FLEX NEWSLETTER NO. 2
October 1979

Copyright (c) 1979 by Technical Systems Consultants, Inc.
P.0. Box 2574, West Lafayette, Indiana 47906

We have some exciting news for you in this issue. In particular, our
first 6809 products are already on the market! But more on that later
because we've also got news on extended BASIC, tips on wusing the 6800
Text Processing System, fixes for a couple of utilities, and more.

1) FLEX NEWS

It seems that FLEX is really catching on - almost all 6800 disk systems
have the ability of running FLEX. Of course FLEX is available for the
SWTPc hardware; we sell a version which vruns on the Smoke Signal
Hardware; a company called Great Plains Computer Company (P.0. Box 916,
Idaho Falls, ID 83401) sells a version for the TANO Outpost 11 computer;
Midwest Scientific Instruments is offering a version for their hardware
(their hard-sectored disks cannot be read on other soft-sectored disk
systems and our soft-sectored disks cannot be read on their system);
SWTPc is selling a conversion kit which allows Percom disk users to
upgrade their hardware to the FLEX operating system and Percom is now
offering a program which allows a user to read FLEX disks and to convert
FLEX 2.0 to vrun on their hard-sectored disk systems; and a few other
companies offer disk controller boards which they claim to be capable of
supporting FLEX. This essentially leaves out only two groups... the
Motorola Exorcisor system and homebrew or custom disk systems. Well,
we're working on them too! There are no completion dates available at
this time, but we have work in progress on a version of FLEX which will
run with the Exorcisor hardware and another for general use which will
allow the user to write his own driver routines for practically any type
of soft-sectored floppy disk hardware he may have. We'll be letting you .
know about these products when they are available.

We have received numerous calls and letters from users of Percom disk
systems who want to run FLEX, TSC BASIC, Sort/Merge, and other
FLEX-based software. In response, SWTPc and TSC have prepared a
conversion kit which will allow Percom disk owners to do just that!
This kit is available from Southwest Technical Products, Inc., 219
W. Rhapsody, San Antonio, TX 78216, for $149,95., It contains a
controller board (assembled and tested), cable connector, FLEX 2.0, a
copy of SWTPc BASIC 3.5, and a full set of manuals. You simply replace
the Percom controller board and cable with the SWTPc ones, place 8K of
memory at $A000, and you're ready to boot up FLEX! A very versatile yet
fool-proof single drive copy routine is also included since most Percom
systems contain only one drive.

FLEX Newsletter No. 2

Another method of running FLEX on Percom disks has just been announced
by Percom. They sell a program which will read a soft-sectored FLEX 2.0
disk and copy it to a hard-sectored Percom format disk. This copy
method requires two disk drives. Another program is included which will
copy FLEX 2.0 itself onto a Percom disk and convert the FLEX drivers to
operate with their hard-sectored disk controller. Thus you can run FLEX
on the Percom disk system even though it is hard-sectored. Now the FLEX
2.0 disks we sell will not be directly compatible, but the program
Percom sells to copy FLEX disks can be used to copy the software cver to
a standard Percom hard-sectored disk. This new disk can be wused with
the Percom version of FLEX while the original TSC disk can be kept as an
archival copy.

2) 6809 SOFTWARE

It's finally here! The 6809 chip is no Tonger a thing of the future and
neither is 6809 software. We now have in stock six 6809 programs with
more coming soon., The six are 6809 FLEX Disk Operating System, Text
Editing System, Macro Assembler, Debug Package, 6809 Standard BASIC, and
6809 Extended BASIC. These are all disk based (under the FLEX operating
system) for either 5" or 8" SWTPc disk systems. This software will
undoubtedly be available for other disk systems as the manufacturers
firm up their 6809 plans. : _ _

The 6809 FLEX Disk Operating System (FLEX 9.0} is identical to the 6800
version from a user or programmer viewpoint except for the fact that
FLEX 9.0 is located at $C000 instead of $A000. In other words, all
calls to FLEX are performed in exactly the same manner except that the
addresses must be in the $C000 to $DFFF range instead of the $A000 to
BFFF. range. Thus existing 6800 programs which are FLEX based can be
converted to 6809 by simply adding $2000 to all addresses in 6800 FLEX,
changing any ORG statements if necessary, and reassembling with the 6809
assembler since it can accept 6800 mnemonics and produce 6809 code.
Changing the addresses can be done quite simply in the editor with two
instruction:

TC/$A/$C/ 1*
TC/$B/$D/ 1*

You must be careful, however, that every place in the source which has a
$A or $B 1is the start of an address and not an eight bit value. Of
course this conversion will not take full advantage of the 6809
instruction set, but it is a quick means of getting going in 6809 until
you have time to re-write the software. Another advantage to keeping
FLEX 9.0 compatible is that the disks are also compatible so that text
files prepared under 6800 FLEX can be directly read under 6809 FLEX. On
5" systems this only applies to FLEX 2.0.

FLEX Mewsletter No. 2

The text editor and assembler are included with the FLEX package but may
be purchased separately. The editor 1is an improved version of the
ubiquitous TSC 6800 Text Editing System. It 1is 1line and content
oriented with character string, 1local, and global instructions. The
resident 6809 assembler supports macros and conditional assembly. It
accepts 6809, 6800, and 6801 mnemonics so that exjsting software can be
immediately reassembled to produce 6809 object code.

The standard BASIC is a very fast interpreter with 6-digit precision in
its binary floating point math package. Features include random access
files via record I/0 and virtual arrays, unlimited string length,
if/then/else construct, TRACE, ON ERROR GOTO, two-dimensional arrays,
and a renumber facility. Also supported is a COMPILE command which-
places an unreadable, compressed form of the source on disk which can
only be executed by a RUN command. This permits the distribution of
proprietary BASIC programs.

The Extended BASIC has all the features of the standard BASIC plus
17-digit precision on floating point math, complete PRINT-USING
facilities, integer variables (indicated by a % suffix like the $ suffix
for string variables), INSTRing for finding an occurrence of one string
within another, SWAP for swapping the value of two variables, INCH$ to
get a single character without waiting for a carriage return, double
peek and poke (DPEEK and DPOKE) for 16 bit values, and more.

