
c;rm
INTERFACE GUIDE

COpyr~t (e) 1979
DIGITAL USBARCR

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted.
transcribed, stored in a retrieval system, 01' translated into
an, langua~ 01' computer language, in any torm or by any
means, eleetronic, meehanicaI. magnetic, optieal, chemical,
manual or otheMfise, without the prior written permission of
Digital Research, Post OffIce Box 579, Pacific Grove,
C':aJifomia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and speciflcallV disclaims any
implied warranti. of merchantability or fitness for any parti-
cular purpose. Further, Dtgftal Research reserves the right
to revise this pUblication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks . .

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

/

Copyright (c) 1979
Digital Research. Box 579
Pacific Grove, California

2. Operating System Call Conventions • • • • • • • • • • •• 3
3. A Sample File-to-File Copy Program •••••••••••• 29

• 34

• 37

• 46

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. Theintention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic Disk Operating System (BOOS), the Consolecommand processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O.
Digital Research, explicit instructions
reconfiguration of the BIOS to match nearly anv hardwaL~
(see the Digital Research manual entitled ~U1ae).
The BIOS and BOOS are logically combined into a single module with a
cammon entry point, and referred to as the FDOS. The CCP is a
distinct pr~gram which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are exe·cuted. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

I I
I I
I FDOS (BDOS+BIOS) I
I I~--------------------------I I
I CCP I
I I---------------------------
I
I
I
I TPA
I
I-------~~----------------I system parameters
I

high
memory

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
NCP/M Alteration Guide.N All standard CP/M versions, however, assume
BOOT • B8B8H, which is the base of random access memory. The machine
code found at location BOOT performs a system Nwarm startN which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump ·to location BOOT

to return control to CP/M at the command level. Further, the standard
versions assume TBASE· BOOT+S1SSB which is normally location SlSOH.
The principal entry point to the .FOOS is at location BOOT+SSSSH
(nonnally SSSSB) where a jump to FBASE is found. The address field at
BOOT+SSS6H (normally SSS6H)' contains the value of FBASE and can be
used to deteanine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing commandlines following each prompt. Each command line takes one of the
forms:

command
command filel
command filel file2

where ·command- is either a built-in function such as OIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command.COM
If the file is found, it is assumed to be a memory image of awhich executes in the TPA, and thus implicitly originates at
memory. The CCP loads the COM file from the disk into memory
at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications, ('the CCP prepares one or two file control block (FCB) names in the ..~~.
system parameter area. These optional FCB's are in the form necessary
to access files through the FOOS, and are described in the next
section.

program
TBASE in
starting

The transient pro~ram receives control from the
execution, perhaps USl.ng the I/O.,facilities of
transient program is "called" from the CCP, and thus
to the CCP upon completion of its processing, or can
pass control back to CP/M. In the first case, the
must not use memory above CBASE, while in the latter
through FBASE-l is free.

The transient program may use the CP/M I/O facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
-function number" and an -information address" to CP/M through the
FDOS entry point at BOOT+SSOSH. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FOOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

CCP and begins
the FDOS. The

can simply return
jump to BOOT to
transient program
case, memory up

(J'-

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled -MAC Macro
Assembler: Language Manual and Applications Guide.~

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are
Disk SystEIIIReset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File RenameRandom or Sequential ReadRandom or Sequential Write
Inter~ogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset Pile Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0S05H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function "number is out of range). For reasons of compatibility,
register A • L and register B - H upon return in all cases. Note thatthe register.passing conventions of CP/M agree with those of Intel's·
PL/M systems programming language. The list of CP/M functidn numbers
is gi.venbelow.

o System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 Pr int Str ing

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr(Alloc)
28 Write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get Oser Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Opon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = 00008):

BOOS EQO 0005H 1STANDARD CP/M ENTRY
CONIN EQO 1 1CONSOLE INPUT FONCTION.,

ORG I1Jl';'0H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BOOS ;RETURN CHARACTER IN <A>
CPI .*. ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each-disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capaci,ty of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic cat~ory of a particular
file, while the file name distinguishes ind1vidual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is proprietary to Digital Research.)
4

ASM Assembler Source PLI PL/I Source File
PRN Pr inter Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAR ED Source Backup
INT Intecnediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
MlineM of the source file is followed by a carriage-return line-feed
sequence (9DH followed by 9AB). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 9 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+885CH (nocnally 995CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is'provided by CP/M
at location BOOT+9989H (normally 9989H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly. The default file
normally located at 995CH can be used for random access
the three bytes starting at BOOT+997DB are availabl~ for
The FCB focnat is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

(All Information Contained Herein is Proprietary to Digital Research.)
5

drive code (a - 16)
a -> use default drive for file
1 -> auto diak select drive A,
2 -> auto disk select drive B,

fl •••f8 contain the file name in ASCII
upper case, with high bit • a

tl,t2,t3 contain the file type in ASCII
upper case, with high bit - atl', t2', and t3'denote the
bit of these positions,
tl' - 1 -> Read/Only file,
t2' - 1 -> SYS file, no DIR list

ex contains the current extent number,
normally set to aa by the user, but
in range a - 31 during file I/O

s2 reserved for internal systen use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent Mex,M
takes on values from a - 128

da •••dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

ra,rl,r2 optional random record number in the
range a-65535, with overflow to r2,
ra,rl constitute a l6-bit value with
low byte ra, and high byte rl

