VECTOR GRAPHIC, INC

CP/M 2 INTERFACE GUIDE

Copyright (c) 1979
DIGITAL RESEARCH

COPYRIGHT (c) 1979

VECTOR GRAPHIC, INC.

REVISION OF NOV. 15, 1979

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechaniecal, magnetic, optieal, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacifiec Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify anVy person of such revision or changes.

Trademarks -

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.8 INTERFACE GUIDE

Copyright (¢) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction .,

Operating System Call Conventions
A Sample File-to~File Copy Program

A Sample File Dump Utility

wi [w N [aad
.

. A Sample Randam Access Program, . .

6. System Function Summary ., ,

(—

=

1. INTRODUCTION,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk 1/0 facilities of the system,

CP/M is logically divided into four parts, called the Basic 1I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console

- command processor (CCP), and the Transient Program Area (TPA). The

BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device 1I/0.

Digital Research, explicit instructions

reconfiguration of the BIOS to match nearly anv hardware '
(see the Digital Research manual entitled suiae),
The BIOS and BDOS are logically combined into a single module with a
cammon entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e.,, the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | |
memory | |
| FDOS (BDOS+BIOS) |
FBASE: | |
| |
I ccp |

CBASE: |
'l |
| |
| I
{ TPA |
|
TBASE: | |
| system parameters |
BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
PBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide.” All standard CP/M versions, however, assume
BOOT = 0008H, which is the base of random access memory, The machine
code found at location BOOT performs a System "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP, Thus, transient programs need only jump ‘to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 8160H,
The principal entry point to the FDOS is at location BOOT+@#835H
(normally 0665H) where a jump to FBASE is found. The address field at
BOOT+@886H (normally ©0006H) - contains the value of FBASE and can be
used to detemine the size of available memory, assuming the CCP is
being overlayed by a transient program,

Transient programs are loaded into the TPA and executed as

follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command 1line takes one of the
forms: ;

command

command filel
command filel file2

where "command” is either a built-in function such as DIR or TYPE, or
the name of a transient command or program, If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

1f the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE,

1f the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives .control from the CCP and begins
execution, perhaps using the 1/0. facilities of the FDOS. The
transient program is “called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1l is free,

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem, The I/0 system is accessed by passing a
»function number* and an "information address® to CP/M through the
FDOS entry point at BOOT+@@A85H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below. ‘

(All Information Contained Herein is Proprietary to Digital Research.)

2

/*"'

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs., Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled *“MAC Macro

Assembler: Language Manual and Applications Guide,*

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/O. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Randoam or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset Pile Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+@985H., In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function 'number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register .passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietaﬁy to Digital Research.)

3

System Reset 19 Delete File

')

1 Console Input 28 Read Sequential

2 Console Output 21 Write Seguential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get 1/0 Byte 26 Set DMA Address

8 Set I/O Byte 27 Get Addr(Alloc)

9 Print string 28 Write Protect Disk
18 Read Console Buffer 29 Get R/O Vector

11 Get Console Status 39 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 sSearch for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack

pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 9000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = peooR)

BDOS EQU @085H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
’
‘ ORG 310600 :BASE OF TPA
NEXTC: MVI C,CONIN s READ NEXT CHARACTER
CALL BDOS ; RETURN CHARACTER IN <A>
CP1 tet ; END OF PROCESSING?
JNZ NEXTC . ;LOOP IF NOT
RET " sRETURN TO CCP
END

CP/M implements a named file structure on each-disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive

select code, the file name consisting - of one to eight non-blank -

characters, and the (file type consisting of zero to three non-blank

characters. The file type names the generic category of a pacrticular
file, while the file name distinguishes individual files in each

category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

- which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source

BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File §$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“line" of the source file is followed by a carriage-return line-feed
sequence (ODH followed by #AH)., Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCIT file is
denoted by a control-z character (1lAH) or a real end of file, returned
by the CP/M read operation. Control-2 characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decamposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+885CH (normally @#05CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0 is provided by CP/M
at location BOOT+0080H (normally @088H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file is accessed randomly. The default file control block
normally located at #85CH can be used for random access files, since
the three bytes starting at BOOT+987DH are available for this purpose,
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research.)
5

iar | £11£21/ /IE8ltllt2]t3]lexl|slis2irciddi/ /ldnfcrle@dirlic2]|

g9 91 02 ... 88 89 18 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (8 - 16)
@ => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...£8 contain the file name in ASCII
upper case, with high bit = 8

tl,c2,t3 contain the file type in ASCII
upper case, with high bit = 8
tl*, t2', and t3*' denote the
bit of these positions,
tl* = 1 => Read/Only file,
t2®' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 88 by the user, but
in range # - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,"
takes on values from 8 - 128

dd...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

ré,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
rd,rl constitute a 16=-bit value with
low byte r8, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subseguent file operations. Wwhen accessing files, it 1is the
programmer ‘s responsibility to £ill the lower sixteen bytes of the FCB
and initialize the "cr*® field., Normally, bytes 1 through 11 are set

to the ASCII character values for the file name and file type, while
all other fields are zero. :

(All Information Contained Herein is Proprietary to Digital Research.) <;jf

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel" and “file2* in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+805CH, and can
be used as-is for subseguent file operations. The second FCB occupies
the d9 ... dn portion of the first FCB, and must be moved to another
area of memory before use., If, for example, the operator types

PROGNAME B:X.Z20T Y. ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+@@5CH is initialized to drive code 2, file name *X" and file type
“zZoT", The second drive code takes the default value @, which is
placed at BOOT+086CH, with the file name “Y* placed into location
BOOT+806DH and file type “ZAP" located 8 bytes later at BOOT+8075H.
All remaining fields through “cr* are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type - to another area, usually a separate file control block, before

opening the file which begins at BOOT+9#@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+885DH and BOOT+0@6DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+#980H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080K is initialized as follows:

BOOT+00A80H
+94 +01 +02 +93 +04 +85 +06 +07 +08 +09 +18 +11 +12 +13 +14
14 »] nBu ll:Il lixll I0.00 uzn uou NT“ " " l.Y“ Il.ll Hzl. IOAII “P“

where - the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed. .