The debug package is a powerful tool for assembly language program
debugging capable of simulating all functions of the 6809 CPU including
interrupts and I/0 operations. Multiple breakpoints may be user-defined
and may be conditional on several criteria. Tracing is possible as 1is
single or multiple stepping. A "traceback" feature allows the 1isting
of the previous 255 executed instructions. Memory protection may be
enabled for multiple blocks of the address space. General features
include a mini-assembler, disassembler, memory examine and change, hex
calculator, and a machine states counter.

Except for FLEX, all code is fully reentrant and position independent.

Cassette versions {with restricted features) are available for the
editor, assembler, debug, and standard BASIC. Prices are as follows:

6809 FLEX w/ edit. & asmb. $90.00

Text Editing System $35.00
6809 Assembler $40.00
Debug Package $75.00
Standard BASIC $65.00
Extended BASIC $100.00

No source listing is included at these prices. If you wish to order, be
sure to specify 8 or 5 inch disks.

-3

FLEX Newsietter No. 2

3) BASIC News

By now you may have also heard the news of our new Extended BASIC's for
6300 and 6809. As mentioned above under 6809 software, the Extended
BASIC features l7-digit precision, PRINT USING, integer variables, and
much more. This is a very accurate and still remarkably fast BASIC for
any commercial or high precision scientific work. The only drawback is
its size - approximately 19K. We recommend at 32K of user memory to
make proper use of the software. '

A copy of a recent ad for the BASIC 1is included later in this
newsletter. In it you will also notice mention of a "BASIC Precompiler”
for both the standard and extended BASIC's. This precompiler allows you
to edit BASIC programs (requires an external editor) in a non-standard
BASIC form. By non-standard we mean that you can use any Tength
variable names (up to 255 characters), you don't have to put Tline
numbers on Tines, where you do need a line number (for GOTO, GOSUB, or
other purposes) you can use an alphanumeric Tabel instead of a number if
desired. This results 1in BASIC programs that are much more easily
written, read, and modified. The output of the precompiler §s the
compressed source format that our BASIC's can execute via the RUN
command.

4) SOFTWARE PROBLEMS

No matter how hard we try, a few software "bugs" seem to slip by us now
and then. When you are developing programs of the length and complexity
of some of our latest releases it is almost inevitable. Here are some
fixes to problems which have been reported.

6809 ASSEMBLER ~ Resident disk version
Early versions of the assembler will hang up if you have an 1illegal
mnemonic of over 5 characters in length. The fix is simple: At Tocation
$07BF or $07D4 (depending on your version), change the "16 00 7E" to “16
0C 14". Page 57 of the first 6809 assembler manuals shipped describes
the steps to manually setup the tables. An important note was left out
at the bottom of that page and is printed here:
NOTE: The assembler uses a large stack area to maintain all
its temporary variables and buffers. This stack requires 0720
hex bytes of RAM starting at FLEX's MEMEND and growing down
from there. This implies two things: if manually setting up
the tables you must Teave this space free and if you want to
move where the stack resides, you must set MEMEND accordingly
as the assembler will always place its stack so that 1t sets
up against MEMEND.

FLEX Newsletter No. 2

6809 EXTENDED BASIC

Version #1 of 6809 Extended BASIC has a problem with certain mixed
arithmetic and string operands. This can be corrected by changing the
byte at $21BB from $1F to $1D.

6809 DEBUG PACKAGE

The following errors have been discovered in the 6809 Debug Package.

The version currently being shipped has all of the problems corrected.
1) The mini-assembler cannat force Tong (using ">") on indexed
instructions having a zero or 5-bit offset. No patch is
available.
2) The disassembler prints a 5-bit offset of ~16 as "-$6". No
patch available.
3) The "X" command does not preserve the U-register. Patch as

follows:

Address 01d value New value
$5968 $AF $34
$596C $cs $50
$5977 SAE $35
$5978 $C8 $50

4) Disassembling an indexed instruction with an illegal offset
of $FO causes Debug to hang. Change the byte at $687F from
$C6 to $C8.

TEST UTILITY - 6800 FLEX 2.0

The TEST wutility will always report an error for track 0, sector 1 and
for all sectors of tracks above track $22. Change the "SECTOR FCB 0" at
$A104 to "SECTOR FCB 1" and change the " CMP A #76" at $A180 to " CMP A
#34",

RECOVER UTILITY - A1l versions
Replace the " CLR 34,X" at $A14B with " JSR FIX". Then at the end of
the code insert the following code:

FLEX 2.0 or 8" FLEX 1.0 miniFLEX version
FIX CLR ~ 34,X FIX LDAA #%80
LDAA #$FF STAA 34,X
STAA #FCB+59 LDAA #$FF
STAA #FCB2+59 STAA #FCB+59
RTS STAA #FCB2+59
RTS

FLEX Newsletter No. 2

5} PRINT.SYS for an ACIA device

We printed some hints on using the "P" command and the "PRINT.SYS"
routines in the last newsletter. However, we receive so many calls from
people who can't write a PRINT.SYS routine for a serial printer
(connected to an ACIA) that we are re-printing a sample of such code
here. This code is for 6800 FLEX 2.0 or 8" FLEX 1.0. You will have to
modify the addresses if working with 6809 FLEX or with miniFLEX.

Before using the routines below, you will have to set up the proper
value for the ACIA output port you wish to use. This is done with an
equate statement. For example to output via an ACIA on port 7 you
should use:

ACIA EQU $801C
The output character routine (POUT) should Took Tike:

ORG $ACE4 MUST START AT $ACE4

POUT PSH B SAVE B ACC.

POUT2 LDA B ACIA GET STATUS
ASR B GET TDR BIT
ASR B INTG CARRY
BCC POUTZ LOOP IF NOT READY
PUL B RESTORE B ACC.
STA A ACIA+1 WRITE OUT THE CHAR.
RTS RETURN

The initialization routine {PINIT) should look Tike:

ORG $ACCO MUST START AT $ACCO
PINIT LDA A #$13 RESET ACIA

STA A ACIA

LDA A #$11 SET 8 BITS & 2 STOP
STA A ACIA

RTS RETURN

The printer check routine (PCHK) should be:
ORG ~ $ACD8 MUST START AT $ACDS

PCHK PSH B SAVE B ACC.
LDA B ACIA GET STATUS
ROR B GET TDR BIT INTO
ROR B SIGN POSITION
ROR B
PUL B RESTORE B ACC.
RTS RETURN

