
Mesa

ProgrammerÕs Guide
Release 1.5

Athena Design, Inc.
17 Saint MaryÕs Court
Boston, MA 02146

i Release 1.5 051093 Mesa UserÕs Guide

Copyright

Neither this documentation (book) nor the software may be
copied, photocopied, translated, or reduced to any electronic
medium or machine-readable form, in whole or in part, in
violation of the license agreement of the software that
accompanies this book.

All rights reserved. First edition printed 1993.

Written by: Derek Fromhein, Greg Hudson, Linda Julien, and David Pollak
Edited by: Greg Hudson, Linda Julien and David Pollak

Product names mentioned in this book may be trademarks and are used for
identiÞcation purposes.

Copyright '
1992 & 1993

Athena Design, Inc.
17 Saint MaryÕs Court
Boston, MA 02146

Mesa ProgrammerÕs Guide Release 1.5 052193 i

Introduction ... 1
AddIns ... 1
MOLI ... 2

AddIns ... 3
Installing AddIns .. 3
FunctionAddIns... 3
EventAddIns.. 17
AdaptorAddIns .. 43

MOLI... 46
Mesa Object Library Interface ... 46
MOLI Classes .. 48

Appendix A .. I
MOLI and AddIn Constants..I

ii Release 1.5 052193 Mesa ProgrammerÕs Guide

Mesa ProgrammerÕs Guide Release 1.5 052193 1

1. Introduction

There are many ways to customize Mesa to your spe-
cific needs, from writing a simple macro or script, to
seamlessly adding your own functions, to creating a
custom application that makes use of MesaÕs function-
ality.

AddIns

FunctionAddIns

Mesa provides many built-in functions that can be
used in formulas, but you may need other functions
that are specific to your use of a spreadsheet. Exam-
ples of this include bond pricing functions, scientific
and statistical functions that would not be used by
most spreadsheet users, or some proprietary calcula-
tions. AddIns provide the method of adding these
functions to Mesa. Users enter AddIn functions into
formulas the same way they enter built-in functions.

EventAddIns

AddIns add more functions that can be used in formu-
las. EventAddIns process user events and generate
events. An event is something that changes the work-
sheet. For example, if a user selects a range, the
EventAddIn will receive an event. If market data
changes, the EventAddIn will generate an event that

2 Release 1.5 052193 Mesa ProgrammerÕs Guide

will change the corresponding value in the worksheet.
EventAddIns can place items in the AddIn submenu.
EventAddIns allow you to seamlessly extend MesaÕs
functionality.

AdaptorAddIns

AdaptorAddIns allow you to write database adaptors
to connect Mesa to any SQL database system. An
AdaptorAddIn must implement a set of methods that
glue Mesa to the SQL database systemÕs client li-
brary. The structure of the AdaptorAddIn is similar to
the Sybase client library.

MOLI

The Mesa Object Library Interface allows other pro-
grams to access Mesa worksheets. Custom programs
can contain live, editable spreadsheet views and
graphs, insert values into a worksheet, get values
from worksheets, and perform many other functions.
If you are writing a custom application that contains
a graph or has need for a spreadsheet-like data entry
screen, you can use MOLI to easily include these fea-
tures. MOLI also allows you to exchange values with
a Mesa worksheet. MOLI can wait for an event to take
place in a worksheet (e.g., the result of a calculation
exceeding a pre-set level), and cause the custom pro-
gram to do something (e.g., alert the user or execute a
trade.)

Mesa ProgrammerÕs Guide Release 1.5 052193 3

2. AddIns

AddIns allow you to extend the functionality of Mesa
using Objective-C. There are three kinds of AddIns:
FunctionAddIns, which allow you to add new func-
tions for formulas and MScript scripts, EventAddIns,
which allow you to ÒlistenÓ to events in a Mesa work-
sheet and take action when they occur, and Adapto-
rAddins, which allow you to write SQL database
adaptors.

Installing AddIns

There are two ways to install an AddIn. The simplest
is to place it in the /LocalLibrary/MesaAddIns fold-
er. The second way is to load it into Mesa via the Pref-
erences panel. Select Info → Preferences, click on Add,
and an Open Panel will appear. Select the AddIn to
load, and Mesa will remember the location of the Ad-
dIn and load it every time itÕs launched.

FunctionAddIns

AddIn functions allow the user to seamlessly extend
the functionality of Mesa. While Mesa provides a
large set of built-in functions such as cos(), sin(),
sum(), etc., there may be some functions specific to
your application that have not been included. With
FunctionAddIns, these functions can be written and
used from within Mesa as though they were built in.

4 Release 1.5 052193 Mesa ProgrammerÕs Guide

Mesa function AddIns must be written in Objective-C
and must be a subclass of MesaAddIn. They must also
respond to two methods: +funcName and execute:
numberOfParams:sheet:. The factory method
+funcName must return a unique name that the
function will be called with. The second method,
execute:numberOfParams:sheet:, is called when
the cell containing the registered function name is to
be evaluated. The items on the stack will be in reverse
order from how they are passed to the function.

There are two other methods that can be implement-
ed. These are beginRecalc and endRecalc. The
first, beginRecalc, is called just before a recalcula-
tion is to occur. This gives the programmer the option
to do pre-calculation set up such as executing a stored
procedure in a database. The second, endRecalc, is
called after the entire sheet has finished recalcula-
tion. This is the place where clean up operations
should occur.

It is very important to remember that a function Ad-
dIn lives very close to the heart of Mesa. You should
always remember to free any memory that you have
allocated, and never access things that do not belong
to the AddIn itself. Much of the underlying code that
holds Mesa data could change at any time Ñ do not
rely on anything that is not documented. It is ex-
tremely important to follow good programming prac-
tice and use only the functions we provide to access
data from Mesa.

Note: gdb, the GNU debugger supplied with NEXT-
STEP, does not allow the tracing or debugging
of dynamically loaded objects. You must debug
AddIns using printf() statements. You do not
need to restart Mesa each time you make a

Mesa ProgrammerÕs Guide Release 1.5 052193 5

change to your AddIn. To re-load all AddIns
(and EventAddIns), select Info → Preferences
and then click on OK.

Simple example:

One function that is not in Mesa, but might be de-
sired, is a conversion from celsius to fahrenheit. This
would take as an argument the current degrees in cel-
sius and would return the corresponding fahrenheit
value. One could type =ctof(0.0) in a cell, and the
value displayed would be 32.0. LetÕs write it.

The first thing we have to do is include the header
files that are needed. So we would include MesaAd-
dIn.h and MesaError.h and any other header that we
might need. Secondly, we need to create both a header
and a Objective-C file for our function. LetÕs call them
ctof.h and ctof.m. Next, we need to define what ob-
ject we inherit from Ñ in this case MesaAddIn. Final-
ly, we need to define what methods we will respond to:
in this case only +funcName and execute:
numberOfParams:sheet:.

Our files will look like this:
ctof.h:

#import "MesaAddIn.h"
#import <libc.h>

@interface ctofAddIn : MesaAddIn
{
}

+ (char *)funcName;
- execute:(void *)stack numberOfParams:(int)num sheet:(void

*)sh;

@end

6 Release 1.5 052193 Mesa ProgrammerÕs Guide

and ctof.m:
#import "ctof.h"
#import <libc.h>

@implementation ctofAddIn

+ (char *)funcName
{
}

- execute:(void *)stack numberOfParams:(int)num sheet:(void
*)sh

{
}
@end

We now need to flesh out the two methods. First weÕll
have +funcName return the name that it will be refer-
enced with in the spreadsheet. We will call it CTOF,
so +funcName will look like

+ (char *)funcName:
{

return "CTOF";
}

Note: You may use upper or lower case letters for
function names, but by convention, upper case
letters are used.

Mesa ProgrammerÕs Guide Release 1.5 052193 7

Next we need to have the execute:numberOf-
Params:sheet: method do the conversion of the first
argument that is passed to it.

- execute:(void *)stack numberOfParams:(int)num sheet:(void
*)sh

{
AddInValue aiv;
double n = 0;
int error = noError;

initAddInValue(&aiv);
if (num != 1) pushErrorOnStack(stack,badFormulaError);
else
{

popValueFromStack(stack,&aiv);
n = getAddInValueNumber(&aiv,&error);
if (error != noError) pushErrorOnStack(stack,error);
else pushNumberOnStack(stack,(9.0 * n)/5.0 + 32.0);

}
freeAddInValue(&aiv);
return self;

}

We now need to compile the program into object code
that Mesa can read. We start by opening a terminal
window and changing to our current directory. Now
type: cc -O ctof.m -c

This will create ctof.o that Mesa can load in and run.

Try running Mesa and typing =ctof(100) into a cell.
It should be replaced by 212.0.

Note: Note: Do not strip the .o Þle. Mesa relies on
the symbol table in the .o Þle to properly load
it at run time.

Advanced Topics

Now that we have created a simple Mesa function Ad-
dIn, we are ready to explore some more options in cre-
ating AddIns. If you have a need to create many
AddIns, Mesa simplifies this greatly by allowing a

8 Release 1.5 052193 Mesa ProgrammerÕs Guide

single subclass of MesaAddIn to define multiple func-
tions. In this case there are three methods that the
programmer must implement. They are +numFuncs
that returns the number of functions defined in the
AddIn, +funcName: that returns the name of the
function for the corresponding number, and
execute:numberOfParams:sheet:funcNumber:
that is called when a cell that contains the function
that corresponds to the number defined by the given
function name needs to be recalculated. These meth-
ods replace the +funcName and execute:number-
OfParams:sheet: methods. An AddIn should not
contain both a +funcName and a +funcName: (note
the colon) method.

Placing multiple functions in a single AddIn is easier
to administer because there are fewer AddIn files. It
also resolves the issue of linking in multiple copies of
the same libraries. Creating a single AddIn with all
the functions defined inside it and linking the librar-
ies once to the AddIn will solve these problems. Again
we will create a simple example.

Mesa ProgrammerÕs Guide Release 1.5 052193 9

Simple Example

We will now create a Mesa AddIn that defines not
only a function to convert from Celsius to Fahrenheit,
but also from Fahrenheit to Celsius. The basic struc-
ture is the same as the previous one except it uses the
new methods for defining multiple functions.

conv.h:
#import "MesaAddIn.h"

@interface ConvAddIn : MesaAddIn
{
}

+ (int)numFuncs;
+ (char *)funcName:(int)functionNumber;
- execute:(void *)stack numberOfParams:(int)num sheet:(void

*)sh funcNumber:(int)fn;

@end

conv.m:

#import "conv.h"
#import <libc.h>

@implementation ConvAddIn

+ (int)numFuncs
{

return 2;
}

+ (char *)funcName:(int)functionNumber;
{

static char *funcs[] = {"FTOC","CTOF"};

return funcs[functionNumber];
}

10 Release 1.5 052193 Mesa ProgrammerÕs Guide

- execute:(void *)stack numberOfParams:(int)num sheet:(void
*)sh funcNumber:(int)fn

{
AddInValue aiv;
double n = 0;
int error = noError;

initAddInValue(&aiv);

if (num != 1) pushErrorOnStack(stack,badFormulaError);
else
{

popValueFromStack(stack,&aiv);
n = getAddInValueNumber(&aiv,&error);
if (error != noError) pushErrorOnStack(stack,error);
else

switch(fn)
{

case 0:
pushNumberOnStack(stack,(5.0 * (n - 32.0))/

9.0);
break;

case 1:
pushNumberOnStack(stack,(9.0 * n)/5.0 + 32.0);
break;

}
}
freeAddInValue(&aiv);
return self;

}
@end

Creating multi-function AddIns is nearly as simple as
creating single function AddIns. One thing to note is
that if your AddIn is large enough to have multiple
files, they should be combined with the following com-
mand: ld -r foo1.o foo2.o foo3.o -o out.o

Mesa ProgrammerÕs Guide Release 1.5 052193 11

Methods

Factory Methods

funcName
+ (char *)funcName

Either this method or the methods funcName: and
numFuncs must be implemented. This method returns the
name for an individual function.

funcName:
+ (char *)funcName:(int)functionNumber

This method returns the name for the AddIn function
numbered functionNumber. This method must be defined for
multiple function AddIns.

numFuncs
+ (int)numFuncs

If there is more than one function defined in an AddIn, then
the total number of functions must be returned here. This
method must be implemented for multiple function AddIns.

Class Methods

beginRecalc
- beginRecalc

This method is called when a recalculation is about to begin.
Pre-execution initialization should be done in this method,
such as the query of a database before a calculation.

endRecalc
- endRecalc

This method is called when a recalculation has just ended.
Post-recalculation clean-up should be implemented in this
method.

