
RApid Interactive Debugger

REFERmCE MANUAL

Revisioo A
May 30, 1980

Copyright 1980 by Vector Graphic Inc.

All rights reserved.

Disclai.n'er
Vector Graphic makes no representations or warranties with respect to the
contents oe this manual itself, whether or not the product it describes is
covered by a warranty or repair agreement. Further, Vector Graphic reserves
the right to revise this publication and to makeenanges from time to time in
the content hereof withoot obligatioo of Vector Graphic to notify aI¥ person of
such revision or enanges, except whenan agreement to the contrary exists.

Revisions
The revisioo letter suen as A or B changes if the MANUAL has been improvedrot
the POOIXJC'1'itself has not been significantly nDdified. The date and revision
on the Title Page corresponds to that of the page 100Strecently revised. When
the product itself is modified significantly, the product will get a new
revision number, as shown on the manual's title page, and the manualwill
revert to revision A, as if it were treating a brand newproduct. FACH MANUAL
SEDJID CNIN BEUSEDwrm '!BEPROOOCl' IDENI'IFIEDCN '!BETITLEPllGE.

This manual is intended for ASSa-mLY
I.ANGU1llGE programners. It assumesan in
~Pth knowledgeof the Z80CPOam the
ector Graphic carpIter, as well as

familiarity with the CP/Mc.perating system.

This manualwill describe the features
and ocmnandsof Vector GraphicIs RAID-
Rapid Interactive Deooqger- an advanced
full-screen simulator/debugger.
As a reference manual, it is l'¥>t intemed to
be a training manualfor novice ~rClI(I(ers.

Chapter 1 reviews the inplications of
RAIDin the oontext of the Vector e::atp.1ter
system and of the CP/Mc.perating system.
Chapter 2 discusses the structure of the
deb1gger in general. Chapter 3 gives
each of the carrnands offered by RAID,
listing themalphabetically.

!£lading RAID

RAID[<d:filename>.HEX]

!£lad file operations

L <d:filename.filetype>
L <d:filename>.HEX

P <address>
G <address>

Q
<ESe>
I

XS [<rate>]

XF [<rate>]

XP [<rate>]

XN[<address> <address>•••]

XD[<address> <address>•••]'

XI <hex instruction>
maximJm.)

!£ladRAIDfor screen at roOOHand load
<filename> as in Disk ~rationsbeICM.

IDad file fran disk at OIOOH.
IDad HEXfile fran disk at its ownload

address (not necessarily OIOOH)and
convert to exeOltable fonnat.

set PC to <address>.
Go to <address> and exeOlte (RAIDnot in

control).
Quit RAID,return to calling system.
Go to. Extended SystemsMalitor exewtive.
Initialize screen· (clear off extraneoos

material).

Exea1te SICMand refresh entire screen.
Higher <rate> slows exeOltion speed.

ExeOlte fast and refresh entire screen.
Higher <rate> speeds exeOltion.

Exea1te fast and refresh partially (only
registers and stack).
Higher <rate> speeds exewtion.

ExeOlte with refresh only at given addresses
(4 max).

ExeOlte direct (no sinulation), with ham
breakpoints at given addresses (max6).

ExeOlte <hex instruction> iImediately (4 bytes

Single step: exeOlte instruction at PC with
full screen refresh.

ExeOlte direct and return

Halts during simulation

HP<address>
HO <opcode>
HR<register or pair> <value>

ED<address> <byte> <byte>
EA<address> <char> <char>
ER<register or pair> <byte

or word>

55 <address>
SC
SP
SH <2 byte word>

F <start address> <end
address> <byte>

Halt whenPC= <address>.
Halt whenexewted qx:ode = <q;>cOde>.
Halt when<register> or <register pair> =

<value>.
Halt whencontents of <address> = <byte>.

J:)Jnp ASCII, beginning at <address> in
nenDrydisplay area. <line> [-] limits
applicable portiOn of display area.

n.mp hex, as described for M.

Put <byte>s in netDry <address>.
Put ASCII characters in nenDry<address>.
Put <byte or word>in <register or register

pair>.

set start of stade displayed on sa:een.
Clear extranea.tS material fran stack display.
Pop word (2 bytes) off stack.
Push wordonto stack.

