CPm 2

USERS GUIDE FOR 14 OWNERS

P2

USERS GUIDE FOR 14 OWNERS

T

CcP/M USER’S GUIDE

FOR CP/M l.4 OWNERS

Copyright (c) 1979

DIGITAL RESEARCH

COPYRIGHT (c) 1979

VECTOR GRAPHIC, INC.

REVISION OF NOV. 15, 1979

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or transiated into
any language or computer language, in any form or bv any
means, electronie, mechanical, magnetie, optical. chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically diselaims anv
implied warranties of merchantability or fitness for any parti-
cular purpcse. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Researen. MP/M,
MAC, and STD are trademarks of Digital Research.

;'ﬁ/’f\\\

(N

\ 7

CP/M 2.8 USER'S GUIDE FOR CP/M 1.4 QOWNERS

Cooyright (c) 1979
Digital Researcn, Box 573
Pacific Grove, California

1. An Overview of CP/M 2.9 Facilities
2, User Interface . . o o « o o = o o o o o o « =+ s
3. Console Command Processor (CC?) Interface
4, STAT Enhancements . ¢ ¢ o « o ¢ o o o o o o o o
5., PIP Snhancements ., . o + o« o o o o s o s o o o o o
§., ED Enhancements . ¢ o i o « ¢ o o 6 s s s s s s e
7. ‘The X303 Function + ¢ ¢ ¢ o o o o o o o &

8. 3DOUS Interface Conventions ., , o+ « « o« o o o o o o

12
11
12

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

Cp/#4 2.2 is a high-performance single-console operating system
which uses table driven tecnniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, wnile maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eignt megabytes. Any particular file can reacn the £full drive size
with the capaoility to expand to thirty-two megabytes in future
releases, The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attriputes. Users of CP/M 2.9 are ophysically
separated Doy user numoers, with facilities for file copy operations
from one user area to another., PrPowerful relative-record random access
functions are present in CP/M 2.8 which provide direct access to any
of the 65536 records of an eight megaoyte file,

All disk-dependent portions of CP/M 2.0 are placed into a
8I0S-resident “disk parameter block® which is either hand coded or
produced automatically wusing the disk definition macro library

‘provided with CP/M 2.8. The end user need only specify the maximum

nuamoer of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk, .
directory size information, and reserved track values. The macros use
this intformation to generate the appropriate taoles and table
references for use during CP/M 2.3 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
wnich are multiples of tne fundamental 128 byte data wunit, and the
system alteration manual includes general-purpose suoroutines which
use the tnis depblocking information to take advantage of larger sector
sizes., Use of these subroutines, togetner with the table driven data
access algoritnms, make <CP/M 2.4 truly a universal data management
system,

File expansion is achieved oy providing up to 512 logical file
extents, where eacn logical extent contains 16K bytes of data. CP/M
2.9 is structured, nowever, so that as much as 128K bytes of data 1is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.8 which allow
immediate reference to any record of an eight megabyte file. Using
CP/#'s unigue data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward compatible from earlier
versions to the full eight megaoytes, wnile random. access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpler and
faster random access, application brogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login”

(All Information Contained Herein is Proprietary to Digital Researcn.)

1

function to change from one user area toO anotner. Tne CCP also
formats directory displays in a more convenient manner and accounts
for botn CRT and hard-copy devices in its enhanced line editing
functions.

The sections below point out the individual differences between

CP/#4 1.4 and CP/M 2.8, witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.

(All Information Contained Herein is Proprietary to Digital Research.)

