RT/88MX

SYSTEMS MANUAL

MICROWARE SYSTEMS
CORPORATION

P.O.BOX 954 e DESMOINES, IOWA 50304




INDEX

Section @ - Preliminaries
Introduction
Overview

Section 1 - Console Monitor
Console Monitor Mode
Error Codes
Command Descriptions
Program Abort '

Section 2 - Single Task Mode

Section 3 - Multiprogramming
Overview of Multiprogramming
Tasks

Section 4 - RT/68 Multitask Executive
Task Status Table
Task Status Byte
Time Slices
Task Selection
Task Switching

Section 5 - Interrupt System
Interrupt Processing
Hardware Interrupt Considerations
- Hardware-Caused Interrupt Errors
Interrupt Handling in Single Task Mode
Timed Task Interrupts
Real Time Reference Clock
Interrupt Service Time

Section 6 - Task Design
Task Programming Techniques
System Planning
Use of System Subroutines
Utilizing System Data Values
Position Independent Code
Reentrant Code

Section 7 - Hardware Considerations
RT/68 Hardware Configuraticn
ROM Installation
ROM Specifications

Section 8 - Input/Output System
RT/68 I/0 System

Appendix
Tape Format Date
Interfacing to RT/68 Subroutines
RT/68 Program Listing

Sample and Utility Programs

[oNe]
|
[ ®]

N PR
)
O OO

[} I
= O

:Ffft ww
Wbk o

ntlbnlbnlbnin\n
T
oM O

NONONONON O
[}
~NovoN\no o

~~1~3
!
£ o




Copyright (C) 1977 The Microware Systems Corporation

The . RT/68 program is copyrighted by the Microware
Systems Corp. It may not be reproduced in any form
without express written permission.

Sale of this book or the RT/68 read-only-memory unit

conveys no rights, licenses or privileges to the pur-
chaser other than for use in a single computer system
owned by the purchaser.

The information in this manual is accurate to the best
of our knowledge, however we can assume no liability
other than the price of the product.

Mikbug(TM) is a registered trademark of Motorola, Inc.

The Microware Systems Corporation
P. 0. Box 954
Des Moines, Iowa 50311

/(515) 279-9856
¢85yl 2

Third Edition

Part Number RT68MXM




INTRODUCTION

Thank you for purchasing the RT/68 system. We hope
that the power and versatility of the system will open
new avenues of microcomputer system development and make.
your job easier as it has for us. )

Please read this manual carefully, preferably in two
passes. People -have problems common to assemblers; forward
references are hard to resolve. We have tried to arrange
this manual in a somewhat logical order. Please pay
particular attention to the handling precautions in the
installation instructions as they are very important.

We hope the information contained herein is adequate
to answer most questions about RT/68. However, if you
encounter difficulties you may write or call us at
(515) 279-9856 from 9AM to 4PM central time and we will
attempt to offer the assistance you need.

We would also like to mention that if your application
is for incorporation in a production system, another
version that does not have the console monitor and I/0
and includes support for more sophisticated interrupt
and timing is available. Please write or call for details.

- Several software products for RT/68 will be announced
in the next few months. These include a new compiler,
assembler, editor, and multi-user BASIC system. Purchasers
of RT/68 will be informed as these become available,

If you develop tasks that you would like to share
with others, please send us a writeup and/or listing.
We will distribute a list of these to RT/68 purchasers
from time to time and make copies available at cost of
handling.

We also actively solicit comments and suggestions for
improvement of both the RT/68 program and documentation.
These will be of great value in future developments.

Again, thank you and happy programming.

The Microware Corporation




OVERVIEW

The. RT/68 system is provided on a MCM6830D mask-
programmed read-only-memory that is a direct replacement
for the Mikbug(TM) ROM used in many M6800 systems. In
addition to the functions performed by Mikbug(TM), the
RT/68 ROM contains a 16-task real-time multiprogramming
operating system.

RT/68 provides three modes which are mutually exclusive:
Console Monitor to load, save and debug programs; Single
Task Mode to execute existing Mikbug(TM) software without
modification; and Multi-Task Mode which is the real time
multiprogramming mode.

Sections of this manual are devoted to each of these
modes. In addition, a source listing and information on
installing and interfacing the ROM is- included.

There are many subroutines in the ROM that may be
called from a user program that can substantially save
time and memory. An examination of the listing and the
list of subroutines in the appendix can provide information
on interfacing to these subroutines, »

0-1




CONSOLE MONITOR MODE

The console monitor provides a convenient means to load,
save, alter, and debug programs. Because the monitor and its
initialization routine are entered automatically by the hard-
ware restart vector, there is no need for any manual memory
switch register or "bootstrap" program,

An I%O port (either a PIA or ACIA device) is used for
communication of serial ASCII data to any type of terminal
device. This may be a Teletype(TM), CRT terminal, hardcopy
terminal, etc. In addition, a tape I/0 device may be connected
to the serial line and be used to load and store data in an
"ASR" mode where the monitor program transmits ASCII control
codes to enable and disable the tape devices. If a Teletype
equipped with a tape reader control relay is used, a reader
control signal is also available.

The terminal connected to- the selected type of interface
is referred to as the "console terminal device". All com-
munication between the monitor and the operator is through
the keyboard and display of this device.

Ten command functions are provided. They are:

Code/parameters” Function

D,aaaa,bbbb memory Dump on console display, formatted
P,aaaa, bbbb write (Punch) formatted object tape from mem.
B,aaaa set Breakpoint at specified address

M, aaaa enter memory examine/change function

E,aaaa Execute program (single task mode)

G Go to program on stack; return from breakpoint
L Load memory from formatted tape

R print Registers on stack

S activate multi-task operating System

(ESC) user defined

In the table above the symbols "aaaa" and "bbbb" refer to
the beginning and ending addresses of the functions, respect-
ively. These are represented as four hex characters seperated
by commas. All other.data entered or displayed is also in
either two-character hex or four-character hex format. Enter-
ing the incorrect number of hex characters will result in an
error, even if the value has leading zeros.

When the monitor is awaiting a command, it will print a
$ character as a prompt.

The monitor alsoc has logic to detect seven different
types of error. An error message is printed with a code that
specifies the type of error:

$E,012W ERR #3 (non-hex char in address)
$




The console monitor error codes are:

Code Error

Tape load tried to write in ROM or non-existent memory
Checksum error on tape load function

Non-hex char in hex field

Format error in command string

No change in memory examine/change function

Illegal command code

Breakpoint error, SWI encountered at non-specified addr.

N oONUL T W N

Note that when address parameters are required by a
command, they are seperated by commas. The command may be
cancelled by typing a carriage return anywhere a comma would
normally be entered, Command lines are executed immediately
after the last required data is entered and do not need to
be terminated by a carrlage return,

Each function in the console monitor is written as a
subroutine which may be called from a user's program. The
appendix contains information on 1nterfa01ng to these
routines,

On the following pages, descriptions of each console
function are presented along with examples. In each exam-
ple input entered by the user is underlined. :

1-1




Command: Dump memory on console display
Format: D,aaaa,bbbb

Operation: This command causes the contents of memory locations
aaaa through bbbb to be displayed on the console display device.
The dump is specially formatted so it can be easily interpreted.
A beginning address is printed to the left of each line followed
by sixteen data bytes correspondlng to the contents of memory.

If the ending address of the dump is such that a line has less |
than 16 bytes, the last line of the dump will be shorter.

Note that if the,beginning address of the dump has a zero
in the least significant hex position (i.e., the address is an
even multiple of sixteen) the bytes will be printed so the
position on the line corresponds to the last digit of the
address,

Example:

$0,0100,0146

0100 &B &F 2F 4F 2F &6F 6F &R OR 4F EaA OB 2F 1F OF &F
0110 BF RI' BEF A9 ERD BRI} BF AD RE BE BE BD EF FE BF EF
0120 6F 2R OF 1F &F AE 4A 4F 2B 6F &R OF 4F AF 4F 4R
0130 AL Bl AB BE B9 ER EE E? EF BA FF EF FF FF FF FR
0140 77 70 LS F7 F3 FL F7

$

Command: Punch (write) memory on tape
Format: ©P,aaaa,bbbb

Operation: A Mlﬁbug(TM) formatted object tape of the contents
of memory locations aaaa to bbbb is generated. A tape
device operated in an ASR (automatic send-receive) mode that
is connected to the serial data output line is used to gen-
erate the tape. The ASCII control codes for punch on (hex 12)
and punch off (hex 14) are transmitted to control the device.

Before the data records are transmitted, a series of
sixty null characters are transmitted. If a paper tape punch
is used, these will form a six inch leader, If an audio
cassette-type device 1is used, the null codes will provide a
two second delay (at 300 baud) for the tape motor to come to
full speed.

If the beginning address is greater than the endlng
address, only a leader will be generated.

An exact description of the tape format can be found
in the appendix,.

Example: L o —_

S113E000CA3CBS1LB8L108BN70815326FREN6ABL3Z34 (depending on the
S113E0102609C6343613F78007203A8L3128E735F 24 interface circuit,
S113E0208L333002R7A00ZBLILIESDIZA7ARCO22709A3 the object data may
S10AED3QA7004A100280A0843 not be displayed.)
$

1-2




Command: set Breakpoint
Format: B,aaaa

Operation: A breakpoint is set at program address aaaa.

A breakpoint is a means of interrupting execution of a
program at some specified address and is used as a debug-
ging tool., When a breakpoint is encountered, the contents
of all MPU registers are displayed, and the console monitor
mode is entered. The registers or memory may be examined
or changed. See the description of the "R" command for the
register dump format. *

Program execution may be resumed by removing or relocating
the. breakpoint and performing the "G" command. A breakpoint
is removed by entering B followed by a carriage return only,
and moved by typing B,aaaa where aaaa is the new address.

The breakpoint function operates by replacing the
contents of the memory location with a software interrupt
(SWI) opcode. This opcode is inserted just before program
execution by the G, E, and S commands, and removed (and orig-
inal opcode restored) just after it is encountered, This means
that if the breakpoint location is displayed by the memory
examine/change routine, the "true" opcode will be displayed.
Also, the address of the breakpoint must be of:the first
‘byte of the instruction, and in read/write memory.

When a breakpoint is encountered, the register dump will
be of the state of the MPU just prior to execution of the
instruction at that address. Only one breakpoint is allowed.

If a SWI instruction at an address other than the one
specified, a breakpoint error (error #7) message will Dbe
displayed. An exception to this is the program requested
executive call used by the real-time executive, discussed
in the section on the multi-task executive.

Note that if a breakpoint is set and not encountered,
the SWI opcode will not be removed. .

Example:

$E,0234 - (SET BREAKFOINT AT ALDRESS 0234)
$E70100 (EXECUTE FROGRAM BEGINNING AT 0100)
AG4Z DL 72 89 0336 0234 (REGISTER DUMF DUE TO BREAKFOINT)
$8 ' (REMOVE EREAKFOINT)

5 | (RESUME FROGRAM EXECUTION)

1-3




Command: Memory Examine/change
Format: M,aaaa

Operation: This function allows any memory locations or
peripheral registers to be examined or modified on an
individual or sequential basis. ]
The Dbeginning address is given by aaaa in the command.
The routine will print the address and data for that memory
location., One of three operations may be performed:
1) The examine change finction may be terminated by
entering a carriage return
2) The next sequential location may be opened by
entering a line feed
3) The contents of the location may be changed
by entering a / character followed by the new data.
If the location's contents do not change, an error will
result (error #5). This may occur if the location is non-
existant, defective, or ROM. Certain peripheral control
registers (PIA's, ACIA's) have control registers that are
mixed read/write and read only, which may also result in
an error. .
In the example below, an up arrow corresponds to a line
feed, and a curved arrow to a carriage return.

Example:
Sy 1200 (OFEN FUNCTION BREGINNING AT 1200)
1200 03t (ADVANCE TO NEXT>
1201 27 (ADVANCE TO NEXT)
1202 33734 (CHANGE T0O 34)
1203 A7/00 (CHANGE T0O 00
1204 FF2 (CLOSE FUNCTION)
%

Function: Go to program on stack
Format: G

Operation: Used to initiate execution of a program whose
register values are stored on a stack. The stack is defined
by the contents of a RAM location called SPTMP (addresses
Af@B8-ABF9). This location is initialized to A@42 upon
system reset, or the current stack pointer value when a
breakpoint or abort occurs.

This means that the G command will execute a program
with a starting address stored in locations AZ48 and AZL9
(SP+6 and SP+7) after a restart; or resume program execution
after an abort or breakpoint. After a restart, the G will
result in Single Task Mode execution. After an abort or
breakpoint, the mode will be dependent on the last mode
before interruption. ' .

1-4




Command: Load tape into memory
Format: L

Operation: This command will cause a Mikbug(TM) format tape
to be loaded into memory. The format is described in the
Appendix. There are three types of tape records: header,
data, and end of file. Header records (as well as any other
data not preceded by an S1) are ignored. The function is
terminated by reading an end of file record (S9).

The ASCII codes for reader on (11) and reader off (13)
are transmitted to control the reader device. Additionally,
the control terminal PIA output CB2 may be used to enable
a teletype paper tape reader.

Two errors may occur during a tape load. If the check-
sum read at the end of each data record does not agree with
the checksum generated by the load routine as the block is
read, an error message will be printed and the load will
terminate. The tape may be backed up a block or so and
another read attempted. Each block has an individual start-
ing address so it is not necessary to start from the begin-
ning. If an attempt is made to load non-existant, defective,
or ROM memory, an error will also occur and the load stopped,

Command: Display registers
Format: R

Operation: The contents of the MPU registers on the current
stack are displayed. The current stack is defined by the
contents of the location SPTMP. See the "G" command for
more information. _

The format of the register display is:

" A042 C1 Q0 33 21FF 0103 .
. (8F  C B A XR FC)

The registers may be altered by changing the correspond-
ing locations on the stack. These locations are relative to
the value of the SP. the CC register will be at SP+1, the
B register at SP+2, etc.

Example:

R : " (REGISTER DISFLAY COMMANID

0842 N3 45 02 1000 03%A (CONTENTS OF REGISTERS)

My 0846 , (OFEN XR STACK LOCATION CSF+61)
0846 10/0F (CHANGE HI BYTE)

0847 00/FF (CHANGE LO BYTE)

0848 033 . o (CLOSE MEM. EXAMINE/CHANGE)

$R A _ . (REGISTER_DISFLAY COMMANI)
0842 D3 45 02 OFFF 0394 (REGISTER CONTENTS)'

$ S

1-5




Command: Activate Mulitask Operating System
Format: S ‘

Operation: This command initializes the RT/68 multitask
operating system and give it control of the MPU. The
executive will then begin the process of searching the
task status table for the highest prlorlty task to
execute. If an initialization task is required, it
should be task #1 and given highest priority, or all
other tasks should be off,

The S command resets the CLOCK value to zero. It
does not give the system an initial priority level. This
should be established before the S command is executed.
. This command sets the RT mode flag.

Command: Execute Single Task
Format: E,aaaa

Operation:This command jumps to address aaaa to execute
a program. If the task (program) is terminated with
an RTS instruction and does not reestablish a stack,
control will be returned to the monitor automatically.

Command: User Defined
"Format: (ASCII escape character)

Operation: Jumps to a subroutine at a fixed address

of 7888 (hex). A ROM, PROM or RAM at this address may
provide any desired function. This command was included
with a future disk operating system bootstrap PROM

in mind.

PROGRAM ABORT

When the optional abort switch is added to the 6800
system, an abort (a type of NMI interrupt) will cause
an operation identical to that resulting from a breakpoint.
The program is not altered in any way. Execution may be
resumed by means of the G command.

The abort is not active when the console monitor is
in use, and may not work under very rare circumstances
if a program is out of control and changes the control
terminal PIA status register.

1-6




SINGLE TASK MODE

The single task mode is a provision of the RT/68
system that allows programs that were written for Mikbug(TM)
and cannot run as tasks to have a means to execute without
modification. .
The following list describes attributes that would make
a program unsuitable for execution as a task without modif-
ication:

1. The program does not use or continuously mainvain
a stack., Some programs will use the stack pointer
as an index register (poor practice) and therefore
cannaot tolerate interrupts.

2. The stack does not have enough room. Generally,
if the program used interrupts, it will have
enough room.

3. The program uses system I/0 that must be shared
with other tasks but there is no provision for
coordination. Tasks cannot share a printer on
alternate characters. This may or may not be a
problem, depending on the I/0 requirements of the
other tasks.,

4., There are critical software timing loops in the
program., One notable example of this is.the
software UART input and output routines that use
the control terminal of this system. This routine
cannot be interrupted in the middle of a character,

5. The program uses interrupts. The interrupt driver
routines must be modified. A simple task that
handles the interrupt processing is required.

The single task mode allows programs with any of
the above characteristics to run without any modification.
Either the E command or G command (after reset) will
accomplish this. Interrupts are handled as straight vectors
as in Mikbug(TM).




OVERVIEW OF MULTIPROGRAMMING

A multiprogamming system is an implementation of a control
framework in a computing system where several sequential
processes are allowed concurrent execution by allocating
processor time alternately to the processes.

A less formal definition is a scheme where a portion
of total CPU time is given %o each task so they have the
appearance of executing simultaneously. In the RT/68 system,
each process is called a task, and up to 16 may be active |
at once. All of the tasks are assigned numbers and must be
present in memory. They may or may not be independent, and
may control the execution of each other and communicate by
means of flags or common data areas. In many systems, the
tasks may compete for system resources such as I/0 devices
so some degree of coordination may be required.

In addition, RT/68 is a real-time system meaning that it
is designed to provide control mechanisms for responding to
time dependent or external events (such as interrupts). This
poses a greater degree of both power and complexity.

MEMORY MAP OF A TYPICAL RT/68 CONFIGURATION

top of memory
Operating system
and utility routines

free memory

task #4 program and
data area

task #3 program

task #2 program
task #2 data area
task #1.program

task #d program

common data area

bottom of
memory




" would not be possible otherwise.