The individual functions are described in detail in the pages
which follow,

(All Information Contained Herein is Proprietary to Digital Research.)
7

* *

* FUNCTION @#: System Reset : (““
x s

*************************************** e
* Entry Parameters: *
* Register C: 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A, This function has exactly the
same effect as a jump to location BOOT.

AR ERR R RRIIRR AR RIRARRRXRRRRRIRNANRS

* *
* FUNCTION 1: CONSOLE INPUT *
*]
f**********************************
* Entry Parameters: *
* Register C: @1H :
*

* Returned Value: . o *
* Register A: ASCII Character *

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, line -
feed, and backspace (ctl-#) are echoed to the console. Tab characters (
(ctl-I) are expanded in columns of eight characters. A check is made T
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). .
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

Y Y Y L a2 22222222 2 2 2 2 2 2 22

x *
* FUNCTION 2: CONSOLE OUTPUT :
x*

* Entry Parameters: *
* Register C: ©02H *
* Register E: ASCII Character *
* *

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo. '

(A1l Information Contained Herein is Proprietary to Digital Research.) e

8

* *
* FUNCTION 3: READER INPUT :
L]

* Entry Parameters: *
* Register C: B3H *
- *
* Returned vValue: *
* Register A: ASCII Character *

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the “CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *
* PUNCTION 4: PUNCH OUTPUT :
*

**************t************************
* Entry Parameters: ' *
* Register C: @4H : *
* Register E: ASCII Character *
* : *

The Punch Output function sends the character from register E to
the logical punch device.

* *
*# FUNCTION 5: LIST OUTPUT "
*) *

* Entry Parameters: *
* Register C: @5H *
* Register E: ASCII Character :
*®

The List Output function sends the ASCII character in register E
to the logical listing device,

(A1l Information Contained Herein is Proprietary to Digital Research.)
9

kkkhkkhkhkdhhhhhhhhRhkRAkRRRkXhhkhkRrrekhkkihdidn
»*
]

* FUNCTION 6: DIRECT CONSOLE I/0 :

*®

*************************#*************

* Entry Parameters:

Register C: 06H .

Register ¢ OFFH (input) or
char. (output)

Returned Value:

Register A: char or status
(no value)

* F % N % ¥
¥ % % % * N * #»

Direct console 1/0 is supported under CP/M for those specialized
applications where unadorned console input and output is regquired,
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-p) . Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct

I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FP, denoting a console input request, or register E contains an ASCII

Character. If.the input value is FF, then function 6 returns A = gg
1£ no iharacter 1s ready, otherwise A contains the next console input
character,

If the input value in B is not FF,

. then function 6 assumes that
E contains a valig ASCII character which

is sent to the console,

de Je de Je Je e de de de de e e e de de de do e do de b e vk de ke de de e de ok A Kk e R ok ke

* *
* FUNCTION 7: GET I/O BYTE *
* *

KA KEARKRARRRRRRRARARRKRRR KA R R AR RN AR

* Entry Parameters: *
* Register C: 078 *
* *
* Returned Value: *
* *
% *

Register A: I/0 Byte Value
KRR RERAAEkkRARETRRhRhr ke hihiid

The Get I/O Byte function returns the current value of IOBYTE in
register A, See the "“CP/M Alteration Guide" for IOBYTE definition.

LAEEAEEE L L LS R TR TR RNE R R R g g

* %*
* FUNCTION 8: SET I/O BYTE *
%* *
**************t************************
* Entry Parameters: *
* Register C: 08H *
* Register E: I/0 Byte Value *
* *

ARKRRXRTKARKRR IR AR IR R R hRh R hhRdhR

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

* *
* FUNCTION 9: PRINT STRING *
¥ *

* Entry Parameters: . *
* Register C: @94 *
* Registers DE: String Address *
* *

KEARRRRRRERIRRRERRRRRE AR KRR AR i hrrhh

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a “§*
1s encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is'Proprietary to Digital Research.)

11

FE R R XXX X2 2222222 22 2 R R R 2 2 & 2
* %*
* PUNCTION 10: READ CONSOLE BUFFER *
* _ *
I 2 2 R R Y R R X R R X2 AR X222 22222 X222 2 22 22 £ |
* Entry Parameters:

Register C: @AH

Registers DE: Buffer Addres

Console Characters in Buffer

*
*
%*
*
*
*
IR Z2 XXX SRR 2222222 22X XXX R R XY

*
*
*
* Returned Value:
.
*

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE, Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +8 +1 +2 +3 +4 +5 +6 +7 +8 o« » » +n

Iimxinclcllic2lc3licdlcS5lc6lc]| . s e 1221

where "mx* is the maximum number of characters which the buffer will -

hold (1 to 255), “nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl=J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin), This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research.)

