Sl
©

S8KBASIC VERSION 2.0
USERS GUIDE

WRITTEN BY

ROBERT H.UITERWYK

4402 Meadowwood Way

Tampa, Florida 33624

Copyright © 1976, Southwest Technical Products Corporation

" All Rights Reserved "

e SOUTHWEST TECHMICAL PRODUCTS CORPORATION
e 219 West Rhapsody San Antonio, Texas 78216

NOTICE TO USERS OF SWTPC PAPER AND CASSETTE TAPES

In order to help reduce the time necessary to load programs through
either a paper tape reader or an SWIPC AC-30 cassette interface, the longer
tapes supplied from SWIPC will be furnished in a binary format instead of
the conventional ASCII. At the beginning of each tape is a binary loader
program that will load into the computer using the regular ASCII format.
The program then executes itself and loads the main program in binary.
Using this method tapes will load in approximately 1/3 normal time. When
using a SWIPC AC-30 lock the reader in the ON position and type L. For
paper tape readers either lock the reader on or re-set the reader-on relay
if the load stops. (the computer will send a reader-off character after
an ASCII S9 on the tape is loaded in) On cassette tapes, one side will
be in conventional ASCII (side with long leader) and one side will be in
binary. The tapes are formatted as follows:

BINARY LOADER 59 | ¢ MAIN PROGRAM
IN ASCII] ;EvBINARY
As the tape loads, you will see one of the following displays on
your terminal: (either is OK)
*1, *1
*G *77
* (register dump) % (register dump)

At least 6K of memory must be installed in the machine to use the
binary formatted tapes. (8K for 8K BASIC)

SWTPC 8K BASIC has been revised to version 2.0 to improve some

of the features of version 1.0 and 1.0l1. The improvements and changes
are as follows:

* * N ¥ ¥

*

*

* * ¥ ¥ F * * * ¥ N F ¥

*

An error in line O now reports correctly.

SIN (270 degrees) now gives correct answer.

VAL will now work with a negative number.

VAL error is now error #27.

LOAD will no longer cause problems on loading programs with
long lines.

Getting a random number of 0 will no longer lock the random
number generator on 0.

DIGITS=2 for 0.1 and 0.0l now ok.

String concatenation over 128 now gives an error message instead
of bombing BASIC.

Certain nested FOR-NEXT loop problems fixed.

BASIC can now be used on a Motorola Evaluation Module on port 1.
A NEW command does not reset the port number.

Interrupts are now allowed.

String variables are now 32 characters long. -
Rubouts put in PGCNTL and READY messages for improved printout
on 300 baud unbuffered terminals.

All transcendental functions have been speeded up by a factor
of two.

Line lengths are now filed for faster searches.

The arc tangent (ATAN) function has been added.

‘Multiple statement lines are now accepted.

SAVE and LOAD now work with single letter file labels.
LINE DELETE, CHAR. DELETE and BREAK characters are now user

‘definable.

All 1/0 jumps for different ports are now vectored for ease
of change by user.

AUTHOR'S NOTE:

At the commencement of writing 8K BASIC, the target I set for
myself was to ensure that 8K BASIC would meet the proposed minimum
standards for BASIC established by ANSIT Committee X3J2.

In fact, 8K BASIC goes considerably beyond the minimum, in
specific, all the string functions, the string arrays, the nine dig-
it accuracy, etc. are considerable expansions of the minumum.

However, there is one instance where I could not see eye to eye
with the committee. This is with regards to subscripts in arrays
(which, by the way, is where the committee had their greatest argument).
ANSI proposed a minimum subscript of @, with a statement of "OPTION
BASE 1" changing this to a minimum of 1.

I feel that:
1. Most users will not put in the option statement.

2. The beginning user will only have a subscript of
when he makes an error.

3. For a micro-computer, this is very wasteful of space.

Therefore, I have taken an author's privilege and forced a base
of 1 in all cases.

This means that SWTPC 8K BASIC does not conform to the ANSI stand~
ard. If those reading this strongly disagree with me, write me and
I will consider changing this in later versions of 8K BASIC.

Finally, I would like to thank the following persons, without

whom BASIC would have taken far longer: Jim Stratigos, Jeff Harrow,
Jim Hansen and Joe Deres. '

Robert H. Uiterwyk

FEATURES OF SWIPC 8K BASIC<:>VERSION 2.0

* All mathematical operations are performed in BCD (Binary Coded Decimal)
arithmetic for maximum accuracy.

* User programs may be saved and loaded from either SWTPC AC-30 Cassette
or paper tape and may be filed to allow several short programs on one tape.

bd Most function subprograms including transcendentals are implemented.
* String variables and arrays are allowed.

* Most program statements may be executed in the direct mode (no statement
numbers for immediate calculations and enhanced program debugging). .

* Most programs will run with a memory of only 12K bytes.
* Users can call machine language programs with the USER Function.

* Multiple statements per line are allowed.
Notation

In this manual square brackets ([]) are used to denote optioms.

statement n means statement number

var means variable name

exp means mathematical expression

rel exp means relational expression
"textstring" means a collection of literal alpha--

numeric characters enclosed
by quotation marks

<:)Copyright 1977 by Southwest Technical Products Corp. SWIPC 8K BASIC
Version 2.0 and this User's Guide may be copied for personal use only. No
duplication or modification for commercial use of any kind is authorized.

Program Structure

A BASIC program is comprised of statements. Every statement begins
with a statement number, followed by the statement body, and terminated
by a carriage return.

There are four types of statements in BASIC:
Declarations, Assigmments, Input/Qutput and Control.

These statement types are described in the corresponding sections
of this manual.

Statements

- Every statement must have a statement number ranging between 1 and
9999. Do not use line number §.

- Statement numbers are used by BASIC to order the program statements
sequentially.

- In any program, a statement number can be used only once.

- A previously entered line may be changed by entering the same line

number along with the desired statement. Typing a line number followed
immediately by a Carriage Return deletes that line number,

- Statements need not be entered in numerical order, because BASIC
will automatically order them in ascending order.

- A statement may contain no more than 72 characters including blanks.

- Blanks, unless within a character string and enclosed by quotation
marks, are not processed by BASIC, and their use is optional.

Example: 110 LET A=B + (3.5%5E2)
is exactly equivalent to:
110LETA=B+(3.5%5E2)

- With blanks, the statement is more readable, but takes longer to
process; however, numbers can contain no imbedded blanks.

