



November 24, 1999
Technical Publications
© 1999 Apple Computer, Inc.



QuickTime Streaming Server
Modules



 Apple Computer, Inc. 11/24/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Figures, Tables, and Listings v

Preface

About This Manual

vii

Conventions Used in This Manual vii
For more information vii

Chapter 1

About QuickTime Streaming Server Modules

9

Building a QuickTime Streaming Server Module 10
Compiling a QTSS Module into the Server 10
Building a QTSS Module as a Code Fragment 11

Module Requirements 11
Main Routine 12
Dispatch Routine 12

Overview of QuickTime Streaming Server Operations 13
Server Startup and Shutdown 13
RTSP Request Processing 15

Runtime Environment for QTSS Modules 20
Server Time 20

Naming Conventions 21
Module Roles 21

Register Role 23
Initialize Role 24
Shutdown Role 25
Reread Preferences Role 25
Error Log Role 25
RTSP Roles 26

RTSP Filter Role 27
RTSP Route Role 28
RTSP Authorize Role 29
RTSP Preprocessor Role 31
RTSP Request Role 33

iv

RTSP Postprocessor Role 34
RTP Roles 35

RTP Send Packets Role 35
Client Session Closing Role 36

RTCP Process Role 37
QTSS Objects 38

Getting Attribute Values 40
Setting Attribute Values 41
Adding Attributes to QTSS Object Types 43

QTSS Streams 44
QTSS Services 45

Built-in Services 47

Chapter 2

QuickTime Streaming Server Module Reference

49

QTSS Callback Routines 49
QTSS Utility Callback Routines 49
QTSS Attribute Callback Routines 53
Stream Callback Routines 59
Service Callback Routines 62
RTSP Header Callback Routines 64
RTP Callback Routines 67

QTSS Data Types 72

Index

91

v



 Apple Computer, Inc. 11/24/99

Figures, Tables, and Listings

Chapter 1

About QuickTime Streaming Server Modules

9

Figure 1-1

QuickTime Streaming Server startup and shutdown 14

Figure 1-2

Sample RTSP request 15

Figure 1-3

Summary of RTSP request processing 16

Figure 1-4

Summary of the RTSP Preprocessor and RTSP Request roles 19

Table 1-1

Module roles 22

Listing 1-1

Sample code that calls QTSS_GetValue 40

Listing 1-2

Sample code that calls QTSS_GetValuePtr 41

Listing 1-3

Sample code that calls QTSS_SetValue 42

Listing 1-4

Sample code that calls QTSS_AddAttribute 43

Chapter 2

QuickTime Streaming Server Module Reference

49

Table 2-1

Role constants 51

Table 2-2

QTSS_SendStandardRTSPResponse

 method responses 67

Table 2-3

Attributes of the object

QTSS_PrefsObject

 72

Table 2-4

Attributes of the object

QTSS_ClientSessionObject

76

Table 2-5

Attributes of the object

QTSS_RTPStreamObject

 78

Table 2-6

Attributes of the object

QTSS_RTSPRequestObject

82

Table 2-7

Attributes of the object

QTSS_RTSPSessionObject

 86

Table 2-8

Attributes of the object

QTSS_ServerObject

88

vii



 Apple Computer, Inc. 11/24/99

P R E F A C E

About This Manual

This manual describes Version 1.0 of the programming interface for creating
QuickTime Streaming Server modules, which allow developers to easily add
new functionality to the QuickTime Streaming Server. This version of the
programming interface is compatible with QuickTime Streaming Server
Version 2.0.

Conventions Used in This Manual 0

The Courier font is used to indicate text that you type or see displayed. This
manual includes special text elements to highlight important or supplemental
information:

Note

Text set off in this manner presents sidelights or interesting
points of information.

�

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions.

�

� W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems.

�

For more information 0

The following sources provide additional information that may be of interest to
developers of QuickTime Streaming Server modules:

viii



 Apple Computer, Inc. 11/24/99

P R E F A C E

�

RFC 2326, Real Time Streaming Protocol (RTSP), available at
http://www.landfield.com/rfcs/rfc2326.html and other locations on the
Internet

�

RFC 1889, RTP: A Transport Protocol for Real-Time Applications, available at
http://www.landfield.com/rfcs/rfc1889.html and other locations on the
Internet

�

RFC 2327, SDP: Session Description Protocol, available at
http://www.landfield.com/rfcs/rfc2327.html and other locations on the
Internet

See http://developer.apple.com/techpubs/quicktime for QuickTime developer
documentation.

The source code for the QuickTime Streaming Server is available at
http://www.publicsource.apple.com/projects/streaming.

9



 Apple Computer, Inc. 11/24/99

C H A P T E R 1

About QuickTime Streaming
Server Modules 1

Figure 1-0
Listing 1-0
Table 1-0

This manual describes Version 1.0 of the programming interface for creating
QuickTime Streaming Server (QTSS) modules. This version of the programming
interface is compatible with QuickTime Streaming Server Version 2.0.

QTSS is an open-source, standards-based streaming server that runs on top of
several UNIX implementations, including Mac OS Server, Linux, FreeBSD, and
the Solaris operating system. To use the programming interface for the
QuickTime Streaming Server, you should be familiar with the following Internet
Engineering Task Force (IETF) protocols, that the server implements:

�

Real Time Streaming Protocol (RTSP)

�

Real Time Transport Protocol (RTP)

�

Real Time Transport Control Protocol (RTCP)

�

Session Description Protocol (SDP)

This manual describes how to use the QTSS programming interface to develop
QTSS modules for the QuickTime Streaming Server. Using the programming
interface described in this manual allows your application to take advantage of
the server’s scalability and protocol implementation in a way that will be
compatible with future versions of the QuickTime Streaming Server. Most of the
core features of the QuickTime Streaming Server are implemented as modules,
so support for modules has been designed into the core of the server.

You can use the programming interface to develop QTSS modules that
supplement the features of the QuickTime Streaming server. For example, you
could write a module that

�

acts as an RTSP proxy, which would be useful for a QTSS server that is
located behind a firewall

�

authorizes users using name and password information stored in a database

C H A P T E R 1

About QuickTime Streaming Server Modules

10

Building a QuickTime Streaming Server Module



 Apple Computer, Inc. 11/24/99

�

supports virtual hosting, allowing a single server to serve multiple domains
from multiple document roots.

�

logs statistical information for particular RTSP and client sessions

�

supports additional ways of storing content, such as storing movies in
databases

�

configures user’s QuickTime Streaming Server preferences

�

monitors and report statistical information in real time

�

tracks pay-per-view accounting information

Building a QuickTime Streaming Server Module 1

You can add a QTSS module to the QuickTime Streaming Server by compiling
the code directly into the server itself or by building a module as a separate
code fragment that is loaded when the server starts up.

Whether compiled into the server or built as a separate module, the code for the
module is the same. The only difference is the way in which the code is
compiled.

Compiling a QTSS Module into the Server 1

If you have the source code for the QuickTime Streaming Server, you can
compile your module into the server.

Note

The source code for the server is available at

http://www.publicsource.apple.com/projects/streaming

.

�

To compile your code into the server, locate the function

QTSServer::LoadCompiledInModules

 in

QTSServer.cpp

 and add to it the following
lines

QTSSModule* myModule = new QTSSModule("__XYZ__");
(void)myModule->Initialize(&sCallbacks, &__XYZMAIN__);
(void)AddModule(myModule);

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Requirements

11



 Apple Computer, Inc. 11/24/99

where

XYZ

 is the name of your module and

XYZMAIN

 is your module’s main entry
point, as described in the section “Main Routine” (page 12).

Some platforms require that each module use unique function names. To
prevent name conflicts when you compile a module into the server, make your
functions static.

Modules that are compiled into the server are known as static modules.

Building a QTSS Module as a Code Fragment 1

To have the server load at runtime a QTSS module that is a code fragment,
follow these steps:

1. Compile the source for your module as a dynamic shared library for the
platform you are targeting. For Mac OS X, the project type must be

loadable
bundle

.

2. Link the resulting file against the QTSS API stub library for the platforms
you are targeting.

3. Place the resulting file in the

/usr/sbin/QTSSModules

 directory. The server will
load your module the next time it restarts.

Some platforms require that each module use unique function names. To
prevent name conflicts when the server loads your module, strip the symbols
from your module before you have the server load it.

Module Requirements 1

Every QTSS module must implement two routines:

�

a main routine, which the server calls when it starts up to initialize the QTSS
stub library with your module

�

a dispatch routine, which the server uses when it calls the module for a
specific purpose

C H A P T E R 1

About QuickTime Streaming Server Modules

12

Module Requirements



 Apple Computer, Inc. 11/24/99

Main Routine 1

Every QTSS modules must provide a main routine. The server calls the main
routine as the server starts up and uses it to initialize the QTSS stub library so
the server can invoke your module later.

For modules that are compiled into the server, the address of the module's main
routine must be passed to the server's module initialization routine. For
instructions on how to do this, see “Compiling a QTSS Module into the Server”
(page 10).

The body of the main routine must be written like this:

QTSS_Error

MyModule

_Main(void* inPrivateArgs)
{
 return _stublibrary_main(inPrivateArgs,

MyModuleDispatch

);
}

where

MyModuleDispatch

 is the name of the module’s dispatch routine, which is
described in the following section, “Dispatch Routine” (page 12).

For code fragment modules, the main routine must be named

MyModule

_Main

where

MyModule

 is the name of the file that contains the module.

Dispatch Routine 1

Every QTSS module must provide a dispatch routine. The server calls the
dispatch routine when it invokes a module for a specific task, passing to the
dispatch routine the name of the task and a task-specific parameter block. (The
programming interface uses the term “role” to describe specific tasks. For
information about roles, see “Module Roles” (page 21).)

The dispatch routine must have the following prototype:

void

MyModuleDispatch

(QTSS_Role inRole, QTSS_RoleParamPtr inParams);

where

MyModuleDispatch

 is the name specified as the name of the dispatch
routine by the module’s main routine,

inRole

 is the name of the role for which
the module is being called, and

inParams

 is a structure containing values of
interest to the module.

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations

13



 Apple Computer, Inc. 11/24/99

Overview of QuickTime Streaming Server Operations 1

The QuickTime Streaming Server works with modules to process requests from
clients by invoking modules in a particular role. Each role is designed to
perform a particular task. This section describes how the server works with
roles when it starts up and shuts down and how the server works with roles
when it processes client requests.

Server Startup and Shutdown 1

Figure 1-1 shows how the server works with the Register, Initialize, and
Shutdown roles when the server starts up and shuts down.

C H A P T E R 1

About QuickTime Streaming Server Modules

14

Overview of QuickTime Streaming Server Operations



 Apple Computer, Inc. 11/24/99

Figure 1-1

QuickTime Streaming Server startup and shutdown

When the server starts up, it first loads modules that are not compiled into the
server (dynamic modules) and then loads modules that are compiled into the
server (static modules). If you are writing a module that replaces existing server
functionality, compile it as a dynamic module so that it is loaded first.

Then the server invokes each QTSS module in the Register role , which is a role
that every module must support. In the Register role, the module calls

QTSS_AddRole

 (page 50) to specify the other roles that the module supports.

Next, the server invokes the Initialize role for each module that has registered
for that role. The Initialize role performs any initialization tasks that the module
requires, such as allocating memory and initializing global data structures.

At shutdown, the server invokes the Shutdown role for each module that has
registered for that role. When handling the Shutdown role, the module should
perform cleanup tasks and free global data structures.

Server starts up

Server loads dynamic modules

Server loads static modules

Server shuts down

Server calls modules in Shutdown role

Server quits

Server calls modules in Register role

Server calls modules in Initialize role

Server processes RTSP requests

Startup Shutdown

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations

15



 Apple Computer, Inc. 11/24/99

RTSP Request Processing 1

After the server calls each module that has registered for the Initialize role, the
server is ready to receive requests from the client. These requests are known as
RTSP requests. A sample RTSP request is shown in Figure 1-2.

Figure 1-2

Sample RTSP request

When the server receives an RTSP request, it creates an RTSP request object,
which is a collection of attributes that describe the request. At this point, the

qtssRTSPReqFullRequest

 attribute is the only attribute that has a value and that
value consists of the complete contents of the RTSP request.

Next, the server calls modules in specific roles according to a predetermined
sequence. That sequence is shown in Figure 1-3.

Note

The order in which the server calls any particular module
for any particular role is undetermined.

�

DESCRIBE rtsp://streaming.site.com/foo.mov RTSP/1.0
CSeq: 1
Accept: application/sdp
User-agent: QTS/1.0

C H A P T E R 1

About QuickTime Streaming Server Modules

16

Overview of QuickTime Streaming Server Operations



 Apple Computer, Inc. 11/24/99

Figure 1-3

Summary of RTSP request processing

Server receives an RTSP request

Done

Server calls modules registered
for RTSP Filter role

Server calls modules registered
for RTSP Route role

Server calls modules registered
for RTSP Authorize role

Server calls modules registered
for RTSP Preprocessor role

Server calls module registered
for RTSP Request role

Server calls modules registered
for RTSP Postprocessor role

Server parses the request

Yes

No

Did a module
respond to the

client?

Yes

No

Did a module
respond to the

client?

Yes

No

Did a module
respond to the

client?

Yes

No

Did a module
respond to the

client?

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations

17



 Apple Computer, Inc. 11/24/99

When processing an RTSP request, the first role that the server calls is the RTSP
Filter role. The server calls each module that has registered for the RTSP Filter
role and passes to it the RTSP request object. Each module’s RTSP Filter role has
the option of changing the value of the

qtssRTSPReqFullRequest attribute. For
example, an RTSP Filter role might change /foo/foo.mov to /bar/bar.mov,
thereby changing the folder that will be used to satisfy this request.

IMPORTANT

Any module handling the RTSP Filter role that responds to
the client causes the server to skip other modules that have
registered for the RTSP Filter role, skip modules that have
registered for other RTSP roles, and immediately calls the
RTSP Postprocessor role of the responding module. A
response to a client is defined as any data the module may
send to the client. �

When all RTSP Filter roles have been invoked, the server parses the request.
Parsing the request consists of filling in the remaining the attributes of the RTSP
object and creating two sessions:

� an RTSP session, which is associated with this particular request and closes
when the client closes its RTSP connection to the server

� a client session, which is associated with the client connection that originated
the request and remains in place until the client’s streaming presentation is
complete

After parsing the request, the server calls the RTSP Route role for each module
that has registered in that role and passes the RTSP object. Each RTSP Route role
has the option of using the values of certain attributes to determine whether to
change the value of the qtssRTSPReqRootDir attribute, thereby changing the
folder that is used to process this request. For example, if the language type is
French, the module could change the qtssRTSPReqRootDir attribute to a folder
that contains the French version of the requested file.

