit-vector)

arrayp object L [Function]

arrayp is true if its argument is an array, and otherwise is false.

(arrayp x) = (typep x ‘array)

packagep object : [Function)

packagep is true if its argument is an package, and otherwise is false.

(packagep x) = (typep x 'package)

functionp object : o o [Function)

functionp is true if its argument is suitable for applying to arguments using for
example the funcall or apply function. Otherwise functionp is false,
functionp is always true of symbols, lists whose car is the symbol 1ambada,
any value returned by the furrction_ special form, and any values returned by the
function compile when the first argument is nil. :

compiled-function-p object ‘ . [Function]

compiled-function-p is true if its argument is any compiled code object, and
otherwise is false. :

(éompiled—fuhctiOn—p’x)'EE (typep X 'cbmpiled—funétion)

conmonp object [Function)]

commonp is trué if its argument is any standard COMMON ‘Lisp data type, and
otherwise is false.

(commonp x)'zz (typep x ‘common)

See also standard-chér-p, string4char~p, streamp, random-state-p,
readtablep, hash-table-p, and pathnamep.
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6.3. Equality Predicates

COoMMON Lisp provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general). eq
and equal have the meanings traditional in Lisp. eql was added because it is
frequently needed, and equalp was added primarily in order to have a version of
equal that would ignore type differences when comparing numbers and case
differences when comparing characters, If two objects satisfy any one of these
equality predicates, then they also satisfy all those that are more general.

eq Xy [Function)
(eqx y) is true if and only if x and y are the same identical object. (Implemen-
tationally, x and y are usually eq if and only if they address the same identical
memory location.) ] ‘

It should be noted that things that print the same are not necessarily eq to each
other. Symbols with the same print name usually are eq to each other because of
the use of the intern function. However, numbers with the same value need not
be eq, and two similar lists are usually not eq. For example:

(eq “a ’b) is false.

(eq ‘a ‘a) is true. -

(eq 3 3) might be true or false, depending on the implementation.

(eg 3 3.0) is false. o

(eq 3.0 3.0) might be true or false, depending on the implementation.
(eg #c(3 -4) #c(3 -4))

might be true or false, depending on the implementation.

(eq #c(3 -4.0) #c(3 -4)) is false.

(eq (cons ‘a ‘b) (cons ‘a ‘c)) is false.

(eg (cons ‘a ‘b) (cons ‘a ‘b)) is false.

(eg “(a . b) “(a . b)) might be true or false.

(progn (setq x (cons ‘a ‘b)) (eq x x)) IS true.

(progn (setq x ‘(a . b)) (eg x x)) is true.

(eg #\A& #\R) might be true or false, depending on the implementation.
(eq "Foo" "Foo") might be true or false. ' /

(eq "Foo" (copy-seq "Foo")) is false.

(eq "FOO" “foo") is false.

In CoMMON Lisp, unlike some other Lisp dialects, the implementation is permitted
to make “copies” of characters and numbers at any tirhe. (This permission is granted
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because it allows tremendous performance improvements in many common situations. )
The net effect is that COMMON LisP makes no guarantee that eq will be true even
when both its arguments are “the same thing” if that thing is a character or number.
For example: :

(let ((x 5)) (eg x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are characters or
numbers of the same type then their values are compared. Thus eql tells whether
two objects are conceptually the same, whereas eq tells whether two objects are
implementationally identical. It is for this reason that eql, not eq, is the default
comparison predicate for the sequence functions defined in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind of object
that is represented in an “immediate” fashion will indeed have like-valued instances satisfy
eq. In some implementations, for example, fixnums and characters happen to “work.”
However, no program should depend on this, as other implementations of CoMMON Lisp
might not use an immediate representation for these data types.

An additional problem with eq is that the implementation is permitted to “col-
lapse™ constants (or portions thereof) appearing in code to be compiled if they are
equal. An object is considered to be a constant in code to be compiled if it is a
self-evaluating form or is contained in a quote form. This is why (eg "Foo"
“Foo") might be true or false; in interpreted code it would normally be false,
because reading in the form (eq "Foo" "Foo*) would construct distinct strings
for the two arguments to eq, but the compiler might choose to use the same identical
string or two distinct copies as the two arguments in the call to eq. Similarly, (eq
‘(a . b) ‘(a . b)) might be true or false, depending on whether the constant
conses appearing in the quote forms were collapsed by the compiler. However,
(eq (cons ‘a ‘b) (cons ‘a ‘b)) is always false, because every distinct call to
the cons function necessarily produces a new and distinct cons.

eql Xy ' [Function]

The eql predicate is true if its arguments are eq, or if they are numbers of the
same type with the same value, or if they are character objects that represent the
same character. An example follows.
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(eql ‘a ‘b) is false.

(eql ‘a ‘a) is true.

(eql 3 3) is true.

(eql 3 3.0) is false.

(eql 3.0 3.0) is true.

(eql #c(3 -4) #c(3 -4)) is true.

(eql #c(3 -4.0) #c(3 -4)) is false.

(eql (cons ‘a ‘b) (cons ‘a ‘c)) is false.
(eql (cons ‘a ‘b) (cons ‘a ‘b)) is false.
(eql “(a . b) “(a . b)) might be true or false.
(progn (setq x (cons ‘a ‘b)) (eql x x)) is true.
(progn (setg x ‘(a . b)) (eql x x)) is true.
(eql #\A #\1) is true.

(eql "Foo" "Foo") might be true or false.

(egql "Foo" (copy-seq "Foo")) is false.

(eql "“FOO" "foo") is false.

Normally (eql 1.0s0 1.0a0) would be false, under the assumption that 1.0s0
and 1.040 are of distinct data types. However, implementations that do not provide
four distinct floating-point formats are permitted to “collapse” the four formats into
some smaller number of them; in such an implementation (eql 1.0s0 1.0a0)
might be true. The predicate = will compare the values of two numbers even if
the numbers are of different types.

If an implementation supports positive and negative zeros as distinct values (as
in the IEEE proposed standard floating-point format), then (eql 0.0 -0.0) will be
false. Otherwise, when the syntax -0.0 is read it will be interpreted as the value
0.0, and so (eql 0.0 -0.0) will be true. The predicate = differs from.eq1 in that
(=0.0-0.0) will always be true, because = compares the mathematical values
of its operands, whereas eql compares the representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql and
their imaginary parts are eql. For example, (eql #C(4 5) #C(4 5)) is true and
(eql #C(4°5) #C(4.0 5.0)) is false. Note that while (eql #C(5.0 0.0) 5.0)
is false, (eql #C(50) 5) is true. In the case of (eql #C(5.00.0) 5.0) the two
arguments are of different types, and so cannot satisfy eq1; that’s all there is to it.
In the case of (eql #C(50) 5), however, #c(50) is not a complex number, but
is always automatically reduced by the rule of complex canonicalization to the
integer s, just as the apparent ratio 20/4 is always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of eq.
While eql compares the values of numbers and characters, it does not compare
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the contents of strings. To compare the characters of two strings, one should use
equal, equalp, string=, Or string-equal.

Compatibility note: The CommoON Lisp function eql is similar to the INTERLISP function
egp. However, eql considers 3 and 3.0 to be different, whereas eqp considers them to be
the same; egp behaves like the ComMon Lisp = function, not like eql, when both arguments
are numbers.

equal Xy ' [Function]

The equal predicate is true if its arguments are structurally similar (isomorphic)
objects. A rough rule of thumb is that two objects are equal if and only if their
printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared as for
eq. This method of comparing symbols can violate the rule of thumb for equal
and printed representations, but only in the infrequently occurring case of two
distinct symbols with the same print name. )

Certain objects that have components are equal if they are of the same type and
corresponding components are equal. This test is implemented in a recursive man-
ner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car’s being equal and the
two cdr’s being equal. v

Two arrays are equal only if they are eq, with one exception: strings and
bit-vectors are compared element-by-element. If either argument has a fill pointer,
the fill pointer limits the number of elements examined by equal. Uppercase and
lowercase letters in strings are considered by equal to be distinct. (In contrast,
equalp ignores case distinctions in strings.)

Compatibility note: In ZETaLIsP, equal ignores the difference between uppercase and
lowercase letters in strings. This violates the rule of thumb about printed representations,
however, which is very useful, especially to novices. It is also inconsistent with the treatment
of single characters, which in ZETALIsP are represented as fixnums.

Two pathname objects are equal if and only if all the corresponding components
(host, device, and so on) are equivalent. (Whether or not uppercase and lowercase
letters are considered equivalent in strings appearing in components depends on
the file name conventions of the file system.) Pathnames that are equal should be
functionally equivalent. '
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(equal ‘a ‘b) is false.

(equal ‘a ‘a) is true.

(equal 3 3) is true.

(equal 3 3.0) is false.

(equal 3.0 3.0) is true.

(equal #c(3 -4) #c(3 -4)) is true.

(equal #c(3 -4.0) #c(3 -4)) is false.

(equal (cons ‘a ‘b) (cons ‘a ‘c)) is false.

(equal (cons ‘a ‘b) (cons ‘a ‘b)) is true.

(equal “‘(a . b) ‘(a . b)) is true.

(progn (setq x (cohs ‘a ‘b)) (equal x x))'is true
(progn (setq x ‘(a . b)) (equal x x)) is true ‘
(equal #\A #\d) is true

(equal "Foo" "Foo") is true.

(equal "Foo"™ (copy-seq "Foo")) is true.

(equal "“FOO" *“foo™) is false.

To compare a tree of conses, using eql (or any other desued predicate) on the
leaves, use tree-equal.

equalp xy a ’ [Function].

Two objects are equalp if they are equal; if they are characters and satisfy
char-equal, which ignores alphabetic case and certain other attributes of characters;
if they are numbers and have the same numerical value, even if they are of different
types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same ‘type and
corresponding components are equalp. This test is implemented in a recursive
manner and may fail to terminate for circular structures. For conses, equalp is
defined recursively as the two car’s being equalp and the o cdr’s being equalp.

Two arrays are equalp if and only if they have the same number of dimensions,
the dimensions match, and the corresponding components are equalp. The spe-
cializations need not match; for example, a string and a general array that happens
to contain the same characters will be equalp (though definitely not equal). If
either argument has a fill pointer, the fill pointer limits the number of elements
examined by equalp. Because equalp performs element-by-clement comparisons
of strings and ignores the alphabetic case of characters, case distinctions are there-
fore also ignored when equalp compares strings.

Two symbols can be equalp only if they are eq, that is, the same identical
object. : : -
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(equalp ‘a ‘b) is false.

(equalp ‘a ‘a) is true.

(equalp 3 3) is true.

(equalp 3 3.0) is true.

(equalp 3.0 3.0) IS true.

(equalp #c(3 -4) #c(3 -4)) is true.

(equalp #c(3 -4.0) #c(3 -4)) is true.

(equalp (cons ‘a ‘b) (cons ‘a ‘c)) is false.
(equalp (cons ‘a ‘b) (cons ‘a ‘b)) is true.
(equalp “(a . b) ’(a . b)) is true.

(progn (setq x (cons ‘a ‘b)) (equalp x x)) is true.
(progn (setq X ‘(a . b)) (equalp x )li)) is true.
(equalp #\A #\1a) is true. ‘

(equalp "Foo" "Foo") is true. ,

(equalp "Foo" (copy-seq “Foo")) is true.
(equalp "FOOQ" "foo") is true.

6.4. Loglcal Operators

CoMMON Lisp provides three operators on Boolean values: and, or, and not. Of
these, and and or are also control structures because their arguments are evaluated
conditionally. The function not necessarily examines its single argument, and so
is a simple function.

not x '  [Function]

not returns t if x is nil, and otherwise returns nil. It therefore inverts its argument
considered as a Boolean value. ) '

null is the same as not; both functions are included for the sake of clarity. As
a matter of style, it is customary to use null to check whether something is the
empty list and to use not to invert the sense of a logical value.

and {form}* [Macro]

(and forml form2 ... ) evaluates each form, one at a time, from left to right.
If any form evaluates to nil, the value nil is immediately returned without eval-
uating the remaining forms. If every form but the last evaluates to a non-nil value,
and returns whatever the last form returns. Therefore in general and can be used
both for logical operations, where nil stands for false and non-nil values stand
for true, and as a conditional expression. An example follows.
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(if (and (>= n D)
(¢ n (length a-simple-vector))
(eq (elt a-simple-vector n) ‘foo))
(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the symbol
foo, provided also that n is indeed a valid index for a-simple-vector. Because
and guarantees left-to-right testing of its parts, e1t is not called if n is out of range.

To put it another way, the and special form does short-circuit Boolean evalua-
tion, like the and then operator in ADA and what in some PASCAL-like languages
is called cand (for “conditional and”); the LISP and special form is unlike the
PASCAL or ADA and operator, which always evaluates both arguments.

In the previous example writing

(and (>= n 0)
(¢ n (length a-simple-vector))
(eq (elt a-simple-vector n) “foo)
(princ "Foo!"))

would accomplish the same thing. The difference is purely stylistic. Some
programmers never use expressions containing side effects within ana, preferring
to use if or when for that purpose.

From the general definition, one can deduce that (ana x) = x. Also, (and)
evaluates to t, which is an identity for this operation.

One can define anad in terms of cond in this way:

(and x y z ... W) = (cond ((not Xx) nil)
({(not y) nil)
((not zy nil)

(t w))
See if and when, which are sometimes stylistically more appropriate than and for
conditional purposes. If it is necessary to test whether a predicate is true of all

elements of a list or vector (element 0 and element 1 and element 2 and...), then
the function every may be useful.

or {form}* ' : : [Macro]

(or forml form2 ... ) evaluates each form, one at a time, from left to right. If
any form other than the last evaluates to something other than nil, or immediately
returns that non-nil value without evaluating the remaining forms. If every form



84 COMMON LISP

but the last evaluates to nil, or returns whatever evaluation of the last of the forms
returns. Therefore in general or can be used both for logical operations, where nil
stands for false and non-ni1 values stand for frue, and as a conditional expression.

To put it another way, the or special form does short-circuit Boolean evaluation,
like the or else operator in ADA and what in some PASCAL-like languages is called
cor (for “conditional or”); the LIsP or special form is unlike the PASCAL or ADA
or operator, which always evaluates both arguments.

From the general definition, one can deduce that (orx) = x. Also, (or) eval-
uates to nil, which is the identity for this operation.

One can define or in terms of cona in this way:

(0T Xy z ... w) = (cond (X) (¥) (Z) ... (t w))

See if and unless, which are sometimes stylistically more appropriate than or
for conditional purposes. If it is necessary to test whether a predicate is true of one
or more elements of a list or vector (element O or element 1 or element 2 or...),
then the function some may be useful.



Control Structure

CoMMON Lisp provides a variety of special structures for organizing programs.
Some have to do with flow of control (control structures), while others control
access to variables (environment structures). Some of these features are implemented
as special forms; other are implemented as macros, which typically expand into
complex program fragments expressed in terms of special forms or other macros.

Function application is the primary method for construction of Lisp programs.
Operations are written as the application of a function to its arguments. Usually,
LisP programs are written as a large collection of small functions, each of which
implements a simple operation. These functions operate by calling one another,
and so larger operations are defined in terms of smaller ones. Lisp functions may
call upon themselves recursively, either directly or indirectly.

While the Lisp language is more applicative in style than statement-oriented, it
nevertheless provides many operations that produce side effects, and consequently
requires constructs for controlling the sequencing of side effects. The construct
progn, which is roughly equivalent to an ALGOL begin-end block with all its
semicolons, executes a number of forms sequentially, discarding the values of all
but the last. Many LisP control constructs include sequencing implicitly, in which
case they are said to provide an “implicit progn.” Other sequencing constructs
include progi and proga.

For looping, COMMON Lisp provides the general iteration facility do as well as
a variety of special-purpose iteration facilities for iterating or mapping over various
data structures.

CoMMoN Lisp provides the simple one-way conditionals when and unless, the
simple two-way conditional if, and the more general multi-way conditionals such
as cond and case. The choice of which form to use in any particular situation is
a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines are
provided: block, return, return-from, catch, and throw.

85
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The multiple-value constructs provide an efficient way for a function to return
more than one value; see values.

7.1. Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot always
notate a constant data object in a program simply by writing the notation for the
object unadorned; it would ambiguous whether a constant object or a program
fragment was intended. The quote special form resolves this ambiguity.

There are two spaces of variables in COMMON LisP, in effect: ordinary variables
and function names. There are some similarities between the two kinds, and in a
few cases there are similar functions for dealing with them, for example boundp
and fboundp. However, for the most part the two kinds of variables are used for
very different purposes: one to name defined functions, macros, and special forms,
and the other to name data objects.

7.1.1. Reference

The value of an ordinary variable may be obtained simply by writing the name of
the variable as a form to be executed. Whether this is treated as the name of a
special variable or a lexical variable is determined by the presence or absence of
an applicable special declaration; see chapter 9.

