COPYRIGHT ® 1978 BY
Technical Systems Consultants, Inc.
P.O. Box 2574
West Lafayette, Indianaz 47906
All Rights Reserved

1.

Table cf Contents

Debug Tutorial 1

!'. Introcuction 1

i1, The Simulated Computer]
11, Whats in Memory? 3

[V, Simutlating the Program 6
V. Breakpointing the Program 7

V!I. Advanced Breakpoinfts G
Y11, Protect Your Memcry 12
vill, Trapping Those Bucs 13
iX, Ancd There is Still More! 14
Command Descriptions 17

{. Introduction 17

t!. General System Contrcl 17
(11, Memory Commands 22

IV, Simulation Control 24

V., Breakpoints 28

Vi, Memory Protection 32
Vil, Execution Traps 33
Vill., Interrupt Control 55
Command Summary 37

Messzce Descriptions Eic

A

Getting Debug Runninz 41

Example Use 43

|. Sample Program Scurce 43

i1, Sample Debug Sessicn 44
Adzp*ing To Your SysTem 47

. 1/0 References 47

1. 1/0 Related Storage a7j

11, Stack Pointer References 48

lv. The X Command 48

V. System Tables 48

¥l. Saving the Alterec Frogram 48
Relocating the Debug Package 43

Debug Package Source LisTing 21

Debug Tutorial

| Introduction

Program debugging is usually thought of as werk. 't shoulc
be +thought of as an art, There is no reason for a lot of crying

while attempting to make 2 new oprogram do what was intended.
This is only true, however, if the program was designed with some
forethought and planning. Cecmputer programs are executed in a
logical, step by step, fashicn, This is +the approach both
program writing AND -debugcing should ‘take. Sc¢ many times a
programmer will spend hundrecs of hours, carefully planning the
flecw of a new program but spend only a few minutes thought on &
debugcging approach. The detugcing is usually attempted in scre
hap hazarc, keep your fingers crossed, method. Semetimes this

works ang sometimes 7 does not, but in most cases, valuzble time
is wasted,.

By wusing a decugging tool and by incorporating some locicel
thinking, program debugging can become very straight forward an<
sometimecs even fun! The purpose of this tutorial is to introcuce
the reader tc the capebilities of the TSC Debug Package and offer
some suggestions on how Tto tackle “those program bugs. The
following secticns ¢ive a more detailed description of its
capatilities,

It. The Simuiated Corputer

n the name may imply,

The T5C Debug Fzckzge is more tha

is in fzzt 3 comzlete €870 sirulatsr, A computer simulator ic 2
progrem which when run, Deheves exactly like the computer it e
simuleting. Given 63CC machine language, the samuua*ar will
perform the instructions exzctly like the 6800 CPU. There a-=
two ma_ cor differences, cre being an adventage, the seconc be'ng &
disadvantace. First for the cood news, The simulatcr has “he
ability to keep close account of all internal actiors, Bale
exampie, any illegcal cpcodes are quickiy detectec and repcriec,
Such things as stack cverfiow and wunde~flow are 2lso ezsiiy
checked, Each byte of memory may have an assignec prctection Tyoe

&

such as write protecticn, Generzal conditions may 2lsc be sporve
such as the occurence of a transfer of address type instructicn,
Overall, the simulator can keep ¢lose watch over tThe executing
program and detect any peculiarities.

This &l! sounds great, but as stated befcre, there 5 2
disadvantage in the simuiator, namely speed, The simulated
program runs somewhere between 100 and 300 times slower than 2
real 6800 CPU., This means that real time dependent code may nov
be simulated, This is not 2 seriocus drawback since less than one
percent of alil computer programs are real time dependent.

TSC Debug Package)

The 6800 simulator incorporated in the TSC Debug Package
supports all of the 6800 instructions, All of the user registers
are also provided (A, B, CC, X, PC, and SP). To examine the
contents of these registers it is only necessary fo type R

followed by @ carriage return, This is assuming tThe Debug
Package 1is ready *to work indicated by the two asterisk prompt
(***1), Typing the R command will cause the debugger to display a
line containing all register names followed by their contents in

hex, At the end of the line is the instruction currently being
pointed to by the program counter (P register) and it is
displayed in disassembled form (standard Mctorola mnemonics}. A
nonstandard register is alsc -displayed, the N register. This
register's value represents the subroutine nest depth, FEach time
a subroutine is called, its vatue will be incremented, and each
time a return from subroutine is executed, its -value will be
decremented, The contents of any of the displayed registers may
alsoc be set by using the SET commznd. For example:

**SET,P=100,A=F3

wili set the value of the PC 1o hex 100 and the value of The A
register to hex F3, There are several other registers and states
of the simulated machine, These can be viewed by typing MACH,
The items displayed with this command are primarily the states of
various traps which will be describec a little later,

There are severa! other interna! machine variables which may
be easily examined. One of these is the contents of the stack.
Typing STACK will disolay the top several bytes of the stack. If
more stack contents are desired, simply type the number of items
desirec after the command,.

**STACK, 15

Thic wili display the +top 15 bytes of the stack, Necte that a
comma was used as & separatoer in the command |line. I+ will te
used in all examples in this manual but a space s also
acceptable and sometimes easier to type. Another command which
references the stack is the RET command., This will print the top
two bytes of the stack as an address and represents the return
address if currently in a subroutine.

The simulated machine a'ways keeps track of where it has
been and how much tTime was spent there. The machine !'states
counter' is used to tall!y the total number of machine states or

cycles used so far by the executing program, Each €800
instructicon requires a certain number of machine cycles *to
execute. |f the CPU is running at 1 meganertz, each machine state
is equivalent to 1 microsecond, The machine states counter s
capable of counting up to 99,999,999 cycles, or roughly 99.99
seconds of actual program execution time. This counter is useful
for determining the exact execution time of a routine,

TSC Debug Packace

The TRAIL command will print the address of *the tfact
transfer type instruction., A transter of address instruction is
one which causes the CPU to change its normal course of
instruction execution, Normally instructions are executed in a
sequential fashion, stepping through memory seguentially. A JMP
instruction for example will <cause the next instruction fo be
tetched from the address specified in the instruction, rather
than from the next seouential adcress, In effect, we have a
transfer of address., The TRAIL command will print *he lcceztion
of +he last transfer type instruction that was executec. This is
very hancy in determining what caused a program fo enz up in
memcry where it did.)

