

Reference

Copyright 1981 Vector Graphi.c Inc.
All Rights Reserved

E.recuPlan Version 1.1
1/23/81

Reference Guide Revision B
1/23/81

1100-4400-10-01

Copyright 1981 Vector Graphic Incorporated

All Rights Reserved

Vector Graphic makes no representations or warranties with respect to the
contents of this guide Uself. whether or not the product it describes is
covered b.y a warranty or repair agreement. Further, Vector Graphic
reserves the right to revise this publication and to make changes from time to
time in the content hereof without obligation of Vector Graphic to notify any
person of Buch revi8ion or change8, ezcept when an agreement to the
contrary ezi8t8.

The version of the product and reference guide are shown at the top of this
page; A change in the guide Uself is indicated by a letter and does not
indicate a change in the product.· A produc~ change will change the product (
version and the guide revision.

The Array

Concept

Concept

Standard Information

Data Area

1-7

1-8

1-10

1-11

Clear
Dtsk

2-1
2-2

Complete detailed descriptions of all commands
and how they are used.

C - the CLEAR command

T he clear command is used to clear certain locations in the array of the data
and/or formulas associated with them. The various forms are as follows.

C - Clear current location.
current location.

C F - Clear current formula.
location, it will be erased.
unchanged. .

If there is a formula associated with the current
The data in the current location will be left

C R - Clear row. The data and formulas for all locations in the current row
will be erased. Alternate form:

CC - Clear column. The data and formulas for all locations in the current
column will be erased. Alternate form:

T he disk command is used to access disk directories to load, save, Or erase
files. It is also used to select the current disk to be used for .subsequen t
disk operations.

D - Disk commands. Disk command mode will be entered, using the
currently-selected disk.

D :r - Disk select/commands. Disk:r will be selected, then disk
command mode will be entered. The value :r must generally be in the
range A to P, but specifically must be a valid drive on the system
being used at the time.

When disk command mode is entered, the directory of EPL files on the
selected disk will be displayed at the top of the screen: the current disk and
a list of available commands will be displayed at the bottom. Furthermore,e the first file name will be highlighted.

At this point, typing any of the four arrow keys will move the highlight in
the appropriate direction. Once the highlight is moved to the desired file,
t he disk commands below can be used. A II disk commands reference the
currently-highlighted file.

L - Load a file. The highlighted file will be loaded into the. array.
Note that this erases the current array: therefore, if it is desired to
save the current array,' it should be updated or saved before e:recuting
the load command.

S - Save a file. The array will be saved to the highlighted file. The
former Gontents of the file are lost. T his command should be seldom
used, and is included only for symmetry. Normally, the update
command is used to save the array.

D - Delete a file. The highlighted file will be erased from the disk.
This is equivalent to .using the ERA command under CP/M.

<E sc> - E:rit disk command mode. When <Ese> is typed, the user will
be returned to the main system.

l (

Each of the disk commands (except < Esc» requires confirmation. When
either L. S. or D is typed, one of the messages

Loading <file> - type Y to proceed -
Saving <file> -, type Y to proceed -
Deleting <file> - type Y to proceed -

will be displayed. At this point, typing Y will cause the selected action to
be carried out. Any other character. including <Return>, will cancel the
action.

If when disk command mode is entered. there are no EPL files on the disk.
the message

will be displayed. Obviously, there are no files to load or delete: therefore
the only possible action is to save the array, which in this case MUST be
done with the update command. Typing any character will return to the main
system.

The ente" command is used to ente" data 0,. fo,.mulas into the a,,"ay. It has
fou,. fo,.ms. fa" entering text. lines. values. 0,. fo,.mulas. Since the fou,. a,.e
d,.astically diffe,.ent. they will be explained separately.

ET - Erater Text

T he enter text comman d will accept a single argument and write it into the
cu,.,.erat location. The gene,.al fo,.mat is

The fo,.mat foro the ET command is somewhat p,.ecise. There must be one
characte,. afte,. the ET. then whateve,. is afte,. that is conside"ed the text.
For example, in the command

will ente" the text" Income Type". In othe" w0r.ds. exactly what you type
is what you get. Since whateve" the use,. types IS taken as the text, no
multiple fo,.m of the ET command is possible (unlike the other enter
commands) •

The enter line command is used to enter a line of data where the data is
simply one characte,. repeated. This is typically used for a dividing line of
some sort. 0,. pe,.haps the line after a column of numbers above the total. or
something simUar. There are two formats of the enter line command:

EL character
EL character ncolumns

T he first type will create a line consisting of the (character) all the way
across the array. The second will create a line only extending across a
certain number of columns. specified by (ncolumns). In either case. the
current" location will be used as the first (leftmost) column; that is, the
column in which the line begins.

simply treated by the system like any at her text. The EL comman d
automatically creates the sequence of characters to be the exact width of each
column as it is entered. This can be used to create a If broken If line, also.
For example, if the widths of all columns are set to 10, then the EL command
is used, then the widths of all columns are set to 12, there will be a
2-character break in the line between each of the columns.

T he enter value command and its variations are used to enter numeric values
into the current location and possibly adjacent locations in the array. The
simplest form is

which will write the value (number) into the current location. Additionally,
this form of the command can be "implied" by simply typing

The second form of the EV command is used to enter values into adjacent
locations, either across a row or down 'a column. The forms are

EVR number number number number etc.
EVC number number number number etc.

The first will enter as many successive numbers as are typed into the current
location and successive columns on the same row; the second will do the
same, only the numbers will be entered into successive rows on the same
column. For example, if the current location is (1,11,_ the command

The final form is the "repeat" form. Is is used to enter the SAME number
into successive locations. T he forms are

EVRR number count
EVCR number count

T he first will enter the number (number) into successive columns on the same
row for (count) columns: the second will do the same down a column. For
example. if the current location is (I,ll, the command

T he enter formula command is used to enter formulas into the array. It has
two forms, single and mUltiple~ The single form is

EF formula

which will enter the (foMnula) into the fOMnula table. It will set the value in
the current location to 0, unless a "SC A" has been done (see the set
command), in which case the fOMnula will be evaluated and the result of the
evaluation put into the current location.

where (nrows) and (ncolumns) are the number of successive rows and
columns, respectively, to write the formula in to. T he array section which
will get the formula may be thought of as a rectangle consisting of (nrows)
rows and (ncolumns) cohpnns, with the current location as the upper-left
corner. For example, if the current location is [1,2), then the command

will write t!te formula" 1.1*[•••-1)" to 8 rows and 11 columns. or specifically.
into locations [1,2) through [1,12). [2,2) through [2,12), and so on through
[8,2) through [8,12).

T he format command is used to choose the manner in which the data in the
array will be displayed and printed. There are four forms of the command.
but they differ only in the portion of the array that they affect. They are

F format
FR format
FC format
FA format

F mean s to format only t he current location. FR means format the current
row. FC means the current column. FA means format the enUre array.

The (format) consists of zero or more individual format characters. These
characters can be listed in any order. in a generally "free" fashion.
Following are the various format characters.

$ - Dollar Sign. If $ is included, numbers will be printed with a
leading dollar sign. For example. 123 will be displayed as $123. ----//

• - Comma. If a comma is included. numbers will be print'ed with
commas inserted every three digits to the left of the decimal point.
That is. the value 123 would be unchanged. but the value 1234567
would be 1.234,567.

0-15 - Digits.· Including a number in the range 0 through 15 will set
the number of digits printed to the RIGHT of the decimal point. For
example. the value 123 with a format of 4 would be printed as 123.0000.

% - Percent. The percent character indicates that the value is to be
considered a percentage, and it will be printed with a percent sign
following it. In addition, the number will be multiplied by 100 before
being displayed. For example, the value .13 will be displayed as 13%.

Each location in the array is either "formatted" or "unformatted". Typinfl a
format command without any arguments (for example, "Fe ") sets a locatIon
or locations to "unformatted". In this case. numbers and text will both be
displayed left justified. Numbers will be displayed in a "general" format.
meaning however necessary to express the value (For example. 100 will be
100. 3.14159 will be 3.14159).

For numbers, formatting is a little more complicated. ANY numeric format
sets the location to "formatted". When a location is formatted, numbers are
RIGHT justified. This right justification should not be confused with the R
character for tut.

Each time a F command is used, it overrides any previous F command. For
e~ample, if a "F 2" command is issued, the current location will be set to 2
places to the right of the decimal point, typically used for "dollars-and-cents"
notation. If it is then desired to add the dollar sign, the command "F $." will
NOT function as e~pected, since it cancels the effect Of the "F 2" command.
The proper command would be "F 2 $" since this combines the two commands.
This brings up an important point: Leaving out the number-of-diiits
character in a format command is the same as usirag 0: that is, "F $ is
identical to "F $ 0".

A s was in dicated above, the format characters are entered in a "free"
fashion. Their order is unimportant. For e~ample, the commands

are all identical. Format characters may be used in whatever combination
desired, e~cept that the combination "$%" will produce a meq.ningless figure:
for e~ample, 123.45 wUI be displayed as $12345%.

Since t here is limited space available for format characters, the Rand.
characters are actually the same thing. That is, using a comma on te~t will
right justify it, and using R on a number will insert commas. Since a
locatton cannot contain both te~t and a number, this should not cause any
problem.

The help command is used to access a screenful of assistance (commonly called
a "help screen") for a particular command. There are actually three different
forms of the help command.

H
H letter
?

Just typing H gives a help screen on typing commands, 'editing, and moving
the cursor. Typing H followed by a letter gives a help screen on the
command beginning with that letter. For example, HF gives help on the
format command.

The help command reads the help screen from the file EPL.SYS on the
currently-lagged-in disk. That disk should not be confused with the
current ly-selected disk used for ExecuPlan! The logged-in disk is the disk
that CP/M thinks is the current one. To be more specific, the disk that was
in the prompt before ExecuPlan was executed. If it was A>, then the
logged-in disk is drive A; if it was B>, then it was drive B, etc. If the file
is not present on the disk, then the system will say "Help Unavailable".

The ? command is used to get a QUICK help screen. It tells how to get more
help (via the H command) and gives a list of the command letters and their
meanings. T his screen is part of the program, not read in from the disk.
Therefore, it is always available.

The initialize command is used to set everything back to the standard.
Specifically, the command

Resets the array size to 20 ~ 20,
Resets the row and column titles back to 1 2 3 4 5 etc.,
Clears all main titles,
Clears the entire array, .
Sets the current file to none,
and Resets the pr1nt blocks back to standard.

The format of the command is simply

It will display a warning message,

•••• Warning: Initialization erases ALL data - type Y to proceed -

at which point you may type Y to proceed with the initialization. Typing any
other character (including <Return» will cancel the command.

T he jump command is used as a quick way to move the screen around on the
array, faster than using the arrow keys. There are three jump commands:

IB
IR row
IC column

The first, IB, simply jumps to the top-left corner of the array, which would
be, [1, 1} on an initialized array.

IC jumps to the specified column. That column will be the leftmost on the
screen after execution.

IR jumps to the specified row. The row will be the top on the screen after
the jump, unless the size of the array makes this impossible. If the
jumped-to row is within 18 rows of the 'end, it will be somewhere in the
middle of the screen.

The kill command is used to "kill", or remove, a row or column ".,.om the
ar"'ay. It does not, however, change the size of the array. Therefore,
when it kills a specified row or column, it creates a new one at the end in
o.,.der to keep the array the same size.

KR .,.ow new-row
KC column new-column

whe"'e (row) or (column) is the row 0.,. column to kill, and (new-.,.ow) 0.,.
(new-column) is the title to be assigned to the .,.ow or column c"'eated at the
end of the a.,..,.ay.

E~ample: If your array currently has 12 .,.ows, numbe.,.ed 1 th.,.ough 12. and
you e~ecute the command "J(R 6 13" then your .,.esulting .,.ows will be
1,2,3.4.5,1,8,9.10,11,12,13.

The.,.e is one VERY IMPORTANT thing to note about the kill command!
Relative references in formulas which .,.efe.,. to 0.,. ove.,. the killed .,.ow 0'"
column will NOT be changed. In othe.,. words, they will be INCORRECT afte'"
the command is e~ecuted. In the e~ample above. if you had a reference· in
.,.ow 7 Which contained somet h ing like • -2, befo.,.e you e~ecuted t he kill
command, that would have pointed to row 5; afte.,. the command, it will po in t
to .,.ow 4.

The list command is used to produce a list on the printer of all of the
formulas associated with the array. The list is printed in the order in which
t he formulas will be evaluated; that is, either in row-major or column-major
order, depending on the current "SC R/C" setting. The format of the
command is simply

Formula list by row
(or column, if appropriate)

where FILENAME is the name of the file if one is assigned. The format of the
listing is

where [destination} is the destination of the formula, and (formula) is the
text of the formula.

If during the listing it is desired to stop, typing <Esc> will cancel the
command.

The move command is used to move a row or column from one place in the
array to another. The command format is

MR row dest-row
MC column dest-column

where (row) or (column) is the row or column to move, and (dest-row) or
(dest-column) is the row or column to move it adjacent to.

Depending on which direction the row or column is moved, it will either be
placed above/to the left of the destination, or below/to the right.
Specifically: for a COLUMN, if it is being moved to the left, is will be placed
to the left of the destination: if it is being moved to the right, it will be
placed to the right of the destination. For a ROW, if it is being moved up,
it will be placed above the destination: if it is being moved down, it will be
placed below the destination.

For example, say you have the rows 1,2,3,4,5,6. If you execute the
command "MR 5 3". the resulting sequence wUI be 1,2,5,3,4,6. If you had
executed the command "MR 2 6", the resulting sequence would have been
1,3,4,5,6,2. This example is equally applicable to columns.

NOTE: Like the K command, the M command does not change relative
references in formulas.

The open command is used to open up a new row or column in the array.
The command does NOT change the size of the array, therefore when a new
row or. column is created, the last row or column of the array is removed,
·and its contents lost.

OR ref-row row
OC ref-column column

where (row) or (column) is the title of the new row or column to create, and
(ref-row) or (ref-column) is where to put it. If COLUMN, the new column
will be to the LEFT of the ref-column; if ROW, the new row will be ABOVE
the ref-row.

Example: If there are currently 10 rows, numbered 1 through 10, then
executing the command "OR 7 NEW" wal result in rows·1,2,3,4,5,6,NEW,7,8,9
with row 10 being lost.

NOTE: Like the K and M commands, the 0 command does not change relative
references within formulas.

The print command is used to print the array, or to cause what would be
printed to be written into a disk file for editing with Scope or Memorite. Like
the disk command, the print command is actually an entire command mode. It
is invoked simply with

When print mode is entered, the screen will be erased and replaced with what
is called the "print screen". The screen is divided into 5 "blocks", each one
controlling certain aspects of what will be printed.

Block 0 - Main titles. This block is used to select how the main titles
will be printed. For each of the four main titles, which will be
displayed, the choice may be made whether to R· - .right just ify,

L - left Justify, C - center, or X - not to print at all.

Block 1 - Print bounds. This is used to select the portion of the array
to be printed. Specifically, the starting row, starting column, ending
row, and ending column are specified. By proper manipulating of these
boun ds, an array much larger than a piece Of paper can be printed on
several sheets, then the sheets rearranged to form a large sheet.

Block 2 - Pape~ size. This informs .the system of the size of paper
being used, in terms of number of characters per line and number of
lines per page. The width is used only for centering the titles, but
the length tells the system the maximum number of lines to print. on one
page before skipping to the next page.

Block 3 - Row/column titles. This block allows the user to choose
whet her or not to have the system print the row and column titles on
the report.

Block 4 - Invisible. T his allows the user to set rows and columns to
"invisiblen~ meaning that they wUl NOT be printed, even if they are
within the print bounds selected by block 1. This is most often used
to prevent the printing of some type of intermediate result column.
There is also a provision for overriding the invisible function, that is,
to go ahead and pnnt the invisible rows and columns.

In addition to the blocks, the bot tom of the screen will list the available
commands. Following are the commands, and how to use the blocks.

P - Print the array. Typing P will cause the array to be printed, using
the settings of the blocks to define the bounds, titles, etc. If during
printing you wis h to stop, type <Ese>.

D - Disk. Typing D is just like P, only instead of printing the array, the
data will be written to a disk file. The format of the data will, however, be
identical to when it is printed.

When D is typed, the message

Please enter file name:

will be displayed. Type the name of the file that you wish to write the data
to, followed by <Return>. The file will be assumed to have .MEM as the
extension, and must not already exist. If it does, an error will be displayed
and the command cancelled. The current disk will be used for the filei to
use a different disk, first select it with the disk command from the main
system.

If when you are prompted for the file, you decide not to execute the
command, simply type <Return> without typing the file name, an d the
command will be cancelled.

F - Formfeed printer. Typing F will simply cause a "formfeed character to
be sent to the printer. This normally has the effect of rolling the paper up
to the top of the next page.

o - Edit block O. Typing 0 will allow you to change the information in
block O. Note that only the justification character can be changed at this
time. To change the text of the title, the TMx command must be used when
under the main system.

When 0 is typed, the justification character of the first main title will be
highlighted. At this point, you have several options:

Type <down arrow> - this will move the highlight down to the next
title. If you are already at the bottom (fourth) title, the highlight will
be moved back to the first one. The justification character for the
current title will not be changed.

Type <up arrow> - this is the opposite of <down arrow>. The
highlight will be moved up to the previous title. If you are already at
t he top, it will be moved down the the bottom one. The justification

Type <Esc> - this will leave the current character unchanged, and
return to print command mode.

Type <Return> - this is identical to <down arrow>, except that if you
are at the bottom title, it will stop editing block 0 and return to print
command mode, similarly to <Ese> above.

Type a justification character - typing either L, R, C, or X will set the
justificat ion character for the current title to whatever is typed. The
highlight will not be moved, so if the wrong thing is typed, you may
simply retype the correct character.

1 - Edit block 1. Typing 1 will allow you to edit the information contained
in block 1. When 1 is typed, a cursor will appear a little to the right of the
first line in block 1. At this point, you are in a mode similar to block 0, but
a little different. Essentially, while block 0 is an "instant" block, meaning
t hat when you type a character, it immediately replaces the previous
character, block 1 is an "updated" block, meaning that the new information
appears to the right of the old information and is edited by itself, and only
replaces the old information when you leave block 1 and return to the print
command mode.

Of course, the data you type is not a justification character. Instead, the
appropriate title is typed. The first time print command mode is entered, the
bounds are set to the size of the entire array.

When typing the title, up to eight characters may be typed, terminated by
either <Return> or <Esc> (the difference is explained below). In the process
of typing the title, < Bs> may be typed to back up one character.

Additionally, there are two special characters allowed, if typed as the first
character. Typing <Control-F> will display the "first" row or column of the
array; typing <Control-L> will display the "last" row or column. This could
be useful if you wish to, say, start the printing at the first row, but you're
not sure What the title of the first row is.

T he same edit ing characters are available for block 1 as for block 0
«down arrow>, <up arrow>, <Ese>, <Return», but the way they work is
slightly different. When by some method the cursor comes to be on a line,
any previously-typed data on that line is erased •. To change a single item
without haVing the cursor move down the nezt line (and consequently erase
something that you might have typed there), <Ese> may be typed i.nstead of
< Return>, which will immediately return to print command mode.

When print command mode is reentered, the information in block 1 will be
updated based on the new information typed. If a title typed does not exist,
it will be highlighted and an error displayed. Any line which contains an
error will not be updated.

Although as explained this probably seems very complicated, it is virtually
self-explanatory when actually done.

2 - Edit block 2. Typing 2 allows the user to modify the information under
block 2, the paper size block. All aspects of block 2 are identical to block
1, 'except that instead of typing row or column titles, you type decimal
numbers. For page width, you should type the number of characters per
line. This is only used for centering the main titles. For page length, you
should type the maximum number of lines you wish printed on a page. On a
standard ·11" page, a length of 56 lines allows reasonable margins on the top
and bottom. For both length and width, the system will accept values in the
range of 40 through 255.

3 - Edit block 3. Typing 3 allows the user to select whether row or column
titles are to be printed as part of the report. If the appropriate line is Y,
the titles will be printed; if N, they won't. Block 3 is similar to block 0,
except that the items are only' updated when print command mode is returned
to.

4 - Edit block 4. Block 4 is used to determine which rows or columns, if
any, are to be considered "invisible", meaning that they will not be printed.

Block 4 is perhaps the most confusing block, because it includes two
individual fields for each line. The first is the row/column indicator, one of
the characters R or C. The second is the title of the row or column.

When block 4 in entered, a cursor will appear on the top line of block 4. At
t his point you have several options.

The <up arrow>, <down arrow>, and <Ese> keys function the same as
block O. The exception is that when you are on the bot tom (tent h)
line, the down arrow moves to the "Print Inv? " field. From there the
<down arrow> will move back to the first line. The <up arrow> moves
in the same manner, only up instead of down.

Typing R or C will set the row/column indicator for the current line to
whatever is typed.

Typing <Space> will turn OFF tile line; that is, when <Return> is
typed after the <5 pace>, it will also remove the tit Ie on the current
line.

set a line to Row 1, you would type "R" <Return> followed by "1" as
e.rplained below. If the row/column indicator already contained an R,
you could simply type the <Return> and then proceed with the "1".

If <Return> was typed, the cursor will jump three spaces to the right. At
t his point the system is awaiting a title. Type the row or column title that
you wish to set to invisible. If the title is terminated with <Return>, the
cursor will proceed down to the ne.rt line. If it is terminated with <Ese>,
block 4 will be updated an d the prtnt command mode will be returned to.

When the cursor is moved to the "Print Inv? " field, you may type Y or N,
in the same manner as block 3. If N is typed, the invisible fun ction will
work, that is, the rows and columns indicated will not be printed. If Y is
typed, the function will be effectively overridden, that is, the rows and
columns listed will be printed anyway.

When print command mode is returned to, the rows and columns in block 4
are looked up. If any of them are not found, they will be highlighted and an
error displayed. However, the information will be left in the block, and
when the array is printed, the invalid entries will be ignored.

The information in the print blocks remains as set until changed. In
addition, all of the information is saved .with the file, so when a file is
loaded, all of the information in the print blocks will be the same as when the
file was saved.

The quit command is used to return to CP/M. There are three forms of the
quit comman d:

Q
QY
QN

If QY is typed, the array will automatically be updated; if no cu~rent file
e:dsts, you will be asked for one. If QN is typed, the array will not be
updated.

If just Q is typed, you will be prompted with

E:dting - Type Y to update -

If at this point you type Y, the file will be updated and the program exited.
If you type N, the file will not be updated, and the program exited. If you
type <E sc>, the system will cancel the command altogether. Anything else
will be ignored.

The round command is used to change the precision of numbers in the array.
Specifically, all numbers in the array that are NOT calculated as the result of
a formula will be changed to match their representation on the screen. For
e:rample,· if the value 1.489 is in a certain location, but the format is 2, then
the number is being displayed as 1.47. Therefore, when the round command
is executed, the number will actually be changed to 1.47.

The round command is e:recuted simply by typing

If you type Y, the action will be carried out. Typing anything else will
cancel the command without having any data changed.

The set command is used to set or change certain aspects of the system.
There are four set commands; set size, calculation, printer, and disk. These
are explained separately_

T he set size command is used to change the size of the array. The form of
the command is

where (nrows) is the number of rows to make the array, and (ncolumns) is
the number of columns to make the array. When the system is initialized, the
size is 20 x 20. To change to a 9 x 13 array, for example, the command
would be

•••• WARNING - Some rows containing data may be lost - type Y to
proceed -

will appear. If the number of columns is being decreased, the message will
indicate columns instead of rows, of course. Typing Y will cause the action
to be carried out; anything else will cancel the action. If you are decreasing
both rows and columns, you will get bo t h mes sage s, on e at a time.
Responding Y to rows but something else to columns will result is the number
of rows decreasing, but the number of columns remaining the same.

If is is desired to only change one dimension, the value 0 may be put in the
other. For example. to change the array from 20 rows to 30, but not affect
the number of columns, the command would be

NO TE: T here is a substantial amount of logic involved when shrinking the
array, particularly when columns are involved. If an array with many rows
has the number of columns lessened, several moments (read a minute or so)
could elapse 'before the system completes the command. Therefore, do not
fear system failure. SUGGESTION: When changing the size of the array, the
rows are changed first. Therefore, say you're changing the 20 x 20 array to
10 x 100. The system will first create 100 rows. then shrink to 10 columns.

T his will take quite a while, since the system is removing 10 columns of 100
rows each! To make the operation faster, FIRST change the number of
columns (SS 0 10) THEN change the number of rows (SS 100 0). Using this
method, only about 3 seconds will be used, a substantial increase in speed •

. If you are decreasing the number of rows and increasing the number of
columns, FIRST decrease the rows, THEN increase the columns. The object
is to make the number of rows as small as possible when creating or removing
.columns.

T he set calc command is used to change the order and frequency of when the
formulas are evaluated.

Formulas may be evaluated in either "row-major" or "column-major" order. If
they are evaluated in row-major order, that means that they will be evaluated
across each row, then down to the next row and across it, etc. In other
words, the same way you read. In column-major order, they are evaluated
down each column, then moved over to the next column and down it, etc.

The frequency may be set to either "manual" or "automa~ic". In manual
mode, the formulas are only evaluated when the <Tab> key is pressed. In
automatic mode, they are evaluated whenever a value or formula is entered.

T he commands accepts the letters R, C, A, and M to represent each of the
above options. ObViously, only two may be entered at once, but they can be
entered in any order. For example, to set the calc order to column-major,
and the frequ.ency to automatic, the command would be

To change only, say, the calculation order, this time to manual, the comman d
would be

While it will not produce an error to enter both Rand C or both A and M at
the same time, only the last one on the line wUI be used.

The' set printer command is used to send special characters to the printer.
This should seldom be used, but is provided for special cases. The' most
common use would be so set a printer for some spectal mode.

The format of the command is

where (byte) is a decimal number. As many or few bytes may be sent as
needed. For the exact bytes required for particular printers, you will have
to refer to the appropriate printer's manual.

For an example on what this might be used for, consider the Vector Matrix
printer. If you typed the command

SP 27 80

which corresponds to "ESC P" (the printer manual explains this), the printer
would switch between 132 and 80 characters per line.

T he set disk command is used to reset the disk system in case you wish to
change floppies. CP/M will normally not allow you to do this: it you do, you
will get a BDOS read-only error, which can't be recovered from. Therefore,
if you wish to change a floppy disk, put the new diskette into the drive and
type

Entel'"
FOl'"mat
Help
Initialize
Jump
Kill
List
Move
Open
Print
Quit
Round
Set
Title
Update
Verify
Width
Exchange

Opel'"atol'"s and PI'"ecedence

Defined Constants

2-4
2-7
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-21
2-22
2-23
2-26
2-28
2-29
2-30
2-31

T his reference guide is intended to provide all of the reference information
needed to help you to use ExecuPlan ,to its fullest capability. Sections are
prOVided covering how to bring up the system, read the screen, type and
edit commands, enter data, and so forth. Complete explanations of all
commands are prOVided. A section covers all of the errors that might occur
and what they mean. A complete section is devoted to the math capabilities,
entering formulas, how formulas are evaluated, functions, and so forth.
Finally, some helpful information is provided for special circumstances, and
the appendix has some annotated sample screens.

This guide is actually not intended for the first-time user. The
accompanying guide, ExecuPlan Primer, is the most basic manual. It covers
beginning concepts and moves step-by-step to more complex models.

It is recommended that first the primer be read and understood, then this
reference guide read and understood. Once the concepts are understood, the
reference guide will then be useful for looking up information as needed.
This guide does cover most· topics in more detail than the primer, but they
are explained in a more direct manner, assuming that the reader has some
familiarity with the system.

It cannot be stressed enough that you should READ this guide. There will
be countless occasions where you aren't sure about something, or don't
understand why w.hat happens happens, or something else along that line. If
this is the case, get out this reference guide, or the primer if necessary,
and look it up. Almost always the information that you need will be found in
moments.

To briefly preface the sections of this guide: Section 1 contains general
information, such as bringing the system up, understan ding the array,
reading the screen, understanding titles and references, and typing and
editing commands. Section 2 gives detailed explanations of all of the
commands. Section 3 covers all errors. Section 4 explains the math package,
how formulas are evaluated, how operators and functions work, and other
math-related information. Section 5 just has some miscellaneous information.

Again, congratulations on your acquisition of ExecuPlan, and we hope that it
• will be beneficial to you in whatever applications you have in mind.

The EzecuPlan p,.ogram and this ,.efe,.ence guide we,.e completely designed
and written by Neale E. Brassell ezclusively for Vector Graphic Inc.

The program was developed on a Vecto" Graphic VIP compute,. system with
two drives, a Sprint 3 printe,., and a Teletype model 40 line printer, utilizing
the SCOPE edUo,., ZSM assemble", and RAID debugging sys.tem. The
documentation was written with the MEMORITE III word processing system

The source program consists o(nea,.,y a qua,.te,. million bytes o(source code,
contained in (if teen p,.ogram modules totaling about 170 pages. After
assembly, the object p,.ogram is about 20K long. Additionally, the help
screens occupy another 54K data (ile.

The floating point math ,.outines and the single-argument (unctions are
derived from Microsoft BASIC ve,.sion 5.1 Which is licensed from Microsoft
Inc. The balance of the math routines (pa,.se,., ezpression evaluato,., and
multi-argument functions) and the balance of the program are all original
code.

The author would like to thank the software staff at Vector Graphic for their i

support and suggestions on the development of EzecuPlan. I am pa,.ticularly
g,.ateful to Chris Cory, who contributed many significant ideas, was

. instroumental in the debugging of the program, and who wrote the prime" and
developed aU of the sample applications that come with EzecuPlan.

ExecuPlan is a CP/M-based program, supplied on a CP/M diskette. To
execute the program, insert the diskette into the drive and type

After a few seconds the screen will display a large banner identifying
ExecuPlan, and 'giving the revision and copyright notice. Type any character
on the keyboard. The banner wal be erased and an ini"tialized array will be
shown on the screen. You're up and running!

At the time EPL is loaded, you may also tell the system to automatically load
or create a file on the disk. For example, to run ExecuPlan and load the file
BUDGET81, you would type

A>EPL BUDGET81

an d proceed to load t he program. After the program is loaded, the array
containing the data wUI be displayed.

One other capability when EPL is executed is the ability to create a new file.
The command is typed the same as to load a file. If the file does not exist,
the!1 the system will display the message

and proceed to create the file. The array displayed will be blank, but the
file specified will be created, and when the array is updated it will be written
into that file.

ExecuPlan is built around the concept of an electronic array. This array
contains a number of rows and columns. Information may be put into each
intersection of a row and a column. Then, infoNnation put into the array can
be used to compute other information, which is also put into the array.
Finally, the array may be printed in a report fashion.

Each intersection of a row and column is called a "coordinate" or "location".
If, for example, the array contains 20 rows and 20 columns, then there would
be 400 locations in the array.

Given all of these locations, a method must be used to refer to each of them.
This is called a "reference", and has the following format:

T his is t he scheme used throughout ExecuPlan to reference locations. For
example, a reference to row 10 and column 8 woulel be

Each row and column has a "title", which is used in a reference.
preceding example, "10" is the row title, and "8" is the column title.
do not have to be numbers, however. A reference might be

In the
Tit les

which would refer to row INCOME an d column J ..~NUAR Y.
provided for changing the title~ of rows and columns.