TASKS

A task can be defined as a complete unit of object code
that can compete for system resources independently. In
this sense, a task is a module that has the necessary
attributes to exist as a runnable entity within the RT/68
environment,

There are no restrlctlons to the absolute size or
function of a task. Because all tasks must be memory
resident, a task must be small enough to share available
system memory with other tasks.

Any program that can be run by the M6800 can be
written as or modified to be a single task or in some
cases, a group of tasks. O0Often, the process of dividing
a long, complex program into smaller coordinated tasks
allows for easier program developmant.

The reason for creating tasks in a multiprogramming
system is straightforward. The MPU divides its available °
time between several different functions, and the main
control program (executive) needs to have a means for
distinguishing between each entity. By formally defining
what comprises a task, a standard set of conventions
allows a degree of consistency in system development that

We may therefore define  what is a RT/68 task:
An RT/68 task has as components:

1. One or more memory patterns which are machine
level instructions which perform some function
independently.

2. One or more data areas in memory that are unique
to the task; or shared with other tasks.

3. A unique stack area in memory which is continuously
maintained by the task for its exclusive use.

L4, A task status byte in the corresponding place
in the system status table, which contains status
information and operating parameters.

5. A task stack pointer word in the system status
table which holds the current value of the task's
stack position in between task executions.

It is obvious from the definition that the stack is
an integral part of the tasks structure. For more infor-
mation on the stack operations of the M6800 consult the
M6800 Programming Manual. It is the stack that RT/68
depends on for starting, stopplng, and saving task
status.




A task 1s prepared or created from a source program
by an assembler or compiler. Normally all tasks in a
system would be loaded by means of the console monitor
load routine before the system is activated, but it is
not difficult to create a "master task" that has the
capability to load, initialize, and perhaps create other
tasks. )

Once a task is a part of memory, it will have one of
three mutually exclusive states at any given instant. A
task is either active (ready to run), inactive (not ready)
or in execution (has control of the MPU and is actually
running). The state diagram illustrates the possible
paths between each state.

The inactive state has a dual purpose. The executive
"thinks" there are always 16 tasks regardless of how many
actually exist., Thus it is necessary to establish dummy
status information making non-existent tasks appear to
be inactive tasks, because inactive tasks may not ever
run in that state. : :

RT/68 TASK STATE DIAGRAM

ACTIVE }  J EXECUTE DESTROYED

STATE BIT 3iT TASK RUNNING

INACTIVE
STATE BIT CLEAR

AOT READY

Tasks have the ability to call subroutines in the
RT/68 ROM that may be used to control the state and
status of themselves or other tasks. This ability is an
extremely powerful tool to allow for coordinated, prioritized
interaction of tasks-on a time, event, and calculated basis.
_ For example, suppose a "main" task is running, busy
calculating pi to ten thousand places, when a hardware
sensor detects a fire in the computer room and generates an
interrupt. Task X is activated by the RT/68 interrupt
system, and polls peripherals to determine which caused the
interrupt. Task X determines it was the fire detector,
activates Task Y which is the fire sensor device routine,
then deactivates itself and relinquishes control of the MPU.




Task Y then runs and reads temperature data from various
points in the computer room, as well as the time of day. It
determines that the fire is not too bad and it is the beginning
hour of the second shift so someone is likely to extinguish it.
Rather than activating Task Z (which is the device driver for
the sprinkler system) the task reactivates the original task
which still has 9,500 places to calculate.

Note that often in the preceding example, tasks made
decisions that controlled the execution of other tasks by
altering their state. The real-time aspects were the
response to an external event (the fire sensor interrupt) and
to time dependent data (determination of the time of day).
More elaborate constructions can be made as well. Task Y
might have played it safe and rescheduled itself to run
ten minutes later to make sure the fire did indeed get extin-
guished. The timed task capability of RT/68 will allow this.

This example did not illustrate (but implied) the task
prioritizing capability of the operating system. Had the
original "main" task had a higher priority than the interrupt
handler then the fire sensor task may have had to wait for
the main routine to complete its calculation. 'Assuming this
time would be much longer than the time it would take the
computer room to be gutted, a classic "deadlock" situation
would develop.

A deadlock occurs when two tasks(possibly more) have
control over some resource, device, or task that is required
by some other task and will not be released by the other task
until the first releases something it needs to proceed, etc.
Careful thought (and state diagrams) can prevent this SLtuatlon
from arising.

In addition, the executive has the capablllty of allocat-
lng fixed quanta of MPU time to several tasks in round-robin
fashion. Had task Y been truly cautlous, it might have put
itself on an equal priority with the main task and allowed
itself some ratio of the total MPU time to contlnuously keep
tabs on the fire, delaying calculatlon of pi slightly by
sharing MPU time with the main task.

An excellent tutorial article on multiprogramming coord-
ination by Leon Presser may be found in ACM Computing Surveys
for March, 1975. This journal is available from most city
libraries or university libraries. It is highly reccommended
for any RT/68 system programmer. Many examples given in the
article are- dlrectly applicable to RT/68.

3-3




TASK STATUS TABLE

The task status table is the main data structure of the
RT/68 operating system. 1t occupies addresses AZ5¢ thru AZ7F
in the scratchpad RAM. The table contains status, operating
parameters, and stack pointer values for each of the 16 possible
tasks. )
Each task has associated with it a 3-byte area of the table
called the task status word (TSW). The task status word has
as components a task status byte (TSB) and a 2-byte task stack

pointer.

TASK STATUS TABLE

Ags5@ " TSB Task #

Ag51 TSP Hi Byte TSW TASK ¢

Ags2 TSP Lo Byte

AZ53 TSB Task 1

Agsh TSP Hi Byte TSW TASK 1

Ag55 TSP Lo byte

' : <;> TSWs TASKS 2 -~ 14
AZ7D TSB Task 15

AZ7E TSP Hi Byte TSW TASK 15

AZ7F TSP Lo Byte

To find the address of any TSW, the following formula may
be used. The numbers are hexadecimal.

An'= AB58 + (3 % n) where n:is;the~desired task #

A subroutine in the RT/68 ROM can be used to locate. the TSW.
The task number is loaded in accumulator A and the subroutine
FNDTSB (address E33B) called. This subroutine will return
with the index register pointing to the TSB of the correct
TSB.

The task stack pointer holds the information necessary to
start and restart tasks. The section on "Task Switching" deals
with this in greater detail.

The RAM area used for this table is used only by the
multi-task executive. If the single task mode is being used
exclusively, this RAM may be used for any other purpose.

There must be entries in the TSB portion of the status
table even if the corresponding tasks do not exist, as random
data might be interpreted as status information. It is a good-
idea to clear all TSB's that are not used by real tasks.




TASK STATUS BYTE

The task status byte contains all operational and status
parameters for each task. Packed into the eight bits are the
state flag, a time limit value, and a task priority level.

Bit 7 1is the task state flag. It is set to indicate that
the corresponding task is active and should be considered by
the executive during the task selection process. Tasks may use
this flag to control the execution of other tasks., State
flag bits (and preferable the entire TSB) should be cleared if
no task exists for the corresponding task number.

TASK STATUS BYTE (TSB)

6 5 4 3 2 1 g

T T 1 L '

FLAG TIME LIMIT PRIORITY
1 | } ! 1
state flag time limit in ticks | task priority
1=active range 1 to 15; or range § to 7

f#=inactive g=unlimited time

Bits 3 through 6 contain a time limit which deter- _
mines the maximum length of the corresponding tasks time slice
per execution turn. If the value of this number is equal to
zero, the task will not be "timed out" unless an interrupt
or program requested executive call occurs.

Bits 4 through 2 are the task's priority level. This
is used by the executive to determine the ability of a task
to run in relation to the other tasks. This is covered in
detail in the "Task Switching" and "Task Scheduling"” sections.

There are several subroutines in the RT/68 ROM that
can be used to affect the TSB.

They are:

TSKON - set state flag of selected task

TSKOFF - clear " " "o "

FNDTSB - find the address of selected TSB

CTSKOF - clear state flag of current task TSB
In all cases except CTSKOF, the number of the desired task is
loaded in ACC A before the subroutine is called. The subroutine
will return with the address of the TSB in the index register.
CTSKOF will automatically determine the number of the current
(calling) task.




TIME SLICES

Tasks may be allocated a specific maximum amount of
time to run for each of their turns. The time in between .
is ihared by other tasks at the same priority level.(if
any)o. ) ‘

The time period for which the task may run is called
a time slice which is measued in units called ticks. A
tick is the time interval between positive transitions of
the external clock reference signal which is connected to
the control PIA. The precise duration of a tick is the
inverse of the frequency of the clock signal. For example
a 100 Hz clock will result in a tick time of 1/100 second
or 10 milliseconds. With this reference frequency, a task
allocated 13 ticks per turn will run for 10 ms. X 13 =
130 ms.,

The fact that the basic unit of time in the RT/68
system is a relative unit allows flexibility in choice
of time scales and resolution.

The time slice duration is determined by.the time
limit value packed in the task's TSB. This may range from
one to fifteen ticks. If the time limit is zero, the
task will not be time restricted. _

When a task is started, the executive unpacks the
time limit from the TSB and places it in a RAM location
called TIMREM (address #@@2). On each clock interrupt,
this value is decremented, and the task is suspended upon
a one to zero transition. If the initial value is zero
or the task changes 1t to zero, there will be no transition
and the task will not be time limited (TIMREM is never
decremented if zero). )

In addition, the TIMREM value has a full byte and can
represent a number as large as 255. A task may change its
running time to a value greater than fifteen by altering
this location.

The task may not run for its full time slice. It is
possible that an interrupt occuring during its turn will
cause it to be suspended before expiration of the time
slice. The remaining time is then "lost".

A task may also give up whatever time remains in its
turn by executing a program requested executive call. The
subroutine below will accomplish this. It is reentrant and
relocatable,

0800 7C AOCE GIVEUF INC RELFLG SET RELEASE FLAG

0803 01 NOF ' .

0804 OF SEI SET IRQ® MASK FOR ERROR DETECT.
0805 3F SWI SOFTWARE INTERRUFT CALLS EXEC
08046 OE CLT CLEAR IRQ MABK

0807 39 RTS RETURN




TASK SELECTION

There may be up to 16 tasks resident in memory at once,
Each task's status information consisting of the state flag,
a priority level, and time limit is packed into the Task
Status Byte. The TSB, along with the value of the task's
stack pointer is contdined in the System Status Table. When
the executive needs to select another task to run, the infor-
mation in this table, along with certain system parameters,
are used as the basis for the selection process.

The process of new task selection occurs:

1. When the system is first activated by means
of the Console Monitor's "S" command.

2, When a non-deferred interrupt occurs.

3. When a task executes a programmed executive
call, '

L, When a running task's time limit expires.

The executive will select the next task on the basis of
which task has the highest priority level that is greater
than or equal to the system priority level, and is active as
defined by it's state flag.

If more than one task is active and at the same priority
level which is higher than that of any other tasks and the
system priority level, all the tasks at that level will run
in numerical order of their task numbers, round robin fashion.

If there are no tasks active and at a level at least
equal to the system priority level, the executive will retain
control until a task of sufficiently high priority becomes
active (generally due to an interrupt).

In any case the only task or tasks to run are those
that are active and at the highest priority level.

As an example, suppose we have a system in which there
are 7 tasks with the following attributes:

Task Priority State

Active

‘Active

. Inactive _
Active System Priority = 3
Inactive

Active

Active

O\ W0 D S,
wWEEEaNh &

When initialized, the order of execution will be
£:3,5,8,3,5,8,3,5000040.+ Task #1 will not run because it is
at a lower priority level than both the other active tasks
and the system priority level. Task 2, though of a higher
priority, will not run because it is inactive, the same
reason task 4 will not run. Suppose an interrupt occurs and

4-3




activates task #2. Task #2 will then be the only task to
run because it has a higher priority level than any other

task.
TASK SWITCHING

Tasks are switched whenever the executive is activated,
always due to an interrupt of one type or another. In a _
program-requested executive call, a SWI interrupt is executed,
A time slice expiration will occur on the last NMI clock
interrupt, as will a timed task interrupt.

When a task is interrupted, the MPU's hardware causes all
the registers in the MPU to be pushed on the task's stack.
Suppose the task's stack looked like this just before a clock
interrupt that is the last of the task's time slice:

addr data

S11F 22 (data)
- P11E 3A (data)

£11D 28  (empty)

pgLic 6F (empty)

The stack pointer has a value of Z11D which is the loc-
ation of the next "empty" byte of the stack. The stack builds
downward when data is pushed (placed on the stack). Now the
interrupt occurs, the registers are pushed on the stack, which
now looks like: '

SP

SLLF 22 (undisturbed)
J11E 34 (undisturbed)
#11D 12 (program counter - next instr. addr.)
¥ giic 14 (program counter - low byte)
Z11B Ag (index register high byte)
Z11A 39 (index register low byte)
2119 g1 (accumulator A)
2118 22  (accumulator B)
g117 D3 (condition code register)
SP = g116 38 (next empty) '

At this point, the stack pointer alone is sufficient
information to be able to store and still be able to restore
the exact state of the MPU during a later operation. The
executive then loads the saved value of the stack pointer and
executes an RTI instruction which causes the reverse of the
process above to occur (the register "images" on the stack are
pulled back into the corresponding registers) and task exec-
ution to resume.

A stack pointer value for each task is saved in the System
Status Table for this purpose. Note that because the system
starts tasks in this manner, when a task is first loaded the
beginning address must be in the appropriatelocation on the
stack.,

L4




INITIALIZE SZARCH
VARIASLZES

TSKTMP=# of highest priority
runnable task found

DTYTMP= associated priority
FNDFLG= runnable task found
flag (bit 7 of PTYTMP)

TSkTmr=l |
prvrmlEg |
ANDFLE TS

N2 CURTSK N = search loop conver
start with last task run
CURTSK = # of last task run

[ 7 BT |

Get TSB of task N
GET rs.s(,v)

Test task N against previous

PTYTMPE PrY(a)
| TSR TrmAz N
ANO FLG 2l

J

g / - make N new
=M= N= next task *highes"
(=+ Ausuirep to be tested

thaw We/5) (counts down)

All tasks tested?

Runnable task found?

Priority of highest runnable
task hizher or equal %o
system priorivy”?

RUN
TASK




INTERRﬁPT PROCESSING

This section deals with a topic that has a greater
potential for confusion than any other. This 1s because
the RT/68 firmware uses interrupts for internal functions
and to synthesize a fourth type of "firmware interrupt”.
To minimize confusion, we will define two new types of
"user" interrupts and give them distinctive names.

The first is the user NMI, called UNMI. This refers
to any NMI interrupt not caused by the reference clock
signal or the abort switch, i.e., an NMI caused by some
user device. An NMI becomes a UNMI after preprocessing
by the RT/68 NMI routine, it having been determined not
to be an internal interrupt.

The second is a firmware creature that is synthesized
from the NMI/clock interrupt by the internal NMI handler.
It is called the timed task interrupt (TTI) which is in
effect a 16 bit presettable timer that causes an interrupt
when it reaches zero. It is decremented every tick (but
not less than zero) and implemented in software. It is
given the same characteristics as other interrupts.

We shall also consider IRQs which in RT/68 can
only be caused by user devices. We shall not consider the
SWI interrupt because it is used for "internal" functions
only.

Now the three type of interrupts of interest (UNMI,TTI,
and IRQ) have been defined another powerful characteristic
of the RT/68 system may be considered. All three interrup?t
types are handled by the same general service routine and
may be totally software prioritized and scheduled.

Each type has an associated status byte and task. The
status byte contains two values: a mode flag and a task
number corresponding to the task which is to perform the
user's interrupt service.

The status bytes are named NMITSK, IRQTSK, and TIMTSK.
Bit 7 of, the byte is the mode flag. Bits g through 3 com-
prise the associated task number.

When an interrupt occurs, the executive immediately
fetches the appropriate status byte. The task number is
extracted and the designated task is activated by setting
the task's state flag in its TSB. The mode flag of the
interrupt status byte is sampled and if it is clear, the
interrupted task is resumed. The interrupt has been defer-
red for later execution of its service task.

If the mode flag is set, the executive 1s called to
select a new task to run. Note that the next task to
execute will not necessarily be the interrupt task. The
task selected will be the one that has the highest
priority.




B

IZRQ
ZNTERRUPT,

GET ZTRQ®
STATUS BYTE

“rearsk’’

NMT
INTERRUPT,

ONLQ

VCEMar@

CALL
ErECUTIVE
7O SELECT

NEW TASK

PROCESS
CLOCK OR
ABORT
1
:Crfr
|
GET ~NmT GCET Trr
STRTUS BY7& STATUS BYTF
“urmz s Yrrmrsx?
EXECcure
Tump TO
[ vECTOR
EXTRACT TASK#
£rom
STATYS BYTE
ACTIVATE
7TRAsK
RETURN

INTERRUPT‘SYSTEM PROCESSING FLOWCHART

5-1

RETURN
oR
CALL

EXEC




A summary of the interrupt process:

1. interrupt occurs

2. system fetches either IRQTSK NMITSK, or TIMTSK
status bytes, dependlng on the type of interrupt.

3. The task specified in the -status byte is turned
on (activated) by setting its state flag.

4. The mode flag (B7) in the status byte is sampled. if
clear, the interrupted task is resumed. If set, the
executive is called to select the next highest
priority runnable task (not necessarily the inter-
rupting task).

The operation of this interrupt handling system is
designed so it will never alter the normal heirarchy of
task execution, that is it will never force a task to _
run that has a lower priority than some other runnable task.

Interrupt example #1 - Prioritization follow1ng MPU hardware
priority.

