
c;-/m 2
USERS GUIDE FOR 104 OWNERS

Ci'/m 2
USERS GUIDE FOR 104 OWNERS

CP/K USER'S GUIDE

lOR CP/K 1.4 OWNERS

CopyriBht (e) 1979
DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights' reserve<i.
No part of this pUblication may be reproduced, t,.ansmitte<i.
tnnscribe<i, store<i in a retrieval system, or translated into
an" langua~ or computer language. in any form or by any
means, electronic, mechanical. magnetic, optical. ehemicaJ,
manual or otherwise. 'Nithout the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove.
(;aJifornia 93950.

Digital Research makes no representations or warT'anties 'Nith
respect to the contents hereof and specif1calJV disclaims any
implie<iwarranties of merchantability 01" fitness for any parti-
<:ular ·purpose.. Further, Digital Research reserves the ris;ht
to revise this publieation and to make changes from time to
time in the content hereof 'Nithout obligation of Di~tal
Research to notify any person of such revision or ehanges.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

C09yright (c) 1979
Digital Researcn, ao~ 579
Pacific Grove, California

• • • 10

. 11

CP/M 2.~ is a high-performance single-console operating system
Wh icn uS'es table dr iven techniques to allow field reconf iguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
orevious versions of release 1. Features of CP/~ 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reaCh the full drive size
witn the capaoility to expand to thirty-two megabytes in future
releases.' The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated by user numoers, with facilities for file copy operations
trom one user area to another. ~owerful relative-record random access
functions are present in CP/M 2.0 which provide direct access to any
of the 05536 records of an eight megabyte file.

All disk-deoendent oortions of CP/M 2.0 are olaced into a
BIOS-resident "disk parameter block" which is ei ther hand coded or
produced automatically using the disk definition macro library

'provided with CP/M 2.~. The end user need only specify the maXlmum
numoer of active diskS, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. 'rne macros use
this information to generate the appropriate taoles and table
reterences for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
which are multiples of tne fundamental 128 byte data unit, and the
system alteration manual includes general-purpose suoroutines wnich
use the this deblocking information to take advantage of larger sector
sizes. Use of these SUbroutines, together with the table driven data
access algoritnms, make CP/M 2.0 trUly a universal data management
system.

~ile expansion is ac~ieved by providing up to 512 logical tile
extents, where eacn logical extent contains 16K bytes of data. CP/M
2.0 is structured, nowever, so that as mucn as l28K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. using
CP/i1's unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
searcn time. Seauential file access is uoward compatible from earlier
versions to· the full ,eight megaoytes, While random. access
compatibility stops at 51~K byte fil~s. Due to CP/M 2.0's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have imorovements which
corres9Qnd to the enhanced file system. STAT and PIP" both account for
file attributes and user areas, while the CCP provides a "login"

function to change from one user area to anotner. ~ne CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-co9Y devices in its enhanced line editing
functions.

The sections below point out the inaividual differences between
CP/M 1.4 and CP/M 2.0: witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.

Console line processing takes CRT-type devices
three new control characters, shown with an asterisk
(the symbol "ctl" below indicates tnat the
simultaneously depressed):

rub/del
ctl-C
ctl-C:
ctl-a
ctl-J
ctl-M
ctl-R
ctl-lJ
ctl-2{

into account with
in the list below

control key is

removes and echoes last character
reboot when at beginning of line
physical end of line
oackspace one cnaracter position·
(line feed) terminates current input·
(carriage return) terminates in9ut
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In 9articular, note that ctl-H produces the proper bacKspace overwrite
function (ctl-H can be changed internally to another cnaracter, such
as delete, through a simple single byte change). Furtner, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-O, ctl-R, or
ctl-X command.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. 'l'he altered DIR format is
self-explanatory, while the USER command takes the form:

where n is an integer value in the range e to 15. Upon cold start,
the operator is automatically "logged" into user area number ~, which
is compatible with standard CP/M 1.4 directories. Tne operator may
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user ~

