
PRU Assembly Instructions 1

PRU Assembly Instructions
^ Up to main Programmable Realtime Unit and Industrial Communication Subsystem (PRU-ICSS) Table of
Contents
This article is part of a collection of articles describing software development on the PRU subsystem included in
OMAP-L1x8/C674m/AM18xx/AM335x/AM437x/AM57xx/66AK2Gx devices (check the device data sheet for
PRU/PRU-ICSS support). To navigate to the main PRU software development page click on the link above.

PRU Core Revision
There are two main PRU Core Revisions that have been implemented on TI devices. The table below summarizes
the difference between the supported assembly set for each revision. Note that even though some of these functions
are supported by a particular core revision, there may be additional hardware dependencies that are not implemented
on a given device.
In general, core revision 1 has the largest common instruction set, and thus when uncertain about the target core or
when binary support for multiple core revisions is needed, assemble with the –V1 option. Code written for a revision
1 core can execute on later cores by avoiding the SCAN instruction, but assembling for later cores will increase the
efficiency of some instructions.

PRU Core Revision Comparison

Assembler Instruction V1 V3

LFC / STC - -

SCAN Yes -

MVI Pseudo Op (limited) Yes

SLP Yes (adds trailing NOP) Yes

ZERO Pseudo Op (multi-cycle) Yes

Fill - Yes

XIN/XOUT - Yes

LOOP /ILOOP - Yes

NOPn - Yes

pasm vs. clpru
There are two assemblers available for PRU, pasm and clpru. The original assembler for PRU was pasm. This
assembler supports a single translation unit and assembles directly to a binary image (or other compatible format).
The clpru tool is actually a full C/C++ compiler toolchain for PRU and includes an assembler. The assembler
included in the clpru toolchain supports multiple translation units and assembles to object files which must be linked
together into a final executable. The two assemblers support nearly the same instruction syntax. The differences are
listed in the description of each instruction. The non-instruction syntax is quite different and includes things like
symbol defintion, macros, etc.

http://processors.wiki.ti.com/index.php?title=PRU-ICSS
http://processors.wiki.ti.com/index.php?title=PRU-ICSS

PRU Assembly Instructions 2

Key differences
•• Input file extension

The pasm assembler uses '.p' whereas the clpru assembler uses '.asm'
•• Comments

The pasm assembler uses // and /* */ for comments. The clpru assembler uses ';' to comment out the remaining
text on a line.

•• Symbol value macros.

The pasm assembler uses C preprocessor style macros:

#define SYM1 SYM2

#define SYM1 10

The clpru assembler uses the .set or .asg directives:

SYM1 .set SYM2

SYM1 .set 10

 .asg "10", SYM1

 .asg "SYM1", SYM2

 .asg "r24.w0", SYM3

The .set directive defines a new symbol, which will be included in the resulting object file. The .asg directive creates
a substitution symbol and is handled by string substitution. The .asg directive is likely the right directive to replace
#define. * Conditional compilation The pasm assembler uses the C preprocessor syntax of #if, #else, #endif:

#ifdef <MACRO>

...

#endif

The clpru assembler uses the .if, .else, and .endif directives:

.if $isdefed("<MACRO>")

...

.endif

•• Register modifier suffix

The pasm assembler allows either .w0 or .W0, whereas the clpru assembler requires register modifiers to be
lower case.

•• Instruction differences

•• MOV REG1, IM is only supported in pasm. Use LDI in clpru.
• The clpru assembler requires the source/destination register in LBCO, SBCO, LBBO, and SBBO instructions

to be prefixed with '&':

 LBBO &R0, R1, 10

•• The clpru assembler does not accept a single operand for the source and destination of SET/CLR.

 SET Rx, Rx.ty

NOT

 SET Rx.ty

PRU Assembly Instructions 3

• The clpru assembler requires '&' on the first operand fo XIN/XOUT
•• LFC, SFC, and SCAN are not supported in clpru.
•• The CALL, RET, and .setcallreg directive are not support in clpru. Instead you must use the JAL and JMP

instruction directly.
•• Loading symbol addresses into registers

The pasm assembler only supports symbols for code addresses and therefore always uses LDI/MOV R0,
<sym>. Furthermore LDI R0, <sym> will always load the word address of <sym>. The clpru assembler
supports symbols for both code and data. Code addresses are always 16-bits and word addresses, but data
addresses are either 16-bit or 32-bit and byte addresses. The following idoms are used in the clpru assembler:
16-bit data address:

 LDI R0, <sym>

32-bit data address:

 LDI32 R0, <sym>

16-bit code address:

 LDI R0, $CODE(<sym>)

•• Macros

The pasm assembler defines macros with the macro name after the .macro directive:

.macro <MACRO>

The clpru assembler defines macros with the macro name before the .macro directive:

<MACRO> .macro

For more information on the capabilities of the clpru assembler please refer to PRU Assembly Language Tools User
Guide [1].

Instruction Set Syntax Terminology
Table 1 provides terminology needed to understand the syntax for the instruction set.

Table 1: Instruction Set syntax Terminology

Parameter
Name

Meaning Examples

REG, REG1,
REG2, ...

Any register field from 8 to 32 bits r0, r1.w0, r3.b2

Rn, Rn1, Rn2,
...