. The example system has seven tasks numbered 4 to 6
Tasks #-3 are the "background" tasks that are to run round-
robin between interrupts. Tasks 4,5 and 6 are the IRQ, TTI
and NMI service tasks respectlvely. The system data values
are set up as follows:

TSB(Z) = 1 14 (actlve, tlme 1limit=8, prlorlty=1)
TSB(1) = 1 ﬁﬂ ggl ( " =8 =1)
TSB(2) - 1 ( " " " _1/6 " =1)
TSB(B) = 1 ( " " " =3 " =1)
TSB(4) = ﬂ (inactive " " unlim, " =2)
TSB(5) = ﬁ ﬂli ( " " unlim., " =3)
TSB(6) = & ﬁ 144 ( " " " unlim., " =4)
TRQTSK = 1 xxx ﬂlgﬁ (immediate-specified task = 4)
TIMTSK = @ xxx 4141 (deferred -specified task = 5)
NMITSK = 1 xxx #4114 (immediate-specified task = 6)
SYSPTY = g@#ggedggl = (system priority = 1)

When this system is first activated, tasks £,1,2 and 3
will run round robin completing a cycle of task executions
every 29 ticks (the sum of the four active task's time slices).
The three interrupt service tasks do not run because they
are inactive.

Assume a timed task interrupt occurs. TIMTSK is sampled,
and task #5 is activated, but control returns to the interrupted
task because the mode flag is clear. However, task 5 will
run immediately following completion of the é¢urrent task's
time slice because it has a higher priority (3) than the
others. Now assume that the current task is complete and




the executive starts task #5. Now an IRQ interrupt occurs, the
IRQTSK is sampled and task #4 is activated. 'he mode flag
in IRQTSK is set so the executive is called to select a task.
Task #5 will be selected again and run continuously because it
still has the highest priority. After some time, it will
complete its function, turn itself off (deactivate iktself by
clearing its mode flag in the TSB) and call the executive.

The executive will now execute task #4 (IRQ service)
because it has becomé the task with the highest priority.
At this point, assume an NMI interrupt occurs. NMITSK
is sampled and task #6 is started. Because 1t has the
highest absolute priority in the system and has unrestricted
time, it will unconditionally run until it completes its
function, deactivates itself, and calls the executive. At
‘this time, task 4 (the IRQ service task which was interrupted)
will run until completion if not interrupted again. When
it is finished, tasks # through 3 will resume round robin
operation again. '

Interrupt example #2 - Interrupt task entry into queue.

Thisnexample has five tasks. Tasks £ -and 1 are the
normal background tasks. Tasks 2, 3 and 4 are the interrupt
service tasks. '

TSB(F) = 1 1111 F14 (active, time limit=15,- riority=2
TSB(1) = 1 #1114 414 (active, " "= 6, PE y=2§
TSB(2) = @ 1888 #1g (inactive, " " = 8, no=2)
TSB(3) = 2 1 ﬂﬂ #18 (inactive, " " = 8, no =2)
ISB(4) = £ #4pF #11  (inactive, " " unlim. "  =3)
IRQTSK = £ xxx g@1f (deferred, specified task = 2)
TIMTSK = 4 xxx /2511 (deferred, " "= 3)
NMITSK = 1 xxx #144 (immediate, " " = L)
SYSPTY=4

. In this case, before any interrupt, tasks £ and 1 will
alternately run until an interrupt occurs. Note that tasks

2 and 3 (the IRQ and TTI) tasks have a priority equal to

the "background" tasks, as well as a time limit. When these
interrupts occur, they will join the queue and execute round-
robin with the other tasks. The NMI task has a higher priority
apd unlimited time, so after an NMI task 4 will execute con-
tinuously until completion.

Execution order before interrupts: &, 1, &, 1, 4, 1.......

" " after TTI : ﬂ, 1, 3, ﬁ, 1, 3 DR N Y R R Y
" " " IRQ:ﬁ’ 1, 2, 3, ﬂ, 1, 2, 3i0eeees

5-3




-~

The preceding examples illustrate only two simple
possibilities for interrupt programmirig. The possibil-
ities for other structures is virtually unlimited. Con-

.sider that a task (or tasks) can dynamically alter the

status bytes TIMTSK, IRQTSK, and NMITSK allowing several
tasks to be associated with one type of interrupt.
Alternately, one task may serve as the handler for two or
three interrupts (particularly useful if the service task is
reentrant) by having the status bytes specify the same task.

The interrupt system can also alter various task and
the system priorities,etc.

Hardware Interrupt Considerations

The M6800 MPU has two external interrupt inputs, IRQ
and NMI. These are "wire-ored" in most systems following
the protocol that a peripheral requesting an interrupt
"pulls down" the appropriate signal line and the software
service routine polls the peripheral status registers to
find the interrupting device. The device's interrupt
flag then releases the line. The IRQ 1nterrupts may by
inhibited by setting the interrupt mask bit in the MPU's
condition. code register,

The interrupting device on the IRQ system must rel-
ease the IRQ line before the interrupt mask bit is
cleared or another interrupt will result due to the same
occurence., Return from interrupt instructions (RTI) re-
load all MPU registers including the condition codes
from the stack. The RT/68 system uses this instruction
to start tasks. It is important therefore for the IRQ
service tasks (and tasks of higher priority) to have
"their" interrupt mask bit set until they clear the
peripheral register's interrupt flag. In practice, the
task should run with this bit set all the time, and
release control to the executive following preliminary
interrupt identification. A good system involves the
use of one task solely to poll peripherals and clear
interrupt bits, then activating a specific service task.

The NMI system may not be masked. However, it is
possible to pulse the NMI line for about 5usec to
cause an NMI. It is important that NMI tasks in a system
where NMIs are wire-ored are not deferred too long because
abort or clock interrupts will be inhibited as long as
this line is held low. Generally the NMI system is used
for critical peripherals (such as the clock) only and
should not be heavily loaded., Most systems will operate
optimally on the TTI and IRQ systems alone,

5L




Hardware-Caused Interrupt Errors

Almost all M6800 MPUs manufactured until very recently
have a quirk where 1f a SWI and NMI occur at the same time
an error condition would occur. The problem is that the MPU
would. fetch the interrupt vector from the IRQ location
instead of either the NMI or SWI location., Because RT/68
makes frequent use of all three type of hardware interrupts
logic was added to the interrupt processors in RT/68 to
detect and correct this error. A SWI istruction alone
as used to call the RT/68 executive is not entirely
reliable. The following code must be added when the
SWI is wused:

NOP
SET
INC $AQPE
SWI
CLI

Page A-11 (appendix A) of the M6800 Applications
Manual elaborates on this subject.

The code above also illustrates another glitch. The
SEI instruction may not operate properly unless the pre-
ceding instruction is a NOP (no operation).

Another potential problem concerns reading of PIA
data registers by routines that are not part of interrupt
service. It is possible for the read of the data registers
to clear the interrupt flag before the interrupt service
routine polls it. This happens when the interrupt occurs
during the PIA read instruction.

PTA configuration that eliminates this problem is the
best solution. Otherwise, additional code to correct the
problem (unidentified interrupts) may be necessary.

Interrupt Handling In Single Task Mode

When the multi-task executive is not active, the
interrupt routines for NMI and IRQ use the contents of
memory locations AZ@6-AFF7 and APPP-AGFL respectively as
jump destinations.

This is identical to the operation of Mikbug(TM).
"In single task mode the contents of memory loaction $ABZE
must be zero.

U
1
wn




Timed Task Interrupts

The TTI is a feature that allows precise generation
and measurement of time. A 16 bit value in memory. called
TSKTMR (addr Z@gg3-4gg4) is decremented by the clock
interrupt service routine contained in the executive at
every clock interrupt (tick). _

It is not decremented if zero, in which case it is
inactives. Upon a transition from a count of one to zero
a TTI interrupt will occur. .

The range of this timer is 1 to 65,535. The absclute
time is dependent on the clock input frequency. If a
60 Hz clock is used, each tick is 1/60 second long and
the maximum time possible is 1092.25 seconds or 18 minutes,
12,25 seconds., The resolution of the timer using a simple
‘load-counter-then-wait is + 1 tick. The software can
sync the clock by first giving the counter a time of
one tick, then resetting the timer to the desired value
as soon as 1t becomes zero., This is necessary because
the time the counter is set is random in respect to
the time the next decrement occurs, so the first interval
may be a random fraction of a tick long.

Even more precise generation may be accomplished by
having external sync or counters that may be reset by
some PIA or other peripheral input. The SWIPC MP-T timer
circuit may be used by connecting the interrupt output
of the card to the clock input on the control interface
card (and not connecting it to the IRQ or NMI on the
system bus).  Write for further details on interfacing.

Real Time Reference Clock

This 16 bit value called CLOCK (addr Z¢45) may be
used for time reference by tasks. It is incremented at
each tick and is not used by the system so it may be
set, cleared or otherwise changed any way desired,

Once again, the abselute time is dependent on the
input clock rate.

Interrupt Service Time

It takes the RT/68 executive about 1ms. to switch
tasks, This means that interrupts serviced by a simple
immediate-execution system have a top rate of approxi-
mately 1K intr./sec. Scheduled (deferred) interrupt
service with a master interrupt service task can reduce
the number of context (task) switches and achieve much
higher rates. This applies to user interrupts, system
clock interrupts are serviced in about 150 microseconds.

5-6




TASK PROGRAMMING TECHNIQUES

_ Programming an RT/68 task at the assembly language level
- is not significantly different than developing any other
M6800 program. There are no restrictions on the use of any
instruction or memory, except those which may destroy other
task's data or program areas.

There are certain requirements for programs to exist as
compatible tasks in the RT/68 environment. The most import-
ant considerations are:

1. The task must maintain its stack, as well as
its status data in the system status table., This
implies that the task also initializes same in the
proper manner.

2. There must be provisions for any necessary
coordination for tasks that compete for system
resources (peripheral devices, other utility
tasks, memory, etc.)

3. The task must interface with the operating
system and system data structures following the
‘proper conventions, ' ) _

All of the above are treated in the specific sections
preceding that deal with the system features affected. The
balance of this section is designed to give specific ex-
amples and rules for designing tasks according to them.

System Planning

The first step in designing applications tasks for the
RT/68 environment is developing an overall system plan. The
plan should address itself to the specifics of:

Memory Allocation Function (task) prioritization
I/0 coordination Time allocation
Interrupt handling . Task intercontrol

The interdependence of tasks in a multiprogramming
system, particularly when tasks divide functional parts
of an overall application, is often intimate and careful
consideration must be given to these effects. "Deadlock"
situations can arise when tasks are competing for some
resource (example - a printer) but inhibit each other from
gaining control of the resource by holding another resource
required by the other task.




Such a deadlock situation is illustrated in the flow-
chart of two competing tasks. Task A is programmed to
copy a file on tape unit 2 to the disk. Task B is attemptin
to dump a disk file to a tape on the same drive., Both o
device requests from each task meet with sucess; but as soon
as they are granted control of one device they are locked

TASK
B

<>

SET SET
TAPRPE - DISK
BUSY BusyY

. /Dr R - DEADLOCK POINT y

Busy

Tasks control resource
required by other to proceed

(N - | N
| _ L

into a situation where the other device cannot be used. There
are two solutions to this problem. First, the devices

might have been requested from a resource allocator task which
when persented with the entire device requirements of each
task could have scheduled each task use of the devices at
non-conflicting times. An alternative method is to

grant one task priority by programming the other to

release control of its first device if the second is

not available. :

It is not necessary for the system resource being
requested by competing tasks to be I/0 or other hardware
devices. Tasks, memory area, etc can be consided as a system
resource if two or more tasks may require its use at any time.

6-1




Other factors can contribute to a more fatal type of
deadlock, where task priorities have been established so
that no task has a high enough priority to execute, perhaps
because the system priority is higher than that of the highest
runnable task. Be certain that at least one task has an
active state at any given time (and presumably can activate
other tasks as need be). ' .

The idea of the master task which in effect is a super-
executive for a specific system can eliminate many problems
such as deadlock, device and task conflict, and perhaps
allocate "utility" tasks. This task should have the highest
priority in the system but not necessarily have a very long
time slice. It can read the state of all tasks by simply
scanning the system status table and determining if the
wrong combination of tasks are in illegal or conflicting
states.,

A master task may also be the system interrupt handler,
polling peripherals and activating tasks as necessary. In
any case, best system performance can be expected if one
type of interrupt is handled by one task if there are multi-
ple devices or functions associated with a particular type
of interrupt. )

Total system "crashes" are invariably due to a task
getting out of control and destroying the data or program
areas belonging to other tasks. Large multiprogramming
computers have hardware to prevent this, in a microcomputer
careful programming must be substituted. Almost always
out of control tasks are the result of program loops that
never reach a terminating value for a loop counter. Try to
avoid loops where the counter test is for equality only:

USUALLY: LOOP CLR #,X BETTER: LOOP CLR 4,X

INX INX
ING B INC B

CMP B #1744 CMP B #1448
BNE LOOP BCS LOOP

Filling unused areas of memory with SWI ($3F) opcodes
can occaslionally save a system from destruction by resulting
in a breakpoint error if an out of control task somehow
fetches instructions from the area. An examination of the
system using the console monitor can often result in the
identification and cause of the problem,

Memory maps that are graphic illustrations of memory
allocation can be another important aid in system design.
The more detail shown in the map, the more useful a tool
it becomes,




Real-time applications where external or timed events
alter the state of the system pose greater design problems.
A global concept of task concurrency must be developed by
the programmer. Programs and instructions within tasks are
sequential in nature; the MPU executes them in a determined
and semi-continuous order, The tasks as a whole in a real-
time situation are dynamic in nature and the periods of act-
ual execution are interleaved in most cases.

The best way to ‘conceive this is the inside/outside
approach. Memory values that are parts of and used only
by a-specific task, or local variables, can be thought to
" be "inside" a task. These can be considered to be "reli-
able" and may be considered as any other program. '

Memory locations that are shared by two or more tasks
are "outside" the task and subject to change without notice.
These "global" variables can even change between the executlion
of two sequential instructions within a task. This is
because tasks are interrupted and restarted by the RT/68
executive in a transparent manner, that is there is no
change in the state of the program after it is interrupted
that the task can detect. :

However, the value of global variables can seemingly
change between instructions. For example, suppose the
sequence of instructions below is being executed by task
X when it is interrupted by task Y.

, TASK X
1237 DA A SYSTMP (ACC A = SYSTMP = $04)
1239 CMP A #3085
(interrupted here by task Y)
o PORTION OF TASK Y
B66Z INC SYSTMP (SYSTVMP = 4 + 1 = 5)
' (control returned to task X)
TASK X
12%2 B@Q LABLS (no branch, ACC A did not = 5)

The question is, should task X have branched when the
instruction at address 123A was executed? At the instant the
instruction was executed the branch condition nominally was
true (SYSTMP did equal 5). The condition code register was
not disturbed during the time task X was inactive and when
it resumed the Z bit was set. ‘ .

' There is no answer to the question but there are tech-
niques to insure that tasks are not interrupted at critical
momemts.,

6-3




Defining the Task Stack

As discussed previously, each task must continuously
maintain an individual stack area. This is generally defined
in the part of the assembly source program where other data
storage locations are established. The main difference in the
way a task stack is set up as opposed to typical M6800 programs
is the program is not required to load the stack p01nter reg-
ister with an initial value,

Instead, the executive obtains a value from the task's
TSW to load in the SP register, and executes an RTI instruct-
ion to start the task. This loads all MPU registers from
the stack and starts execution. This means the starting
address of the task must be at the RAM address that corres-
ponds to the . program counter "image" on the stack., If desired,
other registers may also be initialized in this manner.

How many bytes must be reserved for the stack? This de-
depends on a number of factors. First, there must be enough
to satisfy the task's requirements for subroutine return
address nesting and data storage (PSH, PUL operations, etc.)
as in any other M6800 program. The executive requires at
least 20 bytes plus an additional 7 if any IRQ or NMI inter-
rupts are caused by user devices., Reserving 32 bytes will
almost always be adequate for most system requirements (above
the task®s requirements).

The following M6800 assembly language statements will
properly define a stack:

71 ﬁugﬁ ORG $g4FF 1low limit of stack
g2 gugs RMB 34 save stack area
23 pUiE FDB START form PC image on stack

oL gu2g STKPRT EQU  *-8 define task stack pointer

Line 1 defines the lower limit of the stack (remember the
stack builds "downward") Line 2 reserves 30 bytes of storage
for the stack, in this example addresses g4g@ to g4iD., Line 3
gserves to form a 2 byte value on the top of the stack that is
the initial value for the program counter (the starting address
of the task). This example therefore creates a 32 byte stack.
Line 4 gives the symbol "STKPTR" the correct value for the
task's initial stack pointer to be used in the definition of
the Task Status Table. The asterisk refers to the present
value of the assembler's location counter and is equal at line
4 to the next byte follow1ng the top of the stack, This will
result in a value of Z418 in this example. '

Notice that if the task's stack pointer equals this value
and an RTI occurs (as does when the task is started) the MPU
registers will be loaded from addresses g419 to ZL1F. If line
2 were changed to reserve 25 bytes instead, FCE and FDB assem-
bler directives could be inserted afterwards to initialize
the CC, ACC B, ACC A, and XR registers respectively with some
values,




If more than one task is being generated by the same
assembly, all TSP$ and TSBs may be defined in Sequence
at the beginning of the source program for clarity.,
Do not forget that status table positions that correspond to
non-existent tasks must be zeroed. )

Use of System Subroutines

Exclusive of the various I/0 subroutines contained in
the ROM there are four important subroutines that may be
called from tasks. '

They are all based on the subroutine FNDTSE (address
E33B). FNDTSB is called with a task number in accumulator
A. It will return with the TSB for the specified task in
ACC B. The index register will contain the address of the
TSB. This subroutine is useful for examining or altering
a task's status byte. The example below will change the
priority of task 7 to level 3. .

LDA A #7 "Desired task #

JSR $E33B Get TSB

AND B #3F8 Mask out old priority
ORA B #343 - OR with new priority
STA B #,X Replace TSB

Two other subroutines (TSKON, addr E33C and TSKOFF,
addr E335) exist and are used to turn tasks on and off
by setting or clearing the task's state flags. The task
number is also passed in ACC A. The example below will
deactivate task #13

LDA A #13
JSR  $E335

The last subroutine, CTSKOF (addr E333) is used to
turn the calling task off. It obtains the correct task
number from a system variable. It is used mostly before
a task passes control to the executive after completing
a function or to give up the remainder of a time slice.
The following code should be used to accomplish this:

INC & Set system flag (addr f#)
JSR  $E333

NOP

SEI Set interrupt mask

INC  $AZPE Set release flag

SWI Call executive

JMP

6-5




_ The JMP instruction following the software interrupt

is included if the task has completed its function and may

be called again later. The JMP will cause the task to
re-execute if the destination is the beginning of the task.

