FLEX™ NEWSLETTER NO. 5
September 1981

Copyright (c) 1981 by Technical Systems Consultants, Inc.
P.0. Box 2570, West Lafayette, Indiana 47906

Here's issue number 5! We are quite late with this issue, but we've got
lots of good material for you. . Thanks for your patience. It might be
well to remind you to check the number in the upper right-hand corner of
the mailing Tabel on this newsletter. That number is the last issue
number you will receive under your current subscription. If it 1is a
"5", you will have to re-subscribe in order to continue receiving the
FLEX Newsletter. No subscription renewal notices will be mailed.

1) FLEX™ News

OQur base of FLEX wusers continues to grow. We have experienced
phenomenal sales of FLEX and related software outside the U.S. in the
past several months. Several of our foreign dealers are really pushing
FLEX. SMT of France licensed 6800 FLEX quite some time ago for a
personal computer system they were developing called the "Goupil". They
recently started delivery of the system and sent us some copies of their
sales literature. They have a broad range of configurations ranging
from a small cassette based system to a 20 Megabyte hard disk system.
Another new Tlicensee of 6809 FLEX is Adtek of Japan. They manufacture
and distribute a 6800 and 6809 system aimed primarily at industry and
system development. They have translated the FLEX manual set into
Japanese.

Speaking of Japan, we see a large potential market there for the 68XX
family of microprocessors. Many of you are probably already aware of
the Hitachi MB-6890 personal computer based on the 6809 which is already
being marketed there. Fujitsu is readying a 6809 based personal
computer called the Micro 8. Both these systems have color graphics
capabilities. Neither are marketed in the U.S. at this time, but the
possibilities for such are very strong. The FLEX Operating System will
most 1ikely be available for both these machines.

Another version of 6809 FLEX will be made available soon to users of the
SWTPc S/09 system who have their hardware setup to run UniFLEX.
Currently, those users must power the system down, remove the UniBUG
ROM, insert an S-BUG ROM, and reconfigure the BDMF-2 disk controller
card. The new FLEX will boot directly on the UniFLEX hardware
configuration. Details will be sent to UniFLEX Ticensees.

FLEX Newsletter No. 5

2) New Products

Two new products to arnounce this time: 6809 Pascal and a 68000 Cross
Assembler which runs under 6809 FLEX. For further information, see the
descriptions printed at the end of this newsletter. Both are available
now, on either 8 or 5 inch disks. One point should be made regarding
Pascal on 5 inch disks. The compiler is very large and consequently
must be supplied on two single-sided, single-density diskettes. If your
system supports double-sided, double-density, or double track density
diskettes, you can simply copy the programs over to a higher density
disk and have no problems. If you are running single-sided,
single-density only, there are some special considerations. First, Yyou
will have to have two drives. Second, the programs which comprise the
compiler portion of the Pascal almost completely fill a single-sided,
single-density disk. This implies that to perform a compilation, you
must place your source file on a disk in drive 1, remove your normal
system disk from drive 0, and insert the Pascal compile disk, before
typing the compile command. When the compilation is complete, you must.
switch back to your system disk in order to run the program you just
compiled. Remember, these considerations are not a problem on 8 inch
disks or on higher density 5 inch disks.

Three other 6809 FLEX software packages are nearing completion and
should be available in the coming two or three months. First is a 6309
Relocating Assembler and Linking Loader package. This is a product we
have been Tlacking for a Tlong time, but will soon have. Second is a
Fortran 77 compiler. This project has been "under wraps" for quite a
while, but we now feel it's far encugh along to let you know about it.
This is an ANSI Fortran 77 compiler and will be available for FLEX and
UniFLEX. The third product forthcoming is ocur C Programming Language
compiler. This compiler has been delayed several times, but has been
given high priority of late. We'll let you know when these products are
ready to go.