The following functions and special forms allow reference to the values of con-
stants and variables in other ways.

quote object [Special form)

(quote x) simply returns x. The object is not evaluated and may be any Lisp
object whatsoever. This construct allows any LISP object to be written as a constant
value in a program. For example:

(setq a 43)
(list a (cons a 3)) > (43 (43 . 3))
(list (quote a) (quote (cons a 3)) = (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type, a
standard abbreviation is defined for them: any form f preceded by a single quote
() character is assumed to have (quote ) wrapped around it to make (quote f).
For example:
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(setq x ‘(the magic quote hack))
is normally interpreted by read to mean

(setq x (quote (the magic quote hack)))

See section 22.1.3.

function fn [Special form]

The value of function is always the functional interpretation of fn; fn is interpreted
as if it had appeared in the functional position of a function invocation. In partic-
ular, if fn is a symbol, the functional definition associated with that symbol is
returned; seée synbol-function. If Jfn is a lambda-expression, then a “lexical clo-
sure” is returned, that is, a function that when invoked will execute the body of
the lambda-expression in such a way as to observe the rules of lexical scoping
properly. For example:

(defun adder (x) (function (lambda (y) (*+ X y))))
The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))
(funcall add3 S5) > 8

This works because function creates a closure of the inner lambda-expression that
is able to refer to the value 3 of the variable x even after control has returned from
the function adder.

More generally, a lexical closure in effect retains the ability to refer to lexically
visible bindings, not just values. Consider this code:

(defun two-funs (Xx)
(list (function (lambda () x))
(functdion (lambda (y) (setq x y)))))
(setq funs (two-funs b))
(funcall (car funs)) 2> &
(funcall (cadr funs) 43) > 43
(funcall (car funs)) > 43

The function two-funs returns a list of two functions, each of which refers to the
binding of the variable x created on entry to the function two-funs when it was
called with argument. &. This binding has the value & initially, but setq can alter
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a binding. The lexical closure created for the first lambda-expression does not
“snapshot” the value & for x when the closure is created. The second function can
be used to alter the binding (to 43, in the example), and this altered value then
becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set of bind-
ings may be produced more than once, the various resulting closures may or may
not be eq, at the discretion of the implementation. For example:

(let ((x 5) (funs ()))
(dotimes (j 10)
(push #‘(lambda (z)
(if (null z) (setq x 0) (+ x z)))
funs))
funs)

The result of the above expression is a list of ten closures. Each logically requires
only the binding of x. It is the same binding in each case, so the ten closures may
or may not be the same identical (eq) object. On the other hand, the result of the
expression

(let ((funs “()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) )
(if (null z) (setq x O0) (+ x z))))
funs)))
funs)

is also a list of ten closures. However, in this case no two of the closures may be
eq, because each closure is over a distinct binding of x, and these bindings can be
behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the simpler
expression

(let ((funs “‘()))
(dotimes (j 10)

(let ((x 5))
(push (function (lambda (z) (+ X z)))
funs)))
funs)

is a list of ten closures that may be pﬁirwise eq. Although one might think that a
different binding of x is involved for each closure (which is indeed the case), the
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bindings cannot be distinguished because their values are identical and immutable,
there being no occurrence of setq on x. A compiler would therefore be justified
in transforming the expression to

(let ((funs ‘()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z2)))
funs))
funs)

where clearly the closures may be the same after all. The general rule, then, is that
the implementation is free to have two distinct evaluations of the same function
form produce identical (eq) closures if it can prove that the two conceptually distinct
resulting closures must in fact be behaviorally identical with respect to invocation.
This is merely a permitted optimization; a perfectly valid implementation might
simply cause every distinct evaluation of a function form to produce a new closure
object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to close
over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (1ambda (x) (+ x 2)) contains no references to any outside entity.
In this important special case, the same “closure” may be used as the value for all
evaluations of the function special form. Indeed, this value need not be a closure
object at all; it may be a simple compiled function containing no environment
information. This example is simply a special case of the foregoing discussion and
is included as a hint to implementors familiar with previous methods of implementing
Lisp. The distinction between closures and other kinds of functions is somewhat
pointless, actually, as CoMMON Lisp defines no particular representation for closures
and no way to distinguish between closures and non-closure functions. All that
matters is that the rules of lexical scoping be obeyed.

Since function forms are so frequently useful but somewhat cumbersome to
type, a standard abbreviation is defined for them: any form f preceded by #-
(# followed by an apostrophe) is assumed to have (function ) wrapped around
it to make (function f). For example,

(remove-if #‘numberp ‘(1 a b 3))
is normally interpreted by read to mean
(remove-if (function numberp) ‘(1 a b 3))

See section 22.1.4.
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symbol-value symbol \ [Function]

symbol-value returns the current value of the dynamic (special) variable named
by symbol. An etror occurs if the symbol has no value; see boundp and nakunbound.
Note that constant symbols are really variables that cannot be changed, and so
symbol-value may be used to get the value of a named constant. In particular,
symbol-value of a keyword will return that keyword.

symbol-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for languages
embedded in Lisp. The corresponding assignment primitive is set; alternatively,
symbol-value may be used with setf.

symbol-function symbol ‘ [Function)]

symbol-function returns the current global function definition named by symbol.
An error is signalled if the symbol has no function definition; see fboundp. Note
that the definition may be a function or may be an object representing a special
form or macro. In the latter case, however, it is an error to attempt to invoke the
object as a function. If it is desired to process macros, special forms, and functions
equally well, as when writing an interpreter, it is best first to test the symbol with
nacro-function and special-form-p and then to invoke the functional value
only if these two tests both yield false.

This function is particularly useful for implementing interpreters for languages
embedded in Lisp.

symbol-function cannot access the value of a lexical function name produced
by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf with
symbol-function. Performing this operation causes the symbol to have only the
specified definition as its global function definition; any previous definition, whether
as a macro or as a function, is lost. It is an error to attempt to redefine the name
of a special form (see Table 5-1).

boundp symbol [Function]

boundp is true if the dynamic (special) variable naméd by symbol has a value;
otherwise, it returns nil.
See also set and makunbound.

fboundp symbol [Function]
fboundp is true if the symbol has a global function definition. Note that fboundp
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is true when the symbol names a special form or macro. macro-function and
special-form-p may be used to test for these cases. :
See also symbol-function and fmakunbound.

special-form-p symbol [Function]

The function special-form-p takes a symbol. If the symbol globally names a
special form, then a non-nil value is returned; otherwise nil is returned. A re-
turned non-nil value is typically a function of implementation-dependent nature
that can be used to interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a
symbol. This is possible because an implementation is permitted to implement any
macro also as a special form for speed. On the other hand, the macro definition
must be available for use by programs that understand only the standard special
forms listed in Table 5-1.

7.1.2. Assignment

The following facilities allow the value of a variable (more specifically, the value
associated with the current binding of the variable) to be altered. Such alteration
is different from establishing a new binding. Constructs for establishing new bindings
of variables are described in section 7.5.

setq {var form}* [Special form]

The special form (setq varl forml var2 form2 ...y is the “simple variable as-
signment statement” of Lisp. First form! is evaluated and the result is stored in the
variable varl, then form2 is evaluated and the result stored in var2 , and so forth.
The variables are represented as symbols, of course, and are interpreted as referring
to static or dynamic instances according to the usual rules. Therefore setq may be
used for assignment of both lexical and special variables.

setq returns the last value assigned, that is, the result of the evaluation of its
last argument. As a boundary case, the form (setq) is legal and returns nil. There
must be an even number of argument forms. For example, in

(setq x (+ 3 2 1) y (cons x nil))

xissetto b, y is setto (&), and the setq returns (& ). Note that the first assignment
is performed before the second form is evaluated, allowing that form to use the
new value of x.

See also the description of setf, the COMMON LIspP “general assignment state-
ment” that is capable of assigning to variables, array elements, and other locations.
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psetq {var form}* [Macro]

A psetq form is just like a setq form, except that the assignments happen in
parallel. First all of the forms are evaluated, and then the variables are set to the
resulting values. The value of the psetq form is ni1. For example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a > 2

b=>1

In this example, the values of a and b are exchanged by using parallel assignment.
(If several variables are to be assigned in parallel in the context of a loop, the do
construct may be appropriate.)

See also the description of setf, the COMMON LisP “general parallel assignment
statement” that is capable of assigning to variables, array clements, and other
locations.

set symbol value [Function)

set allows alteration of the value of a dynamic (special) variable. set causes the
dynamic variable named by symbol to take on value as its value. Only the value
of the current dynamic binding is altered; if there are no bindings in effect, the
most global value is altered. For example,

(set (if (eq a b) ‘c ‘d) ‘foo)

will either set c to foo or set 4 to foo, depending on the outcome of the test (eq
a b).

set returns value as its result.

set cannot alter the value of a local (Iexically bound) variable. The special form
setq is usually used for altering the values of variables (lexical or dynamic) in
programs. set is particularly useful for implementing interpreters for languages
embedded in Lisp. See also progv, a construct that performs binding rather than
assignment of dynamic variables.

makunbound symbol [Function)]
fmakunbound symbol [Function]

makunbound causes the dynamic (special) variable named by symbol to become
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unbound (have no value). £makunbound does the analogous thing for the global
function definition named by symbol. For example:

(se€tq a 1)

a>1
(makunbound ‘a)

a => causes an error

(defun foo (x) (+ x 1))
(foo 4) > 5
(fmakunbound ‘foo)

(foo 4) = causes an error

Both functions return symbol as the result value.

7.2. Generalized Variables

In Lisp, a variable can remember one piece of data, that is, one Lisp object. The
main operations on a variable are to recover that object, and to alter the variable
to remember a new object; these operations are often called access and update
operations. The concept of variables named by symbols can be generalized to any
storage location that can remember one piece of data, no matter how that location
is named. Examples of such storage locations are the car and cdr of a cons,
elements of an array, and components of a structure.

For each kind of generalized variable, typically there are two functions that
implement the conceptual access and update operations. For a variable, merely
mentioning the name of the variable accesses it, while the setq special form can
be used to update it. The function car accesses the car of a cons, and the function
rplaca updates it. The function symbol-value accesses the dynamic value of a
variable named by a given symbol, and the function set updates it.

Rather than thinking about two distinct functions that respectively access and
update a storage location somehow deduced from their arguments, we can instead
simply think of a call to the access function with given arguments as a name for
the storage location. Thus, just as x may be considered a name for a storage location
(a variable), so (car x) is a name for the car of some cons (which is in turn named
by x). Now, rather than having to remember two functions for each kind of gen-
eralized variable (having to remember, for example, that rplaca corresponds to
car), we adopt a uniform syntax for updating storage locations named in this way,
using the setf macro. This is analogous to the way we use the setq special form
to convert the name of a variable (which is also a form that accesses it) into a form
that updates it. The uniformity of this approach is illustrated in the following table.
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Access function Update function Update using setf

X (setqg x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to the
corresponding update function.

Given the existence of setf in COMMON LIsP, it is not necessary to have setq,
rplaca, and set; they are redundant. They are retained in COMMON LISP because
of their historical importance in Lisp. However, most other update functions (such
as putprop, the update function for get) have been eliminated from CoMMON Lisp
in the expectation that setf will be uniformly used in their place.

setf {place newvalue}* [Macro]

(setf place newvalue) takes a form place that when evaluated accesses a data
object in some location and “inverts” it to produce a corresponding form to update
the location. A call to the setf macro therefore expands into an update form that
stores the result of evaluating the form newvalue into the place referred to by the
access-form.

If more than one place-newvalue pair is specified, the pairs are processed se-
quentially; that is,

(setf placel newvaluel
place2 newvalue2)

placen newvaluen)
is precisely equivalent to

(progn (setf placel newvaluel)
(setf place2 newvalue2)

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.
The form place may be any one of the following:

* The name of a variable (either lexical or dynamic).
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* A function call form whose first element is the name of any one of the following
functions:

aref car svref

nth cdr get

elt caar getf symbol-value
rest cadr gethash symbol-function
first cdar documentation symbol-plist
second cddr fill-pointer macro-function
third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

elghth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr

* A function call form whose first element is the name of a selector function
constructed by defstruct.

* A function call form whose first element is the name of any one of the following
functions, provided that the new value is of the specified type so that it can be
used to replace the specified “location” (which is in each of these cases not truly
a generalized variable):

Function name Required type
char string-char
schar string-char
bit bit

sbhit bit

subseq sequence

In the case of subseq, the replacement value must be a sequence whose elements
may be contained by the sequence argument to subseq. (Note that this is not so
stringent as to require that the replacement value be a sequence of the same type
as the sequence of which the subsequence is specified.) If the length of the
replacement value does not equal the length of the subsequence to be replaced,
then the shorter length determines the number of elements to be stored, as for
the function replace.

* A function call form whose first element is the name of any one of the following
functions, provided that the specified argument to that function is in turn a place
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form; in this case the new place has stored back into it the result of applying

the specified “update” function (which is in each of these cases not a true update
function):

Function name Argument that is a place Update function used
' char-bit first set-char-bit

1db second dpb

mask-field second deposit-field

* A the type declaration form, in which case the declaration is transferred to the
newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))
is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

* A call to apply where the first argument form is of the form #‘name, that is,
(function name), where name is the name of a function, calls to which are
recognized as places by setf. Suppose that the use of setf with apply looks
like this:

(setf (apply #’name xI x2 ... xn rest) x0)

The setf method for the function name must be such that
(setf (name zI z2 ... zm) z0)

expands into a store form

(Storefn zi| zi, ... zi, zm)

That is, it must expand into a function call such that all arguments but the last
may be any permutation or subset of the new value z0 and the arguments of the
access form, but the last argument of the storing call must be the same as the
last argument of the access call. See define-setf-method for more details on
accessing and storing forms.

Given this, the setf-of-apply form shown above expands into

(apply #‘storefn Xiy Xi, ... xi, rest)
As an example, suppose that the variable indexes contains a list of subscripts

for a multidimensional array foo whose rank is not known until run time. One
may access the indicated element of the array by writing

(apply #‘’aref foo indexes)
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and one may alter the value of the indicated element to that of newvalue by
writing

(setf (apply #‘aref foo indexes) newvalue)

* A macro call, in which case setf expands the macro call and then analyzes the
resulting form.

* Any form for which a defsetf or define-setf-method declaration has been
made.

setf carefully arranges to preserve the usual left-to-right order in which the
various subforms are evaluated. On the other hand, the exact expansion for any
particular form is not guaranteed and may even be implementation-dependent; all
that is guaranteed is that the expansion of a setf form will be an update form that
works for that particular implementation, and that the left-to-right evaluation of
subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue. Therefore
(setf (car x) y) does not expand into precisely (rplaca x ), but into something
more like

(let ((G1 x) (G2 y)) (rplaca Gl G2) G2)

the precise expansion being implementation-dependent.
The user can define new setf expansions by using defsetr.

psetf {place newvalue}* [Macro]

psetf is like setf except that if more than one. place-newvalue pair is specified
then the assignments of new values to places are done in parallel. More precisely,
all subforms that are to be evaluated are evaluated from left to right; after all
evaluations have been performed, all of the assignments are performed in an un-
predictable order. (The unpredictability matters only if more than one place form
refers to the same place.) psetf always returns nil.

shiftf {place}* newvalue [Macro]

Each place form may be any form acceptable as a generalized variable to setf.
In the form (shiftf placel place2 ... placen newvalue), the values in placel
through placen are accessed and saved, and newvalue is evaluated, for a total of
n+1 values in all. Values 2 through n+1 are then stored into placel through
placen, and value 1 (the original value of placel) is returned. It is as if all the
places form a shift register; the newvalue is shifted in from the right, all values
shift over to the left one place, and the value shifted out of placel is returned.



98 COMMON LISP

For example:
(setq x (list ‘a ‘b ’c)) = (a b ¢)

(shiftf (cadr x) ‘z) > b
and now x = (a z c¢)

(shiftf (cadr x) (cddr x) ‘q) > z
and now x > (a (¢) . q)

The effect of (shiftf placel place? ... placen newvalue) is equivalent to

(let ((varl placel)
(var2 place2)

(varn placeny)
(setf placel var2)
(setf place2 var3)

(setf placen newvalue)
varl)

except that the latter would evaluate any subforms of each place twice, whereas
shiftf takes care to evaluate them only once. For example:

(setq n D0)

(setq x “(a b c d))

(shiftf (nth (setg n (+ n 1)) x) ‘z) > b
and now x = (a z c d)

but

(setq n 0)
(setg x “(a b c d))
(progl (nth (setq n (+ n 1)) x)
(setf (nth (setqn (+ n 1)) x) ‘z)) > b
and now x = (a b z d)

Moreover, for certain place forms shiftf may be significantly more efficient than
the progl version.