Multiple statement lines are accepted. A colon (:) should be used as
the seperator. BASIC will process the line from left to right. Example:

10 A=3 : B=5 : C=A*B : PRINT C/A is equivalent to:

10 A=3
20 B=5
30 C=A*B
40 PRINT C/A
Data Format

The range of numbers that can be represented in this version of BASIC
is:
1.0E-99 to 9.99999999E+99

99

E+99 represents 10°° while E-99 represents 10799, The E stands for

exponent.

There are nine digits of significance in this version of BASIC. Num-
bers are internally truncated (last digits dropped) to fit this precision.

Numbers may be entered and displayed in three formats: integer, dgéimal
and exponential,

Example: 153 34.52 136E-2

Variable Names

Variables may be named any single alphabetic character or any single
alphabetic character followed by a number 0 thru 9. String variables may
'be any single variable followed by §S. ‘

Example: A, B, C, A5, X6, AS$, 7§

String Variable

Any single letter, or subscripted letter followed by a "$". (A4S is
not valid). A string variable may contain a maximum of 32 characters.

Note: A string variable reserves 32 bytes even if only one character
is stored within it.

Example: A$, C$, F$, AS(3), F$(1), G$(9,9)

Note: These are distinct from numeric variables of the same name ...For
instance, A=3, A$="HELLO", A(3)=7, and A$(3)=""GOODBYE" are all valid:

REM
The REM, or remark stateméﬁt, is a non-executable statement which
has been provided for the purpose of making program listings more readable.
By generous use of REM statements, a complex program may be more easily under-
stood. REM statements are merely reproduced on the program lis;ihg, they
are not executed. If control is given to a REM statement, it will perform
no operation. (It does however, take a finite amount of time to process
the REM statement.)

Program Preparation

After BASIC is loaded into your system, it may be started at memory
address ¢1¢¢l6. At this time, BASIC will automatically determine the range

of working storage. If you wish to limit the amount of memory BASIC uses,
refer to Appendix F of this manual.

The system is then ready to accept commanas or statements. For ex-
ample the user might enter the following program: ‘

150 REM DEMOSTRATION

160 PRINT "ENTER A NUMBER":

170 INPUT & .

180 LET P = A*A*3.1415926

185 PRINT

190 PRINT "THE AREA OF A CIRCLE WITH";
200 PRINT "RADIUS"; A; "Is"; P

210 STOP \

If the user wishes to insert a statement between two others, he need
only type a statement number that falls between the other two. For example:

183 REH THIS IS INSERTED BETWEEN 180 and 185.

‘ - If it is desired to replace a statement, a new statement is typed
that has the same number as the one to be replaced. For example:

180 P=(A*A)#*3,1415926 replaces previous LET statement.

Each line entered is terminated by a Carriage Return. BASIC positions
the print unit to the correct positiorn on the next line.

The control O and control X control characters may be used to back=
' space one chdracter or delete a line that was typed in error. See explana-
tion in the Commands Sectiom.

If the user wishes to execute the program zt this point, the RUN
command should be entered.

Commands

It is possible to communicate in BASIC by typing direct commands at
the terminal device. Also, certain other statements can be directly exe-
cuted when they are entered without statement numbers.

Commands have the effect of causing BASIC to take immediate actionm.
A typical BASIC language program, by contrast, is first entered statement
_ by statement into the memory and then executed only when the RUN command
is given. '

When BASIC is ready to receive commands, the word READY is displayed

on the terminal device. After each entry, the system will prompt with a
1] #“ .

Commands are typed without statement numbers. After a command has
been executed READY will again be displayed indicating that BASIC is ready
for more input, either another command or program statements.

Note: The LIST, SAVE, LOAD and APPEND commands all have #N appended
to them, where "N" is the port number where the 1/0 operation will
take place (See Input/Output Commands).

LIST [statement ml, |§tatement n]

Causes the statements of the current program to be displayed on the
user's terminal. The lines are listed in increasing numerical order by
statement number, The display will be only statement number m, if given,
or statements m through n, if given, or all statements if no argument is
given.

Examples: LIST 30
LIST 20, 200
LIST #7, 30, 70
LIST #0

RUN

Causes the current program resident in memory to begin execution at
the first stdtement number. Run always begins at the lowest statement
number. Run resets all program parameters and initializes all variables
to zero.

CONT

Entered after a "STOP" has been encountered, or after a Control C
(Break) has been entered. Only to be used if an error was not encountered,
and if the program has not been changed.

NEW

The NEW (scratch or clear) command causes working storage and all
variables and pointers top be reset. The effect of this command is to erase
all traces of the program from memory and to start over. This command
also sets LINE to 48 and DIGITS to O.

SAVE

Causes the program in memory to be saved on either a SWIPC AC-30
cassette interface or a paper tape punch. Control commands are output
to control the read/record mechanism. Complete details are given in
Appendix C.

LOAD .

Causes a tape (magnetic or paper) that was previously "Saved" to be
loaded into memory. It clears out the present memory (if any) before
starting. Complete details are given in Appendix C.

APPEND

Works exactly like LOAD, but does not clear out present contents of
memory.,

CONTROL C

Pressing the Control C key on the terminal console will cause BASIC
to halt its current operation and to respond with a READY. BASIC will
then accept further commands. This command is often used to stop a LIST
command before it has completed or to halt the execution of a looped pro-
gram. Due to the use of a PIA on the control interface,the user may have
to type Control C several times.

CONTROL _X

Clear the current line buffer. If the user types a line at the termi-
nal and decides that the line is in error and should be deleted, a simultan-
ous depression of the Control and X keys before the carriage return will
clear the line. The system responds with "DELETED" and a CR and LF.

CONTROL O

Single character backspace. If a character is determined to have
been typed in error, it may be deleted by simultaneously pressing the
Control and O keys, then entering the correct character. A _ is echoed
to signify the backspace. You may backspace as many character positiomns
as necessary. BASIC will prevent you from backing past the start of the
line.

PATCH

Causes the computer to return to the Mikbug<:>operating system and
outputs a Carriage Return, Line Feed and '*' on the print device. If no
BASIC memory and the program counter addresses (A@48 and A@49) are not
changed, typing a G for "Go to User Program" will restart the program with
the User program intact. The PATCH command may even be inserted as a con-
trol statement within a BASIC user program. W?ﬁg the PATCH statement is
encountered, control is transferred to Mikbug and the computer outputs
a Carriage Return, Line Feed and '*'. Typing a G retruns control back to
the BASIC user program statement immediately following the PATCH statement.