2

oo,

v 7

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol “ctl" below indicates tnat the control key |is
simultaneously depressed):

rub/del removes and ecnoes last character

ctl-C reboot when at beginning of line

ctl-2 physical end of line

ctl-d opackspace one cnaracter position*

ctl-J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl=R retype current line after new line
ctl-y remove current line after new line
ctl-X Dbackspace to beginning of current line*

In particular, note that ctl-f produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
aditor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command. '

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) IWTERFACE. _
There are four functional differences between CP/M 1.4 and CP/M (M ’
2.6 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *_*" and
“SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

whnere n is an integer value in the range 9 to 15. Upon c¢old start,
the operator is automatically "logged™ into user area number @, which
is compatible with standard CP/M 1.4 directories. Tne operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are 1logged-in waile
addressing one user number are automatically active when the operator
moves toO another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number is maintained until changed by a
subsequent USER command, or until a cold start operation when user ¢
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, tne ERA *.,* command has a different effect, In version 1.4,
this command can pe used to erase a directory wnicn has “garbage”
information, perhaps resulting from use of a diskette under another { i
operating system (neaven forbidl). In 2.8, however, the ERA =, * -
command affects only the current user numpber. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.3,
nowever, does not verform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

o

C

(All Information Contained Herein is‘Proprietary to Digital Research.)

4

4, STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

oroduces a summary of the availaple status commands, resulting in thne
output:

Temo R/O Disk: d:=R/0

Set Indicator: d:filename.typ 3R/0 $R/W $SYS SDIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:
STAT d:filename.tyop $S

wnere "d:" is an optional drive name, and “filename.typ” is an
unambiguous or ambiguous file name, produces the output display
format: '

3ize Recs 3ytes Ext Acc

43 43 6k 1 R/0 A:ED.COM
55 55 12x 1 R/O (A:PIP.COM)
85536 128 2k 2 R/W A:X.DAT

where tne $3 parameter causes the “Size* field to Dbe displayed
(without the §$S, the Size field is skipped, but the remaining fields
are disolaved). The Size field 1lists the virtual file size in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed seguentially, the 3Size and Recs
fields are identical,. The “8ytes” field lists the actual number of
bytes allocated to the corresponding file, The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "holes" even though they are
added into the record count). The “Ext" field counts the number of
logical 16X extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 123K bytes (8
logical extents) directly addressed by a single directory entry,
devending upon allocation size (in a special case, there are actually
256K bytes wnich can be directly addressed by a physical extent).

The “Acc“” field gives the R/0 or R/W access mode, which is
changed using the commands shown below. Similarly, the parentheses
(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it nas the “system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ $R/0
STAT d:filename.tyo SR/W
STAT d:filename.typ $S¥YS
STAT d:filename.typ $DIR

set or reset various permanent file indicators, The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command, The R/0 status is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations, The R/W indicator places the file in a
permanent read/write status.. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The "filename.typ" may be ambiguous or unambiguous, but in
eitner case, the files wnose attributes are changed are listed at the
console when the change occurs, The drive name denoted by "d:" |is
optional,

when a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

Bdos Err on d: File R/0O

The BDOS then waits for a console input before performing a subsequent
warm start (a "return” is sufficient to continue). The command form

STAT d:DSK:

lists the drive characteristics of the disk named'by “d:" which is in
tne range A:, B:, ..., P:. The drive characteristics are listed in
tne format:

Drive Characteristics

128 Byte record Capacity
Kilooyte Drive Capacity

32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

8553

o
o
W

S oo

s o0 45 se e

'—l

- &
N
QO O
ae se o

where “d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilooytes., The directory size is listed next,
followed by the “"checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number 1is
usually zero, since the media is not changed without at least a cold
or warm start., The number of records per extent determines the
addressing capacity of each directory entry (ld24 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

e

128K in the example avove). The number of records ver plock shows the
pasic allocation size (in the example, 128 records/block times 128
bytes per record, or 16Kk bytes per block). The listing is then
followed by the number of physical sectors per track and the number of
reserved tracks. For logical drives whicn share the same physical
disk, the number of reserved tracks may be gquite large, since this
mechanism is used to skip lower-numbered disk areas allocated to otner
logical disks. The command form

STAT DSK:

nroduces a drive cnaracteristics taple for all currently active
drives. The final STAT command form is

STAT USR:

whicn produces a list of the user numbers whicn have files on the
currently addressed disk. <The display format is:

Active User : %
Active files: 9 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed Dby a list of wuser numbers
scanned from the current directory. In the above case, the active
user numper is 4 (default at cold start), witn three user numbers
whicn hnave active files on the current disk. The operator can
subsequently examine tne directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR

command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

2

5. PIP ENHANCEMENTS.

T

PIP provides three new functions whicn account £or the features
of CpP/M 2.0. All thnree functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range 4 = 15)

