
:.--..-1---t-t11ttt111tttff­
l.---f---t-1ilUillilllUJ!t..

··- ·---·-··--

·11....:......1.____ --~-----~--- • • --- - ~-

IBM PCjr®
for Students

IBM PCjr®
for Students

by
WSI Staff

Weber Systems, Inc.
Cleveland, Ohio

The authors have exercised due care in the preparation of this book and the
programs contained in it. The authors and the publisher make no warranties
either express or implied with regard to the information and programs contained
in this book. In no event shall the authors or publisher be liable for incidental or
consequential damages arising out of the furnishing, performance, or any infor­
mation and/or programs.

Microsoft BASIC®, Multiplan™, and Adventure™ are trademarks of the Microsoft Corpora­
tion; Homeward.., is a trademark of Sierra On-Line, Inc.; Intel 8088®, 4004®, 8008®, 8080®,
8085®, and 8088/ 8086® are registered trademarks of Intel Corporation; Home Budget"' is a
trademark of Howe Software; Visicalc® is a registered trademark of Visicorp, Inc.; SN
76489A"' is a trademark of Texas Instruments; The following are trademarks of IBM
Corporation. This book has been neither authorized or endorsed by IBM Corporation.

IBM PCjr® IBM PCjr Memory and Display Expansion
IBM PC® Board..,
IBM PC XT® Graphics Definition Language..,
IBM PCjr BASIC™ Cartridge BASIC'"
Cassette BASIC™ IBM Graphics Printer"'
IBM Serial Adapter Cable"' IBM PCjr Internal Modem"'
IBM Parallel Printer Attachment"' IBM DOS 2. I®
IBM PCjr Attachable Joystick"' IBM Compact Printer"'

Published by:
Weber Systems, Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information or translations and book distributors outside of the United
States, please contact WSI at the above address.

IBM PCjr® for Students
Copyright© 1984 by Weber Systems, Inc. All rights reserved under Interna­

tional and Pan-American Copyright Conventions. Printed in United States of
America. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written permission of the
publisher.

Library of Congress Cataloging in Publication Data
Main entry under title:

IBM PCjr for Students

Includes index
I. IBM PCjr(Computer)- Programming-Juvenile literature. 2. Basic (Computer

program language) - Juvenile literature. I. I. Weber Systems, Inc. II. Title: I.B.M.
P. CJr for Students.
QA 76.8.12593126 I 984 001.64'2 84-50843
ISBN 0-938862-25-1

Typesetting and Layout: Tina Koran, Maria Stamoulis, Beth Cammarn,
and Irma Schaeffer

Contents

Introduction ____________________ 18
Purpose of this Book 18
Introduction 19
How to Use this Book 19

Section 1 Background __________ 20

Lesson 1. What is a Computer? 22
Introduction 23
Computers Defined 23
Types of Computers 27
History of Computers 28
Questions 36

Lesson 2. Introducing the IBM PCJr 40
Introduction 41
PCjr - Entry Model and Enhanced Model 41
System Unit 43

