ComWorks a 3Com company

Total Control[®] 1000 Enhanced Data System

Trouble Locating and Clearing Guide Release 4.5 Part Number 10048400

ComWorks a 3Com company

Total Control[®] 1000 Enhanced Data System

Trouble Locating and Clearing Guide Release 4.5 Part Number 10048400 Copyright © 2002, 3Com Corporation. All rights reserved. No part of this documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from 3Com Corporation.

3Com Corporation reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of 3Com Corporation to provide notification of such revision or change.

3Com Corporation provides this documentation without warranty of any kind, either implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 3Com may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

UNITED STATES GOVERNMENT LEGENDS:

If you are a United States government agency, then this documentation and the software described herein are provided to you subject to the following:

United States Government Legend: All technical data and computer software is commercial in nature and developed solely at private expense. Software is delivered as Commercial Computer Software as defined in DFARS 252.227-7014 (June 1995) or as a commercial item as defined in FAR 2.101(a) and as such is provided with only such rights as are provided in 3Com's standard commercial license for the Software. Technical data is provided with limited rights only as provided in DFAR 252.227-7015 (Nov 1995) or FAR 52.227-14 (June 1987), whichever is applicable. You agree not to remove or deface any portion of any legend provided on any licensed program or documentation contained in, or delivered to you in conjunction with, this User Guide.

Unless otherwise indicated, 3Com registered trademarks are registered in the United States and may or may not be registered in other countries.

3Com, the 3Com logo, Boundary Routing, EtherDisk, EtherLink, EtherLink II, LANplex, LinkBuilder, Net Age, NETBuilder, NETBuilder II, OfficeConnect, Parallel Tasking, SmartAgent, SuperStack, TokenDisk, TokenLink, Transcend, and ViewBuilder are registered trademarks of 3Com Corporation. ATMLink, AutoLink, CoreBuilder, DynamicAccess, FDDILink, FMS, NetProbe, and PACE are trademarks of 3Com Corporation. 3ComFacts is a service mark of 3Com Corporation.

Artisoft and LANtastic are registered trademarks of Artisoft, Inc. Banyan and VINES are registered trademarks of Banyan Systems Incorporated. CompuServe is a registered trademark of CompuServe, Inc. DEC and PATHWORKS are registered trademarks of Digital Equipment Corporation. Intel and Pentium are registered trademarks of Intel Corporation. AIX, AT, IBM, NetView, and OS/2 are registered trademarks and Warp is a trademark of International Business Machines Corporation. Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation. Novell and NetWare are registered trademarks of Novell, Inc. PictureTel is a registered trademark of Y/Open Company, Ltd. in the United States and other countries.

Other brand and product names may be registered trademarks or trademarks of their respective holders.

CONTENTS

ABOUT THIS GUIDE

Conventions	xiii
Screen Captures	xiv
Related Documentation	xiv
Total Control 1000 Enhanced Data System	xiv
Total Control HiPer System	XV
Contacting Customer Service	.xvii

1 TROUBLE LOCATING AND CLEARING OVERVIEW

Trouble Locating and Clearing Total Control 1000 Products	.19
Knowledgebase Overview	.19
TotalService Overview	.19

2 POWER SUPPLY UNIT AND INTERFACE TROUBLE LOCATING AND CLEARING

Overview	.21
Power Failure Diagnostics	.21
Power Supply Overvoltage	.22
Overload Conditions	.22
Removing Power Supply Units	.22
Removing Power Supply Interfaces	.23

3 Access Router Card and HiPer ARC Trouble Locating and Clearing

Overview	
Access Router Card NAC Faceplate	26
Run/Fail LED	
LAN TX LED	27
LAN RX LED	27
WAN TX LED	27
WAN RX LED	27
STAT LEDs	27
Verifying Software Version Numbers	
Common Element Manager	
Total Control Manager	
Command Line Interface	
No Calls Complete Through the Access Router Card	29
Checking the Access Router Card for Configuration Problems	29
Checking the Access Router Card for Authentication Problems	32
Call Fails Right After LCP Authentication	32
LCP Authentication Does Not Show Complete	32
If LCP Authentication Does Complete	33

Calls Fail After Authentication has Completed	33
Some Calls Complete on the Access Router Card	38
Using PPP Monitoring to Track Problems	39
Monitoring RADIUS for Problems	43
Using the Port TAP Facility	45
User Configured for TAP	45
Command Line Interface Configured TAP	47
Using Syslog Facilities	48
Access Router Card Trouble Clearing Commands	49
Viewing Facility Errors	49
Terminating an Active Process	50
Resolving Addresses	51
Resolving Host Names	51
Using Ping	51
Overview	51
Listing Ping Settings	53
Showing Ping Statistics	53
Setting Ping Row Ceiling	53
Configuring a Ping User	53
Using Ping to Monitor System Connectivity	53
Viewing Interface Status and Settings	54
Using Event Logging	54
SYSLOG Host Event Logging	54
Console Event Logging	55
TELNET Session	55
Event Logging Levels	55
Setting the Event Log Level	56
Event Message Examples	56
IP Messages	56
Call Initiation Process Messages	57
User Manager Messages	57
Filter Manager Process Messages	58
UDP Messages	58
Configuration File Manager Messages	58
IP Dial-out Process Messages	58
	Calls Fail After Authentication has Completed

4 NETWORK MANAGEMENT CARD AND HIPER NMC TROUBLE LOCATING AND CLEARING

Overview	
Network Management Card NAC Faceplate	60
Verifying Software Version Numbers	61
Common Element Manager	61
Total Control Manager	61
Command Line Interface	61
LED Diagnostics	62
RN/FL LED Diagnostics and Trouble Locating and Clearing	62
HUB ST LED Diagnostics and Trouble Locating and Clearing	63

64
65
65
66
66
66
67
67
67
68
68
70
70
70

5 DSP MULTISPAN AND HIPER DSP TROUBLE LOCATING AND CLEARING

Overview	73
DSP Multispan NAC Faceplate	74
Verifying Software Version Numbers	75
Common Element Manager	75
Total Control Manager	75
Command Line Interface	76
Initial Configuration Trouble Locating and Clearing	76
x2 / V.90 Trouble Locating and Clearing	77
V.90 Server Connections	77
Trouble Clearing V.90 Client Connections	78
Common Element Manager	78
Trouble Clearing	79
Testing for Line Noise	79
Problems with Configurations	80
Performing Modem Tests	81
Using Remote Testing	81
Call Fails	82
Modem Disconnects	83
Physical Layer Trouble Locating and Clearing	84
Viewing DSP Multispan LEDs	84
Common Element Manager	84
Checking the Physical State	85
Common Element Manager	85
Command Line Interface	85
Checking the Line Status	86
Common Element Manager	86
Command Line Interface	87
Checking the Received Error Statistics	88
Common Element Manager	88
Command Line Interface	
Ordering and Setting Up a Span Line	

6 DS-3 INGRESS TROUBLE LOCATING AND CLEARING

Overview	91
DS-3 Ingress NAC Faceplate	92
Status LED Indicators	93
Monitor Port LED Indicator	
Channel Line Pushbutton	93
Dual Bantam Jack	93
Verifying Software Version Numbers	94
Common Element Manager	94
Total Control Manager	94
Command Line Interface	94
Normal Operational Mode	95
Installation Trouble Locating and Clearing	95
Initial Configuration Trouble Locating and Clearing	95
DS-3 Ingress NAC Trouble Locating and Clearing	

7 SDH STM-0 CONVERTER TROUBLE LOCATING AND CLEARING

Overview	
SDH STM-0 Converter NAC Faceplate	
Status LED Indicators	
APS Connection	
STM-0 Ingress Port	
Verifying Software Version Numbers	
Common Element Manager	
Total Control Manager	
Command Line Interface	
Normal Operational Mode	
Installation Trouble Locating and Clearing	
SDH System Trouble Locating and Clearing	
Manually Performing an APS Switch	
Common Element Manager	
Releasing Both SDH STM-0 NACs	
Switching the Active Card to Standby	
Total Control Manager	
Releasing Both SDH STM-0 NACs	
Switching the Active Card to Standby	
Command Line Interface	
Releasing Both SDH STM-0 NACs	
Switching the Active Card to Standby	
Viewing Manual APS Switch Results	
Using DS-3 and SDH Loopbacks to Diagnose Problems	
Monitoring DS-3 Loopbacks	
Configuring DS-3 Loopbacks	115
Common Element Manager	
Total Control Manager	
Command Line Interface	
Monitoring SDH Loopbacks	

Configuring SDH Loopbacks	
Common Element Manager	
Total Control Manager	
Command Line Interface	

A ACRONYMS

INDEX

LIST OF TABLES

Table 1	Natice Ican Descriptions	xiii
Table 2	Text Convention Descriptions	xiv
Table 3	Access Router Card Run/Fail LED During Normal Operation	
Table 4	Run/Fail LED During Start-up Tests and Software Downloads	
Table 5	Access Router Card I AN TX I FD Description	
Table 6	Access Router Card LAN RX LED Description	
Table 7	RFC References - PPP Design and Debugging	
Table 8	Most Common List Facilities	
Table 9	Network Management Card LED Descriptions	
Table 10	Network Management Card RN/FL LED Diagnostics	
Table 11	Network Management Card HUB ST LED Diagnostics	
Table 12	Network Management Card LAN LED Diagnostics	
Table 13	Network Management Card WAN LED Diagnostics	
Table 14	DSP Multispan NAC LED Descriptions	74
Table 15	DSP Multispan - Initial Configuration Errors	
Table 16	V.90 Server Problems	
Table 17	DSP Multispan Modems - x2 Status	
Table 18	V.90 Client Modem Trouble Clearing	
Table 19	Call Fails Trouble Clearing	
Table 20	Modem Disconnect Trouble Clearing	
Table 21	T1/E1 Related LEDs - DSP Multispan	
Table 22	DSP Multispan Line Status	
Table 23	Display Near End Span Statistics	89
Table 24	DS-3 Ingress NAC Faceplate	
Table 25	DS-3 Ingress NAC Faceplate Interfaces	
Table 26	DS-3 Ingress Operational Mode	
Table 27	DS-3 Ingress Installation Light Emitting Diodes (LED) Errors	
Table 28	DS-3 Ingress - Initial Configuration Errors	
Table 29	DS-3 Ingress Status LED Indicator Descriptions	
Table 30	SDH STM-0 Converter NAC Faceplace Interfaces	
Table 31	SDH STM-0 Converter Operational Mode	
Table 32	SDH STM-0 Installation Errors	
Table 33	SDH System Problems	
Table 34	DS-3 Loopbacks on the SDH STM-0	
Table 35	DS-3 Loopbacks - MIB Objects	
Table 36	DS-3 Loopbacks - Command Line Interface	
Table 37	SDH Loopbacks on the SDH STM-0	
Table 38	SDH Line Loopbacks - MIB Objects	
Table 39	SDH Loopbacks - Command Line Interface	

xi

LIST OF FIGURES

Figure 1	Documentation Map	xvi
Figure 2	Loosening the Screws on the PSU	23
Figure 3	Sliding the PSU	23
Figure 4	Loosening the Screws of the PSI	24
Figure 5	Removing the PSI	24
Figure 6	Access Router Card NAC Faceplate	26
Figure 7	Access Router Card Software Verification - Command Line Interface	28
Figure 8	Access Router Card - List Chassis Command	30
Figure 9	Access Router Card - List Interfaces Command	31
Figure 10	SYSLOG Message - Access Router Card	34
Figure 11	LIST IP POOLS - Access Router Card CLI Command	34
Figure 12	SYSLOG Report	35
Figure 13	MONITOR PPP - Access Router Card CLI Command	37
Figure 14	Monitor PPP Command Display	39
Figure 15	Monitoring a Specific User - PPP	40
Figure 16	Monitoring PPP - CLI Final Output	41
Figure 17	PPP Call Events	42
Figure 18	RADIUS Monitor	43
Figure 19	Monitoring Next RADIUS Session - Access Router Card	
Figure 20	Port Tap Facility - User Record	
Figure 21	ADD TAP CI I Output	47
Figure 22	Access Router Card - List Facilities Command	
Figure 23	Access Router Card - List Processes Command	
Figure 24	Ping CLI Command Output	
Figure 25	Ping CLI Command Example - Single Device	
Figure 26	Network Management Card NAC Faceplate	
Figure 27	Network Management Card Software Verification - Command Line Interface	
Figure 28	DSP Multispan NAC Faceplate	
Figure 29	DSP Multispan Software Verification - Command Line Interface	
Figure 30	Common Flement Manager Device Mimic - DSP Multispan NAC	
Figure 31	Monitoring Line Status - DSP Multispan	
Figure 32	DSP Multispan - CITLine Status Command	
Figure 33	DS-3 Ingress Software Verification - Command Line Interface	
Figure 34	SDH STM-0 Converter NAC Faceplate	.100
Figure 35	SDH STM-0 Software Verification - Command Line Interface	102
Figure 36	Total Control Manager's Virtual Front Panel Display (VEPD)	109
Figure 37	Selecting Spans	109
Figure 38	Total Control Manager's Virtual Front Panel Display (VEPD)	110
Figure 39	Selecting Spans	111
Figure 40	Total Control Manager's Virtual Front Panel Display (VEPD)	112
Figure 41	Selecting Spans	112
Figure 42	Total Control Manager's Virtual Front Panel Display (VFPD)	115
Figure 43	Selecting Spans	116
Figure 47	Locating SDH Loonbacks	117
Figure 45	Total Control Manager's Virtual Front Panel Display (VFPD)	110
Figure 16	Selecting Spans	110
inguic 40		/

ABOUT THIS GUIDE

About This Guide includes an overview of this guide, lists guide conventions, related documentation, and product compatibility, and provides contacting CommWorks information.

This guide describes the various components of the CommWorks Total Control[®] 1000 Enhanced Data System and how they work together to build a communications platform for integrating local and wide area networks.

This guide is intended for network administrators or engineers who will be installing and configuring the Total Control 1000 system for use with their applications.

Release notes are issued with some products—visit our website at http://totalservice.commworks.com. If the information in the release notes differs from the information in this guide, follow the instructions in the release notes.

Conventions

Table 1 lists notice icons used in this guide:

 Table 1
 Notice Icon Descriptions

lcon	Notice Type	Description
	Information Note	Information that contains important features or instructions.
A	Caution	Information to alert you to potential damage to a program, system, or device.
	Warning	Information to alert you to potential personal injury or fatality. May also alert you to potential electrical hazard.
۵	ESD	Information to alert you to take proper grounding precautions before handling a product.

Table 2 lists text conventions in this guide.

	Convention	Description
	Text represented as a screen display	This typeface represents displays that appear on your terminal screen, for example:
		Netlogin:
	Text represented as menu or sub-menu names .	This typeface represents all menu and sub-menu names within procedures, for example:
		On the File menu, click New.
	Text represented by < filename>	This typeface represents a variable. For example: < <i>filename></i> .
Screen Captures	The screens in this guide may not re them only as guidelines.	present what you see on your monitor; use
Related Documentation	The following documents contain a 1000 components, operations, syster referenced in this manual:	dditional information about Total Control ems, and procedures that may be
Total Control 1000The following documents relate to the Total Control 1000 EEnhanced Data SystemSystem:		the Total Control 1000 Enhanced Data
	 Total Control 1000 Enhanced Da Number 10048404 	ta System <i>System Overview Guide</i> - Part
	 Total Control 1000 Enhanced Da Number 10048403 	ta System Getting Started Guide - Part
	 Total Control 1000 Enhanced Da 10048402 	ta System <i>Operations Guide</i> - Part Number
	 Total Control 1000 Enhanced Da Number 10048391 	ta System <i>Maintenance Guide</i> - Part
	 Total Control 1000 Enhanced Da Guide - Part Number 10048400 	ta System Trouble Locating and Clearing
	 Total Control 1000 Enhanced Da Line Reference - Part Number 10 	ta System <i>Modem and Span Command</i> 0048399
	 Total Control 1000 Enhanced Da Command Line Reference - Part 	ta System <i>Access Router Card 5.5</i> Number 10048398
	 Total Control Manager for Winde Number 10045614 	ows and UNIX Getting Started Guide - Part
	 CommWorks 5115 Common Ele 10047652 	ment Manager <i>User's Guide</i> - Part Number
	 CommWorks 5115 Common Ele Guide - Part Number 10048397 	ment Manager for Total Control 1000 User

Total Control HiPerSome doSystemHiPer system

Some documents from the Total Control MultiService Access Platform (the HiPer system) also relate to the Total Control 1000 Enhanced Data System.

- HiPer ARC Network Application Card Getting Started Guide Part Number 10031739
- PCI Dual 10/100Base-T Ethernet Network Interface Card Getting Started Guide - Part Number 1.024.1330-02
- PCI Dual V.35 10/100 Ethernet PCI Network Interface Card Getting Started Guide - Part Number 1.024.1959-01
- Quad T1/E1 10/100 Ethernet PCI Network Interface Card Getting Started Guide - Part Number 1.024.1973-00
- Dual DS3 Asynchronous Transfer Mode Network Interface Card Getting Started Guide - Part Number 10030485
- Dual E3 Asynchronous Transfer Mode Network Interface Card Getting Started Guide - Part Number 10031642
- HiPer DSP Network Application Card Getting Started Guide Part Number 10030920
- HiPer DSP T1/E1 Network Interface Card Getting Started Guide Part Number 1.024.1310-02
- HiPer NMC Network Application Card Getting Started Guide Part Number 10030486
- 10/100 Ethernet Aux I/O Network Application Card Getting Started Guide -Part Number 1.024.1309-01

Use the following documentation map to help you install and configure your Total Control 1000 system.

End

Figure 1 Documentation Map

Contacting Customer Service	For information about Customer Service, including support, training, code releases and updates, contracts, and documentation, visit our website at
	http://totalservice.commworks.com.

Refer to the Documentation CD-ROM for information about product warranty.

Before contacting Technical Support, have this information available:

- Contract number
- Problem description
 - Symptoms
 - Known causes
- Product information
 - Software and hardware versions
 - Serial numbers
- Trouble locating and clearing attempts

TROUBLE LOCATING AND CLEARING OVERVIEW

	This chapter includes information and resources useful for general trouble locating and clearing.
	 This chapter contains the following topics: <u>Trouble Locating and Clearing Total Control 1000 Products</u> <u>Knowledgebase Overview</u> <u>TotalService Overview</u>
Trouble Locating and Clearing Total Control 1000 Products	You can configure and manage the Total Control [®] 1000 Enhanced Data System using the CLI to access the different cards locally or remotely. You can also use an SNMP MIB browser or one of CommWorks' management software programs, total control manager or common element manager, to
	configure and manage your chassis. CommWorks [®] 5115 common element manager is recommended for most functions. Refer to the CommWorks 5115 Common Element Manager <i>User's</i> <i>Guide</i> , included with this documentation set, for more information.
Knowledgebase Overview	Knowledgebase is an online database of technical information to help you diagnose and solve installation, upgrade and configuration problems with 3Com products.
	For additional information, see the Knowledgebase web site at: http://knowledgebase.3com.com. Troubleshoot your product with 3Com Knowledgebase, an interactive tool containing thousands of technical solutions compiled by 3Com support engineers around the globe.
TotalService Overview	Use our support website— <i>http://TOTALSERVICE.commworks.com/</i> —for all your questions regarding support for all our products. You can download the latest software build, view the current product documentation, track a current part shipment, or view warranty and product repair information from this website.

POWER SUPPLY UNIT AND INTERFACE TROUBLE LOCATING AND CLEARING

This chapter describes trouble locating and clearing information regarding Power Supply Units (PSUs) and Power Supply Interfaces (PSIs).

This chapter contains the following topics:

- Overview
- **Power Failure Diagnostics**

Overview The Total Control 1000 system uses PSUs and PSIs to provide electricity to the chassis.

A few important compatibility issues regarding PSU/PSI card sets:

- For Total Control 1000 chassis, PSUs are available for AC or DC power, and in two power ratings, 70A and 130A.
- 35A and 45A PSUs are not compatible with this release.
- One 130A PSU can supply a fully loaded chassis. However, a second PSU is recommended for redundancy.
- Cannot use one AC PSU and one DC PSU in the same chassis. .
- Cannot use PSUs with different ratings in the same chassis.
- PSUs are hot-swappable (assuming that two are installed and operable within the same chassis).

Power Failure	PSU failure may be caused by any of the following conditions:
Diagnostics	 Input voltage failure
	 Internal power supply fuse failure
	 Internal power supply failure
	 Input voltage out of specification (for example, too low)
	Total Control 1000 power supply units are fully short-circuit protected. If there is a current overload sensed at the power supply output terminals, the power

supply automatically shuts down until the fault is corrected. Once it is corrected, the power supply automatically comes back on.

