
NetInfo Editions 4.x
User Manual

Xedoc Software Development Pty. Ltd.

May 1997

ii

NetInfo Editions 4.x User Manual

Xedoc Software Development Pty Ltd.

PO Box 3038

Burnley North VIC 3121

Australia

Telephone +61 3 9428 0788

Fax +61 3 9428 0786

Internet netinfo@xedoc.com.au

Product Development

Brett Adam

J. Matthew Pryor

Cameron Bromley

Sean Hiscock

Version 1.x

Andrew C. Bernard

Version 2.x

Aris Colp

Version 3.x

Aris Colp

Sean Woodhouse

Luke Howard

Version 4.x

Luke Howard

Sean Woodhouse

Manual Development

Margaret Hassall, RTfM Technical Publishing Pty Ltd.

Special Thanks

David B. Wertheimer

Copyright

Copyright © 1992-96 by Xedoc Software Development Pty Ltd.

All rights reserved.

Trademarks

NetInfo™ is a trademark of NeXT Computer, Inc.

Sun® is a registered trademark of Sun Microsystems, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

All other product or service names mentioned herein are trademarks of their respective own-
ers.

iii

Contents
Preface ..vii

Organisation...vii
Related Documents ..vii
Terms and Conventions... viii

Introduction to NetInfo ..9
Implementation ..10

Hierarchical
Domains ...10

Fast, Automatic Propagation..10
Distributed Administration ...10
Backwards Compatibility ...10
Customisation & Extensibility ...11
Multi-platform..11

NetInfo Concepts ..13
UNIX
Administration ...13

Configuration
Files...13

Networks and
Distributed Systems..13

NetInfo Networks ...14
The Internet..14
NetInfo Addresses...15
NetInfo
Administration ...16

Domains ...16
NetInfo Database..18
Binding Domains and Databases ...19
Naming Conventions...19
Daemon Processes ..21
Internal Structure of the Database ...22
Changing Database Information ...24

“_writers” Property ..24
Master Servers and Clones ...24

NetInfo Design ..25
Dividing a Network into Domains..26

Multi-Level Domain Hierarchy ..27
Selecting Hosts ..30
Domain Names..31
Managing Users ...31
Updating the Flat Files ..32

Configuration -
Quick Start ...33

Installation ..33

Contents

iv

Backup ...33
Quick Start Install..34

Configuration Steps..34

Manual Configuration ... 39
NetInfo Programs ...39

Backup ...40
Design..40
Install NetInfo on the First Host ...41

Loading information from flat files ...45
Loading information from NIS ..46
Directory Names...46

Install NetInfo on Other Hosts ...47

Using NetInfo ..53
Database and Domain Functions..54

Compulsory
Database
Information ...54

Directories
/users Directory ...54

Superuser ...56
/machines Directory..56

Managing Databases..59
Naming Databases ...59
Directory and Files ..59
Process - “netinfod”...60
Database
Information ...60

Deleting Databases ...61
Managing Database Directories ..62

Directory Management
Options..62

Display Directory Information..63
Create Directory Information ...64
Delete Directory Information..65

Managing Properties ...66
Display Database Properties ..67
Create Properties
and Values ...67

Add Property
Values ..68

Remove Values and Properties ..69
Managing Domains...70

Names and Binding...70
Insert a Domain...72

Note - Overwriting and Adding Information74
Moving Domains...76

Changes ..76
Deleting Domains ...79
Joining Two Networks...82
Moving Information between NetInfo and Flat Files86

Loading

Contents

v

Information ...86
Dumping Information...86
Copying
Information ...87

Managing Hosts...88
Host Configuration Information ..88

Clone Servers...91
Reliability...91
Load Balancing ..91
Propagating Information...91
“master” property..91

Creating a Clone ...92
Add a New Host to the Network ...95
Move a Host to a Different Domain ...98
Delete a Host ...100
Managing Users and Groups...103

Users ..103
Domain Access ..103
Groups ...105

Maintenance ..107
Network Administration ...107

NetInfo Start-up...107
NetInfo Shut-down..108

User Maintenance ...109
Using nipasswd..109
“_writers” Property ..109

Backup ...110
Programs..110
Database Files ..110

Security ..110

Enterprise Edition Features ...111
Readall Proxies ..112
RFC1048 Support ..112
NetInfo Domain Aliasing ..113
Hostname Acquisition...114
Automatic Host Addition..116
Support for Diskless Workstations ..118
Support for Multi-homed Servers..120
Performance Enhancements ...121

Smarter binding..122

NIS Emulation ...123
How NIS Emulation works ..124
Ensure NIS domains are correct ...125
Using NIS as well as NetInfo ...126
Using NetInfo without using NIS ...127
Mapping NetInfo data to NIS maps ..128
Caveats ..130

NetInfo Reference ..131
Overview of NetInfo Programs..132

Contents

vi

Daemons..132
Loading and Dumping Database Information..................................132
Creating and Managing Databases..133
Managing Database Information and Properties133
Querying the NetInfo Database ..133
Passwords...134

netinfo(5) ...136
nibindd(8) ..141
nidomain(8) ...144
nidump(8) ..145
nifind(1) ...146
nigrep(1) ...148
nipasswd(1) ..151
nireport(1) ..152
niutil(8) ..153
niwhich(1) ..156
niypd(8) ..157

Index ..159

vii

Preface
This manual is a practical guide to using NetInfo. It is directed towards UNIX system
administrators. It assumes some knowledge of the UNIX operating system, but does
not assume that all users are necessarily experienced at administering a network.

All administrators should read the Introduction and Concepts chapters at least once.
Those of you who have used NetInfo on NeXT machines will find most of the con-
cepts familiar. Administrators who are experienced with NIS will find that some
concepts, such as domains, are treated differently in NetInfo.

The NetInfo Design chapter explains the philosophy behind the NetInfo domain hi-
erarchy.

The Configuration - Quick Start chapter provides an alternative to the Manual Config-
uration chapter for those customers with existing NetInfo installations. The Manual
Configuration chapter assumes that the reader does not already have a NetInfo based
network, and must therefore start from scratch.

The chapter entitled Using NetInfo guides users through the NetInfo functions and
utilities in detail.

The Server Edition Features chapter provides details of the additional features in the
Server Edition that provide for automatic host addition, diskless booting and host-
name management. It also discusses the optimisations and extended networking
support provided in the Server Edition.

The NIS Emulation chapter provides further technical details on the technique that
NetInfo uses when installed on a UNIX system.

The Reference chapter contains manual page entries for all supplied tools.

Administrators should refer to their system manuals for information specific to
their installation. This manual describes how to use NetInfo only, it does not advise
on system or network configuration.

This manual describes how NetInfo inter-operates with other services such as NIS
and BIND, however, it assumes administrators are familiar with these services. If
readers are not familiar, they should consult the relevant system documentation
supplied with the products.

Organisation

Related Documents

Preface

viii

UNIX Commands All UNIX commands are written using courier typeface.
All commands are single line entries, though some have
been written in this manual over two lines. Users should
be aware that no <Return> is required at the end of the first
line.

Warnings

A warning symbol placed next to text indicates that the in-
formation should be read before continuing.

ChecksManual

The check symbol is used to indicate when operations can
be checked before continuing with the next step.

Terms and Conven-
tions

9

Chapter 1

Introduction to
NetInfo
NetInfo simplifies system administration across a UNIX network. It is based on
NetInfo from NeXT Computer, Inc. Systems running on NeXT and other machines
can interact with each other.

NetInfo is a database containing UNIX configuration information accessible across
a network. A set of tools is provided to access this database.

On standard UNIX machines, configuration information, such as user and group
account details, file systems, peripheral devices, host details, and so on, is kept in
flat files, usually stored in the /etc directory. When machines are connected in a
network, much of this information is duplicated in flat files on each machine.

On a local area network, it is possible for an administrator to maintain these flat
files for each machine in the network, but as a network grows, this job becomes
very complex and tedious, and the files can become inconsistent.

Many UNIX vendors provide a system called NIS (Network Information Service),
which provides tools to manage UNIX system configuration files across a network.
NIS distributes information maps in their entirety to all NIS servers on a network
as required. For small networks this is adequate, however, as a network grows, these
map files also grow, and the time delays incurred during data transfer become
unproductive. Currently, NIS is available on a range of UNIX based machines.

NetInfo allows system administrators to manage the administrative information of
a heterogeneous network of UNIX based machines. It is 100% compatible with
NetInfo for NeXT systems, and provides for complete integration between NeXT
and non-NeXT computers.

In this manual, the name “NetInfo” is used to refer to NetInfo Editions as well as for
NetInfo on NeXT machines.

Chapter 1: Introduction to NetInfo

10

Implementation

NetInfo; is a database of network administration information for a network of
computers running under the UNIX operating system. A set of command line tools
is provided to access this database if necessary, however, most database access is
made through system calls.

NetInfo provides administrators with the following key features:

Information stored in NetInfo databases can be organised into domain hierarchies.
Just as directories on disks greatly enhance the organisation of large numbers of
files, NetInfo domains enhance the organisation of network data.

A domain can hold information about a single computer, information shared
amongst departmental computers or information for an entire company. If
information is not found in a machine's default domain, the ‘parent’ domains are
searched until a definitive result is obtained.

NetInfo propagates only the incremental changes to the database to other
machines on the network. Because NetInfo only updates data which has changed,
network traffic, and hence, transfer time, is greatly reduced. Moreover, changes are
propagated automatically, ensuring that every machine which needs to be updated
is updated.

NetInfo databases may be maintained from any machine on the network, not just
the NetInfo server. This offers enormous benefits if a network is spread over a wide
geographic area or if the server machine does not have a console. Changes to the
database can be made via simple command-line utilities or via the graphical user
interface on the NeXT.

NetInfo is backward compatible with both NIS and previous file based
administration. NetInfo inter-operates fully with BIND and NIS;. Thus, you can still
use these tools if necessary, allowing you to convert your network over to NetInfo
gradually.

Figure 1.1 - NetInfo Compatibility

Hierarchical
Domains

Fast, Automatic
Propagation

Distributed
Administration

Backwards
Compatibility

NIS BIND

Flat Files

NetInfo

Chapter 1: Introduction to NetInfo

11

NetInfo provides facilities for the storage of custom information. Clients can write
to NetInfo. A full programmatic interface is provided for clients enabling them to
read and write to the NetInfo database. This makes it possible to maintain
information that is specific to the needs of a particular organisation through a
single system.

NetInfo inter-operates fully with NetInfo running on NeXT computers. No special
configuration is required to achieve complete integration of NeXT and non-NeXT
systems on the one network. NetInfo comes as standard system software with every
NeXT computer. Databases created on the other UNIX hosts can be accessed using
the graphical user interface on the NeXT.

Customisation &
Extensibility

Multi-platform

Chapter 1: Introduction to NetInfo

12

13

Chapter 2

NetInfo Concepts
The system administrator is the person responsible for the upkeep of the
computer system. This includes maintaining the configuration files, setting up new
users, ensuring there is enough disk space and that users are able to access the
datafiles and programs they require, backing up files, bringing up and shutting
down the systems, and other administrative tasks as required.

The system administrator usually logs in as the superuser usually with the login
name root. A superuser has special privileges to make changes to the system.
Although you can set up the login id to be something different, NetInfo depends
on this name being “root”, as do many other programs.

Most configuration files are kept in the /etc directory. This includes the password
file (/etc/passwd) which contains a list of all users who are able to use the system.
Other files, such as the groups file (/etc/group) contains information about what
groups exist, and which users are members. The hosts file (/etc/hosts) stores
information about the name of a host and its Internet address.

There are many other files which are used by the system to determine its
configuration. These files are all flat, or ASCII files, and must exist in order for the
system to run successfully. When machines are connected in a network, much of
this information is duplicated in flat files on each machine.

NetInfo manages the information normally stored in these flat files in the NetInfo
database.

A network is an interconnected collection of computers, i.e., those capable of
exchanging information. It allows resources, such as hardware, information, and
services, to be shared amongst the users of an organisation.

A distributed system is one in which the computing functions are dispersed
among several physical computing elements. Users don't need to be aware of where
information or services are physically located in this type of system.

A distributed system can be considered a special case of a network. The term
network in this document refers to networks which include distributed systems.

UNIX
Administration

Configuration
Files

Networks and
Distributed Systems

Chapter 2: Concepts

14

An organisation may set up a network for various reasons:

• Multiple Locations
The organisation may have systems at more than one location, and they
want the users at those locations to be able to share programs and informa-
tion.

• Resource Sharing and Privacy
Users in various departments in an organisation may share hardware such as
processors, printers and tape drives, but may want to keep data separate.

• Communication
Users in an organisation may want to contact each other using electronic
mail. Users may also want to be able to connect to other organisations using
a public network.

Networks confined to an office, or a floor, can be connected as local area networks
(LAN). Usually, users are able to share printers, disks, and other peripherals using a
local network. The types of cables used define a local network and are restricted to
a maximum cable length. Several local networks can be connected together using
devices such as repeaters.

Network connections between, for example, interstate offices of the same
company, must be connected differently than local networks. They may be
connected via dedicated lines, microwave links, the telephone system with modem
connection, or by some other method. This type of network is usually referred to
as a wide area network (WAN).

A public network is one that allows the connection of many individual networks.
It has a well defined interface and a set of protocols by which information is
transferred. This allows users and companies to transfer information, including
electronic mail and news.

The physical aspect of the network connection is not relevant to NetInfo. It
assumes that the machines, or hosts, are equipped to connect into an appropriate
existing network, whether local, wide area, or public.

A heterogeneous network is one that is made up of machines of different
architectures and vendors. In general, the term includes machines that are running
different operating systems, but for the purposes of this document, all machines are
assumed to be running UNIX.

NetInfo can be used on any TCP/IP network.

The Internet is a public network available across the world. It allows organisations
to connect to it in order to exchange information, mail, and news.

Each machine that is part of the Internet must have a unique address. The Internet
address, (also called the IP address) is a 4-byte number that is written as four
numbers separated by periods. The Internet address is made up of two parts:

• the network address

• the host number

Network Types
and Setup

NetInfo Networks

The Internet

Chapter 2: Concepts

15

NeXT machines are supplied with the following default three-byte network
address: 192.42.172.

Host numbers from 1 to 250 (251 - 255 reserved) can then be used to
distinguish the hosts in the local network using the 4th byte.

For example,

|-network-| host

192.42.172. 1
192.42.172.2
192.42.172.3
 ...
192.42.172.250

NetInfo recognises hosts in its network using a unique Internet address.

If your network is small and is likely to remain isolated, it is possible to use the
default network numbers supplied with your machines.

If however, you intend to connect to the public network, you will have to request
a network number from the DDN Network Information Centre. Information on
contacting this organisation should be supplied with your hardware.

Depending on the size of your organisation, you will receive either a 1-byte,
2-byte or 3-byte (most common) network address. The host number will then be 3-,
2-, or 1-byte respectively to make up the four byte address.

All Internet addresses must be 4-bytes when the host number is included.

Within UNIX, “127.0.0.1” is defined as a machine's local Internet address. NetInfo
uses the reserved name, localhost, so that a host can refer to itself.

The following example will be used throughout this document to illustrate
networks and their management by NetInfo.

A company, ACME Software, has three major organisational divisions: Systems
Development, Administration, and Sales. These divisions communicate with each
other through electronic mail. The General Managers of ACME deal with each of
the divisions.

Figure 2.1 - ACME Organisational Structure

Example:

Internet address

NetInfo Addresses

Example:

Company Structure

Systems
Development Sales Administration

General
Managers

Chapter 2: Concepts

16

Resources

ACME has three UNIX computers, with the following hostnames and Internet
addresses:

alpha 192.42.172.1
bravo 192.42.172.2
charlie 192.42.172.3

Two of the machines, known as alpha and bravo, are used by the System
Development division. The other machine, known as charlie, is shared by the
Admin and Sales divisions. The general managers and the superuser (login id
“root”) are the only users who have access to all machines.

These machines are connected in a network so that resources such as printers and
disk drives can be shared, and so that the users can communicate with each other
via electronic mail.

In the course of the exercises, the following machines will be added to the network.

delta 192.42.172.4
foxtrot 192.42.172.5
golf 192.42.172.6

Users

The following list shows the staff members of the organisation, and what division
they work in. This information is normally part of the “password” configuration
file.

Superuser: root
Managers: genman
Development: chris, bing, jo
Sales: han, robin
Administration: alex, pat

NetInfo administration is based on the concepts of domains and databases.

A domain is an abstract collection of administrative information about a group of
users and the resources to which they have access. Domains can be linked together
in a hierarchy.

Each level in the hierarchy is called a domain level. Information can be made
available to selected levels in the hierarchy. This provides a mechanism to allow
access to some resources, and to keep others private.

A domain, typically, has access to all the resources in its child domains, and in
those domains lower than its children. Using set terminology, a child domain is a
subset of its parent.

The domain hierarchy is structured like an inverted tree. At the top of the hierarchy
is the root domain, represented by a slash (“/”). The leaves of the domain tree are
the local host domains.

Example:

Company Structure

NetInfo
Administration

Domains

Chapter 2: Concepts

17

Each host must have a local database, called “local”. If a machine is not connected
to the network, then the local domain also serves as the root domain. If there is a
separate root domain, it must be called “network”.

ACME has three organisational divisions:

• System Development - with two machines: alpha and bravo.

• Sales, and

• Administration - sharing one machine, called charlie.

Domain Organisation

Each host must have a local domain, which takes the name of the host (alpha,
bravo, and charlie). These three domains are the leaves of the domain hierarchy.

Two abstract domains must be created to allocate the machines to the separate
divisions.

• admin
As Sales and Administration share a machine,
they must also share a domain.

• sysdev
Create a system development domain which has access to
the two machines.

The General Managers, however, must be able to access information in all sections,
and so they would be members of the root domain, /.

A 3-level domain structure is required as follows:

Figure 2.2 - Domain Structure

Example:

Domain Structure

/

admin

charliebravo

sysdev

alpha

Chapter 2: Concepts

18

When a host needs to find information (for example, a login id) it first looks in its
local domain. If it doesn't find the information, it then looks in its parent domain
(if there is one), and continues looking up the hierarchical tree until either the
information is found, or the root domain is reached.

User Access using the above structure:

• Admin and Sales
Staff in this department will be registered as users in the admin domain.
They can login to host charlie only.

• System Development
Development staff will be registered as users in the sysdev domain. They can
then login to either alpha or bravo.

• General Managers
All users who are general managers should be registered in the root domain,
/. This means they can login to any machine in the hierarchy.

• Superuser
The superuser, whose login id must be “root”, should also be registered in the
root domain, so that they, too, can login to any machine.

The superuser must also be registered in the local domains. This is so that,
should the domain tree 'break' (due to machines being down or disconnected
from the network), root can still log in.

Domain information is stored in a NetInfo database. NetInfo does not use or
change the flat files directly (e.g., /etc/passwd), but information from these files
can be loaded into or from the database structures.

The same sort of information that is stored in the flat files is stored in the database,
and used by the system to determine how the resources and users are to be
administered.

The flat files, however, are used by the system at boot time and so cannot be
removed when NetInfo is installed. The password file (/etc/passwd) must contain
at least an entry for root, and the groups file must contain an entry for the group
that root belongs to.

The database is physically located in a subdirectory of /etc/netinfo on the host
on which it was created. The subdirectory is usually named after the domain, with
an extension of “.nidb ”. The program, nidomain, manages the creation of the
database subdirectories. This program is explained in full in the Reference chapter of
the manual.

A database is said to serve a domain, that is, it stores the information relevant to
the domain. This information includes host information such as Internet address,
and a list of valid users.

Example:

Domain Access

NetInfo Database

Chapter 2: Concepts

19

As each machine must have a local domain, then a local database must be
created on each host.

The root domain can be served from a database on any host in the hierarchy,
and must be called network. The sysdev and admin domains must be served
from databases on any host that is part of their respective domains.

Suppose, for this example, both the root domain (network database) and the
sysdev domain are served from databases on the host alpha, and the admin
domain is served from a database on host charlie. The directory structure on
each machine is as follows:

Host Subdirectories

alpha /etc/netinfo/local.nidb
/etc/netinfo/network.nidb
/etc/netinfo/sysdev.nidb

bravo /etc/netinfo/local.nidb

charlie /etc/netinfo/local.nidb
/etc/netinfo/admin.nidb

Once created, a database exists until it is destroyed. A domain, on the other hand,
only exists when NetInfo is running and it has been bound into the hierarchy.

To bind into the hierarchy, a domain must have information about its parent
domain, and any child domains. As the root domain does not have a parent, it is
recognised by the knowledge that it is served from the database called network. A
domain doesn't have any knowledge of its own domain name: that is stored in its
parent domain.

Binding is achieved by setting up properties in each database. These properties
specify the database that a domain is served from, the database that a domain's
parent is served from, and the databases that serve any children of the domain.

There are several concepts in NetInfo and UNIX which use similar, and hence
confusing, naming conventions.

 Directory pathnames in the UNIX file system are represented using a slash (“/”) as
a separator. The ancestor of all directories is the root directory, which has the name
“/ ”.

In this manual, UNIX file system pathnames are written using the courier type
face. For example, the flat file containing password information is represented as:

/etc/passwd

Example:

Database Files

Binding Domains and
Databases

Naming Conventions

UNIX

Chapter 2: Concepts

20

Domains are also organised in a hierarchy. The root domain is called “/”. Its child
domains are named similarly to the UNIX file system, with the slash character used
as a separator.

In this manual, domains are written using boldface type. For example, the full
name of the “sysdev” domain created in an earlier example is:

/sysdev

This domain was created with two child domains, “alpha” and “bravo”:

/sysdev/alpha and
/sysdev/bravo

Domains can be referred to using relative (dot) notation. The parent is referred to
as “..”, and a domain can refer to itself using a single dot, “.”.

For example, the parent domain of /sysdev/alpha, whose absolute domain name
is /sysdev, can be referred to from the “alpha” domain as “..”. From /sysdev,
/sysdev/alpha can be referred to simply as alpha.

Each machine, or host, must have a unique name. In this manual, host names are
written using italic type. For example, the host names of the three machines used
in examples so far are as follows:

alpha, bravo and charlie.

A NetInfo database, which serves a domain, has an internal structure that is a
directory hierarchy. Information is stored in the database within these directories.
Directories contain zero or more properties, each of which can have zero or more
values. Each directory has a unique numeric id.

Internally, the database also begins at a root level, called “/ ”. The slash is used as a
separator to specify pathnames in the internal database hierarchy.

In this manual, internal database pathnames are written using bold courier
typeface.

For example, information about the users who have access to the resources in a
domain is recorded in the following internal subdirectory:

/users

As another example, information about the machines available to the domain must
be stored in a subdirectory of the /machines directory, named after the host. The
information for host alpha would be stored in the following internal directory:

/machines/alpha

The internal structure should not be confused with the physical location of the
NetInfo database.

Physically, a NetInfo database is stored in a UNIX file called collection , located
within a UNIX directory called /etc/netinfo/ database_tag .nidb . As this file
grows, extra files are created, called extension_N, where N is generated by the
system and usually corresponds to the database directory id stored within it.

Domains

Hostname

Database -
Internal Names

Database - Physical
File Name

Chapter 2: Concepts

21

 A database serves a domain. The database and domain names do not always have
to be the same, though some consistency in naming is recommended. A database
is referred to by its name, called its tag. A database can also be referred to by its
database address, explained in the next section.

The tag needn't be the same for all databases serving a particular domain. However,
it usually is the same on all servers to simplify administration. A tag can, and
usually does, differ from the domain name.

One suggestion for a naming structure is as follows:

If the relative domain name is, say, sysdev, give its associated database a name, or
tag called sysdev_db. This convention distinguishes between the domain and the
database, but at the same time, retains the relationship between them. The physical
directory then has the name: /etc/netinfo/sysdev_db.nidb.

In this manual, database tags are written using bold italic type.

In the case of the compulsory database (local domain), however, the tag is fixed: all
databases for local domains must have the tag local. If the network database exists,
then its tag is also fixed: it must be network.

For example, a UNIX file, /etc/netinfo/local.nidb must exist on each host
on which NetInfo runs. We can say the database with tag, local, is used to serve the
local domain.

 A domain does not actually exist until it is bound into the domain hierarchy.
Binding is specified by entering values into the database that serves the domain,
and is achieved when a child domain starts and contacts is parent domain. Since
the domain doesn’t exist yet, the domain name cannot be used. The database itself,
however, can be referred to using a database address.

A database address is made up of two components, the host name and the database
tag, separated by a slash.

In this manual, database addresses are represented using bold italic type with the
slash separator, “/”. For example, the local domain on host alpha is served from a
database with the following address:

alpha/local

Using the recommended convention explained above, the domain sysdev on host
alpha is served from a database with the address:

alpha/sysdev_db

 In order for a domain to access information in a database, a process must be
started. The controlling NetInfo process, the nibindd daemon, is usually started at
boot time, and must be running for NetInfo to operate.