In the next section, which talks about the screen, the idea of a "current"
location will be brought up. For the purpose of references, suffice it for the
moment to say that there is a location in the array that is considered to be
the current one. From this comes the idea of "relative references". A
relative reference is one where rather than specifying the title of a row or
column, -the distance awa rom the current location is specified. The
character perio (.) is used to mean the current ocation. For example, the
reference

means "the current row and the current column", that is, the current
location. The reference

means "the current row, and the column that is 1 to the left of the current".
If the current location is [4,4], then the aforementioned reference would
point to [4,3].

[., .-5]
[T,.]
[.-I,/AN}

Current row, current column - 5
Row "7", current column
Current row - 1, column IAN

This section explains how the screen looks and what all of the things on the
screen mean. It is suggested that you look at the picture of a sample screen
in the appendix while reading this section.

Conceptually. the screen is a movable "window" over the array. When the
system is initialized, that window is over the top-left corner of the array.
Using the arrow keys. the window can be moved over any section of the
array. The portion of the array that appears under the window is always 18
rows (unless there are less than that many) by however many columns will
fit. Initially, columns have a width of 18 characters. so 4 will fit on the
screen. Columns may have almost any width, however, so the number of
columns displayed will vary from 1 to 34. If a column's full width will not fit
on the screen, it will not be displayed.

At this point, let's take a look at the screen layout.

FIRST LINE: The first line (which is highlighted) is the "status" line,
because it tells you the status of the system. Four things are displayed on
the status line. 1: The current location •. This is the location that the
cursor is current ly on (see below for additional explanation of the cursor).
2: Contents of the current location. This is simply whatever is in the
current location. displayed according to the format of that location. 3: The
current file, if any. This area might be blank. If it .is not. then it contairys
the name of the current file, which is used if the file is updated. 4: The
amount of space still available in memory. Initially, this is about 30,000
characters.

SECOND LINE: The second line is the "formula" line. If the current location
contains a formula. that formula will be displayed on this line. If there is no
formula associated with the current location, this line will be blank.

THIRD LINE: This is the "main title" line. Initially, this line contains a line
of dashes. When main title #1 is set (see T command), then that title is
centered in the field of dashes and displayed on this line.

BOTTOM LINE: T his is the "command" line, where commands are typed.
This will be uplained in detail in the next section.

T he area between the main title line and the row of dashes above the
command line is the data area of the screen. It, in turn, actually has two
sections, the titles and the data.

T he titles are displayed across the top of the data area and down the left
side. The COLUMN titles are across the top, and the ROW titles down the
left side.

T he data itself fills the remainder of the area. If there is no data in the
system, this area will be blank.

It is somewhat difficult to explain, but very easy to understand, the layout
of the data in the data area. Essentially, each intersection of a row and a
column (each LOCATION) can contain an item of data. If you visually trace a
horizontal line across from the row title, and Visually trace a vertical line
down from the column title, then where those lines intersect will be where the
data contained in that location will be displayed. For an easy example, the
data contained in [1,1/ will be the top-left corner; data contained in [18,4J
(on an initialized system) will be in the bottom-right corner.

The "cursor" is the name given to the large White rectangle that is somewhere
in the data area. The position of that cursor, taken as a reference, is called
the "current location", a term that has been and will be used OFTEN. If the
cursor in in the top-left corner (again, of an initialized system), then it is in
location (I,ll, and therefore [I,ll is said to be the current location. When
the arrow keys are used (or a couple of other keys, all explained later), the
cursor moves. If it is in the top-left corner, then pressing the
<down arrow> key will move the cursor to the second row. Pressing it again
will move to the third row, and so fonh.

As hinted at above, the cursor is moved around on the screen with the
<arrow> keys. Here, we'll go. into more detail on this.

The arrow keys move the cursor in the appropriate direction. When the
cursor reaches the edge of the screen, then instead of moving the cursor,
the. whole screen is moved. More specifically, the window that the screen
represents moves with respect to the entire. array. If column 4 is the
rightmost column on the screen and the <right arrow> key is pressed, the
first column on the screen will be shifted off and the next column to the
right will be shifted on. Then, if the <left arrow> key is pressed, only the
cursor will move. Repeated pressings wUl move the cursor to the left until it

is on column 2, which at this point would be the leftmost. The next pressing
would shift the screen left and move column 1 onto the screen.

When the cursor is at the extreme point in any direction and that arrow key
is pressed, the system will simply ignore it.

In addition to the regular arrow keys, the <up arrow> and <down arrow>
keys may be shiftea to move the screen 18 rows (a screenful) at a time. For
example, if the cursor is on row 1 and <shift down arrow> is pressed, the
cursor will be on row 18, which would be the beginning of the secon d
screenful of rows. .T he exception to this is if that action would result in less
than 18 rows being displayed. In that case, the screen will be shifted as far
as possible, but not so far as to result in less than 18 rows being displayed.

Finally, there are three other cursor-movement keys. Pressing <Lf> will
move the cursor to the leftmost column of the current row, as if the
<left arrow> key were pressed repeatedly. Typing <Control-T> will move the
cursor to the top of the array and put it at the top line of the data display
also. <Control-E> will move the cursor to the end of the array, and put the
cursor on the bottom line also.

In order to really DO anything with ExecuPlan, you must give it "commands",
which are instructions telling it what to do.

T here are two directions taken when it comes to giving a computer commands.
One is the "language" method. In this method, you create a list of
instructions, feed it to the computer, and get back the results. This method
is interesting, but it really just amounts to simplified computer programming.
T his is not an acceptable method of getting results to someone who is not a
programmer.

The other method is known as "interaction". In this method, you give the
computer AN INSTRUCTION. The computer follows that instruction and
displays the result, if any. You then give the computer another instruction,
and it carrys that out. In other words, the computer interacts with the
user. It is this method that is used by E:recuPlan.

Recall from the last section that the bottom line is the "command" line. It is
on this line that commands are typed.

11'1. the very bot tom left corner of the screen are two things. These are the
"command prompt" and the "command cursor". Before you begin to type a
command, these look like ><, only highlighted. The left character, >, is the
prompt. The right character, <, is the command cursor, NOT TO BE
CONFUSED WITH THE CURSOR IN THE ARRAY. The command cursor tells
you where on the line you are at. When you type et-character, the character
appears on the screen where the command cursor WAS, then the cursor
reappears one character to the right.

Notice in the last sentence of that paragraph that the command cursor was
refered to simply as the cursor. This might seem confusing, since the white
rectangle on the screen in the current location is called the cursor. Well,
they are SO conceptually different that you will have no difficulty
ascertaining wh tch one is meant when you see the word "cursor".

Yes, when the system is sitting waiting for you to type a command, that is
called "command mode". When the system is in command mode, you may type
commands (seems reasonable~ doesn't it?).

As mentioned above, when a character is typed, it appears on the screen
where the cursor was, then the cursor reappears one character to the right.
This should not be new, since virtually all software operates in this manner.

A t any time during the typing of a command, all of the capabilities of moving
the screen (arrow keys, etc.) are available.

When a command has been typed satisfactorily and you wish the computer to
carry out that command, the <Return> key must be pressed. As soon as that
key is pressed, the system STOPS waiting for you to type, and begins to
execute the command.

In addition to normal letters and numbers used when typing commands,
certain other "special" characters can be used, which wUI be explained in the
following paragraphs.

Finally, and for lack of a better place to explain it, it should be noted that
upper case and lower case letters are fully interchangeable. That is, typing
"EVC" is the same as "evc" or "Evc" or "evC" or whatever. Actually, this is
true not just in command mode, but everywhere in the system. EXCEPT:
Titles do not allow interchanging of cases. That is, "Jan" and "JAN" are
different titles.

While typing commands, there are several special characters available. They
are of two types. The first is editing, which means that they allow you to
"edit", or chan'ge, what you've typed. The second is "inserting", meaning
that you can "insert" certain things from the system without having to type
them.

<Bs> - Typing the <Bs> key (Backspace) will cause the cursor to "back
up", effectively erasing the last character that was typed. For example, if
you typed "ET HELLI" then realized that you meant to type "0", not "I",
then you 'could hit the <Bs> -key which would back up and erase the "I".
Then, you'd type "0" and continue.

< Del> - Typing simply erases the entire command that you've typed.
It is equivalent to hitting <Bs> repeatedly unttl every character was erased.

< Control-K> - For users with extensive Memorite experience, <Control-K> is
the same as . (MemorUe uses <Control-K> to erase the current line.)

<Ese> - Hitting the <Esc> key enters "command edit mode". In this mode,
more extensive editing of the line is possible. Command edit mode will be
explained in following paragraphs.

All of the above characters are of the editing type.
inserting type.

<Control-A> - This will take the current location, make it a reference, and
in sert it into the command line. If the cursor is at [1, I}, for example, then
typing <control-A> would insert the characters "[I,l}" into the command line,

. as if you had typed it. This is useful for grabbing locations to be used in a
formula. The rationale behind the character <Control-A> is that it inserts
t he location that the cursor is AT.

<Control-F> - This will insert the current FORMULA into the command line.
Look at the second line on the screen, the formula line. Whatever is there
will be inserted into the command if <control-F> is typed. If there is no
formula associated with the current location, then nothing will be inserted.

<Control-C> - This will insert the CONTENTS of the current location into
the command line. The data inserted wUl be exactly as it is displayed.

<Control-L> - This will simply insert the entire LAST command typed into
the command line. This can be useful for repeating an operation, such as
entering data, for several different locations. It also is useful, particularly,
when a lengthy command is typed which contains an error. Rather than
retyping the entire line, you can simply type <control-L> then use the editing
commands, below, on the line.

Keep in mind that the above characters can be combined with the screen
movement cha~acters. For example, say you'd like to insert a formula in to
the command line. Not the current formula, but the formula that is
associated with a particular location. You can simply move the cursor to that
location, type <control-F>,· then move the cursor back to where you want it!

As mentioned above, typing <Ese> enters command edit mode. When in
command edit mode, none of the above-mentioned characters work, and none
of the screen-movement characters work. This mode is used when you've
typed a long command and need to change it, but just don't want to retype
the whole thing.

Command edit mode, or simply edit mode, is indicated by having a character
of the command highlighted. At first, this will be the rightmost character of
t he command. The highlighted spot is itself like a cursor, insofar as that is
the spot Where whatever is done will take. place.

While in edit mode, typing characters is just like normal command mode,
except that ~hatever character is typed will replace the character under it.

<Left-arrow> - this will move the highlight one character to the left.

<Right-arrow> - this will move the highlight one character to the right. It
will not move any further than the cursor.

<Control-V> - this will enter "insert mode". At this point, when normal
characters are typed. they will not replace the character under the highlight.
Instead. the remainder of the line will be shifted to the right and the
character typed will be inserted. Typing <control-V> a second time will leave
insert mode.

<Control-D> - this will delete the character under the highlight. The
remainder of the line will be shifted to the left.

<E Be> - this will leave edit mode and return to the normal command mode.

<Return> - this is like typing <Esc> then typing <Return>. That is. it will
leave edit mode, but then proceed as if you had typed <Return> in command
mode and execu.te the command.

Throughout this guide, the expression "current location" will be used. As
previously explained, this means the location where the cursor is at.

T here is a way to make the current location somewhere else, if desired. For
example, the C command clears the current location. You might wish to clear
location [20, 5J, but the current location is [l,lJ. You could just move the
cursor to the desired location and then clear it, but another method is
provided.

T his met hod is called "forcing" the current location. That is, you can make
the system think that somewhere else is the current location. T his is done
by simply typing the reference before the command. For example, you could
type

Which would force [5,20J as the current location, then execute the C command
whiCh clears the current location, which would be [5,20J. Another example:

which will put the values into successive locations, starting at the current
location. Of course, the current location would be what it was forced to be.

It should be noted, though, that the forced reference is only applicable to
the command with which it is typed. After execution of the command is
complete, the spot where the cursor is at will again be the current location.

In general, anywhere in this guide where any of the expressions
"current locat ion", "current row", or "current column" are used, they refer
to the current as defined, unless a forced reference is used, in which case
they refer to the forced current location.

The system has two modes for calculations, automatic and manual, which are
selected with the SC command (which is explained in another section). When
in automatic mode, entering any formula or value will cause the system to
reevaluate the array. In manual mode, this will not happen. To cause a
recalculation when in manual mode, press the <Tab> key. You must do this
as the first character on the command line - if you are in the middle of a
command, the system will ignore you. T he message -R ecalculating- will.
appear in the bottom right corner of the screen while the system is doing the
calculations. When it is done, you will be returned to command mode.

Note that it is possible to have circular references such that it takes two or
more recalculations before the array is fully evaluated. You can simply keep
pressing the <Tab> key as often as needed.

En.te,.
Fo,.mat
Help
Initialize
Jump
Kill
List
Move
Open
Print
Quit
Round
Set
Title
Update
Verify
Width
Exchange

Ope,.ato,.s and p,.ecedence

Defined Con stants

2-4
2-7
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-21
2-22
2-23
2-26
2-28
2-29
2-30
2-31

4-4
4-4

T his reference guide is intended to provide all of the reference information
needed to help you to use ExecuPlan ,to its fullest capability. Sections are
provided covering how to bring up the system, read the screen, type and
edit commands, enter data, and so forth. Complete explanations of all
commands, are provided. A section covers all of the errors that might occur
and what they mean. A complete section is devoted to the math capabtlities,
entering formulas, how formulas are evaluated, functions, and so forth.
Finally, some helpful information is provided for special circumstances, and
the appendix has some annotated sample screens.

This guide is actually not intended for the first-time user. The
accompanying guide, ExecuPlan Primer, is the most basic manual. It covers
beginning concepts and moves step-by-step to more complex models.

It is recommended that first the primer be read and understood, then this
reference guide read and understood. Once the concepts are understood, the
reference guide will then be useful for looking up information as needed.
This guide does cover most, topics in more detail than the primer, but they
are explained in a more direct manner, assuming that the reader has some
familiarity with the system.

It cannot be stressed enough that you should READ this guide. There will
be countless occasions where you aren't sure about something, or don't
understand Why w.hat happens happens, or something else along that line. If
this is the case, get out this reference guide, or the primer if necessary,
and look it up. Almost always the information that you need will be found in
moments.

To briefly preface the sections of this guide: Section 1 contains general
information, such as bringing the system up, understan ding the array,
reading the screen, understanding titles and references, and tYPin? and
editing commands. Section 2 gives detailed explanations of all 0 the
commands. Section 3 covers all errors. Section 4 explains the math package,
how formulas are evaluated, how operators an d functions work, and other
math-related information. Section 5 just has some miscellaneous information.

Again, congratulations on your acquisition of ExecuPlan, and we hope that it
• will be beneficial to you in whatever applications you have in mind.

The EzecuPlan p,.ogram and this ,.efe,.ence gUide we,.e completely designed
and wroitten by Heals E. B,.assell ezclusively foro Vecto,. G,.aphic Inc.

The p,.ogram was developed on a Vecto,. G,.aphic VIP compute,. system with
two droives. a Sproint 3 prointe,.. and a Teletype model 40 line pMnte". utilizing
the SCOPE edito,.. ZSM assembler. and RAID debugging system. The
documentation was written with the MEMORITE III word p,.ocessing· system

The source p,.ogram consists of nea,.,y a qua,.te,. million bytes of source code,
contained in fifteen p,.og,.am modules totaling about 170 pages. Afte,.
asseinbly, the object p,.og,.am is about 20K long. Additionally. the help
sc,.eens occupy anothe" 54K data fUe.

The (loating point math ,.outines and the single-a"gument functions are
deroived from Microsoft BASIC ve,.sion 5,1 which is licensed f,.om Mic,.osoft
Inc. The balance of the math routines (pa,.se,., ezp,.ession evaluato", and
multi-argument functions) and the balance of the p,.og,.am a,.e all original
code.

The author would like to thank the softwa,.e staff at Vecto,. Graphic fa" their i

support and suggestions on the development of EzecuPlan. I am pa,.ticula,.,y
g,.ateful to Ch,.is Co,.y, who cont,.ibuted many significant ideas, was

. instroumental in the debugging of the P,.ogram, and who w"ote the p,.ime,. and
developed all of the sample applications that come with EzecuPlan.

E%ecuPlan is a CP/M-based program. supplied on a CP/M diskette. To
e%ecute the program. insert the diskette into the drive and type

After a few seconds the screen will display a large banner identifying
E%ecuPlan. and giving the revision and copyright notice. Type any character
on the keyboard. The banner wal be erased and an in{tiaUzed array will be
shown on the screen. You're up and running!

At the time EPL is loaded. you may also tell the system to automatically load
or create a file on the disk. For e%ample. to run ExecuPlan and load the file
BUDGET81. you would type

A>EPL BUDGET81

and proceed to load t he program. After the program is loaded. the array
containing the data wal be displayed.

One other capability when EPL is executed is the ability to create a new file.
The command is typed the same as to load a file. If the file does not exist.
the!! the system will display the message

and proceed to create the file. The array displayed will be blank. but the
file specified will be created. and when the array is updated it will be written
into that file.

ExecuPlan is built around the concept of an electronic array. This array
contains a number of rows and columns. Information may be put into each
intersection of a row and a column. Then, info""ation put into the array can
be used to compute other information, which is also put into the array.
Finally, the array may be printed in a report fashion.

Each intersection of a row and column is called a "coordinate" or "location".
If, for example, the array contains 20 rows and 20 columns, then there would
be 400 locations in the array.

Given all of these locations, a method must be used to refer to each of them.
This is called a "reference", and has the following format:

T his is the scheme used throughout ExecuPlan to reference locations. For
example, a reference to row 10 and column 8 would be

Each row and column has a "title", which is used in a reference.
preceding example, "10" is the row title, and "8" is the column title.
do not have to be numbers, however. A reference might be

In the
Tit les

which would refer to row INCOME and column JANUARY.
provided for changing the titles of rows and columns.

In the next section, which talks about the screen, the idea of a "current"
location will be brought up. For the purpose of references, suffice it for the
moment to say that there is a location in the array that is considered to be
the current one. From this comes the idea of "relative references". A
relative reference is one where rather than specifying the title of a row or
column, 'the distance away 'rom the current location is specified. The
character period (.) is used to mean the current location. For example, the
reference

[.,.J
C (

Page 1-2

means "the current row and the current column", that is, the current
location. T he reference

means "the current row, and the column that is 1 to the left of the current".
If the cu,.,.ent location is [4, 4], then the aforementioned reference would
point to [4, 3J.

[• , .-5J
[T,.]
[.-I,IAN}

Current row, current column - 5
Row "1", current column
Current row - I, column JAN

This section ezplains how the screen looks and what all of the things on the
screen mean. It is suggested that you look at the picture of a sample screen
in the appendiz while reading this section.

Conceptually, the screen is a movable "window" over the array. When the
system is initialized, that window is over the top-left corner of the array.
Using the arrow keys, t he win dow can be moved over any section of the
array. The portion of the array that appears under the window is always 18
rows (unless there are less than that many) by however many columns will
fit. Initially, columns have a width of 18 characters, so 4 will fit on the
screen. Columns may have almost any width, however, so the number of
columns displayed will vary from 1 to 34. If a column's full width will not fit
on the screen, it will not be displayed.

At this point, let's take a look at the screen layout.

FIRST LINE: The first line (Which is highlighted) is the "status" line,
because it tells you the status of the system. Four things are displayed on
the status line. 1: The current location •. This is the location that the
cursor is currently on (see below for additional ezplanation of the cursor).
2: Contents of the current location. This is simply whatever is in the
current location, displayed according to the for-mat of th~t location. 3: The
current file, if any. This area might be blank. If it .is not, then it contairys
the name of the current file, which is used if the file is updated. 4: The
amount of space still available in memory. Initially, this is about 30,000
characters.

SECOND LINE: The second line is the "for-mula" line. If the current location
contains a formula, that formula will be displayed on this line. If there is no
formula associated with the current location, this line will be blank.

THIRD LINE: This is the "main title" line. Initially, this line contains a line
of dashes. When main title #1 is set (see T command), then that title is
centered in the field of dashes and displayed on this line.

80 TTOM LINE: T his is the "command" line, where commands are typed.
This will be e.xplained in detail in the nezt section.

T he area between the main title line and the row of dashes above the
command line is the data area of the screen. It, in turn, actually has two
sections, the titles and the data.

T he titles are displayed across the top of the data area and down the left
side. The COLUMN titles are across the top, and the ROW titles down the
left side.

The data itself fills the remainder of the area. If there is no data in the
system, this area will be blank.

It is somewhat difficult to explain, but very easy to understand, the layout
of the data in the data area. Essentially, each intersection of a row and a
column (each LOCATION) can contain an item of data. If you visually trace a
horizontal line across from the row title, and visually trace a vertical line
down from the column title, then where those lines intersect will be where the
data contained in that location will be displayed. For an easy example, the
data contained in [I,ll will be the top-left corner; data contained in [lB,4}
(on an initialized system) will be in the bottom-right corner.

The "cursor" is the name given to tile large White rectangle that is somewhere
in the data area. The position of that cursor, taken as a reference, is called
the "current location", a term that has been and will be used OFTEN. If the
cursor in in the top-left corner (again, of an initialized system), then it is in
location {I, IJ, and tllerefore [1,1] is said to be the current location. When
the arrow keys are used (or a couple of other keys. all explained later). the
cursor moves. If it is in the top-left corner. then pressing the
<down arrow> key will move the cursor to the second row. Pressing it again
will move to the third row, and so forth.

As hinted at above, the cursor is moved around on the screen with the
<arrow> keys. Here, we'll go. into more detail on this.

The arrow keys move the cursor in the appropriate direction. When the
cursor reaches the edge of the screen, then instead of moving the cursor,
the. Whole screen is moved. More specifically, the window that the screen
represents moves with respect to the entire. array. If column 4 is the
rightmost column on the screen and the <right arrow> key is pressed, the
first column on the screen will be shifted off and the next column to the
right will be shifted on. Then, if the <left arrow> key is pressed, only the
cursor will move. Repeated pres sings war move the cursor to the left until it

is on column 2, which at this point would be the leftmost. The next pressing
would shift the screen left and move column 1 onto the screen.

When the cursor is at the extreme point in any direction and that arrow key
is pressed, the system will simply ignore it.

In addition to the regular arrow keys, the <up arrow> and <down arrow>
keys may be shifteCl to move the screen 18 rows (a screenful) at a time. For
example, if the cursor is on row 1 and < shift down arrow> is pressed, the
cursor will be on row 18, which would be the beginning of the secon d
screenful of rows. .The exception to this is if that action would result in less
than 18 rows being displayed. In that case, the screen will be shifted as far
as possible, but not so far as to result in less than 18 rows being displayed.

Finally, there are three other cursor-movement keys. Pressing <Lf> will
move the cursor to the· leftmost column of the current row, as if the
<left arrow> key were pressed repeatedly. Typing <Control-T> will move the
cursor to the top of the array and put it at the top line of the data display
also. <Control-E> will move the cursor to. the end of the array, and put the
cursor on the bottom line also.

In order to really DO anything with E~ecuPlan, you must give it "commands",
which are instructions telling it what to do.

T here are two directions taken when it comes to gIVing a computer commands.
One is the "language" method. In this method, you create a list of
in structions, feed it to the computer, and get back the results. This method
is interesting, but it really just amounts to simplified computer programming.
T his is not an acceptable method of getting results to someone who is not a
programmer.

The other method is known as "interaction". In this method, you give the
computer AN INSTRUCTION. The computer follows that instruction and
displays the result, if any. You then give the computer another instruction,
and it carrys that out. In other words, the computer interacts with the
user. It is this method that is used by ExecuPlan.

Recall from the last section that the bottom line is the "command" line. It is
on this line that commands are typed.

11'1 the very bot tom left corner of the screen are two things. These are the
"command prompt" and the "command cursor". Before you begin to type a
command, these look like ><, only highlighted. The left character, >, is the
prompt. The right character, <, is the command cursor, NOT TO BE
CONFUSED WITH THE CURSOR IN THE ARRAY. The command cursor tells
you where on the line you are at. When you type d--character, the character
appears on the screen where the command cursor WAS, then the cursor
reappears one character to the right.

Notice in the last sentence of that paragraph that the command cursor was
refered to simply as the cursor. This might seem confusing, since the white
rectangle on the screen in the current location is called the cursor. Well,
they are SO conceptually different that you will have no difficulty
ascertaining wh ich one is meant when you see t he word "cur sor".

Yes, when the system is sitting waiting for you to type a command, that is
called "command mode". When the system is in command mode, you may type
commands (seems reasonable~ doesn't it?).

As mentioned above, when a character is typed, it appears on the screen
where the cursor was, then the cursor reappears one character to the right.
This should not be new, since virtually all software operates in this manner.

A t any time during the typing of a command, all of the capabilities of moving
the screen (arrow keys, etc.) are available.

When a command has been typed satisfactorily and you wish the computer to
carry out that command, the <Return> key must be pressed. As soon as that
key is pressed, the system STOPS waiting for you to type, and begins to
execute the command.

In addition to normal letters and numbers used when typing commands,
certain other "special" characters can be used. which wUl be explained in the
following paragraphs.

Finally, and for lack of a better place to explain it, it should be noted that
upper case and lower case letters are fully interchangeable. That is, typing
"EVC" is the same as "evc" or "Evc" or "evC" or whatever. Actually, this is
true not just in command mode, but everywhere in the system. EXCEPT:
Titles do not allow interchanging of cases. That is, "Jan" and "JAN" are
different titles.

WhUe typing commands, there are several special characters available. They
are of two types. The first is editing, which means that they allow you to
"edit", or chan·ge. what you've typed. The second is "inserting", meaning
that you can "insert" certain things from the system without having to type
them.

<Bs> - Typing the <Bs> key (Backspace) will cause the cursor to "back
uP". effectively erasing the last character that was typed. For example, if
you typed "ET HELLI" then realized that you meant to type "0", not "1",
then you 'could hit the <Bs> "key which would back up and erase the "1".
Then, you'd type "0" and continue.

< Del> - Typing simply erases the entire command that you've typed.
It is equivalent to hitting <Bs> repeatedly until every character was erased.

<Control-K> - For users with extensive Memorite experience. <Control-K> is
the same as . (Memorite uses <Control-K> to erase the current line.)

<Ese> - Hitting the <Esc> key enters "command edit mode". In this mode,
more extensive editing of the line is possible. Command edit mode will be
explained in follOWing paragraphs.

All of the above characters are of the editing type.
inserting type.

<Control-A> - This will take the current location, make it a reference, and
insert it into the command line. If the cursor is at [1,1], for example, then
typing <control-A> would insert the characters "[I,l]" into the command line,

. as if you had typed it. This is useful for grabbing locations to be used in a
formula. The rationale behind the character <Control-A> is that it inserts
the location that the cursor is AT.

<Control-F> - This will insert the current FORMULA into the command line.
Look at the second line on the screen, the formula line. Whatever is there
will be inserted into the command if <control-F> is typed. If there is no
formula associated with the current location, then nothing will be inserted.

<Control-C> - This will insert the CONTENTS of the current location into
the command line. The data inserted will be exactly as it is displayed.

<Control-L> - This will simply insert the entire LAST command typed into
the command line. This can be useful for repeating an operation, such as
entering data, for several different locations. It also is useful, particularly,
when a lengthy command is typed which contains an error. Rather than
retyping the entire line, you can simply type <control-L> then use the editing
commands, below, on the line.

Keep in mind that the above characters can be combined with the screen
movement cha~acters. For example, say you'd like to insert a formula into
the command line. Not the current formula, but the formula that is
associated with a particular location. You can simply move the cursor to that
location, type <control-F>,' then move the cursor back to where you want it!

As mentioned above, typing <Ese> enters command edit mode. When in
command edit mode, none of the above-mentioned characters work, and none
of the screen-movement characters work. This mode is used when you've
typed a long command and need to change it, but just don't want to retype
the whole thing.

Command edit mode, or simply edit mode, is indicated by haVing a character
of the command highlighted. At first, this will be the rightmost character of
t he command. The highlighted spot is itself like a cursor, insofar as that is
the spot Where whatever is done will take place.

While in edit mode, typing characters is just like normal command mode,
except that ~hatever character is typed will replace the character under it.

<Left-arrow> - this will move the highlight one character to the left.

<Rig ht-arrow> - this will move the highlight one character to the right. It
will not move any further than the cursor.

<Control-V> - this will enter "insert mode". At this point, when normal
characters are typed, they will not replace the character under the highlight.
Instead, the remainder of the line will be shifted to the right and the
character typed will be inserted. Typing <control-V> a second time will leave
insert mode.

<Control-D> - this will delete the character under the highlight. The
remainder of the line will be shifted to the left.

<Return> - this is like typing <Esc> then typing <Return>. That is, it will
leave edit mode, but then proceed as if you had typed <Return> in command
mode and e~ecute the command.

Throughout this guide, the e~pression "current location" will be used. As
previously e~plained, this means the location where the cursor is at.

T here is a way to make the current location someWhere else. if desired. For
e~ample, the C command clears the current location. You might wish to clear
location [20,5/, but the current location is [1,1/. You could just move the
cursor to the desired location and then clear it, but another method is
prOVided.

T his met hod is called "forcing" the current location. That is, you can make
the system think that somewhere else is the current location. This is done
by simply typing the reference before the command. For e~ample, you could
type

Which would force [5,20/ as the current location, then e~ecute the C command
whiCh clears the current location, which would be [5,20/. Another e~ample:

which will put the values into successive locations, starting at the current
location. Of course, the current location would be what it was forced to be.

It should be noted, though, that the forced reference is only applicable to
the command with which it is typed. After execution of the command is
complete, the spot where the cursor is at will again be the current location.

In general, anyWhere in this guide where any of the expressions
"current locat ion", "current row", or "current column" are used, they refer
to the current as defined, unless a forced reference is used, in which case
they refer to the forced current location.

T he system has two modes for calculations, automatic and manual, which are
selected with the SC command (which is explained in another section). When
in automatic mode, entering any formula or value will cause the system to
reevaluate the array. In manual mode, this will not happen. To cause a
recalculation when in manual mode, press the <Tab> key. You must do this
as the first character on the command line - if you are in the middle of a
command, the system will ignore you. The message -Recalculating- will
appear in the bottom right corner of the screen while the system is doing the
calculations. When it is done, you will be returned to command mode.

Note that it is possible to have circular references such that it takes two or
more recalculations before the array is fully evaluated. You can simply keep
pressing the <Tab> key as often as needed.

Complete detailed descriptions of all commands
and how they are used.

T he clear command is used to clear certain locations in the array of the data
and/or formulas associated with them. The various forms are as follows.

C - Clear current location.
current location.

CF - Clear current formula.
locat ion • it will be era sed.
unchanged.

If there is a formula associated with the current
The data in the current location will be left

C R - Clear row. The data and formulas for all locations in the current row
will be erased. Alternate form:

CC - Clear column. The data and formulas for all locations in the current
column Will be erased. Alternate form:

T he disk command is used to access disk directories to load, save, or erase
files. It is also used to select the current disk to be used for subsequent
disk operations.

D - Disk commands. Disk command mode will be entered, using the
currently-selected disk.

D ::r- Disk select/commands. Disk::r will be selected, then disk
command mode will be entered. The value ::r must generally be in the
range A to P, but specifically must be a valid drive on the system
being used at the time.