Any 32 bit register field (r0 through r31) r0, r1

Rn.tx Any 1 bit register field (x dentoes the bit position) r0.t23, r1.b2.t5

Rn.bx Specifies a byte field that must be b0, b1, b2, or b3 – denoting r0.b0, r0.b1, r0.b2, and r0.b3 respectively. b0, b1

Rn.wx Specifies a two byte (word) field that must be w0, w1, or w2 - denoting r0.w0, r0.w1, and r0.w2
respectively. w0 spans bytes 0 and 1; w1 spans bytes 1 and 2; w2 spans bytes 2 and 3.

w0, w1

Cn, Cn1, Cn2,
...

Any 32 bit constant table entry (c0 through c31) c0,c1

http://www.ti.com/lit/pdf/spruhv6

PRU Assembly Instructions 4

LABEL Any valid label, specified with or without parenthesis. An immediate value denoting an instruction
address is also acceptable.

loop1, (loop1),
0x0000

IM(n) An immediate value from 0 to n. In clpru immediate values should be specified without a leading hash
\"\#\". In pasm, the leading \"\#\" is accepted, but optional. Immediate values, labels, and register
addresses are all acceptable.

#23, 0b0110, 0xF2,
2+2, &r3.w2

OP(n) The union of REG and IM(n) r0, r1.w0, #0x7F,
1<<3, loop1, &r1.w0

For example the following is the definition for the ADD instruction:

 ADD REG1, REG2, OP(255)

This means that the first and second parameters can be any register field from 8 to 32 bits. The third parameter can
be any register field from 8 to 32 bits or an immediate value from 0 to 255. Thus the following are all legal ADD
instructions:

 ADD R1, R1, #0x25 // r1 += 37

 ADD r1, r1, 0x25 // r1 += 37

 ADD r3, r1, r2 // r3 = r1 + r2

 ADD r1.b0, r1.b0, 0b100 // r1.b0 += 4

 ADD r2, r1.w0, 1<<3 // r2 = r1.w0 + 8

Instruction set

Arithmetic and Logical
All operations are 32 bits wide (with a 33 bit result in the case of arithmetic’s). The source values are zero extended
prior to the operation. If the destination is too small to accept the result, the result is truncated.
On arithmetic operations, the first bit to the left of the destination width becomes the carry value. Thus if the
destination register is an 8 bit field, bit 8 of the result becomes the carry. For 16 and 32 bit destinations, bit 16 and bit
32 are used as the carry bit respectively.

Unsigned Integer Add (ADD)

Performs 32-bit add on two 32 bit zero extended source values.
Syntax:

 ADD REG1, REG2, OP(255)

Operation:

 REG1 = REG2 + OP(255)

 carry = ((REG2 + OP(255)) >> bitwidth(REG1)) & 1

Example:

 add r3, r1, r2

 add r3, r1.b0, r2.w2

 add r3, r3, 10

PRU Assembly Instructions 5

Unsigned Integer Add with Carry (ADC)

Performs 32-bit add on two 32 bit zero extended source values, plus a stored carry bit.
Definition:

 ADC REG1, REG2, OP(255)

Operation:

 REG1 = REG2 + OP(255) + carry

 carry = ((REG2 + OP(255) + carry) >> bitwidth(REG1)) & 1

Example:

 adc r3, r1, r2

 adc r3, r1.b0, r2.w2

 adc r3, r3, 10

Unsigned Integer Subtract (SUB)

Performs 32-bit subtract on two 32 bit zero extended source values
Definition:

 SUB REG1, REG2, OP(255)

Operation:

 REG1 = REG2 - OP(255)

 carry = ((REG2 - OP(255)) >> bitwidth(REG1)) & 1

Example:

 sub r3, r1, r2

 sub r3, r1.b0, r2.w2

 sub r3, r3, 10

Unsigned Integer Subtract with Carry (SUC)

Performs 32-bit subtract on two 32 bit zero extended source values with carry (borrow)
Definition:

 SUC REG1, REG2, OP(255)

Operation:

 REG1 = REG2 - OP(255) - carry

 carry = ((REG2 - OP(255) - carry) >> bitwidth(REG1)) & 1

Example:

 suc r3, r1, r2

 suc r3, r1.b0, r2.w2

 suc r3, r3, 10

PRU Assembly Instructions 6

Reverse Unsigned Integer Subtract (RSB)

Performs 32-bit subtract on two 32 bit zero extended source values. Source values reversed.
Definition:

 RSB REG1, REG2, OP(255)

Operation:

 REG1 = OP(255) - REG2

 carry = ((OP(255) - REG2) >> bitwidth(REG1)) & 1

Example:

 rsb r3, r1, r2

 rsb r3, r1.b0, r2.w2

 rsb r3, r3, 10

Reverse Unsigned Integer Subtract with Carry (RSC)

Performs 32-bit subtract on two 32 bit zero extended source values with carry (borrow). Source values reversed.
Definition:

 RSC REG1, REG2, OP(255)

Operation:

 REG1 = OP(255) - REG2 - carry

 carry = ((OP(255) - REG2 - carry) >> bitwidth(REG1)) & 1

Example:

 rsc r3, r1, r2

 rsc r3, r1.b0, r2.w2

 rsc r3, r3, 10

Logical Shift Left (LSL)

Performs 32-bit shift left of the zero extended source value
Definition:

 LSL REG1, REG2, OP(31)

Operation:

 REG1 = REG2 << (OP(31) & 0x1f)