Intel 8088 Microprocessor 44
MM ~

ROM 48
Connectors for External Devices 49
Expansion Slots 49
~~~ ~ 
Power Supply/Transformer 53 
Video Display 54 
Questions 56 



Lesson 3. Peripherals and Add-on Devices _________ 58 
Introduction 59 
Diskette Drive 59 

Disk Operating System 62 
Tracks and Sectors 62 
Diskette Capacity 64 
PCjr Disk Drive Operation 64 

Printers 66 
Sending Data from the PCjr to the Printer 68 
IBM Printers 69 
Joysticks 70 
PCjr Keyboard Cord 71 
PCjr Memory and Display Expansion 72 
PCjr Internal Modem 73 
Cassette Recorder/Players 74 
PCjr Cartridges 75 

Questions 77 

Section 2 Discovery ___________ 80 

Lesson 4. Introduction to BASIC 82 
Introduction 83 
Programming Language High Level, Machine, and Assembly 83 
History of BASIC 84 
Compiled vs. Interpreted Languages 84 
Cassette and Cartridge BASIC 85 
Types of Software 86 
Questions 88 

Lesson 5. Getting Started with BASIC 90 
Introduction 91 
PCjr System Start-Up Review 91 
BASIC Start-Up 92 

PCjr Start-Up Without the Diskette Drive 93 
PCjr Start-Up With the Diskette Drive 95 
Adjusting the Screen 101 
Warm Boot 101 

PCjr Keyboard 102 
Fn Key 104 
Alt Key 105 
Ctrl Key 107 
Editing Keys 107 
Enter Key 108 



Conclusion ____________________ 111 

Questions 112 

Lesson 6. Your First Program 114 
Introduction 115 
Immediate and Program Modes 115 
Writing and Entering a Program 117 
Running a BASIC Program 124 
Clearing the Screen 125 
Listing the Program 126 
Erasing the Program 126 
Questions 127 

Lesson 7. How the PC/r Works 130 
Introduction 131 
BASIC Program Entry 133 
Running a BASIC Program 135 

Clearing the Screen with a BASIC Program in Memory 141 
Listing the BASIC Program 142 
Erasing the BASIC Program from Memory 143 

Questions 144 

Lesson 8. RUN, LIST, AUTO, RENUM, and DELETE 148 
Introduction 149 
RUN 1~ 
LIST 151 
AUTO - Automatic Generation of Line Numbers 154 
RENUM - Renumbering Program Lines 158 
DELETE - Deleting Program Lines 164 
Questions 168 

Lesson 9. Editing Your BASIC Program 172 
Introduction 173 
Line Entry Editing 173 
Editing Keys 174 

Cursor Up 179 
Cursor Down 180 
Cursor Right 181 
Cursor Left 183 
Delete 184 
Ins 185 
Backspace 187 
Esc Key 188 
Tab 189 
Fn-End 191 



Fn-Home ____________________ 192 

Fn-Break 193 
Ctrl-Fn-End 194 
Ctrl-Fn-Home 195 
Ctrl-PgDn 196 
Ctrl-PgUp 197 

EDIT Command Entry 199 
Cursor Movement Editing 201 
Questions 204 

Lesson 10. Saving and Loading BASIC Programs 208 
Introduction 209 
Cassette Recorder 209 

Cassette Recorder Installation 209 
Saving a BASIC Program on Cassette 212 
Loading a BASIC Program from Cassette 214 

Disk Drive 216 
Formatting a Diskette 216 
Displaying the Diskette Directory 219 
Saving and Loading BASIC Programs on Diskette 220 
Erasing a File from a Diskette 221 

Questions 223 

Lesson 11. Data Types and Variables in BASIC 226 
Introduction · 227 
String Data 227 

String Data Examples 227 
ASCII 229 

Numeric Data 229 
Integers 230 
Fixed-Point Numbers 230 
Floating-Point Numbers 231 
Hexadecimal Numbers 232 
Octal Numbers 232 
Numeric Precision 232 

Variables 234 
Variable Names - 235 
Assigning Values to Variables with the LET Statement 236 
How Variables are Processed 237 

Questions 244 

Lesson 12. Operators 248 
Introduction 249 
Arithmetic Operators 249 



Addition (+) __________________ 249 
Exponentiation (A) ________________ 251 
Floating Point Division (/) ______________ 252 
Integer Division ( \) ________________ 254 
Modulo Arithmetic (MOD) _____________ 255 
Multiplication (*) _________________ 257 
Negation(-) _________________ 258 
Subtraction(-) _________________ 259 

Order of Evaluation _________________ 259 
Mixing Variable Types in Arithmetic Expression ______ 261 

Relational Operators _________________ 261 
Logical Operators __________________ 262 

NOT ___________________ 263 
AND ___________________ 263 
OR ___________________ 264 
XOR ___________________ 264 

Order of Evaluation _________________ 265 
Questions _____________________ 267 

Lesson 13. Outputting Data ______________ 270 
Introduction ____________________ 271 
PRINT ____________________ 271 
PRINT USING _________________ 274 
Formatting Characters ________________ 275 

Numeric Formatting Characters - Pound Sign (#) ______ 275 
Numeric Formatting Characters - Decimal Point (.) _____ 277 
Numeric Formatting Characters- Plus Sign (+) _______ 278 
Numeric Formatting Characters - Minus Sign (-) ______ 279 
Numeric Formatting Characters - Comma (,) _______ 281 
Numeric Formatting Characters - Dollar Sign ($) ______ 282 
Numeric Formatting Characters - Asterisk (*) _______ 284 
Numeric Formatting Characters - Exponential Notation (~ _ 286 
String Formatting Characters -Ampersand (&)-------'--287 
String Formatting Characters- Backslash (\) _______ 288 
String Formatting Characters - Exclamation Point (!) ____ 290 
Literals _____________________ 291 

Formatting Functions: TAB,SPC,SPACE$ _________ 292 
TAB ____________________ 292 
SPC ___________________ 293 
SPACE$ _________________ 295 

Questions _____________________ 297 



Lesson 14. Inputting Data ______________ 300 
Introduction ___________________ 301 
INPUT ____________________ 301 
INPUT$ ___________________ 302 
LINE INPUT __________________ 304 
Questions ____________________ 306 

Lesson 15. Conditional, Branching, and Looping Statements __ 308 
Introduction ___________________ 309 

IF THEN 309 
GOTO 312 
GOSUB,RETURN 313 
Conditional Statements with Branching 315 
FOR.NEXT 316 
WHILE.WEND 319 
Questions 322 

Lesson 16. Tables and Arrays 326 
Introduction 327 
Subscripted Variables and Arrays 327 
Tables 331 
DIM 333 
OPTION BASE 335 
DATA and READ 336 
ERASE 338 
Questions 339 

Lesson 17. Numeric and Math Functions 342 
Introduction 343 
SIN,COS,TAN,ATN 343 
SQR 345 
INT 346 
FIX 347 
ABS - 348 
SGN 349 
EXP 350 
LOG 351 
CINT,CSNG,CDBL 352 
Questions 354 

Lesson 18. String Functions 356 
Introduction 357 
String Concatenation 357 
LEFT$ 358 



RIGHT$ ____________________ 359 

MID$ 360 
STA$ and VAL 361 
CHA$ and ASC 363 
INSTR 364 
LEN 365 
STRING$ 366 
Questions 368 

Lesson 19. Other Functions and User-Defined Functions 372 
Introduction 373 
FRE 373 
~s ~4 
PEEK 375 
~KE ~6 
RND 376 
RANDOMIZE 380 
SCREEN 381 
User-Defined Functions _______________ 382 
Questions ____________________ 384 

Lesson 20. Introduction to Graphics 386 
Introduction 387 
Pixels 387 
Text Mode 388 
Low Resolution Graphics 390 
Medium Resolution Graphics 391 

Screen 1 392 
Scraen4 393 
Screen 5 394 

High Resolution Graphics 394 
SCREEN 395 
WINDOW 398 
VIEW 398 
Questions 400 

Lesson 21. Graphics Statements 402 
Introduction 403 
Absolute and Relative Form 403 
PSET and PRESET 404 
LINE 406 
CIRCLE 408 
DRAW 410 



Vertical and Horizontal Movements 411 
Diagonal Movements 412 
Scaling Factor 413 
M 414 
B 415 
N 416 
C 416 
A 417 
TA 418 
p 419 
X 421 
GDL Commands and Variables 422 

PAINT 423 
Questions 430 

Lesson 22. Introduction to Sound 432 
Introduction 433 
Sound Generators 433 
SOUND 434 
BEEP 434 
SOUND 435 
PLAY 437 

Notes 438 
L 438 
MB and MF 440 
Articulation 440 
N 441 
0 442 
p 443 
T 444 
V 445 
Dotted Notes 445 
Changing Octaves 446 
X 447 

NOISE 448 
Questions 451 

Lesson 23. Programming Techniques 454 
Introduction 455 
Top-Down Design 455 
Delay Routine 464 
Menu-Driven Programming 465 



Techniques using Variables _______________ 468 
Initializing Variables 468 
Flags 471 
Significant Variable Names 472 

Questions 473 

Section 3 Applications _________ 476 

Lesson ·24. Applications for Mathematics 478 
Introduction 479 
Algebra 479 
Geometry 481 
Trigonometry 486 

Lesson 25. Applications for Science 494 
Introduction 495 
Chemistry 495 

Conversion Program 495 
Percentage Composition 499 
Limiting Reagent 500 
Ideal Gas Law 503 

Physics 506 
Motion 506 
Work 511 

Lesson 26. Writing Papers and Reports 512 
Introduction 513 
Overview of HomeWord 514 
Starting HomeWord 517 
Creating a Title Page 518 

Enter Title Page Information 518 
Change Top Margin 519 
Define Line Spacing 521 
Center Lines 522 

Main Text of the Paper 523 
Start a New Page 524 
Enter Main Text 525 
Redefine Margins 526 
Justify Text 527 
Indenting the Quote 528 
Single Space Quote 530 
Footnote the Quote 531 



Footnotes _____________________ 533 

Placing Footnotes at the End of the Paper 533 
Placing Footnotes at the Bottom of the Page 537 

Bibliography Page 540 
Page Numbers 543 

Appendix A. ASCII Codes 545 

Appendix B. BASIC Reserved Words 548 

Appendix C. Answer Key 549 

Index 553 



ntroduction 

Purpose of this Book 

At this point, you may be wondering, "Why should I study 
computers?". An understanding of computers is important for every 
member of society for a number of reasons. Two of the most impor­
tant reasons are: 

D Computers have influenced almost every aspect 
of our daily lives. 

D Computers will have an even greater influence 
in the future. 

Our primary intention in this book will be to help you become 
computer literate. Literate is derived from the Latin term, litteratus, 
which can be translated as learned. 

People who are computer literate have an understanding of 
computers that allows them to use computers as tools in their every­
day lives. All tools are extensions of parts of our bodies. For example; 
an automobile is an extension of our feet, a telescope is an extension 
of our eyes, and a scuba tank is an extension of our lungs. The 
automobile allows us to travel farther and faster than our feet could 
carry us. A telescope allows us to see into outer space - far beyond 

18 



the reaches of our eyesight. A scuba tank allows us to swim under­
water for long periods of time. This would be impossible using our 
body's natural breathing organs. 

A computer is an extension of the human mind. Computers can 
be used to accomplish repetitive tasks that would otherwise occupy 
our thought processes. In most instances, these tasks can be accomp­
lished more quickly and more accurately by using computers. Com­
puters then are tools that we can use to extend the power of our minds 
as well as to free our minds from being occupied with repetitive and 
generally boring tasks. 

Acknowledgements 

We gratefully acknowledge Jeanette Mahrer of IBM, for her 
invaluable assistance. We also wish to thank Bob Baker, Computer­
land, for his assistance and cooperation. 

How to Use this Book 

This book consists of a series of 26 lessons, which are designed to 
be studied in sequence. These lessons include explanations, examples, 
exercises, and step-by-step instructions to be used while working with 
the PCjr. Answers to many of the exercises can be found in Appendix 
C. 

Terms which you may find unfamiliar are presented in bold. 
These terms will be defined in subsequent paragraphs. 

19 



Section ~ 

20 



Section I is simply titled "BACKGROUND". The purpose of 
the three lessons which make up Section I is to help you gain a 
solid understanding of the general concepts of computers and compu­

ting. This knowledge will provide a solid foundation upon which you can 
begin building your understanding of computers. We will attempt to 
accomplish the following goals in Section I: 

□ Gain a general overview of how a computer functions 

□ Apply this knowledge to the PCjr so as to gain an 
understanding of how it functions 

□ Gain an understanding of the terms used in comput­
ing such as bit, byte, input, output, microprocessor, 
RAM, ROM, etc. 

□ Gain an understanding of the various PCjr compo­
nents, peripheral devices, and add-on devices 

□ Gain an understanding of the history and evolution 
of computing devices 

21 



What is a 
Computer? 

lesson 1 

Lesson Goals 

@ Define the term computer 

@ Gain a general understanding of how a computer functions 

lffi Become familiar with the history and evolution of computing 
devices 

22 



What is a Computer? 23 

Introduction 

In this lesson, a general overview of computers will be presented. 
A basic definition of a computer will be provided along with a 
condensed history of computing. This lesson is the most general in 
this guide and is meant to remove the confusion that many people feel 
when discussing computing. Hopefully, this lesson will stimulate 
your interest in computers and will help you feel comfortable while 
learning about computers. 

After reading this lesson, you should understand how computers 
function on a general level. Computers are powerful problem solving 
tools. They are very important in today's society and can only 
become more so in the future. An understanding of computers is one 
of the most valuable assets a person can have in today's world. 

Computers Defined 

The word "computer" often frightens people. Don't let it 
frighten you. A computer can be defined as an electronic machine 
that uses a program, or set of logical instructions, to process data at a 
relatively high rate of speed. A computer generally performs the 
following five functions: 

□ Input 
D Storage 
□ Control 
□ Processing 
□ Output 

These functions are depicted in figure 1.1. 
Data must first be input, or sent, to the computer. Input can be 

defined as the process of sending data into the computer. Input might 
be in any one of a number of different forms including: 

D Keyboard entries 
□ Readings from a measuring device such as a 

thermometer 



2 4 I BM PCjr for Students 

input 

keyboard 

output 
screen 

control 

----------+! -----"!""'""- I I processing I 
storage 

circuit 

----- board with RAM 
.J~ circuit 

board 
with 8088 

Figure 1.1. Computer information processing functions 

D Data read from a punched card 

□ Data received from a communications device 
such as a modem 

□ Data entered by pressing a joystick or game 
controller 

Once data has been entered, it is stored, generally in magnetic 
memory, for future use. Data is input and stored in binary code. 
Binary codes consist of I's and O's and use the base two numbering 
system. For example, the following number in binary format: 



A 

C 

What is a Computer? 25 

would be represented as 4 in the decimal or base lO numbering 
system. 

Once data has been input and stored, it can be processed by the 
computer. Data processing can be defined as the various operations 
performed on data according to the instructions issued by the pro~ 
gram. Examples of data processing operations include: 

□ Calculating a formula 
□ Sorting a list of names into alphabetical order 
D Calculating the class average on a mid-term 

exam 
□ Comparing two values 

m 
Iii 

m ID m 
m 

B 

D 

Figure 1.2. Input examples 
a, Keyboard entry; b, Punched card; c, Game controller; d, Modem 



26 IBM PCjr for Students 

St.\l'1ll A. 

--
A$+B$=X 

' 
\ 

j 

A B 

q9 A I Ave ... ~ .. - --1 

C D 

Figure 1.3. Data processing examples 
a, Calculating a formula; b, Sorting a list of names; c, Calculating an average; 
d, Comparing two values 

Notice that a number of the computer's processing activities are 
the same as a calculator's. However, the computer has one important 
additional feature - the ability to make decisions based upon 
instructions stored in memory. These instructions constitute the 
computer's control function. For each activity that it undertakes, the 
computer must be given an instruction. 

Once data has been processed, it can be output. Output can be 
defined as the process of transmitting data which has been processed 
by the computer. Data can be output in a number of different forms 
including: 



What is a Computer? 27 

- ._ 
I I 

l l: 

A B 

I 

Im ~ 
I ID m I DJ I I ID I I ID m I I 

I I 

~ 
I m 

~ \ 

C D 

Figure 1.4. Output examples 
a, Data output to the video display; b, Data output to the printer; c. Data transmitted via phone lines; 
d, Data output to a punched card 

D A display on a computer video-display 
0 A printed report 

0 Codes which are communicated over telephone 
lines to other computers. 

Types of Computers 

Computers can be grouped according to three general classifications: 

D Analog computers 
□ Digital computers 
□ Hybrid computers 



28 IBM PCjr tor Students 

An analog computer can be defined as a device that uses a 
physical quantity (generally electric current or voltage) to solve 
mathematical problems. In an analog system, the physical pheno­
nemon being represented is simulated by the computer. A household 
thermostat is a good example of an analog computer. The tempera­
ture is represented by an electric current. If this current falls below a 
predetermined level, a signal will be sent to the heating plant. 

Digital computers represent data in binary form. Groups of 
binary signals are used to represent numbers, characters, and sym­
bols. The IBM PCjr is a digital computer. In this book, we will be 
discussing digital computers. 

Hybrid computers are designed with both digital and analog 
characteristics. One example of the hybrid computer is a numerically 
controlled machine. 

History of Computers 

Computing devices can be traced back in history some 500 years 
to the abacus. The abacus consists of rows of parallel rods or wires 
upon which are mounted sliding blocks or beads. An abacus is 
depicted in figure 1.5. The beads are divided into two sections by a 
bar. The top section of the abacus has either one or two beads. These 
represent either O and 5 depending on their position on the rod. 

Each rod on the bottom section contains four or five beads, each 
of which represents a single unit. The individual bars each represent a 
significant digit of a number. The least significant digit is indicated by 
the rod at the extreme right of the abacus. 

Pascal's digital adding machine was a significant development in 
the history of computing devices. Blaise Pascal was a French 
mathematician, scientist, and philosopher. In 1642, when he was 
about twenty years old, Pascal designed and built a mechanical 
calculating machine to help him keep track of the accounts in his 
father's business. This was the forerunner of the modern desktop 
calculator. It consisted of a mechanical gear system which could add 
and subtract numbers containing as many as eight digits. 



What is a Computer? 29 

"' / 

... . - -.. --~--- --I.._ --[._ ---c-v---
~ - -., -·~ .,..,.,_ 

. - ---.r vara, 

.,.,.,., --... - --v--v--wa, .. -----"" --·-~ -
- -~-.r • .. ---... --r 

Figure 1.5. Abacus 

"Courtesy of International Business Machines Corporation " 

Figure 1.6. Pascal's arithmetic machine 



30 IBM PCjr for Students 

Numbers are entered using eight dial wheels on the top side of 
the machine (see figure 1.6). The farthest right wheel represents the 
units position, the next wheel represents tens, followed by hundreds, 
thousands, etc. When numbers are added, carrying is accomplished 
by the gear system which causes the next wheel to turn by one when 
the preceding wheel exceeds a value of 9. The value at each wheel 
position can be observed through windows in the machine's top 
cover. 

Babbage's analytical engine represented another significant step 
in the development of the computing device. Charles Babbage, an 
English inventor and mathematician, began formulating the idea for 
his analytical engine in 1812 when he was just 21 years old. Twenty­
one years later, in 1833, Babbage stopped work on the project when 
the British government cut off funds for it. Babbage's analytical 
engine was displayed at the International Exposition of 1862 and can 
be viewed today at the Science Museum in South Kensington, 
London. 

The analytical engine was a revolutionary machine in its time. 
Babbage's analytical engine was in fact the forerunner of the first 
digital computers. The analytical engine was the first device to utilize 
conditional control - a feature used in almost every modern compu­
ter and programming language. Conditional control allows the 
machine to compare two or more quantities and depending upon the 
results of that comparison, branch to another program instruction. 
Another feature that made the analytical engine unique was its ability 
to utilize the results of its own computations as data in subsequent 
computations. 

The analytical engine was controlled by a Jacquard punched 
card. Jacquard punched cards use a hole punched in a card to 
represent a number. The concept was originally developed by Joseph­
Marie Jacquard in France in the early 1800's to control the opera­
tions of looms for weaving cloth. 



What is a Computer? 31 

The analytical engine used three sets of punched cards for out­
putting data and instructions. These were: 

Number cards 
Directive cards 

Operation cards 

for inputting numbers to be used in the problem 
for controlling the movement of numbers 
within the machine 
for controlling the execution of the machine's 
arithmetic operations (i.e. addition, subtrac­
tion, multiplication) 

The two primary components of the analytical engine were the 
storage unit and the mill. The storage unit consisted of groups of 50 
counter wheels that could store 1000 numbers each consisting of 50 
digits. The mill was the analytical engine's calculator section. 

Hollerith's tabulating machine represented another milestone in 
the development of the digital computer. Herman Hollerith was born 
in 1860 and educated at Columbia University in New York City. It 
was at Columbia that Hollerith began studying tabulating systems. 
After Hollerith graduated from Columbia at age 20, he took a job 
with the U.S. Census Office. 

Over the next nine years, Hollerith led a varied career. He was 
associated with the Census Office until 1883, although he spent the 
academic year 1882-1883 as an instructor in mechanical engineering 
at the Massachusetts Institute of Technology. In 1883, Hollerith took 
a position with the Patent Office for approximately one year. For the 
next six years, Hollerith worked on the development of his tabulating 
equipment, which was designed to calculate census data. Hollerith 
received patents on his machine in 1889. The tabulating machine was 
utilized with great success by the Census Office in the 1890 census. 

After its successful introduction in the 1890 census, Hollerith 
formed a company, known as the Tabulating Machine Company, to 
market the machine. In 1911, this company became the Computer­
Tabulating-Recording Company, which later became the Interna­
tional Business Machines Corporation, or IBM. 



32 IBM PCjr for Students 

"Courtesy of International Business Machines Corporation " 

Figure 1.7. Babbage's analytical engine 

"Courtesy of International Business Machines Corporation" 

Figure 1.8. Hollerith's tabulating machine 



What is a Computer? 33 

The Hollerith tabulating machine made use of 6¾ by 3¼ inch 
punched cards to input data. Holes punched in the cards were used to 
represent various characteristics such as age, sex, etc. of the respond­
ents to the census. Hollerith designed one machine for punching the 
cards and another for sorting them. Each card would be run under­
neath a set of contact brushes. These would complete an electric 
circuit if a hole was present in the card. When the circuit was com­
pleted, a counter would be advanced. 

The great advantage to Hollerith's tabulating machine was that 
the cards could be assembled into a large deck and sorted according 
to any single characteristic. This allowed census data to be analyzed 
quickly and accurately. 

The Harvard Mark I* represented the next significant advance­
ment in the development of the computer. The Mark I was developed 
by Howard Aiken and a group of IBM engineers under the direction 
of Clair D. Lake. While studying physics as a graduate studen.t at 
Harvard University, Aiken studied punched card calculating machines 
similar to those manufactured by IBM and analyzed the alterations 
that would be required to adapt these for scientific calculations. 
Aiken analyzed that the following adaptations would have to be 
incorporated in punched card calculating machines to make them 
practical for scientific applications: 

□ Ability to handle negative as well as positive 
numbers. 

D Abiltiy to handle the various complex func­
tions involved in scientific calculations. 

□ Ability to perform calculations without the 
need for human interaction. 

□ Ability to perform calculations in their natural 
mathematical order. 

* Also known as the IBM Automatic Sequence Controlled Calculation 



34 IBM PCjr for Students 

Aiken's ideas came to the attention of the Watson Computing 
Bureau at Columbia University in New York City, which was funded 
by the IBM Corporation. In 1939, Aiken and a group of IBM 
engineers began designing a new computing device. The Harvard 
Mark I was completed in 1944. It measured 50 feet in length and was 8 
feet high. The computer was controlled by a paper tape which con­
tained the machine's instructions. These ihstructions consisted of 
three parts. One instruction contained information regarding where 
the data to be operated on was stored. Another determined what 
operation was to be performed on that data. The third determined 
where the result of the operation was to be stored. 

The Mark I could calculate using the basic arithmetic operators 
(addition, subtraction, multiplication, division) and could also calcu­
late logarithms, exponentials, and sines. The Mark I could handle 
negative as well as positive numbers. Data was input into the Mark I 
using punched cards. Data was output either on punched cards or on 
an electric typewriter. 

The ENIAC (an acronym for Electronic Numerical Integrator 
and Calculator) was the first general purpose, electronic digital com­
puter. Earlier computing devices, including the Mark I, had been 
electromechanical rather than electronic. Recall from the definition 
of computers on page 23 that we defined the computer as an electronic 
device. With its electronic design, the ENIAC could perform calcula­
tions at speeds 1000 times faster then electromechanical computers. 

The ENIAC was designed by J. Presper Eckert and John W. 
Mauchly of the University of Pennsylvania. In 1946, Eckert and 
Mauchly formed their own company for the purpose of designing 
and building computers. They sold the firm to Remington Rand 
Corporation in 1959. Eckert and Mauchly also designed and built the 
Univac I for use by the United States Bureau of Census. The Univac I 
represented yet another significant advancement in the evolution of 
the electronic digital computer. The Univac I was the first computer 
that could handle alphabetic information with the same competence 
as numeric information. The Univac I was probably the first elec­
tronic digital computer to be used widely in the business and govern­
ment environments. It was the forerunner of our modern computers. 



What is a Computer? 35 

"Courtesy of International Business Machines Corporation " 

Figure 1.9. Harvard Mark I 



36 IBM PCjr for Students 

estio 

True or False 

l. The IBM PCjr is an analog computer. 

2. A digital computer uses binary data. 

3. Information displayed on a computer's video display screen could 
be described as input. 

4. Punched cards are used both for input and output in computer 
systems. 

5. Babbage's analytical engine was the first electronic digital com­
puter. 

6. Punched cards were first used with Babbage's analytical engine. 

7. Hollerith's Computer-Tabulating-Recording Company was the 
forerunner of the IBM Corporation. 

Multiple Choice 

l. Input can be defined as: 

A. The process of storing data for 
future use. 

B. Performing calculations on stored 
values. 

C. The process of sending data to the 
computer. 

D. Transmitting data which has been 
processed by the computer. 

E. None of the above 



What is a Computer? 37 

2. The following are examples of data processing: 

A. Calculating 5+7-3+8 
B. Sorting a list of names in alphabet­

ical order 
C. Deciding which value is greater, 

27.82 or 26.98 
D. All of the above 
E. None of the above 

3. The first computing device to incorporate conditional control was: 

A. Pascal's adding machine 
B. ENIAC 
C. Harvard Mark I 
D. Babbage's analytical engine 
E. None of the above 

4. Punched cards were first used with: 

A. Pascal's adding machine 
B. Jacquard's looms 
C. Babbage's analytical engine 
D. Hollerith's tabulating machine 
E. None of the above 

5. The Harvard Mark I was developed by: 

A. Howard Aiken and IBM engineers 
B. Presper Eckert and John W. 

Mauchly 
C. Harry Hollerith 
D. All of the above 
E. None of the above 

6. The first general purpose electronic, digital computer was: 

A. Univac I 
B. Harvard Mark I 
C. Hollerith's tabulating machine 
D. ENIAC 
E. None of the above 



38 IBM PCjr for Students 

Essay 

I. What is your definition of the term - computer? 

2. What five functions are performed by computers? 

3. Describe each of these five functions. 

4. What is your definition of conditional control? 



-

llllll,11111 111111!!11il!!~lll!IITIII' rl 11 1111 

111111111111 1r11111i111 11m!11111m~1 

ntroducing 
the BM PCjr 

lesson 2 

Lesson Goals 

Em Gain an understanding of each of the PCjr's four primary 
components 

ti Learn the meaning of computing terms related to these peripheral 
and add-on devices 

40 



Introducing the IBM PCjr 41 

Introduction 

At this point, we have provided a broad definition of computers, 
outlined the development of modern digital computers, and dis­
cussed the importance of becoming computer literate in today's 
society. With this background, we are ready to begin our journey 
towards computer literacy. 

For this journey, we will use the IBM PCjr computer. In this 
lesson, we will introduce the PCjr and its various components. 

PCjr -- Entry Model and Enhanced Model 

Two different models of the PCjr are available, the entry model 
and the enhanced model. These are pictured in figures 2.1 and 2.2. 
The major difference between the two models is that the enhanced 
model includes a floppy diskette drive, while the entry model does 
not. Also, the enhanced model allows 80 characters to be displayed 
on each line on the screen, while only 40 characters can be displayed 
per line on the entry model. 

The IBM PCjr includes four basic components. These are as 
follows: 

0 System unit 
0 Keyboard 
□ Power supply/ transformer 

We will discuss each of these in the following sections. 



42 IBM PCjr for Students 

Figure 2.1. IBM PCjr entry model-----~ 

11!1!!!!!!!!!!!!!!!!!!!!!!!!!!!111111111111 I ~-1~--....... l!!!!!!!!!!!!!l!!!l!!!I 

Figure 2.2. IBM PCjr enhanced model ------J 



Introducing the IBM PCjr 43 

System Unit 

The system unit is pictured in figures 2.3 and 2.4. It contains the 
electronic circuitry that performs the PCjr's control and processing 
functions, as well as some of its storage function. Most of this 
circuitry is located on the PCjr's system board. The system board is 
depicted in figure 2.5. The major components located on the system 
board are as follows: 

D Intel 8088n' microprocessor 
□ 64K RAM 
□ 64K ROM 
D Connectors for external devices 
D Expansion slots 

Each of these will be discussed in the following sections. 

11111111111111111111111111111 

11111111111111111111111111111 

Figure 2.3. System unit (front view) ----------..1 



44 IBM PCjr for Students 

Figure 2.4. System unit (rear view) ________ J 

Intel 8088 Microprocessor 

A microprocessor can be defined as one or more semiconductor 
chips which control the operation of the computer. The microproces­
sor used with the PCjr is the Intel 8088. This microprocessor inter­
prets and executes instructions issued to the computer, controls 
memory, executes arithmetic and logical operations, and controls 
input and output. 

The Intel 8088 is manufactured by Intel Corporation of Sunny­
vale, California. Intel is a pioneer in the development of microproces­
sors. Intel developed the predecessor of the 8088, the 4004 calculator 
chip, in the early I 970's. Intel subsequently developed the 8008, 8080, 
8085, and 8088 / 8086 microprocessors. 



Introducing the IBM PCjr 45 

~~ p; a m ·-
0000 I · I D 
0000 

~ 11 I 
-~ [ 
~~ 

I I 
- -

CJ - -
c:::::J 
c:::J ~al-
CJ 

!1 c:::::J 

I D CJ -
c::::::J 
r:::::J ·or c::::J 
c::::J 

-
I ~ I I 1----1 

I ■ 

Figure 2.5. PCjr system board 



46 IBM PCjr for Students 

::... .. . . . :... . . . . .. :: -:. ·-: .· .· ... -::· . . . ·-:-. . .· · .. · .-:-::_ .. _::::-: 
,:,: ..... _._,:.·. -:-·-·-:-·-:-· . ·. ·.·.·-:- .. ·.·.·.·-:-:-·-·. •,•,· .. _.:, .· ... _.·.· .. ·.... . ~ 

Figure 2.6. Intel 8088 microprocessor _________ .J 

Microprocessor logic is based upon the bit. A bit is the basis of 
all information storage within the computer. A bit consists of a 
simple switch that can consist of either of the two binary states, on or 
off. If the switch is on, a value of I is returned. If the switch is off, a 
value of zero is returned. 

Bits are often separated into groups of eight. These groups of 8 
bits are known as a byte. A byte is required to represent a single 
character (i.e. letter, number, or symbol). Generally, bytes are pro­
cessed by the computer in groups of 2. 

=~ 
~j 

The switch is off. lI 
A value of zero (0) will be returned.:;. 

::: 
I .. 

The switch is on. Ii 
A value of one (1) will be returned. I\ 

❖ 

~= 
·figure 2.7. Bits·"·········································· ······················ ... ·.·····w.·.········· ··•·••• ................. . 



1 byte = 8 bits 

~ 

2~~, 
~Q,­

~@-

~~ 

Introducing the IBM PCjr 4 7 

Bytes Binary Value Character Byte · 
Represents 

higher order bit 0 

1 

0 

0 

0 

0 

0 

lower order bit 1 

Figure 2.8. One byte :tililillmaiiilmlilirillllllllli11Qil881ISlfllall11Qi1881ISlfllallma11illllllillililflllia ___ -,;1 

Most 8-bit microprocessors can only address (or work with) 
65,536 bytes at any one time. Even though this number appears large, 
a 30 page document would fill this area. Most 16-bit microprocessors 
can address from 65,536 to 16 million bytes of memory. Moreover, 
16-bit microprocessors process data at a speed from 2 to IO times 
faster than 8-bit microprocessors. 

The Intel 8088 is a 16-bit microprocessor. One of the main 
advantages the IBM PCjr has over other home computers is the 
power provided by its use of the 8088 CPU. 



48 IBM PCjr for Students 

RAM 

RAM is a type of memory contained on the PCjr's system board. 
The terms memory and storage can be used synonymously. Data can 
be sent to and held in memory in its binary form. 

RAM is an abbrevi~tion for random access memory. Access is 
random because any individual storage location in RAM can be 
accessed immediately. This allows data to be read from or written to 
RAM very quickly. Any data stored in RAM will be lost when the 
PCjr's power is shut off. A RAM chip is shown in figure 2.9. 

ROM 

0 
0 

ROM is an abbreviation for read-only memory. Information is 
stored in ROM in a permanent or semi-permanent manner. This data 
can be read from ROM, however it cannot be changed during com­
puter operation. If the power to the PCjr is shut off, the data stored in 
ROM will remain there. Individual memory locations in ROM are 
accessed in a random manner. 

0 
0 

DD 
~ 

DODOO 

--..~ 
~ w.:~~:~-:=:-:·::::. :x.; •' ~:-· 

Figure 2.9. RAM chip Figure 2.10. ROM chip 



Introducing the IBM PCjr 49 

Connectors for External Devices 

Notice from our expanded view of the rear of the system board 
in figure 2.9, that the connection ports in the rear of the system unit 
attach to the system board. The various connector ports are depicted 
in figure 2. 11. 

Expansion Slots 

Notice the 4 expansion slots depicted in figure 2.5. One expan­
sion slot ( see a in figure 2.5) is utilized by the PCjr's power supply 
board. This board is connected to the power supply / transformer. 
The PCjr's on/ off switch is installed on this board. The power supply 
board is depicted in figure 2.12. 

The expansion slot denoted by bin figure 2.5 is used for installa­
tion of the PCjr Memory and Display Expansion Board. This board 
is shown in figure 2. 13. 

[lTifg 
M 

JJ L KLPT 

1■ 1■1■1■1■ 1■1 
V@ D S 0 

1•1•1■1 

Figure 2.11. Connectors for external devices 



50 IBM PCjr for Students 

Figure 2.12. PCjr power supply board 

0 

Qo 
000 

Figure 2.13. PCjr Memory and Display Expansion Board 



Introducing the IBM PCjr 51 

The expansion slot denoted by c in figure 2.5 is used to install the 
optional Internal Modem. This board is pictured in figure 2.14. 

The expansion slot denoted by din figure 2.5 is used to install the 
disk controller board. This board is connected to the PCjr's optional 
diskette drive . It is depicted in figure 2. I 5. 

Figure 2.14. PCjr Internal Modem 



52 IBM PCjr for Students 

Figure 2.15. PCjr disk controller board 

Keyboard 

The PCjr's keyboard allows the user to communicate with the 
system unit. Unlike most personal computers, the PCjr keyboard 
does not necessarily have to be connected to the system unit with a 
cable. The PCjr keyboard is cordless. Communication with the sys­
tem unit is accomplished using an infrared optical link. 

If more than one PCjr is being used concurrently in a room, it is 
necessary to connect the keyboard to the system unit using the 
optional keyboard connection cable. Otherwise, the keyboard can be 
used without the cable to communicate with the system unit. The 
advantage of cordless communications is especially useful in a class­
room situation -- as the system unit can be placed in a central location 
and the keyboard can be passed around the classroom. The effective 
range of cordless keyboard communication is approximately 20 feet. 

The PCjr keyboard is powered by four AA batteries. It contains 
62 programmable* keys arranged in a typewriter-like sequence. The 
individual keys are described in Lessons 5 and 9. 



r 

Introducing the IBM PCjr 53 

~gggb)~(Qb)IQIQ(QIQIQQ~ 
Qb)[b)~Q[b)Qb)[b)Q~[fl 
QgQ~[b)[b)~QQ[QQQb::.)g 
bl QbJIQQ(b)Q(b)QQbJ bl (bl Q 

lbJI II I ~IQ(b;l IQ 

Figure 2.16. PCjr keyboard 

Power Supply I Transformer 

The PCjr's power supply/ transformer is not built into the sys­
tem unit. Instead, it is housed in a separate unit which is attached to 
the rear of the system unit by a power cord. 

Figure 2.17. PCjr power supply/ transformer-----



54 IBM PCjr for Students 

Video Display 

The fourth basic component needed for PCjr operation is a 
video display. The video display allows the PCjr to display informa­
tion. Any one of the following three types of video display devices can 
be used with the PCjr: 

0 Home color television set 
0 IBM color monitor 
0 Composite video monitor * 

These are pictured in figures 2. 18, 2.19, and 2.20. 

Figure 2.18. PCjr connected to a TV set 

• A composite video monitor is a display device designed to display information 
transmitted by a computer. 



Introducing the IBM PCjr 55 

Figure 2.19. PCjr connected to an IBM color monitor 

\\\\\\\\\\l\\lllllllf Ill• IIIIIIIIII 

Figure 2.20. PCjr connected to a composite video monitor 



56 IBM PCjr for Students 

estio 

True or False 

I. A byte can only assume one of two values , I or 0. 

2. A single bit can be used to represent an individual character. 

3. A cable is not required for communications between the PCjr's 
system unit and keyboard . 

4. The individual PCjr keys are programmable. 

5. The Intel 8088 microprocessor is installed on the PCjr's disk 
controller board. 

Multiple Choice 

1. A microprocessor performs the following functions: 

A. Controls computer operation 
B. Executes program instructions 
C. Interprets program instructions 
D. Controls input and output 
E. All of the above 

2. The following devices are located on the PCjr's system board: 

A. Expansion slots 
B. Power supply/ transformer 
C. Intel 8087 co-processor 
D. Internal Modem 
E. All of the above 



Introducing the IBM PCjr 57 

3. The expansion slots on the PCjr system board are used to install: 

A. Joysticks 
B. Printers 
C. Internal Modem 
D. ROM Cartridges 
E. None of the above 

4. This type of memory loses the data stored in it when the PCjr's 
power is turned off. 

A. ROM 
B. Diskette 
C. Cassette 
D. RAM 
E. None of the above 

5. How much RAM is included on the PCjr's system board? 

A. 64MB 
B. 64K 
C. 128K 
D. 32K 
E. None of the above 

Essay 

1. Define the terms RAM and ROM, noting especially the differen­
ces between the two. 

2. Describe the various functions of a micropr<_>cessor. 



Periphera s & 
Add-On Devices 

lesson 3 

Lesson Goals 

Ill Gain an understanding of the various peripheral and add-on devi­
ces available for the PCjr 

II Learn the meaning of computing terms related to these peripherals 
and add-on devices 

58 



Peripherals and Add-on Devices 59 

Introduction 

In the last lesson, we described the main components of the 
PCjr: the system unit, the keyboard, and the power supply/trans­
former. A number of peripherals* and add-on devices can be added 
to these basic components. These include: 

D Diskette drive 
D Printers 
D Joysticks 
D Keyboard cord 
D Memory and Display Expansion device 
D Internal Modem 
D Cassette player/recorder 
D Cartridges 

Several of these devices were discussed briefly in lesson 2. We 
will discuss these in more detail in this lesson. 

Diskette Drive 

The diskette or disk drive is one of the most important parts of a 
computer system. Disk drives allow the storage of relatively large 
amounts of data and also off er relatively fast access to that data. 
Unlike RAM storage, when information is stored on a disk, the 
information is not lost when the computer is turned off. In other 
words, disks offer a permanent means of storing data. The addition 
of a diskette drive will greatly enhance the usefulness of the PCjr. 

Data is stored on a diskette in magnetic form. The disk drive 
contains a device known as a read/write head which is used to read 
information from and write information to the diskette. The read/ 
write head is depicted in figure 3.1. 

• A peripheral can be defined as an auxiliary device which can be connected to a computer to 
perform some additional function. 



60 IBM PCjr for Students 

, 
' I -+A 

\. ) 

Figure 3.1. PCjr read/write head 

With a disk drive, data can be read from or written to any 
particular position on the diskette. This is in contrast to magnetic 
tape data storage, where, in order to access a particular piece of data, 
all preceding data items must first be examined. The concepts of 
random and sequential data access are depicted in figure 3.2. 

Random Access 

Sequential Access 

Search location 15 ~ preceding data items need not 
be accessed 

l1l213141slsl1lslglrnl11 l12l13l14l1s I 
ttttttttt t 

Search location 15 ~ all preceding data items must 
be accessed 

·figure 3.2. Random and sequential access ~w,J:l;~ml:18!2!:i8!2l:otillll:il!ll!!ili:W 



Peripherals and Add-on Devices 61 

A diskette consists of a round vinyl disk which is stored inside of 
a plastic cover. The diskette is stored in a protective paper envelope 
which protects it from damage while it is being stored or handled. A 
5¼ inch diskette and its protective paper envelope is pictured in 
figure 3.3. 

When the diskette is inserted in a drive, the round vinyl disk 
inside the plastic cover is rotated. Noticethe round hole in the middle 
of the diskette. This allows the disk drive to hold the diskette and to 
spin the vinyl disk inside the cover. Also, notice the oval shaped 
opening on the surface of the diskette 's plastic cover. This opening 
provides an area where the disk drive's read/ write head can read data 
from or write data to the disk surface. 

a. Temporary label 
b. Write protect notch 

(some diskettes do not 
have this notch) 

c. Index hole 
d. Diskette envelope 
e. Exposed read/write 

head slot 
f. Diskette in protective 

cover 
g. Permanent label 

Figure 3.3. 5¼ inch floppy diskette----------.. 



62 IBM PCjr for Students 

Disk Operating System 

The disk operating system (DOS) is a group of programs which 
allow the user to manipulate information between the diskette drives, 
memory, and the video screen. The disk operating system used on the 
PCjr is DOS 2.1. This ~as developed by Microsoft Corporation and 
is a revised version of the earlier versions of DOS used on the IBM 
PC and PC XT. 

Tracks and Sectors 

The disk operating system partitions the diskette surface into 
imaginary areas known as tracks and sectors. By dividing the disk 
surface in this manner, DOS can identify specific locations on the 
diskette surface. This allows data to be located more easily. 

Tracks may be visualized as a series of concentric bands on the 
diskette surface. This is illustrated in figure 3.4. DOS 2.1 divides the 
diskette surface into 40 individual tracks. Each of these tracks can be 
accessed by DOS. 

To further reduce the amount of time required to search for a 
particular data item, DOS divides each track into sectors. Each track 
is divided into 9 sectors. Each individual sector holds 512 bytes of 
data. When DOS is given a track and sector number, it will only have 
to search 512 bytes to find a particular data item. 

The process for locating a specific track on the diskette surface is 
fairly simple. The drive moves the read/write head to the specified 
track. Locating a particular sector is more difficult. The PCjr uses the 
soft sector method to locate a particular sector on the diskette 
surface. 

An index hole is used in the soft sector method to locate individ­
ual sectors. The index hole is located just to the right of the large hole 
in the center of the diskette. The index hole is depicted in figure 3.3. 
As shown in figure 3.3, the index hole is only located on the diskette's 
plastic cover. However, another index hole is located on the actual 
diskette surface inside the plastic cover. 



Peripherals and Add-on Devices 63 

As the drive spins the diskette, the index hole on the diskette's 
surface passes underneath the hole in the protective envelope. 

A light source inside the disk drive shines light onto the area of 
the diskette containing the index hole. When the index hole on the 
disk surface is aligned with the index hole in the protective envelope, 
the light will shine through to a sensor. The sensor will relay informa­
tion on the location of the index holes, which can be used to calculate 
the various sector locations. 

CENTER HOLE 

40TRACKS 

Figure 3.4. Tracks and sectors i118118Bl!llli:illlllllli:118811Bl!llli:Bl!llli:i:118811BflliflllSS8118118118888888'IJIJ//IF 



64 IBM PCjr for Students 

Diskette Capacity 

The amount of data which can be stored on a diskette is affected 
by two storage characteristics -- density and the number of sides to 
which data can be written. Density refers to the recording format 
used on the diskette. Typic_al recording formats are single density and 
double density. Single density diskettes have the capacity to store 
approximately 90K of data per side, while double density diskettes 
have a capacity of about 180K per side. 

Floppy diskettes can be designed so that data can be written to 
only one side or to both sides. Diskettes which are designed to be 
written to one side are known as single-sided diskettes. Those which 
are designed to be written to both sides are referred to as double-sided 
diskettes. The PCjr uses double sided, double density diskettes 
(DS,DD) with a capacity of 360K. 

PCjr Disk Drive Operation 

Operation of the PCjrdisk drive is simple. When a diskette is not 
inserted into the disk drive, the disk slot handle should be in the 
horizontal or open position. This is depicted in figure 3.5. 

When a diskette is being inserted into the PCjr's disk drive, the 
diskette label should be facing up. The side of the diskette containing 
the oval shaped opening should be inserted into the drive as shown in 
figure 3.6. Once the diskette has been inserted into the drive, the 
diskette slot handle should be rotated to the vertical or closed posi­
tion. A diskette can be removed from the drive by merely reversing 
this procedure. 

The PCjr disk drive has a small red light on its front cover. 
Whenever data is being read from or written to the disk surface, this 
lamp will light. The diskette should not be removed from the drive 
while this lamp is on. 

If the disk drive isn't operating properly, check to see if the mon­
itor is placed on top of the computer. The disk drive may not operate 
properly under these conditions. 



Peripherals and Add-on Devices 65 

11 I I I) 

Figure 3.5. Diskette slot handle in open position-"---~ 

..... 

Inserting a diskette into the PCjr drive---~ 



66 IBM PCjr for Students 

Printers 

Printers used with personal computers are generally classified as 
being either dot matrix or daisy wheel. A dot matrix printer outputs a 
character as a group of dots. An expanded view of a character created 
by a dot matrix printer i~ shown in figure 3.7. 

u • • uu u .. 
• I 
• I 

Figure 3.7. Character created by dot matrix printer llllllllllllillllllllllllllll9!JW 

Daisy wheel printers output characters that are similar in 
appearance to those output by a typewriter. An example of dot 
matrix printer output and daisy wheel printer output is given in figure 
3-8. 

The daisy wheel printer uses a round printing element known as 
a daisy wheel to output characters. A daisy wheel is depicted in figure 
3.9. Notice that the character impressions have been formed on the 
outside of the daisy wheel. During printer operation, the wheel will 
spin to the correct position each time a character is to be printed. 
Daisy wheel printers generally are more expensive and operate more 
slowly than dot matrix printers. However, as evidenced by figure 3.8, 
the quality of characters output by daisy wheel printers is higher than 
those output by dot matrix printers. 



DOT MATRIX OUTPUT 

NING Sofhat-e 
Unlimited has 
again thrilled the 
computer industr y 
by producing an 
innovative line of 
integrated 
software which far 
e ,-:ceeds the 
capabilities of 
anything on the 
market. 

Peripherals and Add-on Devices 67 

DAISY WHEEL OUTPUT 

NING Software 
Unlimited has 
again thrilled the 
computer industry 
by producing an 
innovative line of 
integrated 
software which far 
exceeds the 
capabilities of 
anything on the 
market. 

Dot matrix and daisy wheel printer output examples 

Figure 3.9. Daisy wheel 



68 IBM PCjr for Students 

Sending Data from the PCjr to the Printer 

Two different methods are available for sending data from the 
PCjr to the printer -- serial communications and parallel communica­
tions. In parallel communications, the 8 bits representing a character 
are all sent at one time_ from the PCjr to the printer. In serial 
communications, each of the 8 bits are sent one at a time from the 
PCjr to the printer. Serial and parallel communications are depicted 
in figure 3. IO. 

Eight bits (1 byte) 
sent simultaneously 

PARALLEL 
COMMUNICATIONS 

SERIAL COMMUNICATIONS 

byte 1 byte 

Figure 3.10. Serial and parallel communications------' 



Peripherals and Add-on Devices 69 

IBM Printers 

IBM offers two printers that can be used with the PCjr -- the 
IBM Compact Printer and the IBM Graphics Printer. A number of 
printers manufactured by firms other than 18 M can also be used with 

the PCjr. 

The IBM Compact Printer is pictured in figure 3.11. The Com­
pact Printer is a thermal dot matrix printer. Generally, dot matrix 

printers are impact dot matrix printers. With impact printers, print­
ing is accomplished by a print head striking the paper surface. Ther­
mal dot matrix printers utilize a less expensive technology than 

impact dot matrix printers. Thermal dot matrix printing requires a 
special, coated paper. When the paper's coating is struck by the 
thermal printer's hot impact surface, the character will be formed. 

The IBM Compact Printer is a serial device . Data is sent to it 
from the PCjr during serial communications. The Serial Adapter 
Cable is required to install the Compact Printer. 

"Courtesy of Computer/and" 

Figure 3.11. IBM Compact Printer 



70 IBM PCjr for Students 

The IBM Graphics Printer can also be used with the PCjr. This 
printer is shown in figure 3.12. Unlike the IBM Compact Printer, the 
IBM Graphics Printer is a parallel device. In order for the IBM 
Graphics Printer to be used with the PCjr, a device known as the 
Parallel Printer Attachment must be installed on the PCjr. This 
device will also allow the connection of many parallel printers not 
manufactured by IBM to the PCjr. 

Joysticks 

A joystick is a controller device used to position an object on the 
display. Generally,joysticks are used with game software. The IBM 
PCjr Attachable Joystick is pictured in figure 3. 13. 

"Courtesy of Computer/and" 

Figure 3.12. IBM Graphics Printer and Parallel Printer Adapter 



Peripherals and Add-on Devices 71 

Figure 3.13. PCjr Attachable Joystick ________ ___, 

PCjr Keyboard Cord 

The PCjr's keyboard can be connected to the system unit using 
the keyboard cord. Generally, a physical connection is not necessary 
as data is communicated from the keyboard to the system unit via an 
infrared link . The keyboard cord must be installed if more than one 
PCjr is being used in the same room. Otherwise, the infrared signals 
will become confused. The connection between the keyboard cable 
and the keyboard and system unit is depicted in figure 3. 14. 



72 IBM PCjr for Students 

Keyboard cable 
to keyboard 

111111111 

Figure 3.14. Keyboard cable connection 

PCjr Memory and Display Expansion 

Keyboard cable 
to system unit 

K 

• 

The PCjr's Memory and Display Expansion device is standard 
on the IBM PCjr enhanced model and optional on the entry model. 
This device is pictured in figure 3.15. This device expands the PCjr's 
RAM memory capacity from 64K to 128K. This allows the PCjr to 
display 80 characters per line of video output rather than 40. The 
Memory and Display Expansion device is installed on the PCjr's 
system board. 



Peripherals and Add-on Devices 73 

C 

000 0 

Figure 3.15. PCjr Memory and Display Expansion 

PCjr Internal Modem 

A modem allows communications between one computer and 
another located some distance away via telephone lines. A modem 
translates the sending computer's data into tones which can be sent 
over telephone lines. A modem also decodes tones received from the 
sending computer into data which can be accepted by the PCjr. The 
Internal Modem used with the PCjr is installed in the system unit. 
This device is pictured in figure 3.16. 



7 4 IBM PCjr for Students 

Figure 3.16. PCjr Internal Modem 

Cassette Recorder/ Player 

The IBM PCjr can utilize a cassette recorder rather than a 
diskette drive for program and data storage. Cassette recorders are 
the most inexpensive data storage devices available for home compu­
ters. They provide a low cost and reliable means of data storage for 
the budget-minded home computer consumer. However, they offer 
only sequential access. Random access is not possible using a cassette 
recorder. 

A cassette recorder uses standard cassette tapes to store data. It 
is good practice to use only high quality cassette tapes to save 
programs and data . Using lesser quality cassette tapes could result in 
the loss of programs and data . 



Peripherals and Add-on Devices 75 

The PCjrcan use nearly any type of cassette recorder. However, 
a special adapter cable must be purchased in order to connect the 
cassette recorder to the PCjr. The PCjr adapter cable for cassette is 
pictured in figure 3.17. 

PCjr Cartridges 

Cartridges are often used to store PCjr programs. A PCjr car­
tridge consists of 32K of ROM enclosed in a plastic case. A PCjr 
cartridge is pictured in figure 3.18. PCjrcartridges should be inserted 
in one of the PCjr's two cartridge slots as shown in figure 3.19. 

Figure 3.17. Cassette recorder / PCjr installation------



76 IBM PCjr for Students 

Figure 3.18. PC)r cartridge--------

l\\1\111111111111 

\I\\\ II\ 111111111 (j) 

Figure 3.19. Inserting a PC)r cartridge -----



Peripherals and Add-on Devices 77 

estion 

True or False 

I. Random access is not possible with data stored on a diskette. 

2. A track is a concentric band of data on the diskette surface . 

3. Dot matrix printer output is of superior quality to daisy wheel 
printer output. 

4. A modem is used to send data from the PCjr to a cassette recorder. 

5. Single density diskettes can store more data than double density 
diskettes. 

Multiple Choice 

I. The following devices are example of peripherals: 

A. RAM 
B. IBM PCjr 
C. IBM Graphics Printer 
D. ROM 
E. All of the above 

2. How many bytes can be stored on an individual sector on a 
diskette used with the PCjr? 

A. 256 
B. 64 
C. 10 
D. 512 
E. None of the above 



78 IBM PCjr for Students 

3. The following part(s) of a diskette and disk drive are essential in 
the process of locating an individual sector: 

A. Index hole 
B. Read/write head 
C. Read/write head slot 
D. None of the above 
E. All of the above 

4. The PCjr uses the following type of diskette: 

A. Single sided; single density 
B. Single sided; double. density 
C. Double sided; single density 
D. Double sided; double density 
E. None of the above 

5. In serial communications, the following number of bits are sent 
simultaneously to the receiving device: 

A. I 
B. 4 
C. 8 
D. 2 
E. None of the above 

Essay 

I. Describe parallel and serial communications. 

2. Define sequential and random access. 

3. Describe the process whereby DOS divides a diskette's surface so 
that data can be more easily accessed. 



. Section 2 

80 



In the first section, you were introduced to the subject of com­
puting in general. You gained a general understanding of how a 
computer Junctions, and you were introduced to a number of 

terms used in computing. You were also introduced to the IBM PCjr as 
well as its peripherals and add-on devices. The first section should have 
provided you with the basic background you will need to continue your 
journey towards computer literacy. 

Our next section is entitled, "DISCOVERY". In this section, you 
will begin learning about computers by actually operating and pro­
gramming your PCjr. We will attempt to accomplish the following goals 
in this section: 

□ Gain an understanding of the background of the 
Microsoft BASIC language 

□ Learn how to start-up the PCjr 

□ Learn how to enter and run a simple BASIC 
program 

□ Gain an understanding of how the PCjr processes a 
simple program 

□ Learn how to list a BASIC program on the video 
display 

□ Learn how to generate program lines automatically 

□ Learn how to renumber the lines in a BASIC 
program 

□ Learn how to edit a BASIC program 

81 



ntroduction 
to BASC 

lesson 4 

Lesson Goals 

□ Gain an understanding of the background and evolution of Micro­
soft BASIC 

□ Define the different classifications of software and languages 

El Gain an understanding of the relationship between Cassette 
BASIC and Cartridge BASIC 

82 



Introduction to BASIC 83 

Introduction 

In this lesson, we will provide background information on the 
BASIC programming language. BASIC is a simple, easy-to-use pro­
gramming language that is ideal for the first-time programmer. Once 
you have learned how to program in BASIC, you will find it relatively 
easy to learn how to program in other languages such as FORTRAN, 
PASCAL, and COBOL. 

Programming Languages 
High Level, Machine, and Assembly 

A program can be defined as a set of instructions arranged in a 
specific sequence which directs the operation of a digital computer. A 
language can be defined as a set of words or symbols that can be used 
for communicating. A programming language can be defined as a set 
of words or symbols that can be used to communicate instructions to 
a digital computer. The BASIC programming language is included as 
a standard feature with the PCjr. 

BASIC is a high level programming language. A high level 
language does not require that the programmer have an understand­
ing of the internal workings of the computer. With a machine or an 
assembly language, the programmer must have an in-depth under­
standing of the computer and its microprocessor in order to write 
programs. 

Numbers are used in machine language programs to send 
instructions to the microprocessor. For example, the hexadecimal 
number EA would instruct the PCjr to jump to another memory 
location and resume execution at that location. Mnemonics are used 
in assembly language programs to communicate instructions. The 
mnemonic JMP is used in Intel 8088 assembly language to instruct 
the PCjr to jump to another memory location and resume execution 
there. 

With a high level language such as BASIC, commands are 
generally specified in English words that can be associated with the 
operation to be performed. For example, the BASIC command 



84 IBM PCjr for Students 

PRINT instructs the computer to display information. It is generally 
much easier to write a program in a high level language than in a 
machine or assembly language. 

History of BASIC 

The BASIC language was originally developed in the early 
1960's by John G. Kemeny and Thomas E. Kurtz of Dartmouth 
College. Over the years, a number of different versions of the BASIC 
language have been developed. The version of BASIC used on the 
IBM PCjr is Microsoft BASIC, which is marketed by Microsoft 
Corporation. Microsoft BASIC is used on a number of different 
personal computers. 

Microsoft BASIC was originally developed in 1975 for the 
MITS Altair computer by William Gates and Paul Allen. Gates and 
Allen eventually formed their own firm, Microsoft Corporation, to 
market their version of BASIC. 

Microsoft BASIC became the industry standard in the personal 
computer field, and Microsoft Corporation went on to develop 
and/ or market a number of other personal computer related items, 
including the disk operating system used on the IBM PCjr. 

Compiled vs. Interpreted Languages 

Computer languages are often distinguished as being either 
compiled or interpreted languages. Microsoft BASIC is an inter­
preted language. 

A compiled language program consists of the source code and 
the compiled code. The source code consists of the program state­
ments in their original form. For example, the following is a line of 
source code from a program written in the CBASIC compiled 
language: 

l 00 INPUT "ENTER TODA Y'S DATE:";DATE. l 



Introduction to BASIC 85 

The source code is processed by a program known as a compiler 
into the compiled code. The compiled code is very similar to the 
machine language used by the microprocessor. The compiled code is 
the code actually used when a compiled program is run. A program 
known as a run-time monitor is used to run the compiled program. 

An interpreted language consists of only the source code. The 
source code is translated line-by-line directly into machine language 
instructions. One advantage of interpreted languages over compiled 
languages is that interpreted language programs are more easily 
developed. When working with interpreted languages, a programmer 
need only write a program, enter it, run it, and alter it at his leisure. 
When working with a compiled language, the source code must be 
recompiled every time it is edited. This can be frustrating during the 
program debugging process. 

One advantage of compiled languages over interpreted lan-· 
guages is that execution time is much faster. The compiled code is 
much closer to the machine language than the source code. Since 
interpretation is not necessary, execution of compiled code is much 
faster. 

Cassette and Cartridge BASIC 

The Microsoft BASIC interpreter is supplied with the PCjr as 
two different parts. The Cassette BASIC portion of the interpreter is 
contained in 32K of ROM on the PCjr's system board. Cassette 
BASIC includes the majority of Microsoft BASIC's many features. 
Although Cassette BASIC allows for the storage of data on a cassette 
player/ recorder, it cannot be used when data is being stored on 
diskette. 

Cartridge BASIC is contained on a PCjr cartridge. When this 
cartridge is inserted into either of the PCjr's two cartridge slots, 
Cartridge BASIC will be active in addition to Cassette BASIC. 
Cartridge BASIC allows data to be stored on diskette as well as 
cassette. Cartridge BASIC also includes a number of BASIC com­
mands not available in Cassette BASIC. These include: 



86 IBM PCjr for Students 

CIRCLE 
PUT 
GET 
PAINT 
DRAW 
VIEW 

WINDOW 
PALETTE 
PALETTE USING 
PLAY 
TERM 

Cartridge BASIC also allows for additional graphics screen 
modc::s beyond those found in Cassette BASIC. 

Types of Software 

At the beginning of this chapter, we defined a program as a set of 
instructions which direct the computer's operation. The term soft­
ware is almost synonymous with programs. Software can be defined 
as the various programs that control the computer's operation. We 
have already briefly examined two examples of PCjr software, the 
Microsoft BASIC interpreter and the DOS disk operating system. 

Software can be divided among three general classifications: 

□ Operating system software 
□ Language software 
□ Applications software 

The PCjr's DOS is an example of operating system software, 
and Microsoft BASIC is an example of language software. Applica­
tions software can be defined as programs designed to accomplish a 
specific task that is of some value to the user. Examples of applica­
tions programs include games, word processing programs, spread­
sheets, and database systems. 

Generally, applications programs are stored on cassette or 
diskette and are transferred into RAM, where the program is availa­
ble to the computer. Applications programs can also be stored in a 
permanent form on a ROM cartridge. This ROM cartridge can be 
plugged into one of the PCjr's cartridge slots. 



Introduction to BASIC 87 

A large variety of applications software is available for use with 
the PCjr. These include programs which can be used in the home such 
as Home Budget; programs which can be used at work such as 
Multi plan and Visicalc; programs with educational applications such 
as Monster Math and Turtle Power; and finally, games such as 
Adventure. 



88 IBM PCjr for Students 

uesti 

True or False 

I. Mnemonics are used to communicate instructions in a high level 
language. 

2. Machine language programming requires an in-depth understand­
ing of the workings of the computer and its microprocessor. 

3. An interpreted language program consists only of source code. 

4. Cartridge BASIC is contained in 32K of ROM on the PCjr's 
system board. 

5. The PCjr's Microsoft BASIC interpreter is an example of applica­
tions software. 

Multiple Choice 

I. The following are examples of high level programming languages: 

A. Microsoft BASIC 
B. FORTRAN 
C. COBOL 
D. PASCAL 
E. All of the above 



Introduction to BASIC 89 

2. Numbers are used to communicate instructions in the following: 

A. High level languages 
B. Assembly languages 
C. Machine languages 
D. None of the above 
E. All of the above 

3. Microsoft BASIC is a: 

A. Compiled language 
B. Operating system 
C. Applications program 
D. Interpreted language 
E. None of the above 

4. One advantage of an interpreted language over a compiled lan-
guage 1s: 

A. Programs can be written more easily 
B. Programs can be more easily debugged 
C. The compilation step is not necessary 
D. None of the above 
E. All of the above 

Essay 

l. Define the terms program, language, and programming language. 

2. Define the terms machine language, assembly language, and high 
level language. 

3. What is the difference between a compiled and an interpreted 
language? 

4. What are the relative advantages and disadvantages of compiled 
and interpreted languages? 



Getting Started 
with BASC 

lesson 5 

Lesson Goals 

□ Learn how to start-up the PCjr 

□ Gain an understanding of the PCjr's keyboard 

□ Learn how to send commands to the PCjr 

90 



Getting Started with BASIC 91 

Introduction 

In this lesson, we will begin learning about computing via the 
hands-on approach. By hands-on, we mean that we will be actually 
using the computer while we are learning about it. We will learn how 
to start-up the PCjr as well as how to use its keyboard to input 
information. By the time you have progressed to the end of this 
lesson, you will have learned how to input a simple command to 
which the PCjr will respond. 

PCjr System Start-Up Review 

Before actually starting up the PCjr, let's make sure that the 
system is set up properly. A typical PCjr system set-up is depicted in 
figures 5.1 and 5.2. 

Notice that a minimum of four components are required for a 
functional system. These include: 

D System unit 
□ Keyboard 
D Video display 
D Power supply/ transformer 

Note that a physical connection is not required between the 
keyboard and the system unit. The keyboard can communicate with 
the system unit using the infrared link. From figure 5.2, we can see 
that a physical link is required between the video display and the 
system unit. The power supply/ transformer also plugs into the rear 
of the system unit. 



92 IBM PCjr for Students 

BASIC Start-Up 

You can start-up the PCjr either with the diskette drive or 

without the diskette drive . We will discuss both methods in the 
following two sections. 

' -- -~-
= = 
=--=-==-=-=--------- □ 

\\\\\\\\\\\\\\\\\\\\ 0 \~!h1) 
====□□ClClCl□ Cl□ Dc::::J CJ 
c:::::::J = CJ Cl CJ CJ CJ CJ CJ CJ Cl Cl CJ n 

c:::::::J CJCJC]CJCJCJC]CJC]CJCJc.-1 t:l 
c:::::::J CJCJCJClClClCJClClCl C=::J Cl Cl. 

C2 .__ ____ ---4 Cl Cl Cl Cl 

Figure 5.1. PCjr system set-up (front view) ------~ 



Getting Started with BASIC 93 

PCjr Start-Up Without the Diskette Drive 

In this section , we will outline the steps that should be taken to 
start-up your PCjr without using the diskette drive. If the PCjr does 
not appear to be functioning properly during the start-up procedure, 
merely turn the PCjr's power off and begin over again . 

. -.·.·-:-:-:-·-·:: ... ::::-:•: 

Figure 5.2. PCjr system set-up (rear view)-------~ 



94 IBM PCjr for Students 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

If the PCjr's power is on, turn it off. The power switch 
is located at the rear of the system unit as shown in 
figure 5.2. 

The video display device should be turned on. The 
volume control knob should be turned down. 

With the exception of the Cartridge BASIC car­
tridge, any cartridges should be removed from the 
cartridge slots in the system unit. If you wish to use 
Cartridge BASIC, that cartridge should be installed 
at this time in one of the cartridge slots. 

Turn on the power switch located at the rear of the 
system unit. The following screen display should 
appear initially: 

1111111111111 

Notice that the number displayed at the screen's 
lower right-hand corner changes. These changes 
reflect a series of self-tests being undertaken by the 
PCjr. After about 10 seconds, the self-tests will have 
been completed. The screen display will first go blank 
and will then resemble that shown on the following 
page: 



The IBM PC jr Basic 
Version C1.20 

Getting Started with BASIC 95 

Copyright IBM Corp. 1981, 1982, 1983 
62940 Bytes free 
Ok 

HLISTl 2!RUN- l 3 ILOAD" I 4lSAVE" I SlCONT-1 

Cassette BASIC is known as "Version C". If the BASIC car­
tridge had been inserted, "Version J" would have replaced "Version 
C" at the beginning of line two. Cartridge BASIC is known as 
"Version J". 

PCjr Start-Up with the Diskette Drive 

If your PCjrdoes not have a disk drive, then you can ignore this 
section. Use the instructions in the preceding section to start-up your 
PCjr. If your PCjr does have a diskette drive, then use the steps 
outlined in this section for start-up. 

Cartridge BASIC is required for disk drive usage. Therefore, the 
Cartridge BASIC cartridge should be inserted in one of the PCjr's 
cartridge slots if the diskette drive start-up procedure is to be under­
taken. If you do not have Cartridge BASIC, use the start-up proce­
dure for a PCjr without a diskette drive. 

The DOS diskette is also required. This diskette is supplied with 
PCjr's that include a diskette drive. 

The steps involved in starting up the PCjr with a diskette drive 
are given below: 

Step 1. 

Step 2. 

If the PCjr is not already turned off, do so now. 

The video display should be turned on. The volume 



96 IBM PCjr for Students 

Step 3. 

Step 4. 

Step 5. 

control knob should be turned down. 

Insert the DOS diskette in the diskette drive. Follow 
the instructions outlined on page 64. 

With th_e exception of the Cartridge BASIC car­
tridge , any cartridges should be removed from the 
cartridge slots in the system unit. As mentioned ear­
lier, Cartridge BASIC must be installed in order for 
you to use the diskette drive. 

Turn on the power switch located at the rear of the 
system unit. The following display will appear: 

1111111111111 

The number displayed on the screen's lower right­
hand corner will change as the PCjr performs a series 
of self-tests . After about 10 seconds, the self-tests will 
have been completed. The display screen will first go 
blank. Then, a beep will be output by the PCjr, and 
the red lamp on the front of the diskette drive will 
light. After a few seconds, the following will be dis­
played on the screen: 



Getting Started with BASIC 97 

Current date is Tues 1-01-1980 
Enter new date: 

At this point, you can either enter a date using the 
keyboard, or you can press the Enter key. The date 
entered is known as the system date. The system date 
is used by the PCjr's DOS in a number of different file 
handling operations. If the Enter key is pressed, the 
system date will default to the date displayed on the 
screen, January I, I 980. If a new date is entered using 
the keyboard, that date will be used as the system 
date. 

A certain format must be used when entering the 
system date. If this format is not used, the following 
error message will be displayed: 

Invalid date 

This entry format is as follows: 

mm--dd--yy 
or 

mm/dd/yy 

mm indicates the month. It must consist of one or two 
integers in the range I to 12. dd indicates the day. It 
must be one or two integers in the range from I to 31. 
yy indicates the year. It must be two digits in the range 
from 80 to 99. 

The following are examples of valid and invalid 
system date entries: 

Valid System Date Entries 

Invalid System Date Entries 

01/04/84 
3/21/85 

2.12.84 
January 12, 1982 

5-1-84 
7-30-82 

6/84 
2-31-84 



98 IBM PCjr for Students 

How to Use this Book -­
Entry Formats 

\n this book, we wi\\ use a standardi1.ed format to indicate 

info<'nation whioh is to be ,nte«d by th< u,et into the PCj, 
using its keyb••"'· AnY keyboo«l ent,Y whioh ,oust be ,.,de. 
but lot whioh , numb<< of diff etenl options"' .,,ib<ble. will b< 

displayed in ita\ics as fo\\ows: 
mm--dd--YY 

The abbreviations used to indicate this optional entry wi\\ hope­
fully ,e.-ve a, ,n ind~•tot of the tYP' of ,nt.-Y to b< ,nade. fot 
e"3<0P"· mm indioa"' ,nonth: dd indioates d•Y' ,nd .1·.1· indi-

cates year. 

Step 6. Once the system date ha screen display will s been entered the f 11 . appear: ' 0 owmg 

Current date is 1i 
Enter new date: ues 1-01-1980 

Current time is o·oo· 
Enter new time: . .34.49 



Step 7. 

Getting Started with BASIC 99 

The PCjr is requesting entry of the system time. 
Again, you can either enter a date via the keyboard, 
or press the Enter key. Pressing the Enter key causes 