TRACE ON

Prints each Line number as the line is executed., A debugging tool!

MIKBUGR is a registered trademark of Motorola, Inc.
-6—

TRACE OFF

Stops the "TRACE" function.
LINE

Specifies the number of print positions in a line (Line Length).

Example: LINE=65, LINE=80, LINE=40
Note: Each line is broken up into 16 character "Zones'". If the

print position is within the last 25 percent of the "line'" length and a
"space" is printed, a C/R LF will be output. This is so that a number or
word will not be split up at the end of a print line. If you wish to
inhibit this (for precise print control) set LINE equal to 0.
DIGITS

Sets the number of digits printed to the right of the decimal point,
This will truncate (not round) any digits greater than the number printed,
and will force "0"s if there aren't enough significant digits to £ill the

number of positions specified in the '"DIGITS" command.

DIGITS=0 resets to floating point mode.

PORT
PORT=X defines the computer I/0 Port which will serve as the 'Control
Port'. "X" can be a constant, variable, or expression.

Warning - If you define a Port without a terminal as the Control Port,
all messages (including the "Ready") will be inputed and outputed from that
Port...therefore you will lose control of your program!

NOTE: PIA ports require handshaking, If handshaking is not available, then
you must use the PEEK command to examine the PIA registers. Also, BASIC
will always accept a break from port 1, therefore never leave port 1 without

a terminal connected.
PORT TYPE OF PORT

ACIA .

MODIFIED PIA (CONTROL PORT)

ACIA o

ACIA

PIA

PIA

PIA -

PIA (LINE PRINTER, BY CONVENTION ,
SWTPC PR-40) '

N oUW O

POKE

POKE (I,J) takes the decimal value of "J" and places it in the decimal
memory location "I"., WARNING - Exercise great care in the use of this

-7-

command, as it is easy to bomb the basic interpreter, your program, and/
or your data!

DIRECT EXECUTION - CALCULATOR MODE

BASIC facilitates computer utilization for the immediate solution of
problems, generally of a mathematical nature, which do not require itera-
tive program procedures. To clarify: BASIC may be used as a sophisticated
electronic calculator by means of its ''direct'" (no statement number) state-
ment execution capability.

. While BASIC is in the command mode some BASIC statements may be
entered without statement numbers. BASIC will immediately execute such
statements. This is called the direct mode of execution. Example:

PRINT (28 + 3.75) * 2,317

Statements that are entered with statement numbers are considered to
be program statements which will be executed later.

In the following sections of this manual all BASIC statements are
described. Only those statements which are flagged with the word 'Direct'
may be used in the direct mode.

Another use for direct execution is as an aid in program development
and debugging. Through use of direct statements, program variables can
be altered or read, and program flow may be directly controlled.

DIM var (exp) or var (exp),var(exp) or var(exp,exp)

The DIM statement allocates memory space for am array. In this ver-
sion of BASIC, one or two dimension arrays are allowed. Maximum array size
is 255 x 255 elements. All array elements are set to zero by the DIM state~
ment.

If an array is not explicitly defined by a DIM statement, it is assumed
to be defined as an array of 10 elements (or 10 X 10 if two elements are
used) upon first reference to it in a program.

Caution: An array can be determined only once in a program, implicitly
and explicitly. Also only the variables A thru Z (followed by
$)may be dimensioned for strings.

Example: DIM A(10), C(R5+8), D(30,A*3), A7(20), C$(30), z$(5)
but not A6$(5)

DATA num [num,..num]

READ var [var,..,var]

 RESTORE

The DATA and READ statements are used in conjunction with each other

-8-

as one of the methods to assign values to variables. Every time a DATA
statement is encountered, the values in the argument field are assigned
sequentially to the next available position of a data buffer. All DATA
statements, no matter where they occur in a program, cause DATA to be com~-
bined into one list.

READ statements cause values in the data bufféer to be accessed sequen-
tially and assigned to the variables named in the READ statement. They
start with the first data element from the first data statement, then the
second element, to the end of the first data statement, then to the first
element of the second data statement, etc., each time a READ command is
encountered. If a READ is executed, and the DATA statements are out of
data, an error is generated.

Numeric and string data may be intermixed, however it must be called
in the appropriate order.

Note: String data need not be enclosed within quotes (') as the comma (,)
acts as the delimiter. However, if the string contains a (,), then
it must be delimited by quotes ("). Example:

10 DATA 10,20,30,56.7,"TEST, ONE",1.67E30,8,HELLO
20 READ A,B,C,D E$ F, GS F$

Note: DATA STATEMENTS may be placed anywhere within the program.

Example: 11C DATA 1,2,3.5
120 DATA 4.5,7,70
120 DATA 80,81
140 READ B,C,D,E

Is the equivalent of:

10 LET B=1
20 LET C=2
30 LET D=3.
40 LET E=4.

5
5

The RESTORE statement causes the data buffer pointer, which is advanced
by the execution of READ statements, to be.reset to point to the first
position in the data buffer.

Example: 110 DATA 1,2,3.5
120 DATA 4.5,7,70
130 DATA 80,81
140 READ B,C
150 RESTORE
160 READ D,E

In this example, the variables would;be assigned values. equal to:

100 LET B=1
101 LET C=2
102 LET D=1
103 LET E=2

Assignment Statements

LET var=exp (Direct)

The LET statement is used to assign a value to a variable. The use
of the word LET is optional unless you are in the direct mode.

Example: 100 LET B=827
110 LET C=87E2
120 R=(X*Y)/2*A
130 C$=""THIS IS TEXT"

The equal sign does not mean equivalence as in ordinary mathematics.
It is the replacement operator. 1t says: replace the value of the variable
named on the left with the value of the expression on the right. The ex=-
pression on the right can be a simple numerical value or an expression
composed of numerical values, variables, mathematical operators, and
functions.

MATHEMATICAL OPERATORS

The mathematical operators used to form expressions are:

D T «... Exponentiation - Raises to a power
~ (unary) Negate (Requires only one operand)
X L ieeesonressss Multiplication

[ceeiiiannes ... Division

e N Addition

cseseassssesss Subtraction
- No two mathematical operators may appear in sequence, and no operator
is ever assumed: A++B and (A+2) (B-3) are not valid. Exception: A =3 is
allowed.