Each file being accessed through CP/M must have a corresponding
rCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the rCB
and initialize the McrN field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero~

(All Infor.mation Contained Herein is Proprietary to Digital Research.) (_~
6

PCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) •

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by sc"anning the remainder of the line following the
transient name, denoted by "filel" and ••file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first PCB is constructed at location BOOT+005CH, and can
be used as-is for sUbsequent file operations. The second FCB occupies
the d0 ••• dn portion of the first PCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROG~ME B:X.ZOT Y.ZAP
the file PROG~ME.COM is loaded into the TPA, and the default FCB at
BOOT+IiJIiJ·5CHis initialized to drive code 2, file name ••x .. and file type
"ZOT". The second drive code takes the default value 1iJ,which is
placed at BOOT+1iJ06CH,with the file name "Y" placed into location
BOOT+1iJ1iJ6DHand file type "ZAP" located 8 bytes later at BOOT+1iJ1iJ75H.
All remaining fields through "cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type" to another area, usually a separate file control block, before
opening the file which begins at BOCT+1iJ1iJ5CH,due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+1iJ1iJ5DHand BOOT+01iJ6DHcontain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+008IiJH is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves foilowing the
character count~ Given the above command line, the area beginning at
BOOT+008IiJHis initialized as follows:

BOOT+0080B:
+00 +01 +02 +03 +04 +1iJ5+06 +07 +1iJ8+09 +19 +11 +12 +13 +14

14 " " "BN ":" "X" "." "Z" "0" ~T" ••" "Y" .••..••z .• "A" "P"
where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)
7

* ** FUNCTION~: System Reset *
* **
* Entry Parameters: *
* RegisterC: liJliJH *

The system reset function"returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

* ** FUNCTION 1: CONSOLE INPUT *
* **
* Entry Parameters: *
* Register C: liJlH *
* ** Returned Value: .*
* Register A: ASCII Character *

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-B) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). _
The FOOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* ** FUNCTION 2: CONSOLE OUTPUT *
* **
* Entry Parameters: *
* Register c.: liJ2H *
* Register E: ASCII Character *
* **

The ASCII character fram register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)
8

* ** FUNCTION 3: READER INPUT *
* **
* Entry Parameters: *
* Register C: a3H *
* ** Retur ned Value: *
* Register A: ASCII Character *

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the ·CP/M
Alteration Guideh

). Control does not return until the character has
been read.

* ** FUNCTION 4: PUNCH OUTPUT *
* **
* Entry Parameters: *
* Register C: a4H *
* Register E: ASCII Character *
* **

The Punch Output function sends the character from register E to
the logical punch device.

* ** FUNCTION 5: LIST OUTPUT *
* **
* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* **

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)
9

* ** FUNCTION 6: DIRECT CONSOLE I/O *
* **************************~*************
* Entry Parameters: *
* Register C: S68 *
* Register E: SFF8 (input) or *
* char, (output) *
* ** Returned Value: *
* Register A: char or status *(no value) *

(~

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S andcontrol-Pl. Programs which perform direct I/O through the 8IOS under
previous releases of CP/M, however, should be changed to use direct
I/O under 8DOS so that they can be fully supported under futurereleases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A • aa
if no character is ready, otherwise A contains the next console inputcharacter.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All InfOCom«tion Contai ed .n Here1n is Proprietary to Digital Research.)

* ** FUNCTION 7: GET I/O BYTE *
* **
* Entry Parameters: *
* Register C: fCl7H *
* ** Returned Value: *
* Register A: I/O Byte Value **

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* ** FUNCTION 8: SET I/O BYTE *
* **
* Entry Parameters: *
* Register C: fCl88 *
* Register E: I/O Byte Value *
* **

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

* ** FUNCTION 9: PRINT STRING *
* **
* Entry Parameters: *
* Register C: 098 *
* Registers DE: String Address *
* **

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

* ** FUNCTION lS: READ CONSOLE BOFFER *
* **
* Entry Parameters: *
* Register C: liJAH *
* Registers DE: Buffer Address *
* ** Returned Value: *
* Console Characters in Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), IInc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "11" in the above figure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-a
ctl-J
ctl-M
ctl-R
ctl,..U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current ~ine after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes ~perator data inputand line correction more legible.

* ** FUNC'rION 11: GET CONSOLE STATUS *
* **
* Entry Parameters: *
* Register C: 0BB *
* ** Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFB is
returned in register A. Otherwise a 00B value is returned.

* ** FUNCTION 12: RETURN VERSION NUMBER *
* **
* Entry Parameters: *
* Register C: 0Ca *
* ** Returned Value: *
* Registers BL: Version Number **

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with B = 00
designating the CP/M release (8· 01 for MP/M), and L = 09 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 29 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with ~andom access disabled when operating under
early .releases of CP/M.