Example:

 lsl r3, r3, 2

 lsl r3, r3, r1.b0

 lsl r3, r3.b0, 10

PRU Assembly Instructions 7

Logical Shift Right (LSR)

Performs 32-bit shift right of the zero extended source value
Definition:

 LSR REG1, REG2, OP(31)

Operation:

 REG1 = REG2 >> (OP(31) & 0x1f)

Example:

 lsr r3, r3, 2

 lsr r3, r3, r1.b0

 lsr r3, r3.b0, 10

Bitwise AND (AND)

Performs 32-bit logical AND on two 32 bit zero extended source values.
Definition:

 AND REG1, REG2, OP(255)

Operation:

 REG1 = REG2 & OP(255)

Example:

 and r3, r1, r2

 and r3, r1.b0, r2.w2

 and r3.b0, r3.b0, ~(1<<3) // Clear bit 3

Bitwise OR (OR)

Performs 32-bit logical OR on two 32 bit zero extended source values.
Definition:

 OR REG1, REG2, OP(255)

Operation:

 REG1 = REG2 | OP(255)

Example:

 or r3, r1, r2

 or r3, r1.b0, r2.w2

 or r3.b0, r3.b0, 1<<3 // Set bit 3

PRU Assembly Instructions 8

Bitwise Exclusive OR (XOR)

Performs 32-bit logical XOR on two 32 bit zero extended source values.
Definition:

 XOR REG1, REG2, OP(255)

Operation:

 REG1 = REG2 ^ OP(255)

Example:

 xor r3, r1, r2

 xor r3, r1.b0, r2.w2

 xor r3.b0, r3.b0, 1<<3 // Toggle bit 3

Bitwise NOT (NOT)

Performs 32-bit logical NOT on the 32 bit zero extended source value.
Definition:

 NOT REG1, REG2

Operation:

 REG1 = ~REG2

Example:

 not r3, r3

 not r1.w0, r1.b0

Copy Minimum (MIN)

Compares two 32 bit zero extended source values and copies the minimum value to the destination register.
Definition:

 MIN REG1, REG2, OP(255)

Operation:

 if(OP(255) > REG2)

 REG1 = REG2;

 else

 REG1 = OP(255);

Example:

 min r3, r1, r2

 min r1.w2, r1.b0, 127

PRU Assembly Instructions 9

Copy Maximum (MAX)

Compares two 32 bit zero extended source values and copies the maximum value to the destination register.
Definition:

 MAX REG1, REG2, OP(255)

Operation:

 if(OP(255) > REG2)

 REG1 = OP(255);

 else

 REG1 = REG2;

Example:

 max r3, r1, r2

 max r1.w2, r1.b0, 127

Clear Bit (CLR)

Clears the specified bit in the source and copies the result to the destination. Various calling formats are supported:

Format 1

Definition:

 CLR REG1, REG2, OP(31)

Operation:

 REG1 = REG2 & ~(1 << (OP(31) & 0x1f))

Example:

 clr r3, r1, r2 // r3 = r1 & ~(1<<r2)

 clr r1.b1, r1.b0, 5 // r1.b1 = r1.b0 & ~(1<<5)

Format 2 (same source and destination)

NOTE: This format is only supported in the pasm assembler.
Definition:

 CLR REG1, OP(31)

Operation:

 REG1 = REG1 & ~(1 << (OP(31) & 0x1f))

Example:

 clr r3, r1 // r3 = r3 & ~(1<<r1)

 clr r1.b1, 5 // r1.b1 = r1.b1 & ~(1<<5)

PRU Assembly Instructions 10

Format 3 (source abbreviated)

Definition:

 CLR REG1, Rn.tx

Operation:

 REG1 = Rn & ~(1<<x)

Example:

 clr r3, r1.t2 // r3 = r1 & ~(1<<2)

 clr r1.b1, r1.b0.t5 // r1.b1 = r1.b0 & ~(1<<5)

Format 4 (same source and destination – abbreviated)

NOTE: This format is only supported in the pasm assembler.
Definition:

 CLR Rn.tx

Operation:

 Rn = Rn & ~(1<<x)

Example:

 clr r3.t2 // r3 = r3 & ~(1<<2)

Set Bit (SET)

Sets the specified bit in the source and copies the result to the destination. Various calling formats are supported.
NOTE: Whenever R31 is selected as the source operand to a SET, the resulting source bits will be NULL, and not
reflect the current input event flags that are normally obtained by reading R31.

Format 1

Definition:

 SET REG1, REG2, OP(31)

Operation:

 REG1 = REG2 | (1 << (OP(31) & 0x1f))

Example:

 set r3, r1, r2 // r3 = r1 | (1<<r2)

 set r1.b1, r1.b0, 5 // r1.b1 = r1.b0 | (1<<5)

PRU Assembly Instructions 11

Format 2 (same source and destination)

NOTE: This format is only supported in the pasm assembler.
Definition:

 SET REG1, OP(31)

Operation:

 REG1 = REG1 | (1 << (OP(31) & 0x1f))

Example:

 set r3, r1 // r3 = r3 | (1<<r1)

 set r1.b1, 5 // r1.b1 = r1.b1 | 1<<5)

Format 3 (source abbreviated)

Definition:

 SET REG1, Rn.tx

Operation:

 REG1 = Rn | (1<<x)

Example:

 set r3, r1.t2 // r3 = r1 | (1<<2)

 set r1.b1, r1.b0.t5 // r1.b1 = r1.b0 | (1<<5)

Format 4 (same source and destination – abbreviated)

NOTE: This format is only supported in the pasm assembler.
Definition:

 SET Rn.tx

Operation:

 Rn = Rn | (1<<x)

Example:

 set r3.t2 // r3 = r3 | (1<<2)

Register Field Scan (SCAN)

NOTE: This instruction is only supported in the pasm assembler.
The SCAN instruction scans the register file for a particular value. It includes a configurable field width and stride.
The width of the field to match can be set to 1, 2, or 4 bytes. The span between fields in bytes is programmable from
1 to 4 bytes. (Having a stride independent of width allows the programmer to scan for non-byte values on byte
boundaries. For example, scan for "7F03" on a byte by byte basis). This instruction is deprecated and not available
on all PRU cores.

