
5IA)iC
intc:tit=tcl:c=t





MIClOSOI"l' BASIC-88

Rsrision 5.9

RE!'ERENC! MANUPd.

Revision A

January 1, 1988

CopyriC)ht1988 Vector Graphic Inc.

Copyright 1979 Microsoft



Copyright 1980 by Vector Graphic Inc.
All rights reserved.

Disclaimer
Vector Graphic makes no representations or warranties with respect to the
contents of this manual itself, \1ohetheror not the product it describes is
covered by a warranty or repair agreement. Further, Vector Graphic reserves
the right to revise this publication and to makechanges from time to time
in the content hereof without obl igation of Vector Graphic to notify any
person of such revision or changes, except ~en an agreement to the contrary
exists.

Revisions
The date and reV1Slon of each page herein appears at the bottom of each
page. 'I'he revision letter such as A or B changes if the MANUALhas been
improved but the PRODUCTitself has not been significantly ItDdified. 'I'he
date and revision on the Title Page corresponds to that of the page most
recently revised. When the product itself is roodified significantly, the
product will get a new revia ion number, as shownon the manual's title page,
and the manual will revert to revision A, as if it were treating a brand new
product. EAai MANUALSHOULDONLYBEUSEDWITHTHEPRODUCTIDENTIFIEDONTHE
TITLEPAGE.



'Ibis manual is intended for cemputer
suppliers, or others with at least a
nr::x:1eratetechnical knowledgeof small
canputers and canputer progranming,and the
basic c:p!ration of the Vector Graphic
canputer to be used.

'Ibis manualwill describe the features,
cannands, and syntax of Microsoft BASIC-80,
Revision 5.0, ani explain howit is used
on a Vector Graphic canputer that uses CP/M
as its c:p!rating system. '!houghit oovers
every aspect of the language, it is not
intended as a training manualfor novice
programners•

Chapter 1discusses BASIC-80generally.
Chapter 2 contains the syntax and use of
every cxmnandand statenent in BASIC-80,in
alphabetic order. Chapter 3 describes every
intrinsic function in BASIC80, also alpha-
betically. In the appendices, certain
tcpics such as disk I/O, using assembly
language subroutines, the relationship to
CP/M,ani the carrpatibility with the BASIC
carpiler, are discussed in greater detail,
and there are lists of error messages, ASCII
codes, math functions, newfeatures in
Revision 5.0, ani sane tips on converting
£ran other BASIC's.



\



This is the reference manual for Vector Graphic's implementation of
Microsoft's BASIC-Se,Revision 5.e, one of the most extensive and .high-speed
BASIC's available. It meets the ANSIqualifications for BASIC,as set forth
in document BSRX3.60-l97S. Vector Graphic is proud to offer; the BASIC-S0
interpreter with Vector GraPlic systems.

For readers familiar with earlier versions of Microsoft BASIC,Appendix A
describes the enhancements in Revision 5.0 over earlier releases, including
incanpatibilities with them. If you have software written in one of the
earlier versions, check Appendix A for new features that may affect
execution.

This manual covers a number of upward compatible versions of BASIC-Se,
specifically the -SK,- -Extended," an; "Disk- versions. My feature in the
SK and Extended versions is available in the Disk version. The version
available fran Vector Graphic is the Disk version. Therefore, everything
described in this manual is present in the Vector Graphic implementation, no
matter ~at version it is listed under.

Most users will make use of the BASIC-aainterpreter. (The interpreter
is a progrClll ~ich allows entry and ed!tiB3 of BASICprograms, and executes
them line by line W1eneverdesired.) For certain specialized applications,
the Microsoft BASICcompiler (BASCOM)is also available through Vector
Graphic. 'lbe canpiler allows ~u to convert a BASIC-S0progrClll, originally
written and debu;ged using the interpreter, into machine language, Wlich can
then be executed at very high speed. \\hen ~u obtain the canpiler, you will
receiver a manual detailing its use, but because it may be relevent to a
user of the BASIC-aeinterpreter, Appendix L discusses the BASICcanpiler in
brief. Note that Appendix L lists several features which are present in the
interpreter but \tbich are absent or different in the canpiler. Programmers
intending to compile BASIC-S0programs must pay attention to these
differences.

In a Vector Graphic canputer, BASIC-Seruns in conjuction with the CP/M
operating system. The name of the BASIC-Seinterpreter file on the disk
supplied by Vector Graphic is -MBASIC.CQtl.- Therefore, in order to call up
the interpreter fran the CP/Mexecutive, do the following: First, if MBASIC
is not already present on the main CP/Mdiskette, mount the BASIC-Sedisk in
drive A. Then, following the A> prompt, type MaASle and then press the
RETURNkey. Optionally, you can enter one or more parameters before
depressil'Xl RETURN,including the name of the BASICprogram you want to
execute, the number of files you want OPENat one time, and the highest
memorylocation you want BASICto use. These options are discussed in
Appendix D. In this manual, the term -initialization" means the above
process, of calling up BASIC-Se,nothil'Xlmore.

Of particular interest is the option to immediately execute a BASIC
program by typiB3 its nane as a paraneter followil'Xl the word MBASIC. This
causes the program to be loaded, and then executed as if a RUNcommandwere
typed. In other words, the system jumps directly into the application
program whenMBASICis called up. Further, if you are using CP/M2, rather
than an earlier version of CP/M,you can configure ~ur system diskette to
bypass the CP/M.executive and instead carry out a particular CP/Mcommandor



utility, su::h as calling up MSASIC. You accomplish this by creating an
"auto" command, which you do by running the CONFIGutility present on the
CP/M2 serialized diskette. If your auto camnandcontains "MBASIC"followed
by the name of a BASICprogrClllon the same diskette, optionally followed by
other parasneters, followed by a RETURN,then \lben you boot up the system, it
will bypass all executives and automatically begin executing the BASIC
program. (This assumes MBASIC.CCMand the BASICprogram are on the system
diskette aloD; with CP/M.) This allows creation of an attractive "turn-key"
package.

Appendix 0 explains several other canmandsand aspects of BASIC-aethat
deal specifically with CP/M. Use it as an integral part of this manual.

Please note the followirJ;J points whenusirJ;J this manual:

It is NOTnecessary to create a file tnder the CP/Mexecutive before it
can be used by BASIC-aa.

To return to the CP/Mexecutive fran the BASIC-8eexecutive, tyPe SYSTEM
followed by the RETURNkey.

Whenusin;r a Vector System B, Memorite II, Vector 3"311l,or other Vector
Graphic system having "memorymappedvideo" and using the option gv Extended
Systems M:>nitor, do NOTpress the LF or LINEFEEDkey in order to continue a
BASICline on a second line on the screen. Instead, the video driver will
cause the text to "wrap aro\.md" automatically. The same is true for any
serial terminal that has automatic wrap around.

~en listing progran text or output, BASIC-a"assunes it is outputting to
a l32-character widtb printer. If your system's printer is narrower, it
will be able to print lOn;J lines only if the printer or the printer driver
software in the operating system has the ability to automatically wrap
around at the end of a line. '1bis is dePendent on the particular pr inter
you are using.

References to "printing" in this manual, as in most BASICmanuals, refer
to displaying text on the operator's console, which is usually a video
screen. '!be tem "printing" derives fran the original use of Teletype and
other hard-copy printin;J terminals. '!be manual will refer specifically to
the "line printer" when referring to output intended for the system's output
printer, (sometimes called the "lister"), which is usually a separate
peripheral fran the operator's console. OUtput directed by BASIC-Sillto the
"line printer" is sent by BASIC-aeto CP/M's logical lister output routine,
which normally saRis the data out via a channel connected electronically to
a printer of some kind. The t"'lOcanmands that cause BASIC-a"to send data
in this way to the "line pr inter" are LLISTand LPRINT.

Reference is made in several places to the console's bell. This is only
relevent if the terminal you are using has a bell. The Vector Graphic
memory-mapPedvideo console at this time has no bell.



APPENDIX C Assembly Language Subroutines
APPENDIX 0 BASIC-SO with the CP/M Operating System
APPENDIX E

APPENDIX I Converting Programs to BASIC-SO
APPENDIX J Summary of Error Codes and Error Messages
APPENDIX K Mathematical Functions





CRAPTER 1

GENE~ INFORMATION ABOUT BASIC-SO

The procedure for initialization will vary with different
implementations of BASIC-SO.· Check the appropriate appendix
at the back of this manual to determine how BASIC-SO is
initialized with your operating system.

1.2 MODES Q!. OPERATION
When BASIC-80 is initialized, it types the· prompt wOkw•
ftOkftmeans BASIC-SO is at command level, that is, it is
ready to accept commands. At this point, BASIC-SO may be
used in either of two modes: the direct mode or the
indirect mode.
In the direct mode, BASIC commands and statements are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
·calculatorW for quick computations that do not require a
complete program.
The indirect mode is the mode used
Program lines are preceded by line
memory. The program stored in
entering the RUN command.

for entering programs.
numbers and are stored in

memory is executed by

Program.lines in a BASIC program have ~~e following format
(square brackets indicate optional) :
nnnnn BASIC statement[:BASIC statement•••l <carriage return>



At the programmerts option, more than one BASIC statement
may be placed on a line, but each statement on·a line must
be separated from.the last by a colon.
A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in SK BASIC-SO
255 characters in Extended and Disk BASIC-SO.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the SK version, <line
feed> has no effect.

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range a
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.



1•4 CBARACTEll ~
The BASIC-SO character set is comprised of alphabetic
characters, numeric characters and special characters.
The alphabetic characters in BASIC-SO are the upper case and
lower case letters of the alphabet.
The numeric characters in BASIC-SO are the digits 0 through
9.
The following special characters and terminal keys are
recognized by BASIC-SO:

<delete>
<escape>

<line feed>
<carriage

return>
<backspace>

Name
BIaiik
SemicolonEqual sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
PercentNumber (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
See Section 2.16.
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line.
Terminates input of a line.
Deletes last character typed, and erases it from screen.



Interrupts program execution and returns to
BASIC-SO command level.

Backspace. Deletes the last character typed.
Tab. Tab stops are every eight columns.

output
second

while
Control-o

execution
restarts

Halts program
continues. A
output.
Retypes the line that is currently being
typed.

Suspends program execution.
Resumes program execution after a Control-S.
Deletes the line that is currently being
typed.

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.
A string constant is a sequence of up to 255
characters enclosed in double quotation marks •.
string constants:

alphanumeric
Examples of

"HELLO"
"$25,000.00""Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

Whole numbers between -32768 and
+32767. Integer constants do not
have decimal points.

2. Fixed Point
constants

Positive or negative real numbers,
i.e., numbers that contain decL~al
points.



3. Floating Point
constants

Positive or negative numbers repre-·
sented in exponential form (similar
to scientific notation). A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The exponent must be in
the range -38 to +38.
Examples:
235.988E-7 = .0000235988
2359E6 • 2359000000
(Double precision floating point
constants use the letter D instead
of E. S~e Section 1.5.1.)
Hexadecimal numbers with the prefix
&H.Examples:

&H76
&H32!'

Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

1.5.1 Single ~ Double Precision !2E!~ Numeric constants
In the SK version of BASIC-SO, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.
In .the Extended and Disk versions, however, numeric
constants may be either single precision or double prec~s~on
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.



A single precision constant is any numeric constant that
has:

1• seven or fewer digits, or
2. exponential form using E, or
3. a trailing exclamation point (1)

A double precision constant is any numeric constant that
has:

1. eight or more digits, or
2. exponential form using 0, or
3. a trailing number sign (I)

Examples:
Single Precision constants

46.8
-7.09E-06

3489.0
22.51

345692811
-1.094320-06

3489.0+
7654321.1234

V~iables are names used to represent values that are used
in a BASIC program. ~he value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the proqram. Before a variable is
assigned a value, its value is assumed to be zero.