If the executive call is for some other reason (such as to’
give up unneeded remaining time in the slice, etc.) %he

task instructions would simply continue after the SWI instruc-
tion. '

Utilizing System Data Values

The executive malntains many data values that can be
read and/or modified by tasks to perform special functions.
The specific memory addresses can be found on page 1 of the
RT/68 listing. :

SYSMOD will inhibit task switching while non-zero,.
This is important if the task . is changing shared data that
must be completely processed without interference, If
an interrupt occured during this time, INTREQ will be non-
zero. This should be tested and the executive called if
necessary.

TIMREM represents the time remaining (ticks) of the
current task. It may be changed to any time from 1 to $FF
or zero, which results in unrestricted time.

SYSPTY is the current system priority level. It
acts as a mask, that is, no lower priority task can be
executed. Care should be taken so that this value is never
greater than seven, or the system will stall.

Position Independent Code (PIC)

A powerful feature of the M6800 instruction set is
the ablility to create programs in position independent
code. PIC is a program that may be relocated simply by
moving it; 1t is not necessary to recompile or reassemble
it., PIC must use branch-type instructions in statements
that transfer program control, because the branch is
to a location relative to the current value of the program
counter, If the transfer must be made to an address out of
range of a single branch, intermediate BRA instructions
may be used. Data areas are best created in PIC on the
stack using the TSX instruction and the indexed addressing
mode, as no absolute RAM addresses are used.

PIC may reference external fixed addresses for common
non-relocatable subroutines or data.. RT/68 compliments
PIC because tasks may pass data and control to each other
through the executive, and addresses do not need to be
"fixed" if the PIC is a complete task.

- PIC allows fast and easy dynamic memory allocation.

6-6



Reentrant Code

Certain instructions and addressing modes of the M6800
support a type of program called reentrant code. A reentrant
program module has the property of being able to be inter-
rupted, entered by one or more other calling programs, and
resume execution withéut change from the point of inter-
ruption. Use of reentrant subroutines can save substantial
amounts of memory by allowing tasks to share common
subroutines., For example, several tasks can share a re-
entrant multiplication subroutine which otherwise would
need to be included in every task that used it.

The simplest type of reentrant code for the M6800
consists of code that uses no storage other than the MPU
registers. The following subroutine is of this type. It
multiplies the binary number in accumulator A by 10, useful
in converting BCD to binary.

]
v y)
]
=

MULTEN TAB A
' ASL
ASL
AST
AST
ABA
RTS

* 8
* 2

o e e e

A
B
A

Win

N
N
(N*8)+ (N*2)=NH10

If this subroutine is interrupted, the register
contents are saved on the sftack and another task can
call the subroutine and execute it. When the original
task is resumed, the register contents will be restored
and execution would continue as it was before interruption.

Often, however, subroutines may require more storage
than is provided by the MPU registers. In this case data
area on the stack can be accessed and used for intermediate
storage. The PSH, PUL, INS, DES, TSX and index addressing
mode allow for utilization of the task's stack as temporary
storage in a reentrant manner. Each task that calls the
subroutine has an individual stack (though a common stack
works also) that provides the storage for its "copy" of the
reentrant subroutine.

Reentrant code can be used to implement device handlers
for common - types of peripherals, as 1in the ACIA read routine
below. The calling task loads X-rég with the ACIA address:

RDACIA LDA B 4,X READ STATUS REG
ASR B SHIFT READY TO C BIT
BCC RDACIA BRA IF NOT READY
IDA A 1,X READ DATA BUFFER REG
RTS DONE

6-7




RT/68 HARDWARE CONFIGURATION

The addresses of the RT/68 ROM range from EFFF to E3FF..
However, the restart and interrupt vectors are also contained
in the ROM so it must be able to respond to all addresses

/0
)

AG-AT & 23 P -ha
A2 e— ~ ::' csg RT68
& cst Rom
ng ;%?47 ’3csale
Bus A« 75 N\ Vo 2 e
7YL500 ¢ :
Al3 & 7¥ 4504

MAXI MU ADPRESS LECOOE

from EFZ¥ to FFFF. This means that address lines Al¢ through
A12 cannot be decoded. A circuit that will accomplish this
is i1llustrated above. .

If full decode is desired, a seperate PROM that has the
correct interrupt vectors included can be placed at the top
of memory. The vector data is found on the last page of
the source listing.

Any circuit that accepts the MC6830L7-L8 Mikbug(TM) ROM
will properly decode the addresses for the RT/68 ROM.

: The circuits on the following pages give example
configurations for several optional features. The abort
switch may be connected to the control terminal PIA input
CA2. The switch circuit must have a normally low, debounced
function. If this feature is not used, ground the CA2 pin.

Two circuits are show that can provide a stable, precise
clock signal for the RT/68 multitask executive. This is
also an optional feature. Both circuits cost less than a
dollar or so to construct and are extremely simple, but
provide an accurate reference signal. This clock signal
should be in the range of 10 to 100 Hz for optimum operation.

This signal is connected to control PIA input CAl, which
also should be grounded if not used.

The level of PIA inputs PB6 and PB7 determine the
number of stop bits and interface type respectively for
serial I/0 to the system console device., Thes -must be
established by jumpers to ground or +5 volts.

It is possible to use outputs from another PIA or
a latch circuit connected to the control PIA to allow
goftware control of these parameters. The circult should
guaranty a specific logic level at system initialization.

] A schematic for the I/0 level drivers and receivers

for both current loop (teletype) and RS232 is given. This is
a typical configuration and several other variations are
possible. As a rule, any interface circuit that is designed
for Mikbug(TM) will operate correctly.




RT/68 SYSYEM MEMORY UTILIZATION MAP

"Images" of RT/68 ROM due FEFF
to partial address decoding
to allow access to interrupt
vector addresses.

E400

--TT----- - -0 07 -~ 7 "E3FF |

RT/68 Program (ROM) e

EZEP

DFFF
Not used - available for
RAM, ROM or I/0

Ag8f

Operating system RAM:

Aﬁ #-A013 = monitor temp.
14-AgL9 = stack

AﬁSﬂ AB7F = status table. (not

used in . single task mode) = Aggg

9FFF
Not used - available for
RAM, ROM or I/0
8448
(SWEPC ‘Control and/or console 84ﬁ7
port #1) interface PIA 8gplL
(SWTPC Console Interface ACIA 8gg1
pért #4) (if option selected) 8448
7FFF
Not used - available for
RAM, ROM or I/0
| _ o AR
RT/68 multiprogramming exec. ﬂﬂﬁB

“temp. (multi-task mode only) Prry




ROM INSTALLATION

CAUTION ! ¢ ! THE RT/68 ROM IS A MOS DEVICE AND EXTREMELY
SUSCEPTABLE TO DESTRUCTION THRCUGH STRAY STATIC CHARGES
PRESENT ON THE HUMAN BODY. READ AND FOLLOW THE INSTRUCTIONS
BELOW CAREFULLY ! ! !

1. Before handling‘any MOS devices, neutralize your body
~ by connecting a metal watchband to a known good ground
(cold water pipe, electrical conduit pipe, etc,) through
the included 1 Megohm resistor. THE RESISTOR IS ESSENTIAL
FOR YOUR SAFETY as it can prevent a shock from a defective
soldering iron, etc. Don't wear nylon clothing.

2. Remove all power from the system before removing any
circuit boards or parts. Remove MOS devices before soldering
any foil or wire connected to it.

3. Do not sktore the ROM in any nonconductive material.

For SWTPC 6800 systems:

1. After you have followed the precaution above, remove the
MPU and Mikbug ROM (IC°'s 1 and 2 on the MP-A board).
2., Find pin 15 of the ROM (IC2) socket on the bottom of the
card, A foil runs from this pin that bends slightly and
then terminates about 3" from the socket in a feedthrough hole
that connects to the ground foil on the top of the board.
Cut the foil just before the feedthrough hole. This should
be done carefully with a razor-sharp instrument. Make sure
the foll is completely cut.,
3. Looking at the bottom side of the card with the molex
connectors on the bottom, note that there is a feedthrough
hole on the same line and 3/8" to the left. of the foil
just cut. Jumper a wire from the cut foil (ROM side) to
this hole. This modificationenables address line A9.
Replace the MPU and insert the RT/68 RCM in the IC2
socket.

PIN 2

Location of MP-A
card foil.

BOTrom E06E OF CARD, SOLDER SIDE




4, Remove the PIA (MC6820-- ICL) from the MP-C board.

5., Solder a jumper from pin 15 (PB5) to ground if PIA

interface is to be used, or +5 volts for ACIA interface.

6. Solder a wire from pin 40 (CAl) to the clock generator
circuit. If not used, ground the pin. . '

7. Solder a wire from pin 39 (CA2) to the abort switch _C
debounce circuit. If not used, ground the pin. Tie IRQ-A to NMI.
8., Replace ICl, taking cdre not to bend the pins.

9, If an ACIA-type interface was selected, insert a

SWTPC MP-S type interface card in I/0 slot #e and

connect the terminal to it.

10, Check for poor or bridged solder connections. Correct

if necessary. .

11. Power up the system and the terminal. A $ should

be displayed whenever the reset button is depressed.

For Motorola MEK6800D1 Evaluation Kit 1:

1. Carefully following the handling instructions on
the previous page, remove all MOS devices (if socketed).
2. Move the jumper located next to the ROM (U8) from
point E2 to point El.

3. Perform steps 4 to 8 above on the control PIA (U9)
L, If ACIA interface is desired, the addresses of the
ACIA (AZ1g) and the second PIA (U0 - AZ@8) must be
reversed. The bits decoded stay the same except A3
that connects to CS1 (pin 24) of the U10 PIA which

must be changed to address line A4, and CS1 (pin 10)

oﬁ the ACIA which must be moved to address line A3 from
A . - .

5, The MEK board does not provide an internal baud rate
generator for the ACIA, so one mus?t be provided. Page
10 of the Motorola manual describes one that works well,
6. Replace all MOS devices carefully, except for the
Mikbug(TM) ROM. Insert the RT/68 ROM in its place.

7. Perform steps 10 and 11 above.

Qther Mikbug;based systems:

You will need to follow the same general instruct-
ions as outlined for the two systems above. The two
main concerns are enabling address line A9 for the
ROM and properly configuring the control PIA.

Motorola MEK6800D2 Evaluation Kit 2

The RT68 ROM is ideal for upgrading the D2 Kit. The-
ROM will replace JBUG directly except inputs CS1 and CS2
. which must be inverted, and RS-232 interfaces added.
A small circuit board and all required interface parts
is available for $30,95 from Microware. Order part #DAlB.
Comprehensive installation and programming information 1s
provided with the kit.




To contral

+5v

1L

e

PIA pin 39 K

To control

P/A pin 40

To coarvel PIA
4

pin 40 v ol

< p—

1o MCIY 89

/Var,m//y"" elosed
Swrtch; open
to a bort

—

CIRCUIT

ABORT SWITCH

From 6-/2v AC
Secondary of sysrem
power <rens former
(Fat green lead in

SWTPC 6800)

e
Hoil

1

2 FRer /b =32

“ 024

cLk

T 7

+5v

’__4.'

300 Bard /6 C/ock
(4900 Hz)

GO Hz  Reul Time Clock
Sa\,m( Sovrte
(AC /me Ref)

/00 Hz Res! Time Clock
515“/ Source




RT68 jREAD ONLY MEMORY SPECIFICATIONS

The RT68 part is a mask-programmed read-only-memory
organized as 1024 8-bit bytes. It is fabricated using N-chan-
nel silicon gate process. It is completely static in oper-
ation and features tri-state data outputs.

ELECTRICAL
Power supply voltage Vce +5.0 volts T 0.25v
Supply current 130 ma. max
Characteristic (static) Minimum Maximum
Input high voltage 2.0 v ' 5.25 v
Input low voltage -0.3 v 0.8 v
Input current 2.5 ua.
Output voltage high 2.4 v
Output voltage low 0.4 v
Output leakage (deselected) 10,0 ua.
Input capacitance 7.5 pf.
Qutput capacitance 12.5 pf.
Characteristic (dynamic) Minimum | Maximum
Access Time (Ta) 500 ns.
Data Delay Time (7Td) 300 ns,.
Data Deselect Time (Ts) 10 ns. 150 ns.
Cycle Time (Tc) ' 500 ns.
Te —
Ta >
4 A
Addr — ] S
K 7d > Ts

CS 7F '

4
Data : 2
Temperature Range
Operating 0-70 c¢°
Storage -65 - +150 ¢°

7-4




Iny
SAS oL

T4

— godus adul
32012 F2Y M\o&(
-uolpvasde TECSY =
03 N or 4 -1-9  asdual m #
w0 el - 2 3o/ _ _ ok ie
‘0edf 4urrind v ler 12
soy pusosB ap gedur eersy aadwal  3foyy x ! V2 v
] | N
ray 7 &7 1o 2 17| L8d v Ous
anvg < —
M/ nos R ,
e . . . : ed
(TN D] 0 ; 3 oyes T/
worfbanbiyuo)’ o/t vid o214y o —
3o w £
. | JIESHIN |l 984
mu; X0/ o] 9l
vid = 98D
viavy 26+
2| St 2441
- . owpaapy ——;| S99
M
of€ mu
—— L2009 gpig dars # €1 184
T041807 - ¥IQVT N £ w+ 1 eowh T2 Q ¢ e=ss 9¢
| ¢ _ - 7]
Nowmod YETSY 7 —_
. ] - _ w
Nowwo? —_ gVh8hIIN
4007 1033903 —————D ¢/- 206 _ T ]
me y it sl
w4907 |_.| + &
w3v309 v ov >—————AANN : © ' ceNt ]S h -
9
S+ dvéshiow b
oW eeesy m ), ot? v
ot hd 2
: 8
dvb3hIoW b
P 7 Lo0g - h008%
dno ecesy
14 r 4
lno gooy Mmi ors ook V) ] vq,mwm
1ngyyn? v oe € . 1 , _
MV # cAVAYAY HBBHITN ¥/, v/d
ors9Iow
Loo4n: / > s+
e+ cewn |

/-

7-5



RT/68 Input/Output System

RT/68 allows use of either a standard MIKBUG-type bit
serial/PIA interface or one or more ACIA type interfaces for
maximum flexibility in system configuration. The selection
of interface type is made at the character I/0 routine level
so the interface type selected is transparent to the.calling
software. .

Most systems designed for MIKBUG will have the PIA/

' gerial interface built in which RT/68 can use without mod-
jfication, However, the ACIA interface may prove more
versatile in many applications particularly when interrupt
driven or high baud rate serial I/0 is desired. ACIAs

may also be invaluable when device of different baud rates
must be interfaced, such as a 110 baud teletype and and a
1200 baud audio cassette interface.

The PIA located at address $8¢gL4 which is used in the
MIKBUG interface is used by RT/68 for several functions
other than I/0, so it must be present even if the interface
is not used. Besides providing interrupt inputs for the
real time clock and abort functions, two PIA inputs are
sampled by RT/68 to determine interface options. These may
be either jumper defined permanently or may be connected to
other PIA outputs so the options may be selected under pro-
gram control. '

The table below shows the options available according to
the state of the PIA inputs PB5 and PB6.

PB5 PB6 Function, interface type

g g 1/0 using PIA, transmit 1 stop bits
4 1 I/0 using PIA, transmit 2 stop bits
1 X I/0 using ACIA, transmit 1 stop bit¥

# Applies to first ACIA at $8£¢F, may be changed by
software

ACIA I/O Operation

If the ACIA option is selected, primary system é/o
will be performed by an ACIA located at address $8840. The
ACIA command and status register is initialized at restart

to use one stop bit. The initialization is performed regard-
less of whether or not the ACIA is selected by PBS.

The restart routine establishes a RAM locatlon (address
$A412) called IOVECT as a pointer to the ACIA address which
is used by the ACIA I/0 subroutines to locate the ACIA.

This vector may be changed elther by a user program or by
means of the memory examine/change function to a different
address for selection of multiple ACIA interfaces.

If the ACIA vector is changed two important factors
must be considered: the system only initializes the ACIA
at address $804¢, and the operating system will expect to
do business through the new ACIA.

8-0




This requires that the address of the ACIA interfaced to the
operator’s terminal be restored after an operation using an
ACIA connected to an audio cassette interface for example.
Two short routines that accompllsh this are illustrated in
the appendix.

Software Selection of Interface Type

In some applications it may be ‘desirable to have soft-
ware select between an ACIA and MIKBUG/PIA interface., The
PB5 input of the control PIA may be connected to an output
to determine the interface type. If the selection is to
be made between these interfaces, the initial state of the
output must be known to the terminal may be connected to the
proper interface at restart., The initialization of control
registers was designed to allow- either:

To initialize with terminal enabled to the PIA connect PB5
to CB2; this will automatically switch to the ACIA for tape
loading.

To initialize with terminal enabled to the ACIA connect
PB5 to CB2 through an inverter, this will automatically

switech to the PIA interface for tape loading.

Additionally, external decoding of the serial data stream
can be used to control the state of PB5 and therefore the
1nterface type.

Parallel Data Output

\

It is possible to connect a PIA interface to the M6800
bus so it "looks 1like" an ACIA, which is useful for inter-
facing line printers, etc. to the operatlng system or software
calllng the RT/68 I/0 routines. This is accomplished by
reversing the RSZ and RS1 inputs of the PIA which are connected
to the two lowest address lines. The result is having the
two data registers appear to be contiguous and the two control
registers contiguous in the memory address space of the PIA.
The control registers of the PIAs are set up as usual, with
the A data register set up as output and the B data register
set up as inputs. The B register becomes the "ACIA status"”
register and the A data register is the "ACIA data" register.