* ** FUNCTION 13: RESET DISK SYSTEM *
* **
* Entry Parameters: *
* Register C: 0DH *
* **

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

***********~***************************
* ** FUNCTION 14: SELECT DISK *
* **
* Entry Parameters: *
• Register C: 0EH *
* Register E: Selected Disk *
* **

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
• 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
·on-lineN status -which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
~he disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCS's which specify drive code zero (dr. 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)
14

* ** FUNCTION 15: OPEN FILE *
* **
* Entry Parameters: *
* Register C: 0FH ** Registers DE: FCa Address *
* ** Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active usernumber. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the Fca referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches anydirectory character in any of these positions. Normally, no question
marks are included and, further, bytes MexM and ·s2M of the Fca are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes· d0 through dn of the FCa, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a ·directory codeM with the value S through 3 if the open was
succeSSful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB isactivated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

* ** FUNCTION 16: CLOSE FILE *

* Entry Parameters: *
* Register C: HJH *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFS (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

* ** FUNCTION 17: SEARCH FOR FIRST *
* **
* Entry Parameters: *
* Register C: IlH *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 8, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for appl ication programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from Nfl" through "ex· matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the MdrN field is not a question mark,
the "s2" byte is automatically zeroed.

* ** FUNCTION 18: SEARCH FOR NEXT *
* **
* Entry Parameters: *
: Register C: 12B :
* Returned Value: *
* Register A: Directory Code *
****************~**********************

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

* ** FUNCTION 19: DELETE FILE *
* **

'. Entry Parameters: *
* Register C: l3H *
* Registers DE: FCB Address *
* ** Returned Value: ** Register A: Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

if the referenced file or
value in the range 8 to 3 is

• *
• FUNCTION 28: READ SEQUENTIAL *
* **
* Entry Parameters: *
* Register C: l4B *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

Given that the FCB addressed by DE has been activated through an
open or"make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value 88H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)
18

* ** FUNCTION 21: WRITE SEQUENTIAL *
* **
* Entry Parameters: *
* Register C: l5H *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code **

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position ·cr" of
the file, and the "cr" field is automatically incremented to the next
record position. If the ·crM field overflows then the next logical
extent is automatically opened and the "cr· field is reset to zero in
preparation for the next write operation. write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A • SSH upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* ** FUNCTION 22: MAKE FILE *
* **
* Entry Parameters: *
* Register C: l6H *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero Mdr· code, or the default disk if "dr· is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A • S,
1, 2, or 3 if the operation was successful and SFFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the Fca and thus a subsequent open is not
necessary.

* ** FUNCTION 23: RENAME fILE *
* **
* Entry Parameters: *
* Register C: l7H *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position fIJis used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
flJFFH (255 decimal) if the first file name could not be found in the
directory scan.

* ** FUNCTION 24: RETURN LOGIN VECTOR *
* **
* Entry Parameters: *
* Register C: l8H *
* ** Returned Value: *
* Registers HI.: Login Vector **

The login vector value returned by CP/M is a l6-bit value in HI.,
where the least significant bit of r. corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A ~0~ bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "drll field. Note that
compatibility is maintained with earlier releases, since registers A
and r. contain the same values upon return.

(All Information Contained Herein is Propr ietary to Digital Research.)
213

* ** FUNCTION 25: RETURN CURRENT DISK *
* **
* Entry Parameters: *
* . Register C: 19B *
* ** Returned Value: *
* Register Ar Current Disk *

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 6 through 15 corresponding
to dr ives A through P.

* ** FUNCTION 26: SET DMA ADDRESS *
* **
* Entry Parameters: *
* Register C: lAB *
* Registers DE: DMA Address *
* **

MOMAN is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly acce$S the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-O~m access (i.e.,
the data is transfer~ through programmed I/O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the OMA address is
automatically set to BOOT+8888B. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

***************************************'
* ** FUNCTION 27: GET ADDR(ALLOC) *
* **
* Entry Parameters: *
* Register C: ISH *
* ** Returned Value: *
* Registers HL: ALLOC Address *

An -allocation vector- is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the -CP/M Alteration Guide.u

* ** FUNCTION 28: WRITE PROTECT DISK *
* **

Entry Parameters:
Register C:

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attempt to write to

before the next cold or warm start operation produces the

(All Information Contained Herein is Proprietary to Digital Research.)
22

* ** FUNCTION 29: GET READ/ONLY VECTOR *
* **
* Entry parameters: *
* Register C: IDH *
* ** Returned Value: *
* Registers HL: R/O Vector Value**

Function 29 returns a bit vector in register pair Ht which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

*********~*****************************
* ** FUNCTION 38: SET FILE ATTRIBUTES *
* **
* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3' are reserved for future system
expans.ion.