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant •

.In the Extended and Disk versions, up to 40 characters are
significant. ~he characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.
A variable name may not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function



Variables may represent either a numeric value or a .string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$. nSALES REPORT". The
dollar sign is a variable type declaration character, that
is, it ndeclares· that the variable will represent a string.
In the Extended and Disk versions, numeric variable names
may declare inteqer, single or double precision values.
(All numeric values in SX are single precision.) The type
declaration characters for these variable names are as
follows:

, Integer variable
1 Single precision variable
t Double precision variable

The default type for a numeric variable name is single
precision.
Examples of BASIC-SO variable names follow.
In Extended and Disk versions:
PIt
MINIMUM 1
LIMIT'

declares a double precision value
declares a single precision value
declares an integer value

In SX, Extended and Disk versions:
N$ declares a string value
ABC represents a single precision value
In the Extended and Disk versions of BASIC-SO, there is a
second method by which variable types may be declared. The
BASIC-SO statements DEFINT, DEFSTR, DEFSNG and OEFDSL may be
inclcded in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Array Variables
An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimensional
array, T(1,4) would reference a value in a two-dimensional
array, and so on.



When necessary, BAS~C will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string 'variable is set equal to a
numeric value o~ vice versa, a "Type mismatch"
error occurs.)
Example:
10 A% • 23.4220 PRINT At
RON
23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
EXamples:
10 ot • 61/7 The arithmetic was performed
20 PRINT Of in double precision and the
RUN result was returned in Of

.8571428571428571 as a double precision value.
10 0 =- 6#/7
20 PRINT 0
RON

.857143

The arithmetic was performed
in double precision and the
result was returned to 0 (single
precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point value is converted to an
integer, the fractional portion is rounded.
EXample:
10 C'l :II 55.88
20 PRINT C%
RON

56



5. If a double precision variable is assigned a single
precision value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.
Example:
10 A • 2.04
20 B. • A30 PRINT A;S#
RON

2.04 2.039999961853027

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.
Operators perform mathematical or logical operations on
values. The operators provided by BASIC-SO may be divided
into four categories:

1. Arithmetic
2. Relational

1.8.1 Arithmetic Operators
The arithmetic operators, in order of precedence, are:

Operation
Exponentiation
Negation
Multiplication, Floating
Point Division

X·Y
X/Y



To change the order in which the operations
use parentheses. Operations within
performed first. Inside parentheses, the
operations is maintained.
Here are some sample algebraic expressions and their BASIC
counterparts.

are performed,
parentheses are
usual order of

Algebraic Expression
X+2Y

YX--Z
XYz-
X+Y-Z
(X2) Y

yZ
X

BASIC Expression

X+Y*2
X-y/z
X*Y/Z
(X+Y)/Z
(XA2)AY
XA(YAZ)

X*(-Y) Two consecutive
operators must
be separated by
parentheses.

1.8.1.1 Integer Division And Modulus Arithmetic -
Two additional operators are-available in Extended and Disk
versions of BASIC-SO: Integer division and modulus
arithmetic.

Integer division is denoted by the
operands are rounded to integers
-32768 to 32767) before the division
quotient is truncated to an integer.

baCks lash (')• The
(must be in the range

is performed, and the
For example:

10\4 :I 2
25.68\6.99 • 3

The precedence of integer division is
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOO 4 = 2 (10/4=2 with a remaL~der 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
di~lision.



1.8.1.2 Overflow And Division !I Zero -
If, during the evaluation of an exp-riSsion, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is ·supplied as the result of the exponentiation, and
execution continues.
If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators
Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)
Operator Relation Tested Expression

" - Equality X-Y
<> Inequality x<>y
< Less than X<Y
> Greater than x>y
<- Less 'thanor equal to x<=y
>- Greater than or equal to x>-y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)
When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. 'For
example, the expression

is uue if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)<O GOTO 1000
IF I MOO J <> 0 THEN K=K+1



1.9.3 Loqieal Opera~ors
Logical opera~ors perform tes~s on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are
performed after a:ithmetic and relational operations. The
outcome of a logieal operation is de~ermined as shown in the
following table. The operators are listed in order of
precedence.

NOT
X NOT X
1 0
0 1

AND
X y X AND y
1 1 1
1 0 0
0 1 0
0 0 0

OR
X Y X OR Y
1 1 1
1 0 1
0 1 1
0 0 0

XOR
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

IMP
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

EQV
X Y X EQV y
1 1 1
1 0 0
0 1 0
a a 1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For



IF 0<200 AND F<4 TEEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, siqned, two r S complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.
Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator maybe used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. Tbe following examples will help demonstrate how the
logical operators work.

63 • binary 111111 and 16 • binary
10000, so 63 AND 16 - 16
15 • binary 1111 and 14 - binary 1110,
so 15 AND 14 - 14 (binary 1110)
-1 - binary 1111111111111111 and
8 • binary 1000, so -1 AND 8 • 8
4 • binary 100 and 2 -binary 10,
so 4 OR 2 - 6 (binary 110)
10 - binary 1010, so 1010 OR 1010 •1010 (10)
-1 • binary 1111111111111111 and
-2 • binary 1111111111111110,
so -1 OR -2 • -1. The bitcomplement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.
The two's complement of any integer
is t,hebit complement plus one.



1.S.4 Functional Operators
A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-SO
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN, (sine). All of BASIC-SO's
intrinsic functions are described in Chapter 3.
BASIC-SO also allows "user defined" functions that are
written by the programmer. See OEF FN, Section 2.11.

1.S.5 String Operations
Strings may be concatenated using +. For example:

10 A$-"FILE" : B$."NAME"
20 PRINT A$ + B$
30 PRINT "NEW " + A$ + B$
RON
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

String comparisons are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes· the
higher. If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FILENAME" • "FILENAME""X," > "X."
"CL " > "CL""kg" > "KG"
" SMYTH" < "SMYTHE·tB$ < "9/12/7S" where B$ • "S/12/7S"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.



If an incorrect character is entered as a line is being
typed, it can be deleted with the DElete key 'orwith
BAC<SPACE • DElete surrounds the deleted character (s) with
backslashes, and ~PACE' has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.
To delete.a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.
To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-SO will automatically replace the old line with the
new line.
More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-SO. See EDIT, Section
2.16.
To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

If BASIC-SO de~ects an error that causes program execution
to terminate, an error message is printed. In the SK
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-SO error codes and error messages,
see Appendix J.





CRAPTER2
BASIc-eo COMMANDS AND STATE.'1EN'I'S

All of the BASIC-eO commands and statements are described in
this chapter. Each description is formatted as follows:

Shows the correct format for the instruction.
See below for format notation.
Lists the versions of BASIc-eo
in which ~e instruction is available.

Purpose:
Remarks: Describes in detail how the instruction

is used.
Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.
2. Items in lower case letters enclosed in angle

brackets « » are to be supplied by the user.
3. Items in square brackets ([ J) are optional.
4. All punctuation except angle brackets and square

brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

s. Items followed by an ellipsis (•••) may be repeated
any number of times (up to the length of the line).

6. Items separated by a vertical bar (,) are mutually
exclusive; choose one.



AUTO [<line number> [,<increment>]]
Extended, Disk
To generate a line number automatically after
every carriaqe return.
ACTO beqins numberinq at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.
If AUTO generates a line number that is already
beinq used, an asterisk is print.edafter the
number to warn the user that any input will
replace the existing line. However, typinq a
carriaqe return immediately after the asterisk
will save the line and qenerate the next line
number.
AUTO is terminated by typinq Control-c. The
line in which Control-c is t.ypedis not saved.
Aft.er Control-C is typed, BASIC returns to
command level.

Generates line numbers 100,
150,200 •••
Generates line numbers 10,
20, 30, 40 •••



Purpose:
Remarks:.

CALL <variable name>[«argument list»]
Ex1:ended,Disk
To call an assembly lanquaqe subroutine.
The CALL statement is one way to transfer
proqram flow to an assembly lanquaqe subroutine.
(See also ~e USR function, Section 3.40)
<variable name> contains an address'that is the
startinq point in memory of ~e subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arquments
that are passed to ~e assembly lanquaqe
subroutine.
The CALL statement qenerates the same callinq
sequence used by Microsoft's FORT~~, COBOL and
BASIC compilers.
110 MYROOT-&HDOOO
120 CALL MYROOT(I,J,X)



~N [MERGE] <filename>[,[<line number exp>]
[,ALL][,DELETE<range>]]

Disk
To ca.lla program and pass variables to it from
the current program.
<filename> is the name of the program that is
called. Example:

CRAIN "PROG1"
<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CBAIN"PROG1",1000
<line number exp> is not affected by a RENOM
command.
With the ALL option, every variable in the
current program is passed to the ca~led program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

After an overlay is
desirable to delete
be brought in. To
option. Example:

CRAJ:NMERGE l'OVIU.AY2 " , 1000,DELETE 1000-5000

brought in, it is usually
it so that a new overlay may
do this, use the DELETE

The line numbers in <range> are affected by the
BENUM command.



The Microsoft BASIC compiler does not support
the ALL, MERGE, and DELETE options to CRAIN. If
you wish to maintain compatibility with the
BASIC compiler, it is recommended that COMMON be
used to pass variables and that overlays not be
used.
If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained proqram. That
is, any OEFINT, OEFSNG, OEFDBL, DEFSTR, or DEFFN
statement containing shared variables must be
restated in the chained program.



CLEAR[,[<expression1>] [,<expression2>]1
SK, Extended, Disk
To set all numeric variables to zero and all
string variables to null; and, optionally, to
set the end of memory and the amount of stack
space.
<expression1> is a memory location which, if
specified, sets the hiqhest location available
for use by BASIC-SO.
<expression2> sets aside stack space for BASIC.
The default is 1000 bytes or one-eighth of the
available memory, whichever is smaller.
In previous versions of BASIC-SO, <expression 1>
set the amount of string space and <expression2>
set the end of memory. BASIC-SO, release 5.0
and later, allocates string space dynamically.
An "Out of string space" error occurs only if
there is no free memory left for BASIC to use.

, ..../
\
\



2.5
Intentially left blank.



Purpose:
Remarks:

To conclude I/O to a disk f~le.
<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files. \
The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.
A CLOSE for a sequential output file writes the
final buffer of output.
The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)
See Appendix B.



Purpose:
Remarks:

To pass variables to a CHAINed program.
The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CRAIN with the
ALL option and omit the COMMON statement.
100 COMMON A,B,C,O(),G$
110 CHAIN "PROG3",10



8K, E~ended, Disk
To con~inue proqram execu~ion af~er a Con~rol-C
has been ~yped, or a STOP or END s~a~emen~ has
been executed.
Execution resumes at the point where the break
occurred. If the break occurred after a promp~
from an INPUT s~a~ement, execution continues
with the reprinting of ~he promp~ (1 or prompt
s~ring).
CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statemena. E~ecution may be
resumed with COt~ or a direct mode GOTO, which
resumes execution a~ a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.
CONT is invalid if the program has been edited
during the break. In 8K BASIC-80, execution
canno~ be CONTinued if a direct mode error has
occurred during the break.
See example Section 2.61, STOP.



BASIC-SO COMMANDS AND STATEMENTS

2.9
Intentially left blank.



SK, Extended, Disk
To store the numeric 'and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.54)
DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.
<list of constants> may QOntain numeric
constants in any format, i.e., fixed point,
floating point or inte~er. (No numeric
expressions are allowed ~n the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.
The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.
DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).
See examples in Section 2.54, READ.



DEF FN<name>[«parameter list»]=<function definition>
SK, Extended, Disk
To define and name a function that is written by
theuser.
<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function: they do not affect program
variables that have the same name. A variable
name used in a function definition mayor may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.
The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the SK version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)
In Extended and Disk BASIC-SO, user-defined
functions may be numeric or string: in SK,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.
A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.



410 DEF FNAB(X,Y)=XA3/YA2
420 T-FNAB (I,J)

Line 410 de£ines the function
function is called in line 420.



DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR
Extended, Disk
To declare variable types as integer, single
precision, double precision, or string.
A OEFtype statement declares that the variable
names beginning with the letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a OEFtype statement in the typing of a
variable.
If no type declaration statements are"
encountered, BASIC-SO assumes all variables
without declaration characters are single
precision variables.
10 OEFOBL L-P All variables beginning with

the letters L, M, N, 0, and P
will be 'double precision
variables.
All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-ZAll variables beginning with
the letters I, J, K, L, M,
N, W, X, Y, Z will be integer
variables.



To specify the starting address of an assembly
language subroutine.
<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, OEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.
Any number of OEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary •

•200 OEF USRO-24000
210 X-USRO{YA2/2.89)



Purpose:
Remarks:

To dele~e program lines.
BASIC-SO always re~urns to command level after a
DELETE is execu~ed. If <line number> does not
exis~, an "Illegal func~ion call" error occurs.
DELETE 40
DELETE 40-100 Dele~es lines 40 through

100, inclusive
Deletes all lines up to
and including line 40



D~ <list of subscripted variables>
SK, Extended, Disk
To specify the maximum values for array variable
subscripts and allocate storaqe accordinqly.
If an array variable name is used without a D~
statement, the maximum value of its·subscript(s)
is assumed to be 10. If a subscript is used
that is qreater than the max~um specified, a
•Subscript out of. ranqe· error occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).
The D~ statement sets all the elements of the
specified arrays to an initial value of zero.
10 DIM A(20)
20 FOR I-O TO 20
30 READ A(I)
40 ~ I



Purpose:

Remarks:

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edi t Mode, BAS IC- 80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The SuDcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be 1.
Edit Mode suCcommands may be categorized
according to the following functions:
1. Moving the cursor

2. Inserting text

3. Deleting text

4. Finding text
s. Replacing text

6. Ending and restarting Edit Mode

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape
key.



Space Use the space bar to move the cursor to the
right. [ilSpace moves the cursor i spaces to
the.right. Characters are printed as .you space
over them.

Rubout In Edit Mode, [ilDELete moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text
I I<text>$ inserts <text> at the current cursor

position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line
longer than 255 characters, a bell (Control-G)
is typed and the character is not printed.

X The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been q iven. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text
D [i1D deletes i characters to the right of the

cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.
B deletes all characters to the
cursor and then automatically
mode. B is useful for replacing
the end of a line.

right of the
enters insert
statements at

4. Finding Text
S The subcommand [i]S<ch> searches for the ith

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of



the line. All characters passed over during the
search are printed.

K The subcommand (i]K<ch> is similar to (i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.
The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.
The Q subcommand returns to BASIC-SO command
level, without saving any of the changes that
were made to the line during Edit Mode.

L The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

If BASIC-SO receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.



When a Syntax Error is encountered during
execution of a program, BASIC-SO automatically
enters Edit Mode at the line that caused the
error. ror example:

10 K • 2(4)RON
?Syntax error in 10
10

When you finish editing the line and type
carriage Return (or the E subcommand), BASIC-SO
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination, first exit Edit Mode
with the Q subcommand. BASIC-SO will return to
command level, and all variable values will be
preserved.

T.oenter Edit Mode on the line you are currently
typing, type Control-A. BASIC-SO responds with
a carriage return, an exclamation point (1) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

Remember, if you have just entered a
line and wish to go back and edit it,
the command -EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.)



To terminate program execution, close all fi~es
and return to command level.
END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end .of a
program is optional. BASIC-SO always returns to
command level after an END is executed.



Purpose:
Remarks:

ERASE <list of array variables>
SK, Extended, Disk
To eliminate arrays from a program.
Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a ftRedimensioned array· error
occurs.
The Microsoft BASIC compiler does not support
ERASE •

•450 ERASE A,B
460 DIM B (99)



2. 19 E!! ~ ~ VARIABLES

When an error hand~ing subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF•••THEN statements to direct program
flow in the error trap routine.
If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 • ERL THEN •••
Otherwise, use

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.



Extended, Disk
1) To simula~e the occurrence of a BASIC-80
error 7 or 2) ~o allow error codes ~o be
defined by the user.
The value of <in~eger expression> mus~ be
greater than 0 and less than 255. If ~he value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statemen~ will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)
To define your own error code, use a value tha~
is greater than any used by BASIC-80's error
codes. (It is preferable ~o use the highest
available values, so compatibili~y may be
maintained when more error codes are added ~o
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)
If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which ~here
is no error trap routine causes an error message
~o be printed and execution to halt.

Example 1: LIST
10 S • 10
20 '1'- 530 ERROR S + '1'
40 END
Ok
RUN
String ~oo long in line 30

Ok
ERROR 15
String ~oo long
Ok

(you type this line)
(BASIC-80 types this line)



•110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

•400 IF ERR • 210 THEN PRINT "ROOSE LIMIT IS $5000"
410 IF ERL • 130 THEN RESUME 120



FIELD[.]<file number>,<field width> AS <string variable> •••
Disk
To allocate space for variables in a random file
buffer.
To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.
<file number>
was OPENed.
characters toFor example,

is the number under which the file
<field width> is the number of

be allocated to <string variable>.

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$
allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
pos~tions to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)
The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)
Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in' effect at the sametime.

Do not use a FIELDed variable name in an INPUTor 'LET'Statement. Once a -vir'iiE''le-name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.



SK, Extended, Disk
To allow a series of instructions to be
performed in a loop a given number of times.
<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if thevalue of the counter is now greater than
the final value (y). If it is not greater,
BASIC-SO branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR•••NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

initial
the step

of the
The body of the loop is skipped if the
value of the loop times the sign of
exceeds the final value times the sign
step.
Nested Loops
FOR•••NEXT loops may be nested, that is, a
FOR•••NEXT loop may be placed within the context
of another FOR•••NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The -NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.



om tted, in which case the NEXT statement will
match the most recent FOR statement. If a NEX'I'
statement is encountered before its
corresponding FOR statement, a -NEX'I'without
FOR- error message is issued and execution is
terminated.

Example 1: 10 K-10
20 FOR I-1 TO It STEP 2
30 PRINT I;
40 K-K+10
50 PRINT It
60 NEX'I'
RON

1 20
3 30
5 40
7 5-0
9 60

Ok
Example 2: 10 J-O

20 FOR I=1 TO J
30 PRINT I
40 NEX'I' I

In this example, the
because the initial
the final value.

loop does not execute
value of the loop exceeds

Example 3: 10 r-s
20 FOR I-1 TO I+S
30 PRINT I;
40 NEXT
RON

1 2 3 4 5 6 7 S 9 10
Ok
In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of BASIC-SO set the initial
value of the loop variable before setting the
final value; i.e. , the above loop would have
executed six times.>



GET [t]<file number>[,<record number>]
Disk
To read a record from a random disk file into a
random buffer.
<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.



Purpose:
Remarks: <line number> is

subroutine.
the first

\
A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.
The RETURN statement(s) in a subroutine cause
BASIC-SO to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should loqic dictate a return at
different points in the subroutine. Subroutines
may appear "anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.
10 GOSUB 40
20 PRINT "BACX FROM SUBROOTINE"
30 END
40 PRINT "SUBROUTINE"1
S'OPRINT " IN";
60 PRINT " PROGRESS"
70 RETtmN
RUN
SUBROOTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok



To branch unconditionally out of the normal
program sequence to a specified line number.
If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered aftar <line number>.
LIST
10 READ R
20 PRINT "R ·";R,
30 A a 3.14*RA2
40 PRINT "AREA ."~A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R • 5
R • 7
R • 12?Out of data
Ok

AREA •
AREA =-
AREA =-in 10

78.5
153.86
452.16



IF <expression> THEN <statement(s}> <line number>
[ELSE <statement(s}> I <line number>]
IF <expression> GOTO <line number>
[ELSE <statement(s}> I <line number>]
SK, Ex~ended, Disk
The ELSE clause is allowed only in Extended' and
Disk versions.
To make a decision regarding program flow based
on the result returned by an expression.
If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the nex~ executable statement. (ELSE is allowed
only in Ex~ended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nes~inq 2! B:. Statements
In the E~ended and Disk versions,
IF •••THEN •••ELSE statements may be nested.
Nes~ing is limited only by the length of the
line. For example
IF X>Y THEN PRINT IIGREATERIIELSE IF Y>X

THEN PRINT llLESS THAN IIELSE PRINT ••EQUAL"
is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example
IF A=B THEN IF a=c THEN PRINT IIA-C II

ELSE PRINT IIAOC"
will not print "A<>CII when A<>B.
If an IF •••THEN statement is followed by a
number in the direct mode, an IIUndefined
error results unless a statement with
specified line number had previously
entered in the indirect mode.

line
line II

the
been



When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation.of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

Example 1: 200 IF I THEN GETtl,I
This statement GETs record number I if I is not
zero.

Example 2: 100 IF(I<20)*(I>10) THEN OS-1979-1:GOTO 300
110 PRINT "OOT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG is zero, 'output goes to the line
printer, otherwise output goes to the terminal.



INPtJ1r[,l[<"prompt stringJl>,l<listof variables>
8K, Extended, Disk
To allow input from the terminal during program
execution.
When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.
If INPUT is immediately followed by
then the carriage return typed by
input data does not echo a carriage
feed sequence.
The data that is entered is assigned to
variable(s) given in <variable list>.
number of data items supplied must be the
as the number of variables in the list.
items are separated by commas.

a semicolon,
the user to

return/line

the
The

same
Data

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPU'r
statement need not be surrounded by quotation
marks.)
Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values is made until an acceptable
response is given.
In the 8K version, INPUT is illegal in the
direct mode.



10 INPUT
20 PRINT
30 END
RUN
? 5

x
X "SQUARED IS" XI\2

(The 5 was typed in by the user
in response to the question mark.)

5 SQUAlmD IS 25
Ok

LIST
10 PI-3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A-PI*RI\2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GaTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946
WHAT IS THE RADIUS?
etc.



INPUTt<file number>,<variable list>
Disk
To read data items from a sequential disk file
and assign them to program variables.
<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUTt, no question mark is printed, as
with INPUT.
The data items in the file should appear just as
they would if data were being typed in response
to an rNPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.
If BASIC~80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
firs~ character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string itam is being INPUT, the
item is terminated.



Purpose:
Remarks: If a KILL statement is given for a file that is

currently OPEN, a "File already open" error
occurs.
KILL is used for all types of disk files:
program files, random data files and sequential
data files.



[LET] <variable>-<expression>
SK, Extended, Disk
To assign the value of an expression to a
variable.
Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.
110 LET 0-12
120 LET E-12A2
130 LET F-12A4
140 LET SUM-D+E+F

110 0-12
120 E-12A2
130 F=-12A4
140 SUM=D+E+F



LINE INPUT[;][<"prompt string">;]<string variable>
Extended, Disk
To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.
The 'prompt string is a str~ literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>.
If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.
A LINE INPUT may be escaped by.typing Control-C.
BASIC-SO will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.



LINE INPUTt<file number>,<string variable>
Disk
To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.
<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE
INPUT. reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT' reads all characters up tothe next carriage· return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)
LINE INPUT. is especially useful
a data file has been broken into
BASIC-80 program saved in ASCII
read as data by another program.

if each line of
fields, or if a
mode is being

Example: 10 OPEN "O",1,"LIST"
20 LINE INPUT ItCUSTOMER INFORMATION? ";C$
30 PRINT .1, C$
40 CLOSE 1
50 OPEN "I",1,"LIST"
60 LINE INPUT t 1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 ME.'-1PHIS
LINDA JONES 234,4 MEMPHIS
Ok



LIST «line number>[-[<line number>]]]
Extended, Disk
To list all or part of the program currently in
memory at the terminal.
BASIC-80 always returns to command level after a
LIST is executed.
Format 1: If <line number> is omitted, the
proqram is listed beqinning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8X version will
list the program beginning at that liner and
the Extended and Disk versions will list only
the specified line.
Format 2: This format allows the following
options:
1. If only the first number is specified, that

line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.



Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line 500.

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.



To list all or part of the program currently in
memory at the line printer.
LLIST assumes a 132-character wide printer.
BASIC-SO always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.
LLIST and LPRINT are not included in
implementations of BASIC-SO.
See the examples for LIST, Format 2.



Purpose:
Remarks:

LOAD <filename>[,R]
Disk
To load a file from disk into memory.
<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)
LOAD closes all open files and deletes all
variables and proqram lines currently residing
in memory before it loads the designated
program. However, if the "R" option is us7d
with LOAD, the program is RUN after it J.S
LOADed, and all open data files are kept open.
'l'hus,LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.
LOAD "S'rR'rU",R



LPRINT USING <ftfor.matstringft>~<list of expressions>
Extended, Disk
To print data at the line printer.
Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.
LPRINT assumes a 132-character-wide printer.
LPRINT and LLIST are not included in
implementations of BASIC-aO.



LSET <string variable> • <string expression>
RSET <string variable> • <string expression>

To move data from memory to a random file buffer
(in preparation for a POT statement).
If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions, Section 3.25.
150 LSET A$-MKS$(AMT)
160 LSET D$-OESC($)
See also Appendix B.
LSET or RSET may also be used with
string variable to left-justify or
a string in a g~ven field. For
program lines

a non-fielded
right-justify
example, the

110 A$-SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.



To merge a specified disk file into the program
currently in memory.
<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.)
If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)
BASIC-SO always returns to command level after
executing a MERGE command.
MERGE "NUMBRS"



m are integer expressions and
and <string exp2> are string

where n and
<string exp1>
expressions.
Extended, Disk
To replace a portion of one string with another
string.
The characters in <string exp1>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2~ is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string exp1>.
10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$
RUN
KANSAS CITY, KS
MID$ may also be used as a function that returns
a substring of a given string. See Section
3.24.



PU.rJ?ose:
Remarks :

To change the name of a disk file.
<old filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the newname.
OkNAME IIACCTS " AS IILEDGER"
Ok
In this example, the file that was
formerly named ACCTS will now be named LEDGER.



To delete the proqram currently in memory and
clear all variables.
NEW is entered at command level to clear memory
before entering a new program. BASIC-SO always
returns to command level after a NEW is
executed.



8K, Extended, Disk
To set "thenumber of nulls to be printed at the
end of each line.
For 10-character-per-second tape punches,
<integer expression> should be >-3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should "be 2 or 3 for 30 cps hard copy printers.
The default value is o.
Ok
NULL 2
Ok
100 INPUT X
200 IF X<SO GaTO 800

•
•
•

Two null characters will be printed after each
line.



Extended, Disk
To enable error trapping and specify the first
line of the error handling subroutine.
Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an ·Undefined line"
error results. To disable error trapping,
execute an ON EUOR GOTO o. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-SO to
stop.and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.
If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.
10 ON ERROR GOTO 1000



ON <expression> GOTO <list of line numbers>
'ON <expression> GOSUB <list of line numbers>
SX, Extended, Disk
To branch to one of several specified line
numbers, depending on the value returned when an
expression is evaluated.
The value of <expression> determines
number in the list will be used for
For example, if the value is three,
line number in the list will be the
of the branch. (If the value is a
the fractional portion is rounded.)

which line
branching.
the third

destination
non-integer,

In the ON •••GOSUB statement, each line number in
the list must be the first line number of a
subroutine.
If the value of <expression> is negative, zero
or greater than the number of items in the list,
an "Illegal function call" error occurs.



Purpose:
Remarks:

OPEN <mode>, [il<file number>,<filename>,[<reclen>l
Disk

A disk file must be OPENed before any disk
operation can be performed on that f~le.
allocates a buffer for I/O to the file
determines the mode of access that will be
with the buffer.

I/O
OPEN

~d
used

<mode> is a string expression whose
character is one of the following:

o specifies sequentia~ output mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.
<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.
<reclen> is an integer expression which, if
included, sets the record length for r~dom
files. The default record length is 128 bytes.
See also page A-3.
A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.



OPTION BASE n
where n is 1 or 0
Extended, Disk
To declare the
subscripts.
The default base is O. If the statement

is executed, the lowest value an array subscript
may have is one.



Purpose:
Remarks:

OUT I,J
where: I and J are integer expressions in the
range 0 to 255.
aK, Extended, Disk
To send a byte to a machine output port.
The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.



Purppse:
Remarks:

POKE I,J
where I and J are integer expressions

To write a byte into a memory location.
The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. In the 8X version, I
must be less than 32768. In the Extended and
Disk versions, I must be in the range 0 to
65536.
With the 8X version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I • 45000-65536, or -20536.
The complementary funct.ionto POKE is PEEX. The
argument to PEEX is an address from which a byte
is to be read. See Section 3.27.
POKE and PEEX are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.



Purpose:
Remarks:

To output data at the terminal.
If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-SO divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon.causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.
If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-SOgoes to the next physical line and continues
printing.
Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus s~gn.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, 10A(-6) is output as
.000001 and 10A(-7) is output as 1E-7. Double
precision numbers that ean be represented with
16 or fewer digits in the unsealed format no
less accurately than they can be represented in
the sealed format, are output using the unsealed
format. For example, 10A(-16) is output as
.0000000000000001 and 10A(-17) is output as
10-17.



A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1: 10 X=S
20 PRINT X+S, X-S, X*(-S}, XJ\S
30 END
RUN

10 0 -2S 312S
Ok
In this example, the commas in the PRINT
statement cause each value to be printed at the
beginninq of the next print zone.

Example 2: LIST
10 INPUT X
20 PRINT X "SQUARED IS" XJ\2 "AND";
30 PRINT X "COBED IS" XJ\3
40 PRINT
SO GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729
? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

Example 3: 10 FOR X :II 1 TO S
20 J=J+S
30 K=K+10
40 ?J;K;
SO NEXT X
Ok
RUN

S 10 10 20 1S 30 20 40 2S SO
Ok
In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.



Remarks
and
Examples:

PRINT USING <"format string">;<list of expressions>
Extended, Disk
To print.strings or numbers using a specified
format.
<list of expressions> is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. <"format
string">, enclosed in quotation marks, is
comprised of special formatting characters.
These formatting characters (see below)
determine the field and the format of the
printed strings or numbers.

String Fields
When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

"!" Spec~fies that only the first character in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is longer than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:
10 A$-"LOOX":B$-"OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING "\ \" ;A$';B$
SO PRINT USING "\ \";A$;B$;"!!"
RON
LO
LOOKOUT
LOOK OUT !!



"&" Specifies a variable length string field. When
the field is specified with "&If, the string is
output exactly as input. Example:
10 A$a"LOOK":B$-"OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN
LOUT

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:
A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.
A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.
PRINT USING "#1.+.-;.78

0.78
PRINT USING ".II.tt";987.654
987.65
PRINT USING "ti.it ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23
In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.
A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.



A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.
PRINT USING "+tt.ti ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90
PRINT USING "tt.ti- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-
A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.
PRINT USING "**i.t ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$. A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.
PRINT USING "$$llt.#i";456.78$'456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.
PRINT USING "**$#i.#t";2.34
***$2.34
A comma that is to the left of the decimal point
in a for.matting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.
PRINT USING "itii,.ii";1234.5
1,234.50
PRINT USING "iiii.ii,";1234.5
1234.50,



AAAA Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign. .
PRINT USING "tt.tiAAAA";234.S6

2.3SE+02
PRINT USING ".iiitAAAA-";888888

.8889E+06
PRINT USING "+.ttAAAA";123
+.12E+03
An underscore in the format string causes the
next character to be output as a literal
character.
PRINT USING" 1il.##_1";12.34
112.341

The literal character itself may be an
underscore by placing "__" in the format string.
If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number.
PRINT USING "#I.ii":111.22
'111.22
PRINT USING ".#''';.999
'1.00
If the number of digits specified exceeds 24, an
"Illegal function call" error will result.



Purpose:
Remarks:

PRINTi<filenumber>,[USING<"format string">1]<list of exps:
Disk
To write data to a sequential disk file.
<filenumber> is the number used when the file
was OPENed for output. <"format string"> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.
PRZNTt does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.
In the list of expressions, numeric
should be delimited by semicolons.

expressions
For example,

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)
String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.
For example, let A$="CAMERA" and 5$=-"93604-1".
The statement

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINTi statement as follows:



which can be read back
variables.
If the strings themselves contain
semicolons, significant leading blanks,
returns, or line feeds, write them
surrounded by explicit quotation
CHR$(34).

commas,
carriage
to disk

marks,

For example, let A$-"CAMERA, AUTOMATIC" and
B$-" 93604-1". The statement

would input "CAMERA" to
"AUTOMATIC 93604-1" to B$. To
strings properly on the disk,
quotes to the disk image using
statement

A$ and
separate these
write double

CHR$ (34). 'The

"CAMERA, AUTOMATIC""
and the statement

would input "CAMERA, AUTOMATIC" to
" 93604-1" to B$.
The PRINTt statement may also be used with the
USING option to control the format of the disk
file. For example:
PRINT#1,USING"$$###.##,";J;K;L



PUT [i]<file number>[,<record number>]
Disk
To write a record from a random buffer to a
random disk file.
<file number> is the number under which the file
was OPENed. I"f<record number> is omitted, the
record will have the next avai~able record
number (after the last PUT). The largest
possible record number is 32767.
See Appendix B.



RANDOMIZE «expression>]
Extended, Disk

If <expression> is
program execution
printing

Random Number Seed (0-65529)?

omitted, BASIC-80 suspends
and asks for a value by

If ~e random number generator is not reseeded,
the RND function returns ~e same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RON.
10 Rk'mOMIZE
2.0 FOR I-1 TO 5
30 PRINT RND J
40 NEXT I
RON
Random Number Seed (0-65529)? 3 (user types 3)

.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (0-65529)? 4 (user types 4
for new sequence)

.803506 .162462 .929364 .292443 .322921
Ok
RONRandom Number Seed (0-65529)? 3 (same sequence
as first RUN)

.88598 .484668 .586328 .119426 .709225
Ok
With the BASIC Compiler, the prompt given by
RANDOMIZE is:

Random Number Seed (-32768 to 32767)?



8K, Extended, Disk
To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10.)
A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a ~Syntax
error" will result.
A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several~. statements may access
the same DATA statment. If the num}:)erof
variables in <list of variables> exceeds the
numJ::)erof elements in the DATA statement(s), an
OUT OF DATA messaqe is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement (s), subsequent
READ statements will beqin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.
To reread DATA statements from
the RESTORE statement (see
2.57)

the start, use
RESTORE, Section

•80 FOR 1=1 TO 10·
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.31

Thia proqram.segment READs the values
DATA statements into the array
execution, the value of A(1) will be
so on.

from the
A. After
3.08, and



Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RON '
CITY STATE ZIP
DENVER, COLORADO 80211
Ok
This program READs string and numeric data from
the DATA statement in line 30.



SK, ~ended, Disk
To allow explanatory remarks to be inserted in a
program.
REM statements are not executed but are output
exactly as entered when the program is listed.
REM statements may be branched into (from a GaTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.
In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
:REM •

•120 REM CALCULATE AVERAGE VELOCITY
130 FOR I-1 TO 20
140 SUM-SUM + VeIl

120 FOR I-1 TO 20
130 SUM-SUM+V (I)
140 NEXT I



Purpose:
Remarks:

RENUM [[<new number>] [,[<old number>] [,<increment>]]]
Extended, Disk
To renumber program lines.
<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.
RENCH also changes all line number references
following GOTO, GOSUB, THEN, ON •••GOTO,
ON •••GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be .changed.
RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 30G,,50 Renumbers the entire pro-
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.