12 Release 1.5 052193 Mesa ProgrammerÕs Guide

execute:numberOfParams:sheet:
- execute:(void *)stack numberOfParams:(int)num

sheet:(void *)sheet
This is the method that is called when there is a single
defined function in the AddIn. This method is called when
the current worksheet is about to be recalculated and a cell
has been found with the function name defined by
+funcName. To pop the arguments off of the stack use
popValueFromStack(). For more information about stack
manipulation, see ÒManipulating Items on the AddIn stackÓ
on page 13. If there are values to be returned, they should be
pushed onto the stack with one of pushNumberOnStack(),
pushStringOnStack(), pushAddressOnStack(),
pushRangeOnStack(), or pushErrorOnStack(). You
should always be certain to remove all the values on the
stack that have been passed to the function.

execute:numberOfParams:sheet:funcNumber:
- execute:(void *)stack numberOfParams:(int)num sheet:

(void *)sheet funcNumber:(int)funcNum
This method will be called when a cell that contains one of
the functions named in +funcName: needs to be
recalculated. This method will only be called if +numFuncs
is defined. To pop the arguments off of the stack, use
popValueFromStack(). For more information about stack
manipulation, see ÒManipulating Items on the AddIn stackÓ
on page 13. If there are values to be returned, they should be
pushed onto the stack with one of pushNumberOnStack(),
pushStringOnStack(), pushAddressOnStack(),
pushRangeOnStack(), or pushErrorOnStack(). You
should always be certain to remove all the values on the
stack that have been passed to the function.

Mesa ProgrammerÕs Guide Release 1.5 052193 13

Other Methods

next:
- (const char *)next:(const char *)string

This method defines a list for MesaÕs NEXT() function. It
should return the next logical string for string, or NULL if no
next string is available.

Functions that can be used by AddIns

Manipulating Items on the AddIn stack

numberOfItemsOnStack()
int numberOfItemsOnStack(void *stack)

If the stack is passed to this function, it will return the total
number of items on the stack. This is different from the
number of items on the stack for your function. The number
of parameters passed to your function is given in the
numberOfParameters:(int) variable.

popValueFromStack()
void popValueFromStack(void *stack, AddInValue *value)

Pops the top element off of stack. Remember that the stack is
in reverse order. I.e., If your function is called with
=foo(1,2,3,4), the first pop will take 4 off the stack, the
next 3, and so on.

Note: You must free the value you pop off the stack
using freeAddInValue() in order to avoid
memory leaks.

14 Release 1.5 052193 Mesa ProgrammerÕs Guide

pushAddressOnStack()
void pushAddressOnStack(void *stack, short row, short col,

void *sheet)
Pushes a cell address with coordinates row and col onto
stack. The sheet argument is either the sheet that the
function was called from or the sheet that is referred to by
the address in a value that the function was passed as a
parameter. This is the void pointer in the
AddInValue.values.ad.cells structure element.

pushErrorOnStack()
void pushErrorOnStack(void *stack, int error)

Pushes the error error onto stack. This is typically used when
an incorrect number of parameters is passed to the function
or if the calculation yields an error. For a list of
FunctionAddIn Errors see the Appendix.

pushNumberOnStack()
void pushNumberOnStack(void *stack, double value)

Pushes the number value onto stack. This is generally used
at the end of execution of the function, and value is typically
the return value.

pushRangeOnStack()
void pushRangeOnStack(void *stack, short ur, short uc,

short lr, short lc, void *sheet)
Pushes a cell range specified by the coordinates ur, uc, lr, and
lc onto stack. The sheet argument is either the sheet that the
function was called from or the sheet that is referred to by
the address in a value that the function was passed as a
parameter. This is the in the AddInValue.values.ad.cells
structure element. The range is specified as Top Row, Left
Column, Bottom Row, Right Column.

Mesa ProgrammerÕs Guide Release 1.5 052193 15

pushStringOnStack()
void pushStringOnStack(void *stack, const char *string)

Pushes string onto stack. This is generally used at the end of
execution of the function, and string is the typically the
return value. Mesa makes a copy of the string that is passed
to it. The string may be of any length and must be null-
terminated.

Extracting Values

freeAddInValue()
void freeAddInValue(AddInValue *value)

Use this function to free an AddInValue allocated with
initAddInValue().

Note: Remember to free all memory you allocate in
order to avoid memory leaks.

getAddInValueNumber()
double getAddInValueNumber(AddInValue *value,

int *error)
Returns the numerical value of value. A value popped off the
stack may contain an address or a range. The
getAddInValueNumber() function converts the
AddInValue to a double. It also returns an error code in error
that should be compared with the AddIn errors. If the error
code is anything other than noError, the returned value is
not valid. For a list of AddIn errors, see ÒÓ on pageXI.

getAddInValue()
void getAddInValue(AddInValue *value1,

AddInValue *value2, int *error)
A value popped off the stack may contain an address or a
range. You may want to be guaranteed a value that is either
a string or a number. getAddInValue() converts
AddInValues that are addresses or ranges to either strings,
numbers, or errors. Call getAddInValue() with the value

16 Release 1.5 052193 Mesa ProgrammerÕs Guide

popped off the stack as value1 and an initialized AddInValue
as value2. The error value will be returned as error. If the
error is equal to noError, the returned value will be either
a number or a string (the type is designated in the
AddInValue.type field.) If the first AddInValue is an
address or a range, then all referenced cells will be
recalculated.

initAddInValue()
void initAddInValue(AddInValue *value)

Use this function to allocate storage space for value so that it
can be popped off of the stack.

Note: Remember to free all memory that you allo-
cate in order to avoid memory leaks.

Accessing the Sheet

getSheetFromPointer()
id getSheetFromPointer(void *sheet)

This function returns the id of sheet.

Note: Never call Mesa EventAddIn calls with this
returned sheet id. This value can be cached
for use within an EventAddIn. Only the Mesa
functions outlined in this section should be
used from within a function AddIn.

getValueForCell()
int getValueForCell(void *sheet, short row, short col,

int *error, AddInValue *value)
Returns 1 if the cell specified by the coordinates row and col
exists in sheet, 0 if not. The sheet argument should come from
the AddInValue.values.ad.cells structure element. A
range pushed on the stack may refer to a sheet other than the

Mesa ProgrammerÕs Guide Release 1.5 052193 17

current worksheet (e.g., a linked worksheet.) If the cell
exists, it will be returned in value. The error is returned in
error. This function can be used to retrieve the value of an
array of cells. This is valuable if a parameter to your function
refers to a range of cells on the worksheet and you need to
retrieve the value of each cell.

Types

numberAddInValue The AddInValue is of type and the value is
located in AddInValue.values.number.

stringAddInValue The AddInValue is of type char * and is located
in AddInValue.values.string. Do not change this
variable.

addressAddInValue The row and column of the address are in row1
and col1 and the worksheet is in AddInVal-
ue.values.ad.cells. To convert this to a dou-
ble, use getAddInValueNumber(). To convert to a
value (string, double, or error), use getAddIn-
Value().

rangeAddInValue The row and column of the address on the cell
in the upper left corner are in row1 and col1,
the address of the cell in the lower right is
in row2 and col2, and the worksheet is in Add-
InValue.values.ad.cells. To convert this to a
double, use getAddInValueNumber(). To convert
to a value (string, double, or error), use
getAddInValue(). If you want to collect data
from all the cells in the range, use getValue-
ForCell() for each cell in the range.

errorAddInValue The AddInValue is of type Error.

EventAddIns

EventAddIns provide a way for custom programmers
to extend the capability of Mesa from within Mesa it-
self. EventAddIns allow a custom programmer to cre-

18 Release 1.5 052193 Mesa ProgrammerÕs Guide

ate an AddIn to ÒlistenÓ to events that occur in the
spreadsheet. These events can include the opening of
new worksheets, mouse clicks, range selection, cell
editing, and most any other significant event that
might occur when a user uses the program. The pro-
grammer subscribes to the various events by simply
implementing the method calls that are to be listened
for. Any manipulation that a user can do to a work-
sheet can be done by the EventAddIn. EventAddIns
can also add their own menu structures to the Mesa
menu. Along with adding to the Mesa menu structure,
they can also put up Panels, Alerts, and do most any-
thing that a stand-alone application can do from with-
in Mesa itself.

The creation of an EventAddIn is not much more dif-
ficult than the creation of a function AddIn. There is
one method that all EventAddIns must implement,
which names the AddIn. The method +eventName
returns a text string that gives the EventAddIn a
unique name. It is very important that your EventAd-
dIn has a unique name. You can create an AddIn that
is both a function AddIn and an EventAddIn by imple-
menting the +eventName and either the +func-
Name or +funcName: methods.

When creating an EventAddIn, remember that you
are working very close to the heart of Mesa. Thus, er-
rors that you make can cause Mesa to unexpectedly
quit.

Note: When exiting, always remember to free any
memory allocated in order to avoid memory
leaks. This is extremely important, since an
EventAddIn can be loaded and unloaded at
any point during the use of Mesa.

Mesa ProgrammerÕs Guide Release 1.5 052193 19

EventAddIns need to be written in Objective-C and
should be a subclass of Object.

Methods

Class Methods

eventName
+ (char *)eventName

This method must be implemented. It returns a unique name
for the EventAddIn.

Delegate Methods

A message will be sent to the EventAddIn at the ap-
propriate time if the following methods are imple-
mented. Nothing more than implementing the
appropriate methods needs to be done. These methods
are the way in which the EventAddIn is informed of
what is happening to the worksheet.

addInScriptChanged:
- addInScriptChanged:sender

Sent when the EventAddIn header changes

baseFormatChanged:
- baseFormatChanged:sender

Sent when the global sheet format changes.

dataEntered:string:intoCellRow:col:
- dataEntered:sender string:(char *)string

intoCellRow:(int)row col:(int)col
Sends the input string string and cell address row and col of
data entered by the user.

20 Release 1.5 052193 Mesa ProgrammerÕs Guide

- doubleClick:onCellRow:col:
- doubleClick:sender onCellRow:(int)row col:(int)col

Gives the cell address row and col of a double-click of the
mouse.

labelTableUpdated:
- labelTableUpdated:sender

Informs the AddIn of a change to the Label Index.

pageWillPrint:page:of:pageRect:viewRect:
- pageWillPrint:sender page:(int)num of:(int)of pageRect:

(NXRect *)rect viewRect:(NXRect *)view
Before a page is printed, this method is called. num is the
number of the page that is about to be printed, of is the total
number of pages, rect is a rectangle the size of the page, and
view is a rectangle the size of the visible (spreadsheet) area
that will be printed.

rangeCleared:upperRow:col:lowerRow:col:
- rangeCleared:sender upperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Informs the AddIn that the range specified by ur, uc, lr, and
lc has been cleared.

rangeCopied:fromUpperRow:col: lowerRow:col:toUpperRow:col:
lowerRow:col:
- rangeCopied:sender fromUpperRow:(int)ur1 col:(int)uc1

lowerRow:(int)lr1 col:(int)lc1 toUpperRow:(int)ur2 col:
(int)uc2 lowerRow:(int)lr2 col:(int)lc2
Gives the source range ur1, uc1, lr1, lc1 and destination
range ur2, uc2, lr2, and lc2 for a range copy operation.

rangeDidRecalc:upperRow:col:lowerRow:col:
- rangeDidRecalc:sender upperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Informs the AddIn that the range specified by ur, uc, lr, and
lc has been recalculated.

Mesa ProgrammerÕs Guide Release 1.5 052193 21

rangeFormatChanged:upperRow:col:lowerRow:col:
- rangeFormatChanged:sender upperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Informs the AddIn of a change in the format of the range
specified by ur, uc, lr, and lc.

rangeMoved:fromUpperRow:col:lowerRow:col:toUpperRow:col:
lowerRow:col:
- rangeMoved:sender fromUpperRow:(int)ur1 col:(int)uc1

lowerRow:(int)lr1 col:(int)lc1 toUpperRow:(int)ur2 col:
(int)uc2 lowerRow:(int)lr2 col:(int)lc2
Gives the source range ur1, uc1, lr1, lc1 and destination
range ur2, uc2, lr2, and lc2 for a range move operation.

rangeSelected:upperRow:col:lowerRow:col:
- rangeSelected:sender upperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Gives the source range ur1, uc1, lr1, lc1 and destination
range ur2, uc2, lr2, and lc2 for a range select operation.

sheetBecameTop:
- sheetBecameTop:sender

Sent when the worksheet has become the topmost (current)
worksheet.

sheetDidClose:
- sheetDidClose:sender

Sent when the worksheet has closed.

sheetDidOpen:
- sheetDidOpen:sender

Sent when the worksheet has opened.

sheetDidPrint:
- sheetDidPrint:sender

Sent when the worksheet has completed printing.

22 Release 1.5 052193 Mesa ProgrammerÕs Guide

sheetDidRecalc:
- sheetDidRecalc:sender

Sent when the worksheet has completed recalculation.

sheetDidRedisplay:
- sheetDidRedisplay:sender

Sent when the worksheet has been re-displayed.

sheetResignedTop:
- sheetResignedTop:sender

Sent when the worksheet has resigned its position as the
topmost (current) worksheet.

sheetSizeChanged:toWidth:height:
- sheetSizeChanged:sender toWidth:(int)width height:

(int)height
Sent when the worksheet size has changed to width columns
and height rows.

sheetWillClose:
- sheetWillClose:sender

Sent when the worksheet is about to close.

sheetWillPrint:
- sheetWillPrint:sender

Sent when the worksheet is about to be printed.

Sheet Methods

These methods can be sent to the ÒsenderÓ of the del-
egate methods.

addLabel:upperRow:col:lowerRow:col:
- addLabel:(char *)label upperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Assigns the name label to the range specified by ur, uc, lr,
and lc.