If a PSU/PSI RUN/FAIL LED is red, try the following brief sequence of tests. Depending on the situation, these procedures should enable you to diagnose the cause of the problem.

Refer to the Getting Started Guide *for more information, including installation procedures, about the PSU/PSI card set.*

Power Supply Overvoltage

If overvoltage is sensed at the output terminals, the power supply immediately shuts down.

1 Remove the PSU and PSI whose LED is flashing by following the procedures in <u>Removing Power Supply Units</u> and <u>Removing Power Supply Interfaces</u>. Then, plug them in again to recycle the power.

WARNING: Be careful to observe the warnings in that section about shock hazards and touching hot components.

2 Reinsert the unit and check the RUN/FAIL indicator on the PSU front panel and/or PSI rear panel.

The problem may have been minor, and the unit may reset. If not, completely remove the faulty PSU/PSI and contact CommWorks Customer Service.

Overload Conditions Check for a modem or interface unit failure that may be causing an overload condition. Remove each modem and NIC one at a time, until the power supply indicator LED lights. The last modem or interface unit removed is probably the cause of the overload condition.

Removing Power Supply Units To remove PSUs from the Total Control 1000:

ESD: To reduce the risk of electrostatic discharge (ESD), take proper grounding precautions before handling the PSU.

1 Remove the PSI corresponding to the PSU being removed according the *Removing Power Supply Interfaces* section of this chapter.

WARNING: Wait 10 seconds after power has been removed from the PSU/PSI set to allow all capacitors on the cards discharge. Do not touch the PSI/PSU during this period. After 10 seconds the Run/Fail (RN/FL) LED turns off and the PSU can be removed. Some components may still be very hot. Use caution when handling the PSI.

2 Use a flat-head screwdriver to loosen the screws on the rear panel of the PSU.Figure 2 Loosening the Screws on the PSU

- **3** Lift the ejector tabs at the top and bottom of the PSU's front panel.
- 4 Slide the PSU out of the chassis.

Figure 3 Sliding the PSU

Removing Power Supply Interfaces

To remove PSIs from the Total Control 1000 chassis:

ESD: To reduce the risk of electrostatic discharge (ESD), take proper grounding precautions before handling the PSI.

- **1** Turn off the power source.
- 2 Turn the power switch of the PSI being removed to the off (0) position.

WARNING: Wait 10 seconds to allow all capacitors on the PSI to discharge. Do not touch the PSI during this period. After 10 seconds the Run/Fail (RN/FL) LED turns off and the PSI can be removed. Some components may still be very hot. Use caution when handling the PSI.

3 Use a flat-head screwdriver to loosen the screws on the rear panel of the PSI.Figure 4 Loosening the Screws of the PSI

4 Grasp the screws and pull the PSI towards you.

Figure 5 Removing the PSI

- 5 Detach the power cables from the PSI.
- **6** Remove the PSU corresponding to the PSI being removed according to the instructions in the *Removing Power Supply Units* section of this chapter.

3

Access Router Card and HiPer ARC Trouble Locating and Clearing

This chapter contains trouble locating and clearing information relating to the access router card Network Application Card (NAC).

This chapter contains the following topics:

- Overview
- Access Router Card NAC Faceplate
- Verifying Software Version Numbers
- No Calls Complete Through the Access Router Card
- Some Calls Complete on the Access Router Card
- <u>Using PPP Monitoring to Track Problems</u>
- Monitoring RADIUS for Problems
- Using the Port TAP Facility
- Using Syslog Facilities
- Access Router Card Trouble Clearing Commands
- Using Event Logging

Overview

The access router card is a multi-protocol, dial-up router and terminal server commonly described as a remote access server. It is a software-based router for incoming call traffic terminated on Digital Signal Processor (DSP) multispan Network Application Cards (NACs). Access router cards receive incoming traffic from DSP multispan cards, encrypt the information and forward this traffic on to various egress ports.

Access Router Card
NAC FaceplateFigure 6
shows the Light Emitting Diodes (LEDs) on the access router card
faceplate.

Figure 6 Access Router Card NAC Faceplate

Run/Fail LED The Run/Fail (RN/FL) LED lets you know if the card is functioning properly. <u>Table</u> <u>3</u> lists what the Run/Fail LEDs signify during normal operation, except during start-up tests and software downloads.

 Table 3
 Access Router Card Run/Fail LED During Normal Operation

LED	Description
Off	Power off
Green	Power On
Red	Critical Failure

During start-up tests and software downloads *only*, the Run/Fail LED cycles through several colors as described in <u>Table 4</u>.

 Table 4
 Run/Fail LED During Start-up Tests and Software Downloads

LED	Description
Red	During start-up Power On Self Test (POST)
Amber (flashing slowly)	Checking for software download
Green (flashing rapidly)	Loading an application into RAM
Green	Power cycle is finished and card is operational

LAN TX LED The LAN TX LED indicates packets are being transmitted through the LAN (Ethernet) interface.

 Table 5
 Access Router Card LAN TX LED Description

LED	Description
Red	Interface failure
Red (flashing)	Collision (one flash per error)
Amber (flashing)	Multiple collisions, network busy
Off	Idle

LAN RX LED The LAN RX LED indicates packets are being received from the LAN (Ethernet) interface.

 Table 6
 Access Router Card LAN RX LED Description

LED	Meaning
Red	Interface failure
Red (flashing)	Collision error
Green	Receiving packet
Off	Idle

- **WAN TX LED** The WAN TX LED indicates packets are being transmitted through the WAN interface using WAN NICs, like the V.35 and Quad T1/E1 NIC.
- **WAN RX LED** The WAN RX LED indicates packets are being received from the WAN interface using WAN NICs, like the V.35 and Quad T1/E1 NIC.
 - **STAT LEDs** The front panel LEDs labeled STAT1, STAT2 and STAT3 are not used at this time.

Verifying Software Version Numbers	Before you perform any trouble locating and clearing, ensure you are using the correct access router card software version. Check this version number with the published version number in the Total Control 1000 Enhanced Data System System 4.5 GA System Release Notes. You will need to know this number if you contact Commworks Technical Support.
Common Element Manager	To verify the access router card software version using common element manager:
1	From the Explorer tab, click the access router card.
2	From the Properties tab, click the Identification tab.
3	Check the Version field for the current software number.
Total Control Manager	To verify the access router card software version using total control manager:
1	From total control manager's Virtual Front Panel Display (VFPD), select the access router card.
	The card turns blue.
2	From the main menu, click Configure and then click Programmed Settings .
	The HiPer ARC Card Programmed Settings window appears.
3	From the Parameter Group drop-down menu, select HiPer ARC Identification to query data from the access router card.
4	Check the Software Version field for the current software version.
Command Line Interface	To verify the access router card software version using the CLI:
1	Access the access router card CLI.
2	From the access router card CLI, enter the following command:
	HiPer> _show version
	Figure 7 displays the CLI output for the access router card:
	Figure 7 Access Router Card Software Verification - Command Line Interface
	login: admin Password: HiPer>_show version U5.3.2 - 1 /Non-Encr HiPer>

No Calls Complete Through the Access Router Card

Checking the Access Router Card for Configuration Problems A call is defined as a session where PPP finishes Link Control Protocol (LCP) and the client is able to pass data. If the access router card is not completing calls check the following settings:

To verify the configuration:

1 Check the Call Initiation Process (CIP) to show if the access router card is being presented with a call. Enter the **Show Events** Command to display CIP information.

Event messages are automatically displayed on a local console. Of all ICMP messages generated, only Received Destination Unreachable messages are logged to the console.

If the access router card is being presented with a call the following message will appear:

CIP: Call arrived request, id 16777391, was accepted on interface slot:2/mod:1

CIP: An incoming call established request, id = 16777391, is received on if slot:2/mod:1

At 21:11:53, Facility "Call Initiation Process", Level "COMMON": CIP: Detected PPP frame, state 1, line 398, File ../../src/cip_xmt_rx.c

The first line indicates the modem is answering a call.

The second line indicates the modem is asking the access router card to answer the call.

The third line indicates that the call was answered and PPP was detected.

If one or two lines are present then there may be a problem with the modem's configuration.

- 2 If CIP indicates there are no calls being presented to the access router card, then the access router card may not be configured correctly and is unable to complete a call. To configure the card:
 - **a** Check to see if the access router card "owns" the modems when receiving the calls. Enter the **List Chassis** command to view the Chassis Table:

Figure 8 shows an example of a chassis table:

Figure 8 Access Router Card - List Chassis Command

HiPer>list chassis											
Slot	Owner	Description	Ports Ty	pe Console							
1	YES	EMPTŶ	0 -	STATIC NO							
2	YES	EMPTY	Ø	STATIC NO							
3	YES	DS3 Card	0	DYNAMIC YES							
4	YES	EMPTY	Ø	STATIC NO							
5	YES	EMPTY	Ø	STATIC NO							
6	YES	EMPTY	Ø	STATIC NO							
7	YES	EMPTY	0	STATIC NO							
8	YES	EMPTY	0	STATIC NO							
9	YES	EMPTY	0	STATIC NO							
10	YES	EMPTY	0	STATIC NO							
11	YES	SDH NAC Card	0	DYNAMIC YES							
12	YES	EMPTY	Ø	STATIC NO							
13	YES	30 Channel High Density Modem	30	DYNAMIC YES							
14	YES	24 Channel High Density Modem	23	DYNAMIC YES							
15	YES	JHDM_T1	24-24-24-2	4 DYNAMIC YES							
16	YES	HiPer Access Router NAC	0	DYNAMIC NO							
HiPer>					-						

If this table is incorrect and only one access router card is in the Chassis, use the network management card chassis awareness to correct it:

- a Type Show NMC to check if Chassis Awareness is enabled. If it is not enabled, enable it by typing enable nmc chassis_awareness
- **b** Once chassis awareness is enabled, make sure you do not have any left over STATIC definitions by using the **List Chassis** command again.
- **c** If you do, use the following command to set the card slot to empty:
- 1-16 OWNER YES CARD_TYPE EMPTY
- d Enter the Save All Command then reset the access router card.
- e When the access router card finishes booting, enter the List Chassis command. The table should show all the correct cards with correct ownership.

3 If the card owner ship is correct and calls are still not being presented to the access router card, be sure the modem interfaces are enabled. To see the status of the interfaces, enter **List Interfaces**.

Figure 9 shows an example of an interface table:

Figure 9 Access Router Card - List Interfaces Command

HiPer>list interfaces			
INTERFOCES			
Intenface	Onen	Admin	
Name	Status	Status	
SLOT - 3 /CON-1	lln	lln	
SLOT:11/CON:1	Un l	un lin	
SLOT:13/CON:1	йљ	lln	
SLOT:14/CON:1	Un l	un lin	
SLOT-15/CON-1	й»	up Up	
eth:1	Un l	Un	
ath-2	Down	lln	
internal	lln	lln	
loopback	йљ.	un lin	
slot:13/mod:1	Ш'n	lln	
slot:13/mod:2	Ŭ.	Un	
slot:13/mod:3	йљ	lln	
slot:13/mod:4	йљ	lln	
elot:13/mod:5	Un l	un lin	
slot:13/mod:6	й»	Up	
elot:13/mod:7	U _m	Up	
s100.13/mod.7	Un l	un lin	
slot:13/mod:9	U S	Up	
elot:13/mod:10	Un l	un lin	
slot:13/mod:11	Ш'n	lln	
slot:13/mod:12	Ŭ.	Un	
slot:13/mod:13	Пn	lln	
slot:13/mod:14	Ŭ.	Un	
slot:13/mod:15	Ŭn.	lln	
slot:13/mod:16	Ŭ.	lln	
elot:13/mod:17	Ŭ.	Un	
slot:13/mod:18	Пn	lln	
slot:13/mod:19	Ŭ.	Un	
slot:13/mod:20	Ŭn.	lln	
slot:13/mod:21	Ŭ.	lln	
slot:13/mod:22	ll n	lln	
slot:13/mod:23	Ŭn.	lln	
slot:13/mod:24	ll n	lln	
slot:13/mod:25	Ŭ'n	lln	
slot:13/mod:26	Ŭn.	ll'n	
slot:13/mod:27	ĬĬ'n	lln	
slot:13/mod:28	Ŭ'n	lln	
slot:13/mod:29	ĬĬ'n	lln	
slot:13/mod:30	ปีขึ้	ปีขึ้	-

Operational Status indicates that the access router card has communication with the modem card. **Administrative Status** indicates the user-defined status of the interface. In order to take calls, the status must be **UP** for both.

- **a** If the Operational Status is down for any interface then there is a packet bus problem. Check to see if the card is present in the slot and that its Run/Fail light is Green.
- **b** If the Admin Status is down for any interface then modem is not enabled. To enable the modem type the following command:

enable interface <interface name> slot:1/modem:x

where x is 1-24 for T1 spans and 1 to 32 for E1 spans

Once the interface is configured and enabled, and all the cards belong to the access router card, the access router card is configured correctly to receive calls.

Checking the Access Router Card for Authentication Problems

If the access router card is configured correctly and is still unable to process calls correctly, it could be a problem with how it authenticates the call.

Check to see if the access router card is dropping the call during or after authentication, from the PPP monitor logs. The LCP authentication protocol should show complete. Either a PAP-ACK or CHAP-ACK will show this.

Call Fails Right After LCP Authentication

The PPP trace should not show any PAP/CHAP requests for this condition to be true. There may be no PPP trace if the client was using a clear text login

If the clients are attempting to use a scripted text login or use some other PPP stack that requires text instead of auto detecting PPP Configure the access router card for clear text logins:

1 It is possible to change the access router card to only allow PPP and no clear logins. If this is done, any client doing a clear login will not connect. Type the command **show interface slot:X/mod:y**. The output will contain a line like the following.

Connection Type: NORMAL

The default setting is "NORMAL", which will allow clear text login and PPP auto-detection.

2 If this is set to something other than "NORMAL", it can be change with the command SET MODEM GROUP ALL CONNECTION_TYPE NORMAL.

LCP Authentication Does Not Show Complete

If LCP authentication did not complete:

- 1 Check that the authentication server being used by the access router card is configured properly. Be sure the RADIUS server and the username and password are valid.
- **2** If the authentication server is configured correctly, check if the DNIS preauthentication feature is being used:
- 3 Enter **Show Interface Slot:x/mod:y** for the interface the failed call is arriving on. The following should be displayed:

DNIS Authentication: ENABLED

- a If DNIS preauth is not part of your configuration, type **SET MODEM GROUP ALL DNIS_AUTHENTICATION DISABLED**.
- b If DNIS preauth is required, confirm that the other DNIS settings are correct. enter SHOW INTERFACE SLOT:X/MOD:Y to display the DNIS settings. DNIS preauthentication sends the client's phone number as the username and either a NULL password or a password that has been configured on the access router card to the AAA server. Correct any settings that are incorrect.

If RADIUS/TACACS are being used to validate the phone number information and the interfaces are properly configured for DNIS go to Step 4.

4 If DNIS is disabled or the settings are all correct, this would indicate that there is no simple configuration problem.

Examine the log files from your authentication server to help determine why the server "does not like" the request packet. The AUTH request from the access router card does not have many different configurations. You can remove the Vendor-Specific Attributes (VSAs) and ensure that all empty attributes are padded with 0s and not NULL. To do this type the following:

ENABLE RADIUS FILL_NULL_ATTRIBUTES

SET AUTHENTICATION VSA DISABLED

If changing these items fixes the problem, your server has no support for VSAs, it does not support NULL filled attributes, or both. Only the NULL issue can be addressed on the access router card. VSA support is a function of the RADIUS server.

If LCP Authentication Does Complete

If calls are dropping right after LCP converges:

- 1 Check if the time elapsed when each call drops. If all the calls drop after the same elapse time, make sure the cause is not an erroneous value for the time-outs.
- 2 If the time-out value is correct, check the PPP trace to see if the call fails after a CCP reset.

Some client's compression protocols are not interoperable with the access router card. One symptom of this is frequent CCP Resets found in the PPP traces. Excessive CCP resets will generally lead to a call drop. Turn off CCP on the access router card for that specific client to test the condition. Type **set ppp ccp_MODEMTYPE_ACCEPT NONE**.

Calls Fail After Authentication has Completed

If monitoring PPP during the LCP phase indicates that calls are failing after authentication has completed, check the following configurations:

1 Check the users defined service-type. The defined service-type could differ from the type of service the user is attempting to connect as.

The user having a RADIUS/TACACS definition that gives a service-type other than PPP, such as login would cause this. In this case the access router card would receive the authentication acknowledgement and see that the user is not allowed to do PPP, the result would be a dropped call.

This can be determined by checking the authentication server's configuration for that user, or monitoring the protocol. If RADIUS is being used, the access router card's RADIUS monitor will show the contents of the ACK packet. TACACS must be captured by other means and decoded manually. There will also be syslog messages that indicate a service-type mismatch for that user.

- **a** For PPP the service type in RADIUS should be "Framed" and the protocol is normally "PPP". (SLIP in some rare cases).
- **b** If the users are local to the access router card, the user type should be "NETWORK" and the protocol either PPP or SLIP.
- **c** Consult your RADIUS/TACACS vendor for specifics on authentication server setup that matches these requirements.
- **2** Check if there are IP addresses available. In either case the call will drop if the access router card cannot get an address to assign to the user.

A message similar to Figure 10 will be sent to syslog when this occurs:

Figure 10 SYSLOG Message - Access Router Card

```
At 19:32:58, Facility "IP", Level
"CRITICAL"::ip_fwd_get_opt: no IP address available
for
dynamic address assignment
```

Your calls are dropping due to missing IP pool or from running out of addresses:

- **a** If you are using DHCP proxy, make sure your access router card has DHCP turned on, then check the DHCP server to ensure it has enough addresses to cover all available ports on the access router card.
- **b** If you are using a locally configured IP Pool, check to see if one is present by using the command **LIST IP POOLS** the output should be similar to the output in Figure 11.

Figure 11 LIST IP POOLS - Access Router Card CLI Command

IP ADDRESS	POOLS				
Name Route	Unused	Address Status	Size	InUse	State
pool1 NO_AGGREGAT	re O	207.24.79.200/C ACTIVE	5	0	PUBLIC

The size of the pool should be the same as the number of available modems for dial-in that this access router card is servicing. The state should be **PUBLIC**. It is possible to combine smaller pools from different networks to achieve the total size desired as long as all the pools are tagged as **PUBLIC**.

c To change the size of a pool use the command:

SET IP POOL <NAME> SIZE <SIZE>

d To add a pool use the following command to create a PUBLIC pool:

ADD IP POOL <NAME> INITIAL_POOL_ADDRESSS <START ADDRESS> SIZE <SIZE>

e If you are using PRIVATE pools (pool name is specified by the authentication server) make sure that the private pool exists and that it has enough addresses for all the users that may use it.

Refer to the Operations Guide for more information.

- f If DHCP proxy is being used, use the command sHOW DHCP_PROXY
 SETTINGS to verify that the service is enabled. If it is not, the command
 SET DHCP_PROXY ENABLED will enable it. There are no other settings on the access router card required for DHCP proxy to work.
- 3 Check if there is a filter assigned and not defined. The access router card supports the use of packet filters. These filters may be assigned on a per user basis via the authentication protocol (RADIUS) or set on the modem interfaces. If either is done, but the filter has not been defined on the access router card the call will drop. This is a security feature.

The syslog will show this problem with the following messages.

Figure 12 SYSLOG Report

```
FM: Filter file std.ppp.in is not in the filter list,
filter not applied
At 19:42:51, Facility "IP", Level "CRITICAL":: IP,
FILTER_APPLY_RSP failed
(ES_NULL_FUNC)
```

In this case the authentication protocol was assigning the filter "std.ppp.in" to the user, but that filter was not defined on the card.

- a If the calls are dropping due to a filter being assigned to a user but not being present on the access router card. To see the filters configured use the command **LIST FILTERS**. If the users filter does not show up in the list, it must be added. The access router card supports two methods of adding filters,
- local edit
- TFTP filter file.
- **b** After creating the file, use the command **ADD FILTER <FILE NAME>** to add the filter. If the syntax is correct the command completes with out error.
- 4 Check if the client is accepting the assigned IP address.
If the client is configured for a static IP address but the access router card is attempting to assign an address from a IP pool or a different static address from the user's profile the call will drop. The problem can be seen by observing the IPCP negotiations in PPP LCP using the **MONITOR PPP** command, as shown in Figure 13.