Rationale: shiftf and rotatef have been included in CoMMON Lisp as generalizations
of two-argument versions formerly called swapf and exchf. The two-argument versions
have been found to be very useful, but the names were easily confused. The generalization
to many argument forms and the change of names were both inspired by the work of Suzuki
[19], which indicates that use of these primitives can make certain complex pointer-manipulation
programs clearer and easier to prove correct.
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rotatef {place}* [Macro]

Each place form may be any form acceptable as a generalized variable to setf.
In the form (rotatet placel place? ... placen), the values in placel through
placen are accessed and saved. Values 2 through n and value 1 are then stored into
placel through placen. 1t is as if all the places form an end-around shift register
that is rotated one place to the left, with the value of placel being shifted around
the end to placen. Note that (rotatef placel place2) exchanges the contents of
place and place2.

The effect of (rotatet placel place? . . . placen newvalue) is roughly equivalent
to

(psetf placel place2
place2 place3

placen placel )

except that the latter would evaluate any subforms of each place twice, whereas
rotatef takes care to evaluate them only once. Moreover, for certain place forms
rotatef may be significantly more efficient.

rotatef always returns nil.

Other macros that manipulate generalized variables include getf, remf, incf,
decf, push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “obvious” se-
mantics: subforms of generalized-variable references are evaluated exactly as many
times as they appear in the source program, and they are evaluated in exactly the
same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of
1ab, the generalized variables are both read and written in the same reference.
Preserving the source program order of evaluation and the number of evaluations
is particularly important.

As an example of these semantic rules, in the generalized-variable reference
(setf reference value) the value form must be evaluated affer all the subforms
of the reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules or
has the same effect as such code. This is accomplished by introducing temporary
variables bound to the subforms of the reference. As an optimization in the imple-
mentation, temporary variables may be eliminated whenever it can be proven that
removing them has no effect on the semantics of the program. For example, a
constant need never be saved in a temporary variable. A variable, or any form that
does not have side effects, need not be saved in a temporary variable if it can be
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proven that its value will not change within the scope of the generalized-variable
reference.

CoMMON Lisp provides built-in facilities to take care of these semantic compli-
cations and optimizations. Since the required semantics can be guaranteed by these
facilities, the user does not have to worry about writing correct code for them,
especially in complex cases. Even experts can become confused and make mistakes
while writing this sort of code.

Another reason for building in these functions is that the appropriate optimiza-
tions will differ from implementation to implementation. In some implementatione
most of the optimization is performed by the compiler, while in others a simpler
compiler is used and most of the optimization is performed in the macros. The cost
of binding a temporary variable relative to the cost of other Lisp operations may
differ greatly between one implementation and another, and some implementations
may find it best never to remove temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following general-
ized-variable reference:

(incf (1ldb byte-field variable))
This ought to expand into something like

(setqg variable
(dpb (1+ (1db byte-field variable))
byte-field
variable))

In this expansion example we have ignored the further complexity of returning the
correct value, which is the incremented byte, not the new value of variable. Note
that the variable byte-field is evaluated twice, and the variable variable is
referred to three times: once as the location in which to store a value, and twice
during the computation of that value.

Now consider this expression:

(incf (1db (aref byte-fields (incf 1i))
(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((templ (aref byte-fields (incf i)))
(temp2 (determine-words-array)))
(setf (aref tempe i)
(dpb (1+ (1db templ (aref temp2 i)))
templ
(aref temp?2 1))))
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Again we have ignored the complexity of returning the correct value. What is
important here is that the expressions (incf i) and (determine-words-array)
must not be duplicated because each may have a side effect or be affected by side
effects.

The CoMMON Lisp facilities provided to deal with these semantic issues include:

* Built-in macros such as setf and push that follow the semantic rules.

* The define-nodify-macro macro, which allows new generalized-variable ma-
nipulating macros (of a certain restricted kind) to be defined easily. It takes care
of the semantic rules automatically.

* The defsetf macro, which allows new types of generalized-variable references
to be defined easily. It takes care of the semantic rules automatically.

* The define-setf-method macro and the get-setf-method function, which
provide access to the internal mechanisms when it is necessary to define a com-
plicated new type of generalized-variable reference or generalized-
variable-manipulating macro.

define-modify-macro name lambda-list function [doc-string) [Macro]

This macro defines a read-modify-write macro named name. An example of such
a macro is incf. The first subform of the macro will be a generalized-variable
reference. The function is literally the function to apply to the old contents of the
generalized-variable to get the new contents; it is not evaluated. lambda-list de-
scribes the remaining arguments for the function; these arguments come from the
remaining subforms of the macro after the generalized-variable reference. lambda-list
may contain soptional and srest markers. (The skey marker is not permitted
here; srest suffices for the purposes of define-modify-macro.) doc-string is
documentation for the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, except
that it generates code that follows the semantic rules outlined above.

(Gefmacro name (reference . lambda-list)

doc-string
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))
where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate

provision is made for a srest parameter.
As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)
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An example of a possibly useful macro not predefined in COMMON LIsP is:

(define-modify-macro unionf (other-set &rest keywords) union)

defsetf access-fn {update-fn [doc-string] | [Macro]
lambda-list (store-variable)
{declaration | doc-string}* {form}*}

This defines how to setf a generalized-variable reference of the form (access-
Jn ...). The value of a generalized-variable reference can always be obtained
simply by evaluating it, so access-fn should be the name of a function or a macro.

The user of defsetf provides a description of how to store into the general-
ized-variable reference and return the value that was stored (because set £ is defined
to return this value). The implementation of defsetf takes care of ensuring that
subforms of the reference are evaluated exactly once and in the proper left-to-right
order. In order to do this, defsetf requires that access-fa be a function or a macro
that evaluates its arguments, behaving like a function. Furthermore, a setf of a
call on access-fn will also evaluate all of access-fn’s arguments; it cannot treat any
of them specially. This means that defsetf cannot be used to describe how to
store into a generalized variable that is a byte, such as (1db field reference).
To handle situations that do not fit the restrictions imposed by defsetf, use de-
fine-setf-method, which gives the user additional control at the cost of increased
complexity.

A detset£ declaration may take one of two forms. The simple form of defsett
is
(defsetf access-fn update-fn [doc-string])

The update-fn must name a function (or macro) that takes one more argument than
access-fn takes. When setf is given a place that is a call on access-fn, it expands
into a call on update-fn that is given all the arguments to access-fn and also, as its
last argument, the new value (which must be returned by update-fn as its value).
For example, the effect of

(defsetf symbol-value set)

is built into the COMMON Lisp system. This causes the form (setf (symbol-value
foo) fu) to expand into (set foo fu). Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.
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The complex form of aefsetr looks like
(defsetf access-fn lambda-list (store-variable) . body)

and resembles defmacro. The body must compute the expansion of a setf of a
call on access-fn.

The lambda-list describes the arguments of access-fn. soptional, arest, and
skey markers are permitted in lambda-list. Optional arguments may have defaults
and “supplied-p” flags. The store-variable describes the value to be stored into the
generalized-variable reference. :

Rationale: The store-variable is enclosed in parentheses to provide for an extension to
multiple store variables that would receive multiple values from the second subform of
setf. The rules given below for coding setf methods discuss the proper handling of
multiple store variables to allow for the possibility that this extension may be incorporated
into CoMMoON Lisp in the future.

The body forms can be written as if the variables in the lambda-list were bound
to subforms of the call on access-fn and the store-variable were bound to the second
subform of setf. However, this is not actually the case. During the evaluation of
the body forms, these variables are bound to names of temporary variables, gen-
erated as if by gensyn or gentemp, that will be bound by the expansion of setf
to the values of those subforms. This binding permits the body forms to be written
without regard for order-of-evaluation issues. defsetf arranges for the temporary
variables to be optimized out of the final result in cases where that is possible. In
other words, an attempt is made by defsetf to generate the best code possible in
a particular implementation.

Note that the code generated by the body forms must include provision for

‘returning the correct value (the value of store-variable). This is handled by the
body forms rather than by defset£ because in many cases this value can be returned
at no extra cost, by calling a function that simultaneously stores into the generalized
variable and returns the correct value.

An example of the use of the complex form of defset¢:

(defsetf subseq (sequence start &optional end) (new—sequehce)
‘(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)
(New-sequence))
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The underlying theory by which setz and related macros arrange to conform to
the semantic rules given above is that from any generalized-variable reference one
may derive its “setf method,” which describes how to store into that reference
and which subforms of it are evaluated.

Compatibility note: To avoid confusion, it should be noted that the use of the word “method”
here in connection with set£ has nothing to do with its use in ZETALISP in connection with
message-passing and the ZeraLisp “flavor system.”

Given knowledge of the subforms of the reference, it is possible to avoid evaluating
them multiple times or in the wrong order. A setf method for a given access form
can be expressed as five values:

* A list of temporary variables.

* A list of value forms (subforms of the given form) to whose values the temporary
variables are to be bound.

* A second list of temporary variables, called store variables.
* A storing form.

* An accessing form.

The temporary variables will be bound to the values of the value forms as if by
lets; that is, the value forms will be evaluated in the order given and may refer
to the values of earlier value forms by using the corresponding variables.

The store variables are to be bound to the values of the newvalue form, that is,
the values to be stored into the generalized variable. In almost all cases only a
single value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary
variables (and also, in the case of the storing form, to the store variables). The
accessing form returns the value of the generalized variable. The storing form
modifies the value of the generalized variable and guarantees to return the values
of the store variables as its values; these are the correct values for setf to return.
(Again, in most cases there is a single store variable and thus a single value to be
returned.) The value returned by the accessing form is, of course, affected by
execution of the storing form, but either of these forms may be evaluated any
number of times, and therefore should be free of side effects (other than the storing
action of the storing form). '

The temporary variables and the store variables are generated names, as if by
gensym Or gentemp, so that there is never any problem of name clashes among
them, or between them and other variables in the program. This is necessary to
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make the special forms that do more than one setf in parallel work properly; these
are psetf, shiftf, and rotatef. Computation of the setf method must always
create new variable names; it may not return the same ones every time.

Some examples of setf methods for particular forms:

* For a variable x:

0

()

(g0001)

(setq x gO0O01)
X

* For (car exp):

(goooR)
(exp)

(guoo3)

(progn (rplaca g0O002 gOOD3) gDOO3)
(car g0OO2)

* For (subseq seq s e):

(90004 g00DS gO00B)

(seq s e)

(gooaw)

(progn (replace g0D004 gO00? :startl gOO0S :endl gODOG)
gooov)

(subseq g0004 g000S gOOOR)

define-setf-method access-fn lambda-list [Macro]
{declaration | doc-string}* {form}*

This defines how to setf a generalized-variable reference that is of the form
(access-fn. ..). The value of a generalized-variable reference can always be ob-
tained simply by evaluating it, so access-fn should be the name of a function or a
macro.

The lambda-list describes the subforms of the generalized-variable reference, as
with defmacro. The result of evaluating the forms in the body must be five values
representing the set £ method, as described above. Note that define-setf-method
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differs from the complex form of defset£ in that while the body is being executed
the variables in lambda-list are bound to parts of the generalized-variable reference,
not to temporary variables that will be bound to the values of such parts. In addition,
define-setf-method does not have defset£’s restriction that access-fin must be
a function or a function-like macro; an arbitrary defmacro destructuring pattern is
permitted in lambda-list.

By definition there are no good small examples of define-setf-nethod because
the easy cases can all be handled by defsetf. A typical use is to define the sett
method for 14ab:

335 SETF method for the form (LDB bytespec int).
;33 Recall that the int form must itself be suitable for SETF.

(define-setf-method 1db (bytespec int)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int) ;Get SETF method for int.
(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.

(stemp (first stores))) ;Temp var for int to store.
;; Return the SETF method for LDB as five values.
(values (cons btemp tenmps) ;Temporary variables.

(cons bytespec vals) ;Value forms.
(list store) ;Store variables.

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
(store-form
(Store) ;Storing form.

*(ldb ,btemp ,access-form) ;Accessing form.

)

get-setf-method form ' [Function]

get-setf-method returns five values constituting the setf method for form. The
form must be a generalized-variable reference. get-setf-nethod takes care of
error-checking and macro expansion and guarantees to return exactly one
store-variable.

As an example, an extremely simplified version of setf, allowing no more and
no fewer than two subforms, containing no optimization to remove unnecessary
variables, and not allowing storing of multiple values, could be defined by:
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(defmacro setf (reference value)
(mnultiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference)
(declare (ignore access~form))
‘(let* ,(mapcar #’list
(append vars stores)

(append vals (list value)))
rstore-form)y)

get-setf-method-multiple-value form [Function]

get-setf-method-multiple-value returns five values constituting the setf method
for form. The form must be a generalized-variable reference. This is the same as
get-setf-nethod except that it does not check the number of store-variables; use
this in cases that allow storing multiple values into a generalized variable. There
are no such cases in standard COMMON LisP, but this function is provided to allow
for possible extensions.

7.3. Function Invocation

The most primitive form for function invocation in Lisp of course has no name;
any list that has no other interpretation as a macro call or special form is taken to
be a function call. Other constructs are provided for less common but nevertheless
frequently useful situations.

apply function arg srest more-args [Function]

This applies function to a list of arguments. function may be a compiled-code
object, or a lambda-expression, or a symbol; in the latter case the global functional
value of that symbol is used (but it is illegal for the symbol to be the name of a
macro or special form). The arguments for the function consist of the last argument
to apply appended to the end of a list of all the other arguments to apply but the
JSunction itself; it is as if all the arguments to apply except the function were given
to list» to create the argument list. For example:

(setq £ “+) (apply £ ‘(1 2)) > 3
(setq £ #7-) (apply £ “(1 2)) = -1
(apply #‘max 3 5 ‘(2 ? 3)) > 7
(apply ‘cons ‘((+ 2 3) 4)) >

((+ 2 3) . 4) not (s . 4)
(apply #°+ *()) > O
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Note that if the function takes keyword arguments, the keywords as well as the
corresponding values must appear in the argument list:

(apply #’(lambda (skey a b) (list a b)) “(:b 3)) = (nil 3)
This can be very useful in conjunction with the sallow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(1f double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents “(a b ¢ d) :double t)
> #(abcdabcad)

funcall fn srest arguments [Function)]

(funcall fnal a2 ... an) applies the function fr to the arguments al, a2, ...,
an. fn may not be a special form nor a macro; this would not be meaningful. For
example:

(cons 1 2) > (1 . 2)
(setq cons (symbol-function “+))
(funcall cons 1 2) > 3

The difference between funcall and an ordinary function call is that the function
is obtained by ordinary LIsP evaluation rather than by the special interpretation of
the function position that normally occurs.

Compatibility note: The CoMMoN Lisp function funcall corresponds roughly to the INTERLisp
primitive apply+.

call-arguments-limit [Constant]

The value of call-arguments-1limit is a positive integer that is the upper exclusive
bound on the number of arguments that may be passed to a function. This bound
depends on the implementation, but will not be smaller than 50. (Implementors
are encouraged to make this limit as large as practicable without sacrificing
performance.) The value of cali-arquments-1limit must be as least as great as
that of lanbda-parameters-limit. See also multiple-values-limit.

7.4. Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms in
order. They differ only in what results are returned.
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progn {form}* [Special form)
The progn construct takes a number of forms and evaluates them sequentially, in
order, from left to right. The values of all the forms but the last are discarded;
whatever the last form returns is returned by the progn form. One says that all the
forms but the last are evaluated for effect, because their execution is useful only
for the side effects caused, but the last form is executed for value.

progn is the primitive control structure construct for “compound statements,”
such as begin-end blocks in ALGOL-like languages. Many Lisp constructs are “im-
plicit progn” forms, in that as part of their syntax each allows many forms to be
written that are to be evaluated sequentially, discarding the results of all forms but
the last and returning the results of the last form.

If the last form of the progn returns multiple values, then those multiple values
are returned by the progn form. If there are no forms for the progn, then the result
is nil. These rules generally hold for implicit progn forms as well.

progl first {form}* [Macro]
progl is similar to progn, but it returns the value of its first form. All the argument
forms are executed sequentially; the value the first form produces is saved while
all the others are executed and is then returned.

progl is most commonly used to evaluate an expression with side effects and
return a value that must be computed before the side effects happen. For example:

(progl (car x) (rplaca x ‘foo0))

alters the car of x to be foo and returns the old car of X.

progl always returns a single value, even if the first form tries to return multiple
values. As a consequence of this, (progi x) and (prognx) may behave differently
if x can produce multiple values. See multiple-value-progl. A point of style:
although progi can be used to force exactly a single value to be returned, it is
conventional to use the function values for this purpose.

prog2 first second {form}* [Macro]

prog2 is similar to progi, but it returns the value of its second form. All the
argument forms are executed sequentially; the value of the second form is saved
while all the other forms are executed and is then returned. proge is provided
mostly for historical compatibility.