W- Write over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another,
Assuming the operator has issued the USER 4 command at the CCP level,
tne PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command
PIP A:=A:*, *([G2]

covies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command. [/

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

JSER ¥ login user 4
-DDT PIP.COM load PIP? to memory
(note PIP size s)

Ga return to CCP

USER 3 login user 3

SAVE s PIP.COM

wnere s is the integral number of memory "padges" (256 Dbyte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1006, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the sSubsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which |is

set to a permanent R/0 status. If attempt is made to overwrite a R/0
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

3

N

ARSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character *“y" then the
file is overwritten, Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in seguence. In order to avoid the prompt and response
in the case of R/0O file overwrite, the command line can include the W
parameter, as shown pelow

PIP A:=B:*, COMI[W]
which copoies all non-system files to.the A drive from the 8 drive, and
overwrites any R/Q files in the process. I1f the operation involves
several concatenated files, the W parameter need only be included with
tne last file in the list, as shown in the following example
pPIP A,DAT = 8.DAT,F :NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers

"if the R parameter is included, otherwise system files are not

recognized. The command line
PIP ED.COM = 8:ED,CUM({R]
for example, reads the ED.COM file from the B drive, even if it has

neen marked as a R/O and system file. The system file attributes are
copied, if present,

It should pe noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megapbyte, no file attributes are set, and the file is created by user
g.

(All Information Contained Herein is proprietary to Digital Research,)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.9 release. Experience has shown that most operators use the
relative line numpbering feature of ED, and thus the editor has the “v*
(Verify Line) option set as an initial value. The operator can, of
course, disable line numoering by typing the “-v* command. 1If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix in tne 3&D user's guide, where the "v" command is
described.

ED also takes file attributes into account. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **

appears at the console. The file can e 1loaded and examined, but
cannot Dbe altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

“SYSTEM" FILE NOT ACCESSIBLE
1s displayed at the console, and the edit session is aborted. Again,
the STAT program can be wused to change the system attribute, if
desireaq.

Finally, the insert mode ("i“) command allows CRT Lline editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

19

(ﬁﬁg

..

7. THE XSUB FUNCTION,

An additional utility program is supplied with version 2.4 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
ijnclude line input to programs as well as the console command
processor., The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP,
all subsegquent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 18) receive
their input directly from the submit file, For example, the file
SAVER.SUB could contain the submit lines:

XsuB

DDT

IS1.HEX

R

Go

SAVE 1 §2.COM

with a subsequent SUBMIT commang:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DDT which is sent the command lines
“IX . HEX* "R" and “G@" thus returning to the CCP, The final command
“SAVE 1 Y.COM“ is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate 1its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening

cold start has occurred, Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

3. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 6605H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
AL (for reasons of compatibility, register A = L and register 8 = H
upon return in all cases). A list of CP/M 2.9 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.8, Note that a zero value is returned for
out-of range function numbers.

d System Reset 19* Delete File

1 Console Input 20 Read Seguential

2 Console QJutput 21 Write Seguential

3 Reader Input 22* Make File

4 Puncn Output 23* Rename File

5 List Qutput 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

3 Set I/O Byte 27 Get Addr(Alloc)

39 Print String 28* Write Protect Disk
19* Read Console Buffer 29* Get Addr (R/0 Vector)
ll Get Console Status . 3@* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
l4 Select Disk 33* Read Random
15* QOven File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Searcnn for Next

(Functions 25, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/0 is supported under CP/M 2.3 for those
applications where it is necessary to avoid the 3D0S console I/0
operations. Programs whicn currently perform direct I/O0 througnh the
3I0S should be changed to use direct I/0 under 3DOS so that they can
be fully supported under future releases of MP/M and cp/M,

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input regquest, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 99
if no character is ready, otherwise A contains the next console input
character.

If the inout value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

12

s

&5{

Function 13: Read Console guffer.