The simulatecd machine is capabte of running in twe cifierer”?

modes. These are referenced as mode 1 and mocde O. in mcce |
(the defaul* mocce), ai! checking and bookkeeping s performes,
n moce O, several of the features are turned off in crder to
improve the spesd performance of the simulatcr. |t i s
recommended thezt mcde 1 always be used since it does *he most
work for you anc will catch more errcrs,

[1t. Whats in Memory?

Nocw thet the simulatec CPU has been described we need 2o
locok a2t memory., The TSC Debug Packacge offers severai weys of
examining the contents cf memecry locations, as well 2s altering
them, The simplest form is the MEM command, or M for short,
Typing W foilowed bv an acdiress will display thaT byte ¢t memory,

For examzle:

~+

shogwe that memcry locaticn hex 160 contains 2 hex CE. AT thig
time severa! «choices @are at hand. If afit you wanteld tTo do was
check *he cantents of locstion 100, simply type a carriace return
and the debtug prompt will be issuec. [f you want to change tThe
conterts of 100, simply Tyrpe the new value followed by a 'space'.
The 'space' teils *the detugger that the new value is reacy Tc be
entered, It is on!y necessary to type the significant digits of
the nsw wvalue *o Se entered. For example, if & was To be
entered, simply type 6 followed by a space. 1t should be nroted
that only the last two digiTs will te used so it 'C23A' is *yped,
13A' will get entered, |f zeroc is To be entered, simply Tvpe &
space, After the new value is entered, the next sequenvial memory
locaticon will be displayed. Any time a non hex cheracter s
typecd (with +the exception of spacel, one of two actions wil
occur, First if the character is a 'line feed', +the previous
iocatior will be displayed, with *the <current Iccation !eff
unchanged. if the character is any other non hex <character, Tthe
next location will be displayed leaving The current unchangec.
An example will clarify the M command's use.

TEC Debug Package

*%M, 100
0100 CE .
0101 3A 46
0102 4D

Location $100 was left unaltered, while location $101 was changed
from a $3A to %$46. Finally this mode was exitted on the next

line by typing a return.

Many times while program debugging it 1is desirable +to
examine a large block.of memory. The DUMP command is used for
exactly that, This command will display 16 Itines of data, 16
bytes per line, fcr a specified memory regicn., Each byte is
displayec as 2 hex value as well 25 its ASCI| equivalent. Al
control «cheracters (theose bytes having a value less than 20 hex)
are displayed as an underscore character ' !, To display 256
bytes starting at memory location 31000, the following command

shoulcd be typed:

**¥DUMP, 1000

At the end of the dumped block the program will stop and wait for
a8 character +to be typed,. Typing an 'F' will move forward in
memory, printing the next sequential 256 bytes. In this example,

typing an F would display the block starting at $1100. It is
also possible to display the previous block of 256 bytes by

typing a 'B', for backward mcvement. A carriage return wil
cause the debugger *c regain control and +the prompt will be
reissued. Any other <characters will be ignored, [t should be

noted that any +ime +the debugger is disptaying data on the
terminal, the display may be stopped at the end of the line by

Typing an 'escape' character. Once stopped, another ‘'escape!
will resume the display, while a "return' will give control back
to the debugger, This is a very convenient feature,

Another usefu! memory interogation command is the FIND

command which is used to find & specific string of bytes or
characters in a selected block of memory. As an example, suppose
there was a jump 1o subroutine instructicn somewhere in vyour
program. !t s known that the code is BD 34 00, and that it is
somewhere bet*ween locations $1C0 and $300., The following command
line will find it,

¥*FIND, 100,300,8D, 34,00

This +tells the debugger *o look between memory locations hex 10C
and 300 for the hex string 'BD3400',., All memeory . locations which
contain this string will be displayed on the terminal, The
length of the string searched is [imited by the maximum cocmmand
line length which is B0 characters. it is alsc possible to
search for an ASCI| string., Suppcse it was necessary to find the
character string 'ERROR 3' in memory. [t should be somewhere
tetween locaticns $200 and $1000. This can be done in +the
following way:

TSC Debug Package

**FIND,200, 1000, "ERRCR 3

The double quote character +tfells +the find command that the
following c¢haracters are to be considered ASCII characters
instead of hex. Otherwise the command works exactly as describec
above,

So far the memory commands described have been oriented
toward hex and ASCI|.values, Many times during debugging it s
necessary ‘1o decode ‘these hex values into assembler languege
instructicns, The DIS commend does exactly that! This commanc is
a corplete program dicassemtler which allcws the user to exzmine
+he contents of mercry in 2 higher level form, Eack memory
locaticn in & specitied Lblocrk will be printed as adcresc,
followec by the opcode mnemonlic and adcdressing mcce. Standard
Motorole mnemonics and adcressing mode designaters are used, To
use the disassembler, simply +type the command naszme (D18},
followed by twc address bouncaries., fFfor example, Toc disassem:zle
the memory range between locatvions 100 and 108, type the

following.

**2 1S, 100, 10¢€

C1Co LDAA 322

C1C2 STAA 30240

01C% BNE $0121

0107 DEC

0108 STAA 2,X
Remem>er t-z2t g+ any time tre cisclay s being precuces, tThe
'escara' wkey may be tyoed tco temporarily halt the zcticn. The
015 cermrang is 2 very useful 2-2 powerful command,

bow the* we cCzn exarine memcry ir & higher Tevel form it

wol!ld e nice if we could alter iT in The szme wa,, that s,
using assembler language mnerznics, The ASM commarc does exactly
that! |t acts 2s & line 2t z time assembier, allowing standard
mnemonics and addressing modes te be typed, while *hs

correspancing hex values are automatically inserted into mewcry,
To stzrt +this process simply type the command name fcl lowec by
the address where the code should be placed. The <debuggcer will
responc by printing the address of the locaTion specifiec
followed by a space. AT This time, vimoly Ttype the desired
instructions following each with a carriage return, The nexT

available address will *then be printed and assembly car conTinue.
Typing a carriage return in response to the address promp™ will
exit This mccde of operation, To shcw the workings of this
command, some code will be assembled at location $£200.