Mesa ProgrammerÕs Guide Release 1.5 052193 23

associateLabel:with:and:num:offset:orientation:
- associateLabel:(char *)label with:(char **)tags and:(void

*)mv num:(int)num offset:(int)offset orientation:
(int)orient
This is an extremely powerful but complex method. Please
read carefully. It associates an array of strings tags with the
label label. Mesa will then look for that string in the range of
the label and place the corresponding value at a specified
offset from the cell the string is found in. The offset can be
either in the horizontal or vertical direction as specified by
orient.

associateRangeUpperRow:col:lowerRow:col:with:and:num:
offset:orientation:
- associateRangeUpperRow:(int)ur col:(int)uc lowerRow:

(int)lr col:(int)lc with:(char **)tags and:(void *)mv num:
(int)num offset:(int)offset orientation:(int)orient
This is an extremely powerful but complex method. Please
read carefully. It associates an array of strings tags with the
range specified by ur, uc, lr, and lc. Mesa will then look for
that string in the range and place the corresponding value at
a specified offset from the cell the string is found in. The
offset can be either in the horizontal or vertical direction as
specified by orient.

changed
- (BOOL)changed

Returns whether the worksheet has changed since the last
save operation.

copyRangeUpperRow:col:lowerRow:col:toUpperRow:col:
lowerRow:col:
- copyRangeUpperRow:(int)sur col:(int)uc1 lowerRow:

(int)lr1 col:(int)lc1 toUpperRow:(int)ur2 col:(int)uc2
lowerRow:(int)lr2 col:(int)lc2
Copies the information from the source range specified by
ur1, uc1, lr1, and lc1 to the destination range specified by
ur2, uc2, lr2, and lc2. If the destination range is smaller than

24 Release 1.5 052193 Mesa ProgrammerÕs Guide

the source range, the data will be clipped. If the destination
range is larger than the source range, the information will be
repeated to fill the destination range.

createGraphWithRect:type:upperRow:col:lowerRow:col:
- (char *)createGraphWithRect:(NXRect *)rect type:(int)type

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
Creates a graph of type type in rect, using the data in the
range specified by ur, uc, lr, and lc. For a list of constants for
graph types, see the table ÒGraph TypesÓ on pageII.

currentRangeUpperRow:col:lowerRow:col:
- currentRangeUpperRow:(int *)ur col:(int *)uc lowerRow:

(int *)lr col:(int *)lc
Returns the currently selected range, placing the coordinates
in ur, uc, lr, and lc.

deleteLabel:
- deleteLabel:(char *)name

Deletes the label name from the Label Index.

deleteScript:
- deleteScript:(char *)name

Deletes the MScript script name.

doRecalc
- doRecalc

Forces the worksheet to recalculate itself.

findLabel:upperRow:col:lowerRow:col:
- (BOOL)findLabel:(char *)name upperRow:(int *)ur col:(int

*)uc lowerRow:(int *)lr col:(int *)lc
Finds the range coordinates ur, uc, lr, and lc for the range
label name. Returns TRUE if the label is found, FALSE if itÕs
not.

Mesa ProgrammerÕs Guide Release 1.5 052193 25

getCellStringRow:col:
- (char *)getCellStringRow:(int)row col:(int)col

Returns the actual string typed into the cell address row and
col by the user. Mesa stores both the user-entered string and
its ÒvalueÓ Ñ this method returns the input string, not the
value.

getEventHeader:
- (char *)getEventHeader:(char *)name

This method returns the event header for the EventAddIn
name. The event header is ASCII text that can be edited by
the user in the Event Inspector. Information specific to the
worksheet can be stored in the event header for later use by
the EventAddIn.

getLabelNumber:
- (char *)getLabelNumber:(int)n

Returns the name of the nth label in the worksheet.

getMOLIValue:row:col:
- getMOLIValue:(void *)value row:(int)row col:(int)col

Retrieves value from the spreadsheet from the cell address
row and col. The item will be in a structure pointed to by
value. The structure is in this format:

enum {stringMOLIValue, numberMOLIValue, errorMOLIValue};

typedef struct _MOLIValue {
int type;
short row,col;
union {

char *string;
double number;
int error;
} values;

} MOLIValue;

Note: When you are done with the information, call
freeMOLIValue(int n, MOLIValue *value) to
free the structure.

26 Release 1.5 052193 Mesa ProgrammerÕs Guide

getMOLIValues:num:upperRow:col:lowerRow:col:
- getMOLIValues:(void **)values num:(int *)num upperRow:

(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
Constructs an array of values from the spreadsheet from the
range specified by ur, uc, lr, and lc, placing the pointer to this
array in values and the total number of values in num. The
array that is returned will be sparse (i.e., only cells that exist
will be returned). Remember to test the address of each value
and its type. For the format of the MOLIValue structure, see
ÒgetMOLIValue:row:col:Ó on page25.

Note: When you are done with the information, call
freeMOLIValue(int n, MOLIValue *value) to
free each structure in the array, and then call
free() on the array itself.

getReportNumber:
- (char *)getReportNumber:(int)n

Returns the name of the nth defined report in the worksheet.

getTheGraphColor:element:
- (NXColor)getTheGraphColor:(char *)name element:(int)n

Returns the color of the nth element of the graph name.

getTheGraphColor:item:
- (NXColor)getTheGraphColor:(char *)name item:(int)item

Returns the color of the item given by the constant item from
the graph name. For a table of graph items that have color,
see ÒGraph Item Constants with ColorÓ on pageII.

getTheGraphDouble:item:
- (double)getTheGraphDouble:(char *)name item:(int)item

Returns the double value of the item given by the constant
item from the graph name. For a table of graph items that
have double values, see ÒGraph Item Constants with Double
ValuesÓ on pageIII.

Mesa ProgrammerÕs Guide Release 1.5 052193 27

getTheGraphFont:item:
- getTheGraphFont:(char *)name item:(int)item

Returns the font of the item given by the constant item from
the graph name. For a table of graph items that have fonts,
see ÒGraph Item Constants with FontsÓ on pageIV.

getTheGraphInt:item:
- (int)getTheGraphInt:(char *)name item:(int)item

Returns the integer value of the item given by the constant
item from the graph name. For a table of graph items that
have integer values, see ÒGraph Item Constants with Integer
ValuesÓ on pageV.

getTheGraphRange:item:range::::
- getTheGraphRange:(char *)name item:(int)item range:(int

*)ur :(int *)uc :(int *)lr :(int *)lc
Returns the range reference of the item given by the constant
item from the graph name, placing the coordinates in ur, uc,
lr, and lc. For a table of graph items that have range
references, see ÒGraph Item Constants with Range
ReferencesÓ on pageIV.

getTheGraphString:item:
- (char *)getTheGraphString:(char *)name item:(int)item

Returns the string value of the item given by the constant
item from the graph name. For a table of graph items that
have string values, see ÒGraph Item Constants with String
ValuesÓ on pageIII.

miniturizeWindow:
- miniturizeWindow:(int)win

Miniaturizes window numbered win. Note the spelling of the
method.

28 Release 1.5 052193 Mesa ProgrammerÕs Guide

moveRangeUpperRow:col:lowerRow:col:toUpperRow:col:
lowerRow:col:(int)
- moveRangeUpperRow:(int)ur1 col:(int)uc1 lowerRow:

(int)lr1 col:(int)lc1 toUpperRow:(int)ur2 col:(int)uc2
lowerRow:(int)lr2 col:(int)lc2
Copies the information from the source range specified by
ur1, uc1, lr1, and lc1 to the destination range specified by
ur2, uc2, lr2, and lc2. The ranges must be of the same size or
an error will result.

nameOfQuery:
- (char *)nameOfQuery:(int)n

Returns the name of the nth Sybase query in the worksheet.

nameOfScript:
- (char *)nameOfScript:(int)n

Returns the name of the nth MScript script in the worksheet.

numberOfLabels
- (int)numberOfLabels

Returns the total number of labels defined in the worksheet.

numQueries
- (int)numQueries

Returns the total number of Sybase queries that are defined
by the Query Inspector in the worksheet.

numReports
- (int)numReports

Returns the total number of defined Reports in the
worksheet.

numScripts
- (int)numScripts

Returns the total number of defined MScript scripts in the
worksheet.

Mesa ProgrammerÕs Guide Release 1.5 052193 29

performQuery:
- performQuery:(char *)name

Performs the Sybase query name. Note that the query must
be defined and built with the Query Inspector before being
used in an EventAddIn.

printReport:
- printReport:(char *)name

Prints the pre-defined Report name.

putMOLIValue:row:col:
- putMOLIValue:(void *)value row:(int)row col:(int)col

Places value in the spreadsheet in the cell address row and
col. The value should be in an structure pointed to by value.
Mesa removes the specified cell and then inserts the supplied
information. Remember to set the row and col of the
MOLIValues. If the cell is not in the address specified, it will
not be inserted. The structure is in the format:

enum {stringMOLIValue, numberMOLIValue, errorMOLIValue};

typedef struct _MOLIValue {
int type;
short row,col;
union {

char *string;
double number;
int error;
} values;

} MOLIValue;

Note: When you are done with the information, call
freeMOLIValue(int n, MOLIValue *value) to
free the structure.

putMOLIValues:num:upperRow:col:lowerRow:col:
- putMOLIValues:(void *)values num:(int)num upperRow:

(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
Places an array of num MOLIValues values in the
worksheet. The values will be placed in the worksheet in the
range specified by ur, uc, lr, and lc. Mesa removes all cells

30 Release 1.5 052193 Mesa ProgrammerÕs Guide

from that range and then inserts the supplied cells. Make
sure to set the row and col for each of the MOLIValues. If a
cell is not in the range specified, it will not be inserted.

Note: When you are done with the information, call
freeMOLIValue(int n, MOLIValue *value) to
free each structure in the array, then call
free() on the array itself.

recalcRangeUpperRow:andCol:lowerRow:andCol:
- recalcRangeUpperRow:(int)ur andCol:(int)uc

lowerRow:(int)lr andCol:(int)lc
Recalculates the range of cells specified by ur, uc, lr, and lc.

redrawAll
- redrawAll

Forces all open views into the worksheet to redraw
themselves.

resetColSizeFrom:to:
- resetColSizeFrom:(int)first to:(int)last

Set the column size of the range of columns specified by first
and last to the default width for the sheet.

resetRowSizeFrom:to:
- resetRowSizeFrom:(int)first to:(int)last

Set the row size of the range of rows specified by first and last
to the default height for the sheet.

runScript:
- runScript:(char *)name

Runs the pre-defined MScript script name.

save:
- save:sender

Saves the worksheet with its current name. Send self as
sender.

Mesa ProgrammerÕs Guide Release 1.5 052193 31

saveAs:
- saveAs:sender

Displays a Save panel for the user to name the file and saves
the worksheet under the new name.

scriptFunc:num:return:
- (int)scriptFunc:(AddInValue *)values num:(int)num

return:(AddInValue *)return
Allows an AddIn to be called from MScript. values is an array
of AddIn values which are the parameters. num is the
number of values. The sheet may be modified from an Event
AddIn. If this method returns TRUE, it has set value to be
the value to push back on the stack. This method differs from
a Function AddIn because it can modify other cells during its
execution.

setAutoRecalcOn:
- setAutoRecalcOn:(int)state

Sets AutoRecalc on if state is 1 or off if state is 0.

setBestColSizeFrom:to:
- setBestColSizeFrom:(int)first to:(int)last

SmartSizes the range of columns specified by first and last,
to the best width for the data they contain.

setBestRowSizeFrom:to:
- setBestRowSizeFrom:(int)first to:(int)last

SmartSizes the range of rows specified by first and last, to
the best height for the data they contain.

setBkgNXColor:
- setBkgNXColor:(NXColor)color

Sets the worksheetÕs background color to color.

32 Release 1.5 052193 Mesa ProgrammerÕs Guide

setCellString:row:col:
- setCellString:(char *)string row:(int)row col:(int)col

Sets the input string of the cell at row and col to string. This
enters the string as though it were typed by the user.
updateDataEntry should be called after this method in
order to update what is displayed on the screen. See
ÒupdateDataEntryÓ on page41.

setChanged:
- setChanged:(BOOL)bool

Sets whether the worksheet has been changed. This method
should be called when you make a change to the worksheet.

setClearBkg:
- setClearBkg:(int)state

Sets the background of the sheet clear if state is 1 or opaque
if state is 0. This is useful for pasting EPS images of
worksheet ranges into other applications.

setColSize:fromCol:to:
- setColSize:(int)size fromCol:(int)first to:(int)last

Set the width of the range of columns specified by first and
last. The argument size is in pixels.

setColWidth:
- setColWidth:(int)width

Sets the global column width of the worksheet to width
pixels.

setEventHeader:forAddIn:
- setEventHeader:(char *)string forAddIn:(char *)name

This method sets the event header for the EventAddIn name
to string. The event header is ASCII text that can be edited
by the user in the Event Inspector. Information specific to
the worksheet can be stored in the event header for later use
by the EventAddIn.