3} UniFLEX™ News

We know this newsTetter is called the "FLEX Newsletter", but many of you
subscribers are ejther current or potential UniFLEX users and are
interested 1in its status. For those of you who don't know, UniFLEX is
our multi-user, multi-tasking operating system. The 6809 version of
UniFLEX has been 1in the field for a full year now and it is doing
beautifully. We must admit there were a few bugs in the early versions,
as in any operating system of this complexity, but these have all been
repaired and the system now seems to be solid as a rock. We recently
introduced a version which operates on all Gimix hardware (including
their new DMA disk controller). The previous version was/is for the
SWTPc S/09 system, of course. Qur Tline of support software now
includes: BASIC, BASIC Precompiler, Pascal, Text Processor, Sort/Merge,
an’ g 68000 Cross Assembler. Soon to come is an Enhanced Printer
Spooler Package. The new products coming for FLEX (Relocating
Assembler, Linking Loader, Fortran 77, and C) will alsoc be available

-2-

FLEX Newsletter No. 5

under UniFLEX.

We are very proud of the UniFLEX package. Very few 16-bit micro
operating systems are as good, and you won't find any 8-bit operating
system that is a match for UniFLEX. If you read any computer magazines,
you have undoubtedly seen a lot of excitement over the UNIX™ (trademark
of Bell Labs) operating system and the various versions of it {such as
Microsoft's XENIX™). Well, 6809 UniFLEX is almost identical to that
system, is available now, and runs on less expensive 8-bit hardware.
And we dare you to find an operating system with the features of UniFLEX
that even comes close to it in cost. OK... enough bragging. We'll
leave it up to you to see for yourself.

4} Current Versions

Due to the high demand for publication of current software version
numbers, we'll probably make this a regular section in the FLEX
Newsletter. Our update policy for FLEX software is as follows: If you
have owned a package for under two months an update is free. Beyond two
months there 1is a $10.00 updating fee. To obtain an update you must
supply proof of purchase and return the original disk, or supply proof
of purchase and an additional $10.00 for us to supply a new disk. The
following version numbers are current as of September 1, 198l.

Program Name 6808 Version 6800 Version
6809 Pascal 3 -
Extended BASIC 19 17
Extended BASIC Precompiler 4 2
BASIC 15 13
BASIC Precompiler 3 2
Text Editing System 2 n/a
Assembler 2 n/a
Text Processing System 4 n/a
Sort/Merge 3 3
Debug 17 n/a
6809 Cross Assembler - 2
68000 Cross Assembler 1 -

5) FLEX Based Products from Other Firms

We love to see outside support of the FLEX Disk Operating System.
That's what makes it such a useful system. It is impossible for
Technical Systems Consultants Inc. to write all the software necessary
for any application. We provide all the systems level tools that we
can, but must rely on other firms to publish application software. One
such firm is selling a whole Tine of FLEX application software. If you
haven't heard of them, you haven't been paying attention to the 68XX
industry. The company is called "Frank Hogg Laboratory, Inc.” and
specializes strictly in support software for the 68XX family of

"1'3""

FLEX Newsletter No. 5

processors, mostly under FLEX. Their lead product 1is a data base
management system that is called "Dataman". It is written in 6800 or
6809 Extended BASIC under FLEX. An add-on package, "Datarand”, allows
the system to access the database randomly, providing much faster access
to large databases. Frank Hogg Laboratory is also selling a 6809 Pascal
compiler from Dyrnasoft, a FLEX compatible FORTH called "X-FORTH", a job
control program, disassembler, cross assemblers, extended utilities, and
lots more. Most programs include source code, and this outfit is
dedicated to providing execellent support to its customers. You can
check them out at:

Frank Hogg Laboratory, Inc.
130 Midtown Plaza

Syracuse, NY 13210

Phone: (315) 474-7856

6) FLEX™ Tips

Here's a quick tip and some information that may save you some time.
A) Supplying Parameters on MON Command Line

Often it may be desirable to supply some parameters on the command
line with the "MON" command such that even though you had exited
FLEX to your system's ROM monitor, the parameters would still be
available in the input buffer. This can certainly be done and two
specific examples will demonstrate just how.