**ASM, 200

0200 LDAA 10
0202 LCAB $10
0204 PSHA
0202 LDAA ™™
0207 STAA O, X

TSC Debug Package

0209 JMP 33000
020C

* %

Ncte that numeric values are interpreted as decimal unless
preceded by a dollar sign (%) to designate hex, '+ is also
possible to enter an ASCII constant by preceding it with 2 single
quote ('), No spaces are ailowed between the register specifiers
'A' or 'B' and the instruction {e.g. LDAA is correct, LDA A is
not). The ASM ccommand is a great time saver!

i¥v. Simulating the Program

Program simufaticn is very simple. tf the Test program
starts at $100, simply +type START,I100 to start the simulation
process, The program will run exactly as the CPU would run ift,
just slower, The START command clears several of the machine
conditions such as the states counter. Tc start a program where
it ieft off, +the GO command can be used, This will cause the
program to start executicn at the location pointed *to by the
program counter (P register}), No states will be cleared,

A very valuable feature of the simulator is *tThe T'trace
mode'., When trace is enabled, a register dump (exactly |lke that
produced by trhe R command) will be displayed after each
instructicn is executed. The simulation may be temporerily
halted by typing an 'escape' character anytime during The tracing
operaticn. The simuiation may also be stopped by typing a
‘contro!l C'., This will cause the debug prompt tc be relissuved.

To enznie the trece mode use the TRACE command.

**TRACE=1C

This line will cause the debugger to frace all instructions which
are in a subroutine nest level of 9 or lower, The number in the
commarnrg line specifies the nest level where tracing should be
disabled. This allows only the outermcs* program structure to be
traced if desired, while the deeper subroutines wili be simuiatec
without the tracing. To disatble the trace, use a ccunt of zero

(e.g. TRACE=D},.

There are several other methods of starting program
simulation., One is the SIM command., This command will allow the
simulation of a specified number of instructions, Tracing is

disabled during the execution of this ccmmand.

**¥351M, 100

This line wilt cause 100 instructions to be simulated starting at
the address pointed to by the program counter. The TSIM command
is identical to *the SIM command except trace is automatically set
to 256 during the executicn of the command.

TSC Detug Package

It is often desirable to step through the execution of 2

program, cne instruction at a time. The STEP command will start
simulation at the instruction pointed to by the program counter,
execute a specitfied number of instructions, print a register
dump, and then wait for input., At this time, a space will repeat?
the process, while a return will return control back to the
debugger. The usual method of operatficn is 'singte' step which
will execute one instruction, then dump the registers. This mode

can be entered by:

**STEP

MUoltipte insftructions c¢an be executed between regis*ter du~gs by
specitying a2 ccunt, For exarple;

*¥STEF, 25

e) -

will cause 295 instructions to be simulated at a time, The step
mode is 2 very powerful method for closely fcllowing the flow Gf
a program.

During program executior, the simulator keeps track of the

last 256 instructions executed, |f a program ever goes off on
its own, ending up in memory where it should not, the PAST

command can be used to examine the instructions executed to get
it there, Typirg the command,

*¥pAST 20

will disciey the addresses anc mnemonic instructions of the las™
20 opcodes exscuted, This feature alone will fing & gococ
percentage of program Lugs.
V, Brearpointing the Prograr

Sos tar, methods have been described which allow all or a
certain number of insfructions fto be simulated. Most <t the
time, the number cf instructions to @& certain point in The
program is not krown, [t would be helpful if a brear in The

program simulation could be specified to take place 2t a
particular pgsint in the program, or in other words, breakroin¥s.
A breakpoint is 2 wmechanism for stopping the executicn 2t 3
spaecified address in the program, As an example, tc set &
breakpci~+ at locetion $23A, use the following command,.

**B@23A

As the program executes, any time location $23A is reeached,
simulation witl stop and the registers will be dumped *c ‘the
terminal, After the program has stopped, Typing a 'G' will
restart execution, starting at address $23A (the breakpoinT will
be temporarily ignored). I+ should be noted *hat the method used
+o create the breakpoint dces not alter the contents of memory in

TSC Debug Package

any way, This means that after setting a breakpoint, the
contents of memory at the breakpecint location will be wunchanged.
This al lows breakpoints to be set in ROM as well as RAMI

in the above example, the breakpeint caused twe actions “to
take place. Cne was printing the registers, the other was
stopping program simulation, These actions are the ones
performed by most debugging systems, The TSC Debug Package
allows six cther actions fo be perfcrmed upon the execution of a
breakpoint, A list of all B possible actions follow:

1. R...Print register contents

2, Z...2eroc the states counter

3, T...Enable the trace function

4, U...Disable trace {(untrace)

5. H...Histogram counter

£. M, ,.Print a message

7. Jeosdump To specified address

B. S...5tcp simutation

~The first breakpoint example shown defaulted to R and 5 ‘type

actions since ncone were specified, The Z action zeroces the
machine states counter, This is useful for program timing. For

an example, The states counter may be zeroed upcn entry to a
subroutine and a stop type breakpoint set at the exit point of
the routine. By wsing the STATES command after the program
stops, the exact number of executed machine states for that
routine wili be displayed.

The T gnc U actions allow the trace mode to be enabled and
disabled at selected points in a precgram, When enagbled, trace

will be set 1o level 255. ‘any times, tracing is only desired
during one routine or selected portion of the program, These
actions wil! permit this sort of program iracing. A few examples
will demcnstrate action tType breakpoints,

**B,RZ@1000

*ER TEAIG
The first command wili set a breakpoint at [location hex 1000
which when executecd wil! print the registers and zero the states
counter, The program will then continue since a stop (5) action
was not specified, The second example will cause trace to be

turned on at tocation hex Al6,.