the system time to default to that displayed on the 
screen. 

The following entry format must be observed if the 
system time is entered using the keyboard: 

hh:mm:ss.xx 

hh indicates the hour of the day. One or two digits 
should be used in the range Oto 23. Hours in the PM 
will be assigned integers greater than 12. For instance, 
3 PM would be assigned the integer 15. mm indicates 
minutes. This can be entered as one or two digits in 
the range 0 to 59. ss indicates seconds. This can be 
entered as one or two digits in the range 0 to 59. xx 
indicates hundredths of seconds. This can be entered 
as one or two digits in the range Oto 99. The following 
entries are optional: 

mm ss xx 

The following are all valid entries for the system 
time: 

1 
23:01 

14:12:7 
8:1:1.9 

After the system time has been entered, the screen 
display will appear as follows: 

Current date is Tues 1-01-1980 
Enter new date: 

Current time is 0:00:34.49 
Enter new time: 

The IBM Personal Computer DOS 
Version 2.10 (C) Copyright 1981 
1982, 1983 

-------DOS prompt 

A>----- cursor 



100 IBM PCjr for Students 

At this point, the PCjr is ready to accept DOS 
commands. However, it is not ready to accept 
BASIC commands. A > is known as the DOS 
prompt. These characters serve as an indication 
that a DOS command can be entered. 

Notice the flashing symbol to the right of the 
DOS prompt. This symbol is known as the cursor. 
The cursor indicates that the computer is ready to 
accept keyboard entries. 

Since we are interested in using Microsoft 
BASIC, our next step will be to activate the Micro­
soft BASIC interpreter. We can do so by entering 
the following characters: 

BASIC ...J 

BASIC can be entered either as upper or lower 
case letters. The symbol ....J will be used in this book 
as an indication that the Enter key is to be pressed. 

If you make a typing error, the PCjr will proba­
bly display a message as shown below: 

Current date is Tues 1-01-1980 
Enter new date: 

Current time is 0:00:34.49 
Enter new time: 

The IBM Personal Computer DOS 
Version 2.10 (C) Copyright 1981, 
1982, 1983 

A>VASIC 

Bad command or filename 

A>_ 

If you do make a typing mistake, don't worry. Just 
reenter the correct characters. 

Once the correct entry has been made, the screen 
will go blank for a second or two, and the screen 
will then appear as follows: 



The IBM PC jr Basic 
Version J1.00 

Getting Started with BASIC 1 01 

Copyright IBM Corp. 1981, 1982, 1983 
59694 Bytes free 
Ok 

1 ! LIST ! 2 !RUN- ! 3 !LOAD" ! 4 !SAVE" ! 5 !CONT-I 

Notice the Ok. This is the BASIC prompt. Ok 
indicates that a BASIC command can be entered. 

Adjusting the Screen 

Upon start-up, you may find it necessary to adjust the PCjr's 
screen. This is a relatively simple matter. First, hold down the Alt key, 
which is located to the immediate left of the space bar. While holding 
the Alt key, also hold the Ctrl key. This key is located along the 
keyboard's left-hand side. While holding both of these keys, press the 
- key located on the keyboard's right-hand side. 

Notice that every time the - key is pressed, the screen display 
moves to the right. If the - key is pressed with Ctrl and Alt, the screen 
display will move to the left. 

Warm Boot 

The procedure for starting up a computer when it is powered off 
is known as a cold boot (or start). The procedure for restarting a 
computer when its power is on is known as a warm boot. 

You will often encounter situations where an incorrect entry or 
error condition will make it easier to just restart BASIC and erase the 
contents in memory, rather than to attempt to correct the situation. 
Such situations can be corrected by performing a warm boot. 



102 IBM PCjr for Students 

To perform a warm boot, press the Alt and Ctrl keys simultane­
ously. While you are holding these keys down, press the Del key, and 
then release all three keys. The computer will react much as if it had 
been started with the power off. 

Whenever you perform a warm boot, remember that any exist­
ing data in the PC}r's memory will be erased. 

PCjr Keyboard 

The IBM PC}r's keyboard is shown in figure 5.3. Most of its keys 
correspond to those found on a standard typewriter. Notice that 
many of the keys are marked with two characters, one of which is in 
white and the other in black, green, or blue. 

When one character is displayed in white and the other character 
in black, the character displayed in white will be generated when that 
key is pressed. The character in black can be accessed by holding 
down the Shift key and then pressing the key with the desired 
character. 

Even though the keys corresponding to the letters of the alphabet 
are indicated on the keyboard with only one character, they also can 
actually indicate two. When a letter key is pressed without the Shift 
key being depressed, the lowercase letter will be generated. When 
Shift is pressed, the uppercase letter will be generated. 

For example, press the A key. The lowercase "a" will be dis­
played on the screen. Now, press the Shift key and hold it while 
pressing the A key. Notice that the uppercase" A" will be displayed. 

Obviously, it would be difficult to enter a large number of 
uppercase letters using the Shift key, as one hand would be constantly 
busy holding the Shift key. This problem can be solved by using the 
PC}r's CapsLock key. 



Getting Started with BASIC 1 03 



104 IBM PCjr for Students 

Experiment by pressing and then releasing this key. Then, press 
the A key without holding down the Shift key. Notice that an upper­
case" A" was generated. Uppercase letters will continue to be gener­
ated when the keyboard is in the unshift position until the CapsLock 
key is pressed again. Pressing CapsLock a second time will turn off 
this feature. 

FnKey 

You have probably already noticed that a number of the keys on 
the PCjr keyboard are designed with one or more characters outlined 
in green. These are depicted in figure 5.4. They are known as the 
function keys. The Fn or function key puts the PCjr in the function 
mode when it is pressed and then released. The other keys denoted 
with green characters have been assigned a function. 

When the PCjr is pressed, the assigned function will be per­
formed. For example, the Fn PrtSc key combination will cause all 
data displayed on the screen to be sent to the printer. 

When the Fn key is used with the function keys at the top of the 
PCjr keyboard (Fl - FIO), a BASIC command or reserved word will· 
be output. For instance, pressing the Fn and FI keys will cause 
BASIC's LIST command to be generated. If the operator subse­
quently presses the Enter key, that command will be performed. 
Table 5.1 contains a list of the reserved words that can be generated 
by pressing Fl to FIO in the function mode. 



Getting Started with BASIC 105 

Alt Key 

The Alt and related keys are designated on the PCjr's keyboard 
in blue. The Alt key places the PCjr keyboard in the alternate mode. 
The alternate mode is generally used to enter BASIC reserved words. 
By pressing and holding the Alt key with one of the letter keys, a 
BASIC reserved word will be generated. 

For example, press the Alt and A keys. Notice that the BASIC 
keyword AUTO was generated. Table 5.1 includes a list of the BASIC 
reserved words that can be generated in the alternate mode . 

········· ... •.·.• ..... · ..... ,... . ... . 

·tittitiflliftftltitffl@@/tttltffitfff itt!fli/Jt\ilttf f!ftifttttffiffttttttJiftfflifffff)f litfit 

• 
Figure 5.4. Function keys 



106 IBM PCjr for Students 

Table 5.1 Fn and Alt key combinations 

Hold Down Press Result 

Alt A AUTO 

Alt 8 BSAVE 

Alt C COLOR 
Alt D DELETE 

Alt E ELSE 

Alt F FOR 

Alt G GOTO 

Alt H HEX$ 

Alt I INPUT 

Alt K KEY 

Alt L LOCATE 

Alt M MOTOR 

Alt N NEXT 

Alt 0 OPEN 

Alt p PRINT 
Alt R RUN 

Alt s SCREEN 

Alt T THEN 

Alt u USING 

Alt V VAL 

Alt w WIDTH 

Alt X XOR 

Fn Fl LIST 

Fn F2 RUN [Ret] 
Fn F3 LOAD" 
Fn F4 SAVE" 

Fn F5 CONT [Ret] 
Fn F6 "LPTI:" [Ret] 

Fn F7 TRON [Ret] 
Fn F8 TROFF [Ret] 

Fn F9 KEY 
Fn Fl0 SCREEN 0,0,0 [Ret] 



Getting Started with BASIC 107 

Fn Pause Temporarily halts computer operation 
until a key ( other than Shift) is 
pressed 

Fn Echo When pressed once, causes text sent to 
the screen to be sent to the printer as 
well. When pressed again, text will 
only be sent to the screen 

Fn PrtSc Results in data displayed on screen 
being output to the printer 

Fn Break Stops execution of a BASIC program 

Fn ScLock + Halts program execution indicating 
Break line number where execution stops 

Fn Home Positions cursor to screen's upper 
right-hand corner 

Table 5.1. (cont.) Fn and Alt key combinations 

Ctr/Key 
The Control key, located at the left-hand side of the PCjr's 

keyboard, will place the keyboard in the control mode when it is 
pressed. In the control mode, certain keys can be pressed to perform 
designated operations. We have already seen how the Control-Alt­
Del key combination will generate a 'System reset. The Control key 
can be used in combination with other PCjr keys to edit program 
lines. This will be discussed in Lesson 9. 

Editing Keys 

A number of keys on the PCjr keyboard are used to edit program 
lines. These are depicted in figure 5.5. The editing keys will be 
discussed in Lesson 9. 



108 IBM PCjr for Students 

IQQ~bJbJ -------
Qb)b][QiQiQ 

(Q(Q(Q(Qb)b) 
QIQIQIQ 

Figure 5.5. PCjr editing keys 

Enter Key 

The Enter key is used to send information from the PCjr's 
keyboard to the computer. In most cases, the PCjr will not actually 
respond to a keyboard entry until the Enter key has been pressed. 

For example, suppose that we made the following entries using 
the PCjr's keyboard: 

...:..N:..::a:..::n:.:::c.Ly_...J ______ The display screen will appear as follows once 
the Enter key ( -.J )* has been pressed. 

* In this book . the symbol ..J will be used to indicate pressing the Enter key. 



Getting st rt ed with BASIC 1 09 

How to Use this Book -­
Keyboard Entries 

BEEP ..J 

Throughout this book, you will notice words and 
numb«s printed on the left-band side of the page with a 

line underneath it. These characters are to be entered on 
the PCjr's keyboard. The comments and illustrations to 
the right of th< tine desc<ibe what will happen once that 

entry has been made. 

The _IBM PC jr BASIC 
Version J1 .00 
Copyright IBM C 59694 Bytes free orp. 1981, 1982, 1983 

Ok 
Nancy 
Syntax error 
Ok 

The PC"r' J sspeakersounded . with a beep. 



110 IBM PCjr for Students 

_S_C_R_E_E_N_1_--' ____ The display screen momentarily went blank, 
and then the following screen display appeared: 

Ok 
■ 

1 LIST 2 RUN- 3 LOAD" 4 SAVE" 5 CONT-

COLOR 2--' --------

SCREEN O--' --------

Notice that the cursor appears as a solid block 
rather than a flashing line. 

The screen's color changed to green. 

The normal screen display reappears. 

_P_R_IN_T_"N_a_n_c~y_" ___ The display screen will appear as follows: 

Ok 
PAINT "Nancy" 
Nancy 
Ok 

Notice that our entry did not generate an error 
message. Instead, the word "Nancy" was dis­
played on the screen. 



Getting Started with BASIC 111 

Conclusion 

At this point, you should have a good understanding of the 
PCjr's start-up procedure and its keyboard. In the next lesson, you 
will actually enter and run your first BASIC program. 



11 2 I BM PCjr for Students 

esti 

True or False 

I. The Cartridge BASIC cartridge must be installed before the PCjr 
can be started up without using the disk drive. 

2. The A> prompt indicates that a BASIC command can be entered. 

3. A cold boot can be executed by pressing the Control, Alt, and Del 
keys simultaneously. 

4 . The alternate mode enables the operator to enter a BASIC com­
mand by pressing the Alt key simultaneously with one of the letter 
keys. 

5. Pressing the Fn key causes the PCjr to be in the control mode . 

Multiple Choice 

I. The following system date entries are valid: 

A. 07.01.82 
B. 12-1-84 
C. 2:24:82 
D. All of the above 
E. None of the above 



Getting Started with BASIC 113 

2. The following system time entry (entries) are valid: 

A. 7 
B. 17/34/48.12 
C. 8:11:17:42 
D. All of the above 
E. None of the above 

3. The flashing cursor indicates that the PCjr is ready to: 

A. Display an error message 
B. Send information to the diskette 
C. Perform a warm boot 
D. Accept a keyboard entry 
E. None of the above 

4. The following key is used to send information from the PCjr's 
keyboard to the computer: 

A. Fn key 
B. Ctrl key 
C. Alt key 
D. Shift key 
E. None of the above 

5. The following component(s) is essential for practical PCjr usage: 

A. Keyboard 
B. Diskette drive 
C. Cassette recorder 
D. Cartridge BASIC 
E. All of the above 

Computer Exercises 

I. Start-up the PCjr without using the diskette drive. 

2. Start-up the PCjrusing the diskette drive. 

3. Perform a warm boot. 



PRINT 

Your First 
Program 

Lesson Goals 

lesson 6 

□ Learn the d!fference between immediate and program 
mode entries 

□ Learn how to use BAS/C's PRINT statement 

□ Learn how to execute a BASIC program 

□ Learn how to clear the display screen 

□ Learn how to list a program which is stored in memory 

□ Learn how to erase a program from memory 

114 



Your First Program 11 5 

Introduction 

In this lesson, we will actually write and execute our first BASIC 
program. We will then learn how to use BASIC commands to clear 
the screen, list a program stored in memory to the screen, and erase a 
program from memory. Before learning these BASIC programming 
features, we will discuss the difference between the immediate and 
program modes in BASIC. 

Immediate and Program Modes 

In the immediate mode, a BASIC command entered using the 
PCjr keyboard will be executed when the Enter key is pressed. The 
following is an example of a BASIC command entry in the immediate 
mode: 

PRINT "Programming is fun" ..J 

Ok 

This entry will result in the follow 
ing display: 

PRINT "Programming is fun" 
Programming is fun 
Ok 

In the program mode, when program lines are entered, they are 
not executed but are instead stored for later execution. The stored 
program lines will be executed when BASIC's RUN command is 
entered in ttie immediate mode. 



11 6 I BM PCjr for Students 

BASIC needs some way of identifying a program line entry as 
either being in the immediate mode or in the program mode. In the 
program mode, each separate line must be prefixed with a line 
number. When a BASIC command is entered with a line number 
preceding it, that line is known as a program line. 

Program lines are ended and sent to the PC Jr's memory when the 
Enter key is pressed. Examples of program lines are given below: 

Ok 
10 PRINT "Programming is fun" 
20 PRINT "with the PCjr" 

The maximum number of characters that can be included in a 
program line is 255 including the character sent to memory when the 
Enter key is pressed. Since the PCjrcan only include 40 characters on 
each display line, a program line can extend over 7 different display 
lines. This is shown in the following example: 

Ok 
10 PRINT "The BASIC programming language 
was developed in the early 1960's by Pro 
fessor's John G. Kemeny and Thomas E Ku 
rtz of Dartmouth College. Over the years 
a number of different versions of the BA 
SIC language have been developed. The ver 
sion of BASIC 



Your First Program 11 7 

BASIC executes program lines sequentially based upon their 
line numbers. In other words, if a program consisted of the following 
program lines, 

5 PRINT "New York 7" 
7 PRINT "St Louis 5" 
9 PRINT "Pittsburgh 7" 

11 PRINT "Philadelphia 4" 
13 PRINT "Pittsburgh is now in first place" 

line 5 would be executed first, followed by lines 7, 9, 11, and 13, 
respectively. 

Writing and Entering a Program 

Now that we have learned some of the basic features of program. 
lines and line numbers, we are ready to write our first BASIC pro­
gram. Our first program will be a simple one. The purpose of the 
program will be to display the baseball standings in the National 
League's Eastern Division. 

This program will use three BASIC commands, PRINT, REM, 
and END. The PRINT command is used to send information to the 
display screen. The information to be sent to the screen should be 
enclosed in quotation marks. 

The REM statement is used to include the programmer's 
remarks in the program listing. Generally, these remarks are included 
to either describe the program's operation or its purpose. 

The END statement is used to end program execution. Although 
END can be placed anywhere in a program, it is generally found on 
the final program line. Although a BASIC program will automati­
cally stop execution when it finishes executing the final program line, 
it is still a good programming practice to include an END statement 
at the end of a BASIC program. 



118 IBM PCjr for Students 

Now that we have some background on the BASIC commands 
that we'll be using, let's design our program to display the baseball 
standings. Let's assume that we want the standings displayed in the 
following format: 

National League Eastern Division 

Team 
Pittsburgh 
Montreal 
Philadelphia 
St. Louis 
Chicago 
New York 

Wins 
42 
41 
37 
34 
29 
28 

Losses 
28 
29 
33 
36 
41 
42 

We already know that we can use the PRINT statement to 
display information on the screen. One of our obvious problems is to 
design our PRINT statements so that the information is displayed on 
the screen in a manner that is pleasant to read. This requires that we 
include the proper number of spaces in certain positions within each 
PRINT statement. 

A grid such as that shown in figure 6.1 would help us accomplish 
this task. The first line to be displayed, 

National League Eastern Division 

consists of 32 characters. We'll call it the title line. Since each display 
line allows 40 characters, by including 4 blank characters on one side 
of our text and 3 on the other in the PRINT statement, we could 
center it on the screen. This could be accomplished with the following 
program line: 

4 blank spaces 3 blank spaces 

J, J, 
10 PRINT" National League Eastern Division " 



Your First Program 119 

Notice that only 39 characters were enclosed within quotation 
marks even though the PCjr's video display allows for a 40 character 
display. The reason for this is that the last character output by a 
PRINT statement is the carriage return/ line feed. This character is 
invisible and can't actually be seen on the video display. However, it 
does occupy one position in the PRINT statement output. 

The carriage return/ line feed character tells the PCjr to begin 
displaying new data at the far left of the next screen line. Notice that 
when the PRINT statement is executed by itself, even though it does 
not display actual characters on the screen, it still outputs the carriage 
return/ line feed character. This causes subsequent data to be output 
on the left-hand side of the next display line. 

Therefore, if we issued a PRINT statement with an argument of 
40 characters as follows, 

4 blank space.~ 4 blank spaces 

PRINT" J, National League Eastern Division J," 

40 characters 

the carriage return/ line feed character would actually be executed on 
the next display line. 

Ok 
PRINT " National League Eastern Di 
vision " 
National League Eastern Division 
a .. (----. 

L im•isible carriage return/ T line.feed 

----------flashing cur.wr 



120 IBM PCjr for Students 

Notice that two lines were skipped on the display screen. 
If we issued the PRINT statement with 39 characters rather than 

40 characters, the carriage return/ line feed will be output in the same 
line as the other characters, and only one line will be skipped. For 
instance, if the following immediate mode program line was input, 

4 blank spaces 3 blank spaces 

PRINT "J, National League Eastern Division J," 

39 characters 

our output would appear as follows: 

Ok 
PRINT " National League Eastern Di 
vision " 
National League Eastern Division 

t_ .flashing cursor 

Suppose that we wanted a blank line to appear after the title line. 
As mentioned previously, if the PRINT statement is executed by 
itself, a blank line will be output. Therefore, our second line could be 
as follows: 

20 PRINT 



Your First Program 121 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

T 
p i 

M o 
p h 

s t 

C h 

N e 

N a t I 0 n a I L e a g u e E a s t e r n D i V i s i 0 n 

e a rn w i n s L 0 s s e s 
t t s b u r g h 4 2 2 8 

n t r e a I 4 1 2 9 

i I a d e I p h i a 3 7 3 3 

L 0 u i s 3 4 3 6 

i C a g 0 2 9 4 1 

w y 0 r k 2 8 4 2 

Figure 6.1 PRINT statement grid 

Notice that we are numbering our lines in increments of 10. The 
use of consecutive line numbers ( 1,2,3,4,5,6,7,etc.) is generally not a 
good idea in a BASIC program. Suppose that after writing a program 
using consecutive line numbers, 

21 PRINT "Pittsburgh" 
22 PRINT "Montreal" 
23 PRINT "St. Louis" 
24 PRINT "Chicago" 
25 PRINT "New York" 

and we found that we needed to insert an additional line: 

PRINT "Philadelphia" 

If consecutive line numbers were used, a number of program 
lines would have to be renumbered to insert the new line. 



122 IBM PCjr for Students 

These lines would 
have to be 

renumbered 

21 PRINT "Pittsburgh" 
22 PRINT "Montreal" 
23 PRINT "Philadelphia" 

{ 
24 PRINT "St. Louis" 
25 PRINT "Chicago" 
26 PRINT "New York" 

By using non-consecutive line numbers, new program lines can 
be easily inserted. 

20 PRINT "Pittsburgh" 
30 PR I NT "Montreal" 

newp[:/f:,~:~½~~·~e--➔)35 PRINT "Philadelphia" 
40 PRINT "St. Louis" 
50 PRINT "Chicago" 
60 PRINT "New York" 

Continuing with our program, our next task is to display the 
following line: 

Team Wins Losses 

We'll call this line the headings line. Using the grid in figure 6.1, we 
could program this line as follows: 

2 blank spaces 17 blank spaces 4 blank lpaces 

J. J. J. 
30 PRINT" Team Wins 
Losses" 

t 
2 blank lpaces 

Our next step would be to write program lines to display each of 
the six teams with their respective number of wins and losses. Again, 
using the grid in figure 6.1, we could program these lines as follows: 



Your First Program 123 

I blank space /3 blank spaces 6 blank spaces 

J, J, J, 
40 PRINT " Pittsburgh 42 

4 blank spaces 28 ~ " 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 37 

33 
70 PRINT " St. Louis 34 

36 
80 PRINT " Chicago 29 

41 
90 PRINT" New York 28 

42 

Now, we are ready to include the END statement to indicate that 
the program has finished. 

100 END 

At this point, it might be helpful to include a REM statement in 
this program to describe its purpose. Let's include the following: 

5 REM "This program is designed to displ 
ay the standings of the National League' 
s Eastern Division" 

Our program would now appear as shown in figure 6.2. 

Congratulations! If you have been following along, you have 
written and entered your first BASIC program. Our next step will be 
to run that program. 



124 IBM PCjr for Students 

,· 

REM "This program is designed to displ 
ay the standings of the National League' 
s Eastern Division" 

10 PRINT" National League Eastern Di 
vision 

20 PRINT 
30 PRINT" Team 

Losses" 
40 PRINT " Pittsburgh 

28 
50 PRINT" Montreal 

29 
60 PRINT " Philadelphia 

33 
70 PRINT " St. Louis 

36 
80 PRINT " Chicago 

41 
90 PRINT " New York 

42 
100 END 
Ok 

Wins 

42 

41 

37 

34 

29 

28 

NLEast BASIC Program----------1 

Running a BASIC Program 

Running a BASIC program is fairly simple. BAS I C's RUN 
command is used to begin execution of the program stored in the 
PCjr's memory. When the RUN command is entered and the Enter 
key pressed, the program lines stored in the PCjr's memory will be 
executed in order, beginning with the lowest line number. 

Let's execute the RUN command for the program we just 
entered. We'll begin referring to this program as "N LEast". When we 
execute RUN, the PCjr's screen should resemble that shown in figure 
6.3. 



PRINT " St. Louis 
36 

80 PRINT " Chicago 
41 

90 PRINT " New York 
42 

100 END 
Ok 
RUN 

National League Eastern Division 

Team 
Pittsburgh 
Montreal 
Philadelphia 
St. Louis 
Chicago 
New York 

Ok 

Clearing the Screen 

Wins 
42 
41 
37 
34 
29 
28 

Your First Program 125 

Losses 
28 
29 
33 
36 
41 
42 

Now that your screen is filled with text, you might want to erase 
it. BAS I C's CLS statement is used to clear the screen. Enter CLS via 
the PCjr's keyboard and press the Enter key. Your screen is now 
blank except for the Ok prompt. 



126 IBM PCjr for Students 

Listing the Program 

Although we erased our N LEast program from the screen when 
we executed the CLS command in the immediate mode, we did not 
erase the program from the PC.jr's memory. BASIC's LIST com­
mand is used to display the-program stored in memory on the screen. 
Enter LIST on the PCjr's keyboard and press the Enter key. NLEast 
will now be displayed on the screen. 

Erasing the Program 

You've covered quite a bit so far in this lesson, and you are 
probably ready for a rest. Before we stop, let's cover one more BASIC 
command, NEW. The NEW command erases the BASIC pro­
gram stored in the PC.jr's memory. 

Let's test this by entering NEW in the immediate mode and 
pressing the Enter key. From the screen display, we have no clue 
whether NLEast has been erased from memory. By attempting to list 
NLEast to the screen, we can determine whether or not it had been 
erased from memory. Enter LIST and press the Enter key. Notice 
that NLEast was not listed to the screen. This is due to the fact that it 
had been erased when NEW was executed. 



Your First Program 127 

estion 

True or False 

I . A program line cannot extend over more than one screen display 
line? 

2. The END statement stops execution of a BASIC program. 

3. When the CLS command is used, the program currently stored in 
the PCjr's memory will be erased . 

4. RUN is generally entered in the program mode. 

5. If the END statement is not included in a BASIC program, that 
program will not stop executing. 

Multiple Choice 

I . The following statements regarding program lines are true : 

A. Program lines are entered in the 
immediate mode. 

B. Program lines need not contain a 
BASIC reserved word. 

C. Program lines are executed sequen­
tially. 

D. None of the above 
E. All of the above 



128 IBM PCjr for Students 

2. The following BASIC command is used to clear the display screen: 

A. PRINT 
B. LIST 
C. DELETE 
D. CLS 
E. No'ne of the above 

3. It is necessary to enter program lines so that: 

A. They are entered in the order in 
which they are to be executed. 

B. They have been assigned consecutive 
line numbers. 

C. They will execute as they are entered. 
D. None of the above 
E. All of the above 

4. Which of the following BASIC statements is generally used to 
describe a program's purpose or operation'? 

A. PRINT 
B. LET 
C. REM 
D. CLS 
E. None of the above 

Computer Exercises 

I. Write a program to display the following information: 

Name 
Adams, William 
Croghan, John 
Donner, Mary 
Gunderson, George 
Matthews, Chris 
Nagle, Reid 

~ Vorhis, William 

Test Scores 

Percentage 
89 
78 
94 
67 
98 
61 
97 

Grade 
B 

C+ 
A­
D 
A 
F 
A 



Your First Program 1 29 

"Test Scores" should be centered in the middle of the display 
line. The first column title, "Name", should be centered within the 
space allotted for the display of the various names. The percentages 
and grades should be centered underneath their column headings. 



INPUT/OUTPUT 
ARITHMETIC and 

LOGIC 
VARIABLE STORAGE 
MEMORY 

How the 
PCjrWorks 

Lesson Goals 

lesson 7 

□ Understand the inner workings of the PCjr in its context as an 
information processing machine 

□ Learn what happens inside the PCjr when a BASIC program is 
entered, run, listed, and erased 

130 



How the PCjr Works 131 

Introduction 

In the last lesson, we learned how to enter and run a BASIC 
program. You may already have wondered what went on inside the 
PCjr while this program was being entered and run. In this lesson, we 
will explain how the PCjr executes a BASIC program as well as 
BASIC's LIST, CLS, and NEW commands. 

We will not attempt to explain how the PCjrfunctions electroni­
cally. An understanding of the computer's electronic workings is not 
necessary to become computer literate. Instead, we will attempt to 
explain the workings of the PCjr in its function as an information 
processing machine. As we learned from our NLEast program, 
information processing consisted of entering information using the 
keyboard, processing the information inside the PCjr, and output­
ting the information so that it is visible to the user. 

In this book, we will represent the input, output, and processing 
functions of the PCjr using the following illustration: 



132 IBM PCjr for Students 

PC/r Processing Function 

Input Memory 

Output Arithmetic and Logic 

Variable Storage 

The input portion of this illustration is used to represent data 
input into the PCjr. Data is generally input using the PCjr's keyboard. 
The memory area is used to indicate data which is present in the 
PCjr's memory after the input. The arithmetic and logic area is used 
to indicate arithmetic and logical processing operations taking place 
inside the PCjr. We won't be concerned with this area untillesson 12. 
The variable storage area is used to store variable values. This will be 
discussed in lesson 11. 



How the PCjr Works 133 

BASIC Program Entry 

In this section, we will use our illustration representing the 

PCjr's information processing procedure to show what happens 
when a BASIC program is entered. First, however, let's enter the 

following immediate mode BASIC command: 

Input 

PRINT "Programming is fun." 

Output 

Ok 
PRINT "Programming is fun." 
Programming is fun. 
Ok 

Memory 

Arithmetic and Logic 

Variable Storage 



134 IBM PCjr for Students 

Notice that our immediate mode BASIC command did not 
utilize the PCjr's memory portion. The PRINT command was exe­
cuted, and the information it contained was displayed as output. 

Now, let's enter the CLS command to clear the screen. Next , 

we'll enter the first line from NLEast (We'll ignore the REM 
statement) . 

Input 

10 PRINT " National League Eastern Di 
vision " 

Output 

Ok 
10 PRINT " National League Eastern Di 

vision 

Memory 

10 PRINT " National League Eastern Di 
vision " 

Arithmetic and Logic 

Variable Storage 

Notice that the program line was both output to the screen and 
stored in memory. This process continues as we enter more program 
lines. 



Input 

10 PRINT " National League Eastern Di 
vision 

20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 

Output 

Ok 

Wins 

42 

10 PRINT " National League Eastern Di 
vision 

20 PRINT 
30 PRINT " Team Wins 

Losses " 
40 PRINT " Pittsburgh 42 

28 

How the PCjr Works 135 

Memory 

10 PRINT " National League Eastern Di 
vision " 

20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 

Running a BASIC Program 

Suppose that we had entered lines IO through 40 of N LEast, and 
we now wanted to run that portion of the program. We could do so by 

entering RUN . 
Once RUN has been entered, outwardly the program will appear 

to be executed almost instantaneously . Actually, the program is 



136 IBM PCjr for Students 

, 

lo.. 

executed as a series of separate steps. We will describe these using our 
PCjr processing function illustration with one new feature -- a 
memory pointer that indicates which program line is to be executed 
next. When RUN is executed, this pointer will be positioned to the 
first program line. This is shown in the following illustration: 

Input Memory 
.., 

i.i-i-~---i.i-i.i..t:=i.c:~~ ::] ~~ ~B l.....-~i:;;;~i;;;;Q:;:"CC-~ i::: : 
l.....- b\ii'bbldbibb~ ~ [ : J 88 ~ bbbb\ii'bbb61.' a:;;;;;: iii Iii 

lia QQi;;; ~ 

10 PRINT " National League Eastern Di - 10 PRINT " National League Eastern Di 
vision .. vision .. 
20 PRINT 20 PRINT 
30 PRINT"' Team Wins 30 PRINT " Team Wins 

Losses .. Losses .. 
40 PRINT " Pittsburgh 42 40 PRINT " Pittsburgh 42 

28 .. 28 .. 
RUN 

Output Arithmetic and Logic 
·•:,,,,,i'::_ :;:;::'r; 

Ok 
10 PRINT " National league Eastern Di 

vision .. 
20 PRINT Variable Storage 
30 PRINT " Team Wins 

Losses .. 
40 PRINT " Pittsburgh 42 

28 .. 
RUN 

,k* ;::::/ .. 

.... 

Notice that the cursor is not displayed in the Input section. This 
is due to the fact that the PCjr is not ready to accept a BASIC 
command entry. It is busy executing line IO of the program in 



How the PCjr Works 137 

memory. Line 10 can be referred to as the current line. This is the line 

indicated by the memory pointer as the program line to be executed 

next. 

When line 10 is executed , the PCjr's output will change , and the 

line pointer will move to the next program line in memory. This is 

shown in the following illustration: 

Input 

--~~--i.--~t:;Lt::~lli=I 
b,,.~b~Cbkbb~--n 
b::-6\iibbb'lbbb~Q~ 
"= bbbbiii'bbbk,,l;. a;;:;;;: Iii-Iii 
~ ggi;;;; 

Memory 

10 PAINT " National League Eastern Di 10 PAINT " National League Eastern Di 
vision vision 
20 PRINT - 20 PRINT 
30 PRINT " Team 

Losses " 
40 PAINT " Pittsburgh 

28 
RUN 

Output 

Ok 

Wins 

42 

10 PAINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Wins 

42 

National League Eastern Division 

30 PRINT " Team 
Losses " 

40 PRINT " Pittsburgh 
28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 



138 IBM PCjr for Students 

Program execution will continue in this same manner with lines 
20, 30, and 40 as shown in the following illustrations. When line 20 is 
executed , a blank line will be output following "National League 
Eastern Division" in the PCjr's output. The current line pointer will 

move to line 30 . 

Input 

-'--~i--~----[:;(CIQl=,I ~-c~i.:;QCCClilili.rn 
"=" b-1;.-bb-b-b-b-b-~~ ~ 
l= b-b-b-61.b-b-~- ~I.Iii 

~i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;::c;;;;i;;;;ii= ~ 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Output 

Ok 

Wins 

42 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Wins 

42 

National League Eastern Division 

· I blank line owpur hr line 20 

Memory 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 

- 30 PRINT " Team 
Losses " 

40 PRINT " Pittsburgh 
28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 



How the PCjr Works 139 

When line 30 is executed, "Team Wins Losses" will 

be displayed in the PCjr's output. The current line pointer will move 

to line 40. 

Input 

i.liirliii~w.i.i.i.i.1-i=cc~ 
1.,,,,.,.,~b~Cblb'CC~-~ 
1.,,,,.,., b\.'bbQQbb~Q ~ 
~ Cbb-b!wbb-661. lb ii Iii 

11iiJ 666 1iiij1 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Output 

Ok 

Wins 

42 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Wins 

42 

National League Eastern Division 

Team Wins Losses 

Memory 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
- 40 PRINT " Pittsburgh 

28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 

When line 40 is executed, "Pittsburgh 42 28" will be 

output. After line 40 has been executed, no more program lines 

remain in memory to be executed. The PCjr will output the BASIC 
prompt, Ok, on the screen along with the flashing cursor. This 
indicates that the PCjr is ready to accept a BASIC command entry. 



140 IBM PCjr for Students 

Input 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Output 

Wins 

42 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 

Wins 

42 

National League Eastern Division 

Team 
Pittsburgh 

Ok 

Wins Losses 
42 28 

Memory 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 

.... 

Remember, even though it might appear as if a BASIC program 

executes instantly, it is actually executed one step at a time . 



How the PCjr Works 141 

Clearing the Screen with a BASIC Program in Memory 

Now that we have seen how the PCjr executes a BASIC pro­
gram, let's examine what occurs when the CLS command is issued in 
the immediate mode to clear the screen. Suppose that we entered 
CLS. As shown in the following illustration, although the PCjr's 
screen will be cleared, the BASIC program stored in its memory will 
remain intact. 

Input 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 
CLS 

Output 

Ok 

Wins 

42 

Memory 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 



142 IBM PCjr for Students 

Listing the BASIC Program 

Let's examine what occurs when the PCjr executes the LIST 
command. 

Input 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
RUN 
CLS 
LIST 

Output 

Ok 
LIST 

Wins 

42 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
Ok 

Wins 

42 

Memory 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 

Arithmetic and Logic 

Variable Storage 

Wins 

42 

Notice that the program in memory 1s output, but that the 
memory contents are not affected. 



How the PCjr Works 143 

Erasing the BASIC Program from Memory 

As discussed in lesson 6, BASIC's NEW command erases the 

program currently stored in the PCjr's memory. This is depicted in 
the following illustration: 

Input 

--~~i;;i.i.-i.i.cc~~ 
"=~b~l-bibb-b--~ 
"= bl;.-bb-bib-b-b-~~ Iii 
[=, bb-b-b-l.b-b-b,b-1. a:;;;;;;: ii~ 

Iii c;:;;::i;;;;ii;;;; liii1 
10 PRINT " National League Eastern D1 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses " 
40 PRINT " Pittsburgh 42 

28 
RUN 
CLS 
LIST 
NEW 

Output 

Ok 
LIST 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses " 
40 PRINT " Pittsburgh 

28 
Ok 
NEW 
Ok 

Wins 

42 

Memory 

Arithmetic and Logic 

Variable Storage 



144 IBM PCjr for Students 

questions 

True or False 

I . A BASIC command line entered in the immediate mode is stored 
in memory and then automatically executed . 

2. CLS causes program lines stored in memory to be cleared from 
memory. 

3. When LIST is executed, the memory contents will be unaffected . 

4. When RUN is executed, the screen is cleared before program 
execution begins . 

5. The current line pointer will move as program lines are executed. 

Multiple Choice 

1. The following command(s) cause the current line pointer to move: 

A. LIST 
B. CLS 
C. RUN 
D. None of the above 
E. All of the above 



How the PCjr Works 145 

2. The following command(s) can be used to determine whether or 
not a program is stored in memory: 

A. CLS 
B. PRINT 
C. LIST 
D. NEW 
E. None of the above 

3. Any of the following affect the contents of the PCjr's memory: 

A. Program mode entry 
B. RUN 
C. CLS 
D. None of the above 
E. All of the above 

4. The following command(s) can affect the information displayed 
on the PCjr's screen: 

A. CLS 
B. RUN 
C. LIST 
D. None of the above 
E. All of the above 

5. When a BASIC program is executed, the PCjr: 

Essay 

A. Executes all program lines simultane­
ously and sends the results to the screen. 

B. Executes each program line separately 
and then erases that line in memory 
after it has been executed. 

C. Temporarily erases existing informa­
tion on the screen 

D. None of the above 
E. All of the above 

1. Describe the current line pointer's function. 

2. Describe the procedure you would use to determine whether or not 



146 IBM PCjr for Students 

a BASIC program was stored in the PCjr's memory. 

3. Describe the procedure followed by the PCjr when the program 
you wrote for the computer exercise on page 128 is executed. 



RUN, L ST, AUTO, 
RENUM & DELETE 

lesson 8 

Lesson Goals 

El Learn how to execute RUN with its optional line number 
parameter. 

□ Learn how to execute LIST with its optional line number 
parameters 

El Learn how to generate new line numbers automatically using 
BAS/C's AUTO command 

□ Learn how to renumber a program's line numbers using BAS/C's 
REN UM command 

□ Learn how to delete one or more program lines using BAS/C's 
DELETE command 

148 



RUN, LIST, AUTO, RENUM, and DELETE 149 

Introduction 

In lessons 6 and 7, we were introduced to the concept of line 
numbers and program entry, as well as a number of BASIC com­
mands including RUN and LIST. RUN and LIST can be used with 
optional line number parameters to execute or display only a portion 
of a program. We will discuss the use of these parameters. 

BASIC also includes two commands, AUTO and RENUM, 
which can be used to make line number entry easier. AUTO is used to 
automatically generate new line numbers. REN UM allows program 
lines to be automatically renumbered. 

BASIC's DELETE command is also useful during the program 
entry process. DELETE can be used to erase one or more program 
lines from memory. 

RUN 

In lessons 6 and 7, we learned how the RUN command could be 
entered in the immediate mode to execute the program in the PCjr's 
memory. RUN can also be entered with an optional line number. This 
results in program execution beginning with the indicated line 
number. The following illustration will demonstrate the use of RUN 
with an optional line number parameter: 



150 IBM PCjr for Students 

Input 

i.r.i.~i.i.i.i..;i.ccti:;;;;;1~ 
~~b'.~i:;Qt::"b'.b'.!.i.~ 
1=- b\ii'bbblbJbb~~ ~ 
~ bbbb\ii'bbbb,I;. b iii Iii 

lid~;;;;;;:::::=:; c;:Qi;;;;; 

RUN 40 

Output 

Ok 
RUN 40 
Line 4 
Line 5 
Ok 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
60 END 

Arithmetic and Logic 

Variable Storage 

Notice that executing the RUN command with the optional line 
number, 40, causes the BASIC interpreter to ignore lines 10, 20, and 
30. Lines 40 and 50 were executed as evidenced by the output. 



RUN, LIST, AUTO, RENUM, and DELETE 151 

LIST 

As we learned in lessons 6 and 7, the LIST command is used to 
display the BASIC program stored in the PCjr's memory. LIST can 
be executed with optional line number parameters to display only a 
portion of the program stored in memory. This is shown in the 
following illustration: 

Input 

CLS entered tu clear the screen 

LIST 30-50 

Output 

Ok 
LIST 30-50 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
Ok 

Memory 

i::: ] 8B ~B 
c: :::: t 88 88 
10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
60 END 

Arithmetic and Logic 

Variable Storage 



152 IBM PCjr for Students 

As evidenced in the preceding illustration, when two line 
numbers are entered as LIST command parameters, all lines with 
values within the range indicated by these parameters will be dis­
played. Notice that the two line number parameters are separated 
with a dash (-). 

LIST can also be executed with one line number parameter. 
Examples are shown in the following illustrations: 

Input 

---~------i:;;ib~l=J ~i;;:~cb'Ci;;:i;;:••ifl 
~6~6QQQ66i;;:i;;:.~~ 
b, i:;i:;i;;:6iii:;cQ61if a;;;;;;:•• 

I=' i;;:Q~ 

CLS 
LIST 30-

Output 

Ok 
LIST 30-
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
60 END 
Ok 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
60 END 

Arithmetic and Logic 

Variable Storage 



Input 

--~~-----i.CIC\id~ 1=~C~CC1t:=:CC~-~n 
1= bli,bbbb-bb~~ liil 
1= bbb-bl.'bbl=-'=lii b Ii, Iii 
~ c;;;;i;;;;ic;;;; -

CLS 
LIST -30 

Output 

Ok 
LIST -30 
10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
Ok 

RUN, LIST, AUTO, RENUM, and DELETE 153 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 5" 
60 END 

Arithmetic and Logic 

Variable Storage 

In the first example, LIST 30- caused lines 30, 40, 50, and 60 to 
be displayed. When a line number followed by a dash is specified as 
the LIST parameter, all program lines from the specified line number 
to the end of the program will be listed. 

In the second example, LIST -30 caused lines I 0, 20, and 30 to be 
displayed. When a line number preceded with a dash is specified as 
the LIST parameter, all program lines from the beginning of the 
program up to and including the specified line will be listed. 



154 IBM PCjr for Students 

AUTO --
Automatic Generation of Line Numbers 

BASIC's AUTO command results in a new line number being 
generated every time the Enter key is pressed. AUTO is generally used 
during the program entry process to save the operator the task of 
typing every line number. 

AUTO can be entered with either one, two, or no parameters. 
When AUTO is entered without any parameters, line numbers will be 

generated beginning with 10, and each new line number will be 
incremented by 10. This is shown in the following illustration: 

Input 

1.1.•~•-•!.!.liii.iC::iClbd~ 
~-c~ccccci..;:~ 
l=-b-1;.-b-bbt=-b-b-~~ Iii' 
6= bb-b-b-1;.-b-b-bblif b ii"~ 
~ i:;;:i;;;;;ic ~ 

CLS 
AUTO 
PRINT "Line 1" 
PRINT "Line 2" 
PRINT "Line 3" 
PRINT "Line 4" 
END 
Fn-Break 

Output 

Ok 
AUTO 
10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 
60 
Ok 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 

Arithmetic and Logic 

Variable Storage 



RUN, LIST, AUTO, RENUM, and DELETE 155 

Notice that the Fn-Break key combination was entered when the 
final line number was generated, line 60. The AUTO command is 
ended by pressing the Fn-Break key combination. The current line 
being entered when Fn-Break is pressed will be erased. After Fn­
Break has been pressed, BASIC will return to the command level. 

If AUTO is used with two line number parameters, the first 
parameter will indicate the first line number to be generated. The 
second parameter will indicate the amount to be added to the pre­
vious number to generate the next, new line number. This is known as 
the increment. 

The following illustration shows the use of AUTO with both 
parameters. 

Notice that an asterisk was displayed following the generation of 
line number 50. When AUTO generates a line number that duplicates 
that of a program line already existing in memory, an asterisk(*) will 
be printed immediately following the line number. This is meant as a 
warning to the user. If any data is input into that line, the existing 
program line will be replaced by it. If the user presses the Enter key 
immediately after the asterisk without entering any new data, a new 
line number will be generated, and the existing line will not be 
replaced. 



156 IBM PCjr for Students 

Input 

'---~-'------l::iC!bdl=J ~-c~i.:;;;;QCCC-wrn 
l=- bl;.-bbbJbbb~~ liil 
~ bbbb-1;.-bbbbiii ~ \a iii 

l!ii,I(;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::; r;;;;;c;;;;ic;;; -, 

CLS 
AUTO 50,5 
PRINT "Line 1" 
PRINT "Line 2" 
PRINT "Line 3" 
PRINT "Line 4" 
END 
Fn-Break 

Output 

Ok 
AUTO 50,5 
50*PRINT "Line 1" 
55 PRINT "Line 2" 
60 PRINT "Line 3" 
65 PRINT "Line 4" 
70 END 
75 
Ok 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 PRINT "Line 1" 
55 PRINT "Line 2" 
60 PRINT "Line 3" 
65 PRINT "Line 4" 
70 END 

Arithmetic and Logic 

Variable Storage 

If only one parameter is indicated with AUTO and that parame­
ter is preceded by a comma, the starting line number will be line 0. 

Each new line number will be incremented by the amount specified by 

the parameter. This is shown in the following illustration: 



Input 

'-•1&~~ii;1&1&l.l.1&t=IC□l=,I 
6=-iiib_.cbQbbb~--lfl 

6= bl;.-bbblb-bb~Q ~ 
~ bbbbiiii(bbb-b-1. a;;:;;:; ii~ 

~c;;;;;;;;;;;;;;;;;;;;;;;;;~ c;;;:Qi;;;;; 

NEW 
CLS 
AUTO ,25 
PRINT "Line 1" 
PRINT "Line 2" 
PRINT "Line 3" 
PRINT "Line 4" 
END 
Fn-Break 

Output 

Ok 
AUTO ,25 

0 PRINT "Line 1" 
25 PRINT "Line 2" 
50 PRINT "Line 3" 
75 PRINT "Line 4" 

100 END 
Ok 

RUN, LIST, AUTO, RENUM, and DELETE 157 

Memory 

0 PRINT "Line 1" 
25 PRINT "Line 2" 
50 PRINT "Line 3" 
75 PRINT "Line 4" 

100 END 

Arithmetic and Logic 

Variable Storage 

When a single line number parameter without a comma is indi­

cated with AUTO, that number will be the first line number gener­

ated . The increment used for new line numbers will be 10. 



158 IBM PCjr for Students 

Input 

i.i.~~.i.i.i-1.i.ccc:i._. 
t......-~C.CC~CC~~ 
t......- bl;.-bb-bbJbb~Q ~ 
(,= b-b-b-b-1;.-b-b-6'61.' a;;;;;;: iii~ ~b.=o~-- QQC 

NEW 
CLS 
AUTO 100 
PRINT "Line 1" 
PRINT "Line 2" 
PRINT "Line 3" 
END 
Fn-Break 

Output 

Ok 
AUTO 100 
100 PRINT "Line 1" 
110 PRINT "Line 2" 
120 PRINT "Line 3" 
130 PRINT "Line 4" 
140 END 
150 
Ok 

Memory 

100 PRINT " Line 1" 
110 PRINT "Line 2" 
120 PRINT "Line 3" 
130 PRINT "Line 4" 
140 END 

Arithmetic and Logic 

Variable Storage 

RENUM -- Renumbering Program Lines 

BASIC's RENUM command is used to renumber a program's 
line numbers. REN UM can be used with one, two, three, or no 
parameters. When REN UM is executed without any of its optional 
parameters, the program in memory will be renumbered with its first 
line numbered as 10. Successive lines will be renumbered in incre­
ments of IO. This is shown in the following example: 



Input 

---~------CC!Qlliii=J ~~C~Cb:lbbb--~ 
~ 61.-l=bQ__~b~Q !ii1 
I= bbbbl!ii'bb~_. a;;;;;; ._-'5 
~ c;;;;i;;;;ic;; liii1 

CLS 
RENUM 
LIST 

Output 

Ok 
RENUM 
Ok 
LIST 
10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 
Ok 

RUN, LIST, AUTO, RENUM, and DELETE 159 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 

Arithmetic and Logic 

Variable Storage 

If RENU M 1s executed with all three parameters as shown 
below, 

RENUM 100,30,50 

the first parameter indicates the first new line number to be used in 
the renumbering process. The second value indicates the first line in 
the program where the renumbering process is to begin . The third 



160 IBM PCjr for Students 

value indicates the amount by which the new line numbers are to be 
incremented. Let's examine the effect of executing REN UM with all 
three optional parameters present. 

Input 

liilisliir_,_Qiiiliiri.i.i..cc=c1a 
i.=iai;;:~i:;o:;~ 
b i,;;~g;;gi;;:i;;: i.ijl 

i;;;;;;; i;;:i;;:~i.i=i;;:~- a;;;;;; &Iii 

"" 

11=1 c;:;;la;;;;liiiijl 

CLS 
RENUM 100,30,50 
LIST 

Output 

Ok 
RENUM 100,30,50 
Ok 
LIST 
10 PRINT "Line 1" 
20 PRINT "Line 2" 

100 PRINT "Line 3" 
150 PRINT "Line 4" 
200 END 
Ok 

,. 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 

100 PRINT "Line 3" 
150 PRINT "Line 4" 
200 PRINT END 

Arithmetic and Logic 

Variable Storage 



RUN, LIST, AUTO, RENUM, and DELETE 161 

Notice from the example that program line renumbering began 
with line 30 in the original program stored in memory. This value was 
RENUM's second parameter. The initial new line number generated 
was 100. This was RENUM's first parameter. Subsequent new line 
numbers (150 and 200) were obtained by adding 50 (RENUM's third 
parameter) to the previous line number. 

We can also execute RENUM with any one or two of these 
optional line numbers omitted. If the first parameter is left out, the 
first new line number generated will be 10. If the second parameter is 
omitted, the renumbering process will begin with the program's first 
line. If the third parameter is left out, the amount by which new line 
numbers will be incremented will be 10. These values are known as 
default values. A default value is that used for a parameter when no 
other value is supplied by the programmer. The default value is 
automatically supplied by the BASIC interpreter. 

We will use the following example to illustrate the use of default 
parameter values with RENUM: 

RENUM ,,20 



162 IBM PCjr for Students 

Input 

i.i.i.~i.:.i.:.i.:.1-c=c~~ 
C-b~bblbbb-~ 
l=- bl;.-bbb-bibb~Q liijl 
~ bbbbii'bb-bb-1;. ti= ii' Ii' ~'-==~-- i;;;;i;;;ia;;; 

CLS 
RENUM ,.20 
LIST 

Output 

Ok 
RENUM ,.20 
Ok 
LIST 
10 PRINT "Line 1" 
30 PRINT "Line 2" 
50 PRINT "Line 3" 
70 PRINT "Line 4" 
90 END 
Ok 

Memory 

10 PRINT "Line 1" 
30 PRINT "Line 2" 
50 PRINT "Line 3" 
70 PRINT "Line 4" 
90 END 

Arithmetic and Logic 

Variable Storage 

In the preceding REN UM statement, the defaults were used for 
the first parameter (initial line number value) as well as the second 
(line number where renumbering is to begin). Therefore, line renum­
bering began with the program's first line, and the first line number 
generated was 10. The third parameter (increment for new line 
numbers) was specified as 20. This is evident from the new line 
numbers generated (10,30,50,70,90). 



RUN, LIST, AUTO, RENUM, and DELETE 163 

Notice that commas were used to denote the places normally 

occupied by the first and second parameters . If these had not been 
included, RENU M would have resulted in a different set of line 

numbers being generated. This is shown in the following illustration: 

Input 

--~~------~LC:~l=J ~~c~i.:;;;Qb"CC--~ 
l=- 6\ii'bbbl6bb~~ ~ 
~ bbbbiiibb~I. a;;;;;: Iii Iii 

~---- QQc;;; liiii1 

CLS 
RENUM 20 
LIST 

Output 
?::::~:1l:~:: 

Ok 
RENUM 20 
Ok 
LIST 
20 PRINT "Line 1" 
30 PRINT "Line 2" 
40 PRINT "Line 3" 
50 PRINT "Line 4" 
60 END 
Ok 

Memory 

,: l 8B~B ,: i~aga 
20 PRINT "Line 1" 
30 PRINT "Line 2" 
40 PRINT "Line 3" 
50 PRINT " Line 4" 
60 END 

Arithmetic and Logic 

Variable Storage 

When the commas were omitted, 20 was regarded as RENUM's 
first parameter. The default values were used for the second and third 
parameters. 



1 64 I BM PCjr for Students 

DELETE -- Deleting Program Lines 

BAS I C's DELETE command is generally used in the immediate 
mode to erase one or more program lines from memory. DELETE 
can be used with one or two optional line number parameters. If 
DELETE is used without any parameters, the entire program will be 
erased. DELETE's parameters function exactly like the parameters 
for LIST. For example, 

DELETE 30-50 

would result in all program lines with a line number value in the range 
30 to 50 being deleted. This is shown in the following illustration: 

Input 

CLS 
DELETE 30-50 
LIST 

Output 

Ok 
DELETE 30-50 
Ok 
LIST 
20 PRINT "Line 1" 
60 END 
Ok 

Memory 

20 PRINT "Line 1" 
60 END 

Arithmetic and Logic 

Variable Storage 



RUN, LIST, AUTO, RENUM, and DELETE 165 

The following statement, 

DELETE-30 

would cause all program lines from the beginning of the program 
through line 30 to be erased from memory. This is depicted in the 
following illustration*: 

Input 

CLS 
DELETE -30 
LIST 

Output 

Ok 
DELETE -30 
Ok 
LIST 
40 PRINT "Line 3" 
50 PRINT "Line 4" 
60 END 
Ok 

* Assume that lines 30-50 had been restored. 

Memory 

40 PRINT "Line 3" 
50 PRINT "Line 4" 
60 END 

Arithmetic and Logic 

Variable Storage 



166 IBM PCjr for Students 

The following statement, 

DELETE 30-

would cause all program lines from line 30 to the end of the program 
to be erased from memory. The following example illustrates the 
effect of executing DELETE 30-*: 

Input 

---~--i.i.liiii.t=!C□'=! 
"==-•i:;~i.:;g;;i:;i:;i&liiii~ 
b b\.bb~bb~Q ~ 
L= bbbb~bb-65 ~ii~ 

~i......~-- i:;;;;i::ic;;; 

CLS 
DELETE 30-
LIST 

Output 

Ok 
DELETE 30-
0k 
LIST 
20 PRINT "Line 3" 
Ok 

* Assume that lines 20 a nd 30 had been restored. 

Memory 

20 PRINT "Line 1" 

Arithmetic and Logic 

Variable Storage 



,.. 

... 

RUN, LIST, AUTO, RENUM, and DELETE 167 

As mentioned earlier, by executing DELETE without any of its 
optional parameters, the entire program will be erased from memory. 
This is shown in the following example: 

Input Memory 
.., 

1.1.-~i.!.iiri.i.-!.!.bt!:;Ql=J 
i::: : ::] ~~ !§ C-C~Cblb'C'C'--~ 

l= b-iiiibbb'b'bb~ W 
[ : ::: ~ ~ bbbbiiiibbi;;;;;bl;. a:;;;;;;: &i'lii 

~ QQ!l:) ~ 

CLS 
DELETE 
LIST 

'-

Output Arithmetic and Logic 
·-:-:::;:;:::;:::: .. -·=sr· ,--

Ok 
DELETE 
Ok 
LIST Variable Storage 
Ok 
-

L 
.. .-:=:=:=::::: 

.. 



168 IBM PCjr for Students 

estio 

True or False 

I. BASIC's DELETE and NEW commands can be used to erase an 
entire program from memory. 

2. When executed with an optional line number parameter, RUN 
causes execution of the entire program stored in memory. 

3. When AUTO is executed without any parameters, the first line 
number generated will be 10 . 

4. When REN UM is executed without any parameters , an error will 
result. 

5. RUN and RUN O would both always result in the entire program 
stored in memory being executed. 

Multiple Choice 

I . If a line number generated by AUTO duplicates that of a line 
number already stored in memory, the following symbol will be 
displayed next to the line number generated: 

A. 
B. ? 
C. * 
D. + 

E. None of the above 



RUN, LIST, AUTO, RENUM, and DELETE 169 

2. The following is not a valid version of the LIST command: 

A. LIST-19 
B. LIST 21-4 
C. LIST 
D. LIST 17 
E. LIST 17-

3. The following key sequence causes the AUTO command to end: 

A. AUTO OFF 
B. NOAUTO 
C. Fn-Break 
D. Break 
E. None of the above 

4. The following command can be used to erase a portion of a BASIC 
program stored in memory: 

A. RUN 
B. LIST 
C. NEW 
D. CLS 
E. None of the above 

Computer Exercises 

1. Using the program you wrote for Computer Exercise 1 on page 128, 
perform the following: 

a. Execute RUN so that only those students whose 
names appear after Lin the alphabet are displayed. 

b. Display Chris Matthews' test score. 

c. Erase the program line containing Reid Nagle's test 
score. 

d. Renumber the program so that the first line number 
is 1000 and an increment of 50 is used for subsequent 
line numbers. 



Editing Your 
BAS C Program 

lesson 9 

Lesson Goals 

□ Learn what the BASIC editor is and how it is executed 

□ Learn the function of the various editing keys 

□ Learn how to perform simple editing functions 

172 



Editing Your BASIC Program 173 

Introduction 

Once you have entered a BASIC program, you may discover an 
error that requires that one or more program lines be changed, or 
edited. One means of editing a program line is to simply delete it by 
entering a corrected line with an identical line number. We will refer 
to this method as line entry editing. 

Another method of editing consists of displaying the program 
line to be changed using BASIC's EDIT command. We will refer to 
this method as EDIT command editing. 

A final editing method involves listing a program to the screen, 
positioning the cursor to the point within the line which is to be 
corrected, making the correction, and sending the corrected line to 
memory by pressing the Enter key. We will refer to this method as 
cursor movement editing. 

Each of these editing methods will be described in this lesson. 
We urge you to follow this lesson's examples using your PCjr. 

Line Entry Editing 

Line entry editing is not the most efficient method of editing a 
BASIC program. However, this method can be useful when editing 
relatively short program lines. In line entry editing, the user merely 
enters a new program line with the same line number as the line which 
is to be corrected. The new line will replace the original line in 
memory. 

For example, suppose the following program was stored in the 
PCjr's memory: 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 EMD 



17 4 IBM PCjr for Students 

Obviously, an entry error was made in line 50. "EM D" should have 
been entered as "END". The following entries would correct this 

situation: 

Input 

1.1.i;;lii/i.i.ii;;l.i.li.~C!Clbd~ 
ci;c~co.:;:ccliii;'-lfl 
l=- bl;.-bbbb6bbb\i~ ~ 
1= Cbbb.-bbbb-1.J lb ii' Ii. 

~-=~--ggc;;;; 

50 END 
LIST 

Output 

Ok 
50 END 
LIST 
10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 
Ok 

Editing Keys 

Memory 

10 PRINT "Line 1" 
20 PRINT "Line 2" 
30 PRINT "Line 3" 
40 PRINT "Line 4" 
50 END 

Arithmetic and Logic 

Variable Storage 

Before attempting command editing, you should familiarize 
yourself with the usage of the various PCjr editing keys. These keys 
and their functions are listed in table 9.1. We will provide specific 
examples of the usage of the editing keys in the following sections. 



Editing Your BASIC Program 175 

Table 9.1. PCjr editing keys 

~t 
IHomel 
Cursor Up 

Cursor Down 

► 

Cursor Right 

◄ 

Cursor Left 

When the keyboard is in the unshift position , pressing the 
Cursor Up key causes the cursor to move up one line on the 
screen. 

When the keyboard is in the unshift position, pressing the 
Cursor Down key causes the cursor to move down one line 
on the screen. 

When the keyboard is in the unshift position, pressing the 
Cursor Right key causes the cursor to move one position to 
the right. When the cursor reaches the right edge of the 
screen, pressing the Cursor Right key ca uses it to move to 
the farthest left side of the next screen line. 

When the keyboard is in the unshift position, pressing the 
Cursor Left key causes the cursor to move one position to 
the left. When the cursor is positioned at the left edge of the 
screen, pressing the Cursor Left key will cause it to move to 
the right edge of the preceding line. 



176 IBM PCjr for Students 

Table 9.1 (cont.) PCjr editing keys 

Del 

~ 
Delete 

Ins 

~ 
Insert 

Backspace 

The Delete key causes the character at the current cursor 
position to be erased. All characters to the right of the 
cursor will move one position to the left each time the 
Delete key is pressed. 

Pressing the Insert key turns on the insert mode. If the 
Insert key is pressed a second time, the insert mode will be 
turned off. The insert mode can also be turned off by 
pressing any of the cursor movement keys or the Enter key. 
When the insert mode is on, the flashing cursor resembles 
the following: 

■ 

With the insert mode on, characters can be inserted into an 
existing line of characters. These characters will be inserted 
to the immediate left of the flashing cursor. The cursor and 
all characters following it will be moved one position to the 
right to make room for the newly inserted characters. 

The Backspace key deletes the character to the cursor's 
immediate left. The cursor, the character at the cursor 
position, and all characters to the right of the cursor will 
move one position to the left. 



Editing Your BASIC Program 177 

Table 9.1 (cont.) PCjr editing keys 

Esc 

~ 
Escape 

Tab _1◄ __ _. • .,1 

~ 
Tab 

Fn 

~ 
Fn-End 

Fn 

~ 
Fn-Home 

Pressing the Escape key causes the entire program line in 
which the cursor is located to be erased from the screen. 
However, the program line will not be erased from memory. 

The Tab key moves the cursor to the next tab stop. Tab 
stops are located at every eight character positions on the 
display line (positions 1,9, 17,25, etc.). 

~ 
■End■ 

The Fn-End key combination moves the cursor to the end 
of the program line . Any subsequent keyboard entries will 
be added to the program line. 

The Fn-Home key combination moves the cursor to the 
screen's home or upper left-hand corner. 



178 IBM PCjr for Students 

Table 9.1 (cont.) PCjr editing keys 

l ........ ~.~.i.~~~~.~.~L ................. : ................ ;;- .. ... .... ~~~ction .................................... ·.·.·.·.·.·.·.·.·.·.·.·1 

Fn 

~ 
Fn-Break When the edit mode is active, pressing Fn-Break cancels 

theed it mode. The line being edited will not be saved in memory. 

Ctrl Fn 

~"-~ 
Ctrl-Fn-End The Ctrl-Fn-End key combination causes the program line 

to be erased from the cursor position to the line's end. 

Ctrl Fn 

~--
Ctrl-Fn-Home The Ctrl-Fn-Home key combination clears the screen and 

homes the cursor. 

Ctrl ► 

~~ 
£gDnl 

Ctrl-Pg On The Ctrl-Pg Dn key combination moves the cursor to the 
next word. A word can be defined as a character or group 
of characters which begins with a letter or a numbers. 
Words are separated by blank spaces or specia l characters . 



Editing Your BASIC Program 179 

Table 9.1 (cont.) PCjr editing keys 

Ctrl-Pg Up 

Cursor Up 

Function 

The Ctrl-Pg Up key combination moves the cursor to the 
previous word. 

As defined in table 9.1, pressing the Cursor Up key causes the 
cursor to move up on the screen as shown below: 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 37 

33 
Ok 
- +- flashing cursor 



180 IBM PCjr for Students 

Press I I I I I 

~ ~ 
Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 
.flashing cursor 50 PRINT" Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 

-.... Ok 
~ 

Cursor Down 

From table 9.1, we learned that pressing the Cursor Down key 
causes the cursor to move down one line on the screen. This is shown 
in the following example: 

Initial screen display 

Ok 
10 PRINT" National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT" Pittsburgh 42 
28 

flashing cursor 50 PRINT" Montreal 41 
29 

60 PRINT" Philadelphia 37 
33 

Ok 



Editing Your BASIC Program 181 

Press I I 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 
50 PRINT" Montreal 41 

29 
.flashing cursor 60 PRINT" Philadelphia 37 

33 
Ok 

Cursor Right 

Pressing the Cursor Right key causes the cursor to move one 
position to the right on the screen. This is shown in the following 
examples: 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team Wins 
Losses 

40 PRINT" Pittsburgh 42 
28 

50 PRINT " Montreal 41 
29 

.flashing cursor §0 PRINT" Philadelphia 37 
33 

Ok 



182 IBM PCjr for Students 

Press- - -

~ Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 
50 PRINT " Montreal 41 

29 
.flashing cursor 60 PRINT " Philadelphia 37 

33 

~ Ok 

Initial screen display (second example) 

Ok 
10 PRINT " National League Eastern DL 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 37 

33 
Ok 

.flashing 
cursor 



Editing Your BASIC Program 183 

Press-

Ok 
10 PRINT" National League Eastern Di 

.flashing cursor vision 
20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT" Pittsburgh 42 

28 
50 PRINT" Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 
Ok 

Cursor Left 

Pressing the Cursor Left key causes the cursor to move one 
position to the left on the screen as shown in the following examples: 

Initial screen display 

~ 
Ok 

""11111 

10 PRINT " National League Eastern Di 
flashing cursor ~ision 

20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT" Pittsburgh 42 

28 
50 PRINT" Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 

~ Ok ~ 



184 IBM PCjr for Students 

Press - -

Delete 

Ok 
10 PRINT " National League Eastern Qi 
vision 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh 
28 

50 PRINT " Montreal 
29 

60 PRINT " Philadelphia 
33 

Ok 
flashing 
cursor 

Wins 

42 

41 

37 

When the Delete key is pressed, the character at the current 
cursor position will be erased from the screen. All characters to the 
right of the cursor will move one position to the left when the Delete 
key is pressed. 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh 

Wins 

42 
flashing~c=ur .... s""'or _______ 28 " t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

Ok 



Editing Your BASIC Program 185 

Press Del ten times. 

Ins 

~ Ok ~ 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT" 42 28 
flashing cursor t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
. 33 

~ Ok ~ 

The Ins key turns on the insert mode. When the insert mode is 
on, characters can be inserted to the immediate left of the flashing 
cursor. The cursor and existing characters will be moved one position 
to the right each time a new character is inserted. The insert mode can 
be turned off by pressing the Ins key a second time or by pressing any 
of the cursor movement keys or the Enter key. The following example 
illustrates the use of the Ins key: 



186 IBM PCjr for Students 

Initial screen display 

~ ~ 
Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT" 42 28 

flashing cursor + 
50 PRINT " Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 

~ 
Ok 

~ 

Press Ins Pittsburgh Ins 

~ Ok 
""1111 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT " Pittsburgh_ 42 
flashing cursor 28 ♦ 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

~ Ok 
~ 



Editing Your BASIC Program 187 

Backspace 

The Backspace key erases the character to the immediate left of 
the cursor. The cursor, the character at the cursor position, and all 
characters to the left of the cursor will move one position to the left. 
This is shown in the following example: 

lnltial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh_ 

Wins 

42 

.flashing..;;c.;;;u;..;;;rs.;;..or'-------- 28 ♦ 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 37 

33 
Ok 

Press Backspace three times 

r Ok 
10 PRINT " National League Eastern Di 
vision .. 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " Pittsbu 

.flashing..:.c=ur~so::c..:r __ 1.--_8 ♦ 
50 PRINT " Montreal 

29 
60 PRINT " Philadelphia 

33 
~ Ok 

Wins 

42 2 

41 

37 



188 IBM PCjr for Students 

EscKey 

When the Esc key is pressed, the entire program line in which the 
cursor is located will be erased from the screen. However, that line 
will not be erased from memory. The following example illustrates 
the usage of the Esc key: 

Initial screen display 

.flashing cursor 

Press Esc 

flashing c_u_r_so_r __ _ 

Ok 
10 PRINT" National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT" Pittsburgh_ 42 

28 t 
50 PRINT" Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 
Ok 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

Ok 



Editing Your BAS~C Program 189 

Tab 

The Tab key is used to move the cursor to the next tab stop. The 
effect of using the Tab key with the insert mode off and on is shown in 
the following examples: 

Initial screen display -- Insert mode off 

, Ok 

"" 
flashing cursor I 

~ 

Press Tab twice 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 

Losses 
, 40 PRINT " Pittsburgh 42 

28 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 37 

33 
Ok 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " Pitts~urgh 

28 
50 PRINT" 

29 

t 
Montreal 

60 PRINT" 
33 

Philadelphia 

Ok 
flashing 
cursor 

Wins 

42 

41 

37 

~ 



190 IBM PCjr for Students 

Initial screen display -- Insert mode on 

Press Tab once 

Ok 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT " Team Wins 
Losses 

40 PRINT " Pittsaurgh 42 
28 t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 

Ok 

Ok 

33 

flashing 
cursor 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pitts aurgh 

50 PRINT " Montreal 
42 28 l 

29 
60 PRINT " Philadelphia 

Ok 
33 I 

flashing 
cursor 

Wins 

41 

37 

When the insert mode is on, pressing the Tab key causes blank 
characters to be inserted from the current cursor position to the next 
tab stop. This was shown in our preceding example. 



Editing Your BASIC Program 191 

Fn-End 

The Fn-End key combination results in the cursor being moved 
to the end of the current program line. Additional characters can then 
be added to that line. 

lnltlal screen display 

Ok 
10 PRINT " National League Eastern Di 
vision .. 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " fittsburgh 

Wins 

fl h • c=.=.;... ___ 28 "t as mg..£_ursor _ 
42 

41 

Press Fn-End 

50 PRINT " Montreal 
29 

60 PRINT " Philadelphia 37 
33 

Ok 

Ok 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh 

Wins 

flashing,-'c=u'-"rs..a..or'---___ 28 __ 
42 

41 50 PRINT " Montreal 
29 

60 PRINT " Philadelphia 37 
33 

Ok 



192 IBM PCjr for Students 

Fn-Home 

The Fn-Home key combination moves the cursor to the screen's 
home or upper left-hand corner. The usage of the Fn-Home key 
combination is shown in the following example: 

Initial screen display 

~ 
Ok 

~ 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT " Pittsburgh 42 
flashing cursor 28 --50 PRINT " Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 

~ 
Ok 

~ 

Press Fn-Home 

flashing cursor r Qk 
~ 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT " Pittsburgh 42 
28 

50 PRINT" Montreal 41 
29 

60 PRINT" Philadelphia 37 
33 

~ Ok ~ 



Editing Your BASIC Program 193 

Fn-Break 

The Fn-Break key combination is used to cancel the edit mode. 
The line being edited will not be saved in memory. 

Initial screen display 

Ok 
EDIT 40 

f/ashing~c~ur_s_or __ ..._.40 PRINT " Pittsburgh 
28 

Press - eleven times. Press S 

Ok 
EDIT40 
40 PRINT " Sj!tsburgh 

28 

• The EDIT command will be discussed later in this chapter. 

flashing 
cursor 

42 

42 



194 IBM PCjr for Students 

Press Fn-Break. Enter LIST 40 

Ctrl-Fn-End 

Ok 
EDIT 40 
40 PRINT " Sittsburgh 

28 
LIST 40 
40 PRINT " Pittsburgh 

28 
Ok 

42 

42 

The Ctrl-Fn-End key combination causes the program line to be 
erased from the current cursor position to the end of the program 
line. 

lnltial screen display 

, 
Ok 

~ 

10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT " Pitt~burgh 42 
flashing cursor 28 t 

50 PRINT " Montreal 41 
29 

60 PRINT" Philadelphia 37 
33 

~ Ok ~ 



Editing Your BASIC Program 195 

Press Ctrl-Fn-End 

~ Ok ~ 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT" Team Wins 
Losses 

40 PRINT " Pitt 
flashing cursor t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

~ Ok ...4 

Ctrl-Fn-Home 

The Ctrl-Fn-Home key combination clears the screen and 
returns the cursor to the home position. This is shown in the follow­
ing example: 

Initial screen display 

~ Ok 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pitt 

flashing.,_c.,.,urc.,:.so..,r'--la-------~f 
50 PRINT " Montreal 

29 
60 PRINT " Philadelphia 

33 
Iii... Ok 

Wins 

41 

37 



196 IBM PCjr for Students 

Press Ctrl-Fn-Home 

Ctrl-PgDn 

-

I flashing 
cursor 

The Ctrl-Pg Dn key combination causes the cursor to move to 
the next word. This is shown in the following example: 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " _l:>ittsburgh 

Wins 

42 
flashing_c_u_rs_o_r --11---- 28 " t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

Ok 



Press Ctrl-Pg On 

Ctrl-Pg Up 

Editing Your BASIC Program 197 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh 
28 

Wins 

42 
t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

Ok 
flashing 
cursor 

The Ctrl-Pg Up key combination moves the cursor to the pre­
vious word. This is shown in the following example: 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " Pittsburgh 

28 
50 PRINT " Montreal 

29 
60 PRINT " Philadelphia 

33 
Ok 

flashing 
cursor 

Wins 

42 
t 
41 

37 



198 IBM PCjr for Students 

Press Ctrl-Pg Up 

Ok 
10 PRINT " National League Eastern Di 
vision 
20 PRINT 
30 PRINT " Team 

Losses 
40 PRINT " Pittsburgh 

Wins 

42 
flashing..:.c.::::urc.::cs.:::.;or'------ 28 " t 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 37 
33 

Ok 



Editing Your BASIC Program 199 

EDIT Command Entry 

Now that we have learned how the various PCjr editing keys 
function, we are ready to use BASIC's EDIT command to edit 
program lines. The EDIT command is used to display a BASIC 
program line so that it can be edited. An example of the use of the 
EDIT command is given below: 

EDIT40 

~ 10 PRINT " National League Eastern Di ._,, 
vision 
20 PRINT 
30 PRINT " Team Wins 

Losses 
40 PRINT " Pittsburgh 42 

28 " 
50 PRINT " Montreal 41 

29 
60 PRINT " Philadelphia 

33 
Ok 
EDIT 40 

37 

flashing __ c __ ur_so_, ___ 40 PRINT " Pittsburgh 42 

28 

Notice that the EDIT command must be executed with an 
existing program line number. The specified program line will then be 
displayed with the cursor positioned at the first character of its line 
number. 

The program line can then be edited using the various editing 
keys. For example, suppose that we wanted to change Pittsburgh's 
number of wins to 43 and its number of losses to 29. We could make 
these changes by entering the keystrokes indicated in the following 
example: 



200 IBM PCjr for Students 

Press Tab three times. Press - ten times 

10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT " Team 
Losses 

40 PRINT " Pittsburgh 
28 

50 PRINT " Montreal 
29 

60 PRINT " Philadelphia 
33 

Ok 
EDIT40 
40 PRINT " Pittsburgh 

Wins 

42 

41 

37 

42 

flashing,..:c.::u:.::rs:,:::o:...r_~liliiii .. ;28;.. _______ -•~-""' 

Enter 43. 

r 10 PRINT " National League Eastern Di ~ 
vision " 
20 PRINT 
30 PRINT " Team Wins 
Losses 

40 PRINT " Pittsburgh 42 
28 

50 PRINT " Montreal 41 
29 

60 PRINT " Philadelphia 
33 

Ok 
EDIT 40 