A comparative examination of the ACIA and PIA data sheets
will provide information on simulating the handshaking and
status signals required.

Binary Input/Output

The input character subroutine that is entered at MIKBUG
entry points will strip the high order (parity) bit from
the received byte as well as removing rubout ($7F) characters.
However, the basic input byte routine at address $E359 will
input all 8 bits without modification, which is invaluable
for byte-oriented (binary) input such as binary loaders.

The output character routine will transmit the contents
of accumulator A without change.

8-1




TAPE FORMAT DATA

Y

|€ BYTE COUNT RANGE

|< CHECKSUM RANGE
¢« DATA BYTES

LF

crlwpalvudwd ST1]@ 9] L. @ @] 3. clu. 7|0, 2|8,7[6 3|5 D|F 7

_ADDR OF BLOCK
BEG. A CHECKS UM

BYTE COUNT
L. RECORD TYPE

The tape format detailed above is the same as used by almost all.
M6800 systems for storage of binary object data. The tape
consists of strings of ASCII characters organized into records.

a group of two or more records is considered to be a file.

There are three types of record used in the Motorola format: header,
data, and end-of-file (EOF). The header record contains the name
of the file and precedes the other records. It is identified by
the S@ record type. It is not needed to load files and is neither
recognized or generated by either Mikbug(TM) or RT/68. If present
on a tape 1t will be ignored.

The data type record is illustrated above. All information on the
record is represented as hex data. The beginning of the record
contains the record type (S1), a byte count which covers all bytes
that follow, and a beginning address of the data block. Data bytes
follow which represent the object data to be stored in memory beg-
inning at the block address and stored in sequential memory locations
that follow. At the end of the record is a checksum, which is

the one's compliment of the summation (mod 256) of all data bytes
in the record, plus the byte count and block address. This value
is checked as data is loaded and can usually detect errors that
may have garbled data in the write or read process.

The end-of-file terminates a data file and consists of the charac-
ters "S9". The EOF will terminate a tape load function. The
RT/68 program does not generate this type of record because it

is often desirable to make files of data at non-contiguous
addresses. Most systems have a -provision for generating and

EOF by appending an SS9 in an off-line mode.

Characters between records are ignored and may include carriage
return, line feed, null, control or other codes as required for
device operation or readability. The RT/68 generate tape routine
inserts a CR, LF and four nulls between records.

A-1




INTERFACING TO RT/68 SUBROUTINES

There are about 30 useful subroutines in the RT/68 ROM that
may be called freely from user programs. The majority of these
involve character, byte, and block oriented I/0 to the system
console device, These range from single character operations to
the complex memory load and dump to/from tape.

The subroutines used in connection with the multi-task
operating system are discussed in detail in the text of this
manual.

All subroutines are shown in the program listing that follows.
A general convention is that parameters are passed to/from the
subroutine via the MPU registers, predominantly the XR and ACC A.
Exceptions to this rule are the load, write tape, and dum
subroutines that have parameters in BEGADR (addr. AﬁﬁZ-Aﬂ%j) and
ENDADR (addr., AZ@4-A@F5). Subroutines that check for error
conditions will place a unique error code in the loaction
ERRFLG (addr. AﬂgF) that is the ASCII code for the error number.

Subroutines that perform I/0 were written for use in the
console monitor mode and as such do not have any provision for
coordination in a multiprogramming environment. If one task
uses the I/0 device exclusively, no coordination is required.
Otherwise, a device status flag should be established for each
peripheral to indicate its availabity to requesting tasks.

: Also, if the PIA interface is used, note that to insure
correct timing, the I/0 subroutine may not be interrupted for
any significant amount of time. You may wish to consider other
time-dependent characteristics of your peripheral devices when
assigning task time limits and priorities.

RT/68 SYSTEM ENTRY POINTS

There are several points a program or task may jump to
to enter various system modes or functions.

Console/system cold start E147
Console monitor soft start/reentry E16A or EZE3
Console monitor error entry ' E1ES8
RT exec cold start E24C
RT exec soft start : : E2F3




FAGE

00001
00002
00003
00004
Q0003
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

00021

00023
00024
00025
00024
Q0027
00028
Q0029
00030
00031
Q00032
00033
00034
Q0033
Q00034
00037

00039
Q0040
00041
00042

00043
00044

00045
000454
00047
00048
000497
00050
00051

001

0000
0000
0001
0002
0003
0003
0007
0008
0009
000A
OQOR

AO0OO
AQOO
A0O2
AO004
A0S
A008
ACCA
AQOR
AOOC
AOQOE
AOOF
A010Q
AQ12

RT&8-V2

0001
0001
0001
0002
0002
0001
0001
0001
0001
0001

0002
0002

0002

0002
0002
0001
0001

0002

0001
0001
0002
0002

I I H I

NAM RT&8-V2
OFT 0

KKK K KA KK KKK X
X X
¥ RT/ 68 S
b § M X x -
X X
KKRKKRKACKKKIORK KK

RT/48MX REAL TIME OFERATING SYSTEM
(REVISEDl VERSION OF RT/&48MR)

COFYRIGHT (C) 19746+1977
THE MICROWARE SYSTEMS CORFORATION

RT/68 LISTING AND OBJECT MAY NOT EE
REFRODUCED IN ANY FORM WITHOUT
EXFRESS WRITTEN FERMISSION.

I I AW I ;K I I I I I I I I I WK I X*

»*

MEMORY DEFINITIONS

RT/68 EXECUTIVE USES 12 BYTES OF RAM

BEGINNING AT 0. THESE ARE NOT NEELED

IN SINGLE TASK MODE AND MAY EE

USEDN FOR ANY OTHER FURFOSE.

ORG 0
SYSMOD RMR 1 RT WMODE 0=USER 1=EXEC
CURTSK RME 1 TASK CURRENTLY ACTIVE
TIMREM RME 1 TASK TIME REMAINING
TSKTMR RME 2 TIMED TASK COUNTER
CLOCK RMR 2 RT CLOCK COUNTER
INTREQ RME 1 INTERRUFT REQUEST FLAG
TSKTHP RMEB 1 RT EXEC TEMP VAL
PTYTHMF RME 1 RT EXEC TEMF VAL
TIMTSK RME 1 TIMED TASK INTR STATUS
SYSFTY RME 1 §YS FRIORITY LEVEL
~ ORG  $A000

IRQTSK RME 2 IRQ TASK/VECTOR
BEGADR RME 2
ENDADR RME 2
NMITSK RME 2 NMI TASK/VECTOR
SFTHF  RME 2 SF THF VAL
RTMOD RME 1 RT MODE FLAG
EKFOF  RME 1 EKFT OFCODE/FLAG
EKFADIR RME 2 EKFT ADDRESS
RELFLG RME 1 SWI FLAG
ERRFLG RME 1 ERROR FLAG/CODE
XTHF  RME 2
IOVECT RME 2 ACIA ADDRESS VECTOR




00033 AQ42 . ORG $A042

00054 A042 STACK EQU X MONITOR STACK

00054 ¥ TASK STATUS TARLE .

00057 X .

00058 ¥ CONSISTS OF 16 3-BYTE TASK STATUS WORDS, ONE FOR
00059 ¥ EACH POSSIEBLE TASK, EACH TASK STATUS WORD CONTAINS
00060 ¥ A TASK STATUS EBYTE (TSE) ANI A 2-BYTE TASK STACK
00061 ¥ FOINTER (TSF).

00062 X :

00063 X THE TSE IS DEFINED AS FOLLOWS:

0006464 X

00065 X RIT 7 1=TASK ON 0=TASK OFF

Q0064 X BIT 6-3 TIME LIMIT IN TICKS (0-13)

00067 % BIT 2-0 TASK FRIORITY (0-7)

000648 X

000469 ¥ THE TSF IS THE VALUE OF THE TASK’S STACK

Q0070 ¥ POINTER FOLLOWING THE LAST INTERRUFT,» AND

00071 ¥ THEREFORE FOINTS TO THE COMFLETE MFU

Q0072 X REGISTER CONTENTS AT THE TIME THE TASK WAS

00073 X INTERRUFTED, TO RESTART A TASK THE EXEC

00074 X INITIALIZES THE SF FROM THE TSF aAND

00075 X EXECUTES AN RTI INSTRUCTION.,

00076 X

Q00077 A0S0 ORG $A050

Q00078 A0S0 0030 TSKTEBL RME 48

- 00080 X DEFINE PERIFHERAL REGISTERS
00081 8004 ORG $8004
00082 8004 0001 FIADA RME 1
. 00083 8005 0001 FIACA RME 1
00084 80046 0001 FIADR RMR 1
Q0085 8007 0001 FIACE RME 1
Q00846 8008 0001 ACIACS RME 1
00087 8009 0001 ACIADER RHME 1




FAGE

00089
00090
Q0071
000922
00093
00094
00095
Q00?86
00097
Q0098
Q0099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
Q0110
Q0111
00112
Q0113
00114
Q0115
00116
Q0117
00118
00119
Q0120

00122
Q0123
Q0124
00125
Q0126
00127
00128
00129
Q0130

00132
00133
00134
00135
00136
Q0137
00138
Q0139
Q0140

003

EOOQ

EQOO
EQO2
EQ04
EQ06
EOO8
EQOA
EQOC
EOOQE
EO10
EQ12
EO14
EO14
EOL19
EO1B
EOLD
EOLF
EQ20
EQR22
E024
EQ27

EO029
EOQE
EOZE
E030
E032
EO34
E03S
EQ37

EQ039
EO03A
EQ3C
EO3E
E040
EOC42
E045

RT68-VU2

Cé
86
8L
8I
81

8D
81
26
Cé
8é
F7
20
81
26
oF
8n
80
B7
gl

8D
74
27
A7
Al
26
o8
20

™
27
86
20
86
R7
20

3C
11
10
70
33
FaA
4A
39
09
34
13
8007
5A

31

E7

33
02
A0O2
1E

24
AOQOZ2
0%
00
00
0A

CA
32
02
31

X
X
X
X
¥
X
X
CoX
X
X
X
L

0AD LoAa B #43C

ORG $EQ00
TAFE LOAD SUEBROUTIMNE

READS MIKEUG(TM)> FORMATTED ORJECT TAFES
INTD RAM,. '

READER DEVICE IS CONTROLLED RY EITHER ASCII
CONTROL CODES OR PIA READER CONTROL
DUTFUT, :

TWO ERRORS ARE CHECKED: CHECKSUM AND

NO CHANGE.
TAFE ON CONSTANTS

LDA A  #$11 READER OMN COIDE
ESR RORCON LET IT ROLL

LOAD2 ESR INCH
CHF A #'S LOOK FOR START OF ELOCK
ENE LOAD2 ERA IF NOT
BSR INCH
CHF A #79 END OF FILE?
ENE LOAD4 ERA IF NOT
LOADZ LDA B #$34 TAFE .OFF CONSTANTS
_ LDA A #$13
RDRCON STA B FIACE FIA READER CTRL
ERA OUTCH ASCII TAFE CONTROL
LOAD4 CMF A #71 §1 DATA RECORD?
ENE LOALI2 ERA IF NOT» LOOK AGAIN
CLR E ACC E WILL GENERATE CHKSUM
BSR BYTE FICK UF EYTE COUNT
SUE A #2 LESS 2 FOR THE ELOCK ALDR
LOADS STA A EEGADR  SAVE IT
BSR BADIDR GET BLOCK START ADDR IN X
% LOOF TO READI' DATA BLOCK
LOADS ESK BYTE GET A DATA EBYTE
DEC BEGADR  DECR BYTE COUNT
FEQ LOAD? ERA IF LAST BYTE
STA A 0sX FUT IT IN MEMORY
CHF A 0sX KE SURE IT CHANGED
BNE  LDMERR  BRA TO ERROR
INX NEXT ADDR
ERA LOADG  NEXT BYTE
% B ADDS CHKSM FROM TAFE TO CALCULATED CHKSUHM»
% SO BY ADDING ONE IT SHOULD ZERO
LOAD7? INC E
EEQ LOAD2 BRA IF IT DI
LIA A  #432 TOO EBADs GET THE ERROR CODE

LOMERR LA A $$31

ERA LODERR
ND CHANGE ERROR CODE

AOOF LODIERR STA A ERRFLG

CB

ERA LOAD3




PAGE 004

00142
Q0143
00144
Q0145
Q0144
00147
00148
00149

001351
Q01352

00154
00156
Q0157
00158
00139
00160
00161
Q0162
00163
00164
00165
00164
00167
00148
00169
00170

Q0172
00173
00174
Q0175
00174
00177
Qo178
Q0179
00180
00181

00183
00184

00186
00187
00188
00189
00190
00191
00192
00193

~

E047
EQ49
EOAC
EQ4E
EOS1
E0S4

EQSS
EO0SS
EOSS8
E059
EOSA
EOSER
EOSC
EOSD
EQSF
E0&0
EQ&1
EO&2
EQ63
£064
EQ&S
EQd4

EQ&7
E048
E069
EO6A
EOQ4E
EO&D
EQ&F
EO071
EO73

E075
EO78

EO7B
EO7D
EQ7E
EQ80
EOB2
E0B84

RT&8-V2

8n
E7
8n
B7

'FE

39

37
gD
48
48
48
48
16
aDn
iRk
33
36
i1k
16
32
39
01

44
44
44
44
84
8E
81

23

8B

7E
7E

8n
08
Ad
81
26
39

oc
A004
07
AD0S
A004

4K

OF
30
39
02
07

E3Aé
E3350

F8

00
04
F7

¥ RUILD 4 HEX CHAR VALUE (ADDRESS)

¥ RETURNS VALUE IN XR

BADDIR ESR BYTE
STA A ENDAIDIR
BRSR - RYTE
STA A ENDADR+]
LOX ENDADR
RTS

% INFUT A RBYTE

INFUT 2 LEFT CHRS

INFUT 2

(2 HEX CHARS)?

¥ RETURNS BINARY VALUE IN ACC A

FSH E
BSR
ASL
ASL
ASL
ASL
TAE
ESR
ARA
FUL B
FSH A
ARA

TAR

FUL A
RTS

NOF

RYTE
' INHEX

>2>DD>

INHEX

¥ HEX AUX.,

QUTHL

OUTFUT
LSR
LSR
LSR
LSR
AND
ADD
CHMF
ELS
ALD

OUTHR ¥$F

#4630
¥4639
QUTCH

$$7

TD>2D>D>D>DD

>

JHP
JHF

OUT1CH
IN1CHR

OUTCH
INCH

INFUT 2 HEX CHAR
LEFT HEX CHAR

RIGHT HEX CHAR

SUBROUTINES

X PRINT DATA STRING FOINTED TO RY XR
¥ AND ENDING WITH ASCII EOT ($04)

FPDATA2 ESR OUTCH
INX

FRATAL LA A OrX
CHF A #4
BNE FOATAR
RTS

SUBR ENTRY FOINT

RIGHT CHRS




FPAGE

00195
Q0194
00197
00198
Q00199
Q0200
00201
00202
Q0203
Q0204
00205
00206
00207
00208
Q0209
00210
00211
00212
00213
Q0214
00215
Q0216

00218
Q0219
00220

00222
Q0223
Qo224
00225
00226
Q0227
00228
00229
00230
00231
00232
00233
00234

002346
00237

002379
00240
00241
00242
Q0243
00244
00245

003

E085
E088
EO8E
EOBD
EO8F
EO0?2
EO074
EO09S
EO?8
E0%4A
EO?H
EO9C
EQ?D
EO%F
EQAR

E0A4
EO0AS
EQA?

EOAA
EOAC
EQAE
EQRO
EOR2
EOR4
EOQOBS
EOBS
EQOEA
EORC

EORD
EOBE

EOEBF
EOC1
EOC3
EOCS
EOCS4

RT68~-V2

ED
CE
8L
cé
FE
8D
09
EC
26
39
08
SA
264
FF
20

8é
RB7
37

Ab
8h
Ad

20

E141
AOOZ
3R
10
AOOR
34

ACO4
0b

F3
AO0D2
El

33
AOOF

ce
30
Fa
09
08

EC
OF
E8

00
A4
00

A3

'CONSOLE MEMORY LDUMF S

X
X
* .
¥ FRINTS BEG ADDR AND 1
% STARTING ADDR IN HEGA
* ENDING ADDR IN ENDADR
X
DUMP  JSR CRLF
LOX  #BEGADR
BSR OUTA4HS
LDA B #16
LDX REGADR
DUMP1  ESR OUT2HS
DEX
CFX ENDADR
ENE DUMF 2
RTS
DUMF2  INX
DEC K
ENE DUMFL
STX REGADR
BRA [IUMF

HEAL LA A #4633
STA A ERRFLG
RTS

¥ INPUT HEX CHARACTER.
% HEX» THE ERROR FLAG I
¥ ERROR CODE (%33 - ASC
INHEX BRSR INCH

SUR A #4$30

RCS HEAD

CMP A %2

RLS IHRET

SUER A #7

BCS HEa&D

CHF A ¥#15

BHI HBAD
IHRET RTS

NOF

NOF

X OUTPUT RYTE (TWD HEX

¥ TO RY XR

BUT2H LIA A OrX
ESR OUTHL
Lda A 00X
INX .
ERA OUTHR

UBROUTINE

& RYTES OF DATA ON EACH LINE
IR '

CR AND LF

FRINT BEGINNING ADDR
BYTE COUNT FOR LINE
GET REG. ALDR
FRINT A BYTE

DONE YET?
BRA IF NOT

ADV X TO NEXT BYTE

DEC LINE BYTE COUNT

BRA IF LINE NOT DONE

UFDATE REGADR TO CURRENT AIDR

INHEX ERROR RETURN

IF CHAR IS NOT

S SET TD THE

IT 1)

INFUT ONE HEX CHaAR

CHARS} FOINTED




FAGE

00248
00249

00251

00252

Q0234
00255

002356

00258
00259
00260
00261
00262
00R63
Q0264
00265
Q0266
00267
00248
00269
00270
00271
_00272

006

EOCS

EOCA

EOCC
EOCE

EOLDO.