Definition:

 SCAN Rn, OP(255)

Operation:

PRU Assembly Instructions 12

 The register "Rn" serves as both the source and results register. It is coded as follows:

Rn.b0 Byte offset from the start of the register file to begin the scan (see section 3.3 for details on register addressing)

Rn.b1 Number of fields to scan

Rn.b2 Byte width of field to scan for (1, 2, 4)

Rn.b3 Byte stride of consecutive fields (1 to 4)

The instruction scans for the value specified in OP(255). On completion, the Rn register holds the results of the scan.
It is coded as follows:

Rn.b0 Byte offset from R0.b0 to the matching field (or 0xFF if no match)

Rn.b1 Number of fields left to scan (including the matched field if any)

Rn.b2 Not altered

Rn.b3 Not altered

To continue a scan after a match, the programmer can write:

 ADD R1.w0, R1.w0, #0xFF01 // Inc byte offset, dec count

 SCAN R1, OP(255)

Example: Scan the register file for the sequence "0x7F 0x03" starting at R2.b1 and extending for 18 bytes. Do not
assume the sequence is word aligned.

 LDI R1.w0, 0x7F | 0x03<<8 // 0x7F 0x03 in little endian

 LDI R30.w2, 2 | 1<<8 // Field width of 2, stride of 1

 LDI R30.w0, &r2.b1 | 18<<8 // Start at R2.b1, scan 18 bytes

 SCAN R30, R1.w0 // Scan for byte sequence

 QBEQ NOT_FOUND, R30.b1, 0 // Jump if sequence not found

Left-Most Bit Detect (LMBD)

Scans REG2 from its left-most bit for a bit value matching bit 0 of OP(255), and writes the bit number in REG1
(writes 32 to REG1 if the bit is not found).
Definition:

 LMBD REG1, REG2, OP(255)

Operation:

 for(i=(bitwidth(REG2)-1); i>=0; i--)

 if(!(((REG2>>i) ^ OP(255))&1))

 break;

 if(i<0)

 REG1 = 32;

 else

 REG1 = i;

Example:

 lmbd r3, r1, r2

 lmbd r3, r1, 1

 lmbd r3.b3, r3.w0, 0

PRU Assembly Instructions 13

Register Load and Store

Copy Value (MOV)

The MOV instruction moves the value from REG2, zero extends it, and stores it into REG1. The instruction is a
pseudo op, and is coded with the instruction AND REG1, REG2, REG2. To load an immediate value into a register,
see the LDI instruction.
Definition:

 MOV REG1, REG2

Operation:

 REG1 = REG2

Example:

 mov r3, r1

 mov r3, r1.b0 // Zero extend r1.b0 into r3

The pasm assembler supports MOV REG1, OP(65535). Examples of this form are:

 mov r1, 10 // Move 10 into r1

 mov r1, #10 // Move 10 into r1

 mov r1, 0b10 + 020/2 // Move 10 into r1

 mov r30.b0, &r2 // Move the offset of r2 into r30.b0

Load Immediate (LDI)

The LDI instruction moves the value from IM(65535), zero extends it, and stores it into REG1.
Definition:

 LDI REG1, IM(65535)

Operation:

 REG1 = IM(65535)

Example:

 ldi r1, 10 // Load 10 into r1

 ldi r1, 0b10 + 020/2 // Load 10 into r1

 ldi r30.b0, &r2 // Load the offset of r2 into r30.b0

Move Register File Indirect (MVIx)

The MVIx instruction family moves an 8 bit, 16 bit, or 32 bit value from the source to the destination. The size of the
value is determined by the exact instruction used; MVIB, MVIW, and MVID, for 8 bit, 16 bit, and 32 bit values
respectively. The source, destination, or both must be a register pointer. There is an option for auto-increment and
auto-decrement on register pointers. These instructions are only supported for core revisions V2 and later.
Definition:

 MVIB [*][--]REG1[++], [*][--]REG2[++]

 MVIW [*][--]REG1[++], [*][--]REG2[++]

 MVID [*][--]REG1[++], [*][--]REG2[++]

Operation:

PRU Assembly Instructions 14

•• Either the source or destination must be a register pointer restricted to r1.b0, r1.b1, r1.b2, or r1.b3
•• Register pointers are byte offsets into the register file
•• Auto increment and decrement operations are done by the byte width of the operation

•• Increments are post-increment; incremented after the register offset is used
•• Decrements are pre-decrement; decremented before the register offset is used

•• When the source or destination registers are not expressed as register pointers, the size of the data read or written
is determined by the field width of the register. If the data transfer size is less than the width of the destination, the
data is zero extended. Size conversion occurs after indirect reads, and before indirect writes.