When disk command mode is entered, the directory of EPL files on the
selected disk will be displayed at the top of the screen; the current disk and
a list of available commands will be displayed at the bottom. Furthermore,
the first file name will be highlighted.

At this point, typing any of the four arrow keys will move the highlight in
the appropriate direction. Once the highlight is moved to the desired file,
t he disk commands below can be used. A II disk commands reference the
currently-highlighted file.

L - Load a file. The highlighted file will be loaded into the. array.
Note that this erases the current array; therefore, if it is desired to
save the current array,' it should be updated or saved before e::recuting
the load command.

S - Save a file. The array will be saved to the highlighted file. The
former contents of the file are lost. This command should be seldom
used, and is included only for symmetry. Normally, the update
command is used to save the array.

D - Delete a file. The highlighted file will be erased from the disk.
This is equivalent to .using the ERA command under CP/M.

<Esc> - E::rit diSk command mode. When <Esc> is typed, the user will
be returned to the main system.

Each of the disk commands (except <Ese» requires confirmation. When
either L, S, or D is typed, one of the messages

Loading <file> - type Y to proceed -
Saving <file> -, type Y to proceed -
Deleting <file> - type Y to proceed -

will be displayed. At this point, typing Y will cause the selected action to
be carried out. Any other character, in eluding <Return>, will cancel the
action.

If when disk command mode is entered, there are no EPL files on the disk,
the message

will be displayed. Obviously, there are no files to load or delete: therefore
the only possible action is to save the array, which in this case MUST be
done with the update command. Typing any character will return to the main
system.

The enter command is used to enter data or formulas into the array. It has
four forms, for entering te~t, lines, values, or {ormulas. Since the four are
drastically different, they will be e~plained separately.

ET - Enter Te~t

The enter te~t command will accept a single argument and write it into the
current location. The general format is

The format for the ET command is somewhat precise. There must be one
character after the ET, then whatever is after that is considered the te~t.
For e~ample, in the command

ET. Income Type <

will enter the te~t " Income Type". In other words, e~actly what you tvpe
is what you get. Since whatever the user types is taken as the te~t, - no
multiple form of the ET command is possible (unlike the other enter
commands) •

The enter line command is used to enter a line of data where the data is
simply one character repeated. This is typically used for a dividing line of
some sort, or perhaps the line after a column of numbers above the total, or
something similar. There are two {ormats of the enter line command:

EL character
EL character ncolumns

The first type will create a line consisting of the (character) all the way
across the ~rray. The second will create a line only e~tending across a
certain number of columns, specified by (ncolumns). In either case, the
current" location wUI be used as the first (leftmost) column; that is, the
column in which the line begins.

The EL command operates much like the ET command. The data in the line is

simply treated by the system like any ot her text. The EL comman d
automatically creates the sequence of characters to be the exact width of each
column as it is entered. This can be used to create a "broken" line, also.
For example, if the widths of all columns are set to 10, then the EL command
is used, then the widths of all columns are set to 12, there will be a
2-character break in the line between each of the columns.

T he enter value command and its variations are used to enter numeric values
into the current location and possibly adjacent locations in the array. The
simplest form is

which will write the value (number) into the current location. Additionally,
this form of the command can be "implied" by simply typing

The second form of the EV command is used to enter values into adjacent
locations, either across a row or down "a column. The forms are

EVR number number number number etc.
EVC number number number number etc.

The first will enter as many successive numbers as are typed into the current
location and successive columns on the same row; the second will do the
same, only the numbers will be entered into successive rows on the same
column. For example. if the current location is {1, ll,_ the command

The final form is the "repeat" form. Is is used to enter the SAME number
into successive locations. The forms are

EVRR number count
EVCR number count

T he first will enter the number (number) into successive columns on the same
row for (count) columns; the second will do the same down a column. For
example, if the current location is {l,ll, the command

T he enter formula command is used to enter formulas into the array. It has
two forms, single and multiple~ The single form is

which will enter the (foM71ula) into the fOM71ula table. It will set the value in
the current location to 0, unless a "SC A" has been done (see the set
command), in which case the fOM71ulawill be evaluated and the result of the
evaluation put into the current location.

where (nrows) and (ncolumns) are the number of successive rows and
columns, respectively, to write the formula into. The array section which
will get the formula may be thought of as a rectangle consisting of (nrows)
rows and (ncolumns) coh,unns, with the current location as the upper-left
corner. For ezample, if the current location is [1,2J, then the command

will write t~e fOM71ula"1.1"'[., .-lJ" to B rows and 11 columns, or specifically,
into locations [l,2J through [1,12], [2,2J through [2,12J, and so on through
[B,2J through [B,12}.

T he format command is used to choose the manner in which the data in the
array wUl be displayed and printed. There are four forms of the command.
but they differ only in the portion of the array that they affect. They are

F format
FR format
FC format
FA format

F mean s to format only t he current location. FR means format the current
row. FC means the current column. FA means format the entire array.

The (format) consists of zero or more individual format characters. These
characters can be listed in any order. in a generally "free" fashion.
Following are the various format characters.

$ - Dollar Sign. If $ is included. numbers will be printed with a
leading dollar sign. For example, 123 will be displayed as $123•

• - Comma. If a comma is included, n umbers will be printed with
commas inserted every three digits to the left of the decimal point.
That is. the value 123 would be unchanged. but the value 1234567
would be 1.234,567.

0-15 - Digits.· Including a number in the range 0 through 15 will set
the number of digits printed to the RIGHT of the decimal pain t. For
example. the value 123 with a format of 4 would be printed as 123.0000.

% - Percent. The percent character indicates that the value .is to be
considered a percentage, and it will be printed with a percent sign
following it. In addition. the number wUl be multiplied by 100 before
being displayed. For example, the value .13 will be displayed as 13%.

Each location in the array is either "formatted" or "unformatted". Typinfl a
format command without any arguments (for example. "FC ") sets a locatIOn
or locations to "unformatfed". In this case, numbers and text will both be
displayed left justified. Numbers will be displayed in a "general" format.
meaning however necessary to express the value (For example, 100 will be
100, 3.14159 will be 3.14159).

For numbers. formatting is a little more complicated. ANY numeric format
sets the location to "formatted". When a location is formatted, numbers are
RIGHT justified. This right justification should not be confused with the R
character for tut.

Each time a F command is used, it overrides any previous F command. For
example, if a "F 2" command is issued, the current location will be set to 2
places to the right of the decimal point, typically used for " dollars-an d-cents"
notation. If it is then desired to add the dollar sign, the command "F $," will
NOT function as e:cpected, since it cancels the effect Of the "F 2" command.
The proper command would be "F 2 $" since this combines the two commands.
T his brings up an important point: Leaving OlLt the number-of-digits
character in a format command is the same as usi~g 0; that is, "F $ is
identical to "F $ 0".

A s was in dicated above, the format characters are entered in a "free"
fashion. Their order is unimportant. For example, the commands

are all identical. Format characters may be used in whatever combination
desired, e:ccept that the combination "$%" will produce a me~ningless figure;
for example. 123.45 will be displayed as $12345%.

Since t here is limited space available for format characters, the Rand ,
characters are actually the same thing. That is, using a comma on te:ct will
right justify it, and using R on a number will insert commas. Since a
location cannot contain both text and a n umber, this should not cause any
problem.

The help command is used to access a screenful of assistance (commonly called
a "help screen") for a particular command. There are actually three different
forms of the help command.

H
H letter
?

Just typing H gives a help screen on typing commands, 'editing, and moving
the cursor. Typing H followed by a letter gives a help screen on the
command beginning with t hat let ter. For example, HF gives help on the
format command.

The help command reads the help screen from the file EPL.SYS on the
currently-lagged-in disk. That disk should not be confused with the
current ly-selected disk used for ExecuPlan! The logged-in disk is the disk
that CP/M thinks is the current one. To be more specific, the disk that was
in the prompt before ExecuPlan was executed. If it was A>, then the
logged-in disk is drive A; if it was B>, then it was drive B, etc. If the file
is not present on the disk, then the system will say "Help Unavailable".

The ? command is used to get a QUICK help screen. It tells how to get more
help (via the H command) and gives a list of the command letters and their
meanings. This screen is part of the program, not read in from the disk.
Therefore, it is always available.

The initialize command is used to set everything back to the standard.
Specifically, the command

Resets the array size to 20 x 20,
Resets the row and column titles back to 1 2 3 4 5 etc.,
Clears all main titles,
Clears the entire array, .
Sets the current file to none,
and Resets the print blocks back to standard.

The format of the command is simply

It will display a warning message,

••• Warning: Initialization erases ALL data - type Y to proceed -

at which point you may type Y to proceed with the initialization. Typing any
other character (including <Return» will cancel the command.

T he jump command is used as a quick way to move the screen around on the
array, faster than using the arrow keys. There are three jump commands:

JB
JR row
JC column

The first, JB, simply jumps to the top-left corner of the array, which would
be, [1, l} on an initialized array.

JC jumps to the specified column. That column will be the leftmost on the
screen after e.recu tion.

JR jumps to the specified row. The row will be the top on the screen after
the jump, unless the size of the array makes this impossible. If the
jumped-to row is within 18 rows of the' end, it will be somewhere in the
middle of the screen.

K - the KILL command

The kill command is used to "kill", or remove, a row or column·from the
array. It does not, however, change the size of the array. Therefore,
when it kills a specified row or column, it creates a new one at the end in
order to keep the array the same size.

KR row new-row
KC column new-column

where (row) or (column) is the row or column to kill, and (new-row) or
(new-column) is the title to be assigned to the row or column created at the
end of the array.

Example: If your array currently has 12 rows, numbered 1 through 12, and
you ezecute the command "KR 6 13" then your resulting rows will be
1,2,3,4,5,1,8,9,10,11,12,13.

T here is one VER Y IMPO R TANT thing to note about the kill comman d!
Relative references in formulas which refer to or over the killed row or
column will NOT be changed. In other words, they will be INCORRECT after
the command is ezecuted. In the ezample above, if you had a reference in
row 1 which contained something like .-2, before you ezecuted the kill
command, that would have pointed to row 5; after the command, it will point
to row 4.

The list command is used to produce a list on the printer of all of the
formulas associated with the array. The list is printed in the order in which
t he formulas will be evaluated; that is, either in row-major or column-major
order, depending on the current "SC RIC" setting. The format of the
command is simply

Formula list by row
(or column, if appropriate) .

where FILENAME is the name of the file if one is assigned. The format of the
listing is

where [destination} is the destination of the formula, and (formula) is the
text of the formula.

If during the listing it is desired to stop, typing <Esc> will cancel the
command.

(,

T he move command is used to move a row or column from one place in the
array to another. The command format is

MR row dest-row
MC column dest-column

where (row) or (column) is the row or column to move, and (dest-row) or
(dest-column) is the row or column to move it adjacent to.

Depending on which direction the row or column is moved, it will either be
placed abov~/to the left of the destination, or below/to the right.
Specifically: for a COLUMN, if it is being moved to the left, is will be placed
to the left of the destination; if it is being moved to the right, it will be
placed to the right of the destination. For a ROW, if it is being moved up,
it will be placed above the destination; if it is being moved down, it will be
placed below the destination.

For example, say you have the rows 1,2,3,4,5,6. If you execute the
command "MR 5 3", the resulting sequence war be 1,2,5,3,4,6. If you had
executed the command "MR 2 6", the ~esulting sequence would have been
1,3,4,5,6,2. This example is equally applicable to columns.

NOTE: Like the K command, the M command does not change relative
references in formulas.

o - the OPEN command

The open command is used to open up a new row or column in the array.
The command does NOT change the size of the array, therefore when a new
row or. column is created, the last row or column Of the array is removed,
·and its contents lost.

T he format of the open command is

OR ref-row row
OC ref-column column

where (row) or (column) is the title of the new row or column to create, and
(ref-row) or (ref-column) is where to put it. If COLUMN, the new column
will be to the LEFT of the ref-column; if ROW, the new row will be ABOVE
the ref-row.

Example: If there are currentl~ 10 rows, numbered 1 through 10, then
executing the command "OR 7 NEW wUl result in rows l,2,3,4,5,6,NEW,7,8,9
with row 10 being lost.

NOTE: Like the K and M commands, the 0 command does not change relative
references within formulas.

The print command is used to print the array, or to cause what would be
printed to be written into a disk file for editing with Scope or Memorite. Like
the disk command, the print command is actually an entire command mode. It
is invoked simply with

When print mode is entered, the screen will be erased and replaced with what
is called the "print screen". The screen is divided into 5 "blocks", each one
controlling certain aspects of what will be printed.

Block 0 - Main titles. This block is used to select how the main titles
will be printed. For each of the four main titles, which will be
displayed, the choice may be made whether to R' - .right just ify,

L - left Justify, C - center, or X - not to print at all.

Block 1 - Print bounds. This is used to select the portion of the array
to be printed. Specifically, the starting row. starting column, ending
row, and ending column are specified. By proper manipulating of these
boun ds, an array much larger than a piece of paper can be printed on
several sheets, then the sheets rearranged to form a large sheet.

Block 2 - Paper size. This informs .the system of the size of paper
being used, in terms of number of characters per line and number of
lines per page. The width is used only for centering the titles, but
the length tells the system the ma.:rimum number of lines to print, on one
page before skipping to the next page.

Block 3 - Row/column titles. This block allows the user to choose
whet her or not to have the system print the row and column titles on
the report.

Block 4 - Invisible. T his allows the user to set rows and columns to
"invisible"~ meaning that they will NO T be printed, even if they are
within the print bounds selected by block 1. This is most often used
to prevent the printing of some type of intermediate result column.
T here is also a provision for overriding the invisible function, that is.
to go ahead and print the invisible rows and columns.

In addition to the blocks, the bottom of the screen will list the available
commands. Following are the commands, and how to use the blocks.

P - Print the array. Typing P will cause the array to be printed, using
the settings of the blocks to define the bounds, titles, etc. If during
printing you wis h to stop, type <Ese>.

D - Disk. Typing D is just like P, only instead of printing the array, the
data will be written to a disk file. The format of the data Will, however,. be
identical to when it is printed.

When D is typed, the message

Please enter file name:

will be displayed. Type the name of the file that you wish to write the data
to, followed by <Return>. The file will be assumed to have .MEM as the
extension, and must not already exist. If it does, an error will be displayed
and the command cancelled. The current disk will be used for the file; to
use a different disk, first select it with t he disk command from the main
system.

I f when you are prompted for the file, you decide not to execute the
command, simply type <Return> without typing the file name, and the
command Will be cancelled.

F - Formfeed printer. Typing F will simply cause a 10rmfeed character to
be sent to the printer. This normally has the effect of rolling the paper up
to the top of the next page.

o - Edit block O. Typing 0 will allow you to change the information in
block O. Note that only the justification character can be changed at this
time. To change the te:d of the title, the TMx command must be used when
under the main system.

When 0 is typed, the justification character of the first main title will be
highlighted. At this point, you have several options:

Type <down arrow> - this will move the highlight down to the next
title. If you are already at the bottom (fourth) title, the highlight will
be moved back to the first one. The justification character for the
current title will not be changed.

Type <up arrow> - this is the opposite of <down arrow>. The
highlight wUl be moved up to the previous title. If you are already at
the top, it will be moved down the the bottom one. The justification

Type <Esc> - this will leave the current character unchanged, and
return to print command mode.

Type <Return> - this is identical to <down arrow>, except that if you
are at the bottom title, it will stop editing block 0 and return to print
command mode, similarly to <Esc> above.

Type a justification character - typing either L, R, C, or X will set the
justificat ion character for the current title to whatever is typed. The
highlight will not be moved, so if the wrong thing is typed, you may
simply retype the correct character.

Anything other than the above characters will simply be ignored.

1 - Edit block 1. Typing 1 will allow you to edit the information contained
in block 1. When 1 is typed, a cursor will appear a little to the right of the
first line in block 1. At this point, you are in a mode similar to block 0, but
a little different. Essentially, while block 0 is an "instant" block, meaning
t hat when you type a character, it immediately replaces the previous
character, block 1 is an "updated" block, meaning that the new information
appears to the right of the old information and is edited by itself, and only
replaces the old information when you leave block 1 and return to the print
command mode.

Of course, the data yo'u type is not a justification character. Instead, the
appropriate title is typed. The first time print command mode is entered, the
bounds are set to the size of the entire array.

When typing the title, up to eight characters may be typed, terminated by
either <Return> or <Esc> (the difference is explained below). In the process
of typing the title, < Bs> may be typed to back up one character.

Additionally, there are two special characters allowed, if typed as the first
character. Typing <Control-F> will display the "first" row or column of the
array; typing <Control-L> will display the "last" row or column. This could
be useful if you wish to, say, start the printing at the first row, but y'ou're
not sure what the title of the first row is.

T he same edit ing characters are available for block 1 as for block 0
«down arrow>, <up arrow>, <Ese>, <Return», but the way they work is
slight ly different. When by some method the cursor comes to be on a line,
any previously-typed data on that line is erased •. To change a single item
without having the cursor move down the next line (and consequently erase
something that you might have typed there), <Ese> may be typed i.nstead of
<Return>, Which will immediately return to print command mode.

When print command mode is reentered, the information in block 1 will be
updated based on the new information typed. If a title typed does not exist.
it will be highlighted and an error displayed. Any line which contains an
error will not be updated.

Although as explained this probably seems very complicated, it is virtually
self-explanatory when actually done.

Z - Edit block Z. Typing 2 allows the user to modify the information under
block 2, the paper size block. All aspects of block 2 are identical to block
1, 'except that instead of typing row or column titles. you type decimal
numbers. For page Width, you should type the n umber of characters per
line. This is only used for centering the main titles. For page length, you
should type the maximum number of lines you wish printed on a page. On a
standard ·11" page, a length of 56 lines allows reasonable margins on the top
and bottom. For both length and Width, the system will accept values in the
range of 40 through 255.

3 - Edit block 3. Typing 3 allows the user to select whether row or column
titles are to be printed as part of the report. If the appropriate line is Y.
the titles will be printed; if N, they won't. Block 3 is similar to block O.
except that the items are only' updated when print command mode is returned
to.

4 - Edit block 4. Block 4 is used to determine which rows or columns, if
any, are to be considered "invisible", meaning that they will not be printed.

Block 4 is perhaps the most confusing block, because it includes two
individual fields for each line. The first is the row/column indicator. one of
the characters R or C. The second is the title of the row or column.

When block 4 in entered, a cursor will appear on the top line of block 4. At
this point you have several options.

The <up arrow>, <down arrow>, and <Ese> keys function the same as
block O. The exceptton is that when you are on the bot tom (tent h)
line, the down arrow moves to the "Print Inv? "field. From there the
<down arrow> will move back to the first line. The <up arrow> moves
in the same manner. only up instead of down.

Typing R or C will set the row/column indicator for the current line to
whatever is typed.

Typing <Space> will turn OFF tl!e line; that is, when <Return> is
typed after the <Space>. it wtll also remove the title on the current
line.

set a line to Row 1, you would type "R" <Return> followed by "1" as
e:rplained below. If the row/column indicator already contained an R,
you could simply type the <Return> and then proceed with the "1".

If <Return> was typed, the cursor will jump three spaces to the right. At
t his point the system is awaiting a title. Type the row or column title that
you wish to set to invisible. If the title is terminated with <Return>, the
cursor will proceed down to the neoXt line. If it is terminated with <Esc>,
block 4 will be updated and the print command mode will be returned to.

When the cursor is moved to the "Print Inv? " field, you may type Y or N,
in the same manner as block 3. If N is typed, the invisible function will
work, that is, the rows and columns indicated will not be printed. If Y is
typed, the function will be effectively overridden, that is, the rows and
columns listed will be printed anyway.

L

When print command mode is returned to, the rows and columns in block 4
are looked up. If any of them are not found, they will be highlighted and an
error displayed. However, the information will be left in the block, and
when the array is printed, the invalid entries will be ignored.

Characteristics of print command mode.

The information in the print blocks remains as set until changed. In
addition, all of t he information is saved wit h t he file, so when a file is
loaded, all of the information in the print blocks will be the same as when the
file was saved.

The quit command is used to return to CP/M. There are three forms of the
quit cornmand:

Q
QY
QN

If QY is typed, the array will automatically be updated; if no current file
eztsts, you will be asked for one. If QN is typed, the array will not be
updated.

If just Q is typed, you will be prompted with

Eziting - Type Y to update -

If at this point you type Y, the file will be updated and the program exited.
If you type N, the file will not be updated, and the program exited. If you
type <E sc>, the system will cancel the command altogether. Anything else
will be ignored.

The round command is used to change the precision of numbers in the array.
Specifically, all numbers in the array that are NOT calculated as the result of
a formula will be changed to match their representation on the screen. For
example, . if the value 1.469 is in a certain location, but the format is 2, then
the number is being displayed as 1.47. Therefore, when the round command
is executed, the number will actually be changed to 1.47.

The round command is executed simply by typing

If you type Y, the action will be carried out. Typing anything else will
cancel the command without having any data changed.

The set command is used to set or change certain aspects of the system.
There are four set commands; set size, calculation, printer, and disk. These
are explained separately.

T he set size command is used to change the size of the array. The form of
the command is

where (nrows) is the number of rows to make the array, and (ncolumns) is
the number of columns to make the array. When the system is initialized, the
size is 20 x 20. To change to a 9 x 13 array, for example, the command
would be

•••• WARNING - Some rows containing data may be lost - type Y to
proceed -

will appear. If the number of columns is being decreased, the message will
indicate columns instead of rows, of course. Typing Y will cause the action
to be carried out; anything else will cancel the action. If you are decreasing
both rows and columns, you will get both mess"ages, one at a time.
Responding Y to rows but something else to columns will result is the number
of rows decreasing, but the number of columns remaining the same.

If is is desired to only change one dimension, the value 0 may be put in the
other. For example, to change the array from 20 rows to 30, but not affect
the number of columns, the command would be

NO TE: T here is a substantial amount of logic involved when shrinking the
array, particularly when columns are involved. If an array with many rows
has the number of columns lessened, several moments (read a minute or so)
could elapse 'before the system completes the command. Therefore, do not
fear system failure. SUGGESTION: When changing the size of the array, the
rows are changed firsf. Therefore, say you're changing the 20 x 20 array to
lOx 100. The system will first create 100 rows, then shrink to 10 columns.

T his will take quite a while, since the system is removing 10 columns of 100
rows each! To make the operation faster, FIRST change the number of
columns (SS 0 10) THEN change the number of rows (SS 100 0). Using this
method, only about 3 seconds wUl be used, a substantial increase in speed •

. If you are decreasing the number of rows and increasing the number of
columns, FIRST decrease the rows, THEN increase the columns. The object
is to make the number of rows as small as possible when creating or removing
·columns.

T he set calc command is used to change the order and frequency of when the
formulas are evaluated.

Formulas may be evaluated in either "row-major" or "column-major" order. If
they are evaluated in row-major order, that means that they will be evaluated
across each row, then down to the next row and across it, etc. In other
words, the same way you read. In column-major order, they are evaluated
down each column, then moved over to the next column and down it, etc.

The frequency may be set to either tIman ual" or "automa~ic". In man ual
mode, the formulas are only evaluated when the <Tab> key is pressed. In
automatic mode, they are evaluated Whenever a value or formula is entered.

The commands accepts the letters R, C, A, and M to represent each of the
above options. Obviously, only two may be entered at once, but they can be
entered in any order. For example, to set the calc order to column-major,
and the frequ.ency to automatic, the command would be

To change only, say, the calculation order, this time to manual, the command
would be

While it will not produce an error to enter both Rand C or both A and M at
the same time, only the last one on the line wUI be used.

The set printer command is used to send special characters to the printer.
This should seldom be used, but is provided for special cases. The- most
common use would be so set a printer for some special mode.

The format Of the command is

where (byte) is a decimal number. As many or few bytes may be sent as
needed. For the exact bytes required for particular printers, you will have
to refer to the appropriate printer's manual.

For an example on what this might be used for, consider the Vector Matri:t:
printer. If you typed the command

which corresponds to "ESC P" (the printer manual explains this), the printer
would switch between 132 and 80 characters per line.

T he set disk command is used to reset the disk system in case you wish to
change floppies. CP/M will normally not allow you to do this; it you do, you
will get a BOOS read-only error, which can't be recovered from. Therefore,
if you wish to change a floppy disk, put the new diskette into the drive and
type

The title command is used to set and delete the main titles for the array, an d
to change the row and column titles. The commands for the row and column
titles are substantially different from the commands for the main titles,
therefore they will be explained separately.

The first two forms of the title command are for handling the main titles.
They are as follows.

TMx text
TDx

where (x) denotes the number of the referenced main title. Since there are
up to four main titles, (x) must be in the range of 1 to 4. If you are
referencing the first main title, the 1 may be skipped. That is,

The (text) specified in the TM command refers to the text of the title, that
is, what you wish the title to be. For example, the command

will set the first main title to "Budget Forecast".

The TD command is used to delete a main title, which is to say, make it
blank.

T he, first main title is displayed on the screen, centered in a field of dashes.
The remainder of the main titles can be viewed by using the P command,
where they will be displayed in block 0 (see the P command). Note that
when a main title is entered (or changed), the justification character is set to
L. When a title is deleted, the justification. character will be changed to X.
It is possible to make a "comment" by typing a main title, then changing its
justiflcation character to X, thus keeping it from being printed.

The second pair of title commands are used to change the row and column
titles. The commands are

TR old-title new-title
TC old-title new-title

The TR is used to title a row, and TC is used to title a column. The
(old-title) denotes the current title of the row or column you wish to change,
and (new-title) denotes the new title you wish to assign to the row or
column. For example, to change the title of row 1 to INCOME, the command
would be

If you t hen changed you min d, and wanted to make the title SALES, the
command would be

Note that the second time, the previously-assigned new title, INCOME, was
used to refer to the row.

It is acceptable to use the relative method of referencing when specifying the
old title. For example, to change the title of the current column to "JAN",
you could use the command

Titles for rows and columns may contain any characters, but must be only
one word with a maximum of 8 characters, and must not start with a period
(.). This is to prevent confusion with relative references.

The update command is used to update the disk with the current contents of
the array. Assuming there is a "current" file, all that need be typed to
update the disk is

an d await your response. Type the name of a new file and <Return>. The
system will create the file and save the array into it. In addition, it will be
made the current file. If the file already e:dsts, an error will occur. When
asked for the file name, just typing <Return> will cancel the command.

Under certain circumstances, it may be desirable to save the array to disk,
but NOT under the current file. This can be done by typing

The verify command is used to verif)' the size of the array, or determine
what the current actual cursor position lS.

Now you wish to remove ONE row. Your inclination will be to type the
command "55 4 0". This is not correct, however! Although the last row's
title is 5, it is not the fifth row! If you typed that command, you would lose
rows 2, 3, 4, and 5, which was certainly not your intention!

VS
ve

The first. VS. tells the size of the array. The second, ve, tells the current
cursor position on the array, in terms of absolute position. The VS command
causes the message

to be printed, where (x) is the number of rows an d (y) is the n umber of
columns. The ve command causes the message

to be printed, where (x) and (y) are the row and column, respective·ly,
where the cursor is at. In the example above, if the cursor was in the first
column and on the row titled "5", then the ve command would result in the
message

Typically, you might move the cursor to the first row (or column) that you
wish to remove. then use the ve command, which will tell you the actual
number of that row or column. If, on the other hand, you know that you
wish to decrease the size of the array by a certain number of rows or
columns, the V5 command would be most useful.

By utilization of these commands, the possibility of accidentally destroying
data with the 55 command should be reduced.

The width command is used to set the widths of columns in the array. There
are two forms provided.

W column width width width etc.
WA width

The first form allows you to specify (column), which is the column to start
with, and a many (width)s as desired. Each (width) typed will be assigned
to the following column. For ~ample, asswne that columns are titled JAN,
FEB, MAR, and so forth. The command

will set the width of columns JAN and FEB to 15, columns MAR and APR to
25, and column MAY to 7.

The second form will assign all columns the (width) specified.

Columns widths may be in the range of 2 to 64 characters, although columns
narrower than about 6 characters begin to get useless.

The e:rchange command is used to e:rchange, or swap, two rows or columns.
The commands have the form

XR row-I row-2
xc column-I column-2

where (row-I) and (row-2) or (column-I) and (column-2) are the rows or
columns to be e:rchanged. All aspects of the rows or columns are e:rchanged
- the data, the formulas, the titles, and if columns, the widths.

NOTE: As with the K, M, and 0 commands, relative references in formulas
affected by the e:recution of the command will not be changed. References
over an e:rchanged row or column will not be bothered. References TO the
row or column will simply get the new data instead of the old. However,
references CONTAINED in the row or column will now be evaluated relative to
the new position, whereas they were entered relative to the old position.
This could potentially result in incorrect calcalations, so beware.

All errors, what they mean, what causes
them. and how they can be avoided.

From time to time, something will be done wrong. ExecuPlan has a vast
number of er,.or messages to help you figure out what was haywire.

When an error occurs, the error message is displayed in the far bottom-right
corner of the screen. Normally, a character or word somewhere on the
screen is also highlighted. That character or word is the source of the
error. Not all errors, however, have this feature.

After the error is displayed, the system just stops and waits for the user to
type something. As soon as a character is typed, the system proceeds. Most
errors result in the system returning to command mode and awaiting another
command. Some, however, have other results. Certain math errors, for
example, simply warn you; when you type a character, processing continues.

If an error occurs while formulas are being evaluated, then an additional
message is displayed on the command line telling you where the formul~ is
that caused the problem. Also, the formula itself will be displayed on the
formula line of the display.

The command error indicates that the command typed is invalid. If the first
character is highlighted, then that is the invalid command. If the second
character is highlighted, then the first character is valid, but the second one
is not.

Syn tax error indicates one of several things. If the first character following
the command is not a space, then a syntax error will result. If an in valid
character is encountered While a decimal number is being read, that will also
cause a syntax error. There are also a couple of other obscure conditions
t hat will cause a syntax error. The character highlighted will normally be
the character that was undigestable.

T his in dicate s that somet hing was expected, but nothing was found. For
example, typing a title command but leaving out one of the titles will cause a
missing argument error. A character is not always highlighted, but if one
is, it is at that point that another argument was expected.

T his indicates that a title was· being read, but more than eight characters
were found in the title. The ninth character will be highlighted.

This should be pretty obvious. A title was read, but there is no row or
column with that title. The entire title that was not found will be
highlighted. Also, typing a relative reference that refers to someplace off
the array will cause this error.

When a title is being read, if the first character is a period (.), H~en it
assumes that a relative reference is in the works. If the character(s)
following the period do not make sense, then this error will result.

Duplicate title indicates that a title was entered that should not already exist,
but it does. An example would be the second argument in a TR command.
This error is also used when. a disk file name is typed for a new file, and the
file already exists. The entire title (or file name) will be highlighted.

Certain commands expect a number within a certain acceptable range. If the
number typed in not within that range, the out of range error will be the
result. For example, typing a column width less than 2 or greater than 64
would cause this error. The number will be highlighted.

A chara,eter is encountered in a F command t hat is not acceptable. The
character that was unacceptable will be highlighted.

This is similar to the above in that it means that something is wrong in a F
command. This error. however. indicates that a number for the decimal
count is too large. Fifteen is the maximum number of decimal places that may
be specified. The offending number will be highlighted.