Mesa ProgrammerÕs Guide Release 1.5 052193 33

setGrid:
- setGrid:(int)state

Sets the worksheetÕs grid on if state is 1 or off if state is 0.

setGridNXColor:
- setGridNXColor:(NXColor)color

Sets the grid color of the worksheet to color.

setMaxNumberOfColumns:
- setMaxNumberOfColumns:(int)cols

Changes the worksheet width to cols columns.

setMaxNumberOfRows:
- setMaxNumberOfRows:(int)rows

Changes the worksheet height to rows columns.

setPathName:
- setPathName:(char *)path

Sets the path for the worksheet to path.

setRangeToDefaultsUpperRow:col:lowerRow:col:
- setRangeToDefaultsUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
Sets the range specified by ur, uc, lr, and lc to the formatting
defaults for its Style Template.

setRangeUpperRow:col:lowerRow:col:toAlignment:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toAlignment:(int)align
Sets the range specified by ur, uc, lr, and lc to the alignment
align. The alignment options are

¥ leftMesaAlign
¥ rightMesaAlign
¥ centerMesaAlign
¥ smartMesaAlign

34 Release 1.5 052193 Mesa ProgrammerÕs Guide

¥ ÞllMesaAlign
You can view the different alignments from within Mesa by
changing the alignment of a range with the Cell Style
Inspector.

setRangeUpperRow:col:lowerRow:col:toAltColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toAltColor:(NXColor)color
Sets the alternate text color (the color of negative values) in
the range specified by ur, uc, lr, and lc to color.

setRangeUpperRow:col:lowerRow:col:toBaseFormat:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBaseFormat:(int)b
Sets the range to one of the Eight Style Template formats.
You can view different templates from within Mesa by
changing the Style Templates for a range of cells with the
Cell Style Inspector. The Style Template attributes can be
defined with the Sheet Inspector.

setRangeUpperRow:col:lowerRow:col:toBaseline:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBaseline:(int)state
Sets the range specified by ur, uc, lr, and lc to baseline
alignment if state is 1, or non-wrap if state is 0.

setRangeUpperRow:col:lowerRow:col:toBkgColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBkgColor:(NXColor)color
Sets the background color of the range specified by ur, uc, lr,
and lc to color.

Mesa ProgrammerÕs Guide Release 1.5 052193 35

setRangeUpperRow:col:lowerRow:col:toBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBorder:(int)type
Sets the border type of the range specified by ur, uc, lr, and
lc to type. For a list of the border type constants, see
ÒBordersÓ on pageIX. You can view different border types
from within Mesa by changing the Border Type for a range of
cells with the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toBorderColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBorderColor:(NXColor)color
Sets the border color of the range specified by ur, uc, lr, and
lc to color.

setRangeUpperRow:col:lowerRow:col:toBottomBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toBottomBorder:(int)type
Sets the Bottom of the range specified by ur, uc, lr, and lc to
type. For a list of the border type constants, see ÒBordersÓ on
page IX. You can see what they will look like from within
Mesa by changing the Border Type for a range of cells with
the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toColor:(NXColor)color
Sets the text color of the range specified by ur, uc, lr, and lc
to color.

setRangeUpperRow:col:lowerRow:col:toDefaultAlignment:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultAlignment:(int)state
Sets the range specified by ur, uc, lr, and lc to its default text
alignment if state is 1, or resets it to the text alignment
stored in the manual formatting of each cell in the range if
state is 0.

36 Release 1.5 052193 Mesa ProgrammerÕs Guide

setRangeUpperRow:col:lowerRow:col:toDefaultAltColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultAltColor:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
alternate color if state is 1, or resets it to the alternate color
stored in the manual formatting of each cell in the range if
state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultBkg:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultBkg:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
background color if state is 1, or resets it to the background
color stored in the manual formatting of each cell in the
range if state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultBorder:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
border type if state is 1, or resets it to the border type stored
in the manual formatting of each cell in the range if state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultBorderColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultBorderColor:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
border color if state is 1, or resets it to the border color stored
in the manual formatting of each cell in the range if state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultDisplayFormat:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultDisplayFormat:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
display format if state is 1, or resets it to the display format
stored in the manual formatting of each cell in the range if
state is 0.

Mesa ProgrammerÕs Guide Release 1.5 052193 37

setRangeUpperRow:col:lowerRow:col:toDefaultFont:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultFont:(int)state
Sets the range specified by ur, uc, lr, and lc to its default font
if state is 1, or resets it to the font stored in the manual
formatting of each cell in the range if state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultTextColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultTextColor:(int)state
Sets the range specified by ur, uc, lr, and lc to its default text
color if state is 1, or resets it to what is stored in the manual
formatting of each cell in the range if state is 0.

setRangeUpperRow:col:lowerRow:col:toDefaultUnderline:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDefaultUnderline:(int)state
Sets the range specified by ur, uc, lr, and lc to its default
underline type if state is 1, or resets it to the underline type
stored in the manual formatting of each cell in the range if
state is 0.

setRangeUpperRow:col:lowerRow:col:toDisplayFormat:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toDisplayFormat:(int)format
Sets the Display Format for the range specified by ur, uc, lr,
and lc to format. For a list of formatting constants, see
ÒDisplay FormatsÓ on pageVIII. You can view different
display formats from within Mesa by changing the Display
Format for a range of cells with the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toFont:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toFont:font
Sets the font of the range specified by ur, uc, lr, and lc to font.

38 Release 1.5 052193 Mesa ProgrammerÕs Guide

setRangeUpperRow:col:lowerRow:col:toHasBkgColor:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toHasBkgColor:(int)state
Sets the range specified by ur, uc, lr, and lc to have a
background color if state is 1, or a clear background if state is
0.

setRangeUpperRow:col:lowerRow:col:toLeftBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toLeftBorder:(int)type
Sets the Left border type of range specified by ur, uc, lr, and
lc to type. For a list of the border type constants, see
ÒBordersÓ on pageIX. You can view different borders from
within Mesa by changing the Border Type for a range of cells
with the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toMode:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toMode:(int)mode
Sets the input mode of the cells in the range specified by ur,
uc, lr, and lc to mode. For a list of input type constants, see
ÒInput TypeÓ on pageIX.

setRangeUpperRow:col:lowerRow:col:toPrecision:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toPrecision:(int)prec
Sets the display precision for the range specified by ur, uc, lr,
and lc to prec. The precision must be an integer between 0
and 15.

setRangeUpperRow:col:lowerRow:col:toRightBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toRightBorder:(int)type
Sets the Right border type of the range specified by ur, uc, lr,
and lc to type. For a list of the border type constants, see
ÒBordersÓ on pageIX. You can view different borders from
within Mesa by changing the Border Type for a range of cells
with the Cell Style Inspector.

Mesa ProgrammerÕs Guide Release 1.5 052193 39

setRangeUpperRow:col:lowerRow:col:toTopBorder:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toTopBorder:(int)type
Sets the Top border type of the range specified by ur, uc, lr,
and lc to type. For a list of the border type constants, see
ÒBordersÓ on pageIX. You can view different borders from
within Mesa by changing the Border Type for a range of cells
with the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toUnderline:
- (int)ur col:(int)uc lowerRow:(int)lr col:(int)lc toUnderline:

(int)type
Sets the Right underline type of the range specified by ur, uc,
lr, and lc to type. You can view different underline types from
within Mesa by changing the underline type for a range of
cells with the Font view of the Cell Style Inspector.

setRangeUpperRow:col:lowerRow:col:toWrap:
- setRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr

col:(int)lc toWrap:(int)state
Sets the range specified by ur, uc, lr, and lc to wrap
alignment if state is 1, or non-wrap if state is 0.

setRowHeight:
- setRowHeight:(int)height

Sets the global row height of the worksheet to height pixels.

setRowSize:fromRow:to:
- setRowSize:(int)size fromRow:(int)first to:(int)last

Set the height of the range of rows specified by first and last.
The argument size is in pixels.

setTheGraph:element:color:
- setTheGraph:(char *)name element:(int)n color:

(NXColor)color
Sets the nth element of the graph name to color.

40 Release 1.5 052193 Mesa ProgrammerÕs Guide

setTheGraph:item:color:
- setTheGraph:(char *)name item:(int)item color:

(NXColor)color
Sets the item given by the constant item on the graph name
to color. For a table of graph items that have color, see
ÒGraph Item Constants with ColorÓ on pageII.

setTheGraph:item:doubleVal:
- setTheGraph:(char *)name item:(int)item

doubleVal:(double)value
Sets the item given by the constant item on the graph name
to the double value value. For a table of graph items that
have double values, see ÒGraph Item Constants with Double
ValuesÓ on pageIII.

setTheGraph:item:font:
- setTheGraph:(char *)name item:(int)item font:font

Sets the item given by the constant item on the graph name
to font. For a table of graph items that have fonts, see ÒGraph
Item Constants with FontsÓ on pageIV.

setTheGraph:item:intValue:
- setTheGraph:(char *)name item:(int)item

intValue:(int)value
Sets the item given by the constant item on the graph name
to the integer value value. For a table of graph items that
have integer values, see ÒGraph Item Constants with Integer
ValuesÓ on pageV.

setTheGraph:item:range::::
- setTheGraph:(char *)name item:(int)item range:(int)ur

:(int)uc :(int)lr :(int)lc
Sets the item given by the constant item on the graph name
to the range specified by ur, uc, lr, and lc. For a table of graph
items that may have range references, see ÒGraph Item
Constants with Range ReferencesÓ on pageIV.

Mesa ProgrammerÕs Guide Release 1.5 052193 41

setTheGraph:item:stringVal:
- setTheGraph:(char *)name item:(int)item

stringVal:(char *)string
Sets the item given by the constant item on the graph name
to the string value string. For a table of graph items that
have string values, see ÒGraph Item Constants with String
ValuesÓ on pageIII.

sheetTitle
- (char *)sheetTitle

Returns the title of the worksheet.

totalColumns
- (int)totalColumns

Returns the total number of columns in the worksheet.

totalRows
- (int)totalRows

Returns the total number of rows in the worksheet.

updateDataEntry
- updateDataEntry

Flushes the input buffer to the text field. This method is
useful in conjunction with the setCellString:row:
col: method. See ÒsetCellString:row:col:Ó on page32.

Application Methods

These methods are sent to [NXApp].

addMenuItem:target:action:
- addMenuItem:(char *)name target:target action:

(SEL)action
Adds the menu item name to MesaÕs AddIn menu with a
target of target and action action. Returns the id for the item
added.

42 Release 1.5 052193 Mesa ProgrammerÕs Guide

getOpenSheets
- getOpenSheets

Returns a list of open sheet objects. Neither it nor its
contents need to be freed.

newWorksheet
- newWorksheet

Opens a new (Untitled) worksheet.

openMesaFile:
- openMesaFile:(const char *)path

Opens the Mesa worksheet path. A full pathname must be
given.

pathToAddin:
- (const char *)pathToAddin:sender

Returns the path to the AddIn.

removeMenuItem:
- removeMenuItem:item

Removes the menu item whose id is item.

setSubmenu:forItem:
- setSubmenu:myMenu forItem:myItem

Sets a submenu of id myMenu for the menu item of id
myItem.

topSheet
- topSheet

Returns the id for the topmost (current) worksheet.

Mesa ProgrammerÕs Guide Release 1.5 052193 43

AdaptorAddIns

Mesa supports a database server adaptor, which al-
lows the creation of AdaptorAddIns that will link to
SQL servers other than Sybase (the built-in default).
The Factory and Instance methods listed below must
be implemented by your adaptor as listed.

Factory Methods

databaseName
+ (char *)databaseName

This method should return the name of the adaptor, e.g.
ÒORACLEÓ or ÒTERADATAÓ.

Instance Methods

beginSQLTransaction
- beginSQLTransaction

Begins a set of SQL transactions. This method should
implement the code that sets up the error handler.

connectToSQLServer:user:password:
 - (int)connectToSQLServer:(char *)server user:(char *)user

password:(char *)pass
Connects to the SQL server named server (may be blank) for
the user user (if blank, the current user’s login name) and the
password pass. It returns YES if the connection was
successful and NO if the connection failed.

convertSQLColumn:num:string:
- (int)convertSQLColumn:(int)col num:(double *)num

string:(char **)string
Converts the colth column of data in the current row of
returned data into a number or string. Returns the type of
data in the column. nullSQLValue denotes that no valid or
convertible data existed in the column. numberSQLValue
is for numeric values, and the actual numeric value is stored

44 Release 1.5 052193 Mesa ProgrammerÕs Guide

in the double *num. stringSQLValue is for string values.
The correct amount of space must be allocated using
malloc() and the data must be copied into the string
(remember to null terminate the string). Then set *string to
the string pointer. Mesa will free() the malloc()Õed memory.
If the information is in date format, convert it to a date serial
number (i.e. the number of days since Jan 1, 1970), place the
number in *value and return dateSQLValue.

convertSQLComputedColumn:alt:num:string:
- (int)convertSQLComputedColumn:(int)col alt:(int)alt

num:(double *)num string:(char **)string
This method is the same as convertSQLColumn:num:
string:, but operates on computed columns. See
ÒconvertSQLColumn:num:string:Ó on page43.

endSQLTransaction
- endSQLTransaction

Ends the SQL transaction. This method should close the
connection with the server and remove any error handlers.

execSQLString:
- execSQLString:(char *)string

Executes the SQL statement string.

getNameOfSQLColumn:
- (char *)getNameOfSQLColumn:(int)num

Returns the name of the numth column in the query, where
columns are numbered 1 to N.

getNextSQLRow
- (int)getNextSQLRow

Retrieves the next row of data returned from the SQL server.
Return noMoreSQLRows if there are no more rows of data.
Return moreSQLRows if the row of data being returned is
not a computed row. If the next row is a computed row,
return a positive number denoting the computed type of the
row to be used in the getNumSQLComputedColumns:
and

Mesa ProgrammerÕs Guide Release 1.5 052193 45

convertSQLComputedColumn:alt:num:string:
methods. See ÒgetNumSQLComputedColumns:Ó on page45
and ÒconvertSQLComputedColumn:alt:num:string:Ó on
page 44.

getNumSQLColumns
- (int)getNumSQLColumns

Return the number of columns of data being returned from
this query.

getNumSQLComputedColumns:
- (int)getNumSQLComputedColumns:(int)result

Returns the number of columns in the computed result
result. result is the number returned by the method
getNextSQLRow. See ÒgetNextSQLRowÓ on page44.

getSQLResult
- (int)getSQLResult

Returns the result of the query. Return
noMoreSQLResults if there is no more data coming back
from the server. Return SQLSuccess if there is data and
SQLFailed if the query failed (note that
noMoreSQLResults must be returned on subsequent
calls).