Once nibindd is running, it starts up a netinfod daemon for each existing database
in the /etc/netinfo directory on the host on which the database is stored. The
daemon processes are owned by root and run in the background.

As domains are created, new instances of the netinfod daemon are started. These
processes stop when a domain is removed, or the nibindd daemon is stopped.

Database - Tags

Database Address

Daemon Processes

Chapter 2: Concepts

22

The database is organised internally into directories and subdirectories. The
NetInfo directory structure is very similar to the UNIX file system, but the two
should not be confused.

In NetInfo, information associated with a directory is not stored in files, but in
either of two places: in subdirectories, or in the directory itself in the form of
properties.

A property is made up of two parts: the property key which can be thought of as
the property's name, and the property value.

A database can have any number of subdirectories. Each subdirectory can have zero
or more properties, and each property can have zero or more values.

The NetInfo database begins at the top level with a root directory, represented by
a slash (“/ ”).

Some subdirectories and properties are compulsory in order to administer NetInfo.
These are explained in detail as required in Chapter 5 - Using NetInfo.

Information about a user account is stored in a database directory called /users .
For each user who access to the resources of the domain, there must be a
subdirectory with the name of that user.

The ACME company has three staff members in the Development section, (login
id's chris, bing, and jo), who must be registered as users in the sysdev domain. The
database which serves this domain, sysdev_db, must have the following
subdirectories:

/users/chris

/users/bing

/users/jo

The properties of a /users subdirectory correspond to the fields in the
/etc/passwd file. These subdirectories have the following properties and values:

Directory: /users/chris /users/bing /users/jo

Property

name chris bing jo
passwd AX#1@2Tf DS#155Tf PUI87#22
uid 101 102 103
gid 10 10 10
real name Chris Smith Bing Lee Jo Smith
home directory /usr/staff/chris /usr/staff/bing /usr/staff/jo
shell /bin/csh /bin/csh /bin/csh

Each user on the system would have a similar database entry. Other administrative
information, such as group data, is stored in a database directory in a similar way.

Internal Structure
of the Database

Example:

Directories and
Properties

Chapter 2: Concepts

23

Binding is controlled by the “serves” property in the /machines subdirectories in
the database. A subdirectory must exist in /machines for every host that serves any
of the following:

• its parent domain,

• its own (self) domain,

• or one of its child domains.

In the ACME domain structure, the sysdev domain is served from the host alpha.
Its parent, “/”, is also served from alpha, from the database network. It has two
child domains, alpha (the local domain), on host alpha, and bravo (the local
domain), on host bravo.

As can be seen, there are two hosts that serve sysdev, its parent, or its child
domains: therefore there must be two /machines subdirectories:

/machines/alpha

/machines/bravo

These subdirectories must have at least three properties each:

• a name (the value is the name of the subdirectory)

• Internet address

• a “serves” property, with one or more values showing the database address of
the databases from which its parent, its self and its child domain(s) are
served.

In the /machines/alpha subdirectory, three value entries must exist for the
“serves” property to specify the database from which itself is served, its parent, and
its one child on alpha.

/machines/alpha: Property Value

name alpha
ip_address 192.42.172.1
serves ./sysdev_db, ../network, alpha/local

In the /machines/bravo subdirectory, only one “serves” value is required, to
specify the child located on bravo.

/machines/bravo: Property Value

name bravo
ip_address 192.42.172.2
serves bravo/local

The above example shows the structure of the sysdev domain only. Its parent, the
root domain, must have a reference that sysdev is its child. Also, the local bravo
domain, must have a reference to its parent.

Example:

The “serves”
property

Chapter 2: Concepts

24

Normally, only root (superuser) has write access to information in the NetInfo
databases. Users can be granted permission to change the values of specific
properties or variables by applying the “_writers” property. In order to change their
own password, users must have “_writers” access to their own password property.

“_writers” Property
The “_writers” property has one or more values: The values are login names of those
users who are able to write to the property or directory. There are two forms:

“_writers” This form allows users named in the list of values to write
to all properties in the directory.

“_writers_propkey” This form allows users named in the list of values to write
to the specified property only.

The value of the “_writers” property (list of usernames) can take the value “*”. This
is a wildcard meaning all users of the domain. The wildcard specification is
generally used when defining access to printers in a domain.

So far, the databases that have been discussed are master servers. A clone server can
be set up to mirror the information of a master server. The name server in NetInfo
terminology refers to the database that serves a domain.

Clones can be set up for two reasons: reliability and load balancing. It is up to the
administrator to decide if there are sufficient resources available to establish a
clone. Resources required include a separate host with sufficient disk space, swap
space, and memory.

If an organisation requires uninterrupted NetInfo service, a clone should be
established. A clone server is an exact copy of a master server. If a host is down, or
a domain cannot be connected for any reason, the clone database can be used
instead of the inaccessible master database.

Clone databases, however, cannot be modified if the master server is down. This
ensures that there is only one source of domain information. Also, clones cannot
be created on the same host as the master database they copy.

Clones can also be used to establish the best load balance of a network. A host will
search for information locally before attempting to search the network. If a clone
is established on a local host, it will obtain information from the clone rather than
the master database elsewhere in the network.

When the netinfod daemon for each database is started, it first checks to see if the
database is a clone, or if it has any clones. For each master database, if any clones
are found, the daemon sets up tasks to ensure that any changes that are made to
the master are also made to the clone.

The root directory of every database has a “master” property. The value of this
property specifies the database address of the master database. If this property refers
to itself, then the database is a master; if it refers to another database, then it must
be a clone.

When a master database is created, this value is set to the database address of the
new database. When a clone is created, the entire master database is copied, and so
the value of the “master” property points to the master database.

Changing Database
Information

Master Servers
and Clones

25

Chapter 3

NetInfo Design
Before creating a NetInfo network, you should consider how the resources of your
system have to be shared amongst the users. This means that you must consider
how your domain hierarchy should be structured.

Just as hierarchical directories enhance the organisation of disk files, hierarchical
domains enhance the organisation of network data. A domain can hold informa-
tion about a single host, about a department, or information about an entire organ-
isation.

Networked systems allow computer resources to be shared amongst users. Through
careful design, the administrator can:

• create the correct load balancing of systems

• enhance system performance

• provide access and restrictions to resources such as printers and tape drives

• provide users with access to required information and applications.

This chapter gives the administrator an overview of available networking alterna-
tives. It does not offer specific solutions to network configuration and equipment
requirements. It is addressed to those administrators who have not already de-
signed their network. If you have used NetInfo before, you may wish to skip this
chapter.

Chapter 3: NetInfo Design

26

Dividing a Network into Domains

When designing a network, the administrator must decide what resources are to be
shared and with whom, and which resources must be kept private. By organising
the network into conceptual domains, resources can be shared or restricted as re-
quired.

NetInfo domains imply a hierarchical structure. This type of structure allows re-
sources to be organised so that access permissions can be easily granted or denied
to groups or individual users. The domain structure takes the form of an inverted
tree. Often, the domains will be set up to mirror the hierarchical structure of an or-
ganisation.

There are two issues which can affect how a network is structured: location of the
systems, and the resources that have to be shared.

Location of Systems

Some systems are located in different cities, states, or even countries. A separate
domain is often created for a system at a location. This system may include several
machines, and is usually managed by the one systems administrator. This domain
can be further divided into lower level domains if required.

Sharing Resources

If a group of users need to share particular resources, such as printers and tape
drives, or applications and information, they are often grouped together into a
domain. Resources can also be restricted in the same way.

A two-level structure will suit many organisations. At the top is the root domain.
The next level contains the local machine domains. A local domain of a host can-
not have child domains below it. Two-levels is the least number of levels that are
of practical use.

Figure 3.1 - Two-Level Domain

This type of structure is only useful for small companies with a few machines. Host
access is commonly restricted to one host or all. It is difficult, though possible, to
organise access on only some of the hosts. A user must have an account on each
machine they wish to access.

Two-Level Domain
Hierarchy

/

charliebravoalpha

Example:
Two-Level

Chapter 3: NetInfo Design

27

Larger organisations may want to divide their network administration along the
same structure as their organisation. This structure will need at least three levels.

Figure 3.2 - Three-Level Domain

Users will have accounts in a particular departmental domain, and access to the
machines in that domain only. Managers, or other users who require access to all
machines, must be registered in the root domain.

There is no limit to the depth the hierarchy can take. The structure depends entirely
on how the machines and users are organised. In practice, however, it is advisable
to keep the hierarchy broad and shallow.

Consider three departments at a large university: Computing, Engineering, and
Mathematics. Each department has connected their own machines into local net-
works. Users within each department share information, but not much informa-
tion is shared between the different departments. They all wish to be connected in
order to exchange electronic mail and news as necessary, but the machines of each
department must be kept separate.

Currently, each department has a similar domain hierarchy. The following exam-
ple shows the Computer Science Department:

Three-Level Domain
Hierarchy

Example:
Three-Level

/

bravo

sysdev

alpha delta

admin

charlie

Multi-Level
Domain Hierarchy

Example:

Multi-Level domains

Chapter 3: NetInfo Design

28

Figure 3.3 - Multi-Level Domain

All Computer Science students have login names registered in the students domain
only. They have access to machines charlie and delta. Academic staff are registered
in academic. The have exclusive access to the machine bravo, but also, they are able
to access all machines in the child domain, students, that is, charlie and delta. Ad-
ministrative staff have access to machine alpha only.

If any users need access to both the admin and academic machines, they would
be registered as users in the root domain.

The Math and Engineering Departments are structured in a similar way, however,
they use a different set of machines. Both departments have a root domain, and
two subdomains, admin and academic, but the local domains are named after the
machines in each department.

Assume the one administrator is managing all three departments. They should be
organised into three distinct domains, each one level below the new root domain.

Each of the old root domains must be renamed to reflect the fact they are no longer
at the top level: to something like compute, math, and engine. The rest of the do-
main hierarchies below these levels will remain the same.

Users within each department can only login to their own machines, but can send
mail to all others.

Any user registered in the new root domain, such as the superuser, has access to all
machines.

/

admin

alpha students

academic

bravo

deltacharlie

Example:

Multi-Level domains

Chapter 3: NetInfo Design

29

The domain hierarchy should be set up as follows:

Figure 3.4 - Multi-Level Domain

Example:

Multi-Level domains

/

enginemathcompute

Chapter 3: NetInfo Design

30

Selecting Hosts
The host which serves the root domain should be highly available, unless clones
have been established. It must have a substantial amount of memory, swap space,
and disk space. Administrators should select “server” style machines, i.e., those that
are configured for high compute/transaction throughput, preferably a high per-
formance disk server.

No domain can be bound into the hierarchy until it has found its parent. The host
which serves a parent domain(s) must be alive before its child domains can start-up.

A clone should be established if the organisation requires uninterrupted NetInfo
service and the resources are available. The resources required include a host with
enough memory and disk space to serve the cloned databases.

Any database, other than those serving the local domain, can be cloned. A clone
must exist on a different host than its master.

The first database you should consider cloning is the network database which
serves the root domain. This database is the parent of the hierarchy. If it is not alive,
no domain can be bound into the hierarchy.

Reliability

If a host is down, or a domain cannot be connected for any reason, the clone data-
base is used instead of the inaccessible master database. This ensures that the Net-
Info service is not interrupted.

If the network is not connected, users can only login to hosts if they are known to
the “local” database. If NetInfo is not running at all, they can connect to a host if
they have a valid entry in the flat password file.

Clone databases, however, cannot be modified if the master server is down. This
ensures that there is only one source of domain information.

Load Balancing

Clones can also be used to establish the best load balance of a network. A host will
search for information locally before attempting to search the network. If a clone
is established on a local host, it will obtain information from the clone rather than
the master database elsewhere in the network.

Setting up Clones

Chapter 3: NetInfo Design

31

Domain Names
The database tag for a domain must be unique on a machine. When a domain is
created, no matter at what level it will be bound into the hierarchy, a data-base file
is created and stored in /etc/netinfo . All database files are stored at the same
level, and so the names must be unique on a particular host.

Extending the multi-level example above, the Math and Engineering depart-ments
may also wish to divide their domains further into an admin and academic
domain structure. As each department is organised on a different set of machines,
the same names can be chosen for the lower-level domains. At each level within a
domain, and on each host, the names must be unique.

Managing Users
To login to any machine, a user must have an account. NetInfo determines user ac-
cess by looking up information in the domain hierarchy rather than using the flat
files.

When a user tries to login to a particular host, NetInfo first looks in the local
database for that host. If the username is found, the ordinary login process is
continued. If not, NetInfo searches up through the hierarchy until it finds the user
account information it wants, or it reaches the top level.

Because of this structure, a user need only be registered in one domain: this must
be the highest level domain to which they have access. Access to a domain implies
access to all its child domains.

In the three-level example above, users in the system development department
should have user accounts in the sysdev domain. This automatically gives them
access to machines alpha and bravo.

The superuser should have an account in each domain, particularly the root
domain and the local domains for each machine. If, for some reason, a machine is
not connected to the network, NetInfo can still run, allowing the superuser to login
to any machine.

In a two-level hierarchy, users who have access to a machine must have accounts
in the local database. If a machine is not connected to the network, these users can
still login to their own machine.

In multi-level hierarchies, users may have their accounts in a higher level domain.
If a machine becomes disconnected from the network, that higher level domain
may be inaccessible. This means that some users cannot login to a particular ma-
chine.

The administrator can arrange to copy the password information from high-level
domains into the local domains on each relevant machine to overcome this prob-
lem. Users must be aware, though, if they change their password, it will not prop-
agate up the domain hierarchy.

Unique Names

User Access

Superuser

Local Users

Chapter 3: NetInfo Design

32

Updating the Flat Files
Flat files on each machine can be kept up-to-date using the NetInfo tools, nidump
and niload, to copy information between the specified database and the file.

It is recommended that systems administrators update the flat files on a regular ba-
sis. The flat files are consulted by the system when it is booted, and also if neither
NetInfo nor NIS are running. This is easily managed using the standard UNIX cron
facility and the NetInfo tools. All tools are explained in the Reference chapter.

33

Chapter 4

Configuration -
Quick Start
This chapter describes an alternative NetInfo installation procedure for those sites
with existing NetInfo networks. This installation is somewhat simpler than the full
manual configuration process described in the next chapter, Manual Configuration,
as it makes use of an automated installation script, quick_start , provided as part
of the NetInfo software product.

If you do not already have a NetInfo domain heirarchy, and wish to create a new
root domain server, a quick_start_root script is also provided.

Installation

You should have already installed the NetInfo software onto your system as per
Chapter 1 of the Installation guide for your specific platform.

This section describes how to set up your server with a local NetInfo database. You
should already have a NetInfo server installation with a root domain up and
running before undertaking this installation. In addition, you should have noted
the hostname and the IP address of the host which is to provide your parent
NetInfo domain, as this information will be required during the Quick Start
installation. You will also need to know the IP address of the machine onto which
you are installing the system.

If you do not already have an NetInfo network up and running, you can use the
quick_start_root script instead. However, it is recommended that you read the
Manual Configuration chapter as well to fully understand what is involved in
establishing a NetInfo network.

You will be prompted for the root password of the host that is serving the parent
domain during installation. Please ensure that you either know this password or
have someone that does know it available during the installation process.

Backup

It is recommended that the existing system configuration files are backed up before
continuing with the installation (/etc/passwd , etc.). NetInfo does not actually
change any of the information in these files, but the utilities that load and unload
existing information into NetInfo databases can affect these flat files.

Chapter 4: Configuration - Quick Start

34

Quick Start Install

The following example shows how to connect a new server, bravo, to an existing
NetInfo network. The server will need a local database. It is connected to the
existing hierarchy as a child of another domain, referred to as its parent domain.
This domain can be any existing domain, not necessarily the root domain. For this
example, we will install the server as a child of the root domain, which is served by
the host alpha.

The Quick Start install is automated by the script quick_start provided as part of
the NetInfo software product.

The configuration steps for installing a server are:

1. Install the NetInfo software as described in the Installation Guide for your spe-
cific platform.

2. Become superuser (root).

3. Run the quick_start install script.

4. Test the system.

5. Reboot and test.

Example

The new host, bravo, must have a local database. Its parent is the root domain
on host alpha.

Figure 2.1 - Install new server, bravo

/
alpha/network

alpha
alpha/local

bravo
bravo/local

Configuration
Steps

Chapter 4: Configuration - Quick Start

35

You must first complete the software installation procedures documented in the
Installation Guide for your specific platform.

Become the superuser (root) and change to the working directory.

The quick_start script, provided as part of the NetInfo software product, automates
many of the steps required to create a NetInfo local database.

In particular, it automatically creates the /etc/netinfo directory and installs a
new local database local.nidb into this directory.

It starts the NetInfo daemon processes required to use the NetInfo system.

It also binds the new database into your existing NetInfo hierarchy and can
optionally load the contents of the system configuration files (/etc/hosts ,
/etc/passwd , etc.) into the local database for you.

quick_start requires you to enter the root password of the host alpha during
installation. This is required to allow changes to be made to the parent NetInfo
database, running on host alpha. You may be asked for this password more than
once.

quick_start_root does not require a parent NetInfo database, since it is establishing
the new root database. Ignore any references to parentdatabase in the following if
you are running quick_start_root .

The quick_start script requires four parameters on the command line:

• the domain name that the new local domain is to be known by

• the database address of the parent domain

• the IP addresses of the server

• the IP addresses of the host that serves the parent domain

For example, to set up the new server bravo we would invoke quick_start as follows:

quick_start bravo 192.42.172.2 alpha/network 192.42.172.1

where bravo is to be the domain name of the new database.

The parent domain, /, is served from the database network on host alpha.

The first IP address provided is the address of the new server, bravo.

The second IP address provided is the address of the host, alpha.

1: Load the NetInfo
Software

2: Become the super
user

3: Run the quick_start
installation script

quick_start

Chapter 4: Configuration - Quick Start

36

Following the creation of the local database and binding it into the NetInfo
hierarchy, you will be prompted for the optional loading of your local
configuration files (/etc/hosts , /etc/passwd etc.).

Do you wish to load local configuration data into the local
NetInfo database [no]?

Answering 'yes ' to this question will cause quick_start to load the contents of the
following files into the local database on your server:

/etc/hosts
/etc/passwd
/etc/group
/etc/rpc
/etc/services
/etc/protocols
/etc/aliases
/etc/networks
/etc/bootptab
/etc/bootparams
/etc/exports
/etc/fstab

If you choose not to load these files, then your server will take its configuration
information from the parent NetInfo domain.

• Check that the directory and database file are created:

ls -al /etc/netinfo/local.nidb/Collection

• Check that the netinfod process is started. Use nips if it is installed, which
should display:

nips

netinfod local

• Check the default information automatically loaded into the database. Use
the niutil tool to display a list of directories and properties:

niutil -list -t bravo/local /

1 machines

2 users

3 groups

4 networks

5 protocols

6 rpcs

7 aliases

...

loading configuration
data

Chapter 4: Configuration - Quick Start

37

This command requests a list of subdirectories of the root directory, “/”, in the
database specified using the tag bravo/local.

niutil -list -t bravo/local /machines

2 bravo
9 alpha

This command requests a list of subdirectories of the directory, /machines , in the
database bravo/local.

niutil -read -t bravo/local /machines/bravo

name: bravo
ip_address: 192.42.172.2
serves: ./local

This command requests a list of properties and values of the directory,
/machines/bravo , in the database bravo/local. The result shows that the domain,
self (.), is served from database local.

Check that the parent binding has also been correctly installed.

niutil -list -t alpha/network /machines

...

2 bravo

...

This command requests a list of subdirectories of the directory, /machines , in the
database alpha/network. The result shows that the subdirectory,
/machines/bravo does indeed exist.

niutil -read -t alpha/network /machines/bravo

name: bravo
ip_address: 192.42.172.2
serves: bravo/local

This command requests a list of properties and values of the directory,
/machines/bravo , in the database alpha/network. The result shows that the
domain, bravo, is served from database local as desired.

The property value in the parent database:

serves "bravo/local"

is where the child domain gets its name. This property states that a domain with
the name bravo (relative to the current domain) is served from a database with tag
local. In our example, the full pathname of this domain is /bravo.

Naming the child
domain

Chapter 4: Configuration - Quick Start

38

The domain hierarchy can be tested by interrogating the database using the
domain name rather than the address.

On bravo there is one database:

local, which serves the domain /bravo.

On alpha, there are two databases:

local, which serves /alpha, and
network which serves the root domain, /.

List the properties which describe the machines in each of these databases:

niutil -read /bravo /machines/bravo
niutil -read /bravo /machines/alpha
niutil -read / /machines/bravo
niutil -read / /machines/alpha
niutil -read /alpha /machines/alpha

If the binding has not worked, an error message is displayed, saying that the
database served by the specified domain cannot be opened.

At this stage, reboot the system and check that all the daemons started successfully.

Check that the binding is correct by interrogating the database using the domain
names instead of the database tags.

As a final confidence check, try a common command, such as:

/bin/ls -lg

This command must look up user id and group id information, using NetInfo.

Check that the results are what you would expect.

This completes your NetInfo installation for the local server.

4: Test the Network

5: Reboot and Test

39

Chapter 5

Manual Configuration
Your NetInfo package includes an Installation Guide that describes how to unload
the software from the distribution media, and what files should exist. The superus-
er, root, must have access to the programs. Many of the NetInfo functions require
the user to be logged in as root.

The Installation Guide also documents the procedure you should follow to install
the NetInfo software for your system. These procedures should be carried out prior
to following the installation steps documented in this chapter.

This section describes how to set up the initial host, with a local database and a root
domain. The NetInfo software must be installed on all hosts in the network, and
each must have a local database. Only one root domain should exist., although
advanced NetInfo administrators can create multiple seperate NetInfo heirarchies
as well.

The NetInfo system is comprised of the NetInfo daemons and several utility
programs used to access the database. Some of these programs are compulsory and
must be located in specific directories. Other utilities supplied can be located in any
utilities directory chosen by the administrator. This manual assumes utilities are
stored in /usr/bin .

Program Notes

The following programs must be installed in /usr/etc

nibindd NetInfo daemon - must be running on all hosts.

niypd NIS emulation lookup daemon - must run in conjunction with nib-
indd.

netinfod For each database in the /etc/netinfo directory, an instance of
the netinfod daemon is started to access the specified database.

nidomain Used to create and destroy databases. When creating a database, it
also starts a netinfod process to access the database.

Can be stored anywhere, although this manual assumes they are
in /usr/bin

niutil Used to list and maintain the contents of a database.

niload Used to add information to the database from standard input.

nidump Used to dump information from the database to standard output.

niwhich Shows which NetInfo databases are served from which hosts.
This utility also shows the Internet address of the specified host.

nipasswd Allows users to change their NetInfo password.

NetInfo Programs

Programs -
Compulsory Location

Utilities - Can
be stored anywhere

Chapter 5: Manual Configuration

40

nigrep Search using regular expressions in a NetInfo database.

nifind Search for directories with given key/value pairs.

nireport Produces a tab seperated report using multiple search keys.

Backup

It is recommended that the existing system configuration files are backed up before
continuing with the installation. (/etc/passwd , etc.) NetInfo does not actually
change any of the information in these files, but the utilities that load and unload
existing information into NetInfo databases can affect these flat files.

Design

This chapter assumes you have already designed your network. You should know
how your available machines are arranged in the network hierarchy, and which us-
ers should have access to which resources. Initially, you should have decided which
host should serve the root domain. This host must be a highly available host with
sufficient memory and disk space. Clone servers can be added at any time.

Chapter 5: Manual Configuration

41

Install NetInfo on the First Host

NetInfo is installed on a single machine in several stages. The system programs
must be loaded on each machine that is part of the NetInfo network. Administra-
tors may find it easiest to install the programs onto one host and then copy them
across to all others. Databases, however, should not be copied.

Some NetInfo programs must be located in specific directories, and the directory
structure for the NetInfo databases must be created.

Every host must have a local database. Only one network database should exist in
the network.

In order to illustrate the NetInfo start-up procedure, the following example
network is installed. Both local and network databases are installed on this host, to
create a two-level hierarchy.

This network initially consists of one host, alpha. A subsequent example explains
how to connect other hosts.

The root domain is served by the network database on host alpha. This host must
also have a local database, serving the local domain with name alpha.