Due to the fact that user numoers now tag individual directory
entries, the eRA *.* command has a different effect. In version 1.4,
this command can oe used to erase a directory wnicn has "garbage"
information, gerhaps resulting from use of a diSKette under another
operating system (heaven forbid!). In 2.0, however, the ERA -.-
command affects only the current user numoer. ThUS, it is necessary
to write a simple utility to erase a nonsense disk (the 9rogr~n simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

~he STA~ ?rogram has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. 'rhe command:

9roduces a summary of the availaole status commands, resulting in the
output:

'rem'OR/O 0isK: d::lR/O
Set' Indicator: d:filename.typ SR/O $R/~ $SYS $OIR
Disk Status OSK: d:DSK:
User Status U5R:
Iobyte Assign:
(list of possible assignments)

whicn gives an instant summary of the possible STA~ commands. The
command form:

wnere "d:" is an optional
unamoiguous or ambiguous
forma t:

dr ive name, and "filename. ty?" is an
file name, produces the output display

Size
48
55

65536

Rec3
48
55

l2B

3ytes
6k

12K
2k

Ext Acc
1 R/O A:ED.COM
1 R/O (A:PIP.COM)
2 R/w A:X.DAT

where tne $S oarameter causes the "Size" field to be dis~layed
(without the $5, the Size field is skipped, but the remaining fields
are displayed). The Size field lists the virtual file size in
records, while the "Recs" field sums the numoer of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration tL~e, and thus the number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent (each of these
extents, however, :nay contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file~ since there can be up to l28K bytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

The "Acc" field gives the R/O or R/W access mode, which is
changed using the commands shown below. Similarly, the parentheses

shown around the PIP. COM file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands. 'rhe
four command forms

s'rAT d:filename. typ :;>R/O
STAT d:filename.tY9 $R/w
S'l'A'l'd:filename.typ $SYS
S·rAT d: filename. ty? $DIR

set or reset various permanent file indicators. The R/O indicator
places the file (or set of files) in a read-only status until changed
oy a subsequent STAT command. The R/O status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/~ indicator places the file in a
oermanent read/wr ite status.· 'rhe S'iS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The "filename.tyr;>"may be ambiguous or unambiguous, but in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" is
optional.

When a file is marked R/O, subsequent attem?ts to erase or write
into the file result in a terminal BDOS message

The 600S then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

lists the drive characteristics of the disk named by "d:'·which is in
tne range A:, B:, ••• , P:. The drive characteristics are listed in
tne forma t:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 8yte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks
where "a:" is the selected drive, followed by the total record
capacity (65536 is an 8 megaoyte drive), followed by the total
capacity listed in Kilooytes. The directory size is listed next,
followed by the "checkedd entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
witnout an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

128K in the example aoove). 'rhe number of records per olock shows the
oasic allocation· size (in the example, 128 records/olock times 128
bytes per record, or 16K oytes per block). The listing is then
followed by the number of physical sectors oer track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to ski9 lower-numbered dis~ areas allocated to other
logical disks. The command form

9roduces a drive characteristics taole for all' currently active
drives. The final STAT command form is

which producas a list of the user numbers whicn have files on the
currently addressed disk. ~he display format is:

Active User : 0
Active ~iles: ~ I 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user numoer is ~ (default at cold start), witn three user numbers
whicn have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

PIP provides three new functions whicn account tor the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate tile
names. The commanas are:

Gn Get File from User number n
(n in the range d'- 15)

W· write over R/O files without
console interrogation

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
tne PIP stat~~ent

reads file X.Y from user number 2 into user area number 4. The
command

copies all of the, tiles from the A drive directory for user number 2
into the A drive directory of the currently loggea user number. Note
tnat to ensure file security, one cannot copy files into a different
area than the one whiCh is currently addressed by the USER command.

Note also that the PIP progra~ itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves ?IP
from one user area to the next.