First, Tet's assume the user wished to run the assembler, but
wanted to try a patch in it before it ran. O0Of course there are
many ways to do this, but most would require you to write a
modified assembler copy to the disk and run it. In our case, we
don't want to have to write a modified copy to the disk (this is
the only time we'll run this patched assembler). The ideal
situation would be to load the assembler into memory, exit FLEX
with the "MON" command, make the necessary patches to the
assembler code in memory with the system monitor, and then jump to
the starting location in the assembler. There is just one problem
with this procedure: the assembler will try to get the filename to
be assembled and options from the command Tine, and they won't be
there. The solution? It's simple. When you type the "MON"
command to exit FLEX, also type the necessary parameters on that
command as if you had typed "ASMB" instead of "MON". For example,
if the file to be assembled was called. "COPIER" and we wanted no
1isting or symbol table, the command Tline typed to exit FLEX
before patching the assembler might look like:

+++MON COPIER +LS

After patching the assembler and then jumping to its starting
lTocation the assembler would Took for the filename and options 1in

A

B)

FLEX Newsletter No. 5

the FLEX input buffer and sure enough, they will be there!

Another common case arises where a user wishes to copy a file from
one disk to another but does not have the COPY command resident on
either disk. Now the solution here is a Tittle tricky, but can be
used effectively. Let's assume disk A has a file called
"INVNTRY.DAT" which we wish to copy to disk B. Further assume
that "INVNTRY.DAT" is so large that it uses every available sector
on the disk. If we only have 2 drives in the system, there is a
problem: neither disk can have room to hold the COPY command.
Here's the solution. First, put your normal system disk (which
contains a copy of the file "COPY.CMD"} in drive 0. Second, get
the COPY command into memory but without executing it by typing
the command:

+++GET 0.COPY.CMD

Third, exit FLEX with the MON command, but put the desired
parameters after "MON" which would have been on a normal COPY
command Tine:

+++MON 1. INVNTRY.DAT O

You should now be in your system's ROM monitor. Fourth, remove
your system disk from drive 0, put disk A in drive 1 and disk B (a
freshly formatted, empty disk) in drive 0. Fifth, use the jump
command in your ROM mcnitor to jump to the starting TJocation of
the COPY command which was loaded earlier. For 6809 FLEX that
Tocation is $C100; for 6800 FLEX it is $A100. When the copy 1is
complete, you may remove disk B from drive 0 and re-insert the
system disk.

You should exercise a fair amount of cauticn when performing the
above operations. It is not normally advised to remove or swap
diskettes at any time other than when the FLEX prompt is
displayed, but with caution the above operations produce no
problems and can be extremely helpful. One final point. In order
to find the starting address of a program (such as the assembler
or copy command), you should use the "MAP" command included in the
additional utility set available for FLEX.

Integers vs. Floating Point in Extended BASIC

In Extended BASIC the user may use either integer
variables/constants or floating point variables/constants. A
great deal of confusion has arisen from the use of integers and
the mixing of integers and floating point. Integer arithmetic
will always work in whole numbers; no fractions are used as in
floating point. Therefore, the results of integer arithmetic may
be different than expected. For example, one may assume that 5/2
would yield 2.5; however, in integer arithmetic the .5 s
truncated to leave only the whole part, 2. This means that

5/2 * 2 is 4.

FLEX Newsletter No. 5

The answer is 4 because the 5/2 is 2 ‘(not 2.5 in integer
arithmetic!) and 2*2 is 41 The expression 10/3 is equal to 3 (not
3.333333...}; however, 10./3. is 3.333333... This brings into the
discussion the mixing of floating point and integer
variables/constants. The computer calculates the vresult of
arithmetic expressions by grouping the operands and operators into
groups of three, based on the precedence of the operator, moving
from left to right. That is, in A*B+C/D the A*B is calculated
first, C/D second, and the addition of the two sub-results Tast.
The type ({integer or floating point) of the two operands (or
sub-results) determines the type of the result. If one of the
operands is floating point, then the result of the operation will
be floating point. For example:

5./2 + 5/2 is 4.5.

Because 5./2 is 2.5, and 5/2 is 2, the final answer 1is 4.5. If
using values with only whole numbers, the integer type will be
faster and requires Tess .space (only 2 bytes). The user is
advised to experiment with the differences in floating point and
integer arithmetic and the mixing of the two.