Load Byte Burst (LBBO)

The LBBO instruction is used to read a block of data from memory into the register file. The memory address to read
from is specified by a 32 bit register (Rn2), using an optional offset. The destination in the register file can be
specified as a direct register, or indirectly through a register pointer.
NOTE: In the pasm assembler either the traditional direct register syntax or the more recent register address offset
syntax can be used for the first parameter.

Format 1 (immediate count)

Definition:

 LBBO ®1, Rn2, OP(255), IM(124)

Operation:

 memcpy(offset(REG1), Rn2+OP(255), IM(124));

Example:

 lbbo &r2, r1, 5, 8 // Copy 8 bytes into r2/r3 from the

 // memory address r1+5

Format 2 (register count)

Definition:

 LBBO ®1, Rn2, OP(255), bn

Operation:

 memcpy(offset(REG1), Rn2+OP(255), bn);

Example:

 lbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the

 // memory address r1+r2.w0

PRU Assembly Instructions 15

Important Usage Note

For Format 2, do not use a byte count of 0 provided in R0.bn. It could cause the PRU to hang.

Store Byte Burst (SBBO)

The SBBO instruction is used to write a block of data from the register file into memory. The memory address to
write to is specified by a 32 bit register (Rn2), using an optional offset. The source in the register file can be
specified as a direct register, or indirectly through a register pointer.
NOTE: In the pasm assembler, either the traditional direct register syntax or the more recent register address offset
syntax can be used for the first parameter.

Format 1 (immediate count)

Definition:

 SBBO ®1, Rn2, OP(255), IM(124)

Operation:

 memcpy(Rn2+OP(255), offset(REG1), IM(124));

Example:

 sbbo &r2, r1, 5, 8 // Copy 8 bytes from r2/r3 to the

 // memory address r1+5

Format 2 (register count)

Definition:

 SBBO ®1, Rn2, OP(255), bn

Operation:

 memcpy(Rn2+OP(255), offset(REG1), bn);

Example:

 sbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the

 // memory address r1+r2.w0

Important Usage Note

For Format 2, do not use a byte count of 0 provided in R0.bn. It could cause the PRU to hang.

Load Byte Burst with Constant Table Offset (LBCO)

The LBCO instruction is used to read a block of data from memory into the register file. The memory address to read
from is specified by a 32 bit constant register (Cn2), using an optional offset from an immediate or register value.
The destination in the register file is specified as a direct register.
NOTE: In the pasm assembler, either the traditional direct register syntax or the more recent register address offset
syntax can be used for the first parameter.

PRU Assembly Instructions 16

Format 1 (immediate count)

Definition:

 LBCO ®1, Cn2, OP(255), IM(124)

Operation:

 memcpy(offset(REG1), Cn2+OP(255), IM(124));

Example:

 lbco &r2, c1, 5, 8 // Copy 8 bytes into r2/r3 from the

 // memory address c1+5

Format 2 (register count)

Definition:

 LBCO ®1, Cn2, OP(255), bn

Operation:

 memcpy(offset(REG1), Cn2+OP(255), bn);

Example:

 lbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the

 // memory address c1+r2.w0

Important Usage Note

For Format 2, do not use a byte count of 0 provided in R0.bn. It could cause the PRU to hang.

Store Byte Burst with Constant Table Offset (SBCO)

The SBCO instruction is used to write a block of data from the register file into memory. The memory address to
write to is specified by a 32 bit constant register (Cn2), using an optional offset from an immediate or register value.
The source in the register file is specified as a direct register.
NOTE: In the pasm assembler either the traditional direct register syntax or the more recent register address offset
syntax can be used for the first parameter.

Format 1 (immediate count)

Definition:

 SBCO ®1, Cn2, OP(255), IM(124)

Operation:

 memcpy(Cn2+OP(255), offset(REG1), IM(124));

Example:

 sbco &r2, c1, 5, 8 // Copy 8 bytes from r2/r3 to the

 // memory address c1+5

PRU Assembly Instructions 17

Format 2 (register count)

Definition:

 SBCO ®1, Cn2, OP(255), bn

Operation:

 memcpy(Cn2+OP(255), offset(REG1), bn);

Example:

 sbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the

 // memory address c1+r2.w0

Important Usage Note

For Format 2, do not use a byte count of 0 provided in R0.bn. It could cause the PRU to hang.

Load from Coprocessor (LFC)

The LFC instruction is used to load data from an external "coprocessor register" using an 8 bit coprocessor register
address. This instruction is deprecated and not available on all PRU cores.

This instruction is not supported in the clpru assembler.
Definition:

 LFC REG1, IM(255)

Operation:

 REG1 = Coprocessor Register IM(255)

Example:

 lfc r2, 5 // Read coprocessor register 5

Store to Coprocessor (STC)

The STC instruction is used to write data to an external "coprocessor register" using an 8 bit coprocessor register
address. Optionally, bits 31:24 can be specified from a third parameter OP(255) . This instruction is deprecated and
not available on all PRU cores.

This instruction is not supported in the clpru assembler.