USER ~
DOT PIP. COM
(note PIP size
G0
USER 3
SAVE s PIP. COfel

login user r3
load PXP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under DOT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/O status. If attem?t is made to overwrite a R/O
file, the prompt

is issued. If the operator responds with the character "y" then the
file is overwritten. Otnerwise, the response

is issued, the file transfer is skipoped, and PIP continues with the
next operation in sequence. In order"to avoid the 9rOm?t and response
in the case of a/o file overwrite, the command line can include the W
parameter, as shown oelow

which c09ies all non-system files to· the A drive from the 8 drive, and
overwrites any a/o files in the process. If the operation involves
several concatenated files, the ~ parameter need only be included with
the last file in the list, as shown in the following example

Piles with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

for examole, reads the ED. COM tile from the B drive, even if it has
been marked as a R/O and system file. The system file attributes are
copied, if present.

It should oe noted that downward cOffi9atibility with previous
versions of CP/M is only maintained if the file does not exceed one
~egaoyte, no file attributes are set, and the file is created by user
0.

6. ED ENH~~CEMENTS.
'rneCP/M standard orogra~ editor ?rovides several new facilities

in the 2.a release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the "v·
(Verify Line) option set as an initial value. ~he operator can, of
course, disable line numoering by typing the ~-v· command. If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix in tne ~O user's guide, where the ·v" command is
described.

EO also takes file attributes into account.
attempts to edit a read/only file, the message

appears at the console. The file can oe loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses S~A~ to change the file attribute to R/W. If
the edited file has the ·system'·attribute set, the message

is displayed at the console, and the edit session is aborted. Again,
the STA~ program can be used to change the system attribute, if
desired.

~inally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor. The xsue command is included as the first line of your
submit file and, when executed, 3elf-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DOT
I$l.HEX
RGa
SAVE 1 $2.COM

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DOT which is sent the command lines
"IX.HEX" "R" and "Ga" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the cepe

The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. SUbsequent
submit command streams do not re~uire the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after OESPOOL,
if both are to run simultaneously.

CP/M 2.0 system calls take 9lace in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register oair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
uoon return in all cases). A list of CP/M 2.a calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range runction numbers.

a
1
2
3
4
5
6"
7
a
~

10*
11
12*
13
14
15*
16
17"
18*

Systal1lReset
Console Inout
Console Output
Reader Input
Puncn Output
List Out9ut
Direct Console I/O
Get I/O ayte
Set I/O Byte
Print String
Read Console Suffer
Get Console Status
Return Version Number
Reset DisK System
Select Disk
O"gen File
Close File
Search for First
Search for Next

19*
20
21
22*
23*
24*
25
26
27
28*
29*
30*
31*
32"
33*
34*
35*
36*

Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Oisk
Set DMA Address
Get Addr (Alloc)
write Protect Disk
Get Addr(R/O Vector)
Set File Attrioutes
Get Addr(Disk Parms)
Set/Get User Code
Read Random
~'1rite Random
Comoute File Size
Set Random Record

(Functions 2~, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the aDOS console I/O
operations. irograms whicn currently perform direct I/O through the
3IOS should be changed to use direct I/O under 8DOS so that they can
be fully supported under future releases of MP/M and CP/M.

Opon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
cnaracter. If the inout value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in e is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the lef~~ost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin) • This new convention makes operator data input and line
correction more legible.

Function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift
head" function whicn returned HL=~0~0 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = ~0 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for example, you can
write a~plication programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file ooerations described below, DE addresses a file
control olock (FCB). ~urther, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatioility is required.
~he file Control alock (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control olock
normally located at 005CH can be used for random access files, since
oytes 007bri, 007EH, and 007FH are available for this purpose. For
notational purposes, the FCa format is shown with the following
fields:

arlve code (0 - 16)o => use default drive for file
1 ~> auto disk select drive A,
2 => auto disk select drive S,

fl •••f8 contain the file name in ASCII
u?per case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these Dositions,
tIt ~ 1 => Read/Only file,
t2' = 1 => SYS'file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use'
s2 reserved for internal system use, set

to zero on call to OPEN, MAKE, SEARCH
rc record count for extent "ex,"

takes on values from 0 - 128
d0 •••dnfil1ed-in by CP/M, reserved for

system use
cr current record to read or write in

a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range ~-65535, with overflow to r2,
r0,rl constitute a l6-bit value with
low byte r0, and high byte rl

'rne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

cnecks to assure compliance. Thus, the byte is cleared to ensure
upwa.rd compatioility with the latest version, where it is required.

search First scans the directory for a match with· the file given
by the Fca addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is present. In the case
tnat the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A W 32 (i.e., rotate the A register left 5 oits, or ADD A
five times). Altnough not normally required for application progra~s,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application ?rogr~~s, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

The SearCh Next function is similar to the Searcn First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items matCh.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous-
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Ne~t
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

The Make File ooeration is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the 3DOS.