Fills woDdn; nenDry fran the start address to
the end address with the byte specified. '

cannand F flags**** F' flags X stack
reg. pter.

instruction area: A * A' *
2 instructions just exeOlted, then B contents B' contents Y stack
current instruction, then the C of regs. C' of regs. reg.
4 follO'tdrg instructions D and of D' and of •

E J'IleIlI:)r:yE' J'IleIlI:)r:y I •
format of each line is: H pointed H' pointed reg. •
instr ASCII address code cprands L to L' to (**) •

•
halt area: •

dunp area: O:opcode halt •
duIrpof 6 different blocks of J'IleIlI:)t:y P:instr. cause
Each line can be either ASCII or Hexdump. M:menDt:y •

•
refresh area: •

Rf: refresh •
addrs's ***

* contents of the A and A' registers include the ASCII equivalent
** (di) neans intenupts are disabled. (ei) meansthey are enabled.

*** address of current refresh is highlighted.
**** flag syntx:>l ~rs whenflag is set.

SUIl1tIa.ryof RAIDCcmrands
RAIDDisplay
Table of Contents

1.1 '!be value of RAID
1.2 '!be ran:Je of RAID
1.3 Protocol used in this manual

1-1
1-31-4

2.1 LoadingRAID
2.2 A RAIDsession
2.3 '!be RAIDdisplay
2.4 camand area
2.5 Instruction area
2.6 DJmparea
2.7 Flags and registers
2.8 Stack p:>inter and stack
2.9 Halt area
2.10 Refresh area

2-1
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11

Vector Graphic's meJ1Dt:ymappedsystems, such as the SystemS, offer powerful
capabilities for the assemblylanguageprogranmer,capabilities not available
on other small general purpose computers. SCOPE,Vector's sophisticated
screen-oriented programeditor is a lD"liquelyefficient tool. with the addition
of RAID- the Rapid Interactive Debugger- Vector's rnenDrymappedsystems reach
a level of sophistication for assembly language software development that
rivals true micrcprocessor develq;nent systems.

The programto be deblgged is called the lItarget programll• RAIDcan deb.1ga
target consisting of arrj valid Z-80 operations. The use of AAIDallows the
progranmerto execute the target program instruction-by-instruction, while
viewing the effect on the CPUand memory. The status of the CPUand
significant parts of memoryare displayed constantly on the screen. This
process is called lIsimulation"becauseRAIDtakes each instructioo out of the
target programin order, executes it, and then displays the result of the
operation in the status display on the screen. RAIDis actually in control of
the system, b.1t the user ally sees at the screen whatwouldbe happenir¥Jif the
target program were running by itself in the system. During sinlllation The
presence of RAIDin the system is transparent to the c::p!rator, except for the
periodic refreshil'XJof the status display 00 the screen.

SiJIulati.a1 is the heart of RAID. All RAIDoperatioos revolve arcund the use
of simulation to debug progams. By seeing the state of the CPOam menor:y
after each instructioo is executed, the pcograllllercan find the instruction or
routine which causes unexpected effects. There are also RAIDccmnands for
chan;Jil'XJsmall sections of program,memry in general, or CPUregisters, in
order to determine the effect, b.1t simulatioo is the mainpurpose for using
RAID.

The fast meJ1Dry-mappedscreen used in Vector Graphic systemsenables RAID's
unique fom of fUlI-screen status display. After the execution of each target
instruction is simulated, the current state of all registers, alternate
register, flags, alternate flags, index registers, the stack, the stack
pointer, six selectable blocks of mE!!IlDt:y,the last two instructions siIlulated,
the instruction about to be sinulated, and the four following. instructions.
The user can re-define the location of each of the six selected blocks of
meIlDryat any time, and can also cause each of themto appear in either hex or
ASCII representation. The portion of the stack displayed can also be
selected.

Further, instructions are disassembledas they are displayed, using Vector's
8080-superset Z-80DnE!llDl1ics.'!be ASCIIequivalent of each opcodeand operand
also appears, in case the codes in fact represent ASCIIcharacters.

Thenest significant aspect of this simulation process is that the entirety
of this information is refreshed on the screen instantaneou~ (unless
supressed) after eadl instruction Is simulated exeOltion. Mostof screen is
used, except for the lower 6 lines whichare resenTedfor the target programto
display video nessages.

This use of the full screen for systemstatus can only be ac~lished with
meItV:)ry-mappedvideo, a Vector Graphic hallmark. It is a powerfuldeparture
from the single line status display of development systems using serial
terminals. Since the status of IOOStimportant aspects of the systemare on the
screen all the time, the user does not have to repeatedly request status on
various aspects. This significantly reduces the development time of new
software.