The console buffer read overation remains unchanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information wnich
allows version-independent programming (this was previously the “lift
nead” function whicn returned HL=0080 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with B = 8@ for the CP/M release (H = @1 for MP/M), and L = 08 for all
releases previous to 2.0. cp/M 2.9 returns a hexadecimal 20 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described below, DE addresses a file
control olock (FC8). Further, all directory operations take place in
a reserved area which does not affect write puffers as was the case in

version 1.4, with the exception of Searcn First and Search Next, where
compatipility is required. ‘

The File Control 3lock (FCB) data area consists of a segquence of 33
oytes for sequential access, and a series of 36 bytes in the case that
tne file is accessed randomly. The default file control block
normally located at ¥d5CH can be used for random access files, since
pytes ©87DH, J07E4H, and @07F4 are available for this purpose, for
notational purposes, the FCB3 format is shown with the following
fields: :

(All Information Contained Herein is Proprietary to Digital Research.)

13

ldr|1£11£21/ /1£381elit2lt3lex|slls2liccidal/ /ldnlcrlr@iclir2]|

00 ol 82 ... 48 69 18 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (8 - 16)
P => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B3,

16=> auto disk select drive P.

fl1...£f8 contain the file name in ASCII
upper case, with nigh bit = §

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 9
tl', t2', and t3' denote the
bit of these positions,
tl® = 1 => Read/Only file,
£2' = 1 => 3Yys-file, no DIR list

ex contains the current extent number,
: normally set to 38 by the user, but
in range @ - 31 during file I/0

sl reserved for internal system use’

s2 reserved for internal system use, set
€O zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,*
takes on values from 4 - 128

dd...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a seqguential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range #-65535, with overflow to r2,

r8,rl constitute a l6-bit value with
low byte r9, and high byte rl

Function 15: Open File.

Tne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed, Note that
previous versions of CP/M defined this byte as zero, but made no -

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatipility with the latest version, where it is required.

Function 17: Searcn for First,

Searcn First scans the directory for a matcn with the file given
oy the FCB addressed by DE. The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise a value of A egual to 6,
1, 2, or 3 is returned indicating the file is present, In the case
tnat the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate tnhe A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position,

An ASCII gquestion mark (63 decimal, 3F hexadecimal) in any
position from £l through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function 1is not normally used by
appLication programs, out does allow complete flexibility to scan. all
current directory values., If the dr field is not a guestion mark, the
s2 byte is automatically zeroed.

function 18: Search for Next,

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File,

The Delete File function removes files which match the FC3B
addressed by DE. The filename and type may contain ambiguous-
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions, :

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 8 to 3 is returned.

P
S
£

N

e

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File,

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the 3DOS.

Function 23: Rename File,

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¢ to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.9 is a l6-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the nigh order bit of 4 corresponds to the sixteenth
drive, lapelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return,

Function 28: Write Protect Current Disk.

The disk write protect function provides temoorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d4: R/0O

Function 29: Get R/Q Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set, Similar
to function 24, the least significant oit corresponds to drive A,
while the most significant bit corresponds to drive P, The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M whicn detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2° above) can bpe
Set or reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 38 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and changes the matched directory entry to contain the selected
inaicators. Indicators f£1' through £4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators £5*' tnrough £3' and t3' are reserved for future system
exvmansion,

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is
returned in HL as a result of tnis function call. This address can be
used for either of two purposes, First, the disk parameter values can
pe extracted for display and space .computation purposes, oOr transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, apolication
programs will not reguire this facility.

Function 32: Set or Get User Code,

An application program can change or interrogate the currently
active user number by calling function 32, If register E = FF
aexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range 8 to 31, If register E is
not FF, then the current user number is changed to the wvalue of E
(modulo 32).,

Function 33: Read Random.