The ~ctions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rena~e could not be found),
otnerwise a value in the range ~ to 3 is returned.

~he login vector value returned by CP/M 2.e is a l6-bit value in
aL, where the least significant bit of L corresponds to the first
drive A, and the nigh order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attem9t to write to

before the next cold or warm start operation produces the

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant oit corresponds to drive A,
while the most significant bit corresponds to drive P. 'rhe R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M whicn detect cnanged disks.

Tne Set File Attributes function allows programmatic
manipulation of permanent indicators attached to tiles. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 3e searches for a

~atcn, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f41 are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators £5' tnrough fa' and t3' are reserved for future system
eXT;>ansion.

',rheaddress of the aIOS resident disk 1?arameter block is
returned in HL as a result of tnis function call. This address can be
used for either of two pur1?oses. First, the disk parameter values can
oe extracted for display and space·computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment cnanges, if required. Normally, application
programs will not require this facility.

An application program can change or interrogate the currently
active user number oy calling function 32. If register E = FF
nexaaecLual, then tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

~he Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
olace at a particular record number, selected by the 24-bit value
constructed" from the three byte field following the FCa (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 oits is stored with least· significant oyte first (r0), middle
oyte next (rl), and high byte last (r2). CP/M release 2.a does not
reference byte r2, except in computing the size of a file (function
35).' Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to process a file uSlng
random access, the base extent (extent e) must first be opened.
Although the base extent mayor may not contain any allocated "data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR reauests. The selected record number is then stored
into the random record field (r0,rl), and the BOOS is called to read
the record. Upon return from the call, register A either contains an

error code, as listed below, or the ~alue 00 indicating the operation
was successful. In the latter case, the current DMA address contains
tne randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Tnus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can Oe
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
~4 seek to unwritten extent
05 (not returned in read mode)
06 seek ~ast physical end of disk

error code ~l and ~4 occur when a random read operation accesses a
data olock whicn has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, out can be cleared
by sL~ply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

The write Random 0geration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rand~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to corresoond to the random record which is
being written. Again, sequential- read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.~.

°rhe error codes returned by a random write are identical to the
random read operation with the addition of error code ~5, which
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.
when computing the size of a file, the DE register pair

addresses an FCB in random mode format (bytes r0, rl, and r2 are
~resent). The PCB contains an unambiguous file name whicn is used in
the directory scan. Opon return, the random record bytes contain the
"virtual~ file size which is, in effect, the record address of' the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is al, then the file contains the
maximum record count 65536 in version 2.a. Otherwise, bytes ra and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be apgended to the end of an existing file by sim~ly
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode an~ :holes~ exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data fs actually allocated.

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

aDos to automatically
which has been read or
The function 'can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record 90sition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

~ second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but com~lete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RA~OOM.COM, the CCP level
command:

starts the test program. The program looks for a file by the name
X.OAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

and is followed by operator input, terminated by a carriage return.
The input commands take the form

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple com~~nd characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
tne RMJDOM program issues the prompt

tYl;>edata:
The operator then responds by typing up to 127 Characters, followed by
a carr'iage return. RANDOM then writes the character string into the
X.OAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.OAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label Mready" where the individual commands are interpreted. The
default file control .block at 005CH and the default buffer at ~080H
are used in all disk operations. 'rhe utility subroutines then follow, ./

which contain the
This particular
processing, and
developmen t•

?rincipal input line processor,
program shows the elements of
can be used as the basis for