The user is given a nJJtt)erof waysto simulate exewtion of a programunder
control of RAID:single stepping, slow (one instruction each 1/2 second), fast
with full status display refresh, faster with partial status refresh, and
faster yet with status refresh occuring only whenprogram simulation passes
selected addresses in menDJ:Y.Aprogramcan also be executed "directly", with
no sinulation, as if RAIDwere not present. The user can halt the simulated
execution at preselected points. Sudl a halt can take place whenthe program
passes a selected address, whena selected cpcode is exeOlted, whena selected
register contains a certain value, or whena selected menDJ:Ylocation contains
a certain byte. These features are useful during the debugging process,
particularly when it is necessaJ:Yto exeOlte rapidly during certain parts. of
the target program,but to slow downor stop at certain places or under certain
conditions in order to isolate an event.

As further aides to deblggiBJ, the user can simulate execution of single
instructions (not part of a pl:Cgram)to view the affect, can changethe value
of any location in nenDJ:Yor of any register wj.thout writing a program to do
so, and can pop words off of or push wordsonto the stack without writing a
program.

The assenbly laBJuageprograntnerwill find RAIDan indispensible tool which
dramatically reduces the deblggiBJeffort, particularly in <:X'Il'Plrisonwith the
less 5q)histicated 8080deblggers already available for Vector Graphicsystems.
DeblggiBJnore quickly Ileansa programavailable at an earlier date. In this
way RAIDsignificantly increases the value of software written on Vector
Graphic systems.

.2 '!he range of RAID .

Uponentering RAID, the user is asked whereRAIDwill be located in this
session. RAIDcan be located anywherein rrencryhaving space for a 6Kprogram.

RAIDdoes not reserve for itself the use of any registers or flags, nor the
systemscratch pad area. 'Iherefore, the operation of llDSt target programs is
not generally limited by the presence of RAIDin the system.

A1 thoughRAIDis loaded under the CP,IM operating system, and though it has
facili ties for loading a target program from a CP1M compatible disk, RAID
operates imepemently of any operatin;] systemduring the simulation process.
Once the user has succeeded in loading both RAIDand a target programinto
systemrrenory, RAIDcan be used to del:ugprograrrs runnin;] in conjunction with
~ operatiR] system.

'!he limitations of RAIDare as follows:

It cannot be used to sinulate real-time software such as disk drivers and
communications programs. However, RAIDcan simulate those parts of such
programswhichare not time-depement, and can execute directly (no s:iltu!ation)
those parts which~ time dependent.

Interrupts cannot be simulated because an interrupt will interrupt RAIDas
well as the target program. However,the interrupt seNice l:O.ltinecan usually
be sinulated if it is entered withoot using a real interrupt.

RAIDcannot usually jUI'I'P£ran simulation node, to direct execution, then
back to sinulation, if during the di1::ectexecutim portion the stack pointer is
movednore than a few locations. This combination of events will cause
undeSirable effects.

The Extended Systems Monitor finnware included in all Vector syst.enBnust
not be removed or replaced, unless the replacement has exactly the same
keyboard and video I/O routines. RAIDdoes its console I/O through the
Monitor.

Underlined material is material yoo have to type, except where underlining
is used for ert{)hasis. '!be use will be clear fran the context.

Material enclosed in angle brackets, such as <file name>,describes what is
to be typed rather than giving it literally. AnglebraCkets sanetimes enclose
the nameof a key to be depressed, such as <TAB>.

Square brackets, sum as (N], indicate that the user can q;>tionally type or
not type the enclosed material.

2.1 LoadingRAID

The disk on which RAIDcomesoontains the programwhich is designed to be
used in 56Ksystems ally whosescreen IIBtDt:yis located at ~dress FOOOH.

To load RAID,first get into the CP,MCCI11Ilal'd executive, as indicated by the
A>pranpt. Load the RAIDdiskette in drive A and type:

A>RAID[<d:filename.filetype>l <REIURN>

'!be filenane is ~tional. If typed, it can include a drive designator and a
filetype extension, usin;J the standard CP/Mformat. It causes the selected
unambiguous file to be loaded from disk into memory. IMPORTANT:if the
filetype is~, then RAIDwill first convert the file into binary format, and
then load it at the load address of the file specified when the file was
assenbled. 'Ibis enables you to assemble and debug programs that run at any
location, rather than OlOOHas is normal for CP,M. If the filetype is anything
else, the RAIDwill asslDDethe file is already in binat:y format (having passed
through the CP,MLOADprocedure) and will load it at OlOOH.

After you depress RmUBN,you will see the following 00 the screen•••

3000 to 8000for a 48Ksystem

3000 to AOOOfor a 56Ksystem

Deb1gMcd1leRelocatioo Address:

Type 4 digits following the colon, giving the desired start address for
'RAID. It can be aJ'1¥address be~ the recat'IlImd locations, but it nust start

00 an even page boundat:y, in other words, end in ••OOH.Addresses greater than
the above are not recamended because this would cause RAIDto overlay CP/M,
which is not nonnally desired. However,yal mayoverlay sane or all of CP/Mif
the target program does not use the overlayed part of CP1M. I t is not
recanmended to use the lower part of the TPA(Transient ProgramArea) because
this is the usual area for the taJ:get program.