Application methods

This methods is implemented by NXApp:

handleSQLError:
- handleSQLError:(char *)errorString

Correctly handles an error condition by placing the error
errorString in a dialog box, in the range of data, both, or
neither, depending on the settings in the given query. The
SQL Adaptor should message this method from the error
handlers.

46 Release 1.5 052193 Mesa ProgrammerÕs Guide

3. MOLI

Mesa Object Library Interface

The Mesa Object Library Interface (MOLI) allows
custom programs to easily communicate with Mesa
and to transfer of data into and out of a Mesa work-
sheet. Applications of this include real-time data ac-
quisition, automation of report generation, and access
to the numerical and graphical functions of Mesa.
MOLI can greatly reduce the time to complete a cus-
tom programming project. MOLI gives a great deal of
flexibility to custom application programmers; with it
they can create integrated applications that can make
use of the functionality of Mesa without the user even
knowing that a spreadsheet is running alongside
their custom application.

As an example, we might create a simple application
that allows a stock trader to watch specific types of
stocks. This might involve two applications that make
simultaneous use of MOLI: a real time data feed that
places the updated stock prices into a worksheet, and
a second one that allows the trader to look at specific
prices. The data feed and Mesa could be hidden from
the user, who would only see the custom application.
This custom application could be as simple or as com-
plicated as required. Once data is fed into the work-
sheet and any recalculations that have been set up
are done by Mesa, the traderÕs application will be up-
dated and might put up an alert that a price had fall-
en below or risen above a certain level. This provides

Mesa ProgrammerÕs Guide Release 1.5 052193 47

an easy way for a professional-looking custom appli-
cation to distill large volumes of data into a more
manageable form.

A consistent object-oriented interface allows pro-
grammers to have live spreadsheet views in their cus-
tom application that can include not only ranges of
cells, but also graphs, in a fraction of the time it would
normally take. Both ranges and graphs that are dis-
played in the custom programs can be manipulated
just as they can be in a Mesa worksheet.

Applications that make use of MOLI should be writ-
ten in Objective-C. Source files should include the
header file MesaObjectLibraryInterface.h, and
your project should include the object file MesaOb-
jectLibraryInterface.o.

Add MesaObjectLibraryInterface.o to your project
using ProjectBuilder. To do this, double-click on the
Other Sources icon in ProjectBuilder.

MOLI includes three classes that you can either use
directly or subclass. They are MesaObject, MesaLis-
ten, and MesaView. In the MesaProgramming/
NeXTSTEP3.0 folder there is folder called MOLI-
Demo. It contains a sample program called MOLIDe-
mo.app that makes use of MOLI and simulates the
feeding of data into a worksheet that in turn recalcu-
lates clientsÕ portfolios and creates graphs based on
those numbers

48 Release 1.5 052193 Mesa ProgrammerÕs Guide

MOLI Classes

MesaListen

With the vast amount of data that most people must
process, it is critical that we have a way for programs
to help us sort through the irrelevant data and get to
the data that we need to work with. The signal()
function inside Mesa provides exactly that capability.
Imagine that you are trading gold, and while your
stock feed may provide hundreds of prices, you would
only like to be alerted when the price of gold in Zurich
is 1% greater than the price in London. The signal()
function sends a range of cells to a waiting MesaLis-
ten object in your custom program when the given
ÒsignalÓ becomes true. With our gold example, we
would write in a Mesa worksheet:

=signal(zurich_price / 101% > london_price,
"BuyZurich", zurich_price);

This would alert us when the price of gold in zurich is
1% above the price in London, and would send the
range of cells in the third argument to the MesaListen
object, in this case the range that is contained in the
label zurich_price. In this case, both zurich_price
and london_price are labels Ñ you could replace
them with cell references. The signal will be sent to
your MesaListen object via the gotMessage:num:
forUpperRow:upperCol:lowerRow:lowerCol:
method.

Methods

initToPort:
- initToPort:(char *)name

Passes the name of the port, name, to be listened to. The port
name name should be alphanumeric, start with a letter, and
be a maximum of 32 characters.

Mesa ProgrammerÕs Guide Release 1.5 052193 49

free
- free

Disconnects the object from its worksheet and frees it.

gotMessage:num:forUpperRow:upperCol:lowerRow:lowerCol:
- gotMessage:(MOLIValue *)mv num:(int)num

forUpperRow:(int)ur upperCol:(int)uc lowerRow:(int)lr
lowerCol:(int)lc

This method should be overridden in a subclass to
perform the given tasks of the MesaListen object.
This message is sent to the object when it receives a
signal, and passes the data in the range that is speci-
fied by the rectangular coordinates ur, uc, lr, lc. The
default method returns self.

Simple Example:

Create a new application with ProjectBuilder (for
NEXTSTEP 3.0) and create a Text Field in the main
window. Add your MesaListen Object and connect the
Text Field to the id priceTextField, and the main win-
dow to the id myWindow.

Now we are ready to write the code for this simple ex-
ample. The first thing to do is add our initialization
code to our appDidInit: method

myListen = [[MyListen alloc] initToPort:"BuyZurich"];

and in appWillTerminate: we need to free the ob-
ject:

[myListen free];

50 Release 1.5 052193 Mesa ProgrammerÕs Guide

Now all we have to do is create our subclass of MesaL-
isten.

MyListen.h:
@interface MyListen : MesaListen
{

id myWindow;
id priceTextField;

}

- gotMessage:(MOLIValue *)mv num:(int)num forUpperRow:(int)ur
upperCol:(int)uc lowerRow:(int)lr lowerCol:(int)lc;

@end

MyListen.m:

@implementation MyListen
- gotMessage:(MOLIValue *)mv num:(int)num forUpperRow:(int)ur

upperCol:(int)uc lowerRow:(int)lr lowerCol:(int)lc
{

[super gotMessage:mv num:num forUpperRow:ur upperCol:uc
lowerRow:lr

lowerCol:lc];

[myWindow makeKeyAndOrderFront:self]; // bring application
to front

// display the current gold price
if (mv -> type == numberMOLIValue)

[priceTextField setDoubleValue:mv -> values.number];

return self;
}

@end

With this code we have a custom application that
alerts the user when the price of gold in Zurich is 1%
greater than the price in London, by coming to the
front and displaying the current price in Zurich.

MesaObject

The MesaObject class allows an external program to
connect to a worksheet that is open in Mesa and per-
form operations on that worksheet. When you initial-
ize a MesaObject object you must specify a path to a

Mesa ProgrammerÕs Guide Release 1.5 052193 51

valid Mesa file, or create a new worksheet. If Mesa is
not running when you initialize your object, the work-
space is asked to run Mesa.

Note: Mesa must be in a standard applications
directory (typically either /LocalApps or ~/
Apps) for the workspace to Þnd it. If the work-
space can not Þnd Mesa, a NULL pointer will
be returned. This is a condition that should
always be checked for.

Please use only the functions and methods document-
ed. These are the only ones that will be supported in
the future. If you need functionality that is not provid-
ed, please send e-mail or call.

freeMOLIValue
void freeMOLIValue(int num,MOLIValue *mv)

This function frees the memory allocated for returned values
from a message to getValues:num:
upperRow:col:lowerRow:col: or getValues:
forLabel:num:upperRow:col:lowerRow:col:. Call this
function with the number of items returned, num, and the
array that they were placed in, mv. Remember to do this in
order to avoid memory leaks.

Factory Methods

Unless otherwise noted, the following methods return
an error value if they are not successful. The error
values can be found in ÒMOLI ErrorsÓ on pageXII.

getErrorText:
+ (const char *)getErrorText:(int)error

Given a MOLIError error, this method returns a string
containing the error text. This string should not be modified
and does not need to be freed.

52 Release 1.5 052193 Mesa ProgrammerÕs Guide

hide
+ (int)hide

Hides the Mesa application.

isCellAddress:row:col:
+ (int)isCellAddress:(char *)cell row:(int *)row col:(int *)col

Converts the string cell to a row and column address and
places the coordinates in row and col. Returns the number of
characters in the address, or 0 if the string is not a valid
address.

isRange:upperRow:col:lowerRow:col:
+ (int)isRange:(char *)range upperRow:(int *)ur col:(int *)uc

lowerRow:(int *)lr col:(int *)lc
Converts the string range to its row and column coordinates
and places the coordinates in ur, uc, lr, and lc. Returns the
number of characters in the range, or 0 if the string is not a
valid range.

listOpenSheets:num:
+ (int)listOpenSheets:(char ***)sheets num:(int *)num

Constructs an array of the pathnames of all the open
worksheets, placing a pointer to this array in sheets and the
number of sheets in num. Worksheets with the name
ÒUntitledÓ have never been saved.

Note: When you are done with the array returned in
sheets, you must free (using free()) each
string contained in the array, as well as the
array itself, in order to avoid memory leaks.

MOLIVersion
+ (int)MOLIVersion

Returns the current MOLI version.

Mesa ProgrammerÕs Guide Release 1.5 052193 53

Other Methods

Unless otherwise noted, the following methods return
an error value if they are not successful. The error
values can be found in ÒMOLI ErrorsÓ on pageXII.

Note: The worksheet is not recalculated or redis-
played after information is changed using a
MesaObject method. To keep the information
on the worksheet current, you must either
redisplay or recalculate the sheet after you
have changed it.

addLabel:forRangeUpperRow:col:lowerRow:col:
- (int)addLabel:(char *)name forRangeUpperRow:(int)ur

col:(int)uc lowerRow:(int)lr col:(int)lc
Assigns the range specified by the rectangular coordinates
ur, uc, lr, and lc to the range label name.

associateLabel:withItems:andValues:offset:numItems:
orientation:
- (int)associateLabel:(const char *)name

withItems:(char **)items andValues:(MOLIValue *)mv
offset:(int)offset numItems:(int)num
orientation:(int)orient
Associates a set of string items with a set of values. The label
name is a Mesa named range defining where the look up
should take place on the worksheet. The items argument is
an array of strings containing, for example, stock names. The
values in mv are values to be placed at offset rows or columns
from the top or left of the matching cell. There are num items
in the list and the association will be either
horizontalOrientation or verticalOrientation. An
example of this is used in the MOLIDemo program to pump
stock prices into the Mesa worksheet.

54 Release 1.5 052193 Mesa ProgrammerÕs Guide

clearColPageBreaks::
- (int)clearColPageBreaks:(int)first :(int)last

Clears all page breaks in the columns between first and last,
inclusive.

clearRowPageBreaks::
- (int)clearRowPageBreaks:(int)first :(int)last

Clears all page breaks in the rows between first and last,
inclusive.

createGraph:at:upperRow:col:lowerRow:col:name:
- (int)createGraph:(int)type at:(NXRect *)rect

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
name:(char **)name
Creates a graph of type type at the place in the worksheet
specified by rect and returns the name name. The data used
for the base range of the graph is specified by ur, uc, lr, and
lc. This method can be used in conjunction with
getEPSForGraph:in: to generate graphs from supplied
data and then to load them into your application. The
constants for graph types can be found in the table ÒGraph
TypesÓ on pageII.

delegate
- delegate

Returns the current delegate for the MesaObject.

displaySheet
- (int)displaySheet

Redisplays the worksheet.

Mesa ProgrammerÕs Guide Release 1.5 052193 55

free
- free

Disconnects the object from its worksheet and frees it.

Note: You must call this method or freeAndClose,
or Mesa will continue to keep a link open for
this sheet.

freeAndClose
- freeAndClose

Disconnects the object from its worksheet, frees the object,
and closes the sheet. This object must be the last link to the
worksheet. Views and other objects that are linked to the
sheet must be closed first in order to prevent closing a
worksheet out from under another object.

getCell::forPoint:inRangeUpperRow:col:lowerRow:col:
- (int)getCell:(int *)row :(int *)col forPoint:(NXPoint *)point

inRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr
col:(int)lc

Converts the point point into a cell row and col num-
ber based on the range of the view, specified by ur, uc,
lr, and lc.

getCell::forPoint:inLabel:
- (int)getCell:(int *)row :(int *)col forPoint:(NXPoint *)point

inLabel:(char *)name
Converts the point point into a cell row and col number based
on the range of the view, specified by the range label name.

