


BM PCre
for Students




BM PCjre
for Students

by
WSI Staff

Weber Systems, Inc.
Cleveland, Ohio



The authors have exercised due care in the preparation of this book and the
programs contained in it. The authors and the publisher make no warranties
either express or implied with regard to the information and programs contained
in this book. In no event shall the authors or publisher be liable for incidental or
consequential damages arising out of the furnishing, performance, or any infor-
mation and/or programs.

Microsoft BASIC®, Multiplan™, and Adventure™are trademarks of the Microsoft Corpora-
tion; Homeward™ is a trademark of Sierra On-Line, Inc.; Intel 8088®, 4004®, 8008®, 8080®,
8085®, and 8088/8086@ are registered trademarks of Intel Corporation; Home Budget™is a
trademark of Howe Software; Visicalc® is a registered trademark of Visicorp, Inc.; SN
76489A™ is a trademark of Texas Instruments; The following are trademarks of IBM
Corporation. This book has been neither authorized or endorsed by IBM Corporation.

IBM PGjre IBM PCjr Memory and Display Expansion
IBM PCe Board™

IBM PC XT® Graphics Definition Language™

I1BM PCjr BASIC™ Cartridge BASIC™

Cassette BASIC™ IBM Graphics Printer™

IBM Serial Adapter Cable™ IBM PCjr Internal Modem™

IBM Parallel Printer Attachment™ IBM DOS 2.1®

IBM PCjr Attachable Joystick™ IBM Compact Printer™

Published by:

Weber Systems, Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information or translations and book distributors outside of the United
States, please contact WSI at the above address.

IBM PC;jr® for Students

Copyright®© 1984 by Weber Systems, Inc. All rights reserved under Interna-
tional and Pan-American Copyright Conventions. Printed in United States of
America. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written permission of the
publisher.

Library of Congress Cataloging in Publication Data
Main entry under title:
IBM PCjr for Students

Includes index
1. IBM PCjr(Computer) — Programming — Juvenile literature. 2. Basic (Computer

program language) — Juvenile literature. 1. 1. Weber Systems, Inc. II. Title: .LB.M.
P.C jr for Students.
QA76.8.12593126 1984 001.6472 84-50843

ISBN 0-938862-25-1

Typesetting and Layout: Tina Koran, Maria Stamoulis, Beth Cammarn,
and Irma Schaeffer



Contents

Introduction

Purpose of this Book

Introduction

How to Use this Book

Section 1 Background

Lesson 1. What is a Computer?
Introduction

Computers Defined

Types of Computers
History of Computers

Questions

Lesson 2. Introducing the IBM PCjr

Introduction

PCjr — Entry Model and Enhanced Model
System Unit

Intel 8088 Microprocessor

RAM

ROM

Connectors for External Devices

Expansion Slots

Keyboard

Power Supply/Transformer

Video Display

Questions

18
18
19
19

20

22
23
23
27
28
36

40
41
41
43
44
48
48
49
49
52
53
54
56



Lesson 3. Peripherals and Add-on Devices 58
Introduction 59
Diskette Drive 59
Disk Operating System 62
Tracks and Sectors 62
Diskette Capacity 64
PCjr Disk Drive Operation 64
Printers 66
Sending Data from the PCjr to the Printer 68
IBM Printers 69
Joysticks 70
PCjr Keyboard Cord 71
PCjr Memory and Display Expansion 72
PCjr Internal Modem 73
Cassette Recorder/Players 74
PCjr Cartridges 75
Questions 77
Section 2 Discovery 80
Lesson 4. Introduction to BASIC 82
Introduction 83
Programming Language High Level, Machine, and Assembly 83
History of BASIC 84
Compiled vs. Interpreted Languages 84
Cassette and Cartridge BASIC 85
Types of Software 86
Questions 88
Lesson 5. Getting Started with BASIC 90
Introduction 91
PCjr System Start-Up Review 91
BASIC Start-Up 92
PCjr Start-Up Without the Diskette Drive 93
PCjr Start-Up With the Diskette Drive 95
Adjusting the Screen 101
Warm Boot 101
PCjr Keyboard 102
Fn Key 104
Alt Key 105
Ctrl Key 107
Editing Keys 107
Enter Key 108




Conclusion

Questions

Lesson 6. Your First Program

Introduction

Immediate and Program Modes

Writing and Entering a Program

Running a BASIC Program
Clearing the Screen

Listing the Program

Erasing the Program
Questions

Lesson 7. How the PCjr Works
Introduction

BASIC Program Entry

Running a BASIC Program
Clearing the Screen with a BASIC Program in Memory
Listing the BASIC Program

Erasing the BASIC Program from Memory

Questions

Lesson 8. RUN, LIST, AUTO, RENUM, and DELETE
Introduction

RUN

LIST

AUTO — Automatic Generation of Line Numbers

RENUM — Renumbering Program Lines

DELETE — Deleting Program Lines

Questions

Lesson 9. Editing Your BASIC Program
Introduction

Line Entry Editing

Editing Keys

Cursor Up
Cursor Down

Cursor Right

Cursor Left

Delete

Ins

Backspace

Esc Key

Tab

Fn-End

111
112

114
115
115
117
124
125
126
126
127

130
131
133
135
141
142
143
144

148
149
149
151
154
158
164
168

172
173
173
174
179
180
181
183
184
185
187
188
189
191



Fn-Home

Fn-Break

Ctrl-Fn-End

Ctrl-Fn-Home

Ctrl-PgDn
Ctrl-PgUp

EDIT Command Entry

Cursor Movement Editing
Questions

Lesson 10. Saving and Loading BASIC Programs
Introduction

Cassette Recorder

Cassette Recorder Installation

Saving a BASIC Program on Cassette

Loading a BASIC Program from Cassette

Disk Drive

Formatting a Diskette

Displaying the Diskette Directory

Saving and Loading BASIC Programs on Diskette

Erasing a File from a Diskette
Questions

Lesson 11. Data Types and Variables in BASIC

Introduction

String Data

String Data Examples
ASCII

Numeric Data

Integers
Fixed-Point Numbers

Floating-Point Numbers

Hexadecimal Numbers

Octal Numbers

Numeric Precision

Variables

Variable Names

Assigning Values to Variables with the LET Statement
How Variables are Processed

Questions

Lesson 12. Operators

Introduction
Arithmetic Operators

192
193
194
195
196
197
199
201
204

208
209
209
209
212
214
216
216
219
220
221
223

226

227

227
227
229
229
230
230
231
232
232
232
234
235
236
237
244

248
249
249



Addition (+)

Exponentiation (A)

Floating Point Division (/)

Integer Division (\)

Modulo Arithmetic (MOD)

Multiplication (*)

Negation (-)

Subtraction (-)

Order of Evaluation

Mixing Variable Types in Arithmetic Expression

Relational Operators

Logical Operators
NOT

AND

OR

XOR

Order of Evaluation

Questions

Lesson 13. Outputting Data

Introduction

PRINT

PRINT USING

Formatting Characters

Numeric Formatting Characters - Pound Sign (#)
Numeric Formatting Characters - Decimal Point (.)
Numeric Formatting Characters - Plus Sign (+)

Numeric Formatting Characters - Minus Sign (-)

Numeric Formatting Characters - Comma (,)

Numeric Formatting Characters - Dollar Sign ($)

Numeric Formatting Characters - Asterisk (*)

249
251
2562
254
255
257
258
259
259
261
261
262
263
263
264
264
265
267

270
271
271
274
275
275
277
278
279
281
282
284

Numeric Formatting Characters - Exponential Notation (amaas) __ 286

String Formatting Characters - Ampersand (&)

String Formatting Characters - Backslash (\)
String Formatting Characters - Exclamation Point (!)
Literals

Formatting Functions: TAB,SPC,SPACE$

TAB

SPC

SPACES$

Questions

287
288
290
291
292
292
293
295
297



Lesson 14. Inputting Data

Introduction

INPUT

INPUT$

LINE INPUT

Questions

Lesson 15. Conditional, Branching, and Looping Statements

Introduction

IF THEN

GOTO

GOSUB,RETURN
Conditional Statements with Branching

FOR,NEXT

WHILE,WEND

Questions

Lesson 16. Tables and Arrays

Introduction

Subscripted Variables and Arrays

Tables

DIM

OPTION BASE

DATA and READ

ERASE

Questions

Lesson 17. Numeric and Math Functions
Introduction

SIN,COS, TAN,ATN

SQR

INT

FIX

ABS -

SGN

EXP

LOG

CINT,CSNG,CDBL

Questions

Lesson 18. String Functions

Introduction

String Concatenation
LEFT$

300
301
301
302
304
306

308
309
309
312
313
315
316
319
322

326
327
327
331
333
335
336
338
339

342
343
343
345
346
347
348
349
350
351
352
354

356
357
357
358



RIGHTS$

MID$
STR$ and VAL

CHR$ and ASC

INSTR

LEN

STRING$

Questions

Lesson 19. Other Functions and User-Defined Functions

Introduction

FRE

POS

PEEK

POKE

RND

RANDOMIZE

SCREEN

User-Defined Functions

Questions

Lesson 20. Introduction to Graphics
Introduction

Pixels

Text Mode

Low Resolution Graphics

Medium Resolution Graphics

Screen 1

Screen 4

Screen 5

High Resolution Graphics

SCREEN

WINDOW

VIEW

Questions

Lesson 21. Graphics Statements

Introduction

Absolute and Relative Form

PSET and PRESET

LINE

CIRCLE

DRAW

359
360
361
363
364
365
366
368

372
373
373
374
375
376
376
380
381
382
384

386
387
387
388
390
391
392
393
394
394
395
398
398
400

402
403
403
404
406
408
410



Vertical and Horizontal Movements

Diagonal Movements

Scaling Factor

GDL Commands and Variables

PAINT

Questions

Lesson 22. Introduction to Sound
Introduction

Sound Generators

SOUND

BEEP

SOUND

PLAY

Notes

L

MB and MF

Articulation

N

o)

P

T

\

Dotted Notes

Changing Octaves

X

NOISE

Questions

Lesson 23. Programming Techniques

Introduction

Top-Down Design
Delay Routine

Menu-Driven Programming

411
412
413
414
415
416
416
417
418
419
421
422
423
430

432
433
433
434
434
435
437
438
438
440
440
441
442
443
444
445
445
446
447
448
451

454
455
455
464
465



Techniques using Variables

Initializing Variables
Flags

Significant Variable Names

Questions

Section 3 Applications

Lesson 24. Applications for Mathematics
Introduction

Algebra

Geometry

Trigonometry
Lesson 25. Applications for Science

Introduction

Chemistry

Conversion Program

Percentage Composition
Limiting Reagent

Ideal Gas Law

Physics

Motion

Work

Lesson 26. Writing Papers and Reports

Introduction

Overview of HomeWord

Starting HomeWord

Creating a Title Page

Enter Title Page Information

Change Top Margin

Define Line Spacing

Center Lines

Main Text of the Paper
Start a New Page

Enter Main Text

Redefine Margins
Justify Text

Indenting the Quote

Single Space Quote

Footnote the Quote

468
468
471
472
473

476

478
479
479
481
486

494
495
495
495
499
500
503
506
506
511

512
513
514
517
518
518
519
521
522
523
524
525
526
527
528
530
531



Footnotes

Placing Footnotes at the End of the Paper
Placing Footnotes at the Bottom of the Page
Bibliography Page

Page Numbers
Appendix A. ASCII Codes

Appendix B. BASIC Reserved Words

Appendix C. Answer Key

Index

533
533
537
540
543

545
548
549
553



NTroducTion

Purpose of this Book

At this point, you may be wondering, “Why should I study
computers?”. An understanding of computers is important for every
member of society for a number of reasons. Two of the most impor-
tant reasons are:

O Computers have influenced almost every aspect
of our daily lives.

O Computers will have an even greater influence
in the future.

Our primary intention in this book will be to help you become
computer literate. Literate is derived from the Latin term, litteratus,
which can be translated as learned.

People who are computer literate have an understanding of
computers that allows them to use computers as tools in their every-
day lives. All tools are extensions of parts of our bodies. For example,
an automobile is an extension of our feet, a telescope is an extension
of our eyes, and a scuba tank is an extension of our lungs. The
automobile allows us to travel farther and faster than our feet could
carry us. A telescope allows us to see into outer space — far beyond

18



the reaches of our eyesight. A scuba tank allows us to swim under-
water for long periods of time. This would be impossible using our
body’s natural breathing organs.

A computer is an extension of the human mind. Computers can
be used to accomplish repetitive tasks that would otherwise occupy
our thought processes. In most instances, these tasks can be accomp-
lished more quickly and more accurately by using computers. Com-
puters then are tools that we can use to extend the power of our minds
as well as to free our minds from being occupied with repetitive and
generally boring tasks.

Acknowledgements

We gratefully acknowledge Jeanette Mahrer of IBM, for her
invaluable assistance. We also wish to thank Bob Baker, Computer-
land, for his assistance and cooperation.

How to Use this Book

This book consists of a series of 26 lessons, which are designed to
be studied in sequence. These lessons include explanations, examples,
exercises, and step-by-step instructions to be used while working with
the PCjr. Answers to many of the exercises can be found in Appendix
C.

Terms which you may find unfamiliar are presented in bold.
These terms will be defined in subsequent paragraphs.

19



Section



Section 1 is simply titled “BACKGROUND”. The purpose of
the three lessons which make up Section 1 is to help you gain a
solid understanding of the general concepts of computers and compu-
ting. This knowledge will provide a solid foundation upon which you can
begin building your understanding of computers. We will attempt to
accomplish the following goals in Section 1:

O Gainageneral overview of how a computer functions

O Apply this knowledge to the PCjr so as to gain an
understanding of how it functions

O Gainanunderstanding of the terms used in comput-
ing such as bit, byte, input, output, microprocessor,
RAM, ROM, etc.

O Gain an understanding of the various PCjr compo-
nents, peripheral devices, and add-on devices

O Gain an understanding of the history and evolution
of computing devices

21






What is a Computer? 23

Introduction

In this lesson, a general overview of computers will be presented.
A basic definition of a computer will be provided along with a
condensed history of computing. This lesson is the most general in
this guide and is meant to remove the confusion that many people feel
when discussing computing. Hopefully, this lesson will stimulate
your interest in computers and will help you feel comfortable while
learning about computers.

After reading this lesson, you should understand how computers
function on a general level. Computers are powerful problem solving
tools. They are very important in today’s society and can only
become more so in the future. An understanding of computers is one
of the most valuable assets a person can have in today’s world.

Computers Defined

The word “computer” often frightens people. Don’t let it
frighten you. A computer can be defined as an electronic machine
that uses a program, or set of logical instructions, to process data at a
relatively high rate of speed. A computer generally performs the
following five functions:

O Input

O Storage

O Control

O Processing
O Output

These functions are depicted in figure 1.1.

Data must first be input, or sent, to the computer. Input can be
defined as the process of sending data into the computer. Input might
be in any one of a number of different forms including:

O Keyboard entries

O Readings from a measuring device such as a
thermometer



24 1BM PCjr for Students

control
input

storage

circuit
=== board
with RAM

keyboard

output
1
, -
i processing i
i
1
i
* circuit
== board
with 8088

Figure 1.1. Computer information processing functions

O0o

such as a modem

O Data entered by pressing a joystick or game

controller

Once data has been entered, it is stored, generally in magnetic
memory, for future use. Data is input and stored in binary code.
Binary codes consist of 1’s and 0’s and use the base two numbering
system. For example, the following number in binary format:

100,

Data read from a punched card
Data received from a communications device




What is a Computer? 25

C

would be represented as 4 in the decimal or base 10 numbering

system.

Once data has been input and stored, it can be processed by the
computer. Data processing can be defined as the various operations
performed on data according to the instructions issued by the pro-
gram. Examples of data processing operations include:

O

a
O
a

Calculating a formula
Sorting a list of names into alphabetical order

Calculating the class average on a mid-term
exam

Comparing two values

D
o
o P D
i
B
@ [

o g = EIDEWD

Figure 1.2. Input examples

a, Keyboard entry; b, Punched card; ¢, Game controller; d, Modem



26 1BM PCijr for Students

SMITH A,

A$+B$=X
R

C D

Figure 1.3. Data processing examples

a, Calculating a formula; b, Sorting a list of names; ¢, Calculating an average;
d, Comparing two values

Notice that a number of the computer’s processing activities are
the same as a calculator’s. However, the computer has one important
additional feature — the ability to make decisions based upon
instructions stored in memory. These instructions constitute the
computer’s control function. For each activity that it undertakes, the
computer must be given an instruction.

Once data has been processed, it can be output. Output can be
defined as the process of transmitting data which has been processed
by the computer. Data can be output in a number of different forms
including:



What is a Computer? 27

A B
-y o o @ o
o m
o m
d 5
C D

Figure 1.4. Output examples

a, Data output to the video display; b, Data output to the printer; ¢. Data transmitted via phone lines;
d, Data output to a punched card

O A display on a computer video-display
O A printed report

O Codes whichare communicated over telephone
lines to other computers.

Types of Computers

Computers can be grouped according to three general classifications:

O Analog computers
O Digital computers
O Hybrid computers



28 1BM PCijr for Students

An analog computer can be defined as a device that uses a
physical quantity (generally electric current or voltage) to solve
mathematical problems. In an analog system, the physical pheno-
nemon being represented is simulated by the computer. A household
thermostat is a good example of an analog computer. The tempera-
ture is represented by an electric current. If this current falls below a
predetermined level, a signal will be sent to the heating plant.

Digital computers represent data in binary form. Groups of
binary signals are used to represent numbers, characters, and sym-
bols.The IBM PCjr is a digital computer. In this book, we will be
discussing digital computers.

Hybrid computers are designed with both digital and analog
characteristics. One example of the hybrid computer is a numerically
controlled machine.

History of Computers

Computing devices can be traced back in history some 500 years
to the abacus. The abacus consists of rows of parallel rods or wires
upon which are mounted sliding blocks or beads. An abacus is
depicted in figure 1.5. The beads are divided into two sections by a
bar. The top section of the abacus has either one or two beads. These
represent either 0 and 5 depending on their position on the rod.

Each rod on the bottom section contains four or five beads, each
of which represents a single unit. The individual bars each represent a
significant digit of a number. The least significant digit is indicated by
the rod at the extreme right of the abacus.

Pascal’s digital adding machine was a significant development in
the history of computing devices. Blaise Pascal was a French
mathematician, scientist, and philosopher. In 1642, when he was
about twenty years old, Pascal designed and built a mechanical
calculating machine to help him keep track of the accounts in his
father’s business. This was the forerunner of the modern desktop
calculator. It consisted of a mechanical gear system which could add
and subtract numbers containing as many as eight digits.






30 1BM PCjr for Students

Numbers are entered using eight dial wheels on the top side of
the machine (see figure 1.6). The farthest right wheel represents the
units position, the next wheel represents tens, followed by hundreds,
thousands, etc. When numbers are added, carrying is accomplished
by the gear system which causes the next wheel to turn by one when
the preceding wheel exceeds a value of 9. The value at each wheel
position can be observed through windows in the machine’s top
cover.

Babbage’s analytical engine represented another significant step
in the development of the computing device. Charles Babbage, an
English inventor and mathematician, began formulating the idea for
his analytical engine in 1812 when he was just 21 years old. Twenty-
one years later, in 1833, Babbage stopped work on the project when
the British government cut off funds for it. Babbage’s analytical
engine was displayed at the International Exposition of 1862 and can
be viewed today at the Science Museum in South Kensington,
London.

The analytical engine was a revolutionary machine in its time.
Babbage’s analytical engine was in fact the forerunner of the first
digital computers. The analytical engine was the first device to utilize
conditional control — a feature used in almost every modern compu-
ter and programming language. Conditional control allows the
machine to compare two or more quantities and depending upon the
results of that comparison, branch to another program instruction.
Another feature that made the analytical engine unique was its ability
to utilize the results of its own computations as data in subsequent
computations.

The analytical engine was controlled by a Jacquard punched
card. Jacquard punched cards use a hole punched in a card to
represent a number. The concept was originally developed by Joseph-
Marie Jacquard in France in the early 1800’s to control the opera-
tions of looms for weaving cloth.



What is a Computer? 31

The analytical engine used three sets of punched cards for out-
putting data and instructions. These were:

* Number cards for inputting numbers to be used in the problem
Directive cards for controlling the movement of numbers
within the machine
Operation cards for controlling the execution of the machine’s
arithmetic operations (i.e. addition, subtrac-
tion, multiplication)

The two primary components of the analytical engine were the
storage unit and the mill. The storage unit consisted of groups of 50
counter wheels that could store 1000 numbers each consisting of 50
digits. The mill was the analytical engine’s calculator section.

Hollerith’s tabulating machine represented another milestone in
the development of the digital computer. Herman Hollerith was born
in 1860 and educated at Columbia University in New York City. It
was at Columbia that Hollerith began studying tabulating systems.
After Hollerith graduated from Columbia at age 20, he took a job
with the U.S. Census Office.

Over the next nine years, Hollerith led a varied career. He was
associated with the Census Office until 1883, although he spent the
academic year 1882-1883 as an instructor in mechanical engineering
at the Massachusetts Institute of Technology. In 1883, Hollerith took
a position with the Patent Office for approximately one year. For the
next six years, Hollerith worked on the development of his tabulating
equipment, which was designed to calculate census data. Hollerith
received patents on his machine in 1889. The tabulating machine was
utilized with great success by the Census Office in the 1890 census.

After its successful introduction in the 1890 census, Hollerith
formed a company, known as the Tabulating Machine Company, to
market the machine. In 1911, this company became the Computer-
Tabulating-Recording Company, which later became the Interna-
tional Business Machines Corporation, or IBM.






What is a Computer? 33

The Hollerith tabulating machine made use of 6% by 3% inch
punched cards to input data. Holes punched in the cards were used to
represent various characteristics such as age, sex, etc. of the respond-
ents to the census. Hollerith designed one machine for punching the
cards and another for sorting them. Each card would be run under-
neath a set of contact brushes. These would complete an electric
circuit if a hole was present in the card. When the circuit was com-
pleted, a counter would be advanced.

The great advantage to Hollerith’s tabulating machine was that
the cards could be assembled into a large deck and sorted according
to any single characteristic. This allowed census data to be analyzed
quickly and accurately.

The Harvard Mark I* represented the next significant advance-
ment in the development of the computer. The Mark I was developed
by Howard Aiken and a group of IBM engineers under the direction
of Clair D. Lake. While studying physics as a graduate student at
Harvard University, Aiken studied punched card calculating machines
similar to those manufactured by IBM and analyzed the alterations
that would be required to adapt these for scientific calculations.
Aiken analyzed that the following adaptations would have to be
incorporated in punched card calculating machines to make them
practical for scientific applications:

O Ability to handle negative as well as positive
numbers.

O Abiltiy to handle the various complex func-
tions involved in scientific calculations.

O Ability to perform calculations without the
need for human interaction.

O Ability to perform calculations in their natural
mathematical order.

* Also known as the IBM Automatic Sequence Controlled Calculation



34 1BM PCjr for Students

Aiken’s ideas came to the attention of the Watson Computing
Bureau at Columbia University in New York City, which was funded
by the IBM Corporation. In 1939, Aiken and a group of IBM
engineers began designing a new computing device. The Harvard
Mark I was completed in 1944. It measured 50 feet in length and was 8
feet high. The computer was controlled by a paper tape which con-
tained the machine’s instructions. These instructions consisted of
three parts. One instruction contained information regarding where
the data to be operated on was stored. Another determined what
operation was to be performed on that data. The third determined
where the result of the operation was to be stored.

The Mark I could calculate using the basic arithmetic operators
(addition, subtraction, multiplication, division) and could also calcu-
late logarithms, exponentials, and sines. The Mark I could handle
negative as well as positive numbers. Data was input into the Mark I
using punched cards. Data was output either on punched cards or on
an electric typewriter.

The ENIAC (an acronym for Electronic Numerical Integrator
and Calculator) was the first general purpose, electronic digital com-
puter. Earlier computing devices, including the Mark I, had been
electromechanical rather than electronic. Recall from the definition
of computers on page 23 that we defined the computer as an electronic
device. Withiits electronic design, the ENIAC could perform calcula-
tions at speeds 1000 times faster then electromechanical computers.

The ENIAC was designed by J. Presper Eckert and John W.
Mauchly of the University of Pennsylvania. In 1946, Eckert and
Mauchly formed their own company for the purpose of designing
and building computers. They sold the firm to Remington Rand
Corporationin 1959. Eckert and Mauchly also designed and built the
Univac I for use by the United States Bureau of Census. The Univac ]
represented yet another significant advancement in the evolution of
the electronic digital computer. The Univac I was the first computer
that could handle alphabetic information with the same competence
as numeric information. The Univac I was probably the first elec-
tronic digital computer to be used widely in the business and govern-
ment environments. It was the forerunner of our modern computers.









What is a Computer? 37

. The following are examples of data processing:

A.
B.

C
D.
E

Calculating 5+7-3-+8

Sorting a list of names in alphabet-
ical order

Deciding which value is greater,
27.82 or 26.98

All of the above

None of the above

. The first computing device to incorporate conditional control was:

moaow»

Pascal’s adding machine
ENIAC

Harvard Mark 1

Babbage’s analytical engine
None of the above

. Punched cards were first used with:

D.

Pascal’s adding machine
Jacquard’s looms

Babbage’s analytical engine
Hollerith’s tabulating machine
None of the above

. The Harvard Mark I was developed by:

A.
B.

MO0

Howard Aiken and 1BM engineers
Presper Eckert and John W.
Mauchly

Harry Hollerith

All of the above

None of the above

. The first general purpose electronic, digital computer was:

monOow>

Univac 1

Harvard Mark 1

Hollerith’s tabulating machine
ENIAC

None of the above



38 1BM PCjr for Students

Essay

1. What is your definition of the term — computer?
2. What five functions are performed by computers?
3. Describe each of these five functions.

4. What is your definition of conditional control?



1

Nfroducing
e IBVI PCr

lesson 2

Lesson Goals

Gain an understanding of each of the PCjr’s four primary
components

Learn the meaning of computing terms related to these peripheral
and add-on devices

40



Introducing the 1BM PCjr 41

Introduction

At this point, we have provided a broad definition of computers,
outlined the development of modern digital computers, and dis-
cussed the importance of becoming computer literate in today’s
society. With this background, we are ready to begin our journey
towards computer literacy.

For this journey, we will use the IBM PCjr computer. In this
lesson, we will introduce the PCjr and its various components.

PCjr -- Entry Model and Enhanced Model

Two different models of the PCjr are available, the entry model
and the enhanced model. These are pictured in figures 2.1 and 2.2.
The major difference between the two models is that the enhanced
model includes a floppy diskette drive, while the entry model does
not. Also, the enhanced model allows 80 characters to be displayed
on each line on the screen, while only 40 characters can be displayed
per line on the entry model.

The IBM PCjr includes four basic components. These are as
follows:

O System unit
O Keyboard
O Power supply/transformer

We will discuss each of these in the following sections.












Introducing the IBM PCjr 45

noooofioooool

Figure 2.5. PC;jr system board






Introducing the IBM PCjr 47

1 byte = 8 bits Bytes Binary Value Character Byte

Represents
: (. higher order bit

P A

lower order bit

J: . o o : S e e oo

Figure 2.8. One byte x&

Most 8-bit microprocessors can only address (or work with)
65,536 bytes at any one time. Even though this number appears large,
a 30 page document would fill this area. Most 16-bit microprocessors
can address from 65,536 to 16 million bytes of memory. Moreover,
16-bit microprocessors process data at a speed from 2 to 10 times
faster than 8-bit microprocessors.

The Intel 8088 is a 16-bit microprocessor. One of the main
advantages the IBM PCjr has over other home computers is the
power provided by its use of the 8088 CPU.



48 1BM PCjr for Students

RAM

RAM is a type of memory contained on the PCjr’s system board.
The terms memory and storage can be used synonymously. Data can
be sent to and held in memory in its binary form.

RAM is an abbreviation for random access memory. Access is
random because any individual storage location in RAM can be
accessed immediately. This allows data to be read from or written to
RAM very quickly. Any data stored in RAM will be lost when the
PCjr's power is shut off. A RAM chip is shown in figure 2.9.

ROM

ROM is an abbreviation for read-only memory. Information is
stored in ROM in a permanent or semi-permanent manner. This data
can be read from ROM, however it cannot be changed during com-
puter operation. If the power to the PCjris shut off, the data stored in
ROM will remain there. Individual memory locations in ROM are
accessed in a random manner.

noooof

C

Figure 2.9. RAM chip Figure 2.10. ROM chip







50 1BM PCjr for Students

Figure 2.12. PCjr power supply board

Figure 2.13. PCjr Memory and Display Expansion Board






52 1BM PCijr for Students

T o

—~_p- D~ %Q@

= s s
s Il s s I

I o o> o> 2 —~a> &I

E: o5 3

Figure 2.15. PC;jr disk controller board

Keyboard

The PCjr’s keyboard allows the user to communicate with the
system unit. Unlike most personal computers, the PCjr keyboard
does not necessarily have to be connected to the system unit with a
cable. The PCjr keyboard is cordless. Communication with the sys-
tem unit is accomplished using an infrared optical link.

If more than one PCjris being used concurrently ina room, it is
necessary to connect the keyboard to the system unit using the
optional keyboard connection cable. Otherwise, the keyboard can be
used without the cable to communicate with the system unit. The
advantage of cordless communications is especially useful in a class-
room situation -- as the system unit can be placed in a central location
and the keyboard can be passed around the classroom. The effective
range of cordless keyboard communication is approximately 20 feet.

