
FLEX USER GROUP
NEWSLETTER

3540 STURBRIDGE COURT
ANN ARBOR, MI 48105
ISSUE 3

 STRUBAL+ CHAPTER 2

 As promised last time, here is a further report on STRUBAL+. At the risk
of spoiling my relationship with Jack Hemenway, I am not very impressed with
STRUBAL+. Contrary to Jack's words regarding it, there are only very minor
improvements in it. There is an added FUNCTION feature like the DEF FNA in
BASIC. Also added is a means of specifying the precision of the arithmetic in
increments of two digits, from 4 to 14! The less precise, the arithmetic, the
faster the results, says Jack. I was not able to see the difference in
calculation time from 6 to 14 digits. My test was admittedly not very
precise, and the program contained a mix of arithmetic and scientific
functions, which may have been so slow as to obscure the difference in speed
of the arithmetic.

 At any rate, I translated one of my favorite programs having to do with
my work into STRUBAL. This program requires about 1.5K in Assembler, and the
source code for a BASIC version is about a K, so the 9K BASIC plus the 1K
program take about 10K. The program in STRUBAL is 5K long, but requires about
6K of "runtime package", so the program uses 11K total. In STRUBAL it runs in
6 seconds. In SWTPC BASIC it also runs in 6 seconds! In Computerware's
SUPERBASIC it runs in 3 seconds!

 The linking loader is set up to load at $3000, right in the middle of my
32K memory, so the 11K program wouldn't fit below it, but just squeezed in
above it. BY the way, the source listing for this program is just two pages
with liberal comments. I asked Jack why on earth he didn't supply the linking
loader in a relocatable file too, so the user could relocate it to suit his
own system. Jack responded by sending me the source file so I could make my
own relocatable file. I set it up to load at $6400, so I have a lot more
space for programs. While I was at it, I also modified LINK to be compatible
with the FLEX P command. That is, it prompts for input on the terminal in all
cases, but if P,LINK is entered, the load map is output to the printer. While
I was at it, I also modified it to honor the pause feature of TTYSET. By the
way, in order to avoid confusion I changed the name of the Hemenway linking
loader from LINK to LINKR. The R is for relative, and it avoids a conflict
with the FLEX LINK utility. Now the load address limits don't scroll off the
screen before I can read them. I sent the listing as modified back to
Hemenway Associates just a few days ago, and am waiting for a reply.

 One of my initial negative reactions was to the fact that LINK produces
an object file on disk in the Motorola Punch format. Jack tells me that FLEX
is about the only system that won't work with such a file. Obviously to the
people at TSC such a file takes about 2.5 times as much disk space as a binary
file, so they didn't make provision for it. I had initially written a loader
utility for the punch format file, but now will be able to throw away the

 -1-

punch format subroutine and insert a straight binary file save routine of my
own. I must say that the program is very well commented and nicely written.
If any of you have the linking loader, I will supply the patches for use with
FLEX and the binary file save routine (which I have yet to write).

 One of the parts of the package that I mentioned last time is the
Relocatable Assembler. Hemenway Asociates are to be congratulated on this
nice bit of software. It is very easy to use, sticks to all the Motorola
mnemonics, and even uses the same error numbers (these are the same as those
of SWTPC's original CO-RES assembler.) Of course they had to make a little
change to make it not work with all of.our soruce files (maybe) If you are
like me, you probably have adopted the convention of entering LDAA rather than
LDA A to save file space in your source file. Both Motorola and TSC allow
either in their assemblers. Hemenway only allows the LDA A structure.

 I was able to modify one of my source files and make a relocatable file
on the first try. This is really nice software, and I highly recommend it.
Since I don't have the source file for the assembler, I'll have to do some
exploratory surgery (disassembly and dump) to find the jumps to input and
output routines, and make it compatible with the P command. This is likely to
take a little longer but I will prepare a patch overlay if anyone is
interested.

 One last point here. Hemenway allows two program sections in the
relocatable assembler, a common, and a base section. If you are familiar with
the Motorola Relocatable Macro Assembler, you know that it allows 4 sections,
that is to say that it keeps track of four program pointers. It allows what
Motorola calls a BASE section, which is simply zero page. In this section,
direct addressing is used. They allow a DATA section for variable data, and a
COMMON section for data to be shared by other program modules. Last but not
least, they allow a PROGRAM section for the main body of the program.
Hemenway's COMMON may be located on zero page, but direct addressing is not
used, since the assembler doesn't know where the COMMON will be located.
Hemenway's BASE section corresponds to Motorola's PROGRAM section. The only
way in the Hemenway Assembler to take advantage of direct addressing is to
assign zero page addresses to often referenced variables with equates. These
locations may of course be shared by other program modules if the same equates
are used in them also.

 Does this make a large difference? It doesn't seem to change the
program length by more than about 3% for a program that I have been working
on. However, many of the possible zero page references are in often used
loops, so I would expect a slowing of the program by a factor larger than
this. Back to the main subject, STRUBAL+. As you might guess by now, I'm no
longer too excited about STRUBAL+ as a useful development tool. I was told by
Bob Grappel that STRUBAL could indeed be made more efficient, but that it was
written to be compatible with all of the 6800 systems, and as such didn't take
advantage of the "tricks" allowed in any of the systems. This would of course
make it quite different for each system. So we have a "universal" tool which
doesn't work well with any particular system. Bob indicated that a great deal
of the runtime package is devoted to output formatting, which STRUBAL does
very nicely. Unfortunately in the application that I had in mind, input is
through a PIA and output is to LED displays through another PIA. All the
nice formatting is excess baggage that takes up ROM and never is called upon.