(prog2 @ b ¢ ... z) = (progn a (progi b c ... z))
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Occasionally it is desirable to perform one side effect, then a value-producing
operation, then another side effect. In such a peculiar case, progz is fairly perspicuous.
For example:

(proge (open-a-file) (process-the-file) (close-the-file))
;value is that of process-the-file

progz, like progi, always returns a single value, even if the second form tries
to return multiple values. As a consequence of this, (prog2 x y) and (progn
x y) may behave differently if y can produce multiple values.

7.5. Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression (or a
closure of a lambda-expression, as produced by function), new bindings are
established for the variables that are the paremeters of the lambda-expression. These
bindings initially have values determined by the parameter-binding protocol discussed
in section 5.2.2.

The following constructs may also be used to establish bindings of variables,
both ordinary and functional.

let ( {var | (var value)}*) {declaration}* {form}* [Special form]

A let form can be used to execute a series of forms with specified variables bound
to specified values.
More precisely, the form

(let ((varl valuel)
(var2 value2)

(varm valuemy)
declarationl
declaration2

declarationp
bodyl
body2

bodyn)
first evaluates the expressions valuel , value2, and so on, in that order, saving the
resulting values. Then all of the variables varj are bound to the corresponding
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values in parallel; each binding will be a lexical binding unless there is a special
declaration to the contrary. The expressions bodyk are then evaluated in order; the
values of all but the last are discarded (that is, the body of a 1et form is an implicit
progn). The let form returns what evaluating bodyn produces (if the body is
empty, which is fairly useless, let returns nil as its value). The bindings of the
variables have lexical scope and indefinite extent. .

Instead of a list (varj valuejy, one may write simply varj. In this case varj is
initialized to nil. As a matter of style, it is recommended that varj be written only
when that variable will be stored into (such as by setq) before its first use. If it
is important that the initial value is nil rather than some undefined value, then it
is clearer to write out (varj nil) if the initial value is intended to mean “false”
or (varj ‘()) if the initial value is intended to be an empty list. Note that the code

(let (x)
(declare (integer x))
(setq x (gcd y z))
..)

is incorrect; although x is indeed set before it is used, and is set to a value of the
declared type integer, nevertheless x momentarily takes on the value nil in
violation of the type declaration. .

Declarations may appear at the beginning of the body of a 1et. See declare.

letx ( {var | (var value)}*) {declaration}* {form}* [Special form]

letw is similar to let, but the bindings of variables are performed sequentially
rather than in parallel. This allows the expression for the value of a variable to
refer to variables previously bound in the lets form.

More precisely, the form

(letx ((varl valuel)
(var2 value2)

(varm valuem,) )
declarationl
declaration2

declarationp
bodyl
body2

bodyn)
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first evaluates the expression valuel, then binds the variable varl to that value;
then it evaluates value2 and binds var2; and so on. The expressions bodyj are then
evaluated in order; the values of all but the last are discarded (that is, the body of
a let» form is an implicit progn). The 1et+ form returns the results of evaluating
bodyn (if the body is empty, which is fairly useless, 1et* returns nil as its value).
The bindings of the variables have lexical scope and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case varj is
initialized to nil. As a matter of style, it is recommended that varj be written only
when that variable will be stored into (such as by setq) before its first use. If it
is important that the initial value is nil rather than some undefined value, then it
is clearer to write out (varj nil) if the initial value is intended to mean “false”
or (varj ‘()) if the initial value is intended to be an empty list.

Declarations may appear at the beginning of the body of a 1et=*. See declare.

compiler-let ( {var | (var value)}*) {form}* [Special form]

When executed by the LISP interpreter, compiler-let behaves exactly like let
with all the variable bindings implicitly declared special. When the compiler
processes this form, however, no code is compiled for the bindings; instead, the
processing of the body by the compiler (including, in particular, the expansion of
any macro calls within the body) is done with the special variables bound to the
indicated values in the execution context of the compiler. This is primarily useful
for communication among complicated macros.

Declarations may not appear at the beginning of the body of a compiler-let.

Rationale: Because of the unorthodox handling by compiler-1let of its variable bindings,
it would be complicated and confusing to permit declarations that apparently referred to the
variables bound by compiler-let. Disallowing declarations eliminates the problem.

progv symbols values {form}* [Special form]

progv is a special form that allows binding one or more dynamic variables whose
names may be determined at run time. The sequence of forms (an implicit progn)
is evaluated with the dynamic variables whose names are in the list symbols bound
to corresponding values from the list values. (If too few values are supplied, the
remaining symbols are bound and then made to have no value; see nakunbound.
If too many values are supplied, the excess values are ignored.) The results of the
progv form are those of the last form. The bindings of the dynamic variables are
undone on exit from the progv form. The lists of symbols and values are computed
quantities; this is what makes progv different from, for example, let, where the
variable names are stated explicitly in the program text.
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progv is particularly useful for writing interpreters for languages embedded in
Lisp; it provides a handle on the mechanism for binding dynamic varjables.

flet ({(name lambda-list {declaration | doc-string}* [Special form]
{form}*)}¢) {form}*
labels ({(name lambda-list {declaration | doc-string}* [Special form]
{form}*)}¢) {form}+
macrolet ({(name varlist {declaration | doc-string}* [Special form]

{form}*)}xy {form}+

flet may be used to define locally named functions. Within the body of the f1et
form, function names matching those defined by the flet refer to the locally
defined functions rather than to the global function definitions of the same name.

Any number of functions may be simultaneously defined. Each definition is
similar in format to a defun form: first a name, then a parameter list (which may
contain soptional, &rest, or ¢key parameters), then optional declarations and
documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))
;7 The safesqrt function is used in two places.
(safesqrt (apply #‘+ (map ‘list #‘’safesqrt longlist))))

The 1abels construct is identical in form to the flet construct. These constructs
differ in that the scope of the defined function names for flet encompasses only
the body, whereas for 1abe1s it encompasses the function definitions themselves.
That is, 1abels can be used to define mutually recursive functions, but flet
cannot. This distinction is useful. Using flet one can locally redefine a global
function name, and the new definition can refer to the global definition; the same
construction using labels would not have that effect.

(defun integer-power (n k). ;A highiy “bummed" integer
(declare (integer n)) ; exponentiation routine.
(declare (type (integer O ) k))

(labels ((exptD (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (exptD (* x x) (floor k 2) (+ x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 1 +) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (exptO (* x x) (floor k 2) (* x a))))))
(exptD n k 1)))
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macrolet is similar in form to flet but defines local macros, using the same
format used by defmacro. The names established by nacrolet as names for macros
are lexically scoped.

Macros often must be expanded at “compile time” (more generally, at a time
before the program itself is executed), and so the run-time values of variables are
not available to macros defined by macrolet. The precise rule is that the ma-
cro-expansion functions defined by macrolet are defined in the global environ-
ment; lexically scoped entities that would ordinarily be lexically apparent are not
visible within the expansion functions. However, lexically scoped entities are vis-
ible within the body of the nacrolet form and are visible to the code that is the
expansion of a macro call. The following example should make this clear:

(defun foo (x flag)
(macrolet ((fudge (z)
; The parameters x and £lag are not accessible
; at this point; a reference to £1ag would be to
; the global variable of that name.
Y(if flag (* ,2 ,2) ,2)))
;The parameters x and flag are accessible here.
(+ x
(fudge x)
(fudge (+ x 1)))))

The body of the macrolet becomes

(+ x
(if flag (* x X) X))
(1f flag (* (+ x 1) (+ x 1)) (+ X 1)))

after macro expansion. The occurrences of x and flag legitimately refer to the
parameters of the function foo because those parameters are visible at the site of
the macrd call which produced the expansion.

7.6. Conditionals

The traditional conditional construct in LISP is cond. However, if is much simpler
and is directly comparable to conditional constructs in other programming languages,
so it is considered to be primitive in COMMON LisP and is described first. COMMON
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Lisp also provides the dispatching constructs case and typecase, which are often
more convenient than cond.

if test then [else] [Special form)

The 1£ special form corresponds to the if-then-else construct found in most algebraic
programming languages. First the form resr is evaluated. If the result is not nil,
then the form then is selected; otherwise the form else is selected. Whichever form
is selected is then evaluated, and if returns whatever evaluation of the selected
form returns.

(1f test then else) = (cona (test then) (t else))

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of fest is nil then
nothing is done and the value of the if form is nil. If the value of the if form
is important in this situation, then the and construct may be stylistically preferable,
depending on the context. If the value is not important, but only the effect, then
the when construct may be stylistically preferable.

when test {form}* [Macro]

(when test forml form2 ... ) first evaluates test. If the result is nil, then no
form is evaluated, and nil is returned. Otherwise the forms constitute an implicit
progn and are evaluated sequentially from left to right, and the value of the last
one is returned.

(when p @ b ¢) = (and p (progn a b ¢))
(when p a b ¢) = (cond (p a b ¢))

(vhen p a b ¢) = (if p (progn a b ¢) nil)
(when p @ b ¢) = (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce some side
effects, and the value of the when-form is normally not used. If the value is relevant,
then it may be stylistically more appropriate to use and or if.

unless fest {form}* [Macro]

(unless fest forml form2 ... ) first evaluates test. If the result is not nil, then
the forms are not evaluated, and nil is returned. Otherwise the Sforms constitute
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an implicit progn and are evaluated sequentially from left to right, and the value
of the last one is returned.

(unless p a b ¢) = (cond ((not p) a b ¢))
(unless p a b c) (if p nil (progn a b ¢))
(unless p a b ¢) = (when (not p) a b c)

li

As a matter of style, unless is normally used to conditionally produce some side
effects, and the value of the unless-form is normally not used. If the value is
relevant, then it may be stylistically more appropriate to use if.

cond {(test {form}*)}* [Macro]

A cona form has a number (possibly zero) of clauses, which are lists of forms.
Each clause consists of a test followed by zero or more consequents. For example:

(cond (test-1 consequent-1-1 comsequent-1-2 ...)
(test-2)
(test-3 consequent-3-1 ...)

)

The first clause whose fest evaluates to non-nil is selected; all other clauses are
ignored, and the consequents of the selected clause are evaluated in order (as an
implicit progn).

More specifically, cond processes its clauses in order from left to right. For each
clause, the test is evaluated. If the result is nil, cond advances to the next clause.
Otherwise, the cdr of the clause is treated as a list of forms, or consequents; these
forms are evaluated in order from left to right, as an implicit progn. After eval-
uating the consequents, cond returns without inspecting any remaining clauses.
The cona special form returns the results of evaluating the last of the selected
consequents; if there were no consequents in the selected clause, then the single
(and necessarily non-null) value of the zest is returned. If cond runs out of clauses
(every test produced nil, and therefore no clause was selected), the value of the
cond form is nil.

If it is desired to select the last clause unconditionally if all others fail, the
standard convention is to use t for the test. As a matter of style, it is desirable to
write a last clause (t nil) if the value of the cond form is to be used for something.
Similarly, it is in questionable taste to let the last clause of a cond be a “singleton
clause”; an explicit t should be provided. (Note moreover that (cond ... (X))
may behave differently from (cond ... (t x)) if x might produce multiple values;
the former always returns a single value, whereas the latter returns whatever values
x returns. However, as a matter of style it is preferable to obtain this behavior by
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writing (cond ... (t (values x))), using the values function explicitly to
indicate the discarding of any excess values.) For example:

(setq z (cond (a ‘foo) (b ‘bar))) ; Possibly confusing

(setq z (cond (a “foo) (b ‘bar) (t nily)) ; Better '

(cond (a b) (c @) (e)) ; Possibly confusing

(cond (a b) (c d) (t e)) ; Better

(cond (a b) (¢ @) (t (values e))) ; Better (if one value
;  needed)

(cond (a b) (c)) : “; Possibly confusing

(cond (a b) (t ¢)) ; Better

(if a b ¢) ' ; Also better

A LisP cond form may be compared to a continued if-then-else as found in many
algebraic programming languages: '

(cond (p ...) ‘ . if p then ...
(q ...) roughly “else if g then ...
(r ...) corresponds else if 7 then ...
to . '
(t ...)) ’ else ...
case keyform {({({key}*) | key} {form}*)}* ' [Macro]

case is a conditional that chooses one of its clauses to execute by comparing a
value to various constants, which are typically keyword symbols, integers, or
characters (but may be any objects). Its form is as follows:

(case keyform
(keylist-1 consequent-1-1 consequent-1-2 . ..)
(keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...)
-)

Structurally case is much like cond, and it behaves like cond in selecting one
clause and then executing all consequents of that clause. However, case differs in
the mechanism of clause selection. ‘

The first thing case does is to evaluate the form keyform to produce an object
called the key object. Then case considers each of the clauses in turn. If key is in
the keylist (that is, is eql to any item in the keylist) of a clause, the consequents
of that clause are evaluated as an implicit progn; case returns what was returned
by the last consequent (or nil if there are no consequents in that clause). If no

clause is satisfied, case returns nil.
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The keys in the keylists are nor evaluated; literal key values must appear in the
keylists. It is an error for the same key to appear in more than one clause; a
consequence is that the order of the clauses does not affect the behavior of the
case construct. :

Instead of a keylist, one may write one of the symbols t and otherwise. A
clause with such a symbol always succeeds and must be the last clause (this is an
exception to the order-independence of clauses). See also ecase and ccase, each
of which provides an implicit otherwise clause to signal an error if no clause is
satisfied.

If there is only one key for a clause, then that key may be written in place of a
list of that key, provided that no ambiguity results. Such a “singleton key” may
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a
cons.

Compatibility note: The ZETALISP caseq construct uses eq for the comparison. In ZETALisp
caseq therefore works for fixnums but not bignums. The MACLISP caseq construct simply
prohibits the use of bignums; indeed, it permits only fixnums and symbols as clause keys.
In the interest of hiding the fixnum-bignum distinction, and for general Janguage consistency,
case uses eql in COMMON Lisp.

The INTERLISP selectg construct is similar to case.

typecase keyform {(type {form}*)}* o [Macro]

typecase is a conditional that chooses one of its clauses by examlmng the type
of an object. Its form is as follows:

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 ...)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)
-)

Structurally typecase is much like cond or case, and it behaves like them in
selecting one clause and then executing all consequents of that clause. It differs in
the mechanism of clause selection. ‘

The first thing typecase does is to evaluate the form keyform to produce an
object called the key object. Then typecase considers each of the clauses in turn.
The fype that appears in each clause is a type specifier; it is not evaluated, but is
a literal type specifier. The first clause for which the key is of that clause’s specified
type is selected the consequents of this clause are evaluated as an implicit progn,
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and typecase returns what was returned by the last consequent (or nil if there
are no consequents in that clause). If no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for fype to indicate
that the clause should always be selected. See also etypecase and ctypecase,
each of which provides an implicit otherwise clause to signal an error if no clause
is satisfied. '

It is permissible for more than one clause to specify a given type, particularly
if one is a subtype of another; the earliest applicable clause is chosen. Thus for
typecase, unlike case, the order of the clauses may affect the behavior of the
construct. For example:

(typecase an-object

(string ...) ; This clause handles strings.
((array t) ...) ; This clause handles general arrays.
((array bit) ...) : ; This clause handles bit arrays.
(array ...) ; This handles all other arrays.

((or list number) ...) ; This handles lists and numbers.

(t ...)) ; This handles all other objects.

A COMMON Lisp compiler may choose to issue a warning if a clause cannot be
selected because it is completely shadowed by earlier clauses.

7.7. Blocks and Exits

The block and return-fron constructs provide a structured lexical non-local exit
facility. At any point lexically within a block construct, a return-fron with the
same name may be used to perform an immediate transfer of control that exits from
the block. In the most common cases this mechanism is more efficient than the
dynamic non-local exit facility provided by catch and throw, described in section
7.10. ' o '

block name {form}* ' [Special form]

The block construct executes each form from left to right, returning whatever is
returned by the last form. If, however, a return or return- fron form that specifies
the same name is executed during the execution of some form, then the results
specified by the return or return-from are immediately returned as the value of
the block construct, and execution proceeds as if the block had terminated normally.
In this, block differs from progn; the progn construct has nothing to do with
return.
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The name is not evaluated; it must be a symbol. The scope of the name is lexical;
only a return or return-£ron textually contained in some form can exit from the
block. The extent of the name is dynamic. Therefore it is only possible to exit
from a given run-time 1ncarnat10n of a block once, either normally or by explicit
return.