IMPORTANT

Any module handling the RTSP Route role that responds to
the client causes the server to skip other modules that have
registered for the RTSP Route role, skip modules that have
registered for other RTSP roles, and immediately calls the
RTSP Postprocessor role of the responding module. �

C H A P T E R 1

About QuickTime Streaming Server Modules

18 Overview of QuickTime Streaming Server Operations

  Apple Computer, Inc. 11/24/99

After all RTSP Route roles have been called, the server calls the RTSP Authorize
role for each module that has registered for that role. The RTSP Authorize role
has the option of denying the request based on the name and password (stored
as attributes in the RTSP request object) provided by the client.

IMPORTANT

Any module handling the RTSP Authorize role that
responds to the client causes the server to skip other
modules that have registered for the RTSP Authorize role,
skip modules that have registered for other RTSP roles, and
immediately calls the RTSP Postprocessor role of the
responding module. �

After all RTSP Authorize roles have been called, the server calls the RTSP
Preprocessor role for each module that has registered for that role. The RTSP
Preprocessor role typically uses the qtssRTSPReqAbsoluteURL attribute to
determine whether the request matches the type of request that the module
handles.

If the request matches, the RTSP Preprocessor role responds to the request by
calling QTSS_Write (page 59) or QTSS_WriteV (page 60) to send data to the client.
To send a standard response, the module can call
QTSS_SendStandardRTSPResponse (page 66), or QTSS_AppendRTSPHeader (page 64)
and QTSS_SendRTSPHeaders (page 65).

IMPORTANT

Any module handling the RTSP Preprocessor role that
responds to the client causes the server to skip other
modules that have registered for the RTSP Preprocessor
role, skip modules that have registered for other RTSP
roles, and immediately calls the RTSP Postprocessor role of
the responding module. �

If no RTSP Preprocessor role responds to the RTSP request, the server invokes
the RTSP Request role of the module that successfully registered for this role.
(The first module that registers for the RTSP Request role is the only module
that can register for the RTSP Request role.) The RTSP Request role is
responsible for responding to all RTSP Requests that are not handled by
modules registered for the RTSP Preprocessor role.

After the RTSP Request role processes the request, the server calls modules that
have registered for the RTSP Postprocessor role. The RTSP Postprocessor role
typically performs accounting tasks, such as logging statistical information.

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations 19
  Apple Computer, Inc. 11/24/99

A module handling the RTSP Preprocessor or RTSP Request role may generate
the media data for a particular client session. To generate media data, the
module calls QTSS_Play (page 69), which causes that module to be invoked in
the RTP Send Packets role, as shown in Figure 1-4.

Figure 1-4 Summary of the RTSP Preprocessor and RTSP Request roles

The RTP Send Packets role calls QTSS_Write (page 59) or QTSS_WriteV (page 60)
to send data to the client over the RTP session. When the RTP Send Packets role
has sent some packets, it returns to the server and specifies the time that is to
elapse before the server calls the module’s RTP Send Packets role again. This
cycle repeats until all of the packets for the media have been sent or until the
client requests that the client session be paused or torn down.

Done

Yes

NoAre there
more packets

to send?

Module calls
server’s QTSS_Play routine

Server calls RTP Send
Packets role for the module

that called QTSS_Play

RTP Send Packets role
sends packets to client

Server calls RTP Send
Packets role again

Return to server asking
to be called again

C H A P T E R 1

About QuickTime Streaming Server Modules

20 Runtime Environment for QTSS Modules

  Apple Computer, Inc. 11/24/99

Runtime Environment for QTSS Modules 1

QTSS modules can spawn threads, use mutexes, and are completely free to use
any operating system tools.

The QuickTime Streaming Server is fully multi-threaded, so QTSS modules
must be prepared to be preempted. Global data structures and critical sections
in code should be protected with mutexes. Unless otherwise noted, assume that
preemption can occur at any time.

The server usually runs all activity from very few threads or possibly a single
thread, which requires the server to use asynchronous I/O whenever possible.
(The actual behavior depends on the platform and how the administrator
configures the server.)

QTSS modules should adhere to the following rules:

� Perform tasks and return control to the server as quickly as possible.
Returning quickly allows the server to load balance among a large number of
clients.

� Be prepared for QTSS_WouldBlock errors when performing I/O. Except when
responding to RTSP requests, the QTSS_Write, and QTSS_WriteV stream
callback routines described in the section “QTSS Callback Routines”
(page 49) return the error QTSS_WouldBlock if the requested I/O would block.

� Avoid using synchronous I/O wherever possible. An I/O operation that
blocks may affect streaming quality for other clients.

Server Time 1

The QuickTime Streaming Server handles real-time delivery of media, so many
elements of QTSS module programming interface are time values.

To make time as clear as possible, every attribute, parameter, and callback
routine that deals with time specifies the time units explicitly. For example, the
qtssRTPStrBufferDelayInSecs attribute specifies the client’s buffer size in
seconds. Any time value, unless otherwise noted, is reported in milliseconds
from the server’s internal clock. This clock has no relation to real time and is
provides relative time since the server started up.

C H A P T E R 1

About QuickTime Streaming Server Modules

Naming Conventions 21
  Apple Computer, Inc. 11/24/99

To get the current value of the server’s clock, call QTSS_Milliseconds (page 53).
To convert a time obtained from the server’s clock to the current time, call
QTSS_MilliSecsTo1970Secs (page 53).

Naming Conventions 1

The QTSS programming interface uses a naming convention for the data types
that it defines. The convention is to use the size of the data type in the name.
Here are the data types that the QTSS programming interface uses:

� Bool16 — A 16-bit Boolean value

� SInt64 — A signed 64-bit integer value

� SInt32 — A signed 32-bit integer value

� UInt16 — An unsigned 16-bit integer value

� UInt32 — An unsigned 32-bit integer value

Parameters for callback functions defined by the QTSS programming interface
follow these naming conventions:

� Input parameters begin with in.

� Output parameters begin with out.

� Parameters that are used for both input and output begin with io.

Module Roles 1

Roles provide modules with a well-defined state for performing certain types of
processing. A selector of type QTSS_Role defines each role and represents the
internal processing state of the server and the number, accessibility, and validity
of server data. Depending on the role, the server may pass one or more values
of type QTSSObject to the module. In general, the server uses objects to exchange
information with modules. For more information about objects, see “QTSS
Objects” (page 38).

C H A P T E R 1

About QuickTime Streaming Server Modules

22 Module Roles

  Apple Computer, Inc. 11/24/99

Table 1-1 lists the roles that the QuickTime Streaming Server Version 2.0
supports.

Table 1-1 Module roles

Name Constant Task

Register role QTSS_Register_Role Register the roles the
module supports

Initialize role QTSS_Initialize_Role Perform tasks that
initialize the module

Shutdown role QTSS_Shutdown_Role Perform cleanup tasks

Reread Preferences role QTSS_RereadPrefs_Role Reread the modules’s
preferences

Error Log role QTSS_ErrorLog_Role Log errors

RTSP Filter role QTSS_RTSPFilter_Role Make changes to the
contents of RTSP
requests

RTSP Route role QTSS_RTSPRoute_Role Routes requests from
the client to the
appropriate folder

RTSP Authorize role QTSS_RTSPAuthorize_Role Accepts or denies client
requests based on
authentication
information provided by
the client

RTSP Preprocessor role QTSS_RTSPPreProcessor_Role Processes requests from
the client before the
server processes them

RTSP Request role QTSS_RTSPRequest_Role Processes a request from
the client if no other role
responds the request

continued

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 23
  Apple Computer, Inc. 11/24/99

With the exception of the Register, Shutdown, and Reread Preferences roles,
when the server invokes a module for a role, the server passes to the module a
structure specific to that particular role. The structure contains information that
the modules uses in the execution of that role or provides a way for the module
to return information to the server.

The RTSP roles have the option of responding to the client. A response is
defined as any data that a module sends to a client. Modules can send data to
the client in a variety of ways. They can, for example, call QTSS_Write (page 59)
or QTSS_WriteV (page 60).

Note
The order in which modules are called for any particular
role is undetermined. �

Register Role 1

Modules use the Register role to call QTSS_AddRole (page 50) to tell the server the
roles they support.

Modules also use the Register role to call QTSS_AddService (page 62) to register
services and to call QTSS_AddAttribute (page 54) to add attributes to QTSS
objects. (QTSS objects are collections of attributes, each having a value.)

The server calls a module’s Register role once at startup. The Register role is
always the first role that the server calls.

RTSP Postprocessor role QTSS_RTSPPostProcessor_Role Performs tasks, such as
logging statistical
information, after a
request has been
responded to

RTP Send Packets role QTSS_RTPSendPackets_Role Sends packets

Client Session Closing role QTSS_ClientSessionClosing_Role Performs tasks when a
client session closes

RTCP Process role QTSS_RTCPProcess_Role Processes RTCP receiver
reports

Table 1-1 Module roles (continued)

Name Constant Task

C H A P T E R 1

About QuickTime Streaming Server Modules

24 Module Roles

  Apple Computer, Inc. 11/24/99

A module that returns any value other than QTSS_NoErr from its Register role is
not loaded into the server.

Initialize Role 1

The server calls the Initialize role of those modules that have registered for this
role after it calls the Register role for all modules. Modules use the Initialize role
to initialize global and private data structures.

The server passes to each module’s Initialize role objects that can be used to
obtain the server’s global attributes, preferences, and text error messages. The
server also passes the error log stream reference, which can be used to write to
the error log. All of these objects are globals, so they are valid for the duration of
this run of the server and may be accessed at any time.

When called in the Initialize role, the module receives a QTSS_Initialize_Params
structure which is defined as follows:

typedef struct
{

QTSS_ServerObject inServer;
QTSS_PrefsObject inPrefs;
QTSS_TextMessagesObject inMessages;
QTSS_StreamRef inErrorLogStream;

} QTSS_Initialize_Params;

Field descriptions
inServer A QTSS_ServerObject containing the server’s global

attributes. For a description of each attribute, see the
section “QTSS_ServerObject” (page 87).

inPrefs A QTSS_PrefsObject containing the server’s preferences. For
a description of each attribute, see the section
“QTSS_PrefsObject” (page 72).

inMessages A QTSS_TextMessagesObject that a module can use for
providing localized text strings.

inErrorLogStream A QTSS_StreamRef that a module can use to write to the
server’s error log.

A module that wants to be called in the Initialize role must in its Register role
call QTSS_AddRole (page 50) and specify QTSS_Initialize_Role as the role.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 25
  Apple Computer, Inc. 11/24/99

A module that returns any value other than QTSS_NoErr from its Initialize role is
not loaded into the server.

Shutdown Role 1

The server calls the Shutdown role of those modules that have registered for
this role when the server is getting ready to shut down.

The server calls a module’s Shutdown role without passing any parameters.

The module uses its Shutdown role to delete all data structures it has created
and to perform any other cleanup task

A module that wants to be called in the Shutdown role must in its Register role
call QTSS_AddRole (page 50) and specify QTSS_Shutdown_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

The server guarantees that the Shutdown role is the last time that the module is
called before the server shuts down.

Reread Preferences Role 1

The server calls the Reread Preferences role of those modules that have
registered for this role and rereads its own preferences when the server receives
a SIGHUP signal or when a module calls the Reread Preferences service described
in the section “QTSS Services” (page 45).

When called in this role, the module should reread its preferences, which may
be stored in a file or in a QTSS object.

A module that wants to be called in the Reread Preferences role must in its
Register role call QTSS_AddRole (page 50) and specify QTSS_RereadPrefs_Role as
the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Error Log Role 1

The server calls the Error Log role of those modules that have registered for this
role when an error occurs. The module should process the error message by, for
example, writing the message to a log file.

C H A P T E R 1

About QuickTime Streaming Server Modules

26 Module Roles

  Apple Computer, Inc. 11/24/99

When called in the Error Log role, the module receives a QTSS_ErrorLog_Params
structure, which is defined as follows:

typedef struct
{

QTSS_ErrorVerbosity inVerbosity;
char * inbuffer;

} QTSS_ErrorLog_Params;

Field descriptions
inVerbosity Specifies the verbosity level of this error message. Modules

should use the inflags parameter of QTSS_Write (page 59)
to specify the verbosity level. The following constants are
defined:
qtssFatalVerbosity = 0,
qtssWarningVerbosity = 1,
qtssMessageVerbosity = 2,
qtssAssertVerbosity = 3,
qtssDebugVerbosity = 4,

inbuffer Points to a null-terminated string containing the error
message.

Writing an error message at the level qtssFatalVerbosity causes the server to
shut down immediately.

Writing to the error log cannot result in an QTSS_WouldBlock error.

A module that wants to be called in the Error Log role must in its Register role
call QTSS_AddRole (page 50) and specify QTSS_ErrorLog_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Roles 1

When the server receives an RTSP request, it goes through a series of steps to
process the request and ensure that a response is sent to the client. The steps
consist of calling certain roles in a predetermined order. This section describes
each role in detail. For an overview of roles and the sequence in which they are
called, see the section “Overview of QuickTime Streaming Server Operations”
(page 13).

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 27
  Apple Computer, Inc. 11/24/99

Note
All RTSP roles have the option of responding directly to the
client. When any RTSP role responds to a client, the server
immediately skips the RTSP roles that it would normally
call and calls the RTSP Postprocessor role of the module
that responded to the RTSP request. �

RTSP Filter Role 1

The server calls the RTSP Filter role of those modules that have registered for
the RTSP Filter role immediately upon receipt of an RTSP request. Processi ng
the Filter role, gives the module an opportunity to respond to the request or to
change the RTSP request.

When called in the RTSP Filter role, the module receives a
QTSS_StandardRTSP_Params structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
char** outNewRequest;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request. When
called in the RTSP Filter role, only the
qtssRTSPReqFullRequest attribute has a value. See the
section “QTSS_RTSPRequestObject” (page 82) for
information about RTSP request object attributes.

outNewRequest A pointer to a location in memory.
The module calls QTSS_GetValuePtr (page 57) to get from the
qtssRTSPReqFullRequest attribute the complete RTSP request that caused the
server to call this role. The qtssRTSPReqFullRequest attribute is a read-only
attribute. To change the RTSP request, the module should call QTSS_New
(page 52) to allocate a buffer, write the modified request into that buffer, and
return a pointer to that buffer in the outNewRequest field of the
QTSS_StandardRTSP_Params structure.