EQOD2
EQLS
Eonz
EODA
EQDR
EQDD
EQDF
EQGE1L
EQE3
EQEA&
EQES

RT48~-V2

s8I

80

86
20

s
CE
8D

08
8n
8n
3D
20
7E
8
20

6F
A008
Fi
A0OB

ED
ER
E?
03
EléaA
EO
DE

¥ OUTFUT 4 HEX CHARS AND SFACE

QUTAHS BSR

¥ ODUTFUT 2
QUT2HS BSR

X OUTFUT A
ouTsS LDA

BROUT ERA

OUT2H

QUTZ2H

SFACE

¥4$20
QUTCH

HEX CHARS ANDl SPACE

¥ PRINT CONTENTS OF STACK

¥ FORMAT:

¥ SF CC B A XK

PRSTAK ERSR
: LIX
ESR

LItX

FRTSK INX
RSR

ESR

RSR

ERA

CONTRL JMF
PRSTK2 RSR
ERA

FC
CRLF
ESFTHF
OUT4HS
SFTHF

QUTZHS
OuUT2HS
OUT2HS
FRSTKZ
CONENT
OUTA4HS
DUTAHS

FRINT CR+LF

FRINT SF

ENTRY TO FRINT TASK STACK

FRINT CC

FRINT ACC R
FRINT ACC A
BERA OVER FATCH
FATCH FOR ALDR.
FRINT XR

FRINT FC +RTS

ALIGNMENT




FAGE

00274
00275
00276
00277
00278
00279
00280
00281
00282
00283

00285
Q0284
Q0287
Q0288

00290
00291
00292
00293
00294
00295
00296
00297
30298
00299
00300

00302
00303
00304
00305
00306
00307
00308
00309
Q0310

Q0312
00313
00314
00315
00316
Q0317

00319
00320
Q0321
00322
00323
Q0324
00325
Q0326
00327

007

EOEA
EOEC

EOEE
EOFO

EOF2
EOF4
EOFS
EOF7
EOF8

EOFA
EOFD
EOFF
E101
E103
EL105
E107
E109

EL10C
E10E
Ei110
E112
Ei114

E11é
E118
Ei19
E11E
E1l1lC
EillD
E11E
E120

RT&8-V2

ER
20

86
30

()
AF
=)
58
26

CE
Ab
Eé
EO
A2
24
84
7E

~

A

Ci
25

Cé
CE

8D
08
80
37
30
SF
8D
32

00
01

12

83

3C

FA

AQO2
02
03
01
00
035
14
EQ7S

04
10-
02
OF
04

CA

WRITE OBJECT TAFE SURBROUTINE

AUDRIO CASSETTE., ETC.)

ENDING ADDRESS IN “ENDADR®

3 I I I AH I A € K ¥*

ENTRY FOINT IS "TAPOUT®* - ECEE

X AUX., SURBR. TO OUTFUT RYTE + UFDATE

X CHECKSUM,

TAFAUX ALD B OrX
ERA QUT2H

TAFOUT LDA A #$12 TAFE ON CODE
ESR OUTCH

X OUTFUT 40 NULL CHARS TO GENERATE

X EITHER A &' LEADER FOR FAFER TAFE

X OR A 2 SECOND TAFE SFEEDUF DELAY

X (AT 30 CFS) FOR AUDIO CASSETTES
LDA B #60 LEADER/DELAY

OUTLDR CLR A

BSR JOUTLC
DEC B
BNE OQUTLIR

X SUBTRACT BEGAIIR FROM ENDADR

GENERATES MIKBUG(TM) FORMATTED TAFES
ON SYSTEM TAFE DEVICE (FAFER TAFEy

BEGINNING ADDRESS OF DATA IN *REGADR®

NULL COUNT

TOUT1 LDX FREGADR
LA A 25X :
LA B 3rX
SUR B 1sX
SBRC A 0»X
BCC TOUT2 ERA IF REG +« END TO LUMF
LA A #414 FUNCH OFF CODE
JOUTLIC JMF QUTCH

¥ CALCULATE BYTE COUNT

TOUTZ2 ENE TOUT3 ERA IF HIGH RYTE NONZERO

CMP B %16

BCS TOUT4 ERA IF BLOCK < 16 BYTES
TOUT3 LIA B #1535 SET FULL BRLOCK
TOUT4 ADD B #4 ADD FOR B.C + REG ADDR.

X QUTFUT BLOCK HEADER
BRSR CRLF
INX
EBSR JFOATA OUTFUT S»1

FEH B SAVE RYTE CNT
T8X
CLR B CLEAR CHECKSU

OQUTFUT CRsLF+NULLS

i

ESR TAFAUX  PRINT EYTE CNT.

FUL A




FAGE

00328
Q03279
Q0330
00331
00332

00334
Q0335
Q0334
00337
00338
Q0337
00340

00342
00343
00344
00345
003446
00347
00348
00349

00351
00352
00353

008

E121
E123
E124
EL127
E129

E12E
E12E
E130
E131
E132
E133

E135
E136
E139
E13A
E13R
E13C
E13E
E13F

Ei41
Ei144

RT&8-V2

80
36
CE

8L

FE
8n
32
4A
36
26

31

53
37
30
8n
31
20

CE
7E

03
AOO2
C1
BF
x LOOP

A002
BRA TOUTS

F?

AOO2

AC

k9

SUR
FSH

LOX

BSR
B8R

£3 UFDATE RYTE COUNT
F¥REGADR
TAPAUX OUTFUT BREG. ADDR.
TAFAUX

TO QUTFUT ONE BLOCK OF DATA

LoX
BSR
FUL
DEC
FSH
ENE

INS
8TX
COM
FSH
T8X
HSR
INS
EBRA

> DT

REGADR AR FOINTS TO CURRENT DATA RYT
TAFAUX OUTFUT RYTE

TECR. BYTE COUNT
TOUTS ERA IF RYTE COUNT NOT ZERO
REGADR SAVE CURRENT ADDR

COMFL+ CHKSUM

TAFAUX OQUTFUT CHRSUM

TOUTL

X SUBROUTINE TO PRINT CR + LF

E3N0 CRLF
EO7E JFDATA

LIX
JMF

#CRLSTR
FDOATAL




/“/w'i)

5 s -y —
PAGE 009 RT&8~-V2 <~/<7 7
00353 X RT/68 CONSOLE MONITOR FROGRAM
Q0354 X
00357 *k ACCEFTS COMMANDS FORM THE CONSOLE DEVICE
Q00358 X AND EXECUTES THE APFROFRIATE FUNCTIOM.

: Va .

003460 .. ¥ ENTRY FOINT FOR RESTART
00361 E147 BE A042 INIT LIS F#FSTACK INITIALIZE FERIFHERALS
003462 E14A BF A008 ‘ STS SPTHF
003463 E14D! CE 8000 LoX $#$8000
003464 E130 FF A012 8TX IOVECT INIT ACIA VECTOR
00365 ¥ INITIALIZE CONTROL PIA
0034646 E133 sC 04 INC 49X ‘
Q0347 EL1355 C6 146 LA B #4%16
Q03468 E157 E7 035 STA B 35X
Q0349 E15%9 4C 04 INC 49X
00370 E15B 86 05 . LDA A #$05
00371 E135D A7 06 STA A 49X
Q0372 E1SF 86 34 LOA A #$34
00373 E1l81 A7 07 8STA A 7»X
00374 X INITIALIZE ACIA AT $8000°
Q00375 E163 84 03 LA A *3
00376 EL1485 A7 00 8TA A 00X
00377 E1467 SA IEC B
Q0378 E168 E7 00 STA B 0:X SET ACIA CSR .
Q0379 E16A 7F ACOR CONENT CLR EKFOF CONSOLE ROUTINE ENTRY FOINT
Q0380 E148D 7F AOOA CLR RTHMOD
00381 E170 7F AQOF CONSOL CLR ERRFLG
00382 E173 8E A042 LDS #STACK INIT SF
Q0383 E17é6 8D C9 EBSR CRLF ,
00384 E178 86 24 LIa A #'4¢ FRINT FROMFPT
00385 EL17A 8! 55 RSR OUTEEE
00386 E17C 8D 2E BSR INEEE INFUT COMMAND COLDE
00388 ¥ COMMAND TARLE LOORUP/EXECUTE LOOF
00389 ¥SEARCHES FOR COMMAND CODRE ON TABLE TO ORTAIN
00320 : ¥FUNCTION SURROUTINE ALNDRESS. .
003?21 E17E CE E3Ié LDX +CHMDTRL~-3 INIT X TO RBEGINING OF TABRL
00392 E181 08 CMSRCH INX ADY TO NEXT ENTRY
00393 E182 08 INX
00394 E183 08 INX ' '
-00395 E184 E& 00 ) LDA R 0OrX GET CODE FROM TARLE
00396 E186 27 OR BREQ CHDERR IF ZERO» ENDI' OF TARLE
003927 E188 11 CEA COMMAND CODE MATCH COMFPARE
00398 E18% 26 Fé ENE CMSRCH BACK TO ADV IF NOT
00399 E18B EE 01 LInX 1,X GET CHMND SURR ADDOR FROM TARLE
00400 E180O AD 00 JSR 0sX : Do 1IT
00401 E18F 8In 57 TBTENT RSR ERTEST TEST FOR ERROR
00402 E191 20 DI GOCON BRA CONSOL GET ANDTHER CHND
00404 E193 C4& 34 CMDERR LIIA B ¥4 ILLEGAL COMHaAND CODE

00403 E193 20 56 ERA ERROR GOTO ERROR ROUTINE




FAGE 010 RT&68-V2

00408 ¥ SUER TO SET OR REMOVE BREAKFOINTS
00409 E197 B4 AOOH SETBRF LIA A EKFOF GET BRFT FLAG OR OFCODE
00410 E19A 27 0A BEQ SEBRET IF = 0» NO BKFT ACTIVE
00411 E19C FE AQOC LDX BKFADR GET ALRDR
00412 ' . X SWAF FLAG/OFCODE
Q0413 E19F E6 00 LDA B 0OrsX
00414 E1Al A7 00 STA A 0sX .
00415 E1A3 F7 AOOR STA B EKFOF
00416 E1A46 39 SERET RTS
00418 : X "DI* DUMF COMMAND ROUTINE
00419 E1A7 8D 2B IMFCOM EBSR GET2AD
00420 E1A? 7E EO085 JHiF DUMF
00422 EL1AC 7E E3S0 INEEE JMF INICHR
00424 X SUBR TO FREFARE FOR USER FROGRAM
00425 ¥ EXECUTION. CALLED RY Gy E & S COMMANDS
00426 X ,
00427 E1A4F 8D Eé SETRUN ESR SETEKF SET EBRFT IF ANY
00428 E1R1 Cé6 1E LA B #$1E
00429 E1ER3 R&6 ADOA LA A RTHMOD TEST IF MULTITASK mMODE
00430 E1RS6 27 04 EEQ SETRNZ EBRA IF NOT MULTI
00431 E1R8 SC INC R ENARLE RT CLOCN INTR
00432 E1ER? 4F CLR A
00433 E1RA 97 00 STA A SYSHMOD
00434 E1RC BS6 8004 SETRNZ LI'A A FIALA
00435 E1RF F7 8005 STA B FIACA
004346 E1C2 39 RETURN RTS
00438 : X "B® BREAKFOINT COMMAND ROUTINE.
00439 E1C3 7F AOOB EBKFCOM CLR BRKFOF
00440 E1CS 8D 11 kSR GETADR
00441 E1IC8 FF AQOC 8TX EKFADR
00442 EICB 86 3F LA A F$3F
00443 E1CI E7 AOOR STA A EBRFOF
00444 E1D0 39 RTS
Y
00446 E1D1 7E E3Aé OUTEEE JMF QUT1CH
00448 X SUBR TO READ ONE OR TWO ADDRESS
00449 X PARAMETERS. COMMA LEADIS ADDRESSES,
00450 - ¥ (CR) CANCELS COMMANL.
00451 E1D4 8D 03 GET2AD BSR GETADR GET TWO ADDRESSES
00452 E1Dé FF A002 8TX BEGADR
00454 E1D? 8D D1 GETADR BSR INEEE GET ONE ADDRESS
00455 EL1DB Cé 34 LA B +#+34




PAGE 011 RT&8-~V2

004546 E1iDD 81 OD CHMP A  #$0@
00457 ELDF 27 8F REQ CONSOL

00458 E1E1 81 2C CHMP A %/,

00459 E1E3 26 08 ENE ~ ERROR

00440 EL1ES EDI E047 JSR BALDDR

00462 ¥ ERROR TEST SUEROUTINE

00443 E1E8 F& AOOF ERTEST LDA B ERRFLG

00444 ELER 27 IS5 . EEQ RETURN

004664 ¥ ERROR HANDLER» FRINTS HMESSAGE
00467 X AND ERROR CODE

00448 EL1ED CE E3CA ERROR LIDX FERRMSG

00469 E1F0 RD EO7E JBR FOATAL

00470 E1F3 17 TEA

00471 E1F4 8D DE ESR OQUTEEE

00472 E1F6 20 99 BRA GOCON

00474 ¥ "E" EXECUTE SINGLE TASK COMMAND.
00475 E1F8 80 IF EXCOM RSR GETALDR

00476 E1FA 8D R3 ' RBSR SETRUN

00477 EL1FC FE A004 LIX ENDADR

00478 E1FF 6E 00 JMF OrX

. \

00480 X "G" GO TO USER FGM OR RETURN FROM
00481 X BREAKFOINT COMMAND ROUTINE,
00482 E201 ERE AQO8 GOCOM LIS SFTHMF

00483 E204 8I A9 BSR SETRUN

00484 E206 3k RTI

004864 ¥ *P* WRITE TAFE COMMAND ROUTINE
00487 E207 8D CE FUNCOM ESK GET2ADR

00488 E209 7E EOEE JMF TAFOUT

00490 X "S* COMMAND ROUTINE,

00491 ¥ ACTIVATES AND INITIALIZES RT/68
00492 , ¥ EXECUTIVE.

00493 E20C 7F AQOE SYSCOM CLR RELFLG

00494 E20F 84 01 LIA A #1

00495 E211 B7 AQOA STA A RTHMOD

00496 E214 CE 0009 ©LDX FPTYTHF

00497 E217 &F 00 CLOOF CLR 0sX

00498 E219 09 DEX

00499 E21A 26 FBR ENE. CLOOF

00500 E21C A7 00 STA A 0rX

00501 E21E 8D 8F ESR SETRUN

00302 E220 7E EREA JHMP EXECOZ2 JUMF TO RT EXEC ENTRY




FAGE

00504
00505
00306
00507
00508
Q0509
00510
00511

00513
00514
00515
Q05146
00517
Q00518
Q0519
00520
00521
00522
003523
00524
Q0525
00324
Q0527

00529
00530
00531
00532
00333
Q0534
00335
Q0534
Q0537

012

E225
E228
E224
E22C
E22F
E232
E233
E238
E23R
ERQ3E
E240
E242
E244
E246

E247
E244
E24C
E24D
E24F
E251
E2S3

E255

RT&8-U2

8n

ED
86
8n
CE
EBD

B
FF
ED
81
27
81
27
39

RD

09
A7
Al
27
Cé
20

¥ "M" MEMORY EXAMINE/CHANGE ROUTINE.
X AFTER BEGINNING ADDR IS ENTEREL, FGM
X FRINTS ANDR AND DATA IN HEX!
X AAAA DD
X A SLASH ANDI NEW HEX DATA CHANGES LOACTION:
¥ A (LF) OPENS NEXT ADDR» AND (CR)> CLOSES
¥ FUNCTION., .
B4 MEMCOM ESR GETALIR GET BEG ADRDR
X EXAMINE/CHANGE LOOF
E141 MEM1 JSR CRLF
oD MEM2 LA A #%0D FRINT LF
AS BSR OUTEEE
ACO4 LDX FENDADR
EOCS JSR OUTA4HS FRINT ALDRESS
ACO4 LDX ENDADR
EQERF JSR OUT2H FRINT CONTENTS
AQO4 STX ENDADR
E1AC JSR INEEE INFUT DELIMITER
OA CHF A #$0A
Eé REQ MEMZ ERA IF LF TO OFEN NEXT
2F CHF A #7/ \
01 REQ MEM3 BRA IF CHANGE
RTS
X CHANGE MEMORY LOCATION
EQ0S3 MEM3 - JSR BYTE READ NEW DATA
?C EBSR ERTEST
DEX
00 STA A 0rX STORE NEW DATA
00 CHF A 0sX TEST FOR CHANGE
D2 RER MEM1 ERA IF OK TO QFEM NEXT
33 LIlA B #3$35 ERROR CODE
26 BRA ERROR )




FAGE

013

00539

003540
003541
Q0542

00543
00544

00545
00546

003548
00549
00550
005351
00552
005353
Q0554
00555
Q0554
Q0557
00558
00559
Q003540
00561

003563
005464
003565
Q0566
Q0367
Q0548

00570
00571

00573

00574
00575
Q0576
Q0577
00578

E257
E258
E25A
E25C
E2SF
E261
E263
E266
E269
E26E
EQ4E
E271
E274

E277
E279
E27R
E27D
E27F

E280
E283
E285
£288
E289

RT&48-V2

30
8n
EE
EC
27
Cé
F7
RI

86

RB7
BF
BRI
7E

&I
26
4A
6A
39

in
05
AQOC
05
37
ACOF
E197
16
8005
AQO8
EODO
E18F

00
02
035
06

E280

ké

7F
aF
20

AQOE
D2
AQOE

2} I WK W WK W K K

REAL TIME OFERATING SYSTEM COMFONENTS

CONSISTS OF:

INTERRUFT PROCESSORS

TASK
AUX .

EXECUTIVE
SUEROUTINES

¥ BREARFOINT SERVICE ROUTINE

RUNEKP

RUNEBKZ2

¥ SUER
ADJSTR

ADSTK2

X SWI ENTRY FOINT.