During t he reading of a SC command. a character other than R. C. M. or A
was reached. The character is highlighted.

An input error occurs when an EV command is being executed and something
wrong is reached. Normally. this is a decimal number containing some
garbage characters. The number being read is highlighted.

T his is reached during one of the multiple forms of the EV or EF commands.
For example. if the command "EVCR 45 100" is given. but there are only 50
rows. an excess input error will be generated. Whatever portion of the
command that caused too muph input to occur will be highlighted. Under the
EV command. the extra will be ignored. If the command is EFM. the whole
command will be cancelled.

When a D command is executed and a drive is specified. that drive must be in
the range A to P. Anything outside of that range will cause an invalid drive
error. T he offending character will be highlighted. Note that even
something within the range A to P may be invalid. since few systems have 16
disks! However. the system reqlly doesn't know that. hence the extended
range. If you type a drive within the range that doesn't exist. then CP/M
will get into the act and give a BDOS error. These are unrecoverable!

Under CP/M. version 2. files may be set to "read-only" status. Trying to
write to or erase such a file will result in this error. Nothing is highlighted.

T his error means one of several things. One possibility is that there is a
physical error on the disk. Another is that an attempt is being made to
write to the disk. but there is no more room. Finally, an attempt may be
being made to read a file which is goofed up somehow. Nothing is
highlighted by this error.

This is actually a rather general error. What it means is that there is
something wrong in a formUla, such as a non-existant function, an
improperly-typed number. an invalid operator. or something else along that
line. The system will try to highlight the character that caused the problem,
but depending on the cause, that character might not actually be the source
of the error.

When evaluating a multi-argument function, the arguments were invalid.
There are actually two separate things that could be wrong. First, the
arguments aren't references at all; second, they could be references, but
define an invalid range for tlJe function. The arguments for such a function
must be. respectively, the top-left and bottom-right corners of a rectangle.
The rectangle may in fact be a line, or even a point. However, the second
reference can't have a row or column that is less than the row or column in
the first referen·ce. Nothing wUl be highlighted.

Certain things just can't be done with real numbers, and things like
logarithms or square roots of negative numbers are such things. Nothing will
be highlighted.

T he cause Of this is quite apparent. The particular thing about this error is
that the character typed to recover from the errOr condition determines what
will be used as the result Of the operation (that caused the error). If the
character "0" is typed, then zero will be used as the result. If the
character <Esc> is pressed, then the system will abort the operation and
return to command mode. Any other character will ·cause the value
9.99999999999999 times 10 to the 35th power to be used as the result of the
division.

Some math operat ion resulted in a number that is just too big. The largest
possible number or something near it will be used instead. Nothing will be
highlighted.

This indicates that there is too little memory available to carry out the
operation requested. Normally, there is around 30K of free space to start
with. With gobs of te:rt and formulas in memory, this can disappear quickly.
When an operation would result with less than about 100 bytes (characters) of
free space, this error is caused. The padding is allowed because certain
operations use some memory during their e:recution. Note that if this error is
given during an EFM command with large arguments, there might really be
en~ugh room. The system allows for maximum tolerences when calculating the
space available. If you think there is enough space, try reentering the
formula, but in smaller multiples. Nothing is highlighted by this error.

This indicates that the help command was used. but the help file was not
found. The help file is called EPL.SYS, and must reside on the logged-in
disk under CP/M. Either the disk containing EPL.SYS was not in the drive.
or the user is assuming the wrong drive is the logged-in one. Nothing is
highlighted;

How the math package is used, how formulas
are formed, and erplanations of all operators,
funct'ions, and special capabilities.

E%ecuPlan has a very powerful math package incorporated into it. Virtually
all operators and functions necessary for any type of calculations are
provided. Furthermore, their usage is in a simple, algebraic format.

The EF command is used to enter formulas into the system. For e%ample, the
command

would enter a formula which would compute the average of locations [1, IJ
through [5,1].

This section will be devoted to e:rplaining e%actly how formulas are for-med.
If you, the reader, are familiar with the programming language BASIC, then
suffice it to say that ExecuPlan handles formulas the same way. Assuming
that you're not, then read on.

Formulas are essentially a list of items, where each item is either data of some
type, or an operator. Things like numbers or functions are data; plus,
minus, and so forth are operators.

Data and operators are simply strung together to form an algebraic
expression. For example,

is a valid expression, containing numeric data and the operator "+". Under
ExecuPlan, most formulas will "reference" locations in the array. A sample
for-mula with a reference would be

which means "take the number 5 and multiply it by the contents of location
[1,11".

One of the more powerful features is that of functions. These can be
• confusing, because while they perform an operation like an operator, they are

treated as data, because when evaluated, a function is a value. A simple
function might be

which means "take the square root of 15". However, when contained in an
expression, such as

note that it is treated like data. Note also the syntax of a function: the
function itself. followed by a left parenthesis, then the data the function is
to be performed upon (the argument). then a right parenthesis. Within the
parentheses can be another expression. such as

which will take the square root of the result of the expression which is its
argument.

Parent heses may also be' used as part of a formula, besides being used to
enclose the argument for a function. They are used just as in algebra, to
represent a partial result. For example

wh ich means to take the contents of {1, 5] and divide it by the result of the
parenthesized expression. Unlike most systems, ExecuPlan will not complain
if there are not a matching number of left and right parentheses. Instead, it
will just ignore the extras. Also, parentheses may be nested to any level,
that is, you may have as many as you need to properly represent your
expression.

T here are really. only two rules with regard to formulas. First, they
CANNOT contain ANY SPACES (blank characters). The first blank
encountered is considered the end of the formula, and the utra past it will
either be ignored or cause an error. Second, a formula can only be as long
as you can type, which limits it to about 74 characters.

Given an expression, the question arises as to in what order to evaluate the
operators and functions. There a're two normal ways to do this. One is
called "left-to-right". and means that the operators are evaluated in the order
they are encountered. The order is called "precedence", which means that
t hey are evaluated in a specific order with certain operators first, regardless
of the order they're in.

It lias been said that business people use the l-to-r method. and scientific
people use the precedence method, and that since computer programmers are
scientific types, that's why computers always use the precedence method.
Well, that may be true. but the programmer of this system is just as much a
business type as scientific type. The reason t~at precedence was used is

simply that it is more powerful; that is, certain operations cannot be done as
easily with the l-to-r method. Besides, by now most business types are so
used to precedence that it would cause even more confusion to have a
program use l-to-r!

Before getting to precedence, though, it might be a good idea to mention
what the operators are! There are five of them:

2. functions (remember that functions are evaluated, then treated as
a value from that point on)

3. exponentiation

When operators of equal precedence are met, then those operators are
evaluated left- to- right.

take 4, add 4, then subtract the product 2*7
(hence the result is -6)

NOTE: Often it will be desired to use a negative number, for example -3, in
an expression. Therefore, it should be explained how it will be han died by
t he formula evaluator.

Essentially, whenever two consecutive operators are encountered, the program
inserts a 0 between them. Thus, the sequence 2++4 would res ult in 2+0+4,
which would give the presumed correct answer. In some cases, however, an
incorrect answer might be arrived at. For example, the sequence 4*-3, which
should evaluate to -12, will evaluate to 4*0-3, which is -3.

Normally, two consecutive operators should never be used. The example
above, however, is a valid possibility. It is an example of the unary
"negative" operation, which is the only usual possibility.

To eliminate the problem, use parentheses around such an operation when it
in used in an expression. For example, -SQR(2) would not need
parentheses, but 4*-3 would, so you'd enter 4*(-3).

T here is one other nice lit tie feature of the program, defined constants.
These are simply a couple of numbers that mayor may not be used very
much, but will save some typing when they are. The defined constants are

IPI

IE

At this point, we'll take a look at the functions provided in ExecuPlan.
There are basically two types of functions, single-argument an d
mUlti-argument. A single-arg function is something like square root; a
multi-arg function would be something like standard deviation.

These two types of functions are slightly different, beyond the obvious fact
that they take a different number of arguments. A single-arg function can
take anything as an argument - a number, defined constant, another
function, a reference, even a whole expression.

A multi-arg function requires that the arguments be references. Specifically,
these references represent the top-left and bottom-right corners of a

rectangular portion of the array. The rectangle may actually be a line, or
even a single location, but in a manner of speaking, these are still
rectangles.

For example, the arguments ([1,lJ,[5,5J) define a 5 x 5 rectangle. The
arguments ([1,1J,[5,1)) define a vertical line; the arguments ([l,I},[1,5J)
define a horizontal line. The arguments ([l,l},[l,l}) define a point.
Nevertheless, they would all be acceptable. The arguments ([3,3},[4,2])
would, however, not be allowed, since the second reference is to the LEFT of
the first. It would also not be allowed if it were ABOVE the first.

T he reason for this restriction should be apparent. The functions which take
multiple arguments operate on a range, that is, a group of values. Only by
specifying t he bounds of the range, as references, can the function possibly
know what numbers to use.

Naturally, there is always an odd case. Here, it is the net present value
function, which requires both a range and numeric arguments. The exact
format of this function will be explained when the function is explained.

Following are explanations of all of the functions, how they're used, what
they do, and which type they are.

T he absolute value function returns the absolute value if its argument. In
other words, if the argument is positive, it is returned unchanged.- If it is
negative, it will be made positive. Example:

T he integer function returns the greatest integer less than or equal to the
argument. Example:

SIN
COS
TAN
ATN

Sine
Cosine
Tangent
A,.ctangent

These function s return the result of the appropriate trigonometric function.
The argument is expected to be in radians (with the exception of A TN, which
returns its result in radians).

LN
LOG

Natu,.al Logarithm
Decimal Logarithm

Type: single-arg

These functions return the appropriate log of the argument. LN is the
natural, or naperian, log (base e), while LOG is the decimal (base 10) log.
Example:

This function also commonly called antilog. It r.eturns the natural (base e)
antilogarithm of the argument. Example:

T he square root functwn returns.... the square root of its argument. Bet
you would have never guessed.

T he sum function returns the total of all of the numbers in the range
specified. For example, if [1,l} through [5,l} contain the values 1, 2, 3, 4,
and 5, then

MIN
MAX

Minimum
Mazfmum

The MIN and MAX functions return the smallest or largest, r'espectively.
number is the range. Assuming the conditions above (in the SUM
explanation), MIN would return 1 and MAX would return 5.

AVG
JlEAN

Average
Mean

The AVG and MEAN functions are the same thing - the average of the
numbers in the ronge specified. Both are provided so that whichever term is
preferred by the user may be used.

VAR
SD

Variance
Standard Deviation

Type: multi-arg

The VAR and SD functions compute the variance and standard deviation.
respectively, of the argument r'ange.

The COUNT function will simply return the number of items in the argument
range. This function is used by the average, variance, standard deviation,
and net present value functions. IMPORTANT NOTE: This function, and
therefore all of the functions that use it, react in a certain way to invalid
contents of locations in the array. That is, when a certain location within
the argument range does not contain a number (instead, it contains nothing
or text), the value zero will be used instead. The location will still be
counted! Therefore, any of the above-mentioned functions could return an
invalid result if any locations in the argument range are invalid.

This function returns the computed NPV of the argument range, using
additional numbers specified in the arguments. The standard formula for net
present value is.\' F .. -..

~ t - I
t=1 (1 + k)t

where F(1), F(2), through" F(n) are cash returns for years 1 through n, Ie is
the interest rate, and 1 is the initial cost. The foM7tat for the NPV function
is

where Ie and I correspond. to the same variables in the formula. The value
for n is computed as the COUNT of the locations in the range bounded by
[bnd-l] and [bnd-2j.

A miscellaneous collection of infomtation that
may help the user from time to time.

Some sample screens to assist in
understanding how various information is
displayed and where it is displayed at.

BLOCK 0l TITLES

Absolute value 4-5 Count Funct ion 4-8
Adding CP/M 2-21,5-2

-Column 2-15 Creating New File 1-1
-Row 2-15 Current Location 1-9

Arctangent 4-6 Cursor
Arithmetic -Array 1-5,1-6

-Functions 4-4 -Command 1-7,1-8
-Operators 4-3 -Edit 1-9

Array
-Clear 2-1 Data Area 1-5
-General 1-2 Defined Constants 4-4
-Insert 1-9,2-6 Delete

Automatic -Characters 1-8,1-10
-Calculat ion 2-24 -File 2-2
-Load Command 1-1 -Key 1-8

Average Function 4-1,4-7 -Lines 2-12
Directory Display 2-2

Backspace Key 1-8 Disk
-Command Mode 2-2

Calculation Order 2-24 -Drive selection 2-2
Changing

-Array Size 2-23 Entering
-Column Titles 2-27 -Commands 2-4
-Row Titles 2-27 -Formula 2-6

Clear 2-1 -Line of Data 2-4
-Column 2-1 -Numeric Value 2-5
-Entire Array- 2-1 -Text 2-4,2-5
-Formula 2-1 Error
-Location 2-1 -Messages 3-1

Command Editing 1-8 -Recovery 5-2
Command Edit Mode Error Functions 3-4

-Delete 1-10 Escape Key 1-8,1-10
-General 1-9 Exchange Commands 2-31
-Insert 1-10 Exit to CP/M 2-21

Command Line 1-4,1-7 Exponent 4-6
Command Mode

-Delete 1-8 Forced References 1-10
-Disk 2-2,2-3 Format Locations 2-7
-Error 3-1 Formula
-General 1-7 -clear 2-1
-Insert 1-9 -EValuation Order 4-1

Constants 4-4 -General 4-1
Content Insertion 1-9 -Insert 1-9,2-6
Cosine 4-6 -Line 1-4 .{

Page .\-4

Functums Moving (cont.)
-Absol ute Val ue 4-5 -To End of Array 1-6
-Arctangent 4-6 -To Top of Array 1-6
-Average 4-7-
-Cosine 4-6 Net Present Value 4-8
-Count 4-8
-Errors 3-4 Open Commands 2-15
-Exponent 4-6 Opening Up
-Integer 4-5 -Column 2-15
-Logarithm 4-6 -Row 2-15
-Mean 4-7 Operators 4-1
-Sine 4-6 Open Commands 2-15
-square Root 4-6
-Standard Deviation 4-7 Percentages 2-7
-SU1DJ1Jation 4-7 Printing
-Tangent 4-6 -Array 2-16
-Variance 4-7 -Bounds 2-16

-Commands 2-17
Help Commands 2-9,3-5 -Edit Blocks 2-16

-General 2-16
Initialize system 2-10 -Initialization 2-24
Input Errors 3-2,3-4 -To Disk 2-17
Insert

-Characters 1-10 Ouit Commands 2-21
-Columns 2-15
-Errors 3-3 Random # Generator 4-4
-Rows 2-15 References

Integer 4-5 -Absolute 1-2
Invisible -Relative 1-2

-Columns 2-16 Removing
-Rows 2-16 -Column 2-12

-Row 2-12
Jump Commands 2-11 Repeating

-Formula 2-6
Kill Commands -Number 2-5

-Columns 2-12 Revision Notice 1-1
-Rows 2-12 . Right Justify Data 2-7

Round Off Commands 2-22
Listing Formulas 2-13
LOad ing Fil es 2-2 Sample Screens
Logarithm 4-6 -Array A-2
LOwer Case Characters 1-8 -Print A-4

Saving
Main Title 1-4 -File 2-2
Mean Function 4-7 -Print Format 2-20
Memory 3-5,5-1 Screen Layout 1-4
Monitor 5-1 Set Commands 2-23
Move Commands 2-14 setting
Moving -Column Widths 2-x)

-Column 2-14 -Precision 2-7
-Cursor 1-5 Sine 4-6

\~ -Full Screen 1-6 Square Root 4-6
-Row 2-14. Standard Deviation 4-7

Starting Up 1-1
Status Line 1-4
Summation 4-7
Swapping

-Columns 2-31
-Rows 2-31

Tangerrt 4-6
Ti tl e Commands

-Error 3-2
-General 2-26

Title Format 2-16
Update Commands 2-21,2-28
Updating A Fi.1.e 2-20

Variance 4-7
Verify C01lI1lJands 2-29
Width Commands 2-J()

This information is provided so that the user may have some idea of how
memory is used under ExecuPlan. This information is somewhat advanced,
and if you don't understand it, don't worry, it doesn't matter.

In order, ExecuPlan keeps the fOllowing tables: Column widt hs, Row tit les,
Column titles, Primary addresses, Numbers, Formulas, and Strings. All of
the tables start from the end of ExecuPlan and build up, except for' the
strings, which start at the end of memory (actually the base of the BDOS in
CP/M) and build down.

T he column width table takes one byte per column, that byte being the width
of the column.

The primary address table, which is used as a giant reference table for the
array, takes three bytes per location on the array. The first two bytes are
a relative pointer to the actual data in memory, the last byte is the format
byte for that location.

The numeric table holds all of the numbers. This table is dynamic, that is,
only as many numbers as are actually in the system are kept. Numbers take
eight bytes each, and are stored in Microsoft double precision floating point
format, which yields 16 digits of precision.

The formula table nolds all of the formulas. Unlike the numeric table which
is pointed to, the formula table is fully independent. Only the beginning is
pointed to. Each formula has a length byte, a destination row and column
(taking two bytes), the text of the formula, 'and then a termination byte.
Therefore, formulas take up the number of bytes in the text, plus four.

Text, known to a computer as strings, is stored in the string table. The
string table is simply sequentially allocated, down from the top of memory.
The strings are stored in reverse order since the table builds down. There
are no overhead bytes with strings (the end is indicated by bit 7 on, and the
beginning is pointed to from the primary address table), strings take only as
many bytes as the string is long.

From time to time. some type of error might occur that will result in the user
being dropped out of ExecuPlan into CP/M or the Monitor.

The most common possibility is that you might accidentally try to access a
disk drive that does not exist. CP/M will respond with a message like

or something like that. This type of error is called "fatal". because there is
no direct way to recover from it. Another possibility is that you might
accidentally hit the reset but ton.

In any case. the probability is good that there was something you were
working on that you don't want to lose. Therefore. it is nice to be able to
recover from these conditions.

From the Monitor. type "G 0100" and see what happens. Chances are, you
should be right back in ExecuPlan. You might have to type "JB" to clean up
the screen.

It is suggested t hat you dismount the disk just in case. There could be a
possibility that the memory image is goofed up. and that might cause crazy
things to happen. Better safe than sorry.

More common is the Case where you get dropped back into CP/M because of a
disk error or read-only error. When you get the message mentioned above,
or one like it. hit <Return>. You will then be back in CP/M. Now, type the
fallowing command:

What this does is to create an empty file on the disk, without disturbing the
memory image. If you already have a file called HOPE. COM on the disk, use
anoiher name. Now type "HOPE". With any luck. you will be back in
ExecuPlan and can continue. If this does riot work. reset the computer an d
proceed as explained in the above section. If that doesn't work, there is
probably no recovery possible.

Enter
Format
Help
Initialize
Jump
Kill
List
Move
Open
Print
Quit
Round
Set
Title
Update
Verify
Width
Exchange

2-4
2-7
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-21
2-22
2-23
2-26
2-28
2-29
2-30
2-31

T his reference guide is intended to provide all of the reference information
needed to help you to use ExecuPlan ,to its fullest capability. ,Sections are
provided covering how to bring up the system, read the screen, type and
edit commands, enter data, and so forth. Complete explanations of all
commands are provided. A section covers all of the errors that might occur
and what they mean. A complete section is devoted to the math capabilities,
entering formulas, how formulas are evaluated, functions, and so forth.
Finally, some helpful information is provided for special circumstances, and
the appendix has some annotated sample screens.

This guide is actually not intended for the first-time user. The
accompanying guide, ExecuPlan Primer, is the most basic manual. It covers
beginning concepts and moves step-by-step to more complex models.

It is recommended that first the primer be read and understood, then this
reference guide read and understood. Once the concepts are understood, the
reference guide will then be useful for looking up information as needed.
This guide does cover most-topics in more detail than the primer, but they
are explained in a more direct manner, assuming that the reader has some
familiarity with the system.

It cannot be stressed enough that you should READ this guide. There will
be countless occasions where you aren't sure about something, or don't
understand why w.hat happens happens, or something else along that line. If
this is the case, get out this reference guide, or the primer if necessary,
and look it up. Almost always the information that you need will be found in
moments.

To briefly preface the sections of this guide: Section 1 contains general
information, such as bringing the system up, understan ding the array,
reading the screen, understanding titles and references, and typing and
editing commands. Section 2 gives detailed explanations of all of the
commands. Section 3 covers all errors. Section 4 explains the math package,
how formulas are evaluated, how operators and functions work, and other
math-related information. Section 5 just has some miscellaneous information.

Again, congratulations on your acquisition of ExecuPlan, and we hope that it
• will be beneficial to you in whatever applications you have in mind.

The EzecuPlan program and this reference guide were completely designed
and written by Neals E. Brassell ezclusively for Vector Graphic Inc.

The program was developed on a Vector Graphic VIP computer system with
two drives, a Sprint 3 printer, and a Teletype model 40 line printer, utilizing
the SCOPE editor, ZSM assembler, and RAID debugging system. The
documentation was written with the MEMORITE III word processing· system

The source program consists of nearly a quarter million bytes of source code,
contained in fifteen program modules totaling about 170 pages. After
assembly, the object program is about 20K long. Additionally, the help
screens occupy another 54K data file.

The floating point math routines and the single-argument functions are
derived from Microsoft BASIC version 5.1 whic.h is licensed from Microsoft
Inc. The balance of the math routines (parser, ezpression evaluator, and
multi-argument functions) and the balance of the program are all original
code.

The author would like to thank the software staff at Vector Graphic for their i

support and suggestions on the development of EzecuPlan. I am particularly
grateful to Chris Cory, who contributed many significant ideas, was

. instrumental in the debuggtng of the program, and who wrote the primer and
developed all of the sample applications that come with EzecuPlan.

ExecuPlan is a CP/M-based program. supplied on a CP/M diskette. To
execute the program. insert the diskette into the drive and type

After a few seconds the screen will display a large banner identifying
ExecuPlan. and giving the revision and copyright notice. Type any character
on the keyboard. The banner wUI be erased and an initialized array will be
shown on the screen. You're up and running!

At the time EPL is loaded. you may also tell the system to automatically load
or create a file on the disk. For example. to run ExecuPlan and load the file
BUDGET81. you would type

A>EPL BUDGET81

and proceed to load the program. After the program is loaded. the array
containing the data wUl be displayed.

One other capability when EPL is executed is the ability to create a new file.
The command is typed the same as to load a file. If the file does not exist.
theft the system will display the message

and proceed to create the file. The array displayed will be blank. but the
file specified will be created. and when the array is updated it will be written
into that file.

ExecuPlan is built around the concept of an electronic array. This array
contains a number of rows and columns. Information may be put in to each
intersection of a row and a column. Then, information put into the array can
be used to compute other information, Which is also put into the array.
Finally, the array may be printed in a report fashion.

Each intersection of a row and column is called a "coordinate" or "location".
If, for example, the array contains 20 rows and 20 columns, then there would
be 400 locations in the array.

Given all of these locations, a method must be used to refer to each of them.
This is called a "reference", and has the following format:

This is the scheme used throughout ExecuPlan to reference locations. For
example, a reference to row 10 and column 8 would be

Each row and column has a "title", which is used in a reference.
preceding example, "10" is the row title, and "8" is the column title.
do not have to be numbers, however. A reference might be

In the
Titles

which would refer to row INCOME and column JANUARY.
provided for changing the title~ of rows and columns.

In the next section, which talks about the screen, the idea of a "current"
location will be brought up. For the purpose of references, suffice it for the
moment to say that there is a location in the array that is considered lobe
the current one. From this comes the idea of "relative references". A
relative reference is one where rather than specifying the title of a row or
column, 'the distance awa rom the current location is specified. The
character period (.J is used to mean the current ocation. For example, the
reference

[.,.]
((

Page 1-2

means "the current row and the current column", that is, the current
location. The reference

means "the current row, and the column that is 1 to the left of the current".
If the current location is [4, 4J, then the aforementioned reference would
point to [4, 3J.

[., .-5J
[7,.J
[.-l,JANJ

Current row, current column - 5
Row "7", current column
Current row - 1, column JAN

This section explains how the screen looks and what all of the things on the
screen mean. It is suggested that you look at the picture of a sample screen
in the appendix while reading this section.

Conceptually, the screen is a movable "window" over the array. When the
system is initialized, that window is over the top-left corner of the array.
Using the arrow keys, the window can be moved over any section of the
array. The portion of the array that appears under the window is always 18
rows (unless there are less than that many) by however many columns will
fit. Initially, columns have a width of 16 characters, so 4 will fit on the
screen. Columns may have almost any width, however, so the number of
columns displayed will vary from 1 to 34. If a column's full width will not fit
on the screen, it will not be displayed.

At this point, let's take a look at the screen layout.

FIRST LINE: The first line (which is highlighted) is the "status" line,
because it tells you the status of the system. Four things are displayed on
the status line. 1: The current location •. This is the location that the
cursor is currently on (see below for additional explanation of the cursor).
2: Contents of the current location. This is simply whatever is in the
current location, displayed according to the format of that location. 3: The
current file, if any. This area might be blank. If it .is not, then it contairys
the name of the current file, which is used if the file is updated. 4: The
amount of space still available in memory. Initially, this is about 30,000
characters.

SECOND LINE: The second line is the "formula" line. If the current location
contains a formula, that formula will be displayed on this line. If there is no
formula associated with the current location, this line will be blank.

THIRD LINE: This is the "main title" line. Initially, this line contains a line
of dashes. When main title #1 is set (see T command), then that title is
centered in the field of dashes and displayed on this line.

BOTTOM LINE: This is the "command" line, where commands are typed.
This will be uplained in detail in the next section.

T he area between the main title line and the row of dashes above the
command line is the data area of the screen. It, in turn, actually has two
sections, the titles and the data.

The titles are displayed across the top of the data area and down the left
side. The COLUMN titles are across the top, and the ROW tUles down the
left side.

The data itself fills the remainder of the area. If there is no data in the
system, this area will be blank.

It is somewhat difficult to explain, but very easy to understand, the layout
of the data in the data area. Essentially, each intersection of a row and a
column (each LOCATION) can contain an item of data. If you visually trace a
horizontal line across from the row tUle, and visually trace a vertical line
down from the column title, then where those lines intersect will be where the
data contained in that location will be displayed. For an easy exam ple. the
data contained in [1, 1[will be the top-left corner; data contained in [18, 4[
(on an initialized system) will be in the bottom-right corner.

The "cursor" is the name given to the large white rectangle that is somewhere
in the data area. The position of that cursor, taken as a reference, is called
the "current location". a term that has been and will be used OFTEN. If the
cursor in in the top-left corner (again. of an initialized system), then it is in
location [1,11, and therefore [1, 1] is said to be the current location. When
the arrow keys are used (or a couple of other keys. all explained later), the
cursor moves. If it is in the top-left corner. then pressing the
<down arrow> key will move the cursor to the second row. Pressing it again
will move to the third row. and so forth.

As hinted at above, the cursor is moved around on the screen with the
<arrow> keys. Here. we'll go. into more detail on this.

The arrow keys move the cursor in the appropriate direction. When the
cursor reaches the edge of the screen, then instead of moving the cursor.
the. whole screen is moved. More specifically. the window that the screen
represents moves with respect to the entire. array. If column 4 is the
rightmost co lumn on the screen and the <right arrow> key is pressed. the
first column on the screen will be shifted off and the next column to the
right will be shifted on. Then. if the <left arrow> key is pressed. only the
cursor will move. Repeated pres sings will move the cursor to the left until it

is on column 2, which at this point would be the leftmost. The next pressing
would shift the screen left and move column 1 onto the screen.

When the cursor is at the extreme point in any direction and that arrow key
is pressed, the system will simply ignore it.

In addition to the regular arrow keys, the <up arrow> and <down arrow>
keys may be shifte~ to move the screen 18 rows (a screenful) at a time. For
example, if t he cursor is on row 1 and < shift down arrow> is pressed, the
cursor will be on row 18, which would be the beginning of the second
screenful of rows •. The exception to this is if that action would result in less
than 18 rows being displayed. In that case, the screen will be shifted as far
as possible, but not so far as to result in less than 18 rows being displayed.

Finally, there are three other cursor-movement keys. Pressing <Lf> will
move the cursor to the leftmost column of the current row, as if the
<left arrow> key were pressed repeatedly. Typing <Control-T> will move the
cursor to the top of the array and put it at the top line of the data display
also. <Control-E> will move the cursor to the end of the array, and put the
cursor on the bottom line also.

In order to really DO anything with ExecuPlan, you must give it "commands",
which are instructions telling it what to do.

T here are two directions taken when it comes to glvmg a computer commands.
One is the "language" method. In this method, you create a list of
instructions, feed it to the computer, and get back the results. This method
is interesting, but it really just amounts to simplified computer programming.
T his is not an acceptable method of getting results to someone who is not a
programmer.

The other method is known as "interaction". In this method, you give the
computer AN INSTRUCTION. The computer follows that instruction and
displays the result, if any. You then give the computer another instruction,
and it carrys that out. In other words, the computer interacts with the
user. It is this method that is used by ExecuPlan.

Recall from the last section that the bottom line is the "command" line. It is
on this line that commands are typed.

11'1 the very bot tom left corner of the screen are two things. These are the
"command prompt" and the "command cursor". Before you begin to type a
command, these look like ><, only highlighted. The left character, >, is the
prompt. The right character, <, is the command cursor, NOT TO BE
CONFUSED WITH THE CURSOR IN THE ARRAY. The command cursor tells
you where on the line you are at. When you type d--character, the character
appears on the screen where the command cursor WAS, then the cursor
reappears one character to the right.

Notice in the last sentence of that paragraph that the command cursor was
refered to simply as the cursor. This might seem confusing, since the white
rectangle on the screen in the current location is called the cursor. Well,
they are SO conceptually different that you will have no difficulty
ascertaining wh ich one is meant when you see t he word "cur sor".

Yes, when the system is sitting waiting for you to type a command, that is
called "command mode". When the system is in command mode, you may type
commands (seems reasonable~ doesn't it?).

As mentioned above, when a character is typed, it appears on the screen
where the cursor was, then the cursor reappears one character to the right.
This should not be new, since Virtually all software operates in this manner.

A t any time during the typing of a command, all of the capabilities of moving
the screen (arrow keys, etc.) are available.

When a command has been typed satisfactorily and you wish the computer to
carry out that command, the <Return> key must be pressed. As soon as that
key is pressed, the system STOPS waiting for you to type, and begins to
execute the command.

In addition to normal letters and numbers used when typing commands,
certain other "special" characters can be used, which will be explained in the
following paragraphs.

Finally, and for lack of a better place to explain it, it should be noted that
upper case and lower case letters are fully interchangeable. That is, typing
"EVC" is the same as "evc" or "Evc" or "evC" or whatever. Actually, this is
true not just in command mode, but everywhere in the system. EXCEPT:
Titles do not allow interchanging of cases. That is, "Jan" and "JAN" are
different titles.

While typing commands, there are several special characters available. They
are of two types. The first is editing, which means that they allow you to
"edit", or chan·ge, what you've typed. The second is "inserting", meaning
that you can "insert" certain things from the system without having to type
them.