"readc."
access

J;)rogram

"001 =
0002 a

0009 a
000a a

ihHJc a

a00f =-
iiJdl~ =-
0016 =
J ~21 =
0022 =
d~5c =
0iJ7d =
iH17f =
00~hJ =

0'hld =
030a =

0H13 0e0c
iltl145cd050
0108 fe20
kili:iad2l6fi
"10d lllb0
011'1 cddaVJ.
0113 c3kHHJ

called
random
further

•*-***********************.*********************.***,
.* *,
~* sample random access ?rogram for cp/m 2.0 *.* *,
.***,

.,

.**********************.****************************,

.*,
~* load SP, set-up file for random access
. *,
.*-*****************-******.******* ••• *.*.*.*** ••***,

reboot
bdos
conin?
conout
T;>string
rstring
version
openf
closef .
makef
reaar
writer
~
fce
ranrec
ranovf
buff

equ
equ

equ
equ
equ
equ
equ
equ
egu
equ
equ
ecru

equ
equ
equ
equ

equ
egu

version
mvi
call
cpi
jnc
bad
lxi
call
jm"9

l00h
0000h
001cl5h

1
2
9
10
12
15
16
22
33
34
005ch
fcb+33
fcb+35
0ia80h

0dh
!dah

~system reboot
;bdos entry point
;console input function
~console output function
~print string until '$'
;read console buffer
~return version number
~file open function
~close function
;make file function
;read random
;write random
;default file control bloCk
;random record oosition
;high order (overflow) byte
~buffer address
;carriage return
;line feed

2.0?
c,version
bdos
2iJh
versok

version, message
d, badver
orint
reboot

0116 0e0f mvi c,o;>enf 10pen default fcb
fillS IlSc0 1xi d, fcb
011b cdBS0 call bdos
a11e 3c inr a 1err 255 becomes zero
icJ11fc237k3 jnz ready

·, cannot open file, so create it
0122 .,e16 mvi c,makef
0124 11Sc0 1xi d,fcb
0127 cdBS0 call bdos
012a 3c inr a 1err 255 becomes zero
~)l2b c2370 jnz ready·,· cannot create file, directory full,
~12e 113a0 lxi d,nospace
kl131 cddata call ;>rint
0134 c3000 jmT:' reboot 1back to ccp·,.***,

.*,
· *,
• *,.***,
·,ready:
· file is ready for processing,

0137 cdeSIiJ call readcom 1read next command
013a 227d3 snld ranrec 1store input record#
a13d 217f0 lxi h,ranovf
0140 3630 mvi m,0 1clear high byte if set
a142 fe51 cpi •Q' 1qui t?
0144 c2S60 jnz notq·1 quit process ing , close file
0147 0eH; mvi c,closef
0149 115c0 1xi d,fce
014c cdOS0 call bdos
014f 3c inr a 1err 255 becomes "~150 cab91i! jz error 7 er ror message, retry
0153 c3000 jmp reboot ;back to ccp

·,.***,
.* *,
1* end of quit command, process write *
.• *,
;***
notq:

015b 114d0
a15e cddaO

not the quit command, random write?
cpi ·W·
jnz notw
this is a random write, fill buffer until cr
lxi d, da tmsg
call print ;data prompt

0156 feS 7
0158 c2890

mvi
lxi
~read
9usn
~ush
call
pop
pop
cp.i
jz
not
mov
inx
dcr
jnz

c,127 ~uo to 127 characters
h,buff ~destination

next character to buff
b ~save counter
h ~next destination
getchr ~cnaracter to a
h ~restore counter
b ~restore next to fill
cr ~end of line?
erlooo

end, store character
m,a
h
c
rloop

~next to fill
~counter goes down
~end of ouffer?

a161 0e7f
0163 21800
id166 cS
0167 eS
0168 cdc20
vH60 e1
!cH6c c1
016d fe0d
i316f ca78iil
0172 77
0173 23
~17 4 ~d
0175 c2660

end of read loop, store ~YJ
mvi m,0
write the record to selected record number

iiH7a ~e22 mvi c,wr iter
0l7c l1Sctl lxi d,fcb
017f cd0StO call bdos
t01d2 07 ora a ~error code zero?
VJliD c2b9a jnz error ~message if not
'd 1\:16 c337J jmp ready ;£or another record

·,•••• ***.***.*****.********************.********* ••**,
· *,
~* end of write command, ~rocess read
· *I.*******.***.*******.***********.** ••• *.*********.**I

notw:
not a write command, read record?