C H A P T E R 1

About QuickTime Streaming Server Modules

28 Module Roles

  Apple Computer, Inc. 11/24/99

While a module is handling the RTSP Filter role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

If module handling the RTSP Filter role responds directly to the client, the
server next calls the responding module in the RTSP Postprocessor role. For
information about that role, see the section “RTSP Postprocessor Role”
(page 34).

A module that wants to be called in the RTSP Filter role must in its Register role
call QTSS_AddRole (page 50) and specify QTSS_RTSPFilter_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Route Role 1

The server calls the RTSP Route role after the server has called all modules that
have registered for the RTSP Filter role. It is the responsibility of a module
handling this role to set the appropriate root directory for each RTSP request by
changing the qtssRTSPReqRootDir attribute for the request.

When called, an RTSP Route role receives a QTSS_StandardRTSP_Params structure,
which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request. In the
Route role and all subsequent RTSP roles, all of the
attributes are filled in. See the section
“QTSS_RTSPRequestObject” (page 82) for information
about RTSP request object attributes.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 29
  Apple Computer, Inc. 11/24/99

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 81) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

Before calling modules in the RTSP Route role, the server parses the request.
Parsing the request consists of filling in all of the attributes of the
QTSS_RTSPSessionObject and QTSS_RTSPRequestObject members of the
QTSS_StandardRTSP_Params structure.

A module processing the RTSP Route role has the option changing the
qtssRTSPReqRootDir attribute of QTSS_RTSPRequestObject member of the
QTSS_StandardRTSP_Params structure. Changing the qtssRTSPReqRootDir attribute
changes the root folder for this RTSP request.

While a module is handling the RTSP Route role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

If a module that is processing the RTSP Route role responds directly to the
client, the server immediately skips the processing of any other roles and calls
the responding module’s RTSP Postprocessor role. For information about that
role, see the section “RTSP Postprocessor Role” (page 34).

A module that wants to be called in the RTSP Route role must in its Register
role call QTSS_AddRole (page 50) and specify QTSS_RTSPRoute_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Authorize Role 1

The server calls the RTSP Authorize role after the server has called all modules
that have registered for the RTSP Route role. By default, the server allows all
requests. It is the responsibility of a module handling this role to deny any
particular request.

When an RTSP Authorize role denies the request, the server calls no other
modules for the RTSP Authorize role and sends a 401 authorization error to the
client. After receiving a 401 authorization error, the client is expected to respond
with proper authorization information or fail to connect.

When called, the RTSP Authorize role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

C H A P T E R 1

About QuickTime Streaming Server Modules

30 Module Roles

  Apple Computer, Inc. 11/24/99

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 82) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 81) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

A module handling the RTSP Authorize role can use a combination of
authorization attributes as well as session and server attributes to evaluate the
request. The retrieval and checking of server-stored passwords, users, files and
directories is the module’s responsibility.

Modules typically use the following attributes in the QTSS_RTSPRequestObject to
determine whether to allow or deny an RTSP request: qtssRTSPReqLocalPath,
qtssRTSPReqUserName, and qtssRTSPReqUserPassword. When set, these attributes
contain 8-bit ASCII values. The server automatically handles the parsing and
decoding of name and password values sent by the client.

An RTSP Authorize role may be called in the following contexts:

� The client requests a file but does not provide a name or a password. The
RTSP Authorize role is called and finds that the qtssRTSPReqUserName and
qtssRTSPReqUserPassword attributes of the QTSS_RTSPRequestObject are empty.
The RTSP Authorize role may choose to deny the request by setting the
qtssRTSPReqUserAllowed attribute of the QTSS_RTSPRequestObject to false. The
server sends an error response of “401 authorization required” to the client.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 31
  Apple Computer, Inc. 11/24/99

� The client requests a file and provides a name and a password. The RTSP
Authorize role is called and it evaluates the name and password. If the
password is incorrect for the name or if the name is not authorized to access
the file as specified by the qtssRTSPReqLocalPath attribute, the RTSP
Authorize role sets the qtssRTSPReqUserAllowed attribute to false. The server
sends an error response of “401 authorization required” to the client.

� The client requests a file and provides a name and a password. The RTSP
Authorize role is called and it evaluates the name and password. If the
password is correct for the name and if the name is authorized to access the
file, the RTSP Authorize role allows the default setting of the
qtssRTSPReqUserAllowed attribute to remain true and the server continues to
process the request.

See “Setting Attribute Values” (page 41) for sample code that gets the value of
the qtssRTSPReqUserName and qtssRTSPReqUserPassword attributes and sets the
qtssRTSPReqUserAllowed attribute to false.

When denying a request, the RTSP Authorize role may also want to set the
qtssRTSPReqURLRealm attribute of the object QTSS_RTSPRequestObject so that the
client can fill in the realm-string when it displays the following message:

Please enter name and password for realm-string on DNS-server-name

While a module is handling the RTSP Authorize role, the server guarantees that
the module will not be called for any other role referencing the RTSP session
represented by inRTSPSession or the client session represented by
inClientSession.

A module that wants to be called in the RTSP Authorize role must in its
Register role call QTSS_AddRole (page 50) and specify QTSS_RTSPAuthorize_Role
as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Preprocessor Role 1

The server calls the RTSP Preprocessor role after the server has called all
modules that have registered for the RTSP Authorize role. If the module
handles the type of RTSP request for which the module is called, it is the
responsibility of a module handling this role to send a proper RTSP response to
the client.

When called, an RTSP Preprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

C H A P T E R 1

About QuickTime Streaming Server Modules

32 Module Roles

  Apple Computer, Inc. 11/24/99

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 82) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 81) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

The RTSP Preprocessor role typically uses the qtssRTSPReqFilePath attribute of
the inRTSPRequest member of the QTSS_StandardRTSP_Params structure to
determine whether the request matches the type of request that the module
handles. For example, a module may only handle URLs that end in .mov or .sdp.

If the request matches, the module handling the RTSP Preprocessor role
responds to the request by calling QTSS_SendStandardRTSPResponse (page 66),
QTSS_Write (page 59), or QTSS_WriteV (page 60), or by calling
QTSS_AppendRTSPHeader (page 64) and QTSS_SendRTSPHeaders (page 65). If this
module is also responsible for generating RTP packets for this client session, it
should call QTSS_AddRTPStream (page 68) to add streams to the client session, and
QTSS_Play (page 69), which causes the server to invoke the RTP Send Packets
role of the module whose RTSP Preprocessor role calls QTSS_Play.

While a module is handling the RTSP Preprocessor role, the server guarantees
that the module will not be called for any other role referencing the RTSP
session specified by inRTSPSession or the client session specified by
inClientSession.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 33
  Apple Computer, Inc. 11/24/99

A module that wants to be called in the RTSP Preprocessor role must in its
Register role call QTSS_AddRole (page 50) and specify
QTSS_RTSPPreProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Request Role 1

The server calls the RTSP Request role if no RTSP Preprocessor role responds to
an RTSP request. Only one module is called in the RTSP Request role, and that
module that is the first module to register for the RTSP Request role when the
server starts up.

When called, the RTSP Request role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 82) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 81) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

Like a module processing the RTSP Preprocessor role, a module that processes
the RTSP Request Role should use an attribute, such as the qtssRTSPReqFilePath
attribute of the inRTSPRequest member of the QTSS_StandardRTSP_Params

C H A P T E R 1

About QuickTime Streaming Server Modules

34 Module Roles

  Apple Computer, Inc. 11/24/99

structure, to determine whether the request matches the type of request that the
module can handle.

A module handling the RTSP Request role should respond to the request by

� Sending an RTSP response to the client by calling QTSS_AppendRTSPHeader
(page 64) and QTSS_AppendRTSPHeader (page 64), by calling
QTSS_SendStandardRTSPResponse (page 66), or by calling QTSS_Write (page 59)
or QTSS_WriteV (page 60).

� Preparing the QTSS_ClientSessionObject for streaming by using the RTP
callbacks, such as QTSS_AddRTPStream (page 68) and QTSS_Play (page 69). If
QTSS_Play is called, the server will invoke the calling module in the RTP Send
Packets role, at which time the module will be expected to generate RTP
packets to send to the client.

A module that wants to be called in the RTSP Request role must in its Register
role call QTSS_AddRole (page 50) and specify QTSS_RTSPRequest_Role as the role.
The first module that successfully calls QTSS_AddRole and specifies
QTSS_RTSPRequest_Role as the role is the only module that is called in the RTSP
Request role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Postprocessor Role 1

The server calls a module’s RTSP Postprocessor role whenever the module
responds to an RTSP request if that module has registered for this role.

Modules can use the RTSP Postprocessor role to log statistical information.

When called, the RTSP Postprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 35
  Apple Computer, Inc. 11/24/99

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 85) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 82) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 81) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

While a module is handling the RTSP Postprocessor role, the server guarantees
that the module will not be called for any role referencing the RTSP session
specified by inRTSPSession or the client session specified by inClientSession.

A module that wants to be called in the RTSP Postprocessor role must in its
Register role call QTSS_AddRole (page 50) and specify
QTSS_RTSPPostProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTP Roles 1

This section describes RTP roles, which are used to send data to clients and to
handle the closing of client sessions.

RTP Send Packets Role 1

The server calls a module’s RTP Send Packets role when the module calls
QTSS_Play (page 69). It is the responsibility of the RTP Send Packets role to send
media data to the client and tell the server when the module’s RTP Send
Packets role should be called again.

When called, the RTP Send Packets role receives a QTSS_RTPSendPackets_Params
structure, which is defined as follows:

C H A P T E R 1

About QuickTime Streaming Server Modules

36 Module Roles

  Apple Computer, Inc. 11/24/99

typedef struct
{

QTSS_ClientSessionObject inClientSession;
SInt64 inCurrentTime;
SInt64 outNextPacketTime;

} QTSS_RTPSendPackets_Params;

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

inCurrentTime The current time in server time units.
outNextPacketTime A time offset in milliseconds. Before returning from this

role, a module should set outNextPacketTime to the amount
of time that the server should allow to elapse before calling
the RTP Send Packets role again for this session.

The RTP Send Packets role is invoked whenever a module calls QTSS_AddRole
(page 50) for that client session. The module calls QTSS_Write (page 59) or
QTSS_WriteV (page 60) to send data to the client.

While a module is handling the RTP Send Packets role, the server guarantees
that the module will not be called for any role referencing the client session
specified by inClientSession.

A module that wants to be called in the RTP Send Packets role must in its
Register role call QTSS_AddRole (page 50) and specify QTSS_RTPSendPackets_Role
as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Client Session Closing Role 1

The server calls a module’s Client Session Closing role to allow the module to
process the closing of client sessions.

When called, the Client Session Closing role receives a
QTSS_ClientSessionClosing_Params structure, which is defined as follows:

typedef struct
{

QTSS_ClientClosing inReason;
QTSS_ClientSessionObject inClientSession;

} QTSS_ClientSessionClosing_Params;

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 37
  Apple Computer, Inc. 11/24/99

Field descriptions
inReason The reason why the session is closing. The session may be

closing because the client sent an RTSP teardown
(qtssCliSesClosClientTeardown), because this session has
timed out (qtssCliSesClosTimeout), or because the client
disconnected without issuing a teardown
(qtssCliSesClosClientDisconnect).

inClientSession The QTSS_ClientSessionObject for the client session that is
closing.

The Client Session Closing role is called whenever the client session specified
by inClientSession is about to be torn down.

While a module is handling the Client Session Closing role, the server
guarantees that the module will not be called for any role referencing the client
session specified by inClientSession.

A module that wants to be called in the Client Session Closing role must in its
Register role call QTSS_AddRole (page 50) and specify
QTSS_ClientSessionClosing_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTCP Process Role 1

The server calls a module’s RTCP Process role whenever it receives an RTCP
receiver report from a client.

RTCP receiver reports contain feedback from the client on the quality of the
stream. The feedback includes the percentage of lost packets, the number of
times the audio has run dry, and frames per second. Many attributes in the
QTSS_RTPStreamObject correlate directly to fields in the receiver report.

When called, the RTP Process role receives a QTSS_RTCPProcess_Params structure,
which is defined as follows:

typedef struct
{

QTSS_RTPStreamObject inRTPStream;
QTSS_ClientSessionObject inClientSession;
void* inRTCPPacketData;
UInt32 inRTCPPacketDataLen;

} QTSS_RTCPProcess_Params;

C H A P T E R 1

About QuickTime Streaming Server Modules

38 QTSS Objects

  Apple Computer, Inc. 11/24/99

Field descriptions
inRTPStream The QTSS_RTPStreamObject of the RTP stream that this RTCP

packet belongs to. See the section
“QTSS_RTPStreamObject” (page 77) for information about
RTP stream object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 76) for
information about client session object attributes.

inRTCPPacketData A pointer to a buffer containing the packets that are to be
processed.

inRTCPPacketDataLen
The length of valid data in the buffer pointed to by
inRTCPPacketData.

A module handling the RTCP Process role typically monitors the status of the
connection. It might, for example, track the percentage of packets lost for each
connected client and update its counters.

While a module is handling the RTCP Process role, the server guarantees that
the module will not be called for any role referencing the RTP stream specified
by inRTPStream.

A module that wants to be called in the RTCP Process role must in its Register
role call QTSS_AddRole (page 50) and specify QTSS_RTCPProcess_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

QTSS Objects 1

A QTSS object is a collection of attributes whose values QTSS modules read
and, in some cases, write. QTSS objects provide a way for modules to get data
from the server and to provide data to the server.

The QuickTime Streaming Server defines several object types. For each of the
objects that the server defines, there is a set of predefined attributes. For
example, the object QTSS_RTSPRequestObject has a URL attribute that a module
can read to obtain the URL associated with a particular RTSP request.

The server defines several object types to describe client sessions and streams,
RTSP headers, sessions, and requests, global server information, server
preferences, and error messages:

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 39
  Apple Computer, Inc. 11/24/99

� qtssRTPStreamObjectType — Attributes associated with an individual RTP
stream, such as an audio, video, or text stream. An RTP stream object
(QTSS_RTPStreamObject) is an instance of this object type and is created by
calling QTSS_AddRTPStream (page 68). An RTP stream object must be
associated with a single client session object (QTSS_ClientSessionObject). A
client session object may be associated with any number of RTP stream
objects.