Figure 4.1 - Install 2-Level Domain Hierarchy

1. Load the software onto your system – refer Installation Guide.

2. Create directory structure for the NetInfo databases.

3. Start the NetInfo daemon.

4. Create local database.

5. Create network database.

6. Bind local and network into domain hierarchy.

7. Test the network.

8. Load system information.

9. Reboot and test.

Example:

Install NetInfo
on a single host

/
alpha/network

alpha
alpha/local

Configuration
Steps

Chapter 5: Manual Configuration

42

The NetInfo programs, as listed earlier in this chapter, must be installed on each
host in the network that is to run NetInfo. Some of these programs are compulsory
and must be located in specific directories. Other utilities supplied can be located
in any utilities directory chosen by the administrator. The Installation Guide that
came with your NetInfo package documents the procedure you should follow to
load the software for your particular system.

The following programs must be installed in /usr/etc on alpha:

nibindd niypd netinfod nidomain

The following utilities are used in the examples throughout the manual. They can
be installed anywhere at the discretion of the administrator. For this example, they
will be installed in /usr/bin.

niutil niload nidump nipasswd niwhich

NetInfo expects to find its databases in a directory called /etc/netinfo. This
directory must exist before a domain can be created on any host.

Check that this directory exists before continuing. If not, it must be created and
owned by root.

e.g. mkdir /etc/netinfo

Two daemon processes must be running on each host in order to operate using the
NetInfo database: nibindd and niypd. These processes run in the background.

Initially, only nibindd need be started: niypd will not work until after the config-
uration information has been loaded. If you are following these instructions, niypd
is not started until the system is rebooted.

Normally, nibindd must be started before niypd. These two processes are started
at boot time. Detailed information on these two processes can be found in the Ref-
erence chapter.

Login as the superuser and enter the following command:

/usr/etc/nibindd &

1: Load the NetInfo
Software

2: Update the
Shared Library
2: Create the
NetInfo Database
Directory Structure

3: Start the
NetInfo daemon

Chapter 5: Manual Configuration

43

The local database must exist on each host, and its name is fixed as local.

Login as root to alpha and use the nidomain tool to create the database:

nidomain -m local

• Check that the directory is created:

/etc/netinfo/local.nidb

This directory should contain one file:

collection

• Check that the netinfod process is started . Use nips if it is loaded, which
should display:

netinfod local

• Check the default information automatically loaded into the database. Use
the niutil tool to display a list of directories and properties:

niutil -list -t alpha/local /

1 machines

This command requests a list of subdirectories of the root directory, “/ ”, in
the database specified using the tag alpha/local. The result shows that there
is only one subdirectory, /machines , which is assigned directory number 1.

niutil -list -t alpha/local /machines

2 alpha

This command requests a list of subdirectories of the directory, /machines ,
in the database alpha/local. The result shows that there is only one subdirec-
tory, /machines/alpha .

niutil -read -t alpha/local /machines/alpha

name: alpha
ip_address: 192.42.172.1
serves: ./local

This command requests a list of properties and values of the directory,
/machines/alpha , in the database alpha/local. The result shows that the
domain, self, is served from database local.

Create a root user in the database. This user is the only one able to make changes
to the database and must exist.

niutil -create -t alpha/local /users
niutil -create -t alpha/local /users/root

These commands first create a /users directory, then a subdirectory for the
root user.

Now create properties and values corresponding to the password file. The
“name” property is set to the name of the directory. The user id and group id
are compulsory. The password must be set to null initially.

niutil -createprop -t alpha/local /users/root uid 0
niutil -createprop -t alpha/local /users/root gid 1

4: Create the
local database

Create “root” user

Chapter 5: Manual Configuration

44

niutil -createprop -t alpha/local /users/root passwd ""

The network database serves the root domain. Its name is fixed as network.

Use the nidomain tool to create the database:

nidomain -m network

• Check that the directory and file is created:

/etc/netinfo/network.nidb/collection

• Check that the netinfod process is started:

netinfod network

• Check the default information automatically loaded into the database. This
information is similar to that created for the local database.

niutil -list -t alpha/network /

1 machines

niutil -read -t alpha/network /machines/alpha

name: alpha
ip_address: 192.42.172.1
serves: ./network

This shows that the domain, self, is served from database network.

Create a root user in the database. This user is the only one able to make changes
to the database and must exist.

niutil -create -t alpha/network /users
niutil -create -t alpha/network /users/root
niutil -createprop -t alpha/network /users/root uid 0
niutil -createprop -t alpha/network /users/root gid 1
niutil -createprop -t alpha/network /users/root passwd ""

Binding is a two-way process that is achieved by adding serves properties to the ap-
propriate databases. Both the uplink (child specifying parent) and the downlink
(parent specifying child) must be entered.

• The local domain (local) must specify its parent.

• The root domain (network) must specify its child.

The parent of local, the root domain, is served by the network database on host
alpha. Add a value to the serves property of the /machines/alpha directory of the
database alpha/local specifying that the parent “..” is served from database net-
work.

niutil -addval -t alpha/local /machines/alpha
serves "../network"

The child of network, is served by the local database on host alpha. Add a value to
the serves property of the /machines/alpha directory of the database with the tag
alpha/network specifying that the child is served from database local.

niutil -addval -t alpha/network /machines/alpha
serves "alpha/local"

5: Create the
network database

Create “root” user

6: Bind local
and network

Specify parent of
local

Specify child of
network

Chapter 5: Manual Configuration

45

The property value in the parent database:
serves "alpha/local"

is where the child domain (local in this case) gets its name. This property is saying
a domain with the name alpha (relative to the current domain) is served from a
database with tag local. The full pathname of this domain is /alpha.

Since a domain does not exist until it is bound into the hierarchy, it cannot be re-
ferred to by its domain name, only its database address. The previous interrogations
of the database properties all made requests using the database address (-t option
of niutil). The domain hierarchy can be tested by interrogating the database using
the domain name rather than the address.

The local database serves a domain on host alpha. The full name of this domain is
/alpha. The network database serves the root domain, called /.

List the properties which describe the machines in each of these databases:

niutil -read /alpha /machines/alpha

niutil -read / /machines/alpha

If the binding has not worked, an error message is displayed, saying that the
database served by the specified domain cannot be opened.

Information that is normally stored in the configuration files must be loaded into
the NetInfo network before the configuration data can be accessed. This informa-
tion need not be stored in every database. A local domain inherits information
from its parent; the local database is first consulted, but if the required information
is not there, NetInfo searches up the hierarchy until it is found.

Some administrators may choose to load configuration information into the root
domain; in this case, the information is stored only once. niload can be used to
transfer this information according to the specified format.

Loading information from flat files

This example shows the configuration information loaded into the root domain
from the flat files, using the domain name, “/”. The commands can be entered in
any order.

niload -v passwd / < /etc/passwd

niload -v hosts / < /etc/hosts

niload -v services / < /etc/services

niload -v protocols / < /etc/protocols

niload -v group / < /etc/group

niload -v rpc / < /etc/rpc

niload -v fstab / < /etc/fstab

Naming the child
domain

7: Test the Network

8: Load System
Information

Chapter 5: Manual Configuration

46

niload adds information to the specified database, in this case, the database that
serves the root domain, “/”, called network. If an entry exists in both the database
and input file, the database updates its existing information with the data from the
input file.

The appropriate information could also be entered into the local database using
niutil, creating sub-directories and entering each property one line at a time,
though this would be very time consuming.

Loading information from NIS

If you are running NIS, the system information can still be loaded using niload ,
but the input should be extracted from NIS as follows:

ypcat passwd | niload -v passwd /

ypcat hosts | niload -v hosts /

and so on for each NIS map.

Directory Names

Password information is loaded into the /users directory. If the appropriate di-
rectory does not exist, niload will create it.

Administrators should be aware that the internal directory names are not necessar-
ily the same as the flat file names. The section on Host Configuration Information in
Chapter 5: Using NetInfo explains the information loaded by niload.

At this stage, reboot the system and check that both the daemons started success-
fully.

Check that the binding is correct by interrogating the database using the domain
names instead of the database tags.

Try a common command, such as:

/bin/ls -lg

Check that the results are what you would expect.

This command must look up user id and group id information, using NetInfo.

9: Set up
“rc” scripts
9: Reboot
and Test

Chapter 5: Manual Configuration

47

Install NetInfo on Other Hosts

Most networks will have more than one host. The following example shows how
to connect a second host to the network. The second host must have a local data-
base. It is connected to the existing two-level hierarchy as a child of the root do-
main.

Most of the steps here are the same as in the previous example. There is no need to
create another root domain.

The new host, bravo, must have a local database. Its parent is the root domain on
host alpha.

Figure 4.3 - Install 2nd Host

The configuration steps for installing a second host are:

1. Load the software onto your system – refer Installation Guide.

2. Create directory structure for the NetInfo databases.

3. Start the NetInfo daemon.

4. Create local database.

5. Bind local into existing domain hierarchy.

6. Test the network.

7. Load system information.

8. Reboot and test.

Example:

Install NetInfo
on a second host

/
alpha/network

alpha
alpha/local

bravo
bravo/local

Configuration Steps

Chapter 5: Manual Configuration

48

The NetInfo programs must be installed on every host that is part of the NetInfo
network. See Step 1 of the previous example.

NetInfo expects to find its databases in a directory called /etc/netinfo. This di-
rectory must exist before a domain can be created on any host.

Check that this directory exists before continuing. If not, it must be created and
owned by root.

mkdir /etc/netinfo

Two daemon processes must be running on each host in order to operate using the
NetInfo database: nibindd and niypd. These processes should run in the back-
ground.

Initially, only nibindd need be started: niypd will not work until after the config-
uration information has been loaded. If you are following these instructions, niypd
is not started until the system is rebooted.

Normally, nibindd must be started before niypd. These two processes are started
at boot time. Detailed information on these two processes can be found in the Ref-
erence chapter.

Login as the superuser on host bravo and enter the following command:

/usr/etc/nibindd &

The local database must exist on each host, and its name is fixed as local.

Login as root on bravo and use the nidomain tool to create the database:

nidomain -m local

• Check that the directory and database file are created:

/etc/netinfo/local.nidb

collection

• Check that the netinfod process is started . Use nips if it is loaded, which
should display:

netinfod local

1: Load the NetInfo
Software

2: Create the
Directory Structure

3: Start the
NetInfo daemon

4: Create the
local database

Chapter 5: Manual Configuration

49

• Check the default information automatically loaded into the database. Use
the niutil tool to display a list of directories and properties:

niutil -list -t bravo/local /

1 machines

This command requests a list of subdirectories of the root directory, “/ ”, in
the database specified using the tag bravo/local. The result shows that there
is only one subdirectory, /machines , which is assigned directory number 1.

niutil -list -t bravo/local /machines

2 bravo

This command requests a list of subdirectories of the directory, /machines ,
in the database bravo/local. The result shows that there is only one subdirec-
tory, /machines/bravo .

niutil -read -t bravo/local /machines/bravo

name: bravo
ip_address: 192.42.172.2
serves: ./local

This command requests a list of properties and values of the directory, /ma-
chines/bravo , in the database bravo/local. The result shows that the do-
main, self, is served from database local.

Create a root user in the database. This user is the only one able to make changes
to the database and must exist.

niutil -create -t bravo/local /users
niutil -create -t bravo/local /users/root

niutil -createprop -t bravo/local /users/root uid 0
niutil -createprop -t bravo/local /users/root gid 1
niutil -createprop -t bravo/local /users/root passwd ""

Binding is a two-way process that is achieved by adding serves properties to the ap-
propriate databases. Both the uplink (child specifying parent) and the downlink
(parent specifying child) must be entered.

• local (the child) must specify its parent.

• The root domain (network) must specify its child.

As the parent and child domains are located on different hosts, you must ensure
that you are updating the correct database.

The parent of local, the root domain, is served by the network database on host
alpha. The local database on bravo does not have a /machines/alpha directory,
and the network database on alpha does not have a /machines/bravo directory.
These must both be created.

Create “root” user

5: Bind local
and network

Chapter 5: Manual Configuration

50

Login as root on bravo.

Create a “machines” directory in order to specify the parent “serves” property:

niutil -create -t bravo/local /machines/alpha

Add a value to the serves property of this directory specifying that the parent “..” is
served from database network on host alpha.

niutil -addval -t bravo/local /machines/alpha
serves "../network"

Add a property to this directory giving the IP address of the host alpha.

niutil -createprop -t bravo/local /machines/alpha
ip_address 192.42.172.1

This ensures that the NetInfo database bravo/local knows the IP address of the
parent host aplha and is thus able to bind to it correctly on startup.

The parent database must specify that it has a new child, bravo.

Login as root on alpha.

Create a “machines” directory in order to specify the child “serves” property:

niutil -create -t alpha/network /machines/bravo

Add a value to the serves property of this directory specifying that the child is
served from database local on bravo.

niutil -addval -t alpha/network /machines/bravo
serves "bravo/local"

Add a property to this directory giving the IP address of the host alpha.

niutil -createprop -t alpha/local /machines/bravo
ip_address 192.42.172.2

The property value in the parent database:

serves "bravo/local"

is where the child domain gets its name. This property is saying a domain with the
name bravo (relative to the current domain) is served from a database with tag lo-
cal. The full pathname of this domain is /bravo.

Specify parent of local

Specify child of
network

Naming the child
domain

Chapter 5: Manual Configuration

51

The domain hierarchy can be tested by interrogating the database using the do-
main name rather than the address.

On bravo there is one database, local, which serves the domain /bravo.

On alpha, there are two databases: local, which serves /alpha, and network which
serves the root domain, /.

List the properties which describe the machines in each of these databases:

niutil -read /bravo /machines/bravo
niutil -read /bravo /machines/alpha

niutil -read / /machines/bravo
niutil -read / /machines/alpha

niutil -read /alpha /machines/alpha

If the binding has not worked, an error message is displayed, saying that the
database served by the specified domain cannot be opened.

Configuration information must be accessible to each host. A host will consult its
local database first. If the appropriate configuration information is not stored here,
the parent domain is consulted, and so on up the domain hierarchy.

In the previous example, configuration information was loaded into the root do-
main, the parent of this new domain, therefore, it is not necessary to load any in-
formation from the flat files.

Administrators may choose to store information at different nodes of the domain
hierarchy rather than the root domain. If so, information may have to be loaded
into the new local domain.

At this stage, reboot the system and check that both the daemons started success-
fully.

Check that the binding is correct by interrogating the database using the domain
names instead of the database tags.

Try a common command, such as:

/bin/ls -lg

Check that the results are what you would expect.

This command must look up user id and group id information, using NetInfo.

6: Test the Network

7: Load System
Information

9: Set up
“rc” scripts
8: Reboot
and Test

Chapter 5: Manual Configuration

52

53

Chapter 6

Using NetInfo
Configuration information for each host in the network is stored in the NetInfo da-
tabases. The administration of hosts is based on domains. These domains can be
linked together to form a hierarchy.

A domain obtains information from the database from which it is served. The da-
tabase information is used instead of the flat files or NIS when NetInfo is running.
The database must exist on one of the hosts connected to the network. A domain,
typically, has access to the resources specified in its child domains.

This chapter is divided into three parts:

• Database and Domain functions
This section explains how to use the NetInfo tools to manage domains and
databases, including create and delete databases, and bind domains.

• Managing Hosts
This section explains how to add, move, and delete hosts from a network.
Host management is achieved using the database and domain functions of
the previous section.

• Managing Users and Groups
Once hosts have been connected to the network, users can be given access
using the database and domain functions.

Chapter 6: Using NetInfo

54

Database and Domain Functions

A domain is an abstract concept which enables the administrator to group resourc-
es together for access by specific users. Information about a domain is stored in the
database from which it is served.

Domains exist dynamically in the system. When the system is started (usually at
boot time), the NetInfo daemon searches the /etc/netinfo directory for databas-
es and binds the domains they serve into the hierarchy. The hierarchy is deter-
mined by the “serves” properties of the machines in each database.

A domain does not know its own name: this is determined by its parent. It is pos-
sible for a domain to have a different parent. If, for example, one host is unavaila-
ble, another may be used to link the domain hierarchy. The database on this new
host may act as parent to those on another, but it may access them using different
names. Normally, this is transparent to the users.

Two tools are used to create and manage database information:

nidomain creates and deletes databases.

niutil manages databases directories and properties.

niwhich can be used to display domain and database details. Two other tools,
niload and nidump, are used to move information between NetInfo and other
systems.

Some information is compulsory in all databases; specifically, some directories
must exist, and some subdirectories must contain certain properties.

Each host in the network must have a local database. This database must be called
“local”. The name of the local domain is the same as the host name of the machine
on which it is located.

For example, the local domain on host alpha, whose parent is the root domain has
the domain name /alpha. It is served from the database with the tag, local, and has
the database address alpha/local.

The local database is the only compulsory one. A host need not be connected to
other machines in order to run NetInfo. If, however, a hierarchy of domains is
generated, the top level domain, the root domain, must be served from a database
called network.

There are several directories that must exist in every database:

Each database must have a /users directory. Users who require access to the do-
main served by the database must have an entry in this directory. Access is achieved
by creating a sub-directory with the same name as the user's login name.

For example, to create a superuser account, create a subdirectory called
/users/root , and to create an account for a user called “chris”, create a
subdirectory called /users/chris .

Inherited Information

Not all users who have access to a domain need an account (entry in /users) in all
domains. Users who have access to a higher level domain automatically have access
to all its child domains.

Compulsory
Database
Information

Directories
/users Directory

Chapter 6: Using NetInfo

55

Suppose the following hierarchy exists where the domains are served from the
specified databases:

Figure 5.1 - Inheriting Domain Information

All users with accounts in the admin domain have access to hosts charlie and delta:
they don’t need to have /users entries in the local databases as well.

It is recommended, however, that the superuser has an entry in every domain, not
just the root domain. In case there are any problems, such as machines going down,
the superuser is then able to connect to any host and make changes as necessary.

Properties of /users

Each subdirectory of /users must have the following properties:

name Login name of the user. The value of this name is the name of the
subdirectory.

passwd User's password. The value of the password is encrypted.

uid User ID. Each user must have a unique identification number.

gid Group ID. Each user must be a member of a group.

real_name The user's real name can be entered into this property.

home The value of the “home” property determines the users home direc-
tory. The value of this property must be a valid UNIX pathname.

shell The “shell” property determines the user's login shell. The value
must be the pathname of a valid UNIX shell program.

Example:

Inherited
Information

/
alpha/network

sysdev
alpha/sysdev_db

alpha
alpha/local

bravo
bravo/local

charlie
charlie/local

delta
delta/local

admin
charlie/admin_db

Chapter 6: Using NetInfo

56

Superuser

The following subdirectory must exist in each domain to create a superuser ac-
count:

/users/root

The root user must have user id (“uid” property) set to 0, and group id (“gid”
property) set to 1.

The /machines directory contains information about what hosts the domain has
access to. Each domain must know about its parent domain, and its child do-
main(s).

There must be a subdirectory within /machines for each host that stores a database
for the current domain, for its parent, or for any of its child domains.

When a database is created, one entry is created in the /machines directory: it cor-
responds to the name of the host on which the database is created.

For example, to create a domain, sysdev, served from a database called sysdev_db
on host alpha, the following command is issued whilst logged into alpha:

nidomain -m sysdev_db

This command creates a database called sysdev_db. This database is created with
the following directory entries:

/machines
/alpha

name = “alpha” (determined from the name of the
host)
ip_address - “192.42.172.1” (determined from the
host file)
serves = “./sysdev_db” (self is served from
database sysdev_db)

Properties of /machines

A subdirectory of the /machines directory has three properties created
automatically.

name The name of the machine must be the host name. This becomes
the name of the subdirectory.

ip_address Each machine must have a unique Internet address.

serves The serves property has one or more values. The values have the
form:

domain / tag

where “domain” is either the self “.”, the parent “..”, or the do-
main name of a child. This is the point at which the parent de-
termines the name of a child domain.

This directory can have many other properties used by the system. These are ex-
plained in full in the Reference chapter.

/machines Directory

Chapter 6: Using NetInfo

57

Suppose a network is comprised of two machines: alpha and bravo, which are linked
together in a two-level hierarchy. Each system has a local domain, the parent of
which is the root domain, located on host alpha.

Three domains must be created:

On alpha, create a local database called local, whose parent, the root domain, /, is
served from a database called network, also located on alpha.

Host bravo also has a local domain, and it is the child of the root domain. The do-
main hierarchy is as follows:

Figure 5.2 - Two-Level Domain Hierarchy

The local database on alpha (domain name /alpha, database alpha/local) has the
following /machines entries:

/machines/alpha
serves =“./local”

“../network”

This entry is saying:

For domain /alpha, served by database local on host alpha, its self (“.”) is
served from database with tag local on machine alpha (/machines/alpha).

Its parent (“..”) is served from database with tag network on machine alpha
(/machines/alpha).

The local database on bravo (domain name /bravo, database bravo/local) has the
following /machines entries:

/machines/alpha

serves = “../network”
/machines/bravo

serves = “./local”

This entry is saying:

For domain /bravo, served by database bravo/local, its self (“.”) is served
from database with tag local on machine bravo (/machines/bravo).

Its parent (“..”) is served from database with tag network on machine alpha
(/machines/alpha).

Example:

Properties of /machines
database directory

/
alpha/network

alpha
alpha/local

bravo
bravo/local

Chapter 6: Using NetInfo

58

The root domain, “/”, served from database alpha/network, has the following
/machines entries:

/machines/alpha

serves = “./network”

“alpha/local”

/machines/bravo

serves = “bravo/local”

This entry is saying:

For the root domain /, served by database alpha/network, its self
(“.”) is served from database with tag network on machine alpha
(/machines/alpha).

This domain does not have a parent. It does, however, have two child
domains.

On machine alpha, (/machines/alpha) there is one child domain, called
 alpha which is served from database with tag local.

On machine bravo, (/machines/bravo) there is one child domain, called
bravo which is served from database with tag local.

Example:

Properties of /machines
database directory

Chapter 6: Using NetInfo

59

Managing Databases

A domain obtains its information from a database that has been created on a spe-
cific host. The domain only exists when it is bound into the domain hierarchy.

Databases are created (and deleted) using the nidomain tool, and the directories
and properties within that database are manipulated using niutil. Some standard
database information can also be loaded using niload, and subsequently dumped
out of the database using nidump. Password information can be changed using
nipasswd. This is explained in the “Managing Users” section.

In general, a database can have any name: it does not have to be the same as the
domain name. In fact, it is probably less confusing to give the databases a different
name to the domains they serve.
There are two compulsory names, “local” and “network”. Local domains must be
served from a database called local and the root domain must be served from a da-
tabase called network.

Each host must have a local database in order to connect into the hierarchy. This
example creates this database on host alpha.

Login as root on host alpha and use nidomain to create the database:

nidomain -m local

Here, “local” is the name of the database, not the domain. The “-m” option speci-
fies that the database is a master database as opposed to a clone. In most cases, the
database will be a master. See the section on Creating a Clone for more information
about clones.

nidomain performs several functions. First, it creates a directory for the new
database, and creates a database file. It then starts up a netinfod daemon to access
this database. Some initial information is also loaded into the new database.

All database directories are created in /etc/netinfo , which must exist. This direc-
tory should be created at installation time. The subdirectory is named after the da-
tabase, with an extension of “.nidb”. The database file is called “collection”. As the
database grows, extra files will be created in this sub-directory with the name “ex-
tension_N”, where “N” is an integer generated by the system that corresponds to
the internal directory number stored in that file.

The above example creates the following directory and file structure:

/etc/netinfo/local.nidb
collection

Naming Databases

Example:

Create a
local database

Directory and Files

Chapter 6: Using NetInfo

60

Each database is accessed by a netinfod process. This process is started when the
database is created. If the system is rebooted, the nibindd daemon will restart a net-
infod process for each database it finds in the directory /etc/netinfo .

The example above started up the following process (display using ps):

root 71 S 0:12 /usr/etc/netinfo local

Some information is automatically loaded in the database when it is created. A
/machines internal directory is created, with one subdirectory that corresponds to
the name of the host on which the database was created. This subdirectory has
three properties: the name, taken from the host name; the Internet address, extract-
ed from the /etc/hosts file; and the “serves” property, which has one value spec-
ifying that the self domain is served from database with tag local.

The above example creates the following information:

/machines/alpha
name: alpha
ip_address: 192.42.172.1
serves: ./local

This database has tag local on host alpha. Its database address is alpha/local. The
name of the domain that it will serve is not known until it is bound into the hier-
archy. Then, the name is determined by the parent domain. This is explained in a
later section in this chapter, Managing Domains.

The network database, which serves the root domain, is created using the same
tool, nidomain.

Login as root on alpha and use nidomain to create the network database:

nidomain -m network

This example creates the following directory and file structure:

/etc/netinfo/network.nidb
collection

This file, contains the following default information:

/machines/alpha
name: alpha
ip_address: 192.42.172.1
serves: ./network

This database has tag network on host alpha. Its database address is alpha/network.
Once it is bound into the domain, it will serve the root domain, and will have the
domain name “/”.