The PCjrkeyboard is powered by four A A batteries. It contains
62 programmable* keys arranged in a typewriter-like sequence. The
individual keys are described in Lessons 5 and 9.















Introducing the IBM PCjr 57

3. The expansion slots on the PCjr system board are used to install:

Joysticks

Printers

Internal Modem
ROM Cartridges
None of the above

Mmoo

4. This type of memory loses the data stored in it when the PCjr’s
power is turned off.

A. ROM

B. Diskette

C. Cassette

D. RAM

E. None of the above
5. How much RAM is included on the PCjr’s system board?

A. 64MB

B. 64K

C. 128K

D. 32K

E. None of the above

Essay

1. Define the terms RAM and ROM, noting especially the differen-
ces between the two.

2. Describe the various functions of a microprocessor.



Perioherals &
AJd-On Devices

lesson 3

Lesson Goals

Gain an understanding of the various peripheral and add-on devi-
ces available for the PCjr

Learn the meaning of computing terms related to these peripherals
and add-on devices

58



Peripherals and Add-on Devices 59

Introduction

In the last lesson, we described the main components of the
PCjr: the system unit, the keyboard, and the power supply/trans-

former. A number of peripherals* and add-on devices can be added
to these basic components. These include:

Diskette drive

Printers

Joysticks

Keyboard cord

Memory and Display Expansion device
Internal Modem

Cassette player/recorder

Cartridges

O000o0oooo

Several of these devices were discussed briefly in lesson 2. We
will discuss these in more detail in this lesson.

Diskette Drive

The diskette or disk drive is one of the most important parts of a
computer system. Disk drives allow the storage of relatively large
amounts of data and also offer relatively fast access to that data.
Unlike RAM storage, when information is stored on a disk, the
information is not lost when the computer is turned off. In other
words, disks offer a permanent means of storing data. The addition
of a diskette drive will greatly enhance the usefulness of the PCjr.

Data is stored on a diskette in magnetic form. The disk drive
contains a device known as a read/write head which is used to read
information from and write information to the diskette. The read/
write head is depicted in figure 3.1.

* A peripheral can be defined as an auxiliary device which can be connected to a computer to
perform some additional function.



60 1BM PCjr for Students

Figure 3.1. PC;jr read/write head

With a disk drive, data can be read from or written to any
particular position on the diskette. This is in contrast to magnetic
tape data storage, where, in order to access a particular piece of data,
all preceding data items must first be examined. The concepts of
random and sequential data access are depicted in figure 3.2.

Random Access

1]1213]41|5]6|7|8]|9]|10

11

12

13

14

15

[ . .
Search location 15 — preceding data items need not
be accessed

Sequential Access
112|3]4]5]|6]7|8]9|10

11

12

13

tttttttttot

t

t

t

Search location 15 — all preceding data items must
be accessed

\W@Figure 3.2. Random and sequential access




Peripherals and Add-on Devices 61

A diskette consists of a round vinyl disk which is stored inside of
a plastic cover. The diskette is stored in a protective paper envelope
which protects it from damage while it is being stored or handled. A
5% inch diskette and its protective paper envelope is pictured in
figure 3.3.

When the diskette is inserted in a drive, the round vinyl disk
inside the plastic cover is rotated. Notice.the round hole in the middle
of the diskette. This allows the disk drive to hold the diskette and to
spin the vinyl disk inside the cover. Also, notice the oval shaped
opening on the surface of the diskette’s plastic cover. This opening
provides an area where the disk drive’s read/ write head can read data
from or write data to the disk surface.

a. Temporary label

b. Write protect notch
(some diskettes do not
have this notch)

c. Index hole

d. Diskette envelope

e. Exposed read/write
head slot

f. Diskette in protective
cover

. Permanent label

Figure 3.3. 5Y inch floppy diskette



62 1BM PCjr for Students

Disk Operating System

The disk operating system (DOS) is a group of programs which
allow the user to manipulate information between the diskette drives,
memory, and the video screen. The disk operating system used on the
PCjris DOS 2.1. This was developed by Microsoft Corporation and
is a revised version of the earlier versions of DOS used on the IBM
PC and PC XT.

Tracks and Sectors

The disk operating system partitions the diskette surface into
imaginary areas known as tracks and sectors. By dividing the disk
surface in this manner, DOS can identify specific locations on the
diskette surface. This allows data to be located more easily.

Tracks may be visualized as a series of concentric bands on the
diskette surface. This is illustrated in figure 3.4. DOS 2.1 divides the
diskette surface into 40 individual tracks. Each of these tracks can be
accessed by DOS.

To further reduce the amount of time required to search for a
particular data item, DOS divides each track into sectors. Each track
is divided into 9 sectors. Each individual sector holds 512 bytes of
data. When DOS is given a track and sector number, it will only have
to search 512 bytes to find a particular data item.

The process for locating a specific track on the diskette surface is
fairly simple. The drive moves the read/write head to the specified
track. Locating a particular sector is more difficult. The PCjr uses the
soft sector method to locate a particular sector on the diskette
surface.

Anindex hole is used in the soft sector method to locate individ-
ualsectors. The index hole is located just to the right of the large hole
in the center of the diskette. The index hole is depicted in figure 3.3.
As shown in figure 3.3, the index hole is only located on the diskette’s
plastic cover. However, another index hole is located on the actual
diskette surface inside the plastic cover.



CENTER HOLE




64 1BM PCjr for Students

Diskette Capacity

The amount of data which can be stored on a diskette is affected
by two storage characteristics -- density and the number of sides to
which data can be written. Density refers to the recording format
used on the diskette. Typical recording formats are single density and
double density. Single density diskettes have the capacity to store
approximately 90K of data per side, while double density diskettes
have a capacity of about 180K per side.

Floppy diskettes can be designed so that data can be written to
only one side or to both sides. Diskettes which are designed to be
written to one side are known as single-sided diskettes. Those which
are designed to be written to both sides are referred to as double-sided
diskettes. The PCjr uses double sided, double density diskettes
(DS,DD) with a capacity of 360K.

PCjr Disk Drive Operation

Operation of the PCjrdisk drive is simple. When a diskette is not
inserted into the disk drive, the disk slot handle should be in the
horizontal or open position. This is depicted in figure 3.5.

When a diskette is being inserted into the PCjr’s disk drive, the
diskette label should be facing up. The side of the diskette containing
the oval shaped opening should be inserted into the drive as shown in
figure 3.6. Once the diskette has been inserted into the drive, the
diskette slot handle should be rotated to the vertical or closed posi-
tion. A diskette can be removed from the drive by merely reversing
this procedure.

The PCjr disk drive has a small red light on its front cover.
Whenever data is being read from or written to the disk surface, this
lamp will light. The diskette should not be removed from the drive
while this lamp is on.

If the disk drive isn’t operating properly, check to see if the mon-
itor is placed on top of the computer. The disk drive may not operate
properly under these conditions.






66 1BM PCjr for Students

Printers

Printers used with personal computers are generally classified as
being either dot matrix or daisy wheel. A dot matrix printer outputsa
character as a group of dots. Anexpanded view of a character created
by a dot matrix printer is shown in figure 3.7.

Figure 3.7. Character created by dot matrix printer

Daisy wheel printers output characters that are similar in
appearance to those output by a typewriter. An example of dot
matrix printer output and daisy wheel printer output is given in figure
3-8.

The daisy wheel printer uses a round printing element known as
a daisy wheel to output characters. A daisy wheel is depicted in figure
3.9. Notice that the character impressions have been formed on the
outside of the daisy wheel. During printer operation, the wheel will
spin to the correct position each time a character is to be printed.
Daisy wheel printers generally are more expensive and operate more
slowly than dot matrix printers. However, as evidenced by figure 3.8,
the quality of characters output by daisy wheel printers is higher than
those output by dot matrix printers.


















72 1BM PCijr for Students

Keyboard cable Keyboard cable
to keyboard to system unit

Figure 3.14. Keyboard cable connection

PCjr Memory and Display Expansion

The PCjr’s Memory and Display Expansion device is standard
on the IBM PCjr enhanced model and optional on the entry model.
This device is pictured in figure 3.15. This device expands the PCjr’s
RAM memory capacity from 64K to 128K. This allows the PCjr to
display 80 characters per line of video output rather than 40. The
Memory and Display Expansion device is installed on the PCjr’s
system board.



Peripherals and Add-on Devices 73

[oXeXe]

Figure 3.15. PCjr Memory and Display Expansion

PCijr Internal Modem

A modem allows communications between one computer and
another located some distance away via telephone lines. A modem
translates the sending computer’s data into tones which can be sent
over telephone lines. A modem also decodes tones received from the
sending computer into data which can be accepted by the PCjr. The
Internal Modem used with the PCjr is installed in the system unit.
This device is pictured in figure 3.16.















78 1BM PCijr for Students

3. The following part(s) of a diskette and disk drive are essential in
the process of locating an individual sector:

A. Index hole

B. Read/write head

C. Read/write head slot
D. None of the above
E. All of the above

4. The PCjr uses the following type of diskette:
Single sided; single density
Single sided; double density
Double sided; single density
Double sided; double density
None of the above

monwy>

5. In serial communications, the following number of bits are sent
simultaneously to the receiving device:

Al
B. 4
C. 8
D. 2
E.

None of the above

Essay

1. Describe parallel and serial communications.
2. Define sequential and random access.

3. Describe the process whereby DOS divides a diskette’s surface so
that data can be more easily accessed.



- Section 2



In the first section, you were introduced to the subject of com-
puting in general. You gained a general understanding of how a
computer functions, and you were introduced to a number of
terms used in computing. You were also introduced to the IBM PCjr as
well as its peripherals and add-on devices. The first section should have
provided you with the basic background you will need to continue your
journey towards computer literacy.

Our next section is entitled, “DISCOVERY”. In this section, you
will begin learning about computers by actually operating and pro-
gramming your PCjr. We will attempt to accomplish the following goals
in this section:

O Gain an understanding of the background of the
Microsoft BASIC language

O Learn how to start-up the PCjr

O Learn how to enter and run a simple BASIC
program

O Gain an understanding of how the PCjr processes a
simple program

O Learn how to list a BASIC program on the video
display

O Learn how to generate program lines automatically

O Learn how to renumber the lines in a BASIC
program

O Learn how to edit a BASIC program
81






Introduction to BASIC 83

Introduction

In this lesson, we will provide background information on the
BASIC programming language. BASIC is a simple, easy-to-use pro-
gramming language that is ideal for the first-time programmer. Once
you have learned how to program in BASIC, you will find it relatively
easyto learn how to program in other languages suchas FORTRAN,
PASCAL, and COBOL.

Programming Languages
High Level, Machine, and Assembly

A program can be defined as a set of instructions arranged in a
specific sequence which directs the operation of a digital computer. A
language can be defined as a set of words or symbols that can be used
for communicating. A programming language can be defined as a set
of words or symbols that can be used to communicate instructions to
adigital computer. The BASIC programming language is included as
a standard feature with the PCjr.

BASIC is a high level programming language. A high level
language does not require that the programmer have an understand-
ing of the internal workings of the computer. With a machine or an
assembly language, the programmer must have an in-depth under-
standing of the computer and its microprocessor in order to write
programs.

Numbers are used in machine language programs to send
instructions to the microprocessor. For example, the hexadecimal
number EA would instruct the PCjr to jump to another memory
location and resume execution at that location. Mnemonics are used
in assembly language programs to communicate instructions. The
mnemonic JMP is used in Intel 8088 assembly language to instruct
the PCjr to jump to another memory location and resume execution
there.

With a high level language such as BASIC, commands are
generally specified in English words that can be associated with the
operation to be performed. For example, the BASIC command



84 1BM PCijr for Students

PRINT instructs the computer to display information. It is generally
much easier to write a program in a high level language than in a
machine or assembly language.

History of BASIC

The BASIC language was originally developed in the early
1960°s by John G. Kemeny and Thomas E. Kurtz of Dartmouth
College. Over the years, a number of different versions of the BASIC
language have been developed. The version of BASIC used on the
IBM PCjr is Microsoft BASIC, which is marketed by Microsoft
Corporation. Microsoft BASIC is used on a number of different
personal computers.

Microsoft BASIC was originally developed in 1975 for the
MITS Altair computer by William Gates and Paul Allen. Gates and
Allen eventually formed their own firm, Microsoft Corporation, to
market their version of BASIC.

Microsoft BASIC became the industry standard in the personal
computer field, and Microsoft Corporation went on to develop
and/or market a number of other personal computer related items,
including the disk operating system used on the IBM PC;jr.

Compiled vs. Interpreted Languages

Computer languages are often distinguished as being either
compiled or interpreted languages. Microsoft BASIC is an inter-
preted language.

A compiled language program consists of the source code and
the compiled code. The source code consists of the program state-
ments in their original form. For example, the following is a line of
source code from a program written in the CBASIC compiled
language:

100 INPUT “ENTER TODAY'S DATE:“;DATE.1



Introduction to BASIC 85

The source code is processed by a program known as a compiler
into the compiled code. The compiled code is very similar to the
machine language used by the microprocessor. The compiled code is
the code actually used when a compiled program is run. A program
known as a run-time monitor is used to run the compiled program.

An interpreted language consists of only the source code. The
source code is translated line-by-line directly into machine language
instructions. One advantage of interpreted languages over compiled
languages is that interpreted language programs are more easily
developed. When working with interpreted languages, a programmer
need only write a program, enter it, run it, and alter it at his leisure.
When working with a compiled language, the source code must be
recompiled every time it is edited. This can be frustrating during the
program debugging process.

One advantage of compiled languages over interpreted lan-
guages is that execution time is much faster. The compiled code is
much closer to the machine language than the source code. Since
interpretation is not necessary, execution of compiled code is much
faster.

Cassette and Cartridge BASIC

The Microsoft BASIC interpreter is supplied with the PCjr as
two different parts. The Cassette BASIC portion of the interpreter is
contained in 32K of ROM on the PCjr’s system board. Cassette
BASIC includes the majority of Microsoft BASIC’s many features.
Although Cassette BASIC allows for the storage of data on a cassette
player/recorder, it cannot be used when data is being stored on
diskette.

Cartridge BASIC is contained on a PCjr cartridge. When this
cartridge is inserted into either of the PCjr’'s two cartridge slots,
Cartridge BASIC will be active in addition to Cassette BASIC.
Cartridge BASIC allows data to be stored on diskette as well as
cassette. Cartridge BASIC also includes a number of BASIC com-
mands not available in Cassette BASIC. These include:



86 I1BM PCjr for Students

CIRCLE WINDOW

PUT PALETTE

GET PALETTE USING
PAINT PLAY

DRAW TERM

VIEW

Cartridge BASIC also allows for additional graphics screen
modes beyond those found in Cassette BASIC.

Types of Software

At the beginning of this chapter, we defined a program as a set of
instructions which direct the computer’s operation. The term soft-
ware is almost synonymous with programs. Software can be defined
as the various programs that control the computer’s operation. We
have already briefly examined two examples of PCjr software, the
Microsoft BASIC interpreter and the DOS disk operating system.

Software can be divided among three general classifications:

O Operating system software
O Language software
O Applications software

The PCjr’s DOS is an example of operating system software,
and Microsoft BASIC is an example of language software. Applica-
tions software can be defined as programs designed to accomplish a
specific task that is of some value to the user. Examples of applica-
tions programs include games, word processing programs, spread-
sheets, and database systems.

Generally, applications programs are stored on cassette or
diskette and are transferred into RAM, where the program is availa-
ble to the computer. Applications programs can also be stored in a
permanent form on a ROM cartridge. This ROM cartridge can be
plugged into one of the PCjr’s cartridge slots.



Introduction to BASIC 87

A large variety of applications software is available for use with
the PCjr. These include programs which can be used in the home such
as Home Budget; programs which can be used at work such as
Multiplan and Visicalc; programs with educational applications such
as Monster Math and Turtle Power; and finally, games such as
Adventure.






Introduction to BASIC 89

2. Numbers are used to communicate instructions in the following:

A. High level languages
B. Assembly languages
C. Machine languages
D. None of the above
E. All of the above

3. Microsoft BASIC is a:

A. Compiled language
B. Operating system

C. Applications program
D. Interpreted language
E. None of the above

4. One advantage of an interpreted language over a compiled lan-

guage is:
A. Programs can be written more easily
B. Programscan be more easily debugged
C. The compilation step is not necessary
D. None of the above
E. All of the above
Essay

1. Define the terms program, language, and programming language.

2. Define the terms machine language, assembly language, and high
level language.

3. What is the difference between a compiled and an interpreted
language?

4. What are the relative advantages and disadvantages of compiled
and interpreted languages?






Getting Started with BASIC 91

Introduction

In this lesson, we will begin learning about computing via the
hands-on approach. By hands-on, we mean that we will be actually
using the computer while we are learning about it. We will learn how
to start-up the PCjr as well as how to use its keyboard to input
information. By the time you have progressed to the end of this
lesson, you will have learned how to input a simple command to
which the PCjr will respond.

PCjr System Start-Up Review

Before actually starting up the PCjr, let’s make sure that the
system is set up properly. A typical PCjr system set-up is depicted in
figures 5.1 and 5.2.

Notice that a minimum of four components are required for a
functional system. These include:

System unit

Keyboard

Video display

Power supply/transformer

oooao

Note that a physical connection is not required between the
keyboard and the system unit. The keyboard can communicate with
the system unit using the infrared link. From figure 5.2, we can see
that a physical link is required between the video display and the
system unit. The power supply/transformer also plugs into the rear
of the system unit.












Getting Started with BASIC 95

/ The IBM PC jr Basic N\

Version C1.20

Copyright IBM Corp. 1981, 1982, 1983
62940 Bytes free

Ok

K 1 2|RUN—] 3 lLOAD"l 4|SAVE"] 5[CONT-] )

Cassette BASIC is known as “Version C”. If the BASIC car-
tridge had been inserted, “Version J” would have replaced “Version
C” at the beginning of line two. Cartridge BASIC is known as
“Version J”.

PCjr Start-Up with the Diskette Drive

If your PCjrdoes not have a disk drive, then you can ignore this
section. Use the instructions in the preceding section to start-up your
PCjr. If your PCjr does have a diskette drive, then use the steps
outlined in this section for start-up.

Cartridge BASIC is required for disk drive usage. Therefore, the
Cartridge BASIC cartridge should be inserted in one of the PCjr’s
cartridge slots if the diskette drive start-up procedure is to be under-
taken. If you do not have Cartridge BASIC, use the start-up proce-
dure for a PCjr without a diskette drive.

The DOS diskette is also required. This diskette is supplied with
PCjr’s that include a diskette drive.

The steps involved in starting up the PCjr with a diskette drive
are given below:

Step 1. If the PCjr is not already turned off, do so now.

Step 2. The video display should be turned on. The volume






Getting Started with BASIC 97

Current date is Tues 1-01-1980
Enter new date:

At this point, you can either enter a date using the
keyboard, or you can press the Enter key. The date
entered is known as the system date. The system date
is used by the PCjr’s DOS in a number of different file
handling operations. If the Enter key is pressed, the
system date will default to the date displayed on the
screen, January 1, 1980. If a new date is entered using
the keyboard, that date will be used as the system
date.

A certain format must be used when entering the
system date. If this format is not used, the following
error message will be displayed:

Invalid date
This entry format is as follows:

mm--dd--yy
or
mm| dd|yy

mm indicates the month. It must consist of one or two
integers in the range | to 12. dd indicates the day. It
must be one or two integers in the range from 1 to 31.
yyindicates the year. It must be two digits in the range
from 80 to 99.

The following are examples of valid and invalid
system date entries:

Valid System Date Entries 01/04/84 5-1-84
3/21/85 7-30-82
Invalid System Date Entries 2.12.84 6/84

January 12, 1982 2-31-84



9 .
8 1BM PCijr for Students

o Use this Book --
Entry F ormats

standard’\zed format to indicate
tered by the user into the PCjr

using its keyboar entry which must pe made.
but for whichanu ifferent options arc available will be
disp\ayed in italics

try will hope-

be made. For
v indi-

his op\'\ona\ en

The abbrev'\a\ion
fully serve as an indicator

example, mm indicates M

cates year.

onth; dd indicates day: and ¥

Step 6
: Once the
screen di SyStem_date has been en
isplay will appear: tered, the following

Current date i
te is Ti
Enter new date: ues 1-01-1980

Current time i
e is 0:00:
Enter new time: 00:34.49




Getting Started with BASIC 99

Step 7.

The PCjr is requesting entry of the system time.
Again, you can either enter a date via the keyboard,
or press the Enter key. Pressing the Enter key causes
the system time to default to that displayed on the
screen.

The following entry format must be observed if the
system time is entered using the keyboard:

hh:mm:ss.xx

hh indicates the hour of the day. One or two digits
should be used in the range 0 to 23. Hours in the PM
will be assigned integers greater than 12. For instance,
3 PM would be assigned the integer 15. mm indicates
minutes. This can be entered as one or two digits in
the range 0 to 59. ss indicates seconds. This can be
entered as one or two digits in the range 0 to 59. xx
indicates hundredths of seconds. This can be entered
as one or two digits in the range 0 to 99. The following
entries are optional:

mm AR XX

The following are all valid entries for the system
time: :

1 14:12:7
23:01 8:1:1.9

After the system time has been entered, the screen
display will appear as follows:

/ Current date is Tues 1-01-1980 \

Enter new date:
Current time is 0:00:34.49
Enter new time:

The IBM Personal Computer DOS
Version 2.10 (C) Copyright 1981
1982, 1983

—
\ A>_‘—Cur50r j

DOS prompt




100 18M PCijr for Students

At this point, the PCjr is ready to accept DOS
commands. However, it is not ready to accept
BASIC commands. A > is known as the DOS
prompt. These characters serve as an indication
that a DOS command can be entered.

Notice the flashing symbol to the right of the
DOS prompt. This symbol is known as the cursor.
The cursor indicates that the computer is ready to
accept keyboard entries.

Since we are interested in using Microsoft
BASIC, our next step will be to activate the Micro-
soft BASIC interpreter. We can do so by entering
the following characters:

BASIC

BASIC can be entered either as upper or lower
case letters. The symbol ! will be used in this book
asanindication that the Enter key is to be pressed.

If you make a typing error, the PCjr will proba-
bly display a message as shown below:

4 N

Current date is Tues 1-01-1980
Enter new date:

Current time is 0:00:34.49
Enter new time:

The IBM Personal Computer DOS
Version 2.10 (C) Copyright 1981,
1982, 1983

A >VASIC

kBad command or filename
A>__ /

If youdo make a typing mistake, don’t worry. Just
reenter the correct characters.

Once the correct entry has been made, the screen
will go blank for a second or two, and the screen
will then appear as follows:




Getting Started with Basic 101

/ The IBM PC jr Basic \

Version J1.00

Copyright IBM Corp. 1981, 1982, 1983
59694 Bytes free

Ok

k 1{LIST | 2|RUN-- | 3|LOAD" | 4|SAVE” | 5|CONT-| /

Notice the Ok. This is the BASIC prompt. Ok
indicates that a BASIC command can be entered.

Adjusting the Screen

Upon start-up, you may find it necessary to adjust the PCjr’s
screen. Thisisa relatively simple matter. First, hold down the Alt key,
which islocated to the immediate left of the space bar. While holding
the Alt key, also hold the Ctrl key. This key is located along the
keyboard’s left-hand side. While holding both of these keys, press the
— key located on the keyboard’s right-hand side.

Notice thatevery time the — key is pressed, the screen display
moves to the right. If the — key is pressed with Ctrland Alt, the screen
display will move to the left.

Warm Boot

The procedure for starting up a computer when it is powered off
is known as a cold boot (or start). The procedure for restarting a
computer when its power is on is known as a warm boot.

You will often encounter situations where an incorrect entry or
error condition will make it easier to just restart BASIC and erase the
contents in memory, rather than to attempt to correct the situation.
Such situations can be corrected by performing a warm boot.



102 1BM PCijr for Students

To perform a warm boot, press the Alt and Ctrl keys simultane-
ously. While you are holding these keys down, press the Del key, and
then release all three keys. The computer will react much as if it had
been started with the power off.

Whenever you perform a warm boot, remember that any exist-
ing data in the PCjr’s memory will be erased.

PCjr Keyboard

The IBM PCjr’s keyboard is shown in figure 5.3. Most of its keys
correspond to those found on a standard typewriter. Notice that
many of the keys are marked with two characters, one of which is in
white and the other in black, green, or blue.

When one character is displayed in white and the other character
in black, the character displayed in white will be generated when that
key is pressed. The character in black can be accessed by holding
down the Shift key and then pressing the key with the desired
character.

Even though the keys corresponding to the letters of the alphabet
are indicated on the keyboard with only one character, they also can
actually indicate two. When a letter key is pressed without the Shift
key being depressed, the lowercase letter will be generated. When
Shift is pressed, the uppercase letter will be generated.

For example, press the A key. The lowercase “a” will be dis-
played on the screen. Now, press the Shift key and hold it while
pressing the A key. Notice that the uppercase “A” will be displayed.

Obviously, it would be difficult to enter a large number of
uppercase letters using the Shift key, as one hand would be constantly
busy holding the Shift key. This problem can be solved by using the
PCjr’s CapsLock key.






104 1BM PCijr for Students

Experiment by pressing and then releasing this key. Then, press
the A key without holding down the Shift key. Notice that an upper-
case “A” was generated. Uppercase letters will continue to be gener-
ated when the keyboard is in the unshift position until the CapsLock
key is pressed again. Pressing CapsLock a second time will turn off
this feature.

Fn Key

You have probably already noticed that a number of the keys on
the PCjrkeyboard are designed with one or more characters outlined
in green. These are depicted in figure 5.4. They are known as the
function keys. The Fn or function key puts the PCjr in the function
mode when it is pressed and then released. The other keys denoted
with green characters have been assigned a function.

When the PCjr is pressed, the assigned function will be per-
formed. For example, the Fn PrtSc key combination will cause all
data displayed on the screen to be sent to the printer.

When the Fn key is used with the function keys at the top of the
PCjr keyboard (F1 - F10),a BASIC command or reserved word will °
be output. For instance, pressing the Fn and F1 keys will cause
BASIC’s LIST command to be generated. If the operator subse-
quently presses the Enter key, that command will be performed.
Table 5.1 contains a list of the reserved words that can be generated
by pressing F1 to F10 in the function mode.






106 1BM PCjr for Students

Table 5.1 Fn and Alt key combinations

Hold Down Press Result
Alt A AUTO
Alt B BSAVE
Alt C COLOR
Alt D DELETE
Alt E ELSE
Alt F FOR
Alt G GOTO
Alt H HEXS$
Alt | INPUT
Alt K KEY
Alt L LOCATE
Alt M MOTOR
Alt N NEXT
Alt (0) OPEN
Alt P PRINT
Alt R RUN
Alt S SCREEN
Alt T THEN
Alt U USING
Alt \Y VAL
Alt w WIDTH
Alt X XOR
Fn Fl LIST
Fn F2 RUN [Ret]
Fn F3 LOAD”
Fn F4 SAVE”
Fn F5 CONT [Ret]
Fn F6 "LPTI:” [Ret]
Fn F7 TRON [Ret]
Fn F8 TROFF [Ret]
Fn F9 KEY
Fn F10 SCREEN 0,0,0 [Ret]




Getting Started with Basic 107

Fn Pause Temporarily halts computer operation
until a key (other than Shift) is
pressed

Fn Echo When pressed once, causes text sent to

the screen to be sent to the printer as
well. When pressed again, text will
only be sent to the screen

Fn PrtSc Results in data displayed on screen
being output to the printer
Fn Break Stops execution of a BASIC program
Fn ScLock + Halts program execution indicating
Break line number where execution stops
Fn Home Positions cursor to screen’s upper

right-hand corner

Table 5.1. (cont.) Fn and Alt key combinations

Ctrl Key

The Control key, located at the left-hand side of the PCjr’s
keyboard, will place the keyboard in the control mode when it is
pressed. In the control mode, certain keys can be pressed to perform
designated operations. We have already seen how the Control-Alt-
Del key combination will generate a system reset. The Control key
can be used in combination with other PCjr keys to edit program
lines. This will be discussed in Lesson 9.

Editing Keys

A number of keys on the PCjrkeyboard are used to edit program
lines. These are depicted in figure 5.5. The editing keys will be
discussed in Lesson 9.






-
efting Started with BasiC 109

How to Use this Book --

Keyboard Entries

his book, you will notice words and
of the page with a

the left-hand side
e to be entered on

hese characters ar

ments and illustrations to
the right of the li {ll happen once that
entry has been made.

The IBM PC jr BASIC

éefSion J1.00
opyright IBM C
orp.
59694 Bytes free p. 1981, 1982, 1983
Ok
Nancy
Syntax error

-
/

BEEP - T
he PCjr’
Cjr’s speaker sounded with a b
eep.



110 1BM PCijr for Students

SCREEN 1 - The display screen momentarily went blank,
and then the following screen display appeared:

T B

k1 LIST 2 RUN— 3 LOAD"” 4 SAVE" 5 CONT- J

Notice that the cursor appears as a solid block
rather than a flashing line.

COLOR 2 - The screen’s color changed to green.

SCREEN 0 - The normal screen display reappears.

PRINT “Nancy” The display screen will appear as follows:

Ok

PRINT “Nancy”
Nancy

Ok

Notice that our entry did not generate an error
message. Instead, the word “Nancy” was dis-
played on the screen.



Getting Started with BASIC 111

Conclusion

At this point, you should have a good understanding of the
PCjr’s start-up procedure and its keyboard. In the next lesson, you
will actually enter and run your first BASIC program.