12

ST

[}

RRRAAXRAXARRN SR AR AR AR RN A k%

* *
* FUNCTION ll: GET CONSOLE STATUS *
* *
kkhkhkhhhhhhkhkhhhhhkhhhhhhkhkhhkhhkhhhkkkxx
* Entry Parameters: . *
* Register C: 0BH *
* *
* Returned Value: *
* Register A: Console Status *
kbR hhRR kbbb rhhhhhhhhothhhhhkhhk

The Console Status function checks to see if a character has
been typed at the conscle., If a character is ready, the value OFFH is
returned in register A. Otherwise a #0H value is returned.

kdkkhkkRrkkkhhkkdehhhrhhkhhhkohhhhhhhihihs
* *

* FUNCTION 12: RETURN VERSION NUMBER *
*

*
kR bdhhkhhhbhhhhhr bk krhhhhn

Entry Parameters:
Register C: #@CH

»

*
* %*
*) *
* Returned Value: ' *
» *
* *

Registers HL: Version Number
RERAREkARARAA Rk hhhkhhkehkhhhhhdhiddkirhr

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = g8
designating the CP/M release (H = @1 for MP/M), and L = 98 for all
' releases previous to 2.0, CP/M 2.8 returns a hexadecimal 28 in
register L, with subsequent version 2 releases in the hexadecimal

range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with randam access disabled when operating under

early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

* *
* FUNCTION 13: RESET DISK SYSTEM *
:*************************t***********:
* Entry Parameters: . *
* Register C: ODH *
* *

d % & Je % % % % J e 7 % de e J de J e e A o e o de e & Kk d e de b Je e e de de e e

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A 1is selected, and the
default DMA address is reset to BOOT+9@88H., This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

g XXX T X I I EE LR R R RS L A & 4

* *
* PFUNCTION 14: SELECT DISK :
* .

t*****************i********************
* Entry Parameters: *
* Register C: 0EH *
* Register E: Selected Disk *
* *

e Y T 2 222 2 a2 22X S X2 2 2 R AR A A0 2 L0 A

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line* status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromment (see
function 28). FCB's which specify drive code zero (dr = G0H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)
14

i v
5

t

*® *

* FUNCTION 15: OPEN FILE :
*

Entry Parameters: ' *
Register C: 0FH
Registers DE: FCB Address

Register A: Directory Code

*
*
*
*
*
*
*******************t******************

*
*
*
Returned Value: ' *
®
*

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
autamatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions, Normally, no question
marks are included and, further, bytes “ex" and “s2* of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes dg8 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations, Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “"directory code* with the value # through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found, 1If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record (“cr*) must be zeroed by the
program if the file is to be accessed Sequentially from the first
record,

(All Information Contained Herein is Proprietary to Digital Research.)
15

* *
* FUNCTION 16: CLOSE FILE :
x

**************t************************
Entry Parameters:
Register C: 10H
Registers DE: FCB Address

*

Returned Value:
Register A: Directory Code

* % % 4 % ¥

*
*
*
*
*
*

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 8, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place, If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietary to Digital Research.)

16

* *

* FUNCTION 17: SEARCH FOR FIRST :
*

*********************t*****************
Entry Parameters:
Register C: 1l1H
Registers DE: FCB Address

Returned Value:

Register A: ‘Directory Code
*************************************t

¥ % ¥ 4 %

*
*
*
*
*
*
*

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) |is
returned if the file is not found, otherwise g, 1, 2, or 3 is returned
indicating the file is present. 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from “f1* through “ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive, If the
“dr* field contains an ASCIT question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. TIf the “dr* field is not a question mark,
the "s2* byte is automatically zeroed.

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *

* Entry Parameters: *
o Register C: 12H ¥
* Returned Value: *
* Register A: Directory Code *
**************************************t

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

(All Information Contained Herein is Proprietary to Digital Research,)

17

* *
* FUNCTION 19: DELETE FILE *
%* *

"% Entry Parameters: *
* Register C: 138 *
* Registers DE: FCB Address :
*

* Returned Value: . *
* Register A: Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the dr ive

select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value 1in the range g to 3 is
returned.

**********************f****************

* *
* FUNCTION 20: READ SEQUENTIAL :
*

* Entry Parameters:
Register C: 1l4H
Registers DE: FCB Address

Returned value:

Register A: Directory Code

* 4 % % % ¥

%*
*
*
*
*
*

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr* of the
extent, and the *cr* field is automatically incremented to the next
record position, I1f the *"cr* field overflows then the next logical
extent is automatically opened and the wcr* field is reset to zero in
preparation for the next read operation. The value @8H is returned in
the A register if the read operation was successful, while a non-=zero
value is returned if no data exists at the next record position (e.qg.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)
18

TN

LA REEEELEEEEEEEE L TR Ry R R g g g gy

* %*
* FUNCTION 21: WRITE SEQUENTIAL :
*

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
ThkhkhhkRherhhRdhrrhhkrhhr kR rerrih®

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position *"cr* of
the file, and the “cr* field is automatically incremented to the next
record position, If the "cr* field overflows then the next logical
extent is automatically opened and the “cr* field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = #@8H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

*************************i*************

* *
* FUNCTION 22: MAKE FILE *
* *
AREARRk*TXRRLhRkhhddhthherdkhehhdhhhienhk
* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* *
* Returned Value: v ‘ *
* Register A: Directory Code *
AR EEAEAE RS L LSS TR ET IR T PR R R g g

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "d4dr® code, or the default disk if “dr* is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = g,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space is available, The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)
19

g J % J % % % Je % J e e de Je de e Je % J¢ ke de o dede d K dedo de g e e de de ke ek

* *
* PFUNCTION 23: RENAME FILE *
* *

******************t********************
Entry Parameters:

Register C: 17H
Registers DE: FCB Address

»*

Register A: Directory Code

*
*
*
*
*
*
KdkkdkhhkkXkkRRRRRAA R RAk Rk kR kkkhkkkhrhrkk

*
*
%*
* Returned Value:
%*
%*

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes, The drive code “dr* at position 8 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 8 and 3 if the rename was successful, and

@FFH (255 decimal) if the first file name could not be found in the
directory scan.

de e Ju de de Je d J de gk e db ke de de kK o de de vt K de e de e de e de kol ek k ke ko
* %*

* FUNCTION 24: RETURN LOGIN VECTCR :

*

* Entry Parameters:
Register C: 18H

*
%* *
* ¥*
* Returned Value: *
* %*
* *

Registers HL: Login Vector

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
jabelled P. A "#" bit indicates that the drive is not on-line, while
a “1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero ™“dr* field. Note that
campatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

29

* *
* FUNCTION 25: RETURN CURRENT DISK *
%* *

* Entry Parameters: *

"Register C: 19H

* ¥ % %

Register As Current Disk

*

*

* Returned Value:
*
****************t********************t*

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from 6 through 15 corresponding
to drives A through P.