. The defun form implicitly puts a block around the body of the function defined;
the block has the same name as the function. Therefore one may use return-fron
to return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences that
may be surprising to users and implementors of other Lisp systems. For example,
the return-fron in the following example actually does “work” in COMMON Lisp
as one might expect:

(block loser
(catch ‘stuff
(mapcar #‘(lambda (x) (if (numberp x)
(hairyfun x)
(return-from loser nil)))
items)))

Depending on the situation, a return in COMMON LIsP may not bé simple. A
return can break up catchers if necessary to get to the block in question. It is
possible for a “closure” created by function for a lambda-expression to refer to
a block name as long as the name is lexically apparent. ' '

return-fron name [result] - [Special form)
return [result] : . [Macro]

return-from is used to return from a block or from such constructs as do and
prog that implicitly establish a block. The name is not evaluated and must be a
symbol. A block construct with the same name must lexically enclose the occurrence
of return-from; whatever the evaluation of result produces is immediately returned
from the block. (If the result form is omitted, it defaults to nil. As a matter of
style, this form ought to be used to indicate that the particular value returned doesn’t
matter.) )

The return-from form itself never returns and cannot have a value; it causes
results to be returned from a block construct. If the evaluation of result produces
multiple values, those multiple values are returned by the construct exited.

(return form) is identical in meaning to (return-from nil form); it returns
from a block named ni1. Blocks established implicitly by iteration constructs such
as do are named nil, so that return will exit properly from such a construct.
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7.8. Iteration

CoMMON LisP provides a number of iteration constructs. The loop construct provides
a trivial iteration facility; it is little more than a progn with a branch from the
bottom back to the top. The do and do* constructs provide a general iteration
facility for controlling the variation of several variables on each cycle. For specialized
iterations over the elements of a list or n consecutive integers, dolist and dotimes
are provided. The tagbody construct is the most general, permitting arbitrary go
statements within it. (The traditional prog construct is a synthesis of tagbody,
block, and let.) Most of the iteration constructs permit statically defined non-local
exits in the form of the return-from and return statements.

7.8.1. Indefinite Iteration

The 1o0p construct is the simplest iteration facility. It controls no variables, and
simply executes its body repeatedly. o

loop {form}* [Matro)
Each form is evaluated in turn from left to right. When the last form has been
evaluated, then the first form is evaluated again, and so on, in a never-ending cycle.
The 1loop construct never returns a value. Its execution must be terminated explicitly,
using return or throw, for example. ' '

loop, like most iteration constructs, establishes an implicit block named ni1.
Thus return may be used to exit from a loop with specified results.

‘A 1oop construct has this meaning only if every form is non-atomic (a list). The
case where some form (possibly more than one) is atomic is reserved for future
extensions. : ' o "

Implementation note: There have been several proposals for a powerful iteration mechanism
to be called 100p. One version is provided in ZeTALisp. Implementors are encouraged to
experiment with extensions to the loop syntax, but users should be advised that in all
likelihood some specific set of extensions to loop will be adopted in a future revision of
CoMMON Lisp. o '

7.8.2. General Iteration

In contrast to loop, do and dox provide a powerful and general mechanism for
repetitively recalculating many variables. ‘ ‘
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do ({(var [init [step]])}*) (end-test {result}*y [Macro]
{declaration}* {tag | statement}*
dox ({(var [init [step]])}*) (end-test {form}*) [Macro]

{declaration}* {tag | statement}*

The do special form provides a generalized iteration facility, with an arbitrary
number of “index variables.” These variables are bound within the iteration and
stepped in parallel in specified ways. They may be used both to generate successive
values of interest (such as successive integers) or to accumulate results. When an
end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

(do ((varl initl stepl)
(var2 init2 step2)

(varn initn stepn))
(end-test . result)
{declaration}*
. tagbody)

A do+ loop looks exactly the same except that the name do is replaced by do«.

The first item in the form is a list of zero or more index-variable specifiers. Each
index-variable specifier is a list of the name of a variable var, an initial value init,
and a stepping form step. If init is omitted, it defaults to ni1. If step is omitted,
the var is not changed by the do construct between repetitions (though code within
the do is free to alter the value of the variable by using setq).

An index-variable specifier can also be just the name of a variable. In this case,
the variable has an initial value of nil and is not changed between repetitions. As
a matter of style, it is recommended that an unadorned variable name be written
only when that variable will be stored into (such as by setq) before its first use.
If it is important that the initial value is nil rather than some undefined value,
then it is clearer to write out (varjnil) if the initial value is intended to mean
“false” or (varj *()) if the initial value is intended to be an empty list.

Before the first iteration, all the init forms are evaluated, and each var is bound
to the value of its respective.init. This is a binding, not an assignment; when the
loop terminates, the old values of those variables will be restored. For do, all of
the init. forms are evaluated before any var is bound; hence all the inir forms may
refer to the old bindings of all the variables (that is, to the values visible before
beginning execution of the do construct). For do+, the first init form is evaluated,
then the first var is bound to that value, then the second init form is evaluated,
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then the second var is bound, and so on; in general, the initj form can refer to the
new binding vark if k < j, and otherwise to"the old binding of vark.

The second element of the loop is a list of an end-testing predicate form end-test
and zero or more result forms. This resembles a cona clause. At the beginning of
each iteration, after processing the variables, the end-test is evaluated. If the result
Is nil, execution proceeds with the body of the do (or do#) form. If the result is
not nil, the resulr forms are evaluated in order as.an implicit progn, and then ao
returns. do returns the results of evaluating the last result form. If there are no
result forms, the value of do is nil. Note that this is not quite analogous to the
treatment of clauses in a cond form, because a cond clause with no result forms
returns the (non-nil) result of the test.

At the beginning of each iteration other than the first, the index variables are
updated as follows. All the step forms are evaluated, from left to right, and the
resulting values are assigned to the respective index variables. Any variable that
has no associated step form is not assigned to. For do, all the step forms are
evaluated before any variable is updated; the assignment of values to variables is
done in parallel, as if by psetq. Because all of the step forms are evaluated before
any of the variables are altered, a step form when evaluated always has access to
the old values of all the index variables, even if other step forms precede it. For
dos, the first step form is evaluated, then the value is assigned to the first var,
then the second step form is evaluated, then the value is assigned to the second
var, and so on; the assignment of values to variables is done sequentially, as if by
setq. For either do or do=, after the variables have been updated, the end-test is
evaluated as described above, and the iteration continues.

If the end-test of a do form is-nil, the test will never succeed. Therefore this
provides an idiom for “do forever”: the body of the do is executed repeatedly,
stepping variables as usual. (The loop construct performs a “do forever” that steps
no variables.) The infinite loop can be terminated by the use of return, re—
turn-from, go to an outer level, or throw. For example:

(do ((3 O (+ 3 1))
(nil) ; Do forever.
(format t “~ZInput ~D:" j)
(let ((item (read))) :
(if (null item) (return) ; Process items until nil seen.
(format t "~gOutput ~D: ~S" j (process item)))))

The remainder of the do form constitutes an implicit tagboay. Tags may appear
within the body of a do loop for use by go statements appearing in the body (but
such go statements may not appear in the variable specifiers, the end-test, or the
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result forms). When the end of a do body is reached, the next iteration cycle
(beginning with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return statement
may be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to code
in the do body, to the bindings of the do variables, to the init forms, to the step
forms, to the end-test, and to the result forms. o

Compatibility note: “Old-style” MacLisp do loops, that is, those of the form (do var init
step end-test . body), are not supported in CoMMON Lisp. Such old-style loops are considered
obsolete, and in any case are easily converted to a new-style do with the insertion of three
pairs of parentheses. In practice the compiler can catch nearly all instances of old-style do
loops because they will not have a legal format anyway.

Here are some examples of the use of do:

(do ((i'EI (+ 1 1)) ~;Sets every ,mill element of a-vector to zero.
(n (length_a-vector)))
((= 1 n))

(when (null (aref a-vector 1i))
(setf (aref a-vector i) 0)))

The construction

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

exploits parallel assignment to index variables. On the first iteration, the value of
oldx is whatever value x had before the do was entered. On succeeding iterations,
oldx contains the value that x had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in the
step forms of a do, and the body is empty. For example,

(do ((x foo (cdr x))
(y bar (cdr y))
(z ‘() (comns (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #‘f foo bar). Note that the step computation
for z exploits the fact that variables are stepped in parallel. Also, the body of the
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loop is empty. Finally, the use of nreverse to put an accumulated do loop result
into the correct order is a standard idiom. Another example:

(defun list-reverse (list)
(do ((x list (cdr x))
(Y ‘() (cons (car x) y)))
((endp x) y)))

Note the use of endp rather than null or aton to test for the end of a list; this
may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car
of each cons is a list of symbols, and the cdr of each cons is a list of equal length
containing corresponding values. Such a data structure is similar to an association
list, but is divided into “frames”;. the overall structure resembles a rib-cage. A
lookup function on such a data structure might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((null r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eg (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do
loops.)

A do loop may be explained in terms of the more primitive constructs block,
return, let, loop, tagbody, and psetq as follows:

{(block nil
(let ((,vaﬂ initl)
(var2 init2)

(varn initn))
{declaration}*
(loop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

varn stepn))))
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do+ is exactly like do except that the bindings and steppings of the variables are
performed sequentially rather than in parallel. It is as if, in the above explanation,
let were replaced by let* and psetq were replaced by setq.

7.8.3. Si‘mple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each value
taken by a single variable. They are expressible in terms of do, but capture very
common patterns of use.

Both dolist and dotimes perform a body of statements repeatedly. On each
iteration a specified variable is bound to an element of interest that the body may
examine. dolist examines successive elements of a list, and dotimes examines
integers from O to n—1 for some specified positive integer .

The value of any of these constructs may be specified by an optional result form,
which if omitted defaults to the value nil.

The return statement may be used to return imiediately from a dolist or
dotimes form, discarding any following iterations that might have been performed;
in'effect, a block named nil surrounds the construct. The body of the loop is
implicitly a tagbody construct; it may contain tags to serve as the targets of go
statements. Declarations may appear before the body of the loop.

dolist (var listform [resultform]) {declaration}* {tag | statement}* [Macro]

dolist provides straightforward iteration over the elements of a list. First dolist
evaluates the form listform, which should produce a list. It then executes the body
once for each element in the list, in order, with the variable var bound to the
element. Then resultform (a single form, not an implicit progn) is evaluated, and
the result is the value of the dolist form. (When the resultform is evaluated, the
control variable var is still bound, and has the value nil.) If resultform is omitted,
the result-is nil.

(dolist (x “(a b ¢ d)) (prinl x) (princ " ")) = nil )
after printing “a b c @ 7

An explicit return statement may be used to terminate the loop and return a
specified value.

dotimes (var countform [resultform)) {declaration}* {tag | statement}* [Macro)

dotimes provides straightforward iteration over a sequence of integers. The expres-
sion (dotimes (var countform resultform) . progbody) evaluates the form count-
Jorm, which should produce an integer. It then performs progbody once for each
integer from zero (inclusive) to count (exclusive), in order, with the variable var
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bound to the integer; if the value of countform is zero or negative, then the progbody
is performed zero times. Finally, resultform (a single form, not an implicit progn)
is evaluated, and the result is the value of the dot ines form. (When the resultform
is evaluated, the control variable var is still bound, and has as its. value the number
of times the body was executed.) If resultform is omitted, ‘the result is nil.

An explicit return statement may be used to terminate the loop and return a
specified value. ' : :

Here is an example of the use of dotimes in processing strings:

355 True if the‘specified subSeqﬁence of the string is a
HEH palind:oﬁe (reads the same forwards and backwards).'
(defun palindromep’(string soptional
' ' (start 0)
(énd (length string)))
(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k)) "~
‘ (char string (- end k 1)))

(return nil))))
(palindromep "Able was I ere I saw Elba") = t
(palindromep "A man, a plan, a canalf-Panamal")fé nil

(remove-if-not #‘’alpha-char-p ;Remove punctuation.
’ “A man, a plan, a canal--Panama!")
> "AmanaplanacanalPanama"

(palindromep
(remove-if-not #‘alpha-char-p

"R man, a plan, a canal--Panama!")) = t

(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I .ere I saw Elba Kramer, -nu?")) = t

(palindromep
(remove-if-not
#’alpha-char-p
“A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal--Panama!")) = t
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Altering the value of var in the body of the loop (by using setq, for example)
will have unpredictable, possibly implementation- -dependent results. A ComMON
Lisp compiler may choose to issue a warning if such a variable .appears in a setq.

Compatibility note: The dotines construct is the closest thing in CoMMON Lisp to the
INTERLISP rptq construct.

See also do-symbols, do-external-symbols, and do-all-symbols.

7.8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces
of one or more sequences. The result of the iteration is a sequence containing the
respective results of the function applications. There are several options for the
way in which the pieces of the list are chosen and for what is done with the results
returned by the applications of the function. '

The function map may be used to map over any kmd of sequence. The followmg
functions operate only on lists.

mapcar function list arest more-lists [Function)

maplist function list svest more-lists [Function]
mapc function list srest more-lists [Function)
napl function list srest more-lists . " [Function]
mapcan function list srest more-lists ' ’ [Funciion]
mapcon function list srest more-lists - *+ [Function]

For each these mapping functions, the first argument is a function and the rest must
be lists. The function must take as many arguments as there are lists.

mapcar operates on successive elements of the lists. First the function is applied
to the car of each list, then to the cadr of each list, and so on. (Ideally all the lists
are the same length; if not, the iteration terminates wheri the shortest list runs out,
and excess elements in other lists are ignored.) The value returned by napcar is a
list of the results of the successive calls to the function. For example:

(mapcar #’abs '(3 -4 2 -5 —E,)) :> (3 4 2 s [:) o v
(mapcar #'cons ‘(a b c) (1 2 3)) > ({(a . 1) (b . 2) (c . 3))_’

maplist is like mapcar except that the function is applied to the list and successive
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cdr’s of that list rather than to successive elements of the list. For example:

(maplist #‘(lambda (x} (cons “foo x))
‘(abcad)) c v
> ((foo a b ¢ d) (foo b ¢ @) (foo ¢ d) (foo d))
(mapllst #’(lambda (x) (i1f (member (car x) (cdr x)) D 1)))
"(abacdbc)) o
> (001031 1)
;An entry is 1 if the corresponding element of the input
;  list was the last instance of that element in the input list.

mapl and napc ate like maplist and mapcar respectlvely, except that they do not
accumulate the results of calling the function.

Compatibility note: In all Lisp systems since Lisp 1.5, nap1 has been called nap. In the
chapter on sequences it is explained why this was a bad choice. Here the name map is used
for the far more useful generic sequence mapper, in closer accordance to the computer
science literature, especially the growing body of papers on functional programming.

These functions are used when the functibn is being called merely for its side
effects, rather than its returned values. The value returned by mapl or mapc is the
second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist respectively, except that they
combine the results of the function using nconc instead of 1ist. That is,

(mapcon f xI ... xn)
= (apply #‘nconc (maplistf)q] LX)

and similarly for the relationship between napcan and mapcar. Conceptually, these
functions allow the mapped function to return a variable number of items to be put
into the output list. This is particularly useful for effectively returning zero or one
item:

(mapcan #’(lambda (x) (and (numberp .x) (list x)))
‘(‘al bc34d S))
> (1 3 4 5)

In this case the function serves.as a filter; this is a standard Lisp idiom using
mapcan. (The function remove-if-not might have been useful in this particular
context, however.) Remember that nconc is a destructive operation, and therefore
so are mapcan and mapcon; the lists returned by the funcnon are altered in order
to concatenate them.



130 COMMON LISP

Sometimes a do or a straightforward recursion is preferable to a mapping oper-
ation; however, the mapping functions should be used wherever they naturally
apply because this increases the clarity of the code. ,

The functional argument to a mapping function must be acceptable to applys; it
cannot be a macro or the name of a special form. Of course, there is nothing wrong
with using a function that has soptional and srest parameters as the functional
argument. l '

7.8.5. The “Program Feature”

Lisp implementations since Lisp 1.5 have had what was originally called “the
program feature,” as if it were impossible to write programs without it! The prog
construct allows one to write in an ALGOL-like or FORTRAN-like statement-oriented
style, using go statements that can refer to tags in the body of the prog. Modern
Lisp programming style tends to use prog rather infrequently. The various iteration
constructs, such as do, have bodies with the characteristics of a prog. (However,
the ability to use go statements within iteration constructs is very seldom used in
practice.) ,

Three distinct operations are performed by prog: it binds local variables, it
permits use of the return statement, and it permits use of the go statement. In
CoMMON LisP, these three operations have been separated into three distinct con-
structs: let, block, and tagbody. These three constructs may be used inde-
pendently as building blocks for other types of constructs.

tagbody {tag | statement}* [Specialform]

The part of a tagbody after the variable list is called the body. An item in the
body may be a symbol or an integer, in which case it is called a fag, or an item
in the body may be a list, in which case it is called a statement.

Each element of the body is processed from left to right. A tag is ignored; a
statement is evaluated, and its results are discarded. If the end of the body is
reached, the tagbody returns nil.

If (gotag) is evaluated, control jumps to the part of the body labelled with the
tag.