8K, Extended, Disk
To allow DATA statements to be reread from a
specified point.
After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

Example: 10 READ A,B,C
20 RESTOBE
30 READ D,E,F
40 DATA 57, 68, 79

•
•
•



RESUME
RESUME 0

To continue program execution after an error
recovery procedure has been performed.
Anyone of the four formats shown above may be
used, depending upon where execution is to
resume:
RESUME

or
RESUME 0

Execution resumes at the
statement which caused the
error.
Execution resumes at the
statement immediately fol-
lowing the one which

.caused the error.
RESUME <line number> Execution resumes at

<line number>.
A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to be printed.
10 ON ERROR GOTO 900

900 IF (ERR-230) AND (ERL=90) THEN PRINT ftTRY
AGAIN" :RESUME 80



Purpose:
Remarks:

Purpose:
Remarks:

RON [<line number>]
SX Ex~ended, Disk
To execu~e the program currently in memory.
If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. BASIC-SO always returns
to command level after a RUN is executed.

RON <filename> [,R]
Disk
To load a file from disk into memory and run it.
<filename> is the name used when the file was
SAVEd. The default
ex~ension .BAS is supplied.
RON closes all open
current contents of
designated program.
option, all data files
RON "NEWFIL",R

files and deletes
memory before loading
However, with the
remain OPEN.

the
the
"R"



Purpose:
Remarks:

SAW <filename> [,A I ,P]
Disk
To save a program file on disk.
<filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.
Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires an ASCII
format file, and some operating system commands

may require an ASCII format file.
Use the P option to protect the file by saving
it in an encoded binary for.mat. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAW"COM2",A
SAWnpROG",P
See also Appendix B.



SK, Extended, Disk
To terminate program execution and return to
command level.
STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Unlike the END statement, the STOP' statement
does not close files.
BASIC-SO always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.S).
10 INPUT A, B, C
20 K-AA2*5.3:L-BA3/.26
30 STOP
40 M-C*K+100:PRINT M
RON
? 1,2,3
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok



Purpose:
Remarks: Any type variable may be S~ped (integer,

single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatchn error results.
LIST
10 A$-" ONE n': B$-" ALL " : C$-ItFOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 P~NT A$ C$ B$
RON
Ok

ONE FOR ALL
ALL FOR ONE

Ok



Purpose:
Remarks: As an aid in debugging, the TRON statement

(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON
Ok
LIST
10 K-10
20 FOR J-1 TO 2
30 L-K + 10
40 PRINTJ1K,L
SO K=K+10
60 NEXT
70 END
Ok
RUN
[10][20][30][40] 1 10 20
[SO] [60][30][40] 2 20 30
[SO] [60][70]
Ok
TROFF
Ok



WAIT <port number>, I[,J]
where I and J are integer expressions
SK, Extended, Disk
To suspend program execution while monitoring
the status of a machine input port.
The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive ORIed with the integer
expression J, and then AND Ied with I. If the
result is zero, BASIC-SO loops back and reads
the data at the port again. If the result is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero.
It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.



•[<loop statements>]

To execute a series of statements in a loop as
long as a given condition is true.
If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.
WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "~ieNDwithout WEILEn er~or.

90 'SUBBLE SORT ARRAY A$
100 FLIPS-1 'FORCE ONE PASS
110 WHILE FLIPS
115 FLIPS-O
120 FOR I-1
130

TO J-1
IF A$(I»A$(I+1) THEN

SWAP A$(I),A$(I+1):FLIPS-1
140
150 WEND



WIDTH [LPRINT] <integer expression>
Extended, Disk
To set the printed line width in number of
characters for the terminal or line printer.
If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.
<integer expression> must have a value in the
range 15 to 255. The default width is 72
characters.
If <integer expression> is 255, the line width
is "infinite," that is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.



Purpose:
Remarks:

W~TE[<list of expressions>]
Disk
To output data at the 'terminal.
If <list of expressions> is omitted, a blank
line is output. If <list of expressions> is
included, the values of the expressions are·
output at the terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.
When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.
~TE outputs numeric values using the same
format as the PRINT statement, Section 2.49.
10 A-SO:B-90:C$=TRAT'S ALL
20 ~TE A,B,C$
RUN

SO, 90,nTRAT'S ALLn
Ok



Purpose:
Remarks:

WRXTE#<file number>,<list of expressions>
Disk
To write data to a sequential file.
<file number> is the number under which the file
was OPENed in "0" mode. The expressions in the
list are strinq or numeric expressions, and ~~ey
must be separated by commas.
The difference between WRITE' and PRINT; is that
WRITE; inserts commas between the items as
they are written to disk and delimits st:inqs
with quotation marks. Therefore, it is not
necessary for the user to put ·explicit
delimiters in the list. A carriaqe return/line
feed sequence is inserted after the last item in
the list is written to disk.
Let A$-"CA&.'mRA n

statement:
WRITE,1,AS,B$

writes the followinq imaqe to disk:





The in~insic fun~ions provided by BASIC-SO are presented
in this chapter. The functions may be called from any
proqram without further definition.
Arquments to functions are always enclosed in parentheses.
In the formats qiven for the functions in this chapter, the
arquments have been abbreviated as follows:

X and Y
I and J

X$ and Y$

Represent any numeric expressions
Represent inteqer expressions
Represent strinq expressions

If a floatinq point va~ue is supplied where an inteqer is
required, BASIC-SO wil~ round the fractional portion and use
the resultinq inteqer.



SK, Extended, Disk
Returns the absolute value of the expression X.
PRINT ABS(7*(-S»

35
Ok

8K, Extended, Disk
Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix L for ASCII codes.) If X$ is null, an
ftIllegal function callft error is returned.
10 X$ • ftTESTft

20 PRINT ASC (X$)
RUN

84
Ok
See the CRR$ function
conversion.



aR, Extended, Disk
Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.
10 INPUT X
20 PRINT ATN (X)
RUN
? 3

1.24905
Ok

10 A =- 454.6720 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344
Ok



Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix L.)
CHR$ is commonly used to send a spec~al
character to the terminal. For instance, the
BEL character could be sent (CHR$(7») as a
preface to an error message, or a form feed
could be sent (CHR$(12)) to clear a CRT screen
and return the cursor to the home position.
PRINT CHR$ (66)
B
Ok
See the ASC function
conversion.

Extended, Disk
Converts X to an integer by rounding . the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.
PRINT CINT(4S.67)

46
Ok
See the CDSL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.



8K, Extended, Disk
Returns tile cosine of X
calculation of COS(X) is
precision.
10 X • 2*COS(.4)
20 PRINT X
RUN

1.84212
Ok

in radians. The
performed in single

10 Ai • 975.3421.
20 PRINT Ai; CSNG(A#)
RUN

975.3421" 975.342
Ok
See the C!NT and CDSL functions for converting
numbers to tileinteger and double precision data
types.



CVI«2-byte string»
CVS«4-byte string»
CVD«S-byte string»
Disk
Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an S-byte
string to a double precision number •

•70 FIELD #1,4 AS N$, 12 AS B$, •••
SO GET #1
90 Y=CVS(N$)

See also MKI$, MKS$, MKD$, Section 3.25 and
Appendix B.

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input·
past end" errors.
10 OPEN "I",1,"DATA"
20 C=O
30 IF EOF(1) THEN 100
40 INPUT if 1 ,M (C)
50 C=C+1:GOTO 30



8K, Extended, Disk
Returns e to the power of X. X must be
<a87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.
10 X = 5
20 PRINT EXP (X-1)
RUN

54.5982
Ok

Returns the truncated integer part of X. FIX (X)
is equivalent to SGN(X)*INT(ABS(X». The major
difference between FIX and INT is that FIX does
not retu-~ the next lower number for negative X.
PRINT FIX(58.75)

58
Ok
PRINT FIX(-58.75)
-58
Ok



FRE (0)
FRE (X$)

Arguments to PRE are dummy arguments. If ~~e
argument is 0 (numeric), FRE returns 1:11enumber
of bytes in memory not being used by BASIC-SO.
If the argument is a string, FRE returns the
number of free bytes in string space.
PRINT FRE(O)

14542
Ok

Returns a
hexadecimal
rounded to
evaluated.

string which represents
value of the decimal argument.

an integer before HEX$(X)

10 INPUT X
20 A$ :It HEX$ (X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RON
? 32

32 DEC~ IS 20 HEXADECIMAL
Ok

the
X is

is



SK, Extended, Disk
Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement, Section 2.47.

Action: Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

Example 1: 5' LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL
100PEN"I",1,"OATA"
20 IF EOF(1) THEN 50
30 PRINT HEX${ASC{INPUT${1,.1»):
40 GOTO 20
50 PRINT
60 END

•100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="plI THEN 500
130 IF X$=IIS" THEN 700 ELSE 100



Extended, Disk
Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
therange 0 to 255. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or
string literals.
10 X$ • "ABCDEB"
20 Y$ =- "B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6
Ok

SK, Extended, Disk
Returns the largest integer <=X.
PRINT INT (99.89)

99
Ok
PRINT INT(-12.11)
-13
Ok
See the FIX and CINT functions which also return
integer values.



SK, Extended, Disk
Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
25'5. If I is greater than LEN (X$), the entire
string (X$) will be returned. If I-O, the null
string (length zero) is returned.
10 A$ - "BASIC-SO"
20 B$ • LEFT$ (A$,5)
30 PRINT B$
BASIC
Ok

Returns the number of characters in X$.
Non-printing characters and blanks are counted.
10 X$ =- "PORTLAND, OREGON"
20 PRINT LEN (X$)

16
Ok



With random disk files, Loe returns the next
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written
to the file since it was OPENed.

8K, Extended, Disk
Returns the natural logarithm of X. X must be
greater than zero.
PRINT LOG (45/7)

1.86075
Ok-



Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

SK, Extended, Disk
Returns a string of length J characters from X$
beginning with the Ith character. I and J must
be in the range 0 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I>LEN(X$), MID$ returns a null string.
LIST
10 A$="GOOD ••
20 B$_nMORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVENING
Ok



MKI$«integer expression»
MKS$«single precision ~~ression»
MKD$«double precision expression»
Disk
convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an a-byte
string.
90 AMTw(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ • MKS$(AMT)
120 LSET N$ • A$
130 POT #1

See also CVI, CVS, evo, Section 3.9 and Appendix
B.

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.
PRINT OCT$(24)

30
Ok
See the HEX$
conversion.

I

for



Returns the byte (decimal integer in the range a
to 255) read from memory location I. With the
SK version of BASIC-SO, I must be less than
3276S. To PEEK at a memory location above
3276S, subtract 65536 from the desired address.
With Extended and Disk BASIC-aO, I must be in
the range a to 65536. PEEK is the complementary
function to the POKE statement, Section 2.4S.

Returns the current cursor position. The
leftmost position is o. X is a dummy argument.



Re~urns the rightmos~ I charac~ers of s~ring X$.
If I-LEN(X$), re~urns X$. If I-O, the null
s~ring (length zero) is re~urned.
10 A$-HDISK BASIC-SO·
20 PRINT RIGHT$ (A$,S)
RUN
BASIC-SO
Ok

SK, Ex~ended, Disk
Returns a random number be~ween 0 and 1• The
same sequence of random numbers is qenera~ed
each ~ime the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<O always restarts the
same sequence for any given X.
X>O or X omitted generates the nex~ random
number in the sequence. X=O repeats the last
number generated.
10 FOR I-1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN

24 30 31 51 5
Ok



If X>O, SGN(X) returns 1.
It X-O, SGN(X) returns O.
It X<O, SGN(X) returns -1.
ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is
positive.

SK, Extended, Disk
Returns the sine of X in
calculated in
COS(X)-S~(X+3.14159/2).
PRINT SIN (1.5)

.997495
Ok

radians.
single

SIN (X) is
precision.