<Bs> - Typing the <Bs> key (Backspace) will cause the cursor to "back
up", effectively erasing the last character that was typed. For example, if
you typed "ET HELLI" then realized that you meant to type "0", not "1",
then you ·could hit the <Bs>-key which would back up and erase the "I".
Then, you'd type "0" and continue.

 - Typing simply erases the entire command that you've typed.
It is equivalent to hitting <Bs> repeatedly until every character was erased.

<Control-K> - For users with extensive Memorite experience, <Control-K> is
the same as . (Memorite uses <Control-K> to erase the current line.)

<Esc> - Hitting the <Esc> key enters "command edit mode". In this mode,
more extensive editing of the line is possible. Command edit mode will be
explained in follOWing paragraphs.

All of the above characters are of the editing type. The remainder ar:-e the
inserting type.

<Control-A> - This will take the current location, make it a reference, and
in sert it into the command line. If the cursor is at [1, I}, for example, then
typing <control-A> would insert the characters "[1,1}" into the command line,

. as if you had typed it. This is useful for grabbing locations to be used in a
formula. The rationale behind the character <Control-A> is that it inserts
the location that the cursor is AT.

< Control-F> - T his will insert the current FORMULA into the command line.
Look at the second line on the screen, the formula lin e. Whatever is there
will be inserted into the command if <control-F> is typed. If there is no
formUla associated with the current location, then nothing will be inserted.

< Control-C > - T his will insert the CONTENTS of the current location into
the command line. The data inserted will be exactly as it is displayed.

<Control-L> - This will simply insert the entire LAST command typed into
the command line. This can be useful for repeating an operation, such as
entering data, for several different locations. It also is useful, particularly,
when a lengthy command is typed which contains an error. Rather than
retyping the entire line, you can simply type <control-L> then use the editing
commands, below, on the line.

Keep in mind that the above characters can be combined with the screen
movement cha~acters. For example, say you'd like to insert a formula into
the command line. Not the current formula, but the formula that is
associated with a particular location. You can simply move the cursor to that
location, type <control-F>,' then move the cursor back to where you want it!

As mentioned above, typing <Esc> enters command edit mode. When in
command edit mode, none of the above-mentioned characters work, and none
of the screen-movement characters work. This mode is used when you've
typed a long command and need to change it, but just don't want to retype
the whole thing.

Command edit mode, or simply edit mode, is indicated by haVing a character
of the command highlighted. At first, this will be the rightmost character of
t he command. The highlighted spot is itself like a cursor, insofar as that is
the spot where whatever is done will take place.

While in edit mode, typing characters is just like normal command mode,
except that ~hatever character is typed will replace the character under it.

<Left-arrow> - this will move the highlight one character to the left.

< Rig ht-arrow> - this will move the highlight one character to the right. It
will not move any further than the cursor.

<Control-V> - this will enter "insert mode". At this point, when normal
characters are typed, they will not replace the character under the highlight.
Instead, the remainder of the line will be shifted to the right and the
character typed will be inserted. Typing <control-V> a second time will leave
insert mode.

<Control-D> - this will delete the character under the highlight. The
remainder of the line will be shifted to the left.

<Return> - this is like typing <Esc> then typing <Return>. That is, it will
leave edit mode, but then proceed as if you had typed <Return> in command
mode and execute the command.

Throughout this guide, the expression "current location" will be used. As
previously explained, this means the location where the cursor is at.

T here is a way to make the current location somewhere else, if desired. For
example, the C command clears the current location. 'You might wish to clear
location [20, 5J, but the current location is [1, l}. You could just move the
cursor to the desired location and then clear it, but another method is
provided.

This method is called "forcing" the current location. That is, you can make
the system think that somewhere else is the current location. This is done
by simply typing the reference before the command. For example, you could
type

Which would force [5, 20} as the current location, then execute the C command
whfCh clears the current location, which would be [5,20}. Another example:

which .will put the values into successive locations, starting at the current
location. Of course, the current location would be what it was forced to be.

It should be noted, though, that the forced reference is only applicable to
the command with which it is typed. After execution of the command is
complete, the spot where the cursor is at will again be the current location.

In general, anyWhere in this guide where any of the expressions
"current locat ion", "current row", or "current column" are used, they refer
to the current as defined, unless a forced reference is used, in which case
they refer to the forced current location.

T he system has two modes for calculations, automatic and manual, which are
selected with the SC command (Which is explained in another section). When
in automatic mode, entering any formula or value will cause the system to
reevaluate the array. In manual mode, this will not happen. To cause a
recalculation when in manual mode, press the <Tab> key. You must do this
as the first character on the command line - if you are in the middle of a
command, the system will ignore you. T he message -R ecalculating- will
appear in the bottom right corner of the screen while the system is doing the
calculations. When it is done, you will be returned to command mode.

Note that it is possible to have circular references such that it takes two or
more recalculations before the array is fUlly evaluated. You can simply keep
pressing the <Tab> key as often as needed.

Complete detailed descriptions of all commands
and how they are used.

The clear command is used to clear certain locations in the array of the data
and/or formulas associated with them. The various forms are as follows.

C - Clear current location.
current location.

CF - Clear current formula.
locat ion , it will be era sed.
unchanged.

If there is a formula associated with the current
The data in the current location will be left

C R - Clear row. The data and formulas for all locations in the current row
will be erased. Alternate form:

CC - Clear column. The data and formulas for all locations in the current
column will be erased. Alternate form:

T he disk command is used to access disk directories to load, save, or erase
files. It is also used to select the current disk to be used for subsequent
disk operations.

D - Disk commands. Disk command mode will be entered, using the
currently-selected disk.

D z - Disk select/commands. Disk z will be selected, then disk
command mode will be entered. The value z must generally be in the
range A to P, but specifically must be a valid drive on the system
being used at the time.

When disk command mode is entered, the directory of EPL files on the
selected disk will be displayed at the top of the screen; the current disk and
a list of available commands will be displayed at the bottom. Furthermore,
the first file name will be highlighted.

At this point, typing any of the four arrow keys will move the highlight in
the appropriate direction. Once the highlight is moved to the desired file,
t he disk commands below can be used. A II disk commands reference the
currently-hig hlighted file.

L - Load a file. T he highlighted file will be loaded into the. array.
Note that this erases the current array; therefore, if it is desired to
save the current array,' it should be updated or saved before executing
the load command.

S - Save a file. The array will be saved to the highlighted file. The
former contents of the file are lost. This command should be seldom
used, and is included only for symmetry. Normally, the update
command is used to save the array.

D - Delete a file. The highlighted file will be erased from the disk.
This is equivalent to .using the ERA command under CP/M.

<E sc> - Ezit disk command mode. When <Esc> is typed, the user will
be returned to the main system.

Each of the disk commands (except < Esc» requires confirmation. When
either L. S, or D is typed. one of the messages

Loading <file> - type Y to proceed -
Saving <file> -, type Y to proceed -
Deleting <file> - type Y to proceed -

will be displayed. At this point, typing Y will cause the selected action to
be earned out. Any other character. including <Return>. will cancel the
action.

If when disk command mode is entered. there are no EPL files on the disk,
the message

will be displayed. Obviously. there are no files to load or delete; therefore
the only possible action is to save the array, which in this case MUST be
done with the update command. Typing any character will return to the main
system.

T he enter command is used to enter data or formulas into the array. It has
four forms, for entering text, lines, values, or formulas. Since the four are
drastically different, they will be explained separately.

ET - Enter Te:d

T he enter text command will accept a single argument and write it into the
current locat ion. The general format is

The format for the ET command is somewhat precise. There must be one
character after the ET, then whatever is after that is considered the text.
For example, in the command

will enter the text" Income Type ". In other words, exactly what you type
is what you get. Since whatever the user types is taken as the text, no
multiple form of the ET command is possible (unlike the other enter
commands) •

T he enter line command is used to enter a line of data where the data is
simply one character repeated. This is typically used for a dividing line of
some sort, or perhaps the line after a column of numbers above the total, or
something similar. There are two formats of the enter line command:

EL character
EL character ncolumns

The first type will create a line consisting of the (character) all the way
across the array. The second will create a line only extending across a
certain number of columns, specified by (nc-olumns). In either case, the
current" location wUI be used as the first (leftmost) column; that is, the
column in which the line begins.

simply treated by the system like any other text. The EL command
automatically creates the sequence of characters to be the exact width of each
column as it is entered. This can be used to create a "broken" line, also.
For example, if the Widths of all columns are set to 10, then the EL command
is used, then the widths of all columns are set to 12, there will be a
2-character break in the line between each of the columns.

T he enter value command and its variations are used to enter numeric values
into the current location and possibly adjacent locations in the array. The
simplest form is

which will write the value (number) into the current location. Additionally,
this form of the command can be "implied" by simply typing

The second form of the EV command is used to enter values into adjacent
locations, either across a row or down 'a column. The forms are

EVR number number number number etc.
EVe number number number number etc.

T he first will enter as many successive numbers as are typed into the current
location and successive columns on the same row; the second will do the
same, only the numbers will be entered into successive rows on the same
column. Fa,. example, if the current location is (I,ll •. the command

The final form is the "repeat" form. Is is used to enter the SAME number
into successive locations. The forms are

EVRR number count
EVeR number count

The first Will enter the number (number) into successive columns on the same
row for (count) columns; the second will do the same down a column. For
example, if the current location is (I,ll, the command

T he enter formula command is used to enter formulas into the array. It has
two forms, single and multiple~ The single form is

which will enter the (formula) into the formula table. It will set the value in
the current location to 0, unless a "SC A" has been done (see the set
command), in which case the formula will be evaluated and the result of the
evaluation put into the current location.

where (nrows) and (ncolumns) are the number of successive rows and
columns, respectively, to write the formula in to. T he array section which
will get the formula may be thought of as a rectangle consisting of (nrows)
rows and (ncolumns) colwnns, with the current location as the upper-left
corner. For example, if the current location is (1,21, then the command

will write t!le formula "1.1*[.,.-1)" to 8 rows and 11 columns, or specifically,
into locations (1,21 through (1,12), [2,2] through [2,12), and so on through
(8,2] through {8,12].

T he format command is used to choose the manner in which the data in the
array will be displayed and printed. There are four forms of the command,
but they differ only in the portion of the array that they affect. They are

F format
FR format
FC format
FA format

F mean s to format only t he current location. FR means format the current
row, FC means the current column. FA means format the entire array.

The (format) con sist s of zero or more individual format characters. These
characters can be listed in any order, in a generally "free" fashion.
Following are the various format characters.

$ - Dollar Sign. If $ is included, n umbers will be prin ted with a
leading dollar sign. For example, 123 will be displayed as $123.

, - Comma. If a comma is in eluded, n umbers will be printed wit h
commas inserted every three digits to the left of the decimal point.
That is, the value 123 would be unchanged, but the value 1234567
would be 1,234,567.

0-15 - Digits.· Including a number in the range 0 through 15 will set
the number of digits printed to the RIGHT of the decimal poin t. For
example, the value 123 with a format of 4 would be printed as 123.0000.

% - Percent. The percent character indicates that the value is to be
considered a percentage, and it will be printed with a percent sign
following it. In addition, the number will be multiplied by 100 before
being displayed. For example, the value .13 will be displayed as 13%.

Each location in the array is either "formatted" or "unformatted". Typinf/ a
format command without any arguments (for example, "FC ") sets a locatlOn
or locations to "unformatted". In this case, numbers and text will both be
displayed left justified. Numbers will be displayed in a "general" format,
meaning however necessary to express the value (For example, 100 will be
100, 3.14159 will be 3.14159).

For numbers, formatting is a little more complicated. ANY numeric format
sets the location to "formatted". When a location is formatted, numbers are
RIGHT justified. This right justification should not be confused with the R
character for te:ct.

Each time a F command is used, it overrides any previous F command. For
e:cample. if a "F 2" command is issued. the current location will be set to 2
places to the right of the decimal point, typically used for "dollars-and-cents"
notation. If it is then desired to add the dollar sign, the command "F $." will
NO T function as e:cpected, since it cancels the effect of the "F 2" command.
The proper command would be "F 2 $" since this combines the two commands.
T his brings up an important point: Leaving out the number-of-digits
character in a format command is the same as usir:tg 0; that is. "F $ is
identical to "F $ on.
As was indicated above. the format characters are entered in a "free"
fashion. Their order is unimportant. For e:cample. the commands

are all identical. Format characters may be used in whatever combination
desired, e:ccept that the combination "$%" will produce a meq.ningless figure;
for e:cample, 123.45 wUI be displayed as $12345%.

Since t here is limited space available for format characters. the Rand.
characters are actually the same thing. That is. using a comma on te:ct will
right justify it, and using R on a number will insert commas. Since a
location cannot contain both te:ct and a number, this should not cause any
problem.

The help command is used to access a screenful of assistance (commonly called
a "help screen") for a particular command. There are actually three different
forms of the help command.

H
H letter
'!

Just typing H gives a help screen on typing commands, editing, and moving
the cursor. Typing H followed by a letter gives a help screen on the
command beginning with t hat let ter. For example, HF gives help on the
format command.

The help command reads the help screen from the file EPL.SYS on the
currently-lagged-in disk. That disk should not be confused with the
current ly-selected disk used for ExecuPlan! The logged-in disk is the disk
that CP/M thinks is the current one. To be more specific, the disk that was
in the prompt before ExecuPlan was executed. If it was A>, then the
logged-in disk is drive Ai if it was B>, then it was drive B, etc. If the file
is not present on the disk, then the system will say "Help Unavailable".

The '! command is used to get a QUICK help screen. It tells how to get more
help (via the H command) and gives a list of the command letters and their
meanings. This screen is part of the program, not read in from the disk.
Therefore, it is always available.

The initialize command is used to set everything back to the standard.
Specifically, the. command

Resets the array size to 20 x 20,
Resets the row and column titles back to 1 2 3 4 5 etc.,
Clears all main titles,
Clears the entire array, .
Sets the current file to none,
and Resets the print blocks back to standard.

The format of the command is simply

at which point you may type Y to proceed with the initialization. Typing any
other character (including <Return» will cancel the command.

((

T he jump command is used as a quick way to move the screen around on the
array, faster than using the arrow keys. There are three jump commands:

IB
IR row
IC column

T he first, IB, simply jumps to the top-left corner of the array, which would
be, [l,lJ on an initialized array.

IC jumps to the specified column. That column will be the leftmost on the
screen after execution.

IR jumps to the specified row. The row will be the top on the screen after
the jump, unless the size of the array makes this impossible. If the
jumped-to row is within 18 rows of the 'end, it will be somewhere in the
middle of the screen.

The kill command is used to "kill", or remove, a row or column·from the
array. It does not, however, change the size of the array. Therefore,
when it kills a specified row or column, it creates a new one at the end in
order to keep the array the same size.

KR row new-row
KC column new-column

where (row) or (column) is the row or column to kill, and (new-row) or
(new-column) is the title to be assigned to the row or column created at the
end of the array.

Example: If your array currently has 12 rows, numbered 1 through 12, and
you execute the command "KR 6 13" then your resulting rows will be
1,2,3,4,5,7,8,9,10,11,12,13.

There is one VER Y IMPORTANT thing to note about the kill command!
Relative references in formulas which refer to or over the killed row or
column will NOT be changed. In other words, they will be INCORRECT after
the command is executed. In the example above, if you had a reference in
row 7 which contained something like .-2, before you executed the kill
command, that would have pointed to row 5; after the command, it will point
to row 4.

The list command is used to produce a list on the printer of all of the
formulas associated with the array. The list is printed in the order in which
the formulas will be evaluated; that is, either in row-major or column-major
order, depending on the current fISC RIC" setting. The format of the
command is simply

Formula list by row
(or column, if appropriate)

where FILENAME is the name of the file if one is assigned. The format of the
listing is

where (destination) is the destination of the formula, and (formula) is the
text of the formula.

If during the listing it is desired to stop, typing <Esc> will cancel the
command.

The move command is used to move a row or column from one place in the
array to another. The command format is

MR row dest-row
MC column dest-column

where (row) or (column) is the row or column to move, and (dest-row) or
(dest-column) is the row or column to move it adjacent to.

Depending on which direction the row or column is moved, it will either be
placed above/to the left of the destination, or below/to the right.
Specifically: for a COLUMN, if it is being moved to the left, is will be placed
to the left of the destination; if it is being moved to the right, it will be
placed to the right of the destination. For a ROW, if it is being moved up,
it will be placed above the destination; if it is being moved down, it will be
placed below the destination.

\, For example, say you have the rows 1,2,3,4,5,6. If you execute the
command "MR 5 3", the resulting sequence wUI be 1,2,5,3,4,6. If you had
executed the command "MR 2 6", the ,.esulti·ng sequence would have been
1,3,4,5,6,2. This example is equally applicable to columns.

NOTE: Like the K command, the M command does not change relative
references in formulas.

The open command is used to open up a new row or column in the array.
The command does NOT change the size of the array, therefore when a new
row or. column is created, the last row or column of the array is removed,
·and its contents lost.

OR ref-row row
OC ref-column column

where (row) 0,. (column) is the title of the new row or column to create, and
(ref-row) 0,. (ref-column) is where to put it. If COLUMN, the new column
will be to the LEFT of the ref-column; if ROW, the new row will be ABOVE
the ref-row.

Example: If there are currently 10 rows, numbered 1 through 10, then
executing the command "OR 7 NEW" will result in rows 1,2,3,4,5,6,NEW,7,8,9
with row 10 being lost.

NOTE: Like the K and M commands, the 0 command does not change relative
references within formulas.

The pMnt command is used to print the array, or to cause what would be
printed to be written into a disk file for editing with Scope or Memorite. Like
the disk command, the pMnt command is actually an entire command mode. It
is invoked simply with

When print mode is entered, the screen will be erased and replaced with what
is called the "print screen". The screen is divided into 5 "blocks", each one
controlling certain aspects of what will be printed.

Block 0 - Main titles. This block is used to select how the main titles
will be printed. For each of the four main titles, which will be
displayed, the choice may be made whether to R' - .right just ify,

L - left justify, C - center, or X - not to print at all.

Block I - Print bounds. This is used to select the portion of the array
to be printed. Specifically, the starting row, starting column, ending
row, and ending column are specified. By proper manipulating of these
boun ds, an array much larger than a piece of paper can be printed on
several sheets, then the sheets rearranged to form a large sheet.

Block 2 - Paper size. This informs .the system of the size of paper
being used, in terms of number of characters per line and number of
lines per page. The width is used only for centering the titles, but
the length tells the system the maximum number of lines to print, on one
page before skipping to the next page.

Block 3 - Row/column titles. This block allows the user to choose
whether or not to have the system print the row and column titles on
the report.

Block 4 - Invisible. T his allows the user to set rows and columns to
"invisiblen~ meaning that they wUI NOT be printed, even if they are
within the print bounds selected by block I. This is most often used
to prevent the printing of some type of intermediate result column.
There is also a provision for overriding the invisible function, that is,
to go ahead and print the invisible rows and columns.

In addition to the blocks, the bot tom of the screen will list the available
commands. Following are the commands, and how to use the blocks.

P - Print t he array. Typing P will cause the array to be printed, using
the settings of the blocks to define the bounds, titles, etc. If during
printing you wish to stop, type <Ese>.

D - Disk. Typing D is just like P, only instead of printing the array, the
data will be written to a disk file. The format of the data will, however, be
identical to when it is printed.

When D is typed, the message

Please enter file name:

will be displayed. Type the name of the file that you wish to write the data
to, followed by <Return>. The file will be assumed to have .MEM as the
extension, and must not already exist. If it does, an error will be displayed
and the command cancelled. The current disk will be used for the file; to
use a different disk, first select it with the disk command from the main
system.

1f whe n you are prompted for the file, you decide not to execute the
command, simply type <Return> without typing the file name, and the
command will be cancelled.

F - Formfeed printer. Typing F will simply cause a "formfeed character to
be sent to the printer. This normally has the effect of rolling the paper up
to the top of the next page.

o - Edit block O. Typing 0 will allow you to change the information in
block O. Note that only the justification character can be changed at this
time. To change the text of the title, the TMx command must be used when
under the main system.

When 0 is typed, the justification character of the first main title will be
highlighted. At this point, you have several options:

Type <down arrow> - this will move the highlight down to the next
title. If you are already at the bottom (fourth) title, the highlight will
be moved back to the first one. The justification character for the
current title will not be changed.

Type <up arrow> - this is the opposite of <down arrow>. The
highlight wUl be moved up to the previous title. If you are already at
the top, it will be moved down the the bottom one. The justification

Type <Esc> - this will leave the current character unchanged, and
return to print command mode.

Type <Return> - this is identical to <down arrow>, except that if you
are at the bottom title, it will stop editing block 0 and return to print
command mode, similarly to <Esc> above.

Type a justification character - typing either L, R, C, or X will set the
just ificat ion character for the current title to whatever is typed. The
highlight will not be moved, so if the wrong thing is typed, you may
simply retype the correct character.

Anything other than the above characters will simply be ignored.

1 - Edit block 1. Typing 1 will allow you to edit the information contained
in block 1. When 1 is typed, a cursor will appear a little to the right of the
first line in block 1. At this point, you are in a mode similar to block 0, but
a little different. Essentially, while block 0 is an "instant" block, meaning
t hat when you type a character, it immediately replaces the previous
character, block 1 is an "updated" block, meaning that the new information
appears to the right of the old information and is edited by itself, and only
replaces the old information when you leave block 1 and return to the print
command mode.

Of course, the data yo'u type is not a justification character. Instead, the
appropriate title is typed. The first time print command mode is entered, the
bounds are set to the size of the entire array.

When typing the title, up to eight characters may be typed, terminated by
either <Return> or <Esc> (the difference is explained below). In the process
of typing the title, < Bs> may be typed to back up one character.

Additionally, there are two special characters allowed, if typed as the first
character. Typing <Control-F> will display the "first" row or column of the
array; typing <Control-L> will display the "last" row or column. This could
be useful if you wish to, say, start the printing at the first row, but you're
not sure what the title of the first row is.

T he same edit ing characters are available for block 1 as for block 0
«down arrow>, <up arrow>, <Esc>, <Return», but the way they work is
slightly different. When by some method the cursor comes to be on a line,
any previously-typed data on that line is erased •. To change a single item
without haVing the cursor move down the next line (and consequently erase
something that you might have typed there), <Esc> may be typed instead of
<Return>, which will immediately return to print command mode.

When print command mode is reentered, the information in block 1 will be
updated based on the new information typed. If a title typed does not exist,
it wUl be highlighted and an error displayed. Any line which contains an
error will not be updated.

Although as explained this probably seems very complicated, it is virtually
self-explanatory when actually done.

2 - Edit block 2. Typing 2 allows the user to modify the information under
block 2, the paper size block. All aspects of block 2 are identical to block
1, 'except that instead of typing row or co lumn tit les, you type decimal
numbers. For page Width, you should type the n umber of characters per
line. This is only used for centering the main titles. For page length, you
should type the maximum number of lines you wish printed on a page. On a
standard ·11" page, a length of 56 lines allows reasonable margins on the top
and bottom. For both length and width, the system will accept values in the
range of 40 through 255.

3 - Edit block 3. Typing 3 allows the user to select whether row or column
titles are to be printed as part of the report. If the appropriate line is Y,
the titles will be printed; if N, they won't. Block 3 is similar to block 0,
except that the items are only' updated when print command mode is returned
to.

4 - Edit block 4. Block 4 is used to determine which rows or columns, if
any, are to be considered "invisible", meaning that they will not be printed.

Block 4 is perhaps the most confusing block, because it includes two
individual fields for each line. The first is the row/column indicator, one of
the characters R or C. The second is the title of the row or column.

When block 4 in entered, a cursor will appear on the top line of block 4. At
this point you have several options.

The < up arrow>, <down arrow>, and <Esc> keys function the same as
block O. The exception is that when you are on the bottom (tenth)
line, the down arrow moves to the "Print Inv? " field. From there the
<down arrow> will move back to the first line. The <up arrow> moves
in the same manner, only up instead of down.

Typing R or C will set the row/column indicator for the current line to
whatever is typed.

Typing <Space> will turn OFF tile line; that is, when <Return> is
typed after the <Space>, it will also remove the title on the current
line.

set a line to Row 1, you would type "R" <Return> followed by "1" as
explained below. If the row/column indicator already contained an R,
you could simply type the <Return> and then proceed with the "1".

If <Return> was typed, the cursor wUl jump three spaces to the right. At
t his point the system is awaiting a title. Type the row or column title that
you wish to set to invisible. If the title is terminated with <Return>, the
cursor will proceed down to the next line. If it is terminated with <Ese>.
block 4 will be updated and the print command mode will be returned to.

When the cursor is moved to the "Print Inv? " field, you may type Y or N,
in the same manner as block 3. If N is typed, the invisible function will
work, that is, the rows and columns indicated will not be printed. If Y is
typed, the function will be effectively overridden, that is, the rows and
columns listed will be printed anyway.

When print command mode is returned to, the rows and columns in block 4
are looked up. If any of them are not found, they will be highlighted and an
error displayed. However. the information will be left in the block, and
when the array is printed. the invalid entries will be ignored.

The information in the print blocks remains as set until changed. In
addition. all of the information is saved with the file. so when a file is
loaded, all of the information in the print blocks will be the same as when the
file was saved.

The quit command is used to return to CP/M. There are three forms of the
quit command:

Q
QY
QN

If QY is typed, the array will automatically be updated; if no cu~rent file
e~ists, you wtll be asked for one. If QN is typed, the array will not be
updated.

If just Q is typed, you will be prompted with

E~iting - Type Y to update -

If at this point you type Y, the file will be updated and the program exited.
If you type N, the file will not be updated, and the program exited. If you
type <E BC>, the system will cancel the command altogether. Anything else
will be ignored.

The round command is used to change the precision of numbers in the array.
Specifically, all numbers in the array that are NOT calculated as the result of
a formula will be changed to match their representation on the screen. For
example,' if the value 1.469 is in a certain location, but the format is 2, then
the number is being displayed as 1.47. Therefore, when the round command
is executed, the number will actually be changed to 1.47.

The round command is executed simply by typing

If you type Y, the action will be carried out. Typing anything else will
cancel the command without having any data changed.

The set command is used to set 0,. change ce,.tain aspects of the system.
The,.e a,.e fou,. set commands; set size, calculation, printe,., and disk. These
a,.e explained sepa,.ately.

The set size command is used to change the size of the a""ay. The fo,.m of
the command is

whe,.e (n,.ows) is the numbe,. of ,.ows to make the a,.,.ay, and (ncolumns) is
the numbe,. of columns to make the a,.,.ay. When the system is initialized, the
size is 20 x 20. To change to a 9 x 13 a,.,.ay, foro example, the command
would be

•••• WARNING - Some ,.ows containing data may be lost - type Y to
p"oceed -

will appea". If the numbe,. of columns is being dec,.eased, the message will
indicate columns instead of ,.ows, of cou,.se. Typing Y will cause the action
to be ca,.ried out; anything else will cancel the action. If you a,.e dec,.easing
both ,.ows and columns, you will get bo t h mes sage s, one a tat ime.
Responding Y to ,.ows but something else to columns will ,.esult is the numbe,.
of ,.ows deer-easing, but the numbe,. of columns ,.emaining the same.

If is is desi,.ed to only change one dimension, the value 0 may be put in the
othe". Fo,. example, to change the a,.,.ay from 20 ,.ows to 30, but not affect
the numbe,. of columns, the command would be

NOTE: The,.e is a substantial amount of logic involved when shrinking the
a,.,.ay, par-ticula,.ly when columns a,.e involved. If an a,.,.ay with many ,.ows
has the numbe" of columns lessened, seve,.al moments (,.ead a minute 0,. so)
could elapse "befo,.e the system completes the command. The,.efo,.e, do not
fea,. system failu,.e. S UGGESTION: When changing the size of the a,.,.ay. the
,.ows a,.e changed fi,.st. The,.efo,.e. say you/,.e changing the 20 x 20 a,.,.ay to
10 x 100. The system will first c,.eate 100 "ows, then shrink to 10 columns.

This will take quite a while, since the system is removing 10 columns of 100
rows each! To make the operation faste,., FIRST change the number of
column s (S5 0 10) THEN change the number of ,.ows (SS 100 0). Using this
method, only about 3 seconds will be used, a substantial increase in speed •

. If you a,.e decreasing the numbe,. of rows and increasing the numbe" of
columns, FIRST decrease the ,.ows, THEN inc,.ease the columns. The object
is to make the numbe,. of rows as small as possible when creating or removing
.columns.

T he set calc command is used to change the o,.der and f,.equency of when the
foromulas a,.e evaluated.

Fo,.mulas may be evaluated in eithe,. ",.ow-majo,." 0,. "column-majo,." orde". If
they a,.e evaluated in ,.ow-majo,. o,.de,., that means that they will be evaluated
ac,.oss each ,.ow, then down to the next ,.ow and ac,.oss it, etc. In othe"
wo,.ds, the same way you "ead. In column-majo,. o,.de,., they a,.e evaluated
down each column, then moved ove,. to the next column and down it, etc.

The frequency,may be set to eithe" "manual" 0,. "automa~ic". In manual
mode, the fo,.mulas a,.e only evaluated when the <Tab> key is p,.essed. In
automatic mode, they a,.e evaluated when eve,. a value 0,. formula is ente,.ed.

The commands accepts the lette"s R, C, A, and M to represent each of the
above options. Obviously, only two may be entered at once, but they can be
ente"ed in any o,.de,.. Fo,. example, to set the calc o,.de,. to column-majo,.,
and the frequ.ency to automatic, the command would be

To change only, say, the calculation o,.de,., this time to manual, the command
would be

While it will not p,.oduce an e,.,.o,. to ertte,. both Rand C or both A and M at
the same time, only the last one on the line wUI be used.

The' set p,.inte,. command is used to send special cha,.acters to the printe".
This should seldom be used, but is p,.ovided foro special cases. The' most
common use would be so set a p,.inte,. fo" some specilll mode.

The fo,.mat of the command is

where (byte) is a decimal number. As many or few bytes may be sent as
needed. For the exact bytes required for particular printers, you will have
to refer to the appropriate printer's manual.

For an example on what this might be used for, consider the Vector Matri.:t:
printer. If you typed the command

which corresponds to "ESC pry (the printer manual explains this), the printer
would switch between 132 and 80 characters per line.

T he set disk command is used to reset the disk system in case you wish to
change floppies. CP/M will normally not allow you to do this; it you do, you
will get a BDOS read-only error, which can't be recovered from. Therefore,
if you wish to change a floppy disk, put the new diskette into the drive and
type

The title command is used to set and delete the main titles for the array, an d
to change the row and column titles. The commands for the row and column
titles are substantially different from the commands for the main titles,
therefore they will be explained separately.

The first two forms of the title command are for handling the main titles.
They are as follows.

TMx text
TOx

where (x) denotes the number of the referenced main title. Since there are
up to four main titles, (x) must be in the range of 1 to 4. If you are
referencing the first main title, the 1 may be skipped. That is,

The (text) specified in the TM command refers to the text of the title, that
is, what you wish the title to be. For example, the command

The TO command is used to delete a main title, which is to say, make it
blank.

T he, first main title is displayed on the screen, centered in a field of dashes.
The remainder of the main titles can be viewed by using the P command,
where they will be displayed in block 0 (see the P command). Note that
when a main title is entered (or changed), the justification character is set to
L. When a title is deleted, the justification, character will be changed to X.
It is possible to make a "comment" by typing a main title, then changing its
justiftcation character to X, thus keeping it from being printed.