FLEX Newsletter No. 2

6) POTPOURRI

Technical Calls

If you have technical questions or problems and feel a need to call TSC,
you must do so between 10 and 12 o'clock EST on Monday through Friday.
A software technician should always be on call during those hours and
those hours only. Chances are about 1 in 100 of getting through at any
other time. The major reason for limiting the times we can accept calls
is that it is usually a waste of time trying to debug a software problem
over the telephone. If you do experience trouble, first check very
carefully to be sure it is really a software problem and not a cockpit
error. If you find you are using the software properly, next check your
hardware. You would be surprised how many times we get reports of
problems that we cannot duplicate in-house. Then we begin to tear our
hair out Tooking for the problem only to receive a call from the same
person confessing he found a memory problem or a flakey solder joint on
his motherboard or that he was not following instructions found in the
manual. Even when it is a problem or bug in the software, chances are
nil that we can work it out over the phone. You will get much better
response by thoroughly documenting the problem and mailing it to us.
That way we can make sure it is routed to the correct people and we have
a hard copy of your problem on file to compare to others we may receive.
So please, don't call with software problems ... document them and mail
them in!

Alphabetized Directory Listing

Ted Wolff of New York City wrote to us with a suggestion for obtaining
an alphabetized directory listing. Ted says to use the BUILD command to
create an EXEC file consisting of the following single line:

CAT,A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z

This file could be called ALPHACAT.TXT or something similar. Now to
obtain an alphabetized 1isting of the directory simply type:
"EXEC,ALPHACAT". The same procedure could be used for the DIR utility
also. Thanks, Ted!

An Improved Command Processor

John Jordan of Oak Ridge, Tennessee, sent us a copy of a program he has
written for FLEX called EX. For various reasons we are not able to add
the program to our product line, but it is such a well thought-out and
well documented (over 35 pages) piece of software that we wanted to let
you know about it. If you're interested you might contact John and let
him know. If he gets enough response he may duplicate and sell copies.
The "EX" program is a command processor which John says is "kind of like
a mini job control language for FLEX". To the beginner it could be used
much like the EXEC command supplied with FLEX (in fact 1t is upward
compatible with EXEC). The major advantage over EXEC, however, comes in
the ability to pass arguments to the EX procedure file from the calling
command line. Other options include dynamic variable definition, user
prompting, conditional branching, and a trace feature for debugging an

FLEX Newsletter No., 2

EX file under development. If you are interested, contact John at the
following address:

John K. Jordan
103 Elliott Circle
O0ak Ridge, TN 37830

There is no guarantee that John will want to distribute the program, and
that will probably depend on how much response he gets.

The '68' Micro Journal

Some time ago in our TSC Newsletter we mentioned a new magazine
dedicated to the 6800 family of microprocessors. Since that time we
have received several issues and find it to be a good investment. It's
called the "'68' Micro Journal", is about 50 pages in Tength (at this
time), printed on excellent quality paper, and is always full of nothing
but 6800/6809 related programs, reviews, tips, new product releases, and
other goodies. Their turn-around time on new product releases has got
to be the fastest of any widely distributed microprocessor related
monthly 1in the country. The eight issues printed to date have included
numerous FLEX related items. If you want to keep up-to-date on the
Tatest happenings in the world of FLEX and the 6800 family of micros in
general, we suggest you check this magazine out. A one year
subscription is $14.50 and can be obtained from:

'68' Micro Journal
3018 Hamill Rd.

PO Box 849

Hixson, TN 37343

MiniFLEX Software Discontinued

Technical Systems Consultants will be fading out its MiniFLEX line of
support software by the end of the year. MiniFLEX is the original
version of FLEX supplied by SWTPc for their MF-68 floppy disk system,
Since that time, we came out with a new version of FLEX for the MF-68
called FLEX 2.0. This version is much improved and is compatible with
the 8" FLEX which SWTPc distributes and the FLEX which all other systems
run (see section #1 of this newsletter). FLEX 2.0 disks are also
compatible with 6809 FLEX disks. You can be assured that TSC will
continue its support of FLEX 2.0 for a long time.

6809 Cross Assembler on 6800

We are selling a 6809 cross assembler which runs on a 6800. Thus it
accepts 6809 instructions (as well as 6800 and 6801} and produces 6809
object code. It has macros and conditional assembly just like our
resident 6809 assembler. A manual and object code disk (FLEX 2.0 or 8"
FLEX 1.0} sell for $100.00.

* FLEX Newsletter No. 2.

7) TIPS ON USING THE TEXT PROCESSING SYSTEM

Until BASIC came out, we probably received more calls and letters on the
text processor than any other program we sell. It is an extremely
complex piece of software and not something the casual user can expect
to master 1in a couple of days or even weeks., The almost unlimited
combinations of commands and macros which can be setup can cause much
confusion. Our strongest suggestion to users is to READ THE MANUAL.
When you have done that, read it a couple of more times. Then when you
have problems, refer to it freely. We feel that manual is one of the
best we have written in terms of explaining the use of a complex program
in as concise a form as possible. It's guite vexing when a user calls
up with a problem whose solution is clearly stated in the manual.

As with any manual, however, there are certain points which could use
further clarification. We will go over a few of those points here.

Getting a Header on Page 1

If you have ever run a document with a header macro which was to be
executed at the top of each page (via a ".AT 0 HD" type command), you
may have noticed that the header did not get executed at the top of the
first page of the document. The text processor does this on purpose,
since in many applications you want to have a special title at the top
of the first page (see the first page of this newsletter for example).
If, however, you do want the normal header macro to execute at the top
of the first page, it can be easily accomplished. Simply insert a break
command {.BR) after the AT command which specifies where the header
should occur and before any text which will be output on the first page.

Stopping Output for Paper Change

When working with paper that is non-continuous {ie. separate sheets), it
is necessary to stop the output of the text processor at the end of each
page such that a new sheet of paper can be inserted into the typewriter.
As you have found in the manual, this can be done with a stop command
(.ST) which will stop output, waiting for the user to hit any key before
continuing. What might be wunclear 1is Jjust where to place the ST
command. We have found that the best place is in the header macro and
NOT the footer macro. It may seem more Togical to stop output 1in the
footer after doing a page eject, but sometimes the text processor will
attempt to execute the header macro before it sees the stop. Putting
the stop in the header works perfectly. If you do put a stop command in
your header, be sure to use a colon instead of a period so that you will
not cause a break and the associated buffer flushing. In fact, you
should be certain that NO command in the header or footer causes a
break.