 -2-

The runtime package is written in such a way that it can't be searched as a
library and only those routines included that are called by the user program.
I hear rumors that perhaps that might be done, as well as some other
"efficientizing" to work with a 6800 operating system being developed by
Hemenway.

 On the other hand, Strubal does work, uses the forms and syntax that alow
structured programming, and would be a start toward learning how to understand
such languages as Fortran and the various PL/X languages. I was able to get
all the programs running that I tried in STRUBAL, one with some difficulty.
Most of the 12 errors per page that I made were syntax errors that were
obvious on study of the manual. Incidentally, the manual supplied with
STRUBAL+ is very much improved over the original STRUBAL manual. There is a
page devoted to each command, showing how it is used, and giving examples.

 To sum it all up, STRUBAL+ is too inefficient in terms of memory used,
and too slow to be any real advantage over a BASIC interpreter. As such it
is not a very useful development tool. It is a working system, and might be
considered a nice new "toy" for the hobbyist. The original STRUBAL was $100.
STRUBAL+ is $280, and as such is a very expensive toy. Frankly, if the old
version was worth $100, the new is worth about $125. I would not have spent
the $280 for STRUBAL+, and would not have been able to report had Jack
Hemenway not decided to send it to me on the basis of my complaints about the
old version. I think Hemenway has taken a compiler that has only hobbyist
interest, and priced it right out of the hobbyist market! Jack, if you see
this, I'm sorry, but that's how I see it.

 OTHER SOFTWARE

 I just saw an ad last week from Smoke Signal, for their Fortran compiler
for 6800. If you received the first issue of the 6800 Microjournal as I did,
you saw the article about compatibility between FLEX and SSB. If any of you
get the Fortran and successfully operate it with FLEX I would like an article
from you about it.

 If you've been waiting eagerly for the 6809 processor board from SWTPC as
I have, the rumor is that we don't have much longer to wait. I wonder what
software will be supplied with the new processor? How much of what we have
will have to be scrapped when we go to the 6809?

 A BRAINSTORM

 The other day I was trying to figure out how to improve and increase the
size of our newsletter without increasing the costs to you, the subscribers.
I had an idea which, I think merits some consideration. Several of you have
sent me utilities that have been published previously. If I were to put
together a package of utilities on a disk, and offer them for sale to non-User
Group members for a nominal charge, (say $8.00 a disk), we could subsidize our
printing operation, and spread all this good software around a bit. You would
receive full credit for your program as your name and address would be
included in the source listing on disk. The best part is yet to come. Should
we receive enough orders to cover the cost of the newsletter publication and

 -3-

mailing, and have some positive profit left over, I am willing to share that
profit at the end of the year with the contributors of software. The dividing
of profits would have to be determined by me, on the basis of number of bytes,
relative complexity, uniqueness of program etc. How does that strike you
authors of programs that we've published so far? Maybe the possibility of
some financial gain would inspire some of the others to contribute some
programs.

 Please note that I am not asking for major software that is of
considerable value to be donated free. If you have some major things, don't
contribute them free. Tell us what you have and what you think it is worth.
maybe we can give it some exposure and make people aware of its availability.
I expect to contribute a program or two each issue myself, and so will
indirectly benefit from my own efforts. Please remember that the idea is to
make membership in the group affordable by anyone who wants to join, and at
the same time, keep me out of the poorhouse or worse yet, the doghouse with my
family who resent me underwriting a project like this in addition to spending
so much time at it! Your responses would be appreciated.

 THE DISK ISSUE

 With no pun intended, this issue is not yet settled. Several of you have
sent me disks, empty or with utilities on them for consideration for
publication in this Newsletter. Early along I brought up the possibility of
an issue of this on disk, if each of you would send me a disk. As the
membership grows, I can see that such an issue would quickly get impractical
unless we could get "regional distributors" who would make 5 or 6 copies of a
disk I would send to them, and distribute it to others. That way we could
keep the wear and tear on disk drives and heads down to a nominal amount by
spreading it around among us. Not very many of you have responded with a
disk. I will hold the ones I have for a while, and then, if the responses
don't come, will fill your disk with the programs to date that we have
published, and return them to you, and the "disk issue" will be dead.

 TSC BASIC

 This issue has again been delayed due to lack of time on my part and the
wait for a response from one of our group concerning pulbication of some
utilities. During the delay I have received a copy of the TAPE VERSION of
TSC's new BASIC. The disk version will soon be available, but TSC wanted to
get the BASIC into the hands of some users to see if some bugs show up. I
found none at all, having run a dozen or so programs of various types. All I
can say at this point is WOW! This BASIC is FAST. Of course, this is what
TSC was trying to do.

 First of all, a rundown of the features. This BASIC is very similar to
all the standard ones. Syntax is essentially unchanged from the older SWTPC
BASIC. There is where the resemblance ends. Those of you who work with
several systems and BASIC interpreters will appreciate the fact that this
BASIC is much closer to the ANSI standard. It allows subscript (0) in arrays.
This has been a sore point in SWTPC BASIC when trying to adapt programs from
other interpreters. The zero subscript need.not be used, but is there to be
compatible with programs written for other BASIC interpreters. There is an

 -4-

addition in that the IF-THEN-ELSE structure is supported. I had wondered what
advantage this would be, but soon found a use for it that saves a couple of
lines of program, and is very easy to understand. The final disk version, I
am assured, will be compatible with source files prepared for the older
BASIC, as well as allowing the saving of the "intermediate" file. This file
has had some of the text "translated" into an intermediate code, and though it
is not much shorter than the original text file, will load and run faster.
The file may be saved in either form, as the interpreter is capable of
reconstructing the original text file from the intermediate code. This
interpreter does some syntax checking when the text is entered, and will give
you error messages when the input line has certain errors.