With the exceptioo of the HELPscreen, the bulk of the RAIDprogramwill load
from the specified load address upwards. The HELPscreen occupies
approximately 1440 bytes fran the load address downwards. '!bus the simulated
~ram mayoverlay the help area in J'llE!m)t:yand, if so, the help screen will
'not be displayed whenthe help cemnandis i.np.lt. If the HELPscreen data has
been disturbed the phrase "HELP SCREmwr AVAIIABLE-will be displayed in the

As soon as yoo type the four digits, the screen will be erased and replaced
with a large banner reading•••

RAID

A SCREDf ORIENrED Z-80 SDIJIA'lUR FOR VEC'lOR GRAPHIC SYS'1DtS
I

Below the banner will be a list of the RAIDcarmands,similar to the list
foundat the beginningof this marual. 'Ibis list is a "help screen" which you
can view during normal use of RAIDby simply inp.1tting a question mark (?) in
the 0CIt'I't1i!n3 node. At the bottan of the list, yaJ will see•••

Simply depress the space bar or any other key. As soon as yaJ do, the RAID
debuggingdisplay will appear. If you specified a programwhen loading RAID,
this program will be loaded at this tine. If it does not exist on the disk,
then yaJ will see a ? in the camand area of the display. Youmaynowproceed
to run RAID. At any time, if yaJ want to load a CP/Mfile fran disk, youmay
use the LoadFile camands found in Chapter 3.

As mentioned in Perspective, simulation is the heart and purpose of RAID.
After RAID is loaded, you mayload a target program using the Load command,
unless a target programwas specified whenloading RAID. '!ben use the Program
Counter ccmnand(P) to set the value of the PCto the beginning of the target
program. Next, you mayuse one of the execute ccmnandsto begin si.rrulation.
For exanple, you can siJrply depress the TABkey in order to sinulate execution
of the one instruction pointed ·to by the PC. Moreoften, you will initiate
continuous sinulation. A canplete list of the Execute ccmnandq>tions is found
in the "Execute operations" section of Otapter 3. For example, the Execute
CCIIIIBI'XB contain a wayto cause the status display to be refreshed only when
the target progran passes pre-selected points during oontinuoossimulation.

The purpose of sinulation is to be able to view the status of the system
after each instruction or group of instructions is executed. '!berefore, the
screen contains at all times a continuously UIX3atedstatus display. This is
referred to as the "RAID display." '!be Durrp and Stack CCIIIIBI'XB can be used a~
any time to control whatpart(s) of menor:yare displayed in the dlmpand stack
areas of the RAID display.

Youwill usually watch simulatioo.occuriD;Jfor a while. Youcan step it at
any time, in order to changewhat part(s) of menor:yare displayed, or to change
the value of a register or :mestDr:ylocation to see the effect, or to changethe
value of PCin order to resumesinulation at a different point. You can also
set a "halt location," a point wheresinulatioo will step autan!ltically when
certain OOI'ditionsare met, such as a register or memorylocation having a
certain value, or the PCreaching a certain value, or a specific opoodebeing
exeOlted. After enteri.n:Jsuch CCIIIIBI'XB, yoo can then resumesinulation. When
simulation is not taking place, RAID is wai~ for <XidllClttds in the cxmnand
JU:)de.

For those sections of programsthat canoot be simulated (see Perspective),
you can execute them "directly," that is, actually execute them·without
simulation. To stop direct execution in mid-stream, you can specify
"breakpoint" addresses in advance. Whenthe target program's direct execution
reaches one of these addresses, control retums to the RAID camnandnode, which
then waits for another ccmnand.

To practice am del'lDnstratethe use of RAID, a -denotarget programis loaded
into the CP/MTPAat the same time RAID is loaded, if no other file is
specified. while loading. The demoprogram starts at address 0103H. For
exanple, to watch RAID rapidly sinulate this program, first load RAID, then
enter the oc:mnandP 103 ~ followed by XF~.

To exit RAID and return to CP/M,execute the Quit conunandby typing Q
~ on the oc:mnandline. To return to the ExterXledSystemsMonitor, just
depress the ESCkey at any time while RAID is in control.

2.3 '!he RAIDdisplay

A drawil'¥Jof the RAIDdisplay is fQmdat the beginningof this manual, for
reference purposes. It occupies the top 18 lines of the screen, which are
referred to as the "reserved" portion.