PRIORITY OF OPERATIONS

1. Exponentiation ()
2. Negation (=)
3. Multiplication (*) and Division @)
4. Addition (+) and Subtraction =)

The expression is evaluated left to right in the above priority sequence
unless parenthesis are encountered (the operators within the parenthesis
are evaluated first, utilizing the above priority structure.). Example:

A=2
B=3
C=4

B=C/2=5

-10-

EtzZ2+C/RT2=10
Ctz-CrA=14

A B+E#*Z)~ 7=0
AT E=AL

STRING CONCATENATION

Although any one string variable may be a maximum of 32 characters
long, strings may be concatenated (joined) up to a maximum of 128 characters
(for printing). The concatenation symbol is the "+'".

Example: A$="HELLO"
B$=""JOHN"
CS=AS+BS
C$="HELLOJOHN"

Control Statements

Control statements are used to control the natural sequential progres-
gion of program statement execution. They can be used to transfer control
to ancther part of a program, terminate execution, or control iterative
processes (loops).

FOR var=expl TO exp2 STEP exp3

BEXT var

The FOR and NEXT statements are used together for setting up program
loops. A loop causes the execution of one or more statements for a speci-
fied number of times. The variable in the FOR_TO statement is initially
set to the value of the first expression (expl). Subsequently, the state-
ments following the FOR are executed. When the NEXT statement is encountered,
the named variable is added to the value indicated by the STEP expression
in the FOR _TO statement, and execution is resumed at the statement follow-
ing the FOR _TO. If the addition of the STEP value develops a sum that is
greater than the TO expression (exp2) or, if STEP is negative, a sum less
than the TO expression (exp2) , the next instruction executed will be the
one following the NEXT statement. If no STEP is specified, a value of ome
is assumed. If the TO value is initially less than the initial value, the
FOR_NEXT loop will still be executed once.

Example: 110 FOR I=.5 TO 10
120 INPUT X
130 PRINT I,X,X/5.6
140 NEXT I

Although expressions are permitted for the initial, final, and STEP

-11-

values in the FOR statement, they will be evaluated only once, the first
time the loop is entered.

It is not possible to use the same indexed variable in two loops if
they are nested.

When the statement after the NEXT statement is executed, the variable
is equal to the value that caused the loop to terminate, not the TO value
itself. 1In the example, I would be equal to 9.5 when the loop terminates.

STOP

The STOP statement causes the program to stop executing. BASIC re-
turns to the command mode. The STOP statement differs from the END state-
ment in that it causes BASIC to display the statement number where the
program halted, and the program can be restarted by a GOTO or a CONT. The
message displayed is STOP XXXX.

ERD

The END statement causes the program to stop executing. BASIC returns
to the command mode. In this version of BASIC, END may appear more than
once and need not appear at all.

GOTO statement n (Direct)

The GOTO statement directs BASIC to execute the specified statement
unconditionally. Program flow continues from the new statement.

Example: 150 GOTO 270

GOSUB statement n

A subroutine is a sequence of instructions which perform some task
that would have utility in more than one place in a BASIC program. To
use such a sequence from more than one place, BASIC provides subroutines
and functions.

A subroutine is a program unit that receives control upon execution
of a GOSUB statement. Upon completion of the subroutine, control is re-
turned to the statement following the GOSUB by execution of a RETURN state-
ment.

A function is a program unit to which control is passed by a reference
to the function name in an expression. A value is computed for the function
name, and control is returned to the statement that invoked the functiom.

GOSUB statement n

statement n

-12-

» ;?,w.

"e-RETURN R

o The GOSUB statement causes control to be passed to the given state~
" ment number:’ 'It.is assumed that 'the given statement number:is an entry

-poeint of:a subroutlne.‘ The subroutine returns-control to. the statement

© following the GOSUB statement: w1th a RETURN statement.

Subroutine
‘Example: : . 100 X=1 . .
T e e 110 GOSUB 1200
120 PRINT. X
125 %=5.1
‘130 GOSUB. 200 i iw”
140 PRINT X
150 sTopP
2. 200 X=(X+3) %50 32E3
210 RETURN
211 END -

Subroutines may be nested; that: is one subroutine may use GOSUB to
call another subroutine whith 'in*“turn. can call another. Subroutine nest-
ing is limited to elght levels.v”

ON EXP GOTO statement n, (m,...L)Hyy,._g

ON EXP GOSUB statement n, (mj..AL)

This statement transfers control to the statement or subroutine as
defined by the value .of ‘exp.: The expression will be evaluated, truncated
(chopped off after the decimal point) and control then. transferred to the
nth statement number (where n is the 1nteger value of the expression).

Example: ~ ON N COTO 110 300,500,900

Means: " ~If'N<l You: w1ll get an error:
If N=1 GOTO 110
s S "I£f.N=2 GOTO 300 - .
sl T If N=3.GOTO-500+ . . .
If N=4 GOTO 900 ' - . ;
If N>4 You will get an error

Example: ON (N+7)*2 'GOSUB 1000;2000

(see GOTO and GOSUB)

IF relational exp THEN statement n

IF relational exp THEN BASIC statement (Dlrect)

The IF statement is used to control the sequence of program statements
to be executed, depending ‘on specific conditons. If the relational expres-
sion given in the IF is '"'true'", then control is given to the statement

-13-

number declared after tﬁé THEN. If the relational expression is "false",

program execution cofitinues at the statement following the IF statement.
It is also possible to provide a BASIC statement after the THEN in

the IF statemert. If this 1§ done, the relational eéxpression is true,

the BASIC statement will be éxectited and the program will éontinue at the
statement followitig the IF stdtement.

Whén evaluating relational expressidns,'arithmetic operations take:
ptecedence id theit usual order, and the relational operators are given
equal weight and are evaluated last.

Exatiple: SHE*SS152 evaluateés to be true

 The Rélational Opérators

= Equal
<» - Not Equal
% less Than .
> Greater Than
<® Less Than or Equal
Greater Than or Equal

Examples: 110 IF A<B+3 THEN 160
v 180 IF A=B+3 THEN PRINT "“VALUE A", A
190 IF A=B THEN Tl=B
NOTE: If ati IF test fails on a multiple statement line, the remainder of
the line will not bé executed.

Input/Output . Statemenits

Any INPUT of PRINT statement may be followed with a "#N" where "N 1s
the input or output port number (#-7). '"N" may be a constant, variable or exp.