 There is one new command, that I haven't used, the CLEAR instruction. I
am now assuming that this clears all variables to zero, which is useful in a
program that is to be run several times without exiting. Previously it was
necessary to set all the variables to zero by using an assign (LET) statement.
Setting a whole array to zero could take considerable time.

 Dan Vanada of TSC indicates to me that the disk version will allow use of
all the FLEX utilities without exiting BASIC. There will be a problem with a
few utilities in MINI FLEX but FLEX2 (see below) has all utilities located out
of the way so they won't confilct with BASIC.

 By now you are wondering how fast this new BASIC really is. If you have
the October 1977 issue of Kilobaud Magazine, refer to the benchmark tests on
page 23. This new BASIC falls between number 1 and number 2 in the speed
ratings. It must be noted that the number 1 Osi BASIC is running in a 6502
at 2 Megahertz. If any of you has a 6800 system running at that speed (which
is more than twice the standard SWTPC operating speed), you will have the
fastest BASIC around on an 8 bit Microcomputer. For those of you who may be
newcomers to computing, the benchmarks refered to are some simple programs
with many repeated instructions in the form of loops. The running time was
tested on many systems and the results tabulated. The results for the longest
test are a fair indication of the whole series, and some are as follows:

1. OSI 8K BASIC at 2 MHz 21.6 seconds
2. NEW TSC BASIC at .9 MHz 30.0 "
3. CROMEMCO Z-80 at 4 MHz 32.7 "
4. ALTAIR 680 8K V. 3.2 81.8 "
5. SWTPC 8K 1.0 204.5 "

 So you can see that this BASIC is a real contender to put the 6800 in the
respectable category. We have TSC to thank for most of the software that is
making the 6800 a winner at this point. I am looking forward to having the
final version, and will order it as soon as it is available.

 Are we giving anything up for all this speed? Yes, just a little bit.
This version of basic has just 6 digit floating point arithmetic, whereas the
old BASIC had 9 digit arithmetic. Actually, the arithmetic is nearly 7 digits
internally, but the output is 6 digits. This is an advantage over similar
BASIC interpreters that use binary arithmetic as this one does. Many of the
others return strange things like 2+2=3.99999. TSC went out of their way to
take care of rounding so that the answers that should be integers are. Unlike

 -5-

some of the other binary arithmetic BASICS this'one allows such things as a
program to find prime numbers by testing the quotient of two numbers to see if
it is an integer. Some of the binary arithmetic BASIC interpreters give
screwy results when you try to use them this way! Perhaps some of you are by
now confused. The output of this BASIC is decimal just like the old one.
When I say they use binary arithmetic rather than binary coded decimal like
the old one, I am refering to internal operations only. The numbers are
converted to decimal before they are output. Binary arithmetic is inherently
faster. All that is required is that the results be converted to decimal
before we see them.

 Did we lose anything but digits? Yes, there is a little more. This
BASIC has a default line length of 80 characters. You can, however get in and
change this number by a POKE. We also lose the DIGITS= command. There is no
way to adjust the output format as to number of digits directly. Leading and
trailing zeros are suppressed, however, and it is possible to output dollars
and cents by using a rounding routine as below:

PRINT "TOTAL ";INT(N*100+.5)/100

 This will give you two digits after the decimal point for the value of
N. Other than these, there are no less capabilities in the new BASIC. There
is another great gain, however; the array dimensions are not limited to 255,
but are limited only by the amount of memory available. This eliminates a
difficulty that could previously be "programmed around" with some difficulty.

 All in all, I'd say that this is a great new BASIC and you'll want it as
soon as it is released. The price with full manual on disk will be $55
approximately (see the TSC Newsletter of recent date.

 FLEX2

 Since my employer has a SWTPC system going as a text processor using
TSC's text editor and processor, we ordered FLEX2 a few weeks ago. It arrived
the other day, and we are truly impressed with its additional capabilities.
Nearly all of the features for which I had just finished writing utilities,
are included in FLEX2. The best part is the "print spooling" function. This
allows you to do a function such as assemble a program, and list the output
rather than to a printer, to an output file. You can then instruct the system
to output this file to the printer, and proceed to do something else with the
system while the printer is working. This works by means of a "multi-tasking
system". You must have the SWTPC interrupt timer board. FLEX2 sets this up
to interrupt the computer every 10 milliseconds. When it is interrupted, it
does a quick check to see if the printer busy signal is off, and if it is,
fills the printer's buffer with output until the printer is again busy. It
then returns to the main activity of running your program, whether you are
assembling another program, listing a file, or whatever. There are utilities
to allow you to look at the status of the files waiting to be printed, modify
these, kill the current print "queue", (in case of a printer jam etc).

 -6-

 Some of the other new features include the possibility to create a
command file that can supply input just as though it were being entered from
the terminal. For example you can set up a file called YES.TXT that contains
a single line containing "YY". This file can be called to enter the responese
for a DELETE command. This is only a very simple example. If you have the
Hemenway software, ie the Relocatable Assembler and/or the Linking Loader, you
can set up all the necessary input in a command file and (if you are like me)
assemble and load a new file dozens of times as you debug it and chage the
source listing to reflect the corrections, without going through the pain of
entering the answers to all the input questions each time. I had written a
pair of utilities for MINI-FLEX to do just this, but FLEX2 has it all built
in. This letter contains a "patch" to the TSC assembler to allow it to print
out the date on the top of each page. The Assembler for FLEX2 (which, along
with the TSC text editor, is supplied with FLEX2), already has this feature
built in. I was surprised to see the date nicely printed on the top of each
page of the first output from the new assembler.