fhe Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
olace at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
vositions r# at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant oyte first (rd), middle
pyte next (rl), and high byte last (r2). CP/M release 2.4 does not
reference byte r2, except in computing the size of a file (function
35).. Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.9, the r#,rl byte pair is treated as a
double-byte, or "word"” value, which contains the record to read. This
value ranges from 8 to 65535, providing access to any particular
record of the 8 megabyte file, In order to pvorocess a file wusing
random access, the base extent (extent d) must first De opened.
Although the pbase extent may or may not contain any allocated data,
this ensures that the file is oroperly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (r?,cl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 39 indicating the overation
was successful., In the latter case, the current DMA address contains
the randomly accessed record., Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set, Thus, the file can De
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the 1last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write operation. You can, of course, simply advance
the random record ovosition following each random read or write to
obtain the effect of a sequential I/0 operation,

Error codes returned in register A following a random read are
listed below,

81 reading unwritten data

42 (not returned in random mode)
@3 cannot close current extent
d4 seek to unwritten extent

345 (not returned in read mode)

26 seek past physical end of disk

Error code ¥l and 94 occur when a random read operation accesses a
data bplock which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write porotected, Error code 86 occurs whenever byte r2
is non-zero under the current 2.9 release, Normally, non-zero return
codes can be treated as missing data, with 2zero return codes
indicating operation complete,

'Function 34: Write Random.

The Write Random overation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues., As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, segquential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does 1in seguential mode under either CP/M 1.4 or CP/M
2.9.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which
indicates that a new extent cannot be created due to directory
overflow,

Function 35: Compute File Size.

Wwhen computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes rd, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
“gyirtual” file size whicn is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 31, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16=-bit value (r# is the least significant byte, as
before) which is the file size,

Data can be apoended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially. 1If, instead, the file was created
in random mode and "holes* exist in the allocation, then the file may
in fact contain fewer records than the size indicates, I, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size 1is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the 3D0S to automatically
produce the random record position from a file which nas been read or
written sequentially to a varticular point, The function ‘can be
useful in two ways.

First, it is often necessary ¢to initially read and scan a
sequential file to extract the positions of various "key"” fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed recorda by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to £ind the
exact starting position of the keyed data at a later time,

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, £function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file,

This section is concluded with a rather extensive, but complete
example of random access overation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDGM,COM, the CCP level
command:

RANDOM X,.DAT
starts the test program., The program looks for a £file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input., If not found, the £file is <c¢reated before the
orompt is given., Each prompt takes the form

next commang?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 3 to 65535, and @, R, and Q

are simple command characters corresponding to random write, random.

read, and guit processing, resvectively. If the W command is 1issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return., RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and disvlays the string value at the console, If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor, In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The orogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “ready” where the individual commands are interpreted. The
default file control .block at 985CH and the default buffer at 9980H
are used in all disk operations, The utility subroutines then follow,
(All Information Contained Herein is Proprietary to Digital Research.)

29

(ﬂmu which contain the orincipal input 1line processor, called “readc.*
-

This particular program shows the elements of random access
processing, and can be used as the basis for further program
development,

;********t**

o ® *
;* sample random access program for co/m 2.9 *
o« %]
;***t*************************t*******************t*
2189 org 14dh ;base of tpoa
3008 = repboot eqgu 2208h 1system reboot
2045 = bdos egqu 90@5h ;pdos entry point
4091 = coninp equ 1 ;console input function
2062 = conout equ 2 ;console output function
gg9 = ostring egqu 9 ;print string until 'S$’
gdda = rstring equ 19 sread console buffer
ddéc = _version egu 12 ;return version number
J00f = openft egu 15 ;file open function
3418 = closef equ 16 ;close function
gole = makef egu 22 ;make file function
Jy21 = reaar egu 33 ;read random
9922 = writer equ 34 ;write random
(*;7 dd5¢c = fco equ J35ch ;default £ile control block
g974 = ranrec egu fcb+33 ;random record ovosition
dg87f = ranovt equ fco+35 ;nigh order (overflow) byte
3689 = puff equ 4380h ;buffer address
8894 = cr egu 2dh ;carriage return
gd3da = 1f agu dah ;line feed
;**********t********r*******************************,
o« ' x
;* load sP, set-up file for random access *
' *
;********************************t******************
3190 31bcHd 1xi sp,stack
: version 2.8?
2193 Qebc mvi c,version
2185 cddsd call bdos
3108 fe2d cpi 29h ;version 2.9 or better?
dloa d2166 jnc versok
: bad version, message and go back
g184 111bd 1xi d,badver
9119 cddag - call print
4113 c30a9 jmo reboot
o versok:
[: correct version for random access

3

(All Information Contained Herein is Proorietary to Digital Research.)