Anothrer action is +the histogram {H)., A histogram ccunter
counts the number of times the instructiocn at that address has
been executed. This is wuseful for determining 'hot spots' or
sections of programs which are executed very freguently. By
setting a histogram breakpoint at the first instruction of each
subroutine in a program, it is possible to find out exactly how
many times each routine was call!ed. As an example, suppose there
were three subroutines in a program, and they were Ilocated aft
$100, 3123, and $1A0. To set histcgram counters at these

TSC Debug Package

loccations, type the following commands:

* %8, HE100
**B,HEZ3
**Z,HETAD

After simulating the program, *yping HIST will display the totals
of the counters at each address. This command is used tc examine
the histocgram counters at any time, The CLH command is used +tc
clear the histogram counters,

X*CLH, 107

*XCLn
The *iret command will clear (se* +5 2z2erg) *he value ot “p=
histogram counter at location 100. The second cemmand wil| zerc
all of tThe coun‘ters, The Fhistocgram commands ailcw & VETY
compiete prcfiling of a programr, !etting the user "fine tune' i+

for maximum spesc,

The remaining *wc action codes zre special purpose. Gne
permits a selectec message to be oprinted as the action, tre
second allcws fransfer of control to a specified acdcress (|ike a

JMP instructicn).

PEBLMERDE, SUE

¥*¥B,JEZ7C, 10200
The ftirst line wil! print tre messace "SUB 1" each time the
instruction at £325 is execitec, The second cormand will ceuse
the irsTtructicn at acdcdress hex 1000 to be the next instructicn
executed, The instructicr at Z7Z will net be executed!

Any combination of acticn codes may be fisted for a
breakpoin*, They are executed in the orcer *hey appear in +*he
above list, For examc'le,

* i

**2 TRZE300
will «cause the registers to be dispiayed (R), the states cov-~tar
to be zeroed (Z), anc trace to he enab!ed (T), in +tha+ ocrcer.
This ordering may be important, for in the actions 'RSI', the
stop (S) will never get executed since the J transfers contrc! to
another address.
VI. Advanced Breakpoints

Programs containing loops or recursion are often difficult
tc breakpoint since one particular section of code may be «called
thousands, or even millions of times. As an example, suppose
there is 2 loop in the oprogram being debugged, and it s

necessary to examine the contents of the X register afte- the
600th time through *he !oop., One way is to set a breakpoint at

TS5C Debug Package

the desired instruction and start the program simulating. Every
time the program halts at the breakpoint, type G tc restart |t,
Repeat this process 600 ftimes and you can examine X. You are
probably thinking that this would tzke forever and you are right!
The TSC Debug Package allows a pass counter to be associated with
a breakpoint, This count determines how many times the
instruction at the address of the breakpoint should be executed
before the acticns specified should t: performed., In the above
example, assuming the instruction +to be breakpointed is at
address 300, the folliowing will do exactly what we want.

Both co~mards are identical since the f{first defaults +o SR
acticne., The ">' is the pass count modifier and sheould be read as
tattert, Tre result of this command is to stop and print the
registers on the instruction at focation 300, after 6C0 times
through it. Once the count reaches 600 {or whatever value was
set), the breakpoint actions will always occur. A second similar
type of pass count uses a '<!' for a modifier and should be read
as 'pefore'. This is used to create a temporary breakpoint.

¥*3,RE300,<100

This commancd wiil set up 2 breakpoint at 300 which will print The
regcisters fcr the first 100 times *through., After The 1C0th *ime,
the bregkpzint will be cliezrec and no longer function. In
summary, the pac:z count value associated with a breakpoint is
cdecremented each tire the instruction at the specified addrecss is
execlted,. If “re modifier is a '>', no actions will be performed
until 'after! *tne count has reached zero, With the '<! mofifier,

acticors are cn'y performed 'before! the count reaches zero, and
cnce it is zero, tThe breakpoint is cleared,

Ir the atcove sxample it was deciced that the prograrm should
te <etoppec 2fter 60C Times through the loecp. While detogcing
lcops, It is notT always pocssible to determine an exact number of

Times to execute the loop before it shcoculd be stopped. Often it
is desirabie To stop on a certain conditicn, such as the cortents
ot a register or the stete of a particular memory location,
Conditional expressions are allowed in breakpoint definitions ang
yield @& greatf dezl of power., The conciticonal can be determined
on the contents of a selected register (A, B, C, X, P, S, or N
being egual {or not egual) to a specified value. A particular
memory location may also be tested for zero or not zerc.

Following are a few examples,

**B@1000, IF A=3F
**B,R@X20,1F B!'=10
**B,TesAT, IF $20=0

The '"|F' statement designates the conditional part of the

TSC Debug Package

breakpoint definition., The first example will stop ancg print the
registers at location hex 1000 but only when the value in the A
accumulater is hex 3F. The second example will print the
registers at 320 only if the contents of the B register is not
hex 10 ('!=! is to be read as 'not equals'). The last example
will enable the trace mocde at location 6A7 if the contents of
memory location hex 20 is zero. The dollar sign '$' is wused +to

designate a memory reference and not a hex value (*he value is
always irnterpreted as hex). The value on the right of the ecuzls
sign must afways be zero when &2 memory reference has been

designated,

The above breakpoint features may be combinec in a variety
cf wavs to produce an almost endless variety of breakpcints, Fg
an example:

¥¥EL,TZET100Q,»100, 1F X=100
will cause trace *to be enabled anc The states counter to te
zeroed, after executing the insfruction at hex 1000, 100 +Times,
but then only it +the value of the index register is $10C, It
should be noted that the H, M, anc J acticn codes will not eallow
a conditional expression as part of the breakpoint cefinition,
ang J will not support 2 pass ccunter,

Onze breakpoints are set it s possible to exzmine The
loacticn of *them as wel! as remcve them, To check the locaticns
of breakpzints, use The BZ command.,

A==

**EF, 100

**EP,100=-500
The first line will print the location of all breakpcints, sz
one follcwed oy a list of its acticon codes. Ko pzss counts or
congitionals are displayed., The second example will displavy the
action cecdes of the breakpeint at locaticn hex 102 (if one
existe), The last command line wiil display ali breakpoci=ts
between lccation 100 and =00, inclusive, The CLB command 5
similar in syntax buT is used to clear or remove a breakpoint,
CLB by itse!f will clear al! brezwkpoints, [f it is foilowes by
an address, the breakpoint at that sdcdress will be removed. | f
two addresses are specified, then all brezkpoints in their renge
will be cleared.

