WebObjects Database Connectivity:
Part |1

by Theresa Ray of Tensor Information Systems

Sponsored by Apple Computer, Inc.
for Apple’s Worldwide Developer Relations Group

M\(;D L ‘&



WebObjects Database
Connectivity: Part |1

by Theresa Ray of Tensor Information Systems

Creating powerful websites for your users often involves integration with a database for
storage and retrieval of information. WebQbjects provides efficient access to nearly
every database on the market through it’s Enterprise Object Frameworks (EOF). EOF
allows you to map the information stored in your database to business objects used by
your applications - whether web based or windowed. And by putting your business
logic into one set of objects used by all your applications, behavior such as validation,
data conversion, or security restricted access is guaranteed to be the same no matter
which application is accessing the data.

The Database Wizard and Enterprise Object Frameworks

One of the best resources for all WebObjects programmers, regardless of experience
level, is Apple’s on-line technical documentation. One of the tutorials provided at their
site is a database access example using the database wizard. The documentation
provided there is an excellent introduction to the Enterprise Object Frameworks,
creating an eomodel (the mapping of data from your database to your business
objects), and the terminology necessary for continued database connectivity discus-
sions. This survival guide assumes that the reader has done the on-line tutorial, and is
familiar with the terminology introduced there. Apple’s database application tutorial
can be found at http://gemma.apple.com/techinfo/techdocs/enterprise/WehObjects/
GettingStarted/Movies/MoviesTOC.html.

Relationships Between Tables In a Database

In most applications involving a database, several tables will contain related data. For
example, there may be tables named Employee and Department which are related.
Each Employee record has a related Department record - the home department for that
employee. Usually the Employee table will have a column which contains a unigque
Department indentifier, most typically the Department table's primary key attribute.
For example, if the Department table uses the departmentNumber attribute for the

Apple Developer Relations WebObjects Database Connectivity Part 11


http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects/GettingStarted/Movies/MoviesTOC.html

primary key, the Employee table would contain a departmentNumber attribute so that the
employee could be mapped to a distinct department. This mapping is called a join or
relationship. Relationships may be one-to-one, one-to-many or many-to-many. In the
case of a many-to-many relationship, an intermediate table is used to resolve the unique
relationships. See your database administrator for more information on these intermedi-
ate tables.

Relationship in Enterprise Object Frameworks: Referential Integrity

Enterprise Objects Frameworks provides powerful and convenient access for joined tables.
If the database administrator has already set up related tables when you start a new
project, the eomodeler wizard will read the primary key/foreign key relationships
identified in the database and define the relationship in the model for you. You will also
be able to specify the referential integrity rules regarding the relationship.

The first rule you can define is whether the parent table owns the destination table - if so,
when the code deletes one of the items in a relationship, it is also deleted from the
database. You may have two tables called Company and Store, where Company is the
parent. If the code indicates that a store is to be deleted from the relationship with
Company; it is likely that you wish the Store to be removed from the database entirely.
However, if the two tables are Department and Employee, where Department is the parent,
you probably don't want to delete the Employee from the database if the relationship with
a Department is removed - the employee may have transferred to a different Division, but
still exist within the company.

If you define this first rule to be true, then you can choose from two additional rules
regarding the parent entity. The cascade rule states that when a parent entity (such asa
Company) is deleted, all children associated with that parent (such as all Stores for a
Company) are deleted as well. The deny rule states that if an attempt to delete a parent
entity is made when children still exist for that parent, the request is denied and an
exception is raised. For example, if a Company still had Stores associated with it and the
code tried to delete that Company, EOF would deny the request and raise an exception.

If you define the first rule to be false, you can still choose the cascade or deny rules
regarding the parent entity, or you can choose the nullify rule. The nullify rule must be
supported by the referential constraints of the database, and nils the child's reference to
the parent when the parent is deleted. If a Company was deleted that still had Stores
associated with it, the attribute in the Store entity that identified a unique parent
Company would be set to nil. Many database administrators do not set up the database
to allow nil foreign keys. It really depends on your business logic for the given relation-
ship. If the database does not allow this key to be nil, the nullify rule is probably not the
best option for this relationship’s referential integrity rule.

Apple Developer Relations WebQbjects Database Connectivity Part 11



The Relationship Inspector

You may also choose that no action be taken to the child upon deletion of the parent
entity, but you must go into the relationship inspector within the eomodel to do so.
The relationship inspector allows you to view and edit the properties associated with a
relationship, including the join type (join types are defined in the Enterprise Object
Frameworks Developers Guide appendix and essentially define what to do when an
attempt to fetch through a relationship returns some nil results), batch faulting

options (if fetching one item through this relationship, go ahead and fetch the next 'n’

items) and optionality rules (is the destination for this relationship optional or
mandatory).

Traversing a Relationship

Now that the relationship has been defined, how do you use the relationship when
writing code? Suppose you have a Company which has a one-to-many relationship to
Store. The relationship from Company to Store is named toStores, and Store has an
attribute named storeName which you wish to display. The code to access the relation-
ship might look like:

/1 Assume the variable someCompany exists and is a pointer to a Company object

storeList=[someCompany toStores]; //storeList is an array of Stores associated
with this Company

// storeList=someCompany.toStores in WebScript syntax

// storeList=someCompany.toStores() in Java syntax

name=|[storeList objectAtIndex:0] name]; //name is the name of the first Store
item in the array

What is wrong with this code? If the relationship is defined to be optional, there may
not be any stores in the storeList array (remember that the result of the relationship
evaluation is an array since it is a one-to-many relationship - a one-to-one relation-
ship would return a single object with the appropriate class). Attempting to access
[storeList objectAtindex:0] will result in an exception. The array exists, but it is empty
and objectAtindex:0 does not exist. This is obviously not desirable. When working with
optional to-many relationships, you must be careful that you don't try to access an
item that may not exist.