Process - “netinfod”

Database
Information

Example:

Create a network
database

Chapter 6: Using NetInfo

61

The nidomain tool is used to delete databases as well as create them. Use the de-
stroy option to delete a database. Login as root to the host on which the database
is stored.

nidomain -d some_db

This example removes the directory and database files:

/etc/netinfo/some_db.nidb

nidomain will also stop the netinfod process.

When a database is deleted, the domain it serves must be removed from the domain
hierarchy. This means that the serves property of its parent domain, and any child
domains, must be adjusted. This is explained more fully in the section Managing
Domains.

Deleting Databases

Chapter 6: Using NetInfo

62

Managing Database Directories

The niutil program is used to manipulate information in the database. Databases
can be altered by specifying them using the database tag, (with the -t option) or by
using the domain name, if the domain exists. A domain does not exist until it is
bound into the hierarchy, so much of the database information can only be
manipulated using the tag.

Three niutil options are relevant to database directories:

niutil [-t] [-p] -list domain path
niutil [-t] [-p] -create domain path
niutil [-t] [-p] -destroy domain path

If using the -t option, “domain” must be a database tag, otherwise, “domain” must
exist.

“-create” is used to create directories, and “-destroy” will remove them.
“-list” is used to display what subdirectories exist in the specified “path”.

The following example is used to illustrate the “display”, “create” and “delete”
options of the niutil tool.

A new host, bravo, will be added to the network to replace the host called foxtrot,
which is a child of the root domain. The network database is currently located on
host alpha.

The current domain structure is as follows:

Figure 5.3 - Managing Database Directories

The network database has two subdirectories in /machines

/machines/alpha
/machines/foxtrot

Changes

A new subdirectory, /machines/bravo , must be added to the network
database which serves the root domain.

The existing directory, /machines/foxtrot , must be removed from the da-
tabase as it is no longer required.

Directory
Management
Options

Example:

Managing Database
Directories

/
alpha/network

alpha
alpha/local

foxtrot
foxtrot/local

Chapter 6: Using NetInfo

63

The -list option of niutil displays the internal directory structure of the specified
directory, of the specified database.

The database can be named using the domain name if it exists, or the database tag.

Check the current directory list of the root domain. This domain is served by the
network database, but, as the root domain exists in the hierarchy, the domain
name, /, can be used.

niutil -list / /

1 machines
5 users

This example asks for a list of directories of the root domain, from the root directo-
ry. The two slashes are used to represent two different components: the first re-
quests the root domain, the second, the root directory of the specified domain.

The result shows there are two subdirectories: /machines is directory number 1
and /users is directory number 5. These numbers are generated by the system
when the directories are created.

niutil -list / /machines

2 alpha
3 foxtrot

This example asks for a list of directories of the root domain, from the /machines
directory. The result shows there are two subdirectories, /alpha , and /foxtrot ,
which are directories 2 and 3 respectively.

The above examples accessed the root domain using its domain name “/”. In this
example, its tag is used. It is served from the database called network, on host al-
pha, therefore its database address is: alpha/network.

Check the root directory list of the network database:

niutil -list -t alpha/network /
1 machines
5 users

niutil -list -t alpha/network /machines
2 alpha
3 foxtrot

As can be seen, the results are the same, whether using the domain names or the
database tags.

Display Directory
Information

Using the
domain name

Using the
database tag

Chapter 6: Using NetInfo

64

The internal directory structure of a database is created using the niutil tool. The -
create option creates the specified directory, of the specified database.

The database can be named using the domain name if it exists, or the database tag.

The new directory, /bravo , must be added to the root domain, “/”, as a
subdirectory of /machines . Use the create option as follows:

niutil -create / /machines/bravo

and check:
niutil -list / /machines

2 alpha
3 foxtrot
6 bravo

Add the new directory, /bravo :

niutil -create -t alpha/network /machines/bravo

and check:
niutil -list -t alpha/network /machines

2 alpha
3 foxtrot
6 bravo

Create Directory
Information

Using the
domain name

Using the
database tag

Chapter 6: Using NetInfo

65

The internal directory structure of a database is removed using the niutil tool. The
-destroy option deletes the specified directory, of the specified database.

The database can be named using the domain name if it exists, or the database tag.

The old directory, /foxtrot , must be removed from the root domain, /, as a
subdirectory of /machines . Use the destroy option as follows:

niutil -destroy / /machines/foxtrot

and check:

niutil -list / /machines
2 alpha
6 bravo

Remove the old directory:

niutil -destroy -t alpha/network /machines/foxtrot

and check:

niutil -list -t alpha/network /machines
2 alpha
6 bravo

Delete Directory
Information

Using the
domain name

Using the
database tag

Chapter 6: Using NetInfo

66

Managing Properties

Properties are attached to directories in a database. A property can have zero or
more values.

The following options of the niutil tool are used to manage the values of properties:

niutil [-t] [-p] -createprop domain path propkey [propval ...]
niutil [-t] [-p] -destroyprop domain path propkey
niutil [-t] [-p] -mergeprop domain path propkey propval1 ...
niutil [-t] [-p] -appendprop domain path propkey propval1 ...
niutil [-t] [-p] -destroyval domain path propkey propval1 ...
niutil [-t] [-p] -read domain path

If using the -t option, “domain” must be a database tag, otherwise, “domain” must
be bound into the hierarchy.

“-createprop” is used to create properties. Values can be assigned at the same time.
“-destroyprop” removes the specified property and all its values.
“-read” is used to display the properties and values of the specified directory path.
“-mergeprop”, “-appendprop” and “-destroyval” are used to manage values. The
specified property need not already exist.

This example showing how to manage properties and values follows from the pre-
vious example that manipulates directories.

The new directory for host bravo has been added in the previous example. However,
this new directory has does not have any properties yet (apart from the name).

The domain structure required is as follows:

Figure 5.4 - Managing Database Properties

The network database has two subdirectories in /machines

/machines/alpha
/machines/bravo

Changes to “network”

The “ip_address” property must be created, with value “192.42.172.2”.

The serves property must be created and assigned a value that specifies bra-
vo/local as its child domain.

Example:

Managing Database
Properties

/
alpha/network

alpha
alpha/local

bravo
bravo/local

Chapter 6: Using NetInfo

67

Directory properties are displayed using the -read option of the niutil tool.

Check the properties of the /machines/alpha directory in the root domain. The
domain name can be used as it has been bound into the hierarchy.

niutil -read / /machines/alpha

name: alpha
ip_address: 192.42.172.1
serves: ./network alpha/local

The “serves” property specifies that self (root domain) is served from a database
called network and it has a child domain, which it calls alpha served from a
database called local. As both these entries are in the /machines/alpha directory,
then the database files must be located on the host alpha.

Check the properties of the /machines/alpha directory:

niutil -read -t alpha/network /machines/alpha
name: alpha
ip_address: 192.42.172.1
serves: ./network

Database properties can be created using the -createprop option of niutil. This op-
tion also adds values to the new property as required.
If the property created using createprop already exists, all existing values are
overwritten. Normally, values are changed using destroyval and addval;
createprop can be used to change all values of a property by overwriting the
existing values.

Add the “ip_address” and “serves” properties to the /machines/bravo directory in
the network database.

niutil -createprop / /machines/bravo ip_address “192.42.192.2”

niutil -createprop / /machines/bravo serves “bravo/local”

Add the “ip_address” and “serves” properties to the /machines/bravo directory in
the network database.

niutil -createprop -t alpha/network /machines/bravo
ip_address “192.42.192.2”

niutil -createprop -t alpha/network /machines/bravo
serves “bravo/local”

Display Database
Properties

Using the
domain name

Using the
database tag

Create Properties
and Values

Using the
domain name

Using the
database tag

Chapter 6: Using NetInfo

68

In the current example, the root domain is served from the network database on
host alpha. This domain has a child, the local database, also on alpha.

The properties of the /machines/alpha directory are:

niutil -read / /machines/alpha

name: alpha
ip_address: 192.42.172.1
serves: ./network

A value must be added to the serves property to specify the child domain.

niutil -mergeprop / /machines/alpha serves “alpha/local”

and the directory values should read:

niutil -read / /machines/alpha

name: alpha
ip_address: 192.42.172.1
serves: ./network alpha/local

The same result could be achieved using the -createprop option only. This
option, however, overwrites any existing values, and so all values need to be
entered:

niutil -createprop / /machines/alpha
serves “./network” “alpha/local”

This option can be run using the domain name, if it exists, otherwise the database
tag should be used.

Add Property
Values

Chapter 6: Using NetInfo

69

A property and all its values can be removed from a directory using the -destroy-
prop option. If a value but not the entire property needs to be removed, use the -
destroyval option instead.

Once again, these options can be used with the domain name, if it exists, or else
the database tag.

Adding and removing property values:

niutil -mergeprop / /machines/alpha serves “delta/local”
niutil -destroyval / /machines/alpha serves “delta/local”

Adding and removing properties:

Create an arbitrary property with no values:
niutil -createprop / /machines/alpha new_prop

Remove the new property:

niutil -destroyprop / /machines/alpha new_prop

If any values existed for this property, they, of course, would be removed.

Remove Values
and Properties

Chapter 6: Using NetInfo

70

Managing Domains

A domain only exists when it is bound into the domain hierarchy. There are two
stages to creating a domain:

• create the database

• bind the domain into the hierarchy.

Database creation is explained above. Binding is achieved by setting the “serves”
properties of the /machines sub-directories in each database to point to the follow-
ing:

• the database that serves the current domain (self),

• the database serving the parent,

• and the database serving any child domains, if they exist.

The leaves of the domain hierarchy are the local domains serving each host, which
are usually the first domains to be created on the machine. Local domains cannot
have child domains below them.

Binding is a two-way process that is achieved by setting the “serves” properties of
each database. The “serves” property must point to up to three places:

• Database serving current domain (self - “.”).

• Database serving parent (“..”). The root domain does not have a parent.

• If a domain has child domains, then the parent must specify the databases
which serve each of its children.

For each of the above, both an uplink and a downlink must be created. An uplink
exists in a child database and points to the database serving its parent domain. The
downlink exists in the parent database, and points to the database serving the child
domain. The downlink also gives the child domain its name.

The name of a domain is specified by the path it is in.

Figure 5.5 - Domain Pathnames

The root domain is called “/”.

The domain served by the local database on alpha is a child of root. Its full domain
name is /alpha.

The domain served by the local database on bravo is a child of root. Its full domain
name is /bravo.

Names and Binding

Example:

Domain Pathnames

/

alpha bravo

Chapter 6: Using NetInfo

71

If another domain is inserted between the local and root domains, say, sysdev,
then the leaf domain on alpha would have the full domain path name: /sysdev/al-
pha.

A domain does not know its own name. It must know which database it is served
by, but the name is generated by the downlink in its parent database.

Suppose a database is created on host alpha using the following command:

nidomain -m sysdev_db

This command creates a database, sysdev_db on host alpha, which therefore has the
database address alpha/sysdev_db. The domain name will exist when it is bound
into the hierarchy, and will be specified by a “serves” property value in its parent
database.

Suppose this database is to serve a domain called sysdev which is the child of the
root domain, also located on alpha.

In the root database, network, the /machines/alpha directory must be updated
with the following value of the serves property:

“sysdev/sysdev_db”

The first part of the above line gives the domain its name, and the second part spec-
ifies the database it is served from. We know it is located on host alpha, as this value
is assigned to the /machines/alpha subdirectory.

Example:

Domain Name

Chapter 6: Using NetInfo

72

Insert a Domain

A domain only exists when it is bound into the domain hierarchy.

The first step is to create the database. Then create the uplink and downlinks by
updating the “serves” properties in the databases serving the self, parent and child
domains.

This example creates a non-local domain called sysdev, which is a child of the root
domain, and the parent of the local alpha domain. This new domain should be
served from the database file, sysdev_db.

The following structures show the initial and the final domain hierarchies:

Figure 5.6 - Inserting Domains into the Hierarchy

This example inserts the domain, sysdev, between the existing structure, which
means that the current binding must be changed.

All domains in the example are served from databases on host alpha. Therefore,
only one /machines subdirectory is required in any of the databases.

Steps

The following actions should be performed in the specified order to create and bind
in the new domain. You must be logged into alpha as the superuser to make these
changes.

1. Create the database, sysdev_db.

2. Remove the existing binding between / and /alpha.

3. Bind the domain to the parent - parent is the root domain (served from the
network database).

4. Bind the domain to its child domain - local domain on alpha which was pre-
viously called /alpha.

Example:

Create sysdev

/

alpha alpha

/

sysdev

Chapter 6: Using NetInfo

73

The name of the database which serves the sysdev domain is called sysdev_db.

Use nidomain to create the database:

nidomain -m sysdev_db

A database with the address, alpha/sysdev_db now exists. The domain itself, to be
known as sysdev, does not yet exist. See the section earlier for more details on
creating a database.

The binding that connects / to /alpha must be removed. This can be done
specifically using the -destroyval option of niutil, and removing the appropriate
values of the serves properties. Another way of removing values is to overwrite
them using the -createprop option.

1. Destroy the uplink (in the local database).

niutil -destroyval -t alpha/local /machines/alpha
serves “../network”

2. Destroy the downlink (in the database serving the root domain).

niutil -destroyval / /machines/alpha
serves “alpha/local”

Two steps are involved in binding a new domain to its parent.
1. Current domain must specify parent (uplink). Update the sysdev_db database

by adding a new value to the serves property which specifies that the parent
domain (“..”) is served from the database network on host alpha. This data-
base can only be updated using the database address, alpha/sysdev_db as the
domain does not yet exist.

niutil -mergeprop -t alpha/sysdev_db /machines/alpha
serves “../network”

Add the uplink: sysdev to root domain

niutil -mergeprop -t alpha/sysdev_db /machines/alpha
serves “../network”

Create a Database

Remove Previous
Binding

Bind to Parent

Chapter 6: Using NetInfo

74

2. The parent domain must specify its new child sysdev. This parent domain
exists and has the name “/”.

Add the downlink: root domain to sysdev

niutil -mergeprop / /machines/alpha serves
“sysdev/sysdev_db”

This specifies that the parent knows its child domain by the name sysdev, and it is
served from database sysdev_db on host alpha. A domain never knows its own
name, only its parent knows it.

The new domain must now be bound to its child domain. Two steps are involved
here.

1. Current domain must specify its child (downlink). Update the sysdev_db da-
tabase by adding a new value to the serves property which specifies that the
child domain, alpha, is served from the database local on host alpha. This da-
tabase can only be updated using the database address, alpha/sysdev_db as
the domain does not yet exist.

Add the downlink: sysdev to alpha

niutil -mergeprop -t alpha/sysdev_db /machines/alpha
serves “alpha/local”

2. Child domain must specify the new domain, sysdev, as its parent. The child
domain has database address, alpha/local.

Add the uplink: alpha to sysdev

niutil -mergeprop -t alpha/local /machines/alpha
serves “../sysdev_db”

Note - Overwriting and Adding Information

The createprop option of niutil creates a property with the specified values. It over-
writes any other values that may already exist.

The addval option adds a property value to an existing property key without over-
writing other values. The property list should be checked before changes are made
to ensure the connections remain correct.

The destroyval option removes a value without destroying the property key, while
the destroyprop option removes the property and hence, all its values.

Bind to Child

Chapter 6: Using NetInfo

75

For example, the serves property values of the parent domain started as:

name: alpha
ip_address: 192.42.172.1
serves: “./network” “alpha/local”

After the above changes are made they should read:

name: alpha
ip_address: 192.42.172.1
serves: “./network” “sysdev/sysdev_db”

Part two of steps 2 (destroyval) and 3 (addval) could have been achieved using cre-
ateprop:

niutil -createprop / /machines/alpha
serves “./network” “sysdev/sysdev_db”

Although the value specifying that its self domain is served from network should
not change in this example, it must be entered if the createprop option is used.

Chapter 6: Using NetInfo

76

Moving Domains

You may want to move a domain to a different position in the hierarchy as the
access needs of a company change. All that is required is to change the binding
properties of the old and new parent, and any child domains that are affected.

Figure 5.7 - Moving Domains

This exercise moves the demos branch from the sysdev domain, to become a child
of the root domain.

Changes

The link between sysdev and demos must be removed.

A new link between demos and the root domain must be created.

None of the child domains of demos (delta) are affected as the whole branch is be-
ing moved.

The next diagram, Figure 5.8, shows the resulting domain structure.

Steps

1. Remove the link to old parent (demos and sysdev).

2. Add link to new parent (demos and root).

Example:

Moving Domains

/

demos

bravo

sysdev

alpha delta

admin

charlie

Chapter 6: Using NetInfo

77

Use niutil to check current “machines” and properties of the parent, sysdev
domain, served from alpha/sysdev_db (must be logged in as superuser on alpha).

niutil -list -t alpha/sysdev_db /machines
1 alpha
5 bravo
8 delta

alpha
niutil -read -t alpha/sysdev_db /machines/alpha

serves: alpha/local, ./sysdev_db, ../network
bravo

niutil -read -t alpha/sysdev_db /machines/bravo
serves: bravo/local

delta
niutil -read -t alpha/sysdev_db /machines/delta

serves: demos/demos_db

Use niutil to check current “machines” and properties of the demos domain,
served from delta/demos_db (must be logged in as superuser on delta).

niutil -list -t delta/demos_db /machines
2 alpha
1 delta

alpha
niutil -read -t delta/demos_db /machines/alpha

serves: ../sysdev_db
delta

niutil -read -t delta/demos_db /machines/delta
serves: ./demos_db, delta/local

Use niutil to check current “machines” and properties for the root domain (served
from alpha/network)

niutil -list -t alpha/network /machines
1 alpha
2 charlie

alpha
niutil -read -t alpha/network /machines/alpha

serves: ./network, sysdev/sysdev_db
charlie

niutil -read -t alpha/network /machines/charlie
serves: admin/admin_db

Check current bindings

Chapter 6: Using NetInfo

78

Remove the old downlink: sysdev to demos

The downlink is specified in the /machines/delta subdirectory. As no other in-
formation exists here, the subdirectory can be removed. If other domains existed
on this host, only the specific property value should be removed.

niutil -destroyval /sysdev /machines/delta
serves “demos/demos_db”

or
niutil -destroy /sysdev /machines/delta

Remove the old uplink: demos to sysdev

The parent is no longer sysdev, so this value should be removed.

niutil -destroyval -t delta/demos_db /machines/alpha
serves “../sysdev_db”

Create the new uplink: demos to root

The new uplink must point to the root domain, located on alpha.

niutil -mergeprop -t delta/demos_db /machines/alpha
serves “../network”

Create the new downlink: root to demos

The downlink from the root domain must be added. The name of the domain is
demos, served from database demos_db on host delta.

The demos domain is served from the demos_db database on host delta. A new
/machines subdirectory must be created, and the “ip_address” and “serves” prop-
erties generated. Login as the superuser on host alpha.

niutil -create / /machines/delta
niutil -createprop / /machines/delta

ip_address “192.42.172.4”

Now create the downlink by setting the “serves” property.
niutil -createprop / /machines/delta

serves “demos/demos_db”

Remove the link to
the old parent

Create the link to
the new parent

Chapter 6: Using NetInfo

79

Deleting Domains

Administrators may wish to delete domains from the system completely. If a host
is no longer available, its local domain should be removed from the hierarchy. The
hierarchy may also be restructured for some reason, resulting in the need to remove
domains.

If a host is removed, all domains served from that host are affected: they have to be
either moved, or deleted. If a host serves only its local domain, then the removal is
simple: only the binding between the local and the parent domains is affected.

If a domain other than a local domain is removed, then bindings to both the parent
and child domains are affected. There are three major steps involved in deleting a
domain from the middle of the hierarchy:

• reset the binding from the parent

• reset the binding from child domains

• remove the database and netinfod process.

This exercise removes the 2nd-level domain, demos. It does not remove the host
delta, from the network, so the local database has to be relinked to the network. In
this example, it is connected to the admin domain.

Figure 5.8 - Deleting Domains

Changes

The link between root and demos must be removed.

A new link between delta and the admin domain must be created.

The database and process serving demos, demos_db, must be removed.

Example:

Deleting a Domain

/

demos

bravo

sysdev

alpha delta

admin

charlie

Chapter 6: Using NetInfo

80

Use niutil to check current “machines” and properties for the root domain (served
from alpha/network)

niutil -list -t alpha/network /machines
1 alpha
2 charlie
9 delta

alpha
niutil -read -t alpha/network /machines/alpha

serves: ./network, sysdev/sysdev_db
charlie

niutil -read -t alpha/network /machines/charlie
serves: admin/admin_db

delta
niutil -read -t alpha/network /machines/delta

serves: demos/demos_db

Use niutil to check current “machines” and properties of the demos domain,
served from delta/demos_db (must be logged in as superuser on delta).

niutil -list -t delta/demos_db /machines
2 alpha
1 delta

alpha
niutil -read -t delta/demos_db /machines/alpha

serves: ../sysdev_db
delta

niutil -read -t delta/demos_db /machines/delta
serves: ./demos_db, delta/local

Use niutil to check current “machines” and properties of the admin domain,
served from charlie/admin_db.

niutil -list -t charlie/admin_db /machines

2 alpha
1 charlie

alpha
niutil -read -t charlie/admin_db /machines/alpha

serves: ../sysdev_db
charlie

niutil -read -t charlie/admin_db /machines/charlie
serves: ./admin_db, charlie/local

Check current
bindings

Chapter 6: Using NetInfo

81

As the domain is being removed, only the downlink from the parent (root) has to
be altered.

Remove the downlink

niutil -destroyval / /machines/delta
serves “demos/demos_db”

The child domain, delta/local must change its old uplink to demos to an uplink to
the admin domain. As the new parent is on a different machine, a new /machines
subdirectory must first be created.

Add the uplink

niutil -create -t delta/local /machines/charlie
niutil -createprop -t delta/local /machines/charlie

ip_address “192.42.172.3”
niutil -createprop -t delta/local /machines/charlie

serves “../admin_db”

The downlink from the admin domain must be added. This domain in on host
charlie. As this parent had no previous knowledge of the host delta, a new
/machines subdirectory must be created.

Add the downlink

niutil -create -t charlie/admin_db /machines/delta
niutil -createprop -t charlie/admin_db /machines/delta

ip_address “192.42.172.4”
niutil -createprop -t charlie/admin_db /machines/delta

serves “delta/local”

Remove link from
old parent

Reset binding for
“local” database

Chapter 6: Using NetInfo

82

Joining Two Networks

The database serving the root domain of a network must be called network.
Although unusual, there may be an occasion where two networks must be joined
together.

Suppose two faculties of a University, Computer Science and Physics, have always
managed separate networks using NetInfo. In order to share information and re-
sources, including a systems administrator, they decide to connect these two to-
gether with a new root domain over the top.

The existing structure is as follows:

Figure 5.9 - Separate Networks

In this situation, there are two database files called “network”, on hosts alpha and
delta. If a new root domain was created on a new host, there could be a third file
called network created, though this would be very confusing.

If, on the other hand, the new root domain was created on one of the existing
hosts, (which is more likely), at least one of the network files will have to change
its name.

It is recommended that only one network database ever exists in a network. There-
fore, in order to connect two networks, some database files have to be renamed, and
hence, some “serves” properties have to be altered.

The new structure, with the root domain on alpha, is as follows:

Figure 5.10 - Joining Existing Networks

Example:

Join Networks

bravo

sysdev

alpha

/
alpha/network

admin

charlie

foxtrot

sysad

delta

/
delta/network

adm

Physics

Computer Science

golf

physic
alpha/physic_db

/
alpha/network

Was the database
alpha/network

Was the database
delta/network

compsci
alpha/compsci_db

Chapter 6: Using NetInfo

83

Changes required for joining two networks

• Rename the old network database files on each host.

• Create a new network database on alpha.

• Update the binding to the CompSci sub-network. All second level domains
(now third level) whose parent was served from the Compsci network will
have to be changed.

• Update the binding to the Physics sub-network. All second level domains
(now third level) whose parent was served from Physics network will have to
be changed.

The existing network files are stored on alpha and delta. These must be renamed.

Once the names are changed, the domain hierarchy is “broken”. Database tags
rather than domain names must be used to make the changes.

On alpha:

mv /etc/netinfo/network.nidb /etc/netinfo/compsci_db.nidb

On delta:

mv /etc/netinfo/network.nidb /etc/netinfo/physic_db.nidb

Login to alpha as the superuser and use nidomain to create a new network data-
base:

nidomain -m network

This new database needs two entries in the /machines subdirectories:
 /machines/alpha for the CompSci network and itself, and
 /machines/delta , for the Physics network.

The /machines/alpha directory should be created automatically, as the new net-
work is created on this host.