~1~9 fe52 c~i oR·
e18b c2b90 jnz error ~skip if not

read random record
;H8e ae21 mvi c, readr
0190 11Sc0 lxi d,fcb
kJ 193 cd~50 call bdos
0196 b7 ora a ~return code 0':1?
J197 c2b9~ jnz error

·I read was successful, write to console
0l9a cdc£0 call cr1f ~new line
019d ideB0 mvi c,128 ~max 1213 characters
kJ 19f 2180113 lxi h,buff ;next to get

wloop:
01a2 7e mov a,m ;next character
YJla3 23 inx h ;next to get
0la4 e67f ani 7fh ~m?lsk ~arity
~Ha6 ca370 jz ready ;for another command if 113113
0la9 cS push b ~save counter
01aa eS push h ~save next to get

01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
1Il1b6c3370

01b9 11590
0lbc cdda0
0lb£ c3370

0lc2 0e0l
;a lc4 cd050
0lc7 c9

01c8 0e~2
0lca 5f
13lcb cd05feJ
0lce c9

vJlcf
0ldl
0ld4
0ld6
~ld9

3e0d
cdc80
3e0a
cdc80
c9

01da d5
0ldo cdcf0
0lde dl
010£ 0e09
0lel cd05a
iOle4 c9

cpi
cnc
90P
pop
dcr
jnz
jmp

putcnr
h
b
c
wloop
ready

:graphic?
:skip output if not

·,.***,
.* *,
:* end of read command, all errors end-uo here
· *,.***,

d,errmsg
print
ready

:
.***,
.* *,
:* utility subroutines for console i/o *
.* *,
.***,

next console character to a
c,coninp
bdos

character from a to console
c,conout
e,a :character to send
bdos :send character

carr iage
a,cr
putchr
a,lf
putchr

return line feed
:car riage return

lxi
call
jmp

:read
mvi
call
ret

:write
mvi
mov
call
ret

:
crlf:

:send
mvi
call
mvi
call
ret

·,pr int:
:print
push
call
pop
mvi
call
ret

the buffer addressed by de until $
d
crlf
d :new line
c,pstring
bdos :print the string

.,

.*******************************~*****~*************,

.* *,
~* string data area for console messages
. *,
.**~**********,
oadver:

536f79 db
nosl;>ace:

4e6f29 db
da tmsg:

547970
errmsg:

457272
prompt:

4e657e

91e5 l16b0
01eS cddal/J
01eb ~e0a
01ed 117a'"
Vllf0 cd050
01f3 21000
01f6 117c0
01f9 la readc:
iflfa 13
01£b b7
01fc c8
alfd d630
01f f feVla
k) un d213iJ
0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
02~a 85
~2rJO bt
020c d2f90
<J2ilf 24
021d c3f90

0213 c63ri
0215 fe61
~217 d8
0218 e65f
021a c9

~read
Lxi
call
mvi
lxi
call
command
lxi
lxi
Idax
inx
ora
rz
not
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

end
adi
coi
rc
lower
ani
ret

the next command line to the conbuf
d ,promp,t
l;>rint ~command?
c,rstring
d ,conbuf
bdos ;read command line
line is present, scan it
h,0 ;start with 0000
d,conlin1command line
d ;next command cnaracter
d 1to next command position
a 1cannot be end of command

zero, numeric?
'0 '
10
endrd

next digit
h 1*2
c,l
b,h
h
h
b
1
1,a
readc
h
readc

;oc =- value * 2
1*4
;*8
1*2 + *8 = *10
1+digit
;for another char
;overflow
;for another char

of read, restore value in a
'0' ;command
'a' 1translate case?

case, mask lower case bits
101$1111b

027a 21
027b
027c
iiHl21 =

.***,

.* *,
:* fixed and variable data area *
.* *,
.***,
conbuf: db
consiz: ds
conlin: ds
conlen equ

conlen :length of
1 :resulting
32 :length 32
$-consiz

console buffer
size after read
buffer