Getting Started with BASIC 113

2. The following system time entry (entries) are valid:

7

17/34/48.12
8:11:17:42

All of the above
None of the above

Mmoo >

3. The flashing cursor indicates that the PCjr is ready to:
A. Display an error message
B. Send information to the diskette
C. Perform a warm boot
D. Accept a keyboard entry
E. None of the above

4. The following key is used to send information from the PCjr’s
keyboard to the computer:

A. Fnkey

B. Ctrl key

C. Alt key

D. Shift key

E. None of the above

5. The following component(s) is essential for practical PCjr usage:

A. Keyboard

B. Diskette drive

C. Cassette recorder

D. Cartridge BASIC

E. All of the above
Computer Exercises

1. Start-up the PCjr without using the diskette drive.
2. Start-up the Per;using the diskette drive.

3. Perform a warm boot.






Your First Program 115

Introduction

In this lesson, we will actually write and execute our first BASIC
program. We will then learn how to use BASIC commands to clear
the screen, list a program stored in memory to the screen, and erase a
program from memory. Before learning these BASIC programming
features, we will discuss the difference between the immediate and
program modes in BASIC.

Immediate and Program Modes

In the immediate mode, a BASIC command entered using the
PCjr keyboard will be executed when the Enter key is pressed. The
followingisanexample of a BASIC command entry in the immediate
mode:

PRINT “Programming is fun” </ This entry will result in the follow
ing display:

Ok

PRINT “Programming is fun”
Programming is fun

Ok

In the program mode, when program lines are entered, they are
not executed but are instead stored for later execution. The stored
program lines will be executed when BASIC’s RUN command is
entered in the immediate mode.



116 1BM PCjr for Students

BASIC needs some way of identifying a program line entry as
either being in the immediate mode or in the program mode. In the
program mode, each separate line must be prefixed with a line
number. When a BASIC command is entered with a line number
preceding it, that line is known as a program line.

Program lines are ended and sent to the PCjr’s memory when the
Enter key is pressed. Examples of program lines are given below:

Ok
10 PRINT “Programming is fun”
20 PRINT “with the PCjr”

The maximum number of characters that can be included in a
program line is 255 including the character sent to memory when the
Enter key is pressed. Since the PCjrcan only include 40 characters on
each display line, a program line can extend over 7 different display
lines. This is shown in the following example:

Ok

10 PRINT “The BASIC programming language
was developed in the early 1960’s by Pro
fessor’'s John G. Kemeny and Thomas E Ku
rtz of Dartmouth College. Over the years

a number of different versions of the BA
SIC language have been developed. The ver
sion of BASIC




Your First Program 117

BASIC executes program lines sequentially based upon their
line numbers. In other words, if a program consisted of the following
program lines,

5 PRINT "New York 7"
7 PRINT "St Louis 5"
9 PRINT "Pittsburgh 7"
11 PRINT "Philadelphia 4"
13 PRINT "Pittsburgh is now in first place”

line S would be executed first, followed by lines 7, 9, 11, and 13,
respectively.

Writing and Entering a Program

Now that we have learned some of the basic features of program.
lines and line numbers, we are ready to write our first BASIC pro-
gram. Our first program will be a simple one. The purpose of the
program will be to display the baseball standings in the National
League’s Eastern Division.

This program will use three BASIC commands, PRINT, REM,
and END. The PRINT command is used to send information to the
display screen. The information to be sent to the screen should be
enclosed in quotation marks.

The REM statement is used to include the programmer’s
remarks in the program listing. Generally, these remarks are included
to either describe the program’s operation or its purpose.

The END statement is used to end program execution. Although
END can be placed anywhere in a program, it is generally found on
the final program line. Although a BASIC program will automati-
cally stop execution when it finishes executing the final program line,
it is still a good programming practice to include an END statement
at the end of a BASIC program.



118 1BM PCijr for Students

Now that we have some background on the BASIC commands
that we’ll be using, let’s design our program to display the baseball
standings. Let’s assume that we want the standings displayed in the
following format:

National League Eastern Division

Team Wins Losses
Pittsburgh 42 28
Montreal 41 29
Philadelphia 37 33
St. Louis 34 36
Chicago 29 41
New York 28 42

We already know that we can use the PRINT statement to
display information on the screen. One of our obvious problemsis to
design our PRINT statements so that the information is displayed on
the screen in a manner that is pleasant to read. This requires that we
include the proper number of spaces in certain positions within each
PRINT statement.

A grid such as that shown in figure 6.1 would help usaccomplish
this task. The first line to be displayed,

National League Eastern Division

consists of 32 characters. We’ll call it the title line. Since each display
line allows 40 characters, by including 4 blank characters on one side
of our text and 3 on the other in the PRINT statement, we could
center it on the screen. This could be accomplished with the following
program line:

4 blank spaces 3 blank spaces

l

10 PRINT " National League Eastern Division ”



Your First Program 119

Notice that only 39 characters were enclosed within quotation
marks even though the PCjr’s video display allows for a 40 character
display. The reason for this is that the last character output by a
PRINT statement is the carriage return/line feed. This character is
invisible and can’t actually be seen on the video display. However, it
does occupy one position in the PRINT statement output.

The carriage return/line feed character tells the PCjr to begin
displaying new data at the far left of the next screen line. Notice that
when the PRINT statement is executed by itself, even though it does
not display actual characters on the screen, it still outputs the carriage
return/ line feed character. This causes subsequent data to be output
on the left-hand side of the next display line.

Therefore, if we issued a PRINT statement with an argument of
40 characters as follows,

4 blank spaces 4 blank spaces

"

PRINT ” ~ National League Eastern Division

~ >4

v
40 characters

the carriage return/ line feed character would actually be executed on
the next display line.

Ok

PRINT “ National League Eastern Di
vision "

National League Eastern Division

(m] 9_1_
invisible carriage return/

T line feed

' flashing cursor




120 1BM PCjr for Students

Notice that two lines were skipped on the display screen.

If we issued the PRINT statement with 39 characters rather than
40 characters, the carriage return/line feed will be output in the same
line as the other characters, and only one line will be skipped. For
instance, if the following immediate mode program line was input,

4 blank spaces 3 blank spaces

"

PRINT ” = National League Eastern Division

- -4
R

39 characters

our output would appear as follows:

Ok

PRINT ” National League Eastern Di
vision
National League Eastern Division

Lﬂa.\'hing cursor

Suppose that we wanted a blank line to appear after the title line.
As mentioned previously, if the PRINT statement is executed by
itself, a blank line will be output. Therefore, our second line could be
as follows:

20 PRINT



Your First Program 121

3456 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Nija [t |i |[o |n |a |! Lle|a]|g |ule Ela|s|t]|e|r|n Dlifv]i|s]i]o|n
Tlela|m Wli|n]s Llo|s|s |e|s
Pli|t|t]|s|b|u]r g |h 42 2 (8
Mo [n [t |r |e [a [! 41 219
Pihli |l Ja|dle |l |p|h|i |a 3|7 33
S|t Lfoulifs 34 316
Cl|hl]i|c|a]g |o 219 4 1
N le |w Y [o [r [k 2108 4 |2

Figure 6.1 PRINT statement grid

Notice that we are numbering our lines in increments of 10. The
use of consecutive line numbers (1,2,3,4,5,6,7.etc.) is generally not a
good idea ina BASIC program. Suppose that after writing a program
using consecutive line numbers,

21 PRINT "Pittsburgh”
22 PRINT "Montreal”
23 PRINT "St. Louis”
24 PRINT "Chicago”
25 PRINT "New York"

and we found that we needed to insert an additional line:
PRINT "Philadelphia”

If consecutive line numbers were used, a number of program
lines would have to be renumbered to insert the new line.




122 1BM PCijr for Students

21

22

23

These lines would 24
have to be 25
renumbered 26

By using non-consecutive line numbers, new program lines can

be easily inserted.

20
30
35
40
50
60

new program line,
inserted here

PRINT “Pittsburgh”
PRINT “Montreal”
PRINT "Philadelphia”
PRINT "St. Louis"
PRINT "Chicago”
PRINT "New York"

PRINT "Pittsburgh”
PRINT "Montreal”
PRINT “Philadelphia”
PRINT "St. Louis"
PRINT “Chicago”
PRINT "New York"

Continuing with our program, our next task is to display the
following line:
Wins

Team Losses

We’ll call this line the headings line. Using the grid in figure 6.1, we
could program this line as follows:

2 blank spaces 17 blank spaces 4 blank spaces

d l

d
30 PRINT"” Team Wins

Losses "

2 blank spaces

Our next step would be to write program lines to display each of
the six teams with their respective number of wins and losses. Again,
using the grid in figure 6.1, we could program these lines as follows:



Your First Program 123

1 blank space 13 blank spaces 6 blank spaces
i, d d
40 PRINT " Pittsburgh 42
4 blank spa('es___m "
50 PRINT " Montreal 41
29 "
60 PRINT " Philadelphia 37
33 "
70 PRINT " St. Louis 34
36 "
80 PRINT " Chicago 29
41 "
90 PRINT ” New York 28
42 "

Now, we are ready to include the END statement to indicate that
the program has finished.

100 END

At this point, it might be helpful to include a REM statement in
this program to describe its purpose. Let’s include the following:

5 REM"This programis designed todispl
ay the standings of the National League’
s Eastern Division”

Our program would now appear as shown in figure 6.2.

Congratulations! If you have been following along, you have
written and entered your first BASIC program. Our next step will be
to run that program.



124 1BM PCijr for Students

YTy R R RSN ESEESEEEGER 88 DRRRRRRRRS
B R

REM "This program is designed to displ
ay the standings of the National League’
s Eastern Division”
PRINT ”  'National League Eastern Di
vision

20 PRINT

30 PRINT " Team Wins
Losses

40 PRINT " Pittsburgh 42
28

50 PRINT " Montreal 41
29

60 PRINT " Philadelphia 37
33

70 PRINT " St. Louis 34
36

80 PRINT " Chicago 29
141

90 PRINT " New York 28
42

100 END

Ok

:Figure 6.2. NLEast BASIC Program /

Running a BASIC Program

Running a BASIC program is fairly simple. BASIC’s RUN
command is used to begin execution of the program stored in the
PCjr's memory. When the RUN command is entered and the Enter
key pressed, the program lines stored in the PCjr's memory will be
executed in order, beginning with the lowest line number.

Let’s execute the RUN command for the program we just
entered. We’'ll begin referring to this program as "NLEast”. When we
execute RUN, the PCjr’s screen should resemble that shown in figure
6.3.



Your First Program 125

PRINT " St. Louis
36 "

PRINT " Chicago
41 "

PRINT ” New York
42 "

END

National League Eastern Division

Team Wins Losses
Pittsburgh 42 28
Montreal 41 29
Philadelphia 37 33
St. Louis 34 36
Chicago 29 41
New York 28 42

Figure 6.3. NLEast executed with RUN

Clearing the Screen

Now that your screen is filled with text, you might want to erase
it. BASIC’s CLS statement is used to clear the screen. Enter CLS via
the PCjr's keyboard and press the Enter key. Your screen is now
blank except for the Ok prompt.



126 1BM PCijr for Students

Listing the Program

Although we erased our NLEast program from the screen when
we executed the CLS command in the immediate mode, we did not
erase the program from the PCjr's memory. BASIC’s LIST com-
mand is used to display the program stored in memory on the screen.
Enter LIST on the PCjr’s keyboard and press the Enter key. NLEast
will now be displayed on the screen.

Erasing the Program

You've covered quite a bit so far in this lesson, and you are
probably ready for a rest. Before we stop, let’s cover one more BASIC
command, NEW. The NEW command erases the BASIC pro-
gram stored in the PCjr's memory.

Let’s test this by entering NEW in the immediate mode and
pressing the Enter key. From the screen display, we have no clue
whether NLEast has been erased from memory. By attempting to list
NLEast to the screen, we can determine whether or not it had been
erased from memory. Enter LIST and press the Enter key. Notice
that NLEast was not listed to the screen. This is due to the fact that it
had been erased when NEW was executed. :






128 1BM PCjr for Students

2. The following BASIC command is used to clear the display screen:

A. PRINT

B. LIST

C. DELETE

D. CLS

E. None of the above

3. It is necessary to enter program lines so that:

A. They are entered in the order in
which they are to be executed.

B. They have been assigned consecutive

line numbers.

They will execute as they are entered.

None of the above

All of the above

mon

4. Which of the following BASIC statements is generally used to
describe a program’s purpose or operation?

A. PRINT

B. LET

C. REM

D. CLS

E. None of the above
Computer Exercises

1. Write a program to display the following information:

Test Scores

Name Percentage Grade
Adams, William 89 B
Croghan, John 78 C+
Donner, Mary 94 A-
Gunderson, George 67 D
Matthews, Chris 98 A
Nagle, Reid 61 F
Vorhis, William 97 A



Your First Program 129

“Test Scores” should be centered in the middle of the display
line. The first column title, “Name™, should be centered within the
space allotted for the display of the various names. The percentages
and grades should be centered underneath their column headings.






How the PCjr Works 131

Introduction

In the last lesson, we learned how to enter and run a BASIC
program. You may already have wondered what went on inside the
PCjr while this program was being entered and run. In this lesson, we
will explain how the PCjr executes a BASIC program as well as
BASIC’s LIST, CLS, and NEW commands.

We will not attempt to explain how the PCjrfunctions electroni-
cally. An understanding of the computer’s electronic workings is not
necessary to become computer literate. Instead, we will attempt to
explain the workings of the PCjr in its function as an information
processing machine. As we learned from our NLEast program,
information processing consisted of entering information using the
keyboard, processing the information inside the PCjr, and output-
ting the information so that it is visible to the user.

In this book, we will represent the input, output, and processing
functions of the PCjr using the following illustration:



132 1BM PCijr for Students

PCjr Processing Function

Input Memory )
( )
e e e e e e = |
S — %=}
= ogoooocooog
 p— r_r—l_‘l‘—E(_'|_‘l_x__ = —‘E | ] 8 8
L Ee—CcCc &

Output Arithmetic and Logic

Variable Storage

J

The input portion of this illustration is used to represent data
input into the PCjr. Data is generally input using the PCjr’s keyboard.
The memory area is used to indicate data which is present in the
PCjr’s memory after the input. The arithmetic and logic area is used
to indicate arithmetic and logical processing operations taking place
inside the PCjr. We won’t be concerned with this area until lesson 12.
The variable storage area is used to store variable values. This will be
discussed in lesson 11.



























How the PCjr Works 141

Clearing the Screen with a BASIC Program in Memory

Now that we have seen how the PCjr executes a BASIC pro-
gram, let’sexamine what occurs when the CLS command is issued in
the immediate mode to clear the screen. Suppose that we entered
CLS. As shown in the following illustration, although the PCjr’s
screen will be cleared, the BASIC program stored in its memory will

remain intact.

Input Memory h
e e et g, — | 0 0
Seogoo oo I N
= l=|gl= -
= r_l—l_l_Ej_l—l‘—‘J"‘E = EE | ] 8‘.—“: 8

1 |e—

10 PRINT " National League Eastern Di

vision

20 PRINT

30 PRINT ” Team
Losses "

40 PRINT ” Pittsburgh
28 "

RUN

CLS

Output

Wins

42

10 PRINT " National League Eastern Di
vision '

20 PRINT

30 PRINT ” Team Wins
Losses

40 PRINT “ Pittsburgh 42
28 "

Arithmetic and Logic

Variable Storage




142 1BM PCijr for Students

Listing the BASIC Program

Let’s examine what occurs when the PCjr executes the LIST
command.

Input Memory

e e et el g, ™ m
—J

e e o e e

Cogoooosoooge g

= f_t_l_l_JEA‘_x—r'“J'—E = E E
El—coc

10 PRINT ” National League Eastern Di 10 PRINT ” National League Eastern Di

vision " vision "

20 PRINT 20 PRINT

30 PRINT " Team Wins 30 PRINT ” Team Wins
Losses Losses

40 PRINT " Pittsburgh 42 40 PRINT " Pittsburgh 42
28 " 28 "

RUN -

CLS

LIST

Output Arithmetic and Logic

[olalol=]

oo oo

Ok

LIST

10 PRINT ” National League Eastern Di

vision

20 PRINT

30 PRINT ” Team Wins Variable Storage
Losses “

40 PRINT " Pittsburgh 42
28 "

Ok

Notice that the program in memory is output, but that the
memory contents are not affected.









How the PCjr Works 145

2. The following command(s) can be used to determine whether or
not a program is stored in memory:

A. CLS

B. PRINT

C. LIST

D. NEW

E. None of the above

3. Any of the following affect the contents of the PCjr’s memory:

A. Program mode entry
B. RUN

C. CLS

D. None of the above
E. All of the above

4. The following command(s) can affect the information displayed
on the PCjr’s screen:

CLS

RUN

LIST

None of the above
All of the above

moN®»

5. When a BASIC program is executed, the PCjr:

A. Executes all program lines simultane-
ously and sends the results to the screen.

B. Executes each program line separately
and then erases that line in memory
after it has been executed.

C. Temporarily erases existing informa-

tion on the screen

None of the above

All of the above

mo

Essay

1. Describe the current line pointer’s function.

2. Describe the procedure you would use to determine whether or not



146 1BM PCjr for Students

a BASIC program was stored in the PCjr’s memory.

3. Describe the procedure followed by the PCjr when the program
you wrote for the computer exercise on page 128 is executed.






RUN, LIST, AUTO, RENUM, and DELETE 149

Introduction

In lessons 6 and 7, we were introduced to the concept of line
numbers and program entry, as well as a number of BASIC com-
mands including RUN and LIST. RUN and LIST can be used with
optional line number parameters to execute or display only a portion
of a program. We will discuss the use of these parameters.

BASIC also includes two commands, AUTO and RENUM,
which can be used to make line number entry easier. AUTO is used to
automatically generate new line numbers. RENUM allows program
lines to be automatically renumbered.

BASIC’s DELETE command is also useful during the program
entry process. DELETE can be used to erase one or more program
lines from memory.

RUN

Inlessons 6 and 7, we learned how the RUN command could be
entered in the immediate mode to execute the program in the PCjr’s
memory. RUN canalso be entered with an optional line number. This
results in program execution beginning with the indicated line
number. The following illustration will demonstrate the use of RUN
with an optional line number parameter:






RUN, LIST, AUTO, RENUM, and DELETE 151

LIST

As we learned in lessons 6 and 7, the LIST command is used to
display the BASIC program stored in the PCjr’s memory. LIST can
be executed with optional line number parameters to display only a
portion of the program stored in memory. This is shown in the
following illustration:

Input Memory )
r 2
SeeescesemEcom | | —— o0
p— r‘_l‘_v‘—l—El'—l_t"‘H"E [/ o o I , O ST O
L E;: =coe E
CLS entered 10 clear the screen 10 PRINT “Line 1"
LIST 30-50 20 PRINT "Line 2"
30 PRINT “Line 3"
40 PRINT "Line 4"
50 PRINT “Line 5"
60 END
. J

Arithmetic and Logic

Ok
LIST 30-50

- 30 PRINT “Line 3"
40 PRINT "Line 4"

go PRINT “Line 5" Variable Storage
K




152 1BM PCjr for Students

As evidenced in the preceding illustration, when two line
numbers are entered as LIST command parameters, all lines with
values within the range indicated by these parameters will be dis-
played. Notice that the two line number parameters are separated
with a dash (-).

LIST can also be executed with one line number parameter.
Examples are shown in the following illustrations:

Input Memory h
(" )
e e e e e i, ™~ | m
;EL;QGCQGEQEQQ! 8 (0)
= egesoss= Q 0 0
= r_r"‘r—l"El_'n—l_‘J_E = EE I ] e
L E; cos E-J 0 0
CLS 10 PRINT "Line 1"
LIST 30- 20 PRINT "“Line 2"

30 PRINT "Line 3"
40 PRINT "“Line 4"
50 PRINT “Line 5"
60 END

Arithmetic and Logic

Ok

LIST 30-

30 PRINT "Line 3"
40 PRINT “Line 4"

50 PRINT “Line 5" .
60 END Variable Storage

Ok










RUN, LIST, AUTO, RENUM, and DELETE 155

Notice that the Fn-Break key combination was entered when the
final line number was generated, line 60. The AUTO command is
ended by pressing the Fn-Break key combination. The current line
being entered when Fn-Break is pressed will be erased. After Fn-
Break has been pressed, BASIC will return to the command level.

If AUTO is used with two line number parameters, the first
parameter will indicate the first line number to be generated. The
second parameter will indicate the amount to be added to the pre-
vious number to generate the next, new line number. This is known as
the increment.

The following illustration shows the use of AUTO with both

parameters.
Notice that an asterisk was displayed following the generation of

line number 50. When AUTO generates a line number that duplicates
that of a program line already existing in memory, an asterisk (*) will
be printed immediately following the line number. This is meant as a
warning to the user. If any data is input into that line, the existing
program line will be replaced by it. If the user presses the Enter key
immediately after the asterisk without entering any new data, a new
line number will be generated, and the existing line will not be
replaced.















- 160 1BM PCjr for Students

value indicates the amount by which the new line numbers are to be
incremented. Let’s examine the effect of executing RENUM with all
three optional parameters present.

Input Memory )
( A
o s e o e i = ] 0 0
e e T e 00
= egeeossEEog 0
= == Ed—l l_‘I_E = hg | ] 8 e 0
L ple—— oo E_d
cLs 10 PRINT “Line 1"
RENUM 100,30,50 20 PRINT "Line 2"
LIST 100 PRINT "Line 3"
150 PRINT "“Line 4"
200 PRINT END
. J

Output Arithmetic and Logic

Ok
RENUM 100,30,50
Ok

LIST

10 PRINT

20 PRINT “Li ’ : Variable Storage

100 PRINT ”
150 PRINT “Li
200 END

Ok




RUN, LIST, AUTO, RENUM, and DELETE 161

Notice from the example that program line renumbering began
with line 30 in the original program stored in memory. This value was
RENUM’s second parameter. The initial new line number generated
was 100. This was RENUM’s first parameter. Subsequent new line
numbers (150 and 200) were obtained by adding S0 (RENUM’s third
parameter) to the previous line number.

We can also execute RENUM with any one or two of these
optional line numbers omitted. If the first parameter is left out, the
first new line number generated will be 10. If the second parameter is
omitted, the renumbering process will begin with the program’s first
line. If the third parameter is left out, the amount by which new line
numbers will be incremented will be 10. These values are known as
default values. A default value is that used for a parameter when no
other value is supplied by the programmer. The default value is
automatically supplied by the BASIC interpreter.

We will use the following example to illustrate the use of default
parameter values with RENUM:

RENUM ,,20









164 1BM PCjr for Students

DELETE -- Deleting Program Lines

BASIC’s DELETE command is generally used in the immediate
mode to erase one or more program lines from memory. DELETE
can be used with one or two optional line number parameters. If
DELETE is used without any parameters, the entire program will be
erased. DELETE’s parameters function exactly like the parameters
for LIST. For example,

- DELETE 30-50

would result in all program lines with a line number value in the range
30 to 50 being deleted. This is shown in the following illustration:

Input Memory A

— o

[ . y
e
-
—J

OSSO O
oocoo

CLSs 20 PRINT "Line 1"
DELETE 30-50 60 END
LIST

Output Arithmetic and Logic

Ok
DELETE 30-50
Ok

LIST

20 PRINT “Line 1" Variable Storage

60 END
Ok




RUN, LIST, AUTO, RENUM, and DELETE 165

The following statement,
DELETE -30

would cause all program lines from the beginning of the program
through line 30 to be erased from memory. This is depicted in the
following illustration*:

Input Memory

a - 'v_e
Sereeeeeetaar - | | ()

=== >
]

coc
= =

CLS 40 PRINT “Line 3"
DELETE -30 50 PRINT "Line 4"
LIST 60 END

[sleole)e)

ococoo

\— J
Output Arithmetic and Logic

Ok

DELETE -30
Ok

LIST

40 PRINT “Line 3" Variable Storage
50 PRINT “Line 4"

60 END
Ok

*  Assume that lines 30-50 had been restored.












RUN, LIST, AUTO, RENUM, and DELETE 169

2. The following is not a valid version of the LIST command:

A. LIST-19
B. LIST 214
C. LIST

D. LIST 17
E. LIST 17-

3. The following key sequence causes the AUTO command to end:

A. AUTO OFF

B. NO AUTO

C. Fn-Break

D. Break

E. None of the above

4. The followingcommand can be used to erase a portion of a BASIC
program stored in memory:

A. RUN
B. LIST '
C. NEW
D. CLS
E. None of the above
Computer Exercises

1. Using the program you wrote for Computer Exercise 1 on page 128,
perform the following:
a. Execute RUN so that only those students whose
names appear after L in the alphabet are displayed.
b. Display Chris Matthews’ test score.
c. Erase the program line containing Reid Nagle’s test
score.
d. Renumber the program so that the first line number
is 1000 and an increment of 50 is used for subsequent
line numbers.






Editing Your BASIC Program 173

Introduction

Once you have entered a BASIC program, you may discover an
error that requires that one or more program lines be changed, or
edited. One means of editing a program line is to simply delete it by
entering a corrected line with an identical line number. We will refer
to this method as line entry editing.

Another method of editing consists of displaying the program
line to be changed using BASIC’s EDIT command. We will refer to
this method as EDIT command editing.

A final editing method involves listing a program to the screen,
positioning the cursor to the point within the line which is to be
corrected, making the correction, and sending the corrected line to
memory by pressing the Enter key. We will refer to this method as
cursor movement editing.

Each of these editing methods will be described in this lesson.
We urge you to follow this lesson’s examples using your PCjr.

Line Entry Editing

Line entry editing is not the most efficient method of editing a
BASIC program. However, this method can be useful when editing
relatively short program lines. In line entry editing, the user merely
enters a new program line with the same line number as the line which
is to be corrected. The new line will replace the original line in
memory.

For example, suppose the following program was stored in the
PCjr’s memory:

10 PRINT “Line 1”
20 PRINT “Line 2”
30 PRINT “Line 3”
40 PRINT “Line 4~
50 EMD









176 1BM PCjr for Students

Delete

Table 9.1 (cont.) PCjr editing keys

The Delete key causes the character at the current cursor
position to be erased. All characters to the right of the
cursor will move one position to the left each time the
Delete key is pressed.

Insert

Pressing the Insert key turns on the insert mode. If the
Insert key is pressed a second time, the insert mode will be
turned off. The insert mode can also be turned off by
pressing any of the cursor movement keys or the Enter key.
When the insert mode is on, the flashing cursor resembles
the following:

With the insert mode on, characters can be inserted intoan
existing line of characters. These characters will be inserted
to the immediate left of the flashing cursor. The cursor and
all characters following it will be moved one position to the
right to make room for the newly inserted characters.

Backspace

Backspace

The Backspace key deletes the character to the cursor’s
immediate left. The cursor, the character at the cursor
position, and all characters to the right of the cursor will
move one position to the left.










Editing Your BASIC Program 179

Ctrl-Pg Up The Ctrl-Pg Up key combination moves the cursor to the
previous word.

Cursor Up

As defined in table 9.1, pressing the Cursor Up key causes the
cursor to move up on the screen as shown below:

Initial screen display

Ok

10 PRINT ” National League Eastern Di
vision "

20 PRINT

30 PRINT " Team Wins
Losses ”

40 PRINT " Pittsburgh 42

28 "

50 PRINT " Montreal 41
29 "

60 PRINT ” Philadelphia 37
33 "

Ok

— & flashing cursor




180 1BM PCjr for Students

Pressttttt
Ok
10 PRINT ” National League Eastern Di
vision "
20 PRINT
30 PRINT " Team Wins
Losses "
40 PRINT " Pittsburgh 42
28 "
Sflashing cursor 50 PRINT ” Montreal 41
29
60 PRINT " Philadelphia 37
33
Ok
Cursor Down

From table 9.1, we learned that pressing the Cursor Down key
causes the cursor to move down one line on the screen. This is shown
in the following example:

Initial screen display

Ok
10 PRINT " National League Eastern Di
vision "
20 PRINT
30 PRINT " Team Wins
Losses "
40 PRINT " Pittsburgh 42
28
flashing cursor 50 PRINT ” Montreal 1

29

60 PRINT " Philadelphia 37
33

Ok




Editing Your BASIC Program 181

Press | |

flashing cursor

Cursor Right

Ok

10 PRINT " National League Eastern Di
vision

20 PRINT
30 PRINT " Team Wins
Losses
40 PRINT " Pittsburgh 42

"

28 "

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok

Pressing the Cursor Right key causes the cursor to move one
position to the right on the screen. This is shown in the following

examples:

Initial screen display

flashing cursor

Ok

10 PRINT ” National League Eastern Di
vision "

20 PRINT

30 PRINT Team Wins
Losses

40 PRINT " Pittsburgh 42
28

50 PRINT " Montreal 41
29

60 PRINT " Philadelphia 37
33

Ok



182 1BM PCijr for Students

Press — — —

Ok

10 PRINT " National League Eastern Di

vision "

20 PRINT

30 PRINT " Team Wins

Losses "

40 PRINT " Pittsburgh 42
28

50 PRINT " Montreal 41
29

Sflashing cursor 60 PRINT “ Philadelphia 37

33
Ok

Initial screen display (second example)

Ok

10 PRINT " National League Eastern Di_

vision "

20 PRINT

30 PRINT Team Wins

Losses

40 PRINT " Pittsburgh 42
28

50 PRINT ” Montreal 41
29

60 PRINT " Philadelphia 37
33

Ok

flashing
cursor




Editing Your BASIC Program 183

Press —

[flashing cursor

Cursor Left

Ok

10 PRINT
vision

20 PRINT
30 PRINT
Losses

40 PRINT
28

50 PRINT
29

60 PRINT
33

Ok

" National League Eastern Di

" Team Wins

" Pittsburgh 42

Montreal 41

"

" Philadelphia 37

"

Pressing the Cursor Left key causes the cursor to move one
position to the left on the screen as shown in the following examples:

Initial screen display

flashing _cursor

Ok

10 PRINT

vision

20 PRINT

30 PRINT

Losses

40 PRINT
28

50 PRINT
29

60 PRINT
33

Ok

" National League Eastern Di

”

" Team Wins

" Pittsburgh 42

”

Montreal 41

”

" Philadelphia 37

"




184 1BM PCjr for Students

Press — —
Ok
10 PRINT ” National League Eastern Di
. >
vision
20 PRINT
30 PRINT " Team Wins
Losses "
40 PRINT " Pittsburgh 42
28 "
50 PRINT " Montreal 41
29 "
60 PRINT " Philadelphia 37
33 "
Ok
flashing
cursor |
Delete

When the Delete key is pressed, the character at the current
cursor position will be erased from the screen. All characters to the
right of the cursor will move one position to the left when the Delete
key is pressed.