7) Problem Reporting

The number of technical <calls we receive at Techrical Systems
Consultants, Inc. is staggering. You would be amazed at the percentage
of time our technical staff spends answering technical phone calls.
Many of these calls are justified, many are not. Most could probably be
avoided. To relieve some of the burden from our technical programming
staff, we have limited the time in which problematic technical calls
will be accepted. This time period is between the hours of 10 and 12 am
West Lafayette, Indiana time. If you are experiencing difficulties with
a FLEX program, we recommend the following procedure:

1) Do everything possible to convince yourself that the problem is in
the software. Keep in mind that problems can be in your hardware
and/or operator induced. Don't always immediately blame the
software. PLEASE, read the manual carefully about the area from
which the problem seems to be arising.

2} If convinced the problem is in the software, attempt to produce
the smallest test case possible which will generate the error.
This is extremely helpful in locating the problem. For example,
if the problem is arising in a 400-1ine BASIC program, try to
delete any portion of the program that you can and still
repeatedly obtain the error. A 10-Tine BASIC program which fails
in the same way as the 400-1ine program is much easier to debug.

3) Determine the version number of the software in question. Run the
"YERSION" command on the program to determine which version you
have. If we are to help you with a program, we must know exactly
which program it is. Along the same lines, when making a problem

—6-

FLEX Newsletter No. b

report, always specify the program as fully as possible. For
example, "a problem in BASIC" tells us nothing. What we need to
hear is "a problem in version 16 of 6809 Extended BASIC on 8 inch
FLEX". You would make things much, much easier for our technical
staff if you would conform to the Tatter.

4) At this point you have two options. One is to call, the other is
to write. Often times a call may have to be followed up by
writing anyway. If we know about a problem when you call, we may
be able to immediately help you over the phone. Chances are,
however, problem reports will have to be mailed to us so that we
can reproduce the problem here. Also, when you call, there may
not be anyone available who can help with your specific problem.
When you write, on the other hand, we can always route the problem
report to the correct individual for efficient processing. In
either case, supply as much information about your problem as
possible, with at Jeast the complete program description and
version number, a description of your system, a description of the
problem, and if possible a short sample case that repeatedly
fails. You'd be surprised how much more quickly and pleasantly we
respond to properly documented problems.

8) Free FLEX™ Utility!

In issue number 4 of the FLEX Newsletter we provided a utility called
“SIDUMP", to dump a FLEX binary file in the Motorola S$1/S9 coded record
format. Shortly after mailing that newsletter, we received a letter
from Douglas Beck of Los Altos, California, with a copy of the
antithesis of S1DUMP, called "SILOAD". As you might quess, it reads a
FLEX text file containing an S1/59 dump (such as would be produced by
S1DUMP with the FLEX "0" command) and places the decoded binary data in
MEemoTy. These two programs are very useful for exchanging binary data
between a FLEX system and a non-FLEX system (if there still are any)!

In his letter, Mr. Beck alsc pointed out that the "SIDUMP" utility needs
a slight modification to produce an S1/S9 dump which can be loaded by
the Motorola EXORciser "EXBIN.CM" command under MDOS. That change is in
the string called "S9". It should be changed to Took 1ike this:

$9 FCC 'S9030000FC'
FCB 4

Qur thanks to Mr. Beck for this wutility. His original was in 6800
assembler, we translated it into 6809. It is a simple matter for a user
to translate it back to 6800 since we did not use any non-6800
registers. Neither Mr. Beck nor Technical Systems Consultants,
Inc. make any guarantees on this code and shall not be held responsible
for any possible damages resulting from its use.

The assembled source listing follows.