While debugcing very large programs, it may become quite

time consuming *to simulate the program up to & desired acdcress.
For examp!e, 8 osrogram which reguires a minute to execute in real
time may reguire over an hour if simulated, To get around This
problerm, it is possible to set a 'real Time' treakpeint., This is
entirely different from the previously described breakpoints in
that 1+ coes mocify the contents of memory (by substituting a JMF
instruction) and no pass counting or concditionals are perrittec,
The only acTion performed is to stop and print the regcisters., An

T5C Debug Package

example of use foliows:
*%RT,5A00

This command will cause the CPU to start executing the program
(NOT the simulator) at the current address of +the ©program
counter. Wwhen “the program reaches the specified address (5A00),
the program will stop, print the registers, and restore the
contents of RAM at that location (remove the breakpoint). Since
the program is being executed in real time and neot being
simulated, no other breakpoints, illegal condition checking,
states counting, or record keeping is performed. This tType of
execution is not recommendc? for this reason and should only bhe
vsed where tThe simulation tTime gets tremendously long.

VIii. Protect Your Memcry

Perhaps the mos?t aggrevating aspect of pregram debugging is
having vyour program destroy itself in memory. Too many times,
programs 'run away', writing garbage in memory, usually exactly
where it is not wanted. in These instances, it would be nice to
be able to 'write protect! memory, or at least certain portions
of it. The TSC Debug Package will allow exactly that! In fact,
any section of memory, right down To a single byte, may be write,
execute, memory, cor simulate protected! Write protecting memory
will prohibit any stores or writes into 171, Execute protection
prohibits opcodes from beling fetched from memory. In other
words, the program counter (PC) will rnot be permitted to pcint fto
a locetion of mercry which is execute protected. Memory protect
is a trute force type of protection. By memory protecting a
regicon, you are in effect saying that no memcry exists in this
regicrn and that nothing should be allowed to reference it in any
way. Arny memory referencecd in conflict with its protection wil
cause the simulation toc stcp and an appropriate message will be
printed. Finally, simuiate protection is slightiy different from
The rest, It is used tc tell the simulator to execute any code
in & simulate protected region in real time, or in other words,
not simulated, A restriction requires the code in a2 simulate
protected region fo be called as a subroutine (JSR or BSR) from
the non-simuiate protected code. This is very convenient for /0
operations. All 1/0 routines can be simulate protected (such as
TTY and disk routines) allowing tThem to be executed by the CPU
{real Time) and not the simulator. |t is often convenient to
simulate protect the entire region of wmemory contazining The
monitor ana/or coperating system since this code s known
functicnal . Keep in mind that code in simulate protected memory
may only be accessed via a subroutine call,

The command used to set protection is PROT. A few examples
will demonstrate its use.

TSC Debug Package

¥*PROT, 10C-3FF, X
X¥PROT,2EQ, W
¥*XPROT, 500-6FF,M, 1200-1FFF, W

The tirst example will execute (X) protect the memory between
locations 3100 and $3FF., The second line write protects (W)
location $2E0C, The last example will memory protect (M)

tocations $500 through $6FF and write protect $1200 +through
$1FFF. There are some general rules to follow when protecting
memory, Memory protection should be wused on alil sections of
memory nrot referenced or wused by the program being debugged,
especialiy the area of memory containing the Debug Package. This
will keep & runaway program from clobbering something it should
not. Sections of memory which are used for register storage or
tlags should be execute protected. Memory containing the actual
program code should be write protected for obvious reasons,
Finally, as mentioned above, the memory locations where the
monitor and/or operating system reside should be simulate

protected,

Once the protection has been defined it may be checked by

us ing the BOUNDS command, This command will allow the
examination of the boundaries of each type of protection. Either
al! types or selected cones may be displayed,

**BOUNDS

¥**¥BOUNDS, W, M
The first example will display all types while +the second will
show cnly the detfined boundaries for write and memory protection.

Memory protection can be cleared in a simitar fashicn,.

*XCLP
*XCLP, X, W

The first command wil!! clear all protection while the second wil
only clear the defined execute and write protected regions.

VYiil, Trapping Those Bugs

The previously described breakpcinting feature al lows
programs to be stopped at specific locations and on specific
conditions. It is often desirable to 'trap' a program on some
general condition such as every time a transfer of address
instruction is encountered, The memory protection described
above is a form of trap in that the program will sfop if 2
protection viclation s detected ({e.g. writing into write

protected memory), There is address information associated with
this protection which makes it different from the general traps
available in the Debug Package. The general traps cause programs
to stop on a general condition which is not address dependent.

TSC Debug Package .

One of these *traps is the illegal opcode trap which is
always enabled. -Any time an i{!legal opcode is encountered during
the course of program simulation, the program will stop and
report its occurrence, A seccnd, always enabled trapg will stop
the program if an RTS instruction is encountered and the current

nest level is 0.

There are several user controtled traps which may be enabled
and disabled at will, The transfer trap is enabled with the XFR

command , When enabled, the progrem will stop each ftime a
transfer of address is encountered. These instructions are JMP,
BRA, and all conditional branches such as BCC. The subroutine

calls and returns are not trapped out,

**XFR=0N

*¥XFR=0FF
These Two commands will enable and disable this trap
respectively, Once a program has stopped because of a “fransfer
trap, typing G will restart it, allowing fthe current transfer to
be executed. This is very useful for gquickly tfollowing the major
flow of a program. Another one of the general fraps allows

halting the program if the subroutine nest counts reaches a
specified level,

*ANEST=20

This will «cause a trap if the nest level ever reaches Z20. To
disable the nest trap, use NEST=(,

The last general trap to be discussed is the ITRAP, This
command gl lows ectivaetion of the interrupt trap and will cause
tne simulating program to step if an interrupt type instruction
is encountered {(Swl!, RTI, and WAIl)., Since these instructions are

not used in the majority of programs it is a good idea to use
this feature. An example will demonstrate its use.
** | TRAP=0ON

*% | TRAP=0FF

These two commands will enable and disabie *the interrupt trag
respectively,

tX. And There is Still More!