The secon d pair of title commands are used to change t he row and column
titles. The commands are

TR old- title new- title
TC old-title new-title

The TR is used to title a row. and TC is used to title a column. The
(old-title) denotes the current title of the row or column you wish to change.
and (new-title) denotes the new title you wish to assign to the row or
column. For example. to change the title of row 1 to INCOME. the command
would be

If you then changed you mind. and wanted to make the title SALES. the
command would be

Note that the second time. the previously-assigned new title. INCOME. was
used to refer to the row.

It is acceptable to use the relative method of referencing when specifying the
old title. For example. to change the title of the current column to "JAN".
you could use the command

Titles for rows and columns may contain any characters. but must be only
one word with a maximum of 8 characters. and must not start with a period
(.). This is to prevent confusion with relative references.

The update command is used to update the disk with the current contents of
the array. Assuming there is a "current" file, all that need be typed to
update the disk is

and the update Will occur. If there is no current file, the system will say

No "current" file to update; Please type NEW filename:

and await your response. Type the name of a new file and <Return>. The
system will create the file and save the array into it. In addition, it will be
made the current file. If the file already exists, an error will occur. When
asked for the file name, just typing <Return> wUI cancel the command.

Un der certain circumstances, it may be desirable to save the array to disk.
but NOT under the current file. This can be done by typing

The verify command is used to verif;>, the size of the array, or determine
what the current actual cursor position lS.

Now you wish to remove ONE row. Your inclination will be to type the
command "55 4 0". This is not correct, however! Although the last row's
title is 5, it is not the fifth row! If you typed that command, you would lose
rows 2, 3, 4, and 5, which was certainly not your intention!

vs
VC

The first, V5, tells the size of the array. The second, ve, tells the current
cursor position on the array, in terms of absolute position. The V5 command
causes the message

to be printed, where (x) is the number of rows and (y) is the number of
columns. The VC command causes the message

to be printed, where (x) and (y) are the row and column, respectively,
where the cursor is at. In the example above, if the cursor was in the first
column and on the row titled "5", then the VC command would result in the
message

Typically, you might move the cursor to the first row (or column) that you
wish to remove, then use the VC command, which will tell you the actual
number of that row or column. If, on the other hand, you know that you
wish to decrease the size of the array by a certain n umber of rows or
columns, the V5 command would be most useful.

By utilization of these commands, the possibility of acciden tally destroying
data with the 55 command should be reduced.

The width command is used to set the widths of columns in the array. There
are two forms provided.

W column width width width etc.
WA width

T he first form allows you to specify (column), which is the column to start
with, and a many (width)s as desired. Each (Width) typed will be assigned
to the following column. For ~ample, assume that columns are titled JAN,
FEB, MAR, and so forth. The command

will set the width of columns JAN and FEB to 15, columns MAR and APR to
25, and column MAY to 7.

The second form will assign all columns the (width) specified.

Columns widths may be in the range of 2 to 64 characters, although columns
narrower than about 6 characters begin to get useless.

The exchange command is used to exchange, or swap, two rows or columns.
The commands have the form

XR row-I row-2
XC column-I column-2

where (row-I) and (row-2) or (column-l) and (column-2) are the rows or
columns to be exchanged. All aspects of the rows or columns are exchanged
- the data, the formulas, the titles, and if columns, the widths.

NOTE: As with the K, M, and 0 commands, relative references in formulas
affected by the execution of the command will not be changed. References
over an exchanged row or column will not be bothered. References TO the
row or column will simply get the new data instead of the old. However,
references CONTAINED in the row or column will now be evaluated relative to
the new position, whereas they were entered relative to the old position.
This could potentially result in incorrect calcalations, so beware.

A II errors, what they mean, what causes
them, and how they can be avoided.

From time to time, something will be done wrong. ExecuPlan has a vast
number of error messages to help you figure out what was haywire.

When an error occurs, the error message is displayed in the far bottom-right
corner of the screen. Normally, a character or word somewhere on the
screen is also highlighted. That character or word is the source of the
error. Not all errors, however, have this feature.

After the error is displayed, the system just stops and waits for the user to
type something. As soon as a character is typed, the system proceeds. Most
errors result in the system returning to command mode and awaiting another
command. Some, however, have other results. Certain math errors, for
example, simply warn you; when you type a character, processing continues.

If an error occurs while formulas are being evaluated, then an additional
message is displayed on the command line telling you where the formul.a is
that caused the problem. Also, the formula itself will be displayed on the
formula line of the display.

The command error indicates that the command typed is invalid. If the first
character is highlighted, then that is the invalid command. If the second
character is highlighted, then the first character is valid, but the second one
is not.

Syntax error indicates one of several things. If the first character following
the command is not a space, then a syntax error will result. If an in valid
character is encountered while a decimal number is being read, that will also
cause a syntax error. There are also a couple of other obscure conditions
t hat will cause a syntax error. The character highlighted will normally be
the character that was undigestable.

This indicates that something was expected, but nothing was found. For
example, typing a title command but leaving out one of the titles will cause a
missing argument error. A character is not always highlighted, but if one
is, it is at that point that another argument was expected.

T his indicates that a title was· being read, but more than eight characters
were found in the title. The ninth character will be highlighted.

This should be pretty obvious. A title was read, but there is no row or
column with that title. The entire title that was not found will be
highlighted. Also, typing a relative reference that refers to someplace off
the array will cause this error.

When a title is being read, if the first character is a period (.), then it
assumes that a relative reference is in the works. If the character(s)
(ollowing t he period do not make sense, then this error will result.

Duplicate title indicates that a title was entered that should not already exist,
but it does. An example would be the second argument in a TR command.
This error is also used when a disk file name is typed for a new file, and the
file already exists. The entire title (or file name) will be highlighted.

Certain commands expect a number within a certain acceptable range. If the
number typed in not within that range, the out of range error will be the
result. For example, typing a column width less than 2 or greater than 64
would cause this error. The number wUI be highlighted.

A character is encountered in a F command t hat is not acceptable. The
character that was unacceptable wUI be highlighted.

This is similar to the above in that it means that something is wrong in a F
command. This error. however. indicates that a number for the decimal
count is too large. Fifteen is the maximum number of decimal places that may
be specified. The offending number will be highlighted.

During t he reading of a SC command. a character other than R. C. M. or A
was reached. The character is highlighted.

An input error occurs when an EV command is being executed and something
wrong is reached. Normally. this is a decimal number containing some
garbage characters. The number being read is highlighted.

T his is reached during one of the multiple forms of the EV or EF commands.
For example. if the command "EVCR 45 100" is given. but there are only 50
rows. an excess input error will be generated. Whatever portion of the
command that caused too much input to occur will be highlighted. Under the
EV command. the extra will be ignored. If the command is EFM. the whole
command will be cancelled.

When a D command is executed and a drive is specified. that drive must be in
the range A to P. Anything outside of that range will cause an invalid drive
error. The offe nding character will be highlighted • Note t hat even
something within the range A to P may be invalid. since few systems have 16
disks! However. the system reqUy doesn't know that. hence the extended
range. If you type a drive within the range that doesn't exist. then CP/M
will get into the act and give a BDOS error. These are unrecoverable!

Under CP/M. version 2. files may be set to "read-only" status. Trying to
write to or erase such a file will result in this error. Nothing is highllghted.

This error means one of several things. One possibility is that there is a
physical error on the disk. Another is that an attempt is being made to
write to the disk, but there is no more room. Finally, an attempt may be
being made to read a file which is goofed up somehow. Nothing is
highlighted by this error.

This is actually a rather general error. What it means is that there is
something wrong in a formula, such as a non-existant function, an
improperly-typed number, an invalid operator, or something else along that
line. The system will try to highlight the character that caused the problem,
but depending on the cause, that character might not actually be the source
of the error.

When evaluating a multi-argument function, the arguments were invalid.
There are actually two separate things that could be wrong. First, the
arguments aren't references at all; second, they could be references, but
define an invalid range for tlJe function. The arguments for such a function
must be, respectively, the top-left and bottom-right corners of a rectangle.
The rectangle may in fact be a line, or even a point. However, the second
reference can't have a row or column that is less than the row or column in
the first reference. Nothing wUl be highlighted.

Certain things just can't be done with real numbers, and things like
logarithms or square roots of negative numbers are such things. Nothing will
be highlighted.

T he cause of this is quite apparent. The particular thing about this error is
that the character typed to recover from the error condition determines what
will be used as the result of the operation (that caused the error). If the
character "0" is typed, then zero will be used as the result. If the
character <Ese> is pressed, then the system will abort the operation and
return to command mode. Any other character will cau set he va lu e
9.99999999999999 times 10 to the 35th power to be used as the result of the
dtvision.

Some math operation resulted in a number that is just too big. The largest
possible number or something near it will be used instead. Nothing will be
highlighted.

This indicates that there is too little memory available to carry out the
operation requested. Normally, there is aroun d 30K of free space to start
with. With gobs of te:rt and formulas in memory, this can disappear quickly.
When an operation would result with less than about 100 bytes (characters) of
free space, this error is caused. The padding is allowed because certain
operations use some memory during their e:recution. Note that if this error is
given during an EFM command with large arguments, there might really be
enQugh room. The system allows for maximum tolerences when calculating the
space available. If you think there is enough space, try reentering the
formula, but in smaller multiples. Nothing is highlighted by this error.

This indicates that the help command was used, but the help file was not
found. The help file is called EPL.SYS, and must reside on the logged-in
disk under CP/M. Either the disk containing EPL.SYS was not in the drive,
or the user is assuming the wrong drive is the logged-in one. Nothing is
highlighted;

How the math package is used, how formulas
are fOMTIed,cmd explanations of all operators,
functions, and specnl capabilities.

ExecuPlan has a very powerful math package incorporated into it. Virtually
all operators and functions necessary for any type of calculations are
provided. Furthermore, their usage is in a simple, algebraic format.

The EF command is used to enter formulas into the system. For example, the
command

would enter a formula which would compute the average of locations (l,l}
through (S,l}.

This section will be devoted to explaining exactly how formulas are foromed.
If you, the reader, are familiar with the programming language BASIC, then
suffice it to say that ExecuPlan handles formulas the same way. Assuming
that you're not, then read on.

Formulas are essentially a list of items, where each item is either data of some
type, or an operator. Things like numbers or functions are data; plus,
minus, and so forth are operators.

Data and operators are simply strung together to form an algebraic
expression. For example,

is a valid expression, containing numeric data and the operator "+". Under
ExecuPlan, most formulas will "reference" locations in the array. .A sample
formula with a reference would be

which means "take the number 5 and multiply it by the contents of location
(l,ll".

One of the more powerful features is that of functions. These can be
• confusing, because While they perform an operation like an operator, they are

treated as data. because when evaluated. a function is a value. A simple
function might be

which means "take the square root of 15". However, when contained in an
expression, such as

note that it is treated like data. Note also the syntax of a function: the
function itself, followed by a left parenthesis, then the data. the function is
to be performed upon (the argument), then a right parenthesis. Within the
parentheses can be another expression, such as

wh ich will take the square root of the result of the expression which is its
argument.

Parent heses may also be' used as part of a formula, besides being used to
enclose the argument for a function. They are used just as in algebra, to
represent a partial result. For example

which means to take the contents of [1, 5J and divide it by the result of the
parenthesized expression. Unlike most systems, ExecuPlan will not complain
if there are not a matching number of left and right parentheses. Instead, it
will just ignore the extras. Also, parentheses may be nested to any level,
that is, you may have as many as you need to properly represent your
expression.

T here are really. only two rules with regard to formulas. First, they
CANNOT contain ANY SPACES (blank characters). The first blank
encountered is considered the end of the formula, and the extra past it will
either be ignored or cause an error. Second, a formula can only be as long
as you can type, Which limits it to about 74 characters.

Given an expression, the question arises as to in what order to evaluate the
operators an d functions. There a're two normal ways to do this. One is
called "left-to-right", and means that the operators are evaluated in the order
they are encountered. The order is called "precedence", which means that
t hey are evaluated in a specific order with certain operators first, regardless
of the order they're in.

It has been said that business people use the l-to-r method, and scientific
people use the precedence method, and that since computer programmers are
scientific types, that's Why computers always use the precedence method.
Well, that may be true, but the programmer of this system is just as much a
business type as scientific type. The reason t~at precedence was used is

simply that it is more powerful; that is, certain operations cannot be done as
easily with the l-to-r method. Besides, by now most business types are so
used to precedence that it would cause even more confusion to have a
program use ~to-r!

Before getting to precedence, though, it might be a good idea to mention
what the opera tors are! There are five of them:

2. functions (remember that functions are evaluated, then treated as
a value from that point on)

3. exponentfutron

When operators of equal precedence are met, then those operators are
evaluated left-to-right.

Examples:

3+4*5

take 4, add 4, then subtract the product 2*7
(hence the result is -6)

NOTE: Often it will be desired to use a negative number, for example -3, in
an expression. Therefore, it should be explained how it will be handled by
t he formUla evaluator.

Essentially, whenever two consecutive operators are encountered, the program
inserts a 0 between them. Thus, the sequence 2++4 would res ult in 2+0+4,
wh ich would give the presumed correct answer. In some cases, however, an
incorrect answer might be arrived at. For example, the sequence 4*-3, which
should evaluate to -12, will evaluate to 4*0-3, which is -3.

Normally, two consecutive operators should never be used. The example
above, however, is a valid possibility. It is an example of the unary
"negative" operation, which is the only usual possibility.

To eliminate the problem, use parentheses around such an operation when it
in used in an expression. For example, -SQR.(2) would not need
parentheses, but 4*-3 would, so you'd enter 4*(-3).

There is one other nice little feature of the program, defined constants.
These are simply a couple of numbers that mayor may not be used very
much, but will save some typing when they are. The defined constants are

IPI

IE

#RND

The value PI, 3.1415926 etc.

The value e, 2.718281 etc.

At this point, we'll take a look at the functions provided in ExecuPlan.
There are basically two types of functions, single-argument and
multi-argument. A single-arg function is something like square root; a
multi-arg function would be something like standard deviation.

These two types of functions are slightly different, beyond the obvious fact
that they take a different number of arguments. A single-arg function can
take anything as an argument - a number, defined constant, another
function, a reference, even a whole expression.

A multf-arg function requires that the arguments be references. Specifically,
these references represent t he top-left and bottom-rig ht co rn ers of a

rectangular portion of the array. The rectangle may actually be a line, or
even a single location, but in a manner of speaking, these are still
rectangles.

For example, the arguments «(I, IJ , (5, 5}) define a 5 x 5 rectangle. The
arguments ([1,1], (5,1]) define a vertical line: the argumen ts ((1,1], (I, 5])
define a horizontal line. The arguments «(l,lJ, (I, lJ) define a point.
Nevertheless, they would all be acceptable. The arguments «(3, 3J, (4, 2J)
would, however, not be allowed, since the second reference is to the LEFT of
the first. It would also not be allowed if it were ABOVE the first.

T he reason for this restriction should be apparent. The functions which take
multiple arguments operate on a range, that is, a group of values. Only by
specifying t he bounds of the range, as references, can the function possibly
know what numbers to use.

Naturally, there is always an odd case. Here, it is the net present value
function, which requires both a range and numeric arguments. T he exact
format of this function will be explained when the function is explained.

Following are explanations of all of the functions, how they're used, what
they do, and which type they are.

The absolute value function returns the absolute value if its argument. In
other words, if the argument is positive, it is returned unchanged.' If it is
negative, it will be made positive. Example:

The integer function returns t.he greatest integer less than or equal to the
argument. Example:

SIN
cas
TAN
ATN

Sine
Cosine
Tangent
Arctangent

These functions return the result of the appropriate trigonometric function.
The argument is expected to be in radians (with the exception of ATN, which
returns its result in radians).

LN
LOG

Natural Logarithm
Decimal Logarithm

Type: single-arg

These functions return the appropriate log of the argument. LN is the
natural, or naperion, log (base e), while LOG is the decimal (base 10) lof/.
Example:

T his function also commonly called antllog. It r.eturns the natural (base e)
antilogarithm of the argument. Example:

T he square root function returns.... the square root of its argument. Bet
you would have never guessed.

T he sum function returns the total of all of the numbers in the range
specified. For example, if {I,ll through [5,1] contain the values 1,2,3,4,
and 5, then

MIN
MAX

Minimum
MtI%lmum

The MIN and MAX functions return the smallest or largest, respectively,
number is the range. Assuming the conditions above (in the SUM
explanation), MIN would return I and MAX would return s.

AVG
MEAN

Average
Mean

Type: multi-arg

The AVG and MEAN functions are the same thing - the average of the
numbers in the range specified. Both are provided so that whichever term is
preferred by the user may be used.

VAR
SD

Variance
Standard Deviation

Type: multi-arg

The VAR and SD functions compute the variance and standard deviation,
respectively, of the argument range.

Type: multi-arg

The COUNT function will simply return the number of items in the argument
range. This function is used by the average, variance, standard deviation,
and net present value functions. IMPORTANT NOTE: This function, and
therefore all of the functions that use it, react in a certain way to invalid
contents of locations in the array. That is, when a certain location within
the argument range does not contain a number (instead, it contains nothing
or text), the value zero will be u.sed instead. The location will still be
counted! Therefore, any of the above-mentioned functions could return an
invalid result if any locations in the argument range are invalid.

This function returns the computed NPV Of the argument range, using
additional numbers specified in the arguments. The standard formula for net
present value is.'Ii F .. -..

~ t - I
t=l (1+ k)t .

where F(1), F(2), through" F(n) are cash returns for years 1 through n, k is
the interest rate, and I is the intrial cost. The format for the NPV function
is

where "k and I correspond. to the same variables in the formula. The value
for n is computed as the COUNT of the locations in the range bounded by
[bnd-l1 and (bnd-2).

A miscellaneous collection of information that
may help the user from time to time.

Some sample screens to assist in
understanding how various informat ion is
displayed and where it is displayed at.

BLOCK 07TITLES

Absolute Value 4-5 Count Funct ion 4-8
Adding CP/M 2-21,5-2

-Column 2-15 Creating New File 1-1
-Row 2-15 Current Location 1-9

Arctangent 4-6 Cursor
Arithmetic -Array 1-5,1-6

-Functions 4-4 -Command 1-7,1-8
-Operators 4-3 -Edit 1-9

Array
-Clear 2-1 Data Area 1-5
-General 1-2 Defined Constants 4-4
-Insert 1-9,2-6 Delete

Automatic -Characters 1-8,1-10
-Calculat ion 2-24 -File 2-2
-LOad Command 1-1 -Key 1-8

Average Function 4-1,4-7 -Lines 2-12
Directory Display 2-2

Backspace Key 1-8 Disk
-Command Mode 2-2

Calculation Order 2-24 -Drive selection 2-2
Changing

-Array Size 2-23 Entering
-Col umn Titles 2-27 -Commands 2-4
-Row Titles 2-27 -Formula 2-6

Clear 2-1 -Line of Data 2-4
-Column 2-1 -Numeric value 2-5
-Entire Array 2-1 -Text 2-4,2-5
-Formula 2-1 Error
-Location 2-1 -Messages 3-1

Command Editing 1-8 -Recovery 5-2
Command Edit Mode Error Functions 3~4

-Delete 1-10 Escape Key 1-8,1-10
-General 1-9 Exchange Commands 2-31
-Insert 1-10 Exit to CP/M 2-21

Command Line 1-4,1-7 Exponent 4-6
Command Mode

-Delete 1-8 Forced References 1-10
-Disk 2-2,2-3 Format Locations 2-7
-Error 3-1 Formula
-General 1-7 -Clear 2-1
-Insert 1-9 -Evaluation Order 4-1

Constants 4-4 -General 4-1
Content Insertion 1-9 -Insert 1-9,2-6
Cosine 4-6 -Line 1-4 .{

Page A-4

Functions Moving (cont.)
-Absolute Value 4-5 -To End of Array 1-6
-Arctangent 4-6 -To Top of Array 1-6
-Average 4-7-
-Cosine 4-6 Net Present Value 4-8
-COunt 4-8
-Errors 3-4 Open Commands 2-15
-Exponent 4-6 Opening Up
-Integer 4-5 -Column 2-15
-Logarithm 4-6 -Row 2-15
-Mean 4-7 Operators 4-1
-Sine 4-6 Open Commands 2-15
-Square Root 4-6
-Standard Deviation 4-7 Percentages 2-7
-Summation 4-7 Printing
-Tangent 4-6 -Array 2-16
-Variance 4-7 -Bounds 2-16

-Commands 2-17
Help Commands 2-9,3-5 -Edit Blocks 2-16

-General 2-16
Initialize System 2-10 -Initialization 2-24
Input Errors 3-2,3-4 -To Disk 2-17
Insert

-Characters 1-10 Quit Commands 2-21
-Columns 2-15
-Errors 3-3 Random # Generator 4-4
-Rows 2-15 References

Integer 4-5 -Absolute 1-2
Invisible -Relative 1-2

-Columns 2-16 Removing
-Rows 2-16 -Column 2-12

-Row 2-12
Jump Commands 2-11 Repeating

-Formula 2-6
Kill Commands -Number 2-5

-Columns 2-12 Revision Notice 1-1
-Rows 2-12 . Right Justify Data 2-7

Round Off Commands 2-22
List ing Formulas 2-13
Loading Files 2-2 Sample SCreens
Logarithm 4-6 -Array A-2
Lower Case Characters 1-8 -Print A-4

Saving
Main Title 1-4 -File 2-2
Mean Function 4-7 -Print Format 2-20
Memory 3-5,5-1 SCreen Layout 1-4
Monitor 5-1 Set Commarrls 2-23
Move Commands 2-14 set.ting
Moving -Column Widths 2-Xl

-Column 2-14 -Precision 2-7
-Cursor 1-5 Sine 4-6
-Full SCreen 1-6 Square Root 4-6
-Row 2-14. Standard Deviation 4-7

Starting Up 1-1
Status Line 1-4
Summation 4-7
Swapping

-Columns 2-31
-Rows 2-31

Tangent 4-6
Title Commands

-Error 3-2
-General 2-26

Title Format 2-16

Update Commands 2-21,2-28
UpdatinJ A File 2-20

Variance 4-7
VeriL!1Commands 2-29

Widtb Commands 2-30

This information is provided so that the user may have some idea of how
memory is used under ExecuPlan. This information is somewhat advanced,
and if you don't understand it, don't worry, it doesn't matter.

In order, ExecuPlan keeps the following tables: C.olumn widths, Row titles,
Column titles, Primary addresses, Numbers, Formulas, and Strings. All of
the tables start from the end of ExecuPlan and build up, except for· the
strings, which start at the end of memory (actually the base of the BDOS in
CP/M) and build down.

T he column width table takes one byte per column, that byte being the width
of the column.

The row and column title tables take eight bytes per title.

The primary address table, which is used as a giant reference table for the
array, takes three bytes per location on the array. The first two bytes are
a relative pointer to the actual data in memory, the last byte is the format /
byte for that location.

The numeric table holds all of the numbers. This table is dynamic, that is,
only as many numbers as are actually in the system are kept. Numbers take
eight bytes each, and are stored in Microsoft double precision floating point
format, which yields 16 digits of precision.

T he formula table nolds all of the formulas. Unlike the numeric table which
is pointed to, the formula table is fully independent. Only the beginning is
pointed to. Each formula has a length byte, a destination row and column
(taking two bytes), the text of the formula, .and then a termination byte.
Therefore, formulas take up the number of bytes in the text, plus four.

Text, known to a computer as strings, is stored in the string table. The
string table is simply sequentially allocated, down from the top of memory.
The strings are stored in reverse order since the table builds down. There
are no overhead bytes with strings (the end is indicated by bit 7 on, and the
beginning is pointed to from the primary address table), strings take only as
many bytes as the string is long.

From time to time, some type of error might occur that will result in the user
being dropped out of ExecuPlan into CP/M or the Monitor.

The most common possibility is that you might accidentally try to access a
disk drive that does not exist. CP/M will respond with a message like

or somet hing like that. This type of error is called "fatal", because there is
no direct way to recover from it. Another possibility is that you might
accidentally hit the reset but ton.

In any case, the probability is good that there was something you were
working on that you don't want to lose. Therefore, it is nice to be able to
recover from these conditions.

From the Monitor, type "G 0100" and see what happens. Chances are, you
should be right back in ExecuPlan. You might have to type "JB" to clean up
the screen.

It is suggested t hat you dismount the disk just in case. There could be a
possibility that the memory image is goofed up, and that might cause crazy
things to happen. Better safe than sorry.

More common is the Case where you get dropped back into CP/M because of a
disk error or read-only error. When you get the message mentioned above,
or one like it, hit <Return>. You will then be back in CP/M. Now, type the
following command:

What this does is to create an empty file on the disk, without disturbing the
memory image. If you already have a file called HOPE. COM on the disk, use
anoiher name. Now type "HOPE". With any luck, you will be back in
ExecuPlan and can continue. If this does not work, reset the computer and
proceed as explained in the above section. If that doesn't work, there is
probably no recovery possible.

Enter
Format
Help
Initialize
Jump
Kill
List
Move
Open
Print
Quit
Round
Set
Title
Update
Verify
Width
Exchange

Defined Constants

Functions

2-4
2-7
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-21
2-22
2-23
2-26
2-28
2-29
2-30
2-31

4-4
4-4

T his reference guide is intended to provide all of the reference information
needed to help you to use ExecuPlan .to its fullest capability. Sections are
provided covering how to bring up the system, read the screen, type and
edit commands, enter data, and so forth. Complete explanations of all
commands are provided. A section covers all of the errors that might occur
and what they mean. A complete section is devoted to the math capabilities,
entering formulas, how formulas are evaluated, functions, and so forth.
Finally, some helpful information is provided for special circumstances, and
the appendix has some annotated sample screens.

This guide is actually not intended for the first-time user. The
accompanying guide, ExecuPlan Primer, is the most basic manual. It covers
beginning concepts and moves step-by-step to more complex models.

It is recommended that first the primer be read and understood, then this
reference guide read and understood. Once the concepts are understood, the
reference guide will then be useful for looking up information as needed.
This guide does cover most· topics in more detail than the primer, but they
are explained in a more direct manner, assuming that the reader has some
familiarity with the system.

It cannot be stressed enough that you should READ this guide. There will
be countless occasions where you aren't sure about something, or don't
understand Why w.hat happens happens, or something else along that line. If
this is the case, get out this reference guide, or the primer if necessary,
and look it up. Almost always the information that you need will be found in
moments.

To briefly preface the sections of this guide: Section 1 contains general
information, such as bring·ing the system up, understan ding the array,
reading the screen, understanding titles and references, and typing and
editing commands. Section 2 gives detailed explanations of all Of the
commands. Section 3 covers all errors. Section 4 explains the math package,
how formulas are evaluated, how operators and functions work, and other
math-related information. Section 5 just has some miscellaneous information.

Again, congratulations on your acquisition of ExecuPlan, and we hope that it
• will be beneficial to you in whatever applications you have in mind.

Acknowledgment

The EzecuPlan program and this reference guide were completely designed
and wntten by Neale E. Brassell ezclusively for Vector Graphic Inc.

The program was developed on a Vector Graphic VIP computer system with
two drives, a Sprint 3 printer, and a Teletype model 40 line printer, utilizing
the SCOPE editor, ZSM assembler, and RAID debugging sys.tem. The
documentation was wnUen with the MEMORITE It! word processing system

The source program consists of nearly a quarter million bytes of source code,
contained in fifteen program modules totaling about 110 pages. After
assembly, the object program is about 20K long. Additionally, the help
screens occupy another 54K data file.

The floating point math routines and the single-argument functions are
denved from Microsoft BASIC version 5.1 whic.h is licensed from Microsoft
Inc. The balance of the math routines (parser, ezpression evaluator, and
multi-argument functions) and the balance of the program are all original
code.

T he au thor would ltke to thank the software staff at Vector Graphic for their i

support and suggestions on the development o(EzecuPlan. I am particularly
grateful to Chris Cory, who contributed many significant ideas, was

. instrumental in the debugging of the program, and who wrote the primer and
developed aU o(the sample applications that come with EzecuPlan.

E:recuPlan is a CP/M-based program, supplied on a CP/M diskette. To
e:recute the program, insen the diskette into the drive and type

After a few seconds the screen will display a large banner identifying
E:recuPlan, and giving the revision and copyright notice. Type any character
on the keyboard. The banner will be erased and an int"tialized array will be
shown on the screen. You're up and running!

At the time EPL is loaded, you may also tell the system to automatically load
or create a file on the disk. For example, to run E:recuPlan and load the file
BUDGETB1, you would type

A>EPL BUDGETBl

an d proceed to load t he program. After the program is loaded, the array
containing the data wUl be displayed.

One other capability when EPL is executed is the ability to create a new file.
The command is typed the same as to load a file. If the file does not exist,
the!1 the system will display the message

and proceed to create the file. The array displayed will be blank, but the
file specified will be created, and when the array is updated it will be written
into that file.

ExecuPlan is built around the concept of an electronic array. This array
contains a number of rows and columns. Information may be put into each
intersection of a row and a column. Then, information put into the array can
be used to compute other information, which is also put into the array.
Finally, the array may be printed in a report fashion.

Each intersection of a row and column is called a "coordinate" or "location".
If, for example, the array contains 20 rows and 20 columns, then there would
be 400 locations in the array.

Given all of these locations, a method must be used to refer to each of them.
This is called a "reference", and has the following format:

T his is the scheme used throughout ExecuPlan to reference locations. For
example, a reference to row 10 and column 8 would be

Each row and column has a "title", which is used in a reference.
preceding example, "10" is the row title, and "8" is the column tit le.
do not have to be numbers, however. A reference might be

In the
Tit les

which would refer to row INCOME and column JANUARY.
provided for changing the title~ of rows and columns.

In the next section, which talks about the screen, the idea of a "current"
location will be brought up. For the purpose of references, suffice it for the
moment to say that there is a location in the, array that is considered to be
the current one. From this comes the idea of "relative references". A
relative reference is one where rather than specifying the title of a row or
column, -the distance awa rom the current location is specified. The
character perio (.) is used to mean the current ocation. For example, the
reference

means "the curroent roow and the curroent column", that is, the curroent
locat ion. The refer en ce

means nthe current row, and the column that is 1 to the left of the curroent".
If the current locaUon is (4, 4J, then the aforementioned reference would
point to [4,3J.

[.,.-5J
fT,.)
[.-l,JAN}

Current row, curroent column - 5
Row "Tn, current column
Current row - 1, column JAN

This section e:rplains how the screen looks and what all of the things on the
screen mean. It is suggested that you look at the picture of a sample screen
in the appendi:r while reading this section.

Conceptually. the screen is a movable "window" over the array. When the
system is initialized. that window is over the top-left corner of the array.
Using the arrow keys, the window can be moved over any section of the
array. The portion of the array that appears under the window is always 18
rows (unless there are less than that many) by however many columns will
fit. Initially, columns have a width of 16 characters, so 4 will fit on the
screen. Column s may have almost any wi dt h, however, so the number of
columns displayed will vary from 1 to 34. If a column's full width will not fit
on the screen, it will not be displayed.