RhkkkhhkhhhhRRhhhhhhhkAhhRhkhkkhhxthhrkd

* *
* FUNCTION 26: SET DMA ADDRESS :
*

* Entry Parameters: *
* Register C: 1lAR *
* Registers DE: DMA Address *
* *

LEEAEE LR R LR ET TR ET T 2L R R R R g ur

“DMA*“ is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
Subsystem. Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
autamatically set to BOOT+d@80H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside, Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research.)

21

khkhkhkhdehkhkhexkkhhkhkkhkhkhkhhkhkhkkhkhkhkkhhhkkhkkh’

* *
* FUNCTION 27: GET ADDR(ALLOC) *
* . *
kkkRhkkkdkhhkkdhkhhkidkiidkdkdikdddkiikkkikiki
* Entry Parameters: *
* Register C: 1BH *
¥* *
* Returned Value: *
* Registers HL: ALLOC Address *
* *

khkhRkhkxkhhhkhkhkkhhhhkhkhkhkhhkhhhhhhhhhdhk

An "allocation vector* is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide.*

% % % K Je & Yo de de e Je de Je Je e de de d e de e de d e de g de ok K g de e de de g de ke de K

* *
* FUNCTION 28: WRITE PROTECT DISK :
*

AkkRkhkhhhhhhrkhhhhhhkhkRhkiekkkkkhkhkikix
* Entry Parameters: *
* Register C: 1CH *
%* %*

kkkhhkkhkkkhkrRhhdkkhkhhkkhkhhkhhhhkkhkihkd

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the

message

Bdos Err on d4: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

PN

**********************f****************
* *

* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
*

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 36: SET FILE ATTRIBUTES *
* *

* Entry Parameters:

¥

* Register C: 1lEH *
* Registers DE: FCB Address *
* *
* Returned Vvalue: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators f£1° through £4*' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5° through £8' and t3* are reserved for future system
expansion, .

(A1l Information Contained Herein is Proprietary to Digital Research.)

23

» %*
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *

* Entry Parameters: *
Register C: 1FH *

%*
*
* Returned Value:
»
*

*
. *
Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call., This address can be
used for either of two purposes, First, the disk parameter values can
pe extracted for display and space computation purposes, Or transient
programs can dynamically change the values of current disk parameters
when the disk enviromment changes, if required. Normally, application
programs will not require this facility.

.***************************************

* : *
* FUNCTION 32: SET/GET USER CODE *®
* . *

* Entry Parameters: *
* Register C: 20H *
* Register E: OFFH (get) or *
* User Code (set) *
x *x
* Returned Value: *
* Register A: Current Code or *
* : (no value) *
#**t*t***************************

An application program can change or interrogate the currently

active user number by calling function 32. If register E = @FFH, then
the value of the current user number is returned in register A, where

the value is in the range 8 to 31. If register E is not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(A1l Information Contained Herein is Proprietary to Digital Research.)

24

fa\\

T~

* *

* FUNCTION 33: READ RANDOM :
*

*********t*****************************

Entry Parameters: *
Register C: 21R
Registers DE: FCB Address

Returned Value:

Register A: Return Code

* % % % ¥

*
*
*
*
*
*
»

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r@ at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r8), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35), Byte r2

must be zero, however, since a non-zero value indicates overflow past
- the end of file,

Thus, the rf#,rl byte pair is treated as a double-byte, or "word“
value, which contains the record to read. This value ranges from § to
65535, providing access to any particular record of the 8 megabyte
file. 1In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR reguests, The
selected record number is then stored into the random record field
(rd,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to . the sequential read operation, the
record number is not advanced, Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the 1last
randamly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the randam record position following each random read or write to
obtain the effect of a sequential I/0 operation.

Error codes returned in register a following a random read are
listed below. ' :

(All Information Contained Herein is Proprietary to Digital Research.)

25

#1 reading unwritten data

g2 (not returned in random mode)
g3 cannot close current extent

#4 seek to unwritten extent

@5 (not returned in read mode)

g6 seek past physical end of disk

Error code 81 and 84 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions., Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re—reading, or re-opening extent zero as long as the disk is
not physically write protected., Error code 86 occurs whenever byte r2
is non-zero under the current 2.8 release, Normally, non—zero return
codes can be treated as missing data, with zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

* *
* FUNCTION 34: WRITE RANDOM *
* 4 *

* Entry Parameters: *

* Register C: 22H *
* Registers DE: FCB Address *
* : *
* Returned Value: *
* *
%* %*

Register A: Return Code

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the randam record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation., Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 85, which

indicates that a new extent cannot be created due to directory
overflow.

(A1l Information Contained Herein is Proprietary to Digital Research.)

27

************************t**************

» *
* FUNCTION 35: COMPUTE FILE SIZE ’:
*

* Entry Parameters: *
* Register C: 238 *
* Registers DE: FCB Address *
® *
* Returned Value: . *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r#, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
wyirtual® file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 81, then the file contains the
maximum record count 65536, Otherwise, bytes r@ and rl constitute a

16-bit value (r8 is the least significant byte, as before) which is
the file size.

. Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when

the file is written sequentially. If, instead, the file was created
in random mode and “holes” exist in the allocation, then the file may

in fact contain fewer records than the size 1indicates, 1€, for

example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 655353), then the virtual size is

65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

PR

kdhhhhhhdkkdehhhihhhkkrRkhkkkhkhhhhrohxhik

* *
* FUNCTION 36: SET RANDOM RECORD :
* .