FLEX MNewsletter No. 2

Diversions

There seems to be a fair amount of confusion about diversions. They are
really quite simple. When a diversion is initiated, the text processor
merely routes the characters that would normally be going to the printer
into the diversion storage area in memory. Thus instead of seeing the
output on the printer, it fs diverted and stored in memory IN THE EXACT
FORMAT THAT WOULD HAVE BEEN PRINTED. This last point is very important.
For example, 1if you divert some text with justification turned on and
then read that diversion back with justification turned on, you might
get some wierd Tooking results. In general you should divert with
justification off and read the text back in with justification on or
vice versa.

Another cause of confusion with diversion 1is that terminating a
diversion with a .DI command does not automatically flush the buffer.
As we found earlier, when diverting we are doing normal text processor
output, but the characters are sent to the diversion storage area rather
than the printer. When performing output of this nature with the f511
mode on, there is an output Tine buffer in which the words read from the
input file are placed until the Tine is full. At that point the buffer
is "flushed" or all printed at once. When printing it Tooks Tike a
continuous stream of output characters because the filling of this
buffer is very fast compared to the time it takes to print the Tine.
The same buffer is used when doing diversion with the fill mode turned
on. let's assume we are doing a diversion with two short words. It
might Took 1ike this:

.di nm
John Doe
.di

The words "John Doe” would be stuffed into the output Tine buffer for
flushing when filled. But now we end the diversion before the output
line buffer is filled. Since no break occurred to cause a flush of the
buffer (as seen in the manual, ".DI" does NOT cause a break), nothing
gets output to the diversion area. The words John Doe are left in the
1ine buffer.

The simple solution to this is to perform a break before terminating the
diversion. This will cause whatever happens to be in the output line
buffer to be flushed. In the case of our example, that means "John Doe"
will be sent out to the diversion area. The input text would Took like:

.di nm

John Doe

br THIS IS THE KEY!
.di

Note that if the fill mode is not on this break is not necessary. That
is because 1in the no~fiil mode, the text processor simply reads a Tine
of input into the output 1ine buffer and immediately outputs it without
waiting for the buffer to be full.

-10-

FLEX Newsletter No. 2

Numbered Paragraphs

There 1is often a need to have a set of paragraphs or blocks of text
indented and numbered. An example of this format s shown here with
nonsensical text for the three paragraphs:

1) This is paragraph number 1. It is simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified.

2) This 1is paragraph number 2. It is simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified.

3) This is paragraph number 3. It s simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified.

There are several ways to accomplish this format, but Tet's look at the
one we've found to be quite easy. The basic idea is to set an indent as
desired for the paragraphs. Then before each paragraph is started we do
a single-indent command in a minus direction. For example:

.in 10
.Sp
.51 =3

1)\ This is paragraph number 1.
It is simply a couple of meaningless sentences for
the purpose of filling up space.
As you can see, it is indented and right justified.

There 1is one tricky thing about this sample which deserves _our
attention. That is the backslash-space combination Jjust after the
paragraph number. The backslash makes the space a non-paddable space
character so that when padding occurs to justify the line, we can be
sure that no additional spaces will be added between the parend and the
first character of the first line of the paragraph. This ensures an
even column for the left side of the paragraph.

-11-

FLEX Newsletter No. 2

Some of the excess typing involved in doing this sort of layout can be
obviated by the use of macros as shown here.

.dm bp (Begin Paragraph macro definition)

.Sp

.51 -3

.in 10

.bp

1)\ This is paragraph number 1.

It is simply a couple of meaningless sentences for
the purpose of filling up space.

As you can see, it is indented and right justified.
.bp

2)\ This is paragraph number 2.

It is simply a couple of meaningless sentences for
the purpose of filling up space.

As you can see, it is indented and right justified.
.bp

3)\ This is paragraph number 3.

It is simply a couple of meaningless sentences for
the purpose of filling up space.

As you can see, it is indented and right justified.

.Sp
.in 0

Sometimes it may be a name or word which should be in the indent field
and not a number-parend as above. If the words are not the same length,
you would have to use the correct number of unpaddable space characters
(backslash-space combination) to space over from the end of the word to
the beginning column of the indent field. An easier method is to use
tabs. For example, look at the following layout:

ONE This 1is paragraph number 1. It is simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified.

TWO This is paragraph number 2. It is simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified.

THREE This 1is paragraph number 3. It is simply a couple of
meaningless sentences for the purpose of filling up space. As
you can see, it is indented and right justified. '

The input text file to produce the above layout Tooks Tike this:

.dm bp
5P
.S'i "‘#‘i
.tc
.ta 11

~12-

FLEX Newsletter No. 2

.in 10

.bp

ONE_This is paragraph number 1.

[t is simply a couple of meaningless sentences for
the purpose of filling up space.

AE you can see, it is indented and right justified.
.bp :
TWO _This is paragraph number 2.

It is simply a couple of meaningless sentences for
the purpose of filling up space.

As you can see, it is indented and right justified.
.bp

THREE_This is paragraph number 3.

It is simply a couple of meaningless sentences for
the purpose of filling up space.

As you can see, it is indented and right justified.
.in 0

There are two important things to note about this technique. First we
used a ".si =-#i" for the single ident in the begin paragraph macro.
This means to single indent in a minus direction (to the 1left) by the
value found in number register "i". Now if you check the manual you
will find that number register "i" contains the current indent amount.
So what we are doing is indenting to the left by the same amount that we
are currently indenting to the right. This effectively cancels the
current indent for that single line or in other words puts us at the
left margin. _

The second point is to note the apparent difference between the indent
amount and the tab column setting. That is because the tab column
setting is the actual column number in which to start printing (in this
case column number 11) while the indent amount is the number of column
positions to indent or skip over. Thus an indent of 10 means we will
skip over 10 columns and thus be ready to print in column 11. This is
something to watch out for.