 What are the pains of converting? It depends on how old your SWTPC
system is. If you have the "2" version of the mother board and the processor
board, you have very little to do. If you have the older versions as I do,
you will have to make a very small modification on the mother board and the
processor board. You will also have to move some of your memory, or add some
in the address range from $A000 to $BFFF. FLEX2 takes 8K of memory for the
DOS, twice as much as the MINI-FLEX. However, the relocation to the higher
address allows you to have a full 32K from $0000 to $7FFF for your "user
memory". TSC does not automatically supply the Text Processor in FLEX2 format.
I have converted it (I'm getting ahead of myself a bit, see below) with
complete success.

 How about converting all the old MINI-FLEX files to FLEX2? That is not
too bad a process. If you have the source files, you may use a utility
supplied with FLEX2 to move the source from a MINI-FLEX disk to a FLEX2 disk,
and then edit it, changing all the FLEX EQUATES to agree with the new FLEX2.
You can then assemble the program and have the FLEX2 version. If you don't
have the source listing, but only the binary file, you may use the SEARCH
utility from our last newsletter, and find all occurrences of references to
FLEX, substituting the FLEX2 references for the old ones. I have already
converted many of my own personal utilities with success on the first try.
There is a difference in disk format between the two systems that causes the
complication of having to use the MOVE utility to get the file on disk in the
FLEX2 format, which has 256 byte sectors rather than the 128 byte sectors of
MINI-FLEX. The new format is more efficient, allowing more than 10% increase
in the disk storage capacity. The limit of 75 file names in the MINI-FLEX
directory no longer holds in FLEX2. It is now possible to protect files so
they can not be renamed or deleted accidentaly.

 In order to use the MOVE utility for the conversion of programs it is
necessary to have both the FLEX2 and the MINI-FLEX operating systems in memory
at the same time. With regard to memory allocation, both systems require
$0000 to $1FFF. MINI-FLEX though it doesn't use memory in this range,
requires some memory in the $2000 range for the bootstrap loader. Debug uses
$4000 to $5FFF. MINI-BLEX uses $6000 to $6FFF, and FLEX2 uses $A000 to $BFFF.
If you have 4 8K boards as I do, you can move the $4000 to $5FFF board to
$A000 to $BFFF, and be able to use both systems, having lost the capablilty to

 -7-

use DEBUG only. The editor and assembler will run in this configuration, as
will both "FLEXes".

 I was so impressed that I have ordered FLEX2 for myself, but couldn't
wait to get started, so I brought FLEX2 home from work and have started the
process of converting files. I'm glad that I just bought a new supply of
disks since it will take some extras to hold both versions of some programs
until I am completely switched over. I don't think the dual systems will be
much complication for this group, since the equivalent addresses may be added
as comments on source listings to ease the work of changing from one system to
the other. Oh, yes, there's one more advantage. The Utility area in FLEX2
extends from $A100 to $A6FF. This gives us room for a 1.5K long utility in
that area. All of the TSC supplied utilities fit up there, so that there is
no problem with running any of them from the new BASIC. Try it, you'll like
it.

 BEGINNER'S CORNER

 I was reminded by a new member of the group, that all of you out there
are not experienced programmers, and that there should be something for the
beginner as well. I guess I had kind of forgotten that point, and I will try
to include something along that line each time. I thought I might start by
giving you a sample of an introduction to Machine Language and Assembler
programming that I wrote for my company to use as notes for a course. This
text is rather long, and I will just give it a start here for a few pages. If
some of you think it is worthwhile we will continue it over several issues,
until it is completed.

 6800 MACHINE LANGUAGE AND ASSEMBLER PROGRAMMING

 This text will assume that the reader knows nothing about Microprocessors
or programming. I will try to introduce all new terms by giving a short
definition or synonym.

 Parts of a System

 In order to understand programming it is necessary first to have a basic
understanding of the parts of a microprocessor system. We'll begin a lttle
unconventionally, and first look at the memory.

 Memory may be thought of as a large number of boxes or "pigeon holes"
like the message or mail boxes at a hotel desk. There is a further similarity
in that each box has a label called its address. As in the case of house
addresses, no two are alike.

 Memory is used by the computer system to hold the program (a sequence of
operations to be performed on data). Memory also holds the data on which
operations are to be performed. The purpose of all the other parts of the
system is to perform the sequence of operations directed by the program on the
data in the memory.

 Input Output

 -8-

 The next part of the computer system is the input/output device.

In order for the system to function, it needs:
 A) To be given some data on which to run
 B) To be told when it is to run the program
 C) To have some way to tell you the results

These functions are performed by an Input/Output device, or I/O. In home
computer systems, the I/O may be a "hexadecimal" keyboard and some "LED"
displays as on the motorola evaluation kit, or a keyboard and video monitor
(or TV set), or a @hard Copy" device such as a teletype, typewriter, or line
printer that gives you a piece of paper with the program or its result
printed on it. This I/O device is usually called a terminal.

 Processor

 The next part of the system is caled the processor. The processor is the
smart part of the system. It understands all valid program commands, and
performs operations on the data from memory. It may drive one or several
Peripheral Interface Adaptors (PIA's). These devices allow the processor to
communicate with the terminal and other devices such as a tape cassette
recorder or disk drive.

 In order to perform or "execute" the program, the system makes use of
"registers". A register is a special memory location (sometimes several
locations), that is part of the processor, and separate from the main memory.
The registers are special and have names, unlike the main memory whose
locations have address "numbers".