40 PRINT " Pittsburgh 

.... 28 

37 

43 



Editing Your BASIC Program 201 

Press - seven times. Enter 29. 

~ 
Ok 

~ 

10 PRINT " National League Eastern Di 
vision " 
20 PRINT 
30 PRINT" Team Wins 

Losses 
40 PRINT" Pittsburgh 42 

28 
50 PRINT " Montreal 41 

29 
60 PRINT" Philadelphia 37 

33 
Ok 
EDIT 40 
40 PRINT" Pittsburgh 43 

flashing cursor ~ 29 
~ -. 

Now that the necessary corrections have been made to line 40, 
we are ready to send it to memory. We can do so by pressing the Enter 
key. By executing LIST, we can verify that line 40 has, in fact, been 
changed. 

Cursor Movement Editing 

With cursor movement editing, the program is edited by moving 
the cursor to the desired program line using the cursor control keys; 
entering the new characters; and pressing the Enter key so as to save 
the revised line in memory. In the following example, we will use 
cursor movement editing to change Pittsburgh's number of wins to 43 
and its number of losses to 29. 



202 IBM PCjr for Students 

Initial screen display 

Ok 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT " Team Wins 
Losses 

30 PRINT " Pittsburgh 42 
28 " 

40 PRINT " Montreal 41 
29 

50 PRINT " Philadelphia 37 
33 

Ok 

Use - and t to position cursor as Indicated 

Ok 
10 PRINT " National League Eastern Di 
vision " 
20 PRINT " Team Wins 
Losses 

30 PRINT " Pittsburgh 
28 

40 PRINT " Montreal 
29 

50 PRINT " Philadelphia 
33 " 

Ok 

12 
t 
41 
I 
37 
I 

flashing cursor 



Enter 43. 

Ok 
10 PRINT" 
vision 
20 PRINT" 
Losses 

30 PRINT" 
28 

40 PRINT" 
29 

50 PRINT" 
33 

Ok 

Press - seven times. Enter 29. 

Ok 
10 PRINT" 
vision 
20 PRINT" 
Losses 

30 PRINT" 
flashing_c_u_rs_o_r ~---2_..9-

40 PRINT" 
29 

50 PRINT" 
33 

~ Ok 

Editing Your BASIC Program 203 

National League Eastern Di 

Team Wins 

Pittsburgh 43_ 

Montreal 41 

Philadelphia 37 

flashing cursor 

~ 

National League Eastern Di 

Team Wins 

Pittsburgh 43 

Montreal 41 

Philadelphia 37 

~ 

Just as with EDIT, we must send the corrected program line into 
memory. This can be accomplished by pressing the Enter key. 



204 IBM PCjr for Students 

estio 

True or False 

I. Line entry editing is the most efficient means of correcting lengthy 
program lines. 

2. When the Home key is pressed , the cursor will move to the home 
position . 

3. BASIC's EDIT command can be used to display a program line 
for editing. 

4. The EDIT mode can be cancelled by pressing the Fn-Break key 
combination. 

5. If the Enter key is not pressed, the changes entered to a program 
line during a cursor movement editing session will not be saved in 
memory. 

Multiple Choice 

I. The following key can be used to delete an entire program line with 
a single keystroke: 

A. End 
B. Escape 
C. Delete 
D. Backspace 
E. All of the above 



Editing Your BASIC Program 205 

2. When pressed, the following key will turn off the insert mode: 

A. Insert 
B. Enter 
C. Cursor Right 
D. Cursor Left 
E. All of the above 

3. When pressed, the following key(s) will move the cursor to the next 
word: 

A. Tab 
B. Ctrl-Pg Up 
C. Cursor Right 
D. Insert 
E. None of the above 

4. Which of the following editing methods would be the most effi­
cient means of editing a long program line in the middle of a 
lengthy program? 

A. Line entry method 
B. EDIT command method 
C. Cursor movement editing 
D. All of the above 
E. None of the above 

5. When pressed, the following key will delete characters to the left of 
the cursor: 

A. Cursor Left 
B. Delete 
C. Backspace 
D. All of the above 
E. None of the above 

Computer Exercises 

1. Using the program you wrote for Computer Exercise I on page 128, 
perform the following: 

a. Use the EDIT command to change John Croghan's percen­
tage score to 98% and his grade to an A. 



206 IBM PCjr for Students 

b. Delete Reid Nagle's score and grade, leaving only his name 
and the word ••Dropped" where his score previously appeared. 

c. Insert the middle name•• Ann" in the program line containing 
Mary Donner's name, score, and grade. 

d. Change William Vorhis's first name to Bill. 



••• ,,\ i:;;j' 1--~---,-
1 

IBM 

Saving & Loading 
BAS C Programs 

lesson 10 

Goals 

□ Learn how to install a casselle recorder with the PCjr 

□ Learn how to save and load a BASIC program using the casselte 
recorder 

III Learn how to save and load a BASIC program using the diskette 
drive 

□ Learn how to use DOS's FORM AT and DISKCOP Y commands 
toformat a blank diskette 

□ Learn how to use BAS/C's FILES command to display the 
diskelle directory 208 



Saving and Loading BASIC Programs 209 

Introduction 

In the preceding lessons, you have learned how to write and 
execute BASIC programs. One of the disadvantages you have 
already encountered in your program writing experience is that once 
the PCjr is turned off, the program in memory will be erased. If you 
later wish to run that program again, you must reenter it using the 
keyboard. As you've already learned, this can be a tedious process. 

Fortunately, BASIC programs can be stored on either a cassette 
tape or a diskette for later recall and use. In this chapter, you will 
learn how to save and recall BASIC programs both on cassette and 
on diskette. 

Cassette Recorder 

Before beginning our discussion of the procedure for program 
storage and retrieval on a cassette tape, we will describe the process 
for installing a cassette player/ recorder with the PCjr. 

Cassette Recorder Installation 

Most standard cassette recorders can be used with the PCjr. An 
optional cassette adapter cable is required to plug the cassette 
recorder into the PCjr. As shown in figure I 0.1, the cassette adapter 
cable has 3 plugs at one end and a single connector at the other end. 
The single connector should be plugged into the port labeled Con the 
rear of the PCjr's system unit. 

Notice that the three plugs at the other end of the cable are 
colored black, red, and grey. These plugs are connected to the 
cassette recorder. The black plug should be connected to the 
recorder's earphone (or monitor) jack. The red plug should be con­
nected to the auxiliary or microphone jack. 

If your cassette recorder has a jack labeled rem, the grey plug can 



21 0 IBM PCjr for Students 

Figure 10.1. PCjr cassette adapter cable---------

be installed in that port. This connection is used for automatic 
operation of the cassette recorder. If your recorder does not have a 
rem port, leave the grey plug disconnected. Since most cassette 
recorders do not have this port, our discussion of cassette recorder 
usage will be based on the assumption that the grey plug has been left 
disconnected. Therefore, at this point, please leave the grey plug 
disconnected. 

Your final installation step is to plug the cassette recorder's 
power cord into a wall outlet. Although your recorder may operate 
with batteries, we recommend against using battery power when 
saving and loading programs. As the batteries run down, the recorder 
will run more slowly. When new batteries are installed, the PCjr may 
not be able to load those programs recorded at the slower speed. 

The correct cassette recorder installation is depicted in figure 
10.2. You can either test your installation by operating the cassette 
recorder with a blank cassette installed or by operating it without a 



Saving and Loading BASIC Programs 211 

111111111111111111111 D 11111111111 @ . :,:,:-: 

Figure 10.2. Cassette recorder installation-------~ 

cassette. Press the recorder's play button. The right-hand spindle 
should rotate . Then, press the stop button. The spindle should stop 
rotating. Press the recorder's rewind button. The left-hand shaft 
should rotate. Again, when the stop button is pressed, the spindle 
should stop rotating. 

If your cassette recorder does not operate properly, check the 
recorder's power cord to be certain that it is connected properly to 
both the cassette unit and to the wall outlet. Also, check the black and 
red plugs to be certain that they are properly installed. The grey plug 
should not be connected to the recorder. 

One final cassette recorder feature that you should be aware of is 
the volume control. The volume control must be set at a sufficient 
level to enable data to be recorded and later be played back. Gener­
ally, a volume setting in the middle of the allowed range enables data 
to be properly recorded. However, if you experience difficulties 
saving and loading data with the cassette recorder, you may have to 
adjust the volume control. 



212 IBM PCjr for Students 

Saving a BASIC Program on Cassette 

Now that your cassette recorder has been properly installed, you 
are ready to save a program on cassette. Your first step is to erase any 
existing program lines in memory. You can do so by issuing the NEW 
command. Your next step is to enter a simple program. We will enter 
the NLEast program as depicted in figure 10-3. 

"This program is designed to display the standings 
of the National League's Eastern Division" 

10 PRINT " National League Eastern Division 
20 PRINT 
30 PRINT" 
40 PRINT" 
50 PRINT" 
60 PRINT" 
70 PRINT" 
80 PRINT" 
90 PRINT" 

100 END 

Team 
Pittsburgh 
Montreal 
Philadelphia 
St. Louis 
Chicago 
New York 

Wins 
42 
41 
37 
34 
29 
28 

Losses " 
28 
29 
33 
34 
41 
42 

NLEast ________________ _, 

Once "NLEast" has been properly entered, we can save a copy of 
it on cassette tape. First of all, you must prepare the cassette recorder 
by: 

□ Inserting a cassette tape 
□ Closing the door 
□ Pressing the recorder's rewind button 
□ After the tape has been completely rewound, 

press the stop button 



Saving and Loading BASIC Programs 213 

Then, make the following keyboard entry if your PCjr does not 
have a diskette drive and cartridge BASIC installed: 

SAVE "NLEast" (Do not press the Enter key) 

Ok 
SAVE "NLEast"_ 

Next, press the recorder's play and record buttons simultane­
ously. Both keys should remain depressed. After the recorder has run 
for about seven seconds, press the PCjr's Enter key. This will start the 
recording process. The flashing cursor will disappear from the screen 
as the program is being recorded. Once the program has been 
recorded, the Ok prompt and the flashing cursor will reappear. At 
this point, press the recorder's stop button. 

You may have wondered why we allowed the recorder to run 
seven seconds before pressing the Enter key. Cassette tapes have a 
section at their beginning on which data cannot be recorded. This 
area is known as the tape leader. We allowed the recorder to run seven 
seconds prior to beginning the program saving process in order to 
skip over the tape leader. 

If your PCjr has a disk drive and cartridge BASIC installed, you 
should follow the same steps with one exception. The SAVE com­
mand should be entered as follows: 



214 I BM PCjr for Students 

SAVE "CAS1:NLEast" 

Ok 
SAVE "CAS1 :NLEast" 

CASI: tells the PCjr to save NLEast on the cassette recorder 
rather than the diskette drive. If CASI: were not included, the 
program would have been saved on the diskette drive. 

Loading a BASIC Program from Cassette 

Now that we have saved a copy of"NLEast" on cassette, let's see 
if it still exists in memory. 

LIST 

Ok 
SAVE "NLEast" 
Ok 
LIST 
5 REM "This program is designed to display the 
standings of the National League's Eastern Division" 
10 PRINT " National League Eastern Division 
20 PRINT 
30 PRINT " Team 
40 PRINT " Pittsburgh 
50 PRINT " Montreal 
60 PRINT " Philadelphia 
70 PRINT " St. Louis 
80 PRINT " Chicago 
90 PRINT " New York 

Wins Losses 
42 28 
41 29 
37 33 
34 34 
29 41 
28 42 



Saving and Loading BASIC Programs 215 

Before loading "NLEast" from the cassette tape back into 
memory, we will have to erase the original version of the program 
from memory. This can be accomplished by executing the NEW 
command. If you execute LIST a second time, you will find that the 
PCjr's memory is now empty. 

NEW 
LIST 

Ok 
NEW 
Ok 
LIST 
Ok 

We are now ready to load NLEast from cassette into the PCjr's 
memory. First of all, be certain that the cassette containing the copy 
of NLEast is installed in the cassette recorder. The tape should have 
been rewound to a point prior to the beginning of N LEast. Then, 
enter the following: 

LOAD "NLEast" 
LOAD "CAS1:NLEast" (if your PC}r has a diskette drive 

and Cartridge BASIC installed) 

Ok 
LOAD "NLEast" 
Ok 



216 IBM PCjr for Students 

This time, press the Enter key immediately after keying in the 
LOAD command. After pressing the Enter key, press the recorder's 
play button. The flashing cursor will be absent from the screen as 
NLEast is searched for and loaded from the cassette tape. Once 
NLEast has been loaded, the following message will appear on the 
screen: 

NLEast found 

The cursor and the Ok prompt will appear in a few more 
seconds. At this point, press the cassette recorder's stop button. By 
executing the LIST command, you will be able to verify that NLEast 
has in fact been loaded from the cassette tape into memory. 

Disk Drive 

Before learning the procedure for saving and loading a program 
on a diskette, you must learn how to format a diskette and how to 
check a diskette's directory. These will be covered in the following 
sections. 

Formatting a Diskette 

Before using a new diskette, you must first format it using DOS's 
FORMAT command. The formatting process involves recording a 
specific magnetic pattern on the diskette surface that enables the 
computer to read and write data. 

At this point, let's format a blank diskette. Our first step is to 
restart the PCjr if it is off, or perform a warm boot if it is powered on. 
After the system date and time have been entered, the DOS prompt 
(A>) will appear. 



Saving and Loading BASIC Programs 217 

To this point, we have been entering BASIC commands such as 
PRINT, NEW, LIST, and RUN in response to BASIC's Ok prompt. 
FORMAT, the command for formatting a blank diskette, is a DOS 
command and must be entered when the DOS prompt is active. Enter 
FORMAT, and press the Enter key. The following message should 
appear on the display screen: 

Insert new diskette for Drive A: 
and strike any key when ready 

Remove the DOS diskette from the drive, and replace it with 
either a blank diskette or a diskette containing data that can be 
erased. Once the diskette to be formatted has been installed, press the 
Enter key. The following messages will appear on the screen. Be 
patient as the formatting process requires about 60 seconds. 

Formatting ... Format complete 

362496 bytes total disk space 
362496 bytes available on •disk 

Format another (Y /N)? 

The diskette has now been formatted. If you wish to format 
another diskette, press Y, and the formatting process will be 
repeated. Otherwise, press N, and the DOS prompt will reappear. 

DOS 2.1 offers a second means of formatting a diskette with its 
DISKCOPY command. DISKCOPY causes the contents of one 
diskette, known as the source diskette, to be copied onto another 
diskette, known as the target diskette. The advantage to DISKCOPY 
is that it allows the user to place a copy of DOS on the target diskette 
while it is being formatted. This can be accomplished by using the 
DOS 2.1 system master diskette as the source diskette. 



21 8 I BM PCjr for Students 

Since the PCjr contains only one diskette drive, it will be neces­
sary to periodically remove the source diskette and replace it with the 
target diskette. This process is known as swapping. Once DISK­
COPY has been executed, you may have to swap diskettes as many as 
four or five times before the entire copying operation has been 
completed. 

To begin DISKCOPY, enter the following after the DOS 
prompt: 

DISKCOPY 

A> DISKCOPY 

DOS will prompt you as follows when it is necessary to swap 
diskettes: 

Insert source diskette in drive A: 
Insert target diskette in drive A: 

When the disk swapping process has been completed, the following 
message will appear: 

Copy complete 
Copy another (YIN)? 



Saving and Loading BASIC Programs 219 

If N is entered, DISKCOPY will end and the DOS prompt will 
appear. 

You can determine whether or not DOS was copied to the target 
diskette by attempting to perform a warm boot using that diskette. If 
the system successfully boots, DOS was copied to the target diskette. 

Displaying the Diskette Directory 

A diskette can contain a number of different programs or data 
files. Each file generates a listing in the diskette's directory. A 
diskette directory can be defined as a file on the diskette containing 
information relating to all other files stored on that diskette. 

BASIC's FILES command can be used to list the directory 
entries for all of the files on a diskette. This use of Fl LES is illustrated 
below: 

FILES 

Ok 
FILES 
A: 
SORT .EXE FIND .EXE 
MORE .COM BASIC .COM 
BASICA .COM PAINTGRA .BAS 
R HARRY#3 .BAS 
PAY .DAT TEXT 
PAY .DAT FILE .DAT 
PAY23 .DAT TEXT .DAT 
JOHN .BAT PAY .DAT 
PKLING .BAS PK .BAS 
PAT .BAS BARACADE .BAS 
FIG6-2 .BAS JUNK .BAS 
PKL .BAS GOODSTUF .BAS 
PJK .BAS TEM .BAS 
TEMP .BAS ROWBOAT .BAS 
BARA .BAS BARA1 .BAS 
PJKL .BAS PROB1A .BAS 
OK .BAS NLEAST .BAS 
9-11 .BAS 9-12 .BAS 
9-13 .BAS 6-20 .BAS 



220 IBM PCjr for Students 

Saving and Loading BASIC Programs on Diskette 

The procedures used to save and load BASIC programs on a 
diskette are similar to those used on a cassette -- only easier and 
faster. Once the program to be saved is ready in the PCjr's memory, 
remove the DOS system master diskette from the PCjr's diskette 
drive, and replace it with a blank formatted diskette. If you are using 
a copy of the DOS diskette, programs can be saved directly on the 
copy -- as long as sufficient room is available. 

Suppose NLEast is already present in memory. If not, it can be 
loaded from a cassette tape as described earlier. Enter the following 
command: 

SAVE "NLEast" 

Ok 
SAVE "NLEast" 
Ok 

By executing the FILES command, we can examine the direc­
tory to determine whether NLEast has been saved on the diskette. If 
the preceding command was properly executed, NLEast should 
appear in the directory listing. 

The LOAD command is used to load a program file stored on 
diskette back into the PCjr's memory. Before executing LOAD, 
execute the NEW and CLS commands to clear the PCjr's memory 
and screen, respectively. Next, execute the LOAD command as 
follows: 



LOAD "NLEast" 

Saving and Loading BASIC Programs 221 

Ok 
LOAD "NLEast" 
Ok 

By executing the LIST command, we can verify that N LEast has 
been loaded into memory. 

Erasing a File from a Diskette 

BASIC's KILL command can be used to delete a diskette file. 
The file whose filename corresponds to that indicated with Kl LL will 
be deleted. This is shown in the following example: 

KILL 

Ok 
KILL "NLEast" 
Ok 



222 IBM PCjr for Students 

If FILES is subsequently executed, the directory listing will not 
include an entry for NLEast. 

Notice that the filename specified with the KILL command was 
NLEast.BAS not NLEast. The Microsoft BASIC interpreter requires 
that BASIC program files include .BAS as their filename extension. 
You might already have noticed from the directory listings that 
NLEast was displayed as NLEast.BAS in those listings, even though 
NLEast had been specified in the SAVE command. When a BASIC 
program file is saved or loaded, the filename extension .BAS is 
automatically added. It does not have to be specified with the com­
mand. Therefore, the following command, 

SAVE "NLEast" 

was interpreted by the compiler as: 

SAVE "NLEast.BAS" 



Saving and Loading BASIC Programs 223 

questions 

True or False 

I. The following command could be used to save a BASIC program 
on a diskette in a PC)r enhanced model's disk drive: 

SAVE "PROGRAMA" 

2. If you are saving a program on a new cassette, you can imme­
diately press the Enter key once the SAVE command has been 
entered and the cassette recorder's play button pressed. 

3. A blank diskette must be formatted before information can be 
copied to it. 

4. Either DOS's FORMAT or BASIC's FILES command can be 
used to format a blank diskette. 

5. A directory is a map to the PC)r's internal memory addresses. 

Multiple Choice 

I . Which of the following BASIC commands is generally used to 
display a diskette's directory: 

A. DISKCOPY 
B. LIST 
C. FORMAT 
D. LOAD 
E. FILES 



224 IBM PCjr for Students 

2. The following command would be used to both format a blank 
diskette and copy files to it: 

A. FILES 
B. LOAD 
C. SAVE 
D. DISKCOPY 
E. None of the above 

3. The practice of exchanging the source diskette for the target 
diskette or vice versa is known as: 

A. Disk exchange 
B. Booting 
C. Formatting 
D. Swapping 
E. None of the above 

4. Which of the following commands could be used with a PCjr with 
a diskette drive to load a BASIC program named PROGRAMB 
from a cassette tape'? 

A. LOAD PROGRAMB 
B. LOAD "PROGRAMB" 
C. LOAD 
D. All of the above 
E. None of the above 

5. The .BAS filename extension must be specified when a BASIC 
program filename is used with the following BASIC command: 

A. LOAD 
B. SAVE 
C. KILL 
D. All of the above 
E. None of the above 

Essay 

1. Define the term formatting as it relates to diskettes. 

2. Define the term directory as it relates to diskettes. 



Saving and Loading BASIC Programs 225 

Computer Exercise 

I. Format a blank diskette using FORMAT. Format a second and 
copy DOS to it using DISKCOPY. 

2. Reenter the program you wrote for the exercise on page 128. Save 
this program on diskette and on cassette. Erase the program from 
memory and then load it from diskette back into memory. Repeat 
this procedure using the cassette recorder. 

3. Save the program again on diskette using a different filename. 
Erase this second copy from the diskette. 



8=5 

Data Types and 
Variab es in BAS C 

lesson 11 

Goals 

Im Define string data and use string constants within the context of a 
simple BASIC program 

Im Understand how ASCII codes are used to convey string data 

mi Learn the various ways in which numeric data can be represented 

G Define the term variable in the context of BASIC programming 

m Learn how to create variable names 

mi Learn how BAS/C's LET statement can be used to assign a value 
to a variable 

226 



Data Types and Variables in BASIC 227 

Introduction 

Data can be defined as information that is to be processed by the 
computer. Information might consist of letters of the alphabet, 
numbers, or special symbols such as!,?,@, or*. In this chapter, we 
will discuss the two types of data used with Microsoft BASIC pro­
grams, string and numeric. String and numeric data are stored differ­
ently in memory by the PCjr. 

String Data 

String data consists of the set of characters which can be repres­
ented by an ASCII code. These characters consist of the letters of the 
alphabet, the digits (0-9), and numerous special symbols. The string 
characters available with the PCjr are listed in appendix A. The 
following are examples of string characters: 

A 

z 
0 = 

> 
4 

? 

A string can be defined as a group of one or more of these string 
characters. 

String Data Examples 

We have already encountered string data in the programs we 
have written so far in this book. For example, as shown in figure 11.1, 
NLEast uses a number of different strings. 



228 IBM PCjr for Students 

5 REM This program is designed to displ 
ay the standings of the National League' 
s Eastern Division 

rJ~j;i{.1.~-ri:.r:;;;:::::::::~:F(§~:¥.:c~~:%9.::9:~:J:~:¥:far.H:::rE:1 
20 PRINT ~r g.oif ~·~!. j :~;--J'. ~~-rn ________ ... ________ ............... Wins ............... ::: 

:: ,;i,;~;:'~~::;~ ~:::::::::::;;::: :; 
60~~::.::;:;:==~~::::; 
70 PRINT f' St. Louis 34 ::: 

80 ~1;;::::~~<' :::~=;=:: 
90 PRINT::" New York - 28 ,:: 

f4°:t·'····~."I - - -- --

100 END 
Ok 

The string constants are outlined in grey 

Figure 11.1. String usage with NLEast 

Notice that when a string is used in a PRINT statement, it must 
be enclosed in quotation marks. This is also true when strings are 
used with other BASIC statements. A string enclosed within quota­
tion marks is referred to as a string constant. A constant can be 
defined as a data item with a fixed value. The following are examples 
of string constants: 

"Terry Johnson" 
"131 Elm Street" 
"Charlotte, NC" 
"28213" 



Data Types and Variables in BASIC 229 

Notice that numbers can be used as string constants. Keep in 
mind that when numbers are used as string constants, these numbers 
cannot be used as numeric data. The numbers are string data and 
must be used as any other string data item would be. 

One final point that should be kept in mind regarding string 
constants is that they cannot contain quotation marks. For example, 
the following string constant, 

"Bill said, "Goodbye," as he walked away." 

would be illegal. Since quotation marks are used to denote the begin­
ning and ending points of a string constant, their inclusion within the 
string itself would cause difficulties and therefore is not allowed. 

In lesson 18, we will discuss how the CH R$ function can be used 
to place the ASCII code for quotation marks within a string constant. 

ASCII 

In our definition of string data, string characters were described 
as the set of characters which can be represented with ASCII codes. 
The PG;r cannot store characters; it can only store numbers. Before 
characters can be stored, they must be converted to numbers. Com­
puters use special numeric codes to store characters. Most personal 
computers including the PCjr use a coding system known as ASCII 
(American Standard Code for Information Interchange). 

The PCjr uses codes which differ slightly from the standard 
ASCII code set. The codes used by the PCjr are listed in appendix A. 
Notice that ASCII code 77 is used to represent the character M. A 
different ASCII code, 109, is used to represent the lower case m. 

Numeric Data 

Numeric data can be defined as information represented with 
numbers that can be used in performing calculations.Numeric data is 
stored and operated upon in a different manner than string data. 



230 IBM PCjr for Students 

A numeric constant can be defined as a numeric data item with a 
fixed value. In the remainder of this book, we will refer to a string 
constant as a string and a numeric constant as a number. The follow­
ing are examples of numeric constants: 

-7487 
29! 

14.72# 
1.4E7 

36.9 
37481.58342 

Numeric constants cannot include commas. For example, 
I 0,000 would be an illegal numeric constant. 

BASIC classifies numeric constants as integers, fixed-point 
numbers, floating-point numbers, hexadecimal numbers, and octal 
numbers. Each of these numeric data types will be discussed in the 
following sections. 

Integers 

An integer is a number without a decimal portion. Integers can 
either be positive or negative. The following are examples of integers: 

-1134 
-I 

0 
17945 +32 

Integers can range from-32768 to+ 32767. Negative integers are 
preceded with the(-) sign. Positive integers can be preceded with the 
(+) sign, although integers without a sign are assumed to be positive. 

Fixed-Point Numbers 

Fixed-point numbers can be defined as the set of positive and 
negative real numbers. Fixed-point numbers contain a decimal por­
tion. The following are examples of fixed-point numbers: 

79.8394 
7.0 

-1.0 I 
14376.91782 



Data Types and Variables in BASIC 231 

Floating-Point Numbers 

Floating-point numbers are represented in exponential nota­
tion. A number in exponential notation takes the following format: 

±XE ±yy 

± is an optional plus or minus sign. 

x can either be an integer or fixed-point number. This portion of 
the number is known as the coefficient or mantissa. 

E stands for exponent. D can also be used instead of E to specify a 
double-precision* floating-point constant. Either D or E can be 
interpreted as "times ten to the power of the exponent". 

yy is a one or two digit exponent. The exponent gives the number of 
places that the decimal point must be moved to give its true 
location. The decimal point must be moved to the right with the 
positive exponents. The decimal point is moved to the left with 
negative exponents. 

The following are examples of floating-point numbers and their 
equivalent notation in fixed-point: 

Floating-Point 

17E-4 
237.9823E-9 

173.IES 

Fixed-Point 

.0017 

.0000002379823 
17310000.0 

Any number in the range of IOE-38 to IOE+38 can be repres­
ented in floating-point form. 

* Double-precision is explained in a later section. 



232 IBM PCjr for Students 

Hexadecimal Numbers 

In mathematics, base lO or decimal notation is normally used. 
All of the previous examples were in base 10. 

Hexadecimal numbers use 16 as a base rather than lO as in 
decimal notation. The digits 10, 11, 12, 13, 14, and 15 are represented 
with the letters A, B, C, D, E, and F, respectively. Hexadecimal 
numbers are prefixed with &H in BASIC. The following are exam­
ples of hexadecimal numbers and their equivalent decimal values: 

&HA4 164 
&H231 561 

&HAIA 2586 

Octal Numbers 

Octal numbers use 8 as the base. The digits O through 7 are used 
in octal. Octal numbers are prefixed with &O in BASIC. The follow­
ing are examples of octal numbers and their equivalent decimal 
values: 

&0457 303 
&012 lO 
&020 16 

Numeric Precision 

Precision in the context of numeric data can be defined as the 
number of significant digits used in representing the data. In BASIC, 
numeric data may be stored as integers, single-precision numbers, or 
as double-precision numbers. Each of these are stored differently in 
the PCjr's memory, so the distinction is important. 

As we discussed earlier, integers are whole numbers in the range 
-32768 to 32767. A single-precision value can be defined as a non-



Data Types and Variables in BASIC 233 

integer numeric value with a. maximum of seven digits. A double­
precision value can be defined as any value with 8 or more digits. A 
maximum of 16 digits will be printed for a double-precision constant. 
Two bytes are required to store an integer value. Four bytes are 
required for a single-precision value. Eight bytes are required for a 
double-precision value. 

Any of the following would be evaluated as single-precision 
constants: 

1.78 
147.986 
94387 
I.OIE6 

7! 
1978.24871 ! 

From our definition of a single-precision value, it is evident that 
the first two numeric examples, 1.78 and 147 .986, are single-precision 
values. Since they contain a fractional portion, they are non-integers. 
Since both contain less than seven digits, they fit our definition for a 
single-precision value. 

On the surface, the third example, 94387, appears to be an 
integer as it does not contain a decimal portion. However, since this 
value lies outside of the allowed range for integers (~32768 to 32767), 
it is regarded as single-precision. 

The fourth example is written in floating-point form with E used 
to indicate exponentiation. By definition, any values represented in 
exponential form using E are regarded as being of single-precision. 

The trailing exclamation point(!) is used to force a value into 
single-precision that would otherwise be regarded as an integer or 
double-precision value. This is shown in our last two examples. 
Although 7 would normally be an integer, the inclusion of the trailing 
exclamation point forces it into single-precision. Likewise, 1978.24871, 
which would otherwise be a double-precision value, is forced into 
single-precision by including the exclamation point as a suffix. 



234 IBM PCjr for Students 

The following are examples of double-precision values: 

4.98372443217 
37854.98321 
3.248D-06 

7# 
14.738# 

From our definition, we can see that the first two values are 
double-precision, as they each contain over seven digits. The third 
example is written in floating-point form using D to indicate expo­
nentiation. By definition, any values represented in exponential form 
using a D are regarded as being of double-precision. 

The trailing number sign(#) is used to force a value into double­
precision that would otherwise be regarded as an integer or single­
precision value. This is shown in our last two examples. 

Variables 

So far in this lesson, we have discussed BAS I C's different types 
of data -- string and numeric. 

However, we have only discussed representing data as a con­
stant. The value of a string or numeric constant such as" JIM HILL" 
or 27 .92 remains the same. 

Data can also be represented by using a variable. A variable can 
be defined as an area of memory that is represented with a name. That 
name is known as the variable name. The information stored in the 
memory area defined by a variable name can vary (hence the name 
variable) as BASIC commands or statements are executed. The data 
currently stored in the memory area defined by a variable is known as 
the variable's value. 



Data Types and Variables in BASIC 235 

Variable Names 

BASIC allows variable names of up to40 characters in length. A 
variable name must begin with a letter of the alphabet (A-Z) followed 
by additional letters, digits, or decimal points. Blank spaces are not 
allowed within a variable name. The following are examples of valid 
BASIC variable names: 

PA4.l 
Xl23 
QR37A 

A 
TOTAL.JUNE 
Zl7 

A variable name may not duplicate a BASIC reserved word (see 
appendix B). However, a variable name may incorporate a reserved 
word as part of its name.* Therefore, although the following would 
be invalid variable names: 

NEW DATA PRINT 

the following variable names would be valid: 

NEW.PHONE DATA.X PRINTNAME 

Variables, like constants, can either be numeric or string. 
Numeric variables can be integer, single-precision, or double-precision. 

* The exception to this rule is FN. A variable name may not begin with FN. 



236 IBM PCjr for Students 

A variable type can be declared by using a type identification 
character. The type identification characters are as follows: 

%= integer 

= single-precision 

# = double-precision 

$ = string 

For example, the following variable names would be declared as 
string, single-precision, and integer, respectively: 

ANCIENT$ 812! JACK% 

If a variable type character is not specified, the variable type is 
assumed to be single-precision. 

Assigning Values to Variables with the LET Statement 

Now that we have defined what a variable is and how variable 
names are assigned, we are ready to learn how to assign a value to a 
variable. BASIC's LET command is used to assign a value to a 
variable. LET statements are also known as assignment statements. 
An example of a LET statement is given below: 

LET A$= "John" 

The LET command causes the value in the right-hand side of the 
equation to be assigned to the variable on the left-hand side. 

The LET command is unique, as the reserved word LET need 
not actually be included in the LET statement. This is evidenced in 
the following example: 



Data Types and Variables in BASIC 237 

LET A$= "John" 
PRINT A$ 
A$= "Sam" 
PRINT A$ 

By entering the preceding statements, it is evident that if the LET 
command is not included in the assignment statement, the variable is 
still assigned a new value. 

The value assigned to a variable can either be a constant or 
another variable. This is shown in the following example: 

How Variables are Processed 

Ok 

10 A$= "John" 
20 B$ = A$ 
30 PRINT A$ 
40 PRINT B$ 
50 END 
RUN 
John 
John 
Ok 

Now that we have gained more understanding of what variables 
are and how they are assigned values, let's examine how the PCjr 
processes and stores variables and their values. Suppose that you 
entered the following program: 



238 IBM PCjr for Students 

Ok 
10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS%= 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 
Ok 

When this program is run, it will be executed as a series of eight 
steps. These steps will be depicted on the following pages. 

When the program is run, line IO will be executed first. Line IO is 
an assignment statement in which the integer variable named 
WINS% is assigned the integer value 42. Notice from the illustration 
that an area in variable storage memory is assigned the name 
WINS%, and the value assigned to WINS% is stored in that area. 



~ 

.. 

Data Types and Variables in BASIC 239 

Input Memory " 

i;;1.1.~li.l.li.l-••lar=cc:i~ 
i::: : } ~~ ~~ i.......~C~Cblb°bb~~~ 

1=- b~b-b-blb-bb~ ~ [ :: J L= bbbb-~bb-bblif a;;;;;;: ii Iii 
ag c;;;;:c;;;;:i:;;;; 1.1 

Ok - 10 WINS%= 42 
10 WINS% = 42 20 LOSSES% = 28 
20 LOSSES% = 28 30 PRINT WINS% 
30 PRINT WINS% 40 PRINT LOSSES% 
40 PRINT LOSSES% 50 WINS%= 41 
50 WINS% = 41 60 LOSSES% = 29 
60 LOSSES% = 29 70 PRINT WINS% 
70 PRINT WINS% 80 PRINT LOSSES% 
80 PRINT LOSSES% 90 END 
90 END 
Ok 
CLS 
RUN 

Output Arithmetic and Logic 

~> ::::}:\/ ::<·· 
7 

Ok 
RUN 

Variable Storage 

WINS: 42 

..__ 

B4 .. ::::;;;;;;:½~ 

... 

When line 20 is executed, LOSSES% is assigned an area in 
variable storage, and the value indicated in the assignment statement, 
28, is stored there. 



240 IBM PCjr for Students 

Input 

l.i.•----i.i.i..cie~1=,1 
~-c~ci.:;ici:::'l;::i;~ 
b:- 61;.-b-bbJ6bb-~Q ~ 
b:- bbbb-1;.'bb~lii a;;;;;;: ii Iii 
~ c;;;;:c;;;;:i;;;;;-

Ok 
10 WINS% = 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS% = 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 
Ok 
CLS 
RUN 

Output 

Ok 
RUN 

Memory 

10 WINS% = 42 
-20 LOSSES% = 28 

30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS%= 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 

Arithmetic and Logic 

Variable Storage 

WINS: 42 
LOSSES: 28 

In lines 30 and 40, the values stored in memory for WINS% and 
LOSSES% are displayed on the screen. 



Input 

l.l&iali.l&i-il&i&l&l&'-61.Clbdl!i=I 
i=i.i;;;;:~i;;;;:~i=i=i.-.rn 
i=;;;:i;;:;:~i;;;;:ggi;;;;:i;;;;:~~~ 
'= c;;;c;;;i;;;;:i;;;;:~i;;;;:i;;;;:i;;;;:i;;;;:i. o;;;;;;;: ~-

11=16,,,,,,==- QQI!:) 

Ok 
10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS% = 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 
Ok 
CLS 
RUN 

Output 

Ok 
RUN 
42 
28 

Data Types and Variables in BASIC 241 

Memory 

10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 

-40 PRINT LOSSES% 
50 WINS%= 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 

Arithmetic and Logic 

Variable Storage 

WINS: 42 
LOSSES: 28 

In line 50, the variable WINS% is assigned a new value. In line 
60, the variable LOSSES% is also assigned a new value. Notice from 
the illustration below that the new values replace the previous values 
in variable storage. 



242 IBM PCjr for Students 

Input 

••--lliiil&!iiiil&!iiiilai;;i.t:;Cl.l.i 
i=i.i:;:i.i=i:;:g;;i:;i:;_-•• n 
'= g~gggi:;:i:;:~~ liiii1 
i= i:;:i:;:i:;:i:;:~i:;:~lir a;;;; W& 

l=J ...... ==-ggg 

Ok 
10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS% = 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90END 
Ok 
CLS 
RUN 

Output 

Ok 
RUN 
42 
28 

Memory 

10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS%= 41 

-+so LOSSES%= 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90 END 

Arithmetic and Logic 

Variable Storage 

WINS: 41 
LOSSES: 29 

The new values for WINS% and LOSSES% are displayed when 
lines 70 and 80 are executed. 



Input 

Ok 
10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS%= 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 
90END 
Ok 
CLS 
RUN 

Output 

Ok 
RUN 

42 
28 
41 
29 

Ok 

Data Types and Variables in BASIC 243 

Memory 

10 WINS%= 42 
20 LOSSES% = 28 
30 PRINT WINS% 
40 PRINT LOSSES% 
50 WINS%= 41 
60 LOSSES% = 29 
70 PRINT WINS% 
80 PRINT LOSSES% 

-90 END 

Arithmetic and Logic 

Variable Storage 

WINS: 41 
LOSSES: 29 

One final point to keep in mind is that execution of the NEW 
command not only erases a program from memory, but it also clears 
all variable values as well. 

The main point to be gained from this section is that a variable 
name references an area in memory, and that the values stored in that 
area can vary. 



244 IBM PCjr for Students 

estio 

True or False 

I. The integer numeric value 9 is represented internally with the 
ASCII code 57. 

2. The PCjr allows quotation marks to be included within string 
constants. 

3. Hexadecimal numbers use 16 as their base. 

4. Variable values must remain constant in memory. 

5. The numeric value 7# will be regarded as being of double-precision. 

Multiple Choice 

I. ASCII codes are used to represent: 

A. Numeric values 
B. Single-precision numbers 
C. Octal values 
D. String characters 
E. None of the above 



Data Types and Variables in BASIC 245 

2. Which of the following is a fixed-point number? 

A. 27 
B. "14.1" 
C. 1.7E+7 
D. 137.931248732! 
E. None of the above 

3. Which of the following is a floating-point number? 

A. &HAF 
B. I.7D7 
C. &020 
D. 1.7936# 
E. None of the above 

4. Which of the following variable names are valid? 

A. 7D% 
B. FNX$ 
C. CLS! 
D. A37X9! 
E. All of the above 

5. Which of the following statements would assign the string con-
stant "Phil" to a string variable? 

A. LET NAME= PHIL 
B. A$= PHIL 
C. X$ = PHIL$ 
D. All of the above 
E. None of the above 

Essay 

I. Define string data and numeric data. 

2. Define the term variable. 

3. Define the term numeric precision. 



246 IBM PCjr for Students 

Computer Exercise 

I. Write a program to assign the following constants to variables: 

"Pittsburgh" "Montreal" "Philadelphia" 
42 41 37 
28 29 33 

and display this information in the following format: 

Ok 
Pittsburgh 
42 
28 

Montreal 
41 
29 

Philadelphia 
37 
33 

Ok 

Note: A blank space is automatically output prior to a numeric value 
when that value is specified with a PRINT statement. 



A*\+-/MOD·-::,, 
< >= <=>= 
NOT. .. AND 
... OR ... XOR 

Operators 

Lesson Goals 

lesson 12 

□ Learn what expressions are and how to use them 

□ Learn how to use BAS/C's arithmetic operators 

1)3 Learn how to use BAS/C's relational operators 

1)3 Learn how to use BAS/C's logical operators 

1)3 Learn in what order the PC}r evaluates expressions 

248 



Operators 249 

Introduction 

In this lesson, we will work with operators and expressions. An 
operator is a sign or phrase which represents an action that the 
computer is to perform. An operator is generally used as part of an 
expression. An expression is used to combine values, also known as 
operands, to produce a new value. Operators usually have two oper­
ands, one to the left of the operator and one to the right. The 
exception is negation, which we will discuss later in this lesson. 

Microsoft BASIC includes three types of operators: arithmetic, 
relational, and logical. We will discuss each of these three types of 
operators in this lesson. 

Arithmetic Operators 

Arithmetic operators represent mathematical operations. The 
operator causes the value on its left side to be combined with the 
operand on its right side. One of the operators,+, can be used on both 
string and numeric values as long as these are not mixed in the same 
expression. The use of+ with strings will be discussed in lesson 18. 
The other arithmetic operators can only be used with numerics. 

Addition (+) 

The plus sign(+) is used to add numerics. This is shown in the 
following example: 



250 IBM PCjr for Students 

Input 

CLS 
RUN 

Output 

Ok 
RUN 
8 

Ok 

Memory 

10 A = 5 
20 B = 3 
30C=A+B 
40 PRINT C 
50 END 

Arithmetic and Logic 

5 + 3 = 8 

Variable Storage 

A = S 
B = 3 
C = B 

In this program, 5 was assigned to A and 3 to B. When line 30 was 
executed, the values stored in the variables A and B were added to­
gether, resulting in 8. This value was then assigned to C. Line 40 
caused the value in C to be printed on the screen. 



Operators 251 

Exponentiation ( ") 

The caret (A) is used in BASIC to indicate exponentiation. In 
exponentiation, one number, the base, is raised to a new value. The 
new value is obtained by multiplying the base times itself. The 
number of times the base is to be multiplied by itself is indicated by 
the exponent. 

For example, in the following expression: 

X"2 

the numeric variable X would be evaluated as X multiplied by X. Xis 
the base, and 2 is the exponent. 

Notice that exponentiation is consistent with our definition of 
an expression. An operator, A , is used to combine the left operand, 
the base, with the right operand, the exponent, to produce a new 
value. 

You might be more familiar with exponentiation as represented 
in its standard algebraic format as shown below: 

x2 

Again, X is the base, and 2 is the exponent. 
The use of A in a BASIC program can be seen by editing and 

running the previous program as shown: 



252 IBM PCjr for Students 

Input 

CLS 
30 C = AAB 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = 3 
30 C = AAB 
40 PRINT C 
50 END 
Ok 
RUN 
125 

Ok 

Memory 

10 A= 5 
20 B = 3 
30C=AAB 
40 PRINTC 
50END 

Arithmetic and Logic 

5 X 5 X 5 = 125 

Variable Storage 

A=5 
8=3 
C = 125 

Notice that when line 30 was executed, the 5 was cubed. In other 
words, 5 was multiplied by itself three times. 

Floating Point Division (I) 

Floating point division acts as does +- in mathematics. The first 



Operators 253 

operand is simply divided by the second. This can be seen in the 
following illustration: 

Input 

CLS 
30C=A/B 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = 3 
30C=A/B 
40 PRINT C 
50 END 
Ok 
RUN 
1.666667 

Ok 

Memory 

c: 
c:::: 
10A = 5 
20 B = 3 
30C=A/B 
40 PRINT C 
50END 

Arithmetic and Logic 

5 + 3 = 1.666667 

Variable Storage 

A=5 
8=3 
C = 1.666667 

Floating point division is an appropriate name, because the 
decimal point can move, or float, as needed. If no decimal point is 
necessary, none will be printed. 



254 IBM PCjr for Students 

Integer Division ( \ ) 

Integer division results in two integer operands being divided 
with another integer as the result. During execution, the operands, if 
not already integers, are rounded to integers. The division is then 
performed, and the quotient is truncated to an integer. In other 
words, any numbers after the decimal point are just thrown away. 

Integer division is like asking, ••If I have five hamburgers and 
there are three people at my picnic, how many hamburgers are there 
per person?" The answer is one. Integer division will give the same 
result. This can be seen in the following example: 

Input 

CLS 
30C=A\B 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = 3 
30C=A\B 
40 PRINT C 
50 END 
Ok 
RUN 

1 
Ok 

... ··· 

Memory 

10A = 5 
20 B =3 
30C=A\B 
40 PRINTC 
50END 

Arithmetic and Logic 

5 + 3 = 1.666667 
1.666667 truncated = 1 

Variable Storage 

A=5 
B=3 
C = 1 



Operators 255 

In order to generate the backslash ( \ ) symbol needed to repre­
sent division, the Alt-/ key was pressed. Notice that since A and B 
already held integers, no rounding was performed. During the execu­
tion of line 30, A was divided by B. The answer was then truncated 
and assigned to C. Integer division is often used to determine whether 
one number is a factor of another. In this case, the answer is no. 

If you attempt to divide by O in either integer or floating point 
division, the computer will print out the message, "Division by zero." 
The value of+ I.701412E+ 38 or -1.701412E+38 will then be returned, 
depending on whether the dividend was a positive or negative 
number. Since it is unlikely that this was the desired answer, it is a 
good idea to stay away from division by zero. 

Modulo Arithmetic (MOD) 

Modulo arithmetic, or MOD, is used to find the whole number 
remainder of division. When MOD is used, the division is performed, 
and a whole number remainder is returned. It's the same idea as 
asking, "If I share those five hamburgers with the people at my picnic, 
how many will I have left for tomorrow's dinner?" The answer is, of 
course, two. 5 MOD 3 also results in an answer of 2. The following 
illustration demonstrates this point: 



256 IBM PCjr for Students 

Input 

--~~---~-i.t::ll::161~ '=-~i;;;;~i:;Qb'CC~~ 
'=- bl;_Jl=bblbibb~~ liijl 
~ bbb-6.-bb~I;. lb-~ 
~ (dQi;;;; 

CLS 
30 C = A MOD B 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = 3 
30 C = A MOD B 
40 PRINT C 
50 END 
Ok 
RUN 
2 

Ok 

Memory 

10 A = 5 
20 B = 3 
30 C =A MOD B 
40 PRINT C 
50 END 

Arithmetic and Logic 

5 .;- 3 = 1.666667 
1.666667 truncated = 1 
3 X 1 = 3 
5-3=2 

Variable Storage 

A=5 
8=3 
C = 2 

The operands in a MOD expression do not have to be integers . 
MOD causes noninteger operands to be rounded . Blank spaces must 
separate MOD from its operands . Spaces are not mandatory with the 
other arithmetic operators. It is, however, a good programming 
practice to include a blank space on either side of an arithmetic 
operator. 



Operators 257 

Multiplication(*) 

The symbol for multiplication is the asterisk(*) . This operator is 
illustrated in the following example: 

Input 

i.i.i.~i-i.i.i..i;;c=it:c:illi=J 
1.e.,i;;b~CO:::CC--~ 
G:;;;;: C~CQ._::JCC~Q Iii 
~ bbbbl.'bb~~ lb ii" Iii 
~ QQlb lij1 

CLS 
30C=A•s 
LIST 
RUN 

Output 

Ok 
LIST 
10 A = 5 
20 B = 3 
30C=A•B 
40 PRINT C 
50 END 
Ok 
RUN 
15 

Ok 

Memory 

10 A= 5 
20 B = 3 
30C=A•s 
40 PRINT C 
50 END 

Arithmetic and Logic 

5 X 3 = 15 

Variable Storage 

A=5 
8=3 
C = 15 

Multiplication can be substituted for exponentiation. Substitu­
ting multiplication, however, can be rather inefficient, especially 
when a number is to be raised to a large power. 



258 IBM PCjr for Students 

Negation (-) 

Negation and subtraction both use the minus sign(-). However, 
negation includes only one operand, which is placed to the right of 
the operator. Placing the operand to the left of the operator will result 
in a missing operand error, since the computer interprets the - as the 
operator for subtraction under those conditions and assumes the 
second operand was omitted. Negation turns a positive number into a 
negative number or a negative number into a positive number. In 
other words, negation switches the sign. Since zero is not a signed 
number, negating zero has no effect. The effect of negation is demon­
strated in the following example: 

Input 

CLS 
30C=-A 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 8 = 3 
30C=-A 
40 PRINT C 
50 END 
Ok 
RUN 
-5 

Ok 

Memory 

10 A= 5 
20 8 =3 
30C=-A 
40 PRINT C 
50END 

Arithmetic and Logic 

Variable Storage 

A=5 
8=3 
C =-5 



Operators 259 

Subtraction (-) 

Subtraction in BASIC is identical to subtraction in mathemat­
ics. This is illustrated by the following example: 

Input 

CLS 
30 C = A - B 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = 3 
30 C = A - B 
40 PRINT C 
50 END 
Ok 
RUN 
2 

Ok 

Order of Evaluation 

Memory 

10 A= 5 
20 B = 3 
30C=A-B 
40 PRINT C 
SO END 

Arithmetic and Logic 

5 - 3 = 2 

Variable Storage 

A=S 
B=3 
C=2 

In the previous examples, operators were used to form simple 
expressions. A simple expression is one which contains one operator 
and one or two operands. Operators can also be used to form com-



260 IBM PCjr for Students 

pound expressions. A compound expression consists of two or more 
simple expressions. 5 + 5 - 3 is an example of a compound expres­
sion. When compound expressions are used, BASIC follows a set of 
rules which specify which operation is to be performed first, second, 
etc. These rules are known as the order of operations. 

A general rule in the order of operations is that operations are 
performed from left to right. In other words, if we tell the computer to 
add three numbers, for example 5 + 7 + 2, five and seven are added 
first, and that value and two are added. 

Certain operators have a higher priority than others. This alters 
the general rule. Table- 12. l lists the operator priorities from the 
highest level to the lowest level. 

Table 12.1. Order of evaluation of arithmetic operators 

Multiplication 

Addition 

Negation 

MOD 

Modulo Arithmetic 

I 
Floating 

Point Division 

Subtratlon 



Operators 261 

Operators with a higher priority level are evaluated before oper­
ators with a lower priority. Within each level of priority, expressions 
on the left are evaluated before those on the right. 

Mixing Variable Types in Arithmetic Expressions 

Generally, it is best not to mix variable types. Sticking to the 
same types of variable within an expression cuts down on running 
time, saves space in memory, and decreases the probability of pro­
gramming errors. 

If variable types are mixed, the value will, if possible, be changed 
during execution to fit the specified variable type. For example, if 5. 7 
is assigned to an integer variable, five will be rounded to six and then 
stored. If the value cannot be changed, an error message will appear 
on the screen. One possible error is attempting to add a string, 
"Hello", to a numeric, 5. 

Relational Operators 

BASIC includes six relational operators. Relational operators 
are used to compare two values, both of which are either numeric or 
string. AO is returned if the comparison is false, and a - I is returned if 
the comparison evaluates to true. The relational operators are listed 
in table 12.2. 

Whenever a relational operator is used, it should be separated 
from its operands by one space on either side. Again, the spaces are 
not mandatory, but it is good programming style to include them.* 

* Notice that the IBM PCjr does not accept LE, LT, GE, GT, EQ, and NE as operators. 



262 IBM PCjr for Students 

Table 12.2. Relational Operators 

Relational Operators 

< 
<=or=< 

> 
>=or=> 

= 
><or<> 

less than 
less than or equal to 
greater than 
greater than or equal to 
equal to 
not equal to 

Strings cannot be compared with numerics, but strings can be 
compared with other strings. If the two strings do not have the same 
number of characters, the shorter string is considered to be the lesser. 
For example, "B" is evaluated as less than" AA". If the strings are the 
same length, the ASCII codes for the characters in the string are 
compared. The string which has the lower code number in the earliest 
position is evaluated as the lesser. For example, "ABCD" is consi­
dered to be less than "ACBD". Blank spaces do count; each has an 
ASCII code of 32. "AAA" and "aAA" are not equal, because capital 
and small letters have different ASCII codes. Capital letters have 
lower code values than their small letter counterparts. A list of ASCII 
characters can be found in appendix A. 

Logical Operators 

BASIC includes four commonly used logical operators. They 
are most often used to compare the results of relational operators. 
Logical operators are also known as Boolean operators. A value of - I 
is returned if the comparison is true, and a value of O is returned if the 
comparison is evaluated as false. Be careful to use only - I and O as 
operands. Using other operands can cause inaccurate results. 



Operators 263 

NOT 

NOT acts as the logical complement. In other words, NOT 
changes a true value to false or a false value to true. This is illustrated 
by the following logic diagram: 

I T F I A Operand 

1 .. _F ___ T __ I NOT A 

NOT is most often used when something is to occur if the 
condition is false. An example would be only considering a person for 
a basketball team if that person was not shorter 5'8", or eating a 
hamburger for dinner only if you didn't eat one for lunch. 

AND 

When AND executes, if both operands are true, a value of true is 
returned. Any other combination results in a false value being 
returned. This can be seen in the following logic diagram: 

I T T F F A Operand 

I T F T F I B Operand 

I T F F F I AANDB 

AND only evaluates to true if both operands are true. An 
example of AND reasoning is Chris and Jim who will only purchase 
an item at the grocery store if both people want to buy it. If only one 
of them wants the product, they won't buy it. 



264 IBM PCjr for Students 

OR 

When OR executes, a value of true will be returned if either of 
the operands is true. The following diagram illustrates the operation 
of OR: 

I T T F F I A Operand 

I T F T F I B Operand 

I T T T F I AORB 

OR is most often used when something is to be done as long as 
any one of the conditions is true. An example is Chris and Jim who 
decide they will buy a book as long as one of them wants to read it. If 
they both want to read the book, they will still buy it. 

XOR 

XOR is the exclusive OR operator. XOR only returns a true 
value if just one of the operands is true. 

I T T F F I A Operand 

I T F T F I B Operand 

I F T T F I AXORB 

Notice that XOR returns a false value if both operands are true. 
Jesse, who wants either chicken or fish for dinner, but not both, is 
using XOR reasoning. 



Operators 265 

Order of Evaluation 

Earlier in this lesson, we examined the order of evaluation for 
arithmetic operators. Additional rules are applied when the com­
pound expression contains logical or relational operators. These 
expressions are also evaluated from left to right within priority levels. 
Arithmetic expressions are evaluated first, followed by relational 
expressions. Logical expressions are evaluated last. The order of 
evaluation among BAS I C's arithmetic, relational, and logical opera­
tors is summarized in table 12.3. 

Table 12.3. Order of evaluation 

Order of Evaluation 

Arithmetic: A Exponentiation 

- Negation 

* I Multiplication Floating point division 

\ Integer division 

MOD Modulo arithmetic 

+ - Addition Subtraction 

-------···········--·-- -------------------------------------------------------------------- --------------

Relational: = Equal 

<> >< Not equal 

< Less than 

> Greater than 

<= =< Less than or equal to 

>= => Greater than or equal to 

········---------------- -------------------------···············------------------------------------------

Logical: NOT 
AND 
OR 
XOR 



266 IBM PCjr for Students 

The order of evaluation can be changed by enclosing an expres­
sion within parentheses. The expression within the parentheses will 
be evaluated first. For example, when the expression, 5 / (4 + 6) is 
evaluated, four and six are added. Then five is divided by ten, the sum 
of four and six. The answer is 0.5. In contrast, when the expression, 5 
/ 4 + 6 is evaluated, five is divided by four, resulting in 1.25. Then 1.25 
and 6 are added. The answer obtained is 7.25. 

If parentheses are placed where they aren't necessary, the paren­
theses will be ignored during execution. In the previous example, if (5 
/ 4) + 6 had been the expression, instead of 5 / 4 + 6, the order of 
evaluation is not altered by the parentheses, and the computer oper­
ates as if the parentheses were not there. It is good programming style 
to use parentheses whenever the parentheses will make the order of 
evaluation clearer to another person, regardless of whether or not the 
computer needs them. Whenever you use parentheses, make sure you 
use the same number of left parens and right parens. Otherwise, the 
run will stop due to a syntax error. 



Operators 267 

estio 

True or False 

I. Both arithmetic operators and relational operators use mathemat-
ics to combine operands. 

2. MOD returns the whole number remainder of division. 

3. Relational operators return a value of O if false and I if true. 

4. AND returns a value of true only if both operands are true. 

5. Whatever expression is included within parentheses will be evalu­
ated first. 

Multiple Choice 

I. In the compound expression, 5 < 23 AND 6 + 9 >= 25, which of 
the following simple expressions would be evaluated first? 

A. 5 < 23 
B. 23 AND 6 
C. 6 + 9 
D. 9 >= 25 
E. None of the above 



268 IBM PCjr for Students 

2. What would be the result of the expression, 9 / 4? 

A. 2.25 
B. I 
C. 2 
D. 36 
E None of the above 

3. Which of the following symbols will raise a number to another 
number? 

A. * 
B. + 
C. MOD 
D. A 

E. None of the above 

4. Which of the following logical operators will be evaluated as true if 
the A operand is true and the B operand is true? 

A. AND 
B. XOR 
C. NOT 
D. None of the above 
E. All of the above 

Computer Exercises 

I. Using the program you wrote for Computer Exercise 1 on page 128, 
compute and display the average grade. 

2. Use the computer to evaluate each of the following expressions: 

a. 6 + 9 / 3 
b. (6 + 9) / 3 
c. 5 < 23 AND 6 + 9 >= 25 
d. 5 < 23 OR 6 + 9 >= 25 



PRINT ... 
PRINT USING ... 
TAB .. . 
SPC .. . 
SPACE$ ... 

Outputting Doto 
lesson 13 

Lesson Goals 

□ Learn about the uses of PRINT to handle more than one piece of 
data at a time 

El Learn the uses of the PRINT USING command 

□ Learn how to use formatting characters with PRINT USING 

□ Learn how to use the formatting functions of TAB, SPC, and 
SPACE$ 

270 



Outputting Data 271 

Introduction 

In lesson 6, we discussed how to use PRINT to output one item 
at a time. In this lesson, we will discuss how to output more than one 
item at a time. 

We will also look at how to format output so that it is appealing 
to the eye. In lesson 6, this goal was accomplished by entering the 
needed number of spaces into the string. This method isn't very 
efficient. The formatting of output can also be handled by the PRINT 
USING statement, formatting characters, and formatting functions. 
We will discuss each of these options in this lesson. 

PRINT 

Let's look at what happens when we try to ouput three items 
with a single PRINT command. Notice the following illustration: 

Ok 
PRINT "Bacon""Lettuce""Tomato" 
Bacon Lettuce Tomato 
Ok 

There are no spaces in the line of output. It appears that the 
computer treated the individual items as one string. Let's examine 
what happens when a space is placed between each entry: 



272 IBM PCjr for Students 

Ok 
PRINT "Bacon" "Lettuce" "Tomato" 
Bacon Lettuce Tomato 
Ok 

Again, the items appear as one string. If the spaces are replaced 
by commas, the situation changes: 

Ok 
PRINT "Bacon","Lettuce","Tomato" 
Bacon 
Tomato 
Ok 

Lettuce 

The insertion of commas between the items caused the output to 
appear with one item per print zone. A print zone consists of 14 
spaces. The comma, when used with PRINT, spaces the strings by 
print zones. Normally, the screen has 40 columns, but the enhanced 
version of the PCjr can be set to 80 columns by entering the command 
WIDTH 80. The screen can be returned to 40 columns by entering 
WIDTH 40. A 40 column screen has two print zones per line. With 
the screen set to 80 columns, there are four print zones per line. We 
will look at this is in more depth in lesson 20. 

We can alter the placement of the strings by changing the com­
mas to semicolons. The following example demonstrates this point: 



Outputting Data 273 

Ok 
PRINT "Bacon";"Lettuce";"Tomato" 
Bacon Lettuce Tomato 
Ok 

It appears that using semicolons causes the three strings to be 
treated as though they were one. In this instance, however, the 
computer considers the items to be three separate strings. This point 
can be more clearly seen by substituting numbers for the strings, as in 
the following example: 

Ok 
PRINT 10 20 30 
102030 

Ok 
PRINT 10;20;30 
10 20 30 

Ok 

Numbers are printed with a blank space automatically inserted 
after each number. A blank space is also inserted prior to each 
number if the number is zero or positive. If the number is negative, 
the blank space is replaced by a negative sign. 

With strings, blank spaces are not automatically inserted when a 
semicolon is used to divide the items. If you want spaces separating 
the strings, the desired number of spaces can be included within each 
string, as in lesson 6. We will discuss other methods later in this 
lesson. 

A final point to note is that after each PRINT command, the 
cursor advances to the leftmost position on the next output line. This 



274 IBM PCjr for Students 

is known as the carriage return/ line feed or CR/ LF. If you want the 
output of separate PRINT commands to appear on the same line, the 
CR/ LF can be suppressed by ending the statements with a comma or 
a semicolon. This can be seen in the following example: 

Ok 
LIST 
10 PRINT "Programming", 
20 PRINT "is fun ", 
30 PRINT "with the IBM PCjr." 
40 END 
Ok 
RUN 
Programming is fun 
with the IBM PCjr. 
Ok 

In this instance, commas were used to suppress the CR/ LF, so 
the entries were placed in separate print zones. If the commas had 
been replaced by semicolons, the items would have been placed one 
after the other, on the same line. 

PRINT USING 

In contrast to PRINT, PRINT USING allows you to specify 
exactly the desired spacing and formatting. The command has the 
following structure: 

PRINT USING format string;expressions 

The format string consists of the actual definition of the desired 
spacing. It contains any special characters which are to be included 



Outputting Data 275 

with the output. The format string also reserves an area on the output 
line where the data will be displayed. It, in effect, operates as a print 
zone, the length of which you have specified. The size of the reserved 
area is determined by the characters in the format string. 

The format string must be followed by a semicolon, which 
separates it from the expressions. In this case, the expressions are the 
data to be output, often stored in variables. The individual data items 
must be delimited with commas or semicolons, but it doesn't matter 
which serves as the delimiter, because spacing is not affected. 

Formatting Characters 

There are two types of formatting characters, numeric and 
string. Numeric formatting characters work with numbers, and string 
formatting characters are used with strings. We will discuss the 
characters individually. 

Numeric Formatting Characters --Pound Sign(#) 

The pound sign(#) is the most commonly used numeric format­
ting character. The pound sign is used to save a place for a digit. Each 
# reserves one space. This can be seen in the following example: 



276 IBM PCjr for Students 

.. 

... 

Input 

CLS 
NEW 
AUTO 
10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "### " 
50 PRINT USING D$;A;B;C 
60 END 
70 Fn-Break 
RUN 

Output 

Ok 
NEW 
Ok 
AUTO 
10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "### " 
50 PRINT USING D$;A;B;C 
60 END 
70 
Ok 
RUN 

5 -76 %4893 
Ok 

Memory 

10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "### " 
50 PRINT USING D$;A;B;C 
60 END 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
D$ = "### " 

"I 

In this example a trailing space was used in D$ so that the 
numbers would be separated in the output. We will continue to 
follow this procedure. 

In addition, when this program was run, 4893 was preceded by 
%. The percent sign indicates that the number contains too many 
digits to fit into the allotted space. The % could be eliminated by 
inserting an additional #. 

The negative sign in B occupies one of the digit spaces, so no 



Outputting Data 277 

empty spaces were present in the field. If empty spaces were present, 
as is the case with A, the number would be right-justified. In other 
words, the field would be padded with blank spaces to the left of the 
number. 

Numeric Formatting Characters -- Decimal Point (.) 

The decimal point(.) can be placed anywhere within the string of 
formatting characters. Once set in place, it does not float. Notice 
what happens when line 40 is changed to include a decimal point: 

Input 

i.i.i.~.i.i.i.i.i-i=:11::cg 
b..-l&b~i.;;;;~i:;;i:;;_-.ill 
~ i;;:~i:;;i:;;g~i.;;;;~ -
6= c;;:c;;:i.;;;;i.;;;;~i.;;;;66W lb~-

lo.. 

11=1 

CLS 
40 D$ = "###.# " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "###.# " 

ggQliiiii1 

50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 

5.0 -76.0 %4893.0 
Ok 

.J 

Memory 

10 A= 5 
208=-76 
30 C = 4893 
40 D$ = "###.# " 
50 PRINT USING D$;A;B;C 
60END 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
D$ = "###.# " 



278 IBM PCjr for Students 

Again, there is a % before 4893.0, although an extra space was 
allotted, because the space was allotted after the decimal point. 
Under this structure, the number requires seven spaces, but only six 
are available. 

In this example, all of the numbers were integers. If any of the 
numbers had been fixed-point numbers, the decimal portion would 
have been rounded to fit the allotted space. If a fixed-point number 
lacks a whole number portion, a O is placed prior to the decimal point. 
The only variation to this procedure occurs when no# appears before 
the decimal point. In this case, the zero will be omitted. 

Numeric Formatting Characters --Plus Sign(+) 

The plus sign can be placed on either side of the#. The+ sign 
causes the sign of the number to be printed next to the number. If the 
+ is placed to the left of the#, the sign will float next to the number, on 
its left. If the + is placed to the right of the #, it will appear in the 
output in the space to the right of the number. When the+ is used, it 
reserves an additional space for the sign. This can be seen in the 
following example: 



Input 

!.i.l.~i.jj.i.1.i.i.i.Cit:lldlli=J 
t,.,.,,.~i.;;;::~i.;;;::i.:;ii.;;;::i.;;;::i.;;;::-liii~ 
t,.,.,,. i.;;;::~i.;;;::i.;;;::QQL:,:i.;;;::~Q i.i 
k= bbbbii'b-bbb-5 a;;;;;;: \. Iii 

~i;;;;;;;;;;;;;;:;;;;;;;;;;;;:;; r.:;;;:;r.:;;;:;c;: 

CLS 
40 0$ = "+#### " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A = 5 
20 B = -76 
30 C = 4893 
40 0$ = "+#### " 

50 PRINT USING 0$;A;B;C 
60 END 
Ok 
RUN 

+5 -76 +4893 
Ok 

Memory 

10 A= 5 
208=-76 
30 C = 4893 

Outputting Data 279 

40 D$ = "+#### " 

50 PRINT USING D$;A;B;C 
60 END 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
D$ = "+#### ,, 

Since a space was allotted for the sign of the number, the 
negative sign in B no longer takes up a digit space. 

Numeric Formatting Characters --Minus Sign(-) 

The minus sign functions similarly to +, except that the sign of 
the number only appears in the output if that number is negative . The 



280 IBM PCjr for Students 

- sign must trail the other formatting characters in the string. Let's 
examine an example: 

Input 

---~--iai.li.wiCLC:~~ 
~~c~i=b.Jb°CC!.wrn 
b- 61;.-bbbb-bb~~ liil 
L= bbbbiii'bb~iii a;;;;;;; ii~ 
~ QQc;;; 

CLS 
40 0$ = "####- " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A = 5 
20 B = -76 
30 C = 4893 
40 0$ = "####- " 

50 PRINT USING O$:A:B:C 
60 END 
Ok 
RUN 

5 76- 4893 
Ok 

Memory 

10 A= 5 
20 B = -76 
30 C = 4893 
40 0$ = "####- " 
50 PRINT USING D$;A;B;C 
60 END 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
0$ = "####- ,, 

In this example, an additional space was reserved after the digits. 
When B was printed, the - took up that additional space. When the 
numbers are positive or zero, that space is left blank. 



Outputting Data 281 

Numeric Formatting Characters -- Comma (,) 

Commas can be placed anywhere within the string. The use of 
the comma is illustrated in this example: 

Input 

CLS 
40 D$ = "####, " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A = 5 
20 B = -76 
30 C = 4893 
40 D$ = "####, " 
50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 

5 -76 4,893 
Ok 

Memory 

10 A= 5 
20B = -76 
30 C = 4893 
40 D$ = "####, " 

50 PRINT USING D$;A;B;C 
60 END 

Arithmetic and Logic 

Variable Storage 

A = 5 
B = -76 
C = 4893 
D$ = "####, ,, 

Notice that the comma reserved an additional space. When it 
wasn't needed, that space was taken by a blank. As many commas as 
desired can be placed in the format string, but the inclusion of just 



282 IBM PCjr for Students 

one comma results in even the longest numbers having the correct 
number of commas inserted. When specifying a comma in a format 
string, remember that each comma will require a space. Therefore, 
additional #'s must be included in the format string to allow for the 
extra commas. 

Numeric Formatting Characters --Dollar Sign($) 

Putting a dollar sign($) in the leftmost position of the formatting 
string causes a dollar sign to be printed in the first position of each 
output field. Using two dollar signs instead of one causes the$ to float 
next to the number. We will look at both options in the following 
examples: 

Input 

CLS 
40 D$ = "$####, " 
LIST 
RUN 

Memory 

10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "$####, " 
50 PRINT USING D$;A;B;C 
60 END 



332 IBM PCjr for Students 

Output 

Ok 
NEW 
Ok 
AUTO 

10 FOR FLOOR = 1 TO 2 
20 FOR ROOM = 1 TO 5 
30 INPUT "Resident";APT$ 
(FLOOR.ROOM) 
40 NEXT ROOM 
50 NEXT FLOOR 
60 FOR A = 1 TO 2 
70 FOR B = 1 TO 5 
80 PRINT "Resident of";A;B;"is "; 
APT$(A,B) 
90 NEXT B 

100 NEXT A 
110 END 
120 
Ok 
RUN 
Resident? Adams 
Resident? Bell 
Resident? Clark 
Resident? Drake 
Resident? Evans 
Resident? Fletcher 
Resident? Grant 
Resident? Harris 
Resident? Jacobs 
Resident? Keller 
Resident of 1 1 is Adams 
Resident of 1 2 is Bell 
Resident of 1 3 is Clark 
Resident of 1 4 is Drake 
Resident of 1 5 is Evans 
Resident of 2 1 is Fletcher 
Resident of 2 2 is Grant 
Resident of 2 3 is Harris 
Resident of 2 4 is Jacobs 
Resident of 2 5 is Keller 
Ok 

Arithmetic and Logic 

1 + 1 = 2 
4 + 1 = 5 
1 + 1 = 2 
4 + 1 = 5 
1 + 1 = 2 
4 + 1 = 5 
1 + 1 = 2 
4 + 1 = 5 

2 + 1 = 3 
5 + 1 = 6 
2 + 1 = 3 
5 + 1 = 6 
2 + 1 = 3 
5 + 1 = 6 
2 + 1 = 3 
5 + 1 = 6 

Variable Storage 

FLOOR = 1 ROOM = 1 
APT$(1, 1) = "Adams" 

3 + 1 = 4 
1 + 1 = 2 
3 + 1 = 4 
2 + 1 = 3 
3 + 1 = 4 
1 + 1 = 2 
3 + 1 = 4 
2 + 1 = 3 

ROOM= 2 APT$(1,2) = "Bell" 
ROOM = 3 APT$(1,3) = "Clark" 
ROOM= 4 APT$(1,4) = "Drake" 
ROOM= 5 APT$(1,5) = "Evans" 
ROOM = 6 FLOOR = 2 
ROOM= 1 APT$(2,1) = "Fletcher" 
ROOM = 2 APT$(2,2) = "Grant" 
ROOM = 3 APT$(2,3) = "Harris" 
ROOM= 4 APT$(2,4) = "Jacobs" 
ROOM = 5 APT$(2,5) = "Keller" 
ROOM = 6 FLOOR = 3 
A=1 8=1 8=2 
8=3 8=4 8=5 
8=6 A=2 8=1 
8=2 8=3 8=4 
8=5 8=6 A=3 

The data structure used in this program is a table. A table has two 
dimensions. The following diagram illustrates the structure of the 
table: 



Tables and Arrays 331 

Tables 

In the previous example, the apartment building had one floor. If 
the apartment building had contained more than one floor, we could 
have simply added numbers to our loop and assumed that we knew on 
which floor the apartments were. We could, however, modify the 
previous program so that each apartment was identified by both the 
floor and the room. This modified program is illustrated in the 
following example: 

Input 

CLS 
NEW 
AUTO 

10 FOR FLOOR= 1 TO 2 
20 FOR ROOM = 1 TO 5 
30 INPUT "Resident";APT$ 
(FLOOR.ROOM) 
40 NEXT ROOM 
50 NEXT FLOOR 
60 FOR A = 1 TO 2 
70 FOR B = 1 TO 5 
80 PRINT "Resident of";A;B;"is "; 
APT$(A,B) 
90NEXT B 

100 NEXT A 
110 END 
120 Fn-Break 
RUN 
Adams 
Bell 
Clark 
Drake 
Evans 
Fletcher 
Grant 
Harris 
Jacobs 
Keller 

Memory 

10 FOR FLOOR = 1 TO 2 
20 FOR ROOM = 1 TO 5 
30 INPUT "Resident";APT$ 
(FLOOR.ROOM) 
40 NEXT ROOM 
50 NEXT FLOOR 
60 FOR A = 1 TO 2 
70 FOR B = 1 TO 5 
80 PRINT "Resident of";A;B;"is "; 
APT$(A,B) 
90 NEXT B 

100 NEXT A 
110 END 



330 IBM PCjr tor Students 

Each subscripted variable represents one apartment. In this case, 
the apartment building has one floor, so each room is identified with 
one number. This type of structure is known as an array. The follow­
ing diagram illustrates the structure of an array: 

I Adams Brown Clark Drake Evans I 
2 3 4 5 

Brown lives in APT$(2). If Brown moves out and Bell moves in, 
the array has this structure: 

I Adams Bell Clark Drake Evans I . 

2 3 4 5 

This array is identical to its predecessor except that one member, or 
element, has changed. 