FIRST LINE: The first line (which is highlighted) is the "status" line,
because it tells you the status of the system. Four things. are displayed on
the status line. 1: The current location. This is the location that the
cursor is currently on (see below for additional e:rplanation of the cursor).
2: Contents of the current location. This is simply whatever is in the
current location, displayed according to the format of that location. 3: The
current file, if any. This area might be blank. If it .is not. then it contairys
t he name of the current file, which is used if the file is updated. 4: The
amount of space still available in memory. Initially, this is about 30,000
characters.

SECOND LINE: The second line is the "formula" line. If the current location
contains a formula, that formula wUI be displayed on this line. If there is no
formula associated with the current location, this line will be blank.

THIRD LINE: This is the "main title" line. Initially. this line contains a line
of dashes. When main title /I 1 is set (see T command), then that title is
centered in the field of dashes and displayed on this line.

80 TTOM LINE: T his is the "command" line, where commands are typed.
This will be e:rplatned in detail in the ne:rt section.

T he area between the main title line and the row of dashes above the
command line is the data area of the screen. It, in turn, actually has two
sections, the titles and the data.

T he titles are displayed across the top of the data area and down the left
side. The COLUMN titles are across the top, and the ROW titles down the
left side.

The data itself fills the remainder of the area. If there is no data in the
system, this area will be blank.

It is somewhat difficult to explain, but very easy to understand, the layout
of the data in the data area. Essentially, each intersection of a row and a
column (each LOCATION) can contain an item of data. If you visually trace a
horizontal line across from the row title, and visually trace a vertical line
down from the column title, then where those lines intersect will be where the
data contained in that location will be displayed. For an easy example, the
data contained in [1,11 will be the top-left corner; data contained in [18,4J
(on an initialized system) will be in the bottom-right corner.

The "cursor" is the name given to the large white rectangle that is somewhere
in the data area. The position of that cursor, taken as a reference, is called
the "current location", a term that has been and will be used OFTEN. If the
cursor in in the top-left corner (again, of an initialized system), then it is in
location [1,11, and therefore [1,1] is said to be the current location. When
the arrow keys are used (or a couple of other keys, all explained later), the
cursor moves. If it is in the top-left corner, then pressing the
<down arrow> key will move the cursor to the second row. Pressing it again
will move to the third row, and so forth.

As hinted at above, the cursor is moved around on the screen with the
<arrow> keys. Here, we'll go. into more detail on this.

The arrow keys move the cursor in the appropriate direction. When the
cursor reaches the edge of the screen, then instead of moving the cursor,
the. whole screen is moved. More specifically, the window that the screen
represents moves with respect to the entire. array. If column 4 is the
rightmost column on the screen and the <right arrow> key is pressed, the
first column on the screen will be shifted off and the next column to the
right will be shifted on. Then, if the <left arrow> key is pressed. only the
cursor will move. Repeated pressings wUl move the cursor to the left until it

is on column 2, which at this point would be the leftmost. The next pressing
would shift the screen left and move column 1 onto the screen.

When the cursor is at the extreme point in any direction and that arrow key
is pressed. the system will simply ignore it.

In addition to the regular arrow keys. the <up arrow> and <down arrow>
keys may be shifteC1 to move the screen 18 rows (a screenful) at a time. For
example. if t he cursor is on row 1 and < shift down arrow> is pressed. the
cursor will be on row 18. which would be the beginning of the second
screenful of rows. 'The exception to this is if that action would result in less
than 18 rows being displayed. In that case. the ,screen will be shifted as far
as possible. but not so far as to result in less than 18 rows being displayed.

Finally, there are three other cursor-movement keys. Pressing <Lf> will
move the cursor to the leftmost column of the current row, (18 if the
<left arrow> key were pressed repeatedly. Typing <Control-T> will move the
cursor to the top of the array and put it at the top line of the data display
also. <Control-E> will move the cursor to, the end of the array. and put the
cursor on the bottom line also.

In order to really DO anything with ExecuPlan. you must give it "commands".
which are instructions telling it what to do.

T here are two directions taken when it comes to giving a computer commands.
One is the "languagen method. In this method. you create a list of
instructions, feed it to the computer, and get back the results. This method
is interesting, but it really just amounts to simplified computer programming.
T his is not an acceptable method of getting results to someone who is not a
programmer.

The other method is known as "interaction". In this method. you give the
computer AN INSTRUCTION. The computer follows that instruction and
displays the result. if any. You then give the computer another instruction.
and it carrys that out. In other words. the computer interacts with the
user. It is this method that is used by ExecuPlan.

Recall from the last section that the bottom line is the "command" line. It is
on this line that commands are typed.

11't the very bot tom left corner of the screen are two things. These are the
"command prompt" and the "command cursor". Before you begin to type a
command. these look like ><. only highlighted. The left character. >. is the
prompt. The right character, <. is the command cursor. NOT TO BE
CONFUSED WITH THE CURSOR IN THE ARRAY. The command cursor tells
you where on the line you are at. When you type a-character. the character
appears on the screen where the command cursor WAS, then the cursor
reappears one character to the right.

Notice in the last sentence of that paragraph that the command cursor was
refered to simply as the curs·or. This might seem confusing. since the white
rectangle on the screen in the current location is called the cursor. Well.
they are SO conceptually different that you will have no difficulty
ascertaining which one is meant when you see the word "cursor".

Yes. when the system is sitting waiting for you to type a command. that is
called "command mode". When the system is in command mode. you may type
commands (seems reasonable~ doesn't it?).

As mentioned above, when a character is typed. it appears on the screen
where the cursor was. then the cursor reappears one character to the right.
This should not be new, since virtually all software operates in this manner.

A t any time during the typing of a command. all of the capabilities of moving
the screen (arrow keys. etc.) are available.

When a command has been typed satisfactorily and you wish the computer to
carry out that command. the <Return> key must be pressed. As soon as that
key is pressed, the system STOPS waiting for you to type, and begins to
execute the command.

In addition to normal let ters and numbers used when typing commands.
certain other "special" characters can be used. which will be explained in the
following paragraphs.

Finally. and for lack of a better place to explain it. it should be noted that
upper case and lower case letters are fully interchangeable. That is. typing
"EVC" is the same as "evc" or "Evc" or "evC" or whatever. Actually. this is
true not just in command mode, but everywhere in the system. EXCEPT:
Titles do not allow interchanging of cases. That is, "Jan" and "JAN" are
different titles.

WhUe typing commands, there are several special characters available. They
are of two types. The first is editing. Which means that they allow you to
"edit", or chan·ge, what you've typed. The second is "inserting", meaning
that you can "insert" certain things from the system without having to type
them.

<Bs> - Typing the <Bs> key (Backspace) will cause the cursor to "back
up", effectively erasing the last character that was typed. For example. if
you typed nET HELLI" then realized that you meant to type "0", not "I".
then you ·could hit the <Bs> -key which would back up and erase the "I".
Then, you'd type "0" and continue.

< Del> - Typing simply erases the entire command that you've typed.
It is equivalent to hitting <Bs> repeatedly until every character was erased.

<Control-K> - For users with extensive Memorite experience, <Control-K> is
the same as . (Memorite uses <Control-K> to erase the current line.)

<Ese> - Hitting the <E sc> key enters "command edit mode". In this mode.
more extensive editing of the line is possible. Command edit mode will be
explained in following paragraphs.

All of the above characters are of the editing type.
inserting type.

<Control-A> - This will take the current location. make it a reference. an d
in sert it into the command line. If the cursor is at [1.1]. for example. then
typing <control-A> would insert the characters "(l,l)" into the command line,

. as if you had typed it. This is useful for grabbing locations to be used in a
formula. The rationale behind the character <Control-A> is that it inserts
the location that the cursor is AT.

<Control-F> - This will insert the current FORMULA into the command line.
Look at the second line on the screen, the formula line. Whatever is there
will be inserted into the command if <control-F> is typed. If there is no
formula associated with the current location, then nothing will be inserted.

<Control-C> - This will insert the CONTENTS of the current location into
the command line. The data inserted will be exactly as it is displayed.

<Control-L> - This will simply insert the entire LAST command typed into
the command line. This can be useful for repeating an operation, such as
entering data, for several different locations. It also is useful. particularly,
when a lengthy command is typed which contains an error. Rather than
retyping the entire line, you can simply type <control-L> then use the editing
commands, below, on the line.

Keep in mind that the above characters can be combined with the screen
movement cha~acters. For example. say you'd like to insert a formula into
the command line. Not the current formula. but the formula that is
associated with a particular location. You can simply move the cursor to that
location. type <control-F>. - then move the cursor back to where you want it!

As mentioned above, typing <Esc> enters command edit mode. When in
command edit mode, none of the above-mentioned characters work. and none
of the screen-movement characters work. This mode is used when you've
typed a long command and need to change it, but just don't want to retype
the whole thing.

Command edit mode, or simply edit mode, is indicated by having a character
of the command highlighted. At first, this will be the rightmost character of
t he command. The highlighted spot is itself like a cursor, insofar as that is
the spot Where whatever is done will take place.

While in edit mode, typing characters is just like normal command mode.
except that ~hatever character is typed will replace the character under it.

<Left-arrow> - this will move the highlight one character to the left.

<Right-arrow> - this will move the highlight one character to the right. It
will not move any further than the cursor.

<Control-V> - this will enter "insert mode". At this point, when normal
characters are typed, they will not replace the character under the highlight.
Instead, the remainder of the line will be shifted to the right and the
character typed will be inserted. Typing <control-V> a second time will leave
insert mode.

<Control-D> - this will delete the character under the highlight. The
remainde-:- of the line will be shifted to the left.

<Return> - this is like typing <Esc> then typing <Return>. That is, it will
leave edit mode, but then proceed as if you had typed <Return> in command
mode and e~ecute the command.

Throughout this guide, the e~pression "current location" will be used. As
previously e~plained, this means the location where the cursor is at.

T here is a way to make the current location somewhere else, if desired. For
e~ample, the C command clears the current location. You might wish to clear
location {20,S}, but the current location is {1,1}. You could just move the
cursor to the desired location and then clear it, but another method is
provided.

This method is called "forcing" the current location. That is, you can make
the system think that somewhere else is the current location. T his is done
by simply typing the reference before the command. For e~ample, you could
type

Which would force {5, 20} as the current location, then e~ecute the C command
whtCh clears the current location, which would be {5, 20}. Another e~ample:

which ·will put the values into successive locations, starting at the current
location. Of course, the current location would be what it was forced to be.

It should be noted, though, that the forced reference is only applicable to
the command with which it is typed. After execution of the command is
complete, the spot where the cursor is at will again be the current location.

In general, anywhere in this guide where any of the expressions
"current location", "current row", or "current column" are used, they refer
to the current as defined, unless a forced reference is used, in which case
they refer to the forced current locatton.

T he system has two modes for calculations, automatic and manual, which are
selected with the SC command (Which is explained in another section). When
in automatic mode, entering any formula or value will cause the system to
reevaluate the array. In manual mode, this will not happen. To cause a
recalculation when in manual mode, press the <Tab> key. You must do this
as the first character on the command line - if you are in the middle of a
command, the system will ignore you. The message -R ecalculating- will
appear in the bottom Mght corner of the screen while the system is doing the
calculations. When it is done, you will be returned to command mode.

Note that it is possible to have circular references such that it takes two or
more recalculations before the array is fully evaluated. You can simply keep
pressing the <Tab> key as often as needed.

Complete detailed descriptions of all commands
and how they are used.

C - the CLEAR command

The clea" command is used to clea,. certain locations in the array of the data
and/or formulas associated with them. The various forms are as follows.

C - C lea,. current location.
curren t locat ion.

CF - Clea,. current formula.
location, it will be erased.
unchanged.

If there is a formula associated with the current
The data in the current location will be left

C R - Clear row. The data and formulas for all locations in the current row
will be erased. Alternate form:

CR ,.ow

CC - Clea,. column. The data and formulas for all locations in the current
column will be erased. Alternate fo,.m:

T he disk command is used to access disk directories to load, save, or erase
files. It is also used to select the cu,.rent disk to be used for subsequen t
disk operations.

D - Disk commands. Disk command mode will be entered, using the
cur,.en tly-s elected disk.

D % - Disk select/commands. Disk % will be selected, then disk
command mode will be entered. The value % must generally be in the
,.ange A to P, but specifically must be a valid drive on the system
being used at the time.

Whe n disk cornman d mode is entered, the directory of EPL files on the
selected disk will be displayed at the top of the screen: the current disk an d
a list of available commands will be displayed at the bottom. Furthermore,
the first file name wUl be highlighted.

A t this point, typing any of the four arrow keys will move the highlight in
the appropriate direction. Once the highlight is moved to the desired file,
t he disk commands below can be used. A II disk commands reference the
currently-highlighted file.

L - Load a file. T he highlighted file will be loaded into the. array.
Note that this erases the current array: therefore, if it is desired to
save the current array,- it should be updated or saved before executing
the load command.

S - Save a file. The array will be saved to the highlighted file. The
forme,. contents of the file a,.e lost. T his command should be seldom
used, and is included only fo" symmetry. Normally, the update
command is used to save the array.

D - Delete a file. The highlighted file will be erased from the disk.
This is equivalent to .using the ERA command unde,. CP/M.

<E sc> - ExU disk command mode. When <Esc> is typed, the user will
be returned to the main system.

Each of the disk commands (except <Ese» requires confirmation. When
either L, S, or D is typed, one of the messages

Loading <file> - type Y to proceed -
Saving <file> -, type Y to proceed -
Deleting <file> - type Y to proceed -

will be displayed. At this point, typing Y will cause the selected action to
be ca.rried out. Any other characte", in eluding <Return>, will cancel the
action.

If when disk command mode is entered, there are no EPL files on the disk,
the message

will be displayed. Obviously, there are no files to load or delete; therefore
the only possible action is to save the array, which in this case MUST be
done with the update command. Typing any character will return to the main
system.

T he enter command is used to enter data or formulas into the array. It has
four forms, for entering text, lines, values, or formulas. Since the four are
drastically different, they will be explained separately.

E T - Enter Text

T he enter text command will accept a single argument and write it into the
current location. The general format is

The format for the ET command is somewhat precise. There must be one
character after the ET, then whatever is after that is considered the text.
For example, in the command

will enter the text " Income Type If. In other wor:ds, exactly what you type
is what you get. Since whatever the user types lS taken as the text, no
multiple form of the E T command is possible (unlike the other enter
commands) •

The enter line command is used to enter a line of data where the data is
simply one character repeated. This is typically used for a dividing line of
some sort, or perhaps the line after a column Of numbers above the total. or
something similar. There are two formats of the enter line command:

EL character
EL character ncolumns

The first type will create a line consisting of the (character) all the way
across the array. The second will create a line only extending across a
cert"ain number of columns, specified by (nc-olumns). In either case, the
current'location wUl be used as the first (leftmost) column; that is, the
column in Which the line begins.

The EL command operates much like the ET command. The data in the line is

simply treated by the system like any other text. The EL command
au tomatically creates the sequence of characters to be the exact width of each
column as it is entered. This can be used to create a "broken" line. also.
For example. if the widths of all columns are set to 10. then the EL command
is used. then the widths of all columns are set to 12. there will be a
2-character break in the line between each of the columns.

T he enter value command and its variations are used to enter numeric values
into the current location and possibly adjacent loca tion s in t he array. The
simplest form is

which will write the value (number) into the current location. Additionally.
this form of the command can be "implied" by simply typing

The second form of the EV command is used to enter values into adjacent
locations. either across a row or down "a column. The forms are

EVR number number number number etc.
EVe number number number number etc.

The first will enter as many successive numbers as are typed into the current
location and successive columns on the same row; the second will do the
same. only the numbers will be entered into successive rows on the same
column. For example. if the current location is (1,11.- the command

The final form is the "repeat" form. Is is used to enter the SAME number
into successive locations. The forms are

EVRR number count
EVeR number count

T he first will enter the number (number) into successive columns on the same
row for (count) columns; the second will do the same down a column. For
example. if the current location is (l.lJ. the command

T he enter formula command is used to enter formulas into the array. It has
two forms, single and mUltiple~ The single form is

EF formula

which will enter the (formula) into the formula table. It will set the value in
the current location to 0, un less a "5 C A" has been done (see t he set
command), in which case the formula will be evaluated and the result of the
evaluation put into the current location.

where (nrows) and (.ncolumns) are the number of successive rows and
columns, respectively, to write the formula in to. T he array section which
will ,get the formula may be thought of as a rectangle consisting of (nrows)
rows and (ncolumns) cohpnns, with the current location as the upper-left
corner. For uample, if the current location is [1,2J, then the command

will write t~e formula" 1.1*[., .-1]" to 8 rows and 11 columns, or specifically,
into locations [1,2J through [1,12], [2,2] through [2,12], and so on through
[8,2J through [8,12J.

T he format command is used to choose the manner in which the data in the
array will be displayed and printed. There are four forms of the command,
but they differ only in the portion of the array that they affect. They are

F format
FR format
Fe format
FA format

F means to format only the current location. FR means format the current
row, FC means the current column. FA means format the enUre array.

The (format) con sist s of zero or more individual format characters. These
characters can be listed in any order, in a generally "free" fashion.
Following are the various format characters.

$ - Dollar Sign. If $ is included, numbers will be printed with a
leading dollar sign. For example, 123 will be displayed as $123.

, - Comma. If a comma is included, numbers will be printed with
commas inserted every three digits to the left of the decimal point.
That is, the value 123 would be unchanged, but the value 1234567
would be 1,234,567.

0-15 - Digits.. Including a number in the range 0 through 15 will set
the number of digits printed to the RIGHT of the decimal pain t. For
example, the value 123 with a format of 4 would be printed as 123.0000.

% - Percent. The percent character indicates that the value is to be
considered a percentage, and it will be printed with a percent sign
following it. In addition, the number will be multiplied by 100 before
being displayed. For example, the value .13 will be displayed as 13%.

Each location in the array is either "formatted" or "unformatted". Typinfl a
format command without any arguments (for example, "FC ") sets a location
or locations to "unformat fed". In this case, numbers and text will both be
displayed left justified. Numbers will be displayed in a "general" format,
meaning however necessary to express the value (For example, 100 will be
100,3.14159 will be 3.14159).

For numbers, formatting is a little more complicated. ANY numeric format
sets the location to "formatted". When a location is formatted, numbers are
RIGHT justified. This right justification should not be confused with the R
character for tut.

Each time a F command is used, it overrides any previous F command. For
example, if a "F 2" command is issued, the current location will be set to 2
places to the right of the decimal point, typically used for "dollars-and-cents"
notation. If it is then desired to add the dollar sign, the command "F $." will
NOT function as expected, since it cancels the effect of the "F 2" command.
The proper command would be "F 2 $" since this combines the two commands.
This brings up an important point: Leaving out the number-of-diiits
character in a formq,t command is the same as USirtg 0; that is, "F $ is
identical to "F $ 0".

As was indicated above, the format characters are entered in a "free"
fashion. Their order is unimportant. For example, the commands

are all identical. Format characters may be used in whatever combination
desired, except that the combination "$%" will produce a meq.ningless figure;
for example, 123.45 will be displayed as $12345%.

Since t here is limited space available for format characters, the Rand,
characters are actually the same thing. That is, using a comma on text will
right justify it, and using R on a number will insert commas. Since a
location cannot contain both text and a number, this should not cause any
problem.

The help command is used to access a screenful of assistance (commonly called
a "help screen") for a particular command. There are actually three different
forms of the help command.

H
H letter
?

Just typing H gives a help screen on typing commands, 'editing, and moving
the cursor. Typing H followed by a let ter gives a help screen on the
command beginning with t hat letter. For example, H F gives help on the
format command.

The help command reads the help screen from the file EPL.SYS on the
currently-logged-in disk. That disk should not be confused with the
current ly-selected disk used for ExecuPlan! The logged-in disk is the disk
that CP/M thinks is the current one. To be more specific, the disk that was
in the prompt before ExecuPlan was executed. If it was A>, then the
logged-in disk is drive A; if it was B>, then it was drive B, etc. If the file
is not present on the disk, then the system will say "Help Unavailable".

The ., command is used to get a QUICK help screen. It tells how to get more
help (via the H command) and gives a list of the comman d let ters and their
meanings. This screen is part of the program, not read in from the disk.
Therefore, it is always available.

The initialize command is used to set eve,.ything back to the standa,.d.
Specifically, the command

Resets the a,.,.ay size to 20 x 20,
Resets the ,.ow and column titles back to 1 2 3 4 5 etc.,
Clea,.s all main titles,
Clea,.s the enti,.e array, .
Sets the current file to none,
and Resets the print blocks back to standard.

T he format of the command is simply

at which point you may type Y to p,.oceed with the initialization. Typing any
ot her cha,.acte,. (including < Return» will cancel the command.

T he jump command is used as a quick way to move the screen around on the
array, faster than using the arrow keys. There are three jump commands:

JB
JR row
Je column

T he first, JB, simply jumps to the top-left corner of the array, which would
be, [1, IJ on an initialized array.

Je jumps to the specified column. That column will be the leftmost on the
screen after e~ecution.

JR jumps to the' specified row. The row will be the top on the screen after
the jump, unless the size of the array makes this impossib le. 1ft he
jumped-to row is within 18 rows of the 'end, it will be somewhere in the
middle of the screen.

The kill command is used to "kill", or remove, a row or column1rom the
array. It does not, however, change the size of the array. Therefore,
when it kills a specified row or column, it creates a new one at the end in
order to keep the array the same size.

KR row new-row
KC column new-column

where (row) or (column) is the row or column to kill, and (new-row) or
(new-column) is the title to be assigned to the row or column created at the
end of the array.

Example: If your array currently has 12 rows, numbered 1 through 12, and
you execute the command "KR 6 13" then your resulting rows will be
1,2,3,4,5,7,8,9,10,11,12,13.

T here is one VER Y IMPORTANT thing to note about the kill command!
Relative references in formulas which refer to or over the killed row or
column will NOT be changed. In other words, they will be INCORRECT after
the command is executed. In the example above, if you had a reference in
row 7 which contained something like .-2, before you executed the kill
command, that would have pointed to row 5; after the command, it will poin t
to row 4.

T he list command is used to produce a list on the printer of all of the
formulas associated with the array. The list is printed in the order in which
the formulas will be evaluated; that is, either in row-major or column-major
order, depending on the current fISC RIC" setting. The format of the
command is simply

Formula list by row
(or column, if appropriate)

where FILENAME is the name of the file if one is assigned. The format of the
listing is

where {destination} is the destination of the formula, and (formula) is the
text of the formula.

If during the listing it is desired to stop, typing <Esc> will cancel the
command.

The move command is used to move a row or column from one place in the
array to another. The command format is

,\fR row dest-row
MC column dest-column

where (row) or (column) is the row or column to move, and (dest-row) or
(dest-column) is the row or column to move it adjacent to.

Depending on which direction the row or column is moved, it will either be
placed abov~/to the left of the destination. or below/to the right.
Specifically: for a COLUMN, if it is being moved to the left. is will be placed
to the left of the destination: if it is being moved to the right, it will be
placed to the right of the destination. For a ROW, if it is being moved up,
it will be placed above the destination; if it is being moved down, it will be
placed below the destination.

For example, say you have the rows 1,2,3,4.5.6. If you execute the
command "MR 5 3", the resulting sequence will be 1,2,5,3,4,6. If you had
executed the command "MR 2 6", the r:-esulting sequence would have been
1.3.4,5,6,2. This example is equally applicable to columns.

NOT E: Like the K command, the M command does not change relative
references in formulas.

The open command is used to open up a new ,.ow 0" column in the a,.,.ay.
The command does NOT change the size of the a,.,.ay, the,.efo,.e when a new
,.ow 0,.. column is c,.eated, the last ,.ow 0,. column of the a,.,.ay is ,.emoved,
·and its contents lost.

OR ,.ef-"ow ,.ow
OC ,.ef-column column

whe,.e (,.ow) 0,. (column) is the title of the new ,.ow 0" column to c,.eate, and
(,.ef-"ow) 0" (,.ef-column) is whe,.e to put it. If COLUMN, the new column
will be to the LEFT of the ,.ef-column; if ROW, the new ,.ow will be ABOVE
the ,.ef-"ow,

Example: If the,.e a,.e cu,.,.ently 10 "ows, numbe"ed 1 through 10, then
executing the command "OR 7 NEW" wUl result in ,.ows l,2,3,4,S,6,NEW,7,8,9
with ,.ow 10 being lost.

NOTE: Like the K and M commands, the 0 command does not change "elative
refe,.ences within formulas.

The print command is used to print the array, or to cause what would be
printed to be written into a disk file for editing with Scope or Memorite. Like
the disk command, the print command is actually an entire command mode. It
is invoked simply with

When print mode is entered, the screen will be erased and replaced with what
is called the "print screen". The screen is divided into 5 "blocks", each one
controlling certain aspects of what will be printed.

Block 0 - Main titles. This block is used to select how the main titles
will be printed. For each of the four main titles, which will be
displayed, the choice may be made whether to R' - .right just ify,
L - left justify, C - center, or X - not to print at all.

Block 1 - Print bounds. This is used to select the portion of the array
to be printed. Specifically, the starting row, starting column, ending
row, and ending column are specified. By proper manipulating of these
boun ds, an array much larger than a piece of paper can be printed on
several sheets, then the sheets rearranged to form a large sheet.

Block 2 - Paper size. This informs .the system of the size of paper
being used, in terms of number of characters per line an d n umber of
lines per page. The width is used only for centering the titles, but
the length tells the system the maximum number of lines to print. on one
page before skipping to the next page.

Block 3 - Row/column titles. This block allows the user to choose
whether or not to have the system print the row and column titles on
the report.

Block 4 - Invisible. T his allows the user to set rows and columns to
"invisible"', meaning that they will NOT be printed, even if they are
within the print bounds selected by block 1. This is most often used
to prevent the printing of some type of intermediate result column.
There is also a provision for overriding the invisible function, that is,
to go ahead and print the invisible rows and columns.

In addition to the blocks, the bot tom of the screen will list the available
commands. Following are the commands, and how to use the blocks.

P - Print the array. Typing P will cause the array to be printed, using
the settings of the blocks to define the bounds, titles, etc. If during
printing you wish to stop, type <Ese>.

D - Diak. Typing D is just like P, only instead of printing the array, the
data will be written to a disk file. The format Of the data will, however, be
identical to when it is printed.

When D is typed, the message

Please enter file name:

will be displayed. Type the name of the file that you wish to write the data
to, followed by <Return>. The file will be assumed to have .MEM as the
extension, and must not already exist. If it does, an error will be displayed
and the command cancelled. The current disk will be used for the file; to
use a different disk, first select it with the disk command from the main
system.

If when you are prompted for the file, you decide not to execute the
command, simply type <Return> without typing the file name, an d the
command will be cancelled.

F - Formfeed printer. Typing F will simply cause a' formfeed character to
be sent to the prl.nter. This normally has the effect of rolling the paper up
to the top of the next page.

o - Edit bloc:kO. Typing 0 will allow you to change the information in
block o. Note that only the justification character can be changed at this
time. To change the text of the title, the TMx command must be used when
under the main system.

L

When 0 is typed, the justification character of the first main title will be
highlighted. At this point, you have several options:

Type <down arrow> - this will move the highlight down to the next
title. If you are already at the bottom (fourth) title, the highlight will
be moved back to the first one. The justification character for the
current title will not be changed.

Type <up arrow> - this is the opposite of <down arrow>. The
highlight wUl be moved up to the previous title. If you are already at
the top, it will be moved down the the bottom one. The justification

Type <Ese> - this will leave the current character unchanged, and
return to print command mode.

Type <Return> - this is identicul to <down arrow>, except that if you
are at the bottom title, it will stop editing block 0 and return to print
command mode, similarly to <Ese> above.

Type a justification character - typing either L, R, C, or X will set the
just ificat ion character for the current title to whatever is typed. The
highlight will not be moved, so if the wrong thing is typed, you may
simply retype the correct character.

Anything other .than the above characters will simply be ignored.

1 - E dU block 1. Typing 1 will allow you to edit the information contained
in block 1. When 1 is typed, a cursor will appear a little to the right of the
first line in block 1. At this potnt, you are in a mode similar to block 0, but
a little different. Essentially, while block 0 is an "instant" block, meaning
t hat when you type a character, it immediately replaces the previous
character, block 1 is an "updated" block, meaning that the new information
appears to the right of the old information and is edited by itself, and only
replaces the old information when you leave block 1 and return to the print
command mode.

Of course, the data you type is not a justificution character. Instead, the
appropriate title is typed. The first time print command mode is entered, the
bounds are set to the size of the entire array.

When typing the title, up to eight characters may be typed, terminated by
either <Return> or <Ese> (the difference is explained below). In the process
of typing the title, < Bs> may be typed to back up one character.

Additionally, there are two specinl characters allowed, if typed as the first
character. Typing <Control-F> will display the "first" row or column of the
array; typing <Control-L> will display the "last" row or column. This could
be useful if you wish to, say, start the printing at the first row, but you're
not sure what the title of the first row is.

T he same edit ing characters are available for block 1 as for block 0
«down arrow>, <up arrow>, <Ese>, <Return», but the way they work is
slightly different. When by some method the cursor comes to be on a line,
any previously-typed data on that Une is erased •. To change a single item
without having the cursor move down the next line (and consequently erase
something that you might have typed there), <Ese> may be typed i.nstead of
<Return>, Which will immediately return to print command mode.

When print command mode is reentered, the information in block 1 will be
updated based on the new information typed. If a title typed does not exist,
it will be highlighted and an error displayed. Any line which contains an
error will not be updated.

Although as explained this probably seems very complicated, it is virtually
self-explanatory when actually done.

2 - Edit block 2. Typing 2 allows the user to modify the information under
block 2, the paper size block. All aspects of block 2 are identical to block
1, 'except that instead of typing row or column titles, you type decimal
numbers. For page Width, you should type the number of characters per
line. This is only used for centering the main titles. For page length, you
should type the maximum number of lines you wish printed on a page. On a
stan dard ·11" page, a length of 56 lines allows reasonable margins on the top
and bottom. For both length and width, the system will accept values in the
range of 40 through 255.

3 - Edit block 3. Typing 3 allows the user to select whether row or column
titles are to be printed as part of the report. If the appropriate line is Y,
the titles will be printed; if N, they won't. Block 3 is similar to block 0,
except that the items are only' updated when print command mode is returned
to.

4 - B dft block 4 ~ Block 4 is used to determine which rows 0" columns, if
any, are to be considered "invisible", meaning that they, will not be printed.

Block 4 is perhaps the most confusing block, because it includes two
indiVidual fields for each line. The first is the row/column indicator, one of
the characters R or C. The second is the title of the row or column.

When block 4 in entered, a cursor will appear on the top line of block 4. At
this point you have several options.

The <up arrow>, <down arrow>, and <Esc> keys function the same as
block O. The uception is that when you are on the bot tom (ten t h)
line, the down arrow moves to the "Print Inv? " field. From there the
<down arrow> will move back to the first line. The <up arrow> moves
in the same manner, only up instead of down.

Typing R or C will set the row/column indicator for the current line to
whatever is typed.

Typing <Space> will turn OFF tile line; that is, when <Return> is
typed after the <Space>. it will also remove the title on the current
line.

set a line to Row 1, you would type "R" <Return> followed by "1" as
ezplained below. If the row/column indicator already contained an R,
you could simply type the <Return> and then proceed with the "1".