T8X
ESR
LDX
CFX
BEQR
LDA
STA
JSR
LDA
STA
8TS
J8R
JHP

> D> i m

ADJSTK
Sy X
BERKPADR
RUNEK2
$$37
ERRFLG
SETEKRF
¥$616
FIACA
SFTMF
FRSTAK
TSTENT

GET SF IN XK

DECR FC ON STACK

GET TASK FC OFF STACK
COMFARE TO FRESET AIR
ERA IF SAME

SET ERROR FLAG

REMOVE EBKFT OFCOLE

OFF RT CLOCK + ARORT INTR
SAVE TASK GF

DUMFP STACK

ENTER CONSOLE MONITOR

TO DECREMENT FC ON STACK

TST
ENE
DEC
LEC
RTS

00X
ANSTR2
SrX

47X

DETERMINES WHETHER

¥ BEREARFOINT OR FGM RELEASE FUNCTION

SINT

EQU
LDA
REQ
CLR
CLR
ERA

A

E

X
RELFLG

RUNEKF-

RELFLG

EXECO?

SWI VECTOR DESTINATION
GET FGM RELEASE FLAG
EXEC BKFT IF NOT SET
RESET FLAG

GO TO EXEC TO SWAF




FAGE 014 RT48-V2

00580 -

X IRG INTERRUFT ENTRY FOINT
00581 ¥ INCLULES LOGIC TO DETECT AND CORRECT
00582 ¥ INTERRUFT ERROR OCCURING WHEN SWI +
00583 X NMI OCCUR SIMULTANEOUSLY. (SEE F. A-10
00584 ¥ OF M&800 AFFLICATIONS MANUAL)
00586 E28E IRQ EQU X IRQ VECTOR DESTINATION
00587 E28R B& AOOE LDA A RELFLG GET SWI FLAG.
00588 E28E 26 05 ENE INTRAD ERA TO ERR CORR. IF SET
00589 E290 CE A000 . LDX #IRQTSK FTR TO IRQ VECTOR/STATUS
00590 E293 20 36 ERA RUNINT GOTO INTR SERVICE
00592 " X CORRECT SWI-IRQ COINC. ERFROR
00593 E295 30 INTBAD TSX ‘
00594 E2946 8I DF ESR ADJSTK DECR TASK FC ON STACK
00596 , X NMI INTERRUPT HANDLER .
00597 X
00598 X TEST CONTROL FIA FOR ARORT OR CLOCK
00599 X INTERRUPT AND FROCESS SAME
00400 X IF NOT» EXECUTES USER INTERRUFT
00601 E298 NMI EQU X NMI VECTOR DEST.
004602 E298 ERé 8005 LA A FIACA GET FIA STATUS REG
004603 E29R Fé 8004 LDA B FIADA CLEAR FIA INTR FLGS
004604 E29E 48 ASL A
004605 E29F 2R €5 EMI RUNBK2 ERA IF ABORT INTR
00606 E2A1 24 25 RCC NMIS " BR& IF USER INTR
00607 ¥ HERE IF CLOCK INTR ONLY
004608 E2A3 B4 AOOA LDA A RTHOD TEST S8YS MOD
00609 E2A6 27 20 BEQ NMIS BRA TO USER INTR IF NOT
00610 E2A8 DE 05 LIX CLOCK INCR RT CLOCK COUNTER
00611 E24AA 08 INX
00612 E2AB IF 05 STX CLOCK
00613 ¥ UPDATE TIMED TASK STATUS
00614 E2ADI DE 03 LD TSKTMR GET TIMED TASK COUNTER
00615 E2AF 27 09 BEQ NMI3 ERA IF NOT ACTIVE
00616 E2RB1 09 : DEX DECR COUNTER
00617 E2B2 DF 03 STX TSKTMR
00618 E2ER4 246 04 EBNE NMI3 ERA IF NOT EXFPIRED
00619 E2B& 96 OA LDA A TIMTSK GET TIMED TASK STAT RYTE
00620 E2E8 20 1C BRRA RNINT3 - RUN AS INTERRUFT
004621 % UPDATE REMAINING TIME OF CURRENT TASK
00622 E2RA 96 02 NMI3 LIIA A TIMREM GET TIME LEFT
00623 E2RC 27 05 REQ NMIA . BRA IF UNLIMITED
00624 E2RE 4A DEC A
00625 E2ERF 97 02 STA A TIMREM
00626 E2C1 27 1A REQ EXECO1 ERA TO EXEC IF TIME UFP
00627 E2C3 96 07 NMI4 LDA A INTREQ TEST FOR FENDING INTR.
00628 E2CS 26 146 ENE EXECO1
00629 E2C7 3R RTI

004630 E2C8 CE AQ06 NHMIS LDX FNMITSK GET NMI S5TAT FTR




FAGE 015 RT68-V2

00632

¥ GENERAL INTERRUFT FRESERVICE
Q0633 % SELECTS FROFER MODE» AND EITHER
004634 ¥ RUNS OR SCHEDULES INTERRUFT SERVICE
004635 X TASK ACCORDING TO THE AFFROFRIATE
00634 X STATUS BYTE.
00637 E2CR B& AOOA RUNINT LDA A RTHOD
00638 E2CE 26 04 ENE RNINT2 BRA IF MULTITASK MODE
004639 E2DQ EE 00 LIX 0sX GET VECTOR
00640 E2L2 &E 00 JMP 0sX EXECUTE SAME AS MIKEUG
00642 E2D4 AS 00 RNINT2 LDA A 0rX GET INTR STATUS RYTE
00643 E2I6 8D 354 RNINT3 BSR TSKON TURN SERV. TASK ON
00644 E2I8 4L TST A CHK IMMED OR DEFERRED
00645 E2I9 2A S0 EFL INTRET BRA IF DEFERRED
00646 E2DE 97 Q7 STA A INTREQ SET INTR REQ. FLAG

Q00647 . ¥ FALL THROUGH TO EXECUTIVE




PAGE 016 RT&8-V2

RT/68 MULTI-TASK EXECUTIVE FROGRANM

004649 X
006350 X
00651 ¥ SAVES CURRENT TASK STATUS IN TASK 8TATUS
00652 % TAERLEy» THEN SEARCHES THE TARLE FOR THE
00633 ¥ HIGHEST FRIORITY RUNNABLE TASK AND STARTS
00654 ¥ IT, IF THERE IS MORE THAN ONE RUNNAELE TaASK
00635 ¥ AT THE HIGHEST LEVEL» THE :
0046564 ¥ EXECUTIVE WILL RUN THEM ROUND- ROEIN.
00458 ¥ TEST MODE TO PREVENT MULTIPLE
Q0659 ¥ EXECUTION OF EXEC RY INTERRUFTS
00660 E2DL D& 00 EXECO1 LDA B SYSMOD
004661 E2DF 26 4A ENE INTRET ERA IF EXEC ALREADY ACTEVE
00662 E2EL1 SC EXEC0? INC R SET EXEC MOLE
00663 E2E2 D17 00 STA B SYSMOD
00664 ¥ SAVE CURRENT TaASK SF ON TAERLE
006465 E2E4 96 01 LA A CURTSK GET CURRENT TASK #
00666 E2ES6 8D 53 BSR FNDTSE FIND ADDR OF TSE

, 00667 E2E8 AF 01 8TS 1,X SAVE SP
00669 X INITIALIZE EXEC TEMP VALUES
00670 ¥ PTYTMF = HIGHEST FRIORITY .FOUND
00671 ¥ TSKTMP = TASK # FOR AROVE
00672 E2EA 4AF EXEC02 CLR A
00673 E2EER 97 07 STA A INTREQ
00474 E2ED 97 09 STA A. FPTYTMF
00675 E2EF 97 08 STA A TSKTMF
Q04676 E2F1 9246 01 LDA A CURTSK
Q0678 ¥ LOOF TO SEACH THROUGH TARLE FOR
00679 ¥ HIGHEST RUNNABLE TASK
00680 ¥ STARTS WITH CURRENT TASK AND COUNTS
Q0681 ¥ DOWN S0 LAST TASK TESTED IS THE
004682 ¥ CURRENT TASK # -1, THIS ALLOWS TASKS
004683 x AT SAME FRIORITY LEVEL TO EXECUTE
00484 ¥ ROUND-RORIN.
00685 E2F3 8L 446 EXECO3 ESR FNDOTSE FIND TSE
00686 E2FS 2A OD EFL  EXECO04 RRA IF TASK OFF
00687 E2F7 C4 07 ANDII' B #%07 MASK PRIORITY
00688 E2F? D1 09 CHP B PTYTMF COMF, TO HIGHEST SO FAR
00689 E2FR 25 07 BCS EXECO4 ERA IF LOWER
00620 E2FD D7 09 STA B PTYTHMF MAKE IT LATEST
00691 E2FF 16 TAB CHANGE SET TASK#
00692 E300 CA 80 ’ ORA B #480 SET FOUND FLAG
00623 E302 L7 08 STA B TSKTHFP
00694 ¥ ADVANCE TO NEXT TASK
00693 E304 4A EXECO04 DEC A
0046746 E30T 84 OF ANDI A #4$0F
00697 E307 91 01 CHF A CURTSK SEE IF LAST TASK
00698 E30? 24 EB ENE EXECO0O3 BRA IF NOT FINISHELD
00700 ¥CHECK IF TASK FOUND IS RUMNNAELE
00701 E3QER D6 09 LA B PTYTHMF GET HI FRIORITY

00702 E30D Il OF CMF B SYSFTY COMFARE TO SYS FRIORITY




FPAGE

00703
00704
Q0705

00707
00708
00709
00710
Q0711
Q0712
00713
00714
00715
Q0716
Q0717

00718

00719
00720
00721
00722
00723

017

E30F
E311
E313

E315
E317
E31?
E31B
E31C
E3LD
E31iE
E320
E322

E324
E326
E328
E32H

RT68-V2

23

96
24

84
27
8n
o4
S4
S4
ca
0z
AE

?4
26
7F
3k

D9
08

ns

OF
01
20

OF
o2
01

07
c2
0000

ECS

EXECO2 SEARCH AGAIN IF LOWER

LDA A  TSRTHMF TEST FOUND FLAG

BFL

EXECO2 ERA IF NOT SET

* RUNNAELE TASK FOUND» SET SYSTEM
X PARAMETERS

AND
STA
BSR
LSR
LSk
L.SR
AND
STA
LIS

A
A
3]
B
k
E

E

TO RUN IT

¥40F .

CURTSK SET TASK #

FNIDTSE GET TASK TSR
EXTRACT TIME LIMIT

FEOF
TIMREM
1,X LOADl TASK SF

% TEST FOR. ANY INTERRUFT THAT OCCURED
¥ DURING EXEC MOLIE

LDA
BNE
CLR
INTRET RTI

A

INTREQ

EXECOZ2

5YsSMon 8ET USER HMODE
RUN TASK




FAGE 018 RT&8-V2

00725 X RT EXECUTIVE AUX. SUBRDUTINES
00726 X ' '

00727 X ALL ARE REENTRANT SUBROUTINES THAT
00728 ¥ FASS FARAMETERS AS FOLLOWS:

00729 X ‘

Q0730 ¥ ENTRY! TASK # IN ACC A

00731 X .
00732 ¥ RETURN?! TASK # IN ACC A

00733 X TASK STATUS ERYTE (NEW) IN ACC E
00734 E ADDR OF TSE IN XR

Q0736 ¥ SUBRR TO TURN TASK ON

00737 E32C 8I' OD TSKON EBSR FNDTSE

00738 E32E CaA 80 ORA B #%$80

00739 E330 E7 00 RESTSE STA B 0sX

00740 E332 39 RTS

00742 ¥ SUEBR TO TURN CURRENT TASK OFF

00743 E333 26 01 CTSKOF LDA A CURTSK

00745 ¥ SURR TO TURN TASK OFF
007446 E335 8D 04 TSKOFF ESR FNIOTSE
00747 E337 C4 7F AND' B #$7F
00748 E339 20 F5 ERA RESTSR
00750 X SUEBR TO FIND TASK STATUS EBYTE/WORD
00751 E33R 36 FNITSE FSH A
00752 E33C 84 OF AND A  #$0F
00753 E33E 164 TAR
00754 E33F 48 ASL A
00755 E340 1E ABA
00754 E341 B8R 50 ADD A ¥$50
00757 E343 34 FSH A
00758 E344 84 A0 LDA & #$A0
00759 E346 36 ‘ FSH A
007460 E347 30 TSX
- 00741 E348 EE 00 LDX OrX
00762 E344 31 INS
007463 E34R 31 , INS
00764 E34C E&6 00 LA B 05X
00785 E34E 32 FUL A

007646 E34F 39 RTS8




FAGE

00768
Q0749
00770
Q0771
Q0772

Q0773
Q0774

00776
00777
00778
Q0779
00780
Q0781

" 00783

00784
00785
Q0786

00788
00789
00790
00771
00792
00793
Q00724
00793
00796
00797
00798
00799
00800
00801
00802
Q0803
30804
00805
00806
00807
00808
00809
00810

00811
00812
00813

00815
Q0816

Q0817
00818

00819
00820

019

E350
E352
E354
E356
E3S8

E359
E3SA
E35C

E3SE
E360

E362

E3s4
E366
E348
E3éA
E3sC

E3&D
E36F
E370
E372
E373
E374
E374
E378
E37A

E37R
E370

E37F

E382.

E383

E3B84
E386
E387
E389
E38E

RT&68-V2

8D
84

27
39

37
8D
26

Ad
2H
&F
8D

Cé
E7
a8

8D
oD
69
44
9A
26
8Dh
Eé
S8
24
80

FE
33

39

Eé
54
24
Ab
20

07
7F

F8

31
26

04
FC
06
3R
35
04
064

04

F7
25
06

oz
1E

A010

00

FE
01
F2

CHARACTER AND RYTE I/0 ROUTINES

SELECTS INTERFACE TYFE (FIA OR ACIA)
ACCORDING TO LEVEL OF FIA INMFUT CRS

I I K I I I I

IF ACIA TYFE IS SELECTEDy THE ADDRESS
OF THE ACIA IS ORTAINED FROM "IOVECT®
WHICH WILL DEFAULT TO %3000 :

‘*Jo‘\\ [} { RS N

XREAD CHAR WITHOUT FARITY OR RURQUT

INICHR ESR INRBYTE
AND A F$7F
CMP A #%7F
BEQ IN1CHR
RTS

X READI B-EIT BYTE
INRYTE FSH E
BSR I0AUX
ENE ACIAIN

GET BYTE

STRIF FARITY EIT
TEST FOR RUROUT
AGAIN IF RUEROUT

SAVE XR + SAMFLE TYFE

X FPIA SOFTWARE UART ROUTINE -
¥ INFUT ONE CHAR WITHOUT PARITY

FIAIN LDA A 45X
EMI FIAIN
CLR bsX
BSR STRTET
ESR WAITET
LDA B #$04
STA B &sX
ASL E

% LOOF TO INFUT 8 LDATA

PIAIN2 BSR WAITET
SEC
ROL 4yX
ROR A
DEC E
ENE FIAINZ
ESR WAITET

CHKSTE LDA B 69X
ASL E .
BPL RESTOR
BSK WAITET

WAIT FOR START RIT
SET 1/2 RBRIT TIME
RESET TIMER

WAIT FOR TIMER

'SET TIMER TO FULL RIT TIHME

BIT COUNT=S8
BITS
WAIT EBIT TIME

SHIFT OUT DATA

SHIFT IN A TO BUILD
DECR BIT COUNT

ERA IF NOT DONE

WAIT FOR STOF BIT
TEST FOR # STOPF BITS

KRESTORE REGISTERS + RETURN

RESTOR LDX XTHF
FUL E
RTS

¥ ACIA CHAR INFUT ROUTINE

ACIAIN LA B  0OsX

LSR B
RCC ACIAIN
LA A 1.X

ERA RESTOR

GET STAT REG

MOVE RDY BRIT TO SIGN FOS
WAIT IF NOT READY

READ DATA

BRA TO CLEANUF




FAGE 020 RT&68-V2

00822 ¥ I/0 SETUP BURROUTINE

00823 E38D FF A010 IOAUX STX XTHP SAVE XR

00824 E390 CE B0O0OO LDX . #4$8000 LDAD XR WITH FERIFH FTR

Q0B25 E393 E4 06 - LA B &¢X TEST FOR ACIA OR FIA

00826 E395 C3 20 ’ RIT B #$20

Q0827 E3%7 27 03 : REQ AUXRET ERA IF FIA

Q0828 E399 FE A012 LDX IDVECT GET ACIA ADBRESS

Qo829 E39C 39 AUXRET RTS

- 00831 % SUEBR TO WAIT FOR 1 BIT TIME

Qo832 X AND RESET TIMER

Q0833 E3?D &I 06 WAITEBT TST b1 X

Q00834 E39F 2A FC EBPFL WAITET

00836 ¥ SURROUTINE TO START (RESET) RIT TIMER

Q0837 E3Al 6C 04 STRTRT INC 61X

00838 E3A3 6A 06 DEC brX

00839 E3AS 39 RTS , W
(L\-ma‘( hel ‘ \‘l:hi‘ L‘I“‘ v ’: (? e ( €A

00841 X OUTPUT 1 CHARACTER SUBROUTINE TO

00842 X FIA DR ACIA

- 00843 E3aé6 37 OUTLICH FSH R SAVE ACC B

00844 E3A7 8D E4 / ESR I0AUX SETUF FOR RDUTINE

00845 E3A? 26 15 ENE ACOUT USE ACIA SUBR IF TRUE

00847 % FIA SOFTWARE UART CHAR OUTFUT

00848 E3AR Cé 04 LDA B #4

008492 E3JAD E7 04 STA B 44X SFACE FOR START EIT

Q0850 E3AF E7 06 STA B 69X SET TIMER FOR FULL

00851 E3RL C6 OA LA B #10 INIT. RIT COUNTER

00832 E3R3 8D EC BSR STRTET RESET TIMER /

00853 ¥ RIT QUTFUT LOOF

00854 E3RS 8D Eé FOUT1 - BSR WAITRT WAIT RIT TIME

Q0855 E3R7 47 04 o 8TA A 4r,X SET RBIT QUTRUT

00856 E3R? OI SEC

Q0857 E3RA 446 ROR A SHIFT. IN NEXT RIT

00858 E3EE SA LEC E LDEC EBYTE COUNT

Q0839 E3RC 26 F7 ENE FOUT1 BRA IF NOT LAST BIT

00860 E3BE 20 EB ERA CHKSTE - CHECK FOR STOFP RIT + RTE

00842 ¥ ACIA CHAR DOUTFUT ROUTINE

00863 E3CO ES 00 ACOUT LA B 0O»X GET STAT REG

00864 E3LC2 S4 LSR B SHIFT RDY RIT TO C

00845 E3C3 5S4 LS8R E

008446 E3C4 24 FA BRCC ACOUT ERA IF NOT READY

00867 E3C6 A7 01 STA A 11X STORE IIATA

00868 E3C8B 20 ES ' ERA RESTOR GO TO CLEANUF




FAGE 021

00870

00871 E3CA
E3CE
E3CC
E3CD
E3CE
E3CF

00873
00874 E3DO
: E30n1
E3DL2
E3D3
E3D4
.E3DS
E3D6
E3N7
E3L8
00875
00874
Q0877
00878
00879 E3DN?
Q0880 E3DA

00881 E3DC

00882 E3DD
00883 E3DF
00884 E3EOQ
00885 E3E2
00886 E3E3
00887 EIES
00888 E3ES
00889 E3ES
00890 EIE?
00891 E3EE
00892 E3EC
00893 E3EE
00894 E3EF

Q0895 E3F1.