Making the ESCAPE Key Work Consistently

You may have noticed that the disk version of the text processor doesn't
always stop the output when an ESCAPE or CTRL-C key is hit. This occurs
because of a colision between the text processor and FLEX. The text
processor is looking for a CTRL-C to stop output while FLEX 1is Tooking
for an ESCAPE. If you hit an ESCAPE and the text processor happens to
look for a CTRL-C before FLEX looks for an ESCAPE, your ESCAPE character
will be lost when the processor finds it is not a CTRL-C. The simple
solution is to disable one of the two checks and it 1is easjest to
disable the CTRL-C check in the text processor. This simply means you
will have to use the ESCAPE key instead of the CTRL-C to stop output.
The point to patch in the text processor is the instruction with the
Tabel "TSTBRK". This should be at $1594 in the 8" FLEX 1.0 or 5" FLEX
2.0 version or at $1595 in the miniFLEX version. Change this
instruction to an RTS ($39).

-13-

FLEX Newsletter No. 2

8) A "DUMP and REPAIR" UTILITY

We've got another FLEX utility for you in this newsletter. It was
submitted by some folks who work at the Collins Avionics Department of
Rockwell International in Cedar Rapids, lowa. These people have done a
Tot of work with FLEX and have generously donated their "Dump and
Repair" Utility. As you will see from the documentation, this utility
lets you read any sector on the disk by supplying an absolute disk
address (track and sector number). If desired the sector can be
modified and written back out. This is a very useful wutility to have
around but is also quite deadly if not used properly! Make sure you
know exactly what you are doing when you modify the data in a sector.
We are printing the assembled source Tisting of the FLEX 2.0 version
exactly as we received it. It can be modified for 6809 FLEX or miniFLEX
if desired. We have run the utility and experienced no problems
whatsoever, but we make absolutely no guarantees on 1its operation and
will not support technical calls regarding the utility.

~14-

LUMP AMD REPRIR UTILITY - DR

The Dump & Repair utility iz an interactive dizk sector read. display,
and modify routine displaying 1é lines each of 16 bytes of data in hex
and ASCII. HAny data with walues between $28 and $7E (printable) are shoun
as the printable character. Other wvalues are represented as periods. In
the Repair mode, changes are made in the RAM sector buffer and only made
on the disk with the HWrite directiuve. All input is solicited with wrong
responses producing a meny of acceptable responses.

DESCRIFPTION The syntax of the DR command iz simply DR

Valid inputs are: tuwo digit drive. track, and sector numbers

N riext

P preuious

[trrepair

i write

(K return to DOS

L la=s+t

SP next in file

EgC restart

RET return to read-write mode (from repairl

EXAMPLE

+++[DR
DRIVE? &1
TRACK? &4
SECTORT a7
8487
80 B4888EBA44554050C044454D4FESRERR. | . DUMPF DEMO. .
19 2712211625 FeSDDIBTR4a730CCRT24A8 7. 0 & . . £ .. $
20 FE24B7EERBRDCE38C0BFIZBY24BRFTE4. . . . L 6. 3. % . &
38 B98LBeleRTREITELRBEIZFER4B89ATABRE, . . 7. V. . 3 F, ..

40 FFE24@95A2EFA2OC40380FERLBBRLIOAFY. $ 2&.
S8 BUYRRRBRRGARDBRGBAADRBARALNEEBERA. L.
A8 BBFE2EH2DHBRAYIZGDNBERABABBHRHDA, . ".
A BEBROGNBRCHRRRDARABANREREAREDRB., L.
2@ 2BOBEHPLLBEABAREOARAANBANDEBEREA.
90 BBFB22RAZOABARALLBRDOBBBARRBBABES.
AQ BEELEHRDOBARDBROBBLDABARSEADBBRBEA.
B@ QOFEZZE20DDOBE1ZBRA0ABABARDBHARA. . "
CH BROAHHBDBBBAREDORAAARREBANERARBd.
DO 08ABRRABORDAYIROBeBRAENRBABGBABBG.,
Eg BPFB22R2PBB80RR1Z0AR8A0BBR08E6RBA. . Y.
FB 9000020600080 30BARDARBRAARRBABRRA.
7

NOTE: Since this wutility allows the user to actually alter the
information recorded on the disk. it is imperative that the
user hauve a tull wnderstanding of what is being done or an
unrecoverable file or a totzlly destroyed disk may result!

DUMP & REPAIR UTILITY TSC ASSEMBLER PARGE 1

Han1

AC14
AbBZ
ADLS
RDiE
Abz4
ADBF
AD2F
B49s

E1Di1
EBYE

BaBF

=3l

&pes
8482

&eBe:3
5886
GRE9
6aac
cBBr
cei2
6815
ea12
SRLE

28
a1

CE
FF
CE
BD
BD
BD
B?
CE
FF

81

58
&3
=1=4
EQ
AD
&1
&2
&8
63

BE
TE
39
7E
iB
4E
23
1z
vE

)
5
E

£
I
£
5
G
L
o
F
F‘
B
*
¢
1
F\l
#

oy

* in

o

-
=

E
#:
#
b3

[}

ERMND B 1 VYERSTIOM HNUMBER

THIS IS THE INTERACTIVE DISK DUMP & REPAIR FROGRRAM
FOR FLEXCTM) 2.0 W INSTRUCTIONS
FOR USE ARE COWERED IM DETAIL IN A SEFERATE DOCUMENT

BASIC FUNCTION IS: READ A SINGLE SECTOR INTO A
BUFFER. DISPLAY THE BUFFER IM HEX RAND RASCII., ALTER
THE BUFFER DATA (LIKE MEMORY EXAMINEA/CHRMNGEY.
REQISPLAY THE BUFFER., AND THEMW (IF DESIRED:.
REWRITE THE SIHMGLE ZECTOR. * USER BEWARE! *

WRITTEN BY R. .J. TOMNESON - ROCKWELL INTERNATIONAL
CELAR RAPIDS. I0WA S2486

LDNCONDCITIONAL PERMISSION FOR MON COMERCIARL USE IS
HEREBY GIVEM TO THE FLEX MEWSLETTER AND USER GROUP.