Rename old “network”
database files

Create new “network”
database

Chapter 6: Using NetInfo

84

The two downlinks to the old networks must be specified. Use niutil to alter the
“serves” properties. The new network database should contain the following infor-
mation:

/machines/alpha
serves: ./network, compsci/compsci_db

/machines/delta
serves: physic/physic_db

The new databases, renamed from network, did not have parent directories, but it
specified that it served itself from database network. This reference must be
removed.

compsci domain (alpha/compsci_db).

The reference to self served from network (./network) must be changed to the new
database name (./compsci_db).

niutil -destroyval -t alpha/compsci_db /machines/alpha
serves “./network”

niutil -mergeprop -t alpha/compsci_db /machines/alpha
serves “./compsci_db”

physic domain (delta/physic_db).

The reference to self served from network (./network) must be changed to the new
database name (./physic_db).

niutil -destroyval -t delta/physic_db /machines/alpha
serves “./network”

niutil -mergeprop -t delta/physic_db /machines/delta
serves “./physic_db”

Create downlinks from
new “network”

Alter self references

Chapter 6: Using NetInfo

85

The parent of the new domains is the new root domain. This information has to be
added (may have to add the appropriate /machines directories).

Create uplinks: renamed networks to new network

compsci domain (alpha/compsci_db).

niutil -mergeprop -t alpha/compsci_db /machines/alpha
serves “../network”

physic domain (delta/physic_db).

niutil -mergeprop -t delta/physic_db /machines/alpha
serves “../network”

In the CompSci network, two domains, sysdev and admin, specify their parent as
being served from database network on alpha. This in no longer true: the parent is
now served from file compsci_db on alpha.

Similarly for the Physics network, child domains sysad and adm should specify
their parents as physic_db on delta.

Each of these domains already has a parent, which should be destroyed, and the
new value added. Depending on whether there are other values, the -createprop
option may be used instead of -destroyval and -mergeprop:

On alpha (for sysdev domain)

niutil -destroyval -t alpha/sysdev /machines/alpha
serves “../network”

niutil -mergeprop -t alpha/sysdev /machines/alpha
serves “../compsci_db”

On charlie (for admin)

niutil -destroyval -t charlie/admin /machines/alpha
serves “../network”

niutil -mergeprop -t charlie/admin /machines/alpha
serves “../compsci_db”

On delta (for sysad)

niutil -destroyval -t delta/sysad /machines/alpha
serves “../network”

niutil -mergeprop -t delta/sysad /machines/alpha
serves “../physic_db”

On golf (for adm)

niutil -destroyval -t golf/adm /machines/alpha
serves “../network”

niutil -mergeprop -t golf/adm /machines/alpha
serves “../physic_db”

Bind to new parent

Reset binding to child
domains

Chapter 6: Using NetInfo

86

Moving Information between NetInfo and Flat Files

If NetInfo is not running, a UNIX system can operate using the flat configuration
files. Some administrators may wish to keep the flat files up to date in case NetInfo
is not available. Two utilities are available which enable information to be
transferred to and from NetInfo.

niload loads information from a UNIX-format file into the database. It reads from
standard input, interpreting the information according to the specified format. See
the Reference section for a full explanation of this command.
niload updates information if entries exist in both the database and the input file.
If input file entries don’t exist in the database, they will be added. It will not delete
(by default) any entries that do exist in the specified database but do not exist in
the input file.

niload understands the format of the following system files:

aliases bootparams bootptab fstab
group hosts networks passwd
printcap protocols rpc services.

The format of the command is:

niload [options] format domain

Load information from the flat password file into the sysdev domain as follows:

niload passwd /sysdev < /etc/passwd

For each entry in the password file, a subdirectory in /users is created (or
updated), and the properties assigned the values of the password entry.

nidump extracts information from a UNIX-format file into the database. It writes
to standard output, interpreting the information according to the specified format.
See the Reference section for a full explanation of this command.

nidump understands the same file formats as niload. The format of the command
is:

nidump [-t] format domain

Loading
Information

Example:

Loading Information

Dumping
Information

Chapter 6: Using NetInfo

87

Extract the password information from the sysdev domain and store it in a tem-
porary password file as follows:

nidump passwd /sysdev > /tmp/passwd

For each entry in the /users subdirectory, a colon delimited line is written to
standard output.

The load and dump utilities can also be used to copy information from one NetInfo
database to another.

Of course, there should be no need to copy password information from one
database to another. In general, if two domains require similar password
information, then it should be loaded in the parent database.

The dump and load commands can be used to copy information, such as “services”
data, from one local domain to another as follows:

nidump services /alpha | niload services /bravo

Example:

Dumping Information

Copying
Information

Example:

Copying Information

Chapter 6: Using NetInfo

88

Managing Hosts

Hosts are the major resources in the network. Each host must have a local database
before it can be bound into the network hierarchy. The information in the
databases serving the domains on each host determines who has access to the host.

When NetInfo is running, the system first consults the NetInfo databases for con-
figuration information. Before users can access a host, certain information must be
made known.

The following information, if it exists, must be installed into a database before it
can be used in the NetInfo network. The information need not exist in all local da-
tabases; it can be loaded into a mid-level parent database, or even into the root da-
tabase for access by all other domains.

This information can be extracted from the UNIX flat files using niload
(recommended), or entered a line at a time using other NetInfo utilities.

The information can be loaded into the specified internal directories using niload
and the appropriate format.

Administrators should note that the flat file names, the format names, and the
database directory names do not correspond exactly. niload can be used to transfer
information using the specified file format.

File Format Description

aliases Name aliases file recognised by sendmail, for the local host

Information from /etc/aliases is loaded into the /aliases
directory by niload. This directory contains a subdirectory for
each known alias with the following properties and values:

name alias name
members one value for each user who is part of the alias.

bootparams This bootparams entry contains a list of diskless clients and their
specific boot information.

Information from /etc/bootparams is loaded into the / boot-
params directory by niload.

bootptab Information from /etc/bootptab is loaded into the /bootptab
directory by niload.

Host Configuration
Information

Chapter 6: Using NetInfo

89

File Format Description

fstab Contains static information about file systems.

Information from /etc/fstab is loaded into the /mounts di-
rectory by niload. This directory contains a subdirectory for each
known file system with the following properties and values:

name name of the file system
dir pathname of directory on which to mount the file system
type filesystem type
opts mounting options
freq interval (in days) between dumps
passno the fsck(8) pass in which to check the partition

group Contains information about user groups.

Information from /etc/group is loaded into the /groups di-
rectory by niload. This directory contains a subdirectory for each
known group with the following properties and values:

name alias name
passwd group password, can be set to null
gid unique group id
users the user name of each user who is a member of the group

hosts Contains information about known hosts.

Information from /etc/hosts is loaded into the /machines di-
rectory by niload. This directory contains a subdirectory for each
known host, or machine, with the following properties and val-
ues:

name main host name and aliases. Can contain more than one value if
the machine has alias names.

ip_address unique Internet address.

networks Contains the network name database.

Information from /etc/networks is loaded into the /net-
works directory by niload. This directory contains a subdirecto-
ry for each known network with the following properties and
values:

name main network name and any known aliases
address network number

Chapter 6: Using NetInfo

90

File Format Description

passwd Contains information about user accounts.

Information from /etc/passwd is loaded into the /passwd di-
rectory by niload. This directory contains a subdirectory for each
known user with the following properties and values:

name user name
passwd user's password, can be set to null
uid unique user identification number
gid group id of default group
realname text field containing user information, can be null
home pathname of UNIX home directory
shell pathname of UNIX shell program

printcap Contains printer capabilities entries.

Information from /etc/printcap is loaded into the /print-
ers directory by niload. This directory contains a subdirectory
for each known printer with the following properties and values:

name name of printer, and aliases
options there must be a property for each printcap option required

protocols Contains the protocol name database.

Information from /etc/protocols is loaded into the /proto-
cols directory by niload. This directory contains a subdirectory
for each known protocol with the following properties and val-
ues:

name main name as well as any aliases
number protocol number

rpc Contains the readable names that can be used in place of the rpc
program numbers.

Information from /etc/rpc is loaded into the /rpcs directory
by niload. This directory contains a subdirectory for each known
rpc program with the following properties and values:

name name given to program
number program number

services Contains the service name database.

Information from /etc/services is loaded into the /servic-
es directory by niload. This directory contains a subdirectory for
each known service with the following properties and values:

name main service name as well as any aliases
port port number
protocol protocol name

Chapter 6: Using NetInfo

91

Clone Servers

If an organisation requires uninterrupted NetInfo service, a clone should be
established. A clone server is an exact copy of a master servermaster server, that is,
a database serving a particular domain. Clones cannot be created on the same host
as the master database they copy.

It is up to the administrator to decide if there are sufficient resources available to
establish a clone. Resources required include sufficient disk space, swap space, and
memory.

Reliability

If a host is down, or a domain cannot be connected for any reason, the clone
database can be used instead of the inaccessible master database. Clone databases,
however, cannot be modified if the master server is down. This ensures that there
is only one source of domain information.

Load Balancing

Clones can also be used to establish the best load balance of a network. A host will
search for information locally before attempting to search the network. If a clone
is established on a local host, it will obtain information from the clone rather than
the master database elsewhere in the network.

Propagating Information

When the netinfod daemon for each database is started, it first checks to see if the
database is a clone, or if it has any clones. For each master database, if any clones
are found, the daemon sets up tasks to ensure that any changes that are made to
the master are also made to the clone as the changes occur.

“master” property

The root directory of every database has a “master” property. The value of this prop-
erty specifies the database address of the master database. If this property refers to
itself, then the database is a master; if it refers to another database, then it must be
a clone.

For example, check the “master” property of the root domain on alpha:

niutil -read -t alpha/network /

master:alpha/network

Or using the domain name:

niutil -read / /

master:alpha/network

This indicates that the database serving the root domain, alpha/network, is a mas-
ter database.

A clone of this database, with tag network, served from host foxtrot, has the follow-
ing “master” property:

niutil -read -t foxtrot/network /

master:alpha/network

Chapter 6: Using NetInfo

92

Creating a Clone

When a clone is created, the entire master database is copied to the new host. When
a clone is bound into the hierarchy, changes made to the master are automatically
copied to the clone database.

A master database must know what clones exist. This is done using the “serves”
property.

Each database has a self reference in the “serves” property of the /machines direc-
tory which specifies where the self domain is served from.

For example, the network database serving the root domain on alpha has the fol-
lowing value in the “serves” property in /machines/alpha :

ip_address:192.42.172.1
serves: ./network

Clones are also specified using the dot “.” notation. The system determines whether
an entry is to a clone or not by looking at the value of the Internet address.

For example, if a database called network on host foxtrot is set up to clone the net-
work database on host alpha, then network must have the following entries:

In /machines/alpha :

ip_address:192.42.172.1
serves: ./network

In /machines/foxtrot :

ip_address:192.42.172.6
serves: ./network

Both these entries refer to the self domain, “.”, but the second is a clone on another
host.

When a clone is created using the nidomain tool, information from the specified
master database is copied to the new clone database. The master must be updated
with the details of the new clone before the copying is done, to ensure that the clone
is created correctly.

Note that it is possible to create a clone with a tag that is different from the tag of
the master database. However, such clones will not be consulted during lookups as
lookups always use the tag of the database as a key. Such clones therefore do not
offer any advantages for load-balancing and so forth, although they do provide a
form of automated backup for the database that they are cloning.

The following examples all show the creation of clones with the same tag as the
master database, as this is the most common usage of the clone support provided
by NetInfo.

Chapter 6: Using NetInfo

93

This example creates a clone of the network database. The database is stored on
host alpha and the clone is created on host foxtrot.

The host on which the clone is to be created must have been connected to the net-
work before the clone can be created. Hosts that serve clones must still have a local
database, and be bound into the hierarchy. In this example, the local database on
foxtrot is a child of the root domain. The structure is as follows:

/
(alpha/network)

alpha foxtrot
(alpha/local) (foxtrot/local)

On alpha, the following “serves” properties exist for network database:

network

/machines/alpha:

name alpha
ip_address1 92.42.172.1
serves ./network, alpha/local

/machines/foxtrot:

name foxtrot
ip_address1 92.42.172.6
serves foxtrot/local

Steps

1. Select the host on which the clone is to be created and choose a tag.

2. Update the master database specifying a “serves” property for the clone.

3. Create the clone database.

4. Reboot the system to start-up the clone.

Before a clone is created, you must update the master with information about the
clone. This includes the “serves” property that determines the clone server, which
is copied when the clone is created.

For this example, the clone will be located on host foxtrot and the database will
have the tag network. Therefore the database address of the clone database is fox-
trot/network.

Example:

Setting up a Clone

Select the
clone details

Chapter 6: Using NetInfo

94

Clones are bound into the hierarchy by setting a “serves” property in the master
database. The value of the serves property must read “./clone_database_tag” (i.e., self
served from clone_database).

The database address of the clone is foxtrot/network. Therefore, the /machines/-
foxtrot directory must be updated to include the serves property “./network”.

Update the network database with the following information:

niutil -mergeprop / /machines/foxtrot
serves “./network”

/machines/foxtrot:

name foxtrot
ip_address192.42.172.6
serves foxtrot/local, ./network

Login to foxtrot as root and create the clone database:

nidomain -c network alpha/network

This creates a database called network which is a copy of alpha/network.

Check the following details:

• Check that the “network.nidb” database was created in
 /etc/netinfo .

• Check that the netinfod process to serve network was started.

A new clone is not available to the network until the system has been rebooted.

When NetInfo is first started, the netinfod daemon for each master database
checks for the existence of clones. If any are found, it sets up tasks to propagate any
changes made to the master to update the clone. These tasks are only set-up when
the daemon is first fired up, and so NetInfo must be restarted in order to use a new
clone.

You can also kill and restart the nibindd processes on both machines to achieve the
same result.

Update the master
database

Create the clone

Reboot the system

Chapter 6: Using NetInfo

95

Add a New Host to the Network

Each host that uses NetInfo must have a local domain. This domain is usually
named after the machine, and is served from a database which must be called local.

A host does not have to be bound into the network in order to run NetInfo: it can
be used isolated from the network as long as it has a local database. If this database
did not exist, NetInfo cannot run, and another system, such as NIS or the flat con-
figuration files would have to be used to configure the machine.

This section explains the steps involved in setting up the local database on a new
host. If you have read directly from the Getting Started chapter, you will notice that
the same information is covered.

This example adds a new host to the network and binds it into the hierarchy as a
child of the root domain.

The following diagram shows where the connection is made. This example assumes
that the root domain is served from the machine alpha, and that this machine has
been bound into the hierarchy. The local domain for delta is served from a database
called local on delta.

Figure 5.11 - Adding a Host

Steps

The following actions must be performed in the specified order to create and bind
in the local domain for the new host.

1. Login to delta as the superuser, and check system.

2. Create the local database.

3. Create the “root” user for the database.

4. Load the configuration information.

5. Bind into the domain hierarchy.

6. Test the binding.

Example:

Add a New Host

delta

/

alpha

Chapter 6: Using NetInfo

96

Before adding a host to the hierarchy, the NetInfo programs must be loaded and
running. See the Getting Started section for an explanation of initial requirements.

Check that the following exist:

Processes: nibinddl ookupd

Directories: /etc/netinfo

The local database; must exist on each host, and its name is fixed as local.

Login to delta and use the nidomain tool to create the database:

nidomain -m local

• Check that the /etc/netinfo/local.nidb directory is created; the net-
infod process started and the default information loaded into the database.

Create a root user in the local database on delta. This user is the only one able to
make changes to the database and must exist.

niutil -create -t delta/local /users
niutil -create -t delta/local /users/root

niutil -createprop -t delta/local /users/root uid 0
niutil -createprop -t delta/local /users/root gid 1
niutil -createprop -t delta/local /users/root passwd ““

Configuration information can be loaded from the flat files, or extracted from NIS
maps if the host is running NIS. See the earlier section, Managing Hosts, to see what
information has to be loaded.

Binding is achieved by adding serves properties.

• The local domain must specify its parent.

• The parent domain must specify the new domain as its child.

The parent of local, is served by the network database on host alpha. Add a value
to the serves property of the /machines/alpha directory of the database alpha/-
local specifying the parent “..” is served from database network.

niutil -mergeprop -t alpha/local /machines/alpha
serves “../network”

Check new system

Create the local database

Create the
“root” user

Load configuration
information

Bind local domain to its
parent

Specify parent
of local

Chapter 6: Using NetInfo

97

The child of root (alpha/network) is served by the local database on host alpha.
Add a value to the serves property of the /machines/alpha directory of the data-
base alpha/network specifying the child is served from database local.

niutil -mergeprop -t alpha/network /machines/alpha
serves “alpha/local”

Since a domain does not exist until it is bound into the hierarchy, it cannot be re-
ferred to by its domain name, only its database tag. The previous interrogations of
the database properties all made requests using the database tag (-t option of niu-
til). The domain hierarchy can be tested by interrogating the database using the do-
main name rather than the tag.

The local database serves a domain on host alpha. The full name of this domain is
/alpha. The network database serves the root domain, called /.

List the properties which describe the machines in each of these databases:

niutil -read /alpha /machines/alpha
niutil -read / /machines/alpha

If the binding has not worked, an error message is displayed, saying that the
database served by the specified cannot be opened.

Specify child
of root

Test the Network

Chapter 6: Using NetInfo

98

Move a Host to a Different Domain

This section explains how to move a host from one domain to another.

The local database for the host already exists, so all that is required is to change the
bindings to the parent domain. A host must be a leaf node of the hierarchical tree,
therefore there are no child domains to rebind.

This example moves the host bravo from the sysdev domain to the admin domain.

Figure 5.12 - Moving a Host

After the host bravo is moved from the sysdev domain to the admin domain, the
structure is as follows:

Figure 5.13 - Moving a Host

Only two steps are required:

1: Break the old link binding bravo to sysdev.
2: Create a new link binding bravo to admin.

This example involves three hosts alpha, for domain sysdev, charlie, for domain
admin, and the host being moved, bravo.

Example:

Move host

/

admin

charliebravo

sysdev

alpha

/
alpha/network

sysdev
alpha/sysdev_db

alpha
alpha/local

bravo
bravo/local

charlie
charlie/local

admin
charlie/admin_db

Chapter 6: Using NetInfo

99

This is a two way process - break the uplink in the local database, and then break
the downlink from sysdev.

On bravo, remove the parent reference in the local database:

niutil -destroyval -t bravo/local /machines/alpha
serves “../sysdev_db”

On alpha, remove the child reference in the sysdev domain:

niutil -destroyval -t alpha/sysdev_db /machines/bravo
serves “bravo/local”

Because the host is being moved to a domain in a different branch of the
hierarchical tree, there is unlikely to be an entry in the /machines subdirectories.

Create the uplink (local to admin)
niutil -create -t bravo/local /machines/charlie
niutil -createprop -t bravo/local /machines/charlie

ip_address “192.42.172.3”
niutil -createprop -t bravo/local /machines/charlie

serves “../admin_db”

Create the downlink (admin to local)
niutil -create -t charlie/admin_db /machines/bravo
niutil -createprop -t charlie/admin_db /machines/bravo

ip_address “192.42.172.2”
niutil -createprop -t charlie/admin_db /machines/bravo

serves “bravo/local”

Remove old binding

Bind to new parent

Chapter 6: Using NetInfo

100

Delete a Host

This section explains how to delete a host from the system.

If a host is removed from the system, all domains whose databases are served from
that host are affected.

In the simplest case, a host only serves a local domain. Therefore, only two steps
are required: remove the downlink from the parent domain, then remove the data-
base.

It is possible, though, that a host serves several domains. In this case, each database
that is located on the host, must be removed and all binding links have to be
changed. This can be a very complex process, and so all care should be taken before
removing a host from the system. If none of the domains served from the host are
required, then they can all be deleted, but all downlinks from parent domains must
be reset.

This example deletes the host charlie from the following network.

Figure 5.14 - Deleting a Host

As can be seen, two domains, admin and the local domain, are served from charlie.
The other child domain, bravo, is also affected, as is the parent, the root domain.
The binding links between these two will have to be changed.

In this example, we want to retain the admin and bravo domains. The host is being
removed as it no longer functions satisfactorily. In reality, a new host may replace
the old one, but in this example, the host bravo will take over as the server of the
admin domain. This means that the existing admin_db database has to be copied
to the new host, and all binding has to be changed.

Example:

Delete a host

/
alpha/network

sysdev
alpha/sysdev_db

alpha
alpha/local

bravo
bravo/local

charlie
charlie/local

admin
charlie/admin_db

Chapter 6: Using NetInfo

101

The new structure is as follows:

Figure 5.15 - Deleting a Host

Steps

1: Copy the admin_db database from charlie to bravo

2: Change the binding from root to the admin domain on bravo

3: Change the binding from admin to the local domain.

4: Remove the domains on charlie and disconnect it from the network.

This example involves three hosts alpha, charlie and bravo.

The database on charlie, stored in the subdirectory
/etc/netinfo/admin_db.nidb , must be copied across to the host bravo,
retaining the same name. Make sure that the files in this directory are copied as
well. Use any available remote copy utility to do this.

The root domain (network database) must be altered to reflect the change in hosts.
As admin was served from charlie, the network database would have had a
/machines/charlie entry. This is no longer required. Its child, admin, is now
served from host bravo, so a new machines entry has to be created.

Create the downlink (root to admin)

niutil -destroy / /machines/charlie
niutil -create / /machines/bravo
niutil -createprop / /machines/bravo

ip_address “192.42.172.3”
niutil -createprop / /machines/bravo

serves “admin/admin_db”

/
alpha/network

sysdev
alpha/sysdev_db

alpha
alpha/local

admin
bravo/admin_db

bravo
bravo/local

Copy existing database

Bind to parent

Chapter 6: Using NetInfo

102

Create the uplink (admin to root)

As the binding has changed, you will have to use the tag instead of the domain
name. The /machines/alpha subdirectory will have to be created.

niutil -destroy -t bravo/admin_db /machines/charlie
niutil -create -t bravo/admin_db /machines/alpha
niutil -createprop -t bravo/admin_db /machines/alpha

ip_address “192.42.172.1”
niutil -mergeprop -t bravo/admin_db /machines/alpha

serves “../network”

The admin domain had a child domain on bravo. This connection should still be
correct. Check the serves property entries in the admin database.

niutil -list -t bravo/admin_db /machines
niutil -read -t bravo/admin_db /machines/alpha
niutil -read -t bravo/admin_db /machines/bravo
alpha

name: alpha
ip_address: 192.42.172.1
serves: ../network

bravo
name: bravo
ip_address: 192.42.172.2
serves: bravo/local

The child domain, local on bravo, previously pointed to host charlie as its parent.
This must be changed to bravo.

Change the local bravo domain.

niutil -destroy -t bravo/local /machines/charlie
niutil -mergeprop -t bravo/local /machines/bravo

serves “../admin_db”

Check the serves properties of this database:

niutil -list -t bravo/local /machines
niutil -read -t bravo/admin_db /machines/bravo
bravo

name: bravo
ip_address: 192.42.172.2
serves: ./local ../admin_db

Login as the superuser on host charlie to remove the old databases.

nidomain -d admin_db

nidomain -d local

These commands should remove the database files and stop the netinfod process-
es. The system can now be disconnected from the network.

Bind to child

Remove databases
from old host

Chapter 6: Using NetInfo

103

Managing Users and Groups

User and group accounts are created, and the users given access to domains by
entering information into the database.

User account information must be entered in subdirectory called /users . For each
user who has access to the resources of the domain, a subdirectory must exist with
the same name as the user's login name.

The subdirectory can have the following properties:

name The compulsory directory name must correspond to the
users login name.

passwd The value of the password can be left null.

uid Each user must have a unique user identification number.

gid Each user must belong to a group. The group identification
number must exist in the /group subdirectory.

real_name The user's real name can be entered.

home The value of this property is a UNIX file system directory
specifying the user's home directory.

shell The value of this property should be the full pathname of
the user's login shell program.

The /users subdirectory can be automatically loaded with information from the
flat file /etc/passed using the niload utility.

Domain Access

If a user has an entry in a domain, then that user can access all its child domains.

Users

Chapter 6: Using NetInfo

104

Two users, ”chris” and ”jo”, must be able to login to the system development ma-
chines, alpha and bravo. These two machines are both members of the sysdev do-
main, therefore, the users should be registered as valid users in this domain.

Login to the host which serves the sysdev domain (alpha). First create the /users
directory if it doesn't already exist. Use niutil -list to check this.

niutil -create -t sysdev/sysdev_db /users

Create the subdirectory for a user.

niutil -create -t sysdev/sysdev_db /users/chris

Create the properties and values for this user (the name property is created when
the subdirectory is created).

niutil -createprop -t sysdev/sysdev_db /users/chris passwd ““
niutil -createprop -t sysdev/sysdev_db /users/chris uid 100
niutil -createprop -t sysdev/sysdev_db /users/chris gid 50

Repeat the process for each user:

niutil -create -t sysdev/sysdev_db /users/jo

niutil -createprop -t sysdev/sysdev_db /users/jo passwd ““
niutil -createprop -t sysdev/sysdev_db /users/jo uid 101
niutil -createprop -t sysdev/sysdev_db /users/jo gid 50

These two users should now be able to login to all hosts connected to the sysdev
domain.