This display will alwaysbe on the screen during RAIDoperation, without
change. The only exception is if the target program changes the screen
directly, or IIDVeSthe cursor into the reserved part of the screen. If the
target program simply displays its output line-by-line accordil'¥Jto cursor
location, using the normal Extended Systems Monitor video driver, without
changing the cursor location, then this ootput will scroll through the bottan
six lines of the screen only. (This is a feature madepossible by Vector's
Extended Systems Monitor.) In order to makeeffective use of RAID,it is not
wise to debug programs which write directly to the reserved part of the
screen.

Wheneverthere is a change to any part of the system whose status is
displayed on the screen, that change will aR;learimnediatelyon the screen.
For exanple, if the operator pops a wordoff the stack using the SP command,
this word will disappear fran the stack display. If the operator enters a
value into RAMrnenoryusing the EllCQ'lIIlaI'X'i, then this value will appear in the
dumparea of the display, assuming that the appropriate part of rnenoryis
represented in the durrparea. If during sinulation, the target programmanges
the stack, memory,registers, or flags, the changeswill imnediatelyappear.
This process is called "refreshing the display. II

The only time the display is not refreshed, thoughchangesare takil'¥Jplace
in the system, is when the operator specifically requests that it not be
refreshed, usil'¥Jsate of the varioos Exemte ccmnands(XP,XN,or XD}.

The following sections will clarify what the various parts of the RAID
display show. Refer to the drawingat the beginningof this manual,or to the
screen itself.

"".4 Ccmnand area
'--i,<,~",:J~

Yoocan type camands in the carmand area of the display wheneverRAID is in
the o::mnand ncde, and the two small white spots are at the left side of the
conunandarea, and there is nothing typed in the area. For m:>reinfonnation
about enteriD;Jcamands, see the beginniD;Jof Chapter 3.

There are seven lines in the instruction area of the screen. Eachof these
seven lines sl'Dwone instruction fran the target program. 'n1efirst two lines
show the two instructions most recently simulated. Theyare not necessarily
consecutive in rnenory,because they maybe jumps, calls, returns, etc. The
third line, the highlighted one, showsthe instruction abo.1tto be simulated.
The last four lines show the four instructions following the current
instruction in memory. They mayor maynot be the next instructions to be
sinulated.

(1) The instruction and no, one, or twocperands, in hexadecimal notation
with no separatioo bebEen insruction and operands. Theseare one, two, three
or four bytes represented by two, four, six or eight hexadecimaldigits.

(2) The ASCII representatioo of the instruction and operands. Since there
is one ASCIIcharacter per byte, there are ale, two, or three ASCIIcharacters
shown. If the cnaracter is in reverse video, this meansthe high-order bit is
a one. Control cnaracter (those whoselowerseven bits are between00 and IF)
are represented differently dependingon the system's character set.· usually,
they are represented by graphics cnaracters consisting of fran one to six small
white squares in various combinations. A chart showingthe correspondence
between graphics characters and ASCIIcodes is found at the rear of the
Flashwriter II User's MaIUla1 whichcanes with every system.

(3) 'n1eaddress of the instructioo, in hexadecimalnotation.

(4) The asseni>lylanguagerepresentation of the instruction followedby its
operands. Vector's aOaQ-supersetllI1E!I'IDnicsare used.

Six lines are in the dumparea of the display. Each line begins with a
four-digit hexadecimalnenory address, followed by a oolon, which indicates the
beginnin;Jof the merrotyarea showna'1 that line. Each line consists of sixteen
bytes, stx:Jwin]the oontents of melOOrybeginning at the address given. The
bytes a'1 each line can either be twohexadecimaldigits or one ASCIIcharacter.
WhenRAIDis first loaded, they are all hexadecimalam begin at address OOOOH.
Each line increases by lOH.

Youcan change the beginnin] address of any one line or any group of lines,
am you can change the representatioo to ASCIIor back to hexadecimal, by using
the Dunp ocmnands, described in Chapter 3.

2.7 Flags and registers

Next to the instruction area of the display, there are a groupof areas
whim display the o:>ntentsof all the Z-80registers am flags. The left-hand
side of this area shows the mainflags and regiJ;ters, the next section ShCMS
the alternate flags am registers, am the third section showsthe contents of
the Xregister, the Yregister, the I register, and the interrupt flag.

The tq> line sl'xJwsthe flags, indicated by "F" am "Fin. On this line, if
any flag is set, its symbolwill appear, otherwise the symbolwill not be
visible. '!he syrrbolsare:

symbol
S
Z
H
P
N
C

sign
zero
half-eany
parity
add/subtract
cany

The contents of each register are shownas a hexadecimalbyte next to the
register synbol. Further, the o:>ntentsof the A am AI registers is shownas
an ASCII equivalent, betweendoublequotes. Last, the contents of the InellY:)l."y
addresses pointed to by the register pairs ac, DE, HL, BC I, DEI, and HLI are
given in parenthesis next to the Cp E, L, CI, E', andL' register contents
respectively.