The default option (no "N specified) is PORT#l the control port.
(Or as specified with the PORT statement) =~ a comma (,) must follow the
port number if anything follows the command.

Example: INPUT #3,A
PRINT #7;"TEST"
PRINT #7

INPUT _var (var...,var)

The INPUT statement allows users to enter data from the terminal dutring
program execution.

Example: INPUT X'—‘Inputs one numeric value
INPUT X$ - Inputs one string value

-14-

INPUT X,Y,Z,BS - Multiple Inputs may be entered, seperated
by ",". 1f the expected mumber of values
are not entered, another "?" will be
generated.
INPUT#2,X - Inputs a value from Port #2.
INPUT "ENTER VALUE,X - Prints the message in quotes, then
a "?", and waits for input. It stores
the inputed value in X.

When the program comes to an INPUT statement, a question mark is dis-
played on the terminal device. The user then types in the requested data
separated by commas and followed by a carriage return. If insufficient
data is given, the system prompts the user with '?'. If no data is entered,
or if a non~numeric character is entered, the system prompts '"RE-ENTER",
however, for strimg variables a null return will be consideres as valid
data. Caution: for input A$,BS$,C$ - a null response would create three
null variables. Only constants can be given in response to an INPUT statement,

PRINT var (Direct)

' Ve tring" (Direct

PRINT ex (Direct)

The PRINT statement directs BASIC to print the value of expression,
literal values, simple variables, or text strings on the user's terminal
device. The various forms may be combined in the print list by separating
them with commas or semicolons. Commas will give zone spacing of print
elements, while semicolons will give a single space between elements. If
the list is terminated with a semicolon, the line feed/carriage return will
be suppressed.

1. PRINT - Skips a line.

2. PRINT A,B,C - Prints the values of A, B, and C, separated into
16 space zones. Use of a ";" in place of the ","
would print A, B, and C separated by one space.
(No space is generated if a string variable.) A
C/R, LF is generated at the end of the line.

3. PRINT "LITERAL STRING" -~ Prints the characters contained within

the quotes

4. PRINT#7,A,B;"LITERAL" - Prints variables A & B and the word

"LITERAL" to PORT #7 (the line printer,
by convention).

The TAB Function

The TAB function is used in the PRINT statement to cause data to be
printed in exact locations. TAB tells BASIC which position to begin print-
ing the next value in the print list., The argument of TAB may be an ex-
pression.

Example: 110 PRINT TAB(2),B,TAB(2*R),C$

-15-

Note: The PRINT positions are numbered one to 72.

Functions

RND

RND(X) produces a set of uniformly distributed pseudo-random numbers.
If "X" (the seed) is 0, then each time RND(X) is accessed a different num-
ber between 0 and 1 will be returned. If "X'"<>»>0, then a specific random
number will be returned each time (the same number each time). RND can be
called without an argument, in which case it works as if one had used an
argument of §.

If you require random numbers other than between 0 and 1, then:
"PRINT INT((B-A+1)*RND(0)-+A)"
will yield random numbers ranging between A & B.
IAB

TAB(X) will move the print position to the "Xth" position to the right
of the left margin. If the print position is already to the right of the
position specified in the TAB command, no spaces will be left and printing
(if any) will commence.

Note: The first print position (left margin) is position #1.
INT

INT(X) returns the greatest integer less than X.
Example: INT94.354)=4
Now Note this ome: INT(-4,354)=-5

ABS

ABS(X) returns the 'Absolute Value" of X.
Example: ABS{3.44)=3.44
ABS (-3.44)=3.44

SGN(X) returns the 'sign' (+,-,0r)) of X.
Example: SGN(4.5)=1
SGN(-4.5)=-1
SGN(0)=0
SGN(-0)=0

POS
Returns the present position of the printhead. (In effect the inverse of
TAB),
Example: PRINT TAB(I);X;
IF POS)=71 THEN PRINT

-16~

LEN(X$) returns the number of characters contained in X$.

Example: LEN("TESTING")=7
LEN("TEST ONE")=8

Note: The space does count!

Note: LEN(STRS$(X)) = The number of print positions required to print the
number X.

ASC

ASC (string or string variable) returns the decimal ASCII numeric value of
the first ASCII character within the string.

Example: ASC("7")=63
ASC("ATY=55
ASC(TBY) =66
ASC(M My =90
ASC(ME™y=53
LET B&="5"-——>ASC(B$)=53

CHRS

CHRS (X) returns & ziugzle character string equivelent to the decimal
ASCII numeric value of ¥. This is the inverse of the ASC function.

VAL(XS) returns ths
This is the inverse of

zvic constant equivelent to the value in XS.
% function.

e"‘»~12 3

) =5000

Y =GENERATES AN ERROR.
VAL{“wiZ‘E N=~12,3

Example: VAT’”“7

STRS

STRS(X) returns the string value of a numeric value. This is the
inverse of the VAL function.

Example: A=34557

LET AS$=3TRS$(A)
AS MO EQUALS "34567"

-] 7~

LEFT$

LEFT$(X$,N) returns a string of characters from the leftmost to the
Nth characters in X$.

Example: X$="ONE,TWO,THREE"
LET AS$=LEFTS$(XS,6)
AS NOW EQUALS "ONE,TW"

RIGHT

RIGHTS$(X$,N) returns a string of characters from the Nth position to
the left of the rightmost character, through the rightmost character.

Example: X$="ONE,TIWO,THREE"
AS=RIGHTS(X$,9)
AS NOW EQUALLS ""TWO,THREE"

MID$

MID$(X$,X,Y) returns a string of characters from X$ beginning with the
Xth character from the left, and continuing for Y characters from that

point. Y is optional. If Y is not specified, then the string returned is
from the Xth character to the right of the beginning (left side) of the
string through the end of the string.

Example: X$="ONE,TWO,THREE"
AS=MID$(X$,3,10)
A$ NOW EQUALS "E,TWO,THREE"
PEEK

PEEK(X) returns, in decimal, the value contained in (decimal) memory
location X.

Example: LET A=PEEK({255)
A will now contain the decimal value contained in memory location 25510.
POS
POS returns, in decimal, the current position of the print head or

cursor. The first position (left margin) is position #1.