If <Return> was typed, the cursor wUl jump three spaces to the right. At
t his point the system is awaiting a title. Type the row or column title that
you wish to set to invisible. If the title is terminated with <Return>, the
cursor will proceed down to the neort line. If it is terminated with <Ese>.
block 4 will be updated and the print command mode will be returned to.

When the cursor is moved to the "Print Inv? " field. you may type Y or N.
in the same manner as block 3. If N is typed, the invisible function will
work, that is, the rows and columns indicated will not be printed. If Y is
typed, the function wUl be effectively overridden, that is, the rows and
columns listed will be printed anyway.

When print command mode is ret urned to, the rows and columns in block 4
are looked up. If any of them are not found, they will be highlighted and an
error displayed. However. the information will be left in the block, and
when the array is printed, the invalid entries will be ignored.

The information in the print blocks remains as set until changed. In
addition, all of the information is saved with the file. so when a file is
loaded. all of the information in the print blocks will be the same as when the
file was saved.

The qu it comman d is used to return to CP/M. There are three forms of the
quit comman d:

Q
QY
QN

If QY is typed, the array will automatically be updated; if no current file
ezists, you wfll be asked for one. If QN is typed, the array will not be
updated.

If just Q is typed, you will be prompted with

Eziting - Type Y to update -

If at this point you type Y, the file will be updated and the program exited.
If you type N, the file will not be updated, and the program exited. If you
type <Esc>, the system will cancel the command altogether. Anything else
will be ignored.

The round command is used to change the precision of numbers in the array.
Specifically, all numbers in the array that are NOT calculated as the result of
a formula will be changed to match their representation on the screen. For
examp le, . if the value 1.469 is in a certain location, but the format is 2, then
the number is being displayed as 1.47. Therefore, when the round command
is executed, the number will actually be changed to 1.47.

The round command is executed simply by typing

If you type Y, the action will be carried out. Typing anything else will
cancel the command without having any data changed.

The set command is used to set or change certain aspects of the system.
There are four set commands; set size, calculation, printer, and disk. These
are explained separately.

T he set size command is used to change the size of the array. The form of
the command is

where (nrows) is the number of rows to make the array, and (ncolumns) is
the number of columns to make the array. When the system is initialized, the
size is 20 x 20. To change to a 9 x 13 array, for example, the command
would be

U WARNING - Some rows containing data may be lost - type Y to
proceed -

will appear". If the number of columns is being decreased, the message will
indicate columns instead of rows, of course. Typing Y will cause the action
to be carried out; anything else will cancel the action. If you are decreasing
both rows and columns, you will get bo t h mes sage s, one at a time.
Responding Y to rows but something else to columns will result is the number
of rows decreasing, but the number of columns remaining the same.

If is is desired to only change one dimension, the value 0 may be put in the
other. For example, to change the array from 20 rows to 30, but not affect
the number of columns, the command would be

NOTE: T here is a substantial amount of logic involved when shrinking the
array, particularly When columns are involved. If an array with many rows
has the number of columns lessened, several moments (read a minute or so)
could elapse 'before the system completes the command. Therefore, do not
fear system failure. SUGGESTION: When changing the size of the array, the
rows are changed first. Therefore, say you're changing the 20 x 20 array to
lOx 100. The system will first create 100 rows, then shrink to 10 columns.

This will take quite a while, since the system is removing 10 columns of 100
rows each! To make the operation faster, FIRST change the number of
column s (S SOlO) THEN change the number of rows (SS 100 0). Using this
method, only about 3 seconds will be used, a substantial increase in speed •

. If you are decreasing the number of rows and increasing the number of
columns, FIRST decrease the rows, THEN increase the columns. The object
is to make the number of rows as small as possible when creating or removing
·columns.

T he set calc command is used to change the order and frequency of when the
formulas are evaluated.

Formulas may be evaluated in either "row-major" or "column-major" order. If
they are evaluated in row-major order, that means that they will be evaluated
across each row, then down to the next row and across it, etc. In other
words, the same way you read. In column-major order, they are evaluated
down each column, then moved over to the next column and down it, etc.

The frequency may be set to either "manual" or "automa~ic". In manual
mode, the formulas are only evaluated when the <Tab> key is pressed. In
automatic mode, they are evaluated whenever a value or formula is entered.

The commands accepts the letters R, C, A, and M to repr'esent each of the
above options. Obviously, only two may be entered at once, but they can be
entered in any order. For example. to set the calc order to column-major.
and the frequ.ency to automatic. the command would be

To change only, say. the calculation order. this time to manual. the command
would be

While it will not produce an error to enter both Rand C or both A and M at
the same time. only the last one on the line will be used.

The set printer command is used to send special characters to the printer.
This should seldom be used. but is provided for special cases. The' most
common use would be so set a printer for some special mode.

The format of the command is

where (byte) is a decimal number. As many or few bytes may be sent as
needed. For the e:ract bytes required for particular printers, you will have
to refer to the appropriate printer's manual.

For an e:rample on what this might be used for, consider the Vector Matri.:r
printer. If you typed the command

which corresponds to "ESC P" (the printer manual e:rplains this), the printer
would switch between 132 and 80 characters per line.

T he set disk command is used to reset the disk system in case you wish to
change floppies. CP/M will normally not allow you to do this; it you do, you
will get a BOOS read-only error, which can't be recovered from. Therefore,
if you wish to change a floppy disk, put the new diskette into the drive and
type

-----------...:;;-=-;;.. ..'-'=.,._.-

The title command is used to set and delete the main titles for the array, and
to change the row and column titles. The commands for the row and column
titles are substantially different from the commands for the main titles,
therefore they will be explained separately.

The first two forms of the title command are for handling the main titles.
T hey are as follows.

TMx text
TOx

where (x) denotes the number of the referenced main title. Since there are
up to four main titles, (x) must be in the range of 1 to 4. If you are
referencing the first main title, the 1 may be skipped. That is,

The (text) specified in the TM command refers to the text of the title, that
is, what you wish the title to be. For example, the command

TM Budget Forecast

will set the first main title to "Budget Forecast".

The TD command is used to delete a main title, which is to say, make it
blank.

T he, first main title is displayed on t he screen, centered in a field of dashes.
The remainder of the main titles can be viewed by u.sing the P command,
where they will be displayed in block 0 (see the P command). Note that
when a main title is entered (or changed), the justification character is set to
L. When a title is deleted, the ju.stification. character will be changed to X.
It is possible to make a "comment" by typing a main title, then changing its
justiftcation character to X, thus keeping it from being printed.

The secon d pair of title commands are used to change the row and column
titles. The commands are

TR old-title new-title
TC old-title new-title

The TR is used to title a row. and TC is used to title a column. The
(old-title) denotes the current title of the row or column you wish to change,
and (new-title) denotes the new title you wish to assign to the row or
column. For example. to change the title of row 1 to INCOME. the command
would be

If you t hen changed you min d. and wanted to make the title SALES. the
command would be

Note that the second time. the previously-assigned new title. INCOME. was
used to refer to the row.

It is acceptable to use the relative method of referencing when specifying the
old title. For example. to change the title of the current column to "JAN",
you could use the command

Titles for rows and columns may contain any characters. but must be only
one word with a maximum of 8 characters. and must not start with a period
(.). This is to prevent confusion with relative references.

The update command is used to update the disk with the current contents of
the array. Assuming there is a "current" file, all that need be typed to
update the disk is

U

and the update will occur. If there is no current file, the system will say

No "current" file to update; Please type NEW filename:

and await your response. Type the name of a new file and <Return>. The
system will create the file and save the array into it. In addition, it will be
made t he current file. If the file already e:rists, an error will occur. When
asked for the file name, just typing <Return> will cancel the command.

Under certain circumstances, it may be desirable to save the array to disk,
but NOT under the current file. This can be done by typing

The verify command is used to verif)' the size of the array, or determine
what the current actual cursor position IS.

Now you wish to remove ONE row. Your inclination will be to type the
command "55 4 0". This is not correct, however! Although the last row's
title is 5, it is not the fifth row! If you typed that command, you would lose
rows 2, 3, 4, and 5, which was certainly not your intention!

V5
ve

The ffrst, V5, tells the size of the array. The second, ve, tells the current
cursor position on the array, in terms of absolute position. The VS command
causes the message

to be printed, where (x) is the number of rows an d (y) is the n umber of
columns. The ve command causes the message

to be printed, where (x) and (y) are the row and column, respectively,
where the cursor is at. In the example above, if the cursor was in the first
column and on the row titled "5", then the ve command would result in the
message

Typically, you might move the cursor to the first row (or column) that you
wish to remove, then use the ve command, which will tell you the actual
n umber of that row or column. If, on the other hand, you know that you
wish to decrease the size of the array by a certain n umber of rows or
columns, the V5 command would be most useful.

By utilization of these commands, the possibility of accidentally destroying
data with the 55 command should be reduced.

The width command is used to set the widths of columns in the array. There
are two forms provided.

W column width width width etc.
WA width

T he first form allows you to specify (column), which is the column to start
with, and a many (width)s as desired. Each (width) typed will be assigned
to the following column. For ~ample, assume that columns are titled JAN,
FEB, MAR, and so forth. The command

will set the width of columns JAN and FEB to 15, columns MAR and APR to
25, and column MAY to 7.

The second form will assign all columns the (width) specified.

Columns widths may be in the range of 2 to 64 characters, although columns
narrower than about 6 characters begin to get useless.

The ezchange command is used to ezchange, or swap, two rows or columns.
The commands have the form

XR row-I row-2
XC column-I column-2

where (row-I) and (row-2) or (column-l) and (column-2) are the rows or
columns to be ezchanged. All aspects of the rows or columns are ezchanged
- the data, the formulas, the titles, and if columns, the widths.

NOTE: As with the K, M, and 0 commands, relative references in formulas
affected by the ezecution of the command will not be changed. References
over an ezchanged row or column will not be bothered. References TO the
row or column will simply get the new data instead of the old. However,
references CONTAINED in the row or column will now be evaluated relative to
the new position, whereas they were entered relative to the old position.
This could potentially result in incorrect calcalations, so beware.

All errors, what they mean, what causes
them. and how they can be avoided.

From time to time. something will be done wrong. ExecuPlan has a vast
number of er,-or messages to help you figure out what was haywire.

When an error occurs. the error message is displayed in the far bottom-right
corner of ,the screen. Normally. a character or word somewhere on the
screen is also highlighted. That character or word is the source of the
error. Nat a II errors. howeve r. have t hi s fea ture.

After the error is displayed. the system just stops and waits for the user to
type something. As soon as a character is typed. the system proceeds. Most
errors result in the system returning to command mode and awaiting another
command. Some. however. have other results. Certain math errors. for
example. simply warn you; when you type a character. processing continues.

If an error occurs while formulas are being evaluated. then an additional
message is displayed on the command line telling you where the formul!J is
that caused the problem. Also. the formula itself will be displayed on the
formula line of the display.

T he cornman d error indicates that the command typed is invalid. If the first
character is highlighted. then that is the invalid command. If the second
character is highlighted, then the first character is valid, but the second one
is not.

Syntax error indicates one of several things. If the first character following
the command is not a space. then a syntax error will result. If an invalid
character is encountered while a decimal number is being read, that will also
cause a syntax error. There are also a couple of other obscure conditions
t hat will cause a syntax error. The character highlighted will normally be
the character that was undigestable. .

This indicates that something was expected, but nothing was found. For
example, typing a title command but leaving out one of the titles will cause a
missing argument error. A character is not always highlighted, but if one
is, it is at that point that another argument was expected.

This indicates that a title was· being read, but more than eight characters
were found in the title. The ninth character will be highlighted.

T his Should be pretty obvious. A title was read, but there is no row or
co·lumn with that title. The .enUre title that was not found will be
highlighted. Also, typing a relative reference that refers to someplace off
the array will cause this error.

When a title is being read, if the first character is a period (.), tnen it
assumes that a relative reference is in the works. If the character(s)
following t he period do not make sense, then this error will result.

Duplicate title indicates that a title was entered that should not already exist,
but it does. An example would be the second argument in a TR command.
This error is also used when a disk file name js typed for a new file, and the
fUe already exists. The entire title (or file name) will be highlighted.

Certain commands expect a number within a certain acceptable range. If the
number typed in not within that range, the out of range error will be the
result. For example, typing a column width less than 2 or greater than 64
would cause thts error. The number will be highlighted.

A chara.cter is encountered in a F command that is not acceptable. The
character that was unacceptable will be highlighted.

This is similar to the above in that it means that something is wrong in a F
command. This error. however. indicates that a number for the decimal
count is too large. Fifteen is the maximum number of decimal places that may
be specified. The offending number will be highlighted.

During t he reading of a SC command. a character other than R. C. M. or A
was reached. The character is highlighted.

An input error occurs when an EV command is being executed and something
wrong is reached. Normally. this is a decimal number containing some
garbage characters. The number being read is highlighted.

T his is reached during one of the multiple forms of the EV or EF commands.
For example. if the command "EVCR 45 100" is given. but there are only 50
rows. an excess input error will be generated. Whatever portion of the
command that caused too much input to occur will be highlighted. Under the
EV command. the extra will be ignored. If the command is EFM. the whole
command will be cancelled.

When a D command is executed and a drive is specified. that drive must be in
the range A to P. Anything outside of that range will cause an invalid drive
error. The offending character will be highlighted. Note that even
something within the range A to P may be invalid. since few systems have 16
disks! However. the system reqlly doesn't know that. hence the extended
range. If you type a drive within the range that doesn't exist. then CP/M
will get into the act and give a aDOS error. These are unrecoverable!

Un der CP/M. version 2. files may be set to "read-only" status. Trying to
write to or erase such a file will result in this error. Nothing is highllghted.

This error means one of several things. One possibility is that there is a
physical error on the disk. Another is that an attempt is being made to
write to the disk, but there is no more room. Finally, an attempt may be
being made to read a file which is goofed up somehow. Nothing is
highlighted by this error.

This is actually a rather general error. What it means is that there is
something wrong in a formula, such as a non-e.ristant function, an
improperly-typed number, an invalid operator, or something else along that
line. The system will try to highlight the character that caused the problem,
but depending on the cause, that character might not actually be the source
of the error.

When evaluating a multi-argument function, the arguments were invalid.
There are actually two separate things that could be wrong. First, the
arguments aren't references at all; second, they could be references, but
define an invalid range for t1'J,efunction. The arguments for such a function
must be, respectively, the top-left and bottom-right corners of a rectangle.
The rectangle may in fact be a line, or even a point. However, the second
reference can't have a row or column that is less than the row or column in
the first reference. Nothing will be highlighted.

Certain things just can't be done with real numbers, and things like
logarithms or square roots of negative numbers are such things. Nothing will
be highlighted.

T he cause of this is quite apparent. The particular thing about this error is
that the character typed to recover from the error condition determines what
will be used as the result of the operation (that caused the error). If the
character "0" is typed, then zero will be used as the result. If the
character <Esc> is pressed, then the system will abort the operation and
return to command mode. Any other character will "cause the value
9.99999999999999 times 10 to the 35th power to be used as the result of the
division.

Some math ope rat ion resulted in a number that is just too big. The largest
possible number or something near it will be used instead. Nothing will be
highlighted.

This indicates that there is too little memory available to carry out the
operation requested. Normally, there is around 30K of free space to start
wit h. With gobs of tezt and formulas in memory, this can disappear quickly.
When an operation would result with less than about 100 bytes (characters) of
free space, this error is caused. The padding is allowed because certain
operations use some memory during their execution. Note that if this error is
given during an EFM command with large arguments, there might really be
enQugh room. The system allows for maximum tolerences when calculating the
space available. If you think there is enough space, try reentering the
formula, but in smaller multiples. Nothing is highlighted by this error.

This indicates that the help command was used. but the help file was not
found. The help file is called EPLoSYS, and must reside on the logged-in
disk under CP/M. Either the disk containing EPL.SYS was not in the drive,
or the user is assuming the wrong drive is the logged-in one. Nothing is
highlighted;

How the math package is used, how formulas
are formed, and explanations of all opel'"atol'"S,
functions, and special capabilities.

ExecuPlanhas a very powerful math package incorporated into it. Virtually
all operators and functions necessary for any type of calculations are
provided. Furthermore, their usage is in a simple , algebraic format.

The EF command is used to enter formulas into the system. For example, the
command

would enter a formula which would compute the average of locations (1,1/
through {S,l}.

T his section will be devoted to explaining exactly how formulas are formed.
If you, the reader, are familiar with the programming language BASIC, then
suffice it to say that ExecuPlan handles formulas the same way. Assuming
that you're not, then read on.

Formulas are essentially a list of items, where each item is either data of some
type, or an operator. Things like numbers or functions are dOIa; plus,
minus, and so forth are operators.

Data and operators are simply strung together to form an algebraic
expression. For example,

is a valid expression, containing numeric data and the operator "+". Under
ExecuPlan, most formulas will "reference" locations in the array. A sample
formula with a reference would be

which means "take the number 5 and multiply it by the contents of location
[l,ll ".

One Of the more powerful features is that of functions. These can be
• contusing, because While they perform an operation like an operator, they are

treated as data, because when evaluated, a function is a value. A simple
function might be

which means "take the square root of 15". However, when contained in an
expression, such as

note t hat it is treate d like data. Note also the syntax of a function: the
function itself. followed by a left parenthesis. then the data the function is
to be performed upon (the argument). then a right parent hesis. Within the
parentheses can be another expression, such as

wh ich will take the squa re root of the result of the expression which is its
argument.

Parent heses may also be' used as part of a formula, besides being used to
enclose the argument for a function. They are used just as in algebra, to
represent a partial result. For example

which means to take the contents of [1, 5J and divide it by the result of the
parenthesized expression. Unlike most systems. ExecuPlan will not complain
if there are not a matching number of left and right parentheses. Instead, it
will just ignore the extras. Also, parentheses may be nested to any level.
that is. you may have as many as you need to properly represent your
expression.

T here are really. only two rules with regard to formulas. First, they
CANNOT contain ANY SPACES (blank characters). The first blank
encountered is considered the end of the formula. and the extra past it will
either be ignored or cause an error. Second, a formula can only be as long
as you can "type. which limits it to about 74 characters.

Given an expression, the questi0rt arises as to in what order to evaluate the
operators and functions. There are two normal ways to do this. One is
called "left-to-right". and means that the operators are evaluated in the order
they are encountered. The order is called "precedence", which means that
t hey are evaluated in a specific order with certain operators first, regardless
of the order th ey're in.

It lias been said that business people use the l-to-r method, and scientific
people use the precedence method, and that since computer programmers are
scientific types, that's Why computers always use the precedence method.
Well, that may be true, but the programmer of this system is just as much a
bUsiness type as scientific type. The reason t~at precedence was used is

simply that it is more powerful; that is, certain operations cannot be done as
easily with the l-to-r method. Besides, by now most business types are so
used to precedence that it would cause even more confusion to have a
program use l-to-r!

Before getting to precedence, though, it might be a good idea to mention
what the operators are! There are five of them:

2. functions (remember that functions are evaluated, then treated as
a value from that point on)

3. exponentiation

When operators of equal precedence are met, then those operators are
evaluated left-to-right.

Examples:

3+4*5

take 4, add 4, then subtract the product 2*7
(hence the result is -6)

NOTE: Often it will be desired to use a negative number, for example -3, in
an expression. Therefore, it should be explained how it will be handled by
t he formula evaluator.

Essentially, whenever two consecutive operators are encountered, the program
inserts a 0 between them. Thus, the sequence 2++4 would res ul t in 2+0+4,
which would give the presumed correct answer. In some cases, however, an
incorrect answer might be arrived at. For example, the sequence 4*-3, which
should evaluate to -12, will evaluate to 4*0-3, which is -3.

Normally, two consecutive operators should never be used. The example
above, however, is a valid possibility. It is an example of the unary
"negative" operation, which is the only usual possibility.

To eliminate the problem, use parentheses around such an operation when it
in used in an expression. For example, -SQR(2) would not need
parentheses, but 4*-3 would, so you'd enter 4*(-3).

There is one other nice little feature of the program, defined constants.
These are simply a couple of n umbers that mayor may not be used very
much, but will save some typing when they are. The defined constants are

IPI

IE

IRND

The value PI, 3.1415926 etc.

The value e, 2.718281 etc.

At this point, we'll take a look at the functions provided in ExecuPlan.
There are basically two types of functions, single-argument and
multi-argument. A single-arg function is something like square root; a
multi-arg function would be something like standard deviation.

These two types of functions are slightly different. beyond the obvious fact
that they take a different number of arguments. A single-arg function can
take anything as an argument - a number, defined constant, another
function, a reference, even a whole expression.

A multi-arg function requires that the arguments be references. Specifically,
these references represent the top-left and bottom-right corners of a

rectangular portion of the array. The rectangle may actually be a line, or
even a single location, but in a manner of speaking, these are still
rectangles.

For ezample, the arguments ({ l,l], £ 5,5]) define a 5 x 5 rectangle. The
arguments ([l,l],{5,lJ) define a vertical line; the arguments ({l,l],(l,5J)
define a horizontal line. The arguments ({l,lJ,£l,l]) define a point.
Nevertheless, they would all be acceptable. The arguments ({3,3},{4,2J)
would, however, not be allowed, since the second reference is to the LEFT of
the first. It would also not be allowed if it were ABOVE the first.

T he reason for this restriction should be apparent. The functions which take
multiple arguments operate on a range, that is, a group of values. Only by
specifying t he bounds of the range, as references, can the function possibly
know what numbers to use.

Naturally, there is always an odd case. Here, it is the net present value
function, which requires both a range and numeric arguments. The exact
format of this function will be explained when the function is explained.

Following are explanations of all of the functions, how they're used, what
they do, and which type they are.

The absolute value function returns the absolute value if its argument. In
other words, if the argument is positive, it is returned unchanged.· If it is
negative, it will be made positive. Example:

T he integer function returns the greatest integer less than or equal to the
argument. Example:

SIN
cas
TAN
ATN

Sine
Cosine
Tangent
Arctangent

These functions return the result of the appropriate trigonometric function.
The argument is expected to be in radians (with the exception of A TN, which
returns its result in radians).

LN
LOG

Natural Logarithm
Decimal Logarithm

Type: single-arg

These functions return the appropriate log of the argument. LN is the
natural, or naperian, log (base e), while LOG is the decimal (base 10) log.
Example:

T his function also commonly called antilog. It r.eturns the natural (base e)
antilogarithm of the argument. Example:

T he square root function returns.... the square root of its argument. Bet
you would have never guessed.

T he sum function returns the total of all of the numbers in the range
specified. For e~ample, if (l,l] through (5,1] contain the values 1,2,3,4,
and 5, then

"IN
"AX

Minimum
MtlZimum

The MIN and MAX functions return the smallest or largest, respectively,
number is the range. Assuming the conditions above (in the SUM
explanation), MIN would return 1 and MAX would return 5.

AVG
MEAN

Average
Mean

Type: midti-arg

The AVG and MEAN functions are the same thing - the average of the
numbers in the range specified. Both are provided so that whichever term is
preferred by the user may be used.

VAR
SD

Variance
Standard Deviation

Type: multi-arg

T he VAR and SD functions compute the variance and standard deviation,
respectively, of the argument range.

The CO UN T function will simply return the number of items in the argument
range. This function is used by the average, variance, standard deviation,
and net present value functions. IMPORTANT NOTE: This fu.nction, and
therefore all of the functions that use it, react in a certain way to invalid
contents of locations in the array. That is, when a certain location within
the argument range does not contain a number (instead, it contains nothing
or text), the value zero will be used instead. The location will still be
counted! Therefore, any of the above-mentioned functions' could return an
invalid result if any locations in the argument range are invalid.

This function returns the computed NPV of the argument range, using
additional numbers specified in the arguments. The standard formula for net
present value is.'v F . --. -

2 t - I
t=1 (1+ k)t .

where F(1), F(2), through' F(n) are cash returns for years 1 through n, k is
the interest rate, and I is the initial cost. The format for the NPV function
is

where 'Ie and I correspond. to the same variables in the formula. The value
for n is computed as the COUNT of the locations in the range bounded by
{bnd-l] and [bnd-21.

A miscellaneous collection of infomtation that
may help the user from time to time.

Some sample screens to assist in
understanding how various inform at ion is
displayed and where it is displayed at.

BLOCK 01TITLES

Absol ute val ue 4-5 Count Funct ion 4-8
Adding CP/M 2-21,5-2

-Column 2-15 Creating New File 1-1
-Row 2-15 Current Location 1-9

Arctangent 4-6 Cursor
Arithmetic -Array 1-5,1-6

-Functions 4-4 -Command 1-7,1-8
-Operators 4-3 -Edit 1-9

Array
-CleAr 2-1 nata Area 1-5
-General 1-2 Defined Constants 4-4
-Insert 1-9,2-6 Delete

Automatic -Characters 1-8,1-10
-Calculat ion 2-24 -File 2-2
-Load Command 1-1 -Key 1-8

Average Function 4-1,4-7 -Lines 2-12
Directory Display 2-2

Backspace Key 1-8 Disk
-Command Mode 2-2

Calculation Order 2-24 -Drive selection 2-2
Changing

-Array Size 2-23 Entering
-Column Titles 2-27 -Commarrls 2-4
-Row Titles 2-27 -Formula 2-6

Clear 2-1 -Line of Data 2-4
-Column 2-1 -Numeric Value 2-5
-Entire Array 2-1 -Text 2-4,2-5
-Formula 2-1 Error
-Location 2-1 -Messages 3-1

Command Edit ing 1-8 -Recovery 5-2
Command Ed it Mode Error Functions 3-4

-Delete 1-10 Escape Key 1-8,1-10
-General 1-9 Exchange CommarxJs 2-31
-Insert 1-10 Exit to CP/M 2-21

Command Line 1-4,1-7 Exponent 4-6
Command Mode

-Delete 1-8 Forced References 1-10
-Disk 2-2,2-3 Format Locations 2-7
-Error 3-1 Formula
-General 1-7 -Clear 2-1
-Insert 1-9 -Evaluation Order 4-1

Constants 4-4 -General 4-1
Content Insertion 1-9 -Insert 1-9,2-6
Cosine 4-6 -Line 1-4 .{

Page .1-4

Functions Moving (cont.)
-Absol ute Val ue 4-5 -To End of Array 1-6
-Arctangent 4-6 -To Top of Array 1-6
-Average 4-7·
-Cosine 4-6 Net Present val ue 4-8
-COunt 4-8
-Errors 3-4 Open Commands 2-15
-Exponent 4-6 Opening Up
-Integer 4-5 -Column 2-15
-Logarithm 4-6 -Row 2-15
-Mean 4-7 Operators 4-1
-Sine 4-6 Open Commands 2-15
-Square Root 4-6
-Standard Deviation 4-7 Percentages 2-7
-Summation 4-7 Printing
-Tangent 4-6 -Array 2-16
-Variance 4-7 -Bounds 2-16

-Commands 2-17
Help Commands 2-9,3-5 -Edit Blocks 2-16

-General 2-16
Initialize System 2-10 -Initialization 2-24
Input Errors 3-2,3-4 -To Disk 2-17
Insert

-Characters 1-10 Quit Commands 2-21
-Columns 2-15
-Errors 3-3 Random # Generator 4-4
-Rows 2-15 References

Integer 4-5 -Absolute 1-2
Invisible -Relative 1-2

-Columns 2-16 Removing
-Rows 2-16 -Column 2-12

-Row 2-12
Jump Commands 2-11 Repeating

-Formula 2-6
Kill Commands -Number 2-5

-Columns 2-12 Revision Notice 1-1
-ROWS 2-12 . Right Justify Data 2-7

Round Off Commands 2-22
Listing Formulas 2-13
Load ing Files 2-2 Sample Screens
Logarithm 4-6 -Arra.y A-2
Lower Case Characters 1-8 -Print A-4

Saving
Main Title 1-4 -File 2-2
Mean Function 4-7 -Print Format 2-20
Memory 3-5,5-1 Screen Layout 1-4
Monitor 5-1 Set Commands 2-23
Move Commands 2-14 Setting
Moving -Column Widths 2-XJ

-Column 2-14 -Precision 2-7
-Cursor 1-5 Sine 4-6

C -Full Screen 1-6 Square Root 4-6
-Row 2-14- Standard Deviation 4-7

Starting Up 1-1
Status Line 1-4
Summation 4-7
Swapping

-Columns 2-31
-Rows 2-31

Tangent: 4-6
Ti tl e Commands

-Error 3-2
-General 2-26

Title Format 2-16

Update Commands 2-21,2-28
Updatinr/ A File 2-20

Variance 4-7
VerulJ Commands 2-29

Width Commands 2-30

This information is provided so that the user may have some idea of how
memory is used under ExecuPlan. This information is somewhat advanced,
and if you don't understand it, don't worry, it doesn't matter.

In order, ExecuPlan keeps the following tables: C.olumn widths, Row titles,
Column titles, Primary addresses, Numbers, Formulas, and Strings. All of
the tables start from the end of ExecuPlan and build up, except for' the
strings, which start at the end of memory (actually the base of the BDOS in
CP/M) and build down.

T he column width table takes one byte per column, that byte being the width
of the column.

The row and column title tables take eight bytes per title.

The primary address table, which is used as a giant reference table for the
array, takes three bytes per location on the array. The first two bytes are
a relative pointer to the actual data in memory, the last byte is the format
byte for that location.

The numeric table holds all of the numbers. This table is dynamic, that is,
only as many numbers as are actually in the system are kept. Numbers take
eight bytes each, and are stored in Microsoft double precision floating point
format, which yields 16 digits of precision.

T he formula table nolds all of the formulas. Unlike the numeric table which
is pointed to, the formula table is fully independent. Only the beginning is
pointed to. Each formula has a length byte, a destination row and column
(taking two bytes), the text of the formula, .and then a termination byte.
Therefore, formulas take up the number of bytes in the text, plus four.

Text, known to a computer as strings, is stored in the string table. The
string table is simply sequentially allocated, down from the top of memory.
The strings are stored in reverse order since the table builds down. There
are no overhead bytes with strings (the end is indicated by bit 7 on, and the
beginning is pointed to from the primary address table), strings take on ly as
many bytes as the string is long.

From time to time, some type of error might occur that will result in the user
being dropped out of ExecuPlan into CP/M or the Monitor.

The most common possibility is that you might accidentally try to access a
disk drive that does not exist. CP/M will respond with a message like

or something like that. This type of error is called "fatal", because there is
no direct way to recover from it. Another possibility is that you might
accidentally hit the reset button.

In any case, the probability is good that there was something you were
working on that you don't want to lose. Therefore, it is nice to be able to
recover from these conditions.

From the Monitor, type "G 0100" and see what happens. Chances are, you
should be right back in ExecuPlan. You might have to type "JB" to clean up
the screen.

It is suggested that you dismount the disk just in case. There could be a
possibility that the memory image is goofed up, and that might cause crazy
things to happen. Better safe than sorry.

More common is the Case where you get dropped back into CP/M because of a
disk error or read-only error. When you get the message mentioned above,
or one like it, hit <Return>. You will then be back in CP/M. Now, type the
fOllowing command:

What this does is to create an empty file on the disk, without disturbing the
memory image. If you already have a file called HOPE. COM on the disk, use
another name. Now type "HOPE". With any luck, you will be back in
ExecuPlan and can continue. If this does riot work, reset the computer and
proceed as explained in the above section. If that doesn't work, there is
probably no recovery possible.