SK, Extended, Disk
Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range 0 to 255.
10 FOR I • 1 TO 5
20 X$ = SPACE$ (I)
30 PRINT X$;I
40 NEXT I
RUN

1
2

3
4

5

SK, Extended, Disk
Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be'in the range 0 to 255.
PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok



SK, Extended, Disk
Returns the square root of X. X must be >-0.
10 FOR X
20 PRINT
30 NEXT
RUN

10
15
20
25

Ok

• 10 TO 25 STEP 5
X, SQR(X)

3.16228
3.87298
4.47214
5

Returns a string representation of the value of
X.
5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER"; N
20 ON LEN(STR$(N» GOSUB 30,100,200,300,400,500



STRING$(I,J)
STRING $ (I,X$)

Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.
10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT----------
Ok

Action: .Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 0 is the leftmost position, and the right-
most position is the width minus one. I must be
in the range 0 to 255. TAB may only be used in
PRINT and LPRINT statements.
10 PRINT "NAME" TAB (25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME AMOUNT

G. T. JONES
Ok



Returns the t.angent.of X in radians. TAN (X) is
calculated in single prec1s10n. If TAN
overflows, the "Overflow" error message is
displayed, machine infinit.ywith the appropriat.e
sign is supplied as t.he result., and execut.ion
continues.

SK, Extended, Disk
Calls the user's assembly language subroutine
with the argument X. <digit> is allowed in the
Extended ~~d Disk versions only. <digit> is in
the range 0 t.o9 and corresponds t.othe digit.
supplied with the DEF USR st.atement for that
routine. If <digit> is omitted, USRO is
assumed. See Appendix c.
40 B =- T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)



Re~urns the numerical value of s~inq X$. If
the firs~ character of X$ is no~ +, -, &, or a
di.git,.VAL (X$)-0 •.
10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$»96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$»-90801 AND VAL(ZIP$)<-90815 THEN
PUNT NAME$ TAB (25) "LONG BEACH"

See the STR$ func~ion for numeric to s~inq
conversion.



Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.
VARPTR is usually used to obtain the.address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(O» is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.
All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.
Format 2: Returns the starting address of the
disk I/O buffer assigned to <file number>.
In Standalone Dis~ BASIC, VARPTR(i<file number»
returns the first byte of the file block. See
Appendix H.





The execution of BASIC programs written under Microsoft
BASIC, release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run
such programs, check for the following:

1• New reserved words: CALL, CHAZN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
Ii-2.5 results in Ii-3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the 5th position, A(1.5) yeilds A(2), and X=11.5
MOO 4 yields 0 for X).

The body of a FOR •••NEXT loop is skipped if
initial value ~f the loop times the sign of
step exceeds the final value times the sign of
step. See Section 2.22.

4. Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

the
the
the

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.49.

7. String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4.



8. Responding to INPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, etc.), or with a carriage return causes the
message R?Redo from startR to be printed. No
assignment of input values is made until an
acceptable response is given.

9. There ·are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

10. If the expression supplied with t~e WIDTH statement
is 2SS, BASIC uses an RinfiniteR line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

11. The at-sign and underscore are no longer used as
editing characters.

12. Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 2SS characters.

13. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.



In CP/M' BASIC-SO, release 5.0, a number of addi-
tions have been made to disk I/O capability:
1. After a GET statement, INPUTi and LINE INPUTt may be done

to read characters from the random file buffer. PRINTt,
.PRINTt USING, and WRITEt may also be used to put characters
in the random file buffer before a PUT statement.
In the case of'WRITEt, BASIC-SO pads the buffer with spaces
up to the carriage return. Any attempt to read or write
past the end of the buffer causes a "Field overflow" error.

2. /S:<max record size> may be added at the end of the command
line to set the maximum record size for use with random
files. The default record size is 128 bytes.

A new feature has been added to the INPUT statement. A comma
may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement
INPUT "ENTER BIRTHDATE",B$ will print the prompt with no
question mark.





APPENDIX B
BASIC-SO Disk I/O

Disk I/O procedures for the beginning BASIC-SO user are
examined in this appendix. If you are new to BASIC-SO or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.
Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

Here is a review of the commands and statements used in
program file manipulation.

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)
Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.



RUN "filename" loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.
Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and BASIC returns
to command level.
Deletes the file from the disk.
"filename" may be a program file, or a
sequential or random access data file.
To change the name of a disk file,
execute the NAME statement, NAME
"oldfile" AS "newfile". NAME may be
used with program files, random files,
or sequential files.

If you wish to save a program in an encoded binary format,
use the "Protect" option with the SAVE command. For
example:

SAVE "MYPROG",P
A program saved this way cannot be listed or edited.



There are two types of disk data files ~~at may be created
and accessed by a BASIC-SO program: sequential files and
random access files.

B.3~1 Sequential Files
Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.
The statements and functions that are used with sequential
files are:

PRINT# INPUT#
PRINT# OSING LINE INPUT#

The following program steps are required to create a
sequential file and access the data in the file:

2. Write data to the file
using the PRINT# statement.
(WRITE. maybe used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in "I" mode.

CLOSEt'1OPEN "I",,1,"DATA"

4. Ose the INPUTi statement to
read data from the sequential
file into the program.

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.



10 OPEN "O",#1,"DATA"
20 INPUT "NAME";NS.
2S IF NS."DONE" THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";H$
50 PRINTt1,N$;",";D$;",";H$
60 PRINT:GOTO 20
RUN

NAME? MICKEY MOUSE
DEPARTMENT? AODIO!VISUAL AIDS
DATE HIRED? 01/12/72
NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65
NAME? EBENEEZER SCROOGE
DEPA.~~n? ACCOUNTING
DATE HIRED? 04/27/78
NAME? StJPERMANN
OEPARTMENT? ~.AINTENANCE
OATE HIRED? 08/16/78



Now look at Program B-2. It accesses the file "DATA" that
was created in Program B-1 and displays the name of everyone
hired in 1978.

10 OPEN "I",t1,"OATA"
20 INPUTt1,N$,D$,H$
30 IF RIGHT$ (H$,2).n7S" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
1S which uses the EOF function to test for end-of-file:

A program that creates a sequential file can also write
formatted data to ~~e disk with the PRINT# USING statement.
For example, the statement

PRINT#1,USING"#ttt.tt,";A,B,e,o
could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.
The Loe function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block
of data.

B.3.1.1 Adding ~!£ ~ Seauential File -
If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "0" mode and start writing data. As soon
as you open a sequential file in "0" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "~AMES".



7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUTt to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.



10 ON ERROR GOTO 2000
20 OPEN "I", t1,"NAMES'·
30 REM IF FILE EXISTS, WRITE IT TO '·COPY"
40 OPEN II0" ,i2,"COpy'·
50 IF EOF (1) THEN 90
60 LINE INPUTi1,A$
70 PRINTt2,A$
80 GOTO 50
90 CLOSE .1
100 KILL -NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME" ;N$
130 IF N$-"" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? "iA$
150 LINE INPUT "BIRTHDAY? "iB$
160 PRINTt2,N$
170 PRINTt2,A$
180 PRINTt2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO ··NAMES"
210 NAME "COpy" AS "NAMES ,.
2000 IF ERR-53 AND ERL=20 THEN OPEN "0",t2,IICOPY":RESUME 120
2010 ON ERROR GOTO 0

The error trappinq routine in line
not exist" error in line 20.
statements that copy the file are
created as if it were a new file.

2000 traps a "File
If this happens,

skipped, and "COpy'·
does

the
is

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)
The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.
The statements and functions that are used with random files
are:



MKI$ CVI
MKS$ CVS
MKD$ CVD

B.3.2.1 Creating A Random File -
The following program steps-ari required to create a random
file.

OPEN the file for random
access ("R" mode). This example
specifies a record length of 32
bytes.If the record length is
omitted, the default is 128
bytes.
Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

FIELD i1 20 AS N$,
4 AS A$, 8 AS P$

Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
"make" functions: MKI$ to
make an integer value into a
string, MKS~ for a single
precision value, and MKD$ for
a double precision value.

~SET N$=X$
LSET A$=MKS $ (AMT)
LSET P$=TEL$

Write the data from
the buffer to the disk
using the PUT statement.

Look at Program B-4. It takes information that is input at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.



Do not. use a
variable in
st.at.ement..
point.er for
point. int.o
inst.ead of
buffer.

FIELDed st.ring
an INPUT or LET

This causes the
that. variable to

st.ring space
the random file

10 OPEN "R"i1,"FILE"
20 FIELD .1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-0IGIT COOE";COOE\
40 INPUT "NAME" ;X$
SO INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$:PRINT
70 LSET N$=X$
80 LSET A$-MKS$(AMT)
90 LSET P$=TEL$
100 PUT t1,CODE\
110 GOTO 30

5.3.2.2 Access A Random File -
The following program st.eps are required t.o access a random
file:

Use" the FIELD st.atement.t.o
allocat.e space in the random
buffer for t.he variables that
will be read from the file.

FIELD #1 20 AS N$,
4 AS A$, 8 AS P$

NOTE:
In a program that. performs both
input. and out.put.on the same random
file, you can oft.en use just one
OPEN st.atement and one FIELD
st.at.ement.



Use the GET statement to move
the desired record into the
random buffer.

The data in the buffer may
now be acessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
termina~, the information associated with that code is read
from ~e file and displayed.

PRINT N$
PRINT CVS(A$)

10 OPEN "R",t1,nFILE"
20 FIELD '1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET .1, CODE%
50 PRINT N$
60 PRINT USING "$$t#t.#t";CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

The LOC function, with random files,
record number." The current record
last record number that was used in a
For example, the statement

returns the "current
number is one plus the
GET or PUT statement.

ends program execution if the current record number in
filet1 is higher than 50.
Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will·
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.



I PROGRAM B-6 - INVENTORY I
120 OPEN "R",#1,"rNVEN.DAT",39
125 FIELDt1,1 AS F$,30 AS 0$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,'!INITIALIZE FILE"
140 PRINT2,"CREATE A NEW ENTRY"
150 PRINT 3,"OISPLAY rNVENTORY FOR ONE PART"
160 PRINT 4,"ADO TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT. 6,"OISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT: PRINT: INPUT" FUNCTION" ;FUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":GOTO 131
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC (F$)<>255 THEN INPUT"OVERWRITE" ;A$: IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(O)
290 INPUT "OESCRIPTION";DESC$
300 LSET O$=OESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$-MKI$(Q%) .
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$-MKS$(P)
370 PUTt1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETORN
420 PRINT USING "PART NUMBER .t#";PART%
4:30 PRINT 0$
440 PRINT USING
450 PRINT USING
460 PRINT USING
470 RETURN
4-80 REM ADO TO STOCK
4:90 GOSOB840
500 IF ASC(F$)=255 T~ PRINT "NULL ENTRY":RETORN
5tO PRINT O$:INPUT "Q~ANTITY TO ADO ";A%
520 Q%-CVI(Q$)+A% \
530 LSET Q$=MKI$(Q%)
540 PUTt1,PART%
550 RETURN
560 REM REMOVE FROM STOC.'"{
570 GOSOB 840
580 IF ASC (F$)=255 THEN PRINT "NULL ENTRY": RETURN
590 PRINT 0$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$)
620 IF (Q%-5%)<0 THEN PRINT "ONLY";Q%i" IN 5TOCI<":GOTO 600
630 Q%=Q%-5%
640 IF Q%=<CVI{R$) THEN PRINT "QUANTITY NOW";Q%i" REORDER LEVEL";CVI{R$)
650 LSET Q$=MKI$(Q%)
660 PUTt 1,PART%

"QUANTITY ON HAND ttttt";CVI{Q$)
"REORDER LEVEL i##t#";CVI(R$)
"UNIT PRICE $$##.ii";CVS(P$)



670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=1 TO 100
710 GET.1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT 0$;" QUANTITY";CVI(Q$) TAB(50)

If REORDER LEVEL"; CVI (R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART%
850 IF(PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":GOTO 840

ELSE GETt1,PART%:RETURN
890 END
900 REM INITLALIZE
910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=1 TO 100
940 POT.1,I
950 NEXT I
960 RETORN



All versions of BASIc-ao have prov~s~ons for interfacing
with assembly language subroutines. The USR Function allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

The addresses of the DEINT,
GIVABF, MAKIN'l' and FRCINT
routines are stored in loca-
tions that must be supplied
individually for different im-
plementations of BASIC.