Figure 13 MONITOR PPP - Access Router Card CLI Command

Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	18-FEB-2000	20:32:39
IPCP	CFG_REQ	COMPR_TYPE	00	2d Of 01	
		NEW_ADDRS	0a	0a 0a 01	
		PRIM DNS	00	00 00 00	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	18-FEB-2000	20:32:39
IPCP	CFG_NAK	COMPR_TYPE	00	2d Of 00	
		NEW_ADDRS	cf	18 4f ca	
		PRIM DNS	cf	18 a9 fd	
Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	18-FEB-2000	20:32:39
IPCP	CFG_REQ	COMPR_TYPE	00	2d Of 01	
		NEW_ADDRS	0a	0a 0a 01	
		PRIM DNS	00	00 00 00	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	18-FEB-2000	20:32:39
IPCP	CFG_NAK	COMPR_TYPE	00	2d Of 00	
		NEW_ADDRS	cf	18 4f ca	
		PRIM DNS	cf	18 a9 fd	

Notice that the client keeps asking for the same 10.10.10.1 address even though the access router card is trying to assign 207.24.79.X. A similar problem could occur if the individual user is configured to negotiate an address and the client is expecting to be assigned one.

If this is the case, the client PPP device is not properly configured. Since it is not possible to cover proper configuration of all client device, it recommended that the client is configured to have an IP address assigned to it. This ensures that the client gets the proper IP address

Some Calls Complete on the Access Router Card		If you have determined that some, but not all calls are failing on the access router card, check the following settings:
	1	Check the RADIUS/TACACS configuration to determine if those users that connect are configured differently from those who do not.
		If this is the case, determine the reason for the difference in configuration. This difference should point to the problem.
		An examination of the user configuration in RADIUS or in the local users table should reveal the differences. Start by changing the problem user's configuration to match a working user.
	2	If no configuration differences exist, survey all failed users and see if they have modems from the same manufacturer or chip set.
	3	If this is the case, the failures are all tied to a specific modem, make sure that the modem firmware is updated to the latest available from the vendor. If this does not correct the problem, contact CommWorks customer support.
	4	If the modems are the same, check the software versions of the clients that fail. For example are all failures with Windows NT Service Pack 3 or Windows 95 with DUN 1.0?
	5	If this correlation is found the failures are all tied to a specific client platform, make sure that the client software is updated to the latest available from the vendor. If this does not correct the problem contact CommWorks customer support.
	6	Check to see if all the calls that complete area all digital or all analog. If only one type of call can complete and your configuration you should support both check your modem configurations.
	7	Check if the failures are isolated to a single modem card or telco span.
		The sysloging from CIP should help determine if the calls are only failing from a specific set of modems.
		a Swap the span to a different set of modems. This should indicate if the problem follows the span or is related to specific modems. If this test shows either, the problem is isolated to a single modem or span.
		b Verify configurations and software versions on the problem card and match the working cards and the span provisioning from the telco. If this is correct, swap the card with a "known" good card.
		c There are two possible points of hardware failure:
		 the chassis slot may be defective
		 the card may be defective

This can be determined by moving the card.

8 If you determine that the hardware is the problem, return the card for repair. If hardware is ruled out by swapping of cards and spans, re-check the configuration for the interfaces on that card in the access router card and that card's configuration. It is also possible that the telco has provisioned the span incorrectly.

Using PPP Monitoring to Track Problems The access router card will display the PPP but will not diagnose any problems for you. To get a good understanding of the output use the book *PPP Design and Debugging* by James Calrlson as a reference guide. <u>Table 7</u> lists relevant RFC documents related to PPP:

 Table 7
 RFC References - PPP Design and Debugging

RFC	Description
RFC 2153	PPP Vendor Extensions
RFC 1332	The PPP Internet Protocol Control Protocol (IPCP) - Address Negotiation
RFC 1877	PPP IPCP Extensions for DNS & NBNS
RFC 1994	Authentication (PAP/CHAP)

Start the PPP monitor by entering the following command from the access router card command prompt:

MONITOR PPP

Figure 14 displays the access router card monitor facility:

Figure 14 Monitor PPP Command Display

```
HiPer PPP Monitor

Select a letter for one of the following options:

C) Monitor PPP Call Events.

I) Monitor a specific interface.

N) Monitor a specific interface.

U) Monitor a specific user.

T) Monitor a specific calling number.

N) Exit the monitor.

Please Enter Your Choice :
```


Options I,N,U will show you the complete PPP packets to and from the access router card.

For example, if you wanted to see all the PPP from user "test". Choose option "U" and supply the name "test" as shown below:

Figure 15 Monitoring a Specific User - PPP

You are now in the monitoring mode. Take a screen capture from your terminal program at this time. There is no way to go back and look at the packets on the access router card after the screen pages. Once the user "test" gets authenticated, the access router card displays the final part of LCP and then begins showing the PPP data packets.

Figure 16 shows the screen output.

Figure 16 Monitoring PPP - CLI Final Output

Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:52
CHAP	SUCCESS	00			
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:52
IPCP	CFG_REQ	COMPR_TYPE	00	2d Of 00	
		NEW_ADDRS	cf	18 4f 15	
Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
IPCP	CFG_REQ	COMPR_TYPE	00	2d Of 01	
		NEW_ADDRS	00	00 00 00	
PRIM DNS	00 00 00 00				
		PRIM NBNS	00	00 00 00	
		SEC DNS	00	00 00 00	
		SEC NBNS	00	00 00 00	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
IPCP	CFG_REJ	PRIM NBNS	00	00 00 00	
		SEC DNS	00	00 00 00	
		SEC NBNS	00	00 00 00	
Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
CCP	CFG_REQ	MS_COMP	00	00 00 01	
		STAC_COMP	00	01 04	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
CCP	CFG_REJ	STAC_COMP	00	01 04	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
CCP	CFG_REQ	MS_COMP	00	00 00 01	
Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
IPCP	CFG_ACK	COMPR_TYPE	00	2d Of 00	
		NEW_ADDRS	cf	18 4f 15	
Incoming PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
IPCP	CFG_REQ	COMPR_TYPE	00	2d Of 01	
		NEW_ADDRS	00	00 00 00	
		PRIM DNS	00	00 00 00	
Outgoing PPP	Data on interface:	<pre>slot:2/mod:1</pre>	Time:	31-JAN-2000	17:40:53
IPCP	CFG_NAK	COMPR_TYPE	00	2d Of 00	
		NEW_ADDRS	0a	0a 0a 06	
		PRIM DNS	cf	18 a9 fd	
I CCP	CFG_ACK	MS_COMP	00 00	00 01	
Tracing stopped, Return/Enter to re-start, ESCAPE to quit.					

If the complete PPP negotiation that includes all the LCP prior to authentication, options **N** and **I** will capture the entire session. You need to know that user will be next to call in or on what interface to expect the call. If this is a "live" chassis there will be too many calls to predict this. Use the "TAP" facility in that case.

The PPP Call events provide a high level look at all PPP traffic on the card. No decoding is attempted. It is not very useful when looking for root cause of a problem. Two calls are shown, one completes and terminates successfully, the second fails do to an authentication problem that can not be determined from the trace. The trace shows " CHAP Mismatch," the failure was cause by using a name that was not present in the user database.

Figure 17 shows the PPP call events.

Figure 17 PPP Call Events

Monitoring PPP Call events.Tracing of Call Events; Escape to stop... New PPP Call received on interface slot:2/mod:1 PPP - Authentication Complete to tests. PPP - Expanded Authentication Complete to tests. PPP - MPPC Compression Link UP to tests. PPP - IP Link UP to tests (10.10.10.6) Local IP Address (207.24.79.21) was configured. Expanded PPP link down to tests. PPP connection down to tests. New PPP Call received on interface slot:2/mod:1 PPP Auth Failed, CHAP Mismatch. PPP link down to . PPP Link Down to .

Monitoring RADIUS for Problems

The access router card will display the RADIUS but will not diagnose any problems for you. To get a good understanding of the output it is recommended that the RFC's 2865 and 2867 be used as a reference guide.

Start the RADIUS monitor with the command **MONITOR RADIUS**. This will bring you to the following menu shown in <u>Figure 18</u>:

Figure 18 RADIUS Monitor

The type of information displayed by options A through G is the same. It shows you the decoded RADIUS packet for all attributes that the access router card understands. Any unknown attributes will not show up. If you suspect a problem caused by unknown attributes, switch the monitor to HEX mode by typing **H** during the session. You must then use the RFC to aid in decoding the packets manually.

Option **G** shows only packets that deal with RADIUS resource management. These packets are not described in the standard RADIUS RFC's. They are part of a specification that never made it to RFC status. For example, if you wanted to see the RADIUS traffic for the next session, enter option \mathbf{E} at the prompt. The output will look like Figure 19:

Figure 19 Monitoring Next RADIUS Session - Access Router Card

Tracing next RADIUS session Decode tracing started, press H and D to toggle between hex and decode mode Press Escape to return to the previous screen. _____ Src-Port Destination-IP Dest-Port Id Packet-Type Source-IP _____ 207.24.79.21 1645 207.24.169.214 1645 5 Access-Request _____ Time Stamp : 01-FEB-2000 19:31:32 _____ User-Name : tests CHAP-Password : xxxxxxxxx NAS-IP-Address : 207.24.79.21 NAS-Port : 257 Acct-Session-Id : 16777241 Interface-Index : 1513 Nas-Supports-Tags : 0 Service-Type : 2 Framed-Protocol : PPP Multilink-PPP-Endpoint-Id : f2 22 86 5 MP-EDO : f2 22 86 5 Chasis-Call-Slot : 2 Chasis-Call-Span : 1 Chasis-Call-Channel : 1 Initial-Connect-Rate : 1(NONE) Calling-Station-Id : 8473579016 Called-Station-Id : 5453087 NAS-Port-Type : 2 _____ Src-Port Destination-IP Dest-Port Id Packet-Type Source-IP _____ 207.24.169.214 1645 207.24.79.21 1645 5 Access-Accept _____ Time Stamp : 01-FEB-2000 19:31:32 _____ Service-Type : 2 Framed-Protocol : PPP Framed-IP-Address : 10.10.10.6 Framed-IP-Netmask : 255.255.255.255 Framed-Route : 10.10.1.1/24 0.0.0.0 1 Idle-Timeout : 900 Port-Limit : 2

Using the Port TAP Facility	The access router card can be setup to "tap" a user or WAN interface. The "tap" displays all the data at the byte level going in or out from the configured interface. This raw data can then be decoded and analyzed as part of the call failure diagnosis.
	There are two ways to initiate a tap:
	 By configuring a user either via RADIUS or local user configurations to have that users session tapped every time. In this case the tap would start after authentication.
	 Configure a tap on a specific interface. This shows all traffic on that interface until the tap is stopped.
	Tap data can be viewed in two ways:
	 Sent to a outside server running syslog
	 Viewed in the CLI
User Configured for TAP	In this configuration syslog is the only allowed method of storing the captured data. For a locally configured user the following commands are used to set up a tap.

set tap user <name>

The user record should contain the following attributes to enable a tap. The RADIUS server requires support for CommWorks/3Com/USR style VSAs.

Figure 20 Port Tap Facility - User Record

# Port-Tap Feature Attributes				
USR-ATTRIBUTE	Port-Tap	0x9845	integer	
# Tapping Va	alues			
USR-VALUE	Port-Tap		Disabled	0
USR-VALUE	Port-Tap		Enabled	1
USR-ATTRIBUTE	Port-Tap-Format	0x9846	integer	
# Port Tap 1	Format Enumerations			
USR-VALUE	Port-Tap-Format		Ascii	0
USR-VALUE	Port-Tap-Format		Hex	1
USR-VALUE	Port-Tap-Format		Clear	2
USR-ATTRIBUTE	Port-Tap-Output	0x9847	integer	
# Port Tap (Output Enumerations			
USR-VALUE	Port-Tap-Output		Svslog	0
USR-VALUE	Port-Tap-Output		Console	1
USR-ATTRIBUTE	Port-Tap-Facility	0x9848	integer	
# Port Tap 1	Facility Enumerations			
USR-VALUE	Port-Tap-Facili	ty	Log-Auth	1
USR-VALUE	Port-Tap-Facili	ty	Log-Level0	2
USR-VALUE	Port-Tap-Facili	ty	Log-Levell	3
USR-VALUE	Port-Tap-Facili	ty	Log-Level2	4
USR-VALUE	Port-Tap-Facili	ty	Log-Level3	5
USR-VALUE	Port-Tap-Facili	ty	Log-Level4	6
USR-VALUE	Port-Tap-Facili	ty	Log-Level5	7
USR-VALUE	Port-Tap-Facili	ty	Log-Level6	8
USR-VALUE	Port-Tap-Facili	ty	Log-Level7	9
USR-ATTRIBUTE	Port-Tap-Loglevel	0x9849	integer	
# Port Tap 1	Log Level Enumerations			
IISR-VALUE	Port-Tap-Loglev	<u>_</u>]	Critical	0
USR-VALUE	Port-Tap-Loglev	⊇_ ≏]	Unusual	1
USR-VALUE	Port-Tap-Loglev	⊇- ⊇]	Common	2
USR-VALUE	Port-Tap-Loglev	 ≏]	Verbose	2
USR-ATTRIBUTE P	ort-Tap-Address	~-	0x984a ipaddr	5
	ere rap maaress		sussia ipaaai	

Command Line
Interface Configured
TAPThe CLI provides the ADD TAP command set which can be used to add a
number of taps that will track a user or interface. Only modem interfaces can
be tapped. This feature has the provision for displaying the TAP data directly
on the console or to send it to a syslog server.

The configured taps can be seen with the **LIST TAP** command.

The following is output from an **ADD TAP NEXT FORMAT HEX OUTPUT SCREEN** command.

Figure 21 ADD TAP CLI Output

Tapping the next session to start up.

Press ESC followed by ENTER key to exit tapping.

TAP	NEXT	IN:	0:	7E	\mathbf{FF}	7D	23	C0	21	7D	21	7D	21	7D	20	7D	37	7D	21
TAP	NEXT	IN:	0:	7D	24	7D	25	DC	7D	27	7D	22	7D	28	7D	22	7D	31	7D
TAP	NEXT	IN:	0:	24	7D	25	DC	7D	33	7D	27	7D	24	30	3A	DB	7D	2A	51
TAP	NEXT	IN:	0:	26	7E														
TAP	NEXT	OUT:	1:	\mathbf{FF}	03	C0	21	01	01	00	1E	01	04	05	ΕA	03	05	C2	23
TAP	NEXT	OUT:	1:	05	05	06	9C	66	7B	27	07	02	08	02	11	04	05	ΕA	13
TAP	NEXT	OUT:	1:	03	00														
TAP	NEXT	OUT:	2:	\mathbf{FF}	03	C0	21	02	01	00	17	01	04	05	DC	07	02	08	02
TAP	NEXT	OUT:	2:	11	04	05	DC	13	07	04	30	3A	DB	0A					
TAP	NEXT	IN:	3:	\mathbf{FF}	03	C0	21	02	01	00	1E	01	04	05	ΕA	03	05	C2	23
TAP	NEXT	IN:	3:	05	05	06	9C	66	7B	27	07	02	08	02	11	04	05	ΕA	13
TAP	NEXT	IN:	3:	03	00														
TAP	NEXT	OUT:	4:	C2	23	01	02	00	19	10	CC	C1	79	F1	A1	61	2A	9C	4E
TAP	NEXT	OUT:	4:	94	45	4B	11	E5	5A	2E	6D	69	6В	65					
TAP	NEXT	OUT:	5:	C2	23	01	03	00	19	10	55	80	DB	В5	60	31	39	90	5A
TAP	NEXT	OUT:	5:	ΕE	3F	AF	FF	FΕ	Е9	42	6D	69	6В	65					
TAP	NEXT	IN:	6:	C2	23	02	03	00	1A	10	7D	15	0D	16	AF	0B	71	5D	46
TAP	NEXT	IN:	6:	53	FΒ	A1	50	71	A8	СВ	74	65	73	74	73				
TAP	NEXT	IN:	7:	\mathbf{FF}	03	C0	21	05	02	00	04								
TAP	NEXT	OUT:	8:	\mathbf{FF}	03	C0	21	06	02	00	04								

Tap session concluded. Press ENTER for prompt.

Using Syslog Facilities The access router card has a number of process facilities. In normal operation the card will only send messages of a critical nature to the syslog. For trouble locating and clearing it is possible to have certain processes send detailed

locating and clearing it is possible to have certain processes send detailed information about everything they do to either the console or a syslog server.

To see a list of available facilities and the detail level of their output, use the command **LIST FACILITIES**.

A sample is shown in Figure 22 along with Table 8 listing the more useful facilities.

HiPer>LIST FACILITIES		
PACIFITIES		
FHGIDIIIEð Fuent Facilitu	Log Level	
OTM OOL Dwinew	CRITICAL	
ATM ILMI	CRITICAL	
ATM Network Driver	CRITICAL	
ATM SAR	CRITICAL	
ATM Signalling	CRITICAL	
Auth Facility	CRITICAL	
Board Support Management Proces	ssCRITICAL	
CMTS SNMP Manager	CRITICAL	
Call Initiation Process	CRITICAL	
Command Line Interpreter	CRITICAL	
Configuration File Manager	CRITICAL	
Configurator	CRITICAL	
Console Driver	CRITICAL	
Crypto Driver	CRITICHL	
DHUR RELAY AGENT	CDITICAL	
Diffemential Commisse	CRITICAL	
Differential Services		
Discovery	CRITICAL	
Fthevnet Dwiger	CRITICAL	
Fuent Handler	CRITICAL	
Filter Manager Process	CRITICAL	
Frame Relay Process	CRITICAL	
GWC Modem Driver	CRITICAL	
GWCWAN Driver	CRITICAL	
HTML	CRITICAL	
IGMP	CRITICAL	
IP	CRITICAL	
IP Routing Process	CRITICAL	
IP Spoofing Process	CRITICAL	
IPSEC	CRITICAL	
	CRITICAL	
IPA Spooting Process		
IPA/IP DIAI-OUT PROCESS		
I OHNIIF I OTD	CDITICAL	
MCNS Reg/Adm	CRITICAL	
MIR Registrar	CRITICAL	
MPIP	CRITICAL	
NAT	CRITICAL	
NTP - Network Time Protocol	CRITICAL	
Network Management Bus Agent	CRITICAL	
Network Management Bus Driver	CRITICAL	
Network Management Interface	CRITICAL	
OSPF Facility	CRITICAL	
PKI	CRITICAL	
PM	CRITICAL	
PPP	CRITICAL	
PPPoE	CRITICAL	
	GRITICHL	
rolling Process	GRITICHL	
rort Lapper	CDITICAL	
WHILDFIVEF Dell Conver	CRITICAL	
nan aerver Remote Ping Puocess	CRITICAL	
RoboEvec	CRITICAL	
HUBULACE	0111110111	

Figure 22 Access Router Card - List Facilities Command

Table 8 describes the most common list facilities for the access router card: **Table 8** Most Common List Facilities

Call Initiation Process	Details about a call from presentation to completion
GWC Modem Driver	Packet Bus Communication between the access router card and modem
Filter Manager Process	Adding, Using, Verifying Filter files or rules

Table 8	Most C	common	List	Facilities ((continued)	
---------	--------	--------	------	--------------	-------------	--

IP	IP protocol stack
IP Routing	Changes and updates to the routing and forwarding tables
PPP	PPP stack details

The default setting for all processes is **CRITICAL**. Using the **SET FACILITY** command can change this. For processes with spaces in the name of the command will require you to place the name in quotes. There are four possible levels, listed in order of verbosity (CRITICAL, UNUSUAL, COMMON, DEBUG, and VERBOSE)

The facility **Configurator** is set to debug. This causes the access router card to stream detailed messages about what that process is doing to the configured syslog servers.

If no syslog server is configured or to take a quick look at the output, use the command **show events**. This causes all messages that would go to syslog to also be echoed to the telnet console. Disabling this feature is done by **HIDE EVENTS**.

Serial console sessions will always show these messages and cannot be suppressed.

Some processes generate such large amounts of data that you may not be able to type the hide command. This would then require opening a second session and turning the process to a less verbose setting.

Syslog servers are added with the **ADD SYSLOG** command syntax.

Access Router Card Trouble Clearing Commands	This section includes trouble clearing commands used on the access router card.
Viewing Facility Errors	The set facility command allows you to set and view log levels for the system's processes, ensuring that error messages reaching the threshold for that facility outputs to the console port.
	Although messages are sent to the Console port by default, you can configure a SYSLOG host to receive and save messages. See the <u>Using Event Logging</u> section later in this chapter for more information.