* Entry Parameters: *

* Register C: 24H *
* Registers DE: FCB Address *
* . *
* Returned = Value: *
* *
* *

Random Record Field Set
**************t**********************

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to ‘initially read and scan a
sequential file to extract the positions of various “key" fields, As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from . a
sequential read or write over to random read or write, A file is
Sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE PILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a “HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at #06CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at @A5CH is
properly set-up by the CCP upon entry to the COPY program, That |is,
the first name is placed into the default fcb, with the proper fields

zeroed, including the current record field at 837CH. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file, If all this is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file is closed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b.

o we WE B4 W we WS Ne o

0000 = boot equ #080oh ; system reboot
0g95 = bdos equ 8805h : bdos entry point
ggs5c = fcbl eqgu #@5ch ; first file name
B35¢c = sfcb =~ equ " fcbl ; source fcb
gagéc = fcbh2 equ gg6ch ; second file name
8080 = dbuff equ ga8oh ; default buffer
8190 = tpa egu 8196h ; beginning of tpa
0009 = printf equ 9 ; print buffer func#
0O0f = openf equ 15 s+ open file func#
8818 = closef equ 16 : close file func#
2913 = deletef equ 19 ; delete file func#
gl = readf equ 29 ; sequential read
8015 = writef equ 21 : sequential write
8016 = make £ equ 22 ; make file func#
’ .

21de0 org tpa ; beginning of tpa
8106 311bd2 1xi sp,stack; local stack

' ; move second file name to dfcb
8193 geld mvi c,l6 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)
30

—.

0185 116c@0 1xi d,fcb2 source of move

2188 213a@1l 1xi h,dfcb ; destination fcb
Bléb 1la mfcb: ldax d i source fcb
#16c 13 inx d ; ready next
3184 77 mov m,a ; dest fcb
dlde 23 inx h 7 ready next
819f @d dcr c ;i count 16,..0
8110 c206bd1l jnz mfchb ; loop 16 times
’
_ H name has been moved, zero cr
P113 af - Xra a 7 a = @ogh
8114 32fagl sta dfcber ; current rec = @

source and destination feb's ready

“e we we

8117 115c89 1xi d,sfcb ; source file
#lla cd69gl call open ;7 error if 255
8114 118791 1xi d,nofile; ready message
8120 3c inr a ; 255 becomes 9@
8121 cc6181 cz finis ; done if no file

e we

source file open, prep destination

8124 11d4a61 1xi d,dfcb ; destination
127 cd7361 - call delete ; remove if present
’
#12a 11d8a@d1 1xi d,dfcb ; destination
8124 cds2al call make ;7 Create the file
p130 119601 1xi d,nodir ; ready message
133 3¢ inrc a ¢+ 255 becomes 9
9134 cc61d1 cz finis 7 done if no dir space

source file open, dest file open
Ccopy until end of file on source

) 8 e s e

6137 115c80 copy: 1xi d,sfcb ; source
B1l3a cd78e1 call read ¢ read next record
2134 b7 © -oQra a ; end of file?
#l3e c25101 jnz eofile ; skip write if so
; not end of file, write the record
8141 11d8a81 1xi d,dfcb ; destination
0144 cd7del call write ; write record
#147 1la%91 1xi d,space ; ready message
Pl4a b7 ora a s 60 if write ok
B14b c46101 . ¢cnz finis ; end if so
Pl4e c33741 jmp copy 7 loop until eof
eofile: ; end of file, close destination
8151 11dap1 1xi d,dfcb ; destination
8154 cdéefl call close 7 255 if error
9157 21bbo1l 1xi h,wrprot; ready message
815a 3c inr a ; 255 becomes 28
#15b cc61d1 cz finis ; shouldn't happen

e w

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

#lS5e llccgl

ale6l
p163
8166

ged9
cdos588
c30089

Pedf
c30560

9169
16b

glée
9179

feld
c36504

gel3 delete:
c30508

0173
8175

gl78
gl7a

fdeld
c38500

gels
c365480

fel6
c385819

g17d4
817f

9182
p184

4 =g

’
6e6f28fnofile:
6e6£209nodir:
6f£7574fspace:
7772695wrprot:
636£7d@normal:

9187
4196
g1lad
@1bb
glcc

’
 dfcb:
dfcber

’

' glda
glfa =

01£fb
p21lb

stack:

Note that

program. First,

there are
there are
could, for example, contain ambiguous
could be detected by
location #85CH for ASCII question marks.
to ensure that the
locations 905DH and #@6DH for non-blank ASCII characters),

1xi d,normal; ready message

: writé message given by de, reboot
mvi c,printf

call bdos ; write message

jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages

db ‘no source file$'

db ‘no directory space$’
db ‘out of data spaces$’
db ‘write protected?s’
db ‘copy complete$®

data areas

ds 33 ; destination fcb
egu dfcb+32 ; current record
ds 32 : 16 level stack
end
several simplifications in this particular

no checks for invalid file names which
references. This situation

32 te default area starting at
check should also be made

in fact, been included (check
Finally, a

scanning the

file names have,

check should be made to ensure that the source and destination file

names

are different.
more data on each read operation,

A speed improvement could be made by buffering
One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location d@96H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive

128 te area before each read. Upon writing to the destination file,
the MA address is reset to the beginning of the buffer and

incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4., A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry.
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