Memory space must be set aside for an assembly language
subroutine- before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.
When an assembly language subroutine is called, the stack
pointer is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.



The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-SO or FORTRAN-SO package)
routines may be assembled with MACRO-SO and loaded using
LINK-SO.

C.2 USR FUNCTION CALLS - !!BASIC
The starting address of the assembly language. subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-80. With 8K BASIC, the starting address may be POKEd
intoUSRLOC. Store the low order byte first, followed by
the high order byte.
The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an MIllegal function call" error results.

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)
To pass the result back from an assembly language
subroutine, load the value in register pair [A,B], and call
the routine GrvABF. If GrvABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.
For example, here is an assembly language subroutine that
multiplies the argument by 2:
USRSUB: CALL DEINT

XCHG
DAD H
MOV A,R
MOV B,L
JMP GrvABF

:put arg in D,E
;move arg to H,L
;H,L=H,L+H,L
imove result to A,B

Note that valid results will be obtained from this routine
for arguments in the range -16384<=x<=16383. The single
instruction JMP GrvABF has the same effect as:



CALL GIVABF
RET

To return additional values to the program, load them into
memory and read them with the PEEK function.
There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

In the Extended and Disk versions, the format of the USR
function is

where <digit> is from 0 to 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEl' USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.
When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:
Value in A !m!. g! Argument

2 Two-byte integer (two's complement)
3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument i~ a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.



FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive, 1-negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

If ~e argument is a double precision floating point number:
FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string
255).
8 bits

argument is a string, the [D,El register pair points
bytes called the "string descriptor." Byte 0 of the
descriptor contains the length of the string (0 to

Bytes 1 and 2, respectively, are the lower and upper
of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +" II to the string
literal in the program. Example:

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.
Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,LJ as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

POSH
LBLD
X'l'HL

H
xxx

1save value to be returned
1get address of MAKINT routine
;save return on stack and
;get back [H,Ll
1return

Also, the argument of the function, regardless of its type,
may be forced to an integer by callinq ~~e FRCINT routine to
get the integer value of the argument in [H,LJ. Execute the
following routine:

LXI H ;get address of subroutine
;continuation

PUSH H ;place on stack \~.
LHLD xxx ;get address of FRCINT
PCHL

SUB1 : • • . • .



Extended and Disk BASIC-80 user
made' with the CALL statement.
the same as that in Microsoft's
compilers.
A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

function calls may also be
The calling sequence used is

FORTRAN, COBOL and BASIC

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For. each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each,regardless of type.
The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in aL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
correct number or type of parameters.
If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORT~~
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is



responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5
parameters, it should look like:

P1:
P2:
P3:

SHLD
XCHG
SHLD
MVI
LXI
CALL

P1

P2
A,3
H,P3
$AT

;SAVE PARAMETER 1
;SAVE PARAMETER 2
;NO. OF PARAMETERS LEFT
;POINTER TO LOCAL AREA
;TRANSFER THE OTHER 3 PARAMETERS

•[Body of subroutine]

•RET
OS
OS
OS

;RETURN TO CALLER
;SPACE FOR PARAMETER 1
;SPACE FOR PARAMETER 2
;SPACE FOR PARAMETERS 3-5

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

.,
i[B,C]
; (H,L]
; [A]

ARGUMENT TRANSFER
POINTS TO 3RO PARAM.
POINTS TO LOCAL STORAGE FOR PA.~ 3
CONTAINS THE i OF PARAMS TO XFER (TOTAL-2)

ENTRY $AT
$AT: XCHG

MOV H,B
MOV L,C

AT1 : MOV C,M
L,'nC H
MOV B,M
INX H
XCHG
MOV M,C
INX B
MOV M,B
INX B
XCHG
OCR A
JNZ AT1
RET

i[B,C] = PARAM ADR
i[H,L] POINTS TO LOCAL STORAGE

iSTORE PARAM IN LOCAL AREA
iSINCE GOING BACK TO AT1
;TRANSFERRED ALL PA.~S?
iNO, COpy MORE
;YES, RETURN



When accessing parameters in a subroutine, don't forget that
they are pointers to the actual arguments passed.

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match innumber,~,
and lenath with the parameters
expecte by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the subroutine, since
an interrupt automatically disables all further interr~pts
once it is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that"has been supplied. Note to CP/M users: in CP/M
BASIC, all interrupt vectors are free.)





The CP/M version of BASIC-80 (11BASIC) is
5 1/4 inch Vector Graphic compatible diskette.
file is MBASIC.COM. (A 28K or larger
recommended.)

supplied on a
The name of the

CP/M system is

To run MBASIC, bring up CP/M and type the following:
A>MBASIC <carriage return>

The system will reply:
xxxx Bytes Free
BASIC-SO Version 5.0
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

The initialization dialog has been replaced by a set of
options which are placed after the MEASIC command to CP/M.
The format of the command line is:

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used ~~ none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the
batch stream to execute.



If /F:<number of files> is present, it sets the number of \
disk data files that may be open at anyone time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.
The /M:<highest memory location> option sets' the highest
memory location that will be used by MEASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M's FDOS to reserve space ?or assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is-contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FDOS is used.

Both <number of files> and
<highest memory location> are
numbers that may be either
decimal, octal (preceded by
&0) or hexadecimal (preceded
by &H).

Use all memory and 3 files,
load and execute PAYROLL.BAS.
Use all memory and 6 files,
load and execute INVENT.BAS.
Use first 32K of memory and
3 files.

A>MBASIC DATACK/F:2/M:&B9000
Use first 36K of memory, 2
files, and execute DATACK.BAS.

D.2 B..!.2! FILES
Disk.filenames follow the normal CP/M nam~ng conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"." appears in the filename and the filename is less than 9
characters long.



To print the names of files residing on the
current disk.
If <filename> is omitted, al~ the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.
FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "TEST? BAS"

To close all disk files and write the directory
information to a diskette before it is removed
from.a disk drive.
~ways execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.
RESET closes all open files on all drives and
writes the directory track. to every diskette
with open files.



Returns the number of records present in the
last extent read or written. If the file does
not exceed.one extent (128 records), then LOF
returns the true length of the file.

0.6 !2E.
With CP/M, the EOF function may be used with random files.
If a GE'!'is done past the end of file.,EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

1. CSAVE and CLOAn are not implemented.
2. To return to CP/M, use the SYSTEM command or

statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCIN'!'is at 103 hex and MAKIN'!'is at 105 hex.







If you have programs written in a BASIC other than BASIC-SO, some
minor adjustments may be necessary before running them with BASIC-SO •
.Here are some specific things to look for when converting BASIC
programs.

Delete all statements that are used to declare the length of strings.
A statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the BASIC-SO statement
DIM A$ (J) •

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for
BASIC-SO string concatenation.
In BASIC-SO, the MID$, RIGHT$, and LEFT$ functions
substrings of strings. Forms such as A$(I)
character in A$, or A$(I,J) to take a substring of
to position J, must be changed as follows:

are used to take
to access the Ith
A$ from position I

BASIC-SO
X$=MID$(A$,I,1)
X$=MID$(A$,I,J-I+1)

X$=A$ (I)
X$=A$(I,J)

If the substring reference is on the left side of an assignment and X$
is used to replace characters in A$, convert as follows:

A$(I)=X$
A$(I,J)=X$

8K BASIC-SO

A$=LEFT$ (A$,I-1)+X$+McrO$ (A$,I+1)
A$=LEFT$(A$,I-1)iX$iMIO$(A$,J+1)

A$(I)=X$
A$(I,J)=X$

MIO$(A$,1,1)=X$
MID$(A$,I,J-I+1)=X$



to set Band C equal to zero. BASIC-SO would interpret the second
equal sign as a logical operator and set B equal to -1 if C equaled O.
Instead; convert this statement to two assignment statements:

Some BASICs use a backslash ('1 to separate multiple statements on a
line. With BASIC-SO, be sure all statements on a line are separated
by a colon (:).

I.4 ~ FUNCTIONS
Programs using the MAT functions available in some BASICs must b
rewritten using FOR•••NEXT loops to execute properly.



~

NF NEXT without FOR
A variable in a NEXT
correspond to any
unmatched FOR statement

statement
previously
variable •.

does not
executed,

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).
Return without GOSUB

.A RETURN statement is encountered for which
there is no previous, unmatched GOSUB
statement.

00 4 . Out of data
A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

FC 5 Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:
1. a negative

subscript
2. a negative or zero argument with LOG

4. a negative mantissa with a non-integer
exponent



5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACE$, INSTR, or
ON•••GOTO.

Overflow
The result of a calculation is too large to
be represented in BASIC-80's number format.
If underflow occurs, the result is zero and
execution continues without an error.
Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.
Undefined line
A line reference in a GOTO,
IF•••THEN•••ELSE or DELETE is
nonexistent line.

GOSUB,
to a

Subscript out of
An array element
subscript that
the array, or
subscripts.
Red~ensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

range
is referenced either with
is outside the dimensions
with the wrong number

a
of
of

Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.
Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.
Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.



Out of string space
String variables cause BASIC to exceed the
amount of free memory remaining. BASIC will
allocate string space dynamically, until it
runs out of memory.
String too long
An attempt is made to create a string more
than 255 characters long.
String formula too complex
A string expression is too long or too
complex. The expression should be broken
into smaller expressions.
Can't continue
An attempt is made to continue a program
that:
1. has halted due to an error,
2. has been modified during a break in

execution, or

Ondefined user function
A OSR function is called before the function
definition (OEF statement> is given.

Extended ~ ~ Versions Only
19 No RESUME

An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.
Unprintable error
An error message is
error condition
usually caused by
error code.

for the
This is

undefined
not available

which exists.
an ERROR with an

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
.lU1 attempt is made to'input a line that has
too many characters.



26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without ~lD
A WHILE statement does not have a matching
WEND.

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.
Internal error
An internal malfunction
BASIC-SO. Report
under which the message

has occurred in Disk
the conditions

appeared.
52 Bad file number

A statement or comm~~d references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.
Bad file mode
An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, 0, or R.
File already open
A sequential output mode
file that is already
given for a file that is

OPEN is issued for a
open; or a KILL is
open.

57 Disk I/O error
An I/O error occurred on a disk I/O
operation. rt is a fatal error, i.e., the
operating system cannot recover from the
error.

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on ~~e
disk.



61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number
is either greater than the maximum allowed
(32767) or equal to zero.

64 Bad file name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

66 Direct statement in file
A direct statement is encountered while
LOADing an ASCII-format file. The LOAD is
terminated.
Too many ,files

·An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.