21

9116
glls
3llo
Blle
211f

4122
34124
3127
Bl2a
d12b

d12e
8131
4134

9137
d1l3a
813d
8144
34142
9144

3147
8149
dl4c
@l4af
2154
4153

8156
8158

¥415b
dl5e

(All Information Contained Herein is Proprietary to Digital Research.)

Jedf
115c¢cH
cdasd

c2379

geld
115cd
cdgsd
3¢
c2379

113ad
cddag
c3939

cdesd
22749
217£8
30630
fe51
c2569

deld
115cw
cdisa

cabdgd
c3id09d

fes57
c2896

11449
cddad

mvi c,openf ;open default fcb

1xi d,fcb

call bdos

inr a ;jerr 255 becomes zero

jnz ready
H
: cannot open file, so create it

mvi c,makef :

1xi d,fcb

call = Dbdos

inr a ;err 255 becomes zero

jnz ready
H
; cannot create file, directory full

1xi d,nospace

call print

jmo reboot ;back to ccp
t AR R AR ES AR RRRRERAESREE LR ER R IR BE R RE R R R R R R R R TR R
* *
* loop back to "ready" after each command *
x* ’ *

LA R SEE R RS REER RS AR R Rl RR A Xt e R 2SR YR L XX EE S S

It %6 ~¢ “e o “e “ o

eady: ‘
; file is ready for processing
;

call readcom ;read next command

snld ranrec ;store input record#

1xi h,ranovft

mvi m,Q? sclear high byte if set

cpi 'Q* ;guit?

jnz notg
]
3 guit processing, close file

mvi c,closef

1xi d,fco

call bdos

inr a ;err 255 becomes @

jz error ;error message, retry

jmo reboot ;back to ccp
;******************t*********************t***t******
;# *
:* end of quit command, process write *
s ® *
’
;**t**
notg:
: not the guit command, random write?

cpi ‘W'

jnz notw
:
: this is a random write, fill buffer until cr

1xi d,datmsg

call print ;data prompt

22

3161 de7f mvi c,127 ;up to 127 characters

d163 21306 1xi h,ouff ;destination
rloop: ;read next character to buff

¥dl6o c5 push b ;Save counter

2167 e5 push h ;next destination

01638 cdac2d call getchr ;character to a

dl6p el pop h srestore counter

dléc cl DOD b ;restore next to fill

Gl6d fedd cpi cr ;end of line?

916 ca78d jz erlooo
3 not end, store character

3172 77 mov m,a

9173 23 inx h snext to fill

4174 04 dcr c jcounter goes down

B175 ¢c2668 inz rloop send of puffer?
erloop:
: end of read loop, store 80

vl73 3640 mvi m,d
: write the record to selected record number

d17a de22 mvi c,writer

217¢c 115cd 1xi 4, fch

d17f cdes5d . call bdos

341832 b7 ora a ;error code zero?

9183 c2b%9d jnz error ;message if not

. 4lss ¢c3374 jmp ready ;for another record

;tw****'x***w**************************t*********t***
. ® x
;* end of write command, nrocess read *
'S =
:.***********x*******x************************t******
notw:
s not a write command, read record?

3189 fes52 cpi 'R'

3418b c2b9d jnz error ;skip if not
: read random record

318e de2l mvi c,readr

3198 115cd 1xi d,fch

9133 cdds5oe call bdos

8196 b7 ora a sreturn code 4¢°?

3197 c2b9d . jnz error
: read was successful, write to console

#19a cdcthd call crlf inew line

8194 JdeB89d mvi c,128 :max 128 characters

619f 21840 1xi h,buff ;next to get
wloop:

3laz 7e mov a,m :next character

gla3 23 inx h ;next to get

Blad e67f ani 7£h ;mask parity

dlaé6 ca379 jz ready ; for another command if @4

#1ad c5 push b ;save counter

#laa e5 push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

dlab
dlad
91byd
21lbl
21pb2
d1b3
dlb6

21b9
dlbc
BN}

dlc2
dlcd
dlc?