Each subscripted variable is a unique variable. In other words, 
APT$( 1) does not refer to the same place in memory as APT$(2). One 
element in the array can be changed without affecting other elements 
in the array. It is also important to note that subscripted variables can 
be assigned values or used as operands. Any action which can be 
performed with numeric variables can be performed with subscripted 
numeric variables. Any action which can be performed with string 
variables can be performed with subscripted string variables. 

Finally, notice that we used FOR, NEXT loops in the program. 
The index variable acted both as a counter and as the subscript. 



Input 

--•~lliiirial.1.1.~t=:LC□~ 
ci.i::::~ci:;ii:;i::::i::::i.~ 
L=- bilii16biQQCC~~ ~ 
~ bbb-b-li;t=-666-lii a;;;:;; ~­~"'==~-- QQI!:) 

CLS 
NEW 
AUTO 
10 FOR ROOM= 1 TO 5 
20 INPUT "Resident";APT$(ROOM) 
30 NEXT ROOM 
40 FOR A= 1 TO 5 
50 PRINT "Resident of";A;"is "; 

APT$(A) 
60 NEXT A 
70 END 
80 Fn-Break 
RUN 
Adams 
Brown 
Clark 
Drake 
Evans 

Output 

Ok 
AUTO 
10 FOR ROOM= 1 TO 5 
20 INPUT "Resident";APT$(ROOM) 
30 NEXT ROOM 
40 FOR A = 1 TO 5 
50 PRINT "Resident of";A;"is "; 

APT$(A) 
60 NEXT A 
70 END 
80 
Ok 
RUN 
Resident? Adams 
Resident? Brown 
Resident? Clark 
Resident? Drake 
Resident? Evans 
Resident of 1 is Adams 
Resident of 2 is Brown 
Resident of 3 is Clark 
Resident of 4 is Drake 
Resident of 5 is Evans 
Ok 

Tables and Arrays 329 

Memory 

10 FOR ROOM= 1 TO 5 
20 INPUT "Resident";APT$(ROOM) 
30 NEXT ROOM 
40 FOR A = 1 TO 5 
50 PRINT "Resident of";A;"is "; 

APT$(A) 
60 NEXT A 
70 END 

Arithmetic and Logic 

1 + 1 = 2 
4 + 1 = 5 
2 + 1 = 3 
5 + 1 = 6 

2+1=3 
5 + 1 = 6 
3 + 1 = 4 

3 + 1 = 4 
1 + 1 = 2 
4 + 1 = 5 

Variable Storage 

ROOM= 1 
ROOM= 2 
ROOM= 3 
ROOM= 4 
ROOM= 5 
ROOM= 6 
A=2 
A=4 
A=6 

APT$(1) = "Adams" 
APT$(2) = "Brown" 
APT$(3) = "Clark" 
APT$(4) = "Drake" 
APT$(5) = "Evans" 
A= 1 
A=3 
A=5 



328 IBM PCjr for Students 

Output 

Ok 
RUN 
Resident? Adams 
Resident? Brown 
Resident? Clark 
Resident? Drake 
Resident? Evans 
Resident of 1 is Adams 
Resident of 2 is Brown 
Resident of 3 is Clark 
Resident of 4 is Drake 
Resident of 5 is Evans 
Ok 

Arithmetic and Logic 

Variable Storage 

APT1$ 
APT2$ 
APT3$ 
APT4$ 
APT5$ 

" Adams" 
"Brown" 
"Clark" 
"Drake" 
"Evans" 

A separate INPUT statement was required to input each resi­
dent's name. This simple example required 5 INPUT statements , 5 
PRINT statements, and 5 variables. If the building had included 15 
apartments, the program would have needed 15 INPUT statements, 
15 PRINT statements, and 15 variable names. Imagine the length of 
the program if the apartment building had 50 residents! As the 
number of residents increases, the length of the program balloons. 

This program can be written using another option, subscripted 
variables. A subscripted variable is a variable which includes a sub­
script. A subscript is a number in parentheses which follows the 
variable name. C(7) is an example of a subscripted variable with 7 as 
its subscript. 

The use of subscripted variables helps make programming easier 
and programs shorter. The following program uses subscripted 
variables: 



Tables and Arrays 327 

Introduction 

In previous lessons, we introduced the concept of variables. 
Each variable was designed to hold a single data item. Some pro­
grams, however, require that hundreds or even thousands of variable 
names be used. 

The processing of large quantities of data can be simplified by 
using subscripted variables, arrays, and tables in a program. In this 
lesson we will discuss these methods as ways to handle data. 

Subscripted Variables and Arrays 

Suppose we want to input the names of the 5 residents of an 
apartment building and then receive a list of the apartment number 
and name of each resident. The following program illustrates the use 
of many individual variable names to accomplish this task: 

Input 

CLS 
RUN 
Adams 
Brown 
Clark 
Drake 
Evans 

Memory 

10 INPUT "Resident";APT1$ 
20 INPUT "Resident";APT2$ 
30 INPUT "Resident";APT3$ 
40 INPUT "Resident";APT4$ 
50 INPUT "Resident";APT5$ 
60 PRINT "Resident of 1 is ";APT1$ 
70 PRINT "Resident of 2 is ";APT2$ 
80 PRINT "Resident of 3 is ";APT3$ 
90 PRINT "Resident of 4 is ";APT4$ 

100 PRINT "Resident of 5 is ";APT5$ 
110 END 



log tan 

a E 

n a 

Tabes and 
Arrays 

lesson 16 

Lesson Goals 

Iii Learn what subscripted variables are and how to use them 

Im Learn what arrays and tables are and how to use them 

m Learn when and how to use DIM 

B Learn how to use OPTION BASE 

m Learn how to use DATA and READ 

m Learn how to use ERASE 

326 



324 IBM PCjr for Students 

b. Print out whether the month is in the winter ( 1-3), spring ( 4-6 ), 
summer (7-9), or fall (IO-I 2). 

c. Using GOSUB, check to see if the month is within the specified 
range of I to 12. If not, have the user reenter the data. 

d. Set up the program so that the user can input 5 months. Use 
either FOR, NEXT or WHILE, WEND. 



Conditional, Branching, and Looping Statements 323 

2. What will be the value of A when WHILE A< 10 has finished 
executing? 

A. 10 
B. 11 
C. 0 
D. I 
E. None of the above 

3. Which of the following symbols will allow the same line number to 
be assigned to two statements? 

A. 
B. 
C. 
D. 
E. None of the above 

4. Which of the following locations is the best place for a subroutine? 

A. The line after the GOS U B 
B. The line after the GOTO 
C. In an IF THEN ELSE as part of 

the ELSE 
D. After the END 
E. None of the above 

5. Which of the following commands will stop the execution of an 
infinite loop? 

A. Fn-Break 
B. Space Bar 
C. Enter 
D. Escape 
E. None of the above 

Computer Exercises 

I. Write a program to do the following: 

a. Allow the user to input a month, using the numbers I to 12. 
January should be represented by I and December by 12. 



322 IBM PCjr for Students 

esti 

True or False 

I. GOTO is used with subroutines. 

2. Fn-Break will stop an infinite loop. 

3. FOR loops can be nested . 

4. The value of the index variable of WHILE should not be altered 
inside the loop, but the value of the index variable of FOR should 
be. 

5. The ELSE part of an IF THEN executes only if the condition 
evaluates to true. 

Multiple Choice 

I. What will be the value of A when FOR A= 7 to 3 STEP - I has 
finished executing? 

A. - I 
B. 2 
C. 0 
D. 5 
E. None of the above 



Conditional, Branching, and Looping Statements 321 

In this example A is initially set to l as is B. A is then multiplied 
by B, and B is incremented to 2. A is again multiplied by B, and B is 
assigned the value of 3. Since 3 is outside of B's range, A is incre­
mented to 2, and B is set to l. A and B are again multiplied. B is 
incremented to 2. The loop repeats, and Bis incremented to 3. A is 
then incremented to 3, and B is reset to l. When this cycle is com­
pleted, both A and B will be outside of their specified ranges, so line 60 
is executed. 

Be careful to nest loops properly. Loops which overlap will cause 
a NEXT without FOR error. We will discuss the uses of nested FOR 
loops in the next lesson. 



320 IBM PCjr for Students 

In this example, the initial value of A is 0. If the index variable is 
not assigned a value prior to entering the loop, it is set by default to 0. 

Both WHILE, WEND and FOR, NEXT loops can be nested. 
Nested means that one loop is contained entirely within the other. 
Let's examine the following example using FOR, NEXT loops: 

Input 

CLS 
NEW 
AUTO 
10 FOR A = 1 TO 3 
20 FOR 8 = 1 TO 2 
30 PRINT A * 8; 
40 NEXT 8 
50 NEXT A 
60 END 
70 Fn-8reak 
RUN 

Output 

Ok 
NEW 
Ok 
AUTO 
10 FOR A = 1 TO 3 
20 FOR 8 = 1 TO 2 
30 PRINT A * 8; 
40 NEXT 8 
50 NEXT A 
60 END 
70 
Ok 
RUN 
1 2 2 4 3 6 

Ok 

Memory 

10 FOR A = 1 TO 3 
20 FOR 8 = 1 TO 2 
30 PRINT A * 8; 
40 NEXT 8 
50 NEXT A 
60 END 

Arithmetic and Logic 

1 * 1 = 1 
2 + 1 = 3 
1 + 1 = 2 
2 + 1 = 3 
3 * 2 = 6 

1 + 1 = 2 
1 + 1 = 2 
2 * 2 = 4 
3 * 1 = 3 
2+1=3 

Variable Storage 

A= 1 8 = 1 8=2 
A=2 8 = 1 8=2 
A=3 8 = 1 8=2 
A=4 

1 * 2 = 2 
2 ' 1 = 2 
2 + 1 = 3 
1 + 1 = 2 
3 + 1 = 4 

8=3 
8=3 
8=3 



Conditional, Branching, and Looping Statements 319 

WHILE, WEND 

r 

... 

The WHILE, WEND statements can also be used to control 
loops . The loop will execute as long as WHILE evaluates as 0. Notice 
the following example: 

Input Memory 
"'I 

i..i-'-'-lliii'-'-'-•'-i=:ccrii21 i::: : ::: ) ~~ !~ i=liii;;;;;:~ci:::ccc_-~ 
{;:;;;;;;;: i;;;;;:~i;:;;;g.;:;;i;;;;;:i:;:~ ~ 

[ : ~ ~ bbb-L=-lifbbQ:;;;;I. a;;;:;;: ii~ 
~ QQQ i;;i 

CLS 
NEW 10 WHILE A <= 10 
AUTO 20 PRINT A A 2; 
10 WHILE A <= 10 30A=A+1 
20 PRINT A A 2; 40 WEND 
30 A = A + 1 50 END 
40 WEND 
50 END 
60 Fn-Break 

\.. RUN . 
Output Arithmetic and Logic 

··:.:-:-:.:-: -;:;:{;\:::-· 0"2=0 0 + 1 = 1 1 A2 = 1 r ~ · 
1 + 1 = 2 2A2=4 2 + 1 = 3 Ok 3A2=9 3 + 1 = 4 4"2=16 NEW 4 + 1 = 5 5 A 2 = 25 5 + 1 = 6 Ok 6 A 2 = 36 6 + 1 = 7 7 A 2 = 49 AUTO 7 + 1 = 8 8" 2 = 64 8 + 1 = 9 10 WHILE A <= 10 
9 "2 = 81 9 + 1 = 10 10A2 = 100 20 PRINT A A 2; 

10+1=11 30A=A+1 
40 WEND 

Variable Storage 50 END 
60 
RUN A = 0 A= 1 A=2 A=3 
0 1 4 9 16 25 36 49 64 81 A=4 A=5 A=6 A=7 

100 A=8 A=9 A = 10 A= 11 

la 11 
... 



318 IBM PCjr for Students 

Input 

CLS 
10 FOR A = 1 TO 10 STEP 2 
LIST 
RUN 

Output 

Ok 
LIST 
10 FOR A = 1 TO 10 STEP 2 
20 PRINT A A 2; 
30 NEXT A 
40 END 
Ok 
RUN 
1 9 25 49 81 

❖-· 

Memory 

10 FOR A = 1 TO 10 STEP 2 
20 PRINT AA 2; 
30 NEXT A 
40END 

Arithmetic and Logic 

1A2=1 
3+2=5 
7 A2 = 49 
9 + 2 = 11 

1+2=3 
5A2 = 25 
7+2=9 

Variable Storage 

A=1 A=3 A=5 
A=7 A=9 A=11 

3A2=9 
5+2=7 
9A2 = 81 

The value for STEP need not necessarily be positive. A negative 
STEP value counts down. Using a STEP value ofO creates an infinite 
loop. 

Be careful not to change the value of the index variable within the 
loop, as an error may result. 



Conditional, Branching, and Looping Statements 317 

Output 

Ok 
NEW 
Ok 
AUTO 
10 FOR A = 1 TO 10 
20 PRINT A A2; 
30 NEXT A 
40 END 
50 
Ok 
RUN 
1 4 9 16 25 36 49 64 81 100 

Ok 

Arithmetic and Logic 
1A2=1 1 + 1 = 2 2A 2 = 4 
2+1=3 3A2=9 3 + 1 = 4 
4 A 2 = 16 4 + 1 = 5 5A 2 = 25 
5+1=6 6A2 = 36 6 + 1 = 7 
7A2 = 49 7+1=8 8A2=64 
8 + 1 = 9 9A 2 = 81 9 + 1 = 10 

10A 2 = 100 10+1=11 

Variable Storage 

A=1 A=2 
A=4 A=5 
A=7 A=8 

A= 3 
A= 6 
A= 9 

A=10 A=11 

Each time NEXT is executed, A is incremented by I, and control 
transfers to line IO. A is checked to see if it is within the specified 
range, in this case, I to IO. The loop executes ten times. During the 
last execution, one is added to IO when NEXT is executed. Control 
returns to line IO, but since 11 > IO, execution skips to the line after 
NEXT, line 40. It is important to note that A= l l when the loop is 
completed, not IO. 

A is known as the index variable. Specification of the index 
variable is not mandatory after NEXT, but deletion of it can cause 
confusion. 

In this example, the loop was incremented by I during each 
execution. Any number, integer or real, can be used. This number is 
specified with the word STEP. STEP designates the increment. The 
default value for STEP is 1. Let's examine the program after it has 
been modified to use Step 2. 



316 IBM PCjr for Students 

In this program, the colon was used to permit two statements on 
the same program line, line number 40. As shown in this example, the 
colon can be extremely useful when the desired result is to have two or 
more statements execute when a condition is true. The TH EN state­
ment is operative until the end of the line is reached or until ELSE is 
encountered. The maximum length for the line is still 255 characters. 

Both IF THEN 10 and IF THEN GOTO 10 send control to line 
10. Including the GOTO statement can limit confusion. 

FOR,NEXT 

,.. 

Earlier in this lesson we used GOTO to repeat a portion of a 
program. The difficulty with using GOTO was that we could not tell it 
when to stop except with Fn-Break. No lines after GOTO were 
executed. 

FOR, NEXT can be used to set up a portion of the program to 
repeat a finite number of times. This process of repetition is known as 
looping. The use of FOR, NEXT is illustrated in the following 
program: 

Input Memory 
"I 

i.i-i.i-i.lliii.---~~ ... i::: ]8~~§ i;::;;;;-i;;;;:~i;;;;:i;;;;ii.=i;;;;:i;;;;:~-a!J 
i;;;: Q~QQ__=:Ji;;;;i;;;;:~ • [ : ~ ~ 8 t:;;;;; i;;;;:i;;;;:i;;;;:i;;;;:~i.;;;:;i;;;;:i;;;;:liii a;;;;;•• 

l=I ·QQc;;;)liiijl 

CLS 10 FOR A= 1 TO 10 
NEW 20 PRINT A A 2; 
AUTO 30 NEXT A 
10 FOR A = 1 TO 10 40 END 
20 PRINT A A 2; 
30 NEXT A 
40 END 
50 Fn-Break 
RUN 



Conditional, Branching, and Looping Statements 315 

Conditional Statements with Branching 

Branching can be used with conditional statements. Let's ex­
amine an example: 

Input 

CLS 
LIST 
RUN 
40 
36 

Output 

Ok 
LIST 
10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 

LOSSES 
30 PERCENT = WINS/ (WINS + 

LOSSES) 
40 IF PERCENT> .5 THEN PRINT 

"The team has a winning record.": 
GOTO 60 

50 IF PERCENT = .5 THEN PRINT 
"The team has as many wins as 
losses." ELSE PRINT "The team 
has a losing record." 

60 END 
Ok 
RUN 
Number of wins? 40 
Number of losses? 36 
The team has a winning record. 
Ok 

Memory 

10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 

LOSSES 
30 PERCENT = WINS / (WINS + 

LOSSES) 
40 IF PERCENT > .5 THEN PRINT 

"The team has a winning record.": 
GOTO 60 

50 IF PERCENT = .5 THEN PRINT 
"The team has as many wins as 
losses." ELSE PRINT "The team 
has a losing record." 

60 END 

Arithmetic and Logic 

40 / 76 = .5263158 
.5263158 > .5 = -1 

Variable Storage 

WINS =40 
LOSSES= 36 
PERCENT= .5263158 



314 IBM PCjr for Students 

Output Arithmetic and Logic 

Ok 109 > 100 = -1 
NEW 
Ok 
AUTO 
10 INPUT "Enter name.grade re-

ceived";NAM$,GRADE 
20 GOSUB 1000 Variable Storage 
30 PRINT "Name is: ";NAM$ 
40 PRINT "Grade is:";GRADE 
50 END NAM$ = "Hilary" 
60 GRADE = 109 
Ok 
1000 REM* CHECK GRADE 
1010 IF GRADE> 100 THEN PRINT 

"Not possible!" 
1020 RETURN 
RUN 
Enter name.grade received? Hilary, 

109 
Not possible! 
Name is: Hilary 
Grade is: 109 
Ok 

When GOS U B is encountered in line 20, the statement is exe­
cuted and control shifts to line 1000. Execution continues sequen­
tially until the RETURN statement is encountered in line 1020. 
RETURN causes execution to go to the line after the GOS U B, line 30. 
Execution is completed at line 50. If END is omitted, the subroutine 
executes again. When line 1020 executes this time, an error message, 
"RETURN without GOSUB in line 1020," appears. 

Subroutines can make a program more efficient, and program 
writing is simplified by breaking a complex program into shorter 
segments. Subroutines are also easier to debug, because they are 
shorter. 



Conditional, Branching, and Looping Statements 313 

This program branches until Fn-Break is entered. Fn-Break 
interrupts execution. We will discuss other ways to control branching 
later in this lesson. 

GOSUB, RETURN 

A subroutine is a small program within a larger program. Sub­
routines allow you to use the same segment of a program over without 
having to reenter the individual program lines. There is no limit to the 
number of times a subroutine can be called. 

GOSUB is the command which calls a subroutine. GOSUB is 
followed by the line number of the first line of the subroutine. Once 
execution has shifted to the subroutine, it continues normally until 
RETURN is encountered. RETURN shifts execution back to the 
main part of the program, specifically to the line after the GOSUB. 

It is a good programming practice to identify each subroutine 
with a REM statement. Using REM makes it clear to others what the 
subroutine accomplishes. Another good idea is to group subroutines 
at the end of the program, after the END. This practice can reduce the 
chances for error. 

Input 

NEW 
AUTO 
10 INPUT "Enter name.grade re-

ceived"; NAM$,GRADE 
20 GOSUB 1000 
30 PRINT "Name is: ";NAM$ 
40 PRINT "Grade is:";GRADE 
50 END 
60 Fn-Break 
1000 REM* CHECK GRADE 
1010 IF GRADE> 100 THEN PRINT 

"Not possible!" 
1020 RETURN 
RUN 
Hilary, 109 

Memory 

10 INPUT "Enter name.grade re-
ceived"; NAM$,GRADE 

20 GOSUB 1000 
30 PRINT "Name is";NAM$ 
40 PRINT "Grade is:";GRADE 
50 END 
1000 REM* CHECK GRADE 
1010 IFGRADE > 100THENPRINT 

"Not possible!" 
1020 RETURN 



312 IBM PCjr for Students 

GOTO 

GOTO is a statement which changes the order of execution. 
GOTO is followed by a line number. After GOTO, the next statement 
executed is that line with the specified line number. Another word for 
this process is branching. The following example illustrates the use of 
GOTO: 

Input 

CLS 
50 GOTO 10 
LIST 
RUN 
33 
32 
33 
34 
Fn-Break 

Output 
··•❖ 

k 
LIST 
10 INPUT "Number of wins";WINS 
20 INPUT .. Number of losses .. ; 

LOSSES 
30 PERCENT = WINS / (WINS + 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
wins as losses ... ELSE PRINT 
.. The team has a losing record ... 

50 GOTO 10 
60 END 
Ok 
RUN 
Number of wins? 33 
Number of losses? 32 
The team has at least as many wins 
as losses. 
Number of wins? 33 
Number of losses? 34 
The team has a losing record. 
Number of wins? 
Break in 10 
Ok 

Memory 

10 INPUT .. Number of wins .. ;WINS 
20 INPUT "Number of losses .. ; 

LOSSES 
30 PERCENT = WINS / (WINS + 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
wins as losses." ELSE PRINT 
"The team has a losing record ... 

50 GOTO 10 
60 END 

Arithmetic and Logic 

33 / 65 = .5076924 
.5076924 >= .5 = -1 
33 / 67 = .4925373 
.4925373 >= .5 = 0 

Variable Storage 

WINS= 33 LOSSES= 32 
PERCENT = .5076924 
WINS= 33 LOSSES= 34 
PERCENT = .4925373 



Conditional, Branching, and Looping Statements 311 

Input 

CLS 
40 IF PERCENT >= .5 THEN PRINT 

"The team has at least as many 
wins as losses." ELSE PRINT 
"The team has a losing record." 

50 
LIST 
RUN 
35 
40 

Output 

Ok 
LIST 
10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 

LOSSES 
30 PERCENT = WINS / (WINS + 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
wins as losses." ELSE PRINT 
"The team has a losing record." 

60 END 
Ok 
RUN 
Number of wins? 35 
Number of losses? 40 
The team has a losing record. 

Memory 

10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 
LOSSES 
30 PERCENT = WINS/(WINS + 
LOSSES) 
40 IF PERCENT> .5 THEN PRINT 
"The team has at least as many 
wins as losses." ELSE PRINT 
"The team has a losing record." 
60 END 

Arithmetic and Logic 

35 / 75 = .4666667 
.4666667 >= .5 = 0 

Variable Storage 

WINS =35 
LOSSES =40 
PERCENT = .4666667 

When line 40 was executed, the comparison returned a value of 
false. The statements following THEN were ignored. The statements 
following ELSE were executed. If the comparison had been true, the 
THEN commands would have been executed, and the ELSE com­
mands ignored. Larry uses IF THEN ELSE logic when he decides 
that if it is raining, he will take his umbrella, otherwise he will take his 
sunglasses. 



31 0 IBM PCjr for Students 

Output 

Ok 
NEW 
Ok 
AUTO 

_:-· 

10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses": 

LOSSES 
30 PERCENT = WINS / (WINS + 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
as losses." 

50 IF PERCENT< .5 THEN PRINT 
"The team has a losing record." 

60 END 
70 
Ok 
RUN 
Number of wins? 35 
Number of losses? 40 
The team has a losing record. 
Ok 

Arithmetic and Logic 

35 / 75 = .4666667 
.4666667 >= .5 = 0 
.4666667 < .5 = -1 

Variable Storage 

WINS =35 
LOSSES= 40 
PERCENT = .4666667 

When line 40 was executed, the comparison was evaluated. Since 
the comparison is false, the rest of line 40 was ignored. When line 50 
was executed, its comparison returned a value of true, and the rest of 
that line was executed. 

This program can be condensed by using a modification of IF 
THEN, IF THEN ELSE. Let's examine this modification: 



Conditional, Branching, and Looping Statements 309 

Introduction 

In the past lessons, programs have been executed one line after 
the other, or sequentially. In this lesson we will discuss how to alter 
this pattern. We will look at how to make the program execute a 
statement only under certain conditions, how to make the program 
jump to another portion of the program, and how to make sections 
execute repeatedly. 

IF THEN 

IF THEN sets up a check for a condition. If the condition is true, 
the commands following TH EN are executed. If the condition is false, 
those commands are ignored. Larry uses IF THEN logic when he says 
that "if it is raining tomorrow, I will take my umbrella." The following 
program illustrates the use of IF THEN: 

Input 

CLS 
NEW 
AUTO 
10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 

LOSSES 
30 PERCENT = WINS/ (WINS + 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
wins as losses." 

50 IF PERCENT< .5 THEN PRINT 
"The team has a losing record." 

60END 
70 Fn-Break 
RUN 
35 
40 

Memory 

10 INPUT "Number of wins";WINS 
20 INPUT "Number of losses"; 

LOSSES 
30 PERCENT= WINS/ (WINS+ 

LOSSES) 
40 IF PERCENT>= .5 THEN PRINT 

"The team has at least as many 
wins as losses." 

50 IF PERCENT< .5 THEN PRINT 
"The team has a losing record." 

60END 



IF THEN ... 
GOTO ... 
GOSUB ... 
FOR, NEXT ... 
WHILE, WEND ... 

Conditiona I, 
Branching, and 
Lmping Statements 

lesson 15 

Lesson Goals 

□ Learn how to use IF TH EN to control execution of a program 

El Learn how to use GOTO to alter the flow of execution 

El Learn how to use subroutines and GOSUB 

El Learn how to use conditional statements with branching 

El Learn how to use FOR, NEXT statements for looping 

[ill Learn how to use WHILE, WEND statements for looping 

308 



Inputting Data 307 

2. What is the maximum number of characters which can be input 
using LINE INPUT? 

A. 255 
B. 32767 
C. It depends on what number is 

specified in the function call. 
D. IO 
E. None of the above 

3. Which of the following symbols acts as a delimiter when INPUT is 
used with 2 or more variables? 

A. 
B. , 
C. 

. D. INPUT will not accept more 
than one variable. 

E. None of the above 

4. Which of the following is a function? 

A. INPUT 
B. INPUT$ 
C. LINE INPUT 
D. All of the above 
E. None of the above 

Computer Exercises 

I. Rewrite the program you wrote for Computer Exercise I on page 
128 to do the following: 

a. Input five student's names, letter grades, and percentages using 
INPUT. 

b. Allow the teacher to write a memo to him or herself in the 
program by using LINE INPUT. 

c. Input a ten-character teacher's name with INPUT$. 

Be sure to use prompts and to print out all data on the screen after 
it has been input. 



306 IBM PCjr for Students 

esti 

True or False 

I. LINE INPUT works with numerics. 

2. INPUT can be used to specify one or more entries. 

3. A prompt is a message which tells the user what information to 

enter. 

4. INPUT$ accepts any character, except Fn-Break. 

5. LINE INPUT does not accept an empty string. 

Multiple Choice 

I. Which of the following characters appears on the screen when 
INPUT$ is used without a prompt? 

A. ? 
B. Flashing cursor 
C. Enter your name. 
D. Steady cursor 
E. None of the above 



Output 

Ok 
NEW 
Ok 
AUTO 
10 LINE INPUT "Enter your name: "; 

NAM$ 
20 PRINT "Your name is ";NAM$;"." 
30 END 
40 
Ok 
RUN 
Enter your name: Bell, Chris 
Your name is Bell, Chris. 
Ok 

Inputting Data 305 

Arithmetic and Logic 

Variable Storage 

NAM$ = "Bell, Chris" 

LINE INPUT and INPUT both assign an empty string to their 
variable if the Enter key is pressed prior to the inputting of any data. 



304 IBM PCjr for Students 

Notice that the character that had been input did not appear on 
the screen until line 30 was executed. The Enter key was not pressed 
to signify the end of the data. The computer instead waited until l 0 
characters had been entered and then resumed execution. 

It is a good idea to include a prompt such as the message in line 
l 0. Otherwise, the person using the program may not realize that data 
needs to be entered. 

LINE INPUT 

LINE INPUT allows a line of data to be input and assigned to a 
string variable. The number of characters does not have to be speci­
fied prior to execution, and up to 255 characters will be accepted. 
LINE INPUT accepts any character except Fn-Break. Unlike 
INPUT$, LINE INPUT prints a flashing cursor to indicate that the 
user should enter data. A prompt message may also be used. During 
execution, the program pauses for the input and resumes execution 
after the Enter Key has been pressed. Let's examine an illustration: 

Input 

CLS 
NEW 
AUTO 
10 LINE INPUT "Enter your name: "; 

NAM$ 
20 PRINT "Your name is ";NAM$;"." 
30 END 
40 Fn-Break 
RUN 
Bell, Chris 

Memory 

i::: JOB OB 
r: :J 8a8a 

10 LINE INPUT "Enter your name: "; 
NAM$ 

20 PRINT "Your name is ";NAM$;"." 
30 END 



Inputting Data 303 

where a$ is a string variable and b is the number of characters to be 
accepted. The maximum value allowed for bis 255. Any character, 
including control characters, will be accepted. The only exception is 
Fn-Break. INPUT$ is often used when characters not accepted by 
INPUT, such as commas or quotation marks, are to be input. 
INPUT$ will only assign the input to string variables. The following 
program illustrates the use of INPUT$: 

Input 

CLS 
NEW 
AUTO 
10 PRINT "Enter your name" 
20 NAM$ = INPUT$(10) 
30 PRINT "Your name is ";NAM$;"." 
40 END 
50 Fn-Break 
RUN 
Chris Bell 

Output 

Ok 
NEW 
Ok 
AUTO 
10 PRINT "Enter your name" 
20 NAM$ = INPUT$(10) 
30 PRINT "Your name is ";NAM$;"." 
40 END 
50 
Ok 
RUN 
Enter your name. 
Your name is Chris Bell. 
Ok 

Memory 

c:: : 
c::::: 
10 PRINT "Enter your name" 
20 NAM$ = INPUT$(10) 

130 PRINT "Your name is ";NAM$;"." 
'.40 END 

Arithmetic and Logic 

Variable Storage 

NAM$= "Chris Bell" 



302 IBM PCjr for Students 

Output 

Ok 
NEW 
Ok 
AUTO 
10 INPUT "Enter your name.age"; 
NAM$,AGE 
20 PRINT "Your name is ";NAM$;" ." 
30 PRINT "You are";AGE;"years old." 
40 END 
50 
Ok 
RUN 
Enter your name, age? Chris, 17 _j 
Your name is Chris. 
You are 17 years old. 
Ok 

Arithmetic and Logic 

Variable Storage 

NAM$= "Chris" 
AGE= 17 

When the name and age were entered during execution of this 
program, the entries were separated by a comma. No blank spaces 
were entered . During execution, that comma is considered the delim­
iter of the separate entries. 

Up to 255 characters will be accepted for a string. If the Enter 
key is pressed prior to the entry of any other characters, an empty 
string will be assigned to a string variable or Oto a numeric variable. 
Finally, if the inputted string begins with a blank space or includes 
commas, it must be enclosed in quotes. 

INPUT$ 

INPUT$ is a function which specifies the number of characters 
to be input and allows that number of characters to be entered . Its 
configuration is: 

a$= INPUT$(b) 



Inputting Data 301 

Introduction 

In lesson 13 we discussed how to output data. The sample 
programs had all of the information needed for execution within the 
program. Sometimes, though, it is desirable for the person using the 
program to give the program information during execution. In this 
lesson we will discuss ways to accomplish this goal. 

INPUT 

When INPUT is used, a? is displayed and execution pauses until 
the person using the program types in a response and presses the 
Enter key. That entry is then assigned to the specified variable as 
program execution resumes where it stopped. INPUT can be used to 
specify one or more entries of one or more variable types. Because of 
this possibility, it is a good idea to prompt the user. A prompt is a 
message which tells the person using the program what information 
to enter. A typical prompt is "Type END to end program." If INPUT 
is used for more than one entry in the same line, the values will be 
assigned to the variables in the order listed. Let's examine an 
example: 

Input 

CLS 
NEW 
AUTO 
10 INPUT "Enter your name.age"; 
NAM$,AGE 
20 PRINT "Your name is ";NAM$;"." 
30 PRINT "You are";AGE;"years old." 
40 END 
50 Fn-Break 
RUN 
Chris,17 .J 

Memory 

10 INPUT "Enter your name.age ";i 
NAM$,AGE 
20 PRINT "Your name is ";NAM$;"."1 
30 PRINT "You are";AGE;"yearsold."i 
40 END ; 



INPUT .. . 
INPUT$ .. . 
LINE INPUT 

nputti ng Data 
lesson 14 

Lesson Goals 

□ Learn how to input data using INPUT 

□ Learn how to use the INPUT$function 

□ Learn how to use LINE INPUT with and without prompts 

300 



298 IBM PCjr for Students 

2. Assuming the screen width is set to 40, which of the following 
PRINT commands will not cause the output to be placed on one 
line? 

A. PRINT "Ann" "Bob" "Chris" 
8. PRINT "Ann";"Bob";"Chris" 
C. PRINT "Ann","Bob","Chris" 
D. PRINT "Ann""Bob""Chris" 
E. None of the above 

3. What would be the output of the following line: 
PRINT USING "&";500;-9353;1 

A. It wouldn't work 
8. 500-9353 l 
C. %500%-93531 
D. 50093531 
E. None of the above 

4. What does % mean? 
A. It saves a place for a digit. 
8. It saves a place for a character. 
C. When used in numeric formatting, 

% indicates percentage. 
D. It means the number which was sent 

to the field was too long for the 
field. 

E. None of the above 

Computer Exercises 

1. Revise the program you wrote for Computer Exercise 1 on page 128 
to do the following: 

a. Use the PRINT statement to print the output. Use a separate 
string for the name, percentage, and grade of each student. The 
data for each student should be input on the same line. 

b. Use PRINT USING to print the data. Treat the names and 
letter grades as strings, and the percentages as numerics. 

Make sure the data is still centered under its proper heading. 



Outputting Data 297 

estio 

True or False 

I. The# is used to save a place for a character in string formatting. 

2. When** is used, in order for the$ to float,$$ must be specified. 

3. The & has no special meaning in numeric formatting. 

4. If a string is shorter than the field allots, it will be left-justified. 

5. SPC can be used with PRINT USING. 

Multiple Choice 

I. Which of the following formatting characters is used when format-
ting strings? 

A. + 

B. 

C. """" 
D. 
E. None of the above 



296 IBM PCjr for Students 

An important point to note is that all of these formatting func­
tions can be called with variables. It is not necessary to use them only 
with constants. 



Outputting Data 295 

output position is fixed. TAB( 15) results in data being printed in the 
fifteenth column either on that line, if the space is available, or on the 
next. SPC( 15) results in data appearing 15 spaces after the last item. 

SPACE$ 

,, 

SPACE$ returns a string consisting of the number of spaces 
given to it when it is called. SPACE$ can be used with PRINT 
USING . This is illustrated in the following example: 

Input Memory " 

---i---i.i.i.i.i.i::iec'-J 
i::: : :] ~~!~ c~c~i.=:o:;;i:;i:;-~ 

Cbi~biQ;:JCC~ ~ I: J 6= Cbb-b~bld;;;;il-~ ii'~ 
~ QQ!b -

CLS 
NEW 10 A$ = "P" 
10 A$ = "P" 20 B$ = "ro" 
20 B$ = "ro" 30 C$ = "gramming is fun." 
30 C$ = "gram ming is fun. " 40 0$ = "&" 
40 0$ = "&" 50 PRINT USING 0$; SPACE$(5); 
50 PRINT USING 0$; SPACE$(5); A$; B$; C$ 
A$; B$; C$ 60 END 
60 END 

'-RUN ~ 

Output Arithmetic and Logic 

II 

I I 
Ok 
NEW 
Ok 
10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." Variable Storage 40 0$ = "&" 
50 PRINT USING 0$; SPACE$(5); 
A$; B$; C$ A$ = "P" 
60 END B$ = "ro" 
RUN C$ = "gramming is fun" 

Programming is fun 0$ = "&" 
Ok 

,S- ___,j 
t::t::: ... _ 

~ 



294 IBM PCjr for Students 

Input 

CLS 
10 PRINT "Programming" SPC(5) "is" 

SPC(100) "fun. " 
LIST 
RUN 

Output 

Ok 
LIST 
10 PRINT "Programming" SPC(5) "is" 

SPC(100) "fun." 
20 END 
Ok 
RUN 
Programming 
fun. 
Ok 

is 

Memory 

10 PRINT "Programming" SPC(5) "is" 
SPC(100) "fun." 

20 END 

Arithmetic and Logic 

100 MOD 40 = 20 

Variable Storage 

As with TAB, if the value given to SPC is larger than the output 
device width, the number of spaces inserted will equal the given value 
MOD the output width. If necessary, output will be printed on the 
next line in column O in order to obtain the proper spacing. SPC 
cannot be used with PRINT USING. 

Since the position in which the output will be printed with SPC 
is dependent upon the length of previous strings, TAB is the more 
frequent choice when tables need to be set up. This is because the 



Outputting Data 293 

Output Arithmetic and Logic 

Ok 
NEW 
Ok 
AUTO 

100 MOD 40 = 20 

10 PRINT "Programming" TAB(15) "is" ..._ ___________ __, 

TAB(100) "fun." Variable Storage 
20 END 
30 
Ok 
RUN 
Programming is fun. 
Ok 

In this situation, the column where printing will actually begin 

must be determined by calculating the TAB value MOD the width of 
the output device. In our example, the TAB value is 100, and the 

output device width is 40. The column where printing will begin can 
be calculated as 100 MOD 40, or the 20th column. 

Two more points should be noted regarding TAB. First, TAB 
can be used with PRINT, but not with PRINT USING. Secondly, if 
the column being TAB'ed to is already occupied, the output will be 
generated at the same column on the next available line. 

SPC 

SPC sends a given number of spaces to the output device. The 
use of SPC is demonstrated in the following program: 



292 IBM PCjr for Students 

Notice that the comma, which is a character with special mean­
ing for numeric formatting, has no special meaning when used with 
strings. In other words, characters with special meaning for numeric 
formatting are literals when used for character formatting. 

A formatting character can be treated as a literal by preceding 
the character with a_ When the line is executed, that character will 
be considered a literal. The underline will not appear. 

Formatting Functions: TAB, SPC, SPACE$ 

PRINT USING is not the only option available in Microsoft 
BASIC for formatting output. Output can also be formatted by using 
TAB, SPC, and SPACE$. 

TAB 

TAB sets the column in which the printing of an output field will 
begin. The range for calling the function is O to 255. The following 
example demonstrates the use of TAB: 

Input 

CLS 
NEW 
AUTO 
10 PRINT "Programming" TAB(15) "is" 
TAB(100) "fun." 
20 END 
30 Fn-Break 
RUN .. 

Memory 

10 PRINT "Programming" TAB(15) "is" 
TAB(100) "fun." 
20 END 

..., 



Outputting Data 291 

! is most commonly used in creating tables , but ! can be helpful 
whenever a one character field needs to be output. 

Literals 

Literals are characters which have no special meaning as format­
ting characters (ex. 7, A, Z, @). When a literal character is included in 
a format string, it will be included in the output field exactly as it is 

specified in the format string. 

Input 

'-'-~~11.i.i.i.i.i.c=cc1..1 
C~C~C~CC~~ 
be- b~CQQCC~Q lii1 
6' bbbb-li;;'bb~ii a;:;;;;: ii Ii& 

~----QQ!b: 

CLS 
10 A$ ="p" 
40 D$ = " With the IBM PCjr, &&&" 
LIST 
RUN 

Output 

Ok 
LIST 
10 A$ = "p" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 D$ = "With the IBM PCjr, &&&" 
50 PRINT USING D$;A$;B$;C$ 
60 END 
Ok 
RUN 
With the IBM PCjr, programming is fun. 
Ok 

Memory 

10 A$ = "p" 
20 B$ = "ro" 
30 C$ = "gramming is fun ." 
40 D$ = "With the IBM PCjr, &&&" 
50 PRINT USING D$;A$;B$;C$ 
60 END 

Arithmetic and Logic 

Variable Storage 

A$= "p" 
B$ = " ro" 
C$ = "gramming is fun." 
D$ = "With the IBM PCjr, $$$" 



290 IBM PCjr for Students 

careful to include enough space so that important information is not 

omitted. 

String Formatting Characters -- Exclamation Point(!) 

The exclamation point creates a fixed length string field of one 
character. When using the backslash character to define a fixed 
length field, the smallest field length possible is two characters. The 
following program illustrates the use of!: 

Input 

!.1.1.~~-!.i.••C!Cic;;l~ 
6=1ii6~CQ:::CC-~i;;,n 
6= 611;.-bbb,,b,bb~Q Iii' 
6= bbbb-iifbb-66-I;. a;;;;;;: \ii~ 

~----r.:;;;;Qll;; 

CLS 
40 0$ ="!" 
LIST 
RUN 

Output 

Ok 
LIST 
10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 0$ = "!" 
50 PRINT USING O$;A$;B$;C$ 
60 END 
Ok 
RUN 
Prg 
Ok 

Memory 

10A$="P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 0$ = "!" 
50 PRINT USING D$;A$;B$;C$ 
60 END 

Arithmetic and Logic 

Variable Storage 

A$= "P" 
B$ = "ro" 
C$ = "gramming is fun." 
0$ = "!" 



Input 

--1.~l!;i.i;;l.\ij~CLC:'.IQ~ 
CI.C_.'CCCCCC~~ 
I=- 61;.(=bQGbb~Q ~ 
I=- Cbb-61.ibbbblif ~\ii. 

~..,,,,,,~-- i:;;;;:Qlb' w 
CLS 
40 0$ ="\ \ .. 
LIST 
RUN 

Output 

Ok 
LIST 
10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 0$ = "\ \" 
50 PRINT USING D$;A$;B$;C$ 
60 END 
Ok 
RUN 
P ro gram 
Ok 

Outputting Data 289 

Memory 

I ::: ::: j ~B ~B c: ::::: J ~B 88 
10 A$= "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
400$="\ , .. 
50 PRINT USING D$;A$;B$;C$ 
60 END 

Arithmetic and Logic 

Variable Storage 

A$= "P" 
B$ = "ro" 
C$ = "gramming is fun." 
0$ = "\ \" 

If the string is too short for the field, as is the case with A$ and 
B$, the string is left-justified, and the remaining spaces are filled with 
blanks. If the string is too long, as is C$, the extra characters will 
simply be omitted. 

The fixed length string field is most commonly used in making 
tables, such as the National League Eastern Division table which we 
created in lesson 6, because it is easier to line up columns when every 
field is the same length. When using the fixed length string field, be 



288 IBM PCjr for Students 

Output 

Ok 
AUTO 
10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 D$ = "&" 
50 PRINT USING D$;A$;B$;C$ 
60 END 
70 
Ok 
RUN 
Programming is fun. 
Ok 

Arithmetic and Logic 

Variable Storage 

A$= "P" 
B$ = "ro" 
C$ = "gramming is fun." 
D$ = "&" 

String Formatting Characters -- Backslash ( \) 

Two backslashes (\ \) define a fixed length string field. The 
number of characters which can be held in each field is dependent 
upon the number of spaces the backslashes enclose plus two. The 
extra two characters are reserved by the two backslash characters. 
The backslash is the same character as the integer division character. 
The use of the backslash as a formatting character is shown in the 
following example: 



Outputting Data 287 

negative sign would have occupied the spot allotted for the whole 
number part of the exponent. 

In addition, the formatting string was reordered so that the 
desired number of places could be obtained, both before and after the 
decimal point. The numbers were then rounded to fit the field. 

String Formatting Characters -- Ampersand (&) 

In string formatting, the ampersand(&) is used to set a variable 
length string field. A variable length string field is a field whose length 
is dependent on the length of the expression which is being output. 
One & in a string format will output any size string. This is illustrated 
by the following example: 

Input 

i.i.lii~-------i=a=ce i=i.i:;;:~i:;;:g;;i:;;:i:;;:i.i.-in 
6=,•i:;;:~gggi:;;:i:;;:~~i. 

i;;;;;;;; i:;;:i:;;:i:;;:i:;;i.jii:;;:i:;;:g;;;;;lif a;;;;;; ~ & 
~----ggc;;; 

CLS 
NEW 
AUTO 
10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 0$ = "&" 
50 PRINT USING D$;A$;B$;C$ 
60 END 
70 Fn-Break 
RUN 

Memory 

10 A$ = "P" 
20 B$ = "ro" 
30 C$ = "gramming is fun." 
40 0$ = "&" 
50 PRINT USING D$;A$;B$;C$ 
60 END 



286 IBM PCjr for Students 

Numeric Formatting Characters --Exponential Notation(/\/\/\/\) 

The use of 4 carets after the decimal point in the formatting 

string causes the number to be written in exponential notation . Let's 
examine an example: 

Input 

CLS 
40 D$ = "##.## /\AAA " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A = 5 
20 B = -76 
30 C = 4893 
40 D$ = "##.##AA/\/\" 
50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 

5.00E+00 -7.60E+01 4.89E+03 
Ok 

Memory 

10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "##.## /\/\/\A " 

50 PRINT USING D$;A;B;C 
60 END 

Arithmetic and Logic 

Variable Storage 

A = 5 
B = -76 
C = 4893 
D$ = "##.##AAA/\ " 

A number of changes occurred in this example. An additional# 
was placed prior to the decimal point so that the negative sign would 
have room to appear. If that additional # had been omitted, the 



Input 

CLS 
40 D$ = "**$#### " 
LIST 
RUN 

Output 

Ok 
LIST 
10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "**$#### " 
50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 
*****$5 ***-$76 **$4893 
Ok 

Memory 

10 A= 5 
20B=-76 
30 C = 4893 

Outputting Data 285 

40 D$ = "**$#### " 
50 PRINT USING D$;A;B;C 
60END 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
D$ = "**$#### " 

Even though there is now only one$ in the formatting string, the 
dollar sign still floats next to the number. If the$ is placed before the 
**'s in the formatting string, the $ won't float. The number of 
available spaces in each output field has again increased, since each* 
reserves a space. 



284 IBM PCjr for Students 

Output 

Ok 
LIST 
10 A = 5 
20 B = - 76 
30 C = 4893 
40 0$ = "$$####, " 
50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 

$5 -$76 $4,893 
Ok 

Arithmetic and Logic 

Variable Storage 

A = 5 

B = -76 
C = 4893 
0$ = "$$####, " 

Notice that the dollar sign appears after the negative sign in the 

output. Also , the additional$ allots one more space in the field . If this 

space is not needed , it will be filled with a blank space . 

Numeric Formatting Characters -- Asterisk (*) 

If two asterisks (**) are placed in the leftmost positions of the 
formatting string, the blank spaces will be replaced by *'s . Thi s 

option is used most often when checks are being written, because it 

increases the difficulty of altering the amounts . This point is demon­
strated by the following example: 



,. 

Output 

Ok 
LIST 
10 A= 5 
20 B = -76 
30 C = 4893 
40 D$ = "$####, " 
50 PRINT USING D$;A;B;C 
60 END 
Ok 
RUN 
$ 5 $ -76 $4,893 
Ok 

Outputting Data 283 

Arithmetic and Logic 

Variable Storage 

A=5 
B = -76 
C = 4893 
D$ = "$####, " 

When the single $ was used, the $ was printed in the leftmost 
position of each field. The following example demonstrates the use of 
two dollar signs: 

Input Memory 
~ 

1.1.~(l.liiliii.1.\iii;;CCl=J c: l8~8~ i.;;;;;;:-i;;;;:~i;;;;:~i;;;;:i:;--d] 
6=- i;;;;:i.ii:;gggi:;i:;~ ~ 

I :: : J ~ 8 ~ i;;;;:i;;;;:i;;;;:i:;~i;;;;:b'.~lii a;;;;;;~-
la QQlb. liiit 

CLS 10 A= 5 
40 D$ = "$$####, ., 20 B = -76 
LIST 30 C = 4893 
RUN 40 D$ = "$$####, " 

50 PRINT USING D$;A;B;C 
60END 

'" ~ 



1 

2 

Tables and Arrays 333 

I Adams Bell Clark Drake Evans I 
1 2 3 4 5 

I Fletcher Grant Harris Jacobs Keller I 
1 2 3 4 5 

Despite the added dimension, each subscripted variable is still 
unique. It is not necessary to limit our table to just 5 rooms or just 2 
floors. The limits to table size depend only upon the space available in 
memory. 

Notice that in this example we used nested FOR, NEXT loops. 
FOR, NEXT loops are often used when working with subscripted 
variables. In this program, the outer FOR loop signified the first 
dimension, the floor. The floor can also be referred to as the row, 
meaning the horizontal dimension. The row is the first number in the 
subscript. All of the residents of the first floor are in row l, and all of 
the residents of the second floor are in row 2. 

Both Adams and Fletcher have the same room number, l. The 
room number is also known as the column. Columns, in tables or in 
architecture, run vertically. Adams and Fletcher are in the first 
column. Drake and Jacobs are in the fourth column. 

DIM 

When the previous program was executed, the maximum value 
of each dimension was set to l Oby default. Since the starting value, or 
base, of each dimension is assumed to be 0, an array can hold eleven 
elements. A table can hold 11 x 11, or 121, elements. 

If 16 elements are needed in the array, we can tell the computer to 
set aside 16 spaces by using BASIC's DIM statement. DIM is short 
for dimension. DIM is used to define an array's dimensions. 



334 IBM PCjr for Students 

Input 

CLS 
NEW 
AUTO 
10 DIM A(15) 
20 FOR LOOP1 = 0 TO 15 
30 A(LOOP1) = LOOP1 + 1 
40 NEXT LOOP1 
50 FOR LOOP2 = 0 TO 15 
60 PRINT A(LOOP2); 
70 NEXT LOOP2 
60END 
90 Fn-Break 
RUN 

Output 

Ok 
NEW 
Ok 
AUTO 
10 DIM A(15) 
20 FOR LOOP1 = 0 TO 15 
30 A(LOOP1) = LOOP1 + 1 
40 NEXT LOOP1 
50 FOR LOOP2 = 0 TO 15 
60 PRINT A(LOOP2); 
70 NEXT LOOP2 
80END 
90 
Ok 
RUN 
1 2 3 4 5 6 7 10 

11 12 13 14 15 
Ok 

Memory 

10 DIM A(15) 
20 FOR LOOP1 = 0 TO 15 
30 A(LOOP1) = LOOP1 + 1 
40 NEXT LOOP1 
50 FOR LOOP2 = 0 TO 15 
60 PRINT A(LOOP2); 
70 NEXT LOOP2 
80END 

Arithmetic and Logic 

0+1=1 0+1=1 1 + 1 = 2 
1+1=2 2+1=3 2+1=3 
3+1=4 3+1=4 4+1=5 
4+1=5 5+1=6 5+1=6 
6+1=7 6+1=7 7+1=8 
7+1=8 8+1=9 8+1=9 
9+ 1 = 10 9+ 1 = 10 10+1=11 

10+1=11 11+1=12 11+1=12 
12+1=13 12+1=13 13+1=14 
13+1=14 14+1=15 14+1=15 
15 + 1 = 16 15 + 1 = 16 

Yarlable Storage 

LOOP 1 = 0 A(0) = 1 
LOOP 1 = 1 A(1) =2 
LOOP1=2 A(2) =3 
LOOP 1 = 3 A(3) =4 
LOOP1 =4 A(4) =5 
LOOP1 = 5 A(5) =6 
LOOP1 = 6 A(6) =7 
LOOP1 = 7 A(7) =8 
LOOP1 = 8 A(8) =9 
LOOP1 = 9 A(9) = 10 
LOOP1 = 10 A(10) = 11 
LOOP1 = 11 A(11) = 12 
LOOP1 = 12 A(12) = 13 
LOOP1 = 13 A(13) = 14 
LOOP1 = 14 A(14) = 15 
LOOP1 = 15 A(15) = 16 
LOOP1 = 16 
LOOP2 =0 LOOP2 = 1 LOOP2 = 2 
LOOP2 = 3 LOOP2 = 4 LOOP2 = 5 
LOOP2 = 6 LOOP2 = 7 LOOP2 =8 
LOOP2=9 LOOP2= 10 LOOP2= 11 
LOOP2= 12 LOOP2=13 LOOP2=14 
LOOP2 = 15 LOOP2 = 16 



Tables and Arrays 335 

The memory space set aside for a table can also be increased by 
using DIM. DIM(20,20), for example, sets aside space in memory for 
a table with 441 elements. Two or more variables can be redimen­
sioned in one statement by separating the variables with a comma. An 
example is DIM Q(50),B(25,30). DIM statements are usually grouped 
at the beginning of a program so that they are easy to find and so that 
arrays and tables are dimensioned before they are referenced in the 
program. 

OPTION BASE 

OPTION BASE is used to specify the beginning subscript for all 
array variables. By default, the base is 0. When the base is 0, DIM 
A(20) means that 21 spaces are available in memory for A. This can be 
a source of confusion as beginning programmers often interpret DIM 
A(20) as reserving 20 spaces in memory instead of 21. 

When OPTION BASE is used, the most common value specified 
is 1. A value of I is used to avoid the confusion caused by allowing a 
subscript of zero. With OPTION BASE setto I, DIM A(20) reserves 
20 spaces in memory for A, not 21. 

Input 

CLS 
NEW 
AUTO 
10 OPTION BASE 1 
20 FOR A = 1 TO 11 
30NUM(A) =A 
40 PRINT NUM(A); 
50NEXT A 
60END 
70 Fn-Break 
RUN 

Memory 

i::: ) 8B 8B 
c:::::: J 8E3 8E3 

10 OPTION BASE 1 
20 FOR A = 1 TO 11 
30NUM(A) =A 
40 PRINT NUM(A); 
SO NEXT A 
60END 



336 IBM PCjr for Students 

Output 

Ok 
NEW 
Ok 
AUTO 
10 OPTION BASE 1 
20 FOR A = 1 TO 11 
30 NUM(A) =A 
40 PRINT NUM(A); 
50NEXT A 
60END 
70 
Ok 
RUN 
1 2 3 4 5 6 7 8 9 10 

, Subscript out of range in 30 
Ok 

Arithmetic and Logic 

1+1=2 
4+1=5 
7+1=8 

2 + 1 = 3 
5 + 1 = 6 
8+1=9 

10 + 1 = 11 

Variable Storage 

A= 1 
A=5 
A=9 

A=2 
A=6 
A= 10 

A=3 
A=7 
A= 11 

3+1=4 
6+1=7 
9 + 1 = 10 

A=4 
A=8 

When we tried to use eleven spaces, we discovered that there were 
only IO available. Zero is no longer a valid subscript. OPTION BASE 
is usually placed prior to any DIM statements. 

DATA and READ 

DATA lists the values to be assigned to variables. DATA is more 
efficient than INPUT when a large number of variables need data 
values assigned. READ assigns the data values specified in the DATA 
statement to the variables included with it. Let's examine an example 
of DATA and READ: 



Input 

CLS 
RUN 

Ok 
RUN 
Resident of 1 is Adams 
Resident of 2 is Bell 
Resident of 3 is Clark 
Resident of 4 is Drake 
Resident of 5 is Evans 

Tables and Arrays 337 

Memory 

10 FOR ROOM= 1 TO 5 
20 READ APT$(ROOM) 
30NEXT ROOM 
40 FOR A = 1 TO 5 
50 PRINT "Resident of";A;"is "; 
APT$(A) 
60 NEXT A 
70 DATA Adams, Bell, Clark, Drake, 
Evans 
BO END 

Arithmetic and Logic 

1 + 1 = 2 
4 + 1 = 5 
2 + 1 = 3 
5 + 1 = 6 

2 + 1 = 3 
5 + 1 = 6 
3 + 1 = 4 

3 + 1 = 4 
1 + 1 = 2 
4+1=5 

Variable Storage 
ROOM= 1 
ROOM= 2 
ROOM= 3 
ROOM= 4 
ROOM= 5 
ROOM= 6 
A=3 
A=6 

APT$(1) = "Adams" 
APT$(2) = "Bell" 
APT$(3) = "Clark" 
APT$(4) = "Drake" 
APT$(5) = "Evans" 
A=1 A=2 
A=4 A=5 

When using DATA, a string need only be enclosed in quotation 
marks if it contains a comma or a colon, or if it begins with a blank 
space. Reserved words can be used as data. 

When READ is executed, the computer searches for DATA. 
The variables indicated with READ are assigned values from the 
DATA statement one by one. If the first DATA statement contains 



338 IBM PCjr tor Students 

fewer data items than corresponding READ variables, the computer 
will search for another DATA statement. The computer keeps track 
of which data item is to be assigned next with an internal pointer. 

If there are more READ variables than DATA values, an Out of 
DATA error message will appear. A syntax error will occur if the 
READ variable and the DATA value don't agree in type. 

ERASE 

ERASE eliminates variable storage. When an array is no longer 
needed, ERASE frees the memory previously assigned to it, allowing 
the space to be reused. ERASE is more commonly used when work­
ing with large arrays. ERASE APT$ is an example of an ERASE 
command. 



Tables and Arrays 339 

estio 

True or False 

I. A( I) and A(2) use the same space in memory. 

2. Columns run horizontally and are specified by the first number in a 
subscript. Rows are vertical and are specified by the second 
number. 

3. Any action which can be performed on string variables can be 
performed on subscripted string variables. 

4. The default value for OPTION BASE is I. 

5. In DATA statements, all strings must be enclosed in quotation 
marks. 

Multiple Choice 

I. What does ERASE do? 

A. Clears the screen 
B. Frees memory 
C. Sets all variables equal to 0 
D. Sets the lowest subscript to 0 
E. None of the above 



340 IBM PCjr for Students 

2. What is the default value for DIM? 

A. JO 
B. JOO 
C. 1000 
D. 0 
E. None of the above 

3. How many dimensions does a table have? 

A. 1 
B. 2 
C. 3 
D. 4 
E. None of the above 

4. In A(3,2 I) what is the subscript? 

A. A 
B. 3 
C. 21 
D. 3,21 
E. None of the above 

Computer Exercises 

1. Revise the program you wrote for Computer Exercise I on page 323 
to do the following: 

a. Use subscripted variables for the months. 
b. Use DATA and READ statements instead of INPUT. 



an+ in= x 

Numeric and 
Math Functions 

lesson 17 
Lesson Goals 

II Learn how to use BAS/C's trigonometric functions: SIN, COS, 
TAN, and ATN 

II LearnhowtouseBASIC'sSQR. INT, FIX, ABS, SGN, EXP.and 
LOG functions 

l!llll Learn how to use BAS/C's CINT, CSNG, and CDBLfunctions to 
convert the types of numerics 

342 



Numeric and Math Functions 343 

Introduction 

In this lesson we will discuss numeric and math functions. A 
function defines a set of operations to be performed on a numeric or 
string value. The format for using a BASIC function is: 

Function name (data value) 

The function name is followed by a data value. This data value can be 
either a constant or a variable and is enclosed in parentheses. For 
consistency, the data value will be referred to as X. 

The functions which we will be discussing in this lesson and in 
the next lesson are built-in functions. Built-in means that they are a 
part of the Microsoft BASIC interpreter. Using a function is known 
as calling a function. A synonym for calling is invoking. This process 
is ref erred to as calling because the definitions of the operations 
to be executed are located elsewhere. For built-in functions, that 
definition is part of the BASIC interpreter. 

SIN, COS, TAN, ATN 

SIN, COS, TAN, and ATN are trigonometric functions. Trigo­
nometry is the branch of mathematics which deals with the relation­
ship of the sides and angles of a triangle. In the following figure, X is 
the angle, a is the opposite side, b is the adjacent side, and c is the 
hypotenuse, or side opposite the right angle: 



344 IBM PCjr for Students 

X 

b 

a 

Figure 17.1. Example triangle ___________ __, 

SIN(X) returns the sine of the angle X. The sine of Xis the length 
of the side opposite the angle, a, divided by the length of the hypote­
nuse, c. 

Calling COS(X) results in the cosine of X being returned. Cosine 
is defined as the length of the side adjacent to angle X, b, divided by 
the length of the hypotenuse, c. 

TAN(X) returns the tangent of X. The tangent is the length of the 
side opposite the angle divided by the length of the side adjacent to 
the angle. In this case, the tangent of X is equal to the length of a 
divided by the length of b. 

Calling ATN(X) returns the arctangent of X. The arctangent of 
Xis the angle whose tangent is X. If TAN(X) is called and the value 
returned by that call is used to call ATN, X is returned. 

For COS, SIN, and TAN, X must be specified in radians. A 
radian is equal to 57.29578 degrees. One degree equals .017453 radi­
ans. ATN returns the measure of the angle in radians. The following 
program illustrates the use of the trigonometric functions: 



Ok 
LIST 

Numeric and Math Functions 345 

10 RAD = .017 453 
20 DEG = 57.29578 
30 FOR L = 1 TO 3 
40 READ NUM(L) 
50 S(L) = SIN(NUM(L) * RAD) 
60 C(L) = COS(NUM(L) * RAD) 
70 T(L) = TAN(NUM(L) * RAD) 
80 A(L) = ATN(T(L)) * DEG 
90 PRINT NUM(L);S(L);C(L);T(L);A(L) 

100 NEXT L 
110 DATA 30, 45, 60 
120 END 
Ok 
RUN 

30 .4999924 .8660299 .5773385 
29.9995 
45 . 7070975 . 7071161 .9999737 
44.99925 
60 .8660166 .5000153 1.73198 
59.999 

Ok 

In this example the values for X are given in degrees. Prior to 
calling SIN, COS, and TAN, the values are converted to radians. 
The SIN, COS.and TAN functions are then called and the results are 
assigned to subscripted variables. The value assigned to T(L) was 
returned by TAN. This value is used to call ATN. The result of ATN is 
multiplied by the number of degrees which equal one radian. Notice 
that this final value is approximately equal to X. The data is then 
output. 

SQR 

SQR is the built-in square root function. The square root of a 
number is the number which, if squared, will result in the original 



346 IBM PCjr for Students 

number. The square root of 81, for example, is 9, since nine squared 
equals 81. The following program demonstrates the use of SQR: 

Ok 
LIST 
10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 S(L) = SQR(NUM(L)) 
40 PRINT NUM(L);S(L);S(L) • S(L) 
50 NEXT L 
60 DATA 25, 30, 50 
70 END 
Ok 
RUN 

25 5 25 
30 5.4 77226 30 
50 7.071068 50 

Ok 

During execution of this program, the data value is read, and its 
square root is computed and assigned to the subscripted variable, S. 
Execution of line 40 causes the number, its square root, and its square 
root times itself to be output. Notice that multiplying the number 
stored in S times itself returns the original value. 

INT 

BAS I C's INT function returns the integer value of its argument, 
or calling value. INT returns the highest integer whose value is less 
than or equal to the argument's value. If X is a positive number, 
INT(X) will return the integer portion of X. INT(3.69 I), for example, 
would return 3. If X is negative, INT(X) returns the next lower 
integer. An example of this point is that INT(-6.10938) would return 
- 7. The INT function is demonstrated in the following example: 



Ok 
LIST 

Numeric and Math Functions 34 7 

10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 l(L) = INT(NUM(L)) 
40 PRINT NUM(L);l(L) 
50 NEXT L 
60 DATA 2.6, 1.1, -8.3 
70 END 
Ok 
RUN 
2.6 2 
1.1 1 

-8.3 -9 
Ok 

INT(2.6) returns 2 because 2 is the highest integer less than or 
equal to 2.6. One is the highest integer whose value is less than or 
equal to 1.1, so it is returned. -8 is greater than -8.3, so -9 is returned 
instead of -8 when INT is called. 

FIX 

FIX(X) and INT(X) have the same effect when Xis positive or 0. 
Since FIX simply discards the decimal portion, FIX(3.69 I) returns 3, 
and FIX(-6. !0938) returns -6, not -7. The use of FIX can be seen in 
the following program: 



348 IBM PCjr for Students 

Ok 
LIST 
10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 F(L) = FIX(NUM(L)) 
40 PRINT NUM(L);F(L) 
50 NEXT L 
60 DATA 2.6, 1.1, -8.3 
70 END 
Ok 
RUN 
2.6 2 
1.1 1 

-8.3 -8 
Ok 

While INT(-8.3) returned -9, FIX(-8.3) returns -8. FIX dis­
cards the decimal portion. It is not concerned with whether the value 
returned is greater or less than the argument. 

ABS 

ABS returns the absolute value of its argument. Absolute value 
is the distance of that number from 0. If X is zero or positive, the 
value returned equals X. This result is due to the fact that the distance 
from the value to O is equal to that value. When working with 
negative numbers, the absolute value of the number is that number 
without the negative sign. ABS never returns a negative value, 
because distance is positive. -3 and 3 are both 3 units from zero. 



Ok 
LIST 

Numeric and Math Functions 349 

10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 A(L) = ABS(NUM(L)) 
40 PRINT NUM(L);A(L) 
50 NEXT L 
60 DATA 2, 0, -8 
70 END 
Ok 
RUN 
2 2 
0 0 

-8 8 
Ok 

ABS(2) equals 2, since by definition, 2 is two units a way from 0. 
ABS(0) equals 0. ABS(-8) returns 8, because -8 is 8 units away from 
zero. 

SGN 

SGN returns a value which indicates the sign of its numeric 
argument. If X is positive, SGN(X) returns a value of 1. If X is 
negative, -1 is returned. If X equals 0, 0 is returned. 



350 IBM PCjr for Students 

Ok 
LIST 
10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 S(L) = SGN(NUM(L)) 
40 PRINT NUM(L);S(L) 
50 NEXT L 
60 DATA 2, 0, -8 
70 END 
Ok 
RUN 
2 1 
0 0 

-8 -1 
Ok 

Since two is a positive number, I is used to indicate its sign. Zero 
is neither positive nor negative, so a value ofO is returned. Finally, -8 
is a negative number, its sign is represented by a value of -1. 

EXP 

EXP(X) returns the value of the base raised to a specified value. 
The specified value is the calling argument, X. When working with 
EXP, the base is assumed to equal 2.71828183. This value is also 
known as e. The following equation represents EXP: 

X is the exponent as well as the calling argument. e is the base, 
and y is the value returned by EXP(X). The calling value cannot be 
greater than 88.02969, because the computer is not designed to 



Numeric and Math Functions 351 

handle extremely large numbers. Using a larger number will cause an 
overflow. 

Ok 
LIST 
10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 E(L) = EXP(NUM(L)) 
40 PRINT NUM(L);E(L) 
50 NEXT L 
60 DATA 2.772589, 0, 4.158883 
70 END 
Ok 
RUN 

2.772589 16.00001 
0 1 
4.158883 64 

Ok 

In this example, e was raised to each of the data values. 
2. 71828183 "2.2589 equals approximately 16. e times itselfO times is 
equal to I. Finally, 3 to the 4.158883 power equals 64. 

LOG 

LOG uses the value of y as its calling argument and returns X. 
This is also known as the natural logarithm of X. A logarithm is the 
exponent of the power to which a base number must be raised to 
equal a given number. LOG, by definition, cannot be called by a 
negative number. Using LOG on the answers we generated in the last 
example will return the original value of X: 



352 IBM PCjr for Students 

Ok 
LIST 
10 FOR L = 1 TO 3 
20 READ NUM(L) 
30 LG(L) = LOG(NUM(L)) 
40 PRINT NUM(L);LG(L) 
50 NEXT L 
60 DATA 16, 1, 64 
70 END 
Ok 
RUN 

16 2.772589 
1 0 
64 4.158883 

Ok 

LOG(l6) returned 2.772589. LOG(I) returned 0, and LOG(64) 
returned 4.158883. 

CINT, CSNG, CDBL 

These functions convert numbers to a specified type. CINT(X) 
converts X to an integer, and CSNG(X) changes X to a single 
precision value. CDBL(X) results in X being converted to double 
precision. If necessary, the values are rounded. The following pro­
gram illustrates the use of these functions: 



Ok 
LIST 

Numeric and Math Functions 353 

10 FOR L = 1 TO 3 
20 READ NUM#(L) 
30 Cl(L) = CINT(NUM#(L)) 
40 CS(L) = CSNG(NUM#(L)) 
50 CD#(L) = CDBL(NUM#(L)) 
60 PRINT NUM#(L);Cl(L);CS(L);CD#(L) 
70 NEXT L 
80 DATA 1.356, 8, 67.987654321 
90 END 
Ok 
RUN 

1.356 1 1.356 1.356 
8 8 8 8 
67.987654321 68 67.98766 67.987654321 

Ok 

Cl( 1.356) in integer form is merely I. No rounding is needed. 
Since the number is already single precision, it is not altered by 
CSNG. In double precision, 1.356 is represented as 1.356, also. 

When the integer, 8, is used as X, it is output as 8, regardless of its 
type. 

Finally, 67.987654321 is rounded to 68 in order to be stored as an 
integer. In single precision, its value is 67 .98766, rounded to seven 
digits. Since the number is already double precision, CDBL has no 
effect. 



354 IBM PCjr for Students 

esti 

True or False 

I. Microsoft BAS I C's COS built-in function is used to find an angle's 
cosecant. 

2. The SQR function returns the value of its argument squared. 

3. INT(X) and FIX(X) always return the same value. 

4. ABS returns the sign of the number. 

5. A function defines the operations to be performed on string or 
numeric values. 

Multiple Choice 

I. Which of the following functions returns the measure ofan angle? 

A. SIN 
B. cos 
C. ATN 
D. TAN 
E. None of the above 



Numeric and Math Functions 355 

2. Which of the following functions returns the distance of a number 
from 0'? 

A. ABS 
B. SGN 
C. INT 
D. FIX 
E. None of the above 

3. Which of the following functions will convert a number to single 
precision'? 

A. INT 
B. FIX 
C. SQR 
D. CSNG 
E. None of the above 

4. What is the maximum allowed value with which to call EXP'? 

A. e 

B. 2.71828183 
C. 32647 
D. 88.02969 
E. None of the above 

Computer Exercises 

I. Use the computer to evaluate the following expressions: 

a. SIN( 15) COS( 15) TAN(l5) 
b. SQR(l5) 
c. INT(-2.38) FIX(-2.38) 
d. ABS(-2.38) SGN(-2.38) 
e. EXP(0) LOG( I) 
f. CINT(3.63) CSNG(3.63) CDBL(3.63) 



A$+ 8$ 

String 
Functions 

Lesson Goals 

Iii Learn how to concatenate strings 

lesson 18 

Iii Learn how to use BAS/C's LEFT$, RIGHT$, and MID$functions 

l!I Learn how to use BAS/C's STR$, VAL, CHR$, and ASC 
functions 

m Learn how to use BAS/C's INSTR/unction 

Iii Learn how to find the length of a string by using BAS/C's LEN 
function 

l!I Learn how to use BAS/C's STRING$ function 

356 



String Functions 357 

Introduction 

In this lesson we will work with 8ASIC's built-in functions 
which apply to strings. These functions will permit us to add strings 
together, select specified characters for use, convert data types, and 
search for selected characters. 

String Concatenation 

Two strings can be added together to create a new string. This 
merging is called concatenation. The following program demon­
strates this process: 

Ok 
LIST 
10 A$= "Programming " 
20 B$ = "is fun." 
30 C$ =A$+ B$ 
40 PRINT C$ 
50 END 
Ok 
RUN 
Programming is fun. 
Ok 

In this example two strings, A$ and 8$, were merged into one 
string, C$. A$ and 8$ were not affected by the concatenation. The 
symbol for string concatenation is the plus sign,+. 



358 IBM PCjr for Students 

LEFT$ 

LEFT$ returns a specified number of characters beginning with 
the leftmost character. The configuration for the function call is: 

LEFT$(string, number of characters desired) 

LEFT$ requires two parameters. The first argument, the string, is the 
string from which the characters are to be selected. The second 
parameter is the number of characters to be selected. If the second 
parameter is greater than the total number of characters within the 
string, the entire string will be returned. The following program 
illustrates the operation of LEFT$: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 8$ = LEFT$(A$,5) 
30 PRINT 8$ 
40 END 
Ok 
RUN 
Progr 
Ok 

During execution of line 20, the five leftmost characters are 
taken and assigned to B$. Again, A$ is not affected by the function 
call. 



String Functions 359 

RIGHT$ 

RIGHT$ also returns a specified number of characters from a 
string. The key distinction between LEFT$ and RIGHT$ is that 
RIGHT$ begins with the rightmost characters of the string, not the 
leftmost. The format for calling RIGHT$ is similar to the format for 
calling LE.FT$: 

RIGHT$(string, number of characters selected) 

The two required arguments are the initial string and the number of 
desired characters. The following program demonstrates the opera­
tion of RIGHT$: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 B$ = RIGHT$(A$,5) 
30 PRINT B$ 
40 END 
Ok 
RUN 
fun. 

Ok 

In this example the 5 characters at the end of the string were 
assigned to B$. A$ was not affected. It is important to note that the 
characters are not reordered by using RIGHT$. 



360 IBM PCjr for students 

MID$ 

MID$ is used to select characters in the middle of a string. When 
working with LEFT$ and RIGHT$, selection must begin at one of 
the ends of the string. With MID$, selection can begin at any point 
within the string. MID$'s format is as follows: 

M1D$(string, starting character's position, number of characters) 

The string and the starting position are required. The starting positon 
is a number which indicates the position of the specified character 
within the string. In the string "Hello", for example, "H" is in position 
I, and ••o" is located in position 5. 

The third parameter, the number of characters, is optional. If the 
number of characters to be selected is not specified, the remainder of 
the string, beginning at the specified starting position, is returned. 
The following program portrays the use of MID$: 

Ok 
LIST 
10 A$ = "Programming is fun." 
20 8$ = MID$(A$,5,6) 
30 PRINT 8$ 
40 END 
Ok 
RUN 
rammin 
Ok 

Notice that six characters were returned and assigned to B$, 
beginning with the ••r" in position 5. The characters were not reor­
dered, and A$ was not affected. 



String Functions 361 

MID$ can also be used to replace characters in one string with 
characters from another string. If the replacement string has fewer 
characters than the value of the third parameter, the substitution will 
begin with the character in the initial string which is in the specified 
starting position. Additional characters will simply be retained. In 
the string ''.Hello", for example, if we wanted to replace the characters 
"ello" with "bye" the result would be "Hbyeo ". The string "bye" has 
fewer characters, 3, than does the string "ello ", so the "o" is retained. 
The following program illustrates the use of MID$ to replace 
characters: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 MID$(A$,5,6) = "hello!" 
30 PRINT A$ 
40 END 
Ok 
RUN 
Proghello!g is fun. 
Ok 

In this case, A$ was altered. Note that the replacement string is 
assigned to the specified area in the initial string. It is not necessary to 
assign that string to A$, as that assignment occurs automatically. 

STR$and VAL 

The BASIC functions of STR$ and VAL perform string­
numeric conversion. STR$ converts a numeric value into a string. 
VAL converts a string into a numeric value. The string to be con-



· 362 IBM PCjr for Students 

verted by VAL must consist of numeric characters such as "9 I". If a 
blank space appears in the string, it will be ignored. If any other 
nonnumeric character appears, the numeric characters up to the 
nonnumenc will be returned. The functions have the following 
formats: 

STR$(numeric value) 
VAL(string) 

The following program illustrates the operation of these functions: 

Ok 
LIST 
10 A$= STR$(1984) 
20 B = VAL("1984") 
30 PR.I NT A$, B 
40 END 
Ok 
RUN 
1984 1984 

Ok 

Execution of line IO causes the value 1984 to be converted to a 
string. That string is then assigned to A$. Execution of line 20 causes 
the string, "1984", to be converted to its numeric value of 1984 and 
assigned to B. 



String Functions 363 

CHR$andASC 

CH R$ and ASC perform ASCII-text character conversions. 
These functions only operate on one ASCII code or one text charac­
ter at a time. CH R$ converts an ASCII code value, such as 83, into a 
text character. The ASC function converts a text character into an 
ASCII code value. 

The functions' formats are: 

CHR$(ASCII code) 
ASC(text character) 

The text character used to call ASC must be enclosed in quotation 
marks since it is a string. The following program displays the use of 
CH R$ and ASC: 

Ok 
LIST 
10 A$= CHR$(100) 
20 B = ASC("Q") 
30 PRINT A$,B 
40 END 
Ok 
RUN 
d 81 
Ok 

The character with the ASCII code of 100 is "d ". Execution of 
line 30 causes this character to be output. Since the ASCII code for 
"Q" is 81, that value is also output during line 30's execution. 



364 IBM PCjr for Students 

INSTR 

INSTR searches for the initial appearance of a specified string 
within another string. Once that appearance is found, INSTR returns 
the position where the match begins. The format for INSTR is: 

INSTR(starting position, string to be searched, string to search for) 

The latter two parameters are required. The first of these required 
parameters is the string to be searched. The second parameter is the 
character or characters for which we are searching. If, for example, 
we want to know if the letter "y" appears in the string "goodbye", 
"goodbye" is the string to be searched and "y" is the string for which 
to search. 

The first parameter, the starting position, is optional. This 
parameter specifies the position where the search is to begin. If we 
want to know only if "y" occurs in_ the last half of the word, "good­
bye", the starting position would be specified as 4. If we want the 
search to include the entire string, we can omit this parameter. 

Capital and small letters are considered to be different charac­
ters. If we ask, instead, whether the letter "Y" appears in "goodbye", 
we will be told that it does not appear. If the string to be searched for 
is not found, a value of O will be returned. 

The following program demonstrates the operation of INSTR: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 B = INSTR(A$,"i") 
30 PRINT B 
40 END 
Ok 
RUN 

9 
Ok 



String Functions 365 

Since no starting position was specified, the search began with 
"P". If a position is specified and the string is found, the value for the 
position will be counted from the beginning of the string to be 
searched, not from the beginning of the searched part of that string. If 
the search in our example had begun with the fourth character 
instead of the first, the value returned would still have been 9, since 
"i" appears for the first time in position 9. After the string was found, 
the search was halted. INSTR returns only the initial position. 

LEN 

LEN returns the number of characters in a string. In other 
words, LEN returns the length of the string. The format for calling 
LEN is: 

LEN (string) 

The string can be either a constant or a variable, as can the 
strings used by all of the functions we have discussed in this lesson. 
The following program demonstrates the use of LEN: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 B = LEN (A$) 
30 PRINT B 
40 END 
Ok 
RUN 

19 
Ok 



366 IBM PCjr for Students 

A$ has 19 characters, including punctuation and blank spaces. 
All characters are counted by LEN, and the value assigned to Bis I 9. 
Execution of line 30 causes this value to be output. 

STRING$ 

STRING$ returns a string of a specified length consisting of 
specified characters. The format for calling STRING$ is: 

STRING$(number of characters desired, character desired) 

The number of characters desired is the iength of the string which is to 
be created. The character desired can be either a string or an ASCII 
code value. The string containing the desired character can consist of 
a number of different characters bttt only the first character will be 
replicated. This point can be more clearly seen in the following 
example: 

Ok 
LIST 
10 A$= "Programming is fun." 
20 B$ = STRING$(5,A$) 
30 C$ = STRING$(3, 169) 
40 PRINT B$,C$ 
50 END 
Ok 
RUN 
PPPPP r r .-
Ok 



String Functions 367 

The first character in A$ is "P". That character is replicated five 
times and assigned to 8$ during the execution of line 20. Line 30's 
execution causes the replication of the character with the ASCII code 
169 to occur three times. These strings are then output in line 40. 



368 IBM PCjr for Students 

esti 

True or False 

I. When two strings are concatenated to form a new string, the initial 
strings are not affected. 

2. LEFT$ returns a specified number of characters from a string, 
beginning at its left-hand side. 

3. MI 0$ can be used to replace characters in a string with characters 
from another string. 

4. BASIC's VAL function is used to convert a numeric value to a 
string value. 

5. LEN returns the number of characters in a string. 

Multiple Choice 

I. Which of the following symbols is used to concatenate strings? 

A. + 

B. 
C. 
D. -
E. None of the above 



String Functions 369 

2. What will be the output of the statement, 
MID$("Hello there !",2,4)? 

A. lo 
B. ello 
C. He 
D. ther 
E. None of the above 

3. Which of the following functions can be used to convert a numeric 
value to a string? 

A. STR$ 
B. VAL 
C. CHR$ 
D. ASC 
E. None of the above 

4. What will be the output of the statement, 
PRINT INSTR("Hello","l")? 

A. 6 
B. 3 
C. 0 
D. 3 4 
E. None of the above 

5. What will be the output of the statement, 
PRINT STRING$(2,"Hello")? 

A. He 
B. HH 
C. II 
D. 2 
E. None of the above 

Computer Exercises 

I. Write a program to do the following: 

a. Input the user's first and last names as two strings. 



370 IBM PCjr for Students 

b. Concatenate the strings and assign this new string to a 
variable. 

c. Take the first 3 characters, the middle 3 characters, and the last 
3 characters of the concatenated name. Assign these strings to 
variables. 

d. Find the ASCII value for the 5th letter. Assign it to a variable. 
e. Output the values for all the variables. 



RND 
RANDOMIZE 

Other Functions 
and User-Defined 
Functions 

Lesson Goals 

l!ffl Learn how to use BAS/C's PRE/unction 

Iii Learn how to use BAS/C's POS function 

lesson 19 

Ill Learn how to use PEEK and POKE when working with memory 

l!ffl Learn how to use RN D and RAN DOM IZE to generate numbers 

Iii Learn the uses of BAS/C's SCREEN function 

Ill Learn how to create and utilize user-defined functions 

372 



Other Functions and User-Defined Functions 373 

Introduction 

In the past two lessons, we have explored numeric and string 
functions. In this lesson we will discuss an assortment of built-in 
functions which cannot be assigned to either of these categories. We 
will also examine user-defined functions. User-defined functions are 
not built-in but are instead defined by the programmer. 

FRE 

FRE returns the number of unused bytes in memory. FRE can 
be called with either a string argument or a numeric argument. When 
FRE is used with a numeric argument, the function simply returns 
the number of unused bytes. If FRE is called using a string argument, 
housekeeping is performed prior to the return of the number of 
available bytes. Housekeeping consists of two steps. First, the useful 
data is gathered and stored in the smallest possible amount of space. 
This process releases the areas in memory which once held data but 
no longer do. Because data was once stored in these memory loca­
tions, that space is not considered available. Housekeeping frees this 
space. Then the number of available bytes is returned. FRE's format 
is the following: 

FRE(numeric or string argument) 

The following example illustrates the use of FRE: 