� qtssClientSessionObjectType — Attributes associated with a client session,
where a client session is defined as a single client streaming presentation.

� qtssRTSPSessionObjectType — Attributes associated with an RTSP
client-server connection. An RTSP session object (QTSS_RTSPSessionObject) is
an instance of this object type that exists as long as the RTSP client is
connected to the server.

� qtssRTSPRequestObjectType — Attributes associated with an individual RTSP
request. An RTSP request object (QTSS_RTSPRequestObject) is an instance of
this object type that exists from the time the server receives a complete RTSP
request from a client until the time that the response has been sent and the
server moves on to the next request. An RTSP request object must be
associated with a single RTSP session object (QTSS_RTSPSessionObject), for a
given request made on a single connection.

� qtssRTSPHeaderObjectType — All of the RTSP request headers associated with
an individual RTSP request. The names of the built-in attributes in this object
are the names of RTSP headers and their values correspond directly to the
names of RTSP headers. For example, if a module wants to read the value of
a session header in an RTSP request, it would read the value of the Session
attribute in an RTSP header reference (QTSS_RTSPHeaderObject).

� qtssServerObjectType —Global server attributes, such as server statistics.
There is a single instance of this object type.

� qtssPrefsObjectType —Attributes for the server’s internal preference storage
system. On Mac OS X, the attribute values for this object are stored in a
NetInfo database. On other platforms, the attribute values come from a text
configuration file named QTSS.conf. Attribute names correspond to keywords
that identify preferences. For example, a module could add an attribute to
the QTSS_Prefs object named num_outstanding_doodads. Retrieving the value
of this attribute from the global preferences object retrieves the current value
of this preference from the NetInfo database or the QTSS.conf file. There is a
single instance of this object type.

C H A P T E R 1

About QuickTime Streaming Server Modules

40 QTSS Objects

  Apple Computer, Inc. 11/24/99

� qtssTextMessageObjectType — Contains attributes whose values are intended
for display to the user or are returned to the client. To make localization
easier, the values are text strings.

Note
Modules can also add new attributes to any object. See
QTSS_AddAttribute (page 54) for information on adding
attributes to objects. �

Getting Attribute Values 1

Modules use attributes stored in objects to exchange information with the
server, so they frequently get and set attribute values. Some attributes are
preemptive safe and their values can be obtained at any time by calling
QTSS_GetValuePtr (page 57), which returns a pointer to the server's internal copy
of the attribute value. Other attributes are not preemptive safe and their values
must be obtained by calling QTSS_GetValue (page 56), which copies the attribute
value into a buffer provided by the module.

Note
A module can obtain the value of any attribute by calling
QTSS_GetValue, but whenever modules get the value of
preemptive safe attributes, they should call
QTSS_GetValuePtr because it is faster than QTSS_GetValue. �

The sample code in Listing 1-1 calls QTSS_GetValue (page 56) to get the value of
the qtssRTPSvrCurConn attribute, which is not preemptive safe, from the object
QTSS_ServerObject.

Listing 1-1 Sample code that calls QTSS_GetValue

UInt32 MyGetNumCurrentConnections(QTSS_ServerObject inServerObject)
{

// qtssRTPSvrCurConn is a UInt32, so provide a UInt32 for the result.
UInt32 theNumConnections = 0;

// Pass in the size of the attribute value.
UInt32 theLength = sizeof(theNumConnections);

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 41
  Apple Computer, Inc. 11/24/99

// Retreive the value.
QTSS_Error theErr = QTSS_GetValue(inServerObject, qtssRTPSvrCurConn, 0,

&theNumConnections, &theLength);

// Check for errors. If the length is not what was expected, return 0.
if ((theErr != QTSS_NoErr) || (theLength != sizeof(theNumConnections))

return 0;

return theNumConnections;
}

The sample code in Listing 1-2 calls QTSS_GetValuePtr (page 57), which is the
preferred way to get the value of preemptive-safe attributes. In this example,
value of the qtssRTSPReqMethod attribute is obtained from the object
QTSS_RTSPRequestObject.

Listing 1-2 Sample code that calls QTSS_GetValuePtr

QTSS_RTSPMethod MyGetRTSPRequestMethod(QTSS_RTSPRequestObject inRTSPRequestObject)
{

QTSS_RTSPMethod* theMethod = NULL;
UInt32 theLen = 0;

QTSS_Error theErr = QTSS_GetValuePtr(inRTSPRequestObject, qtssRTSPReqMethod, 0,
(void**)&theMethod, &theLen);

if ((theErr != QTSS_NoErr) || (theLen != sizeof(QTSS_RTSPMethod))
return -1; // Return a -1 if there is an error, which is not a valid

// QTSS_RTSPMethod index
else

return *theMethod;
}

Setting Attribute Values 1

The sample code in Listing 1-3 calls QTSS_GetValue (page 56) to get the values of
the qtssRTSPReqUserName, the qtssRTSPReqUserPassword, and the
qtssRTSPReqLocalPath attribute from the object QTSS_RTSPRequestObject. If the

C H A P T E R 1

About QuickTime Streaming Server Modules

42 QTSS Objects

  Apple Computer, Inc. 11/24/99

user is not authorized, this function denies the request by setting the
qtssRTSPReqUserAllowed attribute to false.

Listing 1-3 Sample code that calls QTSS_SetValue

// First get the user name using QTSS_GetValuePtr
// theUserName & theUserNameLen will get set by QTSS_GetValuePtr below

char* theUserName = NULL;
UInt32 theUserNameLen = 0;

QTSS_Error theErr = QTSS_GetValuePtr(inParams->inRTSPRequest, qtssRTSPReqUserName, 0,
&theUserName, &theUserNameLen);

// Check for any errors
if (theErr != QTSS_NoErr) return;

// Get the user password by calling QTSS_GetValuePtr.

char* theUserPassword = NULL;
UInt32 theUserPasswordLen = 0;

theErr = QTSS_GetValuePtr(inParams->inRTSPRequest, qtssRTSPReqUserPassword, 0,
&theUserPassword, &theUserPasswordLen);

// Check for any errors.
if (theErr != QTSS_NoErr) return;

// Get the full path to the requested file.
char* theFullPath = NULL;
UInt32 theFullPathLen = 0;

theErr = QTSS_GetValuePtr(inParams->inRTSPRequest, qtssRTSPReqLocalPath, 0,
&theFullPath, &theFullPathLen);

// Check for any errors.
if (theErr != QTSS_NoErr) return;

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 43
  Apple Computer, Inc. 11/24/99

// Check the name, password, and file. (Code not provided)
// If the check determines the user is not authorized, deny the request.
Bool16 allow = false;
theErr = QTSS_SetValue (inParams->inRTSPRequest, qtssRTSPReqUserAllowed,

0, (void *) &allow, sizeof(allow));

Adding Attributes to QTSS Object Types 1

Any module can add an attribute to a QTSS object type by calling the
QTSS_AddAttribute (page 54) callback routine from its Register role.

Note
Using one or more added attributes is the most efficient
and the recommended way for modules to store data that is
specific to a particular session. �

Once added, the new attribute is included in every object of that type that the
server creates and its value can be set and obtained by calling that same
callback routines that set and obtain the value of the server’s built-in attributes:
QTSS_SetValue (page 58), QTSS_GetValue (page 56), and QTSS_GetValuePtr
(page 57).

The sample code in Listing 1-4 calls QTSS_AddAttribute (page 54) to add an
attribute to the object QTSS_ClientSessionObject.

Listing 1-4 Sample code that calls QTSS_AddAttribute

QTSS_Error MyRegisterRoleFunction()
{

// Add the attribute. The third parameter is an optional attribute retrieval
// function that can be set to NULL.

QTSS_Error theErr = QTSS_AddAttribute(qtssClientSessionObjectType,
sExampleAttributeName, NULL);

// Retrieve the ID for this attribute. This ID can be passed into QTSS_GetValue,
// QTSS_SetValue, and QTSS_GetValuePtr.

C H A P T E R 1

About QuickTime Streaming Server Modules

44 QTSS Streams

  Apple Computer, Inc. 11/24/99

QTSS_AttributeID theID;
theErr = QTSS_IDForAttr(qtssClientSessionObjectType,

QTSSSampleModuleExampleAttribute, &theID);

// Store the attribute ID in a global so for later use. Attribute IDs do not
// change while the server is running.

gMyExampleAttrID = theID;
}

QTSS Streams 1

The QTSS programming interface provides QTSS stream references as a
generalized stream abstraction. QTSS stream references are usually used for
communicating with the client. For example, in all RTSP roles modules receive
an object of type QTSS_RTSPRequestObject having a qtssRTSPReqStreamRef
attribute. The value of this attribute is of type QTSS_StreamRef, and it can be
used for sending RTSP response data to the client.

QTSS stream references are generalized enough to be used in many other
situations. For example, modules receive a QTSS stream reference for the error
log, which modules can use when writing errors in the error log.

All stream references are of type QTSS_StreamRef. The QTSS programming
interface uses following stream references:

inErrorLog Allows binary data to be written to the server’s error log.
There is a single instance of this stream type, which is
passed to each module in the Initialize role. When data is
written to this stream, modules that have registered for the
Error Log role are invoked. For information about this role,
see the section “Error Log Role” (page 25).

qtssRTSPSesStreamRef
Represents a stream for writing data to an RTSP client. The
server may encounter flow control conditions when
sending data to the RTSP client, so modules should be
prepared to handle QTSS_WouldBlock errors when writing to
this stream type. This stream reference is an attribute of the
object QTSS_RTSPSessionObject.

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Services 45
  Apple Computer, Inc. 11/24/99

qtssRTSPReqStreamRef
Represents a stream for writing data to an RTSP client. This
stream type is identical to the qtssRTSPSessionRef stream
except that data written to this stream type is buffered in
memory by the stream until a full RTSP response is
constructed. Because the data is buffered internally,
modules do not receive QTSS_WouldBlock errors when
writing to streams of this type. This stream reference is an
attribute of the object QTSS_RTSPRequestObject.

qtssRTPStrStreamRef
Represents a stream used for writing data to an RTP client.
When writing to a stream of this type, a single write call
corresponds to a single, complete RTP packet, including
headers. Modules should be prepared to handle
QTSS_WouldBlock errors that may be returned when writing
to this stream type. Data written to this stream is not
buffered by the server, so this stream is useful for sending
long RTSP responses to the client. This stream reference is
an attribute of the object QTSS_RTPStreamObject.

Note
All stream references are asynchronous. �

QTSS Services 1

QTSS services are services the modules can access. The service may be a built-in
service provided by the server or an added service provided by another
module. An example of a service would be a logging module that allows other
modules to write messages to the error log.

Modules use the callback routines described in the section “Service Callback
Routines” (page 62) to register and invoke services. Modules add and find
services in a way that is similar to the way in which they add and find
attributes of an object.

Every service has a name. To invoke a service, the calling module must know
the name of the service and resolve that name into an ID.

C H A P T E R 1

About QuickTime Streaming Server Modules

46 QTSS Services

  Apple Computer, Inc. 11/24/99

Each service has its own specific parameter block format. Modules that export
services should carefully document the services they export. Modules that call
services should fail gracefully if the service isn’t available or returns an error.

A module that implements a service calls QTSS_AddService (page 62) in its
Register role to add the service to the server’s internal database of services, as
shown in the following code:

void MyAddService()
{

QTSS_Error theErr = QTSS_AddService("MyService", &MyServiceFunction);
}

The MyServiceFunction corresponds to the name of a function that must be
implemented in the same module. Here is a stub implementation of the
MyServiceFunction:

QTSS_Error MyServiceFunction(MyServiceArgs* inArgs)
{

// Each service function must take a single void* argument
 // Implement the service here.

// Return a QTSS_Error.
}

To use a service, a module must get the service’s ID by calling
QTSS_IDForService (page 63) and providing the name of the service as a
parameter. With the service’s ID, the module calls QTSS_DoService (page 63) to
cause the service to run. Here is an example:

void MyInvokeService()
{

// Service functions take a single void* parameter that corresponds
// to a parameter block specific to the service.

MyServiceParamBlock theParamBlock;

// Initialize service-specific parameters in the parameter block.

theParamBlock.myArgument = xxx;

QTSS_ServiceID theServiceID = qtssIllegalServiceID;

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Services 47
  Apple Computer, Inc. 11/24/99

// Get the service ID by providing the name of the service.

QTSS_Error theErr = QTSS_IDForService(‘MyService’, &theServiceID);

if (theErr != QTSS_NoErr)
return; // The service isn’t available.

// Run the service.

theErr = QTSS_DoService(theServiceID, &theParamBlock);
}

Built-in Services 1

The QuickTime Streaming Server provides built-in services that modules may
invoke using the service routines. In this version of the QTSS programming
interface, there is one built-in service:

#define QTSS_REREAD_PREFS_SERVICE "RereadPreferences"

Invoking the Reread Preferences service causes the server to reread its
preferences and invoke each module in the Reread Preferences role, if they have
registered for that role.

To invoke a built-in service, retrieve the service ID of the service by calling
QTSS_IDForService (page 63). Then call QTSS_DoService (page 63) to run the
service.

QTSS Callback Routines 49
  Apple Computer, Inc. 11/24/99

C H A P T E R 2

QuickTime Streaming Server
Module Reference 2

Figure 2-0
Listing 2-0
Table 2-0

This chapter describes the callback routines and data types that modules use to
call the QuickTime Streaming Server.

QTSS Callback Routines 2

This section describes the QTSS callback routines that modules call to obtain
information from the server, to allocate and deallocate memory, to get and set
attribute values, and to manage client and RTSP sessions.

The QTSS callback routines are described in these sections:

� “QTSS Utility Callback Routines” (page 49)

� “QTSS Attribute Callback Routines” (page 53)

� “Stream Callback Routines” (page 59)

� “Service Callback Routines” (page 62)

� “RTSP Header Callback Routines” (page 64)

� “RTP Callback Routines” (page 67)

QTSS Utility Callback Routines 2

Modules call the following callback routines to register for roles, allocate and
deallocate memory, get the value of the server’s internal timer, and to convert a
value from the internal timer to the current time:

� QTSS_AddRole (page 50) to tell the server that the module wants to be called
for a specific role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

50 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

� QTSS_Milliseconds (page 53) to get the current value of the server’s internal
timer.

� QTSS_MilliSecsTo1970Secs (page 53) to convert a value returned by
QTSS_Milliseconds to the current time.