Initial screen display

Ok

10 PRINT ” National League Eastern Di
vision "

20 PRINT

30 PRINT " Team Wins
Losses “

40 PRINT " Pittsburgh 42

flashing cursor 28
50 PRINT ” Montreal 41
29 "
60 PRINT " Philadelphia 37
33 "
Ok




Editing Your BASIC Program 185

Press Del ten times.

Ins

Ok

10 PRINT " National League Eastern Di
vision "

20 PRINT

30 PRINT ” Team Wins
Losses "

40 PRINT ” 42 28

flashing cursor }
50 PRINT “ Montreal 41
29 "
60 PRINT ” Philadelphia 37
"33 "
Ok

The Ins key turns on the insert mode. When the insert mode is
on, characters can be inserted to the immediate left of the flashing
cursor. The cursor and existing characters will be moved one position
to the right each time a new character is inserted. The insert mode can
be turned off by pressing the Ins key a second time or by pressing any
of the cursor movement keys or the Enter key. The following example
illustrates the use of the Ins key:



186 1BM PCjr for Students

Initial screen display

flashing cursor

Ok

10 PRINT
vision

20 PRINT
30 PRINT
Losses
40 PRINT

"

National League Eastern Di

Team Wins

42 28

)

Press Ins Pittsburgh Ins

50 PRINT
29

60 PRINT
33

Ok

Montreal 41

Philadelphia 37

flashing_cursor

Ok

10 PRINT

vision

20 PRINT

30 PRINT

Losses

40 PRINT
28

50 PRINT
29

60 PRINT
33

Ok

"

"

National League Eastern Di

Team Wins

Pittsburgh _ 42

— 1

Montreal 41

Philadelphia 37




Editing Your BASIC Program 187

Backspace

The Backspace key erases the character to the immediate left of

the cursor. The cursor, the
characters to the left of the

character at the cursor position, and all
cursor will move one position to the left.

This is shown in the following example:

Initial screen display

flashing cursor

Ok

10 PRINT “ National League Eastern Di
vision

20 PRINT

30 PRINT ” Team Wins
Losses
40 PRINT " Pittsburgh_ 42

28 "

Press Backspace three times

50 PRINT " Montreal 11
29 "

60 PRINT " Philadelphia 37
33 "

Ok

flashing cursor

Ok

10 PRINT ” National League Eastern Di
vision "

20 PRINT

30 PRINT " Team Wins
Losses "

40 PRINT " Pittsbu_ 42 2
8 ” *

50 PRINT " Montreal
29

60 PRINT " Philadelphia
33

Ok



188 1BM PCjr for Students

Esc Key

When the Esc key is pressed, the entire program line in which the
cursor is located will be erased from the screen. However, that line
will not be erased from memory. The following example illustrates
the usage of the Esc key:

Initial screen display

Ok
10 PRINT ” National League Eastern Di
vision
20 PRINT
30 PRINT Team Wins
Losses
40 PRINT " Pittsburgh_ 42
flashing cursor 28 }
50 PRINT " Montreal 41
29
60 PRINT " Philadelphia 37
33
Ok

Press Esc

Ok
10 PRINT " National League Eastern Di
vision "
20 PRINT
30 PRINT Team Wins
Losses

flashing cursor

50 PRINT " Montreal
29

60 PRINT ” Philadelphia
33

Ok




Editing Your BASIC Program 189

Tadb

The Tab key is used to move the cursor to the next tab stop. The
effect of using the Tab key with the insert mode off and on is shown in
the following examples:

Initial screen display -- insert mode off

Ok

10 PRINT " National League Eastern Di

vision

20 PRINT

30 PRINT Team Wins

Losses

flashing cursor 40 PRINT " Pittsburgh 42

28

50 PRINT " Montreal 41
29

60 PRINT ” Philadelphia 37
33

Ok

Press Tab twice

Ok

10 PRINT " National League Eastern Di

vision

20 PRINT

30 PRINT Team Wins

Losses

40 PRINT " Pittsburgh 42
28

50 PRINT " Montreal 41
29

60 PRINT " Philadelphia 37
33

Ok

flashing
cursor




190 1BM PCjr for Students

Initial screen display -- insert mode on

Ok

10 PRINT ” National League Eastern Di
vision

20 PRINT
30 PRINT Team Wins
Losses

40 PRINT " Pittsigurgh 42

"

28 }

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia 37
33 ”

Ok

flashing
cursor

Press Tab once

Ok
10 PRINT ” National League Eastern Di
vision
20 PRINT
30 PRINT Team Wins
Losses
40 PRINT " Pitts @aurgh
42 28 "
50 PRINT " Montreal
29 "
60 PRINT ” Philadelphia
33 "
Ok

flashing
cursor

When the insert mode is on, pressing the Tab key causes blank
characters to be inserted from the current cursor position to the next
tab stop. This was shown in our preceding example.



Editing Your BASIC Program 191

Fn-End

The Fn-End key combination results in the cursor being moved
to the end of the current program line. Additional characters can then
be added to that line.

Initial screen display

Ok

10 PRINT " National League Eastern Di

vision "

20 PRINT

30 PRINT " Team Wins

Losses "

40 PRINT " Pittsburgh 42
Sflashing cursor 28 "4

50 PRINT " Montreal 41

29 n
60 PRINT " Philadelphia 37
33 "

Ok

Press Fn-End

Ok

10 PRINT ” National League Eastern Di

vision "

20 PRINT

30 PRINT " Team Wins

Losses ”

40 PRINT " Pittsburgh 42

Sflashing cursor 28 Vo

50 PRINT ” Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok




192 18M PCijr for Students

Fn-Home

The Fn-Home key combination moves the cursor to the screen’s
home or upper left-hand corner. The usage of the Fn-Home key
combination is shown in the following example:

Initial screen display

Ok

10 PRINT ” National League Eastern Di
vision

20 PRINT

30 PRINT Team Wins
Losses

40 PRINT " Pittsburgh 42
flashing cursor 28 _
50 PRINT " Montreal 41
29
60 PRINT " Philadelphia 37
33
Ok

Press Fn-Home

flashing cursor Ok
10 PRINT " National League Eastern Di
vision
20 PRINT
30 PRINT Team Wins
Losses

40 PRINT " Pittsburgh 42
28

50 PRINT " Montreal 41
29

60 PRINT " Philadelphia 37
33

Ok




Editing Your BASIC Program 193

Fn-Break

The Fn-Break key combination is used to cancel the edit mode.
The line being edited will not be saved in memory.

Initial screen display

Ok
EDIT 40
Sflashing cursor 40 PRINT " Pittsburgh
o8 "

Press — eleven times. Press S

Ok

EDIT 40

40 PRINT " Sittsburgh
28 "

flashing
cursor

* The EDIT command will be discussed later in this chapter.



194 1BM PCijr for Students

Press Fn-Break. Enter LIST 40

Ok

EDIT 40

40 PRINT " Sittsburgh
28

LIST 40

40 PRINT " Pittsburgh
28
Ok

Ctrli-Fn-End

The Ctrl-Fn-End key combination causes the program line to be
erased from the current cursor position to the end of the program
line.

Initial screen display

Ok

10 PRINT " National League Eastern Di
vision "

20 PRINT

30 PRINT " Team Wins
Losses "

40 PRINT " Pittsburgh 42
Sflashing cursor 28 "

50 PRINT " Montreal a1
20 -

60 PRINT " Philadelphia 37
33

Ok




Editing Your BASIC Program 195

Press Ctrl-Fn-End

flashing cursor

Ok
10 PRINT “ National League Eastern Di
vision

20 PRINT
30 PRINT ” Team Wins
Losses

"

"

40 PRINT " Pitt_

}

Ctrli-Fn-Home

50 PRINT " Montreal
29 "

60 PRINT ” Philadelphia
33 ”

Ok

The Ctrl-Fn-Home key combination clears the screen and
returns the cursor to the home position. This is shown in the follow-

ing example:

Initial screen display

Sflashing cursor

Ok

10 PRINT “ National League Eastern Di
vision "

20 PRINT

30 PRINT ” Team Wins
Losses "

40 PRINT " Pitt_

|

50 PRINT " Montreal
29 "

60 PRINT " Philadelphia
33 "

Ok



196 1BM PCjr for Students

Press Ctrl-Fn-Home

flashing
cursor

Ctrl-Pg Dn

The Ctrl-Pg Dn key combination causes the cursor to move to
the next word. This is shown in the following example:

Initial screen display

Ok

10 PRINT " National League Eastern Di
vision "

20 PRINT

30 PRINT " Team Wins
Losses "

40 PRINT " Pittsburgh 42
flashing cursor 28 v 4

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok




Editing Your BASIC Program 197

Press Ctrl-Pg Dn

Ctrl-Pg Up

Ok

10 PRINT " National League Eastern Di
vision

20 PRINT
30 PRINT ” Team
Losses

40 PRINT " Pittsburgh

28

50 PRINT " Montreal
29

60 PRINT ” Philadelphia
33

Ok

flashing
cursor

The Ctrl-Pg Up key combination moves the cursor to the pre-
vious word. This is shown in the following example:

Initial screen display

Ok

10 PRINT ” National League Eastern Di

vision "

20 PRINT

30 PRINT ” Team

Losses “

40 PRINT " Pittsburgh
28 "

50 PRINT ” Montreal
29 "

60 PRINT ” Philadelphia
33 "

Ok

flashing
cursor



198 1BM PCjr for Students

Press Ctrl-Pg Up

flashing cursor

Ok

10 PRINT

vision

20 PRINT

30 PRINT

Losses

40 PRINT
28

National League Eastern Di

Team

Pittsburgh

50 PRINT
29

60 PRINT
33

Ok

"

Montreal

Philadelphia

Wins

42

41

37




Editing Your BASIC Program 199

EDIT Command Entry

Now that we have learned how the various PCjr editing keys
function, we are ready to use BASIC’s EDIT command to edit
program lines. The EDIT command is used to display a BASIC
program line so that it can be edited. An example of the use of the
EDIT command is given below:

EDIT 40

10 PRINT “ National League Eastern Di

vision "

20 PRINT

30 PRINT " Team Wins

Losses "

40 PRINT " Pittsburgh 42
28 "

50 PRINT ” Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok

EDIT 40

flashing _cursor 40 PRINT " Pittsburgh

28 "

Notice that the EDIT command must be executed with an
existing program line number. The specified program line will then be
displayed with the cursor positioned at the first character of its line
number.

The program line can then be edited using the various editing
keys. For example, suppose that we wanted to change Pittsburgh’s
number of wins to 43 and its number of losses to 29. We could make
these changes by entering the keystrokes indicated in the following
example:



200 1BM PCjr for Students

Press Tab three times. Press — ten times

10 PRINT " National League Eastern Di

vision

20 PRINT

30 PRINT " Team Wins

Losses

40 PRINT " Pittsburgh 42
28 "

"

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia
33

Ok

EDIT 40

40 PRINT " Pittsburgh

flashing_cursor 28

Enter 43.

10 PRINT " National League Eastern Di

vision

20 PRINT

30 PRINT Team Wins

Losses

40 PRINT " Pittsburgh 42
28 "

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok

EDIT 40

40 PRINT " Pittsburgh
28 "




Editing Your BASIC Program 201

Press — seven times. Enter 29.

Ok

10 PRINT " National League Eastern Di

vision "

20 PRINT

30 PRINT ” Team Wins

Losses “

40 PRINT " Pittsburgh 42
28 "

50 PRINT " Montreal 41
29 "

60 PRINT " Philadelphia 37
33 "

Ok

EDIT 40

40 PRINT " Pittsburgh

flashing cursor 29_

Now that the necessary corrections have been made to line 40,
we are ready to send it to memory. We cando so by pressing the Enter
key. By executing LIST, we can verify that line 40 has, in fact, been
changed.

Cursor Movement Editing

With cursor movement editing, the program is edited by moving
the cursor to the desired program line using the cursor control keys;
entering the new characters; and pressing the Enter key so as to save
the revised line in memory. In the following example, we will use
cursor movement editing to change Pittsburgh’s number of wins to 43
and its number of losses to 29.



202 1BM PCjr for Students

Initial screen display

Ok

10 PRINT " National League Eastern Di
vision
20 PRINT " Team Wins
Losses
30 PRINT " Pittsburgh 42

"

"

28 "

40 PRINT " Montreal 41
29 "

50 PRINT " Philadelphia 37
33 "

Ok

Use — and ! to position cursor as indicated

Ok

10 PRINT " National League Eastern Di

vision "

20 PRINT " Team Wins
Losses "

30 PRINT " Pittsburgh 42

28 " {
40 PRINT " Montreal 41
29 " |
50 PRINT " Philadelphia 37
33 " |
Ok Slashing cursor




Editing Your BASIC Program 203

Enter 43.

Ok

10 PRINT

vision

20 PRINT

Losses

30 PRINT
28

40 PRINT
29

50 PRINT
33

Ok

Press — seven times. Enter 29.

National League Eastern Di

Team Wins
Pittsburgh 43_
Montreal 41
Philadelphia 37

flashing cursor

Ok

10 PRINT

vision

20 PRINT

Losses

30 PRINT

flashing cursor 29_

40 PRINT
29

50 PRINT
33

Ok

"

"

"

"

National League Eastern Di
Team Wins
Pittsburgh 43

Montreal 41

Philadelphia 37

Justas with EDIT, we must send the corrected program line into
memory. This can be accomplished by pressing the Enter key.






Editing Your BASIC Program 205

2. When pressed, the following key will turn off the insert mode:

A. Insert

B. Enter

C. Cursor Right

D. Cursor Left

E. All of the above
3. When pressed, the following key(s) will move the cursor to the next

word:

A. Tab

B. Citrl-Pg Up

C. Cursor Right

D. Insert

E. None of the above

4. Which of the following editing methods would be the most effi-
cient means of editing a long program line in the middle of a
lengthy program?

A. Line entry method
B. EDIT command method
C. Cursor movement editing
D. All of the above
E. None of the above
5. When pressed, the following key will delete characters to the left of
the cursor:
A. Cursor Left
B. Delete
C. Backspace
D. All of the above
E. None of the above
Computer Exercises

1. Using the program you wrote for Computer Exercise 1 on page 128,
perform the following:

a. Use the EDIT command to change John Croghan’s percen-
tage score to 98% and his grade to an A.



206 1BM PCjr for Students

b. Delete Reid Nagle’s score and grade, leaving only his name
and the word “Dropped” where his score previously appeared.

c. Insert the middle name “Ann”in the program line containing
Mary Donner’s name, score, and grade.

d. Change William Vorhis’s first name to Bill.






Saving and Loading BASIC Programs 209

Introduction

In the preceding lessons, you have learned how to write and
execute BASIC programs. One of the disadvantages you have
already encountered in your program writing experience is that once
the PCjr is turned off, the program in memory will be erased. If you
later wish to run that program again, you must reenter it using the
keyboard. As you've already learned, this can be a tedious process.

Fortunately, BASIC programs can be stored on either a cassette
tape or a diskette for later recall and use. In this chapter, you will
learn how to save and recall BASIC programs both on cassette and
on diskette.

Cassette Recorder

Before beginning our discussion of the procedure for program
storage and retrieval on a cassette tape, we will describe the process
for installing a cassette player/recorder with the PCjr.

Cassette Recorder Installation

Most standard cassette recorders can be used with the PCjr. An
optional cassette adapter cable is required to plug the cassette
recorder into the PCjr. As shown in figure 10.1, the cassette adapter
cable has 3 plugs at one end and a single connector at the other end.
The single connector should be plugged into the port labeled C on the
rear of the PCjr’s system unit.

Notice that the three plugs at the other end of the cable are
colored black, red, and grey. These plugs are connected to the
cassette recorder. The black plug should be connected to the
recorder’s earphone (or monitor) jack. The red plug should be con-
nected to the auxiliary or microphone jack.

If your cassette recorder has a jack labeled rem, the grey plug can



210 1BM PCjr for Students

Figure 10.1. PCjr cassette adapter cable

be installed in that port. This connection is used for automatic
operation of the cassette recorder. If your recorder does not have a
rem port, leave the grey plug disconnected. Since most cassette
recorders do not have this port, our discussion of cassette recorder
usage will be based on the assumption that the grey plug has been left
disconnected. Therefore, at this point, please leave the grey plug
disconnected.

Your final installation step is to plug the cassette recorder’s
power cord into a wall outlet. Although your recorder may operate
with batteries, we recommend against using battery power when
savingand loading programs. As the batteries run down, the recorder
will run more slowly. When new batteries are installed, the PCjr may
not be able to load those programs recorded at the slower speed.

The correct cassette recorder installation is depicted in figure
10.2. You can either test your installation by operating the cassette
recorder with a blank cassette installed or by operating it without a






212 1BM PCjr for Students

Saving a BASIC Program on Cassette

Now that your cassette recorder has been properly installed, you
areready to save a program on cassette. Your first step is to erase any
existing program lines in memory. Youcando so by issuingthe NEW
command. Your next step is to enter a simple program. We will enter
the NLEast program as depicted in figure 10-3.

| Ok

10

20
30
40

50
60
70
80
90
100

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

"

"

"

”

5 REM "This program is designed to display the standings
of the National League’s Eastern Division”
PRINT " National League Eastern Division

Team Wins Losses
Pittsburgh 42 28
Montreal 41 29
Philadelphia 37 33
St. Louis 34 34
Chicago 29 41
New York 28 42

"

Figure 10.3. NLEast

Once “NLEast™ has been properly entered, we can save a copy of
it on cassette tape. First of all, you must prepare the cassette recorder

by:

oooo

Inserting a cassette tape

Closing the door

Pressing the recorder’s rewind button

After the tape has been completely rewound,
press the stop button



Saving and Loading BASIC Programs 213

Then, make the following keyboard entry if your PCjr does not
have a diskette drive and cartridge BASIC installed:

SAVE “NLEast” (Do not press the Enter key)

Ok
SAVE "NLEast”_

Next, press the recorder’s play and record buttons simultane-
ously. Both keys should remain depressed. After the recorder has run
forabout seven seconds, press the PCjr’s Enter key. This will start the
recording process. The flashing cursor will disappear from the screen
as the program is being recorded. Once the program has been
recorded, the Ok prompt and the flashing cursor will reappear. At
this point, press the recorder’s stop button.

You may have wondered why we allowed the recorder to run
seven seconds before pressing the Enter key. Cassette tapes have a
section at their beginning on which data cannot be recorded. This
area is known as the tape leader. We allowed the recorder to run seven
seconds prior to beginning the program saving process in order to
skip over the tape leader.

If your PCjrhasadisk drive and cartridge BASIC installed, you
should follow the same steps with one exception. The SAVE com-
mand should be entered as follows:



214 1BM PCjr for Students

SAVE “CAS1:NLEast”

Ok
SAVE "CAS1:NLEast"”

CASI: tells the PCjr to save NLEast on the cassette recorder

rather than the diskette drive. If CASI1: were not included, the
program would have been saved on the diskette drive.

Loading a BASIC Program from Cassette

Now that we have saved a copy of “NLEast” on cassette, let’s see

if it still exists in memory.

LIST

Ok

SAVE "NLEast”

Ok

LIST

5 REM "This program is designed to display the
standings of the National League’s Eastern Division”
10 PRINT ”  National League Eastern Division "
20 PRINT

30 PRINT ” Team Wins Losses
40 PRINT " Pittsburgh 42 28
50 PRINT " Montreal 41 29
60 PRINT " Philadelphia 37 33
70 PRINT " St. Louis 34 34
80 PRINT ” Chicago 29 41
90 PRINT " New York 28 42




Saving and Loading BASIC Programs 215

Before loading “NLEast™ from the cassette tape back into
memory, we will have to erase the original version of the program
from memory. This can be accomplished by executing the NEW
command. If you execute LIST a second time, you will find that the

PCjr’s memory is now empty.

NEW
LIST

We are now ready to load NLEast from cassette into the PCjr’s
memory. First of all, be certain that the cassette containing the copy
of NLEast is installed in the cassette recorder. The tape should have
been rewound to a point prior to the beginning of NLEast. Then,

enter the following:

LOAD “NLEast”
LOAD “CAS1:NLEast” (if your PCjr has a diskette drive
and Cartridge BASIC installed)

Ok
LOAD "NLEast"

Ok




216 1BM PCjr for Students

This time, press the Enter key immediately after keying in the
LOAD command. After pressing the Enter key, press the recorder’s
play button. The flashing cursor will be absent from the screen as
NLEast is searched for and loaded from the cassette tape. Once
NLEast has been loaded, the following message will appear on the
screen:

NLEast found

The cursor and the Ok prompt will appear in a few more
seconds. At this point, press the cassette recorder’s stop button. By
executing the LIST command, you will be able to verify that NLEast
has in fact been loaded from the cassette tape into memory.

Disk Drive

Before learning the procedure for saving and loading a program
on a diskette, you must learn how to format a diskette and how to
check a diskette’s directory. These will be covered in the following
sections.

Formatting a Diskette

Before using a new diskette, you must first format it using DOS’s
FORMAT command. The formatting process involves recording a
specific magnetic pattern on the diskette surface that enables the
computer to read and write data.

At this point, let’s format a blank diskette. Our first step is to
restart the PCjrif it is off, or perform a warm boot if it is powered on.
After the system date and time have been entered, the DOS prompt
(A>) will appear.



Saving and Loading BASIC Programs 217

To this point, we have been entering BASIC commands such as
PRINT,NEW, LIST,and RUN in response to BASIC’s Ok prompt.
FORMAT, the command for formatting a blank diskette, isa DOS
command and must be entered when the DOS prompt is active. Enter
FORMAT, and press the Enter key. The following message should
appear on the display screen:

Insert new diskette for Drive A:
and strike any key when ready

Remove the DOS diskette from the drive, and replace it with
either a blank diskette or a diskette containing data that can be
erased. Once the diskette to be formatted has been installed, press the
Enter key. The following messages will appear on the screen. Be
patient as the formatting process requires about 60 seconds.

Formatting... Format complete

362496 Dbytes total disk space
362496 bytes available ondisk

Format another (Y/N)?

The diskette has now been formatted. If you wish to format
another diskette, press Y, and the formatting process will be
repeated. Otherwise, press N, and the DOS prompt will reappear.

DOS 2.1 offers a second means of formatting a diskette with its
DISKCOPY command. DISKCOPY causes the contents of one
diskette, known as the source diskette, to be copied onto another
diskette, known as the target diskette. The advantage to DISKCOPY
is thatitallows the user to place a copy of DOS on the target diskette
while it is being formatted. This can be accomplished by using the
DOS 2.1 system master diskette as the source diskette.



218 1BM PCjr for Students

Since the PCjr contains only one diskette drive, it will be neces-
sary to periodically remove the source diskette and replace it with the
target diskette. This process is known as swapping. Once DISK-
COPY has been executed, you may have to swap diskettes as many as
four or five times before the entire copying operation has been
completed.

To begin DISKCOPY, enter the following after the DOS
prompt:

DISKCOPY

A > DISKCOPY

DOS will prompt you as follows when it is necessary to swap
diskettes:

Insert source diskette in drive A:
Insert target diskette in drive A:

When the disk swapping process has been completed, the following
message will appear:

Copy complete
Copy another (Y/N)?



Saving and Loading BASIC Programs 219

If N is entered, DISKCOPY will end and the DOS prompt will
appear.

You can determine whether or not DOS was copied to the target
diskette by attempting to perform a warm boot using that diskette. If
the system successfully boots, DOS was copied to the target diskette.

Displaying the Diskette Directory

A diskette can contain a number of different programs or data
files. Each file generates a listing in the diskette’s directory. A
diskette directory can be defined as a file on the diskette containing
information relating to all other files stored on that diskette.

BASIC’s FILES command can be used to list the directory
entries for all of the files on a diskette. This use of FILES isillustrated

below:

FILES

Ok

FILES

A:

SORT . FIND

MORE . BASIC
BASICA . PAINTGRA

R HARRY#3
PAY . TEXT

PAY . FILE

PAY23 . TEXT

JOHN . PAY

PKLING . PK .
PAT . BARACADE .
FIG6-2 . JUNK .
PKL . GOODSTUF .
PJK . TEM

TEMP . ROWBOAT
BARA . BARA1

PJKL . PROB1A

OK . NLEAST

9-11 . 9-12

9-13 . 6-20




220 1BM PCjr for Students

Saving and Loading BASIC Programs on Diskette

The procedures used to save and load BASIC programs on a
diskette are similar to those used on a cassette -- only easier and
faster. Once the program to be saved is ready in the PCjr’'s memory,
remove the DOS system master diskette from the PCjr’s diskette
drive, and replace it with a blank formatted diskette. If you are using
a copy of the DOS diskette, programs can be saved directly on the
copy -- as long as sufficient room is available.

Suppose NLEast is already present in memory. If not, it can be
loaded from a cassette tape as described earlier. Enter the following
command:

SAVE “NLEast”

Ok
SAVE "NLEast”
Ok

By executing the FILES command, we can examine the direc-
tory to determine whether NLEast has been saved on the diskette. If
the preceding command was properly executed NLEast should
appear in the directory listing.

The LOAD command is used to load a program file stored on
diskette back into the PCjr's memory. Before executing LOAD,
execute the NEW and CLS commands to clear the PCjr’s memory
and screen, respectively. Next, execute the LOAD command as
follows:



Saving and Loading BASIC Programs 221

LOAD “NLEast”

Ok
LOAD "NLEast"

Ok

By executing the LIST command, we can verify that NLEast has
been loaded into memory.

Erasing a File from a Diskette

BASIC’s KILL command can be used to delete a diskette file.
The file whose filename corresponds to that indicated with KILL will
be deleted. This is shown in the following example:

KILL

Ok
KILL "NLEast”
Ok




222 IBM PCjr for Students

If FILES is subsequently executed, the directory listing will not
include an entry for NLEast.

Notice that the filename specified with the KILL command was
NLEast.BAS not NLEast. The Microsoft BASIC interpreter requires
that BASIC program files include .BAS as their filename extension.
You might already have noticed from the directory listings that
NLEast was displayed as NLEast.BAS in those listings, even though
NLEast had been specified in the SAVE command. When a BASIC
program file is saved or loaded, the filename extension .BAS is
automatically added. It does not have to be specified with the com-
mand. Therefore, the following command,

SAVE “NLEast”
was interpreted by the compiler as:

SAVE "NLEast.BAS”






224 1BM PCjr for Students

2. The following command would be used to both format a blank
diskette and copy files to it:

A.
B.
C.
D.
E.

FILES

LOAD

SAVE
DISKCOPY
None of the above

3. The practice of exchanging the source diskette for the target
diskette or vice versa is known as:

A.
B.
C.
D.
E.

Disk exchange
Booting
Formatting
Swapping

None of the above

4. Which of the following commands could be used with a PCjr with
a diskette drive to load a BASIC program named PROGRAMB

from a cassette tape?

mMoO®>

LOAD PROGRAMB
LOAD "PROGRAMDB”
LOAD

All of the above

None of the above

5. The .BAS filename extension must be specified when a BASIC
program filename is used with the following BASIC command:

Mmoo

Essay

LOAD

SAVE

KILL

All of the above
None of the above

1. Define the term formatting as it relates to diskettes.

2. Define the term directory as it relates to diskettes.



Saving and Loading BASIC Programs 225

Computer Exercise

1. Format a blank diskette using FORMAT. Format a second and
copy DOS to it using DISKCOPY.

2. Reenter the program you wrote for the exercise on page 128. Save
this program on diskette and on cassette. Erase the program from
memory and then load it from diskette back into memory. Repeat
this procedure using the cassette recorder.

3. Save the program again on diskette using a different filename.
Erase this second copy from the diskette.



Dato Types ONG
Varicoles in BASIC

lesson 11

Goals

B 8

B B a

Define string data and use string constants within the context of a
simple BASIC program

Understand how ASCII codes are used to convey string data
Learn the various ways in which numeric data can be represented
Define the term variable in the context of BASIC programming
Learn how to create variable names

Learn how BASIC'’s LET statement can be used to assign a value
to a variable

226



Data Types and Variables in BASIC 227

Introduction

Data can be defined as information that is to be processed by the
computer. Information might consist of letters of the alphabet,
numbers, or special symbols such as !, ?, @, or *. In this chapter, we
will discuss the two types of data used with Microsoft BASIC pro-
grams, string and numeric. String and numeric data are stored differ-
ently in memory by the PCjr.

String Data

String data consists of the set of characters which can be repres-
ented by an ASClI code. These characters consist of the letters of the
alphabet, the digits (0-9), and numerous special symbols. The string
characters available with the PCjr are listed in appendix A. The
following are examples of string characters:

>

(=}
"

N

A string can be defined as a group of one or more of these string
characters.

String Data Examples

We have already encountered string data in the programs we
have written so far in this book. For example, as shown in figure 11.1,
NLEast uses a number of different strings.