DUMP program readé input file and displays hex data

—we w8

0100 org 1940h
9885 = bdos egu 8085h ;dos entry point
gool = cons egu 1l ;read console
pge2 = typef equ 2 ;type function
5089 = printf equ 9 ;buffer print entry
poob = brk£ equ 11 sbreak key function (true if char
poof = openf equ 15 ;file open
9914 = readf equ 20 sread function
g@85¢c = %cb equ 5ch ;file control block address
9880 = buff equ 8oh ; input disk buffer address
; non graphic characters
pagad = cr equ gdh scarriage return
poda = 1f egu gah sline feed
; file control block definitions
g@gs5c = fcbdn egu fcb+d :disk name
g@s5d = fcbfn equ fcb+l :file name
0065 = fcbft equ fcb+9 sdisk file type (3 characters)
3368 = fcbrl egqu fcb+l2 ;file's current reel number
gaeb = fcbrce equ fcb+l5 ;file's record count (8 to 128)
ggic = fcber egu fcb+32 ;current (next) record number (0
pg74 = fcbln equ fcb+33 ;fcb length
H set up stack
0160 210000 1xi h,?
8103 39 dad sp
; entry stack pointer in hl from the ccp
plo4 2215062 shld oldsp
: set sp to local stack area (restored at finis)
@187 315792 1xi sp.,stktop
; read and print successive buffers
glda cdclil call setup ;set up input file
8104 feff cpi 255 ;255 if file not present
810f c21bdl jnz openok ;skip if open is ok
: file not there, give error message and return
@112 11£301 1xi 4 ,opnmsg
#115 cdochl call err
3118 c35191 jmp finis :to return

-
[

(A1l Information Contained Herein is Proprietary to Digital Research.)

34

it

openck: ;open operation ok, set buffer index to end

@11b 3e80 mvi a,86h
#lld 321342 sta ibp ;set buffer pointer to 86h
? hl contains next address to print
0120 210008 1xi h,9 sstart with 2090
gloop:
2123 e5 push h ;save line position
8124 cdazpl call gnb
8127 el pop h ;recall line position
#128 da5141 je finis ;scarry set by gnb if end file
Al2b 47 mov b,a -

Print hex values
check for line fold

- w9y

Bl2c 74 mov a,l
8124 e6df ani Bfh scheck low 4 bits
812f c24481 jnz nonum
: : pPrint line number
9132 cd7201 call crlf
: check for break key
8135 cds94a1 call break
H accum lsb = 1 if character ready
0138 @£ rec ;jinto carry
8139 das5191 je finis sdon't print any more
813¢c 7c¢ ’ mov a,h
#13d cdsfal call phex
8148 74 mov a,l
8141 cds8fal call phex
nonum:
2144 23 inx h :t0 next line number
8145 3e209 mvi a,' '
0147 cde501 call pchar
gl4a 78 mov a,b
814b cd8fgl call phex
flde c32301 jmp gloop
éinls:
: end of dump, return to ccp
: (note that a jmp to #660h reboots)
8151 cd72941 call crlf
0154 2a1562 lhld oldsp
8157 £9 sphl '
H stack pointer contains ccp's stack location
8158 c9 ret sto the ccp
subroutines

L ~e ~o wo ~e

reak: ;check break key (actually any key will do)

8159 e5d5c¢cs push h! push d! push b; enviromment saved
815¢c dedb mvi c,brkf
815e cdaseo call bdos

8161 cldlel pop bl pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

#led c9 ret

H
pchar: ;print a character

#165 e5d5c5 push h! push 4! push b; saved
7168 OeB2 mvi c,typef
gléa 5f£ mov e,a
gl6b cdas508 call bdos
glée cldlel pop b! pop 4! pop h; restored
@171 c9 ret
crilf:
3172 3efd mvi a,cr
174 cde581 call pchar
8177 3eda mvi a,lf
9179 cd6501 call pchar
@l7c c9 ret

'U e o
o
P.
o

;print nibble in reg a

gl74 e608f ani gfh slow 4 bits
817f feba cpi 19
9181 428941 jnc plod
: less than or egual to 9
p184 c639 adi ‘g’
#186 c38b@1l jmp prn
: greater or equal to 19
8189 c637 pld: adi ‘a' - 18
§18b cd6581 prn: call pchar
#l8e c9 ret
phex: ;print hex char in reg a
@18f f£5 push pSw
p190 O£ rrc
@191 0of rec
g192 0Of rrc
9193 0f rrc
3194 cd7d401l call pnib. ;print nibble
3197 £f1 pop psw
p198 cd7d4e1l call pnib
g19b c9 ret
errc: ;print error message
’ : d,e addresses message ending with wer
819c ded9 mvi c,printf ;print buffer function
gl9%e cdes5ad call bdos
glal c9 ret
gnb: ;get next byte
gla2 3al362 lda ibp
glaS £e80 cpi 88h
8la7 c2b3dl jnz ga

read another buffer

-e w8

(All Information Contained Herein is Proprietary to Digital Research.)

36

-e

Blaa cdcedl call diskr

f#lad b7 ora a 72ero value if read ok
8lae cab3gl jz g ;for another byte
: end of data, return with carry set for eof
A1bl 37 stc
91b2 ¢9 ret
god: iread the byte at buff+reg a -
#1b3 5¢ mov - e,a :1ls byte of buffer index
@lb4 1600 mvi 4,8 sdouble precision index to de
#1b6 3¢ inr a ; index=index+1
A1b7 321382 sta ibp sback to memory

pointer is incremented
save the current file address

e we

Blba 2184000 1xi h,buff
g1bd 19 dad d
: absolute character address is in hl
@lbe 7e mov a,m
H byte is in the accumulator
#1bf b7 ora a sreset carry bit
8lcld c9 ret
setup: ;set up file
‘3 open the file for input
Blcl af Xra a 12ero to accum
8lc2 327c08 sta fcber sclear current record
’
#1lc5 115cH9 1xi d,fcb
01c8 Qedf mvi c,openf
Blca cdasen call bdos
; 255 in accum if open error
flcd c9 ret
diskr: ;read disk file record
Blce e5dS5c5 push h! push d! push b
#1481 115cHo 1xi d,fcb
B1d4 deld mvi c,readf
#1d6 cdesos call bdos
8149 cldlel pop b! pop 4! pop h
gldc ¢9 ret :
I
: fixed message area
#1ldd 46494chdsignon: db 'file dump version 2.0$* "
B1lf3 f6dfadedopnmsg: db cr,lf,'no input file present on disksS'
: variable area
8213 ibp: ds 2 ;input buffer pointer
8215 Ooldsp: ds 2 ;entry sp value from ccp
' ; stack area
4217 ds 64 ;reserve 32 level stack
stktop:
3257 : end