Adding and Deleting with Relationships

What about creating a new relationship? One should always use the method
addObject:toBothSidesOfRelationshipWithKey: to add or replace an object to a

Apple Developer Relations WebObjects Database Connectivity Part 11



relationship. This method guarantees that all aspects of the forward and reverse relation-
ships are synchronized. For example, if an Employee was transferred to a new Depart-
ment, the code might update the toDepartment relationship from Employee by:

/1 Assume that newDepartment and thisEmployee exist and are intialized

[thisEmployee addObject:newDepartment
toBothSidesOfRelationshipWithKey:@"toDepartment"];

The key you specify is the name of the relationship in your eomodel (case sensitivite).
This message replaces thisEmployee's old Department association with the new Depart-
ment association, and updates Department's toEmployees relationship appropriately.
Even though the toDepartment relationship is a one-to-one relationship from Employee
to Department, this is still the appropriate message. The structure is the same if you are
adding a new Employee to an existing Department. The message would update the
Department's toEmployees relationship, and would set the newemployee's Department
appropriately.

Similarly, the method removeObject:fromBothSidesOfRelationshipWithKey: should be
used when removing an object from a relationship. This is where the rules defined above
come into action. The appropriate action between child and parent will be taken, as
defined by the rule specified by the developer of the application.

Custom Validation with Enterprise Object Frameworks

In addition to defining relationship rules in eomodeler, a developer can implement
validation logic for relationship or any attribute in a model explicitly. First, you must
make a custom class for the entity which requires the validation. Choose Generate ObjC
or Java files from the Property menu in eomodeler. A skeleton template in the appropri-
ate language will be made from the model. Only attributes flagged as class properties
will be included in the custom class. Accessor methods will be automatically coded,
allowing users of the class to read and update the value of those attributes.

Usually, the first method a developer adds to this skeleton framework is the init method.
Implementing your own init method allows you to set reasonable default values for a new
object of this class. The first line in your init method MUST be a call to the super class's
init method. 1n ObjC syntax, the last line must be a return self so that the pointer is
passed back to the object which instantiated it.

A second method frequently implemented in a custom class is the validateForSave
method. By extending the default behavior of validateForSave, you can perform addi-
tional validation of the data before generating and sending SQL to the database.

Apple Developer Relations WebObjects Database Connectivity Part 11



Most apps have rudimentary validation logic when the data is collected, but some
validation logic shouldn't be recoded every place in the application that data is
gathered. It is more efficient and robust to include business-level validation here. For
example, if the business rules specify that the entry for a field have a specific format,
this might be a good place to check for that format. By placing the validation logic at
this level, you guarantee that if any new forms gather this data, it is still formatted
correctly without having to reimplement the validation logic within the form directly.
The method should return an exception (the exception really is the return value for the
method - EOF will raise it automatically) if any business rules have been violated -
hopefully with a clearly defined error reason. Otherwise, the method should return nil.

Reformatting Data

The custom class's accessor methods are a prime place to perform global reformatting
of values when necessary. For example, your business logic says that all names are to
be stored in upper case in the database. The setFirstName method would probably
convert the entry into an uppercase version of whatever was entered by the user and
store that result. By forcing the conversion in the custom class, you again guarantee
that any new application or set of code saving this field will uppercase the value before
it is saved to the database. Usually, the set of custom classes created by eomodeler and
extended by the developer are grouped and placed as a separate Framework (choose
Framework from Project type when you start a new project in ProjectBuilder). That

framework can be loaded by any application accessing the database.

Conclusion

Relationships are a very convenient, very powerful mechanism for traversing related
tables in the database without constructing a separate qualifier and fetchSpecification
each time. The use of referential integrity rules ensures that the data stored in the
database does not become “dirty” or corrupted as records are added and deleted to the
database. Additional validation and reformatting of data before it is saved to the
database by a single set of classes also helps keep the data “pure”. A developer need
not worry about all the validation rules if a new form is to be added to the application -
if the framework used by the application is set up to perform the validation and
formatting instead of the application itself.

Apple Developer Relations WebObjects Database Connectivity Part Il



References

http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
WebObjects Developer’s Guide

Enterprise Objects Framework Developer’s Guide
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites

About the Author

Theresa Ray is a Senior Software Consultant for Tensor Information
Systems in Fort Worth, TX. She has worked as a consultant on WehObjects
projects for a wide variety of clients including the U.S. Navy and the
United States Postal Service. Her experience spans all versions of
WebObjects, from 1.0 to 3.5, several versions of EOF, from 1.1t0 2.1, and
NEXTSTEP 3.1 to OPENSTEP 4.2. In addition, she is an Apple-certified
instructor for WebObjects courses.

Tensor Information Systems is a systems integrator providing enterprise

solutions to its customers. Tensor’s employees are experienced in all

NeXT/Apple technologies including OPENSTEP, NEXTSTEP, EOF and WehObjects.
Tensor also provides Apple-certified training in WebObjects, Oracle consulting and
training, as well as systems integration consulting on HP-UX.

You may reach Theresa by e-mail: theresa@tensor.com

http://www.tensor.com

Apple Developer Relations WehObjects Database Connectivity Part 11


http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
http://www.tensor.com

	WebObjects Database Connectivity:
Part II
	The Database Wizard and Enterprise Object Frameworks
	Relationships Between Tables In a Database
	Relationship in Enterprise Object Frameworks: Referential Integrity
	The Relationship Inspector
	Traversing a Relationship
	Adding and Deleting with Relationships
	Custom Validation with Enterprise Object Frameworks
	Reformatting Data
	Conclusion
	References
	About the Author