Log levels range from the lowest state, *debug*, to the highest, *critical*. The default is *critical*. Type:

```
set facility <name> loglevel [common | critical | debug
| unusual | verbose]
```

For example:

set facility snmp loglevel unusual

Use the list facilities command to view a log level change.

Terminating an Active Process The **kill** command terminates an ongoing process. You can kill a process only after it has started. For instance, if you want to kill a **ping** request that has run too long.

Use the list processes command to view current active processes.

For example:

Figure 23 Access Router Card - List Processes Command

HiPen>>> 1	ist nuoresses			
1101// 1	ist processes			
PROCESSES				
Index	Name	Tune	Statue	
2001	NameManager	Sustem	Inactive	
12001	Console	Sustem	Inactive	
22001	FileManagew	Sustem	Inactive	
32001	Configurator	Application	Inactive	
42001	Main	Application	Active	
52001	MIB Registrar	Application	Inactive	
62001	Config File Manager	Application	Inactive	
22001	RohoFyec NetManagement	Application	Active	
82001	Fuent Handler	Application	Inactive	
92001	Sustem Bus	Driver	Inactive	
2001	NMB Driver	Driver	Inactive	
12001	Deuice Discoueru	Application	Inactive	
C2001	Console Driver	Driver	Inactive	
12001	Loonback Driver	Driver	Inactive	
e2001	Ethernet Driver	Driver	Inactive	
£2001	IP Forwarder	Forwarder	Inactive	
1 02001	IIDP Process	Application	Inactive	
112001	TCP Process	Annlication	Inactive	
122001	Telnet	Application	Inactive	
132001	SLIP Process	Annlication	Inactive	
142001	TFTP Process 142001	Application	Inactive	
152001	IP Spoofing	Application	Inactive	
162001	DHCP Relay Agent	Annlication	Inactive	
172001	Ping Service Checker	Application	Inactive	
182001	RADIUS User Manager	Annlication	Inactive	
192001	SNMP Agent	Application	Inactive	
1a2001	Point to Point Protocol	Application	Inactive	
1 52001	Domain Name System	Application	Inactive	
1c2001	Filter Manager Process	Application	Inactive	
1 4 2 0 0 1	NTP - Network Time Protocol	Application	Inactive	
1e2001	NMB Agent	Application	Inactive	
1f2001	BSP Management Process	Application	Inactive	
202001	Remote Ping Process	Application	Inactive	
212001	File System Compaction Proces	sApplication	Inactive	
222001	IPX/IP Dial-out Process	Application	Inactive	
232001	Traceroute Process	Application	Inactive	
242001	Tunnel Dispatcher	Application	Inactive	
252001	NPPTP	Application	Inactive	
262001	L2TP Process	Forwarder	Inactive	
272001	VTP Process	Application	Inactive	
282001	MPIP Process	Application	Inactive	
292001	PPPoE Process	Application	Inactive	
2a2001	Port Tapping Process	Application	Inactive	
252001	PM Process	Application	Inactive	
2c2001	IPsec process	Application	Inactive	
2d2001	ISAKMP process	Application	Inactive	
2e2001	NATProcess	Application	Inactive	
2f2001	HTML Process	Application	Inactive	
302001	DiffServ Process	Application	Inactive	
312001	Frame Relay Process	Application	Inactive	
322001	RSH Deamon [®] Process	Application	Inactive	
332001	Call Init Process	Application	Inactive	
342001	IP Routing Instance	Application	Inactive	
352001	IP OSPF	Application	Inactive	
362001	CLI	Application	Inactive	
372001	GWC Modem Driver	Driver	Inactive	
382006	CLI 382006	Application	Inactive	
392003	CLI 392003	Application	Inactive	
HiPer>>				•

CAUTION: Use the kill command with caution. Stopping all processes on the access router card may cause serious problems. It may be much easier and safer to simply reboot the card.

Resolving Addresses The arp command performs IP address resolution. Type:

arp <ip address or host name>

The system will respond with an IP address (and MAC [Ethernet] address if found on a locally connected network) of the host. For example:

ARP: 172.122.120.118 -> 08:00:09:cc:58:bf

Resolving Host Names The **host** command returns an IP address for a specified host name by sending it to a DNS server for resolution. Before you can resolve a host, you must have added a DNS local host and server entry for resolution. To do so, use the *add dns host <name> address <ip address>* and *add dns server <ip address>* commands.

For example:

add dns server 133.114.121.45 preference 1 name "Our DNS server"

add dns host hahvahd.college-hu.com address 133.114.121.15

host hahvahd

A screen output example:

Network Name: hahvahd.college-hu.com is resolved to Address: 133.114.121.015

Using Ping Overview

The **ping** command is very helpful in testing connectivity with other network devices. Options let you set ping attempts (*count*), the period between ping attempts (*interval*), the time before quitting (*timeout*), a string value specifying data to be sent (*data*), the ping maximum packet dimension (*size*), the ping process off screen (*background*), the progressive ping output for each ping request (*verbose*), and the erasure of entries in the Remote Ping Table (*self_destroy_delay*).

The CLI can perform a ping with either *verbose* or *background* selected, but not both. *Verbose* causes the CLI to display information for each PING transmitted. *Background* causes the CLI to start the PING request and then ignores it. This diagnostic tool can also be initiated from an SNMP station. Type **ping** and the following related commands:

```
ping <IP address>
background [no | yes]
count [1 to 1000]
data [alphanumeric string]
interval [seconds; 1 to 65535]
self_destroy_delay [minutes; 1 to 65535]
size [1 to 1400]
timeout [1 to 60]
verbose [no | yes]
```

For example:

ping 149.112.250.129 count 3 verbose yes

The command would display the following:

Figure 24 Ping CLI Command Output

A ping of a *single* count produces the following, for example:

Figure 25 Ping CLI Command Example - Single Device

Listing Ping Settings

You can use the LIST PING SYSTEMS command to display ping results.

Showing Ping Statistics

The **show ping row <number>** command is an alternative to display ping statistics.

Use the **delete ping row** <number> command to erase a row in the Remote Ping Table.

Setting Ping Row Ceiling

The **set ping maximum_rows** command sets the maximum number of rows permissible in the Remote Ping Table. Setting this parameter to a number smaller than the current number of rows will not cause any row deletions immediately but will follow any current ping. Default: **20**. Range: **1-1000**.

Configuring a Ping User

You can configure a ping user to test the connectivity of a specified login host using the **add** and **set login user** commands. A user pings a login host, gets a successful/unsuccessful message and is disconnected. Use these commands to test connectivity:

add user <user name> type login

set login user <user name> login_host <name or IP_address> login_service ping

For example:

add user jack type login

set user jack login_host_name 3.3.3.3 login_service ping

Using Ping to Monitor System Connectivity

The **add ping_service_loss_system** command creates a configurable ping that monitors connectivity across the Ethernet network to a specified server. If contact is lost to the server, the card signals the network management card which can be configured to busy out all chassis modems so no more calls are answered and any hunt groups will answer to other systems.

The configurable parameters are:

- IP name or address of the server to be pinged,
- enable/disable ping service to the specified server,
- frequency of ping requests,

- misses_allowed or number of ping failures to allow before busying out the modems
- **timeout** or the interval to wait before busying out the modems.

The command is entered as follows:

	<pre>add ping_service_loss_system <ip_name_or_address> enabled [yes no] frequency [1-200 seconds] misses_allowed [1-1000] timeout [1-6000 seconds]</ip_name_or_address></pre>
	For example:
	add ping_service_loss_system camel enabled yes frequency 30 misses_allowed 75 timeout 500
	Use can display all configured ping servers with the show ping service_loss_system command.
	The set ping service_loss_system command allows editing of the add command while the enable service_loss_busyout <ping> command turns the service on and the disable service_loss_busyout <ping> command turns it off. You can also use the delete ping service_loss_system command to remove the service altogether.</ping></ping>
Viewing Interface Status and Settings	Several commands are useful to display the active/inactive status and settings of specific interfaces (ports). They are: list switched interfaces , list interfaces and show interface settings , and show switched interface <slot:<i>x/mod:[1-<i>y</i>]>.</slot:<i>
Using Event Logging	This section includes information about event logging.
SYSLOG Host Event Logging	You can use the SYSLOG daemon to log events to one or more remote hosts. Event messages are sent to a SYSLOG server via UDP using port 514 - the standard UDP port for SYSLOG messages. If you Telnet to port 514, you will get the output of SYSLOG messages.
	When Internet Control Message Protocol (ICMP) logging is enabled, the following ICMP events are logged to SYSLOG:
	 Sent Dest Unreachable
	 Sent ICMP TimeExceeded
	 Rcvd ICMP TimeExceeded
	 Sent Parameter Problem
	 Rcvd Parameter Problem

- Rcvd Source Quench ICMP
- Rcvd TimeStamp REQ ICMP
- Rcvd Address Mask REQ ICMP
- Rcvd Address Mask Reply ICMP
- Rcvd Router Solicitation ICMP
- Sent Router Advertisement ICMP
- Sent ICMP Redirect (Recv'd ICMP Redirect messages are not logged)

Console Event Logging Event messages are automatically displayed on a local console. Of all ICMP messages generated, only *Received Destination Unreachable* messages are logged to the console.

TELNET Session All events normally directed to the Console only can also be echoed to the TELNET or dial-in session you are running by issuing a **show events** command (the **hide events** command disables the function).

- **Event Logging Levels** Various event messages are generated for each facility, and are sent to any defined logging sinks. For each facility, you can specify the level of event information sent. Although the logging level of each event is fixed, you can configure the level of messages that are sent to a specific logging sink. Logging levels are:
 - Critical—A serious system error that may affect the integrity of the system
 - Unusual—An event that normally does not happen, but from which the system should recover
 - Common—A normal event
 - Verbose—A normal occurrence that happens frequently

You can configure whether event messages are sent to a logging sink according to the level of the message. For example, if you wanted to see only the *unusual* and *critical* events messages generated by the TELNET facility, you would set the event level threshold for TELNET to *unusual*.

Only messages that are unusual and critical are sent to the Console port.

Enter the following command to list log levels:

list facilities ENTER

Do not confuse **set facility** and **set syslog** commands. **Set facility** determines which messages are generated on the console or to a Telnetted PC - depending on the log level specified for each facility. The **set syslog** command, on the other hand, determines which messages are saved depending on the global log level you've set for the particular SYSLOG host. Setting the Event Log Level You can set the log level for each facility. By setting the event log level, you define the level at which you want messages associated with the facility to be displayed on the console port. Messages associated with a selected log level are displayed along with any more serious log levels.

To set the log level of a facility, use the following command:

set facility <facility_name> loglevel <log level choice>

For example, to set the log level of the IP facility to Unusual type:

set facility IP loglevel unusual

To display the list of facilities and their associated log levels, use the following command:

list facility

Event Message The system is capable of delivering hundreds of event messages, from common events to critical events. This section describes some representative event messages that are generated. Each event message is categorized by the facility by which it is generated.

The message description includes information about the meaning of the message, and if necessary, any corrective action you can take.

IP Messages

- "ipCfmSet_ipRoute: gateway of destination X, mask Y is not reachable. static route not added"
 - Meaning—The administrator tried to define a static route using a gateway that is not reachable via any of the existing IP routes
 - Action—Specify a different gateway that has an IP address that can be reached
- "proxy_arp_insert: no common network address found for remote ip address X"
 - Meaning—You are connecting to the system using an IP address that is not on the same IP subnetwork as the network defined for the system's LAN interface. Therefore, no proxy ARPing will be performed.
 - Action—Informational message. No action required
- "The route destination (X) should not contain more bits than are specified in the route mask (Y)"
 - Meaning—The administrator tried to add an IP route where the network prefix of the destination contains more bits than are specified in the network mask

 Action—If no netmask is specified, the natural mask of the address is assumed. To specify a host route, you must specify /H as the netmask. For example:

add ip route 204.249.182.199/H

- "Failed to delete the route to X. Only routes marked as Static/NetMgt can be deleted."
 - Meaning—The administrator tried to delete an IP route that cannot be deleted
 - Action—Informational message. No action required
- "Failed to create static or default route. The IP subnet for the specified gateway does not exist or is disabled."
 - Meaning—The administrator tried to add an IP route over an interface which is disabled or down
 - Action—Enable the interface before adding the route

Use the list ip net command to view IP network addresses currently in use.

Call Initiation Process Messages

- "CIP: Unable to find an available default host for user%s,%x/n"
 - Meaning—The user tried to connect to a host from the login host table, but there is no available host
 - Action—The login host table is probably empty. Add a host to the table and let the user dial in again

User Manager Messages

- "AUTH: Unable to authenticate if both authentication IP's are set to 0"
 - Meaning—The user may not be defined locally, remote authentication is not enabled, or a remote authentication IP address is not configured
 - Action—Define the user locally or configure a RADIUS server IP address
- "AUTH: Unable to account if both accounting ip's are set to 0"
 - Meaning—Remote accounting is enabled, but no RADIUS accounting server IP addresses have been configured
 - Action—Either disable remote accounting or configure a RADIUS accounting server IP address
- "AUTH Most likely client/server configuration mismatch"

Filter Manager Process Messages

- "FM: In filter file <name> had no rules for <protocol> protocol"
 - Meaning—A filter protocol section is defined, but there are no rules associated with it.
 - Action—A protocol section must either contain at least one rule, or be commented out for the syntax to be valid
- "FM: In filter file <name>, previously defined section <protocol section name>"
 - Meaning—There are two protocol sections that use the same name, for example, you defined two IP protocol sections in the filter file
 - Action—Delete one of the duplicate protocol sections
- "FM: In filter file <name>, ambiguous first line"
 - Meaning—The filter file does not contain the required file descriptor on the first line
 - Action—Place file descriptor (#filter) on first line of file

UDP Messages

- "UDP could not get source IP address"
 - Action—Create an IP network

Configuration File Manager Messages

- "The configuration file <filename> is corrupt. Status <error status>."
 - Meaning—The Configuration file has been corrupted. It will be renamed to <filename>.bad
 - Action—Keep a copy of the <filename>.bad file. If the file was uploaded to using TFTP, upload the file again making sure the TFTP transfer mode is set to octet
- "Could not create a list for CFM Control Structures. Status: <error status>."
 - Meaning—The Configuration File Manager could not allocate the resources necessary for normal operation
 - Action—Reboot the system

IP Dial-out Process Messages

- "INIT: Could not allocate a private data area. Status: <error status>."
 - Meaning—The dial-out process could not allocate enough memory for its data. The dial-out process will not be started
 - Action—Free some memory, for example, delete some users. Once some memory has been freed, save the configuration and reboot the system

NETWORK MANAGEMENT CARD AND HIPER NMC TROUBLE LOCATING AND CLEARING

This chapter includes solutions for the network management card.

This chapter contains the following topics:

- Overview
- Network Management Card NAC Faceplate
- Verifying Software Version Numbers
- LED Diagnostics
- Installation and Configuration Problems
- Hub Security is Not Working
- Problems with the Network Management Card Retaining Settings

Overview

The network management card provides a single point of management access into the Total Control[®] 1000 chassis. It manages all of the devices installed in the Total Control 1000 chassis and operates under the direction of management software running on a workstation known as the network management station.

Network Management Card NAC Faceplate

The network management card Network Application Card (NAC) has 5 Light Emitting Diodes (LEDs) for representing system and network status, a RUN/FAIL (RN/FL) LED for card status, and a 4 character LED display for identification or status.

Figure 26 Network Management Card NAC Faceplate

<u>Table 9</u> lists the purpose of the network management card LEDs. **Table 9** Network Management Card LED Descriptions

LED	Purpose
RN/FL	NAC Run/Fail indicator
HUB ST	Hub (system) status
LAN TX	Local Area Network (LAN) transmit (TX)
LAN RX	Local Area Network (LAN) receive (RX)
WAN TX	Wide Area Network (WAN) transmit (TX)
WAN RX	Wide Area Network (WAN) receive (RX)
HUB NUMBER/STATUS	4 character alphanumeric display for identification or status indication

Verifying Software Version Numbers	Before you perform any trouble locating and clearing, ensure you are using the correct network management card software version. Check this version number with the published version number in the Total Control 1000 Enhanced Data System System 4.5 GA System Release Notes. You will need to know this number if you contact CommWorks Technical Support.		
Common Element Manager	To verify the network management software version using common element manager:		
1	From the Explorer tab, click the network management card.		
2	From the Properties tab, click the Identification tab.		
3	Check the Version field for the current software number.		
Total Control Manager	To verify the network management card software version using total control manager:		
1	From total control manager's Virtual Front Panel Display (VFPD), select the network management card.		
	The card turns blue.		
2	From the main menu, click Configure and then click Programmed Settings .		
	The NMC Card Programmed Settings window appears.		
3	From the Parameter Group drop-down menu, select NMC Identification to query data from the network management card.		
4	Check the Software Version field for the current software version.		
Command Line Interface	To verify the network management card software version using the CLI:		
1	Access the CLI Main Menu from the network management card's CLI.		
2	View the software version at the network management card Main Menu.		
	Figure 27 displays the CLI output for the network management card.		
	Figure 27 Network Management Card Software Verification - Command Line Interface		
	3 COM Network Managements Card Revision 8.7.1 Bere Code Laberd Date: Sep 18 2000 at 10:32:59 Dereation Code Linked Date: Nov 26 2001 at 11:46:45 Serial Mumber: BBRALJNO Main Menu 1 Configuration 2 Command 3 Feature Enable		

Enter menu selection and press Return.

Menu Selection (1-3):

LED Diagnostics

This sections describes LED diagnostics for the LEDs on the network management card.

RN/FL LED Diagnostics and Trouble Locating and Clearing

Table 10 lists network management card RN/FL diagnostics.

Table 10 Network Management Card RN/FL LED Diagnostics

LED Color	Condition	Diagnosis/Troubleshooting
Solid Green	Normal	The NAC is functioning properly.
Flashing Green	Loading boot code	This condition is part of the NAC's bootup routine which should take less than 1 minute to complete.
		If the condition persists, the NAC may be in need of a software download (SDL). Download the latest version of firmware to the card according to the instructions provided in this guide. When the download is complete, the card will reboot and the LED should turn solid green after the bootup routine
Flashing Red and Green	Non-Critical Failure	A non-critical failure is an error that occurs when the network management card cannot communicate with another NAC in the system.
		To find out which NAC the network management card cannot communicate with, observe the RN/FL LEDs on the other NACs in the system. The offending NAC will keep rebooting until it can communicate with the network management card over the Management Bus.
Solid Red	Critical Failure	A critical failure is one that will keep the NAC from executing it's functions.
		Remove the card from the slot and reinstall it following the NAC installation instructions in the <i>Getting Started Guide</i> .
		If the problem persists after the NAC goes through its bootup routine, contact your technical support representative.

HUB ST LED Diagnostics and Trouble Locating and Clearing

Table 11 lists the HUB ST LED indicates system or chassis status.

LED Color	Condition	Diagnosis/Troubleshooting
Solid Green	Chassis Normal	The chassis is functioning properly.
Solid Red	Chassis Critical Failure	This can be any error that the network management card identifies as potentially harmful. Some errors to look for are:
		 High chassis temperature
		Fan tray failure
		 Power supply failure
		 Improper NIC/NAC match-ups
		 Timing source loss
		 Bus resets
		To trouble clear a chassis critical failure, observe the LEDs on the NACs in the chassis and use the status indicating options in the command line.
Flashing Red	Management Bus Failure	The network management card cannot communicate with a card in the chassis over the Management Bus.
		To find out which NAC the network management card cannot communicate with, observe the RN/FL LEDs on the other NACs in the system. The offending NAC will keep rebooting until it can communicate with the network management card over the Management Bus.

 Table 11
 Network Management Card HUB ST LED Diagnostics

LAN LED Diagnostics and Trouble Locating and Clearing

The network management card NAC has two front panel LEDs for indicating local area network (LAN) activity: LAN TX and LAN RX.

Table 12 lists LAN LED diagnostics:

Table 12	Network Management Card LAN	LED Diagnostics
----------	-----------------------------	-----------------

LAN TX	LAN RX	Condition	Diagnosis/Troubleshooting
Flashing Green	Flashing Green	NAC is transmitting and receiving data	The LAN status is operational
Off	Flashing Green	Improper network configuration	The network management card is on the network but is not configured properly.
			Verify that the network management card's Local LAN IP protocol settings are correct.
Off	Off	No network activity	This is normal if there is no traffic on the LAN.
			If it is suspected that there is a LAN connectivity problem, Issue a Ping command to the network management card from a remote network node. If the network management card is attached to the network then you will receive a response. If you receive a "Request Timed Out" message, then follow these steps to trouble clear:
			 Verify that you "pinged" the correct address.
			2 Check the physical connection to the network management card's Ethernet NIC. The connection should be made to the Ethernet port.
			3 Verify that the network management card's Local LAN IP protocol settings are correct.