Another user, the general manager, whose login name is “genman”, must have ac-
cess to all machines. Therefore, genman should be a registered user of the root do-
main.

Login to the host which serves the root domain (alpha). First create the /users di-
rectory if it doesn't already exist. Use niutil -list to check this.

niutil -create / /users

Create the subdirectory for the user “genman”.

niutil -create / /users/genman

niutil -createprop / /users/genman passwd ““
niutil -createprop / /users/genman uid 110
niutil -createprop / /users/genman gid 30

Example:

Creating
user accounts

Example:

Creating accounts
in the root domain

Chapter 6: Using NetInfo

105

Information about user groups must be entered in subdirectory called /group . For
each group in the system, a subdirectory must exist with the same name as the
group name.

The subdirectory can have the following properties:

name The compulsory directory name must correspond to the
group name.

passwd The value of the password is usually left as null for group
access.

gid Each group must have a unique group identification
number.

users This property contains a list of all users who are members
of this group.

Groups

Chapter 6: Using NetInfo

106

107

Chapter 7

Maintenance
Network Administration

All binding of domains into the hierarchy occurs when the nibindd daemon is
started. This daemon must be running on each host in the network that wishes to
use NetInfo. When nibindd starts, it searches the /etc/netinfo directory for da-
tabases. For each one found, it binds it into the hierarchy and launches a netinfod
daemon to access the database.

Each domain knows who its parent is, but not its own name. If its parent exists on
another host, then that host must be alive for the new host and domains to be
bound correctly. In a nutshell, all ancestors of a new domain must be alive before
the new domain can be bound into the hierarchy.

Usually, the nibindd daemon is started at boot time.

Two processes must be running to operate NetInfo: nibindd and niypd. These
processes are normally started at boot time: see the Software Installation chapter of
the Installation Guide for your particular server platform for an example rc.local
script.

These two processes must be started on each host in the network. Use the nips util-
ity, if it has been loaded, or any available ps program, to check what processes are
running.

One function of the nibindd daemon is to read the database directory and bind all
domains into the hierarchy. A child domain does not know its own name, only its
parent does, therefore the parent must be alive before the child domain is bound.

If all domains are stored on the one machine, this will happen automatically. How-
ever, in a network of machines, the order of start-up is crucial.

The administrator should ensure that the root domain is located on a highly avail-
able machine. If network operation is crucial to the organisation, then a clone do-
main should also exist.

NetInfo Start-up

Chapter 7: Maintenance

108

Suppose the following domain structure exists:

Figure 6.1 - Start-up Order

In this example, there are two machines, alpha and bravo: the root domain, “/”, and
the domain sysdev are both located on host alpha. alpha and bravo both have local
domains.

NetInfo on alpha must be started before NetInfo on bravo. On alpha, three domains
will be bound into the hierarchy. When bravo is then started, the local database will
find its parent, /sysdev, on alpha.

NetInfo can be shutdown gracefully using nistop. This is a supplied script that ad-
ministrators may use or adjust to suit their environment. It shuts down each net-
infod daemon, serving a database on the host, as well as the nibindd and niypd
daemons.

Example:

Start-up Order

/

sysdev

bravoalpha

NetInfo Shut-down

Chapter 7: Maintenance

109

User Maintenance

Users must be able to change their own password without requiring super-user
access. A supplied program, called nipasswd, that allows users to do this.

The password value is encrypted on the screen when displayed or written using the
niutil program. It is possible to change the value of this property using niutil, but
the command line tools echo the value as they are typed in, and it will not be en-
crypted.

nipasswd allows users to change their own password. It works like the UNIX
passwd tool: it prompts for the old and new passwords, without echoing them on
the screen, encrypts and validates them, and updates the password information
only if the responses are valid. Users must have “_writers” access to their own
password property in order to change their password.

“_writers” Property

Normally, only root has write access to information in the NetInfo databases. Users
can be granted permission to change the values of specific properties or variables
by applying the “_writers” property. In order to change their own password, users
must have “_writers” access to their password property.

The “_writers” property has one or more values: The values are login names of those
users who are able to write to the property or directory. There are two forms:

“_writers” This form allows users named in the list of values to write
to all properties in the directory.

“_writers_propkey” This form allows users named in the list of values to write
to the specified property only.

The value of the “_writers” property (list of usernames) can take the value “*”. This
is a wildcard meaning all users of the domain. The wildcard specification is
generally used when defining access to printers in a domain.

The properties of a /users subdirectory correspond to the fields in the /etc/-
passwd file.

Directory: /users/chris

Property Value

name chris
passwd AX#1@2Tf
uid 101
gid 10
real name Chris Smith
home directory /usr/staff/chris
shell /bin/csh
_writers_passwd chris

The “_writers_passwd” entry allows the user specified, chris, to write, and there-
fore, change, the password property, passwd, in the directory, /users/chris.

Using nipasswd

Example:

Changing a Password

Chapter 7: Maintenance

110

Backup

The system administrator should ensure that a backup of the programs is kept, and
the NetInfo databases are backed up on a regular basis. It is up to the administrator
to choose their favourite backup strategy and medium. The following files comprise
the NetInfo system:

Some NetInfo programs must be located in /usr/etc . Other utility programs are
stored in locations at the discretion of the administrator, though usually in
/usr/bin . A backup of all these programs should be made initially.

Program Directory Notes

nibindd /usr/etc NetInfo daemon - must be running on all hosts.

niypd /usr/etc NIS Emulation lookup daemon - must run in conjunc-
tion with netinfod.

netinfod /usr/etc For each database in the /etc/netinfo directory, an
instance of the netinfod daemon is started. This dae-
mon is used to access the specified database.

nidomain /usr/etc nidomain is used to create and destroy databases.
When creating a database, it also starts a netinfod proc-
ess to access the database.

niutil /usr/bin niutil lists and maintains the contents of a database.

niload /usr/bin niload adds data to the database from standard input.

nidump /usr/bin nidump dumps data from the database to standard
output.

nipasswd /usr/bin nipasswd allows users to change their own password.

niwhich /usr/bin niwhich shows which NetInfo hosts are served from
which databases. This utility also shows the Internet
address of the specified host.

All NetInfo administrative information is stored in directories within
/etc/netinfo; on each host in the network. Each subdirectory here must be
backed up on a regular basis. It is up to the administrator to decide on the backup
strategy. Generally, these files need only be backed up as often as the NIS maps and
the flat files are.

Standard configuration information can always be dumped from NetInfo into the
flat files using the nidump utility. It is recommended that this be done for
consistency, as these files are consulted during boot time.

Security

Changes to the database can only be made by a user with root privileges (uid = 0).
Therefore, all programs and the NetInfo database files must be owned by root.

It is recommended that the root user have read, write and execute privileges to the
programs and database files, and that all other users have read and execute privilege
only.

Programs

Compulsory Locations

Utilities - Can be stored
anywhere

Database Files

111

Chapter 8

Enterprise Edition
Features
This chapter documents the additional features provided in the Enterprise Edition
of NetInfo. Some of these features, such as hostname acquisition and automatic
host addition, are also available in the Workgroup Edition.

In order to better support large networks of NEXTSTEP workstations, the NetInfo
Enterprise Edition includes additional tools and has been modified to improve
server performance.

The additional features provided are:

• Readall proxies

• RFC 1048 support

• NetInfo domain aliasing

• Host name acquisition

• Automatic host addition

• Support for diskless NEXTSTEP workstations

• Support for Multi-homed servers

• Performance enhancements

Chapter 8: Enterprise Edition Features

112

Readall Proxies

The master can fork a child process to respond to a clone's readall request. This
feature is only included in the Enterprise edition of NetInfo.

These children are called “readall proxies.” This is configured by setting the
readall_proxies property in the domain's root directory. The property has up to two
values: first, the maximum number of readall proxies; second, whether only a
readall proxy may respond to a readall request (if the maxmium number of proxies
are running), which is called “strict” proxies. If the number of proxies allowed is -
1, an unlimited number of proxies will be used, up to the system's resource
limitations. By default, no proxies are used; by default, if proxies are used, strict
proxies will be used.

Clone now logs when a readall results in no database being sent (due to the clone
being current), and when it results in the database being sent.

One important side-effect of using readall proxies is a change in the way
modifications are handled when a master is replying to a readall request. Without
proxies, the master won't handle the request, and won't reply to the request, until
it's done replying to the readall. This would lead to read requests timing out; in
conjunction with preferential binding and the way the client library handles
reconnecting, a master's machine could appear catatonic until the readall
completed because the lookupd or niypd on that machine is trying, continually,
to contact the master. In the case of write requests, the client would, likely, time
out waiting for the master to respond; the change was made, though, because it's
in the master's request queue.

Rather than just hanging on the request, when readall proxies are used the master
will be able to handle the request. If the request is a write of some sort, the master
will reply with NI_MASTERBUSY.

RFC1048 Support
nibootpd is now RFC1048-compliant: it can return netmask, router, log host (if the
machine `loghost' exists) and DNS configuration information to clients that
support the RFC1048 extensions (such as Windows NT).

To enable this, configure the NetInfo directories /locations/resolver,
/locations/router, /locations/ntp, and /machines, as per the following example:

First do the resolver entries - this format is the same as
required for DNS in NS3.3 (replaces the /etc/resolv.conf file)
#
niutil -create / /locations/resolver
niutil -createprop / /locations/resolver domain pcp.ca
niutil -createprop / /locations/resolver nameserver
xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx
#
Now for the router entry. This is specific to the RFC1048 bootpd
#
niutil -create / /locations/router
niutil -createprop / /locations/router address xxx.xxx.xxx.xxx
xxx.xxx.xxx.xxx
#
Put the netmask info in the /machines entry (also RFC1048 bootpd
specific)
#
niutil -createprop / /machines netmask 255.255.255.0
#
Create the entry for the time server

Chapter 8: Server Edition Features

113

#
niutil -create / /locations/ntp
niutil -createprop / /locations/ntp host ntpserver

Note how the domainname is appended to the hostname (foobar) in the HN field.

You can pass vendor-specific information using the /locations/bootpd directory.
Create a property of the format Txxx where xxx is the vendor tag number. For
example, to pass the string `hpnp/laser.cfg' for vendor tag 144, you would create
the following properties. (Note that the double quotes must be embedded in the
property value; otherwise, the value will be interpreted as a hexadecimal value.)

niutil -create / /locations/bootpd
niutil -createprop / /locations/bootpd T144 '"hpnp/laser.cfg"'

NetInfo Domain Aliasing

nibindd now supports netinfod aliasing, allowing multiple servers on the same
machine potentially to respond to parent requests for the same tag. This is
particularly useful for multi-homed machines (which NEXTSTEP does not currently
support). The modification allows the binder daemon to substitute some other
NetInfo server (an “aliased” server) for the server that was requested by a client .
For instance, if a client (NetInfo server for tag local) requests a given tag (network),
then the binder daemon passes the request off to some other server (netinfod
network-33 perhaps). The criteria for deciding which requests (they're all for
network) get passed to which server is based on some additional NetInfo properties.

The extra information resides as properties in the domain's root directory, using the
alias_name and alias_addrs properties. The former specifies the alias to which this
domain will respond; the latter is a series of values containing the address and
netmask of clients which should be referred to this domain when the alias name is
requested. The address and netmask are one value, separated by an ampersand (&).
For example:

% niutil -read -t mustang/network-41 /
master: mustang/network-test
alias_name: network
alias_addrs: 192.42.172.0&255.255.255.0
192.42.173.0&255.255.255.192

This says that any requests for tag network from machines with IP addresses that
match either 192.42.172 in the high-order 24 bits or that match 192.42.173.0 in
the high-order 26 bits should get handled as if they were asking for tag network-
test.

You may want to set the restrict_multi_homed property in the root directory such
that broadcasting on multihomed servers will be done properly; see the multi-
homing section of this manual for more information on this property.

Chapter 8: Enterprise Edition Features

114

Hostname Acquisition

The Enterprise Edition of NetInfo provides support for NEXTSTEP workstations
that need to acquire their hostnames and IP address information at boot time.

This is a standard feature of the NEXTSTEP workstation that allows for greater
flexibility in moving equipment from place to place and changing network
addresses and hostnames. It allows a system administrator to change the hostname
and IP address of any NEXTSTEP workstation centrally, using NetInfo, rather than
by editing configuration files stored on each and every workstation in the network.

This facility is implemented through the BOOTP protocol and the associated server
processes nibootpd(8) and nibootparamd(8).

By following the installation procedures documented in this Guide, the necessary
software will have been installed for your server to provide this service to
NEXTSTEP workstations.

When a NEXTSTEP workstation boots, it checks the file /etc/hostconfig , to see
whether it has a fixed hostname and IP address specified.

If the /etc/hostconfig file specifies that the hostname and IP address of the
workstation are automatic, then the NEXTSTEP system will begin looking for a
BOOTP server on the network, providing its hardware Ethernet address as a lookup
key. Hardware Ethernet addresses are, by definition, unique.

The supplied nibootpd program running on a server will receive the lookup request
and consult NetInfo to determine the hostname and IP address of the workstation
in question. This information is then returned to the NEXTSTEP workstation,
which configures itself appropriately.

If the information cannot be found in NetInfo by nibootpd, then the NEXTSTEP
workstation will initiate Automatic Host Addition. The following section describes
this feature in detail.

nibootpd obtains the hostname and IP address for the NEXTSTEP workstation
from the /machines directories in the NetInfo database.

For hosts which are configured in this fashion, an extra property must exist: the
value of which is the hardware Ethernet address of the machine.

For example, the host bravo has a hardware address of 00:00:0f:01:0d:dc

This value is stored in the /machines/bravo directory as the property
en_address :

/machines/bravo
name bravo
ip_address 192.42.172.2
en_address 00:00:0f:01:0d:dc
serves ./local
bootfile mach

How Hostname
Acquisition Works

Information stored in
NetInfo

Example

Chapter 8: Server Edition Features

115

When a NEXTSTEP workstation starts up, nibootpd searches all the /machines
subdirectories in the NetInfo system for a /machines/host/en_address
property value that matches the workstation Ethernet address.

When it finds the matching directory, it responds with the name and the
ip_address properties of the directory as the host name and IP address for the
NEXTSTEP workstation to use.

You can create the en_address properties by hand using niutil. However, there
are two other, easier alternatives.

• Create a bootptab format file and use niload to read its contents into Net-
Info.

or

• Use the Automatic Host Addition features described in the next section, and
have each NEXTSTEP workstation configure itself the first time it boots.

The niload command is capable of reading a bootptab format file.

bootptab is the traditional UNIX file used for managing BOOTP information and
contains lines of the following format:

hosthtype haddr iaddr boot file

bravo1 00:00:0f:01:0d:dc 192.42.172.2 mach

An example bootptab file was installed in your /etc directory by the
install_netinfo script.

niload can be used to read a bootptab file as follows:

niload bootptab / < /etc/bootptab

This command will cause niload to read all the entries in the file /etc/bootptab
and create en_address and bootfile properties for each and every hostname
encountered. The entries will be made in the root domain, “/”.

You can also add these properties using niutil:

niutil -createprop / /machines/bravo en_address 0:0:f:1:d:dc

where the entry is also to be made in the root domain, “/”.

The bootfile property is used during diskless booting to identify the file which
contains the image of the NeXT kernel, mach. See the section on support for
diskless workstations for more information.

nibootpd
search strategy

Loading bootp
information into
NetInfo

Using niload

Chapter 8: Enterprise Edition Features

116

Automatic Host Addition

Another feature provided by the Enterprise Edition of NetInfo is support for NeXT's
technique for adding new NEXTSTEP workstations to a network.

As described above under Host Name Acquisition, a NEXTSTEP workstation can be
configured to acquire its host name and IP address from a NetInfo based server on
the network.

In the case where the NEXTSTEP workstation is already known and has information
stored in NetInfo, this results in the workstation using the NetInfo supplied data.

However, if the hardware address of the NEXTSTEP workstation is unknown to
NetInfo, the Automatic Host Addition feature comes into play.

When a NEXTSTEP workstation boots, it checks the file /etc/hostconfig , to see
whether it has a fixed hostname and IP address specified.

If the /etc/hostconfig file specifies that the hostname and IP address of the
workstation are automatic, then the NEXTSTEP system will begin looking for a
BOOTP server on the network, providing its hardware Ethernet address as a lookup
key.

The nibootpd program running on a server will receive the lookup request and will
consult NetInfo to determine the hostname and IP address of the workstation in
question.

If this workstation is unknown to NetInfo, the user of the NEXTSTEP workstation
will be told that the “Network does not recognise this computer” and will be asked
to enter a hostname for the new system.

This hostname will then be relayed to the nibootpd server which will allocate an
unused IP address and assign it to the NEXTSTEP workstation in question. This
information will then be updated in NetInfo automatically, without requiring an
administrator to maintain any configuration files.

nibootpd makes an entry in NetInfo for the new host. This new entry will include
the Ethernet hardware address of the new workstation as well as the hostname and
the allocated IP address, removing the need to update it by hand later on.

nibootpd allocates the new workstation an IP address. It determines which IP
address to use based on two new properties of the /machines directory in the
server's local domain.

/machines
name machines
assignable_ipaddr192.42.172.10

192.42.172.250
configuration_ipaddr192.42.172.253

These properties are properties of the /machines directory itself, not of a
subdirectory of the /machines directory. You can read them by using niutil as
follows:

niutil -read . /machines

How Automatic Host
Addition works

Information stored in
NetInfo

Chapter 8: Server Edition Features

117

The first property, assignable_ipaddr , has two values and describes a range of
IP addresses available for allocation by nibootpd. In our example, the nibootpd
server could allocate addresses from 192.42.172.10 through 192.42.172.250
inclusive.

The second property, configuration_ipaddr , is required and specifies the
address that must not be allocated by nibootpd. This address is in fact the address
that NeXT uses to identify a new workstation temporarily during the boot process.
It should always be set to 192.42.172.253 explicitly.

Note that nibootpd will search the range of IP addresses specified when allocating
a new address to ensure that the address chosen is not already in use.

These values can be set with command lines as follows:

niutil -createprop . /machines assignable_ipaddr 192.42.172.10 192.42.172.250

niutil -createprop . /machines configuration_ipaddr 192.42.172.253

where the entry is made in the server's local domain, "."

Chapter 8: Enterprise Edition Features

118

Support for Diskless Workstations

In addition to the hostname and autoconfiguration features, support is provided
for diskless NEXTSTEP workstations, and for workstations that may have a local
disk, but use it only for swap storage purposes.

To boot a NEXTSTEP workstation diskless using a NetInfo server as the disk server,
you must ensure that the usual procedures to allow a workstation to boot diskless
from the server have been observed. This includes setting up the necessary tftp(1C)
directories on the server, stocking them with the appropriate kernel images (mach
for NEXTSTEP) and ensuring that the required NFS mount facilities have been put
in place.

Please see your server documentation, supplied by your server vendor, for details of
the required configuration.

Diskless booting support is provided through the server processes, bootparamd
and bootpd. bootparamd is a standard tool supplied with most UNIX systems,
however, the standard bootparamd does not use NetInfo based information.

Provided with this Enterprise Edition of NetInfo are new versions of bootpd and
bootparamd, called nibootpd and nibootparamd respectively. These are
enhanced to read information from NetInfo. If you followed the install procedures
documented in the Installation chapter of this Guide, these programs have been
installed in your /usr/etc directory.

When a NEXTSTEP workstation tries to boot as a diskless workstation, it first
downloads an image of the Mach kernel via the trivial file transfer protocol,
tftp(1C).

In order to determine the host to load this kernel from and the file that contains
the kernel, it makes a broadcast request looking for a BOOTP server.

nibootpd responds by looking up the Ethernet hardware address of the requesting
workstation and returning the IP address, hotsname and kernel file name found in
NetInfo.

Hence, you must ensure that you have updated the bootptab information in
NetInfo as well as following the instructions herein. See the earlier section on
Hostname acquisition for a description of the bootptab file and NetInfo support.

After determining its hostname and IP address, the workstation then uses the
bootparams protocol to determine the NFS server it should mount its root and
private filesystems from.

This information is provided by the nibootparamd server and is also stored in
NetInfo for ease of administration.

nibootpd and nibootparamd obtains this information from the /machines
directories in the NetInfo database by looking up the directory with the same name
as the NEXTSTEP workstation that wishes to boot diskless.

nibootpd reads the en_address and bootfile properties, as discussed earlier in
the section on Hostname Acquisition.

How Diskless
Workstations
work

Information stored in
NetInfo

Chapter 8: Server Edition Features

119

nibootparamd reads the bootparams property, another new property for the
Enterprise Edition.

This property is stored in the /machines/bravo directory as the multi-valued
property bootparams .

For example, to allow the machine bravo to boot diskless from the server alpha:

/machines/bravo
name bravo
ip_address 192.42.172.2
en_address 00:00:0f:01:0d:dc
serves ./local
bootfile mach
bootparams root=alpha:/

private=alpha:/next_area/private

This entry tells nibootpd that the machine with Ethernet address 00:00:0f:01:0d:dc
is named bravo, has IP address 192.42.172.2 and should use the kernel image stored
in the file mach.

This entry also tells nibootparamd that the machine bravo should mount its root
file system, / , by NFS mounting the root file system of alpha, and that it should
mount its /private file system by NFS mounting the directory
/next_area/private from the host alpha.

You can create the bootparams properties by hand using niutil if you wish:

niutil -createprop / /machines/bravo bootparams root=alpha:/
private=alpha:/next_area/private

where the entry is made in the root domain, “/”.

You can also use niload to read a bootparams (5) format file.

The niload command is capable of reading a bootparams (5) format file.

bootparams is the traditional UNIX file used for managing bootparamd
information and contains lines of the following format:

host key=valuekey=value

bravoroot=alpha:/private=alpha:/next_area/private

An example bootparams file was installed in your /etc directory by the
install_netinfo script.

niload can be used to read a bootparams file as follows:

niload bootparams / < /etc/bootparams

This command causes niload to read all the entries in the file /etc/bootparams
and create bootparams properties for each and every host name encountered, in
the root domain, “/”.

Loading bootparams
information into
NetInfo

Using niload

Chapter 8: Enterprise Edition Features

120

Support for Multi-homed Servers

NetInfo Enterprise Edition provides explicit support for servers that have more
than one active Ethernet interface.

This support is, for the most part, invisible to the user, in that it has been
implemented as internal enhancements in the NetInfo server software.

However, one of the enhancements made has a special use, which can ease
configuration for some customers.

Broadcasthost and 255.255.255.255

Support has been added for the special broadcast token, 255.255.255.255.

If a host is specified with this address, NetInfo will broadcast on all available
Ethernet interfaces when attempting to find the given host on the network.

This is useful in the particular case of specifying the host which serves the parent
domain of a given domain.

For example, if the following entry exists in the local database:

/machines/broadcasthost
name broadcasthost
ip_address 255.255.255.255
serves ../network

NetInfo will broadcast on all Ethernet interfaces looking for a host which serves a
database with the tag network.

This is a particularly useful feature as it allows you to re-configure your network
without necessarily altering your NetInfo bindings.

This particular feature is also present in the Workstation Edition of NetInfo Version
1.04 or later, and is also a standard feature of NetInfo as provided by NeXT
Computer, Inc.

Chapter 8: Server Edition Features

121

Performance Enhancements

NetInfo Enterprise Edition integrates all of the enhancements to the core NetInfo
product provided by NeXT Computer, Inc. as part of the NeXTSTEP 3.0 release.

These changes, whilst relatively minor in nature, result in some significant
performance improvements in large networks with many domains and when the
amount of data stored in NetInfo is great.

The enhancements are:

• Improved clone/server propagation.

• File format optimisations.

• Smarter binding of parent servers to accommodate slower network links.

The protocol between NetInfo master and clone servers has been improved to
eliminate excessive data transfers, and the distribution of NetInfo changes has been
streamlined.

Both these changes result in improved clone performance and reduce the traffic
required to propagate changes to clone servers.

When a number of NetInfo changes are made in succession, as often occurs when
data is loaded with niload, netinfod will coalesce the individual changes into a
single composite update transaction. Since only one transaction with each clone
server is needed to distribute the composite update, the overhead associated with
updating clones is reduced.

In addition, the distribution of updates is now multi-threaded. Modifications made
to the master database are immediately distributed to clones; an update need not
wait for prior updates to finish before it is handled. Update threads operate
independently, except that updates are guaranteed to arrive at each clone in the
correct order.