* ** FUNCTION 31: GET ADDR(DISK PARMS) *

. * *

* Entry Parameters: *
* Register C: lFH *
* ** Returned Value: *
* Registers HL: DPB Address **

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space com9utation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* ** FUNCTION 32: SET/GET USER CODE *
* **
* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get) or *
* User Code (set) *
* ** Returned Value: *
* Register A: Current Code or *
* (no value) *
****-**********************************

An application program can change or interrogate the currently
active user number by calling function 32. If register E • OFFS, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register E is not 0FFS, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)
24

* *
* FUNCTION 33: READ RANDQ! *
* **
* Entry Parameters:- *
* Register C : 21H *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions ra at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (ra), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the-ra,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from e to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent a) must first be opened. Although the base extent mayor may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BDOS is called to read the-record. Upon return from
the call, register A either contains an error code, as listed below,
or the value aa indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue- to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course~ simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses adata block which has not been previously written, or an extent which
has not been created, which are ~quivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero returncodes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)
26

* ** FUNCTION 34: WRITE RANDCM *
* **
* Entry Parameters: *
* Register C: 225 *
* Registers DE: FCB Address *
* ** Returned Value: *
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned
random read operation with
indicates that a new extent
overflow •

by a random write are identical to the
the addition of error code 85, which
cannot be created due to directory

*******~*******************************
* ** FUNCTION 35: COMPUTE FILE SIZE *
* **
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCa Address *
* ** Returned Value: *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an Fca in random mode format (bytes r0, rl, and r2 are
present). The Fca contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
·virtualu file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
16-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and ~holesN exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, onl~ the last record of an eight megabyte file is written in
random mode (~.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)
28

* ** FUNCTION 36: SET RANDQt RECORD *
* . **
* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* ** Returned Value: *
* Random Record Field Set **

The Set Random Record function causes the BOOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various NkeyN fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
wr ite operations continue from the selected point in the file.

3. A SAMPLE PILE-TO-PILE COpy PROGRAM.
The program shown below provides a relatively simple example of (

file operations. The program source file is created as COPY.ASM usingthe CP/M EO program and then assembled using ASM or MAC, resulting ina ~SEX· file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at SS6CH to a 33-byte file control
block called OPCS. The OFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination PCS's are ready for processing since the SPCS at 0SSCS is
properly set-up by the CCP upon entry to the COpy program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CS. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COpy until each record has
been read from the source file and placed into the destination file.upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

• sample file-to-file copy program,
·,
1 at the ccp level, the command· (,· copy a:x.y b:u.v \,
1
• copies the file named x.y from drive,
· a to a file named u.v on drive b.,
•,

sssa • boot equ SSaah 7 system reboot
sass • bdos equ SSaSh · bdos entry point,
SSSc • fcbl equ I!HJSch 7 firsi:file name
OSSc • sfcb equ fcbl · source fcb,
SS6c • fcb2 equ 006ch · second file name,
SOSS • dbuff equ SSSSh · default buffer,
0180 • tpa equ 0l00h 7 beginning of tpa

•,
0009 • printf equ 9 · print buffer funct,
000f • openf equ 15 · open file funct,
0010 • closef equ 16 · close file funci,
0013 • deletef equ 19 • delete file func.,
8014 • readf equ 28 sequential read
0015 • writef equ 21 ; sequential write
0016 • makef equ 22 · make file func.,·,8100 org tpa · beginning of tpa,
0180 3l1b02 lxi sp,stack 1 local stack

•,
7 move second file name to dfcb

0103 0elS mvi c,16 · half an fcb,
(

(All Information Contained Herein is Proprietary to Digital Research.)
30

0HJ5 116c~HJ
0108 21da01
010b la mfcb:
010c 13
010d 77
010e 2·3
010f 0d
0110 c20b01

0113 af
0114 32fa01

lxi
lxi
Idax
inx
mov
inx
dcrjnz

d, fcb2
h,dfcb
d
d
m,a
h
c
mfcb

source of move
destination fcb

_: source fcb
: ready next
: dest fcb

ready next
: count 16 •••a
: loop 16 times

name has been moved, zero cr
xra a : a = 00h
sta dfcbcr: current rec = 0

lxi
call
lxi
inr
cz

.,
: source and destination fcb's ready

0124 Ilda01
0127 cd7301
012a IldafJ1
012d cd8201
013fJ 1196fJl
0133 3c
0134 cc6HH

0137 115c00 copy:
013a cd7801
013d b7
013e c25101

0141 Ilda01
0144 cd7d01
0147 lla 9fJ1
014a b7
014b c46101
1iJ14ec33701 .,

eofile:
0151 Ilda01
0154 cd6e01

.0157 21bbSl
015a 3c
015b cc6HH

d,sfcb : source file
open : error if 255
d,nofile: ready message
a : 255 becomes 0finis 1 done ifno file

source file open, prep destination
lxi d,dfcb 1 destination
call delete 1 remove if present
lxi
call
lxi
inr
cz

d,dfcb
make
d,nodir
a
finis

1 destination
: create the file
1 ready message

255 becomes 0
: done if no dir space

source file open, dest file open
copy until end of file on source

d ,sfcb
read
aeofile

: source
1 read next record

end of file?
1 skip write if so

0117 115c00
01la cd6901
011d 118701
0120 3c
0121 cc6101

lxi
call
ora
jnz
not end
lxi
call
lxi
ora
cnz
jmp
• end, .
lxi
call
lxi
inr
cz

of file, write the record
d,dfcb 1 destination
write 1 write record
d,space : ready message
a 1 00 if write ok
finis : end if so
copy 1 loop until eof

of file, close destination
d,dfcb 1 destination
close : 255 if error
h,wrprot1 ready message
a 255 becomes 00
finis 1 shouldn't happen