37 4 IBM PCjr for Students 

Ok 
PRINT FRE(O) 
59694 

Ok 
PRINT FRE("A") 
59694 

Ok 

In this example housekeeping had no effect. Housekeeping will 
be ineffectual whenever all memory which is in use is needed. If 
housekeeping is possible, the amount of memory available will 
increase after the process has been performed. 

Under certain conditions housekeeping may be automatically 
performed. Housekeeping will a~tomatically occur whenever the 
amount of space available in memory is less than that needed. The 
process will be performed in an attempt to release a sufficient number 
of bytes. 

It is a good programming practice to use FRE with a string 
argument whenever a program is extremely long or when the tables 
and arrays which are being used are large. This process will determine 
whether enough space is available in memory for your program. If an 
insufficient number is available, the housekeeping will attempt to 
make enough bytes available. 

POS 

The column in which the cursor is currently located is returned 
by POS. Any string or numeric argument can be used to call POS. 
The format for calling POS is: 

POS(string or numeric argument) 



Other Functions and User-Defined Functions 375 

POS returns the same result regardless of whether a string argument 
or numeric argument is used as its argument. The following program 
demonstrates the use of POS: 

Ok 
LIST 
10 FOR A = 1 TO 20 
20 PRINT POS(0); 
30 NEXT A 
40 END 
Ok 
RUN 
1 4 7 10 14 18 22 26 30 34 
38 5 8 11 15 19 23 27 31 35 

Ok 

When POS is called for the first time, the cursor is located in the 
first column, so a value of I is returned. The cursor is then located in 
the fourth column. The second call of POS returns a value of 4. 
Notice that POS indicates only columns. It does not indicate the row. 
When POS is used and WIDTH is set to 40, the columns are num­
bered from I to 40. If WIDTH is 80, the columns are numbered from 
I to 80. 

PEEK 

PEEK returns the contents of a specified memory location. 
PEEK has the following format: 

PEEK(memory location) 



376 IBM PCjr for Students 

The specific memory location to be checked is represented by a whole 
number. The value for the memory location can range from 0 to 
65535. PEEK returns an integer between 0 and 255, inclusive. The 
value returned is a representation of the contents of that memory 
location. A value of zero indicates that the space is empty. Since 
PEEK merely observes memory, it is most often used when one 
specific piece of information is needed. One possible use of PEEK, 
for example, is checking a location in memory to see if the button on a 
joystick has been pressed. 

POKE 

POKE actually alters the contents of a specified memory loca­
tion. The configuration for POKE is: 

POKE memory location, new contents 

Notice that the arguments are not enclosed in parentheses. The first 
argument is a memory location. The second is the data which you 
want that location to contain. This data must be an integer within the 
range of Oto 255, inclusive. 

POKE actually changes the contents of a specific location in 
RAM memory. Because of its power, POKE is a risky command. As 
such, it is a good idea to use POKE sparingly and only when you are 
positive that you want to alter the contents of that specific location. 

RND 

RND is a function which generates a random number between 0 
and I. The number is considered to be random because every number 
between 0 and I has an equal chance of being selected. Flipping a coin 



Other Functions and User-Defined Functions 377 

is an example of a random selection. Both heads and tails have an 
equal chance of being the result. 

RND can be used with or without a parameter. The format for 
calling RND is: 

RND(a) 

The parameter, a, can be any numeric value. If a is positive, 
RND will return the next random number in the current sequence. 
An example of a possible sequence is . 7151002, .683111, and 
.4821425. The first time RND is called with a positive value of a, the 
first number in the sequence is returned. The second call, using the 
example sequence, returns .683111. The third call returns .4821425. 

Each time a program is executed,if RND'S argument is positive, 
the same sequence will be returned. To illustrate this point, execute 
the following program: 

Ok 
LIST 
10 FOR X = 1 TO 5 
20 PRINT RND(X) 
30 NEXT X 
40 END 
Ok 
RUN 

.7151002 

.683111 

.4821425 

.9992938 

.6465093 
Ok 



378 IBM PCjr for Students 

Suppose we then cleared the screen by executing CLS, edited line 
10 as follows: 

10 FOR X = 20 to 24 

and ran the program a second time. As shown below, the same series 
of random numbers would be generated: 

Ok 
EDIT 10 
10 FOR X = 20 to 24 
RUN 
.7151002 
.683111 
.4821425 
.9992938 
.6465093 

Ok 

As long as a is positive, this sequence will be generated. The 
initial value of a has no effect. 

The sequence of random numbers can be changed by specifying 
a value for a which is either negative or zero. If a is negative or zero, a 
new seed will be generated. The seed is the number which the compu­
ter uses to determine the initial value of the random number 
sequence. We can change the sequence of random numbers which 
will be generated by adding the following line to our program: 

5 PRINT RND(-100) 

Since RN D's argument is negative, this statement will result in a 
new seed. A new series of random numbers will be generated by now 
executing our program: 



Other Functions and User-Defined Functions 379 

Ok 
LIST 
5 PRINT RND(-100) 

10 FOR X = 1 TO 5 
20 PRINT RND(X) 
30 NEXT X 
40 END 
Ok 
RUN 

.8188288 

.2677991 
8. 733116E-02 
7.081251E-02 
.8175731 
.5208339 

Ok 

A new seed was generated by the execution ofline 5. This caused 
new random numbers to be generated by lines IO to 30. 

The desired range for the random number is not always O to 1. 
The following program illustrates how to obtain a number in a dif­
ferent desired range which is, in this case, 1 to 6: 

Ok 
LIST 
10 DI= INT(6 * RND + 1) 
20 PRINT "You rolled a";DI 
30 END 
Ok 
RUN 
You rolled a 5 
Ok 

Since this program simulates the roll of a die, we needed a 
random integer value between I and 6, inclusive, not a random 



380 IBM PCjr for Students 

number between O and 1. The randomly generated number which was 
returned in this case was .7151002. Because the maximum desired 
value was 6, the randomly generated number was multiplied by 6. The 
minimum desired value was 1, so 1 was added to the result of the last 
calculation. Finally, the number was truncated using INT. 

RANDOMIZE 

Each time the program in the last section is run, the same answer 
results. RANDOMIZE resets the seed each time the statement is 
executed. With each execution, the person running the program is 
asked to enter a seed. The number which is entered determines what 
value will be returned by RND. When RANDOMIZE is used in 
conjunction with RND, it is not necessary to give RND a seed. The 
following program illustrates the effect of RANDOMIZE: 

Ok 
LIST 
10 RANDOMIZE 
20 DI= INT(6 *AND+ 1) 
30 PRINT "You rolled a";DI 
40 END 
Ok 
RUN 
Random number seed (-32768 to 32767)? 927 
You rolled a 4 
Ok 

We selected 927 as the seed. Any number between -32768 and 
32676 will be accepted. The value for DI was then calculated, using 
927 as the seed. Execution of line 40 causes that value to be output. 



Other Functions and User-Defined Functions 381 

SCREEN 

BASIC's SCREEN function returns the ASCII code for the 
character at a specified location on the screen. The format for the 
SCREEN function is: 

SCREEN(row, column, true or false) 

The row and column are required parameters. Rows are numbered 
from Oto 24. 0 is tli.e row at the top of the screen, and 24 is the number 
of the bottom row. The columns are numbered from I to 40, unless 
WIDTH is set to 80. If WIDTH is set to 80, the columns are num­
bered from I to 80. Column number I is the left edge of the screen, 
and column number 40 is the right edge. 

The third parameter is optional. If the value of this parameter 
equals 0, or false, SCREEN returns the ASCII code for the character 
at the specified location. If the value does not equal 0, it is considered 
to be true, and the color is returned. The color range is from Oto 255. 
The color MOD 16 is the foreground color, or the color of the 
character. The background color is the initial returned value MOD 
128. If this value is tested to see if its value is greater than 127, a value 
of -1, or true, means that the character is flashing. A value of 0 
indicates that it is not flashing. 

The following example demonstrates the result of BASIC's 
SCREEN function: 

Ok 
PRINT SCREEN (2,7) 

83 
Ok 
PRINT CHR$(83} 
s 
Ok 



382 IBM PCjr for Students 

In this example the character at (2,7) is "S". The ASCII code for 
"S" is 83. 

User-Defined Functions 

A user-defined function is a function which the programmer 
defines. Before a user-defined function can be called, it must be 
defined. The following command defines a function: 

DEF FN rest of function name (dummy argument)= definition 

An example of a function definition is: 

DEF FNTHREE(X) = (X A 3) - (3 * X) 

DEF indicates that the function whose name follows is to be defined. 
FNTH REE is the function name. All user-defined function names 
must begin with FN. In this case, Xis the dummy argument. When 
the function is called, the calling value is substituted for X. Wherever 
X appears within the definition, that value is substituted for X. Any 
valid variable name can be the dummy argument. If a data type has 
been specified for the dummy argument, the data will be converted to 
the dummy argument's type prior to substitution. If the data type is 
specified by the function name, the value returned by that function 
will be of the specified type. 

In this example the user-defined function is a numeric function. 
User-defined functions can be either numeric or string. The defini­
tion, or set of operations which the function is to perform, in this 
example is (X A 3) - (3 * X). In other words, X is to be cubed. The 
value of 3 * X is then to be subtracted from the cube. The following 
program illustrates another user-defined function: 



Other Functions and User-Defined Functions 383 

Ok 
LIST 
10 DEF FNRAISE(X) = X AX 
20 FOR C = 1 TO 5 
30 PRINT FNRAISE(C); 
40 NEXTC 
50 END 
Ok 
RUN 
1 4 27 256 3125 

Ok 

In this program the function name is FN RAISE. FN RAISE is a 
function name, not a variable. Xis the dummy argument. Each time 
line 30 is executed, the function is called. Each number is then raised 
to itself. For example, 3 is cubed, and 5 is multiplied by itself 5 times. 
Note that reserved words, with the exception of FN, cannot be used 
as part of a valid function name. 



384 IBM PCjr for Students 

esti 

True or False 

I. When FRE is used with a string argument, housekeeping is per-
formed during execution. 

2. POS returns the row in which the cursor is located. 

3. POKE returns the value in a specified memory location. 

4. RANDOMIZE resets the seed . 

5. If WIDTH is set to 40 when using SCREEN, the columns are 
numbered from Oto 39. 

Multiple Choice 

I. Which of the following is a valid function name? 

A. FN 
8. FNNAME 
C. FNOKAY 
D. OKAY 
E. None of the above 



Other Functions and User-Defined Functions 385 

2. RND returns a number within which of the following ranges? 

A. -I to I 
B. -I to 0 
C. 0 to I 
D. It depends upon the seed 
E. None of the above 

3. Which of the following commands specifically alters the contents 
of a specified memory location? 

A. PEEK 
B. POKE 
C. SCREEN 
D. FRE 
E. None of the above 

4. When POS is executed and the WIDTH 1s set to 40, a 
number within which of the following ranges is returned? 

A. 0 to 39 
B. I to 40 
C. 0 to 24 
D. I to 25 
E. None of the above 

5. What is the primary use of FRE? 

A. To define functions 
B. To look at a location in memory 
C. To alter a location in memory 
D. To determine how much memory is 

available 
E. None of the above 

Computer Exercises 

I. Write a program to randomly generate a number between I and 
10. Use RND and RANDOMIZE. 

2. After executing the program, write a program to do the following: 

a. Find how much space is available using FRE. 
b. Find the cursor's position. 
c. Determine the character in the tenth row, tenth column (9,10). 



ntrCXJuction to 
Graphics 

lesson 20 

Lesson Goals 

ml Define pixels and screen coordinates 

Ill Define the differences between the various screen modes: text, low 
resolution graphics, medium resolution graphics, and high resolu­
tion graphics 

I'm Learn the uses of BAS/C's SCREEN, WINDOW, and VIEW 
statements 

386 



Introduction to Graphics 387 

Introduction 

In this lesson we will introduce graphics. Graphics can be 
defined as the art of drawing with the computer. A number of 
programs, including many computer games, utilize graphics. In this 
lesson we will discuss the basics of graphics. In the next lesson we will 
discuss how to actually create pictures using the PCjr. 

Pixels 

The screen is divided into rows and columns. Rows are the 
horizontal dimension, and columns are vertical. The rows and 
columns are numbered. Every column intersects with every row, and 
each intersection is a specific and unique location on the screen. One 
such location would be the intersection of column 8 and row l l. The 
point where column 8 intersects row l l is referred to as (8,l l). Note 
that the column number precedes the row number and that the 
numbers are enclosed in parentheses. These numbers are known as 
coordinates. 

Each specific coordinate pair references a pixel. Pixel is an 
abbreviation for picture element. A pixel is a small rectangular area 
located on the video screen. Each pixel can be referenced by its 
coordinates. A pixel is shown in figure 20.1. 

Figure 20.1. Pixel located at column 8, row l l 



388 IBM PCjr for Students 

The numbering of the columns and rows begins with zero. The 
pixel which has the coordinates (0,0) is located in the top left-hand 
corner of the screen. Columns are numbered from left to right, and 
rows are numbered from top to bottom. 

The specific number of rows and columns which are available is 
dependent upon the screen's mode. The mode refers to the form in 
which data is represented on the screen. The PCjr has one text mode 
and six graphics modes available. The PCjr's predecessors, the PC 
and the PC XT, have only three modes available. These modes 
correspond to the first three PCjr modes. We will discuss the various 
modes later in this lesson. 

The computer keeps track of which pixel was last referenced by 
means of an internal pointer. This pointer is called the LPR, or last 
point referenced. 

Text Mode 

The mode which we have been using throughout this book has 
been the text mode. Text mode is available only in the first mode, 
screen 0. Screen 0 divides the display into 25 rows and either 40 or 80 
columns, depending upon the width. 

Color can be displayed in this mode. Text mode has 8 options for 
the background color, 16 options for the border color, and 32 options 
for the color of the foreground, the characters. Table 20.1 lists the 
colors and their corresponding values. 

Notice that the numbering begins with zero. Colors 0 through 7 
are available for the background. Colors 0 through 15 can be used for 
the border area. Any color in the table can be used for the foreground. 
Colors 16 through 31 flash. 



Introduction to Graphics 389 

Table 20.1. Text mode color values 

Text Mode Colors 

0 Black 
1 Blue 
2 Green 
3 Cyan 
4 Red 
5 Magenta 
6 Brown 
7 White 
8 Gray 
9 Lt. Blue 

10 Lt. Green 
11 Lt. Cyan 
12 Lt. Red 
13 Lt. Magenta 
14 Yellow 
15 High Intensity White 

16 Black, flashing 
17 Blue, flashing 
18 Green, flashing 
19 Cyan, flashing 
20 Red, flashing 
21 Magenta, flashing 
22 Brown, flashing 
23 White, flashing 
24 Gray, flashing 
25 Lt. Blue, flashing 
26 Lt. Green, flashing 
27 Lt. Cyan, flashing 
28 Lt. Red, flashing 
29 Lt. Magenta, flashing 
30 Yellow, flashing 
31 High Intensity White, 

flashing 

The COLOR statement is used to select colors. This command 
has three optional parameters: 

COLOR foreground color, background color, border color 

Any combination of parameters is permissible. If the new value for a 
parameter is omitted, the current color will be retained. Unless 
changed, both the background and the border will be black, color 0, 
and the characters will appear in white, color 7. Enter the following 
commands to demonstrate the use of BASIC's COLOR statement: 



390 IBM PCjr for Students 

COLORS 
COLOR ,5 
COLOR ,,5 
COLOR7 
COLOR ,0 
COLOR,,0 
COLOR 21 
COLORS 
COLOR7 

The first command changes the foreground color to magenta. 
Entering the second command changes the background color to 
magenta, and the characters disappear. COLOR ,,5 creates a match­
ing border. The command, COLOR 7, causes the foreground to 
reappear, since the characters are now displayed in white. The next 
two commands return the background and border to black. COLOR 
21 changes the text so that it appears in magenta and flashes. Entering 
the command, COLOR 5, stops the flashing, and the final command 
returns the screen to its normal color configuration. 

Low Resolution Graphics 

Screen 3 is the only low resolution graphics mode. In low resolu­
tion graphics, the screen has few pixels compared to the other gra­
phics modes. The screen's dimensions in low resolution graphics are 
160 columns by 200 rows. The total number of pixels on the screen is 
equal to the number of columns times the number of rows, so 32000 
pixels are available. Notice the illustration of the low resolution 
graphics screen in figure 20.2. 



Introduction to Graphics 391 

~ 

0,0 159,0 i • " 

i • >. 
t 

• 80,100 
= 

" 

==-=--0,199 159,199 === 
~ 

l =-- = 
Figure 20.2. Low resolution graphics screen 

The columns are numbered from Oto 159, and the rows are numbered 
from O to 199. The center pixel of the screen has the coordinates 
(80, I 00). Whenever a graphics mode is first entered, the LPR is set to 
the screen's center pixel. 

In low resolution graphics, sixteen colors are available, colors 0 
through 15. In this mode, color 15 is the standard foreground color, 
and black is standard for the background . No border color can be set. 
Each low resolution graphics screen occupies 16K, or 16384 bytes of 
memory. 

Text can be entered in any mode, although only one mode is 
specifically designed for text. In low resolution graphics, however, 
only 20 columns are available for text characters. 

Medium Resolution Graphics 

The PCjr has three medium resolution graphics modes: screen I, 
screen 4, and screen 5. While each screen has its own features, they 
share some characteristics. A medium resolution graphics screen 
contains 320 columns, or twice that of the low resolution graphics 



392 IBM PCjr for Students 

screen. The number of rows available , 200, is the same as in low 
resolution graphics. Due to the increased number of columns, the 
number of pixels has increased to 64000. A medium resolution 
graphics screen is represented in figure 20.3 . 

1 -l 

1--

0,0 

0,199 

• 160,100 

319,0 

319,199 

Figure 20.3. Medium resolution graphics screen 

--

• :­,_ 
- =--

Notice that the center pixel in a medium resolution graphics screen is 
(160,100). In addition, all of the medium resolution graphics screens 
accommodate 40 characters of text per line . 

Screen 1 

Screen 1 is a medium resolution graphics screen. It requires 16K 

of memory and theoretically has 16 colors available. The colors, 
however, are available only in fixed palettes of four colors each. In 
practice then, only four colors are available at any time. The back­
ground color can be any of the 16 colors. Table 20.2 lists the palettes 
and their colors. 



Introduction to Graphics 393 

Table 20.2. Screen 1 palettes 

Palette O Palette 1 

0 background 0 background 
1 green 1 cyan 
2 red 2 magenta 
3 brown 3 white 

The COLOR command is used with a different configuration in 
screen 1 than in screen 0. By default, the color in the palette which is 
used for the foreground is assumed to be color 3. The COLOR 
statement's format is: 

COLOR background color, palette 

The parameters are optional. If no background color is specified, the 
color of the background will remain unchanged. The default value for 
the palette is the current palette. When screen l is first entered, the 
palette which is in use is palette 1. 

Screen 4 

Like screen 1, screen 4 requires 16K of memory and has 16 colors 
available. Screen 4's main advantage is that the palettes are flexible. 
Any four colors can be included in any palette. Screen I was primarily 
included in the PCjr so that much of the IBM PC software would be 
compatible. 

In order to take advantage of the flexible palettes, a new com­
mand is needed. This command is PALETTE, which has the follow­
ing configuration: 



394 IBM PCjr for Students 

PALETTE location in palette, new color 

This command is used to place colors in a palette. Red, for example, is 
usually located in position 2 of palette 0. PALETTE 2, 1 will result in 
red being replaced by blue. Both parameters are required. Once the 
palette has been set, the format for the color command is: 

COLOR foreground, background 

Screens 

Screens 5 and 6 require 32768 bytes of memory. The PCjr only 
allots 16384 bytes to the screen, however. An additional command is 
needed in order to allocate more memory to the screen. This com­
mand is CLEAR. CLEAR sets aside space in memory for the screen. 
CLEAR has the following configuration: 

CLEAR,,,amount of space in memory to allocate to screen 

The commas indicate optional parameters. These parameters are not 
relevant to our discussion at this point, so we will not discuss them 
here. In order to access screens 5 and 6, 32768 should be specified as 
the amount of memory to allocate. 

In screen 5, all 16 colors are supported with no palettes. All 16 
colors are accessible. The COLOR command has the same configura­
tion in screen 5 as in screen 4. 

High Resolution Graphics 

Screens 2 and 6 are the high resolution graphics modes. In the 
high resolution graphics mode, the screen has 128000 pixels available. 
The rows are numbered from Oto 199, and the columns are numbered 



Introduction to Graphics 395 

from Oto 639. The center of the screen has the coordinates (320, I 00). 
In addition, screens 2 and 6 support 80 text columns. The following 
figure illustrates the high resolution graphics screen: 

, ,...... 

-

0,0 

0,199 

• 320,100 

Figure 20.4. High resolution graphics screen 

--
639,0 

639,199 

Screen 2 requires 16384 bytes of memory. Because of its high 
number of pixels, only two colors are supported. These colors are 
black and white. These colors cannot be changed . In contrast, screen 
6 supports all 16 colors in a flexible palette. The COLOR command 
has the same configuration in screen 6 as in screens 5 and 4. 
Remember, however, that 32768 bytes of memory are required for 
this mode. 

SCREEN 

In the last lesson, we introduced BAS I C's SCREEN function . In 
this section we will introduce BASIC's SCREEN command. 

The SCREEN command is used to determine which of the 7 
display modes is currently active. The command has the following 
configuration: 



396 IBM PCjr for Students 

SCREEN screen number, color burst, active page, visual page, erase 

The parameters are optional. The first parameter, the screen 
number, is used to select one of the six graphics modes or the text 
mode. The command, SCREEN 4, causes the selection of the medium 
resolution graphics screen, screen 4. The values of the parameter 
correspond to the screen numbers which we have used to indicate the 
various screens through this discussion. 

The second parameter is the color burst signal. Color will be 
turned on or off depending on the value of the color burst parameter. 
When color burst is off, only black and white are available. In the text 
mode and in screen 3, a value of 0 turns the color burst signal off, or 
disables it, and a value of l turns it on, or enables it. For screen l, the 
signals are reversed; 0 enables, and 1 disables. In screens 2, 4, 5, and 6, 
the color burst signal has no effect. 

More memory is available than that which is needed to hold a 
single screen, or page. In other words, the contents of more than one 
screen can be held in memory at the same time. In the text mode, for 
example, up to 8 pages, numbered 0 through 7, can be retained in 
memory, assuming width has been set to 40. The key factors are the 
amount of memory alloted to the screen and the amount of memory 
needed to store one page. Since each page in text mode, which has a 
width of 40, requires 2K of memory, 8 pages can be held. 

The next two parameters relate to the PCjr's ability to store 
several pages in memory. The first of these parameters, the active 
page, is used to indicate to which page output is to be sent. The second 
of these parameters is used to specify which page is to be displayed 
upon the screen. This page is the visual page. 

The final parameter is erase. Its value should be an integer 
between 0 and 2, inclusive. A value of 0 indicates that the video 
memory should not be erased. A value of 1 is the default value. It 
indicates that the video memory should be erased if the mode or burst 
signal is changed. Finally, a value of two indicates that all video 
memory should be erased if the mode or burst changes. 

Entering the following commands will illustrate the uses of the 
SCREEN command: 



Introduction to Graphics 397 

SCREEN..,1 
SCREEN,,1 
SCREEN,1 
SCREEN 1 
COLOR 9,1 
SCREEN 2 
SCREEN 3 
COLOR8,4 
SCREEN 4 
PALETTE 2,1 
COLOR 2,1 
CLEAR..,32768 
SCREEN 5 
SCREEN 6 

By default the screen is set to 0,0,0,0, l. In other words, after 
booting the PCjr, the screen is in the text mode, color is disabled, both 
the active and visual pages are page 0, and video memory will be 
erased if the mode or burst changes. The first command changes the 
visual page to page I. The second command transfers the output to 
page I. SCREEN, I disables the color. The command, SCREEN l, 
changes the mode to medium resolution graphics. The next com­
mand, COLOR 9, l selects 9, light blue, as the background color and 
also selects palette l for the foreground. After that command, the 
next two commands change the mode to screens 2 and 3. Once in 
screen 3, the command, COLOR 8, 4 selects gray, 8, as the foreground 
color and red, 4, as the background color. SCREEN 4 selects the 
medium resolution graphics mode of screen 4. The command, 
PALETTE 2, l, replaces the red with blue in palette 0. The next 
command causes blue to be the foreground color and green to be the 
background color. The remaining commands change the mode to 
screens 5 and 6. 



398 IBM PCjr for Students 

WINDOW 

This command only operates in cartridge BASIC. WINDOW is 
used to reset the coordinates of the screen. The command has the 
following configuration: 

WINDOW(first column number, first row number)-()ast column, last row) 

The first pair of numbers is the coordinates to be assigned to the pixel 
which is located in the top left-hand corner of the screen. The second 
pair is used to define the coordinates to be assigned to the pixel in the 
bottom right-hand corner. Any numbers can be used as coordinates. 

VIEW 

VIEW is also available in cartridge BASIC. This command 
defines an area of the screen to which the graphics will be limited. This 
area is known as a viewport. Once a viewport has been defined, points 
can only be plotted within its boundaries. The format for the com­
mand is: 

VIEW(first column,first row)-()ast column,last row) 

The first coordinate pair is the location of the top left-hand pixel in 
the viewport. The second pair identifies the pixel in the bottom 
right-hand corner of the viewport. 

A drawing will automatically be scaled to fit into the viewport. If 
you don't want the drawing to be scaled, the following command will 
define a viewport and inhibit the scaling: 

VIEW SCREEN (first column,first row)-(last column,last row) 



420 IBM PCjr for Students 

Ppaint color, boundary color 

The paint parameter is the number of the color which is to be used to 
fill in the figure. If the active mode uses palettes, the range is limited to 
0 to 3. In those modes which support 16 colors, the range is I to 15. 
The default value for this parameter is the background color. The 
boundary color parameter specifies the color of the figure's border. 
When that color is encountered, the painting will halt. While both 
parameters are necessary for the process to be completed correctly, 
only the boundary color is required. The following program illus­
trates the use of this command: 

~k 
LIST 
10 SCREEN 4:CLS 
20 DRAW "C3 USO R20 D50 L20" 
30 DRAW "C3 BU50 L30 U20 R80 D20 L50" 
40 DRAW "BF10" 
50 DRAW "P1,3" 
60 DRAW "BU15" 
70 DRAW "P2,3" 
80 END 
Ok 

~UN ~ 

The commands contained in lines 20 and 30 draw two closed 
figures. Execution of line 40 moves the LPR to a pixel in the interior 
of the bottom figure. In order for P to execute properly, the LPR 
must be pointing to a pixel within the interior of the figure. Line 50 is 
then executed, causing the figure to be filled with color I. The LPR is 
relocated to the interior of the second figure in line 60, and that figure 
is filled with color 2 when line 70 executes. 

It is a good idea to use C to specify the color in which to plot the 
figure. When that same color is specified as the boundary color, the 



p 

Graphics Statements 419 

T Aangle measurement in degrees 

A positive value for the angle measurement rotates the figure coun­
terclockwise. A negative value rotates the figure clockwise. Possible 
angle measurements include -123, 96, and 11. The value must be an 
integer. The following program illustrates the use of TA: 

Ok 
LIST 
10 SCREEN 2:CLS 
20 DRAW "BUBO" 
30 DRAW "TA-69 R305" 
40 DRAW "TA150 R300" 
50 DRAW "TAO R300" 
60 DRAW "TA-150 R300" 
70 DRAW "TA69 R305" 
80 END 
Ok 
RUN 

When line 20 is executed, the LPR is relocated. During the 
execution of line 30, the angle rotates clockwise 69 degrees and 
performs the specified movement. The next line, line 40, rotates the 
angle 150 degrees and draws the specified movement. Lines 50 
through 70 continue the process. 

Unless a new value for TA is indicated, all subsequent move­
ments will be drawn based on TA's value. If, for example, TA150 had 
not been designated in line 40, the movement R300 would have 
extended the line drawn in line 30 an additional 300 pixels. 

Pis used to fill a closed figure with color. This GDL command 
has the following format: 



418 IBM PCjr for Students 

TA 

inclusive. That value is multiplied by 90 in order to obtain the number 
of degrees to rotate. A value ofO indicates that the movements should 
be executed normally. A value of 1, however, indicates that the 
movements should be rotated 90 degrees. If the rotational angle is 1, 
the movement R20 will resemble the movement U20 when the rota­
tional angle for that movement is set to 0. If the value specified is 2, the 
movements will be rotated 180 degrees. A value of 3 causes a 270 
degree rotation. The effect of A can be seen more clearly by running 
the following program: 

Ok 
LIST 
10 CLEAR,,,32768 
20 SCREEN 5:CLS 
30 DRAW "A1 R60 U10 M+15,+10 M-15,+10 U10 BL60" 
40 DRAW "A2 R60 U10 M+15,+10 M-15,+10 U10 BL60" 
50 DRAW "A3 R60 U10 M+15,+10 M-15,+10 U10 BL60" 
60 DRAW "AO R60 U10 M+15,+10 M-15,+10 U10 BL60" 
70 END 
Ok 
RUN 

Notice that the commands in lines 30 through 60 are virtually 
identical. The only difference is the value associated with A. In line 30 
that value is I, so the movements are rotated 90 degrees and plotted. 
In line 60 the value is 0. This specification was required in order to 
cancel the rotation of 270 degrees which was created in line 50. Once a 
rotational angle is specified, all subsequent movements will be plotted 
according to the identified rotation. 

TA rotates the figure. Unlike GD L's A command, TA can rotate 
the figure any number of degrees within the range of +360 and -360. 
The command has the following configuration: 



A 

Graphics Statements 417 

allotted range for the foreground of the selected graphics mode. For 
example, since screen l uses fixed palettes, the color number should 
be I, 2, or 3. Three, in this case, is the default value. The C command 
only sets the foreground color. It does not modify either the back­
ground color or the border color. This point is illustrated in the 
following modification of the previous program: 

Ok 
LIST 
10 SCREEN 3:CLS 
20 DRAW "C6 NU60 ND60 NL60 NR60" 
30 DRAW "C5 NE40 NF40 NG40 NH40" 
40 FOR J = 1 TO 1000:NEXT J 
50 END 
Ok 
RUN 

When line 20 was executed, the foreground color was changed to 
color 6, brown, and the movements were plotted in that color. Move­
ments in subsequent statements will also be plotted in that color, 
unless a new color is specified. In line 30 a new color, magenta, is 
specified, and those movements are plotted in color 5. 

The GDL command used to select a rotational angle is A. This 
command has the following format: 

Arotational angle 

The rotational angle is specified by an integer between O and 3, 



416 IBM PCjr for Students 

N 

C 

Like B, N always precedes a GDL command. N plots the speci­
fied movement but leaves the LPR unchanged. An example of a 
command which utilizes N is ORA W "NR30". Again, no spaces or 
punctuation marks should separate N from the GDL movement 
command. The program which follows illustrates the use of N: 

Ok 
LIST 
10 SCREEN 3:CLS 
20 DRAW "NU60 ND60 NL60 NR60" 
30 DRAW "NE40 NF40 NG40 NH40" 
40 FOR J = 1 TO 1000:NEXT J 
50 END 
Ok 
RUN 

Notice that each movement is plotted. Since N precedes each 
movement command, however, the LPR is left at the screen's 
midpoint. 

C sets the color in which the points are to be plotted. This GDL 
command has the following format: 

Ccolor number 

C's parameter, the color number, can be any color number within the 



B 

Graphics Statements 415 

Bis always specified with a GDL movement command. B indi­
cates that a movement should be made, but the pixels involved should 
not be plotted. In other words, after Bis executed, the LPR will point 
to the specified pixel, but the movement to that pixel will not have 
been plotted. Since Bis a prefix, it must precede a GDL movement 
command. An example is DRAW "BM35,70". No spaces or punctua­
tion marks should separate B and the movement command. The 
following program illustrates the use of B: 

Ok 
LIST 

10 SCREEN 4:CLS 
20 DRAW "BM60,85" 
30 DRAW "F40 BM100,85" 
40 DRAW "G40 BM110,85" 
50 DRAW "F12 028 BM122,97" 
60 DRAW "E12 BM147,85" 
70 DRAW "R30 M147,125 R30 BM157,105" 
80 DRAW "R10" 
90 FOR J = 1 TO 1000:NEXT J 

100 END 
Ok 
RUN 

When line 20 is executed, the LPR is moved to (60,85) but that 
movement is not plotted. When line 30 is executed, a diagonal line is 
drawn and the LPR is subsequently relocated to (100,85). Line 40 
draws an intersecting diagonal line and moves the LPR to (l 10,85). 
This process creates a gap between this figure and the figure which is 
drawn by lines 50 and 60. When line 60 is executed, the LPR is moved 
to (147,85). This movement creates a gap between the second and 
third figures. 



414 IBM PCjr for Students 

M 

Mis another movement option. Movement occurs from the LPR 
to any specific screen location. The screen location may be indicated 
in either absolute or relative form. The command has one of the 
following formats depending upon the chosen coordinate form: 

M column, row 
or 

M ±column, ±row 

The sign, which indicates the change in direction, must precede the 
column number and row number if relative form is selected. A STEP 
statement is not needed. The following program demonstrates some 
uses of M: 

Ok 
LIST 
10 CLEAR,.,32768 
20 SCREEN 6:CLS 
30 DRAW "M290,80" 
40 DRAW "M+30,-50" 
50 DRAW "M350,80" 
60 DRAW "M-30,+20" 
70 DRAW "M320,30" 
80 LINE(290,80)-(350,80),., 15422 
90 END 
Ok 
RUN 

Lines 30, 50, and 70 illustrate the use of the absolute form. In 
contrast, lines 40 and 60 use the relative form. A + before the column 
number indicates movement to the right, and a - directs movement to 
the left. When working with rows, a - indicates upward movement, 
and a+ indicates movement downward. 



Graphics Statements 413 

Scaling Factor 

The scaling factor can be set by using the GD L's S command. S 
has the following format: 

Sscale 

The scale can be any integer within the range of l to 255. The scale 
divided by 4 is the actual scaling factor. The standard scaling factor is 
l, so the normal value for scale is 4. Notice what happens when line 20 
is edited to include the characters S8: 

Ok 
LIST 
10 CLEAR,,.32768:SCREEN 6:CLS 
20 DRAW "SB E50 H50 G50 F50" 
30 FOR K = 1 TO 2 
40 DRAW "H10 E50" 
50 DRAW "H10 G50" 
60 NEXT K 
70 DRAW "H10" 
80 FOR L = 1 TO 2 
90 DRAW "E10 F50" 

100 DRAW "E10 H50" 
110 NEXT L 
120 END 
Ok 

..... RUN 

Remember that the value associated with S previously was 4. 
When the scale was changed to 8 in line 20, the scale was changed not 
only for line 20, but also for all subsequent lines. 



412 IBM PCjr for Students 

Diagonal Movements 

GDL includes four commands for diagonal movement. These 
commands are E, F, G, and H. The following formats apply to the 
diagonal commands: 

Edis ta nee 
Fdistance 
Gdistance 
Hdistance 

The distance is the number of pixels to be plotted in the specified 
direction. E indicates a move up and to the right. F moves down and 
to the right. G directs movement down and to the left, and H indicates 
a move up and to the left. The following program demonstrates the 
use of these commands: 

Ok 
LIST 

10 CLEAR,,,32768:SCREEN 6:CLS 
20 DRAW "E50 H50 G50 F50" 
30 FOR K = 1 TO 2 
40 DRAW "H10 E50" 
50 DRAW "H10 G50" 
60 NEXT K 
70 DRAW "H10" 
80 FOR L = 1 TO 2 
90 DRAW "E10 F50" 

100 DRAW "E10 H50" 
110 NEXT L 
120 END 
Ok 
RUN 

When line 20 executes, a diamond is created. Lines 30 to I IO 
draw a series of intersecting diagonal lines. Note that the aspect ratio 
does not affect diagonal movement. 



Graphics Statements 411 

Vertical and Horizontal Movements 

GDL has four commands which belong in this category: U, D, L, 
and R. These commands have the following formats: 

Udistance 
Ddistance 
Ldistance 
Rdistance 

No space or punctuation mark separates the distance from the 
command. The distance is a whole number which indicates how many 
pixels are to be plotted in the specified direction. 

The commands move vertically and horizontally. U moves 
upward, D moves down, L moves to the left, and R moves to the right. 
The following program illustrates the use of these commands: 

Ok 
LIST 
10 CLEAR,,,32768 
20 SCREEN 6:CLS 
30 DRAW "L 160 D90 R160 U90" 
40 DRAW "L 140 D90" 
50 FOR B = 115 TO 185 STEP 5 
60 LINE(160,B)-(320,B) 
70 NEXT B 
80 END 
Ok 
RUN 

When line 30 executes, a rectangle is drawn. Line 40 plots a 
vertical line. Execution of lines 50 to 70 causes a series of horizontal 
lines to be drawn. Note that four horizontal movements occupy the 
same space as three vertical movements. 



41 0 IBM PCjr for Students 

~ Ok ,., 

LIST 
10 CLEAR,,,32768 
20 SCREEN 6:CLS 
30 CIRCLE(320, 100), 100,,.,.55 
40 CIRCLE(320, 130),35,2,-3.14,-6.28,.25 
50 CIRCLE(320,90),25,.-4.44,-5.14, 1 
60 Cl RCLE(285,83), 15,.,. .3 
70 CIRCLE(355,83),15,.,..3 
80 CIRCLE(285, 79),20,.. 78,2.34 
90 CIRCLE(355,79),20,..78,2.34 

100 Cl RCLE(355,83) ,5.,,. 1 
110 CIRCLE(285,83),5.,,. 1 
120 FOR J = 1 TO 1000:NEXT J 
130 END 
Ok 
RUN 

~ ~ 

When line 30 is executed, a large oval is drawn. During the 
execution of line 40, a long semicircle is drawn in color 2. Note that 
the end points are connected to the center point by lines. Line 50 
draws an arc whose end points are connected by a line to its center 
point. When lines 60 and 70 are executed, smaller ellipses are plotted. 
Execution of lines 80 and 90 causes two arcs to be drawn. Lines 100 
and 110 add two small ellipses to the picture. 

DRAW 

DRAW creates an object whose dimensions are defined by a 
string of graphics commands. The commands are part of the Graphics 
Definition Language, or GDL™. When a DRAW command is exe­
cuted, each GDL command in the string is executed separately. These 
commands draw lines, set angles, set colors, set scales, and execute 
substrings. The DRAW command has the following format: 

DRAW "string of drawing commands" 



Graphics Statements 409 

CIRCLE(center point coordinates),radius,color,starting angle, 
ending angle,aspect 

CIRCLE STEP(center point coordinates)radius,color,starting angle, 
ending angle,aspect 

The coordinates of the center point are required. Any pixel on 
the screen can serve as the center point for the circle. The coordinates 
again may be in either absolute or relative form. 

The length of the radius is also required. The radius is a straight 
line which extends from the center point of a circle to a point on the 
circle's edge. This value must be positive, but it does not have to be an 
integer. 

Color is the first optional parameter. If the color is left unspeci­
fied, the foreground color will be used. 

The next set of optional parameters are the starting and ending 
angles. The allowed range for these angles is 2 * PI to -2 * PI. These 
parameters are used to define the beginning and end of semicircles 
and arcs. If the angles are negative, the end points of the arc will be 
connected to the center point with a line. The angles themselves are 
always considered to be positive. 

The final optional parameter is the aspect. The aspect is the ratio 
of height to width. Unless specified, the ratio is 9:5 or 1.8 in a low 
resolution mode, 5:6 or .833333 in the medium resolution modes, and 
5: 12 or .4166667 in the high resolution modes. The shape of the circle 
is defined by the aspect ratio. If the given aspect ratio is larger than the 
default value, the ellipse is stretched vertically. If the specified aspect 
value is less than the default value, the ellipse is stretched horizon­
tally. The following program illustrates some of the possibilities of the 
CIRCLE statement: 



408 IBM PCjr for Students 

Ok 
LIST 

10 SCREEN 4:CLS 
20 LINE(140,80)-(180,120),.B 
30 LINE(140,80)-(155,65) 
40 LINE-STEP(40,0) 
50 LINE-(180,80) 
60 LINE(195,65)-(195, 105) 
70 LINE-(180,120) 
80 LINE(155,65)-(155,80) 
90 LINE(140, 120)-(155, 105), 1,. 15422 

100 LINE-(155,81),1,.15422 
110 LINE(155, 105)-(195, 105), 1,. 15422 
120 FOR J = 1 TO 1000:NEXT J 
130 END 
Ok 
RUN 

Line IO clears screen 4. Execution of line 20 draws a box. When 
line 30 is executed, a line is drawn from one specified point to another 
specified point. Lines 40 and 50 also draw lines, but the starting points 
for the lines are the LPR. During the execution of lines 60, 70, and 80, 
three more lines are drawn. When line 90 is executed, another line is 
drawn, but this line is in a different color and a different style. Lines 
100 and 110, when executed, draw lines similar to those drawn by line 
90. 

CIRCLE 

BASIC's CIRCLE statement can be used to draw circles, semi­
circles, ellipses, and arcs. The command may have either of the 
following formats: 



Graphics Statements 407 

LINE(starting point coordinates)-(ending point coordinates),color, 
B or BF, style 

or 

LINE STEP(starting point coordinates)-STEP(ending point coordinates), 
color, B or BF, style 

The coordinates of the starting point are optional. If the starting 
coordinates are not specified, the initial point is assumed to be the 
LPR. If LINE is being used to draw a box rather than a line, these 
coordinates should identify a corner of the box. Note that the coordi­
nates may be in absolute or relative form. 

The coordinates of the end point are required. This pair of 
coordinates is preceded by a mandatory-. Again, the coordinates may 
be in either relative or absolute form. If the figure being drawn is a 
box, this set of coordinates should indicate the opposite corner of the 
box. 

The next parameter is the color. As with PSET, its default value 
is the foreground color. This parameter is optional. 

If a line is being drawn, the next parameter, B or BF, is omitted. 
If a box is being drawn, however, this parameter is required. The 
parameter has two options: Band BF. The B indicates that a box is to 
be drawn. BF indicates that the box is to be drawn and filled in with 
the color which is in use. If Fis used, it must be preceded by B with no 
comma or space separating the two letters. 

The final option is style. The style is the pattern in which the line 
is to be drawn. If style O is selected, no points are plotted. When any 
other style is chosen, only certain points will be plotted. Which points 
will be plotted is dependent upon the pattern specified by the style. 
Each style has a different pattern. The style can be any integer 
between -32768 and 32767. The following program demonstrates the 
use of LINE and its parameters: 



406 IBM PCjr for Students 

The previous program can be modified to include PRESET. By 
adding line 155, the effect of PRESET can be illustrated. Notice that 
in line 155, relative form coordinates are used: 

~ Ok 
LIST 
10 SCREEN 4:CLS 
20 FOR B = SOTO 140 
30 PSET(100,B) 
40 NEXT B 
50 FOR A= 101 TO 116 
60 PSET(A, 113) 
70 NEXT A 
80 FOR C = 113 TO 140 
90 PSET(117,C) 

100 NEXT C 
110 PSET(130,96),1 
120 FORD= 113 TO 140 
130 PSET(130,D),1 
140 NEXT D 
150 FOR J = 1 TO 1000:NEXT J 
155 PRESET STEP(0,-44) 
160 END 
Ok 

~ RUN 

When line 155 is executed, the point appears to be erased. If a 
color other than the background color is specified for PRESET, its 
function is similar to PSET. The point will be plotted in the specified 
color. 

LINE 

BASIC's LINE statement can be used to draw lines or rectangu­
lar shapes, known as boxes. LINE has either of the following 
configurations: 



Ok 
LIST 

Graphics Statements 405 

10 SCREEN 4:CLS 
20 FOR B = 80 TO 140 
30 PSET(100,B) 
40 NEXT B 
50 FORA= 101 TO 116 
60 PSET(A, 113) 
70 NEXT A 
80 FORC=113TO140 
90 PSET(117,C) 

100 NEXT C 
110 PSET(130,96),1 
120 FORD= 113 TO 140 
130 PSET(130,D), 1 
140 NEXT D 
150 FOR J = 1 TO 1000:NEXT J 
160 END 
Ok 
RUN 

During execution of this program each pixel is individually 
plotted. The pixel at ( I 00,80) is plotted first. Then the pixel at ( I 00,81) 
is plotted. The points plotted by the execution of lines 30, 60, and 90 
are in color 3. The points plotted by lines 110 and 130 are in color 1. If 
the color had not been specified in line 130, those points would have 
been plotted in color 3. 

In contrast to PSET, the default for PRESET is color 0, the 
background color. When the background color is used to plot the 
pixel, the point appears to be erased. The PRESET command can 
have either of the following formats: 

PRESET(absolute form coordinates), color 

or 

PRESET STEP(relative form coordinates), color 



404 IBM PCjr for Students 

This phrase, however, is not used alone. It is executed jointly with 
other graphics statements. In many instances where absolute form 
coordinates are used, relative form coordinates may also be used. 
This point will be illustrated more concretely in the following 
sections. 

PSET and PRESET 

PSET and PRESET plot individual pixels. PSET draws a point 
at a specified screen location. This command may have either of the 
following formats: 

PSET(column, row), color 

or 
PSET STEP(column change, row change), color 

The coordinates are required, but the color is an optional parameter. 
If the color is not specified, the foreground color is used to plot the 
pixel. Remember that the standard foreground colors are: 15 in 
screens 3 and 5; 3 in screens I, 4, and 6; and I in screen 2. The 
following program illustrates the use of PSET: 



Graphics Statements 403 

Introduction 

In lesson 20 we explored the underlying concepts of graphics. In 
this lesson we will use those concepts in conjunction with several of 
Microsoft BASIC's graphics statements to create pictures. BASIC 
has several graphics statements available. 

It is a particularly good idea when reading this lesson to enter 
and execute the sample programs. Since a black and white book 
cannot reproduce the PCjr's graphics, executing the programs will 
enable you to actually see the effects of the various statements. 

Absolute and Relative Form 

Throughout our discussion, each pixel has been referenced by its 
actual screen coordinates. This type of referencing is known as abso­
lute form. Another method for referencing pixels is to specify a 
location based on the LPR's location. Pixels identified in this manner 
are considered to be in relative form, because exactly which pixel is 
being referenced is dependent upon the LPR. The format for relative 
form coordinates is: 

(change in column, change in row) 

Suppose the LPR is pointing to the pixel which has the coordi­
nates (80,100). The pixel at (70,100) is located ten columns to the left 
and ten rows below the LPR. This pixel can be referenced by the 
absolute form coordinates (70,110) or by the relative form coordi­
nates of (-10, 10). 

Relative form coordinates are used in conjunction with STEP. 
The following phrase is used to indicate relative form: 

STEP(change in column, change in row) 



--- --- -~ --- --- -------._--_.-. -_ -_ --_---

Graphics 
Statements 

Lesson Goals 

lesson 21 

Ill Learn how to use BAS/C's PSETand PRESET statements to plot 
individual pixels 

11111 Learn how to use BAS/C's LINE statement to draw lines and 
boxes 

II Learn how to use BAS/C's CIRCLE statement to draw circles, 
ellipses, semicircles, and arcs 

Ill Learn how to use BAS/C's DRAW statement to create shapes 

Ill Learn how to use PAI NT to add colors and patterns to figures 

402 



Introduction to Graphics 401 

2. Which of the following types of graphics has 128,000 pixels? 

A. High resolution graphics 
B. Low resolution graphics 
C. Medium resolution graphics 
D. All of the above 
E. None of the above 

3. Which of the following screen uses low resolution graphics? 

A. Screen 0 
B. Screen l 
C. Screen 3 
D. Screen 6 
E. Screen 7 

4. Assuming the amount of memory allocated to the screen is its 
default value, how many pages of 40 column text can be held in text 
mode? 

A. I 
B. 4 
C. 8 
D. 16 
E. None of the above 

5. How many colors are available for the background in text mode? 

A. 8 
B. 16 
C. 2 
D. 4 
E. None of the above 

Essays 

l. Discuss the relative advantages of the different screens and gra­
phics modes. 



400 IBM PCjr for Students 

estio 

True or False 

I. The PCjr has 6 graphics modes. 

2. SCREEN can only be used to select the display mode. 

3. When working with the color burst signal, I always turns the signal 
off. 

4. In the text mode, 16 options are available for the background 
color. 

5. WINDOW and VIEW will order coordinate pairs. 

Multiple Choice 

I. Which of the following coordinate pairs is located in the top 
left-hand corner of the screen in medium resolution graphics? 

A. (0,0) 
B. (0, 199) 
C. (319,0) 
D. (319,199) 
E. None of the above 



Introduction to Graphics 399 

Both WINDOW and VIEW will order the coordinate pairs. 
Whichever column number is lower will be considered the first 
column. The highest row number will be considered the last row. For 
example, the commands, VIEW(I0,30)-(20,50) and VIEW(20,30)­
( 10,50) will define the same area. 

Finally, using WINDOW or VIEW without parameters will 
return the screen to its original state. Viewports will be erased, and the 
coordinates will return to their initial values. 



X 

Graphics Statements 421 

probability that the command will have the desired effect increases. If 
this command does not seem to be executing properly, you may want 
to check whether the LPR points to a pixel inside the closed figure 
and whether the boundary color is encountered. 

GDL's X command allows a substring to be executed from 
within another string. The command has the following configuration: 

Xvariable name; 

Notice that this command is followed by a semicolon. The variable 
name identifies the substring. The variable name does not include the 
initial X. 

This command allows a portion of a figure to be defined separ­
ately from the entire figure. If drawing a house, for example, the roof 
can be defined separately from the house by using X. X can also be 
useful when you are drawing a complex figure which requires more 
than 255 characters to complete its definition. Remember that the 
maximum number of characters per line is 255. The following pro­
gram demonstrates the use of X: 

Ok 
LIST 

10 CLEAR..,32768 
20 SCREEN 6:CLS:KEY OFF 
30 WALL$= "BM10, 198 R40 BR150 R429 U196 L619 D96" 
40 DOOR$= "BR40 TA35 R150" 
50 SOFA$= "TAO BM520,148 NR109 U106 L229 U40" 
60 COFTAB$ = "BM350,60 R100 D75 L 100 U75" 
70 CHAIR$= "BM100,2 M10,50 M110,90 M200,40 M100,2" 
80 TV$= "BM10,100 R60 DS0 L60" 
90 DRAW "XWALL$;XDOOR$;XSOFA$;XCOFTAB$;XCHAIR$;XTV$;" 

100 END 
Ok 
RUN 



422 IBM PCjr for Students 

Each substring draws a separate part of the floor plan. In lines 30 
through 80, different GDL commands are assigned to variables. The 
graphics commands are not executed until line 90. 

In line 20 we introduced a new statement, KEY OFF. KEY OFF 
simply removes the messages which appear at the bottom of the 
screen. 

GDL Commands and Variables 

The numeric values associated with the GDL commands may be 
variables or constants. Throughout this discussion, we have used 
constants, but variables are also a valid option. The format for using a 
GDL command with a variable is as follows: 

GDLcommand = variable name; 

The graphics command is followed by = and the variable name. A 
semicolon must be placed after the variable name. The following 
program illustrates the use of variables with GDL commands: 

Ok 
LIST 
10 SCREEN 1:CLS 
20 FOR SCALE = 1 TO 30 
30 COL = SCALE MOD 3 + 1 
40 DRAW "C=COL;S=SCALE;U10;R10;D10;L 10;" 
50 NEXT SCALE 
60 END 
Ok 
RUN 

Each time line 40 is executed, the scale increases and the color 
changes. Note that the commands in line 40 are separated by semi-



Graphics Statements 423 

colons. After a variable or an X command·, a semicolon is required. 
Under other conditions the semicolon is optional. 

PAINT 

The PAINT statement is not available in cassette BASIC. 
PAINT fills a selected area of the screen with color. The statement has 
the following format: 

PAINT(coordinates of an interior pixel),color,boundary,background 

The coordinates may be in either absolute or relative form. If the 
indicated pixel is within a closed figure, the painting process will halt 
when the border is encountered. If the pixel is located on the border of 
the figure, no painting will occur. Finally, if the pixel is located 
outside of a closed figure, the unenclosed areas of the screen will be 
filled with the specified color. 

Color is the color to be used to fill in the figure. Color is an 
optional parameter. If it is omitted, the color selected is the color with 
the highest value supported by the active mode: I, 3, or 15. The value 
for color may also be a string expression. If the color value is a string 
expression, tiling will be performed. We will discuss tiling later in this 
section. 

Boundary specifies the color of the edges of the figure which is to 
be painted. This parameter is optional. If the boundary color is not 
specified, the paint color is assumed to be the boundary color. The 
painting process will continue until the boundary color is encoun­
tered. If the boundary color is not encountered, the entire screen will 
be painted. 

The background is a string expression used in tiling to invalidate 
a termination condition. We will explore this optional parameter in 
more depth when we discuss tiling. 

The following program illustrates the use of PAINT without 
tiling: 



424 IBM PCjr for Students 

Ok 
LIST 

10 CLEAR,,,32768 
20 SCREEN 6 
30 CLS 
40 CIRCLE(320, 120), 130,,-3 .14,-6.28,.18 
50 LINE(370, 120)-(374,40),,BF 
60 DRAW "M250,100 R120" 
70 PAINT(300,90),3,3 
80 PAINT(320, 130),2,3 
90 PAINT(300,110),1,3 

100 END 
Ok 
RUN 

When line 40 is executed, a semicircle is drawn. Line 50 draws a 
box, and execution of line 60 completes a triangle. When line 70 is 
executed, the triangle is filled with color 3. Execution ofline 80 results 
in the semicircle being painted in color 2. Finally, since the pixel 
specified by line 90 is outside of a closed area, the remaining areas of 
the screen are painted in color 1. 

If a complex shape is to be painted, a large amount of space in 
memory may be required by the PAINT statement. It is a good idea to 
include a CLEAR statement at the beginning of any program in 
which complicated figures are to be painted. 

Solid, one color patterns are not the only options available with 
PAINT. Tiling can be used to create patterns of varying design and 
color. 

To use tiling, the color must be specified as a string of values 
rather than as a numeric value. This string is obtained by using 
hexadecimal numbers to designate a binary pattern. The form of this 
parameter is: 

CH R$( &Hhexadecimal)+CH R$( &Hhexadecimal)+CH R$( &Hhexadecimal) 



Graphics Statements 425 

Each hexadecimal number is preceded by &Hand has two places. The 
value contained in these two places requires up to 8 places in order to 
be represented in binary, or base two. The following table illustrates 
hexadecimal and binary conversion of the decimal value, 255: 

Table 21.1. Hexadecimal and binary conversion 

System Base Representation Base 10 equivalent 

Hexadecimal 16 FF 15 * 16 + 15 * 1 = 255 

Decimal 10 255 2 * 100 + 5 * 1 0 + 5 * 1 = 255 

Binary 2 11111111 1 * 128 + 1 * 64 + 1 * 32 + 
1 * 16 + 1 * 8 + 1 * 4 + 1 * 
2+1*1=255 

The decimal number 255 is FF in base 16. This value is the 
equivalent of the binary number 11111111. The decimal value 255 is 
equal to (2 * 100) + (5 * 10) + (5 * l). 

The same principle applies to the process of converting a hexadec­
imal number to its decimal equivalent. The rightmost position is still 
the one's place, but the second position is the sixteen's place. The next 
position is the 256's place. In order to derive the decimal equivalent 
for a number in base 16, the value in each position is multiplied by the 
value of the place. Fifteen, the value of F, multiplied by one, the 
rightmost position's value, is equal to 15, and 15 multiplied by 16, the 
next position's value, yields 240. The sum of 15 and 240 is 255, the 
decimal equivalent of FF. 

Binary-decimal conversion follows the same principle. The posi­
tions, moving from right to left, increase in value by powers of two. In 
ord.er to obtain the corresponding decimal value, the value of that 
place is multiplied by the value in that position, and the values are 
summed. 



426 IBM PCjr for Students 

Each hexadecimal number in the CH R$ expressions is converted 
to its binary equivalent by the BASIC interpreter. Eight places are 
required in binary to represent a value which requires two hexadec­
imal places. Values larger than the decimal value 255 cannot be used 
for tiling, since only eight binary places are allotted per CH R$ expres­
sion. When working with tiling, each of these eight-place binary 
numbers is called a tile mask. Each binary place represents the con­
tents of one bit of memory, so eight bits of memory are represented by 
each tile mask. As we discussed in lesson 2, eight bits of memory are 
known as one byte. Each CHR$ expression therefore represents the 
contents of one byte of memory. In the high resolution graphics mode 
of screen 2, one bit of memory is required to plot one pixel. Conse­
quently, each tile mask represents the contents of eight pixels. If a l is 
located in the 22 or fours place, the pixel which is indicated by that 
position will be plotted. If a O occupies that position, the pixel will not 
be plotted. 

As many as 64 CHR$ expressions can be listed as the color in a 
single PAINT statement. These expressions will be recycled until the 
area is completely tiled. If, for example, ten bytes of data are needed 
to paint the area, but only 4 CHR$ expressions are supplied, the first, 
fifth, and ninth bytes will be indicated by the first CHR$ expression, 
and the second, sixth, and tenth bytes will be plotted according to the 
values contained in the second CHR$ expression. This pattern will 
continue until the process is complete. 

The following program uses PAINT's tiling feature to fill a circle 
with a series of Z's: 

Ok 
LIST 
10 SCREEN 2:CLS 
20 CIRCLE(320,100),100 
30 PAINT(320, 100),CHR$(&HFF)+CHR$(&H2)+ 
CHR$(&H4)+CHR$(&H8)+CHR$(&H10)+CHR$(&H20) 
+CHR$(&H40)+CHR$(&HFF) 
40 END 
Ok 
RUN 



Graphics Statements 427 

When line 30 executes, the CHR$ expressions are converted to 
their binary equivalents. The following table lists the conversion 
equivalents of the tile masks: 

Table 21.2. Conversion equivalents 

Tile byte Hexadecimal Decimal Binary 

1 FF 255 11111111 
2 2 2 00000010 
3 4 4 00000100 
4 8 8 00001000 
5 10 16 00010000 
6 20 32 00100000 
7 40 64 01000000 
8 FF 255 11111111 

Notice that the pattern of ones in the binary equivalents is identical to 
the pattern of pixels which were plotted. 

In screen 2 only one bit of data is required to plot one pixel. The 
other screens require more information before a pixel can be plotted. 
When either screen 1, 4 or 6 is active, for instance, 2 bits of data are 
needed for each pixel. Hence, 4 pixels are plotted by each CHR$ 
expression. The extra data identifies the color, l to 3, to be used. 
Table 21.3 shows the binary and hexadecimal values associated with 
colors I through 3 in any palette. 



428 IBM PCjr for Students 

Table 21.3. Palette patterns 

Number Binary pattern to 
Color No. In binary draw solld llne Hexadecimal 

1 01 01010101 &H55 
2 10 10101010 &HAA 
3 11 11111111 &HFF 

Screens 3 and 5 have 16 colors available. Since the number of 
options for the color has increased, the number of bits of information 
needed in order to plot one pixel also increases. Only two pixels are 
plotted by each CHR$ expression. Table 21.4 lists the patterns 
required to draw a solid line in screens 3 and 5. 

Table 21.4. Line patterns 

Number In Binary pattern to 
Color No. binary draw solid line Hexadeclmal 

1 0001 00010001 &H11 
2 0010 00100010 &H22 
3 0011 00110011 &H33 
4 0100 01000100 &H44 
5 0101 01010101 &H55 
6 0110 01100110 &H66 
7 0111 01110111 &H77 
8 1000 10001000 &H88 
9 1001 10011001 &H99 
10 1010 10101010 &HAA 
11 1011 10111011 &HBB 
12 1100 11001100 &HCC 
13 1101 11011101 &HDD 
14 1110 11101110 &HEE 
15 1111 11111111 &HFF 



Graphics Statements 429 

The following program paints a circle in screen 5 with solid lines 
of all 15 colors: 

Ok 
LIST 
10 CLEAR,,,32768 
20 SCREEN 5:CLS 
30 CIRCLE(180,100),100 
40 PAINT(180, 100),CHR$(&H11)+CHR$(&H22)+ 
CHR$(&H33)+CHR$(&H44)+CHR$(&H55)+CHR$(&H66) 
+CHR$(&H77)+CHR$(&H88)+CHR$(&H99)+CHR$(&HAA) 
+CHR$(&HBB)+CHR$(&HCC)+CHR$(&HDD)+CHR$ 
(&HEE)+CHR$(&HFF) 
50 END 
Ok 
RUN 

When line 30 is executed, a circle is drawn. As line 40 executes, 
the circle is painted with lines of color. 

The background tile is used to specify a line pattern which you do 
not want the computer to consider as a termination condition. This 
optional parameter has the following format: 

CH R$(&Hhexadecimal) 

This pattern will not be considered as a possible termination pattern. 
Up to two line patterns may be specified. The standard termination 
condition occurs when two identical lines are encountered. When this 
condition is met, tiling is halted. 



430 IBM PCjr for Students 

estio 

True or False 

I. PSET and PRESET have the same default color values. 

2. BASIC's CIRCLE statement cannot be used with relative form 
coordinates . 

3. ORA W uses GDL commands. 

4. GDL commands and statements such as LINE may not appear in 
the same program. 

5. N plots movement but does not change the LPR. 

Multiple Choice 

I. Which of the following commands is not a GDL command? 

A. N 
B. p 
C. LINE 
D. M 
E. None of the above 



Graphics Statements 431 

2. Which of the following commands is not valid? 

A. DRAW "BL30" 
B. DRAW "E20" 
C. DRAW "Pl" 
D. DRAW "R= VARDISTANCE;" 
E. None of the above 

3. Which of the following values is equal to the decimal value, 134? 

A. 86 base 16 
B. 10000110 base 2 
C. 134 base 16 
D. A and B 
E. None of the above 

4. What is the maximum number of CHR$ expressions which can be 
included in a PAINT statement as part of the color parameter? 

A. I 
B. 8 
C. 63 
D. 64 
E. None of the above 

5. When working with LINE, what is the default value for the color? 

A. The foreground color 
B. The background color 
C. The border color 
D. The style 
E. None of the above 

Computer Exercises 

I. Write a program to draw a house. Use as many of the various 
graphics commands as practical. 



ntroduction 
to Sound 

J 

lesson 22 

Lesson Goals 

ml Gain an understanding of the PCjr's mechanisms for sound 
generation 

ml Learn how to create sound using BAS/C's SOUND command 

ml Learn how to use BAS/C's PLAY command to create sound 

m Learn how to use BAS/C's NOISE command to produce sound 
effects 

432 



Introduction to Sound 433 

Introduction 

In this lesson we will learn how to create sounds and musical 
tones with the PCjr. We will begin our exploration with a discussion 
of the PCjr's capacities and the mechanisms which are responsible for 
sound generation. After this discussion we will create sounds using 
the PCjr. 

Sound Generators 

The PCjr has two separate mechanisms for generating sound. 
One, the 8253 timer, is common to both the PCjr and the PC. The 
other mechanism is unique to the PCjr. This internal mechanism is 
Texas Instrument's programmable tone generator, the SN 76489A. 
With the SN 76489A, the number of options for the creation of sound 
is greatly increased. 

The 8253 timer is capable of producing one note at a time. The 
duration, volume, and pitch of that note can be programmed. The 
timer can use any of three mechanisms in order to output the sound: 
the PCjr's internal speaker, an audio jack of a stereo, or a television 
set's speaker. The audio jack and the television set are considered to 
be external outputs. The inclusion of the timer in the PCjr enables it 
to emulate the PC. 

The programmable tone generator, however, can accomplish the 
entire range of timer capabilities in addition to its own capacities. The 
SN 76489A can generate three notes of differing volumes and dura­
tions at the same time. It is also capable of producing sound effects. 
Since the tone generator is more flexible than the timer, our discus­
sion will focus on the former. The tone generator, however, only uses 
external outputs, since the PCjr's internal speaker is not capable of 
handling that many tones at the same time. 



434 IBM PCjr for Students 

SOUND 

BASIC's SOUND statement is used to activate either the timer 
or the programmable tone generator, depending upon the statement's 
configuration. The command may have either of the following 
formats: 

SOUND ON 

or 
SOUND OFF 

If SOUND is set to on, the programmable tone generator is activated, 
and the internal speaker is switched off. When SOUND is off, both 
the timer and the internal speaker are activated. OFF is the default 
value for SOUND. 

BEEP 

BEEP is used to activate the external speakers. BEEP may have 
either of the following configurations: 

BEEP ON 

or 
BEEP OFF 

BEEP ON is the default situation. When BEEP is on, the external 
speakers are activated. If BEEP is set to off, the external speakers are 
switched off. 

It seems that when SOUND is on and BEEP is off, no sound is 
possible. This is due to the fact that the internal speaker is disabled by 
the status of the SOUND command, and the external speakers are 
deactivated by the BEEP OFF command. If this combination is in 
operation, however, the external speakers are activated despite the 
command to the contrary. 



Introduction to Sound 435 

SOUND 

The SOUND statement has an alternate configuration which is 
used to actually create sounds. This configuration is as follows: 

SOUND pitch, duration, volume, voice 

The pitch is the frequency in Hertz. The pitch can be any number 
within the range of 37 to 32767. This number does not have to be an 
integer. If the value specified is less than 110, the frequency 110 Hz 
will be generated, since 110 Hz is the lowest frequency which the PCjr 
can support. A value of 32767 will create silence. If the pitch is 14000 
or higher, we won't be able to hear it. 

Each musical note has a corresponding frequency. When work­
ing with SOUND, that frequency must be specified. Table 22.1 lists 
some common notes and their frequencies. 

Table 22.1. Note-frequency list 

Note Frequency Note Frequency 

C 261.63 middle C 523.25 
C# 277.18 C# 554.37 
D 293.66 D 587.33 
D# 311.13 D# 622.25 
E 329.63 E 659.26 
F 349.23 F 698.46 
F# 369.99 F# 739.99 
G 392.00 G 783.99 
G# 415.30 G# 830.61 
A 440.00 A 880.00 
A# 466.16 A# 932.33 
B 493.88 B 987.77 



436 IBM PCjr for Students 

In order to raise a note one octave, double that note's frequency. 
To lower the note one octave, halve the frequency. Pitch is a required 
parameter. 

The duration is also required. The duration is the length of time a 
note or a rest is to be sustained. One second is equivalent to 18.2 
duration counts. If you want a note to be sustained for three seconds, 
the value of the duration parameter should be 54.6. If the value 
specified is zero, the note will not be played. 

Volume is an optional parameter. The value can be any number 
within the range ofO to 15, inclusive. Numbers with decimal portions 
will be rounded to integers. If the specified value is 0, no sound will be 
generated. Fifteen is both the loudest option and the default value. 

The final optional parameter is voice. A voice is a mechanism 
which can produce any one note. The PCjr has three tonal voices and 
one noise voice. With SOUND only the three tonal voices can be 
accessed. This parameter can have an integer value of 0, I, or 2. Zero 
is the default value. The following program uses SOUND to play a 
scale: 

Ok 
LIST 
10 SOUND ON 
20 BEEP ON 
30 SOUND 523.25,2 
40 SOUND 587.33,2,13 
50 SOUND 659.26,2, 11 
60 SOUND 698.46,2,9 
70 SOUND 783.99,2, 11 
80 SOUND 880.00,2, 13 
90 SOUND 987.77,2,15 

100 END 
Ok 
RUN 

This program produces the tones of the octave which begins at 
middle C. Line IO activates the tone generator. Line 20 is not required 



Introduction to Sound 437 

since, by default, the external speakers are activated. Lines 30 
through 90 create the tones. Duration is constant, but the volume 
varies. Only one voice, voice 0, was used in this program. If the voices 
had been mixed, chords would have been generated instead of single 
notes. 

When Cassette BASIC is active, only one sound at a time is 
produced. After each SOUND statement, execution continues nor­
mally until another SOUND statement is encountered. Execution 
pauses until the first sound is completed. Then the second sound is 
executed. If this new sound has a duration of zero, the voice is quieted 
immediately. 

Cartridge BASIC, on the other had, has the capacity to buffer, or 
store in memory, up to 32 unplayed notes. Execution is continued 
even when a new SOUND is encountered. If a tone with a duration of 
zero is buffered, an error will result. 

PLAY 

In order to activate all three voices at once, three SOUND 
statements would be required. While this method is effective, it is not 
efficient. BAS I C's PLAY statement is more efficient. The statement's 
configuration is as follows: 

PLAY music0$,music I $,music2$ 

M usic0$, music l $, and music2$ are string constants or expressions of 
music commands. These music commands are similar to the GDL 
commands used with DRAW, so they have been referred to as the 
"tune definition language." The first string controls voice 0, the 
second string controls voice 1, and the third string controls voice 2. If 
any string is omitted, that voice is not used. 



438 IBM PCjr for Students 

Notes 

L 

Unlike SOUND which relies on frequencies, PLAY uses the 
actual notes. This command has the following format: 

Note sharp or flat 

The note is a letter between A and G, inclusive. The note may be 
followed by a symbol indicating sharp or flat. Either# or+ may be 
used to indicate a sharp note, and a - may be used to denote a flat 
note. The following commands illustrate the use of PLAY using one, 
two, and three voices: 

Ok 
SOUND ON 
Ok 
PLAY "D F# DC+ F# C+" 
Ok 
PLAY "CDE","EFG" 
Ok 
PLAY "CDE","EFG","GAB" 
Ok 

SOUND ON activated the tone generator. The second command 
used both sharp symbols in order to play the first two measures of 
"The Band Played On." In the third command, two voices were used, 
and in the final command all three voices were used to create very 
simple chords. The voices may be used in any combination. 

L is used to set the length of the notes. If Lis unspecified, as in 
our previous example, quarter notes will be generated. This com-



Introduction to Sound 439 

mand has the following format: 

L number 

The number is required and may be any integer within the range of I 
to 64. A value of 1 indicates that the note is to be a whole note, a value 
2 indicates a half note, and a value of 4 denotes a quarter note. If Lis 
specified, all subsequent notes will have that value until Lis changed. 
If you want to change the length of only one note, follow that note by 
the value. An example is A8. In this case, A will be played as an eighth 
note. This change in A's duration will not affect the duration of other 
notes. The following program demonstrates the use of L: 

Ok 
LIST 
10 SOUND ON 
20 PLAY "L4 F8 F8 FC" 
30 PLAY "LS AAA4 F4 FA" 
40 END 
Ok 
RUN 

This program plays the opening notes of "Clementine." In line 
20, length is set to quarter notes, but the first two notes were played as 
eighth notes. In line 30, length is set to 8, so eighth notes are the 
default value. 



440 IBM PCjr for Students 

MBandMF 

MB plays music in the background. In other words, MB acti­
vates the tone generator's buffering capability. MB is the standard 
value. In contrast, MF deactivates the buffer. Running the following 
program will illustrate the effects of MB and MF: 

Ok 
LIST 
10 SOUND ON 
20 PLAY "MF CD E2 E2" 
30 PLAY "C2 DEF","E2 FGA" 
40 FORK= 1 TO 2000:NEXT K 
50 PLAY "MB L4 CD E2 E2" 
60 PLAY "C2 DEF","E2 FGA" 
70 END 
Ok 
RUN 

This program plays the first notes of "My Old Kentucky Home." 
Lines 20 and 30 are executed with music in the foreground. In other 
words, line 20 must be completed prior to line 30 being played. In lines 
50 and 60, however, the buffer has been activated. Line 60's voice 1 
begins playing before it should, creating some strange sound combina­
tions. 

Articulation 

Articulation is the proportion of a note's length which is actually 
played. With Microsoft BASIC, three articulation options exist: ML, 
MN, and MS. ML stands for music legato. This command indicates 
that each note is to be played its entire length. No break between notes 
occurs. 

MN is the default value. MN stands for music normal. Each note 
is played for .875 times its length. A very short break separates the 
notes. 



N 

Introduction to Sound 441 

Finally, MS is short for music staccato. With music staccato, 