Data Types and Variables in BASIC 229

Notice that numbers can be used as string constants. Keep in
mind that when numbers are used as string constants, these numbers
cannot be used as numeric data. The numbers are string data and
must be used as any other string data item would be.

One final point that should be kept in mind regarding string
constants is that they cannot contain quotation marks. Forexample,
the following string constant,

“Bill said, “Goodbye,” as he walked away.”

would be illegal. Since quotation marks are used to denote the begin-
ning and ending points of a string constant, their inclusion within the
string itself would cause difficulties and therefore is not allowed.

In lesson 18, we will discuss how the CHR $ function can be used
to place the ASCII code for quotation marks within a string constant.

ASCII

In our definition of string data, string characters were described
as the set of characters which can be represented with ASCII codes.
The PCjr cannot store characters; it can only store numbers. Before
characters can be stored, they must be converted to numbers. Com-
puters use special numeric codes to store characters. Most personal
computers including the PCjr use a coding system known as ASCII
(American Standard Code for Information Interchange).

The PCjr uses codes which differ slightly from the standard
ASClIlI code set. The codes used by the PCjrare listed in appendix A.
Notice that ASCII code 77 is used to represent the character M. A
different ASCII code, 109, is used to represent the lower case m.

Numeric Data

Numeric data can be defined as information represented with
numbers that can be used in performing calculations. Numeric data is
stored and operated upon in a different manner than string data.



230 1BM PCjr for Students

A numeric constant can be defined as a numeric data item witha
fixed value. In the remainder of this book, we will refer to a string
constant asa string and a numeric constant as a number. The follow-
ing are examples of numeric constants:

-7487 14.72# 36.9
29! 1.4E7 37481.58342

Numeric constants cannot include commas. For example,
10,000 would be an illegal numeric constant.

BASIC classifies numeric constants as integers, fixed-point
numbers, floating-point numbers, hexadecimal numbers, and octal
numbers. Each of these numeric data types will be discussed in the
following sections.

Integers

An integer is a number without a decimal portion. Integers can
either be positive or negative. The following are examples of integers:

-1134 0 1
-1 17945 +32

Integers can range from -32768 to +32767. Negative integers are
preceded with the (-) sign. Positive integers can be preceded with the
(+) sign, although integers without a sign are assumed to be positive.

Fixed-Point Numbers

Fixed-point numbers can be defined as the set of positive and
negative real numbers. Fixed-point numbers contain a decimal por-
tion. The following are examples of fixed-point numbers:

79.8394 -1.01
7.0 14376.91782



Data Types and Variables in BASIC 231

Floating-Point Numbers

Floating-point numbers are represented in exponential nota-
tion. A number in exponential notation takes the following format:

+xExyy

H

is an optional plus or minus sign.

X can either be an integer or fixed-point number. This portion of
the number is known as the coefficient or mantissa.

E stands for exponent. D can also be used instead of E to specify a
double-precision* floating-point constant. Either D or E can be
interpreted as “times ten to the power of the exponent™.

yy isa one or two digit exponent. The exponent gives the number of
places that the decimal point must be moved to give its true
location. The decimal point must be moved to the right with the
positive exponents. The decimal point is moved to the left with
negative exponents.

The following are examples of floating-point numbers and their
equivalent notation in fixed-point:

Floating-Point Fixed-Point

17E-4 .0017
237.9823E-9 .0000002379823
173.1ES 17310000.0

Any number in the range of 10E-38 to 10E+38 can be repres-
ented in floating-point form.

* Double-precision is explained in a later section.



232 1BM PCjr for Students

Hexadecimal Numbers

In mathematics, base 10 or decimal notation is normally used.
All of the previous examples were in base 10.

Hexadecimal numbers use 16 as a base rather than 10 as in
decimal notation. The digits 10, 11, 12,13, 14,and 15 are represented
with the letters A, B, C, D, E, and F, respectively. Hexadecimal
numbers are prefixed with &H in BASIC. The following are exam-
ples of hexadecimal numbers and their equivalent decimal values:

&HA4 164
&H231 561
&HAIA 2586

Octal Numbers

Octal numbers use 8 as the base. The digits 0 through 7 are used
in octal. Octal numbers are prefixed with &0 in BASIC. The follow-
ing are examples of octal numbers and their equivalent decimal

values:
& 0457 303
&012 10
& 020 16
Numeric Precision

Precision in the context of numeric data can be defined as the
number of significant digits used in representing the data. In BASIC,
numeric data may be stored as integers, single-precision numbers, or
as double-precision numbers. Each of these are stored differently in
the PCjr’'s memory, so the distinction is important.

As we discussed earlier, integers are whole numbers in the range
-32768 to 32767. A single-precision value can be defined as a non-



Data Types and Variables in BASIC 233

integer numeric value with a maximum of seven digits. A double-
precision value can be defined as any value with 8 or more digits. A
maximum of 16 digits will be printed for a double-precision constant.
Two bytes are required to store an integer value. Four bytes are
required for a single-precision value. Eight bytes are required for a
double-precision value.

Any of the following would be evaluated as single-precision
constants:

1.78
147.986
94387
1.01E6
7
1978.24871!

From our definition of a single-precision value, it is evident that
the first two numeric examples, 1.78 and 147.986, are single-precision
values. Since they contain a fractional portion, they are non-integers.
Since both contain less than seven digits, they fit our definition for a
single-precision value.

On the surface, the third example, 94387, appears to be an
integer as it does not contain a decimal portion. However, since this
value lies outside of the allowed range for integers (-32768 to 32767),
it is regarded as single-precision.

The fourth example is written in floating-point form with E used
to indicate exponentiation. By definition, any values represented in
exponential form using E are regarded as being of single-precision.

The trailing exclamation point (!) is used to force a value into
single-precision that would otherwise be regarded as an integer or
double-precision value. This is shown in our last two examples.
Although 7 would normally be an integer, the inclusion of the trailing
exclamation point forces it into single-precision. Likewise, 1978.24871,
which would otherwise be a double-precision value, is forced into
single-precision by including the exclamation point as a suffix.



234 1BM PCjr for Students

The following are examples of double-precision values:

4.98372443217
37854.98321
3.248D-06
T#
14.738#

From our definition, we can see that the first two values are
double-precision, as they each contain over seven digits. The third
example is written in floating-point form using D to indicate expo-
nentiation. By definition, any values represented in exponential form
using a D are regarded as being of double-precision.

The trailing number sign (#) is used to force a value into double-
precision that would otherwise be regarded as an integer or single-
precision value. This is shown in our last two examples.

Variables

So far in this lesson, we have discussed BASIC’s different types
of data -- string and numeric.

However, we have only discussed representing data as a con-
stant. The value of a string or numeric constant suchas”JIM HILL”
or 27.92 remains the same.

Data canalso be represented by using a variable. A variable can
be defined as an area of memory that is represented with a name. That
name is known as the variable name. The information stored in the
memory area defined by a variable name can vary (hence the name
variable) as BASIC commands or statements are executed. The data
currently stored in the memory area defined by a variable is known as
the variable’s value.



Data Types and Variables in BASIC 235

Variable Names

BASIC allows variable names of up to 40 charactersin length. A
variable name must begin with a letter of the alphabet (A-Z) followed
by additional letters, digits, or decimal points. Blank spaces are not
allowed within a variable name. The following are examples of valid
BASIC variable names:

PA4.1 A
X123 TOTAL.JUNE
QR37A Z17

A variable name may not duplicate a BASIC reserved word (see
appendix B). However, a variable name may incorporate a reserved
word as part of its name.* Therefore, although the following would
be invalid variable names:

NEW DATA PRINT

the following variable names would be valid:

NEW.PHONE DATA.X PRINTNAME

Variables, like constants, can either be numeric or string.
Numeric variables can be integer, single-precision, or double-precision.

* The exception to this rule is FN. A variable name may not begin with FN.



236 1BM PCjr for Students

A variable type can be declared by using a type identification
character. The type identification characters are as follows:

% = integer
! = single-precision
# = double-precision
$ = string

Forexample, the following variable names would be declared as
string, single-precision, and integer, respectively:

ANCIENTS B12! JACK%

If a variable type character is not specified, the variable type is
assumed to be single-precision.

Assigning Values to Variables with the LET Statement

Now that we have defined what a variable is and how variable
names are assigned, we are ready to learn how to assign a value to a
variable. BASIC’s LET command is used to assign a value to a
variable. LET statements are also known as assignment statements.
An example of a LET statement is given below:

LET A$ = “John”

The LET command causes the value in the right-hand side of the
equation to be assigned to the variable on the left-hand side.

The LET command is unique, as the reserved word LET need
not actually be included in the LET statement. This is evidenced in
the following example:



Data Types and Variables in BASIC 237

LET A$ = "John”
PRINT A$

A$ ="Sam"
PRINT A$

By entering the preceding statements, it is evident that if the LET
command is not included in the assignment statement, the variable is
still assigned a new value.

The value assigned to a variable can either be a constant or
another variable. This is shown in the following example:

Ok

10 A$ = "John”
20 B$ = A$

30 PRINT A$
40 PRINT B$

50 END
RUN
John
John
Ok

How Variables are Processed

Now that we have gained more understanding of what variables
are and how they are assigned values, let’s examine how the PCjr
processes and stores variables and their values. Suppose that you
entered the following program:



238 1BM PCjr for Students

Ok

10 WINS% = 42

20 LOSSES% =28
30 PRINT WINS%
40 PRINT LOSSES%
50 WINS% = 41

60 LOSSES% = 29
70 PRINT WINS%
80 PRINT LOSSES%
90 END

Ok

When this program is run, it will be executed as a series of eight
steps. These steps will be depicted on the following pages.

When the program is run, line 10 will be executed first. Line 10 is
an assignment statement in which the integer variable named
WINS% is assigned the integer value 42. Notice from the illustration
that an area in variable storage memory is assigned the name
WINS%, and the value assigned to WINS% is stored in that area.









Data Types and Variables in BASIC 241

Input Memory )
e e e it " | 0 ] 0|
Y s s I ! 0 o)
= egesoosmEog = 0 0

— EE=m _l'_l_r_‘.l'—E = EE I ]

Ok 10 WINS% = 42
10 WINS% = 42 20 LOSSES% = 28
20 LOSSES% = 28 30 PRINT WINS%
30 PRINT WINS% —>40 PRINT LOSSES%
40 PRINT LOSSES% 50 WINS% = 41
50 WINS% = 41 60 LOSSES% = 29
60 LOSSES% = 29 70 PRINT WINS%
70 PRINT WINS% 80 PRINT LOSSES%
80 PRINT LOSSES% 90 END
90 END
Ok
CcLs
RUN
Output Arithmetic and Logic

Variable Storage

WINS: 42

LOSSES: 28
J

In line 50, the variable WINSY% is assigned a new value. In line
60, the variable LOSSES% is also assigned a new value. Notice from
the illustration below that the new values replace the previous values
in variable storage.



242 1BM PCjr for Students

Input Memory
e e e . ™ 0 10
Seeemee | |3 om0
= egeeasssaSgE 0 0

o o ! ! = EITT f
= e === L 0 0

Ok 10 WINS% = 42

10 WINS% = 42 20 LOSSES% = 28

20 LOSSES% = 30 PRINT WINS%

30 PRINT WINS%
40 PRINT LOSSES%
50 WINS% = 41

60 LOSSES% = 29
70 PRINT WINS%
80 PRINT LOSSES%
90 END

Ok

CLS

RUN

Output

40 PRINT LOSSES%
50 WINS% = 41

—>60 LOSSES% = 29
70 PRINT WINS%
80 PRINT LOSSES%
90 END

Arithmetic and Logic

Variable Storage

WINS: 41
LOSSES: 29

The new values for WINS% and LOSSES% are displayed when

lines 70 and 80 are executed.




Data Types and Variables in BASIC 243

Input Memory h
e e e . 0 | 0
e e e e e e | } 0 0
e e T e e e el 0 0

= (—I~I—I—El-l—l_'J—E = EE l ’ O:m O
E e
Ok 10 WINS% = 42
10 WINS% = 42 20 LOSSES% = 28
20 LOSSES% = 28 30 PRINT WINS%
30 PRINT WINS% 40 PRINT LOSSES%
40 PRINT LOSSES% 50 WINS% = 41
50 WINS% = 41 60 LOSSES% = 29
60 LOSSES% = 29 70 PRINT WINS%
70 PRINT WINS% 80 PRINT LOSSES%
80 PRINT LOSSES% —90 END
90 END
Ok
CLS
RUN
Output Arithmetic and Logic

Variable Storage

WINS: 41
LOSSES: 29

J

One final point to keep in mind is that execution of the NEW
command not only erases a program from memory, but it also clears
all variable values as well.

The main point to be gained from this section is that a variable
name references an area in memory, and that the values stored in that
area can vary.



244 |1BM PCjr for Students

True or False

1. The integer numeric value 9 is represented internally with the
ASCII code 57.

2. The PCjr allows quotation marks to be included within string
constants.

3. Hexadecimal numbers use 16 as their base.
4. Variable values must remain constant in memory.

5. The numeric value 7# will be regarded as being of double-precision.

Multiple Choice

1. ASCII codes are used to represent:

Numeric values
Single-precision numbers
Octal values

String characters

None of the above

monw»



Data Types and Variables in BASIC 245

2. Which of the following is a fixed-point number?

27

“14.1”

1.7E+7
137.931248732!
None of the above

moOw>

3. Which of the following is a floating-point number?

A. &HAF

B. 1.7D7

C. &020

D. 1.7936#

E. None of the above

4. Which of the following variable names are valid?

A. 7D%

B. FNXS$

C. CLS!

D. A37X9!

E. All of the above

5. Which of the following statements would assign the string con-
stant “Phil” to a string variable?

LET NAME = PHIL
A$ = PHIL
X$ = PHILS

All of the above
None of the above

Mmoo

Essay

1. Define string data and numeric data.
2. Define the term variable.

3. Define the term numeric precision.



246 |1BM PCjr for Students

Computer Exercise

1. Write a program to assign the following constants to variables:

“Pittsburgh”  “Montreal” “Philadelphia”
42 4] 37
28 29 33

and display this information in the following format:

Ok
Pittsburgh
42
28
Montreal

41
29
Philadelphia
37
33
Ok

Note: A blank space isautomatically output prior to a numeric value
when that value is specified with a PRINT statement.






Operators 249

Introduction

In this lesson, we will work with operators and expressions. An
operator is a sign or phrase which represents an action that the
computer is to perform. An operator is generally used as part of an
expression. An expression is used to combine values, also known as
operands, to produce a new value. Operators usually have two oper-
ands, one to the left of the operator and one to the right. The
exception is negation, which we will discuss later in this lesson.

Microsoft BASIC includes three types of operators: arithmetic,
relational, and logical. We will discuss each of these three types of
operators in this lesson.

Arithmetic Operators

Arithmetic operators represent mathematical operations. The
operator causes the value on its left side to be combined with the
operand on its right side. One of the operators, +, can be used on both
string and numeric values as long as these are not mixed in the same
expression. The use of + with strings will be discussed in lesson 18.
The other arithmetic operators can only be used with numerics.

Addition (+)

The plus sign (+) is used to add numerics. This is shown in the
following example:






Operators 251

Exponentiation ()

The caret (A) is used in BASIC to indicate exponentiation. In
exponentiation, one number, the base, is raised to a new value. The
new value is obtained by multiplying the base times itself. The
number of times the base is to be multiplied by itself is indicated by
the exponent.

For example, in the following expression:

XA2

the numeric variable X would be evaluated as X multiplied by X. X is
the base, and 2 is the exponent.

Notice that exponentiation is consistent with our definition of
an expression. An operator, A, is used to combine the left operand,
the base, with the right operand, the exponent, to produce a new
value.

You might be more familiar with exponentiation as represented
in its standard algebraic format as shown below:

X2

Again, X is the base, and 2 is the exponent.
The use of A in a BASIC program can be seen by editing and
running the previous program as shown:



252 1BM PCjr for Students

Input Memory )
( D
e e e e e e e ™ | 0 10
e, | | S
= egesooss=0g 0
= r—l_l‘—r—gl—l—l_&_g — Eg 8:m; 0
L Ee—CccC § )
CLS 10A=5
30 C = AAB 20B=3
LIST 30C=AAB
RUN 40 PRINT C
50 END
\_ J
Output Arithmetic and Logic
Ok ‘ 5x5x5=125
LIST
10A=5
20B =3
30 C = AAB
40 PRINT C Variable Storage
50 END
Ok -
RUN g‘ - g
125 -
ok C=125
y

Notice that when line 30 was executed, the 5 was cubed. In other
words, 5 was multiplied by itself three times.

Floating Point Division (/)

Floating point division acts as does =+ in mathematics. The first



Operators 253

operand is simply divided by the second. This can be seen in the
following illustration:

Input Memory )
4 )
e e e . 0 ] 0
e e A 3o 0
== =i L=4|=|=l={;E
— (_l—«_:_El‘_l—r—a h’ = E,E l ] 8 EEEXTTRTTS 8
L Er_— cooc E..J
CLS 10A=5
30C=A/B 20B=3
LIST 30C=A/B
RUN 40 PRINT C
50 END
\_ J

Output Arithmetic and Logic

5 + 3 = 1.666667

Variable Storage

Floating point division is an appropriate name, because the
decimal point can move, or float, as needed. If no decimal point is
necessary, none will be printed.



254

IBM PCjr for Students

Integer Division ( \ )

Integer division results in two integer operands being divided
with another integer as the result. During execution, the operands, if
not already integers, are rounded to integers. The division is then
performed, and the quotient is truncated to an integer. In other
words, any numbers after the decimal point are just thrown away.

Integer division is like asking, “If I have five hamburgers and
there are three people at my picnic, how many hamburgers are there
per person?” The answer is one. Integer division will give the same

result. This can be seen in the following example:

Ok

LIST
10 A
20 B
30 C

5
3
A\B

40 PRINT C

50 END
Ok
RUN
1
Ok

Input Memory
( )
e e e e e~ et | 0 10
g oo oo | l 0 Q
Eogieooooeogg
= = hl—l  p— - h';h'g I ] 8“: 8
CLS 10A=5
30 C = A\B 20B=3
LIST 30C=A\B
RUN 40 PRINT C
50 END
- J
Output Arithmetic and Logic

5 + 3 = 1.666667
1.666667 truncated = 1

Variable Storage

5
3
1

Oom>»
wonon




Operators 255

In order to generate the backslash (\ ) symbol needed to repre-
sent division, the Alt-/ key was pressed. Notice that since A and B
already held integers, no rounding was performed. During the execu-
tion of line 30, A was divided by B. The answer was then truncated
and assigned to C. Integer division is often used to determine whether
one number is a factor of another. In this case, the answer is no.

If you attempt to divide by 0 in either integer or floating point
division, the computer will print out the message, “Division by zero.”
The value of +1.701412E+38 or —1.701412E+38 will then be returned,
depending on whether the dividend was a positive or negative
number. Since it is unlikely that this was the desired answer, it is a
good idea to stay away from division by zero.

Modulo Arithmetic (MOD)

Modulo arithmetic, or MOD, is used to find the whole number
remainder of division. When MOD is used, the division is performed,
and a whole number remainder is returned. It’s the same idea as
asking, “If I share those five hamburgers with the people at my picnic,
how many will I have left for tomorrow’s dinner?” The answer is, of
course, two. 5 MOD 3 also results in an answer of 2. The following
illustration demonstrates this point:









258 1BM PCjr for Students

Negation (-)

Negation and subtraction both use the minus sign (-). However,
negation includes only one operand, which is placed to the right of
the operator. Placing the operand to the left of the operator will result
in a missing operand error, since the computer interprets the — as the
operator for subtraction under those conditions and assumes the
second operand was omitted. Negation turns a positive number into a
negative number or a negative number into a positive number. In
other words, negation switches the sign. Since zero is not a signed
number, negating zero has no effect. The effect of negation is demon-
strated in the following example:

Input Memory Y
4 \
e e e e e e == oL 10
e T Yt e e | ! 0 0
= ogoooooio = 0 0
= ooy | ’ = 5
L B———ooC o ) 0
cLs 10A=5
30C=-A 20B=3
LIST 30C=-A
RUN 40 PRINT C
50 END
\_ J
Output Arithmetic and Logic
Ok
LIST
10A=5
208 -3
38 ,ERTN} AC Variable Storage
50 END
Ok A=5
RUN B=3
-5 c=-5

Ok




Operators 259

Subtraction (-)

Subtraction in BASIC is identical to subtraction in mathemat-
ics. This is illustrated by the following example:

Input Memory )
( )
e v e = = NS 0 0
S | | L om0
e e e e e e
;r_r_«“l—‘El—r"r_\—EgEE I ] 8zm: 8:-—-_:
L Er—— coc E_J )
CLS 10A=5
30C=A-8B 20B=3
LIST 30C=A-B
RUN 40 PRINT C
50 END
\ J
Output Arithmetic and Logic
Ok 5-3=2
LIST
10 A =
20 B =
30C=A-
40 PRINT C Variable Storage
50 END
Ok
A=5
R2UN B=3
ok Cc=2
)

Order of Evaluation

In the previous examples, operators were used to form simple
expressions. A simple expression is one which contains one operator
and one or two operands. Operators can also be used to form com-



260 1BM PCjr for Students

pound expressions. A compound expression consists of two or more
simple expressions. 5+ 5 - 3 is an example of a compound expres-
sion. When compound expressions are used, BASIC follows a set of
rules which specify which operation is to be performed first, second,
etc. These rules are known as the order of operations.

A general rule in the order of operations is that operations are
performed from left to right. In other words, if we tell the computer to
add three numbers, for example 5 + 7 + 2, five and seven are added
first, and that value and two are added.

Certain operators have a higher priority than others. This alters
the general rule. Table 12.1 lists the operator priorities from the
highest level to the lowest level.

Table 12.1. Order of evaluation of arithmetic operators

(0)
VY,

A
Exponentiation

2
—

¥O) ( Negation l @

* Floating
Multiplication Point Division
( Integer Division )

MOD
Modulo Arithmetic

+ —
( Addition ) Subtration




Operators 261

Operators with a higher priority level are evaluated before oper-
ators with a lower priority. Within each level of priority, expressions
on the left are evaluated before those on the right.

Mixing Variable Types in Arithmetic Expressions

Generally, it is best not to mix variable types. Sticking to the
same types of variable within an expression cuts down on running
time, saves space in memory, and decreases the probability of pro-
gramming errors.

If variable types are mixed, the value will, if possible, be changed
during execution to fit the specified variable type. For example, if 5.7
isassigned to aninteger variable, five will be rounded to six and then
stored. If the value cannot be changed, an error message will appear
on the screen. One possible error is attempting to add a string,
“Hello”, to a numeric, 5.

Relational Operators

BASIC includes six relational operators. Relational operators
are used to compare two values, both of which are either numeric or
string. A Ois returned if the comparison is false,and a -1 is returned if
the comparison evaluates to true. The relational operators are listed
in table 12.2.

Whenever a relational operator is used, it should be separated
from its operands by one space on either side. Again, the spaces are
not mandatory, but it is good programming style to include them.*

* Notice that the IBM PCjr does not accept LE, LT, GE, GT, EQ, and NE as operators.



262 1BM PCjr for Students

Table 12.2. Relational Operators
e |
Relational Operators

< less than
<=or=< less than or equal to

> greater than
>=or=2> greater than or equal to

equal to
><or<> notequalto

Strings cannot be compared with numerics, but strings can be
compared with other strings. If the two strings do not have the same
number of characters, the shorter string is considered to be the lesser.
Forexample, “B”is evaluated as less than “AA™. If the strings are the
same length, the ASCII codes for the characters in the string are
compared. The string which has the lower code number in the earliest
position is evaluated as the lesser. For example, “ABCD” is consi-
dered to be less than “ACBD™. Blank spaces do count; each has an
ASClII code of 32. “AAA”and “aAA” are not equal, because capital
and small letters have different ASCII codes. Capital letters have
lower code values than their small letter counterparts. A list of ASCII
characters can be found in appendix A.

Logical Operators

BASIC includes four commonly used logical operators. They
are most often used to compare the results of relational operators.
Logical operators are also known as Boolean operators. A value of -1
is returned if the comparison is true, and a value of 0 is returned if the
comparison is evaluated as false. Be careful to use only -1 and 0 as
operands. Using other operands can cause inaccurate results.



Operators 263

NoOoT

NOT acts as the logical complement. In other words, NOT
changes a true value to false or a false value to true. This is illustrated
by the following logic diagram:

T F A Operand

F T NOT A

NOT is most often used when something is to occur if the
condition is false. An example would be only considering a person for
a basketball team if that person was not shorter 5’8", or eating a
hamburger for dinner only if you didn’t eat one for lunch.

AND

When AND executes, if both operands are true, a value of true is
returned. Any other combination results in a false value being
returned. This can be seen in the following logic diagram:

T T F F A Operand
T F T F B Operand
T F F F A ANDB

AND only evaluates to true if both operands are true. An
example of AND reasoning is Chris and Jim who will only purchase
an item at the grocery store if both people want to buy it. If only one
of them wants the product, they won’t buy it.



264 1BM PCjr for Students

OR

When OR executes, a value of true will be returned if either of
the operands is true. The following diagram illustrates the operation
of OR:

T T F F A Operand
T F T F B Operand
T T T F AORB

OR is most often used when something is to be done as long as
any one of the conditions is true. An example is Chris and Jim who
decide they will buy a book as long as one of them wants to read it. If
they both want to read the book, they will still buy it.

XOR

XOR is the exclusive OR operator. XOR only returns a true
value if just one of the operands is true.

T T F F A Operand
T F T F B Operand
F T T F A XOR B

Notice that XOR returns a false value if both operands are true.
Jesse, who wants either chicken or fish for dinner, but not both, is
using XOR reasoning.



Operators 265

Order of Evaluation

Earlier in this lesson, we examined the order of evaluation for
arithmetic operators. Additional rules are applied when the com-
pound expression contains logical or relational operators. These
expressions are also evaluated from left to right within priority levels.
Arithmetic expressions are evaluated first, followed by relational
expressions. Logical expressions are evaluated last. The order of
evaluation among BASIC’s arithmetic, relational, and logical opera-
tors is summarized in table 12.3.

Table 12.3. Order of evaluation

Order of Evaluation

Arithmetic: N Exponentiation
— Negation
* / Multiplication Floating point division
\ Integer division

MOD  Modulo arithmetic

+ — Addition Subtraction

Relational: = Equal
<> >< Notequal
< Less than
> Greater than

<= =< Less than or equal to
>= => Greater than or equal to
Logical: NOT
AND
OR




266 1BM PCjr for Students

The order of evaluation can be changed by enclosing an expres-
sion within parentheses. The expression within the parentheses will
be evaluated first. For example, when the expression, 5 / (4 + 6) is
evaluated, four and six are added. Then five is divided by ten, the sum
of four and six. The answer is 0.5. In contrast, when the expression, 5
| 4+ 61is evaluated, five is divided by four, resulting in 1.25. Then 1.25
and 6 are added. The answer obtained is 7.25.

If parentheses are placed where they aren’t necessary, the paren-
theses will be ignored during execution. In the previous example, if (5
| 4) + 6 had been the expression, instead of 5 / 4 + 6, the order of
evaluation is not altered by the parentheses, and the computer oper-
ates as if the parentheses were not there. It is good programming style
to use parentheses whenever the parentheses will make the order of
evaluation clearer to another person, regardless of whether or not the
computer needs them. Whenever you use parentheses, make sure you
use the same number of left parens and right parens. Otherwise, the
run will stop due to a syntax error.






268 1BM PCjr for Students

2. What would be the result of the expression, 9/4?

2.25

1

2

36

None of the above

moaw»

3. Which of the following symbols will raise a number to another
number?

oD

Sow»
>Z+ *

E. None of the above

4. Which of the following logical operators will be evaluated as true if
the A operand is true and the B operand is true?

A. AND

B. XOR

C. NOT

D. None of the above

E. All of the above
Computer Exercises

1. Using the program you wrote for Computer Exercise 1 on page 128,
compute and display the average grade.
2. Use the computer to evaluate each of the following expressions:
a.6+9/3
b.(6+9)/3
c.5<23 AND 6+9 >=25
d.5<230R6+9>=25






Outputting Data 271

Introduction

In lesson 6, we discussed how to use PRINT to output one item
atatime. In this lesson, we will discuss how to output more than one
item at a time.

We will also look at how to format output so that it is appealing
to the eye. In lesson 6, this goal was accomplished by entering the
needed number of spaces into the string. This method isn’t very
efficient. The formatting of output can also be handled by the PRINT
USING statement, formatting characters, and formatting functions.
We will discuss each of these options in this lesson.

PRINT

Let’s look at what happens when we try to ouput three items
with a single PRINT command. Notice the following illustration:

Ok
PRINT "Bacon""Lettuce””Tomato”

BaconlLettuceTomato
Ok

There are no spaces in the line of output. It appears that the
computer treated the individual items as one string. Let’s examine
what happens when a space is placed between each entry:



272 1BM PCjr for Students

Ok
PRINT "Bacon” "Lettuce” "Tomato”

BaconlLettuceTomato
Ok

Again, the items appear as one string. If the spaces are replaced
by commas, the situation changes:

Ok
PRINT "Bacon”,”Lettuce”,” Tomato”

Bacon Lettuce
Tomato
Ok

The insertion of commas between the items caused the output to
appear with one item per print zone. A print zone consists of 14
spaces. The comma, when used with PRINT, spaces the strings by
print zones. Normally, the screen has 40 columns, but the enhanced
version of the PCjr can be set to 80 columns by entering the command
WIDTH 80. The screen can be returned to 40 columns by entering
WIDTH 40. A 40 column screen has two print zones per line. With
the screen set to 80 columns, there are four print zones per line. We
will look at this is in more depth in lesson 20.