WAN LED Diagnostics and Trouble Locating and Clearing

The network management card NAC has two front panel LEDs for indicating wide area network (WAN) activity: WAN TX and WAN RX.

Table 13 lists WAN LED diagnostics:

Table 13	Network N	Vanagement	Card	WAN	LED	Diagnostics
		0				0

LAN TX	LAN RX	Condition	Diagnosis/Troubleshooting
Flashing Green	Flashing Green	NAC is transmitting and receiving data	The WAN status is operational
Off	Flashing Green	Improper network configuration	The network management card is on the network but is not configured properly.
			Verify that the network management card's Local WAN IP protocol settings are correct.
			Verify that the baud rates for the network management card's WAN port and on the remote device are compatible.
Off	Off	No network activity	This is normal if there is no traffic on the WAN.
			If it is suspected that there is a WAN connectivity problem, Issue a Ping command to the network management card from a remote network node. If the network management card is attached to the network then you will receive a response. If you receive a "Request Timed Out" message, then follow these steps to trouble clear:
			1 Verify that you "pinged" the correct address.
			2 Check the physical connection to the network management card's Ethernet NIC. The connection should be made to the CH2 port.
			3 Verify that the network management card's Local WAN IP protocol settings are correct.

HUB NUMBER/STATUS Indicator

The network management card's front panel also contains a 4 character alphanumeric display. This display can be used to designate a name or number for a rack, or a particular status. When the network management card is first powered on, the word WAIT appears in this display while the network management card performs its initialization tasks.

The Hub Number/Status display is set by sending the network management card a command from the management software.

Installation and Configuration Problems	This section provides information on software installation and configuration problems.
Network Management Card Cannot Talk to the Network	After installing and configuring the network management card, and the network management card cannot access the network there could be a problem with its configuration. Use the following procedure to correct this.
	To configure the network management card for network access using the command line interface:
1	Plug the console cable into the communication port, and then access the user interface through a terminal emulation program (for example, HyperTerminal).
2	Press Enter.
3	If prompted for a password, type the SNMP read write community string password.
	The default is Public for read only access and Private for read/write access.
4	Press Enter.
5	Type 1 from the Main Menu to access the Configuration menu.
6	Type 1, and then press Enter to access the Local Lan IP Address menu.
7	Type 1 , and then press Enter to access the Lan IP Address menu.
8	Type the new LAN IP Address, and then press Enter.
9	Type 2 , and then press Enter to access the LAN IP Subnet Mask menu.
10	Type the new LAN IP Subnet Mask, and then press Enter.
11	Press Esc to return to the Configuration menu.
12	Type 3, and then press Enter to access the Local Gateway IP Address menu.
13	Type the new Gateway IP Address, and then press Enter.
14	Press Esc to return to the Configuration menu.
15	Type 9 to access the Save Configuration to Non Volatile Memory menu.
16	Press Enter to save the LAN IP Configuration to NVRAM.
17	Restart the network management card after changing either the IP address or the netmask.
Network Management Card is Not Sending Accounting Reports	If the network management card is not sending accounting reports try to set up accounting on a network management card using common element manager.
1	From the Explorer tab, click the network management card.
2	From the Properties tab, click the Configuration tab.
3	From the Configuration tab, double-click the LogPriSrvrAddr field, and then type the IP address for the Primary Accounting server.

- 4 If a Secondary Accounting server exists, double-click the LogSecSrvrAddr field, and then type the IP address for the Secondary Log Server IP Address.
- 5 Double-click the LogUdpPortNum field and set the value.

By default, it is set to 1646.

- **6** Double-click the **LogRetryCnt** field, and then set the number of retries the card will take before the accounting packet drops.
- 7 Double-click the LogCallStatGrpSel field, and then click group2345 from the drop-down list.

In Group Selection, the different groups signify the following:

Group 1 - USAGE (always sent)

- User Name
- Call Start Date/Time
- Call End Date/Time
- Call Termination Reason
- Number Dialed OUTGOING ONLY
- ANI-Incoming ONLY
- DNIS-Incoming ONLY

Group 2 - DATA TRANSFER

- Characters Sent
- Character Received
- Octets Sent
- Octets Received
- Blocks Sent
- Blocks Received
- Blocks Resent
- Characters Lost
- Line Reversals

Group 3 - PERFORMANCE

- Block CRC Errors
- Link NAKS
- Link Fallback
- Link Upshifts
- Link Timeouts
- Initial Link TX Rate

- Final Link TX rate
- Retrains Requested
- Retrains Granted

Group 4 - OPERATING MODE STATISTICS

- Sync/Async Mode
- Modulation Type
- Originate/Answer Mode
- Error control Type
- Data Compression Type
- HST Back Channel Rate
- Default DTE Data Rate
- High Freq Equal
- 8 If MD5 Calculation is to be performed, double-click the **LogMD5Calc** field, and then click **enable**.

By default, it is disabled.

	9	If there are other backup logging servers, specify them in the Third, Fourth, Fifth, Sixth, Seventh, and Eighth Backup Logging Server. For example, the Third Backup Logging Server can be configured by typing the IP address in the Log3SrvrAddr field.
	10	If the logging server has a logical host name, type it in the LogSrvrName field.
	11	To view the current state of the logging server's host address DNS resolution, double-click the LogDnsEna field. By default, this setting is disabled.
Hub Security is Not Working		Use the following procedure to enable hub security on the Total Control 1000 chassis.
		To enable hub security using the CLI:
	1	Access the network management card CLI.
	2	On the Main Menu, choose option 3 for Feature Enable.
	3	On the Feature Enable menu:
		Feature Enable
		Current Features Enabled =
		0000 0000 0000 0000 0000 0000 0100
		Press Esc to Exit or Return to continue.
		Enter New Feature Enable String:

From here type the New Feature Enable string then press

ENTER. Please note: The string is 16 digits long.

- 4 On the Main Menu, type 1.
- 5 Press Enter to access the Configuration menu.
- 6 On the Configuration menu, type 9 to access the Save Configuration to Non-Volatile Memory menu.
- 7 Press Enter to save the configuration to NVRAM.
- **8** Restart the network management card to activate the configuration changes.
- **9** To view the currently-enabled features, repeat **step 1** and see below for which feature(s) are enabled:

The following feature enable string verifies that you have **AutoResponse**. This is automatically enabled by default:

Current Features Enabled =

 $0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0100$

- 10 Press Esc to Exit, or Return to continue.
- **11** Enter New Feature Enable String:

Current Features Enabled =

0000 0000 0000 0000 0000 0000 0000 0101

The feature enable string above verifies that **AutoResponse** and **Hub Security** is installed.

Current Features Enabled =

 $0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0110$

This above string shows that **AutoResponse** and the **Cellular** feature is installed.

Current Features Enabled =

0000 0000 0000 0000 0000 0000 0010 0100

The feature string above shows that both **AutoResponse** & **x2/V.90** are enabled.

If you have DSP multispan cards, you will not need a feature enable key; these cards automatically have X2/V.90 enabled on them.

Current Features Enabled = 0000 0000 0000 0000 0000 0010 0111

The above string verifies that **all options** are enabled.

Problems with the Network Management Card Retaining Settings	If Auto Configuration on Card Initialization is enabled on your system, the network management card may not retain the proper settings. This setting allows the network management card's NVRAM to overwrite the DSP multispan's NVRAM in the following situations:
	 Network management card is reinstalled
	 DSP multispan card is reinstalled
	 Hardware is reset
	 Chassis power-up
	Check the Auto Configuration on Card Initialization setting on the network management card. This setting should be disabled.
Common Element Manager	To disable Auto Configuration on Card Initialization using common element manager:
1	From the Explorer tab, click the network management card.
2	From the Configuration tab, double-click the PowerUpAutoCfgEnable field and click disable from the drop-down list.
3	Click Save all.
4	Right-click the network management card, and select Configuration .
5	From the Configuration menu, click Chassis save to NVRAM .
Total Control Manager	To verify Auto Configuration on Card Initialization is disabled using total control manager:
1	Click the network management card.
	The card turns blue.
2	From the Configure menu, click Programmed Settings . The NMC Card Programmed Settings window appears.
3	From the Parameter Group box, click Configuration Group . The Auto Configuration on Card Initialization settings appear.
4	If this feature is not disabled, click disable and then click Set .
5	Save the settings to the chassis NVRAM.
	a Click the network management card.
	The card turns blue.
	b From the Configure menu, click Actions/Commands . The total control manager Commands window appears.
	c In the second Command to Execute box, click Save Chassis to NVRAM.
	d Click Execute . The Command Status area displays a completion report.

This feature is not configurable using the CLI.

DSP MULTISPAN AND HIPER DSP TROUBLE LOCATING AND CLEARING

This chapter includes information regarding installation, initial configuration, and DSP multispan Network Application Card (NAC) trouble locating and clearing information.

Overview

The DSP multispan card set includes a front-loaded NAC and an associated rear-loaded NIC. Depending on your application needs, the DSP multispan NAC/NIC card set provides Wide Area Network (WAN) ingress access through four T1 spans located on a DSP multispan T1 NIC or three E1 spans located on a DSP multispan E1 NIC.

Incoming calls terminate on highly integrated modems found within the DSP multispan. Users receive WAN access either through Pulse Code Modulated (PCM) encoded analog calls converted to baseband or through ISDN digital data calls.

Once modems process analog and digital calls, the DSP multispan NAC passes the data across the Packet Bus to the access router card. The access router card performs encryption and standard routing functions.

Unless otherwise specified, all references to the DSP multispan card also apply to the HiPer DSP card.

DSP Multispan NAC	Figure 28 shows the Light Emitting Diodes (LEDs) for the DSP multispan NAC
Faceplate	and Table 14 lists the descriptions for each LED.

Figure 28 DSP Multispan NAC Faceplate

Table 14lists DSP multispan Faceplace LEDs.Table 14DSP Multispan NAC LED Descriptions

LED	Color	Description
RN/FL	green	Card has completed the Power On Self Test (POST).
	flashing green	Diagnostics running or downloading code.
	red	Card failed.
	flashing yellow	Flash programming.
CAR	off	Card has received no signal or poor signal.
	green	Card has received good carrier.
	red	Card has received bad carrier.
	yellow	Card has received remote alarm.
ALM	off	No alarm or remote frame alarm (RFA).
_	red	Alarm present.

LED	Color	Description
LPBK/DALM	off	Span is CHT1, or E1/R2, or NFAS with no D-channel.
	green	Green: D-channel is up (PRI mode).
		Flashing green: Backup D-channel is up (NFAS).
	red	D-channel is down (PRI mode).
	yellow	Loopback test in progress (all modes).
FAULT	yellow	There is a problem in one or more modems.
	red	There is a critical problem in one or more modems, or the NAC in general.
	none	The modems are configured correctly
UTILIZATION	off	Modems are not in use.
	green	Modems in use; the ten utilization LEDs indicate the percentage of modems on DSP multispan in use (0-100%).

Table 14	DSP Mu	iltispan NAC	ELED Descriptions	(continued)
----------	--------	--------------	-------------------	-------------

Verifying Software Version Numbers	Before you perform any trouble locating and clearing, ensure you are using the correct DSP multispan software version. Check this version number with the published version number in the Total Control 1000 Enhanced Data System System 4.5 GA System Release Notes. You will need to know this number if you contact Commworks Technical Support.
Common Element Manager	To verify the DSP multispan software version using common element manager:
1	From the Explorer tab, click the DSP multispan card.
2	From the Properties tab, click the Identification tab.
3	Check the Version field for the current software number.
Total Control Manager	To verify the DSP multispan software version using total control manager:
1	From total control manager's Virtual Front Panel Display (VFPD), select the DSP multispan card.
	The card turns blue.
2	From the main menu, click Configure and then click Programmed Settings .
	The Select Card Level or Template(s) window appears.
3	Select Card Level, and click OK.
	The DSP MultiSpan Card Programmed Settings window appears.
4	From the Parameter Group drop-down menu, select DSP Multispan Identification to query data from the DSP multispan card.
5	Check the Software Version field for the current software version.

Command LineTo verify the DSP multispan software version using the Command LineInterfaceInterface (CLI):

From the DSP multispan CLI, enter the following command from any command prompt level:

> version

Figure 29 displays the CLI output for the DSP multispan.

Figure 29 DSP Multispan Software Verification - Command Line Interface

Initial Configuration Trouble Locating and Clearing

<u>Table 15</u> lists problems and possible solutions that may occur during initial configuration.

 Table 15
 DSP Multispan - Initial Configuration Errors

Physical State	Carrier LED State	Alarm LED State	Loop- back LED State	Alarm/ Error	Diagnosis/Trouble Clearing
F1	Green	Off	Off	No Alarm	N/A
F2	Red	Off	Off	Yellow Alarm Remote Frame Alarm	The remote end has lost the DSP multispan NAC's framing or signal and sends this alarm to the DSP multispan NAC.
F3	Off	Red	Off	Red Alarm Loss of Signal	The received T1 or E1 signal has been lost. The DSP multispan NAC declares a red alarm and sends a yellow alarm to the remote end.
F4	Off	Red	Off	Red Alarm Out of Frame	The received T1 or E1 framing has been lost and the framed payload can no longer be received. The DSP multispan NAC declares a red alarm and sends a yellow alarm to the remote end.

Physical State	Carrier LED State	Alarm LED State	Loop- back LED State	Alarm/ Error	Diagnosis/Trouble Clearing
F5	Green	Red	Off	Blue Alarm Unframed all ones	The remote end is sending out an all ones signal. This is usually done when the remote end can not send out a framed signal.
F6	Green	Red	Off	Blue Alarm Unframed all ones	The DSP multispan NAC has received excessive CRC errors in a one second period and declares state F5. For E1-PRI certification this is less than 931 errors in one second.
	Green	Off	Red	D-Channel down	
	Green	Off	Amber	Look Back in progress	
F1	Green	Off	Off	No Alarm	

Tahlo 15	DSP Multisnan	Initial C	onfiguration	Frrors I	(continued)	1
	Dor multispan.	· II IIIIai C	Juniyuration	EIIUIS (Continueu	1

x2 / V.90	Trouble
Locating	and Clearing

Use the following sections to determine why the DSP multispan will not negotiate x2 / V.90.

V.90 Server Connections If your DSP will not negotiate V.90, you may have an analog line or a line-side T1 connection between the CO and PSTN, i.e., additional analog-to-digital connections may exist in the signal path. If so, V.90 will not function. Also, client devices will not connect to DSP at V.90 speeds if the DSP multispan is not configured correctly.

Use <u>Table 16</u> to trouble clear V.90 server problems:

Table 16V.90Server Problems

Possible Problem	Solution
The telephone company may have a line-side T1 connection.	Contact your local telephone company for information about obtaining a pure digital service. You can obtain a pure digital service by deploying either a PRI or <i>trunk-side</i> T1 connection to the PSTN.
DSP may be configured incorrectly.	Ensure you configured the S-registers properly. Verify the following settings are enabled:
	■ V.90
	■ V.8

If V.90 server connections still do not work, contact CommWorks Technical Support. Contact information is in the *About This Guide* section of this guide.

Trouble Clearing V.90 Client Connections

If some client modems connect to the modem at V.90, and some do not, use the following section to trouble clear V.90 client connections.

Common Element Manager

To determine if some client modems are connecting, and some are not, using common element manager:

- 1 From the **Explorer** tab, double-click the DSP multispan card.
- 2 Double-click a desired span.

The span expands to reveal all associated timeslots/modem channels.

- 3 From the Properties tab, click the Statistics tab.
- 4 Check the **X2Status** field to view the current status of x2/V.90 negotiation.

Table 17 lists x2/V.90 statistics and their descriptions.

 Table 17
 DSP Multispan Modems - x2 Status

Statistic	Description
x2v90NotOperational	x2 / V.90 is not operational
x2Operational	x2 is operational
v8DisabledLocal	V.8 is disabled on the DSP
x2DisabledLocal	x2 is disabled on the DSP
baud3200DisabledLocal	3200 baud is disabled on the DSP
speedLimitedLocal	The transmit speed is limited on the DSP
v8notDetectedFromRemote	DSP did not detect V.8 on the remote device
x2notDetectedFromRemote	DSP did not detect x2 on the remote device
incompatibleX2Versions	DSP and the client are using incompatible x2 versions
incompatibleX2Modes	DSP and the client are using incompatible x2 modes
baud3200DisabledRemote	3200 baud is disabled on the remote device
excessiveHFAttenuation	DSP detects excessive High Frequency attenuation
channelNoSymbolRate	An attempt to make an x2 or V.90 connection was not successful because the PSTN channel between the two modems does not support a symbol rate required by x2 (3200) or V.90 (3000, 3200, 3429)
exitBeforeX2Connect	The call disconnected before DSP and the client connected using x2
v900perational	V.90 is operational
x2v900perational	x2 and V.90 are operational
v90DisabledLocal	V.90 is disabled on the DSP
x2v90DisabledLocal	x2 and V.90 are disabled on the DSP
v90SymRatesDisabledLcl	An attempt to make a V.PCM connection was not successful because all V.90 symbol rates (3000, 3200, & 3429) are disabled in the local modem
v90NotDetectedFrmRemote	DSP did not detect V.90 on the remote device
x2v90NotDetectedFrmRmt	DSP did not detect x2 and V.90 on the remote device

Statistic	Description
incompatibleV90Versions	DSP and the client are using incompatible V.90 versions
incompatibleV90Modes	DSP and the client are using incompatible V.90 modes
v90IncompactibleSymRate	An attempt to make a V.90 connection was not successful because no V.90 symbol rate (3000, 3200, & 3429) was supported in common by both modems

Table 17 DSP Multispan Modems - x2 Status (continued)

Trouble Clearing

If some V.90 client modems cannot connect to your DSP at V.90 speeds, use <u>Table 18</u> for trouble clearing.

 Table 18
 V.90
 Client
 Modem
 Trouble
 Clearing

Possible Problem	Solution
V.90 may not be enabled on the client modem.	Refer the <i>Operations Guide</i> for more information on V.90.
The client modem may not have the proper V.90 software.	Determine what client software the user needs.
The V.90 client modem may be connected to the public network via a PBX or other telephone equipment with more than one analog-to-digital conversions.	Reduce the number of analog-to-digital conversions in the signal path.
The client modem may not be configured properly.	Verify the following settings are enabled:
	■ V.90
	■ V.8
Line noise.	Disconnect any other devices that share the analog line and check for line noise.
	<i>Note: Refer to the section below</i> —Testing for Line Noise.

Testing for Line Noise

1 Disconnect all other phones, answering machines, caller ID boxes, and modems, from all telephone wall jacks at the location. Use a telephone cable between the modem and a wall jack.

Telephone cable extenders and Y-adapters, if defective, have adverse affects on connections. Also, multiple devices sharing the same line may affect V.90 performance, especially if they are daisy-chained. Disconnect the other devices and connect the modem directly to the wall jack.

2 Noise from electrical wires and appliances often cause problems. Plug a telephone into the same jack your modem is connected to and press (or dial) a single number to end the dial tone, then listen carefully. If you hear a low frequency hum on the line, that is caused by the phone wires coming near electrical wires or appliances. Often the wires and/or appliances are physically very close to the modem. Separate the phone wire from power cables, surge suppressor, etc.

Also, a *hum* or *buzz* may be introduced somewhere between your home and the telephone company. Most modern installations in the US, and elsewhere, provide a box at the back the home that allows you to disconnect your house wiring and plug in with a standard RJ-11 cable directly to the phone line. If possible, connect a phone to the telephone company's connection box at the back of your/the customer's home, and perform the same test. This will isolate noise sources within your home. If the excessive noise is present, then you need to contact your telephone company's repair service.

When contacting the telephone company's repair service, avoid emphasizing modem problems. Focus on the voice problems, and telephone company will generally address the issue.

3 Use the same technique from the previous step. If you hear scratchy noise on the line, this will affect modem performance. This can be caused by poor connections in the home or office, but often it is because of poor connections on phone poles or other connecting points. Use the same test methods as above to isolate whether this is a problem in your house wiring, or with telephone company facilities.