Format 1

Definition:

 STC REG1, IM(255)

Operation:

 Coprocessor Register IM(255) = (unsigned32) REG1

Example:

 stc r2, 5 // Write coprocessor register 5

PRU Assembly Instructions 18

Format 2

Definition:

 STC REG1, IM(255), OP(255)

Operation:

 Coprocessor Register IM(255) = ((unsigned32) REG1 & 0x00FFFFFF) | (OP(255)<<24)

Example:

 stc r2, 5, 0xFF // Write coprocessor register 5

 // (force the MS byte to 0xFF)

 stc r2, 5, r3.b0 // Write coprocessor register 5, with

 // bits 31:24 coming from r3.b0

Clear Register Space (ZERO)

This pseudo-op is used to clear space in the register file (set to zero).
Definition:

 ZERO IM(123), IM(124)

 ZERO ®1, IM(124)

Operation:

 The register file data starting at offset IM(123) (or ®1) with a length of IM(124) is cleared to zero.

Example:

 zero 0, 8 // Set R0 and R1 to zero

 zero &r0, 8 // Set R0 and R1 to zero

 // Set all elements in myStruct zero

 zero &myStruct, SIZE(myStruct)

This pseudo-op will generate the necessary LDI instructions to clear the specified register range to zero. The
instructions generated are optimized based on the starting register alignment and length.

Register Transfer In, Out, and Exchange (XIN, XOUT, XCHG)

These XFR pseudo-ops use the XFR wide transfer bus to read in a range of bytes into the register file, write out a
range of bytes from the register file, or exchange the range of bytes to/from the register file.
Definition:

 XIN က�IM(253), REG, IM(124)

 XIN က�IM(253), REG, bn

 XOUT IM(253), REG, IM(124)

 XOUT IM(253), REG, bn

 XCHG IM(253), REG, IM(124)

 XCHG IM(253), REG, bn

Operation:

 On XIN, the register file data starting at the register REG with a

length of IM(124) is read in from the parallel XFR interface from the

hardware device with the device id specified in IM(253).

PRU Assembly Instructions 19

 On XOUT, the register file data starting at the register REG with a

 length of IM(124) is written out to the parallel XFR interface to the

hardware device with the device id specified in IM(253).

 On XCHG, the register file data starting at the register REG with a

 length of IM(124) is exchanged on the parallel XFR interface between

the register file and the hardware device with the device id specified

in IM(253).

Example:

 XIN XID_SCRATCH, R2, 8 // Read 8 bytes from scratch to R2:R3

 XOUT XID_SCRATCH, R2, b2 // Write ‘b2’ byte to scratch starting at R2
 XCHG XID_SCRATCH, R2, 8 // Exchange the values of R2:R3 with 8 bytes

 // from scratch

 XIN XID_PKTFIFO, R6, 24 // Read 24 bytes from the "Packet FIFO"

 // info R6:R7:R8:R9

Transfer Bus Hardware Connection

The transfer bus coming out of the PRU consists of 124 bytes of data and a sufficient number of control lines to
control the transfer. Any given transfer will consist of a direction (in or out of the PRU), a peripheral ID, a starting
byte offset, and a length. These can be represented in hardware as register and byte enable signals as needed for a
proper implementation (which is beyond the scope of this description).
How the bus transfer is used is entirely up to the peripherals that connect to it. The number of registers that are
implemented on the peripheral and how they align to the PRU register file is determined by the peripheral
connection. For example, the system below connects PRU registers R1::R3 to "peripheral A" registers A0::A2, and
connects PRU registers R2::R4 to "peripheral B" registers B0::B2.

Flow Control

Unconditional Jump (JMP)

Unconditional jump to a 16 bit instruction address, specified by register or immediate value.
Definition:

 JMP OP(65535)

Operation:

 PRU Instruction Pointer = OP(65535)

Example:

 jmp r2.w0 // Jump to the address stored in r2.w0

 jmp myLabel // Jump to the supplied code label

PRU Assembly Instructions 20

Unconditional Jump and Link (JAL)

Unconditional jump to a 16 bit instruction address, specified by register or immediate value. The address following
the JAL instruction is stored into REG1, so that REG1 can later be used as a "return" address.
Definition:

 JAL REG1, OP(65535)

Operation:

 REG1 = Current PRU Instruction Pointer + 1

 PRU Instruction Pointer = OP(65535)

Example:

 jal r2.w2, r2.w0 // Jump to the address stored in r2.w0

 // put return location in r2.w2

 jal r30.w0, myLabel // Jump to the supplied code label and

 // put the return location in r30.w0

Call Procedure (CALL)

The CALL instruction is a pseudo op designed to emulate a subroutine call on a stack based processor. Here, the
JAL instruction is used with a specific call/ret register being the location to save the return pointer. The default
register is R30.w0, but this can be changed by using the .setcallreg dot command. This instruction works in
conjunction with the ".ret" dot command (deprecated) or the RET pseudo op instruction.
This instruction is not supported in the clpru assembler.
Definition:

 CALL OP(65535)

Operation:

 JAL call register, OP(65535) (where call register defaults to r30.w0)

Example:

 call r2.w0 // Call to the address stored in r2.w0

 call myLabel // Call to the supplied code label

Return from Procedure (RET)

The RET instruction is a pseudo op designed to emulate a subroutine return on a stack based processor. Here, the
JMP instruction is used with a specific call/ret register being the location of the return pointer. The default register is
R30.w0, but this can be changed by using the .setcallreg dot command. This instruction works in conjunction with
the CALL pseudo op instruction.
This instruction is not supported in the clpru assembler.
Definition:

 RET

Operation:

 JMP call register (where call register defaults to r30.w0)

Example:

PRU Assembly Instructions 21

 ret // Return address stored in our call register

Quick Branch if Greater Than (QBGT)

Jumps if the value of OP(255) is greater than REG1.
Definition:

 QBGT LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) > REG1

Example:

 qbgt myLabel, r2.w0, 5 // Branch if 5 > r2.w0

 qbgt myLabel, r3, r4 // Branch if r4 > r3

Quick Branch if Greater Than or Equal (QBGE)

Jumps if the value of OP(255) is greater than or equal to REG1.
Definition:

 QBGE LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) >= REG1

Example:

 qbge myLabel, r2.w0, 5 // Branch if 5 >= r2.w0

 qbge myLabel, r3, r4 // Branch if r4 >= r3

Quick Branch if Less Than (QBLT)

Jumps if the value of OP(255) is less than REG1.
Definition:

 QBLT LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) < REG1

Example:

 qblt myLabel, r2.w0, 5 // Branch if 5 < r2.w0

 qblt myLabel, r3, r4 // Branch if r4 < r3

PRU Assembly Instructions 22

Quick Branch if Less Than or Equal (QBLE)

Jumps if the value of OP(255) is less than or equal to REG1.
Definition:

 QBLE LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) <= REG1

Example:

 qble myLabel, r2.w0, 5 // Branch if 5 <= r2.w0

 qble myLabel, r3, r4 // Branch if r4 <= r3

Quick Branch if Equal (QBEQ)

Jumps if the value of OP(255) is equal to REG1.
Definition:

 QBEQ LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) == REG1

Example:

 qbeq myLabel, r2.w0, 5 // Branch if r2.w0==5

 qbeq myLabel, r3, r4 // Branch if r4==r3

Quick Branch if Not Equal (QBNE)

Jumps if the value of OP(255) is NOT equal to REG1.
Definition:

 QBNE LABEL, REG1, OP(255)

Operation:

 Branch to LABEL if OP(255) != REG1

Example:

 qbne myLabel, r2.w0, 5 // Branch if r2.w0!=5

 qbne myLabel, r3, r4 // Branch if r4!=r3

PRU Assembly Instructions 23

Quick Branch Always (QBA)

Jump always. This is similar to the JMP instruction, only QBA uses an address offset and thus can be relocated in
memory.
Definition:

 QBA LABEL

Operation:

 Branch to LABEL

Example:

 qba myLabel // Branch

Quick Branch if Bit is Set (QBBS)

Jumps if the bit OP(31) is set in REG1.

Format 1

Definition:

 QBBS LABEL, REG1, OP(31)

Operation:

 Branch to LABEL if(REG1 & (1 << (OP(31) & 0x1f)))

Example:

 qbbs myLabel r3, r1 // Branch if(r3&(1<<r1))

 qbbs myLabel, r1.b1, 5 // Branch if(r1.b1 & 1<<5)

Format 2

Definition:

 QBBS LABEL, Rn.tx

Operation:

 Branch to LABEL if(Rn & Rn.tx)

Example:

 qbbs myLabel, r1.b1.t5 // Branch if(r1.b1 & 1<<5)

 qbbs myLabel, r0.t0 // Brach if bit 0 in R0 is set

PRU Assembly Instructions 24

Quick Branch if Bit is Clear (QBBC)

Jumps if the bit OP(31) is clear in REG1.

Format 1

Definition:

 QBBC LABEL, REG1, OP(31)

Operation:

 Branch to LABEL if(!(REG1 & (1 << (OP(31) & 0x1f))))

Example:

 qbbc myLabel r3, r1 // Branch if(!(r3&(1<<r1)))

 qbbc myLabel, r1.b1, 5 // Branch if(!(r1.b1 & 1<<5))

Format 2

Definition:

 QBBC LABEL, Rn.tx

Operation:

 Branch to LABEL if(!(Rn & Rn.tx))

Example:

 qbbc myLabel, r1.b1.t5 // Branch if(!(r1.b1 & 1<<5))

 qbbc myLabel, r0.t0 // Brach if bit 0 in R0 is clear

Wait until Bit Set (WBS)

The WBS instruction is a pseudo op that uses the QBBC instruction. It is used to poll on a status bit, spinning until
the bit is set. In this case, REG1 is almost certainly R31, else this instruction could lead to an infinite loop.

Format 1

Definition:

 WBS REG1, OP(31)

Operation:

 QBBC $, REG1, OP(31)

Example:

 wbs r31, r1 // Spin here while (!(r31&(1<<r1)))

 wbs r31.b1, 5 // Spin here while (!(r31.b1 & 1<<5))

PRU Assembly Instructions 25

Format 2

Definition:

 WBS Rn.tx

Operation:

 QBBC $, Rn.tx

Example:

 wbs r31.b1.t5 // Spin here while (!(r31.b1 & 1<<5))

 wbs r31.t0 // Spin here while bit 0 in R31 is clear

Wait until Bit Clear (WBC)

The WBC instruction is a pseudo op that uses the QBBS instruction. It is used to poll on a status bit, spinning until
the bit is clear. In this case, REG1 is almost certainly R31, else this instruction could lead to an infinite loop.