Functions that are not intrinsic to BASIC-80 may be calculated
as follows:

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

BASIC-80 Equivalent

SEC(X)-1/COS(X)
CSC(X)=1/SIN(X)
COT (X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+1»
ARCCOS(X)=-ATN (X/SQR(-X*X+1»+1.5708
ARCSEC(X)=ATN(X/SQR(X*X-1»

+SGN(SGN(X)-1)*1.5708
ARCCSC(X)=ATN(X/SQR(X*X-1»

+(SGN(X)-1)*1.5708
ARCCOT(X)=ATN(X)+1.5708
SINH (X)= (EXP (X)-EXP(-X»/2
COSH(X)=(EXP(X)+EXP(-X»/2
TANH(X)=EXP(-X)/EXP(X)+EXP(-X»*2+1
SECH(X)=2/(EXP(X)+EXP(-X»
CSCH(X)=2/(EXP(X)-EXP(-X»
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X»*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1»
ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH(X)=LOG«1+X)/(1-X»/2
ARCSECH(X)=LOG«SQR(-X*X+1)+1)/X)
ARCCSCH(X)=LOG«SGN(X)*SQR(X*X+1)+1)/X

ARCCOTH(X)=LOG«X+1)/(X-1»/2





The Microsoft BASIC Compiler package contains the following
software: BASIC Compiler, MACRO-SO assembler, and LINK-BO
loader. The following manuals are also supplied: BASIC-BO
Reference Manual, BASIC Compiler User's Manual, Utility
Software Manual. The crtility Software Manual is the
reference manual for MACRO-SO and LI!~-SO. The BASIC
Compiler crser's Manual describes the use of the compiler,
its command format, compilation switches and error messages.
The BASIC language that is used with the Microsoft BASIC
Compiler is the same as decribed in this manual for Disk
BASIC-SO with the following exceptions:

The Compiler interacts with the console only to read
compiler commands. These specify what files are to be
compiled. There is no "direct mode," as with the BASIC-SO
interpreter. Commands that are usually issued in the direct
mode with the BASIC-SO interpreter are not implemented on
the Compiler.
The following statements and commands are not implemented
and will generate an error message:

AO'l'O
EDIT
LOAD
FILES

CLEAR
LIST
!v!ERGE

CLOAD
LLIST
NEW

CSAVE
RENOM
CHAIN

CONT
RUN
COMMON

DELETE
SAVE
RESET

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft's EDIT-SO Text
Editor or BASIC-SO interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
127 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to



start a new physical line within a logical statement.
To reduce the size of the compiled program, there are no
program line numbers included in the object cod7 generat7d
by the compiler unless the /D, IX, or /E switch ~s set ~n
the compiler command. Error messages, therefore, contain
the address where the error occurred, instead of a line
number. The compiler listing and the map generated by
LINK-SO are used to identify the line that has the error.
It is always a good idea to debug programs using the
BASIC-SO interpreter before attempting to compile them. See
the BASIC Compiler Oser's Manual for more information.

Most programs that run on the Microsoft BASIC-SO interpreter
will run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
the following program statements:

CALL
The <variable name> field
must contain an External
recognized by LINK-SO as
routine must be supplied
language subroutine or
FORTRAN-SO library.

2. CHAIN and COMMON
The CHAIN and COMMON statements are not implemented
on the compiler. They will generate a fatal error.

in the CALL statement
symbol, i.e., one that is
a global symbol. This

by the user as an assembly
a routine from the

The CHAIN and COMMON statements will be implemented
in a future release of the BASIC compiler.
However, their implementation will be different
from the BASIC-SO interpreter's version. The
COMMON statement will be similar to FORTRAN'S
COMMON statement.

3. DEFINT/SNG/DBL/STR
The compiler does not "execute" DEFxxx statements;
it reacts to the static occurrence of these
statements, regardless of the order in which
program lines are executed. A DEFxxx statement
takes effect as soon as its line is encountered.
Once the type has been defined for a given
variable, it remains in effect until the end of the
program or until a different DEF~~ statement wi~~
that variable takes effect.

4. OSRn Functions
OSRn functions are significantly different from the
interpreter versions. The argument to the OSRn



function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

s. DIM and ERASE
The DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when its line
is encountered. If the default dimension (10) has
already been established for an array variable and
that variable is later encountered in a DL~
statement, a "Redimensioned array" error results.
There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. An
ERASE statement will produce a fatal error.
Also note that the values of the subscripts in a
D~ statement must be integer constants; they may
not be variables, arithmetic expessions, or
floating point values. For example,

DIMA1(I)
DIM A1 (3+4)

6. END
During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an END
statement at the end of the program, so "running
off the end" produces proper program termination.

7. ON ERROR GOTO/RESUME <line number>
If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must be used. If the RESUME NEXT, RESUME, or
RESUME 0 form is used, the /X switch must also be
included. See the BASIC Compiler User's Manual for
an explanation of these switches.

8. REM
REM statements or remarks starting with a single
quotation mark do not take up time'or space during
execution, and so may be used as freely as desired.
STOP
The STOP
statement.
returns to

statement is identical to the END
Open files are closed and control

the operating system.



TRON/TROFF
In order to
switch must
ignored and

use TRON/TROFF, the /0 compilation
be used. Otherwise, TRON and TROFF are
a warning message is generated.

11. FOR/NEXT and WHILE/WEND
FOR/NEXT and WHILE/WEND loops must be statically
nested.

12. Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return doubIe
precision results if given a double precision
argument. Exponentiation with double precision
operands will return a double precision result.

turing expression evaluation, the operands of each operator
are converted to the same type, that of the most precise
operand. For example,

causes J% to be converted to single precision and added to
Al. This result is converted to double precision and added
to Qt.

The Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter the following program

I%-20000
J%-20000
K%--30000
M%-I%+J%-K%

yields 10000 for M%. That is, it adds I% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found, and is
converted back to integer and saved as M%.
The compiler, however, must make type conversion decisions
during compilation. It cannot defer until the actual values
are k.'"1own.Thus, the compiler would generate code to
perform the entire operation in integer mode. If ~~e /0
switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.
In order to produce optimum efficiency in ~~e compiled
program, the compiler may perform any number of valid
algebraic transformations before generating the code. For



I%=20000
J%=-18000
K%=20000
M%aI%+J%+K%

could produce an incorrect result when run. If the compiler
actu~lly performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs I%+K%
first and then adds J%, an overflow will occur. The
compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other
guarantee of evaluation order can be made.

In order to produce the fastest and most compact object code
possible, make maximum use of integer variables. For
example, this program

FOR I=1 TO 10
A(I)~O
NEXT I

can execute approximately 30 times faster by simply
substituting RI%" for "I". It is especially advantageous to
use integer variables to compute array subscripts. The
generated code is significantly faster and more compact.





APPENDIX M

( ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NUL 043 +- 086 V
001 SOB 044 , 087 W
002. STX 045 088 X
003 ETX 046 · 089 y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093 ]
008 BS 051 3 094 A
009 HT 052 4 095 <
010 U 053 5 096 ,
011 VT 054 6 097 a
012 F!' 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 · 101 e·016 DLE 059 · 102 f,
017 DC1 060 < 103 g
018 DC2 061 == 104 h

( 019 DC3 062 > 105 i
020 DC4 063 ? 106 j

--;,1 021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 a 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 0
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 OS 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 II 077 M 120 x
035 # 078 N 121 Y
036 $ 079 0 122 z
037 % 080 P 123 {
038 & 081 Q 124 ,
039 , 082 R 125
040 ( 083 S 126 }
041 ) 084 T 127 DEL
042 •• 085 0

A$CII codes are in decimal
U==Line Feed, FF=For.m Feed, CR=Carriage Return, DEL=Rubout





ABS
Addition • • • • • • • • • •
ALL
Arctangent • • • • • • • • •
Array variables
Arrays ••••••••••
ASC
ASCII codes ••••••••
ASCII format • •• • ••
Assembly language subroutines

CALL •••
Carriage return
Cassette tape
CDBL • • • • • • •
CHAIN •
Character set
CHR$
CINT •
CLEAR
cr..OAD
CLOAD* • • • • • •

. cr..OA.O? • • • • • •
CLOSE
Command level
COMMON ••
Concatenation
Constants
CON'r
Control characters
Control-A •
COS
CP/M •
CSAv.E
CSAVE* •.•
CSNG •• 0

CVD
CVI
CVS

3-2
1-10
2-4, 2-9
3-3
1-7, 2-9, 2-18, L-4
1-7,2-7, 2-11~ 2-24
3-2
3-2, 3••4, M-1
2-4, 2-49, 2-77,
2-3, 2-16, 2-59,
3-23, C-1, L-2 .
3-3, L-3

L-1
3-21,

• 2-3, C-5, L-2
• 1-3, 2-36, 2-41 to 2-42,

2-83 to 2-85
• 2-7, 2-11
• 3-3• 2-4, 2-9, L-2
• 1-3
• 3-4
• 3-4
• 2-6, A-1
• 2-7
• 2-7
• 2-7
• 2-8, a-3, a-8
• 1-1
• 2-4, 2-9, L-2
• 1-14
• 1-4
• 2-10, 2-41
• 1-4
• 2-22
• 3-5, L-3

2-46, 2-49, 2-76 to 2-77,
a-1, 0-1
2-11
2-11

• 3-5
3-6, a-8
3-6, B-8

• 3-6, B-8



DEF FN •
DEF OSR
DEFDBL •••
DEFINT •••
DEFSNG • • • • • •
DEFSTR • • • • • •
DEINT
DELETE • • • • • •
DIM
Direct mode • • •
Division • • • • •
Double precision •

EDIT ••
Edit mode
END
EOF
EM.SE
ERL
ERR
ERROR
Error
Error
Error

codes ••
messages •
t~apping •

Escape • • • .--.EXP
Exponentiation •
Expressions ••
FIELD
FILES
FIX
FOR ••• NEXT

FRCINT _
FRE
Functions

GOSUB
GOTO •

HEX $
Hexadecimal
IF ••• GOT0
IF ••• THEN
IF •••THEN •••ELSE •
Indirect mode ••
INP • • •
INt'OT



INPUT $
INPUTi

INSTR
INT
Integer • •• •
Integer division •

LEFT $
LEN
LET

LINE INPUT •
LINE INPUT#
Line numbers
Line printer •
Lines
LIST • • • • • •
LLIST
LOAD ••••••
LaC
LOF
LOG
L~gical operators
Loops. • •
LPOS •
LPRINT • • • • •
LPRINT USING • •
LSET • • • • • •
MAKINT •
MBASIC •

MERGE
MID$ • • • •
Ml(D$
Ml(I$ •
Ml(S$ •
MOD operator • • • •
Modulus arithmetic •

NAME •
Negation •
NEW
NULL •••



Numeric constants
Numeric variables
CCT$ • • • •OetaJ. •• •
ON E~Oil GOTO
ON ••• GOSUB •
ON ••• GO'I'O
OPEN ••••

Operators
OP'I'ION BASE
OO'r
Overflow •
Overla.y •
Paper tape • •
PUX •••••
poa •• - • • •
POS
PlUN'r
PlUNT USING
PRIN'Xt .- • • •
PRIN'J!t USING •

P.ENOM
RESET
imSTOilE
RESma: •
RtrOml •
RIGa'l'$ •
P.N'O
RSET ••
Rubout •
RUN

1-4
1-7
3-14
1-5, 3-14
2-54, L-3
2-55
2-55
2-8, 2-28,a-8
1-9, 1-11
2-57
2-58
1-11, 3-7,
2-4

2-53
2-59,
2--59,
2.-83,
2-60,2-62.,
2-66,
2-66,

3-15
3-15
3-15
A-1
A-2
A-3,
A-3,



SQi
Snl
Sinqle
SPACZ$
SPC
SQR

•
?racisicn •

STOP •
S'n$ •
Strinq
St:'i."lq

constants
functions

St:'inq o;:erato:s
Strinq space •
Strinq va:i~les
S'l'It.L."1G$ •• •
Subroutines ••
Subsc=i:t3 • • •
Subuac:iion • •
SWAP • • • • • •
SYSTE.'! • • • • •

TABTab
TAN
TROFF
TP.ON •

osa
OSRLOC •
VAL
Variables~~.
WAIT •
WEND •
WI".:
WIDTH
WIDTH
w:U'l'!:

3-1i
3-1 i, t-3
i-3, 2-i5,
3-18
3-18
3-19, t-3

• 2-10, 2-23, 2-32, 2-i8, L-3
• 3-19
• 1-4• 3-6, 3-10 to 3-11, 3-13,

3-16, 3-19, 3-22, I-1
• 1-14
• 2-6, 3-8, A-1, 3-9
• 1-i, 2-15, 2-4i to 2-42
• 3-20• 2-3, 2-32, 2-35, C-1
• 1-1, 2-18, 2-51, t-3

1-10
• 2-19
• 0-4