EXTERNAL REFERENCES - D0QE

NBEFFT EQL ¥AC14 LINE BUFFEFR FOINTER

0s ECHL FR0BA3 WARM START ENTRY POINT

ETCHE EQU FADLS GET 1 CHR FROM KBD» RET. IT IN R
ETLIM ERQU FRLLE GETE A COMMAMD LINMNE

CRLF EQL FAD24 PRIMNTS CRLF. KEEPS TTYSET HAPPY
UTFLX EQU $ADAF DUTFUTS CHAR IN A TO CONSOLE
PTERR EBRU FR[3F REPORT DISK ERROR #HNNMN

MS -EGU FR4AGE MATH ENTEY POINT

EXTERNAL REFEREMCES -~ MONITOR

UTEEE EQU FELDY BUTPUTE CHAR IN A TO CONSOLE
CATAL EQU FERTE DUTFUTE STRIMNG TO CONSOLE
IZE EQU 15 EYTES DISFLAYEDALINE

ORG . #eDiad
TRRET BRA STARTL

FCE YERND

SOLICET DRIVE., TRACE. SECTOR. THEN HAYE AT IT

TARTL LDX #STRRT

STH ERRORMX

LD #DRWVMSH

JER PDATAL

JER GETLIN

JSE INEYTE

' STH R FCBE+3 RIVE MNUMBER

spPas LD #OEPBED

STH ERROR X

DUMP & REPRIR UTILITY

&81E
821
sBE4
eaev
582A
&eazp
c828
£833
6036
6839
583C
SB3F

e842
845
5847
6849
504
684E

6851
5054
CE5E
6859
&85C
&25E
177147
eBs2
cBE4
5856
5868
&B6A
5860
&BEE
5878
&B7E
6874
GHR7E
6B7S
607R
=12 g W
687YF
o882
&B85

6887
S88A

6030
5090
65893

CE
BD
BD
BL
B7
CE
FF
CE
BD
BD
BOD
B?

CE
86
av
BD
(e
BD

BD
8e
B
BD
81
27
g1
27
21
27
81
av
81
27
21
27
81
av
51
ey
CE
BD
BD
28

TE
7E

FE
FF
20

&2
EQ
AD
61
£3
£8
63
6z
£
AD
51
&3

&2
a9
aa
B4
39
&1

62 ¢

3F
62
AD
4E
35
50
46
52
53
1B
94
2B
10
44
33
4c
D&
57
PE
&2
ED
62
CR

&1
61

63
63
AD

44
7E
1B
4E
SE
20
7E
4F
7E
1B
4E
9F

28

SE
7E
29

39

3F

ca
=1

LD
JER
JER
J5SE
5TA A
DSP18 LK
STHw
LD
JSR
JER
JoR
STA R
E S
CALL FMS FOR
*
LsP3a (I Kk
LA A
STA A
JER
BMNE
LEP4B JSR
* PROMPT THEN
LEP58 JER
tH A
JER
JSR
CHMP A
BEER
LHMF A
EER
EHMP A
BEQR
CMF R
EER
CMP A
BER
CHMP R
BEDR
CHMF R
BE®Q
CCMP R
BER
LD
JER
JSE
BERRA
e
DERRDR JMP
WRITL JHP
PREP TO RERL
NEXTF LE=
STH
BRA
* PREF TO RERD

TSC ASSEMBLER PRGE

#TRFMSG

POATAL

GETLIN

INEYTE

FCR+ 38 CURRENT TRACK POSITION
#DEPLB

ERRORH

#SCTHMSG

FDARTARIL

GETLIN

INBYTE

FCB+31 CURRENT SECTOR POSITION

SINGLE SECTAOR RERAD

#FCE
#9
1 S
FHMS
DERROR
BESPSCT
GET NEWT TRSK
CRLF
#°7
BUTCH
GETCHR
#°H
MHEXT
#F
PREV
#'R
REFPAIR
#31E
START
#$¥20
HERXTF
#°D
DOSEH
#L
DEP49
7
WRITL
#INVYMSE
FDATRL
CRLF
DESPSAH

SAYERRE

WRITE

THE MEXT SECTOR IN THE FILE
FCB+E4 BEGIMNIMNG OF DATAH
FLB+320

LEP3D

THE MNERT LOGICAL SECTOR

CUMP & REPAIR UTILITY

EBR5
Ga93
=77 o
E09B
=82h
SR8
EBRZ
6RAGS

SAAT

SHAR
S8R0
SHRE
=85 =15
cagR3
LuEs
S58Ba

SaBER
&HABE
aacy
&Rcd
&acy
&BCA
(Y5 s w
GEB0a
5803
GEAE
&RA07
cBabR
AR
&PED

&BEZ
SOEE
EHED
EHEC
EBEF
cBFe
EBFS
caFy
SBF9
&5BFB
SaFC
&BFF
£101
&183
61835
6183
~10B

&180
elle

B&
4C

81 !

=2
rC
ga
BY
=10

TE

B&
4R
26
A
26
Bv
7E

CE
FF
CE
BD
BD
BD
CE
FF
B7
SF
BB
Fo
F7
BT

BL:
CE
BD
FE
BL
BD
g1
av

24 ¢
27

81
27

81 i

2v
CE
BOD
2

CE
FF

lul

-
2

oF

2k

SE

aF
42

BE
TE
EC
FE
1B
3E
ca
v
T4

%)

S3 g N
00

29
74
1E
7
12

13

Fg
7E

ab
FE

NEXT LOH
Ir
CMP
EME
INEC
LR

HEXTL TR
ERA

E g

LOSERX JHP

+# FPREF TO REARD

FREY LD
DELC
EMNE
LELC
LR
FREWZ1 2TH
JHMF
+ ALTER EAM
FEPAIR LD¥
STH
LD
JSR
JER
JER
LD
o
=TH
CLE
A
=] K
5TR
STAH

DISFLAY PR

REFP1 JER
LD
JER
LEvx
JER
JER
CHF
BE
(RIS
BER
cHP
BER
e
BER
LD
JSE
8RR

o 1 0 1

A
A

A
A

TESC ASSEMELER
FCE+Z1

#¥11
MEXTL
FCB+30
#El
FCB+31
DzPZB

o=
THE PREVIOUS LOGICAL SECTOR
FLE+ZL

FPREVL
FCB+348
#3108
FCE+31
LEPEB

SECTOR ~ GET STARTIMG LOCATION

MmMIHITOIMmI

R

A

]

A

#REPAIER
ERRDR ¥
HOFFME1S
FDRTAL
GETLIN
IMEYTE
#FCE+E4
SRYEX
SHVER

SRVER+L
SAVEX
SAVEXR
SAVER+1

SEMT DRTAHR - GET NEXT TASK

CRLF
#SAYER
QUTEME
SHVER
DUT2HS
GETCHE
#°H
INC
#°F
LAET
#%0
EONE
#ER
REPZ
#REPMSE
FCRTRL
REF3,

CHRMGE THE DATA AMD ITNCREMENT THE LOQCATION

REP3 I EEY

STH

#REP3
EREQORS

PAGE

PUMP & REPAIR UTILITY

TSC RSSEMBLER

5113 BD RD 1B JSR - GETLIN
6116 BD 61 4E JSR INEYTE
€119 FE 63 7C LD SAYEX
611C A7 @5 STA A . %
611E FE 63 7C INC LDK SAYEX
6121 08 INK
6122 7C 63 74 INC SAVER
6125 FF &3 7C REP2 STR SAVEX
6128 28 B9 BRA REFL