Format 1

Definition:

 WBC REG1, OP(31)

Operation:

 QBBS $, REG1, OP(31)

Example:

 wbc r31, r1 // Spin here while (r31&(1<<r1))

 wbc r31.b1, 5 // Spin here while (r31.b1 & 1<<5)

Format 2

Definition:

 WBC Rn.tx

Operation:

 QBBS $, Rn.tx

Example:

 wbc r31.b1.t5 // Spin here while (r31.b1 & 1<<5)

 wbc r31.t0 // Spin here while bit 0 in R31 is set

PRU Assembly Instructions 26

Halt Operation (HALT)

The HALT instruction disables the PRU. This instruction is used to implement software breakpoints in a debugger.
The PRU program counter remains at its current location (the location of the HALT). When the PRU is re-enabled,
the instruction is re-fetched from instruction memory.
Definition:

 HALT

Operation:

 Disable PRU

Example:

 halt

Sleep Operation (SLP)

The SLP instruction will sleep the PRU, causing it to disable its clock. This instruction can specify either a
permanent sleep (requiring a PRU reset to recover) or a "wake on event". When the wake on event option is set to
"1", the PRU will wake on any event that is enabled in the PRU Wakeup Enable register.
Definition:

 SLP IM(1)

Operation:

 Sleep the PRU with optional "wake on event" flag.

Example:

 SLP 0 // Sleep without wake events

 SLP 1 // Sleep until wake event set

Hardware Loop Assist (LOOP)

Defines a hardware-assisted loop operation. The loop is non-interruptible (LOOP). The loop operation works by
detecting when the instruction pointer would normal hit the instruction at the designated target label, and instead
decrementing a loop counter and jumping back to the instruction immediately following the loop instruction.
Definition:

 LOOP LABEL, OP(256)

Operation:

 LoopCounter = OP(256)

 LoopTop = $+1

 While (LoopCounter>0)

 {

 If (InstructionPointer==LABEL)

 {

 LoopCounter--;

 InstructionPointer = LoopTop;

 }

 }

PRU Assembly Instructions 27

Example 1:

 loop EndLoop, 5 // Peform the loop 5 times

 mvi r2, *r1.b0 // Get value

 xor r2, r2, r3 // Change value

 mvi *r1.b0++, r1 // Save value

 EndLoop:

Example 2:

 mvi r2, *r1.b0++ // Get the number of elements

 loop EndLoop, r2 // Peform the loop for each element

 mvi r2, *r1.b0 // Get value

 call ProcessValue // It is legal to jump outside the loop

 mvi *r1.b0++, r1 // Save value

 EndLoop:

Note: When the loop count is set from a register, only the 16 LS bits are used (regardless of the field size). If this
16-bit value is zero, the instruction jumps directly to the end of loop.

Return to Main Page on PRU Software Development
Click here.

References
[1] http:/ / www. ti. com/ lit/ pdf/ spruhv6

http://processors.wiki.ti.com/index.php?title=Programmable_Realtime_Unit_Software_Development
http://www.ti.com/lit/pdf/spruhv6

Article Sources and Contributors 28

Article Sources and Contributors
PRU Assembly Instructions Source: http://processors.wiki.ti.com/index.php?oldid=226617 Contributors: A0272269, Caddison, D-allred, FarMcKon, Ipburbank, Jasonreeder, Kd5snu,
M-watkins, Mtzgustavo, Tmauer

	PRU Assembly Instructions
	PRU Core Revision
	pasm vs. clpru
	Key differences

	Instruction Set Syntax Terminology
	Instruction set
	Arithmetic and Logical
	Unsigned Integer Add (ADD)
	Unsigned Integer Add with Carry (ADC)
	Unsigned Integer Subtract (SUB)
	Unsigned Integer Subtract with Carry (SUC)
	Reverse Unsigned Integer Subtract (RSB)
	Reverse Unsigned Integer Subtract with Carry (RSC)
	Logical Shift Left (LSL)
	Logical Shift Right (LSR)
	Bitwise AND (AND)
	Bitwise OR (OR)
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (NOT)
	Copy Minimum (MIN)
	Copy Maximum (MAX)
	Clear Bit (CLR)
	Set Bit (SET)
	Register Field Scan (SCAN)
	Left-Most Bit Detect (LMBD)

	Register Load and Store
	Copy Value (MOV)
	Load Immediate (LDI)
	Move Register File Indirect (MVIx)
	Load Byte Burst (LBBO)
	Store Byte Burst (SBBO)
	Load Byte Burst with Constant Table Offset (LBCO)
	Store Byte Burst with Constant Table Offset (SBCO)
	Load from Coprocessor (LFC)
	Store to Coprocessor (STC)
	Clear Register Space (ZERO)
	Register Transfer In, Out, and Exchange (XIN, XOUT, XCHG)

	Flow Control
	Unconditional Jump (JMP)
	Unconditional Jump and Link (JAL)
	Call Procedure (CALL)
	Return from Procedure (RET)
	Quick Branch if Greater Than (QBGT)
	Quick Branch if Greater Than or Equal (QBGE)
	Quick Branch if Less Than (QBLT)
	Quick Branch if Less Than or Equal (QBLE)
	Quick Branch if Equal (QBEQ)
	Quick Branch if Not Equal (QBNE)
	Quick Branch Always (QBA)
	Quick Branch if Bit is Set (QBBS)
	Quick Branch if Bit is Clear (QBBC)
	Wait until Bit Set (WBS)
	Wait until Bit Clear (WBC)
	Halt Operation (HALT)
	Sleep Operation (SLP)
	Hardware Loop Assist (LOOP)

	Return to Main Page on PRU Software Development