� QTSS_New (page 52) to allocate memory.

� QTSS_Delete (page 52) to dispose of memory allocated by QTSS_New.

QTSS_AddRole 2

Adds a role.

QTSS_Error QTSS_AddRole(QTSS_Role inRole);

inRole On input, a value of type QTSS_Role that specifies the role that is
to be added.

result A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddRole is called from a role other than the Register role,
QTSS_RequestFailed if the module is registering for the RTSP
Request role and a module is already registered for that role,
and QTSS_BadArgument if the specified role does not exist.

DISCUSSION

The QTSS_AddRole callback routine tells the server that your module can be
called for the role specified by inRole.

The QTSS_AddRole callback can only be called from a module’s Initialize role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 51
  Apple Computer, Inc. 11/24/99

For this version of the server, you can add the roles listed in Table 2-1:

Table 2-1 Role constants

QTSS_ErrorLog_Role Called when an error occurs

QTSS_Initialize_Role Called at server startup after the Register
role to initialize the module

QTSS_RTSPFilter_Role Called to filter RTSP requests before the
server parses them

QTSS_RTSPRoute_Role Called to change the root folder for
handling an RTSP request

QTSS_RTSPAuthorize_Role Called to authorize RTSP requests

QTSS_RTSPPreProcessor_Role Called to process RTSP requests.
Modules can respond to the request by
sending packets to the client

QTSS_RTSPRequest_Role Called to process an RTSP request and
send a response to the client if no
module responds to the client in the
RTSP Preprocessor role

QTSS_RTSPPostProcessor_Role Called to post-process RTSP requests

QTSS_RTPSendPackets_Role Called to send RTP packets to the client

QTSS_ClientSessionClosing_Role Called to inform the module that a client
session is closing

QTSS_RTCPProcess_Role Called to process all RTCP packets sent
to the server by the client

QTSS_Shutdown_Role Called when the server shuts down

C H A P T E R 2

QuickTime Streaming Server Module Reference

52 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

QTSS_New 2

Allocates memory.

void* QTSS_New(
FourCharCode inMemoryIdentifier,
UInt32 inSize);

inMemoryIdentifier
On input, a value of type FourCharCode that will be associated
with this memory allocation. The server can track the allocated
memory to make debugging memory leaks easier.

inSize On input, a value of type UInt32 that specifies in bytes the
amount of memory to be allocated.

result A result code. Possible values are QTSS_NoErr.

DISCUSSION

The QTSS_New callback routine allocates memory. QTSS modules should call
QTSS_New whenever it needs to allocate memory dynamically.

To delete the memory that QTSS_New allocates, call QTSS_Delete (page 52).

QTSS_Delete 2

Deletes memory.

void* QTSS_Delete(void* inMemory);

inMemory On input, a pointer to an arbitrary value that specifies in bytes
the amount of memory to be deleted.

result A result code. Possible values are QTSS_NoErr.

DISCUSSION

The QTSS_Delete callback routine deletes memory that was previously allocated
by QTSS_New (page 52).

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 53
  Apple Computer, Inc. 11/24/99

QTSS_Milliseconds 2

Gets the current value of the server’s internal timer.

SInt64 QTSS_Milliseconds();

result The value of the server’s internal timer in milliseconds since the
server started up.

DISCUSSION

The QTSS_Milliseconds callback routine gets the current value of the server’s
internal timer since the server started up. Unless otherwise noted, all
millisecond values that the server provides in attributes are obtained from this
timer.

QTSS_MilliSecsTo1970Secs 2

Converts milliseconds to seconds since 1970.

time_t QTSS_MilliSecsTo1970Secs(SInt64 inQTSS_Milliseconds);

inQTSS_Milliseconds
On input, a value of type SInt64 obtained by calling
QTSS_Milliseconds.

result A value of type time_t containing the converted value.

DISCUSSION

The QTSS_MilliSecsto1970Secs callback routine converts a value obtained by
calling QTSS_Milliseconds (page 53) to the number of seconds since 1970.

QTSS Attribute Callback Routines 2

Modules call the following routines to work with attributes:

� QTSS_AddAttribute (page 54) to add an attribute to an object type.

C H A P T E R 2

QuickTime Streaming Server Module Reference

54 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

� QTSS_IDForAttr (page 55) to get the ID for an attribute name.

� QTSS_GetValue (page 56) to get the value of an attribute.

� QTSS_GetValuePtr (page 57) to get a pointer to an attribute value.

� QTSS_SetValue (page 58) to set the value of an attribute.

QTSS_AddAttribute 2

Adds an attribute to an object type.

QTSS_Error QTSS_AddAttribute(
QTSS_ObjectType inType,
const char* inAttributeName,
QTSS_AttrFunctionPtr inFunctionPtr);

inType On input, a value of type QTSS_ObjectType that specifies the type
of object to which the attribute is to be added. For possible
values, see the section “QTSS Objects” (page 38).

inAttributeName
On input, a pointer to a byte array that specifies the name of the
attribute that is to be added.

inFunctionPtr On input, a pointer to a module-implemented routine that is
called whenever a module calls QTSS_GetValue (page 56) or
QTSS_GetValuePtr (page 57) to get the value of the added
attribute, or NULL.

result A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddAttribute is called from a role other than the Register
role, and QTSS_BadArgument if the specified object type does not
exist, the attribute name is too long, or a parameter is not
specified.

DISCUSSION

The QTSS_AddAttribute callback routine adds a new attribute to all objects of the
type specified by the inType parameter.

The QTSS_AddAttribute callback can only be called from the Register role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 55
  Apple Computer, Inc. 11/24/99

The module-implemented routine must conform to the following type
definition:

typedef void* (*QTSS_AttrFunctionPtr)(QTSS_Object, UInt32*);

On input, the QTSS_Object for the specified attribute is passed in.

The module-implemented routine has two ways to return the attribute value to
the caller:

� Return the attribute body as the return value and the attribute length in the
second parameter, which returns the attribute to the caller but does not
update the object. Each subsequent time that the attribute value is requested,
the routine is invoked again.

� Call QTSS_SetValue (page 58) to set the attribute in the object. Once the
attribute is set in the object, your routine will not be called again for this
object.

QTSS_IDForAttr 2

Gets the ID of an attribute.

QTSS_Error QTSS_IDForAttr(
QTSS_ObjectType inType,
const char* inAttributeName,
QTSS_AttributeID* outID);

inType On input, a value of type QTSS_ObjectType that specifies the type
of object for which the ID is to be obtained. For possible values,
see the section “QTSS Objects” (page 38).

inAttributeName
On input, a pointer to a byte array that specifies the name of the
attribute whose ID is to be obtained.

outID On input, a pointer to a value of type QTSS_AttributeID. On
output, outID contains the ID of the attribute specified by
inAttributeName.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

C H A P T E R 2

QuickTime Streaming Server Module Reference

56 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

DISCUSSION

The QTSS_IDForAttr callback routine obtains the attribute ID for the specified
attribute in the specified object type. You can use the ID to obtain the value of
the attribute by calling QTSS_GetValue (page 56) or QTSS_GetValuePtr (page 57).

QTSS_GetValue 2

Copies the value of an attribute into a buffer.

QTSS_Error QTSS_GetValue (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
void* ioBuffer,
UInt32* ioLen);

inObject On input, a value of type QTSS_Object that specifies the object
that contains the attribute whose value is to be obtained.

inID On input, a value of type QTSS_AttributeID that specifies the ID
of the attribute whose value is to be obtained.

inIndex On input, a value of type UInt32 that specifies which attribute
value to get (if the attribute can have multiple values) or zero for
single-value attributes.

ioBuffer On input, a pointer to a buffer. On output, ioBuffer contains the
value of the attribute specified by inID. If the buffer is too small
to contain the value, ioBuffer is empty.

ioLen On input, a pointer to a value of type UInt32 that specifies the
length of ioBuffer. On output, ioLen contains the length of the
valid data in ioBuffer.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, QTSS_BadIndex of the
index specified by inIndex does not exist, QTSS_NotEnoughSpace
if the attribute value is longer than the value specified by ioLen.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 57
  Apple Computer, Inc. 11/24/99

DISCUSSION

The QTSS_GetValue callback routine copies the value of the specified attribute
into the provided buffer.

You must call QTSS_GetValue to get the value of any attribute that is not
preemptive safe. When getting the value of a preemptive safe attribute, you
should always call QTSS_GetValuePtr (page 57) because QTSS_GetValuePtr is the
most efficient function and less likely to encounter an error condition.

QTSS_GetValuePtr 2

Gets a pointer to an attribute value.

QTSS_Error QTSS_GetValuePtr (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
void** outBuffer,
UInt32* outLen);

inObject On input, a value of type QTSS_Object that specifies the object
containing the attribute whose value is to be obtained.

inID On input, a value of type QTSS_AttributeID that specifies the ID
of an attribute.

inIndex On input, a value of type UInt32 that specifies which attribute
value to get (if the attribute can have multiple values) or zero for
single-value attributes.

outBuffer On input, a pointer to an address in memory. On output,
outBuffer points to the value of the attribute specified by inID.

outLen On output, a pointer to a value of type UInt32 that contains the
number of valid bytes pointed to by outBuffer.

result A result code. Possible values include QTSS_NoErr,
QTSS_NotPreemptiveSafe if inID is an attribute that is not
preemptive safe, QTSS_BadArgument if a parameter is invalid, and
QTSS_BadIndex if the index specified by inIndex does not exist.

C H A P T E R 2

QuickTime Streaming Server Module Reference

58 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

DISCUSSION

The QTSS_GetValuePtr callback routine gets a pointer to an attribute value.
When getting the value of an attribute that is preemptive safe, you should
always call QTSS_GetValuePtr because it is faster, more efficient, and less likely
to generate an error.

Note
This QTSS_GetValuePtr callback cannot be used to get the
value of attributes that are not preemptive safe. To get the
value of an attribute that is not preemptive safe, call
QTSS_GetValue (page 56). �

QTSS_SetValue 2

Sets the value of an attribute.

QTSS_Error QTSS_SetValue (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
const void* inBuffer,
UInt32 inLen);

inObject On input, a value of type QTSS_Object that specifies the object
containing the attribute whose value is to be set.

inID On input, a value of type QTSS_AttributeID that specifies the ID
of the attribute whose value is to be set.

inIndex On input, a value of type UInt32 that specifies which attribute
value to set (if the attribute can have multiple values) or zero for
single-value attributes.

inBuffer On input, a pointer to a buffer containing the value that is to be
set. When QTSS_SetValue returns, you can dispose of inBuffer.

inLen On input, a pointer to a value of type UInt32 that specifies the
length of valid data in inBuffer.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 59
  Apple Computer, Inc. 11/24/99

result A result code. Possible values are QTSS_NoErr, QTSS_BadIndex if
the index specified by inIndex does not exist, QTSS_BadArgument
if a parameter is invalid, and QTSS_ReadOnly if the attribute is
read-only.

DISCUSSION

The QTSS_SetValue callback routine sets the value of the specified attribute.

Stream Callback Routines 2

This section describes the callback routines that modules call to perform I/O on
streams. The routine are

� QTSS_Write (page 59) to write data to the client.

� QTSS_WriteV (page 60) to write data the client using an iovec structure.

� QTSS_Flush (page 61) to write data that may have been buffered.

Internally, the server performs I/O asynchronously, so QTSS stream callback
routines do not block and, unless otherwise noted, return the error
QTSS_WouldBlock if data cannot be written.

QTSS_Write 2

Writes data to a stream.

QTSS_Error QTSS_Write(
QTSS_StreamRef inRef,
void* inBuffer,
UInt32 inLen,
UInt32* outLenWritten,
UInt32 inFlags);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream to which data is to be written.

inBuffer On input, a pointer to a buffer containing the data that is to be
written.

C H A P T E R 2

QuickTime Streaming Server Module Reference

60 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

inLen On input, a value of type UInt32 that specifies the length of the
data in the buffer pointed to by ioBuffer.

outLenWritten On output, a pointer to a value of type UInt32 that contains the
number of bytes that were written.

inFlags On input, a value of type UInt32. See the Discussion section for
possible values.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid,
QTSS_NotConnected if the stream receiver is no longer connected,
and QTSS_WouldBlock if the stream cannot be completely flushed
at this time.

DISCUSSION

The QTSS_Write callback routine writes a buffer of data to a stream.

The following enumeration defines constants for the inFlags parameter:

enum
{

qtssWriteFlagsIsRTP = 0x00000001,
qtssWriteFlagsIsRTCP= 0x00000002

};

These flags are relevent when writing to an RTP stream reference and tell the
server whether the data written should be sent over the RTP channel
(qtssWriteFlagsIsRTP) or the RTCP channel of the specified RTP stream
(qtssWriteFlagsIsRTCP).

QTSS_WriteV 2

Writes data to a stream using an iovec structure.

QTSS_Error QTSS_WriteV(
QTSS_StreamRef inRef,
iovec* inVec,

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 61
  Apple Computer, Inc. 11/24/99

UInt32 inNumVectors,
UInt32 inTotalLength,
UInt32* outLenWritten);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream to which data is to be written.

inVec On input, a pointer to an iovec structure. The first member of
the iovec structure must be empty.

inNumVectors On input, a value of type UInt32 that specifies the number of
vectors.

inTotalLength On input, a value of type UInt32 specifying the total length of
inVec.

outLenWritten On output, a pointer to a value of type UInt32 containing the
number of bytes that were written.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is NULL, and QTSS_WouldBlock if
the write operation would block.

DISCUSSION

The QTSS_WriteV callback routine writes a data to a stream using an iovec
structure in a way that is similar to the POSIX writev call.

QTSS_Flush 2

Forces an immediate write operation.

QTSS_Error QTSS_Flush(QTSS_StreamRef inRef);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream for which buffered data is to be written.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is NULL, and QTSS_WouldBlock if
the stream cannot be flushed completely at this time.

C H A P T E R 2

QuickTime Streaming Server Module Reference

62 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

DISCUSSION

The QTSS_Flush callback routine forces the stream to immediately write any data
that has been buffered. Some QTSS stream references, such as QTSSRequestRef,
buffer data before sending it.

Service Callback Routines 2

Modules use the callback routines described in this section to register and
invoke services. The service callback routines are:

� QTSS_AddService (page 62) to add a service that other modules can call.

� QTSS_IDForService (page 63) to get the ID of a service.

� QTSS_DoService (page 63) to call a service provided by another module or by
the server.