Mathematical Functions

Function Interpretation

SIN(X) Returns the SINE of X

CosS(X) Returns the COSINE of X

TAN(X) Retruns the TANGENT of X

ATAN(X) Returns the angle, in radians, that is the arc tangent of X
LOG (X) Returns the NATURAL LOGARITHM of X

=18~

EXP(X) Returns the base of NATURAL LOGARITHMS raised to the
Xth power (this is the inverse of LOG(X).)
SQR(X) Returns the SQUARE ROOT of X

Note: For these TRANCENDENTAL FUNCTIONS ONLY, the accuracy is stated to
seven (7) significant digits, and the accuracy of the seventh digit,
or 1lE~7 (whichever is greater) is not guaranteed!

Note: For SIN, COS,& TAN the argument is in radians (not degrees).
USER

LET A=USER(X) transfers program control to a USER-written machine
language program. Program control branches to the memory location pointed
to by memory location $67 and $68. X is a numeric expression which is then
stored in a 7 byte series beginning at a memory location pointed to by
$5D and $5E (this value may be modified by the USER-written machine language
program to act as a 'Data Output' from the program, or as an indicator that
"something was done"). The USER program must terminate with a $39, thereby
transferring program control back to the BASIC interpreter. Additionally,

A is now set equal to the value stored in the 7 byte series stored in a
memory location pointed to by $5D and $5E. ($67 denotes hex location $@67)

Note that when BASIC is loaded, memory locations $67 and $68 point to
a location containing $39, so the USER function will just return control
to the BASIC interpreter. You will have to modify memory locations $67 and
$68 using the POKE or PATCH command in order to use this function.

Warning: It would be easy to inadvertantly modify the BASIC interpreter,
its program, and/or its data using this function. Make sure
you understand the machine level implications before using it!!
Also, note that if your USER-written machine language program
does not end with a $39 (RTS), your function will Bomb, your
program will Bomb and BASIC will Bomb --- All is Lost!

DEF_EN(X)
DEF FN LETTER (VARIABLE) = EXPRESSION

This function allows the user to create his very own functioms. The
LETTER is any alphabetic character. This names the function (I.E. you
could have, say, three functions named FNA, FNB, and FNC). The VARIABLE
is a Non-Subscripted numeric variable. This is essentially a "d ymmy"'
variable (or place holder)... This will be apparent shortly. The "Expression”
is any valid expression. Note that the 'variable" must be enclosed within
parenthesis. .

For example, study the following sample program:
10 DEF FNA(X)=3.,14%X42

20 DATA 5,6,7,0
30 READ X

-19-~

40 IF X=0 THEN END
50 PRINT FNA(X)

60 GOTO 30

RUN

78.5

113.04

153.86

READY

As you can see, the dummy variables were replaced with the variables
you actually wished to use at the time the function was used.

Note: You may not define the same function greater than once per program,
and a function must be defined before it is called.

~-20-

COMMANDS

LIST &

RUN

NEW

SAVE

LOAD

PATCH &
APPEND
DIGITS &
LINE &
CONT &
PORT &
TRACE ON &
TRACE OFF &

APPENDIX A

INSTRUCTION SUMMARY

STATEMENTS FUNCTIONS
REM END ABS LEN
DIM* GOTO* INT AsC
DATA ON...GOTO* RND SQR
READ ON...GOSUB* SGN EXP
RESTORE IF...THEN* USER LOG
LET* INPUT ~ TAB VAL
FOR PRINT#* PEEK CHR$
NEXT PATCH* SIN STR$
STOP RETURN cos LEFT$
GOSUB* POKE#* TAN RIGHTS$
DEF FNX MID$
POS ATAN

()* Flags STATEMENTS that may be used in the direct mode (no statement

numbers)

()& Flags COMMAND that may be used in programs

MATH OPERATORS RELATIONAL OPERATORS

4 Exponentiate = Equal

-(unary) Negate <> Not Equal

* Multiplication < Less Than

/ Division > Greater Than

+ Addition <= Less Than or Equal

- Subtraction >= Greater Than or Equal

Line Numbers

Variables

Backspace

Line Cancel

Panic Button

Lines

May be from 1 thru 9999

May be single character alphabetic or single character
alphabetic followed by one integer O thru 9 or $

Is a Contrel O
Is a Control X

Typing a Control C should bring Basic back to the READY
mode regardless of what the Basic User program is doinge«

Each line may contain multiple statements. Each statement
is separated from the other with a

-2]1-

APPENDIX B

ERROR MESSAGES

1. Error # in line #

A.

If line # = 0000, error was in direct execution statement

2. Error Codes

1.
2.
3.
4,
5.
6.
7.
8.
9.
10.
11,
12.
13.
14,
15.
lé.
17.
18.
19.
20.
21.
22.
23.
24,
25.

26.

27.
28.

Oversize variable (over 255) in TAB, CHR, subscript or "ON"
Input error

Illegal character or variable

No ending " in print literal

Dimensioning error

Illegal arithmetic

Line number not found

Divide by zero attempted

Excessive subroutine nesting (max is 8)

RETURN W/0 prior GOSUB

Illegal variable

Unrecognizable statement

Parenthesis error

Memory full

Subscript error

Excessive FOR loops active (max is 8)

NEXT "X" w/o FOR Loop defining "X"

Misnested FOR-NEXT

READ statement error

Error in ON statement

Input Overflow (more than 72 characters on Input line)

Syntax error in DEF statement

Syntax error in FN error, or FN called on Function not defined

Error in STRING Usage, or mixing of numeric and string variables
String Buffer Overflow, or String Extract (in MID$,LEFTS, or

RIGHTS) too long

I1/0 operation requested to a port that does not have an I/0 card
installed ‘

VAL function error -~ string starts with a non-numeric value.

LOG error - an attempt was made to determine the log of a negative
number.

-22—

APPENDIX C - SAVING AND LOADING PROGRAMS

SAVE

The SAVE command allows the user to dump the current BASIC program
to either cassette or papeﬁ tape. Using the SAVE command is similar
to the P command of MIKBUG" - punch on/off commands are automatically
sent to the recording device. When using a SWTPC AC-30 cassette interface
either the MANUAL or AUTOMATIC motor control mode can be used. Turning the
recorder to RECORD and typing a SAVE followed by a carriage return will save
a copy of the program on tape. The SAVE command dumps the entire BASIC buffer
to tape - line numbers such as SAVE 10-20 can not be entered to transfer only
a portion of the program to tape. The program in the buffer that is saved
is left intact during a save operation.