 The 6800 has the following registers:

1. Program counter (PC)
2. Accumulator A (ACCA)
3. Accumulator B (ACCB)
4. Index (X)
5. Stack Pointer (SP)
6. Condition Codes (CC)

 The program counter is used when the program runs, to keep track of where
the current program instruction is in the memory. The accumulator is used in
performing the operations on the data in the memory. The results of
arithmetic operations are found in the accumulator. The index register has
various uses, one of which is to point at a memory location from which data is
to be obtained. This will be discussed fully when we get to the subject of
indexed addressing. The status and stack registers will also be discussed
later.

 Mass Storage

 -9-

 This is the name given to devices that can store large quantities of
program and data information. Small systems almost exclusively used tape
cassettes until recently. At this point, the larger home systems and small
business systems use disk. Since this is being written for a disk system
user's group, I need not go into detail about what a disk looks like. For
those of you who never had to suffer through loading 8K BASIC from a tape, it
took about 8 to 10 minutes, if my recollection is correct. Now I sometimes
get impatient waiting the 10 seconds or so that the disk takes!

 Programs

 A program consists of a list of instructions and directions as to the
location of the data on which to perform the instructions. Ultimately these
instructions must be put into the memory as "binary codes". while it is not
the purpose of this article to go deeply into a discussion of binary and
hexadecimal number systems and their theory, the work binary means "two
valued". The numbers used in the binary system are 0 and 1. All present day
computers use binary numbers because the two values can be represented by tow
"states" such as on and off, voltage and no voltage, (or positive and negative
voltage), magnetized and demagnetized, etc. Perhaps a comparison table would
help to explain the relationships.

 DEC. HEX. BIN.
 0 0 0000
 1 1 0001
 2 2 0010
 3 3 0011
 4 4 0100
 5 5 0101
 6 6 0110
 7 7 0111
 8 8 1000
 9 9 1001
 10 A 1010
 11 B 1011
 12 C 1100
 13 D 1101
 14 E 1110
 15 F 1111
 16 10 10000
 17 11 10001

 31 1F 11111

 As you can see, all of the possible combinations of 1 and 0 that can be
made using four places or "bits" (bit is short for binary digit) are used in
counting from 0 to decimal 15. Hexidecimal may be thought of as a kind of
shorthand notation that replaces four bits of binary with one digit. For
example, entering a machine code as 3A is far easier than 00111010, the binary
equivalent. The job can't be done with decimal numbers, because there aren't
enough symbols. A notation known as "binary coded decimal" uses four binary
bits to represent the numbers 0 to 9, so that each four bits represents a

 -10-

decimal digit. This is very wasteful of memory as compared to binary
notation.

 Well, that's about it for this time. I hope that has been enough to
bring some comments back to me regarding the content and level of
presentation. I hope to catch up a bit with this issue, getting the next one
prepared relatively soon so that it can still be mailed in April. Thanks to
all of you for your interest and your subscriptions. Please feel free to
duplicate this letter in any way you like. Some one or more of you has laced
a copy in a computer store, and several people have subscribed as a result.
Should this copy reach someone who needs the details, I am asking $12 for a 12
issue subscription. It looks as though we are going to have a hard time
keeping this monthly, but we're going to try to catch up and stay on schedule.
Please make your check payable to Ronald W. Anderson. We don't have a bank
account set up in the name of the user's group, and checks to Flex User's
Group might be hard for me to cash. If new subscribers want to get in on the
letters from the first issue in January 1979, send me a disk, and I will put
the first issues on it in formatted form. If you will indicate the width of
your printer, I will format your copies to fit. I'll also throw in the source
listings of all the programs we've published to date. In order to fit all
this on one disk, I'll have to "double side" it for you if you have not
already done so. Until I get my Text Processor bugs out, the disks will have
to be in MINI-FLEX format. I hope by next month to be able to send either.
Should you desire to start with the current issue, please so indicate. I have
received letters from some of you saying that you would "like to take
advantage of my offer". I have made several offers as you have written for
information. Please spell out in your letter what it is that you want so I
can get it right the first time. Again, I call for programs, reviews,
articles from you. This thing will only stay off the ground as you send
material for publication.

 HERE ARE SOME UTILITIES

 Last time I promised some utilities again. Here is one from Gary
Caudell, that is not really for FLEX. If you have wanted the A/BASIC compiler
from Microware, but couldn't manage the price, Gary may have a solution for
you. The cassette version is quite a bit less expensive, but requires the
RT-68 ROM. You can convert the A/BASIC to operate compatibly with MIKBUG OR
SWTBUG with this patch program. Note that this does not make A/BASIC
compatible with FLEX. It is still a cassette version, but you don't have to
buy the RT-68 operating system to use it.

 I received quite a group of utilities from Milan Konecny from the
Province of Quebec Canada. Some of them are modifications of TSC utilities,
mostly to add the date to directory and listing outputs. Milan has agreed to
supply these in Append or Overlay form so that we will not be publishing
listings of TSC utilities, but only the changes. one of those he submitted
was just an overlay or append, and it is given here. The comments make it
self documenting. It is a change to make the TSC assembler print the date at
the top of each page (unfortunately starting at page 1). I should note here
that FLEX2 version of the assembler has been set up to do this. If you are
planning to stay wih MINIFLEX for a while, you might want to do this patch. I
must say that Milan's programs are very nicely commented and beautifully
formatted.