¢ BACK UP ONE LOCATION
&€12A FE 63 7C LAST LDk SAVEX
£E1p0 &89 ' DEX
E1R2E 7R &3 74 DEC SAVER
6131 29 F2 BRA REPZ

NO MORE CHANGE
6133 BD &2 29 [ONE JSR CRLF
6136 FE €8 4E JHF LEP4B

+
6139 B0 AD 3F SAYERR JSR RPTERR
€13C PE 66 51 JMP DSPS6

% CALL FMS TO WRITE A SINGLE SECTOR
&13F CE 63 88 MWRITE LEv #FCB
&£142 86 BR LA A #19
6144 A7 99 STA A 8. ¥
£146 BD E4 B85 ISR FMS
6149 26 EE BME SAYERR
514 VE €8 51 JMP DEPSH

GET TWO HEX DIGITS AND FORM R BYTE
£14E BD 61 SA INBYTE JSR IMHEX
a154 48 ASL A :
£152 48 ASL A
€153 48 RSL A
6154 48 ASL A
5155 416 TAE
5156 8D @2 BSR IMHEY
56152 1B S AHERA
5159 39 RTS

#* GET HEX CONLY) CHRRHACTER FROM THE CONSOLE
&15A BD 62 2F INHER ISR GETCRT
&150 88 38 SUB R #$3H
&15F 2R OF EMI HEXERR
6161 81 89 CMP A #£89
6162 2F BR BLE GOTHE X
£165 81 11 CMFP A #$11
E167 2B A7 BMI HEXERR
€169 81 18 CHP R #$16
61568 PE B3 BRT HEXERR
&16D 88 87 SUB A #7
&16F 39 GOTHEX RTS
€179 CE 62 DB HEXERR LI¥ #NH®MSG
6473 BD EB 7E JER PDATAL
€175 FE 63 7E LD ERRORN
6179 6E 88 JHe B, X

#« DISPLRAY THE

CURREMT SECTOR BUFFER

PHGE

4

DUMP & REFPRIR UTILITY

&E17VE
&17E
s121
e154
6185
s1ae
&18B
618E
6191
£194
5197
&1'7R
190
E19F

51R8
&1R2
51R6
&1R%
&1RB
&1RE
&1B1
= R =i
SiBE
el1Bs
£1BE
&LEBC
£1BF
&51CE
5105
=5 Ay
&1i9
&1CC
c10E
ella
=R N
5104
&i07
elbz
&10E
&1DE
&1kl
&1E3
S1ED

51E6
elER
olER
&1EC
slED
S1EF
6i1F1
G1F3

BD
CE
BD
4F
B?
BT
CE
FF
FF
BD
ES
26
BD
39

BD
CE
86
BO
BD
FE
A
BD
AE
BD
B8
FF
7
BE
24
25
FE
RE
81
2E
g€
BD
CE!
FF
7C
BE
84

26
29

A&
8D
A&
ag
2
ap
8D
=1="

A
&3

&1

=3
&3
&3
63
&3
€l
&3
Fa

AT

AL

3
2e
61
=¥
&3
ag
=51
a8
&l

=3
53
63
aF
ES
63
Ba
iF
B
2E
&2

53
63
63
8F
E4

B
ab
Bea

ac

24
9E
EF

7E
77
o
78
7R
AB
7

e B |
=~} ~j It

FS -

F3
e

TSC ASSEMBLER PAGE 5

BEGINIMNG OF DRTA

FROZ THE DATA & TEEST FOR DONE

oeEnT

0O IT IN HEX

COUNTER

MO IM ASCII
IF NON PRINTIHG

SUBSTITUTE A PERIOD

To QUTPUT HEX DATHA
USE WITH P. CHD

DERSET JER DCRLF
LD #FCB+329
JER OUTSHD
CLE A
STR A XEYTEL
STA AR HBYTEZ -
LD #FCB+E3
5TH EFFTR1
STH EFFTRZ
DSP41 JER DOLIHE
LA R HEYTEL
BME LSFl
JER DCRLF
RTS
+ PROCESS DME LIME 0OF THE BUFFER
COLINE JZR DLRLF
L #HEYTEL
LR A #F28
JER QUTEDD
JER OUTCHD
DOLIME LDA EFPTRL
LA A A, M
JER CLITHLD
LA A 8.~
JSR OUTHRD
TN
STH BFPTR1
INC HEYTEL
LDAR R HEYTEL
AHD R #ST2E
BME DOLIME
EOLING LDH EFFTREZ
LA A B, ¥
CMP R #F1F
EGT DOLIMA
LA R #7
LOLING JSE DUTCHD
IHH
STH BEFPTRE
IHC HBYTEZ
LDR A HEYTEZ
HHD A #SIZE
EME COLINE
RTS
 OFTEN COPIED ROUTINES
 THESE GO THEU DOS FOR
QUT2ZHD LDA A 8, 4
ESR QUTHLD
LA A B
ITHH
BRH OUTHRD
oUTHHD EB5R OLFT e D
nUTZRD EBSR QUTEHD
ITSD LDA A #£2A