There are still many undescribed features of the TS5C Debug
Package. One of these is the handy |ittle CALC command which acts
as a hex caiculator., Typing CALC followed by a return will cause

the debugger tc output an equals sign (=) for 2 prompt, At this
time hex and decimal addition and subtraction may be performed,
To add two numbers simply Type them in separated by a plus sign.
|+ the number is hex precede it with a dollar sign, otherwise tThe
debugger will interpret it as decimal. Use & minus sian for

TSC Debug Package

subtraction. It is also possible to do base conversions, This
can be accomplished by entering just one number after the promp?t
(hex or decimal} followed by & return., All answers are displayed
in both hex and decimal, An example follows,

¥*XCALC
=371A+10
$C024 36
=256
0100 256

After entering the <calculater mode, *the numbers hex 1A andg
decimal 10 were &addec T3 cive the result hex 24 or decima! 36,
The seccnd entry (s a kase conversion of the decimal number 25%,
The result shows itTs hex equivalent is $1C0. The calculator mode
can be left by tTyping & refurn in response to the prompt,

There are still many cther features in the Debug Fackace,
such as interrupt simuletion, which have not been described. s
is not the intention of this tutcorial to teach ail there is to
know atout *he debugger, but To tezch enough *to make the user
feel comfor*able with *the majority of its features. Once The
material in this section is thoroughiy understood, the following
detalled command description should pe studied in depth.,

Now that the basic mechanics of the Debug Package are
understocod they should be put to cood use, Keep in mind thzat 2
logical anc planned epproach should be ‘taken when debugging 2
program, Use +the available *cc!s such &s memory proTecticn ant
breakpcints. When first starting the detug process on a new
program, start 2% the beginning, working your wey through The
flow of the program, LeT the program be the guide., [|f you pay
clcse attenticon, it will detinitely point cut the bugs. Atove
all, have patience, {rea® bugs are not killed overnight!

Y TSC Debug Package

TSC Debug Package

Command Descriptions

5 Introduction

This secticn of the manual contains a detailed description

of each Debug command. Each command is shown with a few
examples. The syntax definitions show opticnal items in sguare
brackets ([]). All command perameters are shown separated by

commas for «clarity in *the syntax definitions and examples. Any
place a commz is shown, a space may alsc be used. The following
definitions agpl!y throughcout this document:

| tem Meaning

<gddress> -4 digit hex value

<vaiue> Gcecimal number (max = 255}
<count> decimal number {(max = £65,000)

The Debug Package is ready tTo accept & command anytime *he

1¥%¥) prompt is present on the line, Wher typing commancs, &
'control RB' will c¢ause a beckspace, and delete the last character
typed. A 'contro! X' will cause the entire line tfo be deleted
and a new prompt of 27! will be output to show the deletion of
the {ine. Any time text is being output to the terminal, display
may be stopped at the end of & line by typing an tescape!
character., Once stopped, another 'escape' will restart the output
while a 'return' will give control back To the debugger anc Tne
tE*! orompt will be cutpuf.

il. General System Contrcl

The general system ccntrol commands allow a veriety of general
actions to be performed. Register examinaticn and changing is
supported by use of the REGC and SET commands, The status cof
several machine <control registers can be obtzined through the
MACH commanc. Commands *+o view The stack conternts, set
simulation speed, reset machine parameters, enter a calculator
mode, examine The 'machine states counter!, and exit the cebugger

are ali described in this section.

ClALC]
PURPOSE:
The calculator mode will be entered and a '=' prompt wil
be printed. The calculator will allow addition or
subtraction of twc numbers, The numbers may be hex
(designated by a '§$' prefix) or decimal, |f two numbers
are typed, they must be separated by a '-' or '+! and The
appropriate result will be displayed, The answer i3

shown in both hex and decimal, It is possible *to enter

TSC Debug Package

only one number (hex or decimal) followed by a return,
The answer will be this number printed in both hex and
decimal, thus allowing base conversions. After each
calculation, a new '=' prompt will be output. To exit

this mode, type a 'return' as a response to the prompt.

EXAMPLES:
CALC Enter calculator mode
=fA+10 Add hex A and 10
14 20 The resuit is printed

DEL{AY]=<value>

PURPCSE : .
This will set the simulation delay (the amount of detlay
after each instructien Is wexecuted) to an amount
proportional to <value>. The higher the number (max =
252) “the longer the delay. A deiay of zero wilft result

in the delay being turned off.

EXAMPLES :
DELAY=100 Set delay to 1G0O
DELAY=D Cisable the delay
DEP[TH!
PURPCSE:
The depth command will print the deepest value of +the
stack pointer {(the lowest memory address at which the
sTeck was extended during program simulation). To
initialize This pointer, it is necessary to set the stzck
pointer using the SET command., The depth value will bhe

set to the same value as the stack pointer, This commanc
ts useful for determining the amount of stack space

required by a program,

EXAMFLES :
DEPTH Print the deepest stack location

EIXIT]

PURPOSE
Exit the debug program. Use this command when finished

with the Debug Package.