The contents of the X, Y, and I registers ~ar in hexadecimalnotation
directly beneath the register symbols. The status of the interrupt flag
appears below the contents of the I register, betweenparentheses, with (di)
indicatin; intenupts are disabled, and (ei) indicatiB3 they are enabled.

Along the right side of the display is a colwmwith the syni:x)l"SP"at the
top, stan3ilJ3 for "stack pointer". '!be contents of the stack pointer appear
inunediately below, in hexadecinal notatioo. BelCMthis is fourrl the contents
of the stack itself, as nuch as will fit in the colwm: 13 hexadecimalwords (2
bytes in each word)•

RAIDkeeps track of a value knOim as the "start of the stack". '!be start of
the stack is the address just abovethe location of the first wordpushed onto
the stack. For example, if the stack pointer is pointing at AOO2Bwhena
programpushes BBBBHonto the stack as the first word on the stack, then the
start of the stack is at A002Hand BBBBHwill be stored at AOOOHand AOOlH.
('!be processor of oourse decrementsthe stack pointer by 2 before pushing a
word onto the stack, because it alwayspoints to the last wordpushedonto the
stack.)

Howdoes RAIDknowwhere the start of the stack is? WhenRAIDis first
loaded, RAIDassunes the stack is E!lTpty. In other words, it asstntes the start
of the stadt is equal to the initial setting of the stack pointer.

'!be hexadecimalwordat the top of the stack colwm is always the contents
of the two locations just below the start of the stack. Using the above
exanple, if the start of the stack is at AOO2H,then the word stored at AOOOH
and AOOlHwill be the tcp werd in the display. Thebottan wordin the colwm
is always the contents of the lOcation pointed to ~ the stack pointer. When
the stack pointer decreases by 2, due to pepping the stack, the bottan word
disappeaJ:S. Whenthe pointer increases by 2, due to pushing a word onto the
stack, the newwordis addedm the bottan. Henoethe display really does show
the stack. As wordsare pushedmto am pc:ppedoff the stadt, the colum will
growlonger am shorter respectively. .

Note.that there is a Stack commandused for changing the setting of the
"start of the stack," which in turn alteJ:S whatpart of rneIlDt:y is displayed in
the stack colwm.

The halt area of the display is used in conjuction with the Halt cemnands
HO,BP, am 8M. 'lhese oamnands cause siJrulation to halt whena pre-selected
opcode is executed, whena pre-selected PCvalue occurs, or whenthe contents
of a pre-selected menorylocation take on a given value. After you enter one
of these commands,the entered opcode, PCvalue, or memorylocation and
contents will be displayed next to the 0:, P:, or M:, respectively. This part
of the display simplyremindsyw of the Halt cxmnand(s)you had entered.

In the UR?erright-hand corner of the halt area is a small square area.
Whena halt does occur as a result of a Halt setting, the type of halt is
irrlicted in this area. Youwill see either "HO","BP",or "aM".

Below the halt area is an area marked with "Rf:". This is used in
conjuction with the XNcanrrand. XNcauses continuous sinulation, but with the
display refreshing only whenthe PCcounter passes pre-seleeted addresses. You
can pre-select as manyas four such addresses. They will then appear in the
refresh area as a reminder. Further, each time a refresh does occur during
simllation, the address whichcaused the refresh will be highlighted within the
refresh area of the display.

TheXNcarmandis discussed in Chapter 3.

Yoo can type camands in the carmandarea of the display wheneverRAIDis in
the c:::arman:tIIOde,and the two small white spots are at the left side of the
cxmnandarea, and there is nothirg typed in the area.

TO clear undesired material frail the area, depress the ~ key •
•..

Ccmnandsare typed nor:mally,am edited with the BACKSPACEkey. To execute
a c:x:mnaOOafter typi.n:Jit in, depress RE'lURN.

Whena cxmnandhas a parameter follO'flingit, a space before the parameter is
optional. If there is ItDre than one parameter, then there must be space
betweeneach.

Whenasked to type an <address>or a <word>as a ocmnandparameter, lead ing
01 S are optional. An address can have up to four hexadecimaldigits. Yoo
cannot type an "H"at the em.

Whenyou are asked to type a <char>, standing for <character>, depress the
key or keys that cause an ASCII character to be generated. This can be a
sirgle key depressioo, or the sinultaneous depression of the C'l'RLkey and/or
the SHIF'1'key alon:Jwith a character key. - .