56 Release 1.5 052193 Mesa ProgrammerÕs Guide

getEPSForLabel:in:
- (int)getEPSForLabel:(char *)name in:(id *)vp

Retrieves an EPS image for the range of cells specified by the
label name. The id vp is set to an NXImage object if the
message is successful, or NULL if not. You can use
composite:toPoint: to place the image into a view in your
custom application.

Note: You must send a free message to the NXIm-
age object when you are done with it, in order
to avoid memory leaks.

getEPSForUpperRow:col:lowerRow:col:into:
- (int)getEPSForUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc into:(id *)vp
Retrieves an EPS image for the range of cells specified by ur,
uc, lr, and lc. The id vp is set to an NXImage object if the
message is successful or NULL if not. You can use
composite:toPoint: to place the image into a view in your
custom application.

Note: You must send a free message to the NXIm-
age object when you are done with it, in order
to avoid memory leaks.

Mesa ProgrammerÕs Guide Release 1.5 052193 57

getEPSForGraph:in:
- (int)getEPSForGraph:(char *)name in:(id *)vp

Retrieves an EPS image for the graph specified by the range
label name. The id vp is set to an NXImage object if the
message is successful or NULL if not. You can use
composite:toPoint: to place the image into a view in your
custom application.

Note: You must send a free message to the NXIm-
age object when you are done with it, in order
to avoid memory leaks.

getEventHeader:into:
- (int)getEventHeader:(char *)name into:(char **)header

Retrieves the event header for the AddIn name and places it
in header.

Note: You must free (using free()) the string
returned in header when you are done with it,
in order to avoid memory leaks.

getEventHeaders:
- (int)getEventHeaders:(char **)headers

Retrieves the event header information for all AddIns and
places it in headers.

Note: You must free (using free()) the string
returned in headers when you are done with
it, in order to avoid memory leaks.

58 Release 1.5 052193 Mesa ProgrammerÕs Guide

getGraph:element:color:
- (int)getGraph:(char *)name element:(int)n

color:(NXColor *)color
Retrieves the color of element n of the graph named by name
and places it in color.

getGraph:item:color:
- (int)getGraph:(char *)name item:(int)item

color:(NXColor *)color
Retrieves the color of item item in the graph named by name.
For a table of graph item constants, see ÒGraph Item
Constants with ColorÓ on pageII.

getGraph:item:doubleValue:
- (int)getGraph:(char *)name item:(int)item

doubleValue:(double *)value
Places into value the double value of item item from the
graph named by name. For a table of graph item constants,
see ÒGraph Item Constants with Double ValuesÓ on pageIII.

getGraph:item:font:
- (int)getGraph:(char *)name item:(int)item font:(id *)font

Places into font the font of item item on the graph named by
name. For a table of graph item constants, see ÒGraph Item
Constants with FontsÓ on pageIV.

getGraph:item:intValue:
- (int)getGraph:(char *)name item:(int)item

intValue:(int *)value
Places into value the integer value of the item item from the
graph named by name. For a table of graph item constants,
see ÒGraph Item Constants with Integer ValuesÓ on pageV.

getGraph:item:stringValue:
- (int)getGraph:(char *)name item:(int)item

stringValue:(char **)value
Places into value the string value of the item item from the
graph named by name. For a table of graph item constants,
see ÒGraph Item Constants with String ValuesÓ on pageIII.

Mesa ProgrammerÕs Guide Release 1.5 052193 59

getGraph:item:upperRow:col:lowerRow:col:
- (int)getGraph:(char *)name item:(int)item

upperRow:(int *)ur col:(int *)uc
lowerRow:(int *)lr col:(int *)lc
Retrieves the range reference for the item item from the
graph name and places its coordinates in ur, uc, lr, and lc.
For a table of graph item constants, see ÒGraph Item
Constants with Range ReferencesÓ on pageIV.

getGraphs:num:
- (int)getGraphs:(char ***)graphlist num:(int *)num

Constructs an array of the named graphs, placing a pointer
to this array in graphlist and the number of graphs in num.

Note: When you are done with the array returned in
graphlist, you must free (using free()) each
string contained in the array, as well as the
array itself, in order to avoid memory leaks.

getInput:forCell::
- (int)getInput:(char **)string forCell:(int)row :(int)col

Places in string the user-typed input string for the cell at row
row and column col.

Note: You must free (using free()) the string
returned in string when you are done with it,
in order to avoid memory leaks.

getLabels:ranges:num:
- (int)getLabels:(char ***)labels ranges:(short **)ranges

num:(int *)num
Constructs an array of the names and ranges of the labels for
the worksheet, placing a pointer to the array of names in
labels, a pointer to the array of ranges in ranges, and the

60 Release 1.5 052193 Mesa ProgrammerÕs Guide

number of labels in num. The array of ranges contains four
entries for each label, for the upper row, left column, lower
row, and right column of the range. An example follows:

char **labels;
short *ranges;
int num,x;

if ([myobject getLabels:&label ranges:&ranges num:&num] ==
MOLISuccess) {
for (x = 0; x < num; x++) {

// print the info
printf("%d. %s upperRow:%d col:%d lowerRow:%d col:%d\n",

x + 1,labels[x],ranges[x * 4],ranges[x * 4 + 1],
ranges[x * 4 + 2], ranges[x * 4 + 3]);

// free the string
free(labels[x]);
}

// free the arrays
free(labels);
free(ranges);

}

Note: When you are done with the arrays returned
in labels and ranges, you must free (using
free()) each of the strings contained in the
array returned in labels, as well as the arrays
returned in both labels and ranges, in order to
avoid memory leaks.

getMaxRows:andColumns:
- (int)getMaxRows:(int *)rows andColumns:(int *)cols

Retrieves the maximum dimensions of the worksheet,
placing the width in rows and the height in cols.

Mesa ProgrammerÕs Guide Release 1.5 052193 61

getQueryNames:num:
- (int)getQueryNames:(char ***)names num:(int *)num

Constructs an array of the names of the named queries
contained in the worksheet, placing a pointer to this array in
names and the number of queries in num. An example
follows:

char **queries;
int num,x;

if ([myobject getQueryNames:&queries num:&num] == MOLISuccess)
{
for (x = 0; x < num; x++) {

// print the info
printf("Query %s\n",queries[x]);

// free the string
free(queries[x]);
}

// free the arrays
free(queries);
}

Note: When you are done with the array returned in
names, you must free (using free()) each
string contained in the array, as well as the
array itself, in order to avoid memory leaks.

getRangeUpperRow:col:lowerRow:col:forLabel:
- (int)getRangeUpperRow:(int *)ur col:(int *)uc

lowerRow:(int *)lr col:(int *)lc forLabel:(char *)label

Retrieves the range coordinates for the given label,
placing them in ur, uc, lr, and lc. If label is not found,
the method returns MOLILabelNotFoundError.
For a list of possible MOLI errors, see ÒMOLI ErrorsÓ
on page XII.

62 Release 1.5 052193 Mesa ProgrammerÕs Guide

getRect:forCell::inRangeUpperRow:col:lowerRow:col:
- (int)getRect:(NXRect *)rect forCell:(int)row :(int)col

inRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr
col:(int)lc
Retrieves a rectangle rect for a cell specified by row and col,
given the range coordinates for the view in ur, uc, lr, and lc.

getRect:forCell::inLabel:
- (int)getRect:(NXRect *)rect forCell:(int)row :(int)col

inLabel:(char *)name
Retrieves a rectangle rect for a cell specified by row and col,
given the range for the view in the range label name.

getReportNames:num:
- (int)getReportNames:(char ***)names num:(int *)num

Constructs an array of the names of the named reports for
the worksheet, placing a pointer to this array in names and
the number of reports in num. An example follows:

char **reports;
int num,x;

if ([myobject getReportNames:&reports num:&num] == MOLISuccess)
{
for (x = 0; x < num; x++) {

// print the info
printf("Report %s\n",reports[x]);

// free the string
free(reports[x]);
}

// free the arrays
free(reports);
}

Note: When you are done with the array returned in
names, you must free (using free()) each
string contained in the array, as well as the
array itself, in order to avoid memory leaks.

Mesa ProgrammerÕs Guide Release 1.5 052193 63

getScriptNames:num:
- (int)getScriptNames:(char ***)names num:(int *)num

Constructs an array of the named MScript scripts for the
worksheet, placing a pointer to this array in names and the
number of scripts in num.

Note: When you are done with the array returned in
names, you must free (using free()) each
string contained in the array, as well as the
array itself, in order to avoid memory leaks.

getValues:num:upperRow:col:lowerRow:col:
- (int)getValues:(MOLIValue **)mv num:(int *)num

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
Retrieves an array of values from the spreadsheet from the
range specified by ur, uc, lr, and lc. The number of items will
be placed in num and the items will be in an array pointed to
by mv. The array that is returned will be sparse (i.e., only
cells that exist will be returned). Remember to test the
address of each value and the type. Each element in the
array is in the following format:

enum {stringMOLIValue, numberMOLIValue, errorMOLIValue};

typedef struct _MOLIValue {
int type;
short row,col;
union {

char *string;
double number;
int error;
} values;

} MOLIValue;

Note: When you are done with the information, call
freeMOLIValue(int num, MOLIValue *mv)
to free the array.

64 Release 1.5 052193 Mesa ProgrammerÕs Guide

getValues:forLabel:num:(int *)upperRow:col:lowerRow:col:
- (int)getValues:(MOLIValue **)mv

forLabel:(const char *)name num:(int *)num
upperRow:(int *)ur col:(int *)uc lowerRow:(int *)lr
col:(int *)lc
Retrieves an array of values from the spreadsheet from the
named range name. The total number of items will be placed
in num and the items will be in an array pointed to by mv,
and the bounds of the range will be returned in ur, uc, lr, and
lc. The array that is returned will be sparse (i.e., only cells
that exist will be returned). Remember to test the address of
each value and the type. Each element in the array is in the
following format:

enum {stringMOLIValue, numberMOLIValue, errorMOLIValue};

typedef struct _MOLIValue {
int type;
short row,col;
union {

char *string;
double number;
int error;
} values;

} MOLIValue;

Note: When you are done with the information, call
freeMOLIValue(int n,MOLIValue *mv) to
free the array.

hideCols::
- (int)hideCols:(int)first :(int)last

Hides the range of columns specified by first and last. The
first column cannot be hidden.

hideRows::
- (int)hideRows:(int)fr :(int)lr

Hides the range of rows specified by first and last. The first
row cannot be hidden.

Mesa ProgrammerÕs Guide Release 1.5 052193 65

initToNewWorksheet
- initToNewWorksheet

This method is used instead of the init method. It connects
the object to a new (Untitled) worksheet. If Mesa cannot be
run or if the worksheet cannot be opened, NULL is returned.

initToWorksheet:
- initToWorksheet:(const char *)sheet

This method is used instead of the init method. It connects
the object to a worksheet with the name sheet. The full,
absolute pathname must be supplied. If Mesa cannot be run
or if the worksheet cannot be opened, NULL is returned.

makeKeyAndOrderFront
- (int)makeKeyAndOrderFront

Brings a window in the worksheet to the front of the window
list. If Mesa is not the active application, it becomes the
active application.

mesaVersion:
- (int)mesaVersion:(int *)v

Returns the version number of the copy of Mesa that the
object is attached to. For example, Mesa 1.2 has version
number 121.

miniturize:
- (int)miniturize:(int)win

Miniaturizes the window of the worksheet numbered win.
Note the spelling of the method.

performSQLQuery:
- (int)performSQLQuery:(char *)name

Performs the pre-defined SQL query named name. You must
first build the query with MesaÕs Query Inspector or with the
setQuery:server::password::
user:database:sql:destination:setRange:
formatting: method.

66 Release 1.5 052193 Mesa ProgrammerÕs Guide

printReport:
- (int)printReport:(char *)name

This method prints the report named name. You must first
create the named report. The custom application can place
report data into the worksheet, and then print it out using a
pre-made report format.

putValues:num:upperRow:col: lowerRow:col:
- (int)putValues:(MOLIValue *)mv num:(int)num

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
Takes an array of values and places it in the worksheet. The
array of values is mv and there are num of them. They will
be placed in the worksheet in the range specified by ur, uc, lr,
and lc. Mesa removes all data from that range and then
inserts the supplied information. Make sure to set the row
and col for each cell. If a cell is not in the range, it will not be
inserted.

putValuesAndPreserveFormatting:num:upperRow:col:
lowerRow:col:
- (int)putValuesAndPreserveFormatting:(MOLIValue *)mv

num:(int)num upperRow:(int)ur col:(int)uc
lowerRow:(int)lr col:(int)lc
Takes an array of values and places it in the worksheet. The
array of values is mv and there are num of them. They will
be placed in the worksheet in the range specified by ur, uc, lr,
and lc. Mesa changes only the values for the cells, thus
preserving the formatting. Make sure to set the row and col
for each cell. If a cell is not in the range, it will not be
inserted.

recalc
- (int)recalc

Recalculates and redisplays the worksheet. The worksheet is
not recalculated or redisplayed after information is changed
using a MesaObject method. To keep the information on the
worksheet current, you must either redisplay or recalculate
the sheet after you have changed it.