Problems with Configurations	If you are losing modem configurations:		
	 Review the sections in the <i>Operations Guide</i> pertaining to memory and templates. You may not be saving the settings properly. 		
	Check the network management card settings. If Auto Config on Card Initialization is enabled, the network management card will automatically configure the card using the settings in the network management card NVRAM. It will overwrite the DSP multispan settings stored in the DSP		

multispan NVRAM.

To save the DSP multispan to the network management card NVRAM, use the **Save Chassis to NVRAM** feature in the command line.

 Check your access router card. Total Control access router cards send initialization strings to DSP multispan modems. These initialization strings overwrite current modem configurations.

For example, the access router card automatically configures modems to its requirements upon initialization of the packet bus. Every time a packet bus session is opened, the access router card sends the following the initialization string to the modem on the other side of the session:

ATH0S0=0S72.0=1E0Q0V0&A0&K1&L0&N0&TX0S47.5=1S2=255

That initialization string is hard coded into the access router card, and it represents:

H0—Hang up a call, if one is currently active.

S0=0—Rings for Auto Answer.

S72.0=1—Sets the modem to ignore ATZ command over the packet bus and sends an OK.

EO—Do not echo DTE data.

Q0—Display result codes.

V0—Set numeric result codes.

&A0—ARQ result codes disabled.

&K1—Data Compression Mode = auto.

&LO—Normal phone line (as opposed to Leased Line, &L1).

&NO—Link Rate Speed Select.

&T—Take the modem out of ITU-T V.54 test modes.

X0—Set result code options to basic result codes.

S47.5=1—Force gateway NAC routing. Force all call output to packet bus only.

S2=255—Escape character disabled.

To check the initialization string settings of your access router card, refer to the Operations Guide, or refer to the TOTALservice website.

Performing Modem Tests		To perform Modem Tests using total control manager:		
	1	On the Main Menu bar, click Fault, and then click Modem Tests.		
	2	In the Modem Loopback/Self Test dialog box, type the slot number in the Testing with card in Slot box.		
	3	Type a value in the Channel box.		
	4	Select the test to execute.		
	5	In the Polling Interval spinbox, designate the number of seconds between polling.		
	6	Click Start to execute the test.		
		Total control manager displays the results and errors in the corresponding fields.		
Using Remote Testing		To use Remote Testing using total control manager:		
	1	On the Main Menu bar, click Fault, and then click Remote Testing.		
	2	In the Remote Testing dialog box, click test to run.		
	3	Configure the test using the window for the selected test.		
	4	Click Start to run the test.		

Call Fails

Use <u>Table 19</u> to trouble clear call fails: **Table 19** Call Fails Trouble Clearing

Call Fail	Description	Trouble Clearing Note	S
N/A	DSP drops calls immediately.	Save the following settin NVRAM.	ngs to the modems'
		Call Control Option	Setting
		Result Codes (Qn)	displayResult
		Verbal/Numeric Result Codes (Vn)	verbal
		Result Code Groups (X)	0
		ARQ Result Codes (&A)	arqResultsDisabled
		Response to +++	ignoreEscCode
N/A	Analog calls fail connect attempts.	Verify you the telephone analog/digital PRI service digital service only, no a	company is providing an e. If they are providing a nalog calls will connect.
N/A	A client modem	You may have configure	ed DSP incorrectly.
	connects to the DSP, and the DSP then sends the username and	1 Verify you are using t versions	the most recent software
	password to the RADIUS server. The	2 From the common ele select the DSP multis	ement manager explorer, pan.
	RADIUS server replies to the access router card accepting the signal, but the call is dropped, and the DSP never receives a ny data.	3 Right-click the DSP m Software from the o then click Restore fa	nultispan, and select drop-down menu. and actory defaults.
		4 Save to NVRAM.	
		5 Reset the DSP multisp	oan hardware.
Keypress Abort	The modem detected a keypress while training.	The remote modem user	r is responsible.
MNP incompatibility	The modem is set to &M5 and the remote modem does not have MNP capability, or there was an MNP negotiation procedure error.	Route the user to a mod	lem with MNP disabled.
Invalid speed	The modem is set to a specific speed or a range of speeds and the remote modem is not operating at the same rate.	Route the remote moder modem with the same ra modem's rate.	m's signal to another ate or reconfigure the
XID Timeout	The modems failed to negotiate the V.42 Detection (XID Exchange) phase.	N/A	
SABME Timeout (Set Asynchronous Balance Mode Extended)	The modems failed this part of V.42 link negotiation.	Set asynchronous balance	ce mode extended.

Modem Disconnects

Use <u>Table 20</u> to trouble clear modem disconnects:

Disconnect Reason	Description	Trouble Clearing Notes
Escape code	The operator sent the modem the +++ escape code.	The remote modem user is responsible.
GSTN (General Switch Telephone Network) Clear Down	The connection was non-ARQ and DTR was dropped from one side of the connection, or the DISC frame was corrupted due to noise.	If the call is not dropped deliberately by either party, try connecting again. If the call disconnects repeatedly, try a lower connection speed.
Loss of carrier	The modem detected loss of the remote modem's carrier and waited the duration specified in S10 (default is 0.7 seconds).	Sometimes call waiting signals can interrupt a remote modem's carrier, thus a longer duration should be specified in S10—preferably 2 seconds.
Inactivity timeout	The modem detected no activity on the line for the duration specified in S19 (default is 0, timer disabled).	If necessary, specify a longer duration in S19.
Retransmit limit	The modems reached the maximum of twelve attempts to transfer a data frame without error.	Study the data frame errors to further diagnose the problem.
LD received	The remote modem sent an MNP error control Link Disconnect request.	The remote modem may have sent an unauthorized +++ATH or it may have dropped DTR.
DISC	The remote modem sent a V.42 Disconnect frame.	This reflects normal operation, but it can also reflect a user software error. The user software may issue an unauthorized +++ATH or it may drop the DTR on the remote modem.
Loop loss disconnect	The modem detected a loss of current on the loop connecting it with the telephone company central office.	This usually occurs because the remote modem has hung up.
Unable to Retrain	After several attempts, disturbances on the phone line prevented the modems from retraining, and they could no longer transmit or receive data.	Resolve phone line disturbances with the telco.
Break Timeout	Incompatible processing of a Break signal occurred.	Try connecting again.
Invalid Codeword	The modem received an invalid V.42 bis frame.	This disconnect reason is very infrequent.
A Rootless Tree	The modem received an invalid V.42 bis frame.	Try connecting again. If this fails repeatedly, tryp MNP or normal mode instead of V.42 / V.42 <i>bis</i> .
Illegal Command Code	The modem received an invalid V.42 bis frame.	This disconnect reason is very infrequent.
Extra Stepup	The modem received an invalid V.42 bis frame.	N/A
Normal User Call Clear	The network cleared a call when it received a disconnect from a gateway card.	This is a Q931 telco clear condition.

 Table 20
 Modem Disconnect Trouble Clearing

Disconnect Reason	Description	Trouble Clearing Notes
Modem On Hold Cleardown Request Received	V.92 client initiated a disconnect.	Normal disconnect or the client expected more on-hold time negotiated. If necessary, increase on-hold threshold in S-Register 78.
Modem On Hold Teardown	V.92 client violated Modem On Hold handshake.	Report client model and software version to CommWorks Customer Support.
Modem On Hold Timeout	Instance timer threshold or total timer threshold reached.	If necessary, increase on-hold thresholds in S-Register 78.

 Table 20
 Modem Disconnect Trouble Clearing (continued)

If a modem makes contact with another modem, but cannot complete protocol and speed negotiations, CommWorks considers this a call fail, not a modem disconnect.

Physical Layer Trouble Locating and Clearing
When trouble clearing the span, first determine if the physical layer is functioning properly.
The following are basic trouble locating suggestions:

View LEDs
Check the physical state
Check the line status

View the T1/E1 related LEDs to determine if the systems displays an alarm. If

Viewing DSP Multispan LEDs

the following LED colors appear, the physical layer is functioning properly. **Table 21** T1/E1 Related LEDs - DSP Multispan

LED	Color	This has occurred
RN/FL	green	Card has performed the Power On Self Test (POST)
CAR	green	Card has received good carrier
ALM	off	No alarm or Remote Frame Alarm (RFA)

Common Element Manager

To view DSP multispan LEDs remotely using common element manager:

- **1** From the **Explorer** tab, click a desired DSP multispan card.
- **2** From the **Main Menu**, click the Device Mimic icon to display a graphical representation of the DSP multispan card.

Figure 30 displays the graphical representation of the DSP multispan NAC using common element manager:

Figure 30 Common Element Manager Device Mimic - DSP Multispan NAC

🕏 bjohnston-d1/Equipment/RAS Lab/TCH200 💶 🖂
Slot 15
↓ 1007 007 007 007
Refresh Rate Refresh now Cancel

Checking the Physical
StateWhen the physical layer is functioning properly, *psF1Operational(1)* displays.Use the following procedures to check the physical state.

Common Element Manager

To check the physical state using common element manager:

- 1 From the **Explorer** tab, click a desired DSP multispan card.
- 2 Select the desired span and click the **Statistics** tab.
- 3 Check the E1PhysicalState field for a description of the current physical state.

The following are physical states for a DSP multispan span:

- psF1Operational
- psF2Fc1RaiTempCrcErrors
- psF3Fc2LossOfSignal
- psF4Fc3AlarmIndSignal
- psF5Fc4RaiContCrcErrors
- psF6PowerOn

Command Line Interface

To check the physical state using the CLI:

- **1** From the DSP multispan CLI, enter the following command to move to the span level:
 - > chdev span x

where x is the span number.

2 Enter the following command at the span level command prompt:

display physst

Checking the LineIf the Line Status column displays 1, the T1/E1 line is operational and the
physical layer is functioning properly.

Common Element Manager

To check line status using common element manager:

- 1 From the common element manager explorer, select a DSP multispan.
- 2 Select the E1 span, and then click the Configuration tab.
- 3 On the Configuration tab, right-click LineStatus and click Monitor.

The Monitor Line Status window appears.

Figure 31 Monitoring Line Status - DSP Multispan

<u>Table 22</u> contains a list of the Line Status displays and descriptions, as well as related trouble clearing notes.

 Table 22
 DSP Multispan Line Status

Line Status	Description	Trouble Clearing Notes
1	No Alarm Present.	The line is functioning properly.
2	Far end Loss of Frame (LOF), i.e., Yellow Alarm.	The remote end is not receiving the modem's transmit signal or cannot frame up on the signal.
		Ensure the line type (dsx1LineType) is set correctly.

Line Status	Description	Trouble Clearing Notes
4	Near end sending LOF Indication.	Ensure the line type (dsx1LineType) is set correctly.
8	Far end sending AIS.	This indicates problems with the remote system. If problems persist, contact your telephone company.
		If possible, verify that the remote system has no alarms and the error statistics are not growing.
16	Near end sending AIS.	If the modem NAC is unplugged or reset, the modem NIC will transmit all ones (AIS).
		If the modem NAC is not unplugged or reset, contact CommWorks Technical Support.
32	Near end LOF (a.k.a. Red Alarm).	Ensure the line type (dsx1LineType) is set correctly.
64	Near end Loss Of Signal.	Ensure the span line is connected correctly to the modem NIC and other T1/E1 equipment.
		Verify the T1/E1 cable is the correct type and wired correctly.
		Verify that the NIC interface is correct (long or short), the Line build out (long haul) is set correctly, and the cable distance setting (short haul) is correct.
128	Near end is looped.	N/A
256	E1 TS16 AIS.	N/A
512	Far End Sending TS16 LOMF.	N/A
1024	Near End Sending TS16 LOMF.	N/A
2048	Near End detects a test code.	A remote system is performing a test.
4096	Any line status not defined here.	Contact CommWorks Technical Support. Refer to the <i>About This Guide</i> section of this guide for information about contacting CommWorks.

Table 22 DSP Multispan Line Status (continued)

Command Line Interface

To check line status using the CLI:

- **1** From the DSP multispan CLI, enter the following command to move to the span level:
 - > chdev span x

where x is the span number.

2 Enter the following command at the span level command prompt:

display lstatus

Figure 32 displays the CLI output for line status descriptions on the DSP multispan card:

Figure 32 DSP Multispan - CLI Line Status Command

Checking the Received Error Statistics

Check the Received Error statistics (current, interval, or total) on the span line. The modem displays the error statistics in real time.

If checking the current line status, verify that the error statistics are not growing.

Common Element Manager

To check the received error statistics using common element manager:

- 1 From the Explorer tab, double-click the desired DSP multispan.
- **2** Select a desired span and click one of the following tabs, depending on your customized needs:
 - Near End Current
 - Near End Interval
 - Near End Total
 - Far End Current
 - Far End Interval
 - Far End Total
- **3** On the selected tab, you can view the following settings:
 - BESs—Bursty Errored Seconds
 - CSSs—Controlled Slip Seconds
 - DMs—Degraded Minutes
 - ESs—Errored Seconds
 - LCVs—Line Code Violations
 - LESs—Line Errored Seconds
 - PCVs—Path Coding Violations
 - SEFSs—Severely Errored Framing Seconds

- SESs—Severely Errored Seconds
- UASs—Unavailable Seconds

If the Near End Current Group error statistics are growing, ensure the dsx1LineCoding is set correctly (For example, AMI instead of B8ZS).

Command Line Interface

To check the received error statistics using common element manager:

- **1** From the DSP multispan CLI, enter the following command to move to the span level:
 - > chdev span x

where x is the span number.

2 Enter the following command at the span level command prompt:

display near <stat_type>

Replace <stat_type> with one of the following, depending on your customized needs:

Table 23 Display Near End Span Statistics

Command	Description
current	Displays near end current span statistics
total	Displays near end total span statistics
interval	Displays near end interval span statistics

Ordering and Setting Up a Span Line When you order a span line from the telephone company, make sure you know the answers to the following questions:

- **1** What is the line type (dsx1LineType)?
- 2 What is the line coding (dsx1LineCoding)?
- **3** What is the interface type (long or short haul)?
- 4 What will be the length of the T1/E1 cable from the modem to the other T1/E1 device? Set the transmit line build out (long haul) or short haul cable distance (short haul) to match. If setting up for T1-PRI, the modem must have the line coding set to B8ZS. Most telephone companies won't offer any other choice for line coding.

DS-3 INGRESS TROUBLE LOCATING AND CLEARING

This chapter includes information regarding installation and system trouble locating and clearing information regarding the DS-3 ingress card set.

Overview

The DS-3 ingress NAC is part of the Total Control[®] 1000 Enhanced Data System, providing Wide Area Network (WAN) ingress options for the DSP multspan modem system.

The DSP multispan NAC possesses a four span modem architecture containing 96 port options for T1 applications and a three span modem architecture containing 90 port options for E1 applications. You have the choice of providing WAN ingress access via four T1 spans (or three E1 spans) on a DSP multispan Network Interface Card (NIC) or one T3 span on the DS-3 ingress NAC/NIC card set. This allows you to configure and manage your Total Control 1000 Hub according to your customized needs.

DS-3 Ingress NAC Faceplate The DS-3 ingress NAC has the following physical interfaces on the card's front panel. You can find a more detailed description of each interface in the sections following Table 25.

 Table 24
 DS-3 Ingress NAC Faceplate

Table 25 describes each interface on the DS-3 ingress card.	

Callout	Interface
1	RN/FL NAC Status LED Indicator
	RN/FL NIC Status LED Indicator
	ALM Status LED Indicator
	LPBK Status LED Indicator
2	Monitor Port LED Indicator
3	Channel Line Pushbutton
4	Dual Bantam Jack

 Table 25
 DS-3 Ingress
 NAC Faceplate Interfaces

Status LED Indicators The DS-3 ingress NAC front panel contains two types of Light Emitting Diode (LED) indicators that are useful for locating and monitoring problems. The four status LEDs located at the top of the front panel may be off, red, green and amber, and are used to indicate status within a chassis environment.

Monitor Port LED Indicator The Monitor Port LED Indicator has a four-character, seven-segment display. The first character displays the DS3 line status. The middle two characters display the currently selected DS1 channel line (1 to 29 where 29 is the BITS span) for the Dual Bantam Jack. The last character displays the current status of the selected DS1 line.

The format of the first and fourth characters is:

- Blank—No Alarm; the system is operational or in power up mode
- A—Alarm Indication Signal (AIS); Unframed All Ones Alarm
- R—Remote Alarm Indicator (RAI); Remote Frame Alarm
- L—Loss of Signal (LOS)
- Q—Quasi-Random Signal Source (QRSS)

Channel Line
PushbuttonA Channel Line Pushbutton switch selects which DS1 channel to monitor in
one number increments and is shown on the Monitor Port LED Indicator to
display the selected DS1 channel.

Dual Bantam Jack The DS-3 ingress NAC has a dual bantam jack outlet located on the front panel of the card. You can monitor status of both the transmit (Tx) and receive (Rx) paths on any DS1 signal. Use the Channel Line Pushbutton or total control manager to select the desired DS1 line.

Verifying Software Version Numbers	Before you perform any trouble locating and clearing, ensure you are using the correct DS-3 ingress software version. Check this version number with the published version number in the Total Control 1000 Enhanced Data System System 4.5 GA System Release Notes. You will need to know this number if you contact Commworks Technical Support.		
Common Element Manager	To verify the DS-3 ingress software version using common element manager:		
1	From the Explorer tab, click the DS-3 ingress card.		
2	From the Properties tab, click the Identification tab.		
3	Check the Version field for the current software number.		
Total Control Manager	To verify the DS-3 ingress software version using total control manager:		
1	From total control manager's Virtual Front Panel Display (VFPD), select the DS-3 ingress card.		
	The card turns blue.		
2	From the main menu, click Configure and then click Programmed Settings .		
	The DS3 Ingress card Programmed Settings window appears.		
3	From the Parameter Group drop-down menu, select DS3 Ingress Identification to query data from the DS-3 ingress card.		
4	Check the Board Manager Software Revision field for the current software version.		
Command Line Interface	To verify the DS-3 ingress software version using the Command Line Interface (CLI):		
	From the DS-3 ingress CLI, enter the following command from any command prompt level:		
	> version		
	Figure 33 displays the CLI output for the DS-3 ingress.		
	Figure 33 DS-3 Ingress Software Verification - Command Line Interface		
	DS3 Ingress Subsystem Console Password: > version Software Version 1.3.7.0 DS3 Software BUILT: on 05/30/01 at 14:17:21 >		

-

Normal Operational Mode

In normal operational mode, the LEDs on the DS-3 ingress NAC display the following indicator lights:

 Table 26
 DS-3 Ingress Operational Mode

LED	Description
RN/FL NAC	Green
RN/FL NIC	Green
ALM	No Light
LBK	No Light

Installation Trouble Locating and Clearing

The following section details problems and possible solutions that may occur during installation.

 Table 27
 DS-3 Ingress Installation Light Emitting Diodes (LED) Errors

Trouble Locating	Possible Cause	Trouble Clearing
RN/FL LED is showing no indicator light	Loss of power	Check power cable
RN/FL LED is solid red	Improper installation	Remove NAC and reinstall
RN/FL is flashing red	The NAC did not detect a Network Interface Card (NIC)	Install the NIC directly behind the NAC — refer to the NIC's Getting Started Guide

Initial Configuration Trouble Locating and Clearing

The following section describes problems and possible solutions that may occur during initial configuration. Refer to <u>Table 28</u> for more information.

Table 28 DS-3 Ingress - Initial Configuration Errors

Physical State	Alarm LED State	Loopback LED State	Alarm/Error	DS3 Diagnosis/Trou ble Clearing	DS1 Diagnosis/Tro uble Clearing
F1	Off	Off	No alarm	N/A	N/A
F2	Yellow	Off	Yellow Alarm (Remote Frame Alarm)	The remote end has lost the DS3 framing or signal and sent this alarm to the DS3 NAC.	The remote end has lost the DS1 framing and sent this alarm to the DS3 NAC.
F3	Red	Off	Red Alarm (Loss of Signal)	The received DS3 signal has been lost. The DS3 NAC declares a red alarm and sends a yellow alarm to the remote end.	The received DS1 signal has been lost. The DS3 NAC declares a red alarm and sends a yellow alarm to the remote end.