 -11-

 The other night I was doing some "homework" consisting of a 30 page
assembler program for my company. I had debugged about 20 pages of it, and it
occurred to me that every time I made a few corrections, I had to relist the
whole thing in order to get the correct addresses for debugging in the area
where I was working on the debug. I decided to write a short overlay to allow
me to specify the page where printing is to start. That way, I don't have to
relist all the early pages to continue debugging at the end of the program.
Of course references early in the program to routines late in the program will
be wrong but I am working only on the end of the program. When the debugging
is finished, it is of course possible (and necessary) to make a listing of the
whole program with all the corrections. This has already saved me a great
deal of time and paper. If you don't ever write or debug programs longer than
a few pages, this may sound superfluous. In that case, just ignore it. The
assembler, if you add this, will prompt only if you are in the print mode ie
P,ASMB,ETC. You can specify any page including 0 for the printout to start.
Output will be to your terminal until the starting page is reached, where
output will switch to the printer.

 -12-

 *
 *
 * GARRY O CAUDELL
 * 3125 ROBIN LYNN DR.
 * ASHLAND, KY 41101
 * PERMISSION TO COPY GRANTED
 * DECEMBER 1978
 *
 * THIS PROGRAM IS TO PATCH THE MICRO-WARE COMPILER
 * WORK WITH MIKBUG/SWATBUG SYSTEMS
 *
 * MIKBUG EQUATES
 NAM PABASIC
 TTL PATCH ABASIC CASETTE VER.
 *
 OPT PAG
 E1AC INEEE EQU $E1AC
 E1D1 OUTEEE EQU $E1D1
 E0D0 MON EQU $E0D0
 E0BF OUT2H EQU $E0BF
 *
 16E5 ORG $16E5
 16E5 E1 AC FDB INEEE
 18E5 ORG $18E5
 18E5 E1 AC FDB INEEE
 18ED ORG $18ED
 18ED E1 AC FDB INEEE
 1917 ORG $1917
 1917 E1 AC FDB INEEE
 *
 16EE ORG $16EE
 16EE A0 4A FDB CRLF
 17D0 ORG $17D0
 1700 A0 4A FDB CRLP
 1951 ORG $1951
 1951 A0 4A FDB CRLF
 *
 16E2 ORG $16E2
 16E2 E1 D1 FDB OUTEEE
 17C9 ORG $17C9
 17C9 E1 D1 FDB OUTEEE
 1902 ORG $1902
 1902 E1 D1 FDB OUTEEE
 190B ORG $190B
 190B E1 D1 FDB OUTEEE
 1925 ORG $1925
 1925 E1 D1 FDB OUTEEE
 *
 0827 ORG $0827
 0827 E0 D0 FDB MON
 *
 A04A ORG $A04A
 A04A 86 0A CRLF LDAA #$0A
 A04C 8D 02 BSR JOUT
 A04E 86 0D LDAA #$0D
 A050 7E E1 D1 JOUT JMP OUTEEE
 *

PATCH ABASIC CASETTE VER. TSC MNEMONIC ASSEMBLER PAGE 1

 * THIS WAS A TOUGH ONE
 *
 16D1 ORG $16D1
 16D1 BD A0 4A JSR CRLF
 16D4 96 42 LDA A $42
 16D6 26 2C BNE CONT
 16D8 39 RTS
 16D9 EB 00 PATCH ADD B 0,X
 16DB 7E E0 BF JMP OUT2H
 16DE 7E 16 D9 JMP PATCH
 1704 CONT EQU $1704
 *
 * THIS WAS EVEN TOUGHER
 * FIXES OPT S
 *
 0F11 ORG $0F11
 0F11 01 NOP
 0F12 01 NOP
 *
 *
 * THE ABOVE IS ALL THAT IS NECESSARY IF YOU
 * WANT TO USE THE AC-30
 * THE FOLLOWING WILL ALLOW THE SOURCE TO STAY IN
 * MEMORY WHILE THE COMPILER IS BEING LOADED
 * THE COMPILER OUTPUT WILL STILL BE TO CASSETTE.
 * NOTE SOME OF THE ABOVE PATCHES WILL NOT BE
 * NECESSARY IF YOU DO THE FOLLOWING. ($18E5, $18ED)
 *
 *
 * SECTION TO REWIND MEMORY
 *
 00FB ORG $00FB
 00FB BD 20 0D BACK JSR REWIND
 00FE 20 10 BRA FWD
 0100 20 F9 BRA BACK
 0110 FWD EQU $0110
 *
 *
 *
 * SECTION TO LOAD NEMORY TO COMPILER
 *
 18DE ORG $18DE
 18DE 5F CLR B
 18DF 8D 15 IN1 BSR JIN
 18E1 81 02 CMP A #$02 START OF DATA
 18E3 26 FA BNE IN1
 18E5 8D 0F IN2 BSR JIN
 18E7 81 03 CMP A #$03 END?
 18E9 27 08 BEQ JEND
 18EB A7 00 STA A 0,X
 18ED 08 INX
 18EE 5C INC B
 18EF C1 80 CMP B #$80 128 BYTES YET?
 18F1 25 F2 BCS IN2

PATCH ABASIC CASETTE VER. TSC MNEMONIC ASSEMBLER PAGE 2

 18F3 6F 00 JEND CLR 0,X
 18F5 39 RTS
 18F6 7E 20 00 JIN JMP DATAIN
 *
 *
 *
 2000 ORG $2000
 2000 FF 20 16 DATAIN STX XSAV+1
 2003 CE 20 3B LOAD LDX #DATA
 2006 A6 00 LDA A 0,X
 2008 08 INX
 2009 81 1A CMP A #$1A END?
 200B 26 05 BNE STORE
 200D CE 20 3B REWIND LDX #DATA
 2010 86 03 LDA A #$03
 2012 FF 20 04 STORE STX LOAD+1
 2015 CE 00 00 XSAV LDX #0000
 2018 39 RTS
 203B DATA EQU $203B
 *
 * IT WILL BE NECESSARY TO KEEP THE CRLF IN
 * $A04A ANYTIME YOU ARE RUNNING PROGRAMS THAT
 * HAVE BEEN COMPILED BY THE A/BASIC COMPILER
 * A BETTER METHIOD IS TO INSERT THE CRLF ROUTINE
 * AT THE END OF THE COMPILED CODE. THE COMPILER
 * TELLS YOU WHERE THE END IS. THEN SEARCH OUT
 * THE JUMPS TO $AO4A AND PATCH TO THE NEW CRLF
 * ROUTINE. (FOR AN EXCELLENT SEARCH ROUTINE SEE
 * MAR 1978 73'S MAGAZINE)
 END