Jglc8
blca
d1lcb
dlce

dlct
4141
d1ld4
g1de6
glad

dlda
91db
glde
dlaf
dlel
dled

(All Information Contained Herein is Proprietary to Digital Research.)

feld
d4cidd
el

cl

c2azf
c3378

11590
cddad
c3374

dedl
cdgsg
c9

ded2
5f
cddsd
cY

3edd
cdc8d
Jeda
cdc8?d
co

ds
cdefd
dl
0ed9
cdgsg
c9

cpi ;graphic?

cnge putchr ;skip output if not

pop h

pop b

dcr c ;count=count~-1

jnz wloop :

jmp ready
;**x********
;* *
;* end of read command, all errors end-up here *
'e. *
;**************t************************************
H
error:

1xi d,errmsg

call print

jmp ready
;******************t*********tt****t**t*************
;* %*
;* utility subroutines for console i/o *
o % . s
;*******r*******************************t***********
getchr:

;read next console character to a

mvi ¢,coninp

call bdos

ret
;
gutchr:

;write character from a to console

mvi c,conout

mov e,a ;character to send

call bdos ;send character

ret
;
crlf:

;send carriage return line feed

mvi a,cr ;jcarriage return

call putchr

mvi a,lf :line feed

call putchr

ret
;
print: _

;print the buffer addressed by de until §

push 4

call crlf

pop d snew line

mvi c,pstring

call bdos ;porint the string

ret
H
readcom:

24

;read the next command line to the conbuf

gdle5 116b4 lxi d,prompt

fle8 cddad call print ; command?

dleb deda mvi ¢c,rstring

#led 117ad 1xi d,conbuf

@1f9 cd4es54d call bdos sread command line
: command line is present, scan it

W1£3 21000 1xi h,? ;start with 06904

61f6 117co 1xi d,conlin;command line

B1£9 la readc: ldax d snext command character

41lfa 13 inx d 1t0 next command position

D1fb b7 ora a scannot be end of command

Jdlfc c8 rz
H not zero, numeric?

B1£4 46349 sui ‘g

01ff feda cpi 19 scarry if numeric

9281 421349 jnc endrd
: add-in next digit

8284 29 dad h 1%2

p285 44 mov c,l

#2006 44 mov b,h ;bc = value * 2

3287 29 dad h 1 %4

2268 29 dad h 1 *8 |

8299 99 . dad b 1%2 + *§ = *]¢g

g929a 85 adad 1 ;+digit

4290 6T mov l,a

928c 32£949 jne readc ;:for another char

J28f 24 inr h ;overflow

921y ¢3£99 jmp readc ;for another char
endrd:
: end of read, restore value in a

@213 c634 adi ‘g’ ; command

3215 febdl coi -5 ;translate case?

4217 a3 rc
H lower case, mask lower case bits

9218 e65f ani 16151111b

921a c¢9 ret
;******t*********t**************r*****t*************
'R ®
i* string data area for console messages *
« % ’ x*
;*******t*ﬁ******************************x**********
padver:

d21lb 536£73 db ‘sorry, you need c¢p/m version 2S°*
nospace: .

g23a 4e6£29 db 'no directory space$'
datmsg:

2244 547974 db ‘type data: §°
errmsg: ,

9259 457272 db ‘error, try again.$'
prompt: '

3260 4e6578 db ‘next command? $°'

’

(All Information Contained Herein is Proprietary to Digital Research.)

25

;***********************************t**-*************

o« *
’

*

+* fixed and variable data area *

« R
’

827a 21 conbuf: db

a27b consiz: ds

d27c conlin: ds

3621 = conlen equ
’

d29¢c ds
stack:

d2bc¢ end

(All Information Contained Herein is Proprietary to Digital Research.)

*

;***t***

conlen ;length of console buffer

1 sresulting size after read
32 :length 32 buffer

$=-consiz

32 116 level stack

26

AT