Q0896 E3F2
00897 E3F4
00898 EJFS
00899 E3IF?

Q0901
00?02
00903 E3F8
00204 E3FA
Q00?05 E3FC
Q0906 E3FE

RT68~-V2

20
45

92

32

04

on
0A
00

00
04

31
04

E30?
42
E1C3
44
EL1A7
45
E1FS8
47
E201

EQOO
40
E223
50
E207
52
EQIO
53
E20C
ig -
7000
00

E2BE
E2BO
E298
E147

¥ ERROR HMESSAGE STRING
$209 "Ey ‘Ry "Ro$20v 4.

ERRMSG FCE

¥ CR/LF AND TAPE HEADNER STRING
SO0y $0AY020s0r45°S»7 149

CRLSTR FCE

X

¥ COMMAND CODE/ADDRESS TAERLE

X

CHMDTEL EQU
. FCR
FDE
FCH
FDE
FCE
FDER
FCE
FOB
FCE
FIE
FCE
FDR
FCR
FLE
FCR
FLE
FCE
FLDE
FCR
FIE
FCB

) 4
FDR
FLB
FLE
FDE

X

‘R
RRKFPCOHN
’ Il

DMFCOM

‘E
EXCOHN
‘G
GOCOM
IL’
LOAD
IM X
MEMCOM
‘P
FUNCOM
IF\I .
FRSTAN
‘S
SYSCOM
$1B
$7000
0

¥ INTERRUFT VECTORS

IRQ
SINT
NMI
INIT

(ESC) NEXT ROM OR USER DEFINE

END

IRQ VECTOR
SWI VECTOR
NMI VECTOR
RESTART VECTOR




ITISY INOINVU 0LsE UV vy SN 0f VB L8580 09010 HAWIL L3583 X4g NER) £0 49 I£T0 0Z200

1 {T] ENT 924 0T GSEO 05010 NSYL AYTIASIN NO NMAL % 01500

X40 NI 00 29 ESE0 0LOTO ZJdANT1D ANY L0 92 ATTO 00%00

olF v ans VO on ISE0 0£0T0 4N 3HNIL M0Od4 A1S3L X482 ¥ 4l £0 IV (CT0 06V00

O] 24 20 SE AVEO 0ZOF0 MIE v ovil VI 98 JZT0 08V00

01¢ Y J4Wd TIH Y0 18 1vs0 01010 YIANIL MINI X¢E NI 4NN £0 39 4210 04400

1SH 037 X0 4 V1S 00 £3 AVE0 000T0 AVI3IT INING 1831 % 0500

0M3Z 1128V OL4E A WI'I DIINVR  OF 93 &VEQ 04400 * 0500

MAAANT NI INd ONY TI0SY 04 % 08600 B8YH L3SIY X2 ¥ b} Z0 49 LETT0 0vV0O

YV 33V NI 3NTvn AYUNTE LMIANOD 0L Md0S % 04600 . JNNTD A TO 9C GT10 0EVOO
NSLSTI vyl 03 0T LVEO 09600 : X4Z 4 402 20 T3 E£Z10 0TV0O

. 33IX3 TWI  4n3nle NS SUVT0 1 VLEQ 08600 SMH  JHNG X4E oI O 29 ITTO0 0TIv00
ANINUND ANIJISNS  HJ0NSLY u5r £££3 04 THE0 OV600 SNIH 1353 Xt M2 10 49 4110 00V0O0
Y344 INIYS  TULYDY usr T 3L03 U AEE0 0£400 JINT1D END Yo 92 UTT0 04£00

, AnaLnos X7 OZEO 3 (UFELO 0ZA00 ¥3A0 ¥4 NI3IND X1 v du) 10 IV d110 0BE00

AU INTUY 4™ us TCI3 14 BEEO 01600 SNIW JHM Xe1 ANI 10 39 6110 0L£00

DAANVH s 1 08 9££0 00500 8338 513534 X40 k] 00 49 LIT0 09500

§335 vV v 06 95 VEED 06B00 JNNT1D N T 92 G110 0S£00

IIINVH ¥sq - S1718 ZELO 08800 ¥3in0 ¥O04 1531 X¢0 Y Jdu2D 00 T¥ £110 OVEOO

SHIH ¥ w1 16 96 0EL0 02000 SIUNOJIE  JHNa X0 ONT 00 29 1110 OR£E00

139 IIJSV 3INVH  D30NVH 54 61 U@ 3TLO0 09800 WA 1531 BNOH vZe  d v 8Y 92 4010 0TL00
4maLnos X1 0CE0 3D dTEO 05800 v 1631 09¢ v w1 JE 98 M0T0 OIL£00

sMNON 130 Sl U VI NBISIT 26 94 &ZE0 OVBOD SHILNNDD 01 ¥IINIOJ 82354 X1 L0040 0600 3D VOTO 00500

Y3 SNIOIT NSVL % 0£000 Z40ON1D UMD AT 0T BOTO 04TO0

YYHI 103 vos 434 ¥0 BZE£O 0Z0O0 MEVL HHIL 40 138 NSIHIL Y vi1s Vo0 <4 SOT0 08T00

504 8238 <. aHy T000 92£0 0IBOO I+ Y v 10 28 £050 0ZE00

i, 424 VE CZE0 00800 MSYL IZIWILINI HyIWIL YD NSINID £400 42 00T0 09800

604 SNIW [4 gy 2000 £2£0 06400 00T10% 930 0010 0500

. i 434 VE ZZ£0 08£00 , FY3IH SNIOAY T# NsYL % ovzo0

504 SYNOH 4 Iy €000 0Z£0 0£L00 6338 NI AV INIYJ 0oz nva - ad r100 0£E00

X nv3 Jndinn 0ZE0 09200 AV AVI4SId INISIT & 0ETO0

Y344nd IN4100 40 135 X : 05400  INTM4 FIVATLIY 0L YIHIL I gHy - 43WTL 1000 £600 01T00 .

dS1 INIJA0 8-x no3 €d4S1 8IcCo ovZ00 ¢ AHY SAH T000 T&00 00T00

NIVLS NO *3°d LINI  MNBLISIA aad _ 6ZE£0 ITLEQ OELOO ) HHM  BNIMW 1000 1600 06100
vIYY NOVLIS INYIASIN ot HUY : 3100 00£0 0TZ00 T any 5218 1000 0400 08100
- 00£0$ a¥o 00£0 01200 NOILINIADI ANOHIW NSVL NIOID % 0,100

’ : NIVLE dN 135 % : 00200 a-x% nna1 1451 8800 09100

. ¥ 06900 3TdY1 HIALSAS HO4 461 INIJAA % 05100

JT0SNOD NO “IHIL INIMJ 04 NSVL % 08200 YIAY LNYLE LINI NSLND and 0010 3R00 OVIOO

81y 6L ALTO0 0£900 : NIVLS HO4 HOOY of any 3100 0400 0£100

Ins dE ar1o 09900 NOYLS 40 HOLLDA 0£00% 030 0200 0Z100

LUREREE] INT - 300V 2L VP10 05900 NIVLS MSINTD JHL AN 438 X 01100

JON 10 &4¥10 OVR00 _ X 00100

I35 40 8v10 0£900 *S245 0T AMIAT X 06000

- OHSAS INI 4NANTEB 0000 2L SKT0 02900 F70SNOD 3HL NO IHIL 3HL SAVTIASIU NSLSIU % 08000

ANILNDIXI TWI 0L WINGE % 01900 Y 02000

IAYVIIN, VR L S0 02 £¢10 00900 *IHIL J433N 0L B9/1Y X 07000

(J3X3 TWI) YLNOD ISV JdN3ININ ysy O B TLIO0 04500 40 ALITIAY4YD NSYL TAHIL 3IHE 83N NSINID & 05000
AN34SNS  JONSLD s ££E3 g 3L10 0BS00 _ ¥ 0000

UHANGL X186 £000 44 dET10 04500 1SNBVL OML BY NILLIMM % ‘0£000

(MJ0TD ZH 09) INVISHOD AT 098 XY ZJONTI I£00 3D BE10 09500 X 02000
ANIJSNG ANV MIHIL MSVL 1353y % 05500 HYMOO0Md NOTLYULSNOWIT NOOTE) WLIOId % - 01000

NGO NSYL NYAL NONS1 usr JTEI 04 GETO OVZ00 : 0 L40 £0000

¥ 23v NI # NSYL Ind 28 v v 0 98 E££10 OESO0 N1201d HUN 10000

N101q €00 30vd : . NT19I 100 30Y4



04040401040%04040 LME]
04040%020%04040%0 494
04040404090404040 424
0/0%0%0404040¢040 and

TISL L]

M8l € NSVYL 40 138 00% an4y
1451 (iDF]

MSL T NSYL J4n 138 o0 a4
7380 1LON 0 MsV] 04010 34
o5ovVs NN

IWVL BNAYLE N8VL JN)

0000 nuy

V000t nu3

£000¢ nu3

Trias non3

aTEIs nna

EEETs no3

00V noa

3,038 noa

814

XNI

XNE

XNI

X1 v wvis

138 x
IHGAS
NSINIL
HHINGL

443
NONBL
A0NS1LD
07014
iwvild

00
00
(]
00
00
00
a0
Q0

0000
vooo
£000
i3
Jjced
££€3
300V
3403

NnIg

aLo0v
LLOV
LOV
520V
vLov
£L0VY
TLOV
L0V
0LOV
A70V
AP0V
720V
a90v
90V
Y0V
490V
a90v
L90Y
990V
GYoV
20V
£9ov
zo0V
190V
090y
450V
ISov
150V
aGov
250V
yGoy
650V
LG0V
950V
toov
£S0v
TG0V
IS0V
050V
0oV

00110

0670

0ac1o

0LTT0
07?210
ase1o
overo
0LZT10

ocTI0
0ICTO0
00310
06110
ogfro
oL¥T0
0¢i10
0osivo
ovriNo
oLt

ToTtro

35L0
usgo
JILEO
4seo
SGEO

£00

0rTiT0
001710
046010
oBoro
0010

ki LR

ALTNOING 0Y3Z

BINVISNOD BAS JNn 138

o

o
vVooos

0400

N3
UNE
a4
a1 [1]

134

00000 B40N43

00
00

LE ML

H000
vooo
Y000
JLOV
AL0V
aLov
JL0V
Hsov
vLoY
L0V

voo

wviol
05E10
OVETO

OLETO
oeRto

0IETO0

g



TIN3
6111343 nu3
LVv03s nvAa
F303% 3
[£e 111131 no:a
c0ovs 31V
00033 non3
cTOVs no3
vIous o3

MV
Mvyg
L0004 L
MIWINA
v

avo
133001
yivIav

SHININIAAN TUNNILXH ANT I3 &

00000 sYOMYT "WLOL

65000

&3 85000
Zv03 £5000
2303 95000
ooy 55000
zoov v5000
0003 15000
ZTov 5000
IOV 15000
05000

UI4v1 200  39v4

514
L3001 X1
HIVIOY Xi'1 IV EAS
S5V 3AVINIL IV %
IERITSIE 0L MO1D30 VIOV 3OMVHD oL WInG &

1Y
123801 X148

000833 & XU MOLSIN

HOLIHa MBIV VIOV FTI0SN0D 3N0LSIY 00 WIS *
10041 s
Y15 BT
NIV ONIONI 139 Mivi3o MG
Yava X8

MY OHIIYVLS 130 v USE FAV LA
HOLSIY vl
avo'l gse

wivi3s USY A4vLIy
S1M
SUILINVUYA *UIID X40 VY WS
o ST$E VvV il
13534 ¥ILSUM X0 v Vs
£3 v w1

HIVIIV XU OIXNI

49 v AUTHR OL JIVIVI ST JAVEINA X
34VL © avIY 0L 3371 S F3AVL0N &k
VIOV 3HL 3ZIWILINI 04 37D 81 OIXNI %
X
¥k JJ0J INDBINASIANI NOLLIGOS k% Xk
- X
HEAN0LS3Y ST SSIMNIV VIOV %
FIOSNOD JHL “03INSINIA ST MOILYYMIA0 N3N %
: STOVE — VTOVS 40 SINALINODD %
AHL A IAHIHMILIT BT SSIMIOY VIDV INL %
*
VIOV %
JAVAMIINT FT0SNOD JHL NYHL U3NLO VIOV NY X
HONDMIEL S34VL LDACE0 ILTIUN ¥O dVIY 0L 380
, *
89714 04 BINLLNOY O/ 34V FLYNNALIW %
0001s$ 00
- 0 L0
HUN

0I14v1

(3%
ciov 41
vioy 34

&L
COv )
000w 3
330 g

vo 1i1g
ST I
cOov 4.4
LY03 g
a0 O
Q003 uy
Vi ag
3%
00 LV
SY 98
00 LV
£0 v8
VIOV 34
014V]

3701
ucot
Beor

LE0T
VEoT
Tcotx

arorn
Jrofx
6101
2101
£1071

1101
1007
200t

J001(
6001
L0007
5001
F001
0001

00071

100

000
LVO00
0000
000
vLo0o

cvroo0
1v000
0ro00
68000

L5000
7£000
L£000
¢E000
££000

Y£ Q00
0£.000
€000

L8000
2000
52000
reo000
£2£000
<000

0CO00
61000
gr1000
L1600
2?1000
51000
rr00o
£1000
©1000
11000
01000
60000
o000
£0000
20000
50000

£0000
£0000
10000

J9v.4



coovs
YoovVe

nn:a BV
nv3a unsNND

HOILINISAT AUOH3N ¥

Vivil 3401834 .
HASMNID
HASMIIAND DL iy HNSMNHD
1T 36vS
A0 vV Gviy 13301

Cce <

514
mnd
vis
[ [) {7)
HEd
UGE ILAUNX

HNSXNJZD 34Vadn + 31Ad Qvay 0L IS %

HOUYI + 440 3d4vL 0L JHr JEO03

dHI®

MO AT VU4 zavog e L]
HNBMID aN1
- OHASNIAND 139 3LAUNT . usd
NI0TT 40 aGNI L1ON 41 vyd  avo Il INg
. 1HNOD 31Ad I3 4 93a
YILNIOL YONI XNI Cavow
HOUYI 4 440 FSVL 04 JHF ovo3s JHr
dIg 11 41 V4 Savo 034
dJ3I0NVHD 11 34NS ANVH X40 YV Jdu)
11 38018 X40 Y Vig
JLAUNT ysd vavoa
JYOLE + ONOIIY VIVA avIY 01 SO0 %
yavig Xa7
THYaWIE v VIS
JLAUNTI usd
HauNg v vig
IOV NI0T 230 ILAGNI Ysa
qul
vV INI
INNOD A4Ad 130 ILAANI usy
HNSHIIHD YVITD  HABNNHD R ko)
ay0d3y vivd LON 41 vid  Zguo'w ING
.6 V 42 gavow
S18F 440 3avi Zrois  JdWr
£Qv0Ia [T
403 Y04 NIIND - 6.8 YV JdHI
JLAANT ysda
Zavoa INa
X.8 YV 41D
INHYIYS YOS NOOT  FLAGNI 454 Zavo
9103¢  usr
JE4E U va
30D NG ¥3IvIY FI$% V vl 4oINla

‘ULSHI 16414 40 YIAV=NNNN NNNN‘3 1AQ LUVIS
ATGHAGEVIY LNONLIM GILVINTIIY 33 AVH
FENI0D ANIANISIANT HOLLISDS%k

§34VL AUVHIE 421 1vHN0d Sivo
XHB?/4id 404 YIIVD) AUUNIA

L. A X X B X XN J

ooV
vOov

voov
voov

J€03
£J
voov
80
T4

ovo3
£0
00
00
Ly

zOoov
£oov

41 .

00V
v

-3
(4%
1
ud
9£
ayg

74
Le
74
)

avaHIg

c447
1448
EEE)
a343
UEE]
L33

[ F)
Pl 3 ¢
S041
midg
auas
Wil:4t
&U 4T
P41
vu.at
r4i B ]
04t
ERE]S

4d48
a141
7343
£341
(& 0] ¢
0241
ELE])
qadt
va 4y
ad 4t
4T
PRUE )¢
[ ]
EVE]
avdar
avil
¥
LV4l
vVl
AR ] ¢
oviy

85000
L5000
25000

¥5000
£5000
8000
15000
05000
V000
8t000

v000
G000
vt 000
£V000
V000
1vo00
orooo
45000
88000
L5000
9L£000
SE000
vE£000
££000
<f000
1£000
0K000
462000
8L000
L2000
9000
CC000
Y2000
£2000
ceooo
12000
02000
41000
81000
L3000
71000
£1000
v1000
£1000

1000
01000
40000
80000
L0000
20000
£0000