NO ERROR(S) DETECTED

 PATCH ABASIC CASETTE VER. TSC MNEMONIC ASSEMBLER PAGE 3

 SYMBOL TABLE:

 BACK 00FB CONT 1704 CRLF A04A DATA 203B DATAIN 2000
 FWD 0110 IN1 18DF IN2 18ES INEEE E1AC JEND 18F3
 JIN 18F6 JOUT A050 LOAD 2003 MON E0D0 OUT2H E0BF
 OUTEEE E1D1 PATCH 16D9 REWIND 200D STORE 2012 XSAV 2015

 NAM ASMPGE
 TTL START PAGE MOD FOR ASMB
 OPT PAG
 *
 *
 *
 * THIS PROGRAM IS APPENDED TO THE TSC
 * ASSEMBLER AND THE DATE MODIFICATION
 * IT PROMPTS FOR A PAGE NUMBER
 * AT WHICH THE LISTING IS TO START
 *
 * IT IS USEFUL FOR NEW LISTNGS OF A
 * LONG PROGRAM WHERE A CHANGE IS MADE
 * FAR ALONG IN THE PROGRAM, THAT DOES
 * NOT HAVE AN EFFECT ON EARLIER PARTS
 * OF THE LISTING.
 *
 * EQUATES
 7118 PSTRNG EQU $7118
 711E PCRLF EQU $711E
 710F GETCHR EQU $710F
 70A3 SWITCH EQU $70A3
 00AC PAGENO EQU $AC
 07AB PDATA EQU $7AB
 *

 160C ORG $160C
 160C 1D 37 FDB BUFBEG

 113A ORG $113A
 113A 1D 15 FDB PRTEST

 1CA4 ORG $1CA4

 1CA4 20 42 START BRA BEGIN
 1CA6 XTEMP RMB 2
 1CA8 00 00 SWPG FDB 0
 1CAA 46 MSG FCC /FIRST PAGE TO BE PRINTED?/
 1CAB 49 52
 1CAD 53 54
 1CAF 20 50
 1CB1 41 47
 1CB3 45 20
 1CB5 54 4F
 1CB7 20 42
 1CB9 45 20
 1CBB 50 52
 1CBD 49 4E
 1CBF 54 45
 1CC1 44 3F
 1CC3 00 0D FDB $D,$A,,,,0
 1CC5 00 0A
 1CC7 00 00
 1CC9 00 00
 1CCB 00 00
 1CCD 00 00
 1CCF 54 FCC /TWO DIGITS PLEASE, EG 06/

START PAGE MOD FOR ASMB TSC MNEMONIC ASSEMBLER PAGE 1

 1CD0 57 4F
 ICD2 20 44
 1CD4 49 47
 1CD6 49 54
 1CD8 53 20
 1CDA 50 4C
 1CDC 45 41
 1CDE 53 45
 1CE0 2C 20
 1CE2 45 47
 1CE4 20 30
 1CE6 36
 1CE7 04 FCB 4
 1CE8 FE 71 0D BEGIN LDX $710D
 1CEB 8C E1 D1 CPX #$E1D1
 1CEE 27 22 BEQ SKIP NO PRINT COMMAND
 1CF0 C6 FF LDA B #$FF
 1CF2 F7 70 A3 STA B SWITCH
 1CF5 CE 1C AA LDX #MSG
 1CF8 BD 71 18 JSR PSTRNG
 1CFB BD 71 1E JSR PCRLF
 1CFE BD 71 0F JSR GETCHR
 1D01 16 TAB
 1D02 BD 71 0F JSR GETCHR
 1D05 58 ASL B
 1D06 58 ASL B
 1D07 58 ASL B
 1D08 58 ASL B
 1D09 84 0F AND A #$0F
 1D0B 1B ABA
 1D0C B7 1C A9 STA A SWPG+1
 1D0F B7 70 A3 STA A SWITCH
 1D12 7E 03 00 SKIP JMP $300

 1D15 7D 70 A3 PRTEST TST SWITCH
 1D18 27 1A BEQ TEST3
 1D1A FF 1C A6 STX XTEMP
 1D1D DE AC LDX PAGENO
 1D1F 08 INX
 1D20 BC 1C A8 CPX SWPG
 1D23 26 05 BNE TEST1
 1D25 7F 70 A3 CLR SWITCH
 1D28 20 07 BRA TEST2
 1D2A 37 TEST1 PSH B
 1D2B 5F CLR B
 1D2C 53 COM B
 1D2D F7 70 A3 STA B SWITCH
 1D30 33 PUL B
 1D31 FE 1C A6 TEST2 LDX XTEMP
 1D34 7E 07 AB TEST3 JMP PDATA
 1D37 BUFBEG EQU
 END START