QTSS_AddService 2

Adds a service.

QTSS_Error QTSS_AddService(
const char* inServiceName,
QTSS_ServiceFunctionPtr inFunctionPtr);

inServiceName On input, a pointer to a string containing the name of the service
that is being added.

inFunctionPtr On input, a pointer to the module that provides the service that
is being added.

result A result code. Possible values include QTSS_NoErr,
QTSS_OutOfState if QTSS_AddService is not called from the
Register role, and QTSS_BadArgument if inServiceName is too long
or if a parameter is NULL.

DISCUSSION

The QTSS_AddService callback routine makes the specified service available for
other modules to call.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 63
  Apple Computer, Inc. 11/24/99

Note
The QTSS_AddService callback can only be called from the
Register role. �

QTSS_IDForService 2

Resolves a service name to a service ID.

QTSS_Error QTSS_IDForService(
const char* inTag,
QTSS_ServiceID* outID);

inTag On input, a pointer to a string containing the name of the service
that is to be resolved.

outID On input, a pointer to a value of type QTSS_ServiceID. On
output, QTSS_ServiceID contains the ID of the service specified
by inTag.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_IDForService callback routine returns in the outID parameter the
service ID of the service specified by the inTag parameter. You can use the
service ID to call QTSS_DoService (page 63) to invoke the service that serviceID
represents.

QTSS_DoService 2

Invokes a service.

QTSS_Error QTSS_DoService(
QTSS_ServiceID inID,
QTSS_ServiceFunctionArgsPtr inArgs);

C H A P T E R 2

QuickTime Streaming Server Module Reference

64 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

inID On input, a value of type QTSS_ServiceID that specifies the
service that is to be invoked. Call QTSS_IDForAttr (page 55) to
get the service ID of the service you want to invoke.

inArgs On input, a value of type QTSS_ServiceFunctionArgsPtr that
points to the arguments that are to be passed to the service.

result A result code returned by the service or QTSS_IllegalService if
inID is invalid.

DISCUSSION

The QTSS_DoService callback routine invokes the service specified by inID.

RTSP Header Callback Routines 2

As a convenience to modules that want to send RTSP responses, the server
provides the utilities described in this section for formatting RTSP responses
properly. The routines are

� QTSS_AppendRTSPHeader (page 64) to append information to an RTSP header.

� QTSS_AppendRTSPHeader (page 64) to send an RTSP header

� QTSS_SendStandardRTSPResponse (page 66) to send an RTSP response to a
client.

QTSS_AppendRTSPHeader 2

Appends information to an RTSP header.

QTSS_Error QTSS_AppendRTSPHeader(
QTSS_RTSPRequestObject inRef,
QTSS_RTSPHeader inHeader,
const char* inValue,
UInt32 inValueLen);

inRef On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 65
  Apple Computer, Inc. 11/24/99

inHeader On input, a value of type QTSS_RTSPHeader.

inValue On input, a pointer to a byte array containing the header that is
to be appended.

inValueLen On input, a value of type UInt32 containing the length of valid
data pointed to by inValue.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_AppendRTSPHeader callback routine appends headers to an RTSP
header. After you call QTSS_AppendRTSPHeader, call QTSS_SendRTSPHeaders
(page 65) to send the entire header.

QTSS_SendRTSPHeaders 2

Sends an RTSP header.

QTSS_Error QTSS_SendRTSPHeaders(QTSS_RTSPRequestOjbect inRef);

inRef On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_SendRTSPHeaders callback routine sends an RTSP header. When a
module calls QTSS_SendRTSPHeaders, the server sends a proper RTSP status line,
using the request’s current status code. The server also sends the proper CSeq
header, session ID header, and connection header.

C H A P T E R 2

QuickTime Streaming Server Module Reference

66 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

QTSS_SendStandardRTSPResponse 2

Sends an RTSP response to a client.

QTSS_Error QTSS_SendStandardRTSPResponse(
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_Object inRTPInfo,
UInt32 inFlags);

inRTSPRequest On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

inRTPInfo On input, a value of type QTSS_Object that identifies the QTSS
object type.

inFlags On input, a value of type UInt32. Set inFlags to
qtssPlayRespWriteTrackInfo if you want the server to append
the seq number, a timestamp, and SSRC information to an
RTP-Info header.

result A result code. Possible values include QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_SendStandardRTSPResponse callback routine writes a standard
response to the stream specified by the inRTSPRequest parameter. The actual
response that is written depends on the method.

The following enumeration defines a constant for the inFlags parameter:

enum
{

qtssPlayRespWriteTrackInfo = 0x00000001
};

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 67
  Apple Computer, Inc. 11/24/99

Table 2-2 describes the data returned by each method that the
QTSS_SendStandardRTSPResponse callback supports.

RTP Callback Routines 2

QTSS modules can generate and send RTP packets in response to an RTSP
request. Typically RTP packets are sent in response to a SETUP request from the
client. Currently, only one module can generate packets for a particular session.

Table 2-2 QTSS_SendStandardRTSPResponse method responses

Method Response Object

DESCRIBE Writes status line, CSeq, SessionID, and
connection headers as determined by the
request.

Writes a content-base header with the provided
URL as the content base. Writes application/sdp
as the content-type header.

QTSS_ClientSessionObject

SETUP Writes status line, CSeq, SessionID, and
connection headers as determined by the
request.

Writes a transport header. If the connection is
over UDP, the transport header includes client
and server ports.

QTSS_ClientSessionObject

PLAY Writes status line, CSeq, SessionID, and
connection headers as determined by the
request.

Set inFlags to qtssPlayRespWriteTrackInfo if
you want the server to append the seq number,
a timestamp, and SSRC information into an
RTP-Info header.

QTSS_ClientSessionObject

PAUSE Writes status line, CSeq, and connection headers
as determined by the request.

QTSS_ClientSessionObject

TEARDOWN Writes status line, CSeq, SessionID, and
connection headers as determined by the
request.

QTSS_ClientSessionObject

C H A P T E R 2

QuickTime Streaming Server Module Reference

68 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

The RTP callback routines are

� QTSS_AddRTPStream (page 68), which is called by a module to enable the
sending of RTP packets to a client. Only one module can call
QTSS_AddRTPStream for any particular session.

� QTSS_Play (page 69), which is called by a module to start the playing of
streams for a client session.

� QTSS_Pause (page 70), which is called by a module pause the playing of
streams for a client session

� QTSS_Teardown (page 71), which is called by a module to close a client
session.

QTSS_AddRTPStream 2

Enables a module to send RTP packets to a client.

QTSS_Error QTSS_AddRTPStream(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_RTPStreamObject* outStream,
QTSS_AddStreamFlags inFlags);

inClientRequest
On input, a value of type QTSS_ClientSessionObject that
identifies the client session for which the sending of RTP packets
is to be enabled.

inRTSPRequest On input, a value of type QTSS_RTSPRequestObject.

outStream On output, a pointer to a value of type QTSS_RTPStreamObject,
containing the newly created stream.

inFlags On input, a value of type QTSS_AddStreamFlags that specifies
stream options. See the Discussion section for possible values.

result A result code. Possible values are QTSS_NoErr,
QTSS_RequestFailed if the QTSS_RTPStreamObject couldn’t be
created, and QTSS_BadArgument if a parameter is invalid.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 69
  Apple Computer, Inc. 11/24/99

DISCUSSION

The QTSS_AddRTSPStream callback routine enables a module to send RTP packets
to a client in response to an RTSP request. Call QTSS_AddRTSPStream multiple
times in order to add more than one stream to the session.

The following enumeration defines possible values for the inFlags parameter:

enum
{

qtssASFlagsAllowDestination = 0x00000001,
qtssASFlagsForceInterleave = 0x00000002

};
typedef UInt32 QTSS_AddStreamFlags;

To start playing a stream, call QTSS_Play (page 69).

QTSS_Play 2

Starts playing streams associated with a client session.

QTSS_Error QTSS_Play(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_PlayFlags inPlayFlags);

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session for which the sending of RTP packets
was enabled by previously calling QTSS_AddRTPStream (page 68).

inRTSPRequest On input, a value of type QTSS_RequestObject.

inPlayFlags On input, a value of type QTSS_PlayFlags. Set inPlayFlags to the
constant qtssPlaySendRTCP to cause the server to generate RTCP
sender reports automatically while playing. Otherwise, the
module is responsible for generating sender reports that specify
play characteristics.

C H A P T E R 2

QuickTime Streaming Server Module Reference

70 QTSS Callback Routines

  Apple Computer, Inc. 11/24/99

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed if no streams have been added to the
session.

DISCUSSION

The QTSS_Play callback routine starts playing streams associated with the
specified client session. After calling QTSS_Play, the module is invoked in the
RTP Send Packets role.

Before calling QTSS_Play, the module should set the following attributes of the
object QTSS_RTPStreamObject for this RTP stream:

� The qtssRTPStrFirstSeqNumber attribute, which should be set to the sequence
number of the first packet after the last PLAY request was issued. The server
uses the sequence number to generate a proper RTSP PLAY response.

� The qtssRTPStrFirstTimestamp attribute, which should be set to the
timestamp of the first RTP packet generated for this stream after the last
PLAY request was issued. The server uses the timestamp to generate a
proper RTSP PLAY response.

� The qtssRTPStrTimescale attribute, which should be set to the timescale for
the track.

Call QTSS_Pause (page 70) to pause playing or call QTSS_Teardown (page 71) to
close the client session.

Note
The module that called QTSS_AddRTPStream (page 68) is the
only module that can call QTSS_Play. �

QTSS_Pause 2

Pauses a stream that is playing.

QTSS_Error QTSS_Pause(QTSS_ClientSessionObject inClientSession);

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 71
  Apple Computer, Inc. 11/24/99

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session that is to be paused.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_Pause callback routine pauses playing for a stream.

Note
The module that called QTSS_AddRTPStream (page 68) is the
only module that can call QTSS_Pause. �

QTSS_Teardown 2

Closes a client session.

QTSS_Error QTSS_Teardown(QTSS_ClientSessionObject inClientSession);

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session that is to be closed.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_Teardown callback routine closes a client session. Calling
QTSS_Teardown causes the calling module to be invoked in the Client Session
Closing role for the session identified by the inClientSession parameter.

Note
The module that called QTSS_AddRTPStream (page 68) is the
only module that can call QTSS_Teardown. �

C H A P T E R 2

QuickTime Streaming Server Module Reference

72 QTSS Data Types

  Apple Computer, Inc. 11/24/99

QTSS Data Types 2

This section describes QTSS objects and their attributes.

QTSS_PrefsObject 2

A QTSS_PrefsObject is the collection of attributes that contain server
preferences. Table 2-3 lists the attributes of the object QTSS_PrefsObject. These
attributes are valid in all methods.

Note
None of the attributes for the object QTSS_PrefsObject are
preemptive safe, so they can only be read by calling
QTSS_GetValue (page 56). �

Table 2-3 Attributes of the object QTSS_PrefsObject

Attribute Name and Content Read/Write Data Type

qtssPrefsRTSPTimeout

RTSP timeout in seconds sent to the client.
Read UInt32

qtssPrefsRealRTSPTimeout

The amount of time in seconds the server will wait
before disconnecting idle RTSP clients. Zero means
that there is no timeout.

Read UInt32

qtssPrefsRTPTimeout

The amount of time in seconds the server will wait
before disconnecting idle RTP clients. Zero means
there is no timeout.

Read UInt32

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 73
  Apple Computer, Inc. 11/24/99

qtssPrefsMaximumConnections

The maximum number of concurrent RTP
connections the server allows. A value of –1 means
that an unlimited number of connections are
allowed.

Read SInt32

qtssPrefsMaximumBandwidth

The maximum amount of bandwidth the server is
allowed to serve in K bits. A value of –1means the
amount is unlimited.

Read SInt32

qtssPrefsMovieFolder

The path to the root movie folder.
Read char*

qtssPrefsRTSPIPAddr

The IP address in dotted-decimal format the server
should accept RTSP connections on. A value of
0.0.0.0 means all addresses on the machine.

Read char*

qtssPrefsBreakOnAssert

If true, the server will enter the debugger when an
assert fails

Read Bool16

qtssPrefsAutoRestart

If true, the server automatically restarts itself if it
crashes.

Read Bool16

qtssPrefsTotalBytesUpdate

The interval in seconds between updates of the
server’s total bytes and current bandwidth
statistics.

Read UInt32

qtssPrefsAvgBandwidthUpdate

The interval in seconds between computations of
the server’s average bandwidth.

Read UInt32

qtssPrefsSafePlayDuration

See QTSS.conf.
Read UInt32

continued

Table 2-3 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

74 QTSS Data Types

  Apple Computer, Inc. 11/24/99

qtssPrefsModuleFolder

The path to the module folder.

Read char*

The built-in error log module that loads before all other modules uses the following attributes:
qtssPrefsErrorLogName

The name of the error log file.
Read char*

qtssPrefsErrorLogDir

The path to the directory containing the error log
file.

Read char*

qtssPrefsErrorLogDir

The path to the directory containing the error log
file.

Read char*

qtssPrefsErrorRollInterval

The interval in days between rolling the error log
file.

Read UInt32

qtssPrefsMaxErrorLogSize

The maximum size in bytes of the error log.
Read UInt32

qtssPrefsErrorLogVerbosity

The maximum verbosity level of messages the
error logger logs.

Read UInt32

qtssPrefsScreenLogging

If the error logger should echo messages to the
screen, this attribute is true.

Read Bool16

qtssPrefsErrorLogEnabled

If error logging is enabled, this attribute is true.
Read Bool16

qtssPrefsTCPMinThinDelayToleranceInMSec

The maximum delay in milliseconds for minimum
(bframe) thinning bandwidth.

Read SInt32

qtssPrefsTCPMaxThinDelayToleranceInMSec

The maximum delay in milliseconds for maximum
(keyframe) thinning bandwidth.

Read SInt32

continued

Table 2-3 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 75
  Apple Computer, Inc. 11/24/99

qtssPrefsTCPVideoDelayToleranceInMSec

The maximum delay in milliseconds before
dropping video packets.

Read SInt32

qtssPrefsMinTCPBufferSizeInBytes

The minimum size in bytes that the TCP socket
send buffer can be set to when streaming over
TCP.

Read UInt32

qtssPrefsMaxTCPBufferSizeInBytes

The maximum size in bytes that the TCP socket
send buffer can be set to when streaming over
TCP.