We can alter the placement of the strings by changing the com-
mas to semicolons. The following example demonstrates this point:



Outputting Data 273

Ok
PRINT “Bacon”;"Lettuce”;" Tomato”

BaconlLettuceTomato
Ok

It appears that using semicolons causes the three strings to be
treated as though they were one. In this instance, however, the
computer considers the items to be three separate strings. This point
can be more clearly seen by substituting numbers for the strings, as in
the following example:

Ok
PRINT 10 20 30
102030

Ok

PRINT 10;20;30
10 20 30
Ok

Numbers are printed with a blank space automatically inserted
after each number. A blank space is also inserted prior to each
number if the number is zero or positive. If the number is negative,
the blank space is replaced by a negative sign.

With strings, blank spaces are not automatically inserted when a
semicolon is used to divide the items. If you want spaces separating
the strings, the desired number of spaces can be included within each
string, as in lesson 6. We will discuss other methods later in this
lesson.

A final point to note is that after each PRINT command, the
cursor advances to the leftmost position on the next output line. This



274 1BM PCjr for Students

is known as the carriage return/line feed or CR/LF. If you want the
output of separate PRINT commands to appear on the same line, the
CR/LF canbe suppressed by ending the statements with a comma or
a semicolon. This can be seen in the following example:

Ok

LIST

10 PRINT "Programming”,

20 PRINT "is fun ",

30 PRINT "with the IBM PCjr.”

40 END

Ok

RUN

Programming is fun
with the IBM PCjr.
Ok

In this instance, commas were used to suppress the CR/LF, so
the entries were placed in separate print zones. If the commas had
been replaced by semicolons, the items would have been placed one
after the other, on the same line.

PRINT USING

In contrast to PRINT, PRINT USING allows you to specify
exactly the desired spacing and formatting. The command has the
following structure:

PRINT USING format string;expressions

The format string consists of the actual definition of the desired
spacing. It contains any special characters which are to be included



Outputting Data 275

with the output. The format string also reserves an area on the output
line where the data will be displayed. It, in effect, operates as a print
zone, the length of which you have specified. The size of the reserved
area is determined by the characters in the format string.

The format string must be followed by a semicolon, which
separates it from the expressions. In this case, the expressions are the
data to be output, often stored in variables. The individual data items
must be delimited with commas or semicolons, but it doesn’t matter
which serves as the delimiter, because spacing is not affected.

Formatting Characters

There are two types of formatting characters, numeric and
string. Numeric formatting characters work with numbers, and string
formatting characters are used with strings. We will discuss the
characters individually.

Numeric Formatting Characters -- Pound Sign (#)

The pound sign (#) is the most commonly used numeric format-
ting character. The pound sign is used to save a place for a digit. Each
# reserves one space. This can be seen in the following example:



276 1BM PCjr for Students

Input Memory
i = ]
e e Y r__* ol o
= EgeEoos=m=0g - 0 0

= r—l—«'—'r"E‘j_l—r""—EghE | ] Om; 0

o [ em———— e

CLS
NEW 10A=5
AUTO 20 B = -76
10A=5 30 C = 4893
20B = -76 40 D$ = "### "

30 C = 4893 50 PRINT USING D$;A;B;C
40 D$ = "### " 60 END

50 PRINT USING D$;A;B;C

60 END

70 Fn-Break

RUN

Output Arithmetic and Logic

Ok
NEW
Ok
AUTO
10 A
20 B = -76
30 C = 4893
40 D$ = "### "
50 PRINT USING D$;A;B;C
60 END
70
Ok
RUN

5 -76 %4893
Ok

5

Variable Storage

A=5
=-76

C = 4893

D$ = "### "

J

In this example a trailing space was used in D$ so that the
numbers would be separated in the output. We will continue to

follow this procedure.

In addition, when this program was run, 4893 was preceded by
%. The percent sign indicates that the number contains too many
digits to fit into the allotted space. The % could be eliminated by

inserting an additional #.

The negative sign in B occupies one of the digit spaces, so no



~ Outputting Data 277

empty spaces were present in the field. If empty spaces were present,
as is the case with A, the number would be right-justified. In other
words, the field would be padded with blank spaces to the left of the
number.

Numeric Formatting Characters -- Decimal Point (.)

The decimal point (.) can be placed anywhere within the string of
formatting characters. Once set in place, it does not float. Notice
what happens when line 40 is changed to include a decimal point:

Input Memory h

( )
o e s e e = = NS
Ezgfgg;gggggg;g E

gt cooscoog g
— r_r_r—«—Ea_l—r—&_E = EE
__ Ele——ccC &

OO oo
oocoo

CLS 10A=5
40 D$ = "#### " 20B=-76
LIST 30 C = 4893
RUN 40 D$ = "#it 4 "
50 PRINT USING D$;A;B;C
60 END
\ J
Output Arithmetic and Logic
Ok
LIST
WA=5
20 B = -76
30 C = 4893
40 D$ = "si# Variable Storage
50 PRINT USING D$;A;B;C
60 END A-5
Ok
B=-76
RUN C = 4893
-76.0 %4893.0 N
5.0 -76.0 DS = "## 4

Ok




278 1BM PCjr for Students

Again, there is a 9% before 4893.0, although an extra space was
allotted, because the space was allotted after the decimal point.
Under this structure, the number requires seven spaces, but only six
are available.

In this example, all of the numbers were integers. If any of the
numbers had been fixed-point numbers, the decimal portion would
have been rounded to fit the allotted space. If a fixed-point number
lacks a whole number portion, a O is placed prior to the decimal point.
The only variation to this procedure occurs when no # appears before
the decimal point. In this case, the zero will be omitted.

Numeric Formatting Characters -- Plus Sign (+)

The plus sign can be placed on either side of the #. The + sign
causes the sign of the number to be printed next to the number. If the
+is placed to the left of the #, the sign will float next to the number, on
its left. If the + is placed to the right of the #, it will appear in the
output in the space to the right of the number. When the + is used, it
reserves an additional space for the sign. This can be seen in the
following example:












282 |BM PCjr for Students

one comma results in even the longest numbers having the correct
number of commas inserted. When specifying a comma in a format
string, remember that each comma will require a space. Therefore,
additional #’s must be included in the format string to allow for the
extra commas.

Numeric Formatting Characters -- Dollar Sign ($)

Putting a dollar sign ($) in the leftmost position of the formatting
string causes a dollar sign to be printed in the first position of each
output field. Using two dollar signs instead of one causes the $ to float
next to the number. We will look at both options in the following

examples:
Input Memory )
f )
e e e e e e et = |
o e | } 8 | 8m
= EgeEosss 0 0
= (_I_T_'r""El‘_l—l‘—h_E g EE I ] O:— DO XX O
L El——oC g |
CLS 10A=5
40 D$ = "SH###, 20B=-76
LIST 30 C = 4893
RUN 40 D$ = "SH###, "
50 PRINT USING D$;A;B;C
60 END
. J




332 1BM PCjr for Students

10 FORFLOOR=1TO 2
20 FORROOM =1TOS5
30 INPUT "Resident”;APT$
(FLOOR,ROOM)

40 NEXT ROOM

50 NEXT FLOOR

60 FORA=1TO 2
70FORB=1TO5

80 PRINT “Resident of"";A;B;"is ";
APT$(A,B)

90 NEXT B

100 NEXT A

110 END

120

Ok

RUN

Resident? Adams

Resident? Bell

Resident? Clark

Resident? Drake

Resident? Evans

Resident? Fletcher

Resident? Grant

Resident? Harris

Resident? Jacobs

Resident? Keller

Arithmetic and Logic

QO N O N
O S
— d d o h wd d h
W
AP ANONON
AN ON
+ 4+ o+ o+
Y
Wl
OWOWOH WO W
NW=WN W= W
+ 4+ 4+ 4+ + 4+
— h h h o d d
TR T TR TR (R I
WANAWAEN D

Variable Storage

Resident of 1
Resident of 1
Resident of 1
Resident of 1
Resident of 1
Resident of 2
Resident of 2
Resident of 2
Resident of 2
Resident of 2
Ok

1is Adams
2is Bell

3is Clark

4 is Drake
5is Evans
1is Fletcher
2 is Grant
3 is Harris

4 is Jacobs
5is Keller

FLOOR=1 ROOM =1
APT$(1,1) = "Adams”

ROOM = 2 APT$(1,2) = "Bell”
ROOM = 3 APT$(1,3) = “Clark”
ROOM = 4 APT$(1,4) = "Drake”
ROOM = 5 APT$(1,5) = "Evans”
ROOM=6 FLOOR =2

ROOM = 1 APT$(2,1) = “Fletcher”
ROOM = 2 APT$(2,2) = "Grant”
ROOM = 3 APT$(2,3) = "Harris"
ROOM = 4 APT$(2,4) = "Jacobs”
ROOM =5 APT$(2,5) = "Keller”
ROOM =6 FLOOR =3

A=1

(oo lecRocloe]
[T T
(S0 S NN
DO>Ow®
(T T T
OWN H =
>OOOm
([T TR}
WhHh=200N

J

The data structure used in this program is a table. A table has two
dimensions. The following diagram illustrates the structure of the
table:



Tables and Arays 331

Tables

In the previous example, the apartment building had one floor. If
the apartment building had contained more than one floor, we could
have simply added numbers to our loop and assumed that we knew on
which floor the apartments were. We could, however, modify the
previous program so that each apartment was identified by both the
floor and the room. This modified program is illustrated in the

following example:

Input Memory D
( )
P e e o e e 1)
e =
=Eogroooccooge g 0 0
— r_l_l—l_Er—l—l—h‘—.EgEE I ] Om 0

L E;; 00 E_J

CLS

NEW

AUTO
10 FOR FLOOR=1TO 2
20 FOR ROOM =1TO 5
30 INPUT "Resident”;APT$
(FLOOR,ROOM)
40 NEXT ROOM
50 NEXT FLOOR
60 FORA=1TO 2
70FORB=1TO5
80 PRINT "Resident of";A;B;"is “;
APT$(A,B)
90 NEXT B

100 NEXT A

110 END

120 Fn-Break

RUN

Adams

Bell

Clark

Drake

Evans

Fletcher

Grant

Harris

Jacobs

&ller )

10 FORFLOOR=1T0O 2
20 FORROOM =1TO 5
30 INPUT “Resident”;APT$
(FLOOR,ROOM)
40 NEXT ROOM
50 NEXT FLOOR
60 FORA=1TO 2
70FORB=1TOS
80 PRINT “Resident of";A;B;"is ";
APT$(A,B)
90 NEXT B

100 NEXT A

110 END




330 1BM PCjr for Students

Each subscripted variable represents one apartment. In this case,
the apartment building has one floor, so each room is identified with
one number. This type of structure is known as an array. The follow-
ing diagram illustrates the structure of an array:

T T T T T
1 2 3 4 5

Brown lives in APTS$(2). If Brown moves out and Bell movesin,
the array has this structure:

| adams | son | ciark | Drake ]| Evans
1 2 3 4 5

This array is identical to its predecessor except that one member, or
element, has changed.

Each subscripted variable is a unique variable. In other words,
APTS$(1)does not refer to the same place in memoryas APT$(2). One
element in the array can be changed without affecting other elements
inthearray. Itisalso important to note that subscripted variables can
be assigned values or used as operands. Any action which can be
performed with numeric variables can be performed with subscripted
numeric variables. Any action which can be performed with string
variables can be performed with subscripted string variables.

Finally, notice that we used FOR, NEXT loops in the program.
The index variable acted both as a counter and as the subscript.









Tables and Arays 327

Introduction

In previous lessons, we introduced the concept of variables.
Each variable was designed to hold a single data item. Some pro-
grams, however, require that hundreds or even thousands of variable
names be used.

The processing of large quantities of data can be simplified by
using subscripted variables, arrays, and tables in a program. In this
lesson we will discuss these methods as ways to handle data.

Subscripted Variables and Arrays

Suppose we want to input the names of the 5 residents of an
apartment building and then receive a list of the apartment number
and name of each resident. The following program illustrates the use
of many individual variable names to accomplish this task:

Input Memory )
4 \
e e e e e e ™= | 0 0
S s o e I } 0 0
= EEJEQQL;L-;-EQSQ = 0
— oo o= E — O O:I—-—
—r——
= SO0 g ) 0
CLS 10 INPUT "Resident”;APT1$
RUN 20 INPUT "Resident”;APT2$
Adams 30 INPUT "Resident”;APT3$
Brown 40 INPUT "Resident”;APT4$
Clark 50 INPUT "Resident”;APT5$
Drake 60 PRINT "Resident of 1is ";APT1$
Evans 70 PRINT "Resident of 2is ";APT2$
80 PRINT "Resident of 3is "“;APT3$
90 PRINT "Resident of 4 is ";APT4$
100 PRINT “Resident of 5is "“;APT5$
\ ) |110END




Tables and
AIMTOVS

lesson 16

Lesson Goals

BB A B8 B

Learn what subscripted variables are and how to use them
Learn what arrays and tables are and how to use them
Learn when and how to use DIM

Learn how to use OPTION BASE

Learn how to use DATA and READ

Learn how to use ERASFE

326



324 1BM PCjr for Students

b. Print out whether the month is in the winter (1-3), spring (4-6),
summer (7-9), or fall (10-12).

c. Using GOSUB, check to see if the month is within the specified
range of 1 to 12. If not, have the user reenter the data.

d. Set up the program so that the user can input 5 months. Use
either FOR, NEXT or WHILE, WEND.



Conditional, Branching, and Looping Statements 323

2. What will be the value of A when WHILE A < 10 has finished

executing?

moow»

10

11

0

1

None of the above

3. Which of the following symbols will allow the same line number to
be assigned to two statements?

A.
B.
C.
D.
E.

1
None of the above

4. Which of the following locations is the best place for a subroutine?

Mg Ow»

The line after the GOSUB

The line after the GOTO

In an IF THEN ELSE as part of
the ELSE

After the END

None of the above

5. Which of the following commands will stop the execution of an

infinite loop?

Computer Exercises

moOw>

Fn-Break

Space Bar

Enter

Escape

None of the above

1. Write a program to do the following:

a. Allow the user to input a month, using the numbers 1| to 12.
January should be represented by | and December by 12.






Conditional, Branching, and Looping Statements 321

In this example A is initially set to 1 as is B. A is then multiplied
by B, and B is incremented to 2. A is again multiplied by B, and B is
assigned the value of 3. Since 3 is outside of B’s range, A is incre-
mented to 2, and B is set to 1. A and B are again multiplied. B is
incremented to 2. The loop repeats, and B is incremented to 3. A is
then incremented to 3, and B is reset to 1. When this cycle is com-
pleted, both A and B will be outside of their specified ranges, so line 60
is executed.

Be careful to nest loops properly. Loops which overlap will cause
a NEXT without FOR error. We will discuss the uses of nested FOR
loops in the next lesson.









318 1BM PCjr for Students

Input Memory 1
( A
e e i ™= 0 0
egogocoooog 0 0
e o o e ] 0 0
o e s el | , 0
_ B—— ooy | 0
CLS 10 FOR A = 1 TO 10 STEP 2
10 FOR A = 1 TO 10 STEP 2 20 PRINT AA 2;
LIST 30 NEXT A
RUN 40 END
\ J
Output Arithmetic and Logic
1A2=1 1+2=3 3A2=9
Ok 3+2=5 5A2=25 5+2=7
LIST TA2=49 7+2=9 9A2=81
10 FOR A = 1 TO 10 STEP 2 9+2=11
20 PRINT A A 2;
30 NEXT A :
o END Variable Storage
RUN
1 9 25 49 81 A=1 A=3 A=5
A=7 A=9 A=11

The value for STEP need not necessarily be positive. A negative
STEP value counts down. Using a STEP value of 0 creates an infinite
loop.

Be careful not to change the value of the index variable within the
loop, as an error may result.



Conditional, Branching, and Looping Statements 317

Output Arithmetic and Logic

; 1A2=1 1+1=2 2A2=4
2+1=3 3A2=9 3+1=4

Ok 4A2=16 4+1=5 5A2=25

NEW 5+1=6 6A2=36 6+1=7

Ok 7A2=49 7+1=8 8A2=64

AUTO 8+1=9 9A2=81 9+1=10

10 FOR A =1 TO 10 10A2=100 10+1=11

20 PRINT AA2;

30 NEXT A Variable Storage

40 END

50 A=1 A=2 A=3

ng A=4 A=5 A=6

149 16 25 36 49 64 81 100 2=16 ﬁzﬁ A=9

Ok

Each time NEXT is executed, A is incremented by 1, and control
transfers to line 10. A is checked to see if it is within the specified
range, in this case, 1 to 10. The loop executes ten times. During the
last execution, one is added to 10 when NEXT is executed. Control
returns to line 10, but since 11 > 10, execution skips to the line after
NEXT, line 40. It is important to note that A = 11 when the loop is
completed, not 10.

A is known as the index variable. Specification of the index
variable is not mandatory after NEXT, but deletion of it can cause
confusion.

In this example, the loop was incremented by | during each
execution. Any number, integer or real, can be used. This number is
specified with the word STEP. STEP designates the increment. The
default value for STEP is 1. Let’s examine the program after it has
been modified to use Step 2.



316 1BM PCjr for Students

In this program, the colon was used to permit two statements on
the same program line, line number 40. As shown in this example, the
colon can be extremely useful when the desired result is to have two or
more statements execute when a condition is true. The THEN state-
ment is operative until the end of the line is reached or until ELSE is
encountered. The maximum length for the line is still 255 characters.

Both IF THEN 10 and IF THEN GOTO 10 send control to line
10. Including the GOTO statement can limit confusion.

FOR, NEXT

Earlier in this lesson we used GOTO to repeat a portion of a
program. The difficulty with using GOTO was that we could not tell it
when to stop except with Fn-Break. No lines after GOTO were
executed.

FOR, NEXT can be used to set up a portion of the program to
repeat a finite number of times. This process of repetition is known as
looping. The use of FOR, NEXT is illustrated in the following
program:

Input Memory )
( )
e e e e e o ) = 0 10
e s e e e e } 0 0
= ogeoooso 0 0

L;r_l_(_u—Er—l—l—k—EgEE | ] om 0
—BH——ccCF )

CLS 10 FORA=1TO 10

NEW 20 PRINTAA 2

AUTO 30 NEXT A

10 FOR A =1 TO 10 40 END

20 PRINT A A 2

30 NEXT A

40 END

50 Fn-Break

RUN
\_ W,




Conditional, Branching, and Looping Statements 315

Conditional Statements with Branching

Branching can be used with conditional statements. Let’s ex-
amine an example:

Input Memory )
4 w
e o o o o o e = = ) m 0 0
S ' s e e e 0 0
= egso0os=s00g . 0 0
= r—r_l—(_Er_(—r_}:Eg Eg | ] P 0
L o [ e— v i O
S— 10 INPUT “Number of wins";WINS
CLS 20 INPUT “Number of losses”;
LIST LOSSES
RUN 30 PERCENT = WINS / (WINS +
40 LOSSES)
36 40 IF PERCENT > .5 THEN PRINT
"The team has a winning record.”:
GOTO 60

50 IF PERCENT = .5 THEN PRINT
“The team has as many wins as

\— J losses.” ELSE PRINT “The team
has a losing record.”
60 END

Output Arithmetic and Logic

40 / 76 = .5263158

Ok = -
LIST 5263158 > 5 = -1

10 INPUT “Number of wins”;WINS
20 INPUT “Number of losses”;
LOSSES

30 PERCENT = WINS / (WINS + -
LOSSES) Variable Storage
40 IF PERCENT > .5 THEN PRINT
“The team has awinning record.”:
GOTO 60 WINS = 40

50 IF PERCENT = .5 THEN PRINT LOSSES = 36

"The team has as many wins as PERCENT =.5263158
losses.” ELSE PRINT “The team
has a losing record.”

60 END

Ok

RUN

Number of wins? 40

Number of losses? 36

The team has a winning record.
Ok




314 1BM PCijr for Students

Output Arithmetic and Logic

Ok

NEW

Ok

AUTO

10 INPUT "Enter name,grade re-
ceived”;NAM$,GRADE

20 GOSUB 1000 Variable Storage

30 PRINT “Name is: ";NAM$

40 PRINT "Grade is:";GRADE

50 END NAMS$ = "Hilary”

60 GRADE =109

Ok

1000 REM* CHECK GRADE

1010 IF GRADE > 100 THEN PRINT
“"Not possible!”

1020 RETURN

RUN

Enter name,grade received? Hilary,
109

Not possible!

Name is: Hilary

Grade is: 109

Ok

109 > 100 = -1

N—

When GOSUB is encountered in line 20, the statement is exe-
cuted and control shifts to line 1000. Execution continues sequen-
tially until the RETURN statement is encountered in line 1020.
RETURN causes execution to go to the line after the GOSUB, line 30.
Execution is completed at line 50. If END is omitted, the subroutine
executes again. When line 1020 executes this time, an error message,
"RETURN without GOSUB in line 1020,” appears.

Subroutines can make a program more efficient, and program
writing is simplified by breaking a complex program into shorter
segments. Subroutines are also easier to debug, because they are
shorter.



Conditional, Branching, and Looping Statements 313

This program branches until Fn-Break is entered. Fn-Break
interrupts execution. We will discuss other ways to control branching
later in this lesson.

GOSUB, RETURN

A subroutine is a small program within a larger program. Sub-
routines allow you to use the same segment of a program over without
having to reenter the individual program lines. There is no limit to the
number of times a subroutine can be called.

GOSUB is the command which calls a subroutine. GOSUB is
followed by the line number of the first line of the subroutine. Once
execution has shifted to the subroutine, it continues normally until
RETURN is encountered. RETURN shifts execution back to the
main part of the program, specifically to the line after the GOSUB.

It is a good programming practice to identify each subroutine
with a REM statement. Using REM makes it clear to others what the
subroutine accomplishes. Another good idea is to group subroutines
at the end of the program, after the END. This practice can reduce the
chances for error.

Input Memory

e e e e ks et | 0 0
= r_l_l—l_Ef_l_l_‘.l——AE — hE | ' O: O

[——— Ty yo |-
=

ITS¥O 10 IN'PUT "Enter name,grade re-
10 INPUT "Enter name,grade re- 20 cGegSedB;r;lé\M&GRADE
ceived”; NAMS$,GRADE uB 1000 =
30 PRINT “Name is”;NAM$

20 GOSUB 1000 . A
30 PRINT “Name is: ";NAM$ gg Ezg‘” Grade is:";GRADE

o0 ERINT "Grade is:";GRADE 1000 REM* CHECK GRADE
- 1010 IFGRADE > 100 THEN PRINT
60 Fn-Break Y - >
Not possible!

1000 REM* CHECK GRADE

1010 IF GRADE > 100 THEN PRINT
"Not possible!”

1020 RETURN

RUN

Hilary, 109

1020 RETURN




312 1BM PCjr for Students

GOTO

GOTO is a statement which changes the order of execution.
GOTO is followed by a line number. After GOTO, the next statement
executed is that line with the specified line number. Another word for
this process is branching. The following example illustrates the use of
GOTO:

N

Input Memory

4 )
e e e e e i = | 0 0

e s e e | a 0 0

= Sgso00s= 0 0
= EE== —.r_l—x_i_ig == I ] O 0

 — o

L E i 10 INPUT "“Number of wins”;WINS
CLS 20 INPUT “Number of losses"”;

50 GOTO 10 LOSSES

LIST 30 PERCENT = WINS / (WINS +
RUN LOSSES)

33 40 IF PERCENT >= .5 THEN PRINT
32 "The team has at least as many
33 wins as losses.” ELSE PRINT
34 "The team has a losing record.”
Fn-Break 50 GOTO 10

L J |60 END
Output Arithmetic and Logic

33 / 65 = .5076924
.5076924 >= 5 = -1
33 / 67 = .4925373
.4925373>= 5 =0

LIST
10 INPUT “Number of wins”;WINS
20 INPUT "Number of losses”;
LOSSES
30 PERCENT = WINS / (WINS +
LOSSES) X
40 IF PERCENT >= .5 THEN PRINT Variable Storage
"The team has at least as many
wins as losses.” ELSE PRINT

"The team has a losing record.” WINS =33 LOSSES =32
50 GOTO 10 PERCENT = .5076924
60 END WINS =33 LOSSES = 34
Ok PERCENT = .4925373
RUN

Number of wins? 33

Number of losses? 32

The team has at least as many wins
as losses.

Number of wins? 33

Number of losses? 34

The team has a losing record.
Number of wins?

Break in 10

Ok 4




Conditional, Branching, and Looping Statements 311

Input Memory )
o e e o o o oo e ) m

= ogrooooooog— g 0 0

P (S U Y l‘—l—i‘_ﬂ—‘g — REERXEXTT

= ol 1 l ) 0 0

CLS

40 IF PERCENT >= .5 THEN PRINT.
"The team has at least as many
wins as losses.” ELSE PRINT
"The team has a losing record.”

50

LIST

RUN

35

40

10 INPUT “Number of wins”;WINS

20 INPUT "Number of losses";
LOSSES

30 PERCENT = WINS / (WINS +
LOSSES)

40 IF PERCENT >= .5 THEN PRINT
"The team has at least as many
wins as losses.” ELSE PRINT
"The team has a losing record.”

60 END

Ok

RUN

Number of wins? 35

Number of losses? 40

The team has a losing record.

10 INPUT “Number of wins";WINS
20 INPUT “Number of losses";
LOSSES

30 PERCENT = WINS/(WINS +
LOSSES)

40 IF PERCENT > .5 THEN PRINT
"The team has at least as many

wins as losses.” ELSE PRINT

"The team has a losing record.”
60 END

Arithmetic and Logic

35 / 75 = .4666667
.4666667 >=.5=0

Variable Storage

WINS = 35
LOSSES = 40
PERCENT =.4666667

—

When line 40 was executed, the comparison returned a value of
false. The statements following THEN were ignored. The statements
following ELSE were executed. If the comparison had been true, the
THEN commands would have been executed, and the ELSE com-
mands ignored. Larry uses IF THEN ELSE logic when he decides
that if it is raining, he will take his umbrella, otherwise he will take his

sunglasses.



310 1BM PCijr for Students

Output

Ok

NEW

Ok

AUTO

10 INPUT “Number of wins”;WINS

20 INPUT “Number of losses”;
LOSSES

30 PERCENT = WINS / (WINS +
LOSSES)

40 IF PERCENT >= .5 THEN PRINT
"The team has at least as many
as losses."”

50 IF PERCENT < .5 THEN PRINT
"The team has a losing record.”

60 END

70

Ok

RUN

Number of wins? 35

Number of losses? 40

The team has a losing record.

Ok

Arithmetic and Logic

35 / 75 = .4666667
.4666667 >=.5=0
.4666667 < .5 = -1

Variable Storage

WINS = 35
LOSSES = 40
PERCENT = .4666667

I

When line 40 was executed, the comparison was evaluated. Since
the comparison is false, the rest of line 40 was ignored. When line 50
was executed, its comparison returned a value of true, and the rest of

that line was executed.

This program can be condensed by using a modification of IF
THEN, IF THEN ELSE. Let’s examine this modification:



Conditional, Branching, and Looping Statements 309

Introduction

In the past lessons, programs have been executed one line after
the other, or sequentially. In this lesson we will discuss how to alter
this pattern. We will look at how to make the program execute a
statement only under certain conditions, how to make the program
jump to another portion of the program, and how to make sections
execute repeatedly.

IF THEN

IF THEN sets up a check for a condition. If the condition is true,
the commands following THEN are executed. If the condition is false,
those commands are ignored. Larry uses IF THEN logic when he says
that “if it is raining tomorrow, I will take my umbrella.” The following
program illustrates the use of IF THEN:

Input Memory )
o s s o o o i = = =] 0 0
o oo | ; 0 0
= Sgeoooc=E0og & 0 0

— (_l_v_'l_Ejr_[_r_}l‘—AE‘, g Eg | ] AEEXTERTT] o_ll—I

o | e— O

CLS .

NEW 10 INPUT “Number of wins”;WINS

AUTO 20 INPUT “Number of losses”;

10 INPUT “Number of wins";WINS LOSSES

20 INPUT "Number of losses"; 30 PERCENT = WINS / (WINS +

LOSSES LOSSES)
30 PERCENT = WINS / (WINS + 40 IF PERCENT >=.5 THEN PRINT
LOSSES) “The team has at least as many

40 IF PERCENT >= .5 THEN PRINT wins as losses.”

“The team has at least as many 50 IF PERCENT <.5 THEN PRINT
wins as losses.” "The team has a losing record.”

50 IF PERCENT < .5 THEN PRINT 60 END

"The team has a losing record.”

60 END

70 Fn-Break

RUN

35

40







Inputting Data 307

What is the maximum number of characters which can be input
using LINE INPUT?

A. 255

B. 32767

C. It depends on what number is

specified in the function call.
D. 10
E. None of the above

Which of the following symbols acts as a delimiter when INPUT is
used with 2 or more variables?

b

oOw»

INPUT will not accept more
than one variable.
E. None of the above

4. Which of the following is a function?
A. INPUT
B. INPUTS
C. LINE INPUT
D. All of the above
E. None of the above
Computer Exercises

Rewrite the program you wrote for Computer Exercise 1 on page
128 to do the following:

a. Input five student’s names, letter grades, and percentages using
INPUT.

b. Allow the teacher to write a memo to him or herself in the
program by using LINE INPUT.

c. Input a ten-character teacher’s name with INPUTS.

Be sure to use prompts and to print out all data on the screen after
it has been input.