(All Information Contained Herein is proprietary to Digital Research.)
31

1 write message given by de, reboot
mvi c,printf
call bdos ; write message
jmp boot ; reboot system
system interface subroutines
(all return directly from bdos)

·,finis:
0161 0e09
0163 cd0500
0166 c30000

·,0169 0eSf open: mvi
0l6b c305S0 jmp·,0l6e 0e10 close: mvi
0170 c3050S jmp
0173 Se13
0175 c30500

·,delete: mvi
jmp

;
0178 0e14 read: mvi
0l7a c30500 jmp

;
0l7d 0e15 write: mvi
0l7f c30500 jmp.,
0182 0e16 make: mvi
0184 c30500 jmp.,

;
0187 6e6f20fnofile:
0196 6e6f209nodir:
0la9 6f7574fspace:
Blbb 7772695wrprot:
ra lcc 63 6f700normal:

console
db
db
db
db
db

c,openf
bdos
c,closef
bdos
c,deletef
bdos
c,'readf
bdos
c,writef
bdos
c,makef
bdos
messages
'no.source fileS'
'no directory spaceS'
'out of data spaceS'
'write protected?S'
'copy completeS'

0loa
0lfa ••

; data areas
dfcb: ds 33 ; destination fcb
dfcbcr equ dfcb+32 ; current record

0lfb
02lb

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references~ This situation
could be detected by scanning the 32 bvte default area starting at
location e05CS for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005D8 and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)
32

the size of memory by fetching FBASE from location 8886H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the ~MA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

4. A SAMPLE FILE DUMP UTILITY.
The file dump program shown below is slightly more complex than

the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

1 DUMP program reads input file and displays hex data
SlS9
S99S •
aS01 •
SS92 •S999 •
S99b •
SS9£ •
S914 •
S9sc •
SS89 •

aS9d •
aa0a •

0asc •
S9sd •
9065 •
S968 •
096b •
997c •
SS7d •

9199 21S999
9HJ3 39

S104 221SS2
9107 31s7S2
01aa cdclSl
0Hld feff
019f c21b91

0112 Ilf391Slls cd9cSl
0118 c3s101

bdos
cons
ty~fprJ.ntf
brk£
openf
readf
Jfcb
buff

fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln

org
equ
equequ
equ
equ
equ
equ

lSSh
SSash
1
2
9
11
15
20

;dos entry point
;read consoleJtype function
;buffer print entry
Jbreak key function (true if charJfile open
Jread function

equ
equ

Sch
8Sh

Jfile control block address
Jinput disk buffer address

non graphic characters
equ Bdh Jcarriage return
equ Sah 1line feed
file control block definitions
equ fcb+0 Jdisk name
equ fcb+l Jfile name
equ fcb+9 ;disk file type (3 characters)
equ fcb+12 Jfile's current reel number
equ fcb+ls 1file's record count (S to 128>
equ fcb+32 Jcurrent (next) record number (0
equ fcb+33 ;fcb length
set up stack
lxi h,S
dad sp
entry stack pointer in hI from the ccp
shld oldspset sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup Jset up input file
cpi 255 J255 if file not present
jnz openok ;skip if open is ok
file
lxicall
jrnp

not there, give error message
d,opnmsgerr
finis ;to return

openok: ;open operation ok, set buffer index to end
0llb 3e80 mvi a,80h
0lld 32l3e2 sta ibp ;set buffer pointer to 80h

; hI contains next address to print
0l2e 2l0eee lxi h,e ;start with eee0

0123 e5
0124 cda2el
0127 el
0128 da5lel
0l2b 47

0l2c 7d
0l2d e60f
0l2f c2440l
0132 cd720l

0135 cd590l
0138 0f
0139 da5l0l
0l3c 7c
0l3d cd8f0l
0140 7d
0141 cd8f0l
0144 23
0145 3e20
0147 cd650l
0l4a 78
0l4b cd8f0l
0l4e c3230l

0151 cd720l
0154 2a1502
0157 f9
0158 c9

0159 e5d5cS
0l5c 0e0b
0l5e cd0500
0161 cldlel

.,
gloop:

.,
finis:

.,
break:

push
call
pop
jc
mov
print
check
mov
ani
jnz
print
call
check
call
accum
rrc
jc
mov
call
mov
call
inx
mvi
callmov
call
jmp

h
gnb
h
finis
b,a

hex values
for line fold

a,l
0fh
nonum

line number
crlf

;recall line position
;carry set by gnb if end file

for break key
break

lsb = 1 if character ready
;into carry

finis ;don't print any
a,h
phex
a,l
phex
h
a,' ,
pchar
a,b
phex
gloop

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call cr If
lhld oldsp
sphl
stack pointer contains ccp's stack location
ret ;to the ccp

;check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c,brkf
call bdos
pop b! pop d! pop h; environment restored

0164 c9
~
pchar:

0165 e5d5c5
0168 0e02
016a Sf
016b cd0500
016e c1d1e1
0171 c9

~cr 1£:
0172 3e0d
0174 cd6501
0177 3e0a
0179 cd6501
817c c9 ·I

~
pnib:

817d e60£
017£ fe0a
8181 d28901 ·I8184 c630
0186 c38ba1

~·I0189 c637 p1l1J:
018b cd6501 prn:
l1J18ec9 ·Iphex:
l1J18£f5
0190 0f
0191 l1Jf
0192 l1Jf
8193 8f
8194 cd7d01
8197 f1
8198 cd7d01
019b c9

;
err:
·I019c 0e09

l1J1gecd05l1Jl1J
l1J1a1c9

·Ignb:
01a2 3a1302
frJ1a5fe80
frJ1a7c2b301

;

·,

iprint a character
push hI push dl push b~ saved
mvi c,typef
mov e,a
call bdos
pop bl pop dl pop h; restored
ret

mvi a,cr
call pchar
mvi a,lf
call pchar
ret

~print nibble in reg a
ani frJ£h ~low 4 bits
cpi 10
jnc p10
less than or equal to 9
adi '0'
jmp prn
greater or equal to 10
adi 'a' - 10call pchar
ret
~print hex char in reg a
push psw
rrc
rrc
rrc
rrc
call pnib. ~print nibble
pop psw
call pnib·
ret
~print error message
d,e addresses message
mvi c,print£
call bdos
ret

ending with "S"
;print buffer function

~get next byte
1da ibp
cpi 80h
jnz g0
read another buffer

01aa cdce01
01ad b7
01ae cab301
01bl 37
01b2 c9 ·I9S:
01b3 Sf
01b4 160S
01b6 3c
Slb7 321302

01ba 21S000
01bd 19

81bf b7
01c8 c9 ·Isetup:
01cl af
01c2 327c8S
81cS 11Sc00
o lcS 8e8f
01ca cd8S0S
81cd c9 ·Idiskr:
01ce eSdScS
Sldl 11Sc0S
01d4 8e14
Sld6 cd858S
01d9 cldlel
211dcc9

call
ora
jz
end of
stc
ret

diskr
a
g0

data,
1zero value if read ok
1for another byte

return with carry set for eof

1read the byte at buff+reg a
mov e,a 11s byte of buffer index
mvi d,8 1double precision index to de
inr a 1index-index+l
sta ibp 1back to memory
pointer is incremented
save the current file address
lxi h,buffdad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora a 1reset carry bit
ret
1set
open
xra
sta

up file
the file

a
fcbcr

for input
1zero to accum
1clear current record

lxi
mvi
call
255 in
ret

d,fcb
c,openf
bdos

accum if

1read disk file record
push h! push d! push b
lxi d,fcb
mvi c"r.eadf
call bdos
pop b! pop d! pop h
ret

1 fixed message area
211dd 46494cSsignon: db 'file dump version 2.8S'
S1£3 Sd8a4e8opnmsg: db cr,lf,'no input file present on diskS'

· variable areaI

21213 ibp: ds 2 1input buffer pointer
S215 oldsp: ds 2 1entry sp value from ccp·I· stack areaI

8217 ds 64 1reserve 32 level stack
stktop:·I0257 end

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

and is followed by operator input, terminated by a carriage return.
The input commands take the form

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command. characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDGt program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the pr incipal input line processor, called "readc. ,.
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

.***,.* *,
;* sample randan access program for cp/m 2.11J *
•* *,
.***,

fIIlllJl1J org lllJlIJh ;base of tpa
;

IIJIIJIIJIIJ• reboot equ 1IJIIJIIJIIJh,system reboot
f11I1JIIJS• bdos equ IIJlIJlIJSh;bdos entry point·,IIJIIJIIJI• coninp equ 1 ;console input function
f1111J1IJ2•• conout equ 2 ;console output function
1IJ1IJ1IJ9•• pstring equ 9 ;print string until • $ •
IIJlIJlIJa= rstring equ lllJ ;read console buffer
IIJlIJlIJc•• version equ 12 ;return version number
IIJIIJlIJf:II openf equ 15 ;file open function
IIJIIJIIIJ•• closef equ 16 ;close function
1IJ1IJ16•• makef equ 22 ;make file function
f1111J21• readr equ 33 ,read random
1IJ1IJ22= writer equ 34 ;write random

