
Vector Graphic 8 inch Floppy Controller

The floppy controller does not support DMA, so the CPU must be able to keep up with the dou-

ble density transfer rate. A data byte is transferred every 16us, but due to internal timing of the

1793 controller IC and board timing, worst case read timing is 13us and 11us for writes.

Like many controllers that support programmed data transfer, this controller provides a WAIT

register that stalls the processor until the next byte from the floppy is available/needed. However,

the WAIT register cannot be used until after the 1
st
 byte is received/requested. The processor

must poll the DRQ (data request) status register and load the first byte once DRQ is asserted. All

remaining bytes of the transfer can be then timed using the WAIT register.

Vector Graphic computers use a Z80 processor and DRAM boards that utilize the Z80 for re-

fresh. Refresh occurs during the instruction fetch cycle, so the Z80 cannot be suspended for long

or DRAM refresh will fail. For this reason, the floppy controller uses a one-shot to limit the

WAIT time. Once data transfer begins, this is plenty of time, however, the initial byte of a read

or write request may take a full disk revolution (167ms) or more, so WAIT cannot be used for

the 1
st
 byte.

On the Rev 0 board a 2200pf cap is used with the one-shot delay of about 40us. This is short

enough that the one-shot times out during single density reads if waiting for byte 129 (instead of

using a counter and exiting the read loop). This is because the 1793 reads two more CRC bytes

after the last data byte (64us) before issuing the command completion IRQ. The Rev 1 board us-

es a .022uf cap for a 250us+ delay. The Rev 1 schematic shows a 1000pf capacitor for the one

shot, but I have not seen a Rev board 1 with 1000pf or a technical advisory that changed from

1000pf to .022uf. It’s probably a typo on the schematic.

Meeting worst-case timing while polling DRQ for the 1
st
 data transfer is difficult. In order to

meet timing requirements, the DRQ status register and software were designed together to make

a very short polling loop. This loop is shown below. The code must be at offset FCh-FFh within

a page. Prior to the loop, H is loaded with the page address and C is loaded with the board status

register port address (for the IN L instruction). Reading the DRQ status register returns FCh

when DRQ is false and FFh when DRQ is true (the DRQ line is connected to bits 0 and 1).

xxFC IN L ;load board status register into L

xxFE JP (HL) ;jump to xxFC (DRQ false) or xxFF (DRQ true)

xxFF IN FDCDATA ;read the first data byte

Assertion of DRQ is asynchronous to a CPU bus cycle. For this reason, board revision 1 latches

DRQ with a flip-flop clocked by bus clock phi 2. However, board revision 0 did not include this

flip-flop. Therefore, DRQ could be in flux at the instant the CPU reads the DRQ status register.

The resulting read could have values of FDh or FEh in addition to the expected values of FCh

and FFh. If FDh is returned, the jump (HL) instruction jumps to the 2
nd

 byte of the IN L instruc-

tion. If FEh is returned, the jump (HL) instruction jumps to itself and hangs in an infinite loop.

To get around this race condition, the revision 0 board includes a blue-wire mod that connects

the DRQ line to status register bit 1 through an AND gate used as a buffer to delay the DRQ sig-

nal by one TTL delay. This results in only one value, FDh, being returned during the race condi-

tion instead of both FDh or FEh. This causes the jump (HL) instruction to jump to the 2
nd

 byte of

the IN L instruction. The second byte of this instruction happens to be a LD L,(B) instruction. By

having B pre-loaded with FFh, the code properly jumps to xxFF during the race condition.