DUMF & REPAIR UTILITY

&1F35

61F7
61F8
&1F9
61FRA
e1FE
61FD
&1FF
&281
&62e3
2835

s2Es
628A
&2a0
628E
6218
ealg
&214
G216

6218
6219
E21R
E21B
&21C
G21E
6228
éeea
6224
6226

se29
s2er

622F
6232
6234
6233
5238

6239
&z23C
6243
ec44
&247¢
&24E
6E24F
6252
&25A
6256

£

44
44
44
44
84
8B
81
23
8B
7E

H6
ap
A&
=45
=12
ap
8¢
28

44
44
44
44
84
8B
81
23
3B
7E

CE
rE

FE
A&
88
FF
29

8D
44
24
8D
54
84
ek
53
04
ap

aE

er
38
39
a2
ar
AL

a2
8C
6o
ac
Fé
Fd
28
OE

aF
3a
39
ag
B7
E1

63
EQ

AC
a8

HC

BF

D1

45
7E

14

E 2
DUTHLD

QUTHRD

QUTCHD
+* THESE

ERA

LSF
LER
[LSR
LER
AND
AlD
CHMP
BL.S
A
JHP
ARE

TITTTTLITD

A

IGENTICAL BUT KEEF THE CHIT-CHAT

AT EHD

#¥F
#$30
#$39
CQUTEHD
#$7
QUTFL®

+ OFF THE FRIMNTER.
DUTPUT SHITCH

* COULD
DUTEH

OUT4AHS
QUTEHS
ouTS

E 3
OUTHL

DUTHRE

QUTCH
*
CRLF

o
GETCRT

USE
LDA
BSR
LDA
BRA
BSR
BSR
LLA
BRA

LBR
LSR
LSR
LER
AML
ALD
TP

BLE

AL
Jne

LD
INF

LD
LDA
INA
STH
RTS

STRINGS

DRVIMSG

TRKMESG

SCTMESGE

INYMSE

FCE
FLC
FCB
FCE
FCC
FCe
FCB
FCco
FCE
FCE

A

A

DD DD I

1]

8, ¥

QUTHL
B, ¥

OUTHR
OUTEH
QUTeH
#$28 -
QUTCH

#5F
#¥300
H¥39
DUTCH
#E7
DUTEEE

#CRLFME
POATRL

IMEFPT
8, 1

IMNBFPT

F¥D. $R. 0
SDRIVE?
4

0. $A. B
JTRACK?
4

¥D. ¥R, 9
SSECTOR?
4

%0, #R. 8

-

&

TSC ASSEMBLER

PAGE

(]

DitE & REPAIR UTILITY TSC ASSEMBLER PAGE 7

E25E 56 FCI AWALID INFUTS ARES
E26E 80 FCE $0, $A, B
52741 4E FOC SN = MEXTS
L2789 8o FCE $0. $A. 9
&270 58 FOro SFO- PREVIDUSS
&£88 ap FCBE 0. $A. B
6288 52 Foo AR - REEPAIR
£295 an FCE $0, $A. 9
£298 57 FCC AW o~ WRITES
62A1 BD FCE 0, $0, B
&8R4 44 FioC A0~ DOss
E2AE &k Fiog 30, $R. B
ESAE 40 FOC AL - LASTS
&2BE Bh FCE 0, 2R, A
52Be 53 Foo AEP - MEXT IN FILEA
&2CA 8D FLoE +0. R, O
ERCD 45 Foo JESC -~ RESTART
62DR B4 FCE 4
&2DE B0 HHXMSG FCEB 0. ¥R, 2
G2DE 49 FOU STHPUT MHOT NEXS
62EE 949 FCR 4
&2EC 9D OFFMSG FOB $D. $A. B
S2EF 4F ' Fro SOFFSET?
62F7 94 FCE 4
62F8 Br REPMSG FLE $0. ¥R, B
&2FE 56 Foo AVYALID INFUTS ARES
£3PE 80 FCR $0. $A, B
S3RE 4E ' For AN - MEXT
6316 ap FCBE 0. $R. 9
5319 50 FLC AP - PREVIOUSS
&385 8D FUE $D, A8
£3E88 53 Fioo AEP - CHRNGECFOLLOWED BY TWO HEX CHARR)/
£340 6D FLR ¥, A, @
£350 52 : : For SRET - RETURH TO READ-WRITE MODE.
£36F 84 FCB 4
6378 8D CRLFMS FCB £, $R, 9, 4

=+
£374 SAVER RME 1
6375 SAVEE RME 1
£376 HBYTEL RME 1
6377 - ABYTE2 RME 1
G378 BEFPTRL RMB 2
&37A EFPTRZ RHME &
6370 SAVEX FME 2
E3I7E ERRORY RME 2
£328 FCR RME 228

EME STRRT

MO ERRORC(S)> DETECTED

Something on the Horizon

| from
Technical Systems Consultants

Extended BASIC for 6800 and 6809

Finally, a BASIC for serious business
applications or scientific programming is
available. All the features of our regular BASIC
are supported—and more. Floating point
calculations are carried out to an internal
accuracy of 17 digits. Most math funclions are
accurate to 16 digits with a minimum accuracy
of 13.5 digits. Integer variables have been
included fo allow fast execution of control loops
and array indexing. Even with the double
precision math package, this BASIC is still one
of the fastest around.

The business programmer will appreciate the
versatite PRINT-USING capabilities which
incluge dellar and asterisk fill, trailing minus
sign, imbedded commas, and scientific
notation. New string functions have been
added for string searching (INSTR) and for
creating a string which is the date (DATESS).
DPEEK and DPOKE are 16-bit peek and poke
type functions. The SCALE command has
been included to eliminate the round-off errors
typically encountered in binary math packages.
The INCH$ functicn allows single-character
input from the terminal, Programmer control of
control C breaks'is also included.

Overall, the Extended BASIC is the most
complete BASIC offered for micro users and is
only available on FLEX™ disk. A sysiem with at
least 32K of user space is recommended.
Specify 8" or 5" media (5" 6800 is FLEX™ 2.0}
and either the 6800 or 6809 version when
ordering.

AP68-12 6800 Extended BASIC $100
SP09-6 6809 Extended BASIC $100

BASIC Precompiler

This program allows the creation of BASIC
programs without the use of line numbers or
restrictive two-character variable names,
Aiphanumeric line and subroutine tabels may’
be used, as well as variable names of any
length. Comment lines are marked with non-
alphanumerics for easy readability. The output
of the precompiler is in the standard BASIC
compiled form. This allows applications
programs 10 be written, precompiled, and then
distributed in a non-source form. The
precompiler can only be used with cne of
Technical Systems Consultants’ BASICs.
Specify 8" or 5" (5" 6800 is FLEX™ 2.0) when
ordering.

AP68-13 Single Precision

6800 Precompiler $40
APGB-14 Double Precision

6800 Precompiler $50
SP09-7 Single Precision

6809 Precompiler $40
sP09-8 Double Precision

6809 Precompiler $50

FLEX is a registered trademark of Technical
Systems Consultants, Inc.

technical systems
consultanty, INC.

Box 2570, West Lafayette, IN 47906
(317) 463-2502