Compatibility note: The “computed go™ feature of MACLIsP is not supported. The syntax
of a computed go is idiosyncratic, and the feature is not supported by ZETALIsP, NI, or
INTERLISP. The computed go has been infrequently used in MACLisp anyway, and is easily
simulated with no loss of efficiency by using a case statement each of whose clauses
performs a (non-computed) go.
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The scope of the tags established by a tagbody is lexical, and the extent is
dynamic. Once a tagbody construct has been exited, it is no longer legal to go to
a tag in its body. It is permissible for a go to jump to a tagbody that is not the
innermost tagbody construct containing that go; the tags established by a tagbody
will only shadow other tags of like name. ‘ v ;

The lexical scoping of the go targets named by tags is fully general and has
consequences that may be surprising to users and implementors of other Lisp
systems. For example, the go in the following example actually does “work” in
CoMMON Lisp as one might expect:

(tagbody
(catch ‘stuff
'~ (mapcar #‘(lambda (x) (if (numberp x)
(hairyfun x)
(go lose)))
items))
(return)
lose
(error "I lost big!"))

Depending on the situation, a go in COMMON Lisp does not necessarily correspond
to a simple machine “jump” instruction! A go can break up catchers if necessary
to get to the target. It is possible for a “closure” created by function for a
lambda-expression to refer to a go target as long as the tag is lex1cally apparent
See chapter 3 for an elaborate example of this.

prog ( {?ar | (var [inif])}*) {declaration}* {tag | statement}* : [Macro]
progx ( {var | (var [init])}*) {declaration}* {tag | statement}* [Macro]
The prog construct is a synthesis of let, block, and tagbody, allowing bound

variables and the use of return and go within a single construct. A typical prog
construct looks like this:

(prog . (varl var2 (var3 init3) vard (var5 init5))

{declaration}*

statementl
tagl

statement2

statement3.

statement4
tag2

statementS
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The list after the keyword prog is a set of specifications for binding varl, var2,
etc., which are temporary variables bound locally to the prog. This list is processed
exactly as the list in a let statement: first all the init forms are evaluated from left
to. rlght (where nil is used for any omitted inir form), and then the variables are
all bound in parallel to the respective results. Any declaration appearing in the
prog is used as if appearing at the top of the let body.

The body of the prog is executed as if it were a tagbody construct; the go
stateiment may be used to transfer control to a fag.

A prog implicitly establishes a block named nil around the entire prog con-
struct, so that return may be used at any time to exit from the prog construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)
“Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(prog (x y z) ; Initialize x, y, z to nil
(setq y (car w) z (cdr w))
loop )
(cond ((null y) (return x))
((null z) (go err)))
rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))
(go loop)
err o
(éerror "“Will self-pair exttaneous items"
"Mismatch - gleep! S"™ y)
(setq z y)
(go rejoin)))

which is accomplished somewhat more perspicuously by:

(defun princé—of*clafity (w)
“Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))
(x ‘() (cons (cons (car y) (car z)) Xx)))
((null y) x)
(when (null z)
(cerror "Will self-pair extraneous items"
“Mismatch - gleep! S" y)
(setq z ¥))))
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The prog construct may be explained in terms of the simpler constructs block,
let, and tagbody as follows:

(prog variable-list {declaration}* . body)
= (block nil (let variable-list {declaration}* (tagbody . bodyy )

The prog+ special form is almost the same as prog. The only difference is that
the binding and initialization of the temporary variables is done sequentially, so
that the init form for each one can use the values of previous ones. Therefore prog+
is to prog as let+ is to let. For example,

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

go tag [Special form)
The (go tag) special form is used to do a “go to” within a tagbody construct.

The tag must be a symbol or an integer; the tag is not evaluated. go transfers
control to the point in the body labelled by a tag eql to the one given. If there is
no such tag in the body, the bodies of lexically containing tagbody constructs (if
any) are examined as well. It is an error if there is no matching tag lexically visible
to the point of the go.

The go form does not ever return a value.

As a matter of style, it is reccommended that the user think twice before using a
go. Most purposes of ‘go can be accomplished with one of the iteration primitives,
nested conditional forms, or return-fron. If the use of go seems to be unavoid-
able, perhaps the control structure 1mplemented by go should be packaged as a
macro definition.

7.9. Multiple Values

Ordinarily the result of calling a Lisp function is a single LisP object. Sometimes,
however, it is convenient for a function to compute several objects and return them.
CoMMON Lisp provides a mechanism for handling multiple values directly. This
mechanism is cleaner and more efficient than the usual tricks involving returning
a list of results or stashing results in global variables.

7.9.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to produce
multiple values and to receive them. If the caller of a function does not request
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multiple values, but the called function produces multiple values, then the first
value is given to the caller and all others are discarded; if the called function
produces zero values, then the caller gets nil as a value.

The primary primitive for producing multiple values is values, which takes any
number of arguments and returns that many values. If the last form in the body of
a function is a values with three arguments, then a call to that function. will return
three values. Other special forms also produce multiple values, but they can be
described in terms of values. Some built-in CoMMON Lisp functions, such as
floor, return multiple values; those that do are so documented.

The special forms and macros for receiving multiple values are as follows:

multiple-value-1list
multiple-value-call
multiple-value-progl
multiple-value-bind
nultiple-value-setq

These specify a form to evaluate and an indication of where to put the values
returned by that form.

values &rest args [Function)

All of the arguments-are returned, in order, as values. For example:

(defun polar (x y)
(values (sqrt (+ (* x X) (* y ¥))) (atan y x))).

(multiple-value-bind (r theta) (polar 3.0 4.0)
(vector r theta))
> #(5.0 0.92729%2)

The expression (values) returns zero values. This is the standard idiom for
returning no values from a function. . ‘

Sometimes it is desirable to indicate explicitly that a function will return exactly
one value. For example, the function

(defun foo (x y) ’
(floor (+ x ¥y) ¥))

will return two values because floor returns two values. It may be that the second
value makes no sense, or that for efficiency reasons it is desired not to compute
the second value. The values function is the standard idiom for indicating that
only one value is to be returned, as shown in the following example.
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(defun foo (x y)
(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argument
forms; as for any functien call, if any -argument form to values produces more
than one value, all but the first are discarded. . ‘

There is absolutely no way in CoMMON LisP for a caller to distinguish between
returning a single value in the ordinary manner and returning exactly one “multiple
value.” For example, the values returned by the expressions (+ 1 2) and (values
(+ 1 2)) are identical in every respect: the single value 3.

multiple-values-limit [Constant]

The value of nultiple-values-1linit is a positive integer that is the upper ex-
clusive bound on the number of values that may be returned from a function. This
bound depends on the implementation, but will not be smaller than 20. (Imple-
mentors are encouraged to make this limit as large as practicable without sacrificing
peﬁbnhance) See lambda-parameters-linit and call-arquments-limit.

values-list list , - [Function]

All of the elements of list are returned as multiple values. For example:
(values-list (list a b ¢)) = (values a b c)

In general,

(values-list list) = (apply #’values list)

but values-1ist may be clearer or more efficient.

nultiple-value-list form . [Macro]

multiple-value-list evaluates form and returns a list of the multiple values it
returned. For example: ’ :

(nultiple-value-list (floor -3 4)) = (-1 1)

multiple-value-list and values-1list are therefore inverses of each other.

multiple-value-call function {form}* _ . [Special form]

nultiple-value-call first evaluates function to obtain a function and then eval-
uates all of the forms. All the values of thé forms are gathered together (not just
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one value from each) and are all given as arguments to the function. The result of
multiple-value-call is whatever is returned by the function. For example:

(+ (floor 5 3) (floor 19 4))
= (+14) >5
(multiple-value-call #‘+ (floor 5 3) (floor 19 4))
= (+ 12 4 3) > 10
(multiple-value-list form') = (multiple-value-call #‘list form)

multiple-value-progl form {form}*: [Special form]
nultiple-value-progl evaluates the first form and saves all the values produced
by that form. It then evaluates the other forms from left to right, discarding their
values. The values produced by the first form are returned by multiple-value-progl.
See prog1, which always returns a single value.

multiple-value-bind ( {var}*) values-form {declaration}* {form}*  [Macro)

The values-form is evaluated, and each of the variables var is bound to the re-
spective value returned by that form. If there are more variables than values re-
turned, extra values of nil are given to the remaining variables. If there are more
values than variables, the excess values are simply discarded. The variables are
bound to the values over the execution of the,fonhs, which make up an implicit
progn. For example:

(multiple- value-bind (x) (floor S 3) (llst x)) > (1)
(multlple value-bind (x y) (floor S 3) (llSt X y)) > (l E)
(multlple value-bind (x y z) (floor 5 3) (llSt Xy z))

= (1 2 nil)

multiple-value-setq variables form : ‘ . [Macro]

The variables must be a list of variables. The form is evaluated, and the variables
are set (not bound) to the values returned by that form. If there are more varlables
than values returned, extra values of nil are assigned to the remaining variables.
If there are more values than variables, the excess values are simply discarded.

Compatlblhty note. In ZETALISP this is called multiple-value. The added clanty of the
name nultiple-value-setq in CoMMON Lisp was deemed worth the incompatibility with
Zetalisp.
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multiple-value-setq always returns a single value, which is the first value returned
by form, or nil if form produces zero values.

7.9.2. Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to be
the value of one of its subforms. For eXample, the value of a cond is the value of
the last form in the selected clause. In most such cases, if the subform produces
multiple values, then the original form will also produce all of those values. This
passing back of multiple values of course has no effect unless eventually one of
the special forms for receiving multiple values is reached.

To be explicit, multiple values can result from a special form under precisely
these circumstances: ' '

Evaluation and Application

* eval returns multiple values if the form

given it to evaluate produces multiple
values. : '

* apply, funcall, and multiple-value-call pass back multiple values from
the function applied or called.

Implicit progn contexts

. The_ special form progn passes backs multiple values resulting from evaluation
of the last subform. Other situations referred to as “implicit progn,” where
~ several forms are evaluated and the results of all but the last form are discarded,
also pass back multiple values from the last form. These situations include the
‘body of a lambda-expression, in particular those constructed by defun, defmacro,
and deftype. Also included are bodies of the constructs eval-when, progv,
let, lets, when, unless, block, nultiple-value-bind, and catch, as well
as clauses in such conditional constructs as case, typecase, ecase, étypecase,
ccase, and ctypecase.

Conditional constructs
* if passes back multiple values from whichever subform is selected (thé then
- form or the else form).

* and and or pass back multiple values from the last subform but not from subforms
other than the last. T :
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* cond passes back multiple values from the last subform of the implicit progn of

the selected clause. If, however, the clause selected is a singleton clause, then
only a single value (the non-nil predicate value) is returned. This is true even
if the singleton clause is the last clause of the cona. It is not permitted to treat
a final clause (x) as being the same as (t x) for this reason; the latter passes
back multiple values from the form. x.

Returning from a block

The block construct passes back multiple values from its last subform when it
exits normally. If return-from (or return) is used to terminate the block
prematurely, then return-from passes back multiple values from its subform
as the values of the terminated block. Other constructs that create implicit
blocks, such'as do, dolist, dotimes, prog, and prog*, also pass back multiple
values specified by return-from (or return).

do passes back multiple values from the last form of the ex1t clause, exactly as
if the exit clause were a cond clause. Similarly, dolist and dotimes pass back
multiple values from the resultform if that is executed. These situations are all
examples of implicit uses of return-fronm.

Throwing out of a catch

The catch construct returns multiple values if the result form in a throw eXiting
from such a catch produces multiple values.

Miscellaneous sztuatzons

nultiple-value- progl passes back multiple values from its first subform.
However, progl always returns a single value.

unwind-protect returns multiple values if the form it protects returns mutliple
values.

the returns multiple values if the form it contains returns multiple values.

Among special forms that never pass back multiple values are setg, nultiple-

value-setq, progl, and progz2. The conventional way to force only one value to
be returned from a form x is to write (values x).

The most important rule about multiple values is: No matter how many values

a form produces, if the form is an argument form in a function call, then
exactly one value (the first one) is used.
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For example, if you write (cons (floor x)), then cons will always receive
exactly one argument (which is of course an error), even though floor returns two
values. To pass both values from floor to cons, one must write something like
(multiple-value-call #‘cons (floor x)). In an ordinary function call, each
argument form produces exactly one argument; if such a form returns zero values,
nil is used for the argument, and if more than one value, all but the first are
discarded. Similarly, conditional constructs such as if that test the value of a form
will use exactly one value, the first one, from that form and discard the rest; such
constructs will use nil as the test value if zero values are returned.

7.10. Dynamic Non-local Exits

CoMMON Lisp provides a facility for exiting from a complex process in a non-local,
dynamically scoped manner. There are two classes of special forms for this purpose,
called catch forms and throw forms, or simply catches and throws. A catch form
evaluates some subforms in such a way that, if a throw form is executed during
such evaluation, the evaluation is aborted at that point and the catch form immediately
returns a value specified by the throw. Unlike block and return (section 7.7),
which allow for exiting a block form from any point lexically within the body of
the block, the catch/throw mechanism works even if the throw form is not textually
within the body of the catch form. The throw need only occur within the extent
(time span) of the evaluation of the body of the catch. This is analogous to the
distinction between dynamically bound (special) variables and lexically bound (local)
variables.

catch tag {form}* [Special form)
The catch special form serves as a target for transfer of control by throw. The
form zag is evaluated first to produce an object that names the catch; it may be any
LISp object. A catcher is then established with the object as the tag. The forms are
evaluated as an implicit progn, and the results of the last form are returned, except
that if during the evaluation of the forms a throw should be executed such that the
tag of the throw matches (is eq to) the tag of the catch and the catcher is the most
recent outstanding catcher with that tag, then the evaluation of the forms is aborted
and the results specified by the throw are immediately returned from the catch
expression. The catcher established by the catch expression is disestablished just
before the results are returned.

The tag is used to match throws with catches. (catch ‘foo form) will catch a
(throw “foo form) but not a (throw ‘bar form). It is an error if throw is done
when there is no suitable catch ready to catch it.
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Catch tags are compared using eg, not eql; therefore numbers and characters
should not be used as catch tags.

Compatibility note: The name catch comes from MacLisp, but the syntax of catch in
CommoN Lisp is different. The MAcLisP syntax was (catch form tag), where the tag was
not evaluated.

unwind-protect protected-form {cleanup-form}* [Special form]

Sometimes it is necessary to evaluate a form and make sure that certain side effects
take place after the form is evaluated; a typical example is:

(progn (start—mbt@r)
(drill-hole)
(stop-motor))

The non-local exit facility of COMMON LISP creates a situation in which the above
code won’t work, however: if drill-hole should do a throw to .a catch that is
outside of the progn form (perhaps because the drill bit broke), then (stop-motor)
will never be evaluated (and the motor will presumably be left running). This is
particularly likely if drill-hole causes a LisP error and the user tells the error-handler
to give up and abort the computation. (A possibly more practical example might
be:

(proge (open-a-file)
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is terminated for
whatever reason. This case is so important that COMMON Lisp provides the spe01al
form with-open-file for this purpose.)

In order to allow the examp]e hole-drilling program to work, it can be rewritten
using unwind-protect as follows:

(unwind-protect
(progn (start-motor)
(drill-hole))

(stop-motor))

If drill-hole does a throw that attempts to quit out of the unwind-protect, then
(stop-motor) will be executed.
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This example assumes that it is correct to call stop-motor even if the motor
has not yet been started. Remember that an error or interrupt may cause an exit
even before any initialization forms have been executed. Any state restoration code
should operate correctly no matter where in the protected code an exit occurred.
For example, the following code is not correct:

(unwind-protect
(progn (incf *access-count*)
(perform-access))
(decf *access-count+))

If an exit occurs before completion of the inct operation the dect operation will
be executed anyway, resulting in an incorrect value for saccess-counts. The
correct way to code this is as follows;

(let ((old-count *access-counts))
(unwind-protect
(progn (incf *accesg-counts)
(perform-access))
(setq *access-counts old-count)))

.As a general rule, unwind-protect guarantees to execute the cleanup-forms
before exiting, whether it terminates normally or is aborted by a throw of some
kind. (If, however, an exit occurs during execution of the cleanup-forms, no special
action is taken. The cleanup-forms of an unwina-protect are not protected by
that unwind-protect, though they may be protected if that unwind-protect oc-
curs within the protected form of another unwind-protect.) unwind-protect
returns whatever results from evaluation of the protected-form and discards all the
results from the cleanup-forms. '

It should be emphasized that unwind-protect protects against all attempts to
exit from the protected form, including not only such “dynamic exit” facilities such
as throw but also such “lexical exit” facilities as go and return-fron. Consider
this situation: '

(tagbody
(let ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))
out
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When the go is executed, the call to print is executed first, and then the transfer
of control to the tag out is completed.

throw tag result [Special form]

The throw special form transfers control to a matching catch construct. The fag
is evaluated first to produce an object called the throw tag; then the result form is
evaluated, and its results are saved (if the result form produces multiple values,
then all the values are saved). The most recent outstanding catch whose tag matches
the throw tag is exited; the saved results are returned as the value(s) of the catch.
A catch matches only if the catch tag is eq to the throw tag. ' ,

In the process, dynamic variable bindings are undone back to the point of the
catch, and any intervening unwind-protect cleanup code is executed. The result
form is evaluated before the unwinding process commences, and whatever results
it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no unwinding
of the stack is performed, and an error is signalled. When the error is signalled,
the outstanding catchers and the dynamic variable bindings are those in force at
the point of the throw.