(All Information Contained Herein is Proprietary to Digital Research,)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name

x.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. 1If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 8 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return., RANDOM then writes the character string into the
X.DAT file at record n. 1f the R command is issued, RANDOM reads

record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns

to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an jnitialization section where the
input file is opened or created, followed by a continuous loop at the
jabel "ready" where the individual commands are interpreted. The
default file control block at 885CH and the default buffer at 208808
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line_ processor, called “readc.”
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

Pty

;***

.* *
’
i* sample randam access program for cp/m 2.0 *
'S %*
;****t**

61099 org 198h ~;base of tpa
H

p000 = reboot equ 0060h ;system reboot

90085 = bdos equ #005h ;bdos entry point

00601 = éoninp egu 1 sconsole input function

pgo2 = conout egu 2 sconsole output function

8909 = pstring equ 9 ;print string until 's®

ggda = rstring equ 19 ;read console buffer

8@fc = version equ 12 ;return version number

000f = openf egqu 15 ;file open function

6010 = closef equ 16 ;close function

pgle = makef equ 22 ;make file function

P21 = readr equ 33 ;read random

3822 = writer equ 34 ;write random

805c = fcb equ #05ch ;default file control block

po74 = ranrec equ fcb+33 ;random record position

P87t = ranovf equ fcb+35 ;high order (overflow) byte

2080 = buff egu 2880h sbuffer address v
;

gagda = cr equ gdh ;carriage return

ggga = 1f equ gah s;line feed
;***
o W *
;* load SP, set-up file for random access *
« % *
;***

8188 31bc@ l1xi sp,stack
: version 2,8?

8103 dedc mvi c,version

9185 cdes59 call bdos

8198 fe29 cpi 20h sversion 2,0 or better?

8l0a 42160 jnc versok
; bad version, message and go back

8184 111b@ 1xi d,badver

2119 cddad . call print

8113 c34d09 jmp reboot
versok:
; correct version for random access

7116 fdedf mvi c,openf ;open default fcb

8118 115cH 1xi d,fcb

Allb cdaso call bdos

6lle 3¢ . inr a serr 255 becomes zero

B1l1f c2379 jnz ready

- “e

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research,)

39

8122 felé6
8124 115c¢c9
9127 cdds59
gl2a 3¢

g12b c2378

dl2e 11l3a8
8131 cddagd
3134 c3009

8137 cde5#d
gl3a 22740
@13d 217£8@
8140 3609
142 fe51
#1444 c2560

3147 Beld
8149 115c¢cH
#l4c cdédse
pl4f 3c
3150 cabdd
8153 c3008

8156 fe57
#158 c2894

@15b 11446
g1l5e cddad
3161 fe7f

9163 21840

8166 c5
8167 e5
3168 cdc2gd
gleb el

(All Information Contained Herein is Proprietary to Digital Research.)

otg:

mvi c,makef

1xi d,fcb

call bdos

inr a serr 255 becomes zero

jnz ready
H
: cannot create file, directory full

1xi d ,nospace

call print

jmp reboot ;back to ccp
;************t*************************t*******t****
. *
7
;* loop back to “ready" after each command *
R *
;***
;
ready:
: file is ready for processing
:

call readcom ;read next command

shld ranrec :store input record#

1xi h,ranovf

mvi m,d sclear high byte if set

cpi ‘Q’ squit?

jnz notg
;
: quit processing, close file

mvi c,closef

1xi d,fcb

call bdos

inr a serr 255 becomes 0

jz error ;error message, retry

jmp reboot ;back to ccp
; ***
o« % *
r
;* end of quit command, process write *
o}) *
l; ***************************’******************t*****
n
;

not the gquit command, random write?

cpi ‘W'
jnz notw
’
: this is a random write, £ill buffer until cr
1xi d,datmsg
call print ;data prompt
mvi c,127 sup to 127 characters
1xi h,buff ;destination
rloop: ;read next character to buff
push b :save counter
push h snext destination
call getchr ;character to a
pop h ;jrestore counter

40

Bl6c cl . | pop b rrestore next to fill

Bl6ed feond cpi cr ;jend of line?
Bl6f ca788 jz erloop
: not end, store character
8172 77 mov m,a
8173 23 inx h inext to fill
8174 84 dcr c jcounter goes down
8175 c26648 jnz rloop send of buffer?
erloop:
; end of read loop, store @@
8178 3604 mvi m,d
: write the record to selected record number
8l7a de22 mvi c,writer
017c 115cH 1xi d,fcb
Bl7f cdgsa call bdos
8182 b7 ora a serror code zero?
0183 c2b9gd jnz error smessage if not
8186 c3379 jmp ready sfor another record
; ***
o % *
’
i* end of write command, process read *
'S *
; ***********_***********t***t*************i**********
notw:
; not a write command, read record?
#3189 fe52 cpi ‘R*
818b c2bgg jnz error ;skip if not
H read random record
#l8e el mvi c,readr
8198 115ch 1xi d,fcb
8193 cdesa call bdos
8196 b7 ora a ;return code 49?
8197 c2b9d. jnz error
: read was successful, write to console
#l9% cdcfg call crlf snew line
8194 de8d mvi c,128 smax 128 characters
819f 21809 1xi h,buff ;next to get
wloop:
Bla2 7e mov a,m snext character
#la3 23 inx h ;next to get
Bla4 e67f : ani 7£h smask parity
01a6 ca37d jz .ready ;for another command if gg
#la9 c5 push b ;save counter
#laa es push h ;save next to get
dlab fe2s cpi t e sgraphic?
#lad d4c8g cnc putchr ;skip output if not
#1bd el : pop h
Albl ci1 pop b
21b2 a4 decr c ;count=count~-1
A1b3 c2a24 jnz wloop
B1lb6 c3378 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)
41