each note is played for. 75 * its length. The notes are clearly separated. 
The following program demonstrates the distinctions between the 
three commands: 

Ok 
LIST 
10 SOUND ON 
20 PLAY "ML D8 D DBE G 8282" 
30 PLAY "MN DB D DBE G A1" 
40 PLAY "MS DB D DBE 8 A2A2" 
50 END 
Ok 
RUN 

This program plays part of "Tom Dooley." Line 20 has music 
legato. Each note blends in with the next note. MN is specified in line 
30, causing the notes to sound similar to their previous status. Finally, 
in line 40, music staccato is specified, and each note is played very 
distinctly. 

The notes do not have to be identified by letters. They may also 
be identified by numbers which correspond to the keys of a piano. N 
has the following format: 

N note number 

The note number falls within the range of 0 to 84. A value of zero 
denotes a rest. The note with a value of 1 corresponds to the lowest 
key on the piano, and note 84 corresponds to the highest key. Middle 



442 IBM PCjr for Students 

0 

Chas a value of 37. The following program replaces the notes speci­
fied with letters in the last example with note numbers: 

Ok 
LIST 
10 SOUND ON 
20 PLAY "ML LB N51 L4N51 LB N51 L4N53N56 L2N60N60" 
30 PLAY "MN LB N51 L4N51 LBN51 L4N53N56 L 1 N5B" 
40 PLAY "MS LB N51 L4N51 LBN51 L4N53N60 L2N5BN5B" 
50 END 
Ok 
RUN 

In this program, nothing changed except for the system of identi­
fying notes. Because of this change, however, the length had to be 
reset using L each time the note length changed. The numbers that 
specify length can only be used after letter notes. 

0 sets the octave. This command has the following structure: 

0 octave number 

The octave number is a number between O and 7 which represents the 
octave in which the notes are to be played. Octaves range from C to B, 
and octave three has middle C as its initial note. The following 
program demonstrates the effects of 0: 



p 

Ok 
LIST 
10 SOUND ON 

Introduction to Sound 443 

20 PLAY "03 EEAAA2B O4C2" 
30 PLAY "03 BO4C2O3AG1EG1" 
40 END 
Ok 
RUN 

This program plays the beginning part of "When Johnny Comes 
Marching Home." Since not all the notes are in the same octave, 
whenever the octave changes, that change must be specified. 

P denotes a pause. This command has the following format: 

P length 

The length can range from 1 to 64 and operates the same as it does 
with notes. The following program demonstrates the use of P: 

~ ~ 
Ok 
LIST 
10 SOUND ON 
20 PLAY "02 B O3CDE1 DEABEDC 02 A2 P4" 
30 PLAY "CEFG1 A GE CED1 P4" 
40 PLAY "02 B CDE1 DEAGEDC O2A2P4" 
50 END 
Ok 

~UN ~ 



444 IBM PCjr for Students 

T 

The tune played by this program is part of "Londonderry Air." 
Each line ends with a pause. In this case, the pauses are all quarter 
rests. Notice that the length must be specified. 

T sets the tempo. The tempo is the number of quarter notes per 
minute. The default value for T is 120, but T's value may be any 
integer between the range of 32 and 255. T has the following format: 

T number of quarter notes per minute 

The following program illustrates the effect of varying the value 
specified with T: 

r- Ok 
LIST 
10 SOUND ON 
20 FOR TEMPO= 50 TO 250 STEP 100 
30 PLAY "T = TEMPO;" 
40 PLAY "F8 F8FCA8A8A FF8A8 O4CC8 03 B-AG2" 
50 FOR K = 1 TO 2000:NEXT K 
60 NEXT TEMPO 
70 END 
Ok 

~RUN ~ 

This program assigns to T the values 50, 150, and 250. The value 
250 is the fastest. Notice that the value assigned to commands with 
PLAY does not have to be a constant. Variables are valid, as long as 
they are preceded by an equal sign and followed by a semicolon, as in 
line 30. 



V 

Introduction to Sound 445 

V is used to adjust the volume. This command is only valid if 
SOUND is on. V has the following format: 

V volume level 

The volume level can be any integer value which is included in the 
range of O to 15. The default value for V is 15. The next program 
demonstrates the effect of V: 

Ok 
LIST 
10 SOUND ON 
20 FOR VOL= 5 TO 15 STEP 5 
30 PLAY "V = VOL;" 
40 PLAY "03 G2 GAB2 B 04 CO2 ED 03 B1" 
50 PLAY "O4D2C 03 B A1O4C2O3 BA G1" 
60 NEXT VOL 
70 END 
Ok 
RUN 

With each cycle of the loop, the volume increases. This program 
plays part of "Long Long Ago." Notice that VOL is a variable, not a 
constant. 

Dotted Notes 

A period following a note indicates that the note is to be played 
as a dotted note. In other words, its length should be multiplied by 
1.5. C. is an example of a dotted note. A note may be dotted several 
times; C .... is an example of this possibility. In this case, C's length is 
multiplied 5.065 times. 5.065 is equal to 1.5 raised to the fourth power. 
The following program demonstrates the use of dotted notes: 



446 IBM PCjr for Students 

Ok 
LIST 
10 SOUND ON 
20 PLAY "03 GGB O4DG2. E2. CDED1." 
30 PLAY "O3GGB O4DD2. O3A28O4CO3BAG1" 
40 END 
Ok 
RUN 

This program plays part of the familiar tune, "On Top of Old 
Smokey." In line 20, G and E are dotted. In line 30, D is the only 
dotted note. Pauses may also be dotted. 

Changing Octaves 

Earlier in this lesson we discussed the use of Oto change octaves. 
The> and< signs may also be used to change octaves. The> is used 
to raise a note one octave. The< is used to lower a note one octave. 
These commands have the following formats: 

<note 
>note 

The following program demonstrates the use of these symbols to 
change octaves: 



X 

Ok 
LIST 
10 SOUND ON 

Introduction to Sound 44 7 

20 PLAY "DC8<B-8>D8C8<B->B-G8B-." 
30 PLAY "F2D<B->C1D2L8C<B->DC" 
40 PLAY "L4<B->B-G8B-FDB<B-8>CC8C8<B-1" 
50 PLAY ">A.B-8>C<FF.G8FB-B-GE-GF1" 
60 PLAY "D2L8C<B->DCL4<B->BG8B-." 
70 PLAY "FG8B-8>CC8C8<B-1" 
80 END 
Ok 
RUN 

This program plays the melody line of "Swanee." The third note 
of the song is the B flat below middle C. The< sign is used to indicate 
that the B flat belongs to the lower octave. The D, however, is back in 
the original octave; the> changes the octave back. Each time the< 
sign appears, the octave is lowered, and with each appearance of>, 
the octave is raised. Notice that the octave is not changed until the 
next > or < appears. 

X executes a substring, as it does in graphics. Its function and 
format are the same with both DRAW and PLAY. The following 
program demonstrates the use of X to create sound: 



448 IBM PCjr for Students 

Ok 
LIST 
10 SOUND ON 
20 ROW1 $ = "L4 CCC8D8E" 
30 ROW2$ = "LB EDEFG2" 
40 ROW3$ = "L4 >C<GEC" 
50 ROW4$ = "LB GFEDC2" 
60 SONG$= ROW1$ + ROW2$ + ROW3$ + ROW4$ 
70SONG$=SONG$+SONG$ 
80 PLAY "03 XSONG$;","O4P1 XSONG$;","O5 P1 

P1 XSONG$;" 
90 END 
Ok 
RUN 

This program plays "Row, Row, Row Your Boat" in a round. 
ROWI$, ROW2$, ROW3$, and ROW4$ store the song's melody. In 
line 60, the different parts of the melody are concatenated to form 
SONG$. In line 70 SONG$ is changed so that it will play twice. When 
line 80 is executed, the first voice begins the song in octave 3. After a 
whole rest, voice 1 begins the song in octave 4. One measure later, 
voice 2 begins the song in octave 5. 

Noise 

BASIC's NOISE command uses the noise voice to create sound 
effects. The noise voice has 8 types of sound, divided into two cate­
gories, periodic and white. Sounds 0-3 are periodic sounds. Periodic 
sounds are ragged, like the sound of a chain saw. Sounds 4 through 7 
are the white sounds. White sounds hiss. 

The NOISE command has the following format: 

NOISEsource, volume, duration 



Introduction to Sound 449 

The source is an integer in the range from 0 to 7. The source corres­
ponds to the sound numbers. Table 22.2 lists the sources. 

Table 22.2. Sound table 

Periodic White Source Sound 
.. 
I 
·i 

0 4 2330 Hz high, less coarse " 
1 5 1165 Hz medium 

1 2 6 582 Hz low, more coarse ( 

3 7 voice 2 freq. dependent upon 
voice 2's frequency 

= ., .. . .. . .. ., ... :. 

Sources 3 and 7 will vary in sound depending upon the frequency 
of the tonal voice, voice 2. The other sources use fixed frequencies and 
thus have fixed effects. 

Volume and duration operate similarly in the NOISE and 
SOUND commands. Volume ranges from Oto 15, and duration can 
vary. All three parameters are required. 

The following program demonstrates the possibilities of the 
NOISE statement: 

Ok 
LIST 
10 SOUND ON 
20 FOR TYPE = 0 TO 7 
30 CLS 
40 PRINT "SOURCE #";TYPE 
50 NOISE TYPE, 15,25 
60 FORK= 1 TO 2000:NEXT K 
70 NEXT TYPE 
80 END 
Ok 
RUN 



450 IBM PCjr for Students 

This program generates a sample of the sound produced by each 
of the sources. Notice the variation in pitch and type of sound. 
Volume and duration are constant. 



Introduction to Sound 451 

estio 

True or False 

I. The programmable tone generator has four voices. 

2. L4 indicates that subsequent notes should be held for 4 counts . 

3. X executes a substring. 

4. The octave which contains middle C is octave two. 

5. MF activates the tone generator's buffering capability. 

Multiple Choice 

I . Which of the following symbols may be used to sharp a note? 

A. # 
B. -
C. + 
D. Both A and C 
E. None of the above 



452 IBM PCjr for Students 

2. How many notes can be held in the buffer? 

A. I 
B. 16 
C. 32 
D. 255 
E. None of the above 

3. Which of the following commands affects the octave in which a 
note is played? 

A. 0 
B. > 
C. < 
D. All of the above 
E. None of the above 

4. Which of the following commands denotes a rest? 

A. R 
B. S 
C. T 
D. B 
E. None of the above 

Computer Exercises 

I. Write a program which generates a song. Use as many of the sound 
commands as practical. 



Programming 
Techniques 

" 

lesson 23 

Lesson Goals 

m Learn the top-down design approach to programming 

ml Explore the use of menu-driven programs and delay routines 

ffi1 Gain an understanding of programming techniques which utilize 
variables, including initializing variables, using variables as flags, 
and using significant variable names 

454 



Programming Techinques 455 

Introduction 

In this lesson no new Microsoft BASIC commands will be intro­
duced. Instead, we will explore a number of programming techniques 
which will enable you to make better use of those commands which 
you already know. 

Top-Down Design 

Top-down design is a process by which a programming problem 
is analyzed and then divided into smaller, more manageable pieces. 
Top-down design is merely a concrete elaboration of the thought 
processes which everyone uses, in one form or another, to solve prob­
lems. As an example, suppose that we want to describe how to place a 
long distance phone call to a friend. We decide to make a list of the 
steps which are involved. We can begin by writing the list's title at the 
top of a piece of paper: 

Long Distance Phone Call 1 

The next step in the formation of the list is to decide upon 
categories into which the more detailed processes can be grouped. 
The following three categories provide the desired structure: 

I. Find the telephone number 

2. Dial the telephone 

3. Use the telephone 



456 IBM PCjr for Students 

We can then add these categories to the sheet of paper: 

Long Distance Phone Call 

Find the telephone number Dial the telephone Use the telephone 

Now that we have decided upon the general categories, we can 
begin to add details to the list. First we look at the left-hand category. 
Find the telephone number is relatively clear. More details, however, 
can be specified under Dial the telephone, the second category: 

1. Dial 1 

2. If necessary, dial the area code 

3. Dial the telephone number 

After adding these steps, the list has the following appearance: 

Long Distance Phone Call 

Find the telephone number Dial the telephone 
-Dial I 
-If necessary, dial the 

area code 
-Dial the telephone 

number 

Use the telephone 



Programming Techinques 457 

Now we can turn our attention to the last category. Three subdi­
visions of this area also seem possible: 

I. Wait for an answer 

2. If answered, ask for friend 

3. If friend is present, speak to friend 

Once these steps are added, the list is complete: 

Long Distance Phone Call 

Find the telephone number Dial the telephone 
-Dial I 
-If necessary, dial the 

area code 
-Dial the telephone 

number 

Use the telephone 
-Wait for an answer 
-If answered, ask for 

friend 
-If friend is present, 

speak to friend 

The same type of reasoning is used to create a top-down design. 
The title is the level O module. A level O module is a broad specifica­
tion of the general intent. In this case, Long Distance Phone Call is 
comparable to a level O module. 

The three categories, Find the telephone number, Dial the tele­
phone, and Use the telephone, are the equivalents of level I modules. 
A level I module is a more detailed division of a level O module. The 
category Find the telephone number is complete at this level. 

The other two categories, however, are further specified. Each 
division is the equivalent of a level 2 top-down design module. A level 
2 module is called only by the level I module of which it is a subdivi­
sion. In other words, Dial the telephone number can only be accessed 
by Dial the telephone. 



458 IBM PCjr for Students 

Let's assume the list was created from a top-down design. The list 
can then be depicted visually as a top-down design chart, such as the 
following: 

Long Distance 
level 0 Phone Call 

level I Find phone Dial telephone Use telephone 
number 

Dial Dial Wait Ask Speak 

level 2 Dial 1 area phone for for to 
code number answer friend friend 

Lines connect the various steps involved in making the call. One 
module can only invoke another module if the second module resides 
at a lower level and is connected to it by a line. These lower level 
modules are detailed divisions of the higher level modules. 

The actual structure of a top-down design is largely a matter of 
style. As a result, two people will usually create different top-down 
designs. This is especially true with complex problems. 



Programming Techinques 459 

Programmers generally find top-down design to be a very eff ec­
tive technique. By dividing a larger problem into successively smaller 
components, the problem can be more easily handled. Details are less 
overwhelming since attention is focused on a segment of the problem 
instead of on the entire problem. It is also easier to derive structure 
and order for a program when a top-down design is created first. 

A top-down design should be completed prior to writing the 
program. When a programming problem seems simple, it is tempting 
to skip this preliminary step. It is not, however, a good idea. Any time 
which is saved by eliminating the top-down design step will most 
likely be required to eliminate the errors in the program. Creating a 
top-down design usually minimizes errors. 

To illustrate the use of a top-down design approach, let's exam­
ine an actual programming example. Suppose we need to write a 
program which will accept either the degree or radian measure of an 
angle. The program should then output the sine, cosine, and tangent 
of that angle. 

The first step is to create a top-down design. We begin by writing 
a name for the program. One possible name is Trigonometry Func­
tions. We then diagram this step: 

Trigonometry 
Functions level 0 

The problem is not yet clear. More details are required, so we 
look a.t the problem definition. This program is to accept the measure 
of an angle. This implies that the data needs to be input. The program 
is also supposed to output the results. Before the results can be 
output, they will need to be calculated. These three categories are the 
level I modules: 



460 IBM PCjr for Students 

Trigonometry level 0 
Functions 

I I 
Input Calculate Output 
data results results 

level I 

Instead of one large problem, we now have three smaller prob­
lems which can be analyzed individually. Our next step is isolate the 
first level l module. We then need to decide whether or not the 
module, Input data, can be clarified. In order to make this decision, 
we need to know what data will be input. Obviously, the measure of 
an angle will be specified. Since that measure may be entered in either 
degrees or radians, we will also want to know which type was used. 
These are level two modules. Our diagram now has the following 
structure: 

Trigonometry level 0 
Functions 

I 
Input Calculate Output 
data results results 

level I 

I 
Angle Measure 

measure type level 2 



Programming Techinques 461 

Next we study the module, Calculate results. The problem 
definition states that the sine, cosine, and tangent of the angle are to 
be returned. First, however, we will need to convert the angle's 
measure to radians if it has been input in degree form. We can group 
these calculations into two categories: radian conversion and trigo­
nometric calculations. These categories are level two modules. The 
specific trigonometric functions are level three modules. Our diagram 
now has the following structure: 

Trigonometry 
Functions level 0 

I 
Input Calculate Output 

data results results level 1 

I I 

Angle Measure Radian Trigonometric 
measure type conversion calculations 

level 2 

I I 

Sine Cosine Tangent level 3 

The results still have to be output. The results are the sine, cosine, 
and tangent of the angle. These three components comprise the final 
level 2 modules: 



462 IBM PCjr for Students 

I 

Input 
data 

I 

Angle IMeasur. 
measure type 

I 

lrigonometry 
Functions 

Calculate 
results 

Radian lrigonometric 
conversion calculations 

..L 
Sine 

-
I 

Sine Cosine Tangent 

-

Output 
results 

Cosine 

I 

Tangent 

level 0 

level 1 

level 2 

level 3 

Our top-down design is now complete. We can begin to write the 
program. It is a good idea to use the higher level module names in 
REM statements. If a top-down design is complete, it should be easy 
to translate into a program. The following program is a sample: 



Ok 
LIST 

Programming Techinques 463 

10 REM***TRIGONOMETRY FUNCTIONS*** 
20 REM*INPUT DATA* 
30 CLS 
40 INPUT "Enter the measure of the angle";ANGLE 
50 INPUT "Enter the measure type(D/R)";TYPE$ 
60 REM*CALCULATE RESULTS* 
70 REM*CONVERT? 
80 IF TYPE$= "D" THEN ANGLE= ANGLE* .017453 
90 REM*TRIGONOMETRIC CALCULATIONS 
100 SNANG = SIN(ANGLE) 
110 CSANG = COS(ANGLE) 
120 TNANG = TAN(ANGLE) 
130 REM*OUTPUT RESULTS* 
140 PRINT "The sine of the angle =";SNANG 
150 PRINT "The cosine of the angle =";CSANG 
160 PRINT "The tangent of the angle =";TNANG 
170 REM***END*** 
180 END 
Ok 
RUN 

Line 10 uses the name of the level 0 module as a name for the 
program. The REM statement in line 20contains the name of the first 
level 1 module. Line 30 clears the screen. When line 40 is executed, the 
angle's measure is requested. Line 50 asks whether the measure is in 
degrees or radians. 

The area of the program which corresponds to the second level 1 
module begins with line 60. Lines 60 and 70 contain REM statements. 
In line 80 the angle measure, if specified in degrees, is converted to 
radians. The level 2 module, Trigonometric calculations, calls three 
level 3 modules. Line 90 identifies the level 2 module, while lines 100 
through 120 calculate the sine, cosine, and tangent of the angle. In 
those lines the results are also assigned to variables. 

Line 130 begins the next level I module. It has three output 
modules at level 2. Lines 140 through 160 output the data. The 
program ends with lines 170 and 180. 



464 IBM PCjr for Students 

Delay Routine 

The purpose of a delay routine is to postpone but not prevent the 
occurrence of the next event in a sequence. A delay routine may or 
may not contain an actual loop. The graphics programs in lesson 21 
often used a loop such as the following: 

FOR J = I TO 1000:NEXT J 

The duration of the delay is dependent upon the amount of time 
which the PCjr requires in order to complete the specified number of 
loops. As the number of loops increases, the duration also increases. 
This type of delay routine is often used to postpone clearing the 
screen. 

The second type of delay routine does not involve looping. The 
input of a character or characters is required before the program's 
execution can continue. The following modification of the previous 
program demonstrates this type of delay routine: 

Ok 
LIST 
10 REM***TRIGONOMETRY FUNCTIONS*** 
20 REM*INPUT DATA* 
30 CLS 
40 INPUT "Enter the measure of the angle";ANGLE 
50 INPUT "Enter the measure type(D/R)";TYPE$ 
60 REM*CALCULATE RESULTS* 
70 REM*CONVERT? 
80 IF TYPE$= "D" THEN ANGLE = ANGLE * .017453 
90 REM*TRIGONOMETRIC CALCULATIONS 
100 SNANG = SIN(ANGLE) 
110 CSANG = COS(ANGLE) 

program continued on next page 



Programming Techinques 465 

120 TNANG = TAN(ANGLE) 
130 REM*OUTPUT RESULTS* 
140 PRINT "The sine of the angle =";SNANG 
150 PRINT "The cosine of the angle =";CSANG 
160 PRINT "The tangent of the angle =";TNANG 
170 REM*DELAY ROUTINE* 
180 PRINT: PRINT "Press any key to clear screen." 
190 K$ = INPUT$(1) 
200 REM***END*** 
210 CLS 
220 END 
Ok 
RUN 

Lines IO through 160 are unaltered. Line 170, however, uses a 
REM statement to identify the addition. Line 180 prints the prompt. 
When line 190 is executed, the program waits for a key to be pressed. 
Once this condition is met, lines 200 through 220 are executed. The 
screen is cleared, and the program ends. 

Menu-Driven Programming 

The programs which have been presented in this book have been 
short. Several short, related programs may be grouped into one large 
program. The different options are then presented as part of a menu. 
A menu in computer programming is similar to a restaurant menu in 
that it presents a number of available selections. The following dia­
gram illustrates a possible menu screen display: 



466 IBM PCjr for Students 

1: Find the area of a square 
2: Find the area of a triangle 
3: Find the area of a circle 
4: Exit 

Enter your selection?_ 

The person who is running the program is presented with a list of 
choices such as the one above and is asked to make a selection. That 
choice is then executed. The following program demonstrates the use 
of menu-driven programming: 

Ok 
LIST 
10 REM***SIMPLE MATH*** 
20 REM*MENU* 
30 REM*PRINT MENU 
40 CLS: PRINT "1: Add two numbers" 
50 PRINT "2: Subtract two numbers" 
60 PRINT "3: Multiply two numbers" 
70 PRINT ''.4: Divide two numbers" 
80 REM*INPUT CHOICE 
90 PRINT: INPUT "Enter selection";NUM 
100 REM*INPUT NUMBERS* 
110 PRINT: INPUT "Enter two numbers";NUM1,NUM2 
120 REM*SUBROUTINE CALLS* 
130 IF NUM = 1 THEN GOSUB 1000 
140 IF NUM = 2 THEN GOSUB 2000 

program continued on next page 



Programming Techinques 467 

150 IF NUM = 3 THEN GOSUB 3000 
160 IF NUM = 4 THEN GOSUB 4000 
170 REM*PRINT RESULTS* 
180 PRINT "The result =";ANSWER 
190 REM***END*** 
200 END 
1000 REM*ADDITION SUBROUTINE* 
1010 ANSWER= NUM1 + NUM2 
1020 RETURN 
2000 REM*SUBTRACTION SUBROUTINE* 
2010 ANSWER= NUM1 - NUM2 
2020 RETURN 
3000 REM*MULTIPLICATION SUBROUTINE* 
3010 ANSWER= NUM1 * NUM2 
3020 RETURN 
4000 REM*DIVISION SUBROUTINE* 
4010 ANSWER= NUM1 / NUM2 
4020 RETURN 
Ok 
RUN 

Lines lO through 30 contain REM statements. Lines 40 through 
70 result in the menu being printed. Line 80 is a comment. When line 
90 is executed, the number of the menu selection is requested. This is 
followed by lines 100 and 110 which request the two operands. Lines 
120 through 160 contain the subroutine calls. If NUM is equal to I, 
the addition subroutine in lines I 000 through I 020 is executed. In this 
subroutine the numbers are summed. On the other hand, if NUM is 
equal to 2, the subtraction subroutine which begins in line 2000 is 
executed. The second value is then subtracted from the first. A value 
of 3 stored in NUM indicates that multiplication is to be performed. 
The subroutine in lines 3000 through 3020 is then executed. Finally, if 
NUM is equal to 4, the values are divided by the subroutine which is 
contained in lines 4000 through 4020. 

In line 170 a REM statement indicates a new segment of the 
program. Line 180 prints the result. Lines 190 and 200 end the 
program. 



468 IBM PCjr for Students 

Menu-driven programming is, in certain situations, a natural 
result of using top-down design. Whenever only one of a series of 
modules on a level is to be executed, a menu may be an excellent 
choice. 

Techniques using Variables 

Several simple programming techniques involve variables. In 
this section of the lesson we will discuss initializing variables, using 
variables as flags, and using significant variable names. 

Initializing Variables 

Initializing variables is the process of assigning specific values to 
certain variables prior to their usage within a program. The need for 
initializing variables can best be illustrated using a simple analogy. 
Suppose you were counting the change in each of your pockets. You 
would normally begin counting at zero and sum the value of the coins. 
When you begin to count the change in your other pocket, you begin 
counting at zero again. This process of initializing variables is similar 
to beginning your count with zero. In programming, initialization is 
most often used when working with loops. Running the following 
program will demonstrate how failing to initialize certain variables 
can cause errors: 



Ok 
LIST 

Programming Techniques 469 

10 REM***MILEAGE*** 
20 CLS: INPUT "Enter number of cars";CARS 
30 FOR LOOP = 1 TO CARS 
40 CLS: PRINT TAB(15) "CAR NUMBER";LOOP 
50 PRINT: INPUT "Enter number of trips";TRIP 
60 FOR LOOP2 = 1 TO TRIP 
70 INPUT "Enter miles";MILES 
80 DRIVEN = DRIVEN + MILES 
90 NEXT LOOP2 
100 INPUT "Enter gallons of gasoline";GASOLINE 
110 MILEAGE= DRIVEN / GASOLINE 
120 PRINT: PRINT "Mileage =";MILEAGE 
130 PRINT: PRINT "Press any key to continue." 
140 K$ = INPUT$(1) 
150 NEXT LOOP 
160 REM***END*** 
170 CLS 
180 END 
Ok 
RUN 

Line 10 contains a REM statement which identifies the program. 
Line 20 requests the number of cars. This value is used to determine 
the length of the loop which begins in line 30. Each time the loop is 
executed, the screen is cleared and the car number is listed. This 
occurs in line 40. In line 50 the person who is running the program is 
asked to enter the number of trips which that car made. Lines 60 
through 90 comprise a loop which sums the miles driven on each trip. 
The number of repetitions of the loop is equal to the number of trips. 
When line I 00 executes, the user is asked to enter the total number of 
gallons of gasoline which was used on those trips. The mileage is then 
dete_rmined in line 110 by dividing the miles driven by the gallons of 
gasoline which were used. Line 120 prints the result. Lines 130 and 



470 IBM PCjrforStudents 

140 contain the second type of delay routine. Execution to determine 
the mileage for the second car is postponed until a key is pressed. 
Then the loop is incremented, and execution continues. 

Notice that when this program is run, the results are unreasona­
ble except for the first car. This effect is the result of not initializing the 
variable DRIVEN. The number of miles driven is added to the 
number of miles driven by all previous cars. The addition of line 35 
corrects the problem: 

Ok 
LIST 
10 REM***MILEAGE*** 
20 CLS: INPUT "Enter number of cars";CARS 
30 FOR LOOP = 1 TO CARS 
35 DRIVEN= 0 
40 CLS: PRINT TAB(15) "CAR NUMBER";LOOP 
50 PRINT: INPUT "Enter number of trips";TRIP 
60 FOR LOOP2 = 1 TO TRIP 
70 INPUT "Enter miles";MILES 
80 DRIVEN = DRIVEN + MILES 
90 NEXT LOOP2 
100 INPUT "Enter gallons of gasoline";GASOLINE 
110 MILEAGE= DRIVEN/ GASOLINE 
120 PRINT: PRINT "Mileage =";MILEAGE 
130 PRINT: PRINT "Press any key to continue." 
140 K$ = INPUT$(1) 
150 NEXT LOOP 
160 REM***END*** 
170 CLS 
180 END 
Ok 
RUN 

DRIVEN was initialized in line 35. If the initialization had 
occurred prior to line 30, the value would not have been reset between 
cars. If initialization had occurred after line 60, the variable would 
have been reset with every trip, not every car. 



Programming Techniques 471 

Flags 

A flag is a variable with either a true or a false value. This value 
indicates whether or not a condition or process is complete. An 
everyday example of a flag is a dryer buzzer. When the drying time has 
run out, the buzzer sounds. In programming, a flag is used most often 
with an IF THEN controlled loop or with a WHILE, WEND loop. 
The following program illustrates the use of a flag: 

Ok 
LIST 
10 REM***FLAG PROGRAM*** 
20 CLS 
30 INCOMPLETE= -1 
40 WHILE INCOMPLETE 
50 INPUT "Enter a number(0 to end)";VALUE 
60 IF VALUE= 0 THEN INCOMPLETE= 0 
70 SUM = SUM + VALUE 
80 WEND 
90 PRINT "Sum =";SUM 
100 END 
Ok 
RUN 

Line IO contains a REM statement which identifies the program. 
In line 20 the screen is cleared. When line 30 is executed, INCOM­
PLETE, the flag variable, is assigned a value of true. As long as 
INCOMPLETE evaluates to true, the loop in lines 40 through 80 will 
repeat. In that loop, a value is requested. If the value is equal to zero, 
INCOMPLETE is set to false. The values are summed in line 70. 
When INCOMPLETE is equal to 0, the sum is printed. The value 
which is stored in the flag indicates whether or not the process is 
complete. 



4 72 IBM PCjr for Students 

Significant Variable Names 

By now you are probably aware that it is easier to follow pro­
grams in which the variable names have meaning. Using meaningful 
variable names is called using significant variable names. Programs 
which employ this technique are easier to debug and require fewer 
comments. 



Programming Techniques 4 73 

estio 

True or False 

I. A delay routine must contain an actual loop. 

2. Menu-driven programming and top-down design are incompati­
ble. 

3. The process of assigning a variable a specific value prior to the use 
of that variable is called flagging. 

4. Using variable names which indicate the functions of the variables 
is called using significant variable names. 

Multiple Choice 

I. What is the first step in programming? 

A. Initializing the variables 
B. Writing the program 
C. Flagging 
D. Creating a top-down design 
E. None of the above 



4 7 4 IBM PCjr for Students 

2. Which of the following is a result of top-down design? 

A. Details are deferred 
B. Structure is more easily achieved 
C. Logic errors are reduced 
D. Number of GOTO statements is 

minimized 
E. All of the above 

3. What is the purpose of a delay routine? 

A. Prevent an event from occurring 
B. Postpone the occurrence of an event 
C. Speed up execution 
D. Halt execution 
E. None of the above-

4. Which of the following groups several short programs together? 

A. Top-down design 
B. Delay routines 
C. Initializing variables 
D. Using significant variable names 
E. None of the above 

Essay 

I. Create a top-down design which describes how to order a pizza. 



Section 3 

476 



In Section 2 you began programming the computer. You gained a 
general understanding of Microsoft BA SIC's history and learned 
how to operate the PCjr. You also worked with several BA SIC 

commands and statements. Finally, you learned some special program­
ming techniques. 

In this section titled "A PPL/CATIONS", we will present several 
ways in which you might use the PCjr to aid in your school work. These 
ideas are not meant to be a complete listing. They are merely intended as a 
starting point for your own ideas. In this section we will attempt to 
accomplish the following goals: 

□ Explore how the PCjr can contribute to the study of 
mathematics 

□ Discuss ways in which the PCjr can be applied to the 
field of science 

□ Explain how to use the PCjr with a word processing 
program to format papers and reports 

477 



,---

1 
I 

I 
I 

App ications for 
Mathematics 

lesson24 

Lesson Goals 

Iii Consider ways in which the PCjr can be used to solve problems 
involving algebra 

II Explore methods in which the PCjr can be used to work with 
geometry 

Ill Examine ways in which the PCjr can assist in the study of 
trigonometry 

478 



Applications for Science 479 

Introduction 

Now that you have learned the elementary concepts of BASIC, 
you can begin to apply that knowledge. By this time you are probably 
familiar with the PCjr's entertainment value. The PCjr, however, can 
also be used to transform tedious tasks into more enjoyable experien­
ces. In this lesson we will discuss some ways you can apply your 
programming skills in conjunction with the PCjr to increase the 
effectiveness of the time you spend studying mathematics. 

Algebra 

Writing programs to perform computations can be very efficient. 
This is especially true if the computations involved will be used 
repeatedly. Writing a program may also be the most efficient means 
of processing large amounts of data. Even when it is not the most 
efficient option, writing a program to solve a problem which involves 
a method which you do not completely understand may be an excel­
lent idea. In the process of writing the program you may well find that 
you have mastered the method. 

The PCjr can be programmed to solve a number of different 
types of problems, including algebraic ones. We do not intend, how­
ever, to present all of the possibilities. In this section we will present 
and discuss one example in detail. Programming is esentially a crea­
tive process, so the examples in this section and the ones following are 
designed to serve as a springboard for your own ideas. 

One type of problem which the PCjr can solve, given the right 
program, is finding the roots of a quadratic equation. Remember that 
a quadratic equation has the form: 

ax2 +bx+ c 

where a and b are coefficients, and c is a constant. The following 
program uses the quadratic formula, (-b ± {b2 - 4ac)½) / (2a), to find 
the roots of any quadratic equation: 



480 IBM PCjr for Students 

Ok 
LIST 
10 REM***QUADRATIC FORMULA*** 
20 CLS 
30 INPUT "Enter the X 2 coefficient";A 
40 INPUT "Enter the X coefficient";8 
50 INPUT "Enter the constant";C 
60 D = (8 A 2) - (4 * A* C) 
70 IF D <0 THEN GOTO 140 
80 X1 = (-8 + SQR(D)) / (2 * A) 
90 X2 = (-8 - SQR(D)) / (2 * A) 
100 IF D = 0 THEN GOTO 180 
110 PRINT "X = ";X1 ;" or X =";X2 
120 INPUT "Do you wish to continue(Y/N)";ANS$ 
130 IF ANS$= "Y" THEN GOTO 20 ELSE GOTO 200 
140 R = -8 / (2 * A) 
150 I = (A8S(D) A .5) / (2 * A) 
160 PRINT "X = ";R;"+";l;"i or X = ";R;" - ";l;"i" 
170 GOTO 120 
180 PRINT "X = ";X1 
190 GOTO 120 
200 CLS 
210 END 
Ok 
RUN 

The program begins with a REM statement. The REM state­
ment contains the title of the program. After the screen is cleared in 
line 20, the person running the program is asked to input the value of 
the coefficients and the constant. 

The computations begin when line 60 is executed. In line 60 the 
discriminant's value is determined. The discriminant, D, is b2 - 4ac 
and is located under the square root sign. If the discriminant's value is 
negative, the roots are complex, and execution branches to line 140. 
As long as the value of the discriminant is positive or zero, the 
equation has at least one rational root. These roots are determined in 
lines 80 and 90 by applying the quadratic formula. The discriminant is 
not recalculated since its value has not changed. 



Applications for Science 481 

If the value of D is zero, the equation has only one root. In this 
case, the statement in line 100 causes the program to branch to line 
180. Line 110 contains the output routine for two rational roots. 

In lines 120 and 130, the person running the program is asked to 
decide whether or not the program is to be executed again. If you 
intend to work with more than one set of data at a sitting, it is a good 
idea to include a routine in which the user is asked to make such a 
choice. Line 140 is never executed if the roots are rational. If the roots 
are complex, however, their rational part is determined by the com­
putation contained in line 140. In constrast, line 150 calculates the 
irrational part of the roots. Lines 170 and 190 branch to line 120. Line 
180 is only executed if both roots are the same. Lines 200 and 210 clear 
the screen and end the program. 

Geometry 

The PCjr can also be programmed to solve problems which 
involve geometry. The calculations which are required to solve 
geometry problems are seldom complicated but often plentiful. Pro­
grams to handle this type of a situation may be structured in a variety 
of ways. One option, as we discussed in the last lesson, is to write a 
short program for each calculation. For example, you could write one 
program to find the area of a square and another to find the area of a 
triangle. Suppose, however, you need to find the area of a figure 
which includes both a square portion and a triangular portion. In the 
process of obtaining the area of the triangular portion with the second 
program, the area of the square portion, which was returned by the 
first program, will be lost. These difficulties can be avoided by group­
ing several small programs into one larger menu-driven program. The 
data can then be more easily shared. The following program is menu­
driven and can calculate the area of a triangle, the length of a side, or 
the measure of an angle of the triangle: 



482 IBM PCjr tor Students 

Ok 
LIST 
10 REM***TRIANGLE PROGRAM*** 
20 CLS: PRINT TAB(18) "MENU" 
30 PRINT: PRINT "1: Area of a triangle" 
40 PRINT "2: Length of third side(2 sides given)" 
50 PRINT "3: Measure of third angle(2 angles given)" 
60 PRINT "4: Exit":PRINT 
70 INPUT "Enter the number of the desired option";NUM 
80 IF NUM = 1 THEN GOTO 200 
90 IF NUM = 2 THEN GOTO 300 
100 IF NUM = 3 THEN GOTO 500 
110 IF NUM = 4 THEN GOTO 600 
120 PRINT "Invalid selection.":PRINT 
130 GOTO70 
200 REM* AREA 
210 CLS: INPUT "Enter height";H 
220 INPUT "Enter base";B 
230 A = .5 * (B * H) 
240 PRINT "The area is";A 
250 GOSUB 1000 
260 GOTO20 
300 REM*LENGTH OF SIDE 
310 CLS:INPUT "Enter length of leg";A 
320 INPUT "Enter length of other leg(0 if unknown)";B 
330 INPUT "Enter length of hypotenuse(0 if unknown)";C 
340 IF C = 0 THEN GOTO 380 
350 B = SOR (C A 2 - A A 2) 
360 PRINT "The length of the leg is";B 
370 GOTO400 
380 C = SOR (A A 2 + B A 2) 
390 PRINT "The length of the hypotenuse is";C 
400 GOSUB 1000 
410 GOTO20 
500 REM*THIRD ANGLE 
510 CLS: INPUT "Enter first angle";ANG1 
520 INPUT "Enter second angle";ANG2 
530 ANG3 = 180 - (ANG1 + ANG2) 
540 PRINT "The third angle is";ANG3 
550 GOSUB 1000 
560 GOTO20 

program continued on next page 



600 REM*EXIT 
610 CLS 
620 END 

Applications for Science 483 

1000 REM*DELAY SUBROUTINE* 
1010 PRINT "Press any key to continue." 
1020 A$ = INPUT$(1) 
1030 RETURN 
Ok 
Run 

The REM statement in line 10 assigns a name to the program. 
Lines 20 through 60 list the menu selections. Note that the option 
specified in line 60 allows the program to be exited gracefully. A 
selection similar to line 60 is frequently included as part of a menu­
driven program. In line 70 the person running the program is asked to 
enter the number of the selected option. This number determines 
which of the subprograms will be executed. Lines 80 through 110 
branch to the appropriate subprogram. If the value which is entered is 
not one of the menu options, the message, "Invalid selection," appears 
on the screen, and the user is asked to make another choice. This 
process is defined in lines 120 and 130. 

Lines 200 through 260 comprise the subroutine which calculates 
the area of a triangle. Notice that the subprogram is identified by a 
REM statement. When lines 210 and 220 execute, the person running 
the program is asked to enter the values for the height and base. These 
values are multiplied together and divided by two when line 230 
executes. The result of this computation, the area of a triangle, is 
printed by line 240. In line 250 a subroutine is called. This subroutine 
is a delay subroutine which waits to clear the screen until a key is 
pressed. After the subroutine has executed, the statement in line 260 
branches to the menu portion of the program. 



484 IBM PCjr for Students 

Lines 300 to 410 comprise the subprogram which is used to 
determine the length of the third side of a triangle. To make the 
subprogram easier to find, line 300 contains an identifying REM 
statement. Lines 310 through 330 ask the person who is running the 
program to enter the lengths, using a O to identify the missing side. If 
the hypotenuse's length needs to be determined, lines 350 through 370 
are not executed due to the effect of line 340. If the leg's length is 
missing, the length of the specified leg is squared and subtracted from 
the square of the hypotenuse. The square root of this result is deter­
mined and assigned to B. This process, which is defined in line 350, is 
based upon the Pythagorean Theorem. The Pythagorean Theorem 
states that the square of the length of the hypotenuse is equal to the 
sum of the squares of the legs' length. 

Line 360 prints the value of B along with an appropriate message. 
Line 370 branches to line 400. If the length of the hypotenuse is 
unknown, A and B are squared and summed. The square root of the 
resultant value is calculated and assigned to C in line 380. Line 390 
prints the results. After the results are printed, line 400 branches to the 
delay subroutine. Once the subroutine has been executed, the menu 
appears. 

Lines 500 through 560 are used to determine the measure of a 
missing angle. In lines 510 and 520, the user is asked to input the 
values for the two known angles. Since the sum of the degree mea­
sures of the interior angles of the triangle must, by definition, equal 
180 degrees, the values of the known angles are subtracted from 180, 
and the result is assigned to ANG3 in line 530. Line 540 prints the 
result. Lines 550 and 560 execute the delay subroutine and then 
branch to the menu, respectively. 

In lines 600 through 620, the screen is cleared, and the program is 
ended. Lines 1000 through 1030 comprise the delay subroutine. This 
subroutine causes the program to wait for the user to indicate that the 
screen can be cleared. 

Another program structure is often desired when several distinct 
calculations are to be performed with the same items of data. The 
following program computes the distance, midpoint, and slope of a 
line which connects two points: 



Ok 
LIST 

Applications for Science 485 

10 REM***DISTANCE, MIDPOINT, SLOPE*** 
20 CLS:INPUT "Enter X coordinate of first point";X1 
30 INPUT "Enter Y coordinate of first point";Y1 
40 INPUT "Enter X coordinate of second point";X2 
50 INPUT "Enter Y coordinate of second point";Y2 
60 PRINT 
70 XDIS = X2 - X1 
80 YDIS = Y2 - Y1 
90 DIST = SQR(XDIS A 2 + YDIS A 2) 
100 IF XDIS = 0 OR YDIS = 0 THEN GOTO 120 
110 M = YDIS / XDIS 
120 XMID = (X2 + X1) / 2 
130 YMID = (Y2 + Y1) / 2 
140 PRINT "The distance is";DIST 
150 PRINT "The midpoint is (";XMID;",";YMID;")" 
160 IF XDIS = 0 THEN PRINT "The line is vertical.":GOTO 190 
170 IF YDIS = 0 THEN PRINT "The line is horizontal.":GOTO 190 
180 PRINT "The slope is";M:PRINT 
190 INPUT "Do you wish to continue(Y/N)";ANS$ 
200 IF ANS$= "Y" THEN 20 
210 CLS 
220 END 
Ok 
Run 

Lines IO through 60 serve as the introduction to the program. 
Line IO names the program. Lines 20 through 50 allow the user to 
input the coordinates of the line segment's end points. These coordi­
nates are stored in the variables XI, YI, X2, and Y2. 

In lines 70 and 80, preliminary computations are performed. 
Line 70 calculates the distance between the two X coordinates. Line 
80 calculates the distance between the Y coordinates. These values, 
the coordinate-specific distances, are needed for the calculation 
which line 90 defines. This calculation is based upon the distance 
formula which is as follows: 

Distance between two points= ((X2 - Xl)2 + (Y2 - Y1)2)½ 



486 IBM PCjr for Students 

Lines 100 and 110 determine the slope of the line. If either XD IS 
or YDIS is equal to zero, line 110 is skipped. The calculation of the 
slope in line 110 is based upon the following slope formula: 

Slope= (Y2 - Yl) / (X2 - Xl) 

This formula is often described as "rise over run." 
The final set of calculations determines the coordinates of the 

line's midpoint. The X coordinate of the midpoint is computed in line 
120 and is equal to the sum of the X coordinate values divided by two. 
The same basic equation is used in line 130 to calculate the Y coordi­
nate of the midpoint. 

Lines 140 through 180 print the results. The distance and mid­
point are displayed on the screen as a result of the statements in lines 
140 and 150. If the line is vertical, that fact is conveyed by line 160. 
Line l 70's message is only displayed if the line is horizontal. Line 180 
is executed only if neither of the previous conditions is met. Lines 190 
through 210 contain the ending routine. 

Trigonometry 

The calculations required to solve trigonometry problems are 
often complex. In this section we will present one program which 
combines many of the factors we discussed in lesson 23, including a 
reliance upon subroutines for structure. The following program is 
designed to use trigonometry to solve for the remaining dimensions of 
a right triangle when given two dimensions, at least one of which is the 
length of a side: 



Ok 
LIST 
10 REM***TRIG PROGRAM*** 
20 CLS 

Applications for Science 487 

30 X = 0:Y = 0:DEG = 0:DEG2 = 0:HYP = O:ADJ = 0:OPP =0:DONE = 0 
40 PRINT "PARTS OF A TRIANGLE" 
50 PRINT:PRINT "1: Angle in degrees" 
60 PRINT "2: Length of adjacent side" 
70 PRINT "3: Length of opposite side" 
80 PRINT "4: Length of hypotenuse" 
90 PRINT:INPUT "Which two parts are known";X,Y 
100 IF X = 1 ORY= 1 THEN INPUT "Enter angle";DEG 
110 IF X = 2 ORY= 2 THEN INPUT "Enter length of adjacent side";ADJ 
120 IF X = 3 ORY= 3 THEN INPUT "Enter length of opposite side";OPP 
130 IF X = 4 ORY= 4 THEN INPUT "Enter length of hypotenuse";HYP 
140 IF DEG<> 0 THEN GOSUB 1000 
150 IF DONE THEN GOTO 210 
160 IF ADJ<> 0 AND OPP<> 0 THEN GOSUB 2000 
170 IF DONE THEN GOTO 210 
180 IF ADJ<> 0 AND HYP <> 0 THEN GOSUB 3000 
190 IF DONE THEN GOTO 210 
200 IF OPP<> 0 AND HYP <> 0 THE GOSUB 4000 
210 PRINT "The angle =";DEG 
220 PRINT "The other angle =";DEG2 
230 PRINT "The adjacent side =";ADJ 
240 PRINT "The opposite side =";OPP 
250 PRINT "The hypotenuse =";HYP 
260 PRINT:INPUT "Do you wish to continue(Y/N)";ANS$ 
270 IF ANS$= "Y" THEN GOTO 20 
280 CLS 
290 END 
1000 REM* ANGLE SUBROUTINE* 
1010 DEGR =DEG* .017453 
1020 DEG2 = 90 - DEG 
1030 IF ADJ<> 0 THEN GOTO 1090 
1040 IF HYP <> 0 THEN GOTO 1130 
1050 REM*KNOW OPP.DEG 
1060 HYP = OPP* (1 / SIN(DEGR)) 
1070 ADJ= OPP* (1 / TAN(DEGR)) 
1080 DONE= -1:RETURN 
1090 REM*KNOW ADJ,DEG 
1100 OPP= ADJ* TAN(DEGR) 
1110 HYP = ADJ * (1 / COS(DEGR) 

program continued on next page 



488 IBM PCjr for Students 

1120 DONE= -1:RETURN 
1130 REM*KNOW HYP,DEG 
1140 ADJ= HYP * COS(DEGR) 
1150 OPP= HYP * SIN(DEGR) 
1160 DONE= -1:RETURN 
2000 REM*KNOW ADJ.OPP SUBROUTINE* 
2010 DEG= ATN (OPP/ ADJ)* 57.29578 
2020 HYP = SQR (ADJ A 2 + OPP A 2) 
2030 DEG2 = 90 - DEG 
2040 DONE= -1 :RETURN 
3000 REM*KNOW ADJ,HYP SUBROUTINE* 
3010 OPP= SQR (HYP A 2 - ADJ A 2) 
3020 DEG= ATN (OPP/ ADJ)* 57.29578 
3030 DEG2 = 90 - DEG 
3040 DONE= -1:RETURN 
4000 REM*KNOW OPP,HYP SUBROUTINE* 
4010 ADJ= SQR (HYP A 2 - OPP A 2) 
4020 DEG = ATN (OPP/ ADJ) * 57.29578 
4030 DEG2 = 90 - DEG 
4040 DONE= -1 :RETURN 
Ok 
Run 

Lines IO through 90 introduce the program. Line IO provides a 
name for the program. After the screen is cleared in line 20, several 
variables are initialized in line 30. Because of the program's structure, 
these variables need to be reset to 0 before each execution. Lines 40 
through 80 list the menu. Line 90 asks the person running the pro­
gram to identify which two parts of the triangle have known dimen­
sions. That data is stored in X and Y. 

Lines 100 through 130 comprise the input routine. If the user has 
indicated that the measure of an angle is known, that information is 
requested by line 100. The measure of the angle is then assigned to 
DEG. If either X or Y is equal to two, the length of the adjacent side, 
ADJ, is requested. This process occurs in line 110. In line 120 the 
length of the opposite side is requested if X or Y is equal to 3. OPP 
then stores that value. Finally, if X or Y is equal to 4, the person 
running the program is asked to enter the length of the hypotenuse. 
HYP is then assigned that value. 



Applications for Science 489 

Another complicated series of GOSUB and GOTO statements 
appears in lines 140 through 200. Remember that the values of all the 
variables used in this segment of the program are equal to zero, except 
for those values which the user input. Line 140 checks the value stored 
in ~ EG. If that value is not equal to zero, then the person running the 
program specified the measure of an angle. In this case, the subrou­
tine which calculates the dimensions of the remaining sides and angle 
is called. This subroutine begins at line 1000. 

Within the subroutine, DONE is set to true, or-1. DONE is a flag 
which indicates that the dimensions of all of the sides and angles are 
known. Line 150 checks the status of DONE. If DONE is equal to -1, 
the program branches to line 210. 

If the dimensions are not yet calculated, line 160 is executed. The 
condition in line 160 evaluates to true only if both ADJ and OPP have 
been assigned nonzero values. If this is true, the subroutine which 
begins at line 2000 is executed. Within this subroutine, DONE is also 
assigned a value of-1. Line 170 contains another check on DONE's 
status. If DONE is false, no branching occurs. 

In contrast, line 180 checks whether ADJ and HYP have non­
zero values. If this condition evaluates to true, the subroutine in lines 
3000-3040 is called. Again, DONE is set to true within the subroutine, 
and line 190 contains a check on the flag's status. If DONE is still 
equal to zero, line 200 is executed. Line 200 calls the subroutine which 
begins in line 4000 if the values for OPP and HYP do not equal zero. 

To make this discussion clearer, we will trace an example. Sup­
pose the values of ADJ and HYP have been specified. The condition 
in line 140 evaluates to false because DEG is still equal to zero. The 
GOSUB 1000 statement is not executed. Since DONE's value is 
unchanged, that condition evaluates to false, and line 160 is executed. 
The value of ADJ does not equal 0, but the value of OPP is still equal 
to zero. The condition thus evaluates to false. DONE's value remains 
equal to zero, so line 180 is executed after line 170. Since both ADJ 
and HYP contain nonzero values, the subroutine which begins at line 
300_0 is executed, and the remaining dimensions are calculated. 
DONE is set to true before RETURN is encountered. When line 190 
is executed, the condition evaluates to true, and the program 
branches to line 210. Line 200 is never executed. 



490 IBM PCjr for Students 

Lines 210 through 250 print the results of the calculations. 
Appropriate messages are also output. Lines 260 through 290 com­
prise the routines which ask whether the program should continue. 
Unless the answer is yes, the program will end. 

The longest subroutine is contained in lines 1000 through 1160. 
This subroutine is composed of four smaller areas. The first of these 
areas contains the calculations which are needed by the subsequent 
areas and consists of lines 1010 through 1040. In line 1010 the value in 
DEG is converted to its equivalent in radians. The resultant value is 
assigned to DEGR. In line 1020 the value for the other angle is 
computed. Since the triangle is a right angle, by definition, one angle 
is a right angle which measures 90 degrees. Ninety subtracted from 
180 leaves 90 degrees which are shared by the other two angles. Since 
DEG has been specified, DEG2 is equal to DEG subtracted from 90. 
DEG2 is the other angle. Lines 1030 and 1040 determine the branch­
ing. If the value of ADJ is nonzero, the program branches to line 
1090. If HYP has a nonzero value, line 1040 branches to line 1130. 

If neither of these conditions evaluates to true, lines 1050 
through 1080 are executed. HYP is calculated in line 1060 by taking 
the reciprocal of the sine of DEGR and multiplying that value by the 
value stored in OPP. Remember that the sine of an angle is equal to 
the length of the opposite side divided by the length of the hypote­
nuse. In order for this value multiplied by the length of the opposite 
side to yield the length of the hypotenuse, we need a slightly different 
equation. The following equation will suffice: 

. . hypotenuse 
length of hypotenuse = length of opposite side * . . 

opposite side 

The hypotenuse divided by the opposite side is the definition of the 
cosecant. The PCjr, however, does not have a cosecant function. The 
cosecant, though, is the reciprocal of the sine and the PCjr does have a 
built-in sine function. Table 24.1 lists the trigonometric functions and 
their interrelationships. The cosecant function can be simulated by 
dividing one by the sine of DEG. The result is assigned to HYP. 



Applications for Science 491 

Table 24.1. Trigonometric Functions 

Name Definition Relationship 

sin A= opposite 
hypotenuse 

cosA = adjacent 
hypotenuse 

tanA = opposite sine A 
adjacent cos A 

sec A= hypotenuse 1 --
adjacent cos A 

csc A= hypotenuse 1 --
opposite sin A 

cot A= adjacent 1 --
opposite tan A 

Once two sides are known, the third side's length can be deter­
mined using the Pythagorean Theorem. In this case, however, we 
chose to simulate the cotangent function. The cotangent function is 
equal to the reciprocal of the tangent. Remember that the tangent of a 
value is equal to the length of the opposite side divided by the length 
of the adjacent side. The reciprocal, the cotangent of a value, is equal 
to the length of the adjacent side divided by the length of the opposite 
side. When this value is multiplied by OPP, ADJ, the adjacent side's 
length, is returned. This calculation occurs in line 1070. In line 1080 
DONE is assigned the value -1, and the subroutine is exited. 

Lines 1090 through 1120 comprise the area of the subroutine 
which is executed if ADJ's value is known. Line 1090 identifies the 
region with a REM statement. In line 1100 the length of the hypote­
nuse is calculated. The secant function is simulated by taking the 
reciprocal of the cosine of DEGR. As we discussed earlier, the cosine 
is equal to the length of the adjacent side divided by the length of the 
hypotenuse. The secant of a value is equal to the length of the 
hypotenuse divided by the length of the adjacent side. When the 



492 IBM PCjr for Students 

reciprocal of the cosine is multiplied by the length of the adjacent side, 
the length of the hypotenuse is returned. In contrast, the opposite 
side's measure can be determined simply by multiplying TAN(D EG R) 
by ADJ, since the tangent ofDEGR is equal to OPP divided by ADJ. 
This occurs in line 1110. Line 1120 is identical to line 1080. The flag is 
set to -1, and the subroutine is exited. 

Lines 1 130 through 1160 are structured similarly to the lines in 
the two preceding areas. The hypotenuse is the known side. ADJ is 
equal to HYP multiplied by the cosine of DEGR, since the cosine is 
the adjacent side's length divided by the sine of DEGR, or opposite 
side divided by hypotenuse. In line 1160, DONE is assigned the value 
of -1, and the subroutine is exited. 

Line 2000 begins a new subroutine. This subroutine, as the REM 
statement indicates, is executed if ADJ and OPP have nonzero 
values. In line 2010 the value of DEG is determined. Remember that 
OPP divided by ADJ is equal to the tangent of DEG. The arctangent 
returns the radian measure of an angle whose tangent is equal to the 
calling value. Since that condition is fulfilled by dividing OPP by 
ADJ, the arctangent of that value returns the radian measure of 
DEG. Prior to storing the value, it is converted to degrees. In line 2020 
the length of the hypotenuse is calculated by using the Pythagorean 
Theorem. Line 2030 computes the value of DEG2, and line 2040 sets 
the flag and exits the subroutine. 

The subroutines which begin at lines 3000 and 4000 are very 
similar to lines 2000 through 2040. In each, the length of the missing 
side is calculated using the Pythagorean Theorem. DEG and DEG2's 
values are calculated using exactly the same process as in lines 2010 
and 2030. The last line of each subroutine is also identical to line 2040. 

Notice that the use of subroutines divides the program into 
smaller, more manageable pieces. Each subroutine can be individu­
ally written and debugged. 



' \ 
• 

I , 

0 

\ ' 

• I 
\ ' • 
' J 

. 
• • I . 

~ 

-

H2 + 1/2 02 - H 2 0 

App ications for 
Science 

lesson 25 

Lesson Goals 

mi Gain an understanding of how the PCjr can assist in the study of 
chemistry 

mi Explore the potential for using the PCjr as an aid in the study of 
physics 

494 



Applications for Science 495 

Introduction 

In the last lesson, we examined how the PCjr can be used in your 
study of mathematics. The PCjr can also assist you in your science 
studies. In this lesson we will discuss examples of the ways in which 
the PCjr can be useful in your studies in the fields of chemistry and 
physics. 

Chemistry 

Solving a chemistry problem may require a number of calcula­
tions. Any or all of these calculations can be performed on the PCjr, 
given the right program. In the following sections, we will explore 
four programs which demonstrate applicable methods. 

Conversion Program 

Often one of the first steps in obtaining the solution to a chemis­
try problem is to convert the units with which you were provided into 
those units with which you want to work. An example is a problem in 
which the data is specified in inches but the equation requires data in 
centimeters. Converting the data is simple but tedious. The following 
program uses a menu and handles a number of standard conversions 
into the metric system: 



496 IBM PCjr for Students 

Ok 
LIST 
10 REM***CONVERSION PROGRAM*** 
20 CLS: PRINT TAB(18) "MENU" 
30 PRINT: PRINT TAB(11) "Metric Conversions" 
40 PRINT: PRINT TAB(11) "1: Length" 
50 PRINTTAB(11) "2: Mass" 
60 PRINT TAB(11) "3: Temperature" 
70 PRINT TAB(11) "4: Volume" 
80 PRINT TAB(11) "5: Exit" 
90 PRINT: INPUT "Enter your selection";NUM 
100 IF NUM = 1 THEN GOTO 170 
110 IF NUM = 2 THEN GOTO 270 
120 IF NUM = 3 THEN GOTO 370 
130 IF NUM = 4 THEN GOTO 470 
140 IF NUM = 5 THEN GOTO 570 
150 PRINT "Invalid selection." 
160 PRINT:GOTO 90 
170 REM*LENGTH 
180 CLS:PRINT 
190 PRINT TAB(17) "LENGTH" 
200 PRINT: INPUT "Enter the number of inches";INCH 
210 PRINT: CENTI= 2.54 * INCH 
220 METER= CENTI/ 100 
230 PRINT "Centimeters =";CENTI 
240 PRINT "Meters =";METER 
250 GOSUB 1000 
260 GOTO 20 
270 REM*MASS 
280 CLS:PRINT 
290 PRINT TAB(18) "MASS" 
300 PRINT: INPUT "Enter number of pounds";LB 
310 PRINT: KILO= LB/ 2.204 
320 GRAM = LB * 453.6 
330 PRINT "Kilograms =";KILO 
340 PRINT "Grams =";GRAM 
350 GOSUB 1000 
360 GOTO 20 
370 REM*TEMPERATURE 
380 CLS: PRINT 
390 PRINT TAB(12) "TEMPERATURE" 
400 PRINT: INPUT "Enter degrees Farenheit";F 
410 PRINT: C = (5 I 9) * (F - 32) 
420 K = C + 273.15 

program continued on next page 



Applications for Science 497 

430 PRINT "Degrees Celsuis =";C 
440 PRINT "Degrees Kelvin =";K 
450 GOSUB 1000 
460 GOTO 20 
470 REM*VOLUME 
480 CLS: PRINT 
490 PRINT TAB(17) "VOLUME" 
500 PRINT: INPUT "Enter number of ounces";OZ 
510 PRINT: MILLI =OZ* 29.57 
520 LITER = MILLI / 1000 
530 PRINT "Milliliters =";MILLI 
540 PRINT "Liters =";LITER 
550 GOSUB 1000 
560 GOTO 20 
570 REM***END*** 
580 CLS 
590 END 
1000 REM*DELAY SUBROUTINE* 
1010 PRINT: PRINT "Press any key to continue." 
1020 A$= INPUT$(1) 
1030 RETURN 
Ok 
RUN 

Lines 10 through 160 comprise the menu portion of the program. 
A REM statement which identifies the program is contained in line 
10. When lines 20 through 80 execute, the menu options appear on the 
screen. The person who is running the program is asked in line 90 to 
select one of the options. Lines 100 through 140 then branch based 
upon the value of NUM to the appropriate area of the program. If 
NUM is equal to 1, lines 170 through 260 will be executed next. A 
value of 2 stored in NUM indicates that the region of the program 
which begins in line 270 should be executed. A value of 3 indicates a 
branch to line 370, and a value of 4 represents a branch to line 470. If 
NUM is equal to 5, the program will be exited as a result of the 
statements which are contained in lines 570, 580, and 590. 

Lines 150 and 160 will only be executed if NU M does not store a 
value of 1, 2, 3, 4, or 5. In this event, a message which indicates that an 
invalid selection was entered appears on the screen. A new selection is 
then requested. 



498 IBM PCjr for Students 

The conversion of a number of inches into equivalent metric 
values is accomplished by lines 170 through 260. In line 170 this area 
of the program is identified by a REM statement. Line 180 clears the 
screen, and line 190 is responsible for causing the word, length, to 
appear on the screen. In line 200 the person who is running the 
program is asked to input the number of inches. The value is then 
assigned to INCH. Since I inch is equal to 2.54 centimeters, the value 
of INCH is multiplied by 2.54, and the result is assigned to CENTI. 
This process occurs in line 210. One meter is equal to 100 centimeters, 
so the value assigned to METER in line 220 is CENTI divided by 100. 
In lines 230 and 240, the results are output. Line 250 calls the delay 
subroutine, and line 260 branches to the menu. 

The conversion of mass units occurs in lines 270 through 360. 
The structure of this part of the program is similar to the structure of 
the length subprogram. Lines 270 through 290 identify this region of 
the program. In line 300 the number of pounds is requested and 
assigned to LB. One kilogram is equal to 2.204 pounds, so the value 
stored in LB is divided by 2.204 and assigned to KILO. When line 320 
executes, LB is multiplied by 453.6 because 453.6 grams are the 
equivalent of I pound. Lines 330 and 340 output the results, and lines 
350 and 360 branch to other areas of the program. 

The temperature conversions which result from the statements in 
lines 370 through 460 and the volume conversions contained in lines 
470 through 560 share the previous structure. Only the conversion 
factors, messages, and variable names differ. 

Lines 570 through 590 end the program. Line 570 contains a 
REM statement, and line 580 is responsible for clearing the screen. 
When line 590 is executed, the program ends. 

The delay subroutine is contained in lines 1000 through 1030. 
The program's execution pauses until a key is pressed. 



Applications for Science 499 

Percentage Composition 

Another required step in the solution of many chemistry prob­
lems involves working with grams, moles, and percentage composi­
tion. The percentage composition is the percentage of an element by 
weight in a compound. For example, oxygen is 89% by weight of 
water, H20. The following comparatively short program demon­
strates this method: 

Ok 
LIST 
10 REM***MOLES,GRAMS,PERCENTAGES*** 
20 CLS: INPUT "Enter number of grams of A";GRMA 
30 INPUT "Enter atomic weight of A";ATMA 
40 INPUT "Enter atomic weight of S";ATMS 
50 INPUT "Enter A:S mole ratio";RATA,RATS 
60 INPUT "Enter number of grams of compound";GRMC 
70 MOLA= GAMA/ ATMA 
80 MOLS =(MOLA/ RATA) * RATS 
90 GRMS = MOLS * ATMS 
100 PERCENTA =GAMA/ GRMC * 100 
110 PERCENTS= GRMS / GRMC * 100 
120 PRINT: PRINT "Moles of A =";MOLA 
130 PRINT "Moles of S =";MOLS 
140 PRINT "Grams of S =";GRMS 
150 PRINT "Percentage of A =";PERCENTA 
160 PRINT "Percentage of S =";PERCENTS 
170 PRINT: INPUT "Do you wish to continue(Y/N)";ANS$ 
180 IF ANS$= "Y" THEN GOTO 20 
190 CLS 
200 END 
Ok 
RUN 

Line lO contains a REM statement which identifies the program. 
Lines 20 through 60 ask for the necessary data: the grams of A, atomic 
weight of A, atomic weight of B, the coefficients of A and B in a 
balanced chemical equation, and the grams of the compound. 



500 IBM PCjr for Students 

Lines 70 through 110 perform the computations. The number of 
moles of A, MO LA, is determined by dividing the atomic weight of A 
by the number of grams of A. This process occurs in line 70. Since the 
number of grams of B is not specified, another method must be used 
to determine the number of moles of B. In line 80 MOLA is divided by 
RATA, A's coefficient. In the same line, this result is multiplied by 
RATB, B's coefficient, yielding the moles of B, MO LB. The grams of 
B, GRMB, are then determined in line 90 by multiplying MOLB by 
ATMB. The percentages by weight of A and Bare calculated in lines 
100 and 110 by dividing the grams of each element by the total weight 
of the compound. 

Lines 120 through 160 comprise the output routine. The person 
who is running the program is then asked in line 170 whether or not 
the program should be executed again. If the value entered is "Y", the 
program branches to line 20 as a result of line 180. Any other answer 
executes the ending routine in lines 190 and 200. 

Limiting Reagent 

During a reaction, the reactants combine to form the product or 
products. The reactants are rarely present in exactly the right propor­
tion. When this is the case, one of the reactants acts as a limit to the 
quantity of the product which will result. This reactant is the limiting 
reagent. The following program determines which reactant is the 
limiting reagent and returns other relevant information: 



Ok 
LIST 
10 REM***LIMITING REAGENT*** 

Applications for Science 501 

20 CLS: INPUT "Enter number of grams of A";GRMA 
30 INPUT "Enter number of grams of B";GRMB 
40 INPUT "Enter atomic weight of A";ATMA 
50 INPUT "Enter atomic weight of B";ATMB 
60 INPUT "Enter A:B mole ratio";RTAB,RTBA 
70 INPUT "Enter A:C mole ratio";RTAC,RTCA 
80 INPUT "Enter molecular weight of the product";MWTP 
90 MOLA= GAMA/ ATMA 
100 MOLB = GRMB / ATMB 
110 LRCALC = (MOLB / RTBA) - (MOLA/ RTAB) 
120 IF LRCALC > 0 THEN A= -1 ELSE A= 0 
130 PRINT 
140 IF LRCALC = 0THEN PRINT"Both reactantsareconsumed.":GOTO 260 
150 IF A THEN GOTO 220 
160 REM*B IS LIMITING REAGENT 
170 PRINT "Bis the limiting reagent." 
180 AMTU = (MOLA - (MOLB * (RTAB / RTBA))) * ATMA 
190 PRINT "Grams of A unreacted =";AMTU 
200 MOLC = MOLB * (RTCA / (RTAC / RTAB * RTBA)) 
210 GOTO 270 
220 REM*A IS LIMITING REAGENT 
230 PRINT "A is the limiting reagent." 
240 AMTU = (MOLB - (MOLA * (RTBA / RTAB))) * ATMB 
250 PRINT "Grams of B unreacted =";AMTU 
260 MOLC = MOLA * (RTCA / RTAC) 
270 REM*CLOSING 
280 GRMC = MOLC * MWTP 
290 PRINT "Moles of product produced=";MOLC 
300 PRINT "Grams of product produced =";GRMC 
310 PRINT: INPUT "Do you wish to continue(Y/N)";ANS$ 
320 IF ANS$= "Y" THEN GOTO 20 
330 CLS 
340 END 
Ok 
RUN 

Line IO contains a REM statement which identifies the program. 
Lines 20 through 80 request information: the grams of A and B, the 
atomic weights of A and B, the coefficients of A, B, and C, and the 
molecular weight of C. 



502 IBM PCjr for Students 

The preliminary calculations occur when lines 90 through 150 
execute. The number of moles of A, MOLA, is calculated in line 90 by 
dividing the grams of A, GRMA, by the atomic weight of A which is 
stored in ATMA. Line 100 calculates the number of moles of B, 
MOLB, in a similar manner. The calculation which is used to deter­
mine whether A or Bis the limiting reagent occurs in line 110. MOLB 
is divided by B's coefficient, RTBA. MOLA is then divided by RTAB, 
A's coefficient. The second value is subtracted from the first, and the 
result is assigned to LRCALC. If LRCALC's value is greater than 0, 
A is the limiting reagent. In line 120 the variable A is assigned a true 
value if the reactant A is the limiting reagent. Otherwise, A is assigned 
a value of false, 0. Line 140 checks whether LRCALC is equal to 0, 
indicating that both reactants were completely consumed. If 
LRCALC is equal to zero, an appropriate message is printed, and the 
program branches to line 260. If A is the limiting reagent, line 220 is 
executed as a result of the statement in line 150. 

Lines I 60 through 2 IO are executed only if the reactant B is the 
limiting reagent. Line 160 contains a REM statement which introdu­
ces the section, and line 170 prints an appropriate message. In line 180 
the amount of A which remains is calculated. R TAB is divided by 
R TBA. This result is multiplied by M OLB and then subtracted from 
MOLA. The resultant value is multiplied by the atomic weight of A. 
This calculation returns the number of grams of A which were not 
involved in the reaction. Line 190 prints the result. In line 200 the 
number of moles of the product which were produced are calculated. 
RTAC, the coefficient specified for A in relation to C, is divided by 
RTAB. This value is multiplied by RTBA. The next computation 
divides RTCA, C's coefficient, by the result. Finally, MOLB is 
multiplied by the resultant value, and the value is assigned to MOLC. 
Control then branches to line 270 as a result of line 210. 



Applications for Science 503 

If A is the limiting reagent, lines 220 through 260 are executed. 
Line 220 contains the identifying REM statement, and line 230 prints 
the message. When line 240 is executed, the amount of B which is 
unreacted is calculated. First the ratio of B to A is determined. 
MOLA is then multiplied by the ratio. This computation yields the 
number of moles of B which were consumed. To determine the moles 
of B which remain, this value is subtracted from MOLB. Since 
AMTU is to contain the number of grams which were not used, the 
number of unused moles is muliplied by the atomic weight of B. The 
resultant value is printed by line 250. Line 260 calculates the moles of 
C which were produced. 

Lines 270 through 340 comprise the closing routine. Line 270 is a 
REM statement. In line 280, the grams of C which were produced, 
GR MC, are calculated. Lines 290 and 300 print the values of MO LC 
and GR MC. When line 310 executes, the person running the program 
is asked whether the program should be executed again. Line 320 
evaluates the input value. If the value is not "Y", lines 330 and 340 end 
the program. 

Ideal Gas Law 

The ideal gas law consist of an equation with one constant and 4 
variables. It states that for an ideal gas, the pressure multiplied by the 
volume is equal to the universal gas constant, the number of moles, 
and the temperature multiplied together. The value of any of the 
variables can be determined when the values of the other variables are 
known. The following program uses a menu and subroutines to solve 
for the unknown variable: 

Ok 
LIST 
10 REM***IDEAL GAS LAW*** 
20 CLS: PRINT TAB(18) "MENU" 
30 PRINT "1: N = number of moles" 

program continued on next page 



504 IBM PCjr for Students 

40 PRINT "2: P = pressure" 
50 PRINT "3: T = temperature" 
60 PRINT "4: V = volume" 
70 PRINT: INPUT "Enter the unknown variable";UNKNOWN 
80 IF UNKNOWN= 1 THEN GOSUB 1000 
90 IF UNKNOWN= 2 THEN GOSUB 1100 
100 IF UNKNOWN= 3 THEN GOSUB 1200 
110 IF UNKNOWN = 4 THEN GOSUB 1300 
120 IF UNKNOWN= 1 OR UNKNOWN= 2 OR UNKNOWN= 3 OR 

UNKNOWN= 4 THEN GOTO 150 
130 PRINT "Invalid selection." 
140 GOTO 90 
150 INPUT "Do you wish to continue(Y/N)";ANS$ 
160 IF ANS$= "Y" THEN GOTO 20 
170 CLS 
180 END 
1000 REM*N UNKNOWN SUBROUTINE* 
1010 CLS: INPUT "Enter pressure";P 
1020 INPUT "Enter temperature in K";T 
1030 INPUT "Enter volume in liters";V 
1040 N = (P * V) / (.08206 * T) 
1050 PRINT "The number of moles is";N 
1060 RETURN 
1100 REM*P UNKNOWN SUBROUTINE* 
1110 CLS: INPUT "Enter number of moles";N 
1120 INPUT "Enter temperature in K";T 
1130 INPUT "Enter volume in liters";V 
1140 P = N * .08206 * T / V 
1150 PRINT "The pressure is";P 
1160 RETURN 
1200 REM*T UNKNOWN SUBROUTINE* 
1210 CLS: INPUT "Enter number of moles";N 
1220 INPUT "Enter pressure";P 
1230 INPUT "Enter volume in liters";V 
1240 T = P * V / (N * .08206) 
1250 PRINT "The temperature is";T 
1260 RETURN 
1300 REM*V UNKNOWN SUBROUTINE* 
1310 CLS: INPUT "Enter number of moles";N 
1320 INPUT "Enter pressure";P 
1330 INPUT "Enter temperature in K";T 
1340 V = N * .08206 * T / P 
1350 PRINT "The volume is";V 
1360 RETURN 
Ok 
RUN 



Applications for Science 505 

Lines IO through 70 comprise the introduction and menu por­
tions of the progam. The REM statement in line IO identifies the 
program. Lines 20 through 60 print the menu. In line 70 the selection 
is requested and is stored in UNKNOWN. 

Lines 80 through 110 branch to the appropriate subroutine. If 

UNKNOWN is equal to 1, the number of moles is to be determined. 
Line 80 then branches to the subroutine which begins in line 1000. A 
value of 2 indicates that the pressure is unknown, so line 90 calls the 
subroutine in lines 1100 through 1160. Line 100 calls line 1200 if 
UNKNOWN stores a value of 3. If unknown is equal to 4, the 
program branches to line 1300 as a result of line 110. 

The comparisons in line 120 indicate whether or not a valid 
option was specified for UNKNOWN. If UNKNOWN contains a 
valid value, the program branches to line 150. Lines 130 and 140 
execute if an invalid selection was made. The program then branches 
to line 90. Lines 150 through 180 comprise the ending routine. 

The first subroutine begins in line 1000. Line 1000 identifies the 
subroutine with a REM statement. When lines 1010 through 1030 
execute, the pressure, temperature, and volume are requested. Line 
1040 calculates the number of moles, N. Remember that the ideal gas 
law states the following: 

pressure• volume= .08206 • number of moles • temperature 

Using this equation, the value for N can be found by multiplying 
.08206 by the temperature and then dividing the result into the 
left-hand side of the equation. This occurs in line 1040. In lines 1050 
and 1060, the resultant value for N is printed, and the subroutine is 
exited. 



506 IBM PCjr for Students 

The subroutines which compute the values of the pressure, 
volume, and temperature are similar in structure to lines 1000 
through 1060. The value for P, the pressure, is computed by the 
subroutine which begins in line 1100. The values for the other varia­
bles are input when lines 1110, 1120, and I 130 execute. P is then 
computed in line 1140 by dividing the right-hand side of the equation 
by V, the volume. After this value is output in line 1150, the subrou­
tine is exited. 

Lines 1200 through 1260 execute if T, the temperature, is the 
unknown. The value for Tis computed by dividing the left-hand side 
of the equation by .08206 multiplied by N. The result is then output, 
and the subroutine is exited. 

The final subroutine, lines 1300 through 1360, only executes if V 
is the unknown. V's value is determined in line 1340 by dividing the 
right-hand side of the equation by P. 

Physics 

Since physics is basically a mathematical science, the same tech­
niques which have been discussed in both this lesson and the last 
lesson can be applied to its study. In this section of the lesson, we will 
explore two examples of how to program the PCjr to solve physics 
problems. 

Motion 

Part of the study of elementary physics is the study of motion. 
Translational motion, or uniform motion in a straight line, is a 
concept which is introduced early and analyzed quantitatively. The 
PCjr can solve a translational motion problem if it is provided with a 
program such as the following: 



Ok 
LIST 

Applications for Science 507 

10 REM***MOTION PROBLEMS*** 
20 REM*INPUT DATA 
30 CLS 