NO ERROR(S) DETECTED

PATCH ASSEMBLER FOR DATE PRINT TSC MNEMONIC ASSEMBLER PAGE 1

 *
 * MILAN KONECNY
 * 193 CHAPLEAU AVE.
 * DOLLARD-DES-ORMEAUX,P.Q.
 * CANADA H9G1C3
 * (514) 620-2263
 *
 * FEB 4, 1979
 *
 * TO INSTALL THIS FEATURE, THE TSC DATE
 * UTILITY IS A PREREQUISITE.
 *
 * INSTALLATION INSTRUCTIONS:
 *
 * APPEND,ASMB.CMD.0,ASMDATE.BIN.1,ASM.CMD.0
 *
 * IF DESIRED, RENAME ASM.CMD.0,ASMB.CMD.0,
 * AFTER DELETING ORIGINAL ASMB.CMD.0
 *

 * GLOBAL VARIABLES

 708E DATE EQU $708E
 7112 PUTCHR EQU $7112
 7118 PSTRNG EQU $7118
 07BA PCRLF EQU $07BA
 7133 OUTDEC EQU $7133
 07AB PDATA EQU $07AB

 1188 ORG $1188
 1188 BD 1B F4 JSR DATEO SET ASSEMBLER JUMP TO DATE

 160B ORG $160B
 160B CE 1C A4 LDX #BUFBEG CORRECT END OF ASSEMBLER

 1BF4 ORG $1BF4

 1BF4 20 03 DATEO BRA PDAT BRANCH AROUND WORK BYTES
 1BF6 01 VN FCB 1
 1BF7 00 00 VALUE FDB 0
 *

 * PRINT DATE

 1BF9 B6 70 8E PDAT LDAA DATE GET MONTH
 1BFC 27 47 BEQ NODATE
 1BFE 81 0C CMPA #12 TEST IF VALID MONTH
 1C00 22 43 BHI NODATE JUMP IF MONTH BAD
 1C02 CE 1C 4E LDX #MONTH POINT TO TABLE
 1C05 C6 04 LDAB #4
 1C07 4A PDAT1 DECA CHECK DATE
 1C08 27 08 BEQ PDAT3
 1C0A 08 PDAT2 INX

PATCH ASSEMBLER FOR DATE PRINT TSC MNEMONIC ASSEMBLER PAGE 2

 1C0B E1 00 CMP B 0,X
 1C0D 26 PB BNE PDAT2
 1C0F 08 INX
 1C10 20 F5 BRA PDAT1
 1C12 BD 07 AB PDAT3 JSR PDATA GO POINT IT
 1C15 86 20 LDA A #$20 OUTPUT SPACE
 1C17 BD 71 12 JSR PUTCHR
 1C1A 7F 1B F7 CLR VALUE
 1C1D B6 70 8F LDA A DATE+1 GET DAY NUMBER
 1C20 B7 1B F8 STA A VALUE+1
 1C23 CE 1B F7 LDX #VALUE POINT TO IT
 1C26 5F CLR B CLEAR FLAG
 1C27 BD 71 33 JSR OUTDEC PRINT DAY
 1C2A CE 1C 49 LDX #CST POINT TO STRING
 1C2D BD 07 AB JSR PDATA PRINT IT
 1C30 B6 70 90 LDA A DATE+2 GET YEAR
 1C33 B7 1B F8 STA A VALUE+1
 1C36 5F CLR B
 1C37 CE 1B F7 LDX #VALUE POINT TO VALUE
 1C3A BD 71 33 JSR OUTDEC PRINT YEAR
 1C3D 86 04 LDA A #$4 SET TERMINATOR
 1C3F BD 71 12 JSR PUTCHR
 1C42 BD 07 BA JSR PCRLF
 1C45 BD 07 BA NODATE JSR PCRLF
 1C48 39 RTS

 * TEXT STRINGS

 1C49 2C CST FCC /, 19/
 1C4A 20 31
 1C4C 39
 1C4D 04 FCB 4

 * MONTH STRINGS

 1C4E 4A MONTH FCC /JANUARY/
 1C4F 41 4E
 1C51 55 41
 1C53 52 59
 1C55 04 FCB 4
 1C56 46 FCC /FEBRUARY/
 1C57 45 42
 1C59 52 55
 1C5B 41 52
 1C5D 59
 1C5E 04 FCB 4
 1C5F 4D FCC /MARCH/
 1C60 41 52
 1C62 43 48
 1C64 04 FCB 4
 1C65 41 FCC /APRIL/
 1C66 50 52
 1C68 49 4C

PATCH ASSEMBLER FOR DATE PRINT TSC MNEMONIC ASSEMBLER PAGE 3

 1C6A 04 FCB 4
 1C6B 4D FCC /MAY/
 1C6C 41 59
 1C6E 04 FCB 4
 1C6F 4A FCC /JUNE/
 1C70 55 4E
 1C72 45
 1C73 04 FCB 4
 1C74 4A FCC /JULY/
 1C75 55 4C
 1C77 59
 1C78 04 FCB 4
 1C79 41 FCC /AUGUST/
 1C7A 55 47
 1C7C 55 53
 1C7E 54
 1C7F 04 FCB 4
 1C80 53 FCC /SEPTEMBER/
 1C81 45 50
 1C83 54 45
 1C85 4D 42
 1C87 45 52
 1C89 04 FCB 4
 1C8A 4F FCC /OCTOBER/
 1C8B 43 54
 1C8D 4F 42
 1C8F 45 52
 1C91 04 FCB 4
 1C92 4E FCC /NOVEMBER/
 1C93 4F 56
 1C95 45 4D
 1C97 42 45
 1C99 52
 1C9A 04 FCB 4
 1C9B 44 FCC /DECEMBER/
 1C9C 45 43
 1C9E 45 4D
 1CA0 42 45
 1CA2 52
 1CA3 04 FCB 4
 1CA4 BUFBEG EQU *

 END

NO ERROR(S) DETECTED