Mesa ProgrammerÕs Guide Release 1.5 052193 67

resetRowRangeSize::
- (int)resetRowRangeSize:(int)first :(int)last

Sets the range of rows specified by first and last to the default
height for their style template.

resetColRangeSize::
- (int)resetColRangeSize:(int)first :(int)last

Sets the range of columns specified by first and last to the
default width for their style template.

removeLabel:
- (int)removeLabel:(char *)name

Removes the label name from the label index, such that the
name is no longer associated with its range.

runMScript:
- (int)runMScript:(char *)name

Runs the MScript script name. The script must be pre-
defined in MesaÕs MScript Inspector or with the setScript::
autoExecute:beforeClose: method.

saveSheet
- (int)saveSheet

Saves the worksheet to disk using its current file name.

saveSheetAs:
- (int)saveSheetAs:(const char *)name

Renames the worksheet to name and saves it to disk.

setAutoRecalc:
- (int)setAutoRecalc:(int)state

Sets whether AutoRecalc is enabled for the worksheet. If
state is 1, the sheet will recalculate automatically. If state is
0, the sheet must be recalculated manually.

setBkgColor:
- (int)setBkgColor:(NXColor)color

Sets the background color of the sheet to color.

68 Release 1.5 052193 Mesa ProgrammerÕs Guide

setBkgClear:
- (int)setBkgClear:(int)state

Sets whether the background color of the worksheet is clear.
If state is 1, the background of the sheet will be clear, and
EPS images of ranges that are pasted into other applications
will be clear. If state is 0, the background will be opaque.

setCellHeight:
- (int)setCellHeight:(int)height

Sets the cell height of the worksheet to height pixels.

setCellWidth:
- (int)setCellWidth:(int)width

Sets the cell width of the worksheet to width pixels.

setColor:atPoint:inRangeUpperRow:col:lowerRow:col:flags:
- (int)setColor:(NXColor)color atPoint:(NXPoint *)point

inRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr
col:(int)lc flags:(int)flags
Sets the text color of the cell at point point in the range
specified by ur, uc, lr, and lc to color. Pass the flags element
of the NXEvent record as flags or 0 if this method is not being
called from within an event handling method (e.g.,
mouseDown:, keyDown:, etc.).

setColor:atPoint:inLabel:flags:
- (int)setColor:(NXColor)color atPoint:(NXPoint *)point

inLabel:(char *)name flags:(int)flags
Sets the text color of the cell at point point in the range
specified by the range label name to color. Pass the flags
element of the NXEvent record as flags or 0 if this method is
not being called from within an event handling method (e.g.,
mouseDown:, keyDown:, etc.).

Mesa ProgrammerÕs Guide Release 1.5 052193 69

setColor:atPoint:inGraph:flags:
- (int)setColor:(NXColor)color atPoint:(NXPoint *)point

inGraph:(char *)name flags:(int)flags
Sets the color of the graph element at point in graph name to
color. Pass the flags element of the NXEvent record as flags
or 0 if this method is not being called from within an event
handling method (e.g., mouseDown:, keyDown:, etc.)

setColPageBreak:
- (int)setColPageBreak:(int)col

Sets a vertical page break after column number col.

setColRange::toSize:
- (int)setColRange:(int)first :(int)last toSize:(int)width

Sets the width of the columns specified by first and last to
width points.

setDelegate:
- setDelegate:del

Sets the delegate for the MesaObject to del.

setEventHeaderTo:forAddIn:
- (int)setEventHeaderTo:(char *)string

forAddIn:(char *)name
Sets the event header for the AddIn name to string.

setFont:atPoint:inRangeUpperRow:col:lowerRow:col:
- (int)setFont:font atPoint:(NXPoint *)point

inRangeUpperRow:(int)ur col:(int)uc lowerRow:(int)lr
col:(int)lc
Sets the font of the cell at point in the range specified by ur,
uc, lr, and lc to font.

setFont:atPoint:inLabel:
- (int)setFont:font atPoint:(NXPoint *)point

inLabel:(char *)name
Sets the font of the cell at point in the range specified by the
range label name to font.

70 Release 1.5 052193 Mesa ProgrammerÕs Guide

setFont:atPoint:inGraph:
- (int)setFont:font atPoint:(NXPoint *)point

inGraph:(char *)name
Sets the font of the graph element at point in graph name to
font.

setGraph:element:color:
- (int)setGraph:(char *)name element:(int)n

color:(NXColor)color
Sets the color of element n in graph name to color.

setGraph:item:color:
- (int)setGraph:(char *)name item:(int)it color:(NXColor)nc

Sets the color of item item in graph name to color. For a table
of graph item constants, see ÒGraph Item Constants with
ColorÓ on pageII.

setGraph:item:doubleValue:
- (int)setGraph:(char *)name item:(int)item

doubleValue:(double *)value
Sets the double value of the item item in graph name to value.
For a table of graph item constants, see ÒGraph Item
Constants with Double ValuesÓ on pageIII.

setGraph:item:font:
- (int)setGraph:(char *)name item:(int)item font:font

Sets the font of item item in graph name to font. For a table
of graph item constants, see ÒGraph Item Constants with
FontsÓ on pageIV.

setGraph:item:intValue:
- (int)setGraph:(char *)name item:(int)item

intValue:(int *)value
Sets the integer value of item item in graph name to value.
For a table of graph item constants, see ÒGraph Item
Constants with Integer ValuesÓ on pageV.

Mesa ProgrammerÕs Guide Release 1.5 052193 71

setGraph:item:stringValue:
- (int)setGraph:(char *)name item:(int)item

stringValue:(char *)value
Sets the string value of item item in graph name to value.
Note that the string value should be less than 2000
characters long. For a table of graph item constants, see
ÒGraph Item Constants with String ValuesÓ on pageIII.

setGraph:item:upperRow:col:lowerRow:col:
- (int)setGraph:(char *)name item:(int)item

upperRow:(int *)ur col:(int *)uc lowerRow:(int *)lr
col:(int *)lc
Sets the range reference for item item in graph name to the
range specified by ur, uc, lr, and lc. For a table of graph item
constants, see ÒGraph Item Constants with Range
ReferencesÓ on pageIV.

setGraph:toType:
- (int)setGraph:(char *)name toType:(int)type

Changes the graph name to type type. The integers for graph
types can be found in ÒGraph TypesÓ on pageII.

setGraph:toOrientation:
- (int)setGraph:(char *)name toOrientation:(int)orient

Changes the data orientation for the graph name. Possible
orientations are horizontalOrientation and
verticalOrientation.

setGraph:toLegend:
- (int)setGraph:(char *)name toLegend:(int)legend

Sets the legend location for graph name to legend. The
integers for legend types can be found in ÒGraph LegendsÓ on
page I.

setGridOn:
- (int)setGridOn:(int)state

Sets whether the worksheet grid is on or off. If state is 1, the
grid is visible. If state is 0, the grid is not visible.

72 Release 1.5 052193 Mesa ProgrammerÕs Guide

setGridColor:
- (int)setGridColor:(NXColor)color

Sets the color of the worksheet grid to color.

setInput:forCell::
- (int)setInput:(char *)string forCell:(int)row :(int)col

Sets the input string of the given cell to string. The in-
put is parsed based on the input type for the cell and
the input string string (i.e., number, date, any, etc.)

setLabel:toFont:
- (int)setLabel:(char *)name toFont:font

Sets the font for all the cells in the named range name to font.

setLabel:toColor:
- (int)setLabel:(char *)name toColor:(NXColor)color

Sets the color for all the cells in the named range name to
color.

setLabel:toBkgColor:
- (int)setLabel:(char *)name toBkgColor:(NXColor)color

Sets the background color of all the cells in the named range
name to color.

setNumberOfCols:
- (int)setNumberOfCols:(int)cols

Sets the maximum number of columns for the worksheet to
cols.

setNumberOfRows:
- (int)setNumberOfRows:(int)rows

Sets the maximum number of rows for the worksheet to rows.

Mesa ProgrammerÕs Guide Release 1.5 052193 73

setQuery:server::password::user:database:sql:destination:
setRange:formatting:
- (int)setQuery:(char *)name server:(char *)server :(char *)st

password:(char *)pw :(int)pp user:(char *)user
database:(char *)db sql:(char *)sql
destination:(char *)dest setRange:(char *)range
formatting:(int)flags
Creates a query named name and fills in the parameters.
The server name is server and st is the name of the database
object (blank = SYBASE; otherwise it runs from an AddIn).
The flag to prompt for a password is pp. The raw query
string is sql. The destination range is dest Ñ send a zero
length string if you do not expect return data. The range
name to set with the extent of the query is range. The flags
argument contains various different flags OR’ed together.
For a table of query flags, see ÒQuery FlagsÓ on pageX.

setRangeUpperRow:col:lowerRow:col:toFont:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toFont:font
Sets the font for all the cells in the range specified by ur, uc,
lr, and lc to font.

setRangeUpperRow:col:lowerRow:col:toColor:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toColor:(NXColor)color
Sets the text color for all the cells in the range specified by
ur, uc, lr, and lc to color.

setRangeUpperRow:col:lowerRow:col:toBkgColor:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toBkgColor:(NXColor)color
Sets the background color for all the cells in the range
specified by ur, uc, lr, and lc to color.

74 Release 1.5 052193 Mesa ProgrammerÕs Guide

setRangeUpperRow:col:lowerRow:col:toBorder:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toBorder:(int)border
Sets the range specified by ur, uc, lr, and lc to a given border
type. The border in is made up by ORÕing the following
constants:

¥ CHANGETOPBORDER
¥ SETTOPBORDER
¥ CHANGEBOTTOMBORDER
¥ SETBOTTOMBORDER
¥ CHANGELEFTBORDER
¥ SETLEFTBORDER
¥ CHANGERIGHTBORDER
¥ SETRIGHTBORDER

If the "CHANGE" bit is true, the border is either set or
cleared depending on whether the "SET" bit is true. For
example, to clear the border around a cell, the value would
be:

CHANGETOPBORDER|CHANGEBOTTOMBORDER|CHANGELE
FTBORDER|CHANGERIGHTBORDER

To put a border under a set of cells:
CHANGEBOTTOMBORDER|SETBOTTOMBORDER

setRangeUpperRow:col:lowerRow:col:toBorderThickness:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
toBorderThickness:(int)thick
Sets the border thickness for all the cells in the range
specified by ur, uc, lr, and lc to the thickness thick. The
constants for border thickness can be found in ÒBordersÓ on
page IX.

setRangeUpperRow:col:lowerRow:col:toBorderColor:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc
toBorderColor:(NXColor)color
Sets the border color for all the cells in the range specified by
ur, uc, lr, and lc to color.

Mesa ProgrammerÕs Guide Release 1.5 052193 75

setGraph:toRect:
- (int)setGraph:(char *)name toRect:(NXRect *)rect

Places the graph name in a new rectangle rect on the
worksheet.

setRangeUpperRow:col:lowerRow:col:toDisplay:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toDisplay:(int)display
Sets the display type for the range of cells specified by ur, uc,
lr, and lc to display. The constants for display type can be
found in ÒDisplay FormatsÓ on pageVIII.

setRangeUpperRow:col:lowerRow:col:toPrecision:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toPrecision:(int)prec
Sets the precision for a range of cells specified by ur, uc, lr,
and lc to prec.

setRangeUpperRow:col:lowerRow:col:toAlignment:
- (int)setRangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc toAlignment:(int)align
Sets the alignment for a range of cells specified by ur, uc, lr,
and lc to align. The constants for alignment type can be
found in ÒAlignmentsÓ on pageIX.

setRowPageBreak:
- (int)setRowPageBreak:(int)row

Sets a horizontal page break after row number row.

setRowRange::toSize:
- (int)setRowRange:(int)first :(int)last toSize:(int)height

Sets the height of the rows specified by first and last to height
points.

76 Release 1.5 052193 Mesa ProgrammerÕs Guide

setScript::autoExecute:beforeClose:
- (int)setScript:(char *)name :(char *)string

autoExecute:(int)auto beforeClose:(int)close
Sets script name to the string string and sets the autoexecute
flag to auto and the Run Before Close flag to close.
Remember to include line feeds at the end of each line in the
script.

setSheetChanged:
- (int)setSheetChanged:(BOOL)change

Sets the sheet-changed flag. It should be issued with
a change value of TRUE after any command that
changes the worksheet.

Delegate Methods:

sheetDidRecalc
- sheetDidRecalc:sender

The sheetDidRecalc: method is sent to the MesaObject’s
delegate after each recalculation of the worksheet.

sheetDidRedisplay:
- sheetDidRedisplay:sender

This message is sent to the delegate each time the worksheet
is redisplayed.

showCols::
- (int)showCols:(int)first :(int)last

Unhides the range of columns specified by first and last.

showRows::
- (int)showRows:(int)first :(int)last

Unhides the range of rows specified by first and last.

smartSizeColRange::
- (int)smartSizeColRange:(int)first :(int)last

Smartsizes the range of columns specified by first and last.