The disk format for NetInfo databases has changed to increase the default record
size. In most cases, this reduces the number of files in a database by about 90% and
decreases the cost of large searches by 25%.

These changes have been made to netinfod, and support is provided for both the
new and the old database formats.

Also, all versions of NetInfo can be used together on a network, regardless of the
revision level or database format of the individual servers. All configurations,
including master and clone servers which use different versions of software and
different database formats, are supported.

Note that a Enterprise Edition database cannot be directly copied to a Workstation
Edition server due to this difference in disk format. Use the nidomain command
to create a clone database over the network instead.

Clone propagation

Details

File format

Chapter 8: Enterprise Edition Features

122

In order to deter NetInfo servers from binding to inappropriate parent servers over
a slow network link, NetInfo servers now check for the existence of a local clone of
the parent domain before broadcasting to find a suitable parent.

Also, by explicitly configuring the IP address of the machine that serves the parent
domain, broadcasts can be eliminated altogether.

See also the discussion of support for Multi-homed Servers earlier in this section for
other relevant information and the NEXTSTEP NetInfo 3.3 documentation for
further details.

Smarter binding

121

Chapter 9

NIS Emulation
This chapter documents the technique used for integration of NetInfo data with
the UNIX operating system.

With SPARC SunOS 4.x and Netinfo Edtion 1.x, NetInfo data was integrated into
the UNIX lookup mechasnism through modifications to the standard library,
libc.so, in conjunction with the lookup daemon, lookupd. This is the same
technique used by NeXT in the NEXTSTEP operating system.

With NetInfo Editions 2.x and above, this technique is no longer used.

Instead, this version of NetInfo provides a special server process to look up data,
niypd. niypd appears to the UNIX system to be the NIS lookup process, ypserv.

This chapter discusses this technique in greater detail and provides important
background information to enable you to better manage NetInfo.

Chapter 9: NIS Emulation

122

How NIS Emulation works

Programs running under the UNIX operating system access the information in the
NetInfo database, if it is running, by accessing a new NIS server process, niypd, that
emulates the NIS server, ypserv. NIS must be configured so that all NIS lookup
queries generated by software on the local machine go first to the new server
process.

This technique works in two steps as follows:

• run the NetInfo server process, niypd, on the local machine,

• configure the local machine so that NIS lookup queries generated by software
go first to the new server process.

Installation is a matter of replacing the existing NIS server process, ypserv, with the
provided process niypd. The supplied startup script does this at boot time by
creating a symbolic link from /usr/sbin/ypserv to /usr/etc/niypd.

Chapter 9: NIS Emulation

123

Ensure NIS domains are correct

The key to this technique working is that you must also set up your NIS domain
names correctly. niypd emulates NIS server routines to enable the UNIX
environment to make NIS lookup calls as if they were NIS lookups. For this to work
correctly, you must ensure that the local machine is a member of a NIS domain of
one - that is, itself only.

This is necessary to provide for the conceptual mapping of NetInfo domains to NIS
domains. NIS is inherently a non-hierarchical system, where many machines all
draw their data from a single NIS database.

NetInfo provides a fully hierarchical database system, where each machine has a
local database for its own data but also accesses data in ‘parent’ databases up the
hierarchy.

To preserve this concept of local data, you must create a new NIS domain for each
of your machines that is private to that machine only.

For example, say you have an existing NIS domain abc.com.au . All of your
machines are currently located within this domain and therefore draw their NIS
data from it. The NIS database is served by the ypserv process running on your
central server machine, alpha.

To move to NetInfo, you would need to use the domainname command to change
the domain name on each and every machine that is to become a NetInfo client.
The simplest way to do this is to use the hostname as the first part of the
individualised domain name.

For example:

The machine alpha in abc.com.au has its NIS domain name changed to
alpha.abc.com.au

Having done this, you can then run the niypd process on alpha instead of ypserv,
and niypd will start up as though it were the NIS server for the domain
alpha.abc.com.au . Each machine that you run niypd on will be similarly
configured.

Example

Chapter 9: NIS Emulation

124

Using NIS as well as NetInfo

Since niypd emulates NIS calls for a given (localised) domain, the question arises
of how to get your local machine to still use NIS as a backup. That is, if a lookup
query cannot find matching data in NetInfo, you would like it to somehow
continue the query in the old NIS system.

This is possible as niypd has been enhanced to provide a ‘fall-through’ mechanism
to an existing NIS setup. To use this feature,you can pass niypd the domain name
of the ‘parent’ NIS domain on the command line.

To start up niypd with the domain abc.com.au as the parent NIS domain:

niypd abc.com.au

If the domain_name parameter is not provided on the command line, the parent
domain is derived by removing the first component of the local domain name.

The local domain is alpha.abc.com.au

If you use:

niypd

then the parent domain will be abc.com .au. If you want to force a different parent
domain, you must specify the parent domain explicitly as in the first example
above.

Either usage will cause niypd to emulate all NIS queries for the local NIS domain
(alpha.abc.com.au) and then to ‘fall-through’ and make queries on the parent
NIS domain abc.com.au if it should not find the result data in NetInfo.

Example

Example

Chapter 9: NIS Emulation

125

Using NetInfo without using NIS

If you only want to use NetInfo for your system, then you can tell the niypd not
to fall through to NIS at all. To do this, start up niypd with the special local
domain name.

niypd local

This tells niypd that it is only to perform localised NetInfo queries and should not
use NIS for fall backs.

Remember, the standard installation scripts provided link ypserv to niypd at boot
time. Edit these scripts if you need to pass a parameter to niypd as described here.

Chapter 9: NIS Emulation

126

Mapping NetInfo data to NIS maps

NIS stores all of its data in databases called ‘maps’. A single NIS map contains the
password file, another contains the hosts file. These files are simple dbm databases.

NetInfo is very different in internal structure, with each database in a NetInfo
domain hierarchy having a tree-like structure internally. A single NetInfo database
can contain data for passwords, hosts, and printers and many other (even user-
defined) data types.

In order to take a NIS lookup query and make it a valid query in the NetInfo
context, it is necessary for the niypd server to emulate a series of NIS ‘maps’. Each
map is a logical name for a collection of NetInfo data, and the niypd process takes
care of the conversion of the NIS style map calls to NetInfo queries.

The following maps are implemented by niypd, being almost all of the maps
supported by NIS as standard.

passwd.byname
passwd.byuid
group.byname
group.bygid
hosts.byname
hosts.byaddr
services.byname
services.byport
services.bynameproto
mail.aliases
networks.byaddr
networks.byname
protocols.bynumber
protocols.byname
rpc.byname
rpc.bynumber

The following maps are NOT implemented at this time:

netid
netmask
ethers
bootparams

Note that even though the bootparams map is not implemented by niypd,
bootparamd still uses NetInfo directly, as a modified bootparamd, called
nibootparamd, is supplied with the system.

Chapter 9: NIS Emulation

127

Since niypd emulates these maps, you can use the standard NIS management tools
ypcat and ypmatch to dump data from NetInfo.

For example:

ypcat passwd
.. passwd data from all sources ...

This command will use niypd to dump out all of the password data - first the local
data and then the data all the way up the NetInfo hierarchy, followed then by any
password data from the ‘parent’ NIS domain. Remember, niypd falls through to
NIS if it can’t find data to resolve a query, and in the case of ypcat, the query is
asking for all data - until there is no more to tell.

Similarly ypmatch allows you to find a keyed record in the combined NetInfo / NIS
databases.

NetInfo is searched first in all cases:

For example:

ypmatch john passwd
.. passwd record for user john ...

If you’re ever unsure about which record will be found first, ypmatch will give you
the definitive answer. This is particularly useful when you have a duplicated record
in higher levels of the NetInfo database, but have a local definition to ‘override’ the
common definition. ypmatch allows you to confirm which record is being found
first.

Using NIS tools

Chapter 9: NIS Emulation

128

Caveats

Installation

Because NetInfo queries work through the NIS lookup mechanism, it becomes
necessary for you to perform the same installation as you would for NIS before
installing NetInfo. Even if you don’t want to use NIS following your NetInfo
installation you must still install your operating system options to provide for NIS
support.

Also, you should be careful to ensure that you do the things necessary to cause your
operating system to make NIS lookup calls in the first place.

For example, you must ensure that you add the infamous NIS ‘+’ lines to the end of
the password and groups files. This is the magic token that NIS relies on in order
for it to be invoked when query for password or groups.

Also, on certain systems (DEC UNIX and Solaris 2.x for example), you must also
configure the /etc/svc.conf file to specify that you wish to use NIS data and the
order in which data is to bea searched.

As with all NetInfo installations, it is recommended that you only keep the bare
minimum number of entries in any of your /etc files, and that you put all other
data in NetInfo.

Functions which are not required, or make no sense in the NetInfo environment,
such as ypxfr, are not implemented by niypd. You can safely disable these
processes.

yppasswd

You should use the new tool nipasswd to change users passwords in NetInfo. The
standard yppasswd tool that works for NIS installations uses special NIS protocols
that are not supported by this release of the NetInfo emulation system.

Search order

The search order using NIS Emulation is different from the search order
documented in previous NetInfo Edition technotes, and differs from the search
order currently used in the SPARC Edition of NetInfo.

In these earlier, lookupd based Editions, the search order was NetInfo first, followed
by the flat files, followed by NIS.

In the NIS Emulation based versions of NetInfo, where data would normally come
from NIS, it comes from NetInfo followed immediately by NIS. Thus, if you
configure /etc/svc.conf .to search local files then NIS, you will get local files,
NetInfo, NIS as the search order.

129

Chapter 10

NetInfo Reference
The Reference Section provides manual page entries for the NetInfo programs. These
programs are also stored on-line and can be accessed using the man utility.

The following programs are described:

• bootparams(5)

• netinfo(5)

• netinfod(8)

• nibindd(8)

• nibootparamd(8)

• nibootpd(8)

• nidomain(8)

• nidump(8)

• nifind(1)

• nigrep(1)

• niload(8)

• nipasswd(1)

• nireport(1)

• niutil(8)

• niwhich(1)

• niypd(8)

Chapter 10: Netinfo Reference

130

Overview of NetInfo Programs

The following command line tools operate on the NetInfo database. The databases
must be located in the /etc/netinfo directory. NetInfo is running when the nib-
indd and niypd daemon processes are running. Normally, these processes are start-
ed when the machine is booted.

Daemons

There are several daemon processes associated with NetInfo.

nibindd The nibindd daemon must be running on each host in order for
NetInfo to be used. If this daemon is not running, then the UNIX
system will use NIS (yellow pages) if NIS is running. If not, the
flat configuration files are consulted. Normally, this daemon is
started up at boot time by an appropriate entry in the rc.local
file.

niypd niypd handles requests for information from clients and passes
them to nibindd. It must be running in conjunction with nib-
indd to use information in the NetInfo database.

niypd is a drop in replacement for ypserv, that translates NIS
lookups to NetInfo lookups.

niypd currently does not cache requests. This is planned for a fu-
ture release.

netinfod A netinfod daemon is started by nibindd for each domain
known to the network hierarchy. nibindd checks the /etc/-
netinfo directory and starts a netinfod process for each data-
base directory it finds.

netinfod is forked by nibindd. It should not be started by hand
at any time, as nibindd handles the binding of domains into the
hierarchy.

Loading and Dumping Database Information

Two programs are supplied with the system in order to load information into and
dump it out of the various NetInfo databases. Use these tools to keep the flat files
up to date with the NetInfo database in case a machine has to be run without con-
necting to the network.

niload niload can be used to load information such as password files,
into the database. The system understands the format of the flat
configuration files and loads data according to the specified for-
mat.

nidump The dump program works in the opposite way to load. It copies
the configuration information in the NetInfo into files format-
ted as specified.

niload and nidump understand the following formats:

aliases bootparams bootptab fstab
group hosts networks passwd
printcap protocols rpc services

niload reads from standard input, and nidump writes to standard output. Informa-
tion can be copied easily using these tools together.

Chapter 10: NetInfo Reference

131

Creating and Managing Databases

nidomain nidomain is used to create and delete databases. This utility does
not bind the domain into the hierarchy. Both the uplink (to par-
ent) and the downlink (to any child domains) have to be speci-
fied by setting the values of the appropriate properties.

When the create option is requested (-m), nidomain performs
several tasks.

• It creates a directory for the database in /etc/netinfo , with
a database file (collection).

• It starts an instance of the netinfod daemon.

• It enters some information in the database including:

/machines directory with a subdirectory for the host on which
the domain is created. Three properties are created: name (value
= host); ip_address (value obtained from host information); and
serves property (one property only - self served from local data-
base).

In order to make changes to the database information, a root
user must be specified. This in done by creating a /users direc-
tory with a subdirectory for the root user.

The delete option removes the directory and stops the daemon
process.

niwhich niwhich is used to determine which host serves a given NetInfo
domain. It outputs the hostname, Internet address and the data-
base tag for the domain.

Managing Database Information and Properties

niutil The NetInfo utility program, niutil, is used to view, create and
maintain subdirectories, properties, and values of the domain
database.

The list option displays a list of directories in the database. cre-
ate creates directories, and destroy removes them.

read displays a list of properties and their values. addval, de-
stroyval, createprop and destroyprop are used to manage the
properties and values.

Querying the NetInfo Database

nifind Finds a directory in the NetInfo hierarchy. It starts at the local
domain and climbs up through the hierarchy until it reaches the
root domain.

nigrep Searchs for a regular expression in the NetInfo hierarchy. It
searches the domain's directory hierarchy depth-first starting
from the root directory

nireport Prints a table of values of properties in all sub-directories of the
directory given on the command line

Chapter 10: Netinfo Reference

132

Passwords

nipasswd nipasswd allows users to change their NetInfo password. It be-
haves like the UNIX passwd program: it prompts for the old and
new passwords, and validates the change before making the al-
teration to the NetInfo database.

Chapter 10: NetInfo Reference

133

NAME

bootparams - boot parameter data base

SYNOPSIS

/etc/bootparams

DESCRIPTION

The bootparams file contains the list of client entries that diskless clients use
for booting. For each diskless client the entry should contain the following
information:

name of client
a list of keys, names of servers, and pathnames.

The first item of each entry is the name of the diskless client. The subsequent
item is a list of keys, names of servers, and pathnames.

Items are separated by TAB characters.

EXAMPLE

Here is an example of the /etc/bootparams file:

myclient root=myserver:/nfsroot/myclient \
swap=myserver:/nfsswap/myclient \
dump=myserver:/nfsdump/myclient

FILES

/etc/bootparams

SEE ALSO

nibootparamd(8)

bootparams(5)

Chapter 10: Netinfo Reference

134

NAME

netinfo - network administrative information

DESCRIPTION

NetInfo stores its administration information in a hierarchical database. The hier-
archy is composed of nodes called NetInfo directories. Each directory may have
zero or more NetInfo properties associated with it. Each property has a name and
zero or more values.

This man page describes those directories and properties which have meaning in
the system as distributed. Users and third-parties may create other directories and
properties, which of course cannot be described here.

Search Policy

Virtually everything that utilises NetInfo for lookups adheres to the following con-
vention. Search the local domain first. If found, return the answer. Otherwise, try
the next level up and so on until the top of the domain hierarchy is reached. For
compatibility with Yellow Pages and BIND, see niypd(8).

Database Format -Top Level

At the top level, the root directory contains a single property called “master”. This
property indicates who is the master of this database, i.e., which server contains the
master copy of the database.

The singular value of “master” contains two fields, a hostname and a domain tag
separated by a '/' which uniquely identifies the machine and process serving as mas-
ter of this data.

For example, the entry “eastman/network” says that the netinfod(8) process serv-
ing domain tag network on the machine eastman controls the master copy of the
database.

For added security, a second property can be installed in the root directory to limit
who can connect to the domain. By default, anybody can connect to the domain,
which would allow them to read anything that is there (writes are protected how-
ever).

If this default is undesirable, a property called “trusted_networks” should be ena-
bled in the root directory. Its values should be the network (or subnet) addresses
which are assumed to contain trusted machines which are allowed to connect to
the domain. Any other clients are assumed to be untrustworthy.

A name may be used instead of an address. If a name is given, then that name
should be listed as a subdirectory of “/networks” within the same domain and re-
solve to the appropriate network address.

Database Format -Second Level

At the second level, the following directories exist which have the following names
(property named “name” has these values):

aliases
groups
machines
mounts

netinfo(5)

Chapter 10: NetInfo Reference

135

networks
printers
protocols
rpcs
services
users

These directories contain, for the most part, only the single property named
“name”.

The exception is the /machines directory which contains other properties having
to do with automatic host installation. These properties are the following:

promiscuous if it exists, the bootpd(8) daemon is promiscuous. Has no value.

assignable_ipaddr
a range of IP addresses to automatically assigned, specified with
two values as endpoints.

configuration_ipaddr
the temporary IP address given to unknown machines in the
process of booting.

default_bootfile the default bootfile to assign to a new machine.

net_passwd optional property. If it exists, it's the encrypted password for pro-
tecting automatic host installations.

The directory /aliases contains directories which refer to individual mailing aliases.
The relevant properties are:

name the name of the alias

members a list of values, each of which is a member of this alias.

The directory /groups contains directories which refer to individual UNIX groups.
The relevant properties are:

name the name of the UNIX group

passwd the associated password

gid the associated group id

users a list of values, each of which is a user who is a member of this
UNIX group.

Chapter 10: Netinfo Reference

136

The directory /machines contains directories which refer to individual machines.
The relevant properties are:

name the name of this machine. This property can have multiple val-
ues if the machine name has aliases.

ip_address the Internet Protocol address of the machine. This property can
have multiple values if the machine has multiple IP addresses.
Note that the address MUST be stored in decimal-dot notation
with no leading zeroes.

en_address the Ethernet address of the machine. Note that the address
MUST be stored in standard 6 field hex Ethernet notation, with
no leading zeros. For example, “0:0:f:0:7:5a” is a valid Ethernet
address, “00:00:0f:00:07:5a” is not.

serves a list of values, each of which is information about which NetIn-
fo domains this machine serves. Each value has the format do-
main-name/domain-tag. The domain name is the external name
of the domain served by this machine as seen from this level of
hierarchy. The domain tag is the internal name associated with
the actual process on the machine that serves this information.

bootfile the name of the kernel that this machine will use by default
when NetBooting.

bootparams a list of values, each of which is a Bootparams protocol key-value
pair. For example, “root=eastman:/” has the Bootparams key
“root” and Bootparams value “eastman:/”.

netgroups a list of values, each of which is the name of a netgroup of which
this machine is a member.

The directory /mounts contains directories which refer to filesystems. The relevant
properties are:

name the name of the filesytem. For example, “/dev/od0a” or “east-
man:/”.

dir the directory upon which this filesystem is mounted.

type the filesystem type of the mount.

opts a list of values, each of which is a mount(8) option associated
with the mounting of this filesystem.

passno pass number on parallel fsck(8).

freq dump frequency, in days.

The directory /networks contains directories which refer to Internet networks. The
relevant properties are:

name the name of the network. If the network has aliases, there may
be more than one value for this property.

address the network number of this network. The value MUST be in dec-
imal-dot notation with no leading zeroes.

Chapter 10: NetInfo Reference

137

The directory /printers contains directories which refer to printer entries. The rel-
evant properties are:

name the name of the printer. If the printer has alias, this property will
have multiple values.

lp, sd, etc. the names of printcap(5) properties associated with this printer.
If the value associated with the property name is numeric, the
number has a leading “#” prepended to it.

The directory /protocols contains directories which refer to transport protocols.
The relevant properties are:

name the name of the protocol. If the protocol has aliases, the property
will have multiple values.

number the associated protocol number.

The directory /services contains directories which refer to ARPA services. The rele-
vant properties are:

name the name of the service. If the service has aliases, the property
will have multiple values.

protocol the name of the protocol upon which the service runs. If the
service runs on multiple protocols, this property will have mul-
tiple values.

port the associated port number of the service.

The directory /users contains information which refer to users. The relevant prop-
erties are:

name the login name of the user.

passwd the encrypted password of the user.

uid the user id of the user.

gid the default group id of the user.

realname the real name of the user.

home the home directory of the user.

shell the login shell of the user.

AUTHOR

 NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

 Xedoc Software Development Pty. Ltd.

SEE ALSO

aliases(5), bootparams(5), bootptab(5), fstab(5), group(5), hosts(5),
niypd(8), netinfod(8), netgroup(5), networks(5), passwd(5), printcap(5),
protocols(5), services(5)

Chapter 10: Netinfo Reference

138

NAME

netinfod - NetInfo daemon

SYNOPSIS

netinfod domain-tag

DESCRIPTION

netinfod daemon serves the information in the given domain-tag to the net-
work. It is normally executed automatically by nibindd(8) and should not be
run manually.

FILES

/etc/netinfo/domain_tag.nidb

where the actual information served is stored.

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

netinfo(5)

netinfod(8)

Chapter 10: NetInfo Reference

139

NAME

nibindd - NetInfo binder

SYNOPSIS

nibindd

DESCRIPTION

The nibindd daemon is responsible for finding, creating and destroying Net-
Info (netinfod(8)) servers. When it starts up, it reads the directory /etc/net-
info for directories with the extension “.nidb” and starts up a netinfod(8)
server for each NetInfo database it finds. If nibindd is sent a hangup signal,
SIGHUP, it kills all running netinfod processes and rebinds the NetInfo do-
main hierarchy (note that this does not affect the connections established by
niypd(8)). This is useful for getting the system to conform to new network
configuration changes without rebooting. nibindd writes a file with its proc-
ess ID number (pid file) in /etc/nibindd.pid.

The nibindd daemon will automatically destroy the registration for a net-
infod server if it disappears for any reason. It will take the netinfod servers
down if it is shut down by sending it a terminate signal, SIGTERM.

nidomain(8) is the user interface to nibindd.

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

netinfod(8), nidomain(8)

nibindd(8)

Chapter 10: Netinfo Reference

140

NAME

nibootparamd - boot parameter server

SYNOPSIS

nibootparamd [-d]

DESCRIPTION

nibootparamd is a server process that provides information to NetBoot
clients necessary for booting. It consults the NetInfo database (the
/machines directory) if NetInfo is running, and examines the boot and
address properties. If the client's information is not found, NIS is consulted
if it is running.

nibootparamd can be invoked either by inetd(8) or by the user.

OPTIONS

-d Display the debugging information

FILES

/etc/bootparams - if NetInfo is not running.

AUTHOR

Xedoc Software Development Pty. Ltd.

SEE ALSO

bootparams(5), inetd(8), nidump(8), niload(8), netinfo(5)

nibootparamd(8)

Chapter 10: NetInfo Reference

141

NAME

nibootpd - boot protocol daemon

SYNOPSIS

nibootpd [-d]

DESCRIPTION

nibootpd is the bootstrap protocol server daemon described in RFC 951. It
is used by diskless hosts to resolve their protocol addresses and to determine
which bootfile to netload. nibootpd is normally run as a subprocess of
inetd(8) daemon.

The file /etc/bootptab is the standard database for nibootpd. When
NetInfo is running, this file is not consulted, and all nibootpd information
comes from NetInfo. However, even when NetInfo is running, this file must
exist.

Blank lines and lines beginning with '#' are ignored. The first section of the
file contains default parameters, one per line. The first parameter is the
default directory of the bootfiles. The second parameter is the name of the
default bootfile. A line beginning with '%%' marks the end of the parameter
section.

The remainder of the file contains one line per client interface, with the
information show below. The 'host' name is also tried as a suffix for the
'bootfile' when searching the home directory, e.g. 'bootfile.host'. For 10MB
Ethernet 'htype' is always '1'.

host htype haddr iaddr bootfile
tc101g 1 02:60:8c:06:35:05 36.44.0.65 seagate

OPTIONS

-d The -d flag enables debugging output.

FILES

/etc/bootptab

en_address , bootfile and bootparams properties of the
/machines/ hostname directory in NetInfo.

AUTHOR

Xedoc Software Development Pty. Ltd.

SEE ALSO

niload(8), nidump(8), niutil(8), netinfo(5)

Bootstrap Protocol (BOOTP), RFC 951, Croft and Gilmore.

nibootpd(8)

Chapter 10: Netinfo Reference

142

NAME

nidomain - NetInfo domain utility

SYNOPSIS

nidomain -l [hostname]
nidomain -m tag
nidomain -d tag
nidomain -c tag master/remotetag

DESCRIPTION

The nidomain utility is an interface to nibindd(8), to which it sends all of
its requests about the domains served on a given machine. It also can be used
to create and destroy NetInfo databases.

The nidomain utility will allow one to create multiple levels of NetInfo hier-
archy, but it is not a particularly easy way to do it. One should use the Net-
Info Manager application for setting up multilevel hierarchies.