Implementation note: These requirements imply that throwing should typically make two
passes over the control stack. In the first pass it simply searches for a matching catch. In
this search every catch must be considered, but every unwind-protect should be ignored.
On the second pass the stack is actually unwound, one frame at a time, undoing dynamic
bindings and outstanding unwind-protect constructs in reverse order of creation until the
matching catch is reached. '

Compatibility note: The name throw comes from MacLisp, but the syntax of throw in
CoMMoN Lisp is different. The MAcLISP syntax was (throw form tag), where the tag was
not evaluated.




Macros

The CoMMON Lisp macro facility allows the user to define arbitrary functions that
convert certain Lisp forms into different forms before evaluating or compiling them.
This is done at the expression level, not at the character-string level as in most
other languages. Macros are important in the writing of good code: they make it
possible to write code that is clear and elegant at the user level, but that is converted
to a more complex or more efficient internal form for execution. \

When eval is given a list whose car is a symbol, it looks for local definitions
of that symbol (by flet, labels, and nacrolet); if that fails, it looks for a global
definition. If the definition is a macro definition, then the original list is said to be
a macro call. Associated with the definition will be a function of two arguments,
called the expansion function. This function is called with the entire macro call as
its ﬁrst argument (the second argument is a lexical environment); it must return
some new Lisp form, called the expansion of the macro call. (Actually, a more
general mechanism is involved; see macroexpand.) This expansion is then eval-
uated in place of the original form.

When a function is being compiled, any macros it contains are expanded at
compilation time. This means that a macro deﬁmtlon must be seen by the compiler
before the first use of the macro.

More generally, an implementation of COMMON LISP has great latitude in de-
ciding exactly when to expand macro calls within a program. For example, it is
acceptable for the defun special form to expand all macro calls within its body at
the time the defun form is executed and record the fully expanded body as the
body of the function being defined. (An implementation might even choose always
to compile functions defined by defun, even when operating in an “interpretive”
mode!)

Macros should be Wntten in such a way as to depend as little as poss1b1e on the
execution environment to produce a correct expansion. To ensure consistent be-
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havior, it is best to ensure that all macro definitions are available, whether to the
interpreter or compiler, before any code containing calls to those macros is intro-
duced. : ' : :

In CoMMON Lisp, macros are not functions. In particular, macros cannot be used
as functional arguments to such functions as apply, funcall, or map; in such
situations, the list representing the “original macro call” does not exist, and cannot
exist, because in some sense the arguments have already been evaluated.

8.1. Macro Definition

The function macro-function determines whether a given symbol is the name of
amacro. The defnacro construct provides a convenient way to define new macros.

macro-function symbol o [Function]

The argument must be a symbol. I the symbol has a global function definition
that is a macro definition, then the expansion function (a function of two arguments,
the macro-call form and an environment) is returned. If the symbol has no global
function definition, or has a definition as an ordinary function or as a special form
but not as a macro, then nil is returned. The function macroexpanad is the best
way to invoke the expansion function.

It is possible for both macro-function and spec1al form-p to ‘be true Of a
symbol. This is possible because an implementation is permitted to implement any
macro also as a special form for speed. On the other hand, the macro definition
must be available for use by programs that understand only the standard special
forms listed in Table 5-1.

macro-function cannot be used to determine whether a symbol names a locally
defined macro established by macrolet macro-function can examine only global
definitions. -

setf may be used with nacro-function to install a macro as a symbol’s global
function definition: ’ ’

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire macro
call and an environment, and computes the expansion for that call. Performing this
operation causes the symbol to have only that macro definition as its global function
definition; any previous definition, whether as a macro or as a function, is lost. It
is an error to attempt to redefine the name of a special form (see Table 5-1).
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defmacro name lambda-list {declaration | doc-string}* {form}* [Macro]

defmacro is a macro-defining macro that arranges to decompose. the macro-call
form in an elegant and useful way. defmacro has essentially the same syntax as
defun: name is the symbol whose macro definition we are creating, lambda-{ist is
similar in form to a lambda-list, and the forms constitute the body of the expander
function. The defmacro construct arranges to install this expander function, as the
global macro definition of name. The expander function is effectively defined in
the global environment; lexically scoped entities established outside the defmacro
form that would ordinarily be lexically apparent are not visible within the body of
the expansion function. The name is returned as the value of the defnacro form.

If we view the macro call as a list containing a function name and some argument
forms, in effect the expander function and the list of (unevaluated) argument forms
is given to apply. The parameter specifiers are processed as for any
lambda-expression, using the macro-call argument forms as the arguments. Then
the body forms are evaluated as an implicit progn, and the value of the last form
is returned as the expansion of the macro call. ’ )

If the optional documentation string doc-string is present (if not followed by a
declaration, it may be present only if at least one form is also specified, as it is
otherwise taken to be a form), then it is attached to the name as a documentation
string of type function; see documentation..

Like the lambda-list in a defun, a defnacro lambda-list may contain the lambda-list
keywords soptional, srest, skey, #&allow-other-keys, and s&aux. For
soptional and skey parameters, initialization forms and “supplied-p” parameters
may be specified, just as for defun. Three additional markers are allowed in defnacro
variable lists only:

tbody This is identical in function to srest, but it informs certain
output-formatting and editing functions that the remainder of the
form is treated as a body, and should be indented accordingly.
(Only one of sbody or srest may be used.)

&whole This is followed by a single variable that is bound to the entire
macro-call form; this is the value that the macro definition function
receives as its single argument. awhole and the following variable

- should appear first in the lambda-list, before any other parameter
or lambda-list keyword.

This is followed by a single variable that is bound to an environment
representing the lexical environment in which the macro call is
to be interpreted. This environment may not be the complete
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lexical environment; it should be used only with the function
nacroexpand for the sake of any local macro definitions that the
macrolet construct may have established within that lexical
environment. This is useful primarily in the rare cases where a
macro definition must explicitly expand any macros in a subform
of the macro call before computing its own expansion.

See lanbda-list-keywords.

defmacro, unlike any other CoMMON LISP construct that has a lambda-list as
part of its syntax, provides an additional facility known as destructuring. Anywhere
in the lambda-list where a parameter name may appear, and where ordinary lambda-list
syntax (as described in section 5.2.2) does not otherwise allow a list, a lambda-list
may appear in place of the parameter name. When this is done, then the argument
form that would match the parameter is treated as a (possibly dotted) list, to be
used as an argument forms list for satisfying the parameters in the embedded
lambda-list. As an example, one could write the macro definition for dolist in
this manner:

(defmacro dolist ((var listform &optional resultform)
srest body) '
-)

More examples of embedded lambda-lists in defmacro are shown below.
Another destructuring rule is that defmacro allows any lambda-list (whether

top-level or embedded) to be dotted, ending in a parameter name. This situation

is treated exactly as if the parameter name that ends the list had appeared preceded

by srest. For example, the definition skeleton for dolist shown above could
instead have been written ‘ -

(defmacro dolist ((var listform &optional resultform)
. body)
-)

If the compiler encounters a defmacro, the new macro is added to the compi-
lation environment, and a compiled form of the expansion function is also added
to the output file so that the new macro will be operative at runtime. If this is not
the desired effect, the defnacro form can be wrapped in an eval-when construct.

It is permissible to use defmacro to redefine a macro (for example, to install a
corrected version of an incorrect definition!), or to redefine a function as a macro.
It is an error to attempt to redefine the name of a special form (see Table 5-1) as
a macro.
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See also macrolet, which establishes macro definitions over a restricted lexical
scope.

Suppose, for the sake of example, that it were desirable to implement a condi-
tional construct analogous to the FORTRAN arithmetic IF statement. (This of course
requires ‘a certain stretching of the imagination and suspension of disbelief.) The
construct should accept four forms: a test-value, a neg-form, a zero-form, and a
pos-form. One of the last three forms is chosen to be executed according to whether
the value of the rest-form is positive, negative, or zero. Using defnacro, a defi-
nition for such a construct might look like this:

(defmacfo arithmetic-if (test neg-form zero-form pos-fornm)
(let ((var (gensym))) ‘
‘(let ((,var ,test))
(cond ((< ,var O) ,neg-form)
((= ,var 0) ,zero-fornm)
(t ,pos-form)))))

Note the use of the backquote facility in this definition. See section 22.1.3. Also
note the use of gensyn to generate a new variable name. This is necessary to avoid
conflict with any variables that might be referred to in neg-form, zero-form, or
pos-form. ‘ , : '

_If the form is executed by the interpreter, it will cause the function definition of
the symbol arithmetic-1if to be a macro associated with which is a two-argument
expansion function roughly equivalent to:

(lambda (calling-form environment)
(declare (ignore environment))
(let ((var (gensynm)))
(list ‘let
(list (list ‘var (cadr calling-form)))
(list ‘cond
(list (list ‘< var ‘0) (caddr calling-form))
(list (list ‘= var ‘0) (cadddr calling-fornm))
(list ‘t (fifth calling-form))))))

The lambda-expression is produced by the defnacro declaration. The calls to 1ist
are the (hypothetical) result of the backquote (*) macro character and its associated
commas. The precise macro expansion function may depend on the implementation,
for example providing some degree of explicit error checking on the number of
argument forms in the macro call. '

Now, if eval encounters
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Now, if eval encounters

(arithmetic-if (- x 4.0)
(- x)
(error 'Strange zero")
X)

this will be expanded into something like

(let ((g407? (- x 4.0)))
(cond ((< 9407 0) (- x))
((= g407 0) (error "Strange zero"))
(t x)))

and eval tries again on this new form. (It should be clear now that the backquote
facility is very useful in writing macros, since the form to be returned is normally
a complex list structure, typically consisting of a mostly constant template with a
few evaluated forms here and there. The backquote template provides a “picture”
of the resulting code, with places to be filled in indicated by preceding commas.)

To expand on this example, stretching credibility to its limit, we might allow
the pos-form and zero-form to be omitted, allowing their values to default to nil,
in much the same way that the else form of a COMMON LISP if construct may be
omitted: : ‘ '

(defmacro arithmetic-if (tesf neg-form
4optional zero-form pos-form)
(let ((var (gensym)))
‘(let ((,var ,test))
(cond ((< ,var O0) ,neg-form)
((= ,var 0) ,zero-form)
(t (pos-form)))))

Then one could write

(arithmetic-if (- x 4.0) (print x))

which would be expanded into something like

(let ((g408 (- x 4.0)))
(cond ((< g408 0) (print x))
((= g408 0) nil)
(t nil)))
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The resulting code is correct but rather silly-looking. One might rewrite the macro
definition to produce better code when pos-form and possibly zero-form are omitted,
or one might simply rely on the CommoN Lisp implementation to provide a compiler
smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defnacro lambda-list
to express the structure of a complicated macro-call syntax. If no lambda-list key-
words appear, then the defnacro lambda-list is simply a list, nested to some extent,
containing parameter names at the leaves. The macro-call form must have the same
list structure. For example, consider this macro definition:

(defmacro halibut ((mouth eyel eyed)
((finl lengthl) (fin? length2))
tail)
)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))
((f1l (count-scales fl)) (f2 (count-scales f2)))
my-favorite-tail)

This would cause the expansion function to receive the following values for its
parameters;

Parameter Value

mouth m

eyel (car eyes)

eyec (cdr eyes)

finl f1

lengthl (count-scales f1l)
fine fe

lengthe (count-scales f2)
tail my-favorite-tail

The following macro call would be in error because there would be no argument
form to match the parameter lengthi:

(halibut (m (car eyes) (cdr eyes))
((f1) (f2 (count-scales f2)))
my-favorite-tail)

The following macro call would be in error because a symbol appears in the call
where the structure of the lambda-list requires a list.
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(halibut ny-favorite-head
((f1 (count-scales f1)) (f2 (count-scales fa)))
my—favorite-tail)

The fact that the value of the variable my-favorite-head might happen to be a
list is irrelevant here. It is th? macro call itself whose structure must match that of
the defnacro lambda-list. ‘

The use of lambda-list keywords adds even greater flexibility. For example,
suppose it is convenient within the expansion function for halibut to be able to
refer to the list whose components are called mouth, eyel, and eyez as head. One
may write this: |
(defmacro halibut ((&wh&le head mouth eyel eyecd)

((fir}ll lengthl) (fin2 length2))

tail)
|

Now consider the same valid macro call as before:
(halibut (m (car eyes) %cdr eyes))
((£1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)
|

|
This would cause the expansion function to receive the same values for its parameters
and also a value for the parameter head:

Parameter Value

head (m (caﬁ eyes) (cdr eyes))

The stipulation, that an embedded lambda-list is permitted only where ordinary
lambda-list syntax would permit a parameter name but not a list, is made to prevent

ambiguity. For example, one may not write
\

(defmacro loser (x &opt{onal (a b &rest c) é&rest z)

-)

because ordinary lambda-list syntax does permit a list following &optional; the
list (a b srest c) would be interpreted as describing an optional parameter named
a whose default value is that of the form b, with a supplied-p parameter named
srest (not legal), and an extraneous symbol c in the list (also not legal). An almost
correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)
<)
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The extra set of parentheses removes the ambiguity. However, the definition is
now incorrect because a macro call such as (loser (car pool)) would not provide
any argument form for the lambda-list (a b srest c), and so the default value
against which to match the lambda-list would be nil because no explicit default
value was specified. This is in error because nil is an empty list; it does not have
forms to satisfy the parameters a and b. The fully correct definition would be either

(defmacro loser (x &optional ((a b &rest c) ‘(nil nil)) &rest z)

-)
or

(defmacro loser (x &optional ((&optional a b 4rest c)) &rest z)

.2

These differ slightly: the first requires that if the macro call specifies a explicitly
then it must also specify b explicitly, whereas the second does not have this
requirement. For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

8.2. Macro Expansion

The macroexpanad function is the conventional means for expanding a macro call.
A hook is provided for a user function to gain control during the expansion process.

macroexpand form soptional env [Function]
macroexpand-1 form &optional env [Function)

If form is a macro call, then nacroexpand-1 will expand the macro call once and
return two values: the expansion and t. If form is not a macro call, then the two
values form and nil are returned.

A form is considered to be a macro call only if it is a cons whose car is a symbol
that names a macro. The environment env is similar to that used within the evaluator
(see evalhook); it defaults to a null environment. Any local macro definitions
established within env by nacrolet will be considered. If only form is given as
an argument, then the environment is effectively null, and only global macro
definitions (as established by defmacro) will be considered.
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- Macro expansion is carried out as follows. Once macroexpand-1 has determined
that a symbol names a macro, it obtains the expansion function for that macro.
The value of the variable *macroexpand-hook is then called as a function of
three arguments: the expansion function, the form, and the environment env. The
value returned from this call is taken to be the expansion of the macro call. The
initial value of *macroexpand-hook#* is funcall, and the net effect is to invoke
the expansion function, giving it form and env as its two arguments. (The purpose
of *macroexpand-hook+ is to facilitate various techniques for improving interpre-
tation speed by caching macro expansions.)

The evaluator expands macro calls as if through the use of nacroexpand-1; the
point is that eval also uses *macroexpand-hooks.

nacroexpand is similar to macroexpand-1, but repeatedly expands form until
it is no longer a macro call. (In effect, macroexpand simply calls nacroexpand-1
repeatedly until the second value returned is nil.) A second value of t or nil is
returned as for macroexpand-1, indicating whether the original form was a macro
call.

*macroexpand-hook# [Variable]

The value of smacroexpand-hook+ is used as the expansion interface hook by
macroexpand-1i.



Declarations

Declarations allow you to specify extra information about your program to the Lisp
system. With one exception, declarations are completely optional and correct
declarations do not affect the meaning of a correct program. The exception is that
special declarations do affect the interpretation of variable bindings and references,
and so must be specified where appropriate. All other declarations are of an advisory
nature, and may be used by the Lisp system to aid the programmer by performing
extra error checking or producing more efficient compiled code. Declarations are
also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such
as a type declaration), but an implementation is not required to detect such errors
(though such detection, where feasible, is to be encouraged).