**
*

end of read command, all errors end~-up here *
*

* o * & *

**

D ~e ~o <o me “e “o e

rror:

81b9 11590 1xi d,errmsg
@ lbc cddagd call print
glbf ¢c3379 jmp ready

**
*

w»e We WO We W& ™V
* ¥ * ¥ %

utility subroutines for console i/o *
*
t***
getchr:
s;read next console character to a
glc2 Debl mvi c,coninp
glcd cdpsa call bdos
8lc7 c9 ret
putchr: .
;write character from a to console
glc8 BeB2 mvi c,conout
@lca S5f mov e,a ;character to send
glcb cdess call bdos :send character
glce ¢9 ret
crlf:
;send carriage return line feed
dlcf 3e8d mvi a,cr scarriage return
8141 cdc8@ call putchr
8134 3efla mvi a,l1lf ;1line feed
#136 cdc8@ call putchr
3149 ¢S ret
print:
;print the buffer addressed by de until §$
glda d5 push d
P1db cdcfd . call crlf
g1lde 41 . pop d ;new line
plaf ded9 mvi c,pstring
fglel cdésSa call bdos ;print the string
gled c9 ret
readcom:
;read the next command line to the conbuf
@le5 116bd 1xi d,prompt
8 le8 cddad call print ; command?
gleb deda mvi c,rstring
fled 117ab 1xi d,conbuf
gl1f9 cdBsd call bdos ;read command line

-e

command line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

81£3 21008 1xi h,8 ;start with 204d0
P1£f6 117cH 1xi d,conlin;command line
81f9 1la readc: 1ldax d ;next command character
glfa 13 inx d ;o next command position
g1fb b7 ora a ;cannot be end of command
Blfc c8 rz
; not zero, numeric?
g1£d de3g sui ‘g’
AlEf fena cpi 10 scarry if numeric
8291 42138 jne endrd
: add-in next digit
6294 29 dad h %2
8205 44 mov c,l
9206 44 mov b,h sbc = value * 2
#2907 29 dad h 1 *4
#5208 29 dad h :*8
9209 89 dad b ;%2 + *8 = *1§
g28a 85 add 1 ;+digit
828b 6£ mov 1l,a
P26c d2£90 jnc readc s for another char
B820f 24 inr h ;overflow
8219 c3£f99 jmp readc ; for another char
endrd:
_ H end of read, restore value in a
#213 c638 , adi ‘g’ ; command
3215 fe6l cpi - stranslate case?
6217 d8 rc ,
; lower case, mask lower case bits
8218 e65f ani 19181111b
221la c9 ret
- ;***'
' *
[
;* string data area for console messages *
e %*
;***
. badver:
P21b 536£79 db ‘sorry, you need cp/m version 2§$°
nospace:
B23a 4e6£29 db ‘no directory space$’
datmsg:
8244 547970 db ‘type data: §°'
errmsg:
8259 457272 db ‘error, try again,$®
prompt:
#26b 4e6579 db 'next command? $°'

’

(All Information Contained Herein is Proprietary to Digital Research.)

43

;***

'R] *
:* fixed and variable data area *
. *
;***
p7a 21 conbuf: db conlen ;length of console buffer
827b consiz: ds 1 sresulting size after read
g27¢c conlin: ds 32 ;length 32 buffer
9021 = conlen equ $-consiz
829¢ ' ds 32 ;16 level stack
stack:
g 2bc end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system, One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracgs a specific field defined by the operator. For example, the
comman

GETKEY NAMES.DAT LASTNAME 10 29

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME* field from each record, starting at position 14 and
ending at character 20, GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an “inverted index" in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a “binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
" You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

L,

e

At this point you're just getting started. With a 1little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randamly access the record containing the proper
group, offset to the beginning of the group within the record read
segquentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean

expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your 1lists are getting too big to fit into memory,
randamly access your key files from the disk as well, One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

a System Reset none none

1 Console Input none A = char

2 console Qutput E = char none

3 Reader Input none A = char

4 Punch Qutput E = char none

5 List Qutput E = char none

6 Direct Console I/0 see def see def

7 Get I/0 Byte none A = IOBYTE

8 Set I/0 Byte E = IOBYTE none

9 Print String DE = ,Buffer none

1d Read Console Buffer DE = ,Buffer see def

11 Get Console Status none A = gag/FF
12 Return Version Number none BEL= Version¥*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

15 Open File DE = _FCB A = Dir Code
le6 Close File DE = ,FCB A = Dir Code
17 Search for First DE = ,FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
29 Read Segquential DE = FCB A = Err Code
21 Write Sequential DE = _FCB A = Err Code
22 Make File DE = _FCB A = Dir Code
23 Rename File DE = ,FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disks
26 Set DMA Address DE = .DMA none

27 Get Addr(Alloc) none HL= ,Alloc
28 Write Protect Disk none see def

29 Get R/Q Vector none HL= R/Q Vect”*
39 Set File Attributes DE = ,FCB see def

31 Get Addr(disk parms) none HL= .DPB

32 Set/Get User Code see def see def

33 Read Random DE = ,FCB A = Err Code
34 Write Randam DE = FCB A = Err Code
35 Compute File Size DE = ,FCB rd, rl, r2
36 Set Randam Record DE = .FCB rd, r£l, r2

* Note that A = L, and B = B upon return

(All Information Contained Herein is Proprietary to Digital Research.)

46

et