40 VS = 0:XS = 0:TS = 0:AS = 0 
50 GOSUB 1000 
60 K$ = K1$ 
70 GOSUB 1500 
80 GOSUB 2500 
90 K$ = K2$ 
100 GOSUB 1500 
110 GOSUB 2500 
120 REM*CALCULATIONS 
130 IF VS AND XS THEN GOSUB 3000 
140 IF VS AND TS THEN GOSUB 3500 
150 IF VS AND AS THEN GOSUB 4000 
160 IF XS AND TS THEN GOSUB 4500 
170 IF XS AND AS THEN GOSUB 5000 
180 IF TS AND AS THEN GOSUB 5500 
190 REM*OUTPUT RESULTS 
200 CLS 
210 PRINT "V =";V 
220 PRINT "X =";X 
230 PRINT "T =";T 
240 PRINT "A =";A 
250 PRINT: PRINT "Do you wish to continue(Y/N)";ANS$ 
260 IF ANS$= "Y" THEN GOTO 20 
270 CLS 
280 END 
1000 REM*MENU SUBROUTINE* 
1010 PRINT "V = velocity" 
1020 PRINT "X = position" 
1030 PRINT "T = time" 
1040 PRINT "A= acceleration" 
1050 PRINT: INPUT "Which two have known values"; K1$,K2$ 
1060 RETURN 
1500 REM*ENTER VALUE SUBROUTINE* 
1510 PRINT "For ";K$;", enter the value"; 
1520 INPUT VALUE 
1530 RETURN 
2500 REM*ASSIGNMENT SUBROUTINE* 
2510 IF K$ = "V" THEN V = VALUE:VS = -1 
2520 IF K$ = "X" THEN X = VALUE:XS = -1 
2530 IF K$ = "T" THEN T = VALUE:TS = -1 
2540 IF K$ = "A" THEN A= VALUE:AS = -1 

program continued on next page 



508 IBM PCjr for Students 

2550 RETURN 
3000 REM*V,X KNOWN SUBROUTINE* 
3010 T = (2 * X) / V 
3020 A= V / T 
3030 RETURN 
3500 REM*V,T KNOWN SUBROUTINE* 
3510 X = .5 * V * T 
3520 A= V /T 
3530 RETURN 
4000 REM*V,A KNOWN SUBROUTINE* 
4010 T = V / A 
4020 X = V " 2 / (2 * A) 
4030 RETURN 
4500 REM*X,T KNOWN SUBROUTINE* 
4510 V = 2 * (X / T) 
4520 A= V / T 
4530 RETURN . 
5000 REM*X,A KNOWN SUBROUTINE* 
5010 V = (2 *A* X) " .5 
5020 T = V / A 
5030 RETURN 
5500 REM*T,A KNOWN SUBROUTINE* 
5510 X = .5 * A * T " 2 
5520 V =A* T 
5530 RETURN 
Ok 
RUN 

Lines IO and 20 contain REM statements which identify the 
program and the section, respectively. Line 30 clears the screen. When 
line 40 executes, the variables, VS, XS, TS, and AS, are initialized. 
These variables are used by the program to indicate which other 
variables have specified values. 

The GOSUB statement in line 50 branches to the subroutine 
which operates the menu. Lines 1000 through 1060 comprise this 
subroutine. When lines IO IO through 1040 execute, the menu options 
are printed. Line 1050 identifies which two values are known. These 
values are stored in K 1 $ and K2$. The subroutine is exited in line 
1060. 



Applications for Science 509 

In line 60 the value in KI$ is assigned to K$. This process enables 
the subroutine in lines 1500 through I 530 to be used to input the 
specific values for both KI$ and K2$. Line 70 calls this subroutine, 
and the program branches to line 1500. After the subroutine is identi­
fied in line 1500, a prompt is printed as a result of line 1510. Line 1520 
then requests the known value and assigns that number to VALUE. 
Line 1530 branches to the main program. 

Line 80 contains another subroutine call. This subroutine is the 
assignment subroutine which is contained in lines 2500 through 2550. 
The REM statement in line 2500 identifies the subroutine. Lines 2510 
through 2540 are responsible for assigning the value which is stored in 
VALUE to the appropriate variable. If K$ is equal to "V", then 
VALUE is assigned to V by line 2510. In addition, the variable VS is 
assigned a true value. VS indicates that a value for V was specified. If 
K$ contains a value of "X", then VALUE is assigned to X, and - I is 
assigned to XS. This occurs in line 2520. Similar processes occur in 
lines 2530 and 2540 if K$ is equal to "T" or "A", respectively. Line 
2550 branches back to the main program. 

Lines 90 through 110 repeat the process for K2$. The value of 
K2$ is assigned to K$ in line 90. When line 100 is executed, the 
subroutine in line 1500 is invoked. Line 110 calls the assignment 
subroutine. 

The REM statement in line 120 identifies this section of the 
program. Lines 130 through 180 call subroutines which calculate the 
values for the other two variables. Which subroutine is invoked is 
dependent upon the contents of VS, XS, TS, and AS. If VS and XS 
contain values of true, the program branches in line 130 to line 3000. 
If values for V and T have been specified, lines 3500 through 3530 will 
be executed after line 140. Lines 150 checks the status of VS and AS. 
Values of true in those variables will elicit a branch to the subroutine 
which begins in line 4000. Similarly, the values which are stored in XS 
and TS determine whether or not the program will branch to line 
4500. The status of these variables is checked in line 160. Lines 170 
and 180 contain similar subroutine calls which depend on the status of 
AS in conjunction with XS and TS respectively. 



51 0 IBM PCJr for Students 

Line 190 contains a REM statement which identifies the next 
section of the program. In line 200 the screen is cleared. Lines 210 
through 240 print the values contained in V, X, T, and A. When line 
250 executes, the person who is running the program is asked whether 
or not the program should be executed again. If the answer is "Y", line 
260 branches to line 20. Otherwise lines 270 and 280 clear the screen 
and end the program. 

Line 3000 begins the subroutines which calculate the missing 
values. These calculations are based upon the following equations: 

X = .5 *A* TA 2 

V=A*T 

X = .5 * V * T 

V = (2 * A * X) A .5 

Equation 1 

Equation 2 

Equation 3 

Equation 4 

Notice that each equation involves three variables. Two variables 
must, by definition, have known values, but the value for the other 
variable is un~nown. Through algebraic manipulation of these equa­
tions, the value for any of these variables can be determined. The 
subroutine in lines 3000 through 3030 assumes that the values for V 
and X are known. The REM statement in line 3000 identifies this 
point. Tis computed by solving equation 3 for T. This occurs in line 
3010. Line 3020 then calculates A based upon equation 2. 

Lines 3500 through 3530 compute the values for X and A when V 
and Tare known. Line 3510 uses equation 3 to calculate the value for 
X. That value is required by line 3520 to determine the value for A. 
When line 3530 is executed, control shifts to the main program. 

The remaining four subroutines parallel these. The equations are 
manipulated in order to compute the values of the unknowns. The 
main program is then called. 



Applications for Science 511 

Work 

A physics program does not need to be long to be effective. Some 
equations are used so often that you may find writing a simple 
program to solve such an equation to be very efficient. Determining 
how much work has been done, W, is a frequent problem. One 
formula which can be used to determine W is W = FS cos8. The 
following program computes W's value using this formula: 

Ok 
LIST 
10 REM***WORK PROBLEMS*** 
20 CLS: INPUT "Enter the force";F 
30 INPUT "Enter the distance";DIST 
40 INPUT "Enter the angle";ANG 
50 INPUT "Enter the measure type";TYPE$ 
60 IF TYPE$= "D" THEN ANG= ANG * .017453 
70 W = F * DIST * COS(ANG) 
80 PRINT "The work done =";W 
90 PRINT: INPUT "Do you wish to continue(Y/N)";ANS$ 
100 IF ANS$= "Y" THEN GOTO 20 
110 CLS 
120 END 
Ok 
RUN 

Line l O contains a REM statement which identifies the program. 
Lines 20 through 50 request data. If the angle measure is input in 
degrees, line 60 converts the measure to its radian equivalent. In line 
70 Wis calculated by multiplying together the force, the distance, and 
the cosine of the angle. Line 80 prints the resultant value. When line 
90 executes, the person running the program is asked whether the 
program should be executed again. If the answer is "Y", line 100 
branches to line 20. Any other answer causes lines l 10 and 120 to be 
executed. In those lines the screen is cleared and the program ends. 



8 

Writing Papers 
and Reports 

lesson 26 

Lesson Goals 

E l.Rarn how to use the word processing program Home Word, 
created by Sierra On-Line, Inc., to write papers and reports 

512 



Writing Papers a11d Reports 513 

Introduction 

Papers, reports, and other written item~ can be created on the 
PC}r with the assistance of a word processing program and a printer. 
With a word processing program, papers can be easily modified and 
corrected without spending long hours at a typewriter. Word process­
ing programs also allow multiple copies of a written item to be output, 
quickly and with little effort. 

One of the more commonly used word processing packages for 
the IBM PC}r is Home Word, by Sierra On-Line, Inc. One reason for 
HomeWord's popularity is that most people find it easy to learn. 

Although almost any printer can be used with HomeWord to 
output standard text, a graphics printer is required if superscripts and 
subscripts are to be printed. A graphics printer is a printer which has 
the capacity to output graphics characters. The IBM-80 CPS Gra­
phics Printer is an example. Since footnotes, which require super­
scripts, are used in the examples in this lesson, we recommend that 
you use a graphics printer. If such a printer is not available, disregard 
the superscripts in the exercise. 

The discussion in this lesson will be in the form of a tutorial. We 
will be presenting in this tutorial the various steps which are involved 
in creating a typical report using Home Word. It is a good idea to enter 
the commands as they are described. It is also a good idea to read the 
manual which accompanies HomeWord, since in this lesson we will 
give an overview of the program but will focus upon several tech­
niques which are especially applicable to the writing of papers and 
reports. 



514 IBM PCjr tor Students 

Overview of Home Word 

The purpose of Home Word is to create documents. A document 
is a combination of text and commands. With Home Word, a docu­
ment can be twelve pages in length if it is single spaced, longer if 
double or triple spacing is used. By storing pieces of a larger creation 
as individual documents, longer documents can be constructed. 

HomeWord defines the screen into three areas. The largest of 
these areas is the typing area. The typing area comprises the upper 
two-thirds of the screen. The actual text of the document is entered in 
the typing area. A flashing cursor in this portion of the screen indi­
·cates that you can type the text. 

The icons are contained in the left-hand side of the remaining 
area. This is the menu area of the screen. Any prompts will also 
appear here. When the menu is active, the cursor in the typing area 
does not flash, and a box will surround one of the icons. The box is the 
menu area's cursor. 

The final screen area is a small box in the right hand corner of the 
screen. This box is the outline area. In the outline area the layout of 
the text is displayed. When the flashing cursor is present in the typing 
area, a miniature version of the cursor also flashes in the outline area. 
This smaller cursor indicates where on the page you are typing. If the 
menu is active, the outline area is replaced by two icons. 



Writing Papers and Reports 515 

~IIJ[B1 
Figure 26.1. HomeWord's screen 

HomeWord is a menu-driven program. The actual commands 
can be accessed through the selection of icons or in most cases by 
pressing a control key combination. The keyboard overlay which is 
provided with Home Word specifies the key combinations. By using 
the control key, most commands can be immediately accessed. 

In contrast, a series of icons may need to be selected before a 
command can be accessed. HomeWord has 43 icons. Between three 
and six icons are displayed on the screen. Only the lowest level icons 
directly access commands. These icons are displayed as a result of the 
selection of higher levels of icons. The right and left arrow keys are 
used to move the cursor, and pressing the Enter key selects an icon. 
Table 26. l lists the icons which have control key equivalents, while 
Table 26.2 lists those commands which are only accessible through 
the menu. 



516 IBM PCjr for Students 

Table 26.1. Commands which have control key equivalents 

Level 3 Key 
Icons Level 2 Icons Level 1 Icons Equivalents 

See final document Ctrl-V 

Print Print document Ctrl-P 

Starting page number Alt-N 

Copy text Ctrl-C 

Erase text Ctrl-E 

Edit Move text Ctrl-Y 

Find Ctrl-F 

Find and replace Ctrl-R 

Get document Ctrl-G 

File 
Save document Ctrl-S 

Erase document Ctrl-X 

Insert document Ctrl-A 

Align right Ctrl-Z 

Alignment Align left Ctrl-L 

Justify text Ctrl-J 

Center next line Ctrl-O 

New page Ctrl-D 

Set top/ bottom margins Ctrl-Q 

Layout 
Set spacing Set left/ right margins Ctrl-K 

Set line spacing Ctrl-W 

Set tab stops Ctrl-T 

Boldface text Ctrl-B 

Print style Normal text Ctrl-N 

Underline text Ctrl-U 

Headings/ footings Alt-H 



Writing Papers and Reports 517 

Table 26.2. Commands which lack control key equivalents 

Level 3 
Icons Level 2 Icons Level 1 Icons 

Make backup documents? 

Change top/ bottom margins 

Change preset margins Change left/ right margins 
Preset Values Change line spacing 

Change tab stops 

Save preset values 

40 / 80 column screen 

Type of printer 

Exit to DOS 

Starting Home Word 

In the following sections, we will create a paper with the assist­
ance of HomeWord. In order to use HomeWord, however, the 
program must first be loaded. If the DOS is active, as indicated by'the 
presence of the A> prompt, place the Home Word diskette in the disk 
drive, type H W, and press the Enter key. If the prompt is not present 
perform the following steps: 

Step 1. 

Step 2. 

Step 3. 

Place the HomeWord diskette in the disk drive. 

Boot the PCjr. 

The date and time are requested. If you wish, enter 
the date and time using the process which was 
described in lesson 5. Otherwise, press the Enter key 
twice. 



518 IBM PCjr for Students 

When prompted to do so, remove the HomeWord diskette. 
Insert the data diskette on which the documents are to be stored. Press 
the Enter key. 

Creating a Title Page 

The PCjr is now waiting for your instructions. The cursor is 
flashing in an empty typing area. The empty typing area indicates a 
blank document. Since we want to create a new paper, we can simply 
begin to type at this point. 

The first step in writing this paper is to create a title page. A title 
page usually includes at least the title of the paper, the author's name, 
and the date. Often this information is centered on the page and 
located one third of the way down the page. In the following sections 
we will explore the series of commands with which we can create the 
title page. 

Enter Title Page Information 

First we will enter the title page information. This step is simple. 
Just type the following lines: 

Genetics versus the Environment.J 
..J 
Chris Jones..J 
April 27, 1984--' 

Once these lines have been entered, the typing area will 
appear as follows: 



Writing Papers and Reports 519 

Genetics versus the Environment! 
I 
Chris Jones! 
April 27, 19841 

The downward pointing arrow which appears at the end of each 
line indicates that the Enter key was pressed. The arrow represents a 
carriage return. If the Enter key had not been pressed, the text on the 
screen would be treated as one line. 

Notice that the second line only contains an arrow. This arrow 
indicates that a blank line should be inserted in the text. This blank 
line is included primarily for aesthetic purposes. Manipulating text 
for aesthetic purposes is known as formatting. 

Change Top Margin 

Earlier in this discussion we stated that we wanted to locate the 
title page information one third of the way down the page. This can be 
accomplished by either pressing the Enter key several times or by 
redefining the top margin so that the area on the page for text begins 
farther down. By default, the top margin consists of six blank lines. 
On the screen a page is defined as 66 lines of text at least two of which 
must be blank. By setting the top margin to 22, the text will begin one 
third of the way down the page. To redefine the top margin, enter the 
f 9llowing sequence of commands: 



520 IBM PCjr for Students 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Access the Set top/ bottom margins command either 
through the menu or by pressing Ctrl-Q. This com­
mand will let us define a new value for the top margin. 

Next a prompt will appear in the menu area of the 
screen. This prompt indicates that the cursor should 
be moved to the spot in the text at which you want the 
margins redefined. Using the arrow keys, move the 
cursor to the G in Genetics and press the Enter key. 
This action indicates that we want all subsequent text 
to be relocated on the page. 

When the number of lines in the top margin is 
requested, the number 6 will appear under the flash­
ing cursor. Replace the 6 with 22. Enter the value. The 
top margin now contains 22 blank lines instead of 6. 
Text will appear beginning at the 23rd line. 

When the bottom margin's value is requested, press 
the Enter key. The default value for the bottom mar­
gin, IO lines, is still acceptable. 

The typing area of the screen should have the following appearance: 

Set top/bottom margins: 22, 10 
Genetics versus the Environment! 
I 
Chris Jones! 
April 27, 19841 



Writing Papers and Reports 521 

Notice that the screen's top line contains the margin definition. 
Although this line appears on the screen, it will not appear when the 
document is printed. 

A glance at the outline area indicates that the margins have been 
redefined. The lines which appear in this area have been moved down 
one third of the screen. 

Define Line Spacing 

The next step is to select the line spacing. Most papers, including 
the one which we are creating, should be double spaced. By default, 
however, HomeWord selects single spacing. We can change this 
option by entering the following commands: 

Step 1. 

Step 2. 

Step 3. 

Access the Set line spacing command. This command 
sets the line spacing. 

The cursor should be flashing over the G in Genetics. 
If not, relocate the cursor using the arrow keys. When 
the cursor covers the G, press Enter. All subsequent 
text will be double spaced. 

The prompt which appears in the menu area indicates 
that the line spacing default is single. Line spacing has 
three possible values: single, double, and triple. These 
values can be viewed by pressing the upward and 
downward pointing arrow keys. When the desired 
option, double, is encountered, press the Enter key. 
Pressing the Enter key indicates that the value has 
been selected. The line spacing is now double. 



522 IBM PCjr for Students 

Notice the addition of the line spacing command to the screen: 

Set top/bottom margins: 22, 10 
Set line spacing: Double 
Genetics versus the Environment! 
j 

Chris Jones! 
April 27, 19841 

A glance at the outline area indicates that the line spacing has 
indeed been changed. The lines throughout this document will be 
double spaced, unless a new option is selected. 

Center Lines 

Earlier we stated that the title page information is usually cen­
tered on the page. Centering the lines is the final step in creating a title 
page. HomeWord has a command which will automatically center 
text. The command, however, only applies to the next line of text. In 
order to format all of the title page information, the command must 
be entered three times. The following sequence of entries will accom­
plish this task: 

Step 1. 

Step 2. 

Access the Center next line command. This command 
does the centering. 

The cursor should be flashing over the G in Genetics. 
When it is, press Enter. This action centers the title. 



Step 3. 

Step 4. 

Writing Papers and Reports 523 

The next line to be centered is the author's name. 
Repeat Step I to access the command. Then move the 
cursor to the first letter in the author's name, since this 
is the next line to be centered. Press the Enter key. 

Only the date still must be centered. Repeat Step 1 
and move the cursor to the A in April. Press Enter. 
The date is now centered. 

Notice the addition of the three Center next line commands to the 
screen: 

Set top/bottom margins: 22, 10 
Set line spacing: Double 
Center next line 
Genetics versus the Environment! 
I 
Center next line 
Chris Jones! 
Center next line 
April 27, 19841 

The title page information has been centered, as a survey of the 
outline area indicates. The blank line was not centered because the 
command would have had no effect and thus was not necessary. 

Main Text of the Paper 

Now that the title page is finished, we can begin to work on the 
body, or main text, of the paper. This is generally the next step in the 
prQcess of creating a paper. A number of actions are involved in 
creating the main text. In the following sections we will explore these 
actions. 



524 IBM PCjr for Students 

Start a New Page 

If we were to start typing on the line after the date, our text 
would appear on the title page. Of course, we want the text to begin 
on a new page. HomeWord's Start new page command places all 
subsequent text on a new page. Enter the following series of 
commands: 

Step 1. 

Step 2. 

Access the Start new page command. 

The new page should start with the first line after the 
title page information. Move the cursor beneath the A 
in April. Press Enter to indicate that the new page 
should begin after the title page. Any text which we 
enter below the Start new page command will appear 
on a subsequent page. 

The screen should now have the following appearance: 

Set top/bottom margins: 22, 10 
Set line spacing: Double 
Center next line 
Genetics versus the Environment! 
j 

Center next line 
Chris Jones! 
Center next line 
April 27, 19841 
Start new page 

The outline area is now empty except for the cursor. The effect of 
most commands is evidenced in the outline area, and the Start new 
page command is no exception. 



Writing Papers and Reports 525 

Enter Main Text 

We can now begin to enter the text. In this section we won't 
worry about formatting. Instead, we will simply type. Type the infor­
mation in figure 26.2. 

Whether human behavior is controlled by our environment or at 
the whim of our genes is a matter of debate. At stake is the entire field 
of psychology, for if the genetic content of an individual is the deter­
mining factor in that individual's behavior, then psychology is merely 
a mislabeled form of biology, and clinical psychology is a fraud . ..J 

Human behavior can be described as a continuum; the upper and 
lower limits are established by genotype, and the exact point of expres­
sion is determined by the environment. The question of whether 
human behavior is genetically determined can then be translated into 
how broad is the continuum. If it is narrow, genetics is more influen­
tial; a broader spectrum emphasizes the environment. The size of the 
continuum, or the measure of the diversity in the expression of a trait, 
varies per behavior. Overall, however, I maintain that the environment 
is the stronger factor. ..J 

The existence of a behavior in both animals and humans or among 
all human societies is not proof of genetic determination. The genetic 
component may be very large. Culture and environment are pervasive 
influences, however, and it is seldom possible to study human behavior 
apart from the environment. Evidence indicates that by age two child­
ren have already assimilated a number of society's values such as sex 
role ideals. The same may be true for altruism and aggression. Values 
can be transmitted and are, unintentionally as well as intentionally. 
Environmental influences are difficult to alter but are still more varia­
ble than genetic heritage. Since much of human behavior changes over 
time. the proper emphasis in the nature-nuture debate should, in my 
opinion, be upon environmental factors. That alterability is indicative 
of the power and influence of the environment. ..J 

Figure 26.2. Sample paper 



526 IBM PCjr for Students 

Although the text has now been entered, a number of formatting 
changes are still required. The text still begins one third of the way 
down the page, and the right edges are ragged. In addition, the first 
paragraph is a quotation. This quotation needs to be single spaced, 
indented, and footnoted. In the following sections; we will discuss 
these changes. 

Redefine Margins 

The first formatting change involves a redefinition of the mar­
gins. Currently the top margin contains 22 blank lines. Since we want 
the text to be located immediately below a one inch top margin, we 
need to return the top margin to its default value of 6 blank lines. A 
one inch top margin, or 6 lines, is standard for papers. The following 
combination of commands will return the margins to their default 
value: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Access the Set top/bottom margins command. 

Move the cursor using the arrow keys until 1t 1s 
located below the Sin Start. Press Enter. The margins 
will be redefined after the completion of the title page. 

A cursor flashes over the value, 6, in the menu area. 
Press the Enter key to select this value. 

Press Enter again so that the bottom margin remains 
at 10 blank lines. 

The top margin is now redefined to 6 lines. Glancing at the outline 
indicates this change. The screen should include these lines: 



Writing Papers and Reports 527 

April 27, 19841 
Start new page 
Set top/bottom margins: 6, 10 

Whether human behavior is 
controlled by our environment or at the 

Unless we redefine the top/bottom margins again, all subse­
quent text will be located in lines 7 through 56 on the pages. The next 
problem is to align the right edges. 

Justify Text 

The formatting of the text would be improved by aligning the 
right edge of the text. Be default the text's left edge is aligned. This is 
the next step. Although the Align right command might seem to be 
the correct selection, we need to use the Justify text command. Text is 
justified when both the left and right margins are even. The Align 
right command will result in the right edge being even, but the left 
edge will be made uneven. To justify the text, use the following 
commands: 

Step 1. 
Step 2. 

Access the Justify text option. 

Locate the cursor under the S in Set, and press Enter. 
All subsequent text, unless otherwise directed, will be 
justified. 

The Justify text command should be added to the screen, and the 
screen should contain the following lines: 



528 IBM PCjr for Students 

April 27, 19841 
Start new page 
Set top/bottom margins: 6, 10 
Justify text 

Whether human behavior is 
controlled by our environment or at the 

The text is now justified, as a glance at the outline area demon­
strates. Home Word justifies text by padding the lines with spaces. In 
other words, more than I blank space will separate words in some 
lines so that all lines have the same length. 

Indenting the Quote 

As we stated earlier, the first paragraph is a quote. Quotations in 
a paper or report are usually indented. The next step, therefore; is to 
change the left and right margins so that the paragraph is indented. 
At the end of the paragraph, the margins must be redefined so that 
the text of the paper will not be similarly indented. The following 
series of commands will accomplish the first goal: 

Step 1. 

Step 2. 

Access the Set left/right margins command. 

The prompt requests that you move the cursor to the 
location at which you want the redefinition to begin. 
Move the cursor until it flashes under the Jin Justify 
and press Enter. 



Step 3. 

Step 4. 

Writing Papers and Reports 529 

The left margin currently contains IO spaces. Since it 
is standard for a quotation to be indented five addi­
tional spaces on each side, type in 15 when the 
number of spaces in the left margin is requested and 
press Enter. 

The number of spaces in the right margin is requested 
next. Again type 15 and press the Enter key. 

At this point, all of the text has been indented. The series of com­
mands which follows will reset the left and right margins to ten spaces 
beginning with the second paragraph. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Access the Set left/ right margins command. 

Move the cursor to the start of the second paragraph 
and press the Enter key. 

Press Enter to select IO as the value for the left 
margin. 

Press Enter again to select 10 as the value for the right 
margin. 

The screen should now include the following lines: 

Justify text 
Set left/right margins: 15, 15 

Whether human behavior is 
controlled by our environment or at the 
whim of our genes is a matter of 
debate. At stake is the entire field 
of psychology, for if the genetic 
content of an individual is the 
determining factor in that individual's 
behavior, then psychology is merely a 
mislabeled form of biology and clinical 
psychology is a fraud.I 
Set left/right margins: 10, 10 



530 IBM PCjr for Students 

In the outline area it is evident that only the first paragraph is 
now indented. This step is complete. 

Single Space Quote 

Another standard feature when dealing with quotes is that they 
are single spaced, instead of double. As such, our next step will 
involve changing the line spacing to single before paragraph I and 
returning it to double at the end of the paragraph. Th~ following 
commands will set the line spacing to single: 

Step 1. 

Step 2. 

Step 3. 

Access the Set line spacing command. 

Move the cursor so that it flashes below the S in Set 
left/ right margins: 15, 15. In other words, move the 
cursor to the beginning of the first paragraph. Press 
the Enter key. 

The line spacing prompt indicates that single is the 
default choice. Press Enter to select the single line 
spacing option. 

The entire paper is no~ single spaced. Since we want only the first 
paragraph to be single spaced, we need to change the line spacing 
again with the following series of commands: 

Step 1. 

Step 2. 

Step 3. 

Access the Set line spacing command. 

Move the cursor to the beginning of the line which 
includes the words, "Human behavior can be des­
cribed as." Press Enter. 

The line spacing needs to be double. Use the arrows to 
view the choices, and press the Enter key when double 
appears in the menu area. 

The typing area of the screen should now contain the following lines: 



~ 

Writing Papers and Reports 531 

Justify text 
Set left/right margins: 15, 15 
Set line spacing: Single 

Whether human behavior is 
controlled by our environment or at the 
whim of our genes is a matter of 
debate. At stake is the entire field 
of psychology, for if the genetic 
content of an individual is the 
determining factor in that individual's 
behavior, then psychology is merely a 
mislabeled form of biology and clinical 
psychology is a fraud.I 
Set left/right margins: 10, 10 
Set line spacing: Double 

Human behavior can be described as 

The quotation is now formatted properly, as a glance at the 
outline area indicates. The only step remaining with the quote is to 
footnote it. 

Footnote the Quote 

In a paper, quotes need to be footnoted. A footnote identifies the 
person being quoted and the location in which that quote can be 
found. A superscripted number is usually placed at the end of the 
quote. The specific number is determined by the number of footnotes 
preceding the quote. If the quote is the sixth footnote, it is assigned 
the number 6. The actual content of the footnote is then placed either 
at the bottom of the page or at the end of the paper. 

To create a superscript with HomeWord, as we intend to do, 
printer control characters will be needed. The following commands 
will accomplish this goal: 



532 IBM PCjr for Students 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Locate the cursor on the arrow in the last line of the 
first paragraph. 

Press Fn-9. HomeWord defines Fn-9 as the Insert 
Character command. We need to insert the ASCII 
character which represents the ESC key, since ESC is 
part of the printer control character which creates 
superscripts. 

A prompt requests the ASCII decimal value which we 
want to insert. That value is 27, the value for the ESC 
key. Type 27 and press the Enter key. An arrow which 
points left is placed in the text. The last line of the 
paragraph should include the following characters: 

psychology is a fraud.-! 

Next type SO. ESC-SO is a printer code which 
indicates that the following character or characters 
should be treated as a superscript. Do not insert any 
blank spaces. 

This is the first footnote, so type l. 

Press Fn-9 again and repeat step 3. Another left 
arrow should appear. 

Type T. ESC-T indicates that the superscript is com­
plete. The line should now appear as follows: 

.. 
psychology is fraud.-S01-Tl 



Writing Papers and Reports 533 

The main text of the paper is formatted. We still, however, have 
a number of processes to accomplish before the paper will be 
completed. 

Footnotes 

As we discussed earlier, footnotes may be placed at either the 
end of the paper or at the bottom of each page. In the following 
sections we will discuss both options. 

Placing Footnotes at the End of the Paper 

Placing footnotes at the end of the paper is simply a matter of 
typing the footnotes on a new page, giving that page a title, and 
structuring the page. In this section we will discuss the various steps 
which are involved. 

Our first task is to create a new page for the footnotes. Footnotes 
which are placed at the end of a paper are located on a separate page. 
Enter the following: 

Step 1. 

Step 2. 

Move the cursor to the end of the document. 

Access the Start new page command and press Enter. 
This creates a page for the footnotes. 

The next step is to change the line spacing to single so that the 
footnote will be properly formatted. The following commands will 
change the line spacing: 

Step 1. 
Step 2. 

Step 3. 

Access the Set line spacing command. 

Move the cursor so that it is located under the S in 
Start. Press Enter. 

We want single spacing, so press Enter again when 
the prompt appears. 



534 IBM PCjr for Students 

Now that the line spacing has been set to single, the next step is to 
enter the title. Type the following line: 

Footnotes.J 

The title currently appears at the upper left edge of the page. The 
title should, however, be placed in the center of the first line after the 
top margin. To center the title, do the following: 

Step 1. 

Step 2. 

Access the Center next line command. 

Move the cursor so that it covers the Fin Footnotes. 
Press Enter. 

Although the title has been centered, it also needs to be under­
lined. The sequence of commands which follows will underline the 
title: 

Step 1. 

Step 2. 

Access the Underline text command. 

Place the cursor over the Fin Footnotes and press the 
Enter key. 

The title is now underlined. If, however, we do not return the 
text to its normal status, all subsequent text will also be underlined. 
To correct this situation, perform the following steps: 

Step 1. 

Step 2. 
Access the Normal text command. 

Move the cursor so that it is located underneath the 
Fin Footnotes. Press the Enter key. 



Writing Papers and Reports 535 

The screen should include the following lines: 

Start new page 
Set line spacing: Single 
Center next line 
Underline text 
Footnotes I 
Normal text 

The title and the footnote page have been formatted. The next 
steps involve the actual creation of a footnote. To begin, perform the 
following steps: 

Step 1. 

Step 2. 

Press Enter once. This step is necessary because we 
have already changed the line spacing to single. We 
want the title to be somewhat apart from the actual 
footnotes. 

Press Tab once. A footnote is indented the same way a 
paragraph is. 

In the next step we will create a superscript which identifies the 
footnote. To create the superscript, perform the following steps: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Make sure the cursor is flashing at the first tab stop of 
an otherwise blank line. 

Press Fn-9. 

Type 27 and press Enter. 

Type SOI. 

Repeat steps two and three. 

Type T. 



536 IBM PCjr for Students 

Notice that this process is identical to the one with which we 
created the superscript for the quote. Our next step is to type the 
actual footnote. After typing the following line, end it with a 
blank space: 

J. E. Williams, 

In this step the author's name was entered. In a footnote the title of 
the book follows the author's name and is underlined. Since the next 
entry includes the title, enter the following sequence of commands: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Access the Underline text command. 

Press the Enter key to insert the command. 

Type the following without pressing the Enter key: 

Controversies in Psychology 

Access the Normal text command and press the 
Enter key. 

Type the remainder of the footnote: 

(New York: Psybooks, 1984), p. 193 . ..J 

The footnote page is now complete. The screen should include 
the following lines: 

Start new page 
Set line spacing: Single 
Center next line , 
Underline text 
Footnotes I 
I 

-S01-TJ. E. Williams, 
Underline text 
Controversies in Psychology 
Normal text 
(New York: Psybooks, 1984), p. 193.1 



Writing Papers and Reports 537 

If other footnotes had been used in the paper, they would follow 
the first footnote, be listed in order of occurrence, and be separated 
from preceding footnotes by one blank line. 

Placing the Footnotes at the Bottom of the Page 

Next we will discuss the procedure for locating footnotes at the 
bottom of the page on which the quote or data appears. This is a 
comparatively complicated process. Usually, placing the footnotes at 
the end of the paper will be sufficient, but occasionally interspersing 
footnotes throughout the text is required. This method involves 
inserting the note at the proper location and structuring the note and 
the surrounding text. 

The first step is to examine the document and locate the first 
word in the next-to-last line on the first page of text. That word is 
altruism. The last three lines of text appear as follows: 

.. 

values, such as sex role ideals. The same may be true for 
altruism and aggression. Values can be transmitted and 
are, unintentionally as well as intentionally . 

Next, we need to move the last two lines to the next page by 
performing the following steps: 

Step 1. 

Step 2. 

Move the cursor to the space which precedes the word 
altruism. 

Access the Start new page command. Press the Enter 
key. 

Moving these two lines to the next page creates room for the 
footnote. Since footnotes are single-spaced, the next step is to change 
the line spacing to single. Enter the following commands: 



538 IBM PCjr for Students 

Step 1. 

Step 2. 

Step 3. 

Access the Set line spacing command. 

Move the cursor to the S in Start new page. Press 
Enter. 

We want single spacing, so press Enter again. 

We are now ready to begin typing the footnote. After pressing 
the Tab key once, enter the following series of commands to create the 
superscript: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Press Fn-9. 

Type the value 27 and press the Enter key. 

Type SOI. 

Repeat steps l and 2. 

Type T. 

After creating the superscript, we can next type the author's 
name. Type the following and insert a blank space at the end: 

J. E. Williams, 

The title of the book is entered next. The title needs to be 
underlined. Perform the following steps: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Access the Underline text command. 

Press the Enter key. 

Type the following without pressing the Enter key: 

Controversies in Psychology 

Access the Normal text command and press Enter to 
reinstate normal text. 

The next step involves typing other information about the 
source. Type the following remainder of the footnote: 

(New York: Psybooks, 1984), p. 193 . ..J 



Writing Papers and Reports 539 

Only one step remains. A glance at the outline area indicates that 
we should place additional blank lines between the footnote and the 
text. To accomplish this, enter the following series of commands: 

Step 1. 
Step 2. 

Move the cursor to below the S in Set line spaci~g. 

Press the Enter key twice to insert two additional 
blank lines. This action, however, also results in the 
last line being no longer justified. To ease the prob­
lem, insert an additional space between ideals and 
The. 

This footnote is now complete. The screen should include the 
following lines: 

values such as sex role ideals. The same may be true for I 
Set line spacing: Single 
I 

-S01-TJ. E. Williams, 
Underline text 
Controversies in Psychology 
Normal text 
(New York: Psybooks, 1984), p. 1931 
Start new page 

At this point the paper is nearly finished. All that remains is to 
create a bibliography page and to number the pages. These will be 
discussed in the following sections. 



540 IBM PCjr for Students 

Bibliography Page 

The bibliography page is the page on which the sources which 
were used to write the paper are listed. Creating a page for the 
bibliography is very similar to creating a footnote page, although the 
actual structure of the page is a little different. In this section we will 
discuss these differences as we create the bibliography page. 

A bibliography page is a new page. Thus the first step is to create 
a new page. Enter the following commands: 

Step 1. 

Step 2. 

Access the Start new page command. 

Locate the cursor at the end of the document. This 
can be accomplished very simply by pressing Fn-End. 
When the cursor is located at the end of the docu­
ment, press the Enter key. 

Now that a page for the bibliography has been created, the next 
step is to set the line spacing to single. If a footnote page was created, 
the line spacing should already be single. If not, enter the following 
commands: 

Step 1. 
Step 2. 

Access the Set line spacing command. 

Locate the cursor under the S in the Start new page 
command. Press Enter. 

The next steps involve giving the page a title which is centered 
and underlined. First enter the following commands to center the 
title: 

Step 1. 
Step 2. 

Access the Center next line command. 

Move the cursor so that it is flashing beneath the last 
line of text on the screen. Press Enter. 

The next step in this process, as we mentioned earlier, is to 
underline the title. Enter the following commands: 



Step 1. 

Step 2. 

Writing Papers and Reports 541 

Access the Underline text command. 

Locate the cursor under the C in Center. Press the 
Enter key. 

At this point it is time to type the page's title. Type the following 
lines: 

Selected Bibliography...l 
..J 

The page now is identified. The only step which remains involves 
switching the text back to normal so that only the title will be 
underlined. To do so, enter the following: 

Step 1. 

Step 2. 

Access the Normal text commands. 

When the cursor is located below the second down­
ward arrow, press the Enter key. 

At this point the screen should include the following lines: 

Start new page 
Center next line 
Underline text 
Selected Bibliography! 
l 
Normal text 

In this paper we have only one source, or one bibliographic 
en.try. A bibliographic entry has a different structure than does a 
footnote. Instead of indenting the first line, the second and any other 



542 IBM PCjr for Students 

subsequent lines are indented. The commas in a footnote entry are 
replaced by periods in the bibliographic entry, and the name of the 
author is presented last name first. When multiple sources are used, 
they are listed alphabetically instead of in order of usage. These 
distinctions will become clearer after performing the various steps in 
this discussion. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Enter the following line. Include two blank spaces 
after the second period: 

Williams, J. E. 

The next part of the entry is the title of the book. As 
such, it needs to be underlined. Access the Underline 
text command and press the Enter key. 

Type the following line: 

Controversies in Psychology 

Return the text to normal by accessing the Normal 
text command and pressing Enter. 

Type the following lines. Follow the period in the first 
line with two spaces. Tab the second line. 

New York:! 
Psybooks, 1984.1 

I 

The bibliography page 1s now complete. The screen should 
include the following lines: 



Writing Papers and Reports 543 

Start new page 
Center next line 
Underline text 
Selected Bibliography! 
I 
Normal text 
Williams, J. E. 
Underline text 
Controversies in Psychology 
Normal text 
. New York:! 

Psybooks, 1984.1 
I 

Page Numbers 

The final process in the creation of this paper is the numbering of 
the pages. HomeWord has special functions which will assist in this 
process. To number the pages, enter the following commands: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Access the Headings/ Footings command. This com­
mand creates headings or footings of thirty characters 
or less. 

Move the cursor to below the S in Set top/ bottom 
margins: 6, l O on the first page of the main text. This 
means that the page number will appear on all pages 
except for the title page. Press the Enter key. 

A prompt indicates that the text should appear as a 
heading. Since the page number is usually placed in 
the upper right-hand corner of a paper, press Enter. 

A new prompt asks whether the text should appear on 
the right. Press Enter again. 



544 IBM PCjr for Students 

Step 5. The text of the heading is requested. We want the text 
to include the page number followed by a period. A 
pound sign represents the page number since that 
number varies. Type the following: 

The heading has been inserted into the text, as a glance at the 
outline area will indicate. At this point the screen should include the 
following lines: 

Set top/bottom margins: 6, 1 O 
Right heading: #. 
Justify text 

While the headings has been inserted, the page numbers have 
not. To begin the page numbering, enter the following commands: 

Step 1. 
Step 2. 

Access the Starting page number command. 

A prompt requests the page number on the docu­
ment's first page. Enter O so that the first page of the 
main text will be numbered page 1. 

The pages are now numbered, but no new commands are added 
to the screen. The Starting page number command is executed 
without being listed. 



Appendix A ASCII Codes 545 

Appendix A. 
ASCII Character Codes 

In the following table, the ASCII codes will be given with any 
associated characters and control characters (for codes 0-3 l ). 

If you wish to display these characters, you can do so by issuing the 
following statement: 

PRINT CHR$(x) 

where x is the ASCII code of the character being displayed. 

ASCII Control ASCII Control 
Value• Character Character Value Character Character 

000 (null) NUL 016 ► DLE 
001 @ SOH 017 ◄ DCI ' 

002 • STX 018 t DC2 
003 • ETX 019 !! DC3 
004 ♦ EOT 020 1T DC4 
005 • ENQ 021 ~ NAK 
006 • ACK 022 - SYN 
007 (beep) BEL 023 i ETB 
008 a BS 024 ♦ CAN 
009 (tab) HT 025 t EM 
010 (line feed) LF 026 - SUB 
Oil (home) VT 027 - ESC 
012 (form feed) FF 028 (cursor right) FS 
013 (carriage return) CR 029 (cursor left) GS 
014 fl so 030 (cursor up) RS 
015 -¢- SI 031 (cursor down) us 

* Decimal 



546 IBM PCjr for Students 

ASCII ASCII ASCII 
Value Character Value Character Value Character 

032 (space) 071 G 110 n 
033 ! 072 H Ill 0 

034 " 073 I 112 p 
035 # 074 J 113 q 
036 $ 075 K 114 r 
037 % 076 L 115 s 
038 & 077 M 116 t 
039 

, 078 N 117 u 
040 ( 079 0 118 V 

041 ) 080 p 119 w 
042 • 081 Q 120 X 

043 + 082 R 121 y 
044 , 083 s 122 z 

045 - 084 T 123 { 
046 085 u 124 I 

I 

047 I 086 V 125 } 
048 0 087 w 126 ~ 
049 I 088 X 127 6 
050 2 089 y 128 c; 
051 3 090 z 129 ii 
052 4 091 [ 130 I 

e 
053 5 092 '\ 131 A 
054 6 093 1 132 a 
055 7 094 133 .. 

A a 
056 8 095 - 134 R 
057 9 096 . 135 C, 
058 097 136 A a e 
059 ; 098 b 137 e· 
060 < 099 138 ' C e 
061 = 100 d 139 "j" 

062 > IOI 140 • e I 

063 ? 102 f 141 .. 
I 

064 @ 103 g 142 A 
065 A 104 h 143 ~ 
066 B 105 i 144 t 
067 C 106 j 145 CE 
068 D 107 k 146 A: 
069 E 108 I 147 A 

0 

070 F 109 m 148 0 



Appendix A. ASCII Codes 54 7 

ASCII ASCII ASCII \ 

Value Character Value Character Value Character 

149 ' 188 =.I 227 0 1f 

150 A 189 ..JI 228 I u 
151 ' 190 u ::::I 229 0 

152 y 191 -, 230 µ 
153 0 192 L 231 T 

154 u 193 ..1.. 232 <I> 
155 ¢ 194 T 233 0 
156 £ 195 I- 234 n 
157 ~ 196 - 235 6 
158 Pt 197 + 236 00 

159 f 198 I= 237 0 
160 I 199 II- 238 a E 

161 I 200 I!:: 239 n I 

162 
I 

201 IF 240 0 -
163 I 202 :!!: 241 ± u 
164 n 203 ,r 242 ~ 

165 N 204 IF 243 s; 
166 .!! 205 .- 244 (' 

167 Q 206 .JL 245 J , .. 
168 i, 207 ::!: 246 
169 r 208 .JL 247 = 
170 -, 209 =;= 248 0 

171 ½ 210 ,r 249 • 
172 ¼ 211 IL 250 . 
173 i 212 b 251 ✓ 
174 4i'; 213 F 252 n 
175 ► 214 n- 253 2 

176 :::::::::::::::: 215 * 254 ■ 
177 ~ 216 =t= 255 (blank 'FF') 
178 - 217 _J 

179 I 218 r 
180 -I 219 • 181 ==t 220 -182 -II 221 I 
183 -,, 222 I 
184 =t 223 -185 =:1 224 ex: 
186 II 225 /3 
187 =ii 226 r 



548 IBM PCjr for Students 

Appendix B. 
PCjr BASIC Reserved Words 

Reserved words are words which have a special meaning in BASIC. 
They include all BASIC commands, statements, function names, and 
operator names. 

Reserved words are not allowed to be used as variable names in 
BASIC statements. Also, reserved words must be delimited in BASIC 
statements so that they can be recognized. Generally, words can be 
delimited through the use of blank spaces or special characters. 

ABS 
AND 
ASC 
ATN 
AUTO 
BEEP 
BLOAD 
BSAVE 
CALL 
CDBL 
CHAIN 
CHOIR 
CHR$ 
CINT 
CIRCLE 
CLEAR 
CLOSE 
CLS 
COLOR 
COM 
COMMON 
CONT 
cos 
CSNG 
CSRLIN 
CVD 
CVI 
CVS 
DATA 
DATE$ 
DEF 
DEFDBL 
DEFINT 
DEFSNG 
DEFSTR 
DELETE 

PCjr BASIC Reserved Words 

DIM 
DRAW 
EDIT 
ELSE 
END 
ENVIRON 
ENVIRON$ 
EOF 
EQV 
ERASE 
ERDEV 
ERDEV$ 
ERL 
ERR 
ERROR 
EXP 
FIELD 
FILES 
FIX 
FNxxxxxxxx 
FOR 
FRE 
GET 
GOSUB 
GOTO 
HEX$ 
IF 
IMP 
INKEY$ 
INP 
INPUT 
INPUT# 
INPUT$ 
INSTR 
INT 
IOCTL 

IOCTL$ 
KEY 
KEY$ 
KILL 
LEFT$ 
LEN 
LET 
LINE 
LIST 
LLIST 
LOAD 
LOC 
LOCATE 
LOF 
LOG 
LPOS 
LPRINT 
LSET 
MERGE 
MID$ 
MKDIR 
MKD$ 
MKI$ 
MKS$ 
MOD 
MOTOR 
NAME 
NEW 
NEXT 
NOISE 
NOT 
OCT$ 
OFF 
ON 
OPEN 
OPTION 

OR 
OUT 
PAINT 
PALETTE 
PCOPY 
PEEK 
PEN 
PLAY 
PMAP 
POINT 
POKE 
POS 
PRESET 
PRINT 
PRINT# 
PSET 
PUT 
RANDOMIZE 
READ 
REM 
RENUM 
RESET 
RESTORE 
RESUME 
RETURN 
RIGHT$ 
RMDIR 
RND 
RSET 
RUN 
SAVE 
SCREEN 
SGN 
SHELL 
SIN 
SOUND 

SPACE$ 
SPC( 
SQR 
STEP 
STICK 
STOP 
STR$ 
STRIG 
STRING$ 
SWAP 
SYSTEM 
TAB( 
TAN 
TERM 
THEN 
TIME$ 
TIMER 
TO 
TROFF 
TRON 
USING 
USR 
VAL 
VARPTR 
VARPTR$ 
VIEW 
WAIT 
WEND 
WHILE 
WIDTH 
WINDOW 
WRITE 
WRITE# 
XOR 



Lesson 1 

Appendix C. 
Answer Key 

Appendix C. Answer Key 549 

True or false: 1. F 2. T 3. F 4. T 5. F 6. F 7. T 
Multiple choice: 1. C 2. D 3. D 4. B 5. A 6. D 

Lesson 2 
True or false: 1. F 2. F 3. T 4. T 5. F 
Multiple choice: 1. E 2. A 3. C 4. D 5. B 

Lesson 3 
True or false: 1. F 2. T 3. F 4. F 5. F 
Multiple choice: 1. C 2. D 3. E 4. D 5. A 

Lesson 4 
True or false: 1. F 2. T 3. T 4. F 5. F 
Multiple choice: 1. E 2. C 3. D 4. E 

Lesson 5 
True or false: 1. F 2. F 3. F 4. T 5. F 
Multiple choice: 1. B 2. A 3. D 4. E 5. A 

Lesson 6 
True or false: 1. F 2. T 3. F 4. T 5. F 
Multiple choice: 1. C 2. D 3. D 4. C 



550 IBM PCjr for Students 

Lesson 7 
True or false: 1. F 2. F 3. T 4. F 5. T 
Multiple choice: 1. C 2. C 3. A 4. E 5. D 

Lesson 8 
True or false: 1. T 2. F 3. T 4. F 5. T 
Multiple choice: 1. C 2. B 3. C 4. E 

Lesson 9 
True or false: 1. F 2. F 3. T 4. T 5. T 
Multiple choice: 1. B 2. E 3. E 4. B 5. C 

Lesson 10 
True or false: 1. T 2. F 3. T 4. F 5. F 
Multiple choice: 1. E 2. D 3. D 4. E 5. C 

Lesson 11 
True or false: 1. F 2. F 3. T 4. F 5. T 
Multiple choice: 1. D 2. D 3. B 4. D 5. E 

Lesson 12 
True or false: 1. F 2. T 3. F 4. T 5. T 
Multiple choice: 1. C 2. C 3. D 4. A 

Lesson 13 
True or false: 1. F 2. F 3. T 4. T 5. F 
Multiple choice: 1. B 2. C 3. A 4. D 

Lesson 14 
True or false: 1. F 2. T 3. T 4. T 5. F 
Multiple choice: 1. E 2. A 3. B 4. B 



Appendix C. Answer Key 551 

Lesson 15 
True or false: 1. F 2. T 3. T 4. F 5. F 
Multiple choice: 1. B 2. A 3. C 4. D 5. A 
Computer exercise: 

10 FOR A = 1 TO 5 
20 INPUT "Enter a month (1-12)";MON 
30 GOSUB 1000 
40 IF MON= 1 OR MON= 2 OR MON= 3 THEN PRINT "The month is 

in the winter.":GOTO 70 
50 IF MON= 4 OR MON= 5 OR MON= 6 THEN PRINT "The month is in 

the spring. ":GOTO 70 
60 IFMON = 7OR MON= 80-R MON =9THEN PRINT "The month is in 

the summer." ELSE PRINT "The month is in the fall." 
70 NEXT A 
80 END 

1000 REM*ERROR CHECK 
1010 IF MON<1 OR MON>12 THEN INPUT "Try again";MON 
1020 RETURN 

Lesson 16 
True or false: 1. F 2. F 3. T 4. F 5. F 
Multiple choice: 1. B 2. A 3. B 4. D 

Lesson 17 
True or false: 1. F 2. F 3. F 4. F 5. T 
Multiple choice: 1. C 2. A 3. D 4. D 

Lesson 18 
True or false: 1. T 2. T 3. T 4. F 5. T 
Multiple choice: 1. A 2. B 3. A 4. B 5. B 

Lesson 19 
True or false: 1. T 2. F 3. F 4. T 5. F 
Multiple choice: 1. C 2. C 3. B 4. B 5. D 



552 IBM PCjr for Students 

Lesson 20 
True or false: 1. T 2. F 3. F 4. F 5. T 
Mulitple choice: 1. A 2. A 3. C 4. C 5. A 

Lesson 21 
True or false: 1. F 2. F 3. T 4. F 5. T 
Mulitple choice: 1. C 2. C 3. D 4. D 5. A 

Lesson 22 
True or false: 1. T 2. F 3. T 4. F 5. F 
Mulitple choice: 1. D 2. C 3. D 4. E 

Lesson 23 
True or false: 1. F 2. F 3. F 4. T 
Mulitple choice: 1. D 2. E 3. B 4. E 



A 
A 

GDL417-418 
hexadecimal 232 
PLAY 438 

Abacus 28-29 
ABS 348-349 
Absolute form 403 
Absdiute value 348 
Active page 396 
Addition 249-250, 467 
Add-on device 59 
Address 47 
Adjusting screen IOI 
Aiken, Howard 33-34 
Align left 516, 527 
Align right 516, 527 
Allen, Paul 84 
Altair 84 
Alternate mode 105 
Alt key 105 
Alt key combinations 106 

Alt-/ 255 
Alt-A 105 
Alt-Ctrl-- IOI 
Alt-Ctrl-- IOI 
Alt-Ctrl-Del 102 

Ampersand in string formatting 287-288 
Analog computers 27-28 
Analytical engine 30, 32 
AND263 

Index 

Applications software 86-87 
Arctangent 344 
Area of a triangle 481-483 
Argument 346 
Arithmetic and logic 132 
Arithmetic machine 28-30 

Index 553 

Arithmetic operators 34, 249-259, 265 
Arrays 327-330, 333-335, 338, 374 
Articulation 440 
ASC 363 
ASCII codes 227,229,261,363, 381-382 
ASCII-text conversion 363 
Aspect 409 
Aspect ratio 411-412 
Assignment statements 236-237 
Asterisk in numeric formatting 284-285 
ATN 343-345 
Audio jack 433 
AUTO 149, 154-158 

B 
B 

GDL415 
hexadecimal 232 
LINE 407-408 
PLAY 438 

Babbage, Charles 30 
analytical engine 30, 32 



554 IBM PCjr for Students 

Background color 381 
low resolution graphics mode 391 
screen I 393 
screen 4 394 
text mode 388-390 
with PRESET 405-406 

Background music 440 
Background titles 423, 429 
Backslash in string formatting 288-290 
Backspace key 176, 187 
Backup documents 517 
Base 

arrays 333 
EXP 350 
mathematics 251 

Base conversion 425, 427 
BASIC 83 

history 84 
Version C 95 
Version J 95 

BASIC prompt IOI 
BEEP l09, 434 
BF407 
Bibliographic entries 540-542 
Bibliography page 540-543 
Binary 24-25, 28, 46, 48 
Binary patterns 424-428 
Bit 46-47, 68 
Blank documents 518 
Blank line 120, 519, 523, 539 
Body of a paper 523-533 
Boldface text 516 
Boolean operators 262 
Border color 

text mode 388-390 
low resolution graphics mode 391 

Boundary color 420-421, 423 
Boxes, with LINE 406-408 
Branching 312-313, 315-316 
Built-in functions 343 
Bytes 46-47, 62 

C 
C 

GDL 416-417, 420-421 
hexadecimal 232 
PLAY 438 

Cable 52 
Calling 343 
Caps Lock key 102, 104 

Caret in numeric formatting 286-287 
Carriage return/line feed 119-120, 273-274, 

518-519 
Cartridge BASIC 85-86, 95-96, 398, 437 
Cartridges 59, 75-76 
CASI 213-215 
Cassette adaptor cable 75, 209-210 
Cassette BASIC 85, 95, 423, 437 
Cassette player/recorder 59, 74-75, 209-216 
Cassette tapes 74 
CBASIC 84 
CDBL 352-353 
Center lines 522-523, 534, 540 
Center next line 5 I 6, 522-523, 534, 540 
Center pixel 391 

high resolution graphics 395 
low resolution graphics 391 
medium resolution graphics 392 

Center point 409 
Change left/right margins 517 
Change line spacing 517 
Change tab stops 517 
Change top/ bottom margins 517 
Characters 416 

lowercase l02 
uppercase I 02 

Chords 437 
CHR$ 229, 363 
CHR$ expressions 424 
CINT 352-353 
CIRCLE 86, 408-410 
CLEAR 394, 397, 424 
CLS 125, 141 
COBOL 83 
Coefficient 

exponential notation 231 
mathematics 479 

Cold boot 10 I 
Colon 315-316 
Color 381, 423 
COLOR 110, 389-390, 393-395 
Color burst signal 396 
Color monitor 54-55 
Columbia University 31, 34 
Columns 333, 387-388, 390-392, 394-395, 399 
Commas 

in numbers 230 
in numeric formatting 281-282 
with PRINT 272, 274 



Communications 52, 73 
cordless 52 
parallel 68, 70 
serial 68-69 

Compatibility PCjr-PC 393, 433 
Compiled code 84 
Compiler 85 
Composite video monitor 54, 55 
Compound expressions 259-260 
Computers 18 

as tools 18-19 
definition 23 
functions 23-27 
history 28-35 
impact 18 
literacy 18 
types 27-28 

Computer-Tabulating-Recording Company 31 
Concatenation 357 
Conditional control 26, 30 
Conditional statements 309, 315-316 
Connector ports 49 
Connectors 43, 49 
Constants 228, 230, 234 

mathematics 479 
Control function 26 
Control key combinations 

Alt-Ctrl-- IOI 
Alt-Ctrl-- IO I 
Alt-Ctrl-Del 102 
Ctrl-Fn-End 178, 194-195 
Ctrl-Fn-Home 178, 195-196 
Ctrl-PgDn 178, 196-197 
Ctrl-PgUp 179, 197-198 

Coordinate 387, 403 
Coordinate-specific distances 485 
Copy text 516 
cos 343-345, 459-463 
Cosecant 490-491 
Cosine 344 
Cotangent 491 
CR/ LF 273-274 
CSNG 352-353 
Ctrl Key 107 
Current line 137 
Cursor 100 

HomeWord 514 
Cursor Down key 175, 180-181 
Cursor Left key 175, 183-184 
Cursor location 374-375 

Index 555 

Cursor movement editing 173, 201-203 
Cursor Right key 175, 181-183 
Cursor Up key 175, 179-180 

D 
D 

exponents 231, 234 
GDL41I 
hexadecimal 232 
PLAY 438 

Daisy wheel 66, 67 
Daisy wheel printer 66-67 
Dash 152 
Data 227 

numeric 229-235 
string 227-229, 235 

DATA 336-338 
Data diskette 518 
Data processing 25-26 
Date 97-98, 517-518 
Decimal notation 232 
Decimal point in numeric formatting 277-278 
DEF 382-383 
Default values 161 
Delay loops 464 
Delay routines 464-465, 483, 497-498 
DELETE 149, 164-167 
Delete key 176, 184-185 
Del key 176, 184-185 
Density 64 
Digital adding machine 28-30 
Digital computers 27-28 
DIM 333-336 
Directive cards 31 
Directory 219 
Discriminant 480-481 
Disk controller board 51-52 
DISKCOPY 217-219 
Disk drive 59-65, 216 

operation 64-65 
Diskette drive 41, 51, 59 
Diskette envelope 61 
Diskettes 59-65, 219 

erasing files 221-222 
formatting 216-219 

Disk Operating System 62 
Disks 59, 61 
Distance formula 484-485 
Division 467 



556 IBM PCjr for Students 

Division by zero 255 
Document 514, 518 
Document length 514 
Document manipulation 516 
Dollar sign in numeric formatting 282-284 
DOS62 
DOS 2.1 62, 217 
DOS commands 

DISKCOPY 217-219 
FORMAT 216-217 

DOS diskette 95 
DOS prompt 100, 216-217 
Dot matrix printer 66-67, 69 
Dotted notes 445-446 
Double density 64 
Double-precision 231, 232-235, 352-353 
Double sided diskettes 64 
DRAW 86, 410-423 
DRAW commands 411-422 
Dummy arguments 382-383 
Duration 

E 

counts 436 
delay loops 464 
note 433, 435-436 
sound 448-450 

e 350-351 
E 

exponents 231-233 
GDL 412 
hexadecimal 232 
PLAY 438 

Eckert, J. Pres per 34 
Edit 173 

cursor movement 173, 201-203 
EDIT command 173, 199-201 
line entry 173-174 

EDIT 173, 199-201 
EDIT command editing 173 
Editing keys 107, 174-198 
Edit mode 178, 193 
Efficiency 4 79 
Electronic Numerical Integrator and 

Calculator 34-35 
ELSE 310-311, 315-316 
Empty string 302, 305 
END 117, 123-124, 313 
Endnotes 533-537 

Enhanced model 41 
ENIAC 34-35 
Enter key 108 
Entry formats 98 
Entry model 41 
Erase 396 
ERASE 338 
Erase document 516 
Erase text 516 
Escape key 177 
ESC key 177, 188,532 
ESC-S0 532 
ESC-T 532 
Exclamation point in string formatting 

290-291 
Exclusive OR 264 
Exit to DOS 517 
EXP 350-351 
Expansion slots 43, 49 
Exponent 231,251,350 
Exponential notation 231, 286-287 
Exponentiation 251-252, 257 
Exposed read/ write head slot 61 
Expressions 249 
External speaker 433-434 

F 

F 
GDL 412 
hexadecimal 232 
PLAY 438 

Filename extension 222 
Filenames 222 
FILES 219 
Final document 516 
Find 516 
Find and replace 516 
FIX 347-348 
Fixed length string field 288-291 
Fixed point numbers 230-231, 278 
Flags 468, 471, 487-489 
Flashing characters 381, 388, 390 
Floating point division 252-253, 467 
Floating point numbers 230-231 
Floppy diskette drive 41 
FN 235, 382-383 
FN key 104 
FN key combinations 105-107 

' FN-Break 155, 178, 193-194, 303,304,313 



FN-End 177, 191 
FN-Home 177, 192 
FN-Prt Sc 104 
Function keys !04 

Footings 516 
Footnote page 533-537 
Footnotes 513, 531-539, 541-542 
FOR 316-318, 320-321, 330, 332-333, 464 
Foreground color 381,417 

low resolution graphics 391, 404 
screen I 393, 404, 417 
screen 2 404 
screen 4 394, 404 
screen 5 404 
screen 6 404 
text mode 388-390 

Foreground music 440 
FORMAT 216-217 
Format string 274-275 
Formatting a diskette 216-219 
Formatting characters 275 

numeric 275-287 
string 287-292 

Formatting text 519 
FORTRAN 83 
Forty/eighty column screen 517 
FRE 373-374 

numeric argument 373 
string argument 373 

Frequency 
note 435-436 
tonal voice 2 449 

Function keys I 04 
Functions 343 

calling 343 

G 

G 

definition 382 
format 343 

GDL 412 
PLAY 438 

Gates, William 84 
GDL 4!0-423 
GET86 
Get document 516 
GOSUB 313-314 
GOTO 312-313 

Graphics 387-429 
definition 387 
modes 388 

Index 557 

Graphics Definition Language 4IO 
Graphics printer 513 
Green keys I 04 

H 
H 412 
Harvard Mark I 33-35 
Harvard University 33 
Headings 516, 543-544 
Headings/ footnotes 516, 543-544 
Hexadecimal numbers 83, 230, 232 

tiling 424-429 
High resolution graphics 394 

aspect ratio 409 
colors 395 
memory requirements 395 
screen dimensions 394 
text columns 395 

Hollerith, Herman 31, 33 
tabulating machine 31-33 

Home 177 
HomeWord 513-544 

overview 514-517 
screen 514-515 
start-up procedure 517-518 

HomeWord commands 515-517 
Housekeeping 373-374 
Hybrid computers 27-28 
Hypotenuse 343-344 

IBM 31, 33-34 
IBM Automatic Sequence Controlled 

Calculation 33 
IBM Color Monitor 54-55 
IBM Compact Printer 69 
IBM Graphics Printer 69, 70, 513 
IBM PC 62, 388 
IBM PCjr Attachable Joystick 70-71 
IBM PC XT 62, 388 
Icons 514-515 
IF 309-311, 315-316, 471 
Immediate mode 115, 133-134 
Impact dot matrix printer 69 



558 IBM PCjr for Students 

Indenting quotes 528-530 
Index hole 61-63 
Index variable 317-318, 320, 330 
Infinite loop 318 
Infrared optical link 52, 71, 91 
Initializing variables 468-470, 487-488, 

507-508 
Input 23-25, 132 
INPUT 301-302, 305,328 
INPUT$ 302-304 
Insert character 532, 535, 538 
Insert document 516 
Insert key 176, 185-186 
Insert mode 176, 185 
Ins key 176, 185-186 
INSTR 364-365 
INT 346-348, 380 
Integer division 254-255 
Integers 230, 232, 235, 254, 278, 352-353 
Intel Corporation 43, 44 
Intel 4004 calculator chip 44 
Intel 8008 microprocessor 44 
Intel 8080 microprocessor 44 
Intel 8085 microprocessor 44 
Intel 8088 microprocessor 43~ 44, 46, 47 
Intel 8088/8086 microprocessor 44 
Internal Modem 51, 59, 73-74 
Internal speaker 433-434 
International Business Machine Co. 31, 33-34 
Interpreter 85 

J 
Jacquard, Joseph-Marie 30 

punched cards 30 
Joysticks 59, 70, 376 
Justify 528 
Justify text 516, 527-528 

K 
Kemeny, John G. 84 
Keyboard 41, 52-53, 102-108 
Keyboard connection cable 52-59, 71-72 
Keyboard entries 109 
Keyboard overlay 515 
KEY OFF 421-422 
Keys 52 

programmable 52 
KILL 221-222 
Kurtz, Thomas E. 84 

L 
L 

GDL41I 
PLAY 438-439, 442 

Lake, Clair D. 33 
Last point referenced 388 
LEFT$ 358-360 
Left-justified 289 
LEN 365-366 
Length conversion 496, 498 
LET 236-237 
LINE 406-408 
Line entry editing 173-174 
LINE INPUT 304-305 
Line numbers 116-117, 121 
Line patterns 428 
Line spacing 516-517, 521-522, 530-531, 

533, 537-538, 540 
LIST 126, 142, 149, 151-153 
Literals 291-292 
LOAD 215-216, 220-221 
Loading programs 

from cassette 214-216 
from diskette 220-221 

LOG 351-352 
Logarithm 351 
Logical complement 263 
Logical operators 262-265 
Looping 316 
Low resolution graphics 390-392 

aspect 409 
colors 391 
screen dimensions 390-392 
text columns 391 

LPR 388,391,403,407, 414-416, 420-421 

M 
M 414 
Magnetic data storage 60 
Make backup documents 517 
Mantissa 231 
Margins 516-517, 519-521, 526-530 
Mass conversion 496, 498 
Mark I 33-35 
Mauchly, John W. 34 
MB440 
Medium resolution graphics 391-394 

aspect 409 
colors 392-394 



memory requirements 392-394 
screen dimensions 391 
text columns 392 

Memory 48. 132 
locations 375-376 
random access 48 
read-only 48 
screen requirements 392-395 
unused bytes 373-374 

Memory and Display Expansion Board 49, 
50. 59. 72-73 

Memory pointer 136 
Menu 465 
Menu area 514-515 
Menu-driven programming 465-468, 481-484, 

487-488, 495-497, 503-508, 515 
Metric conversions 495-498 
MF440 
Microprocessor 43-44, 46-47 

8-bit 47 
16-bit 47 

Microsoft BASIC 84, 100 
Microsoft Corporation 62, 84 
MID$ 360-361 
Mill31 
Minus sign in numeric formatting 279-280 
Mixing variable types 261 
ML 440-441 
MN 440-441 
Mnemonics 83 
MOD 255-256 
Modem 73 
Modes 388 
Module calls 458 
Modules 457 

Level O 457, 459, 463 
Level I 457, 459-460, 463 
Level 2 457, 460-461, 463 
Level 3 461 

Modulo arithmetic 255-256 
Monitors 54-55 
Move text 516 
MS 440-441 
Multiplication 257, 467 
Music buffer 440 
Music legato 440 
Music normal 440 
Music staccato 441 

N 
N 

GDL 416 
PLAY 441 

Natural logarithm 351 
Negation 249, 258 
Negative sign 273, 277 
Nested loops 320-321, 333 
NEW 126, 143, 243 

Index 559 

New page 516, 524. 533, 537, 540 
New page command 516. 524, 533. 537. 540 
NEXT 316-318, 320-321. 330. 332-333, 464 
NOISE 448-450 
Noise voice 434. 448 
Normal text 516, 534, 536, 538. 541-542 
NOT 263 
Note length 438-439 
Number cards 31 
Numbers 230. 246, 273 
Numeric comparisons 261 
Numeric constants 230 
Numeric data 229-235 
Numeric formatting 275-287 
Numeric-string conversion 361-362 

0 
0442-443 
Octal numbers 230. 232 
Octaves 436, 442, 446-447 
Operands 249 
Operating system 86 
Operation cards 31 
Operators 249 

arithmetic 34. 249-259, 265 
Boolean 262 
logical 249, 262-265 
relational 249, 261-262, 265 

OPTION BASE 335-336 
OR264 
Order of evaluation 265-266 
Order of operations 260-261 
Outline area 514-515, 524 
Output 26-27, 132 
Overflow 350-351 



560 IBM PCjr for Students 

p 

p 

GDL 419-421 
PLAY 443-444, 446 

Page 396 
Page definition 519 
Page numbers 516. 543-544 
PAINT 86, 423-429 
Paint color 420, 423 
PALETTE 86, 393-394 
Palette patterns 427-428 
Palettes 392-420 

fixed 392 
flexible 393, 397 
screen I 392-393 
screen 4 393-394 
screen 6 395 

PALETTE USING 86 
Papers 513-544 
Parallel communications 68 
Parallel Printer Attachment 70 
Parameters 358 
Parentheses 266 
Pascal, Blaise 28 

arithmetic machine 28-30 
Pascal language 83 
Pauses 443-444, 446 
PEEK 375-376 
Pennsylvania, University of 34 
Percent sign in numeric formatting 276 
Periodic sounds 448-449 
Peripherals 59 
Permanent label 61 
Pl 409 
Pitch of a note 433, 435 
Pixels 387, 390-392, 394, 403, 423 
PLAY 86, 437-448 
Plus sign in numeric formatting 278-279 
Pointers 338, 388 
POKE 376 
Ports 49 
POS 374-375 
Position 507-508, 5 IO 
Pound sign in numeric formatting 275-277 
Power supply board 49-50 
Power supply/transformer 41, 49, 53 
Power switch 94 

Precision 232 
double 232-234 
integers 232 
single 232-234 

PRESET 404-406 
Preset va I ues 517 
Pressure 503-504, 506 
PRINT83-84, 110,115, 118-120, 122, 

271-274, 293 
Print document 516 
Printer control characters 531-532 
Printers 59, 66-70 

types 66 
use with HomeWord 513,517 

Print style 516, 534, 536, 538, 540-542 
PRINT USING 271, 274-275 
Print zones 272, 275 
Problem solving 455 
Program 23, 83, 86 
Program lines 116-117 
Programmable keys 52 
Programmable tone generator 433-438, 440 
Programming language 83 

assembly 83 
compiled 84-85 
high level 83 
interpreted 84-85 
machine 83 

Program mode 115, 134 
Program structure 459, 486 
Prompt 301,304.514 
PSET 404-406 
Punched cards 30-31, 33-34 

directive cards 31 
number cards 31 
operation cards 31 

PUT 86 

Q 

Quadratic equation 479-481 
Quadratic formula 479-481 
Quotation 526-533 
Quotation marks 228-229 



R 
R 411 
Radians 344. 459-463, 487,490 
Radius 409 
RAM 43. 48, 59, 72, 376 
Random 376-377 
Random access memory 48 
Random data access 60 
RANDOMIZE 380 
Random number generator 376-380 
Random number sequences 377-380 
READ 336-338 
Read-only memory 48 
Read/ write head 59-60, 62 
Reciprocal 491 
Relative form 403-404 
Relational operators 261-262, 265 
REM 117. 123-124, 313,462 
Remington Rand Corp. 34 
RENUM 149, 158-163 
Reports 513-544 
Reserved words 235, 337, 338 
Rests 443 
RETURN 313-314 
RIGHT$ 359-360 
Right-justified 277 
RND 376-380 
ROM 43, 48, 75 
Rotational angle 417-418 
Rows 333, 387-388, 390-392, 394, 399 
RUN 115. 124-125. 135-140, 149-150 
Run-time monitor 85 

s 
S 413 
Sample paper 525 
SAVE 212-214, 220, 222 

cassette 213-214 
Save document 516 
Save preset values 517 
Saving programs 

cassette 212-214 
diskette 220. 222 

Scale 413 
Scaling 398 
Scaling factor 413 

Screen 272, 387 
0 387-390, 396 
I 391-393, 396, 427 
2 394, 396, 426 
3 390-392, 396, 428 
4 391-394, 396, 427 
5 391-392, 394,396,428 
6 394. 396. 427 
coordinates 387 
modes 388 

SCREEN 
command 110, 395-397 
function 381-382 

Screen width 272 
HomeWord 519 

Searching 516 
Secant 491 
Sectors 62-63 
Seed 378-380 
See final document 516 
Semicolons 

GDL423 
PLAY 444 
PRINT 272-274 

Semiconductor chip 44 
Sequential data access 60, 74 
Sequential execution 309 
Serial Adapter Cable 69 
Serial communications 68 

Index 561 

Set left/right margins 516, 528-530 
Set line spacing 516, 521-522. 530-531, 533, 

537-538. 540 
Set tab stops 516 
Set top/ bottom margins 516, 519-521. 526-527 
Sierra On-Line. Inc. 513 
SGN 349-350 
Shift key I02 
Sign 349 
Significant variable names 468. 472 
Simple expressions 259 
SIN 343-345. 459-463 
Sine 344 
Single density 64 
Single-precision 232-236. 352-353 
Single sided diskettes 64 
Soft sector method 62 
Software 86 

classifications 86 



562 IBM PCjr tor Students 

SOUND 
command 434, 445 
statement 435-437 

Sound effects 433 
Sound generators 433 

8253 timer 433 
SN 76489A 433-438, 440 

Sound numbers 448-449 
Sound statements and commands: 

BEEP 434 
NOISE 448-450 
PLAY 86, 437-448 
SOUND 434-437. 445 

Source 448-450 
Source code 84 
Source diskette 217 
SPACE$ 292, 295-296 
SPC 292-295 
SQR 345-346 
Square root 345-346 
Starting page number 516, 544 
STEP 317-318, 403,414 
Storage function 24 
Storage unit 31 
STR$ 361-362 
STRING$ 366-367 
String comparisons 262, 364 
String concatenation 357 
String constant 228-229 
String data 227-229, 235 
String formatting 287-296 
String length 365-366 
String-numeric conversion 361-362 
String replacement 361 
Strings 227-230, 273 
String search 364-365 
Style, with LINE 407 
Subroutines 313-314, 483, 486-492, 503-510 
Subscripted variables 327-336 
Subscripts 328, 335, 513 
Substrings 421 
Subtraction 258-259, 467 
Superscripts 513, 531-532, 535-536, 538 
Swapping 218 
System board 43, 45 
System date 97-98 
System reset 101-102, I07 
System start-up 91-101 

with disk drive 95-IO I 
without disk drive 93-95 

System time 98-99 
System unit 41, 43-44 

T 
T 444 
TA 418-419 
TAB 292-295 
Tab key 177 

insert mode off 189 
insert mode on 190 

Tables 327, 331-335, 374 
Tab stops 516-517 
Tabulating machine 31-33 
Tabulating Machine Company 31 
TAN 343-345. 459-463 
Tangent 344 
Tape leader 213 
Target diskette 217 
Tempo 444 
Temporary label 61 
TERM 86 
Termination condition 423, 429 
Text-ASCII conversion 363 
Text columns 388, 391-392, 395 
Text layout 514-516, 527-528 
Text manipulation 516 
Text mode 388-390, 396 

color burst signal 396 
colors 388-390 
dimensions 388 
pages 396 

THEN 309-311, 315-316. 471 
Thermal dot matrix printer 69 
Tile mask 426 
Tiling 423-429 
Time 98-99. 507-508. 510. 517 
Timer 433 
Title page 518-523 
Tonal voices 436-438 
Tone generator 433-438. 440 
Top-down design 455-463 

advantages 459 
Top-down design chart 458-462, 468 
Tracks 62-63 
Trigonometric functions 343-345. 459-463, 

486-492 
Trigonometry 343 
Tune definition language 437-448 



Type identification characters 236 
Typing area 514-515, 518 

u 
U 411 
Underline text 516, 534. 536, 538, 540-542 
Univac I 34 
User-defined functions 373, 382-383 

definition 382-383 
names 382-383 

V 
V 445 
VAL 361-362 
Values 234, 236-237 
Variable length string field 287-288 
Variable names 234, 235,472 
Variables 234-243 

assigning values 236-237 
numeric 235 
processing 237-243 
string 235 
types 236, 261 
use with GDL commands 422-423 
use with PLAY 444 

Variable storage 132. 238-239. 241. 338 
Video display 54, 72 

devices 54 
VIEW 86, 398-399 
Viewport 398, 399 
VIEW SCREEN 398-399 
Visual page 396 
Voices 435-438 
Volume 

cassette recorder 211 
noise 448-450 
note 433, 435-436, 445 

Volume conversions 497-498 

w 
Warm boot 101-!02 
Watson Computing Bureau 34 
WEND 319-320, 471 
WHILE 319-320, 471 
White sounds 448-449 
WIDTH 272. 375. 381 
WINDOW 86, 398-399 

Word processing 513-544 
advantages 513 

Write protect notch 61 

X 

X 
GDL 421-422 
PLAY 447-448 

XOR 264 

Special Symbols 

! (exclamation point) 
single-precision 233 
string formatting 290 

# (pound sign) 
double-precision 234 
numeric formatting 275 
page number 544 
PLAY 438 

$ (dollar sign) 
numeric formatting 282 
string identification 236 

% (percent sign) 
integer identification 236 
numeric formatting 276 

(caret) 251 
& (ampersand) 287 
* (asterisk) 

Index 563 

line number generation 155 
multiplication 257 
numeric formatting 284 

- (minus sign) 
GDL 414 
negation 258 
negative sign 273 
numeric formatting 279 
PLAY 438 
subtraction 258 

_ (underline) 
cursor JOO 
underline 292 

= (equal sign) 
assignment 236-237 
equals 262 



564 IBM PCjr for Students 

+ (plus sign) 
addition 249 
concatenation 357 
GDL 414 
numeric formatting 278 
PLAY 438 

< (less than sign) 
less than 262 
lower octave 446 

> (greater than sign) 
greater than 262 
raise octave 446 

/ (slash) 252 
. (period) 445 

(backslash) 
integer division 254 
string formatting 288 

I (cursor down) 
CR/ LF 519 
cursor down 181 

- (cursor left) 
cursor left 184 
ESC 532 

- (cursor right) 
cursor right 182 
memory pointer 136 

f (cursor up) 180 
..J (enter) 100 
-;- (division) 252 
.BAS BASIC file 222 
&H hexadecimal number 232 
&O octal number 232 
>= greater than or equal to 262 
<> not equal to 262 
<= less than or equal to 262 

numeric formatting 286 



$17.95 

IBM PCjr® for Students 
IBM PCjr for Students is designed to help stu­

dents grades 7 through adult learn to use and program 
the I BM PCjr. 

IBM PCjr for Students is divided into a series of 26 
individual lessons. Each lesson features a hands on 
approach to learning. The student will actually be 
working at the computer as he progresses through 
each of the lessons. · 

• I', 
..!' 

The lessons are designed so that each one in­
volves a discovery as well as a problem solving 
activity. Several lessons are dedicated to showing the 
student how the PCjr can be used to help him or her 
with school work. Interesting examples as well as 
exercises are included with each lesson. 

ISBN: 0-938862-25-1 LC 84-50843 