A single letter file name may be given to a particular program. This
name will be punched to tape along with the program. For example, the
command SAVE B will save the current program in memory on tape with the
file name B. A file name is not necessary.

LOAD

The LOAD command allows for the entering of previously recorded
BASIC programs through either cassettﬁ or paper tape. The LOAD command
is similar to the L command of MIKBUG - reader on/off commands are auto-
matically sent. Typing LOAD followed by a carriage return will transfer the
program from tape to the BASIC buffer. The buffer is automatically cleared
at the beginning of a LOAD command.

A single letter file name may also be used with the LOAD command.
For example, LOAD B will start the tape reader and load only the program
saved with a SAVE B command. Omitting the file name will load whatever
program is on the tape to memory as long as it was saved with either a SAVE
or SAVE (filename) command. When using the LOAD (filename) command the
tape reader should be locked in the READER ON mode. -

NOTE: The SAVE and LOAD commands assume that the punch/read device
is set up to decode automatic reader/punch/on/off. If your particular
unit is not automatic the reader or punch should be turned on manually
before the carriage return is entered after the respective LOAD or SAVE
command.

APPEND
The APPEND command is identical to the LOAD command except that the
current BASIC buffer is not cleared.

The SAVE, LOAD and APPEND commands can all be used to work on any

port. If for example your cassette recording device is on the ACIA
port three a SAVE #3 command would be used.

-23-

® % HEXADECIMAL

saaasaaggggaagg CHARACTER

- 20 Wn

B~

APPENDIX D

ASCII Hexadecimal to Decimal Conversion Table

3 £ B % 6 5 3
5 : 3 e 3 B
E§ o = a8 3] 2 Eg
b + 2B g43 vV 56 @86
9ol » 2C Q44 W 57 p87
pe2 - D g5 X 58 @88
L LX . 2E @46 Y 59 #89
994 / 2F @47 A 54 @99
¢85 @ 30 @48 c 5B po1
”6 1 31 849 N\ 5¢ 992
op7 2 32 @59 7 50 p93
A 333 51 A SE $94
A4 4 34 ps2 _ SF $95
gLl 6 36 ps4 a 61 997
912 7 37 pss b 62 @98
g13 8 38 pse c 63 $99
P14 9 39 psy d 64 199
815 : 3A ps8 e 65 1M1
#16 i 3B 59 £ 66 182
917 < 3C pep g 67 103
o8 = b e R e 1
019 > 3B 962 i 69 105
920 ? 3F 963 i eA 186
p21 @ 40 ges Kk 68 187
922 A 41 pges 1 6 198
p23 B 42 pe6 m 6D 1¢9
p24 C 43 967 n 6 11
3§g g Z" pe8 o 67 11

5 069 70 112
927 P46 g9 5 71 1is
p28 ¢ 47 911 r 72 114
#29 48 72 s 73 115
@3¢ 1 49 p73 t 74 116
931 J 4 P74 u 75 117
932 K 4B p75 v 76 118
933 L 4 g6 w 77 119
934 Mo 4 77 x 78 120
835 N 4 g8 vy 79 121
936 0 4F 79 2 A 122
937 P50 pap 1B 123
838 Q 51 gsl > 124
939 R 52 82 } m 12
94¢ S 33 a3 2 126
pal T 54 984 DEL 7F 127
o U 55 ges

Y.

APPENDIX E

Loading BASIC

This BASIC interpreter is being made available on both paper and
cassette tape. Before loading BASIC you must make sure you have at
least 8K (#9¢@ thru 1FFF) of RAM memory in your computer system. Load
BASIC from either your SWTPC AC-30 Cassette Interface or paper tape read-
er just as Yyou would any other program. The tapes supplied will load the
BASIC interpreter as well. as set the program counter addresses AP48 and
AG49 to P1@, the starting address of the BASIC interpreter. To start
type G for "Go to User Program". Should for some reason or another you
depress the RESET button on the front panel of the SWIPC 6800 Computer
System and wish to re-enter BASIC wihhout losing the program you had
earlier stored in memory, reset program counter addresses A@48 and AQ49
to @103 and type G. Setting the program counter to #1¢¢ will get you
back into BASIC but you will lose any previously entered programs.

APPENDIX F

Memory Map
0000 - OOFF Input buffer and temporary variable storage
0100 - 1DBO BASIC interpreter :
1EAF = ———- User program

Useful Locations

002A - 002B Contains the next available memory location
after the BASIC program

002E - 002F Contains the start of the BASIC program

005D - OO05E Contains the address of the current arithmatic
value in use during a USER call

0067 - 0068 Contains the pointer for USER

D14E - Ol4F This location tells BASIC where to start allocating

memory for programs and variable storage. Current-
ly this location contains the lowest possible ad-
dress of lEAF. 1If, for example, you desire to
store a 100 byte machine code program you can
allocate memory from 1EAF to 1FAF by changing
014E to 1FAF. v

0150 Contains the number of the port which BASIC
will initialize to. This location currently
contains 0l, the control port.

-25-

0153 Contains the hex ASCII value of the line delete
character, This location is normally a 18
(CTRL. X) but may be changed if desired.

0154 Contains the hex ASCII value that BASIC inter-
prets as a backspace. This location is curremtly.
a OF (CTRL. 0). This location can be changed for
terminals which generate an automatic cursor
left with some other backspace command.

0155 Contains the character echoed to the terminal
when a backspace command is entered. This char-
acter is currently a 5F, an underline (_) on
SWTPC CT-1024 terminals. If desired this ghar-
acter can be changed to a null (00) if your ter-
minal does an automatic cursor left upon sending
a backspace command, such as the CT-64 terminal.

0156 Contains the character which BASIC interprets

” as a break. Currently a 03 (CTRL. C)

Notes: 1.) The last 256 bytes of memory available are used as a string
expression buffer and for the machine stack,
2.) AQ4A - AOFF is used as an index register stack.

Below is a list of the I/0O jumps in BASIC for the various ports. For
each port the first is the "output character in accumulator A" jump, the
second receives input and places it in accumulator A and the third is the
initialization routine for a particular type port' (ACIA or PIA). This
I/0 can be changed at the discretion of the user if desired.