OPTIONS

-l [hostname]

List the domains by tag served on the given hostname. If hostname is unspec-
ified, the local host is used.

-m tag

Create a new NetInfo database and server on the local machine for the do-
main tag of tag.

-d tag

Destroy the local NetInfo database and server associated with the domain
tagged tag. If the database was associated with a clone, the machine's “serves”
property on the master is NOT modified to reflect the fact that the database
has been deleted.

-c tag master/remotetag

Creates a clone NetInfo database with the domain tagged tag. The database is
cloned from the machine master and remote tag remotetag. The “serves” prop-
erty on the master machine should be set up prior to running this command
to contain the entry “./tag”.

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

nibindd(8)

nidomain(8)

Chapter 10: NetInfo Reference

143

NAME

nidump - extract a UNIX-format file out of NetInfo

SYNOPSIS

nidump [-t] {-r directory | format } domain

DESCRIPTION

nidump reads the specified NetInfo domain and dumps a portion of its con-
tents to standard output. When a UNIX administration file format is speci-
fied, nidump provides output using the syntax of the corresponding UNIX
flat file. The allowed values for format are aliases, bootparams, bootptab, ex-
ports, fstab, group, hosts, networks, passwd, printcap, protocols, rpc, and services.

OPTIONS

-t Interpret the domain as a tagged domain. For example, “trotter/network” re-
fers to the database tagged “network” on the machine “trotter”. You may
supply an IP address instead of a machine name.

-r Dump the specified directory in "raw" format. Directories are delimited by
curly braces, and properties within a directory are listed in the form "property
= value;". Parentheses introduce a comma-separated list of items. The special
property name CHILDREN is used to hold a directory's children, if any are
present. Spacing and line breaks are significant only within double quotes,
which may be used to protect any names that might contain metacharacters.

EXAMPLE

nidump passwd . - dumps a password file from the local NetInfo domain.

nidump -r /locations / dumps the /locations directory of the root do-
main.

nidump -t -r /name=users/uid=530 trotter/network dumps the di-
rectory for the user whose UID is 530.

RESTRICTIONS

The -r option is not supported by Xedoc NetInfo Editions.

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

niload(8), niutil(8), netinfo(5)

nidump(8)

Chapter 10: Netinfo Reference

144

NAME

nifind - find a directory in the NetInfo hierarchy

SYNOPSIS

nifind [-anvp] [-t timeout] directory [domain]

DESCRIPTION

nifind searches for the named directory in the NetInfo hierarchy. It starts at
the local domain and climbs up through the hierarchy until it reaches the
root domain. Any occurances of directory are reported by directory ID
number. If the optional domain argument is given, then nifind stops climb-
ing at that point in the hierarchy. The domain argument must be specified
by an absolute or relative domain name.

When invoked with the -a option, nifind searches for the named directory
in the entire NetInfo hierarchy (or the sub- tree with domain as the root if do-
main is specified). The -n option exempts local domains from the search.

nifind uses a default two second connection timeout when contacting a do-
main. The connection timeout can be overriden with the -t option.

OPTIONS

-a Search for directory in the entire NetInfo hierarchy.

-n Exempt local directories from the search.

-p Print directory contents.

-v Produce verbose output.

-t timeout

Specify an integer value as the connection timeout (in seconds).

EXAMPLES

% nifind /printers/inky

/printers/inky found in /software, id = 202

/printers/inky found in /, id = 357

% nifind -a /machines/mailhost /sales

/machines/mailhost found in /sales, id = 234

% nifind -v /users/uid=164

/users/uid=164 not found in /sales/polaris

/users/uid=164 not found in /sales

/users/uid=164 found in /, id = 451

nifind(1)

Chapter 10: NetInfo Reference

145

% nifind -p /machines/mailhost

/machines/mailhost found in /sales, id=171

name: zippy mailhost

ip_address: 192.42.172.5

/machines/mailhost found in /, id = 350

name: zorba mailhost

ip_address: 192.42.172.1

SEE ALSO

netinfo(5)

AUTHOR

Marc Majka, NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

BUGS

nifind does not complain if domain is not an ancestor specified in a normal
search.

Chapter 10: Netinfo Reference

146

NAME

nigrep - search for a regular expression in the NetInfo hierarchy

SYNOPSIS

nigrep expression [-t] domain [directory ...]

DESCRIPTION

nigrep searches through the specified domain argument for a regular expres-
sion. It searches the domain's directory hierarchy depth-first starting from
the root directory. It can also start from each directory specified on the com-
mand line.

The domain argument can be specified as an absolute or relative domain
name. The domain argument can be specified as a network address or host-
name and tag if preceded by the -t option.

On output, nigrep prints the directory ID number of the directory which
contains the regular expression, and the property key and values where it was
found. A line is printed for each property that contains the regular expres-
sion.

OPTIONS

-t Specify domain as a network address or hostname and tag.

EXAMPLES

% nigrep '[Nn]et' /

% nigrep '[Nn]et' -t 192.42.172.17/local

% nigrep '192.[0-9]+.172' -t astra/network /machines

% nigrep '/Net/server.*/Users' .. /users /mounts

SEE ALSO

netinfo(5)

AUTHOR

Marc Majka, NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

nigrep(1)

Chapter 10: NetInfo Reference

147

NAME

niload - load UNIX-format file into NetInfo

SYNOPSIS

niload [-v] [-d] [-p] [-t] format domain

DESCRIPTION

niload loads information from standard input into the given NetInfo do-
main.

If format is specified, the input is interpreted according to the UNIX file for-
mat of the same name. The allowed values for format are aliases, bootparams,
bootptab, exports, fstab, group, hosts, networks, passwd, printcap, protocols, rpc,
and services.

If -r directory is specified instead of a UNIX file format, the input is interpreted
as "raw" NetInfo data, as generated by nidump -r, and loaded into directory.

niload overwrites entries in the existing directory with those given in the in-
put. Entries that are in the directory aren't deleted if they don't exist in the
input, unless the -d option is specified. niload must be run as superuser on
the master NetInfo server for the given domain, unless one specifies the -p
option, which allows one to run from anywhere in the network.

OPTIONS

-v Verbose. Prints a “+” for each entry loaded, a “-” for each entry deleted.
(UNIX formats only)

-d Delete entries which are in the existing directory, but not in the input.

-p Prompt for the root password of the given domain so that one can run from
other locations in the network besides the master.

-t Interpret the domain as a tagged domain. For example, “trotter/network” re-
fers to the database tagged “network” on the machine “trotter”. You may
supply an IP address instead of a machine name.

 -r Load entries in "raw" format, as generated by nidump -r. The first argument
should be the path of a NetInfo directory into which the information is load-
ed. Since the input often specifies properties (including "name") at its top-
most level, the directory you specify may be renamed as a result of this
operation. If the directory you specify does not exist, it will be created.

EXAMPLE

niload passwd . < /etc/passwd load the local /etc/passwd file into the
local NetInfo database.

niload -d -r /locations . replaces the contents of /locations in the
local domain with input given in nidump "raw" format.

RESTRICTIONS

The -r option is not supported by Xedoc NetInfo Editions.

niload(8)

Chapter 10: Netinfo Reference

148

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

nidump(8), niutil(8), netinfo(5), aliases(5), bootparams(5), bootptab(5),
exports(5), fstab(5), group(5), hosts(5), networks(5), passwd(5),
printcap(5), protocols(5), rpc(5), services(5)

Chapter 10: NetInfo Reference

149

NAME

nipasswd - change NetInfo password information

SYNOPSIS

nipasswd [username]

DESCRIPTION

nipasswd changes a user's password in the NetInfo database.

The superuser may change anyone's password without being required to en-
ter the old password. Ordinary users may only change their own password.

When changing a password, nipasswd prompts for the old password and
then for the new one. If the old password is not entered correctly, it will not
be changed. The new password must be typed twice to forestall mistakes.

nipasswd will search up the NetInfo domain hierarchy starting from the lo-
cal domain until it finds a password entry for a user. The password is then
changed at that point.

In other words, nipasswd changes the password for a user at the lowest pos-
sible level of the NetInfo domain hierarchy. The command will not search
further up the hierarchy to change further password entries.

New passwords should be at least six characters long. If you persist in enter-
ing a shorter password it will eventually be accepted. Users should be warned
that this may result in compromising system security.

NOTES

Password algorithms do not work with 8-bit characters. This maintains con-
sistency with login file naming rules, which do not allow 8-bit characters in
login names. See login(1) for explanations about why login is not 8-bit clean.

AUTHOR

Xedoc Software Development Pty. Ltd.

SEE ALSO

finger(1), login(1), yppasswd(1), crypt(1), passwd(1), netinfo(5)

nipasswd(1)

Chapter 10: Netinfo Reference

150

NAME

nireport - print tables from the NetInfo hierarchy

SYNOPSIS

nireport [-t] domain directory [property ...]

DESCRIPTION

nireport prints a table of values of properties in all sub-directories of the di-
rectory given on the command line (see "Examples"). Multiple values of a
property are printed in a comma-separated list.

The domain argument can be specified as an absolute or relative domain
name. The domain argument can also be specified as a network address or
host name and tag if it is preceded by the -t option.

OPTIONS

-t Specify domain as a network address or hostname and tag.

EXAMPLES

% nireport /software/duck /users name uid passwd

root 0 0NNGzihc9ILeg

nobody -2 *

agent 1 *

daemon 1 *

uucp 4 *

news 6 *

sybase 8 *

me 20 DJJ.KMEC.OgIY

% nireport -t crow/network /machines name ip_address serves

crow 129.18.10.221 ./network,crow/local

robin 129.18.10.216 robin/local

raven 129.18.21.6 ./network,raven/local

duck 129.18.10.210 duck/local

AUTHOR

Marc Majka, NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

nireport(1)

Chapter 10: NetInfo Reference

151

NAME

niutil - NetInfo utility

SYNOPSIS

niutil [opts] -create domain path

niutil [opts] -destroy domain path

niutil [opts] -createprop domain path propkey [val ...]

niutil [opts] -appendprop domain path propkey val ...

niutil [opts] -mergeprop domain path propkey val ...

niutil [opts] -insertval domain path propkey val index

niutil [opts] -destroyprop domain path propkey ...

niutil [opts] -destroyval domain path propkey val ...

niutil [opts] -renameprop domain path oldkey newkey

niutil [opts] -read domain path

niutil [opts] -list domain path [propkey]

niutil [opts] -rparent domain

niutil [opts] -resync domain

niutil [opts] -statistics domain

opts: [-t] [-p] [-u user] [-P password] [-T timeout]

DESCRIPTION

niutil lets you to do arbitrary reads and writes on the given NetInfo domain.
In order to perform writes, niutil must be run as root on the NetInfo master
for the database, unless the -p option is given.

The database directory specified by path is separated by “/”s, similar to UNIX.
The property names may be given in the path using a “=“, but will default to
the property name “name”.

For example, the following refers to a user with the user ID 3.

/name=users/uid=3

The following shorter form would also be sufficient:

/users/uid=3

You may specify a numeric ID for the directory instead of the string path.

OPTIONS

-t Interpret the domain as a tagged domain.

For example, “eastman/network” refers to the database tagged “network” on
the machine “eastman”. You may supply an IP address instead of a machine
name.

niutil(8)

Chapter 10: Netinfo Reference

152

-p Prompt for the root password of the given domain so that one can run from
other locations in the network besides the master.

-u Authenticate as another user (implies -p).

-P Password supplied on command line (overrides -p).

-T Read & write timeout in seconds (default 30).

-create domain path

Create a new directory with the given path.

-destroy domain path

Destroy the directory with the given path.

-createprop domain path propkey [val ...]

Create a new property in the directory path. propkey refers to the name of the
property; 0 or more property values may be specified. If the named property
already exists, it is overwritten. Use -appendprop to add new values without
overwriting existing ones.

-appendprop domain path propkey val ...

Append the value val to the property propkey in the given path. The property
will be created if it doesn't already exist. If val already exists, a duplicate entry
will be created.

-mergeprop domain path propkey val ...

Merge values into the property propkey in the given path. The property will
be created if it doesn't already exist. If val already exists, it isn't duplicated.

-insertval domain path propkey val index

Insert value val at the given index position of the property propkey.

-destroyprop domain path propkey

Destroy the property with name propkey in the given path.

-destroyval domain path propkey val ...

Remove a property value from the property propkey in directory path.

-renameprop domain path oldkey newkey

Rename a property key in the given path.

-read domain path

Read the properties associated with the directory specified in the given path.

-list domain path

List the directories in the given domain/path. The directory ID's are listed
along with any names they may have.

-rparent domain

Get a server's current NetInfo parent.

-resync domain

Force master and clone servers to resynchronize databases.

Chapter 10: NetInfo Reference

153

-statistics domain

Print server version number and database checksum.

EXAMPLE

niutil -list . /

list the directories at the top level in the local NetInfo database.

AUTHOR

NeXT Computer Inc.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

niload(8), nidump(8), netinfo(5)

Chapter 10: Netinfo Reference

154

NAME

niwhich - return host information for NetInfo domains

SYNOPSIS

niwhich -d domain [-p | -h | -i]

DESCRIPTION

niwhich is used to determine which host serves a given NetInfo domain.
Given a domain name, niwhich will output the hostname, IP address and da-
tabase tag for the domain. The -h and -i options are for convenience, and are
mostly useful in writing shell scripts to create new domains.

niwhich returns a status code to indicate success/failure to contact the given
domain.

OPTIONS

-d Specify domain.

The special name “.” refers to the local domain, while the name “..” refers to
the parent of the local domain. The name “/” refers to the root of the NetInfo
domain hierarchy. The full domain pathname uses “/” as a separator.

-h Only output the name of host that serves database for specified domain.

-i Only output the IP address of the host that serves the specified domain.

-p Do not output any information at all. Useful to ‘probe’ a binding to make
sure it has come up correc tly.

EXAMPLE

niwhich -d ..

outputs host information for the host that serves the parent of the local do-
main.

AUTHOR

Xedoc Software Development Pty. Ltd.

SEE ALSO

niutil(8), netinfo(5)

niwhich(1)

Chapter 10: NetInfo Reference

155

NAME

niypd - NIS emulation server

SYNOPSIS

niypd [-V] [-d] [-D] [-l] [domain_name]

DESCRIPTION

niypd is a server process that provides information to any process that makes
calls to the NIS client side routines. Such processes include any process that
uses the standard libc calls such as getpwent() , gethostent() etc. and
also, the special tools ypcat and ypmatch provided as part of the standard
NIS distribution.

niypd emulates the equivalent process ypserv by providing an RPC call-
compatible interface. Rather than consulting ‘map’ files as ypserv does,
however, niypd draws its data from NetInfo databases.

Communication to and from niypd is by means of RPC calls. Lookup
functions are described in ypclnt(3N), and are supplied as C-callable
functions in /lib/libc .

niypd is capable of using data from NIS databses as well as NetInfo, through
support for the concept of a ‘parent’ NIS domain. All NIS derived data will
appear AFTER NetInfo data in ypcat, ypmatch or other queries.

If the domain_name parameter is not provided on the command line, the
parent domain is derived by removing the first component of the local
domain name.

e.g. if the local domain is alpha.xyz.com then the parent domain will be
xyz.com

If the domain_name parameter is supplied on the command line, it will be
used instead.

Finally, if the domain_name parameter is the special token local then niypd
will NOT make calls to the underlying NIS system for parent lookups. This
allows a systems administrator to clearly separate those systems administered
by NetInfo from those using NIS.

You cannot run niypd and ypserv on the same host.

niypd(8)

Chapter 10: Netinfo Reference

156

OPTIONS

-V Show version of the software.

-d Turn on verbose debugging output.

-D Do not detach and daemonize process. Logging is to standard output.

-l Override system default location of ypserv.log file.

domain_name

Either local to override NIS fall-through or an actual NIS domain name to
use as a parent domain. Omitting this parameter causes niypd to derive the
parent domain using the approach above.

NON-NEXTSTEP SUPPORT

Xedoc Software Development Pty. Ltd.

SEE ALSO

ypserv(8), ypbind(8), ypinit(8), netinfo(5)

159

Symbols
.nidb 18, 59
/ 19, 20, 21, 22, 57
/aliases 137
/etc 9, 13, 115
/etc/fstab 45
/etc/group 45
/etc/hostconfig 114, 116
/etc/hosts 45
/etc/netinfo 18, 31, 35, 42, 48, 54, 59,

60, 107, 132
/etc/netinfo/local.nidb 43, 48, 59

collection 43, 48
/etc/netinfo/local.nidb/collection 36
/etc/passwd 45
/etc/protocols 45
/etc/rpc 45
/etc/services 45
/group 105
/groups 137
/machines 37, 43, 49, 56, 60, 114, 116,

133, 137, 138
/mounts 138
/networks 138
/printers 139
/protocols 139
/services 139
/users 43, 54, 103, 104, 133, 139
/users/root 54, 56
/usr/bin 39, 110
/usr/etc 110
_writers 24, 109

A
access 88

domain 28, 103
superuser 31

accounts 103
add property 68
add values 74
administration

NetInfo 16
aliases 88, 132
ASCII files 13
assignable_ipaddr 117
automatic 114, 116
automatic host addition 116

B
backup 33, 110

files 110
strategy 110

backward compatible 10
BIND 10
binding 19, 23, 44, 49, 96, 107, 121,

122, 133
child 74
name 74
order 29
parent 73
remove 73
reset 78
two-way 70

boot 21, 42, 48, 107, 114, 116
boot parameter data base 135
boot parameter server 142
boot protocol daemon 143
bootfile 115
BOOTP 115

protocol 114
bootparamd 118, 119, 142
bootparams 88, 119, 132, 135
bootpd 118, 137, 143
bootptab 88, 115, 132
bound 45, 97
broadcast 120
broken 83

C
change

database value 24
password 151

child 44, 49, 96
child domain 19
clone 40, 91

server 24
clone server 121
clone/server propagation 121
compulsory information 54
configuration 9, 13, 34, 45, 47

files 33
information 88, 110

configuration_ipaddr 117
create 133

database 64
createprop 74
cron 32
custom information 11

D
daemon 21, 38, 42, 46, 48, 51, 132
data

dump 86

Index

Index

160

load 86
database 9, 10, 16, 18, 19, 24, 54, 59,

114
add values 68
address 21, 22, 24, 45, 54
changing 24
compulsory information 54
create 64, 73, 133
delete 60, 64, 133
directory 54, 136

create 64
delete 64

display 63
dump 132
file 110

ownership 110
internal 22
load 132
local 17, 54
location 18
names 59
naming 20, 21, 22, 24
NetInfo 18
properties

create 67
display 67
values 68

remove values 68
server 24
tag 38, 46, 51, 54, 63, 97

delete 133
delete database 64
destroy

value 74
destroyprop 74
destroyval 74
directory 22, 42, 48, 136

hierarchy 20
name 46

disk format 121
diskless workstation 118
display database 63
distributed administration 10
distributed system 13
domain 10, 16, 18, 19, 20, 54, 59, 107

access 28, 103
create 73
create master 147, 148
delete 78

exist 21
hierarchy 10, 25
information 146, 148, 156
level 16, 54
list 146, 148
management 69
master 29
name 19, 37, 38, 45, 46, 51, 54,

107
names 30
parent 54
pathname 70
root 16, 107
tag 153
two-level 26

domainname 125
downlink 44, 49, 74, 133
dump 86, 132
dumping information 86

E
en_address 115, 118
ethernet address 114, 116, 119

F
files 110

backup 110
flat 110

flat file 9, 13, 18, 110
fstab 45, 89, 132

G
gid 55, 103, 105
graphical user interface 10, 11
group 45, 89, 103, 132
group data 22
groups 105

H
heterogeneous 9, 14
hierarchy 10, 16, 19, 25, 54, 57

domain 10
home 55, 103
host 14, 15, 18, 20, 54, 56, 88

machines 56
name 20
number 14, 15
remove 78

hostname 114
automatic 114
fixed 114

hostname acquisition 114

Index

161

hosts 45, 46, 89, 132

I
inherited information 54
install_netinfo 115, 119
installation 33, 40
interact 9
internal structure 20
Internet 14
Internet address 15, 18, 60
internet address 39
inter-operate 10, 11
IP address 14, 114
ip_address 37, 43, 49, 56, 115

L
LAN 14
leaves 16
load 86, 132, 145, 149
load balancing 24
loading information 86
local 17, 35, 54, 57, 59, 96, 116, 117
local area network 14
local database 43, 48
localhost 15
login process 31
lookupd 123

M
mach 115, 118
machine 20

host 56
properties 56

maintain subdirectories 133
map

load information 46
NIS 9

master 29
create 147, 148
property 24
server 24

master database 121
mergeprop 74
mount(8) 138
moving information 86
multi-homed server 120

N
name 54, 55, 56, 103, 105

directory 46
domain 37, 45

names 30, 107
naming

convention 19
database 20, 21, 22, 24, 59
database address 21, 22, 24
domains 20
hostname 20, 21, 22, 24
physical file 20, 21, 22, 24
tags 21, 22, 24
UNIX 19

NetInfo 9, 32
administration 16
database 13, 18, 20, 114, 124, 132

dump 132
load 132

domain 125
NIS maps 128
shut-down 108
software 35
start-up 107
with NIS 126

netinfo 136
netinfo diretcory 42, 48
NetInfo Software 42, 48
netinfod 21, 36, 39, 59, 60, 107, 110,

121, 132, 140
netinfod local 36, 43, 48
network 9, 13, 19, 54, 57, 59, 82

join 81
network address 14, 15
Network administration database 136
network database 17, 44
Network Information Service

see NIS 9
networks 33, 89, 132
NeXT 9
nibindd 21, 39, 42, 48, 60, 107, 110,

132, 141
nibootparamd 114, 118
nibootpd 114, 115, 116, 117, 118
nidomain 39, 43, 48, 54, 59, 110, 121,

133, 144
nidump 32, 39, 59, 86, 110, 132, 145
nifind 133, 146
nigrep 133, 148
niload 32, 39, 45, 59, 86, 110, 115,

119, 121, 132, 145, 149
nipasswd 39, 59, 110, 130, 134, 151
nips 36, 43, 48
nireport 133, 152
NIS 9, 32, 46

domains 125

Index

162

emulation 123, 124
maps 9, 46, 128
tools 129
with NetInfo 126

NIS Emulation server 157
niutil 36, 46, 54, 59, 62, 110, 115, 133,

153
niwhich 39, 110, 133, 156
niypd 42, 48, 107, 110, 123, 124, 125,

126, 128, 129, 130, 132, 157

O
other 9
overwrite 74

P
parameters 35
parent 44, 49, 54, 96
parent domain 19
passwd 45, 46, 55, 90, 103, 105, 132,

134
password 134, 151
physical file name 20, 21, 22, 24
physical location 20
printcap 90, 132
printcap(5) 139
process 21, 60, 132
programmatic interface 11
propagate 10
property 22, 23, 115, 133

_writers 24
add value 68
create 67
key 22
machines 56
master 24
remove 68
serves 23, 44, 50
users 55
value 22, 67, 68

protocols 45, 90, 132
public network 14

Q
quick start 33
quick_start 34, 35, 36

R
rc scripts 46, 51
rc.local 107
real_name 55, 103
reboot 38, 46, 51

reliability 24
remove properties 68
resource 13, 25
root 13, 18, 39, 42, 48
root directory 22
root domain 16, 19, 20, 31, 33, 39, 107
root privileges 110
root user 43, 44, 49, 96
rpc 45, 90, 132

S
search 10
serve 18
server 24, 33

clone 91
database 24
master 29, 91

server edition 121
server/clone propagation 121
serves 23, 37, 43, 49, 54, 56, 60
serves property 44, 49, 50
services 45, 90, 132
shell 55, 103
shut-down 108
slash 19
start-up 107

order 107
subdirectories 22
superuser 13, 31, 39, 54, 55, 56

access 31
accounts 55

system administrator 13

T
tag 21, 37, 43, 49, 54, 153
tftp 118
The 132
tools 39, 132

netinfod 110, 132
nibindd 107, 110, 132
nidomain 54, 59, 110, 133
nidump 59, 86, 110, 132
nifind 133
nigrep 133
niload 59, 86, 110, 132
nipasswd 110, 134
nireport 133
niutil 54, 59, 62, 110, 133
niwhich 110, 133
niypd 107, 132

two-level domain 26

Index

163

U
uid 55, 103
UNIX 9, 14

file system 19
uplink 44, 49, 73, 133
user 43, 49, 54, 103, 105

maintenance 108
management 31
property 55

user account 22
utilities 39

V
values 133

W
WAN 14
wide area network 14
workstation edition 121
write access 24
writers property 24

Y
ypcat 46, 129
ypmatch 129
yppasswd 130
ypserv 123, 124, 125
ypxfr 130