9.1. Declaration Syntax

The declare construct is used for embedding declarations within executable code.
Global declarations and declarations that are computed by a program are established
by the proclainm construct.

declare {decl-spec}* [Special form]
A declare form is known as a declaration. Declarations may occur only at the
beginning of the bodies of certain special forms; that is, a declaration may occur
only as a statement of such a special form, and all statements preceding it (if any)
must also be declare forms (or possibly documentation strings, in some cases).
Declarations may occur in lambda-expressions and in the forms listed here.
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defmacro dotimes

defsetf flet

deftype labels

defun let

do= let#*

do-all-symbols locally
do-external-symbols macrolet
do-symbols multiple-value-bind
do prog

dolist prog#*

It is an error to attempt to evaluate a declaration. Those special forms that permit
declarations to appear perform explicit checks for their presence.

Compatibility note: In MacLisp, declare is a special form that does nothing but return
the symbol declare as its result. The MACLIsP interpreter knows nothing about declarations
but just blindly evaluates them, effectively ignoring them. The MacLisp compiler recognizes
declarations but processes them simply by evaluating the subforms of the declaration in the
compilation context. In COMMON LIsP it is important that both the interpreter and compiler
recognize declarations (especially special declarations) and treat them consistently, and so
the rules about the structure and use of declarations have been made considerably more
stringent. The odd tricks played in MacLisp by writing arbitrary forms to be evaluated
within a declare form are better done in both MacLisp and Common Lisp by using
eval-when.

It is permissible for a macro call to expand into a declaration and be recognized
as such, provided that the macro call appears where a declaration may legitimately
appear. (However, a macro call may not appear in place of a decl-spec.)

Each decl-spec is a list whose car is a symbol specifying the kind of declaration
to be made. Declarations may be divided into two classes: those that concern the
bindings of variables, and those that do not. (The special declaration is the sole
exception: it effectively falls into both classes, as explained below.) Those that
concern variable bindings apply only to the bindings made by the form at the head
of whose body they appear. For example, in

(defun foo (x)
.(declare (type float x))
(let ((x ’a)) ...)
-)
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the type declaration applies only to the outer binding of x, and not to the binding
made in the let.

Compatibility note: This represents a difference from MacLisp, in which type declarations
are pervasive.

Declarations that do not concern themselves with variable bindings are pervasive,
affecting all code in the body of the special form. As an example of a pervasive
declaration,

(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should not be
open-coded but called as an out-of-line subroutine.

Some special forms contain pieces of code that, properly speaking, are not part
of the body of the special form. Examples of this are initialization forms that
provide values for bound variables, and the result forms of iteration constructs. In
all cases such additional code is within the scope of any pervasive declarations
appearing before the body of the special form. Non-pervasive declarations have no
effect on such code, except (of course) in those situations where the code is defined
to be within the scope of the variables affected by such non-pervasive declarations.
For example: ‘

(defun few (x &optional (y *print-circlex))
(declare (special *print-circlex))

-)

The reference to *print-circlex in the first line of this example is special because
of the declaration in the second line.

(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ;Second call to foo
(x (* k k)))
(declare (inline foo) (special x z))
(foo x j z))) ;Third call to foo

In this rather nonsensical example, the inline declaration applies to the second
and third calls to foo, but not to the first one. The special declaration of x causes
the let form to make a special binding for x, and causes the reference to x in the
body of the let to be a special reference. The reference to x in the second call to



156 COMMON LISP

foo is also a special reference. The reference to x in the first call to foo is a local
reference, not a special one. The special declaration of z causes the reference to
z in the call to foo to be a special reference; it will not refer to the parameter to
nonsense named z, because that parameter binding has not been declared to be
special. (The special declaration of z does not appear in the body of the defun,
but in an inner construct, and therefore does not affect the binding of the parameter.)

locally {declaration}* {form}* [Macro]

This special form may be used to make local pervasive declarations where desired.
It does not bind any variables and therefore cannot be used meaningfully for
declarations of variable bindings. (Note that the special declaration may be used
with locally to pervasively affect references to, rather than bindings of, variables.)
For example:

(locally (declare (inline floor) (notinline car cdr))
(declare (optimize space))
(floor (car x) (cdr y)))

proclainm decl-spec [Function)

The function proclain takes a decl-spec as its argument and puts it into effect
globally. (Such a global declaration is called a proclamation.) Because proclain
is a function, its argument is always evaluated. This allows a program to compute
a declaration and then put it into effect by calling proclaim.

Any variable names mentioned are assumed to refer to the dynamic values of
the variable. For example, the proclamation

(proclaim ‘(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always be a
floating-point number. Similarly, any function names mentioned are assumed to
refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless locally
shadowed. For example,

(proclaim ‘(inline floor))

advises that floor should normally be open-coded in-line by the compiler (but in
the situation

(defun foo (x y) (declare (notinline floor)) ...)
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it will be compiled out-of-line anyway in the body of £oo, because of the shadowing
local declaration to that effect).

As a special case (so to speak), proclain treats a special declaration-form as
applying to all bindings as well as to all references of the mentioned variables. For
example, after

(proclaim ‘(special x))
then in a function definition such as
(defun example (x) ...)

the parameter x will be bound as a special (dynamic) variable rather than as a
lexical (static) variable. This facility should be used with caution. The usual way
to define a globally special variable is with defvar or defparaneter.

9.2. Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct is said
to be “affected” by a declaration if it occurs within the scope of a declaration.

special

(special varl var2 ...) specifies that all of the variables named are to be con-
sidered special. This specifier affects variable bindings but also pervasively affects
references. All variable bindings affected are made to be dynamic bindings, and
affected variable references refer to the current dynamic binding rather than the
current local binding. For example:

(defun hack (thing *mod*) ; The binding of the parameter
(declare (special *mod#*)) ; *mod+ is visible to hacki,
(hackl (car thing))) ; but not that of thing

(defun hackl (arg)
(declare (special *mod*)) ; Declare references to *mod*
; within hackl to be special.
(i1f (atom arg) #*mod=
(cons (hackl (car arg)) (hackl (cdr arg)))))

Note that it is conventional, though not required, to give special variables names
that begin and end with an asterisk.
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A special declaration does not affect bindings pervasively. Inner bindings of
a variable implicitly shadow a special declaration and must be explicitly re-declared
to be special. (However, a special proclamation does pervasively affect bindings;

this exception is made for reasons of convenience and compatibility with MACLIisP.)
For example:

(proclaim ‘(special x)) ;x is always special.

(defun example (x y)
(declare (special y))
(let ((y 3) (x (* x 2)))
(print (+ y (locally (declare (special y)) Y)))
(let ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are special
and therefore dynamically scoped, but the middle binding is lexically scoped. The
two arguments to + are different, one being the value, which is 3, of the lexically
bound variable y, and the other being the value of the special variable named y (a
binding of which happens, coincidentally, to lexically surround it at an outer level).
All the bindings of x and references to x are special, however, because of the
proclamation that x is always special.

As a matter of style, use of special proclamations should be avoided. The
defvar and defparameter macros are the conventional means for proclaiming
special variables in a program.

type

(type type varl var2 ...) affects only variable bindings and specifies that the
variables mentioned will take on values only of the specified type. In particular,
values assigned to the variables by setq, as well as the initial values of the vari-
ables, must be of the specified type.

type
(type varl var2 . ..) is an abbreviation for (type type varl var2 ...y, provided
that zype is one of the symbols appearing in Table 4-1.

ftype

(ftype type function-name-1 function-name-2 . . .) specifies that the named func-
tions will be of the functional type type, an example of which follows.
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(declare (ftype (function (integer list) t) nth)
(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

function

(function name arglist result-typel result-type2 ...) is entirely equivalent to
(ftype (function arglist result-typel result-type2 ...y name)
but may be more convenient for some purposes. For example:

(declare (function nth (integer list) t)
(function sin (number) float)
(function cos (number) float))

The syntax mildly resembles that of defun: a function name, then an argument
list, then a specification of results.

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

inline

(inline functionl function2 ...) specifies that it is desirable for the compiler to
open-code calls to the specified functions; that is, the code for a specified function
should be integrated into the calling routine, appearing “in line” in place of a
procedure call. This may achieve extra speed at the expense of debuggability (calls
to functions compiled in-line cannot be traced, for example). This declaration is
pervasive. Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

notinline

(notinline functionl function2 ...) specifies that it is undesirable to compile
the specified functions in-line. This declaration is pervasive. A compiler is not free
to ignore this declaration.
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Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then the
declaration applies to that local definition and not to the global function definition.

ignore

(ignore varl var2 ... varn) affects only variable bindings and specifies that the
bindings of the specified variables are never used. It is desirable for a compiler to
issue a warning if a variable so declared is ever referred to or is also declared
special, or if a variable is lexical, never referred to, and not declared to be ignored.

optimize

(optinize (qualityl valuel ) (quality2 value2) . . .) advises the compiler that each
quality should be given attention according to the specified corresponding value.
A quality is a symbol; standard qualities include speed (of the object code), space
(both code size and run-time space), safety (run-time error checking), and com-
pilation-speed (speed of the compilation process). Other qualities may be rec-
ognized by particular implementations. A value should be a non-negative integer,
normally in the range 0 to 3. The value 0 means that the quality is totally unim-
portant, and 3 that the quality is extremely important; 1 and 2 are intermediate
values, with 1 the “normal” or “usual” value. One may abbreviate (quality 3) to
simply quality. This declaration is pervasive. For example:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)

(hairy-setup x)
(do ((1 D (+ i 1))
(z x (cdr z)))
((null z) i)
;3 This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum 1))
1))

declaration

(declaration namel name2 .. .) advises the compiler that each namej is a valid
but non-standard declaration name. The purpose of this is to tell one compiler not
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to issue warnings for declarations meant for another compiler or other program
processor. This kind of declaration may be used only as a proclamation. For ex-
ample:

(proclaim ‘(declaration author
target-language
target-machine)}

(proclaim ‘(target-language ada))
(proclaim ‘(target-machine IBM-L50))

(defun strangep (x)
(declare (author "Harry Tweeker"))
(member x ‘(strange weird odd peculiar)))

An implementation is free to support other (implementation-dependent) decla-
ration specifiers as well. On the other hand, a CoMMON Lisp compiler is free to
ignore entire classes of declaration specifiers (for example, implementa-
tion-dependent declaration specifiers not supported by that compiler’s implemen-
tation!), except for the declaration declaration specifier. Compiler implementors
are encouraged, however, to program the compiler to issue by default a warning
if the compiler finds a declaration specifier of a kind it never uses. Such a warning
is required in any case if a declaration specifier is not one of those defined above
and has not been declared in a declaration declaration.

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of some
form will be of a particular type. Using declare one can declare the type of the
value held by a bound variable, but there is no easy way to declare the type of the
value of an unnamed form. For this purpose the the special form is defined; (the
type form) means that the value of form is declared to be of type fype.

the value-type form [Special Form)]

The form is evaluated; whatever it produces is returned by the the form. In ad-
dition, it is an error if what is produced by the form does not conform to the data
type specified by value-type (which is not evaluated). (A given implementation
may or may not actually check for this error. Implementations are encouraged to
make an explicit error check when running interpretively.) In effect, this declares
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that the user undertakes to guarantee that the values of the form will always be of
the specified type. For example:

(the string (copy-seq x)) ; The result will be a string.
(the integer (+ x 3)) ; The result of + will be an integer.
(*+ (the integer x) 3) ; The value of x will be an integer.

(the (complex rational) (* z 3))
(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x ¥))
(the (values string t)
(gethash the-key the-string-table))

Compatibility note: This construct is borrowed from the INTERLISP DECL package; INTERLISP,
however, allows an implicit progn after the type specifier rather than just a’single form.
The MACLISP fixnun-identity and flonum-identity constructs can be expressed as
(the fixnum x) and (the single-float x).
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Symboils

A Lisp symbol is a data object that has three user-visible components:

* The property list is a list that effectively provides each symbol with many mod-
ifiable named components.

* The print name must be a string, which is the sequence of characters used to
identify the symbol. Symbols are of great use because a symbol can be located
once its name is given (typed, say, on a keyboard). It is ordinarily not permitted
to alter a symbol’s print name.

* The package cell must refer to a package object. A package is a data structure
used to locate a symbol once given the symbol’s name. A symbol is uniquely
identified by its name only when considered relative to a package. A symbol
may appear in many packages, but it can be owned by at most one package. The
package cell points to the owner, if any. Package cells are discussed along with
packages in chapter 11.

A symbol may actually have other components for use by the implementation.
One of the more important uses of symbols is as names for program variables; it
is frequently desirable for the implementor to use certain components of a symbol
to implement the semantics of variables. See symbol-value and symbol-
function. However, there are several possible implementation strategies, and so
such possible components are not described here.

10.1. The Property List

Since its inception, LisP has associated with each symbol a kind of tabular data
structure called a property list (plist for short). A property list contains zero or
more entries; each entry associates with a key (called the indicator), which is
typically a symbol, an arbitrary Lisp object (called the value or, sometimes, the
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property). There are no duplications among the indicators; a property list may only
have one property at a time with a given name. In this way, given a symbol and
an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference
is that a property list is an object with a unique identity; the operations for adding
and removing property-list entries are destructive operations that alter the property
list rather than making a new one. Association lists, on the other hand, are normally
augmented non-destructively (without side effects) by adding new entries to the
front (see acons and pairlis).

A property list is implemented as a memory cell containing a list with an even
number (possibly zero) of elements. (Usually this memory cell is the property-list
cell of a symbol, but any memory cell acceptable to setf can be used if getf and
renf are used.) Each pair of elements in the list constitutes an entry; the first item
is the indicator, and the second is the value. Because property-list functions are
given the symbol and not the list itself, modifications to the property list can be
recorded by storing back into the property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Properties are
created by using get within a setf form.

ComMON Lisp does not use a symbol’s property list as extensively as earlier
Lisp implementations did. Less-used data, such as compiler, debugging, and docu-
mentation information, is kept on property lists in COMMON Lisp.

Compatibility note: In older Lisp implementations, the print name, value, and function
definition of a symbol were kept on its property list. The value cell was introduced into
MacLisp and INTERLISP to speed up access to variables; similarly for the print-narme cell
and function cell (MAcLIsP does not use a function cell). Recent Lisp implementations such
as SPICE Lisp, ZETALIsp, and N1 have introduced all of these cells plus the package cell.
None of the MacLisp system property names (expr, fexpr, macro, array, subr, lsubr,
fsubr, and in former times value and pname) exist in COMMON Lisp.

In CommoN Lisp, the notion of “disembodied property list” introduced in MACLIsP is
eliminated. It tended to be used for rather kludgy things, and in ZETALISP is often associated
with the use of locatives (to make it “off by one” for searching alternating keyword lists).
In ComMoN Lisp special setf-like property-list functions are introduced: getf and rent.

get symbol indicator toptional default [Function]

get searches the property list of symbol for an indicator eq to indicator. The first
argument must be a symbol. If one is found, then the corresponding value is
returned; otherwise default is returned. If default is not specified, then nil is used
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for default. Note that there is no way to distinguish an absent property from one
whose value is default.

(get x y) = (getf (symbol-plist x) y)

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for
example:

(get ‘foo ‘baz) > 3
(get ‘foo ‘hunoz) = "Huh?"
(get ‘foo ‘zoo0) = nil

Compatibility note: In MacLisp, the first argument to get could be a list, in which case
the cdr of the list was treated as a so-called “disembodied property list.” The first argument
to get could also be any other object, in which case get would always return nil. In
CommoN Lisp, it is an error to give anything but a symbol as the first argument to get.
What CoMMON Lisp calls get, INTERLISP calls getprop.
What MAcLisp and INTERLIsP call putprop is accomplished in CoMmON Lisp by using
get with setf.

setf may be used with get to create a new property-value pair, possibly re-
placing an old pair with the same property name. For example:

(get ‘clyde ‘species) = nil
(setf (get ‘clyde ‘species) ‘elephant) => elephant
and now (get ‘clyde ‘species) = elephant

The defaulr argument may be specified to get in this context; it is ignored by
setf, but may be useful in such macros as push that are related to setf:

(push item (get sym ‘token-stack ‘(initial-item)))

means the approximately the same as

(setf (get sym ‘token-stack ‘(initial-item))
(cons item (get sym ‘token-stack ‘(initial-item))))

which in turn would be treated as simply

(setf (get sym ‘token-stack)
(cons item (get sym ‘token-stack ‘(initial-item))))
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renprop symbol indicator [Function]

This removes from symbol the property with an indicator eq to indicator. The
property indicator and the corresponding value are removed by destructively splicing
the property list. It returns nil if no such property was found, or non-nil if a
property was found.

(remprop x y) = (remf (symbol-plist x) y)

For example, if the property list of foo is initially

(color blue height k.3 near-to bar)

then the call

(remprop ‘foo ‘height)

returns a non-nil value after altering foo’s property list to be

(color blue near-to bar)

symbol-plist symbol [Function]

This returns the list that contains the property pairs of symbol; the contents of the
property-list cell are extracted and returned.

Note that using get on the result of symbol-plist does not work. One must
give the symbol itself to get or else use the function getf.

set £ may be used with synbo1-plist t