C#PORT O

0104 7E O2CC JMPTAER JMFP - OUTACI
010% 7E OZED JdMEP 0 INACIA
Q100 TE 0347 dMF ACTINZ
*#FORT 1 1
O10F 7E EiDl. JMP 0 QUTEEE
11z 7E ELAL JMEP INEEE
0t1is 7E 171F C JdMF DUMRTS
#FORT 2
0118 7E O3CC JME oUTACT
Gl1E 7E OR2ED AMP INACIA
O11E 7E 0=47 AP ACTINZ
#*FORT = -
0121 7E OQ3CC JMP QuUTACI
0124 7E O3ZED JMF INACZIA
0127 7E 0347 mF ACIINZ
#FORT 4
alza 7E G2EZ Miyl= QUTEIA
G120 7E Q307 MR INFIA
D130 FE 0357 AMF FIAINZ
#FORT S
0133 7E OREZ MF CUTEIA
G138 7E QID7 MF INFIA
0139 7E OE%5Z Mhi= FIAINZ
*FORT & ’
0135 7E OREZ iMF QUTFIA
GlzF 7E Q307 AME INFIA
0142 7E QO3SZ WiMF FIAINZ
#FORT 7
0145 7E OZEZ MF CUTFIA
G148 TE 0307 AME INFIA
G014E 7E G352 HF FIARINZ

~26~-

APPENDIX G

Notes for Speedingﬁpp BASIC

Subscripted variables take considerable time; whenever possible
use non-subscripted variables. :

Transcendental functions (SIN,COS,TAN,ATAN,EXP,LOG) are slow because
of the number of calculations involved, so use them only when
necessary. Also the 4 operator uses both the LOG and the EXP
functions, so use the format A*A to square a number.

BASIC searches for functions and subroutines in the source file,
so place often called routines at the start of the program.

BASIC searches the symbol table for a referenced variable, and
variables are inserted into the symbol table as they are referenced
therefore reference a frequently called variable early in the pro~
gram so that it comes early in the symbol table.

Numeric constants are converted each time they are encountered,

so if you use a constant often, assign it to a variable and use
the variable instead.

APPENDIX H

Notes on Memory Usage in BASIC

REM statements use space, so use them sparingly.

Each non-subscripted numeric variable takes 8 bytes.

Each non-subscripted string variable takes 34 bytes.

Each numeric array takes 6 bytes plus 6 bytes for each element,
Each string array takes 6 bytes plus 32 bytes for each element.

An implicitly dimensioned variable creates 10 elements €or 10 by
10). 1If you do not intend to use all 10 elements, save memory
by explicitly dimensioning the variable.

Each BASIC line takes 2 bytes for the line number, 2 byte for the
the encoded key word, 1 byte for the end of line terminator, 1 byte
for the line length, plus one byte for each character following the
key word. Memory can be saved by using as few spaces as possible,

BASIC reserves the uppermost 256 bytes of memory for stack and
buffer use.

27~

Sl NEWS

More Memory-Same Price

4K Now Standard In 6800

San Antonio—The SWTPC 6800 computer system, always a best buy is now an
even greater bargain. Price reductions by the manufacturers of MOS memory cir-
cuits have made it possible to now offer the standard $395.00 6800 computer kit
with 4K of memory instead of 2K as previously. Memory circuits are 21L02 types
which make possible powering up to 24K of memory in the stock chassis with the

standard power supply.

The Southwest Technical 6800 at $395.00 includes everything needed to work
with your terminal. You get 4K of static MOS memory and a serial interface as
part of the basic package. These are not extra cost options (?) as in many com-

puter systems on the market.

8K MEMORY CARDS
ANNOUNCED —

For those 6800 systems needing the
maximum possible amount of memory,
Southwest Technical Products announ-
ces 8K memory cards. These memory
expansion cards have 8K Bytes of low
power MOS memory per board. These
kits feature the new 4K static RAMS
that are now becoming available. These
new RAMS make it possible to put 8K
of memory on a board without crowding
the parts, or using small hard to solder
connecting lines. These new memory
boards feature DIP switch address selec-
tion and a write protect switch on each
board.

The low power consumption of this

new memory board makes it possible to -

use up to 48K of memory in the stand-
ard 6800 chassis with the stock power
supply. Priced at $250.00 these mem-
ory cards cost no more than less dense
memories from other sources.

PRICES CUT ON
4K MEMORIES

Southwest Technical Products has re-
duced the price of its standard 4K mem-
ory card by 20%. These cards use low
power 21102 static memories. The new
price for the MP-M memory kit is
$100.00 for a full 4K kit. :

This kit contains 4K of memory with
full buffering and dual on-board voltage
regulators. Six of these memory cards
may be used in a standard 6800 chassis
to provide 24K of memory for the
system. Memory now becomes even
more of a bargain—24K for only $600.00.

Who Needs It?

We continue to get reports from custo-
mers who are amazed at the ease of
assembly of the 6800 computer. One
reports that he purchased test equip-
ment before ordering a computer at the
advice of friends who owned brand “X”
machines. His total use of the test equip-
ment was zero (0) when he installed

each board in the 6800 and they all pro-
ceeded to work perfectly the first time.
He later found in comparing notes with
other 6800 owners that his was not a
unique experience.

People who have built most of the vari-
ous types of computers on the market
generally agree that our instructions are
the best and most complete. So don’t
worry about purchasing the least ex-
pensive computer system, there are still
good honest values being offered in the
world of personal computing.

SUPER SOFTWARE

“Lack of Software” can no longer be
used as an excuse by those who have the
poor taste to purchase computers using
older, less elegant processors than the
MC-6800. Southwest Technical Products
has not only editor-assembler and game
programs available for the 6800, but also
both 4K and 8K BASIC.

The ability to run ANSIH standard
BASIC programs on the 6800 make the
enormous number of BASIC programs
out there all usable on the SWTPC 6800.
That’s rigl?'c_,'you can run anyones BASIC
programs on the 6800 provided they are
written in standard BASIC (as most are).
4K Basic at $4.95 and 8K BASIC at
$9.95 are inexpensive enough for any-
one to own. They do not cost hundreds
of dollars as in some systems, or only
become available when combined with
purchase of huge amounts of memory as
in others.

Loading even a relatively long program
such as 8K BASIC into your SwTPC
6800 is not a long procedure when the
AC-30 cassette interface is used. This
super reliable and inexpensive (§79.95
complete with cabinet and power supply)
cassette interface uses the “Kansas City”
standard format and will load 8K BASIC
in approximately five minutes.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION

219 W, Rhapsody
San Antonio, Texas 78216