Inputting Data 305

Output Arithmetic and Logic

Ok

NEW

Ok

AUTO

10 LINE INPUT "Enter your name: ",
NAMS$

20 PRINT "Your name is ";NAMS$;"."”

30 END

40 NAMS$ = "Bell, Chris”

Ok

RUN

Enter your name: Bell, Chris

Your name is Bell, Chris.

Ok

Variable Storage

LINE INPUT and INPUT both assign an empty string to their
variable if the Enter key is pressed prior to the inputting of any data.



304 1BM PCjr for Students

Notice that the character that had been input did not appear on
the screen until line 30 was executed. The Enter key was not pressed
to signify the end of the data. The computer instead waited until 10
characters had been entered and then resumed execution.

It is a good idea to include a prompt such as the message in line
10. Otherwise, the person using the program may not realize that data
needs to be entered.

LINE INPUT

LINE INPUT allows a line of data to be input and assigned to a
string variable. The number of characters does not have to be speci-
fied prior to execution, and up to 255 characters will be accepted.
LINE INPUT accepts any character except Fn-Break. Unlike
INPUTS, LINE INPUT prints a flashing cursor to indicate that the
user should enter data. A prompt message may also be used. During
execution, the program pauses for the input and resumes execution
after the Enter Key has been pressed. Let’s examine an illustration:

Input Memory h
e e e e e e et ' ol 10
o s o o ﬁ 0 Q
= eg=Eoos= 0 0
= Cc= I—I_E:f_l == Eghg | ] EEEXTTETEY O
Q;

CLS 10 LINE INPUT “Enter your name: ";
NEW NAMS$
AUTO 20 PRINT "Your name is ";NAMS;"."
10 LINE INPUT "“Enter your name: "; 30 END

NAMS$
20 PRINT “Your name is ";NAMS;"."
30 END
40 Fn-Break
RUN
Bell, Chris




Inputting Data 303

where a$ is a string variable and b is the number of characters to be
accepted. The maximum value allowed for b is 255. Any character,
including control characters, will be accepted. The only exception is
Fn-Break. INPUTS is often used when characters not accepted by
INPUT, such as commas or quotation marks, are to be input.
INPUTS will only assign the input to string variables. The following
program illustrates the use of INPUTS:

Input Memory )
o e o o i = = SN2 0
= 3=

= ‘
= f—l_r—l—EI_l_r_!_'.E = EQ 8m 8:-———

e —— o)
(=]

CLS
NEW 10 PRINT "Enter your name”
AUTO 20 NAMS$ = INPUT$(10)

10 PRINT “Enter your name "

20 NAM$ = INPUT$(10)

30 PRINT “Your name is ";NAMS$;"."
40 END

50 Fn-Break

RUN

Chris Bell

Output

AUTO

10 PRINT “Enter your name”
20 NAM$ = INPUT$(10)

30 PRINT "Your name is ";NAMS$;"."
40 END

50

Ok

RUN

Enter your name.

Your name is Chris Bell.

Ok

'30 PRINT "Your name is “;NAMS;".”
40 END

Arithmetic and Logic

Variable Storage

NAMS$ = “Chris Bell”







Inputting Data 301

Introduction

In lesson 13 we discussed how to output data. The sample
programs had all of the information needed for execution within the
program. Sometimes, though, it is desirable for the person using the
program to give the program information during execution. In this
lesson we will discuss ways to accomplish this goal.

INPUT

When INPUT is used, a ? is displayed and execution pauses until
the person using the program types in a response and presses the
Enter key. That entry is then assigned to the specified variable as
program execution resumes where it stopped. INPUT can be used to
specify one or more entries of one or more variable types. Because of
this possibility, it is a good idea to prompt the user. A prompt is a
message which tells the person using the program what information
toenter. A typical promptis “Type END to end program.” If INPUT
is used for more than one entry in the same line, the values will be
assigned to the variables in the order listed. Let’s examine an

example:

Input Memory )
e e e e . 0 0
s e e e e e | ‘ 0 Q0
[ e e e e = 0

= r'—r_v—|:E|—'r—v—‘: Hg EQ | ] Om 0

00— ¢ 0

CLS 10 INPUT "Enter your name,age "
NEW NAM$,AGE
AUTO 20 PRINT “Your name is ";NAMS$;".
10 INPUT "Enter your name,age ", 30PRINT “You are”;AGE;"years old.’ ’
NAMS$,AGE 40 END X
20 PRINT "Your name is ";NAMS$;"."
30PRINT "Youare”;AGE;"years old.”
40 END
50 Fn-Break

RUN
Chris,17 -







298 IBM PCjr for Students

2. Assuming the screen width is set to 40, which of the following
PRINT commands will not cause the output to be placed on one
line?

PRINT “Ann” “Bob” "Chris”

PRINT “Ann”;"Bob”;”Chris”

PRINT "Ann”,”Bob”,”Chris”

PRINT “Ann””Bob””Chris”

None of the above

moo® >

3. What would be the output of the following line:
PRINT USING "&”;500;-9353;1
A. It wouldn’t work
B. 500-9353 1
C. %500%-93531
D. 50093531
E. None of the above

4. What does % mean?

A. It saves a place for a digit.

B. It saves a place for a character.

C. When used in numeric formatting,
% indicates percentage.

D. It meansthe number which was sent
to the field was too long for the
field.

E. None of the above

Computer Exercises

1. Revise the program you wrote for Computer Exercise 1 on page 128
to do the following:

a. Use the PRINT statement to print the output. Use a separate
string for the name, percentage, and grade of each student. The
data for each student should be input on the same line.

b. Use PRINT USING to print the data. Treat the names and
letter grades as strings, and the percentages as numerics.

Make sure the data is still centered under its proper heading.






296 1BM PCjr for Students

~

An important point to note is that all of these formatting func-
tions can be called with variables. It is not necessary to use them only
with constants.












292 1BM PCjr for Students

Notice that the comma, which is a character with special mean-
ing for numeric formatting, has no special meaning when used with
strings. In other words, characters with special meaning for numeric
formatting are literals when used for character formatting.

A formatting character can be treated as a literal by preceding
the character witha __. When the line is executed, that character will
be considered a literal. The underline will not appear.

Formatting Functions: TAB, SPC, SPACES

PRINT USING is not the only option available in Microsoft
BASIC for formatting output. Output can also be formatted by using
TAB, SPC, and SPACES.

TAB

TAB sets the column in which the printing of an output field will
begin. The range for calling the function is 0 to 255. The following
example demonstrates the use of TAB:

Input Memory )
( — )

GEEQHEEE&_E_&:‘;‘:‘;EI 0 0
v, o Y e e s 0 0
CogoooocooogtY g 0 0
. e —— =
CLs 10 PRINT "Programming” TAB(15) "is"
NEW TAB(100) "fun.”
AUTO 20 END
10 PRINT "Programming” TAB(15) "is"
TAB(100) “fun.”
20 END
30 Fn-Break

aun J
















Outputting Data 287

negative sign would have occupied the spot allotted for the whole
number part of the exponent.

In addition, the formatting string was reordered so that the
desired number of places could be obtained, both before and after the
decimal point. The numbers were then rounded to fit the field.

String Formatting Characters -- Ampersand (&)

In string formatting, the ampersand (&) is used to set a variable
length string field. A variable length string field is a field whose length
is dependent on the length of the expression which is being output.
One & in a string format will output any size string. This is illustrated
by the following example:

Input Memory h
e e et e . = 0 0
s e e I ‘ 0 0
e o o e 0

o o o o l—r_k_E‘,EEE | ’ 8 0

[ | e—

CLS 10 A$ = "P"

NEW 20 B$ = "ro”

AUTO 30 C$ = "gramming is fun.”

10 A$ = "P" . | 40 D$ = "&"

20 B$ = "ro” 50 PRINT USING D$;A$:B$;C$

30 C$ = "gramming is fun.” 60 END

40 D$ = "&"

50 PRINT USING D$;A$;B$.C$

60 END

70 Fn-Break

RUN







Outputting Data 285

Input Memory )
— )
e e e e e e . 0 0
s s o e e | ! 0 0
= ogesosss=ogl = 0 0
L=r_(_r—|—E|—(—r'“1—‘Eg ‘—E I ] Om O
L Ee—5C §
CLS 10A=5
40 D$ = "**Suuuy 20B=-76
LIST 30 C = 4893
RUN 40 D$ = "**SH##s "
50 PRINT USING D$;A;B;C
60 END
. J
Output Arithmetic and Logic
Ok
LIST
10A=5
20 B = -76
30 C = 4893
40 D$ = "*rSui## Variable Storage
50 PRINT USING D$;A;B;C
60 END A=5
Ok
B=-76
AUN C = 4893
o $5 ***-$76 **$4893 D§ = "

Even though there is now only one $ in the formatting string, the
dollar sign still floats next to the number. If the $ is placed before the
**5 in the formatting string, the $ won’t float. The number of
available spaces in each output field has again increased, since each *
reserves a space.






Outputting Data 283

Output Arithmetic and Logic

Ok
LIST
10 A
20 B = -76
30 C = 4893
40 D$ = "$H###, " Variable Storage

5

50 PRINT USING D$;A;B;C

60 END A-s

Ok

RUN B=-76
C = 4893

$ 5% -76 $4,893

Ok D$ = "Suu##,

-/

When the single $ was used, the $ was printed in the leftmost
position of each field. The following example demonstrates the use of
two dollar signs:

Input Memory )
r )
e e e .~ 0 | 0
S e e e et | I 0 0
= Egetnosmoogt— g
e e e s e el | ] 8 | e 8
L Ele—coC E_J
CLS 10A=5
40 D$ = "$Susus, 20B =-76
LIST 30 C = 4893
RUN 40 D$ = "$SH###, "
50 PRINT USING D$;A;B;C
60 END
. J




Tables and Arays 333

_
1 I Adams Bell II Clark Drake Evans I

1 2 3 4 5
2 Fletcher Grant Harris
1 2 3 4 5

Despite the added dimension, each subscripted variable is still
unique. It is not necessary to limit our table to just 5 rooms or just 2
floors. The limits to table size depend only upon the space available in
memory.

Notice that in this example we used nested FOR, NEXT loops.
FOR, NEXT loops are often used when working with subscripted
variables. In this program, the outer FOR loop signified the first
dimension, the floor. The floor can also be referred to as the row,
meaning the horizontal dimension. The row is the first number in the
subscript. All of the residents of the first floorare inrow 1, and all of
the residents of the second floor are in row 2.

Both Adams and Fletcher have the same room number, 1. The
room number is also known as the column. Columns, in tables or in
architecture, run vertically. Adams and Fletcher are in the first
column. Drake and Jacobs are in the fourth column.

DIM

When the previous program was executed, the maximum value
of each dimension was set to 10 by default. Since the starting value, or
base, of each dimension is assumed to be 0, an array can hold eleven
elements. A table can hold 11 x 11, or 121, elements.

If 16 elements are needed in the array, we can tell the computer to
set aside 16 spaces by using BASIC’s DIM statement. DIM is short
for dimension. DIM is used to define an array’s dimensions.



334 1BM PCjr for Students

Input Memory )
r )
e et e e e et e e e == | 0 0|
e A e o | ! 0 0"“""‘“
= SgEeooocoog 0 0
l—=_ r_r_v"‘l—‘EA_(_r_!—:E g E‘E | ’ O ] O
- Ele—— o & )
CLS 10 DIM A(15)
NEW 20 FOR LOOP1=0TO 15
AUTO 30 A(LOOP1) = LOOP1 + 1
10 DIM A(15) 40 NEXT LOOP1
20 FOR LOOP1=0TO 15 50 FOR LOOP2 = 0 TO 15
30 A(LOOP1) = LOOP1 + 1 60 PRINT A(LOOP2);
40 NEXT LOOP1 70 NEXT LOOP2
50 FOR LOOP2=0TO 15 80 END
60 PRINT A(LOOP2);
70 NEXT LOOP2 :
80 END Arithmetic and Logic
90 Fn-Break
RUN 0+1=1 0+1=1 1+1=2
1+1=2 2+1=3 2+1=3
3+1=4 3+1=4 4+1=5
4+1=5 5+1=6 5+1=6
6+1=7 6+1=7 7+1=8
7+1=8 8+1=9 8+1=9
9+1=10 9+1=10 10+1=11
10+1=11  11+1=12 11+1=12
12+41=13 12+1=13 13+1=14
13+1=14 14+1=15 14+1=15
15+1=16 15+1=16
Variable Storage
Output o AQ) -
=1 AQ1) =2
=2 A2 =3
Ok =3  A(3) =4
NEW 1=4 A(4) =5
Ok 1=5 A(5) =6
AUTO LOOP1=6 A(6) =7
10 DIM A(15) LOOP1=7 A(7) =8
20 FOR LOOP1=0TO 15 LOOP1=8 A(8) =9
30 A(LOOP1) = LOOP1 + 1 LOOP1=9 A(9) =10
40 NEXT LOOP1 LOOP1=10 A(10) = 11
50 FOR LOOP2=0TO 15 LOOP1 = A(11) =12
60 PRINT A(LOOP2); LOOP1=12 A(12)=13
70 NEXT LOOP2 LOOP1=13 A(13)=14
80 END LOOP1=14 A(14)=15
90 LOOP1=15 A(15) =16
Ok LOOP1 =16
RUN LOOP2=0 LOOP2=1 LOOP2=2
1234567 89 10 |LOOP2=3 LOOP2=4 LOOP2=5
11 12 13 14 15 16 LOOP2=6 LOOP2=7 LOOP2=8
Ok LOOP2=9 LOOP2=10 LOOP2=11
LOOP2=12 LOOP2=13 LOOP2=14
LOOP2 =15 LOOP2 =16

e/




Tables and Arrays 335

The memory space set aside for a table can also be increased by
using DIM. DIM(20,20), for example, sets aside space in memory for
a table with 441 elements. Two or more variables can be redimen-
sioned in one statement by separating the variables witha comma. An
example is DIM Q(50),B(25,30). DIM statements are usually grouped
at the beginning of a program so that they are easy to find and so that
arrays and tables are dimensioned before they are referenced in the

program.

OPTION BASE

OPTION BASE is used to specify the beginning subscript for all
array variables. By default, the base is 0. When the base is 0, DIM
A(20) means that 21 spaces are available in memory for A. This can be
a source of confusion as beginning programmers often interpret DIM
A(20) as reserving 20 spaces in memory instead of 21.

When OPTION BASE is used, the most common value specified
is 1. A value of 1 is used to avoid the confusion caused by allowing a
subscript of zero. With OPTION BASE setto I, DIM A(20) reserves
20 spaces in memory for A, not 21.

\_ RUN

Input Memory )
[ 1
e e e e e = 0 0
oo s o e r_-! 0 0
e e e e & 0 0
l‘; r_l_f—l—Ed—l_l_i‘_Ag g EE | , O 0
L E; 200 E_J
LS
SEW 10 OPTION BASE 1
AUTO 20FORA=1TO 11
10 OPTION BASE 1 30 NUM(A) = A
20FORA=1TO 11 40 PRINT NUM(A);
30 NUM(A) = A 50 NEXT A
40 PRINT NUM(A); 60 END
50 NEXT A
60 END
70 Fn-Break




336 1BM PCjr for Students

Output Arithmetic and Logic

Ok
NEW
Ok
AUTO
10 OPTION BASE 1
20 FORA =1TO 11
30 NUM(A) = A Variable Storage
40 PRINT NUM(A);

50 NEXT A
60 END

70

Ok

RUN

123456789 10
» Subscript out of range in 30

Ok

-
oNAa
+ + + 4+
aaaa
w oo
. YR N
—
® o N
+ 4+ +
— d ok
nnn
oow
oow
+ + +
— d
[T
“ua
o

>> >
[[RTIT]
o=

A=
A=
A=

When we tried to use eleven spaces, we discovered that there were
only 10 available. Zero is no longer a valid subscript. OPTION BASE
is usually placed prior to any DIM statements.

DATA and READ

DATA lists the values to be assigned to variables. DATA is more
efficient than INPUT when a large number of variables need data
values assigned. READ assigns the data values specified in the DATA
statement to the variables included with it. Let’s examine an example
of DATA and READ:



Tables and Arrays 337

Input Memory h
( D
P o ot e o o
St | | ey 0] 0
= ogroooocoog 0 0
e el l ’ 0 0

g 1) | ——r E_J

CLS
RUN

10 FORROOM=1TO 5

20 READ APT$(ROOM)

30 NEXT ROOM

40FORA=1TO5

50 PRINT “Resident of";A;"is ";
APT$(A)

60 NEXT A

70 DATA Adams, Bell, Clark, Drake,
Evans

80 END

Ok

RUN

Resident of 1is Adams
Resident of 2 is Bell
Resident of 3 is Clark

Resident of 4 is Drake
Resident of 5 is Evans

Arithmetic and Logic

won
+ + +
_a
i nn
AW
X
+ + +
— b
w o n
S SFN

(3 VI N
+ 4+ + +
— d —d -
TR ]
OWON

Variable Storage

ROOM =1 APTS$(1) = "Adams”
ROOM =2 APT$(2) = "Bell”
ROOM =3 APT$(3) = “Clark”
ROOM =4 APT$(4) = "Drake”
ROOM =5 APT$(5) = "Evans”
ROOM=6 A=1 A=2
A=3 A=4 A=5

A=6

When using DATA, a string need only be enclosed in quotation
marks if it contains a comma or a colon, or if it begins with a blank
space. Reserved words can be used as data.

When READ is executed, the computer searches for DATA.
The variables indicated with READ are assigned values from the
DATA statement one by one. If the first DATA statement contains



338 1BM PCjr for Students

fewer data items than corresponding READ variables, the computer
will search for another DATA statement. The computer keeps track
of which data item is to be assigned next with an internal pointer.

If there are more READ variables than DATA values, an Out of
DATA error message will appear. A syntax error will occur if the
READ variable and the DATA value don’t agree in type.

ERASE

ERASE eliminates variable storage. Whenanarrayis no longer
needed, ER ASE frees the memory previously assigned to it, allowing
the space to be reused. ERASE is more commonly used when work-
ing with large arrays. ERASE APTS is an example of an ERASE
command.






340 1BM PCjr for Students

2. What is the default value for DIM?

A. 10

B. 100

C. 1000

D. 0

E. None of the above

3. How many dimensions does a table have?

A. 1
B. 2
C. 3
D. 4
E. None of the above

4. In A(3,21) what is the subscript?

A A
B. 3
C. 21
D. 3,21

E. None of the above

Computer Exercises

1. Revise the program you wrote for Computer Exercise 1 on page 323
to do the following:
a. Use subscripted variables for the months.
b. Use DATA and READ statements instead of INPUT.



an+iNn= x

_ilumeric CNO
ot FUNCTIoNS

lesson 17

Lesson Goals

Learn how to use BASIC’s trigonometric functions: SIN, COS,
TAN, and ATN

Learn how to use BASIC’s SQR, INT, FIX, ABS, SGN, EXP, and
LOG functions

Bl  Learn howto use BASIC's CINT, CSNG, and CDBL functions to
convert the types of numerics

342



Numeric and Math Functions 343

Introduction

In this lesson we will discuss numeric and math functions. A
function defines a set of operations to be performed on a numeric or
string value. The format for using a BASIC function is:

Function name (data value)

The function name is followed by a data value. This data value can be
either a constant or a variable and is enclosed in parentheses. For
consistency, the data value will be referred to as X.

The functions which we will be discussing in this lesson and in
the next lesson are built-in functions. Built-in means that they are a
part of the Microsoft BASIC interpreter. Using a function is known
as calling a function. A synonym for calling is invoking. This process
is referred to as calling because the definitions of the operations
to be executed are located elsewhere. For built-in functions, that
definition is part of the BASIC interpreter.

SIN, COS, TAN, ATN

SIN, COS, TAN, and ATN are trigonometric functions. Trigo-
nometry is the branch of mathematics which deals with the relation-
ship of the sides and angles of a triangle. In the following figure, X is
the angle, a is the opposite side, b is the adjacent side, and c is the
hypotenuse, or side opposite the right angle:



344 |BM PCjr for Students

-Figure 17.1. Example triangle

SIN(X) returns the sine of the angle X. The sine of X is the length
of the side opposite the angle, a, divided by the length of the hypote-
nuse, C.

Calling COS(X) results in the cosine of X being returned. Cosine
is defined as the length of the side adjacent to angle X, b, divided by
the length of the hypotenuse, c.

TAN(X) returns the tangent of X. The tangent is the length of the
side opposite the angle divided by the length of the side adjacent to
the angle. In this case, the tangent of X is equal to the length of a
divided by the length of b.

Calling ATN(X) returns the arctangent of X. The arctangent of
X is the angle whose tangent is X. If TAN(X) is called and the value
returned by that call is used to call ATN, X is returned.

For COS, SIN, and TAN, X must be specified in radians. A
radian is equal to 57.29578 degrees. One degree equals .017453 radi-
ans. ATN returns the measure of the angle in radians. The following
program illustrates the use of the trigonometric functions:



Numeric and Math Functions 345

Ok
LIST
10 RAD =.017453
20 DEG = 57.29578
30 FORL=1TO 3
40 READ NUM(L)
50 S(L) = SIN(NUM(L) * RAD)
60 C(L) = COS(NUM(L) * RAD)
70 T(L) = TAN(NUM(L) * RAD)
80 A(L) = ATN(T(L)) * DEG
90 PRINT NUM(L);S(L);C(L); T(L);A(L)
100 NEXT L
110 DATA 30, 45, 60
120 END
Ok
RUN
30 .4999924 8660299 .5773385
29.9995
45 7070975 .7071161 .9999737
44.99925
60 .8660166 .5000153 1.73198
59.999

Ok

In this example the values for X are given in degrees. Prior to
calling SIN, COS, and TAN, the values are converted to radians.
The SIN, COS,and TAN functions are then called and the resultsare
assigned to subscripted variables. The value assigned to T(L) was
returned by TAN. This value is used to call ATN. The result of ATN is
multiplied by the number of degrees which equal one radian. Notice
that this final value is approximately equal to X. The data is then
output.

SOR

SQR is the built-in square root function. The square root of a
number is the number which, if squared, will result in the original



346 1BM PCjr for Students

number. The square root of 81, for example, is 9, since nine squared
equals 81. The following program demonstrates the use of SQR:

Ok
LIST
10 FORL=1TO3
20 READ NUM(L)
30 S(L) = SQR(NUM(L))
40 PRINT NUM(L);S(L);S(L) * S(L)
50 NEXT L
60 DATA 25, 30, 50
70 END
Ok
RUN
25 5 25
30 5.477226 30
50 7.071068 50
Ok

During execution of this program, the data value isread, and its
square root is computed and assigned to the subscripted variable, S.
Execution of line 40 causes the number, its square root, and its square
root times itself to be output. Notice that multiplying the number
stored in S times itself returns the original value.

INT

BASIC’s INT function returns the integer value of its argument,
or calling value. INT returns the highest integer whose value is less
than or equal to the argument’s value. If X is a positive number,
INT(X) will return the integer portion of X. INT(3.691), forexample,
would return 3. If X is negative, INT(X) returns the next lower
integer. An example of this point is that INT(-6.10938) would return
-7. The INT function is demonstrated in the following example:



Numeric and Math Functions 347

Ok
LIST
10 FORL=1TO 3
20 READ NUM(L)
30 I(L) = INT(NUM(L))
40 PRINT NUM(L);I(L)
50 NEXT L
60 DATA 2.6, 1.1, -8.3
70 END
Ok
RUN

26 2

1.1 1
-8.3 -9

Ok

INT(2.6) returns 2 because 2 is the highest integer less than or
equal to 2.6. One is the highest integer whose value is less than or
equalto 1.1,soitisreturned. -8 is greater than -8.3,s0 -9 is returned
instead of -8 when INT is called.

FIX

FIX(X)and INT(X) have the same effect when X is positive or 0.
Since FIX simply discards the decimal portion, FIX(3.691) returns 3,
and FIX(-6.10938) returns -6, not -7. The use of FIX can be seen in
the following program:



348 1BM PCjr for Students

Ok
LIST

10 FORL=1TO 3

20 READ NUM(L)
30 F(L) = FIX(NUM(L))
40 PRINT NUM(L);F(L)
50 NEXT L
60 DATA 2.6, 1.1, -8.3
70 END

Ok

RUN

26 2

1.1 1
-8.3 -8

Ok

While INT(-8.3) returned -9, FIX(-8.3) returns -8. FIX dis-
cards the decimal portion. It is not concerned with whether the value
returned is greater or less than the argument.

ABS

ABS returns the absolute value of its argument. Absolute value
is the distance of that number from 0. If X is zero or positive, the
value returned equals X. This result is due to the fact that the distance
from the value to 0 is equal to that value. When working with
negative numbers, the absolute value of the number is that number
without the negative sign. ABS never returns a negative value,
because distance is positive. -3 and 3 are both 3 units from zero.



Numeric and Math Functions 349

Ok
LIST
10 FORL=1TO 3
20 READ NUM(L)
30 A(L) = ABS(NUM(L))
40 PRINT NUM(L);A(L)
50 NEXT L
60 DATA 2,0, -8
70 END
Ok
RUN
2 2
00
-8 8
Ok

ABS(2) equals 2, since by definition, 2 is two unitsaway from 0.
ABS(0) equals 0. ABS(-8) returns 8, because -8 is 8 units away from

Z€ro.

SGN

SGN returns a value which indicates the sign of its numeric
argument. If X is positive, SGN(X) returns a value of 1. If X is
negative, -1 is returned. If X equals 0, 0 is returned.



350 1BM PCjr for Students

Ok

LIST

10 FORL=1TO3

20 READ NUM(L)
30 S(L) = SGN(NUM(L))
40 PRINT NUM(L);S(L)
50 NEXT L
60 DATA 2,0, -8
70 END

Ok

RUN

2 1

0o
-8 -1

Ok

Since two is a positive number, | is used to indicate its sign. Zero
is neither positive nor negative, so a value of 0 is returned. Finally, -8
is a negative number, its sign is represented by a value of -1.

EXP

EXP(X)returns the value of the base raised to a specified value.
The specified value is the calling argument, X. When working with
EXP, the base is assumed to equal 2.71828183. This value is also
known as e. The following equation represents EXP:

X

y=e

X is the exponent as well as the calling argument. e is the base,
and y is the value returned by EXP(X). The calling value cannot be
greater than 88.02969, because the computer is not designed to



Numeric and Math Functions 351

handle extremely large numbers. Using a larger number will cause an
overflow.

Ok
LIST
10 FORL=1TO3
20 READ NUM(L)
30 E(L) = EXP(NUM(L))
40 PRINT NUM(L);E(L)
50 NEXT L
60 DATA 2.772589, 0, 4.158883
70 END
Ok
RUN
2.772589 16.00001
0 1
4.158883 64
Ok

In this example, e was raised to each of the data values.
2.71828183 A 2.2589 equals approximately 16. e times itself 0 times is
equal to 1. Finally, 3 to the 4.158883 power equals 64.

LOG

LOG uses the value of y as its calling argument and returns X.
This is also known as the natural logarithm of X. A logarithm is the
exponent of the power to which a base number must be raised to
equal a given number. LOG, by definition, cannot be called by a
negative number. Using LOG on the answers we generated in the last
example will return the original value of X:



352 1BM PCjr for Students

Ok
LIST
10 FORL=1TO 3
20 READ NUM(L)
30 LG(L) = LOG(NUM(L))
40 PRINT NUM(L);LG(L)
50 NEXTL
60 DATA 16, 1, 64
70 END
Ok
RUN
16 2.772589
10
64 4.158883
Ok

LOG(16) returned 2.772589. LOG(1) returned 0, and LOG(64)
returned 4.158883.

CINT, CSNG, CDBL

These functions convert numbers to a specified type. CINT(X)
converts X to an integer, and CSNG(X) changes X to a single
precision value. CDBL(X) results in X being converted to double
precision. If necessary, the values are rounded. The following pro-
gram illustrates the use of these functions:



Numeric and Math Functions 353

Ok
LIST
10 FORL=1TO3
20 READ NUM#(L)
30 CI(L) = CINT(NUM#(L))
40 CS(L) = CSNG(NUM#(L))
50 CD#(L) = CDBL(NUM#(L))
60 PRINT NUM#(L);CI(L):CS(L):CD#(L)
70 NEXT L
80 DATA 1.356, 8, 67.987654321
90 END
Ok
RUN
1.356 1 1.356 1.356
8 8 8 8
67.987654321 68 67.98766 67.987654321
Ok

CI(1.356) in integer form is merely 1. No rounding is needed.
Since the number is already single precision, it is not altered by
CSNG. In double precision, 1.356 is represented as 1.356, also.

When the integer, 8, is used as X, it is output as 8, regardless of its
type.

Finally, 67.987654321 is rounded to 68 in order to be stored asan
integer. In single precision, its value is 67.98766, rounded to seven
digits. Since the number is already double precision, CDBL has no
effect.






Numeric and Math Functions 355

2. Which of the following functions returns the distance of a number

from 0?

monO®»

ABS
SGN
INT
FIX
None of the above

3. Which of the following functions will convert a number to single

precision?

moO®>

INT

FIX

SQR

CSNG

None of the above

4. What is the maximum allowed value with which to call EXP?

Computer Exercises

moO®m»

e
2.71828183

32647

88.02969

None of the above

1. Use the computer to evaluate the following expressions:

-0 A0 oW

.SIN(15) COS(15) TAN(I5)
. SQR(15)

. INT(-2.38)
. ABS(-2.38)
. EXP(0)
. CINT(3.63)

F1X(-2.38)

SGN(-2.38)

LOG(1)

CSNG(3.63) CDBL(3.63)



_STrimg
UNCTIONS

lesson 18

Lesson Goals

Learn how to concatenate strings
Learn howto use BASIC'’s LEFT$, RIGHTS, and MI1DS$ functions

Learn how to use BASIC’s STRS, VAL, CHRS, and ASC
functions

Learn how to use BASIC’s INSTR function

Learn how to find the length of a string by using BASIC’s LEN
function

Learn how to use BASIC’s STRINGS function
356



String Functions 357

Introduction

In this lesson we will work with BASIC’s built-in functions
which apply to strings. These functions will permit us to add strings
together, select specified characters for use, convert data types, and
search for selected characters.