Read UInt32

qtssPrefsTCPSecondsToBuffer

The size of the TCP send buffer is scaled to based
on the movie’s bit rate when streaming over TCP.
The buffer will store all the data that is sent in the
specified amount of time.

Read Float32

qtssPrefsDoReportHTTPConnectionAddress

When behind a round-robin DNS, the client needs
to be told the IP address of the machine that is
handling its request. This attribute tells the server
to report its IP address in the reply to the HTTP
GET request when tunneling RTSP through HTTP.

Read Bool16

qtssPrefsAuthorizationEnabled

If authorization modules are to be enabled, this
attribute is true; otherwise, this attribute is false.

Read Bool16

qtssPrefsDefaultAuthorizationRealm

The default authorization realm. The value of this
attribute is “QT Streaming Server”.

Read char*

Table 2-3 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

76 QTSS Data Types

  Apple Computer, Inc. 11/24/99

QTSS_ClientSessionObject 2

A QTSS_ClientSessionObject is the collection of attributes that describe client
sessions.Table 2-4 lists the attributes for the object QTSS_ClientSessionObject.
These attributes are valid for all roles that receive a value of type
QTSS_ClientSessionObject in the structure the server passes to them.

Note
All of the attributes for the object QTSS_ClientSessionObject
are preemptive safe, so they can be read by calling
QTSS_GetValue (page 56) or QTSS_GetValuePtr (page 57). �

Table 2-4 Attributes of the object QTSS_ClientSessionObject

Attribute Name and Content Read/Write Data Type

qtssCliSesStreamObjects

Iterated attribute containing all RTP stream
references (QTSS_RTPStreamObject) belonging to
this session.

Read QTSS_RTPStreamObject

qtssCliSesCreateTimeInMsec

The time in milliseconds that the session was
created.

Read SInt64

qtssCliSesFirstPlayTimeInMsec

The time in milliseconds at which QTSS_Play was
first called.

Read SInt64

qtssCliSesPlayTimeInMsec

The time in milliseconds at which QTSS_Play was
most recently called.

Read SInt64

qtssCliSesAdjustedPlayTimeInMsec

The time in milliseconds at which the most recent
play was issued, adjusted forward to delay
sending packets until the play response is issued.

Read SInt64

qtssCliSesRTPBytesSent

The number of RTP bytes sent for this session.
Read SInt32

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 77
  Apple Computer, Inc. 11/24/99

QTSS_RTPStreamObject 2

A QTSS_RTPStreamObject is the collection of attributes that describe a particular
RTP stream. Table 2-5 lists the attributes for the object QTSS_RTPStreamObject.
These attributes are valid for all roles that receive a value of type
QTSS_RTPStreamObject in the structure the server passes to them.

qtssCliSesState

The state of this session. Possible values are
qtssPausedState and qtssPlayingState.

Read QTSS_RTPSessionState

qtssCliSesPresentationURL

The presentation URL for this session. This URL is
the “base” URL for the session. RTSP requests to
the presentation URL are assumed to affect all
streams of the session.

Read char*

qtssCliSesMovieDurationInSecs

Duration of the movie for this session in seconds.
The value is zero unless set by a module.

Read/write Float64

qtssCliSesMovieSizeInBytes

Movie size in bytes. The value is zero unless set by
a module.

Read/write UInt64

qtssCliSesMovieAverageBitRate

The average bits per second based on total RTP
bits/movie duration. The value is zero unless set
by a module.

Read/write UInt32

Table 2-4 Attributes of the object QTSS_ClientSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

78 QTSS Data Types

  Apple Computer, Inc. 11/24/99

Note
All of the attributes for the object QTSS_RTPStreamObject are
preemptive safe, so they can be read by calling
QTSS_GetValue (page 56) or QTSS_GetValuePtr (page 57). �

Table 2-5 Attributes of the object QTSS_RTPStreamObject

Attribute Name and Content Read/Write Data Type

qtssRTPStrTrackID

Unique ID that identifies each RTP stream.
Read/write UInt32

qtssRTPStrSSRC

Synchronization source (SSRC) generated by the
server. The SSRC is guaranteed to be unique
among all streams in the session. The server
includes the SSRC in all RTCP Sender Reports that
the server generates.

Read UInt32

qtssRTPStrPayloadName

Name of the media for this stream. This attribute
is empty unless a module explicitly sets it.

Read/write char*

qtssRTPStrPayloadType

Payload type of the media for this stream. The
value of this attribute is qtssUnknownPayloadType
unless a module sets it qtssVideoPayloadType or
qtssAudioPayloadType.

Read/write QTSS_RTPCodecType

qtssRTPStrFirstSeqNumber

Sequence number of the first packet after the last
PLAY request was issued. If known, this attribute
must be set by a module before calling QTSS_Play
(page 69). The server uses this attribute to generate
a proper RTSP PLAY response.

Read/write SInt16

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 79
  Apple Computer, Inc. 11/24/99

qtssRTPStrFirstTimestamp

RTP timestamp of the first RTP packet generated
for this stream after the last PLAY request was
issued. If known, this attribute must be set by a
module before calling QTSS_Play (page 69). The
server uses this attribute to generate a proper
RTSP PLAY response.

Read/write SInt32

qtssRTPStrTimescale

Timescale for the track. If known, this must be set
before calling QTSS_Play (page 69).

Read/write SInt32

qtssRTPStrBufferDelayInSecs

Size of the client’s buffer. The server sets this
attribute to three seconds, but the module is
responsible for determining the buffer size and
setting this attribute accordingly.

Read Float32

The values of the following attributes come from the most recent RTCP packet received on a
stream. If a field in the most recent RTCP packet is blank, the server sets the value of the
corresponding attribute to zero.

qtssRTPStrFractionLostPackets

The fraction of packets that have been lost for this
stream.

Read UInt32

qtssRTPStrTotalLostPackets

The total number of packets that have been lost for
this stream.

Read UInt32

qtssRTPStrJitter

Cumulative jitter for this stream.
Read UInt32

qtssRTPStrRecvBitRate

Average bit rate received by the client in bits per
second.

Read UInt32

qtssRTPStrAvgLateMilliseconds

Average in milliseconds of packets that the client
received late.

Read UInt16

continued

Table 2-5 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

80 QTSS Data Types

  Apple Computer, Inc. 11/24/99

qtssRTPStrPercentPacketsLost

Fixed percentage of lost packets for this stream.
Read UInt16

qtssRTPStrAvgBufDelayInMsec

Average buffer delay in milliseconds.
Read UInt16

qtssRTPStrGettingBetter

A non-zero value if the client reports that the
stream is getting better.

Read UInt16

qtssRTPStrGettingWorse

A non-zero value if the client reports that the
stream is getting worse.

Read UInt16

qtssRTPStrNumEyes

Number of clients connected to this stream.
Read UInt32

qtssRTPStrNumEyesActive

Number of clients playing this stream.
Read UInt32

qtssRTPStrNumEyesPaused

Number of clients connected but currently paused.
Read UInt32

qtssRTPStrTotPacketsRecv

Total packets received by the client.
Read UInt32

qtssRTPStrTotPacketsDropped

Total packets dropped by the client.
Read UInt16

qtssRTPStrTotPacketsLost

Total packets lost.
Read UInt16

qtssRTPStrClientBufFill

How full the client buffer is in tenths of a second.
Read UInt16

qtssRTPStrFrameRate

The current frame rate in frames per second.
Read UInt16

qtssRTPStrExpFrameRate

The expected frame rate in frames per second.
Read UInt16

continued

Table 2-5 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 81
  Apple Computer, Inc. 11/24/99

QTSS_RTSPHeaderObject 2

A QTSS_RTSPHeaderObject is the collection of attributes that contain all of the
header information sent by the client in an RSTP request. For example, the
following RTSP request has a Session header and a User-agent header:

DESCRIBE /foo.mov RTSP/1.0
Session: 20fj02ijf
User-agent: QTS/4.0.3

qtssRTPStrAudioDryCount

Number of times the audio has run dry.
Read UInt16

qtssRTPStrIsTCP

If this RTP stream is being sent over TCP, this
attribute is true. If this RTP stream is being sent
over UDP, this attribute is false.

Read Bool16

qtssRTPStrStreamRef

A QTSS_StreamRef used for sending RTP or RTCP
packets to the client. Use QTSS_WriteFlags to
specify whether each packet is an RTP or RTCP
packet.

Read QTSS_StreamRef

qtssRTPStrCurrentPacketDelay

Delivery delay in milliseconds for the most
recently written packet as measured by a module.
Values less than zero indicate the number of
milliseconds by which the packet was delivered
early. Values greater than zero indicate the
number of milliseconds by which the packet was
delivered late.

Modules should update this attribute before
calling QTSS_Write or QTSS_WriteV with an RTP
packet.

Read/write SInt32

Table 2-5 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

82 QTSS Data Types

  Apple Computer, Inc. 11/24/99

In this case, the value of the Session attribute is “20fj02ijf” and the value of the
User-agent attribute is “QTS/4.0.3”. Modules can get the value of a given
header by calling QTSS_GetValue (page 56) or QTSS_GetValuePtr (page 57).

QTSS_RTSPRequestObject 2

A QTSS_RTSPRequestObject is the collection of attributes that describe a
particular RTSP request.Table 2-6 lists the attributes of the object
QTSS_RTSPRequestObject.

With the exception of the RTSP Filter role, the value of each attribute is available
in all roles that receive an object of type QTSS_RTSPRequestObject. When the
RTSP Filter role receives an object of type QTSS_RTSPRequestObject, the only
attribute that has a value is the qtssRTSPReqFullRequest attribute.

Each text name is identical to its enumerated type name.

Note
All of the attributes for the object QTSS_RTSPRequestObject
are preemptive safe, so they can be read by calling
QTSS_GetValue (page 56) or QTSS_GetValuePtr (page 57). �

Table 2-6 Attributes of the object QTSS_RTSPRequestObject

Attribute Name and Content Read/Write Data Type

qtssRTSPReqFullRequest

The complete RTSP request as sent by the client.
This attribute is available in every role that
receives an object of type QTSS_RTSPRequestObject.

Read char*

qtssRTSPReqMethodStr

The RTSP method of this request.
Read char*

qtssRTSPReqFilePath

URI for this request, converted to a local file
system path.

Read char*

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 83
  Apple Computer, Inc. 11/24/99

qtssRTSPReqURI

URI for this request.
Read char*

qtssRTSPReqFilePathTrunc

Same as qtssRTSPReqFilePath, but without the last
element of the path.

Read char*

qtssRTSPReqFileName

All characters after the last path separator in the
file system path.

Read char*

qtssRTSPReqFileDigit

If the URI ends with one or more digits, this
attribute points to those digits.

Read char*

qtssRTSPReqAbsoluteURL

The full URL starting with “rtsp://”.
Read char*

qtssRTSPReqTruncAbsoluteURL

The URL without last element of the path.
Read char*

qtssRTSPReqMethod

The RTSP method as a value of type
QTSS_RTSPMethod.

Read QTSS_RTSPMethod

qtssRTSPReqStatusCode

The current status code for the request as
QTSS_RTSPStatusCode. By default, the value is
qtssSuccessOK. If a module sets this attribute and
calls QTSS_SendRTSPHeaders, the status code in the
header that the server generates contains the value
of this attribute.

Read/write QTSS_RTSPStatusCode

qtssRTSPReqStartTime

The start time specified in the Range header of the
PLAY request.

Read Float64

qtssRTSPReqStopTime

The stop time specified in the Range header of the
PLAY request.

Read Float64

continued

Table 2-6 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

84 QTSS Data Types

  Apple Computer, Inc. 11/24/99

qtssRTSPReqRespKeepAlive

Set this attribute to true if you want the server to
keep the connection open after completion of the
request. Otherwise, set this attribute to false if
you want the server to terminate the connection
upon completion of the request.

Read/write Bool16

qtssRTSPReqRootDir

The root directory for this request. The default
value for this attribute is the server's media folder
path. Modules can set this attribute from the RTSP
Route role.

Read/write char*

qtssRTSPReqRealStatusCode

Same as the qtssRTSPReqStatusCode attribute but
translated from a QTSS_RTSPStatusCode to an actual
RTSP status code.

Read UInt32

qtssRTSPReqStreamRef

A value of type QTSS_StreamRef for sending data to
the RTSP client. This stream reference, unlike the
one provided as an attribute in the
QTSS_RTSPSessionObject, never returns
QTSS_WouldBlock in response to a QTSS_Write or a
QTSS_WriteV call.

Read QTSS_StreamRef

qtssRTSPReqUserName

The decoded user name, if provided by the RTSP
request.

Read char*

qtssRTSPReqUserPassword

The decoded user password, if provided by the
RTSP request.

Read char*

continued

Table 2-6 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 85
  Apple Computer, Inc. 11/24/99

QTSS_RTSPSessionObject 2

A QTSS_RTSPSessionObject is the collection of attributes that describe a
particular RTSP session.

qtssRTSPReqUserAllowed

Whether the user is authorized for this request. By
default, the value of this attribute is true. Set this
value to false if the request is denied. If the
specified file is missing or invalid, maintain the
default setting and allow the server to handle the
error.

Read/write Bool16

qtssRTSPReqURLRealm

The authorization entity for the client to display in
the following string: “Please enter password for
realm at server-name. The default value of this
attribute is “QT Streaming Server”.

Read/write char *

qtssRTSPReqLocalPath Read/write char *

Table 2-6 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

86 QTSS Data Types

  Apple Computer, Inc. 11/24/99

Table 2-7 lists the attributes for the object QTSS_RTSPSessionObject. These
attributes are valid for all roles that receive a value of type
QTSS_RTSPSessionObject in the structure the server passes to them.

Table 2-7 Attributes of the object QTSS_RTSPSessionObject

Attribute Name and Content Read/Write Data Type

qtssRTSPSesID

An ID that uniquely identifies each RTSP session
since the server started up.

Read UInt32

qtssRTSPSesLocalAddr

Local IP address for this RTSP session.
Read UInt32

qtssRTSPSesLocalAddrStr

Local IP address for the RTSP session in
dotted-decimal format.

Read char*

qtssRTSPSesLocalDNS

DNS name that corresponds to the local IP address
for this RTSP session.

Read char*

qtssRTSPSesRemoteAddr

The IP address of the client.
Read UInt32

qtssRTSPSesRemoteAddrStr

The IP address of the client in dotted-decimal
format.