EXAMPLES:
EXIT Exit the debugger

TSC Debug Package

FLIAG)[=<address>])

PURPOSE:
The Flag register is a 2 byte word at the specified
memory f{ocation which will be displayed on a REG command
or during tracing, as the 'F' register. The memory
location for the flag will be set +to +the address

specified. If no address is given, the flag register will
be disabled. This is usefui for tracking flags in memory
during program tfracing. See the REG command,

EXAMPLES:
FLAG=1A85 Set flag register to $1A8%
FLAG Disable flag register printout

IND=ON or OFF

PURPOSE:
Used tc enable or disabtle the indirection printout in a
register dump (see REG), If IND is ON, the register dump
will show a register called '"i'" which is the value of the
memory location pointed tc by the index (X) register. |If
this feature s off, the | register will not be
displayed,
EXAMPLES:
IND=0ON Turn indirection on
IND=0FF Turn it off
MAICH]
PURPOSE:
The MACH command will print the current status of the
simulated machine. Values displayed are for mocde (M),
trace (T3, instructicn count “rap (1), nest *trzp (N},
stop address (S), intercupt “trap (IT), “transfer trapo
(xT), IRQ count (IRQ), and NM] count (NMI[). The

descripticon of these appear el!sewhere in this mancal.,

EXAMPLES:
MACH Print the machine status
MO[DE!=1 or O
PURPOSE;
The debugger has two modes of operaticn, mode 0 and mode
1. The system comes up in mode 1. Mode 1 offers all
debug features allowing the simulated program to run
approximately 250 times slower than rezl time. In mode
0, *the program will run approximately 100 times slower
than reat time, but the following features are not
supporved; nest count <checking, all +traps, states
counting, memory protection, past ingtruction

bookkeeping, and automatic interrupfs. Mode 1| should be

T5C Debug Package

used most of the time +to take full advantage of the
debugger.,
EXAMPLES:
MCODE=1 Set mode to 1
MO=0 Set mode to O
RIEG]
PURPOSE:
Print +the contents of the machine registers, All valvues
are shown in hex, Besides the condition codes (C), A, B,
and X registers, program counter (P) and stack pointer
($), the nest level, N, is displayed (shows how dee; in
subroutine calls) as well as two optional registers. One
is enabled by the INGC command and displays the byte of
memory being pointed to by the index register. This is
shown as 'l'" in the REG dump. The second option s
enabled by the FLAG command and will display the selected
two bytes of memory, This is shown as 'F' in the dump,
EXAMPLES:
REG Displtay all registers
R Display all registers also
RESIET]
FURPOSE:
The RESET command is used to reset all machine states,
Atl registers will be set t¢ zero, the stack pcinter wil
be set to $AQ7F, at! breakpocints and memory protection
wiil be <cleared, and *the mode will be set to 1. This
will set up the machine exactly the same as initializing
the debugger upon first entry,
EXAMPLES:
RESET © Reset the machine
RET
PURFCSE:
Print the top two items on the stack. If the syster is
currently in a subroutine, these bytes will represent the
return address from this routine. If the nest level s

currently zero (N=D), the message "NEST LEVEL [|S Q" wil
be displayed,

EXAMPLES:
RET Print the return address

TSC Debug Package

SIET),<register list»

PURPCSE:
The SET command Jis wused +to set or assign values to
registers., The <register [ist> s & Ilist of register
names (C,A,B,X,S,P,N) followed by an wequals sign,
followed by the hex value. Setting the stack peointer
will also set the depth value to the same amount,
EXAMPLES
SET,P=100,A=CZ Set PC toc $100 and A to 3C3
S B8=2C X=1FFF Set B to $20 and X to 31FFF

STACK[,<value>]

PURPOSE:
Print +the contents of +the stack. The number of bytes
specified by <value> will be printed. If <value> is not
specified, the top & bytes will be printed., The stack is
printed from high address to low address, so the top of
stack will be the last item printed.
EXAMPLES:
STACK Print the top 5 stack opytes
STACK, 10 Print the top 10 stack bytes
STATI[ES]
PURPOSE:
Display the current value of tThe stafes counter, T-ic¢
value represents the number of actual machine cycles
(micro seconds on 2 | megahertz computer) which have been
executed since the last START or RESET command, it is
glso possible to set this counter to zero using

breakpcints,

EXAMPLES:
STATES Print the current states count
TRA!L
PURPOSE :
Print +the address of the last executed instruction which
caused & transfer of address (e.,qg. JMP instructior),
This is wuseful when attempting 1o find how 2 prooram

enced up where iT did.

EXAMPLES ;
TRAI|L Print the last transfer address

‘Ts¢C Debug Package

X,<operating system command>

PURPOSE:
The X command is only operational on disk systems (see

Adaptions). It allows tThe execution of any DOS command
from the debugger.

EXAMPLES:
X,CAT, 1 Cataleg drive

[t1., Memory Commancs

The memory commands al low examining and altering the contents of
memory in a variety of weys, The assembler allows simple, direct
insertion of g¢btject code by using standard opcode mnemonics and

addressing mcde designators, The disassembler provides an
opposite type of convenience, in that the contents of memcry may
be displayed as assembler language mnemonics and operands, A

single byte memory examine and change functicn is also available
{the MEM commend). Commands for viewing large blocks of memory,
tinding specific hex or ASCII| strings, and filling a secticn of
memory with a seiected character are all available in This group,

AlSM] [,<adcress>]

PURPOSE:
Enter *he line at a Time assembly mode, Assembly will

start at the address specified or at the location of +the
program counter if no address is specified. No labels
are permitted. All standard Motorcola copcode mnemonics
are accepted (no pseudo ops). When instructions contair
a register specitier, there should be no space between
tThe mr-monic and the specifier (e.g. LDAB, not LDA B},
All stancard addressing modes are accepted. All page
zero references wil|l be assembled as extended addresses,
Three types of constants are permitted, decimzl, hex
{precede the number with 1'$'), angd ASCI| (precece The
ASCII letter with a single aquote (")), The PC is
automatically advanced to +the next location after the
line is assembled. To exit this mode, type a return in
response Yo the address prompt.

EXAMPLES:
ASM, 100 Start assembly at $1CC
100 LDAA #10 Loac A with 10
162 LDAB #"1 Load B with ASCI{I(1
104 BRA $100 Loop forever

106 Exit with return

TSC Debug Package

Cl1S]),<start address>,<stop address>

PURPOSE:
Disassemble memory between the addresses specified, The
address, mnemonic, and addressing mode will be printec
out for each instructicn in the range. tf an illegel
opcede is found, three stars (***) will be displayed

instead of a mnemonic, followed by the hex value found at
that address,

EXAMPLES: .
DI1S, 100, 1A0 Cisassemble from 100 to 1AZ

DUIMP],<address>

PURPOSE:
Dump 25€ byte blocks of memory starting at +the address
specified, The memory is displayed 16 bytes per line,
followed by the ASCI| values of the hex numbers, After
each block is dumped, *yping an 'F' will move Forward andg
display the next 256 bytes, fyping a 'B' will move Back
and display the previous 256 bytes, Typing a 'return!
will exit this mode.