Physical State	Alarm LED State	Loopback LED State	Alarm/Error	DS3 Diagnosis/Trou ble Clearing	DS1 Diagnosis/Tro uble Clearing
F4	Red	Off	Red Alarm (Out of Frame)	The received DS3 framing has been lost. The DS3 NAC declares a red alarm and sends a yellow alarm to the remote end.	The received DS1 framing has been lost. The DS3 NAC declares a red alarm and sends a yellow alarm to the remote end.
F5	Yellow	Off	Receive Blue Alarm Unframe all ones	The remote end is sending out an all-ones signal. This is usually done when the remote end can not send out a frame signal.	The remote end is sending out an all-ones signal. This is usually done when the remote end can not send out a frame signal.
F6	Off	Off	No Alarm	N/A	N/A
	Any	Green	DS3 Loopback in Progress	N/A	Loopback LED does not reflect the DS1 loopback state.

DS-3 Ingress NAC Trouble Locating and Clearing	The following section details problems and possible solutions for the DS-3 ingress NAC.			
	 Check the DS3 line configuration if the Monitor Port LED Indicator's first character shows an A, L or R. Specifically check the DS3 Line type, Primary timing reference, Secondary timing reference, Line coding, and Line length for each DS3 line. 			
	Check the DS1 span configuration if the Monitor Port LED Indicator's last character shows an A, L or R. Switch to the span where you observed the alarm by typing chdev span x (where "x" is the number of the span) from the CLI. Also, check the DS1 Line type, Line coding, D-channel operation, and Physical state. Check the span status by entering ds3 1> display spnstatus from the CLI.			
	 Check with the telephone company for correct DS3/DS1 line information if configuration failed. 			
	 For DS-3 ingress and DSP multispan NAC configuration information, refer to the <i>Getting Started Guide</i>. 			
	 Make sure the DSP multispan NAC has the proper spansrc and clocksrc to bring up the D-channels. 			

The following table describes the different operational states for the LED status indicators located on the front panel of the DS-3 ingress NAC.

LED	Color	Meaning
RN/FL NAC	blank	NAC loss of power
	green	NIC loss of power
		NIC and NAC operational
		received RAI
		Loss of signal
		Loss of Frame
		Received AIS
		Received RAI and CRC errors
		NIC power up
		Any loopback active
	red	NAC reset and boot
RN/FL NIC	blank	NAC loss of power
	green	NIC and NAC operational
		received RAI
		Loss of signal
		Loss of Frame
		Received AIS
		Received RAI and CRC errors
		NIC power up
		Any loopback active
	red	NAC reset and boot
		NIC loss of power
ALM	blank	NAC loss of power
		NAC reset and boot
		NIC loss of power
		NIC and NAC operational
	green	Any loopback active
	red	received RAI
		Loss of signal
		Loss of Frame
		Received AIS
		Received RAI and CRC errors
		NIC power up
		Any loopback active

 Table 29
 DS-3 Ingress Status LED Indicator Descriptions

LED	Color	Meaning
LPBK	blank	NAC loss of power
		NAC reset and boot
		NIC loss of power
		NIC and NAC operational
	green	received RAI
		Loss of signal
		Loss of Frame
		Received AIS
		Received RAI and CRC errors
		NIC power up
	red	Any loopback active

Table 29 DS-3 Ingress Status LED Indicator Descriptions (continued)

7

SDH STM-0 Converter Trouble Locating and Clearing

This chapter includes information regarding installation and system trouble locating and clearing information regarding the SDH STM-0 Converter card set.

This chapter includes the following topics:

- Overview
- <u>SDH STM-0 Converter NAC Faceplate</u>
- Verifying Software Version Numbers
- Normal Operational Mode
- Installation Trouble Locating and Clearing
- <u>SDH System Trouble Locating and Clearing</u>
- Manually Performing an APS Switch
- Using DS-3 and SDH Loopbacks to Diagnose Problems

Overview

The SDH STM-0 Converter NAC terminates a Sychronous Transport Module (STM-0) over an OC-1 optical fiber interface, de-maps 28 VC-11 mapped DS-1 signals, and multiplexes the 28 DS-1 signals into one DS-3 stream. The data then travels out through an external DS-3 cable from the SDH STM-0 Converter NIC to the DS-3 ingress NIC.

The DS-3 ingress NIC receives DS0 ingress signals (up to 672) from the single DS-3 line and passes this data to the DS-3 ingress NAC across a proprietary serial interface. These calls are terminated on DSP multispan modems. Once the modem processing is complete, the DSP multispan NAC passes the data across the Packet Bus to the access router card. The access router card performs encryption and standard routing functions.

SDH STM-0 Converter NAC Faceplate

The SDH STM-0 Converter NAC has the following physical interfaces on the card's front panel. You can find a more detailed description of each interface in the sections following Table 30.

Figure 34 SDH STM-0 Converter NAC Faceplate

Table 30 lists each interface on the SDH STM-0 Converter card.
 Table 30
 SDH STM-0 Converter NAC Faceplace Interfaces

Callout	Interface
1	Run/Fail NAC Status LED Indicator
	Run/Fail NIC Status LED Indicator
	Alarm Status LED Indicator
	Loopback Status LED Indicator
	Active/Standby Status LED Indicator
2	APS Connection
3	STM-0 Transmit and Receive Ingress Ports

Status LED Indicators	The SDH STM-0 Converter NAC front panel contains five Light Emitting Diode (LED) indicators that are useful for locating and monitoring problems. The status LEDs located at the top of the front panel may be off, red, green, and amber, and are used to indicate status within a chassis environment.
APS Connection	A proprietary Automatic Protection Switching (APS) cable is provided with the SDH STM-0 Converter card set. This cable is required to facilitate switching between the active SDH STM-0 Converter card and the standby SDH STM-0 Converter card in a redundant configuration.
STM-0 Ingress Port	The STM-0 Ingress port is comprised of one receive and one transmit port, each of which uses an MU style connector. One STM-0/OC-1 optical fiber cable connects to each port.
Verifying Software Version Numbers	Before you perform any trouble locating and clearing, ensure you are using the correct SDH STM-0 Converter software version. Check this version number with the published version number in the Total Control 1000 Enhanced Data System System 4.5 GA System Release Notes. You will need to know this number if you contact CommWorks Technical Support.
Common Element Manager	To verify the SDH STM-0 Converter software version using common element
1 nunagei	From the Explorer tab, click the SDH STM-0 Converter card
2	From the Properties tab, click the Identification tab
3	Check the Version field for the current software number.
Total Control Manager	To verify the SDH STM-0 Converter software version using total control manager:
1	From total control manager's Virtual Front Panel Display (VFPD), select the SDH STM-0 Converter card.
	The card turns blue.
2	From the main menu, click Configure and then click Programmed Settings .
	The SDH Card Level Programmed Settings window appears.
3	From the Parameter Group drop-down menu, select SDH Card Identification to query data from the SDH STM-0 Converter card.
4	Check the ID Board Manager Sw Rev field for the current software version.
Command Line	To verify the SDH STM-0 Converter software version using the CLI:
Interface	From the SDH STM-0 Converter CLI, enter the following command from any command prompt level:
	> version

Figure 35 displays the CLI output for the SDH STM-0 Converter.

Figure 35 SDH STM-0 Software Verification - Command Line Interface

Normal Operational Mode

In normal operational mode, the LEDs on the SDH STM-0 Converter NAC display the following indicator lights:

 Table 31
 SDH STM-0 Converter Operational Mode

Active SDH STM-0 NAC	Standby SDH STM-0 NAC
RN/FL NAC - Green	RN/FL NAC - Green
RN/FL NIC - Green	RN/FL NIC - Green
ACT/SBY - Green	ACT/SBY - Amber
ALM - No Light	ALM - No Light
LBK - No Light	LBK - No Light

Installation Trouble Locating and Clearing

This section details problems and possible solutions that may occur during installation.

Table 32 SDH STM-0 Installation	n Errors
---	----------

Trouble Locating	Possible Cause	Trouble Clearing
RN/FL NAC Light Emitting Diodes (LEDs) show no	 No power applied to chassis 	 Make sure the power is applied to the chassis
indicator lights	 SDH STM-0 Converter NAC is not installed properly 	 If power is applied to the chassis and the LEDs on the other NACs in the chassis display indicator lights, try reinstalling the SDH STM-0 Converter NAC
RN/FL NAC LED is Red; no other LED shows activity	 Serious hardware issues with the SDH STM-0 Converter NAC 	Contact CommWorks Technical Support
	 No BIOS loaded 	
	 No Application code loaded 	
RN/FL NAC LED is Red; RN/FL NIC LED is Red	 SDH STM-0 Converter NIC has been installed in the wrong chassis slot 	Before contacting 3Com Technical Support, make sure an SDH STM-0 Converter NIC is installed in the
	 SDH STM-0 Converter NIC is not installed properly 	correct chassis slot. If an SDH STM-0 Converter NIC is installed in the correct chassis slot,
	 Serious hardware issues with the SDH STM-0 Converter NIC 	reinstall the NIC and reboot the SDH STM-0 Converter NAC.
RN/FL NAC is Amber for more than 30 seconds	No Application code loaded on the card	Contact CommWorks Technical Support

SDH System Trouble Locating and Clearing

This section details problems and possible solutions for problems within the SDH 1.0 System.

 Table 33
 SDH System Problems

Trouble Locating	Possible Cause	Trouble Clearing
Alarm LED on the SDH STM-0 Converter NAC is red; Monitor Port LED on the DS-3 Ingress NAC	 SDH STM-0 Converter NIC and DS-3 Ingress NIC are not cabled correctly 	First of all, make sure the DS-3 Ingress NAC and NIC are installed properly in the Total Control 1000 chassis.
displays the letter "L" (short for LOS)		Next, check and make sure the DS-3 cable from the DS-3 transmit port located on the SDH STM-0 Converter NIC is properly connected to the DS-3 receive port located on the DS-3 Ingress NIC.
		Refer to the <i>Getting Started Guide</i> for detailed cabling instructions.
Alarm LED on the SDH STM-0 Converter NAC is red; Monitor Port LED on the DS-3 Ingress NAC	 SDH STM-0 Converter NIC and DS-3 Ingress NIC are not cabled correctly 	First of all, make sure the DS-3 Ingress NAC and NIC are installed properly in the Total Control 1000 chassis.
displays the letter "R" (short for RAI)		Next, check and make sure the DS-3 cable from the DS-3 receive port located on the SDH STM-0 Converter NIC is properly connected to the DS-3 transmit port located on the DS-3 lngress NIC.
		Refer to the <i>Getting Started Guide</i> for detailed cabling instructions.
Alarm LED on the SDH STM-0 Converter NAC is red; Monitor Port LED on the DS-3 Ingress NAC displays the letter " A"	 STM-0 transmit and receive optical fiber cables are not cabled correctly 	First of all, make sure the STM-0 transmit and receive optical fiber cables are cabled correctly from the SDH phone switch to the SDH STM-0 Converter NAC.
(short for AIS)	cables are damaged	Refer to the <i>Getting Started Guide</i> for detailed cabling instructions.
Alarm LED on the SDH STM-0 Converter NAC is amber; Monitor Port LED on the DS 2 lagross NAC	 STM-0 transmit optical fiber cable is not cabled correctly 	First of all, make sure the STM-0 transmit optical fiber cable from the SDH phone switch is correctly cabled to the SDH STM 0
displays the letter " A"	A" STM-0 optical fiber cables are damaged	Converter NAC.
(stands for AIS)		Refer to the <i>Getting Started Guide</i> for detailed cabling instructions.

Trouble Locating	Possible Cause	Trouble Clearing
Alarm LED on both SDH STM-0 Converter NACs is	 STM-0 optical fiber cables are disconnected, or damaged 	Check the APS cable. Make sure it is healthy and securely connected.
	 APS cable is disconnected, or damaged 	Make sure the transmit and receive STM-1 optical fiber cables from Side 0 on the SDH phone switch are securely connected to the STM-0 transmit and receive ports on the SDH STM-0 Converter NAC located in slot 11.
		Also, make sure the transmit and receive STM-0 optical fiber cables from Side 0 on the SDH phone switch are securely connected to the STM-0 transmit and receive ports on the SDH STM-0 Converter NAC located in slot 12.
		Refer to the <i>Getting Started Guide</i> for detailed cabling instructions.

Table 33	SDH System	Problems	(continued)

Trouble Locating	Possible Cause	Trouble Clearing
Network connectivity problems	 SS7 signaling is not properly configured on the access router card 	Refer to the <i>Getting Started Guide</i> for detailed configuration information.
	 SS7 signaling is not properly configured on the DSP multispan 	
The NAC RN/FL LEDs on all of the DSP multispan NACs are amber	 Serious problems with network management 	Check the health of the network management card. Make sure the correct software is installed on the card.

Table 33 SDH System Problems (continued)

Trouble Locating	Possible Cause	Trouble Clearing
No APS Automatic Switch	 DS-3 Ingress or SDH STM-0 Converter card is rebooting 	 After making sure the SDH STM-0 Converter NAC successfully boots up, check th ADS and DS 2 acklas first
	 APS cable is missing 	APS and DS-3 cables first.
	 APS cable is not hooked up properly 	 Second, check the operation mode of the SDH STM-0 Converter card and their
	 APS cable is broken 	partner DS-3 Ingress cards. Th
	 DS-3 cables are missing 	module should be set as
	 DS-3 cables are not hooked up properly 	" Active" and the Standby SDI STM-0 Converter module should be set as " Standby "
	 DS-3 cables are broken 	 Nevt make sure that the DS-
	 Standby SDH STM-0 Converter card is in 	Ingress card is set up for SDH calls.
	 alarm Standby SDH STM-0 Converter card is in Out 	 The SDH STM-0 Converter management have an APS switch lock turned on (by a user).
	of Service mode	 If you are still having problem
	 Standby DS-3 Ingress card is in Out of Service mode 	make sure the transmit and receive STM-1 optical fiber cables from Side 0 on the SDI
	 User has manually configured the system to not allow an APS switch (via Total Control Manager or the CLI) 	phone switch are securely connected to the STM-0 transmit and receive ports on the SDH STM-0 Converter NA located in slot 11.
	 STM-0 optical line errors 	Also, make sure the transmit
	 One or both of the DS-3 Ingress cards are not properly configured for SDH ingress calls 	cables from Side 0 on the SDI phone switch are securely connected to the STM-0 transmit and receive ports on the SDH STM-0 Converter NA
	 STM-0 optical fiber sables from the SDU 	located in slot 12.
	cables from the SDH switch (Side 0 and Side 1) are not properly connected to the respective SDH STM-0 Converter NACs	Refer to the <i>Getting Started</i> <i>Guide</i> for detailed cabling instructions.
		 Make sure all of the cards are functioning properly.
	 Network management card is not working properly 	2
	 DS-3 card is not working properly 	I

Table 33	SDH System	Problems	(continued)
----------	------------	----------	-------------

Manually Performing an APS Switch	In a maintenance or testing situation, you can manually perform an APS switch from the active SDH STM-0 Converter module to the standby module. You can do this using either common element manager, total control manager, or the Command Line Interface.
Common Element Manager	To perform a manual APS switch using common element manager, use the following procedure:
	Releasing Both SDH STM-0 NACs
	You must release both SDH STM-0 Converter NACs before performing routine maintenance functions on the cards.
1	From the Explorer tab, double-click the active SDH STM-0 Converter card.
	SDH STM-0 Converter card interfaces appear.
2	Click the SDH Interface.
3	From the Properties tab, click the General tab.
4	Double-click the ServiceCmdForce field, and click fsSwitchRelease from the drop-down list.
5	Click Save all.
6	From the Explorer tab, double-click the standby SDH STM-0 Converter card.
	SDH STM-0 Converter card interfaces appear.
7	Click the SDH Interface.
8	From the Properties tab, click the General tab.
9	Double-click the ServiceCmdForce field, and click fsSwitchRelease from the drop-down list.
10	Click Save all.
	Switching the Active Card to Standby
	After releasing both SDH STM-0 Converter cards from service, you must switch the active card from active to standby.
1	From the Explorer tab, double-click the active SDH STM-0 Converter card.
	SDH STM-0 Converter card interfaces appear.
2	Click the SDH Interface.
3	From the Properties tab, click the General tab.
4	Double-click the ServiceCmdForce field, and click cnvSby from the drop-down list.
5	Click Save all . The active SDH STM-0 Converter NAC is now the standby card. You have performed an APS switch.
Total Control Manager To perform a manual APS switch using total control manager, use the following procedure:

Releasing Both SDH STM-0 NACs

You must release both SDH STM-0 Converter NACs before performing routine maintenance functions on the cards.

1 From the Total Control Manager Virtual Front Panel Display (VFPD), click the LEDs of the active SDH STM-0 Converter NAC.

The LEDs turn blue. See Figure 36 for more information.

Figure 36 Total Control Manager's Virtual Front Panel Display (VFPD)

2 From the **Configure** menu, click **Programmed Settings**.

The Select Spans window displays.

Figure 37 Selecting Spans

Tota	tal Control Manager: Select Spans		X
	SDH LINE LEVEL		
	O DS3		
	OK Cancel	Help	
	<u></u>		

3 Select SDH LINE LEVEL and click OK.

The SDH card Programmed Settings window displays.

4 From the Parameter Group drop-down menu, click General.

The current general programmed settings for the SDH Line Level appear.

- 5 From the Service Cmd Force field, select fsSwitchRelease.
- 6 Click Set and click OK.
- **7** From the Total Control Manager VFPD, click the LEDs of the standby SDH STM-0 Converter NAC.

The LEDs turn blue. See Figure 38 for more information.

Figure 38 Total Control Manager's Virtual Front Panel Display (VFPD)

8 From the Configure menu, click Programmed Settings.

The Select Spans window displays.

Figure 39 Selecting Spans

Tota	al Control Manager: Select Spans	х
	SDH LINE LEVEL	
	C DS3	
	Cancel Help	

9 Select SDH LINE LEVEL and click OK.

The SDH card Programmed Settings window displays.

- **10** From the Parameter Group drop-down menu, click **General**. The current general programmed settings for the SDH Line Level appear.
- 11 From the Service Cmd Force field, select fsSwitchRelease.
- 12 Click Set and click OK.

Switching the Active Card to Standby

After releasing both SDH STM-0 Converter cards from service, you must switch the active card from active to standby.

1 From the Total Control Manager VFPD, click the LEDs of the active SDH STM-0 Converter NAC.

The LEDs turn blue. See Figure 40 for more information.

Figure 40 Total Control Manager's Virtual Front Panel Display (VFPD)

2 From the Configure menu, click Programmed Settings.

The Select Spans window displays.

Figure 41 Selecting Spans

Tota	al Control Manager: Select Spans	×
	SDH LINE LEVEL	
	O DS3	
	OK Cancel Help	

3 Select SDH LINE LEVEL and click OK.

The SDH card Programmed Settings window displays.

4 From the Parameter Group drop-down menu, click General.

The current general programmed settings for the SDH Line Level appear.

- 5 From the Service Cmd Force field, select cnvSby.
- 6 Click Set. The active SDH STM-0 Converter NAC is now the standby card. You have performed an APS switch.

Command Line Interface

Before manually performing an APS switch via the CLI, you must establish a network connection with both SDH STM-0 Converter modules. Please refer to Appendix B for detailed instructions on configuring a local network

To perform a manual APS switch using the CLI, use the following procedure:

Releasing Both SDH STM-0 NACs

You must release both SDH STM-0 Converter NACs before performing routine maintenance functions on the cards.

- 1 Establish a local network connection with the active SDH STM-0 Converter NAC.
- **2** Enter the following command from a supported software application (e.g., HyperTerminal):

chdev sdh

connection.

The sdh command prompt appears:

sdh>

3 Enter the following parameter:

set sorder release

- **4** Establish a local network connection with the standby SDH STM-0 Converter NAC.
- **5** Enter the following command from a supported software application (e.g., HyperTerminal):

chdev sdh

The sdh command prompt appears:

sdh>

6 Enter the following parameter:

set sorder release

Switching the Active Card to Standby

After releasing both SDH STM-0 Converter cards from service, you must switch the active card from active to standby.

- 1 Establish a local network connection with the active SDH STM-0 Converter NAC.
- **2** Enter the following command from a supported software application (e.g., HyperTerminal):

chdev sdh

The sdh command prompt appears:

sdh>

3 Enter the following parameter:

set sorder switch

The active SDH STM-0 Converter NAC is now the standby card. You have performed a manual APS switch.

Viewing Manual APS Switch Results Check the ACT/SBY LED on the front of the SDH STM-0 Converter NACs to make sure the manual APS switch occurred. The ACT/SBY LED on the active module should be solid green; the LED on the standby module should be solid amber.

Using DS-3 and SDH Loopbacks to Diagnose Problems SDH STM-0 Converter hardware supports several means of loopback. A loopback is a diagnostic test in which a sending device transmits a signal across a medium (e.g., DS-3 span) and waits for its return. Loopbacks check the health of the ingress lines coming into the chassis.