FLE® S41LOAD UTILITY . TS ASSEMBLER PRGE 1

#*
* SALOAD
* BY DOUGLAS K. BECK
” ‘
* THIS UTILITY LORDS A FILE IN THE S1/59 RECORD FORMAT
* INTD THE PROPER LODCATIOME IN MEMORY. THE SYHTRA IS
* +++SLLOAL <FILEMARMEZ
* NHERE THE DEFAULT BRIVE IS THE WORKIMNG DRIVE RNC THE
BEFRULT EXTENSION IS . OUT" (FOR FILES CRERTEDRD BY THE
* SADUMP UTILITY IM CONJUMCTION WITH THE "0Y COMMAND
#* ERIUATES
Cha3 KWRRMS EQU $CDRA3E
ce4n FEB EG) £$CE48
ChEp GETFIL ERU schen
COZ23 SETEXT ERU $C0033
COD3EF RPTERR ER $CD3IF
CD1E FPSTRNG EQU FLLAE
483 FMSCLES ERU 0433
DdBs FMS ey $0485
*h
£108 oRG £C1D8
*»
cieg 20 B4 S1LOAD BRA SLOoDd
CiB32 Ai WM FZB i VERSIOM 1.8
»:
* YRRIABLES
o183 BYTECT RHE 1
sia4 AEER RME e
* FLEX FILE SETUP SERUENCE
488 SE 248 SEOe, LD #FCB
189 B Loah JER GETFIL GET FILE FROM CMMD. LIME
ciec 24 B3 BLC SLOD2
C1B3E 7E CiR2 JHpP ERROR
114 86 2B sSLobe L.o:A #$E DEFAULT EXT = . 0UT
£413 BR O A JSR SETEART
Lile SE ce48 LK #FCEB
L4149 26 81 LDA #1 DPEM FOR RERD
C44B AY B84 STAH 7
11D BD D4BE JER FMs
CcLEg 27 83 EEQ SLAD3
ci2e FE iRz JHp ERRDR
C125 86 FF SLOD3 LA #FFF SPRACE COMPERSSINN OFF
C427? AT g8 3B STAH 59, ¥
* PROCESS "S" FORMAT DATA. TEST FOR SOF RND EOF
cCi2R D 7F SLobd BSR RERD

cizg 81 53 CHPR #°S FIND THE "g&"

FLEX S1LORD UTILITY

Ci2E
Ci3m
cize
Cizq
Ci36
ci38

C132R
L13B
C1ip
CL3F

Cige

Ci44
Cide
0149
cl4e
Cl4E
L1458
151
ci53
[B
L4557
£19R

casc
CA15F

L1631
C1e8
Cie4
CLeY
C1eR

C1ED
CAEF
£i7e
C174
e

ci7s
C17R

2&
b
21
27
B84
26

SF
2D
=15
BY

B8b

S0
=g
8E
B
7E

8
B
=30
B7Y
39

34
=1

FA
79
3%
34
21
Fa

2B
ag
ci93

a9

32
cie2
16
cie4
24

84
By
B1i
ciB4
ES

cica
B&

C&

Cii4
CP1E
C1RS

89
Ci84
84
c4i035

B4
iB

BHNE SLOD4
BER READ
CHMPA #-9
EEQ EXITL
LMPA #°1

BNE SLOD4

READ BYTE COUNT

CLRE

BSR INBYTE
SUBR #2

STH BYTEECT

* READ LORD ADDRESS
BER INADDR

* MAIN DRTA SAVE LOOP

SLODS ESR INBYTE
EC BYTECT
BEQ ERRORZ
LXK ADDR

STAH B, ¥
NOP

CHMPRA B, X
BME ERREOREL
INK

BTH ADDR
ERA SLODS

*

ERRORL DX #ERSTRL
BRA ERR2

TEL RASSEMBLER FPRGE
MINE 15 END OF FILE

OME I8 START OF RECORD

CLEAR CHECKSUM
GET ONE BYTE

SAVE COUNT

GET LOAD ADDRESS

FETCH A BYTE
DECREMENT COUNMT
BOM-T STORE CHECKSUM
SAVE IT

DID IT STORE?