I

Whenyou are asked to type a <register or register pair>, you mayeither
specify a register or a register pair. To specify a register, type one of the
lettet:S A, B, C, 0, E, H, or L. To specify a register pair, type BC, DE, or
HL. To specifY an aI'ternate register, follO'flthe letter with a singlequote
marX,such as in AI. To specify an alternate register pair, follow the pair
with a sin3le quote man, as in CO'.

A ? character appears on the right side of the area when RAIDcannot
W1derstanda canmand.

To halt simulation at any time and return to the commandItDde, depress
control-shift-brace. In other words, sinuiltaneously hold down the CTRLand
SHIFTkeys while you depress the brace (curley bracket) key.

DurrpASCII

nmp Hexadecimal

DA. <address> [<line> [-]]

IE <address> [<line> [-]]

There are two dunp camands. 'Ihey both control what part(s) of menD~ are
displayed in the dump area of the display. DumpASCII (DA) causes the
specified part of the dump area to appear in ASCII representation, one
character per location. DunpHexadecimal (DB) causes the specified part to
appear in hex notation, two digits per locatioo.

In both camands, the <line> is a nmber between 0 am 5. 0 refers to the
top line in the dump area, 1 to the next line, ard so 00, with 5 as the last
line.

In each carmand, if yo.J. type no line rumtler, then the entire dunp area will
be affected: the contents of the specified a:3dress will be displayed in the
upper left-hand corner, and the subsequent 96 locations (16 on each line) will
be displayed.

If you type a line number, then only that line will be affected. The 16
locations beginniR] with the specified a:3dress will be displayed on that line.

If you type a line number followed by a dash, then that line and all
fOllow!J!llines in the dmp area will be affected, displaying the locations
beginnlJ'lg with the specified address. .

-}.2 Enter operations
--}

'<-L"j·

1m <address><byte> [<address><byte>••• 1

FA<address><char> [<address><char>••• 1

ER<register or register pair> <byte or word>

These commandschange the specified tneIlDt:y location or register. The new
register exmtents will immediately appear on the display. The new memory
contents will immediatelyappear if the address is included in the dlIll'Parea.

With the Enter Hexand Enter ASCII commands,you maymake lOOrethan one
entt:y 00 the sane CO'fIIIi!U'd line. Simplyseparate each Parameter with a space as
usual.

With the Enter Register command,you may either specify a register or a
register pair. To specify a register, type ale of the letters A, B, C, 0, E,
H, or L. To specify an altemate register, follow the letter-with a sTng'Ie
quote mIX, such as in AI. 'lben type a 2-digit byte. To specify a register
pair, type BC,DE,or HL. To specify an alternate register pair, follow the
pair with as~~e quote maIX,as in CDI• '!hen type a 4-digit word.

3.3 Fill

Fill

Fills working menot:ywith the byte specified fran the start address to the
end cddress.

'Ibis ccmnandtransfers control oot of RAID and into sate other program. The
CPOwill begin executiD;Jautanatically at the cddress specified.

00 <qx::ode>
HR<register or register pair> <byte or woJ:d>

8M<address><byte>

Halt <Xl Register

Halt <Xl Menmy

One or more of these conunandscan be active at arPJ given tine. Oncethey
are activated, then siIlulation will automatically halt when the one of the
specified conditions occurs. 'ltle BP, HO,and 8Mccmnands cause the selected
values to appear on the display in the halt area. Then, whensirrulation halts,
the cause of the halt appears at the upper right-hand corner of the halt area,
as "HPn, nHOn, or "HMn•

In Halt on Register, you mayeither specify a register or a register pair.
To specify a register" type one of the letters A, B, C, D, E, H, or L. To
specify an alternate register, follow the letter with-a iin9ie~ marK; such
as in A'. 'lben type a 2-digit byte. To specify a register pair, type BC, DE,
or BL.-To specify an alternate register pair, follow the pair with asin9!"e
quote man, as in CO'. 'lben type a 4-digit \lOrd.

This commandsimply clears any extraneous material off the RAIDdisplay.
All areas of the display will then reflect the current status of the system.

These commandsare used to load CP/Mobject files fran a disk. The drive
designater can be included, in standard CP/Mformat, if the desired file is not
in the logged-in drive.

LoadExecutable File sinply loads the file into the TPAat OIOOH. It does
not execute it. This is an alternative to specifying a filename whenloading
RAID.

Load Hex File allows you to simultaneously convert an asseni>ledHEXfile
into executable £Om am then load it at its ownload address in menDry,which
does not have to be OIOOH.'the load address wouldhave been detennined by an
OIG pseudcKJpwhenasSE!1t:>lingthe file. '!his is an alternative to using CP/M
utilities before loading RAID in order to load the file.