Monitoring DS-3 Loopbacks The SDH STM-0 Converter NIC has the capability of performing two types of loopbacks on the DS-3 span side. The two supported loopbacks are described in Table 34:

Loopback	Description
DS-3 Line Loopback	Monitor a line loopback at the DS-3 Line Interface Unit (LIU)/DS-3 physical span interconnection. This provides a minimal amount of testing to the DS-3 Ingress circuit. DS-3 loopback signal towards the DS-3 line after it has passed through the DS-3 LIU. This is done in response to user (network management or console) commands.
DS-3 Payload Loopback	Monitor a payload loopback at the DS-3 Multiplexer/DS-3 LIU interconnection. This verifies functionality of the DS-3 LIU and part of the M13 multiplexer. This consists of a command to loopback all 28 DS-1 signals towards the DS-3 line without the DS-3 signal being in loopback. The DS-3 overhead data is not looped back. When the command to clear this loopback is executed, all 28 DS-1 loopbacks are cleared regardless of any previous loopback state on any DS-1 span. The loopback is done in response to user (network management or console) commands.

 Table 34
 DS-3 Loopbacks on the SDH STM-0

Monitor these loopbacks by using external DS-3 equipment such as a:

- DS-3 Bit Error Rate Testing (BERT) analyzer
- DS-3 network equipment with built-in BERT testing

Configuring DS-3You can set DS-3 loopbacks using either common element manager, total
control manager, or the Command Line Interface.

Common Element Manager

To set DS-3 loopbacks using common element manager:

- From the Explorer tab, double-click the active SDH STM-0 Converter card.
 SDH STM-0 Converter card interfaces appear.
- 2 Click the DS-3 span.
- 3 From the Properties tab, click the Configuration tab.
- 4 Double-click the **LoopbackConfig** field, and select the desired loopback from the drop-down list. See <u>Table 35</u> for more information regarding DS-3 loopbacks.
- 5 Click Save all.

Total Control Manager

To set DS-3 loopbacks using total control manager:

1 From the total control manger VFPD, click the LEDs of the SDH STM-0 Converter NAC.

The LEDs turn blue. See Figure 42 for more information.

Figure 42 Total Control Manager's Virtual Front Panel Display (VFPD)

2 From the Configure menu, click Programmed Settings.

The Select Spans window displays.

Figure 43 Selecting Spans

Tota	al Control Manager: Select Spans	×
	SDH LINE LEVEL	
	C DS3	
	OK Cancel Help	

- 3 Select DS3.
- 4 Click OK.

The DS-3 Line Level Programmed Settings window displays.

- 5 From the Parameter Group drop-down menu, click DSx3 Configuration.The current general programmed settings for the DS-3 Line Level appear.
- 6 From the dsx3 Loopback Config field, select the loopback of choice.

See Table 35 for DS-3 loopback descriptions.

 Table 35
 DS-3 Loopbacks - MIB Objects

Loopback	Description
dsx3NoLoop	This is the default setting. This is used during normal STM-0 service.
dsx3PayloadLoop	Select a DS-3 Payload Loopback.
dsx3LineLoop	Select a DS-3 Line Loopback.

7 Click **Set** to save the settings in active memory. Settings stored in active memory are lost when a card reboots. The SDH STM-0 Converter module retrieves configurations from Non-volatile Random Access Memory (NVRAM) during reboot.

Command Line Interface

To set DS-3 loopbacks:

1 Enter the following command from a supported software application (e.g., HyperTerminal):

chdev ds3

The DS-3 command prompt appears:

ds3 1>

2 Enter the following command with the associated parameter. See <u>Table 36</u> for a list of supported parameters:

For example:

set d3loconfig payload

Table 36	DS-3 Loopbacks	- Command	Line	Interface
----------	----------------	-----------	------	-----------

Loopback	Description
noloop	Normal operation
payload	Used to determine if the M13 is configured correctly
line	Used to determine if the cabling path for the DS-3 is valid. This loopback does not indicate that the DS-3 interface on the SDH STM-0 Converter module is functioning properly.

Monitoring SDH Loopbacks

The SDH STM-0 Converter NIC has the capability of performing three types of loopbacks on the STM-0 span side. The three supported loopbacks are described in Figure 44 and Table 37:

Figure 44 Locating SDH Loopbacks

Table 37 describes SDH loopbacks.

Loopback	Description
SDH Facility Line Loopback	The SDH STM-0 Converter sends an electrical loopback signal towards the SDH network after it has passed through the SDH STM-0 Converter. This loopback occurs in response to user (network management or console) commands.
SDH Terminal Local Loopback	The SDH STM-0 Converter sends an electrical loopback signal towards the DS-3 interface (Multiplexer) after it has passed through the SDH STM-0 Converter. This loopback occurs in response to user (network management or console) commands.
SDH Optical Local Loopback	The SDH STM-0 Converter sends a loopback signal towards the DS-3 interface after it has passed through the electrical/optical converter and subsequently loops back using an external fiber optic cable that connects the fiber optic transmitter to the fiber optic receiver. This loopback occurs in response to user (network management or console) commands.

 Table 37
 SDH Loopbacks on the SDH STM-0

Monitor the SDH Facility Line Loopback by using external SDH STM-0 Converter equipment such as an:

- SDH BERT analyzer
- SDH network equipment with built-in BERT testing

Configuring SDH
LoopbacksYou can set SDH loopbacks using either common element manager, total
control manager, or the Command Line Interface.

Common Element Manager

To set DS-3 loopbacks using common element manager:

1 From the **Explorer** tab, double-click the active SDH STM-0 Converter card.

SDH STM-0 Converter card interfaces appear.

- 2 Click the SDH Interface.
- 3 From the Properties tab, click the General tab.
- 4 Double-click the **MediumLoopbackConfig** field, and select the desired loopback from the drop-down list. See <u>Table 38</u> for more information regarding SDH loopbacks.
- 5 Click Save all.

Total Control Manager

To set SDH Line loopbacks using Total Control Manager:

1 From the Total Control Manger VFPD, click the LEDs of the SDH STM-0 Converter NAC.

The LEDs turn blue. See Figure 45 for more information.

Figure 45 Total Control Manager's Virtual Front Panel Display (VFPD)

2 From the Configure menu, click Programmed Settings.

The Select Spans window displays.

Figure 46 Selecting Spans

Tota	al Control Manager: Select Spans	×
	SDH LINE LEVEL	
	O DS3	
	Cancel Help	

- 3 Select SDH LINE LEVEL.
- 4 Click OK.

The SDH Line Level Programmed Settings window displays.

- 5 From the Parameter Group drop-down menu, click General.The current general programmed settings for the SDH Line Level appear.
- 6 From the Medium Loopback Config field, select the loopback of choice.

See the following table for SDH Line loopback descriptions. **Table 38** SDH Line Loopbacks - MIB Objects

Loopback	Description
noLoop	This is the default setting. This is used during normal STM-0 service.
facilityLoop	Selects a Facility Loopback
terminalLoop	Selects a Terminal Loopback.
opticalLoop	Selects an Optical Loopback.

7 Click **Set** to save the settings in active memory. Settings stored in active memory are lost when a card reboots. The SDH STM-0 Converter module retrieves configurations from Non-volatile Random Access Memory (NVRAM) during reboot.

Command Line Interface

To set SDH loopbacks via the CLI:

1 Enter the following command from a supported software application (e.g., HyperTerminal):

chdev sdh

The sdh command prompt appears:

sdh>

2 Enter the following command with the associated parameter. See <u>Table 38</u> for a list of supported parameters.

For example:

set sloconf facility

Table 39 lists SDH loopback options:

Table 39 SDH Loopbacks - Command Line Interface

Loopback	Description
noloop	Normal Operation (default setting)
facility	Used to perform an SDH facility loopback.
Terminal	Used to perform an SDH terminal loopback
Optical	Used to perform an SDH optical loopback

ACRONYMS

This appendix lists acronyms used in the CommWorks Total Control 1000 Enhanced Data System application and documentation.

- ABR Area Border Router
- ACT Active
- AH Authentication Header
- AIS Alarm Indication Signal
- ANI Automatic Number Identification
- **APS** Automatic Protection Switching
- ARC Access Router Card
- **ARP** Address Resolution Protocol
- **ARO** Automatic Retransmission reQuest
 - AS Autonomous System
- ASBR Autonomous System Boundary Router
 - ASE Autonomous System External
- ATM Asynchronous Transfer Mode
 - AU High Path
- AVP Attribute Value Pair
- BACP Bandwidth Allocation Control Protocol
- **BAP** Bandwidth Allocation Protocol

- BBS Bulletin Board Systems
- Bc Committed Burst Size
- **BDR** Backup Designated Router
 - Be Excess Burst Size
- BECN Backward Explicit Congestion Notification
- **BERT** Bit Error Rate Testing
- BLER Block Errors
- **Bootp** Bootstrap Protocol
- **CBCP** Callback Control Protocol
- **CDR** Call Detail Records
- **CEM** Common Element Manager
- **CHAP** Challenge-Handshake Authentication Protocol
 - **CIP** Call Information Process
 - **CIR** Committed Information Rate
 - **CLI** Command Line Interface
 - **CRC** Cyclic Redundancy Check
- **CSU/DSU** Channel Service Unit/Digital Service Unit
 - Clear To Send
 - **DS-1** Digital Signal, level 1
 - **DS-3** Digital Signal, level 3
 - **DES** Data Encryption Standard
 - **DHCP** Dynamic Host Configuration Protocol

- **DHTML** Dynamic HyperText Markup Language
 - DLCI Data Link Connection Identifier
 - DLL Data Link Layer
 - **DNIS** Dialed Number Identification Service
 - **DNS** Domain Name Server
- **DPCM** Differential Pulse Code Modulation
 - **DR** Designated Router
 - **DSA** Dynamic Slot Assignment
 - **DSP** Digital Signal Processor
 - **DTE** Data Terminal Equipment
 - **DTR** Data Terminal Ready
 - **DTS** Data Transformation Services
- **EEPROM** Electronically Erasable Programmable Read Only Memory
 - **ESD** Electrostatic Discharge
 - **ENFAS** Enhanced Network Facility Associated Signaling
 - EO End Office
 - ESIG Extended SIGnaling
 - **ESP** Encapsulating Security Payload
 - **EXZ** Excessive Zeros
 - **FEAC** Far End Alarm and Control Channel
 - **FEBE** Far End Block Errors
 - FECN Forward Explicit Congestion Notification

- FQ Fair Queuing
- FRED Fair Random Early Drop
- **GMT** Greenwich Mean Time
- **GSTN** General Switched Telephone Network
- HDLC High level Data Link Control
- **HiPer** High Performance (CommWorks name for Total Control 1000 components not compatible with SDH 1.0)
- ICMP Internet Control Message Protocol
 - IEA Internet Equal Access
- IETF Internet Engineering Task Force
- **IGP** Interior Gateway Protocol
- **IGMP** Internet Group Management Protocol
 - INS In Service
 - IP Internet Protocol
 - **IPX** Internetwork Packet eXchange
- **ISAKMP** Internet Security Association and Key Management Protocol
 - **ISDN** Integrated Services Digital Network
 - **ISP** Internet Service Provider
 - **ITU-T** International Telecommunication Union Telecommunication Standardization Sector
 - L2TP Layer 2 Tunneling Protocol
 - LAC L2TP Access Concentrator
 - LAN Local Area Network

- LAPM Link Access Procedure for Modems
 - **LCV** Line Code Violation
 - LED Light Emitting Diode
 - LIU Line Interface Unit
 - LMI Link Management Interface
 - LNS L2TP Tunnel Server
 - LOF Loss of Frame
 - LOS Loss of Signal
 - LSA Link State Advertisements
- LSDB Link State Database
- MAC address Media Access Control address
 - **MBP** Management Bus Protocol
 - Mbps MegaBits Per Second; million bits per second
 - MD5 Message Digest 5
 - **MIB** Management Information Base
 - **MNP** Microcom Networking Protocol
 - MPIP Multilink PPP Interspan Protocol
 - MPPE Microsoft Point-to-Point Encryption
 - MPPP Multilink Point-to-Point Protocol
 - MTBF Mean Time Between Failure
 - MTU Maximum Transmission Unit
 - MU Monitoring Unit

- **NAC** Network Application Card
- NAS Network Application Server
- **NAT** Network Address Translation
- **NBMA** Non-Broadcast Multi-Access
 - **NIC** Network Interface Card
 - **NMC** Network Management Card
 - NTP Network Time Protocol
- **NVRAM** Non-Volatile Random Access Memory
 - **OC-1** Optical Carrier, level 1, 52 Mbps
 - OC-3 Optical Carrier, level 3, 155 Mbps
 - **OOS** Out of Service (alternative acronym)[,]
 - **OSPF** Open Shortest Path First
 - OUS Out of Service
 - PAP Password Authentication Protocol
 - **PAT** Port and Network Address Translation
 - PCI Peripheral Component Interconnection
 - PCM Pulse Code Modulation
 - PDH Plesiochronous Digital Hierarchy
 - **PM** Performance Monitor
 - **POP** Point Of Presence
 - **POST** Power-on Self-test
 - **PPP** Point-to-Point Protocol

- **PPoE** Point-to-Point Protocol over Ethernet
- **PPTP** Point-to-Point Tunneling Protocol
 - **PQ** Priority Queuing
 - **PSI** Power Supply Interfaces
- **PSTN** Public Switched Telephone Network
- **PSU** Power Supply Unit
- PTMPT Point-to-Multipoint
 - **PVC** Permanent Virtual Circuit
 - **QoS** Quality of Service
- RADIUS Remote Authentication Dial-In User Service
 - RAI Remote Alarm Indication
 - **RAM** Random Access Memory
 - RAS Remote Access Server
 - **RFA** Remote Frame Alarm
 - **RIP** Routing Information Protocol
 - RN/FL Run/Fail
 - **ROM** Read Only Memory
 - **RRA** Return Route Assurance
 - **RSHD** Remote Shell Daemon
 - **RTP** Real Time Protocol
 - RTS Request To Send
 - **RX** Receive

- **SDH** Synchronous Digital Hierarchy
- **STM-0** Synchronous Transport Module, level 0
- **STM-1** Synchronous Transport Module, level 1
- **SABME** Set Asynchronous Balance Mode Extended
 - **SAP** Service Advertising Protocol
 - SBY Standby
 - **SDH** Synchronous Digital Hierarchy
 - **SDL-2** Software Download-2
 - SHA Secure Hash Algorithm
 - **SLAP** Signaling LAN Application Protocol
 - **SLIP** Serial Line Internet Protocol
- **SNMP** Simple Network Management Protocol
- **SONET** Synchronous Optical Network
 - **SS7** Signaling System 7
 - **TCH** Total Control Hub (an alternative name for the Total Control 1000 chassis)
 - TCP Transmission Control Protocol
 - **TDM** Time Division Multiplex
 - **TFTP** Trivial File Transfer Protocol
 - TTL Time-to-Live
 - **TX** Transmit
 - TU Tributary Unit; Low Path
 - **UDP** User Datagram Protocol

- **UI** User Interface
- VC-11 Virtual Container, number 11
- **VFPD** Virtual Front Panel Display; Total Control Manager's graphical user interface
- **VLSM** Variable Length Subnet Masks
 - **VPN** Virtual Private Network
 - VSA Vendor-Specific Attributes
 - **VTP** Virtual Terminal Protocol
- WAN Wide Area Network

INDEX

Α

access router card arp command 51 authentication problems 32 call fails 32 configuration problems 29 event logging 54 event logging levels 55 event message examples 56 faceplate 26 host command 51 LAN RX LED 27 LAN TX LED 27 LCP authentication issues 32 listing ping settings 53 monitor next RADIUS session 44 monitoring RADIUS 43 no calls complete 29 ping command 51 port tap facility 45 PPP call events 42 resolving host names 51 resolving IP addresses 51 resources 39 Run/Fail LED 26 some calls complete 38 STAT LEDs 27 syslog facilities 48 tap users 45 terminating an active process 50 trouble clearing commands 49 using ping to monitor system connectivity 53 using PPP monitoring to track problems 39 using syslog facilities 48 verifying software version 28 viewing facility errors 49 viewing interface status and settings 54 WAN RX LED 27 WAN TX LED 27 acronyms 121 APS switching manually performing a switch 108 viewing APS switch results 114 arp command 51 authentication problems access router card 32 auto configuration on card initialization 70

С

call fails after LCP authentication 32 modems 82 components configuring xvi installing xvi configuring ping user 53 SDH loopbacks 118 tap users 45 conventions document xiii customer service xvii customer support website 19

D

documentation xiv documentation map using the system xvi DS-3 ingress channel line pushbutton 93 checking DS3 line configuration 96 dual bantam jack 93 faceplate 92 inital configuration trouble locating and clearing 95 installation trouble locating and clearing 95 monitor port LED 93 NAC interfaces 93 normal operational mode 95 operational states 97 overview 91 status LED indicators 93 verifying software version 94 DS-3 line loopback 114 DS-3 loopbacks 114 DS-3 payload loopback 114 DSP multispan call fails 82 checking the line status 86 checking the physical state 85 checking the received error statistics 88 faceplace 74 initial configuration trouble locating and clearing 76 LEDs 74 modem disconnects 83 ordering and setting up a span line 89 overview 73 performing modem tests 81 physical layer trouble locating and clearing 84 remote testing 81 testing for line noise 79 verifying software version 75 viewing LEDs 84 x2 status 78 x2/V.90 77

E E1

checking line status 86 ordering a span line 89 error statistics 88 event logging console event logging 55 levels 55 message examples 56 setting the event log level 56 syslog host event logging 54 Telnet access 55 using 54 event logging levels common 55 critical 55 setting 56 unusual 55 verbose 55 event messages Call Initiation Process messages 57 configuration file manager messages 58 filter manager process messages 58 IP dial-out process messages 58 IP messages 56 overview 56 UDP messages 58 user manager messages 57 examples event messages 56

F

feature keys 68

G

glossary 121

Н

HiPer components documentation xv host command 51

I.

installing components xvi

Κ

kill command 50 Knowledgebase overview 19

L

LCP authentication 32 list processes command 50

Μ

modems call fails 82 disconnects 83 performing tests 81 remote testing 81 testing for line noise 79 monitoring RADIUS for problems 43 monitoring loopbacks equipment 114

Ν

network management card card cannot talk to the network 66 faceplate 60 feature keys 68 HUB NUMBER/STATUS indicator 65 hub security is not working 68 HUB ST LED diagnostics and trouble locating and clearing 63 installation and configuration problems 66 LAN LED diagnostics and trouble locating and clearing 64 LED descriptions 60 not sending accounting reports 66 retaining settings 70 RN/FL LED diagnostics and trouble locating and clearing 62 verifying software version 61 WAN LED diagnostics and trouble locating and clearing 65 notice icon descriptions xiii

0

overload conditions 22 overvoltage issues 22

Ρ

ping command configuring a ping user 53 listing ping settings 53 overview 51 setting ping row ceiling 53 showing ping statistics 53 using ping to monitor system connectivity 53 port tap facility 45 CLI configured tap 47 configuring tap users 45 power supply interfaces removing 23 power supply units diagnostics 21 overload conditions 22 overview 21 overvoltage 22 removing 22

PPP call events 42 PPP monitoring 39

R

RADIUS monitoring next session 44 RADIUS problems 43 received error statistics 88 related documentation xiv remote modem testing 81 RFC references PPP design and debugging 39

S

screen captures xiv SDH facility line loopback 118 SDH loopbacks 118 SDH optical local loopback 118 SDH STM-0 Converter configuring DS-3 loopbacks 115 configuring SDH loopbacks 118 installation trouble locating and clearing 103 monitoring DS-3 loopbacks 114 monitoring SDH loopbacks 117 system trouble locating and clearing 104 verifying software version 101 SDH terminal local loopback 118 span line status 86 syslog using 48 system documentation xiv documentation map xvi

Т

T1 checking line status 86 ordering a span line 89 tap users 45 terms 121 text convention descriptions xiv Total Control 1000 documentation xiv trouble locating and clearing overview 19 TOTALService 19 tracking problems access router card 39 trouble locating and clearing power supply units 21

U

using ping 51 port tap facility 45

V

V.90

client connections 78 client modem trouble clearing 79 server connections 77 server problems 77 viewing an APS switch 114

Х

x2/V.90 trouble locating and clearing 77

CommWorks Corporation 3800 Golf Road Rolling Meadows, IL 60008

> © 2002 3Com Corporation All rights reserved Printed in the U.S.A.

Part Number 10048400