String Concatenation

Two strings can be added together to create a new string. This
merging is called concatenation. The following program demon-
strates this process:

Ok

LIST

10 A$ = "Programming "
20 B$ = "is fun.”

30 C$=A$+B$

40 PRINT C$

50 END

Ok

RUN

Programming is fun.
Ok

In this example two strings, A$ and B$, were merged into one
string, C$. A$ and B$ were not affected by the concatenation. The
symbol for string concatenation is the plus sign, +.



358 1BM PCjr for Students

LEFTS

LEFTS returns a specified number of characters beginning with
the leftmost character. The configuration for the function call is:

LEFTS$(string, number of characters desired)

LEFTS requires two parameters. The first argument, the string, is the
string from which the characters are to be selected. The second
parameter is the number of characters to be selected. If the second
parameter is greater than the total number of characters within the
string, the entire string will be returned. The following program
illustrates the operation of LEFTS$:

Ok

LIST

10 A$ = "Programming is fun.”
20 B$ = LEFT$(A$,5)

30 PRINT B$

40 END
Ok

RUN
Progr
Ok

During execution of line 20, the five leftmost characters are
taken and assigned to BS. Again, AS is not affected by the function
call.



String Functions 359

RIGHTS

RIGHTS also returns a specified number of characters from a
string. The key distinction between LEFT$ and RIGHTS is that
RIGHTS begins with the rightmost characters of the string, not the
leftmost. The format for calling RIGHTS is similar to the format for
calling LEFTS: '

RIGHTS (string, number of characters selected)

The two required arguments are the initial string and the number of
desired characters. The following program demonstrates the opera-
tion of RIGHTS:

Ok

LIST

10 A$ = "Programming is fun.”
20 B$ = RIGHT$(A$,5)

30 PRINT B$

40 END
Ok

RUN
fun.
Ok

In this example the 5 characters at the end of the string were
assigned to BS. A$ was not affected. It is important to note that the
characters are not reordered by using RIGHTS.



360 1BM PCjr for Students

MIDS

MIDS$ is used to select characters in the middle of a string. When
working with LEFTS$ and RIGHTS, selection must begin at one of
the ends of the string. With MIDS, selection can begin at any point
within the string. MID$’s format is as follows:

MIDS$(string, starting character’s position, number of characters)

The string and the starting position are required. The starting positon
is a number which indicates the position of the specified character
within the string. In the string “Hello™, forexample, “H™is in position
1, and “0” is located in position 5.

The third parameter, the number of characters, is optional. If the
number of characters to be selected is not specified, the remainder of
the string, beginning at the specified starting position, is returned.
The following program portrays the use of MIDS$:

Ok

LIST

10 A$ = "Programming is fun.”
20 B$ = MID$(A$,5,6)

30 PRINT B$

40 END
Ok

RUN
rammin
Ok

Notice that six characters were returned and assigned to B$,
beginning with the “r” in position 5. The characters were not reor-
dered, and AS$ was not affected.



String Functions 361

MIDS can also be used to replace characters in one string with
characters from another string. If the replacement string has fewer
characters than the value of the third parameter, the substitution will
begin with the character in the initial string which is in the specified
starting position. Additional characters will simply be retained. In
the string “Hello”, for example, if we wanted to replace the characters
“ello” with “bye” the result would be “Hbyeo”. The string “bye” has
fewer characters, 3, than does the string “ello”, so the “o0”is retained.
The following program illustrates the use of MID§ to replace

characters:

Ok

LIST

10 A$ = "Programming is fun.”
20 MID$(A$,5,6) = "hello!”

30 PRINT A$

40 END

Ok

RUN

Proghellolg is fun.
Ok

In this case, A$ was altered. Note that the replacement string is
assigned to the specified area in the initial string. It is not necessary to
assign that string to AS$, as that assignment occurs automatically.

STRS and VAL

The BASIC functions of STR$ and VAL perform string-
numeric conversion. STR$ converts a numeric value into a string.
VAL converts a string into a numeric value. The string to be con-



362 1BM PCjr for Students

verted by VAL must consist of numeric characters such as "91”. If a
blank space appears in the string, it will be ignored. If any other
nonnumeric character appears, the numeric characters up to the
nonnumeric will be returned. The functions have the following

formats:

STRS$(numeric value)
VAL(string)

The following program illustrates the operation of these functions:

Ok
LIST

10 A$ = STR$(1984)
20 B = VAL("1984")
30 PRINT A$,B

40 END

Ok

RUN
1984

Ok

Execution of line 10 causes the value 1984 to be converted to a
string. That string is then assigned to AS$. Execution of line 20 causes
the string, 1984, to be converted to its numeric value of 1984 and

assigned to B.



String Functions 363

CHRS and ASC

CHRS and ASC perform ASClI-text character conversions.
These functions only operate on one ASCII code or one text charac-
terata time. CHRS convertsan ASCII code value, suchas 83, intoa
text character. The ASC function converts a text character into an
ASCII code value.

The functions’ formats are:

CHRS$(ASCII code)
ASC(text character)

The text character used to call ASC must be enclosed in quotation
marks since it is a string. The following program displays the use of
CHRS$ and ASC:

Ok

LIST

10 A$ = CHR$(100)
20 B = ASC("Q")
30 PRINT A$,B

40 END
Ok

RUN

d

Ok

The character with the ASCII code of 100 is “d™. Execution of
line 30 causes this character to be output. Since the ASCII code for
“Q” is 81, that value is also output during line 30’s execution.



364 1BM PCjr for Students

INSTR

INSTR searches for the initial appearance of a specified string
within another string. Once thatappearance is found, INSTR returns
the position where the match begins. The format for INSTR is:

INSTR (starting position, string to be searched, string to search for)

The latter two parameters are required. The first of these required
parameters is the string to be searched. The second parameter is the
character or characters for which we are searching. If, for example,
we want to know if the letter “y™ appears in the string “goodbye™,
“goodbye” is the string to be searched and “y” is the string for which
to search.

The first parameter, the starting position, is optional. This
parameter specifies the position where the search is to begin. If we
want to know only if “y” occurs in the last half of the word, “good-
bye”, the starting position would be specified as 4. If we want the
search to include the entire string, we can omit this parameter.

Capital and small letters are considered to be different charac-
ters. If we ask, instead, whether the letter “Y ™ appears in “goodbye™,
we will be told that it does not appear. If the string to be searched for
is not found, a value of 0 will be returned.

The following program demonstrates the operation of INSTR:

Ok

LIST

10 A$ = "Programming is fun.”
20 B = INSTR(A$,"i")

30 PRINT B

40 END
Ok
RUN
9
Ok




String Functions 365

Since no starting position was specified, the search began with
“P”. If a position s specified and the string is found, the value for the
position will be counted from the beginning of the string to be
searched, not from the beginning of the searched part of that string. If
the search in our example had begun with the fourth character
instead of the first, the value returned would still have been 9, since
“i"appears for the first time in position 9. After the string was found,
the search was halted. INSTR returns only the initial position.

LEN

LEN returns the number of characters in a string. In other
words, LEN returns the length of the string. The format for calling
LEN is:

LEN(string)

The string can be either a constant or a variable, as can the
strings used by all of the functions we have discussed in this lesson.
The following program demonstrates the use of LEN:

Ok

LIST

10 A$ = "Programming is fun.”
20 B = LEN(A$)

30 PRINT B

40 END
Ok
RUN
19
Ok




366 1BM PCjr for Students

AS$ has 19 characters, including punctuation and blank spaces.
All characters are counted by LEN, and the value assigned to Bis 19.
Execution of line 30 causes this value to be output.

STRINGS

STRINGS returns a string of a specified length consisting of
specified characters. The format for calling STRINGS is:

STRINGS$ (number of characters desired, character desired)

The number of characters desired is the iength of the string which is to
be created. The character desired can be either a string or an ASCII
code value. The string containing the desired character can consist of
a number of different characters but only the first character will be
replicated. This point can be more clearly seen in the following
example:

Ok

LIST

10 A$ = "Programming is fun.”
20 B$ = STRING$(5,A$)

30 C$ = STRING$(3,169)

40 PRINT B$,C$

50 END
Ok
RUN
PPPPP
Ok




String Functions 367

The first character in A$ is “P”. That character is replicated five
times and assigned to B$ during the execution of line 20. Line 30’s
execution causes the replication of the character with the ASClI code
169 to occur three times. These strings are then output in line 40.

3






String Functions 369

2. What will be the output of the statement,
MIDS$("Hello there !”,2,4)?

A. lo

B. ello

C. He

D. ther

E. None of the above

3. Which of the following functions can be used to convert a numeric
value to a string?

A. STR$
B. VAL
C. CHRS$
D. ASC

E. None of the above

4. What will be the output of the statement,
PRINT INSTR(”Hello”,”1”)?

A. 6
B. 3
C. 0
D. 3 4

E. None of the above

S. What will be the output of the statement,
PRINT STRINGS$(2,”Hello”)?

A. He

B. HH

C. 1

D. 2

E. None of the above

Computer Exercises
1. Write a program to do the following:

a. Input the user’s first and last names as two strings.



370 1BM PCjr for Students

b. Concatenate the strings and assign this new string to a
variable.

c. Take the first 3 characters, the middle 3 characters, and the last
3 characters of the concatenated name. Assign these strings to
variables.

d. Find the ASCII value for the Sth letter. Assignittoa variable.

e. Output the values for all the variables.



EDTher FUNCTIONS
and User-Defineo
FUNCTIONS

lesson 19

Lesson Goals

B B8

8 B8 8

B

Learn how to use BASIC’s FRE function

Learn how to use BASIC’s POS function

Learn how to use PEEK and POKE when working with memory
Learn how to use RND and RANDOMIZE to generate numbers
Learn the uses of BASIC’s SCREEN function

Learn how to create and utilize user-defined functions

372



Other Functions and User-Defined Functions 373

Introduction

In the past two lessons, we have explored numeric and string
functions. In this lesson we will discuss an assortment of built-in
functions which cannot be assigned to either of these categories. We
will also examine user-defined functions. User-defined functions are
not built-in but are instead defined by the programmer.

FRE

FRE returns the number of unused bytes in memory. FRE can
be called with either a stringargument or a numeric argument. When
FRE is used with a numeric argument, the function simply returns
the number of unused bytes. If FRE is called using a string argument,
housekeeping is performed prior to the return of the number of
available bytes. Housekeeping consists of two steps. First, the useful
data is gathered and stored in the smallest possible amount of space.
This process releases the areas in memory which once held data but
no longer do. Because data was once stored in these memory loca-
tions, that space is not considered available. Housekeeping frees this
space. Then the number of available bytes is returned. FRE’s format
is the following:

FRE (numeric or string argument)

The following example illustrates the use of FRE:



374 1BM PCjr for Students

Ok
PRINT FRE(0)
59694

Ok

PRINT FRE("A")
59694

Ok

In this example housekeeping had no effect. Housekeeping will
be ineffectual whenever all memory which is in use is needed. If
housekeeping is possible, the amount of memory available will
increase after the process has been performed.

Under certain conditions housekeeping may be automatically
performed. Housekeeping will automatically occur whenever the
amount of space available in memory is less than that needed. The
process will be performed in an attempt to release a sufficient number
of bytes.

It is a good programming practice to use FRE with a string
argument whenever a program is extremely long or when the tables
and arrays which are being used are large. This process will determine
whether enough space isavailable in memory for your program. Ifan
insufficient number is available, the housekeeping will attempt to
make enough bytes available.

POS

The column in which the cursor is currently located is returned
by POS. Any string or numeric argument can be used to call POS.
The format for calling POS is:

POS(string or numeric argument)



Other Functions and User-Defined Functions 375

POS returns the same result regardless of whether a string argument
or numeric argument is used as its argument. The following program
demonstrates the use of POS:

Ok
LIST

10 FORA =1TO 20
20 PRINT POS(0);
30 NEXT A

40 END

Ok
RUN
1 4 7 10 14 18 22 26 30 34
38 5 8 11 15 19 23 27 31 35
Ok

When POS is called for the first time, the cursoris located in the
first column, so a value of 1 is returned. The cursor is then located in
the fourth column. The second call of POS returns a value of 4.
Notice that POS indicates only columns. It does not indicate the row.
When POS is used and WIDTH is set to 40, the columns are num-
bered from 1 t0 40. If WIDTH is 80, the columns are numbered from
1 to 80.

PEEK

PEEK returns the contents of a specified memory location.
PEEK has the following format:

PEEK (memory location)



376 1BM PCjr for Students

The specific memory location to be checked is represented by a whole
number. The value for the memory location can range from 0 to
65535. PEEK returns an integer between 0 and 255, inclusive. The
value returned is a representation of the contents of that memory
location. A value of zero indicates that the space is empty. Since
PEEK merely observes memory, it is most often used when one
specific piece of information is needed. One possible use of PEEK,
forexample, is checkinga location in memory to see if the button ona
joystick has been pressed.

POKE

POKE actually alters the contents of a specified memory loca-
tion. The configuration for POKE is:

POKE memory location, new contents

Notice that the arguments are not enclosed in parentheses. The first
argument is a memory location. The second is the data which you
want that location to contain. This data must be an integer within the
range of 0 to 255, inclusive.

POKE actually changes the contents of a specific location in
RAM memory. Because of its power, POKE is a risky command. As
such, it is a good idea to use POKE sparingly and only when you are
positive that you want to alter the contents of that specific location.

RND

RND s a function which generates a random number between 0
and 1. The number is considered to be random because every number
between 0 and 1 has an equal chance of being selected. Flipping a coin



Other Functions and User-Defined Functions 377

is an example of a random selection. Both heads and tails have an
equal chance of being the result.
RND can be used with or without a parameter. The format for

calling RND is:

RND(a)

The parameter, a, can be any numeric value. If a is positive,
RND will return the next random number in the current sequence.
An example of a possible sequence is .7151002, .683111, and
.4821425. The first time RND is called with a positive value of a, the
first number in the sequence is returned. The second call, using the
example sequence, returns .683111. The third call returns .4821425.

Each time a program is executed,if RND’S argument is positive,
the same sequence will be returned. To illustrate this point, execute
the following program:

Ok

LIST

10 FORX=1TO5
20 PRINT RND(X)
30 NEXT X

40 END

Ok

RUN
.7151002
.683111
.4821425
.9992938
.6465093

Ok




378 1BM PCjr for Students

Suppose we then cleared the screen by executing CLS, edited line
10 as follows:

10 FOR X = 20to 24

and ran the program a second time. As shown below, the same series
of random numbers would be generated:

Ok

EDIT 10

10 FOR X = 20to 24
RUN

.7151002

.683111

.4821425

.9992938

.6465093
Ok

As long as a is positive, this sequence will be generated. The
initial value of a has no effect.

The sequence of random numbers can be changed by specifying
a value for a which is either negative or zero. If a is negative or zero, a
new seed will be generated. The seed is the number which the compu-
ter uses to determine the initial value of the random number
sequence. We can change the sequence of random numbers which
will be generated by adding the following line to our program:

5 PRINT RND(-100)

Since RND’sargument is negative, this statement will resultina
new seed. A new series of random numbers will be generated by now
executing our program:



Other Functions and User-Defined Functions 379

Ok

LIST
5 PRINT RND(-100)

10 FORX=1TO5

20 PRINT RND(X)

30 NEXT X

40 END

Ok

RUN
.8188288
.2677991
8.733116E-02
7.081251E-02
.8175731
.5208339

Ok

A new seed was generated by the execution of line 5. This caused
new random numbers to be generated by lines 10 to 30.

The desired range for the random number is not always 0 to 1.
The following program illustrates how to obtain a number in a dif-
ferent desired range which is, in this case, | to 6:

Ok

LIST

10 DI =INT(6 * RND + 1)
20 PRINT "You rolled a”;DI

30 END

Ok

RUN

You rolled a 5
Ok

Since this program simulates the roll of a die, we needed a
random integer value between | and 6, inclusive, not a random



380 1BM PCjr for Students

number between 0 and 1. The randomly generated number which was
returned in this case was .7151002. Because the maximum desired
value was 6, the randomly generated number was multiplied by 6. The
minimum desired value was 1, so 1 was added to the result of the last
calculation. Finally, the number was truncated using INT.

RANDOMIZE

Each time the program in the last section is run, the same answer
results. RANDOMIZE resets the seed each time the statement is
executed. With each execution, the person running the program is
asked to enter a seed. The number which is entered determines what
value will be returned by RND. When RANDOMIZE is used in
conjunction with RND, it is not necessary to give RND a seed. The
following program illustrates the effect of RANDOMIZE:

Ok

LIST

10 RANDOMIZE

20 DI =INT(6 * RND + 1)
30 PRINT "You rolled a";DlI
40 END

Ok

RUN

Random number seed (-32768 to 32767)? 927
You rolled a 4

Ok

We selected 927 as the seed. Any number between -32768 and
32676 will be accepted. The value for DI was then calculated, using
927 as the seed. Execution of line 40 causes that value to be output.



Other Functions and User-Defined Functions 381

SCREEN

BASIC’s SCREEN function returns the ASCII code for the
character at a specified location on the screen. The format for the
SCREEN function is:

SCREEN(row, column, true or false)

The row and column are required parameters. Rows are numbered
from0to 24.0is the row at the top of the screen, and 24 is the number
of the bottom row. The columns are numbered from 1 to 40, unless
WIDTH is set to 80. If WIDTH is set to 80, the columns are num-
bered from I to 80. Column number 1 is the left edge of the screen,
and column number 40 is the right edge.

The third parameter is optional. If the value of this parameter
equals 0, or false, SCREEN returns the ASCII code for the character
at the specified location. If the value does not equal 0, it is considered
to be true, and the coloris returned. The color range is from 0 to 255.
The color MOD 16 is the foreground color, or the color of the
character. The background color is the initial returned value MOD
128. If this value is tested to see if its value is greater than 127, a value
of -1, or true, means that the character is flashing. A value of 0
indicates that it is not flashing.

The following example demonstrates the result of BASIC’s
SCREEN function:

Ok
PRINT SCREEN (2,7)
83

Ok
PRINT CHR$(83)
s

Ok




382 1BM PCjr for Students

In this example the characterat(2,7)is “S™. The ASCll code for
“S™is 83.

User-Defined Functions

A user-defined function is a function which the programmer
defines. Before a user-defined function can be called, it must be
defined. The following command defines a function:

DEF FN rest of function name (dummy argument) = definition

An example of a function definition is:
DEF FNTHREE(X) =(XA3)- (3 * X)

DEF indicates that the function whose name follows is to be defined.
FNTHREE is the function name. All user-defined function names
must begin with FN. In this case, X is the dummy argument. When
the function is called, the calling value is substituted for X. Wherever
X appears within the definition, that value is substituted for X. Any
valid variable name can be the dummy argument. If a data type has
been specified for the dummy argument, the data will be converted to
the dummy argument’s type prior to substitution. If the data type is
specified by the function name, the value returned by that function
will be of the specified type.

In this example the user-defined function is a numeric function.
User-defined functions can be either numeric or string. The defini-
tion, or set of operations which the function is to perform, in this
example is (X A 3) - (3 * X). In other words, X is to be cubed. The
value of 3 * X is then to be subtracted from the cube. The following
program illustrates another user-defined function:



Other Functions and User-Defined Functions 383

Ok
LIST

10 DEF FNRAISE(X) = XA X
20 FORC=1TO 5

30 PRINT FNRAISE(C);

40 NEXTC

50 END

Ok

RUN

1 4 27 256 3125
Ok

In this program the function name is FNRAISE. FNRAISEisa
function name, not a variable. X is the dummy argument. Each time
line 30 is executed, the function is called. Each number is then raised
toitself. Forexample, 3 is cubed, and 5 is multiplied by itself 5 times.
Note that reserved words, with the exception of FN, cannot be used
as part of a valid function name.






Other Functions and User-Defined Functions 385

2. RND returns a number within which of the following ranges?

-l1tol

-1to0

Otol

It depends upon the seed
None of the above

moowp

3. Which of the following commands specifically alters the contents
of a specified memory location?

A. PEEK

B. POKE

C. SCREEN

D. FRE

E. None of the above

4. When POS is executed and the WIDTH is set to 40, a
number within which of the following ranges is returned?

A. 0to 39
B. 1to40
C. 0to24
D. 1to25
E. None of the above

5. What is the primary use of FRE?

A. To define functions
B. To look at a location in memory
C. To alter a location in memory
D. To determine how much memory is
available
E. None of the above
Computer Exercises

1. Write a program to randomly generate a number between | and
10. Use RND and RANDOMIZE.
2. Afterexecuting the program, write a program to do the following:

a. Find how much space is available using FRE.
b. Find the cursor’s position.
c. Determine the character in the tenth row, tenth column (9,10).



NTroduction 1O
GraNICS

lesson 20

Lesson Goals

Define pixels and screen coordinates

Define the differences between the various screen modes: text, low
resolution graphics, medium resolution graphics, and high resolu-

tion graphics
Learn the uses of BASIC's SCREEN, WINDOW, and VIEW
statements

386



Introduction to Graphics 387

Introduction

In this lesson we will introduce graphics. Graphics can be
defined as the art of drawing with the computer. A number of
programs, including many computer games, utilize graphics. In this
lesson we will discuss the basics of graphics. In the next lesson we will
discuss how to actually create pictures using the PCjr.

Pixels

The screen is divided into rows and columns. Rows are the
horizontal dimension, and columns are vertical. The rows and
columns are numbered. Every column intersects with every row, and
each intersection is a specific and unique location on the screen. One
such location would be the intersection of column 8 and row 11. The
point where column 8 intersects row 11 is referred to as (8,11). Note
that the column number precedes the row number and that the
numbers are enclosed in parentheses. These numbers are known as
coordinates.

Each specific coordinate pair references a pixel. Pixel is an
abbreviation for picture element. A pixel is a small rectangular area
located on the video screen. Each pixel can be referenced by its
coordinates. A pixel is shown in figure 20.1.

pixel (8,11)

Figure 20.1. Pixel located at column 8, row 11



388 1BM PCjr for Students

The numbering of the columns and rows begins with zero. The
pixel which has the coordinates (0,0) is located in the top left-hand
corner of the screen. Columns are numbered from left to right, and
rows are numbered from top to bottom.

The specific number of rows and columns which are available is
dependent upon the screen’s mode. The mode refers to the form in
which data is represented on the screen. The PCjr has one text mode
and six graphics modes available. The PCjr’s predecessors, the PC
and the PC XT, have only three modes available. These modes
correspond to the first three PCjr modes. We will discuss the various
modes later in this lesson.

The computer keeps track of which pixel was last referenced by
means of an internal pointer. This pointer is called the LPR, or last
point referenced.

Text Mode

The mode which we have been using throughout this book has
been the text mode. Text mode is available only in the first mode,
screen 0. Screen 0 divides the display into 25 rows and either 40 or 80
columns, depending upon the width.

Color can be displayed in this mode. Text mode has 8 options for
the background color, 16 options for the border color, and 32 options
for the color of the foreground, the characters. Table 20.1 lists the
colors and their corresponding values.

Notice that the numbering begins with zero. Colors 0 through 7
are available for the background. Colors 0 through 15 can be used for
the border area. Any color in the table can be used for the foreground.
Colors 16 through 31 flash.



Infroduction to Graphics 389

Table 20.1. Text mode color values

Text Mode Colors
0 Black 16 Black, flashing
1 Blue 17 Blue, flashing
2 Green 18 Green, flashing
3 Cyan 19 Cyan, flashing
4 Red 20 Red, flashing
5 Magenta 21 Magenta, flashing
6 Brown 22 Brown, flashing
7 White 23 White, flashing
8 Gray 24 Gray, flashing
9 Lt. Blue 25 Lt. Blue, flashing
10 Lt. Green 26 Lt. Green, flashing
11 Lt. Cyan 27 Lt. Cyan, flashing
12 Lt. Red 28 Lt. Red, flashing
13 Lt. Magenta 29 Lt. Magenta, flashing
14 Yellow 30 Yellow, flashing
15 High Intensity White 31 High Intensity White,
flashing

The COLOR statement is used to select colors. This command
has three optional parameters:

COLOR foreground color, background color, border color

Any combination of parameters is permissible. If the new value for a
parameter is omitted, the current color will be retained. Unless
changed, both the background and the border will be black, color 0,
and the characters will appear in white, color 7. Enter the following
commands to demonstrate the use of BASIC’s COLOR statement:



390 1BM PCjr for Students

COLOR 5
COLOR ,5
COLOR,,5
COLOR7

COLOR,0
COLOR,,0
COLOR 21
COLOR 5
COLOR7

The first command changes the foreground color to magenta.
Entering the second command changes the background color to
magenta, and the characters disappear. COLOR ,,5 creates a match-
ing border. The command, COLOR 7, causes the foreground to
reappear, since the characters are now displayed in white. The next
two commands return the background and border to black. COLOR
21 changes the text so that it appears in magenta and flashes. Entering
the command, COLOR 5, stops the flashing, and the final command
returns the screen to its normal color configuration.

Low Resolution Graphics

Screen 3 is the only low resolution graphics mode. In low resolu-
tion graphics, the screen has few pixels compared to the other gra-
phics modes. The screen’s dimensions in low resolution graphics are
160 columns by 200 rows. The total number of pixels on the screen is
equal to the number of columns times the number of rows, so 32000
pixels are available. Notice the illustration of the low resolution
graphics screen in figure 20.2.









Introduction to Graphics 393

Table 20.2. Screen | palettes

Palette 0 Palette 1
0 background 0 background
1 green 1 cyan
2 red 2 magenta
3 brown 3 white

The COLOR command is used with a different configuration in
screen | than in screen 0. By default, the color in the palette which is
used for the foreground is assumed to be color 3. The COLOR
statement’s format is:

COLOR background color, palette

The parameters are optional. If no background color is specified, the
color of the background will remain unchanged. The default value for
the palette is the current palette. When screen 1 is first entered, the
palette which is in use is palette 1.

Screen 4

Like screen 1, screen 4 requires 16K of memory and has 16 colors
available. Screen 4’s main advantage is that the palettes are flexible.
Any four colors can be included in any palette. Screen 1 was primarily
included in the PCjr so that much of the IBM PC software would be
compatible.

In order to take advantage of the flexible palettes, a new com-
mand is needed. This command is PALETTE, which has the follow-
ing configuration:



394 1BM PCjr for Students

PALETTE location in palette, new color

This command is used to place colorsina palette. Red, for example, is
usually located in position 2 of palette 0. PALETTE 2,1 will result in
red being replaced by blue. Both parameters are required. Once the
palette has been set, the format for the color command is:

COLOR foreground, background

Screen 5

Screens 5 and 6 require 32768 bytes of memory. The PCjr only
allots 16384 bytes to the screen, however. An additional command is
needed in order to allocate more memory to the screen. This com-
mand is CLEAR. CLEAR sets aside space in memory for the screen.
CLEAR has the following configuration:

CLEAR,,,amount of space in memory to allocate to screen

The commas indicate optional parameters. These parameters are not
relevant to our discussion at this point, so we will not discuss them
here. In order to access screens 5 and 6, 32768 should be specified as
the amount of memory to allocate.

In screen 5, all 16 colors are supported with no palettes. All 16
colors are accessible. The COLOR command has the same configura-
tion in screen S as in screen 4. ’

High Resolution Graphics

Screens 2 and 6 are the high resolution graphics modes. In the
high resolution graphics mode, the screen has 128000 pixels available.
The rows are numbered from 0to 199, and the columns are numbered






396 IBM PCjr for Students

SCREEN screen number, color burst, active page, visual page, erase

The parameters are optional. The first parameter, the screen
number, is used to select one of the six graphics modes or the text
mode. The command, SCREEN 4, causes the selection of the medium
resolution graphics screen, screen 4. The values of the parameter
correspond to the screen numbers which we have used to indicate the
various screens through this discussion.

The second parameter is the color burst signal. Color will be
turned on or off depending on the value of the color burst parameter.
When color burst is off, only black and white are available. In the text
mode and in screen 3, a value of 0 turns the color burst signal off, or
disables it, and a value of 1 turns it on, or enables it. For screen 1, the
signals are reversed; 0 enables, and 1 disables. Inscreens 2,4, 5,and 6,
the color burst signal has no effect.

More memory is available than that which is needed to hold a
single screen, or page. In other words, the contents of more than one
screen can be held in memory at the same time. In the text mode, for
example, up to 8 pages, numbered 0 through 7, can be retained in
memory, assuming width has been set to 40. The key factors are the
amount of memory alloted to the screen and the amount of memory
needed to store one page. Since each page in text mode, which has a
width of 40, requires 2K of memory, 8 pages can be held.

The next two parameters relate to the PCjr’s ability to store
several pages in memory. The first of these parameters, the active
page, is used to indicate to which page output is to be sent. The second
of these parameters is used to specify which page is to be displayed
upon the screen. This page is the visual page.

The final parameter is erase. Its value should be an integer
between 0 and 2, inclusive. A value of 0 indicates that the video
memory should not be erased. A value of 1 is the default value. It
indicates that the video memory should be erased if the mode or burst
signal is changed. Finally, a value of two indicates that all video
memory should be erased if the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>