LOOP TIL DONE

* LAST BYTE RERD IS 4175 COMPLEMEMT CHECKSUM
B HOLDS SUMMATION OF DRTR AND CHECKSUM
RDDING OME TO CONTENTS SHOULD ERURAL ZERO

ERRORZ IMNCE
BER s5L004

LR RERSTRE

ERRZL JSR PETRMNG

EXITL JHMP EXIT

* SUBROUTINES

INREDR EBSR INBYTE
STR RDDR

BER INBYTE
STA ARDR+1
RTS

*

INBYTE PSHS B

BER INHEX

G0 FOR ANDTHER RECORD

SAVE B REGISTER

n

FLEX S1L.ORDR UTILITY TSC ASSEMBLER PRAGE 2

Ci70 48 AsSLA
2470 48 HSLAR
C17E 48 RSLA
Ci7F 48 ASLA DATR MOYED TO M. S POSITION
ci86 1F 894D TAB
183 8D iz BER INHER
£i185 34 B4 REE® HER RDOD THE TWO HALF BYTES
£189 35 B4 FULS e RESTDRE CHECKSUM
Ci8B 34 B PSHS A SAVE BYTE
c4A8k 34 B4 RBES RBA MAKE MEWN CHECKSUM
risd iF 234D TAB FUT INTO B REGISTER
Ci94 35 Be PULS A GRAR BYTE AND RETURN
196 33 RTS
_ *# GET CHAR FROM FILE. MAKE TIHNTO HEX DIGIT
Cciay sh ie INHEX BESR RERL
CLs9 =0 38 SUBR #$35 REMDVE RSCII QFFSET
riae si g CHPA #2 >7
el 2F 22 BLE IHHEXL
CL12F 28 By SUBA #7 EORRECT
C1fpd 39 INHEX1 RTS

* ERRORE ROUTINE
O R = Pl =3 CL3IF ERROR JSR RPTERE REFPORT EREROR
Lips BD L33 ERIT JER FMECLS CLOSE FILE
CARS YE Cea3 JHP WaRMES RETURN TO DOS

* RERD CHREACTER FROM FILE
CiRE SE CEai RERD LD #FOB
CiRE ED C4BE JER FMS
SiB1 25 84 ENE RERDL
LARZ 329 RTS

3
cig4 25 B2 READL PLL.S A
LaBe 25 ge PULS H FIX STACK
DiE® RE Bi LER 1.0 GET ERRDR MHUMBER
C1BR 91 B2 CHMPA #2 EQF? C(HEVER HAPPEMS)
LiBZ 26 Ed ENE ERROR
CiBE ziB ES BRH EXRIT