This commandsimply sets the ProgramCounterto the desired address. The
instruction at this address will :iImediatelyappear on the third line of the
instroctioo atea of the display. Whenyal begin simulating, the target program
will be executedbeginnin;Jat this address.

This transfers control back to the program whichcalled RAIDin the first
place, lothichis nonnally the CP/Mexecutive.

'!be set Start of Stack cperation resets the start of the stack (explained in
section 2.8) to a value other than the value set whenRAIDwas loaded. It will
immediately affect the section of memorydisplayed in the stack area of the
display. For exanple, if you increase the start of stack by 2, one additional
word will be displayed at the tcp of the collUlll. If you decrease it by 2 the
tcp wordof the colunnwill be renoved.

Note, if you decrease the start of stack value, this will leave extraneous
1'lBterial in the stack display. To clear this cut, use the Clear Stack Column
eat'IllaOO , SC •

The Clear Stack Columncommandonly clears extraneous material fran the
stack display. It leaves the actual stack displayed.

Pq) Stadt

PushStack

Pop Stadt and Push stack do what they appear to do. Whentypir¥Jthe <word>
in the PushStack oc:mnand,leadilX}O's do not have to be typed. '!he results of
these cannandswill be displayed i.Imediately in the stack area of the display.

~'.."

>l.ll Executecprations
"""'"-

This causes simulation to begin at the Program Counter, at the rate of
awroximatelyone instruction every half second. The status display will be
fully refreshed after each instructioo.

Thecptional <rate> parameter can be any hexadecimaln..uriJer,but is usually
between1 and 10. '!be higher the value, the slower the rate of sinW.atioo.

Without the optional <rate> parameter, this causes sinlllation to begin at
the ProgramCoonter, at the maximJrnpossible rate, while still refreshing all
parts of the display after each instructioo.

If you include the <rate> parameter, sinulation will take place even faster,
because the display will not be refreshed after each instructioo. Thehigher
the <rate> parameter, the faster the siDulatioo. Youwill be able to notice
the difference whenthe <rate> is in excess of 1000, am even llDreso whenit
is above8000. '!he <rate> can be any hexadecimall'I.lIIber.

Similar to the XFcommand,XPcauses an even faster rate of sinlJlation,
becauseally the register am stack areas are refreshed when the display is
refreshed. Againthe <rate> is an cptialal hexadecimallll.Jllt)er.Youwill begin
to see a noticably quicker rate of simulation when<rate> is greater than
80000.

ExeaJtewith NoRefresh,
except as specified

This results in faster simulation than even the XPconunand,becauseno
display refresh is done at all, except at specified addresses. You may
optionally specify fran one to four addresses. Whenthe PCof the target
programpasses one of these specified addresses, the display will be refreshed.
The chosen refresh addresses will be displayed in the refresh area of the
display (indicated by the "Rf:"), and whenany refresh takes place during
siJrulation, the causative address will be highlighted.

EXea1teDiJ:ectly, with
specified breakpoints

This commandcauses the target programto execute independentlyof RAID,
begi.nnirgat the set value of the pc. It is not a simulation, but a real
execution, in real time. Youmay include up to six optional break-point
addresses. Whenexecution of the target program reaches one of these
addresses, execution will stop and control will return to RAID. This is
accomplished by replacing the opcodes at the specified addresses with FF
restart codes.

ExecuteDirectly and return (LF)

This Catl'flaOOis executeddirectly £ran the keyboardusing tha (LF)key. It
will cause the tal:get programto execute directly, in real time, any called
routine. This is particularly useful for disk access or print routines which
cannot be simulated in RAID. 'ltlis aaranan:3 causes the real time execution of
the called subroutine to halt at the next memorylocation PaSt the calling
instruction whenthe subroutine returns. This is of particular value when
debugging a program which calls routines which have already beendebugged.
Becauseof the limitation of not bein;Jable to set break points, this conunand
will not wmk for routines in ~.

This simply simulates executim of the instructions listed on the cx:mnand
line. 1tJ¥ valid Z-80code ani ~rams maybe listed, with spaces to separate
them. '!he effects will be seen in the display.

This sinulates execution of the instruction pointed to by the PC (the third
instruction in the instruction area of the display). 'ltle effects will be seen
in the display.

\1.12 Help screen

This displays the Help screen at any time by simply inputting a question
maxk when the ccmnand node. If the target program has altered the HELP screen
memory area, the phrase nHELPSCREEN oor AVAILABLEnwill appear in the ccmnand
area. To get back to the Raid screen, hit arfj key.