;IIJIIJSc•• fcb equ f11I1JSch ;default file control block
1IJ1IJ7d• ranrec equ fcb+33 ;random record position
1IJ1IJ7f•• ranovf equ fcb+3S ;high order (overflow) byte011J80 •• buff equ 1IJ1IJ811Jh;buffer address

;
SSSd •• cr equ fIIdh ;carriage return
IIJSlIJa•• lf equ Sah ;line feed·,.***,

.* *,
;* load SP, set-up file for random access *
.* *,
.***,

version
mvi
call
cpi
jnc
bad
lxi
call
jrnp

2.S?
c,version
bdos
211Jh
versok

version, message
d,badver
print
reboot

SlllJ3·lIJeSc
IIJISS cdS5S
1IJ1S8 fe2S
SlSa d2l6S
01Sd lllbllJ
fII1111JcddaIIJ
0113 c311J00 ·,versok:
1IJ116 SeSf
1IJ118 11ScllJ
0l1b cdllJ50
01le 3c
1IJ11f c2370

correct
mvi
lxi
call
inr
jnz

version
c,openf
d,fcb
bdos
a
ready

for random access
;open default fcb

0122 0e16
0124 11Sc0
0127 cd050
912a 30
0l2b c2370

mvi
lxi
call
inr
jnz

c,makef
d,fcb
bdos
a ;err 255 becomes zero
ready

0l2e l13a0
0131 cdda0
0134 c3000

cannot create file, directory full
lxi d,nospace
call print
jmp reboot ~back to ccp

~.***
~* *;* loop back to -readyM after each command *.* *,
.***,
·,ready:
; file is ready for processing

0137 cdeS0
01Ja 227d9
0l3d 2l7f0
0149 3690
0142 feSl
0144 c256a

call
shld
lxi
mvi
cpi
jnz

readcom ~read next command
ranrec ~store input record.
h,ranovf
m,0 ;clear high byte if set
'0' ;quit?
notq

0147 aela
a149 11Sc0
0l4c cda5a
a14f 3c
elsa cab9a
0153 c3a00

qui t processing,
mvi c,closef
lxi d,fcb
call bdos
inr a
jz error
jmp reboot

;err 255 becomes 0
~error message, retry
~back to ccp·,.***,

.* *,
~* end of quit command, process write *.* . *,
.**************************-************************,
notq:
; not the quit command, random write?

9156 feS7 cpi 'W'
0158 c28'90 jnz notw

·,
~ this is a random write, fill buffer until cr

01Sb l14d9 lxi d,datmsg
01Se cdda9 call print ;data prompt
a16l ae7f mvi c,127 ;up to 127 characters
a163 21800 lxi h,buff ;destination

rloop: ~read next character to buff
0166 cS push b ;save counter
0167 eS push h ;next destination
0168 cdc2a call getchr ~character to a
0l6b el pop h ;restore counter

0l6c cl
0l6d fe0d
0l6f ca789

b
cr
erloop

end, store
m,a
h
c
rloop

pop
cpi
jz
not
mov
inx
dcr
jnz

9172 77
9173 23
S174 Sd
S175 c2669

;restore next to fill
;endof line?

;next to fill
~counter goes down
lend of buffer?

end of read loop, store SS
mvi m,9
write
mvi
lxi
call
ora
jnz
jmp

the record
c,writer
d,fcb
bdos
a
error
ready

9l7a ge22
S17c l15cS
S17f cd05S.
S182 b7
9183 c2b9S
S186 c337S

~error code zero?
~messaqe if not
;for another record

;
;***.* *,;* end of write command, process read *
;* *
;***
notw:
; not a write command, read record?

S189 fe52 cpi •R'S18b c2b9S jnz error ;skip if not·,· read randau record,
9l8e Se2l mvi c,readr
S198 l15c9 lxi d,fcb
S193 cd85S call bdos
S196 b7 ora a ;return code 8S?
S197 c2b90· jnz error·"· read was successful ,wr ite to console,
S19a cdcfS call crlf ;new line
S19d Se8S mvi c,128 ~max 128 characters
S19f 2l8SS lxi h,buff ~next to get

wloop:
Sla2 7e mov a,m ;next character
Sla3 23 inx h ;next to get
Sla4 e67f ani 7fh ;mask parity
Sla6 ca37S jz .ready ~for another com~nd if SSSla9 cS push b ;save counter
8laa eS push h ;save next to get
Slab fe2S cpi • I ;graphic?
flad d4c88 cnc putchr ;skip output if not
Slb8 el pop h
Slbl cl pop b
Slb2 Sd dcr c ;count=count-l
Slb3 c2a2S jnz wloop
Slb6 c337S jmp ready

(All Information Contained Herein is Proprietary to Digital Research.>
41

0lb9 11590
0lbc cdda00lbf C3370

0lc2 0e9l
0lc4 cd950
Slc7 c9

Slc8
0lca
Slcb
0lce

0lcf
Sldl
Sld4
Sld6
0ld9

0e92
5f
cdS5S
c9

3e0d
cdc80
3eSa
cdc80
c9

0lda d5
0ldb cdcfS
o lde dl
Sldf 0e09
o lel cd050
0le4 c9

0leS ll6b0
0le8 cddas
0leb 0e0a
0led l17a0
o lf0 cd0 50

.,
;***
.* *,
;* end of read command, all errors end-up here *
.* *,
;***.,
error:

lxi
calljmp

d,errmsg
printready

;
;***
.* *,
;* utility subroutines for console i/o *
.* *,
;***
getchr:

;
putchr:

·Icr If:

·,print:

7 readmvi
call
ret

;write
mvi
mov
call
ret

;send
mvi
call
mvi
call
ret

;print
push
call
popmvi
call
ret

next console character to a
c,coninp
bdos

character from a to console
c,conout
e,a ;character to send
bdos ;send character

carriage
a,cr
putchr
a,lf
putchr

return line feed
7 carr iage return

the buffer addressed by de until $
d
crlf
d ;new line
c,pstring
bdos ;print the string

·,readcom:
;read
lxi
call
mvi
lxi
call
command

the next command line to the conbuf
d,prompt
print ;command?
c,rstring
d,conbJf
bdos ;read command line
line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)
42

01£3 2H'00
01£6 117c0
01£9 la readc:
01£a 13
01£b b7
01£c c8
01£d d630
01ff fe0a
0201 d2130
0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
o 20b 6f
o 20c d2f90
·020f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8
0218 e65f
o 2la c9

lxi
lxi
Idax
inx
ora
rz
not
sui
cpi.
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp
end
adi
cpi
rc
lower
ani
ret

h,0 ;start with 00""
d,conlin;command line
d ;next command character
d ;to next command position
a ;cannot be end of command

;bc = value * 2
;*4
;*8
;*2 + *8 = *1"
;+digi t
;for another char
;overflow
;for another char

of read, restore value in a
'0' ;command
'a' ;translate case?

zero, numeric?
," '
1"
endrd

next digit
h ; *2
c,lb,h
h
h
b
1
1,a
readc
h
readc

case, mask lower case bits
101S1111b

.,

.***,

.* *,
;* string data area for console messages *
. * *,
.***,

, badver:
"21b 536f79 db 'sorry, you need cp/m version 2S'

nospace:
023a 4e6f29 db 'no directory spaceS'

datmsg:
024d 547970 db 'type data: S'

errmsg:
0259 457272 db 'error, try again.S'

prompt:
026b 4e6570 db 'next command? $'

027a 21
027b
027c
0021 •
029c

.***,.* *,
1* fixed and variable data area *
.• *, .
1***********************************·**······****·*·
conbuf: db conlen ;length of console buffer
consiz: ds 1 1resulting size after read
conlin: ds 32 1length 32 buffer
conlen equ $-consiz

Againr major improvements could be made to this particular
program to enhance its operation. In factr with some work, this
program could evolve into a simple data base management system. One
couldr for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
canmand

would cause GETKEY to read the data base file NAMES.OAT and extract
the -LASTNlME- field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of (
each particular LASTNlME field, along with its l6-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNlME.KEY, which is an alphabetical
list of LASTNlME fields with their corresponding record numbers.
(This list is called an Minverted indexM in information retrieval
parlance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.OAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search, M similar to looking up a
name in the telephone book. That is, starting at both ends of the
lis~r you examine t~e entry halfway in between and, if not matched,
Spl1t either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)
44

At this point you're just getting started. with a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

a
1
2
3
4
S
6
7
8
9

19
11
12
13
14
lS
16
17
1819
2e
21
22
23
24
2S
26
27
28
29
3a
31
32
33
34
3S
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/OGet I/O ByteSet I/O Byte
Print String
Read Console Buffer
Get Console Status
Return Version NumberReset Disk System
Select Disk
Open FileClose File
Search for First
Search for NextDelete File
Read Sequential
Write Sequent.ial
Make FileRename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write P~otect Disk
Get R/O Vector
Set Fiie AttributesGet Addr(Q-isk pams)
Set/Get User Code
Read Randan
write Randcm
Compute File Size
Set Randcm Record

none
none
E • charnone
E • char
E • charsee def
none
E • IOBYTE
DE • .Buffer
DE - •Buffer
none
nonenone
E - Disk Number
DE - .FCBDE - .FCB
DE - .FCBnone
DE _ .• FCB
DE • .FCB
DE - .FCB
DE - .FCB
DE - .FCBnone
none
DE • .OMA
nonenone
none
DE - .FCBnone
see def
DE • .FCB
DE - .FCB
DE • .FCB
DE - .FCB

none
A - charnone
A - charnone
none
see def
A - IOBYTEnone
none
see def
A • aa/FF
HL- Version*s.eedef
see def
A - Oir Code
A - Oir Code
A • Oir Code
A • Oir CodeA - Dir Code
A - Err Code
A - Err CodeA • Oir Code
A • Oir Code
HL- Login Vect*
A • Cur Disk.,
none
HL- .Allocsee def
HL- R/O Vect*
see defHL- .OPB
see def
A • Err CodeA • Err Code
re, rl, r2
rO, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)
46