* STRINGS

LAl 42 59 54 45 ERSTRL FCC ‘BYTE MWILL MOT STORE”
(PR RICNE FCB 4

Cibd 43 48 45 43 ERSTREZ FCC "CHECKSUM ERRDR-

C1E2 B4 FCB 4

EMD S1LOAD

8 ERRORCSY DETECTED

6809 NAT|VE-CODE PASCAL COMPILER for FLEX™

The demand for a higher level language that produces fast and efficient code has prompted Techni¢al
Systems Consultants, Inc, to develop a 6809 Native-code Pascal Compiler. This Pascal compiler
produces actual 6809 assembiy language mnemonics, uniike many of the other Pascal "compilers" which
only preoduce interpretive "P-Code", Because of +thfs native-code production, programs developed with
the Native-code Pascal Compller may run from 5 to 10 times faster than those compiled using an
interpretive compller. The specification for the syntax and semantics of Pascal for this compiler
are based on the Jensen and Wirth User Manual; the compiler Implements nearly all of the features
defined in the User Manual, The few exceptions of major features that our Native-code Pascal
Compiler does not suppert Includes GOTO statements and labels, procedures and functions used as
parameters, the nesting of procedures and functions without the use of FORWARD, and the procedures
DISPOSE, PACK and UNPACK. Both Integer and floating point math are supported, The floating point
arithmetic is double precision containing up to 16,8 digits of accuracy from 1,0 E~38 +to 1.0 E+38,
This compiler supports the standard trigonometric, exponential and square root functions along with
a random number generator for statistical and simulation programming. Integers range from -32768 to
+32767, wusing 16 bits for each Integer. Al! of the ASCI| characters from O to 127 may be used and
written in Pascal pregrams, Variable names are unique to 160 characters allowing the users greater
creativity in programming. PACKED arrays and records are allowed in the syntax; however, a PACKED
array or record is no different than an unpacked array or record, Pascal sets may contaln up to 128
elements; however, the ordinal value of these elements must be from 0 to 127, Therefore, sets of
real numbers. are not Implemented, but a set of characters is easlly accommodated. The Native~code
Pascal Compller alfows the users to read the command line In FLEX through a record structure called
PARAM, In this way the user may pass parameters from the command line to the user's Pascal program,
The passing of file names and options is a common application of this parameter passing feature.
Furthermore, the Native-code Pascal Compiler allows the users to redefine the standard Pascal input
and output files as external files residing on the diske The Native-code Pasca! Compller supports
dynamic storage allocaticn using the standard procedurs NEW and procedures MARK and RELEASE for
dynamic deallocation of storage. Pointer type variables are fully supported; therefore, true file
1/0 using file buffer pointers and the procedures GET and PUT Is implemented., FLEX Pascal files are
alt sequentia! access. The Native-code Pascal! Compiler allows a Pascal program to call other
separately written and compiled Pascal programs or assembly language programs, Furthermore,
parameters may be passed to these other programs in the same fashion that parameters are passed from
the command !ine. Additional procedures exist for the users o Interface with the operating system
itself. These routines Include SYSTEM DRIVE and WORK DRIVE, BUFFER and UNBUFFER for single
character input, and various other routines tied to FLEX, Tnstructions for frimming the run-time
package for the FLEX version of Pascal are included, Trimming the run-time package may be helpfu?
if a program does not need many of the functlons but requires a great amount of memory for
execution, By trimming the run-time package, a program may be able to reclaim the memory space
allotted to the useless run-time procedures, Overall, the 6809 Native-code Pasca! Compiler produces
very fast and efficient code, Pascal regquires a 56K system in order o function. The FLEX version
on minifloppies requires two diskettes, The package Include our user's manual, a copy of the Pascal
User Manual and Report, by Jersen and Wirth, the compiler and run-time object code programs and
about ten example Pascal programs in source form,

FLEX 6809 Native-code Pascal Compller $200.00
Manual only — $40.00

68000 CROSS ASSEMBLER

This is a fult 68000 assembler which rums on a 6809 microcomputer under the FLEX™ operating system.
I+ accepts all of the standard Motoercla instruction mnemonics with the exception of certain
"variations" to standard root mnemonics. Those root mnemonlics are ADD, AND, CMP, EOR, MOVE, OR, and
SUB. Our 68000 Cross Assembler does not allow the programmer to explicitly append the addressing
suffix on these Instructions. Instead, the assembler infers the. correct *fype of Instruction or
opcode to generate from an analysis of the operand. The suffixes not permitted are A (address), @
{quick), and | (immediate)., Note that the X (extended) suffix is still permitted. This feature
makes programming somewhat easler as the programmer need not be concerned with the variation - the
68000 Cross Assembler does that work for him. Labels may be of any length with eight characters
significant. Expressions may contain decimal, octal, hexadecimal, or ASC|| constants and permit the
following operators: add, subtract, multiply, divide, AND, OR, NOT, shift right, shift left, and

relational operators. All expresslons are evaluated to a full 32 bits before any required
truncation. Numercus directives or options permit page formatting, *ittes, subtitles, |isting
control, object code output control, sorted symbel table {isting, line numbering, autc field

formatting, warnings, command |ine parameters, inclusion of separate source files, and setting of
even word boundaries. The 68000 Cross Assembler also supports conditional assembly and macros.
Cbject code 1s output in Motorola $1/52/58/59 records of ASCI! hexadecimal data. The 68000 Cross
Assembler is avallable on either 5 or 8 inch disk, - The manual fully describes the use of the
assembler, but assumes the user s already familiar with the standard Motorola 68000 assembler
instruction set as defined In the "MCE8000 16-Bit Microprocessor User's Guide™ published by Motorola
Semiconductor Products, Inc,

68000 Cross Assembler for 6809 FLEX $250.00