Read UInt32

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 87
  Apple Computer, Inc. 11/24/99

QTSS_ServerObject 2

A QTSS_ServerObject is the collection of attributes that describe a particular
QuickTime Streaming Server. Table 2-8 lists the attributes of the object
QTSS_ServerObject. These attributes are valid for all roles that receive a value of
type QTSS_ServerObject in the structure the server passes to them.

qtssRTSPSesEventCntxt

An event context for the RTCP connection to the
client. This attribute should primarily be used to
wait for flow-controlled EV_WR event when
responding to a client.

Read QTSS_EventContextRef

qtssRTSPSesType

The RTSP session type. Possible values are
qtssRTSPSession, qtssRTSPHTTPSession (an HTTP
tunnelled RTSP session), and
qtssRTSPHTTPInputSession. Sessions of type
qtssRTSPHTTPInputSession are usually very short
lived.

Read char*

qtssRTSPSesStreamRef

A QTSS_StreamRef used for sending data to the
RTSP client.

Read QTSS_StreamRef

Table 2-7 Attributes of the object QTSS_RTSPSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

88 QTSS Data Types

  Apple Computer, Inc. 11/24/99

Some of these attributes are not preemptive safe, as noted in Table 2-8.

Table 2-8 Attributes of the object QTSS_ServerObject

Attribute Name and Content Read/Write Data Type

The following attributes are preemptive safe and can be read by QTSS_GetValue or
QTSS_GetValuePtr:

qtssServerAPIVersion

The API version supported by this server. The
format of this value is 0xMMMMmmmm, where M
is the major version number and m is the minor
version number.

Read UInt32

qtssSvrDefaultDNSName

The “default” DNS name of the server.

Read char*

qtssSvrDefaultIPAddr

The “default” IP address of the server.
Read UInt32

qtssSvrServerName

The name of the server.

Read char*

qtssSvrServerVersion

The version of the server.

Read char*

qtssSvrServerBuildDate

Date that the server was built.
Read char*

qtssSvrRTSPPorts

An indexed attribute containing all the ports the
server is listening on.

Read char*

qtssSvrRTSPServerHeader

The Server header that the server uses when
responding to RTSP clients.

Read char*

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 89
  Apple Computer, Inc. 11/24/99

The following attributes are not preemptive safe and cannot be read by QTSS_GetValuePtr:
qtssSvrState

The current state of the server. Possible values are
qtssStartingUpState
qtssRunningState
qtssRefusingConnectionsState
qtssFatalErrorState
qtssShuttingDownState

Modules can set the server state. If a module sets
the server state, the server responds accordingly.

Setting the server state to
qtssRefusingConnectionsState causes the server to
refuse new connections.

Setting the server state to qtssFatalErrorState or
to qtssShuttingDownState causes the server to quit.

The qtssFatalErrorState state indicates that a fatal
error has occurred but the server is not shutting
down yet.

Read/write QTSS_ServerState

qtssSvrIsOutOfDescriptors

If the server has run out of file descriptors, this
attribute is true; otherwise, this attribute is false.

Read Bool16

qtssRTSPCurrentSessionCount

The number of clients that are currently connected
over standard RTSP.

Read UInt32

qtssRTSPHTTPCurrentSessionCount

The number of clients that are currently connected
over RTSP/HTTP.

Read UInt32

qtssRTPSvrCurConn

The number of clients currently connected to the
RTP server.

Read UInt32

continued

Table 2-8 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

90 QTSS Data Types

  Apple Computer, Inc. 11/24/99

tssRTPSvrTotalConn

Total number of clients that have connected to the
RTP server since the server started up.

Read UInt32

qtssRTPSvrNumUDPSockets

The number of UDP sockets the server is using.
Read UInt32

qtssRTPSvrCurBandwidth

Current bandwidth being output by the RTP
server in bits per second.

Read UInt32

qtssRTPSvrTotalBytes

Total number of bytes output since the RTP server
started up.

Read UInt64

qtssRTPSvrAvgBandwidth

Average bandwidth output by the RTP server in
bits per second.

Read UInt32

qtssRTPSvrCurPackets

Current packets per second being output by the
RTP server.

Read UInt32

qtssRTPSvrTotalPackets

Total number of bytes output since the RTP server
started up.

Read UInt64

Table 2-8 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

91
  Apple Computer, Inc. 11/24/99

Index

A

adding
attributes 23, 43–44, 54
roles 50
services 46, 62

allocating memory 52
attributes

adding 23, 43–44, 54
callback routines 53–59
IDs 55
qtssRTPStrBufferDelayInSecs 20
qtssRTPStreamRef 45
qtssRTSPReqAbsoluteURL 18
qtssRTSPReqFullRequest 17
qtssRTSPReqLocalPath 30, 31
qtssRTSPReqRootDir 17
qtssRTSPReqStreamRef 44
qtssRTSPRequestRef 45
qtssRTSPReqURLRealm 31
qtssRTSPReqUserAllowed 31
qtssRTSPReqUserName 30
qtssRTSPReqUserPassword 30
qtssRTSPSessionRef 44
values of

getting 40–41, 56, 57
setting 41–43, 58

Authorize role 18, 22, 29–31

B

blocking I/O 20
building modules

code fragment 11
compiled in server 10

built-in services 47

C

changing root folder 51
Client Session Closing role 23, 36–37
client session objects 39
compiling modules 10
conventions, naming 21
converting time 53

D

data types
naming conventions 21
QTSS_ClientSessionObject 76–77
QTSS_PrefsObject 72–75
QTSS_RTPStreamObject 77–81
QTSS_RTSPHeaderObject 81
QTSS_RTSPRequestObject 82–85
QTSS_RTSPSessionObject 85–87
QTSS_ServerObject 87–90

deleting memory 52
denying requests 18
DESCRIBE response 67
dispatch routine 12
dynamic modules 14

E

Error Log
role 22, 25–26
stream 44

error messages 26

I N D E X

92
  Apple Computer, Inc. 11/24/99

F

Filter role 17, 22, 27–28
flushing data 61
functions
LoadCompiledInModules 10
QTSS_AddAttribute 23, 54
QTSS_AddRole 23, 50
QTSS_AddService 46, 62
QTSS_AppendRTSPHeader 18, 64
QTSS_Delete 52
QTSS_DoService 63
QTSS_Flush 61
QTSS_GetValue 56
QTSS_GetValuePtr 57
QTSS_IDForAttr 55
QTSS_IDForService 63
QTSS_Milliseconds 53
QTSS_MilliSecsTo1970Secs 21, 53
QTSS_New 27, 52
QTSS_Play 19
QTSS_SendRTSPHeaders 18, 65
QTSS_SendStandardRTSPResponse 18, 66
QTSS_SetValue 58
QTSS_Write 18, 59
QTSS_WriteV 18, 60

G

getting
attribute IDs 55
attribute values 40–41
server time 53

H

headers
appending to 64
sending 65

I, J, K

IDs, attribute 55
Initialize role 14, 22, 24
I/O, blocking 20

L

language types 17
loadable bundle project type 11
LoadCompiledInModules function 10
log files 25

M

main routine 12
memory

allocating 52
deleting 52

modules
call order 23
compiling 10
roles 21–38
static 11

mutexes 20

N

name conflicts, preventing 11
naming conventions 21

O

objects
client session 39
QTSS 38–40
RTSP request 15, 17

I N D E X

93
  Apple Computer, Inc. 11/24/99

object types
qtssClientSessionObjectType 39
qtssPrefsObjectType 39
qtssRTPStreamObjectType 39
qtssRTSPHeaderObjectType 39
qtssRTSPRequestObjectType 39
qtssRTSPServerObjectType 39
qtssRTSPSessionObjectType 39
qtssTextMessageObjectType 40

P

parsing RTSP requests 17
PLAY response 67
Postprocessor role 18, 23, 34–35
Preprocessor role 18, 22, 31–33
preventing name conflicts 11
Process role 23
project type, loadable bundle 11

Q

QTSS
objects 38–40
services 45–47
streams 44–45

QTSS_AddAttribute function 23, 54
QTSS_AddRole function 23, 50
QTSS_AddService function 46, 62
QTSS_AppendRTSPHeader function 18, 64
QTSS_ClientSessionClosing_Params

structure 36
QTSS_ClientSessionObject data type 76–77
QTSS_Delete function 52
QTSS_DoService function 63
QTSS_ErrorLog_Params structure 26
QTSS_Flush function 61
QTSS_GetValue function 56
QTSS_GetValuePtr function 57
QTSS_IDForAttr function 55
QTSS_IDForService function 63

QTSS_Initialize_Params structure 24
QTSS_Milliseconds function 53
QTSS_MilliSecsTo1970Secs function 21, 53
QTSS_New function 27, 52
QTSS_Play function 19
QTSS_PrefsObject data type 72–75
QTSS_RTCPProcess_Params structure 37
QTSS_RTPSendPackets_Params structure 35
QTSS_RTPStreamObject data type 77–81
QTSS_RTSPHeaderObject data type 81
QTSS_RTSPRequestObject data type 82–85
QTSS_RTSPSessionObject data type 85–87
QTSS_SendRTSPHeaders function 18, 65
QTSS_SendStandardRTSPResponse function 18,

66
QTSS_ServerObject data type 87–90
QTSS_SetValue function 58
QTSS_StandardRTSP_Params structure 27, 28, 29
QTSS_Write function 18, 59
QTSS_WriteV function 18, 60
qtssClientSessionObjectType object type 39
qtssPrefsObjectType object type 39
qtssRTPStrBufferDelayInSecs attribute 20
qtssRTPStreamObjectType object type 39
qtssRTPStreamRef attribute 45
qtssRTSPHeaderObjectType object type 39
qtssRTSPReqAbsoluteURL attribute 18
qtssRTSPReqFullRequestattribute 17
qtssRTSPReqLocalPath attribute 30, 31
qtssRTSPReqRootDir attribute 17
qtssRTSPReqStreamRef attribute 44
qtssRTSPRequestObjectType object type 39
qtssRTSPRequestRef attribute 45
qtssRTSPReqURLRealm attribute 31
qtssRTSPReqUserAllowed attribute 31
qtssRTSPReqUserName attribute 30
qtssRTSPReqUserPassword attribute 30
qtssRTSPSessionObjectType object type 39
qtssRTSPSessionRef attribute 44
qtssServerObjectObjectType object type 39
qtssTextMessageObjectType object type 40

I N D E X

94
  Apple Computer, Inc. 11/24/99

R

Real Time Streaming Protocol
See RTSP

Real Time Transport Protocol
See RTP

Register role 14, 22, 23
request object, RTSP 15, 17
Request role 22, 33–34
Reread Preferences

role 22, 25
service 47

responding to RTSP requests 18
roles

Client Session Closing 23, 36–37
Error Log 22, 25–26
Initialize 14, 22, 24
Register 14, 22, 23
Reread Preferences 22, 25
RTCP Process 23, 37–38
RTP Send Packets 19, 23, 35–36
RTSP Authorize 18, 22, 29–31
RTSP Filter 17, 22, 27–28
RTSP Postprocessor 18, 23, 34–35
RTSP Preprocessor 18, 22, 31–33
RTSP Request 22, 33–34
RTSP Route 17, 22, 28–29
Shutdown 14, 22, 25

root folder, changing 51
Route role 17, 22, 28–29
routines

attribute callback 53–59
dispatch 12
RTP callback 67–71
RTSP header callback 64–67
service callback 62–64
stream callback 59–62
utility callback 49–53

RTCP Process role 23, 37–38
RTP

callback routines 67–71
Send Packets role 19, 23, 35–36
sessions 19

RTSP
Authorize role 18, 22, 29–31

Filter role 17, 22, 27–28
header callback routines 64–67
Postprocessor role 18, 23, 34–35
Preprocessor role 18, 22, 31–33
request objects 15, 17, 39
Request role 22, 33–34
requests

denying 18
parsing 17
responding to 18

responses, sending 23, 66
Route role 17, 22, 28–29
sessions 17

runtime environment 20

S

sending
RTSP headers 65
RTSP responses 23, 66

Send Packets role 19, 23, 35–36
server time 20
service

callback routines 62–64
IDs, getting 63

services
adding 46, 62
built-in 47
QTSS 45–47
Reread Preferences 47
using 46, 63

sessions
client 17, 19, 36
header 39
RTP 19
RTSP 17

setting attribute values 41–43
shutdown, server 13
Shutdown role 14, 22, 25
source code, server 10
startup, server 13
static modules 11, 14
stream callback routines 59–62

I N D E X

95
  Apple Computer, Inc. 11/24/99

streams, QTSS 44–45
structures
QTSS_ClientSessionClosing_Params 36
QTSS_ErrorLog_Params 26
QTSS_Initialize_Params 24
QTSS_RTCPProcess_Params 37
QTSS_RTPSendPackets_Params 35
QTSS_StandardRTSP_Params 27, 28, 29

symbols, preventing name conflicts 11
synchronous I/O 20

T

TEARDOWN response 67
threads 20
time

converting 53
getting 53
server 20

U

using
services 63

using services 46
utility callback routines 49–53

V

verbosity level 26

W, X, Y, Z

writing data to client 59, 60
writing to log files 25

	QuickTime Streaming Server Modules
	Contents
	Figures, Tables, and Listings
	About This Manual
	Conventions Used in This Manual
	For more information

	About QuickTime Streaming Server Modules
	Building a QuickTime Streaming Server Module
	Compiling a QTSS Module into the Server
	Building a QTSS Module as a Code Fragment

	Module Requirements
	Main Routine
	Dispatch Routine

	Overview of QuickTime Streaming Server Operations
	Server Startup and Shutdown
	RTSP Request Processing

	Runtime Environment for QTSS Modules
	Server Time

	Naming Conventions
	Module Roles
	Register Role
	Initialize Role
	Shutdown Role
	Reread Preferences Role
	Error Log Role
	RTSP Roles
	RTSP Filter Role
	RTSP Route Role
	RTSP Authorize Role
	RTSP Preprocessor Role
	RTSP Request Role
	RTSP Postprocessor Role

	RTP Roles
	RTP Send Packets Role
	Client Session Closing Role

	RTCP Process Role

	QTSS Objects
	Getting Attribute Values
	Setting Attribute Values
	Adding Attributes to QTSS Object Types

	QTSS Streams
	QTSS Services
	Built-in Services

	QuickTime Streaming Server Module Reference
	QTSS Callback Routines
	QTSS Utility Callback Routines
	QTSS Attribute Callback Routines
	Stream Callback Routines
	Service Callback Routines
	RTSP Header Callback Routines
	RTP Callback Routines

	QTSS Data Types

	Index