Mesa ProgrammerÕs Guide Release 1.5 052193 77

smartSizeRowRange::
- (int)smartSizeRowRange:(int)first :(int)last

Smartsizes the range of rows specified by first and last.

sortARangeUpperRow:col:lowerRow:col:by:key1::key2::
key3::hasTitles:
- (int)sortARangeUpperRow:(int)ur col:(int)uc

lowerRow:(int)lr col:(int)lc by:(int)rows
key1:(int)k1 :(int)d1 key2:(int)k2 :(int)d2
key3:(int)k3 :(int)d3 hasTitles:(int)hasTitles
Sorts the specified range by rows if rows is 1 or by columns if
rows is 0. The data is sorted by key1, key2, and key3, in
descending or ascending order according to d1, d2, and d3. If
hasTitles is TRUE, the first row or column (as appropriate)
is not sorted.

MesaView

The MesaView class allows you to connect to both
ranges of cells and graphs, and have them display
themselves in your custom application. These views
can be edited just as though the views were a part of
Mesa, this includes Drag and Drop of colors and fonts.
Graphs can also be created for a MesaView through
the use of a MesaObject.

Methods

acceptColor:atPoint:
- acceptColor:(NXColor)color atPoint:(NXPoint *)point

This is the implementation for accepting the color color at the
point point. In general, this method will not need to be
overridden.

78 Release 1.5 052193 Mesa ProgrammerÕs Guide

acceptFont:atPoint:
- acceptFont:font atPoint:(NXPoint *)point

This is the implementation for accepting the font font
dropped at the point point. In general, this method will not
need to be overridden. You will need to implement an
extension to the standard NEXTSTEP font well such that
this method is supported.

canEdit
- (BOOL)canEdit

Returns whether or not the current view can be edited. The
default is FALSE.

free
- free

When you are finished with a MesaView, it must be freed.
Failure to free memory allocated will cause memory leaks,
and MesaÕs connection to this view will remain open.

initFrame:toSheet:upperRow:col:lowerRow:col:(int)
- initFrame:(NXRect *)rect toSheet:(char *)sheet

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc
This method creates a non-editable view rect into the
worksheet sheet for the coordinates ur, uc, lr, and lc. The
method call will look like:

myDataView = [[myView alloc] initFrame:&re toSheet:"~/files/
foo.Mesa" upperRow: 0 col: 0 lowerRow:10 col:12]; With
myView a subclass of MesaView.

initFrame:toSheet:toLabel:
- initFrame:(NXRect *)rect toSheet:(char *)sheet

toLabel:(char *)name
This method creates a non-editable view rect into the
worksheet sheet for the range label name. The method call
will look like:

myDataView = [[myView alloc] initFrame:&re toSheet:"~/files/
foo.Mesa" toLabel:"myData"]; With myView a subclass of
MesaView.

Mesa ProgrammerÕs Guide Release 1.5 052193 79

initFrame:toSheet:toGraph:
- initFrame:(NXRect *)rect toSheet:(char *)sheet

toGraph:(char *)name
This method creates a non-editable view rect into the
worksheet sheet for the graph name. The method call will
look like:

myGraphView = [[myView alloc] initFrame:&re toSheet:"~/files/
foo.Mesa" toGraph:"Graph 1"]; With myView a subclass of
MesaView;

setCanEdit:
- setCanEdit:(BOOL)state

Sets whether the current view can be edited. If state is
TRUE, the view will be editable.

Delegate Methods:

sheetDidRedisplay:
- sheetDidRedisplay:sender

This message is sent to the delegate each time the sheet is
redisplayed.

80 Release 1.5 052193 Mesa ProgrammerÕs Guide

Mesa ProgrammerÕs Guide Release 1.5 052193 I

4. Appendix A

MOLI and AddIn Constants

Graph Constants

Graph Legends

Legend
Location Constant

No Legend noMesaLegend

Left Legend leftMesaLegend

Right Legend rightMesaLegend

Top Legend topMesaLegend

Bottom Legend bottomMesaLegend

II Release 1.5 052193 Mesa ProgrammerÕs Guide

Graph Types

Graph Type Constant Graph Type Constant

Scatter Chart scatterMesaGraphType Column Chart columnMesaGraphType

Bar Chart barMesaGraphType Pie Chart pieMesaGraphType

Stacked Col-
umn Chart

sColumnMesaGraphType Stacked Bar
Chart

sBarMesaGraphType

Area Chart areaMesaGraphType High/Low/
Close Chart

HLCMesaGraphType

High/Low
Chart

HLMesaGraphType XY Chart XYMesaGraphType

3D Bar Char d3BarMesaGraphType Ribbon Chart ribbonMesaGraphType

Pyramid Chart pyramidMesaGraphType 3D Area Chart d3AreaMesaGraphType

Graph Item Constants with Color

Item Constant

background color bkgColorGraphItem

border color borderColorGraphItem

legend color legendColorGraphItem

3D color threeDColorGraphItem

base color baseColorGraphItem

Mesa ProgrammerÕs Guide Release 1.5 052193 III

Graph Item Constants with Double Values

Items Constants

X-axis label rotation xLabelRotGraphItem

Y-axis label rotation yLabelRotGraphItem

X-axis maximum xMaxGraphItem

X-axis minimum xMinGraphItem

Y-axis maximum yMaxGraphItem

Y-axis minimum yMinGraphItem

3D view angle, X direction xRotGraphItem

3D view angle, Y direction yRotGraphItem

Graph Item Constants with String Values

Items Constants

X-axis title xTitleGraphItem

Y-axis title yTitleGraphItem

First title line ÞrstTitleGraphItem

Second title line secondTitleGraphItem

Top title range topTitleGraphItem

Side title range sideTitleGraphItem

IV Release 1.5 052193 Mesa ProgrammerÕs Guide

Graph Item Constants with Fonts

Items Constants

X-axis title xTitleGraphItem

Y-axis title yTitleGraphItem

First title line ÞrstTitleGraphItem

Second title line secondTitleGraphItem

X-axis labels xLabelGraphItem

Y-axis labels yLabelGraphItem

Legend legendGraphItem

Graph Item Constants with Range References

Items Constants

Data range baseRangeGraphItem

Top title range topTitleGraphItem

Side title range sideTitleGraphItem

Extra ranges 1-6

Mesa ProgrammerÕs Guide Release 1.5 052193 V

Graph Item Constants with Integer Values

Item Constant Value

Background is
clear

hasClearBkgGraphItem 0 or 1

Width of bor-
der in points

borderWidthGraphItem 0 to 20

Legend is clear hasClearLegendGraphItem 0 or 1

3D scales are
clear

hasClear3DGraphItem 0 or 1

Label positions labelPositionGraphItem centerGraphLabelPosition or
groupGraphLabelPosition

Labels in top
row

topRowLabelsGraphItem 0 or 1

Labels in left
column

leftColumnLabelsGraphItem 0 or 1

Display for-
mat for labels

displayFormatGraphItem see the enumerated display
formats, e.g.

generalMesaFormat

 Display for-
mat decimal

precision

precisionGraphItem 0 to 15

X-axis title is
a cell reference

xTitleIsCellRefGraphItem 0 or 1

Y-axis title is a
cell reference

yTitleIsCellRefGraphItem 0 or 1

First line of
title is a cell

reference

ÞrstTitleIsCellRefGraphItem 0 or 1

VI Release 1.5 052193 Mesa ProgrammerÕs Guide

Second line of
title is a cell

reference

secondTitleIsCellRefGraphItem 0 or 1

Orientation of
data

orientationGraphItem horizontalOrientation or
verticalOrientation

Y-axis major
tick type

yMajTickGraphItem Tick type constants:
strikeThroughGraphTickMark,

innerGraphTickMark, or
outerGraphTickMark

Y-axis major
tick size

yMajTickSizeGraphItem any

X-axis major
tick type

xMajTickGraphItem Tick type constants

X-axis major
tick size

xMajTickSizeGraphItem any

Y-axis minor
tick type

yMinTickGraphItem Tick type constants

Y-axis minor
tick size

yMinTickSizeGraphItem any

X-axis minor
tick type

xMinTickGraphItem Tick type constants

X-axis minor
tick size

xMinTickSizeGraphItem any

Auto-scaling autoScaleGraphItem 0 or 1

Logarithmic
scales

logScaleGraphItem 0 or 1

X-axis major
grid lines

xMajHairGraphItem 0 or 1

Graph Item Constants with Integer Values

Item Constant Value

Mesa ProgrammerÕs Guide Release 1.5 052193 VII

X-axis minor
grid lines

xMinHairGraphItem 0 or 1

Y-axis major
grid lines

yMajHairGraphItem 0 or 1

Y-axis minor
grid lines

yMinHairGraphItem 0 or 1

X-axis border hasXBorderGraphItem 0 or 1

Y-axis border hasYBorderGraphItem 0 or 1

Bar column
sizes

barColumnSizeGraphItem 0 to 100

Bar column
lines

hasBarColumnLineGraphItem 0 or 1

Bar column
line width

barColumnLineWidthGraphItem 1 to 20

Scatter graph
type

scatterGraphTypeGraphItem scatterGraphPointsOnly,
scatterGraphPointsAndLine,

scatterGraphLineOnly

Single X range
for X-Y plot

singleXRangeGraphItem 0 or 1

Candlestick
High/Low/

Close graph

candleStickGraphItem 0 or 1

Wire frame wireFrameGraphItem 0 or 1

Legend
location

legendLocationGraphItem noMesaLegend,
leftMesaLegend,

rightMesaLegend,
topMesaLegend, or
bottomMesaLegend

Graph Item Constants with Integer Values

Item Constant Value

VIII Release 1.5 052193 Mesa ProgrammerÕs Guide

Display Formats

Display Format Constant

General generalMesaFormat

Fixed decimal ÞxedDecimalMesaFormat

ScientiÞc scientiÞcMesaFormat

Currency currencyMesaFormat

Comma commaMesaFormat

Chart chartMesaFormat

Percent percentMesaFormat

Text textMesaFormat

Hidden hiddenMesaFormat

Day-Month-Year dayMonthYearMesaFormat

Day-Month dayMonthMesaFormat

Month-Year monthYearMesaFormat

12-Hour Hour:Minutes:Seconds dateHourMinSecMesaFormat

12-Hour Hour:Minutes dateHourMinMesaFormat

Day/Month/Year dateIntl1MesaFormat

Date/Month dateIntl2MesaFormat

24-Hour Hour:Minutes:Seconds timeIntl1MesaFormat

24-Hour Hour:Minutes timeIntl2MesaFormat

Mesa ProgrammerÕs Guide Release 1.5 052193 IX

Borders

Thickness Constant

No Border noMesaBorder

Thin Border thinMesaBorder

Thick Border thickMesaBorder

Alignments

Alignment Constant

left leftMesaAlign

right rightMesaAlign

center centerMesaAlign

smart smartMesaAlign

Þll ÞllMesaAlign

Input Type

Input Type Constant

Any anyMesaMode

Formula formulaMesaMode

Number numberMesaMode

String stringMesaMode

Date dateMesaMode

Unprotected unprotectedMesaMode

X Release 1.5 052193 Mesa ProgrammerÕs Guide

Query Flags

Flag Constant

Include column titles includeColumnTitlesQueryInfo

Display errors in dialog displayErrorsInDialogQueryInfo

Place errors in range placeErrorsInRangeQueryInfo

Ignore computed rows ignoreComputedRowsQueryInfo

Run before recalc runBeforeRecalcQueryInfo

Set style setStyleQueryInfo

Page break after computed rows breakAfterComputedRowsQueryInfo

Set height of rows setHeightOfRowsQueryInfo

Mesa ProgrammerÕs Guide Release 1.5 052193 XI

FunctionAddIn Errors

Constant Meaning

noError The operation was successful.

badInputError Data was entered incorrectly into a cell.

badFormulaError A bad or incorrect number of parameters were
supplied to a function.

stackUnderßowError You attempted to pop the stack when it was empty.

labelNotFoundError The named range label was not found.

circularError The formula in the cell refers to cells that refer to the cell.

divideByZeroError Divide by zero.

mathError The result of a math function is undeÞned.

naError Generated using the @NA constant.

rangeError A parameter to a function is out of range.

badAddressError The address string supplied to the @@() function was incor-
rect.

errorError The function or macro resulted in an error.

inherit1Error The SAME() function was nested more than 64 deep.

inherit2Error The SAME() function refers to a cell that doesnÕt
contain a formula.

lastError This constantÕs value is the number of errors.

XII Release 1.5 052193 Mesa ProgrammerÕs Guide

MOLI Errors

Constant Meaning

MOLISuccess The operation was successful.

MOLISendError The message could not be sent to Mesa. The
application has probably terminated.

MOLIReceiveError No answer was received in 30 seconds. The
application may have crashed or is very busy.

MOLILabelNotFoundError The named range was not found in the range look up
table.

MOLISheetClosedError The sheet was closed and the link should be shut
down.

MOLINotImplError This method is currently not implemented. This
error should not be returned. It is used for

internal debugging purposes only.

MOLIGraphNotFoundError The named graph was not found in the worksheet’s
list of graphs.

MOLIOutOfRangeError The range of cells cannot be converted to EPS
because they exist outside of the current view.

MOLIReportNotFound The named report is not in the worksheet’s list of
reports.

MOLI Data Types

Constant Type

stringMOLIValue String value

numberMOLIValue Number value

errorMOLIValue Error value