EXAMPLES:

CUMP, ACD Dump memory at $A00

FiLIL},<start address>,<stop address>[,<byte>]

PUEPOSE:
This command will fill memory wifthk +the <byte> (hex)
specified starting at the first acddress, filting “hrough
the second address, lf <byte> is not specified, zero
will be used,
EXAMPLES:
FILL, 100, 300,FF Fill with FF from 100 to 30C
FiLL,C, 100 Clear from G 1o 100

FINID],<start address>,<stop address>,<string>

PURPCSE:
Find the specified string in memory, The search will
start a2t +the <start address> and continue through the
<stcp address>», The address of each location where the
string is found will be displayed, The <string> can be
entered in one of two ways. The first can be a string of
hex digits separated by spaces or commas., The second is
an ASCI| string preceded by a double quote character.
The |imit on string length s the input buffer (72

characters}.,

TSC Debug Package

EXAMPLES:
FIND,O,6C,7E,33,A2 Find the hex value T7E33A2

FING,0Q, 1000,"TEST Find TEST in memory

MIEM],<address>

PURPOSE:
Examine and alter memory. The address specifies the
tirst Jlocation to be examined, Upon entering this
command, the address specified and its contents wiil ©Ge
displayed o¢n a8 new line, At this time, typing any non
hex printing character will move to the nex*t locaticn ancg
display its contents, Typing a 'line feed! will move to
the previcus location, A carriage return wiil exit tThic
mede. To change the contents of a2 location, type the new
hex value immediately following the cne displayed. A++zr
the value, type a space. The new value will be entsrec
and the next memory location will be displayec. [t

should be noted that it is only necessary to tyre the
number of significant digits and only tne last two Cigzits

are used. For example, typing 2 1 would enter 01, *yping

1A2 would enter AZ, etc. |If only a space is “typed (no
number} a zerc will be entered, Any tTime a non-hex
character is typed (besides a space), the next loccaticn
will be displayed, leaving the current locaticn

unchanged.

EXAMPLES:
MEM, 540 Examine memory at $540
M, 200 Examine location §$2C0

v, Simulation Control

This group of commands is used 1o control the program simulater.,
Code in RAM or ROM may be simulated. There are several methccs
ot initiating simulaticn., Programs may be executed with '"*race!’
on or off, While trace is on, each instruction will be displayecd
prior to its execution, atong with the current state of the CPU
(all register contents are displayed). Trace provides a wvery
powerful tocl for following program flcw, Several| keyteard
commands may be invowed during actual! program simulation, These
commands allow The speeding up or siowing down of simutation, as
well as ways to halt the execution of fthe program. The PAST
command is a powerful bookkeeper which keeps track of where your

program has been,

TSC Debug Package

GlO}

PURPOSE:
Start the program executing at the locaticn currently

pcinted to by the program counter, HNo machine values are
altered with this command,

EXAMPLES:
GO Start the simulation at the PC
G Dces the same thing

JIUMP],<address>

PURPOSE:
This command s exactly |ike GO except execution wi. |
begin at the address specified. No machine values 2are
altered with this command, except the program counter
which is set to <address>,

EXAMPLES:
JUMP, 322 Start simulation at $322
J, 80 Start simulation at %$BC

PA[ST]!,<value>]

PURPCSE:
Display the past several instructions executed ¢ty the
simulated program., It <velue> is not specified, the pzst
255 instructions will be printed (olcdesT toc mcst recent),
ctherwise <valus>» sets the number of instructicns to be
displayed, Each instructicn is shown In a disassemtlsd

form, with its address,

EXAMPLES:
PAST Display the past 255 instructicns

PAST, 10 Cisplay the past 10 instructions

SIM[,<count>]

PURPOSE :
Simulate +the number of instructions specified by <ccun™>
with the trace disabled. If the count is not specified,
one instruction will be executed, Executicn stervs at
the current PC, No machine values are altered pricr 7o
simuiation, Trace will be reset to its origineg' vaiue

following SIM's termination,

EXAMPLES:
SIM Simulate one instruction

SIM, 100 Simulate 100 instructions

TSC Debug Package

STIART],<address>

PURPOSE:
Start program simulation at the specified address, The
PC will be set tTo the address specified, the states
counter wiltl be =zeroed, and the nest count will be
cleared,
EXAMPLES:
START, 1000 Start simulation at $1000
ST, 2A Start simulation at $00ZA
STEP[,<count>]
PURPOSE:
Trnis command will cause the debugcer to enter the 'step!
mocde, The <count> specifies tow many instructicons shoulg
be executed at a time in this mode and defaults tc cne
(singfe step). Upcn entering the STeP commanc, the
system will immediately exacute the number cf
instructions specified by <count>, then print a register
dump. The execution will begin at the location pointec
to by the P register (program counter), After the
register dump, “*typing a 'space'! wil!l cause execution cf
the nrext <count> instructicns and produce another
register dump. Typing a ‘'return' will exit the stern
mcde. Any other characTer will be ignored. [t should be
noted that while in the step mode, breakpeint: &nd
tracing are inoperable.
CXAMPLES:
STZP Enter 'single step' moce
STEP, 10 Execute 10 insiructions at a *ime
TIRACE [=<value>
PURPOSE:
Set the trace depth. If value is set to zero, tTrece mode
will be disabled. Setting trace to a non-zero valie wil]|
enable ftracing up to but not including the subroutine
nest level indicated by <value>. For example, if TRACE=2
is entered, tracing will occur at nest level 0 andg 1 Gtet
will be disabled at nest levels of Z and higher. The
nest level is displayed as 'N' in a REGister dump.
EXAMPLES:
TRACE=255 Enable trace at all levels

T=0

Disable trace mode

TSC Debug Package

TSIIM]{,<count>]

FURPCSE:
This command is similar to 5S5IM except trace mode is

enabled (Trace=255) and the registers will be dumped
after each instruction simulated, The count will default
to 1 if not specified,. Trace will be reset to its
criginal value following T3IM's terminaticn.

EXAMPLES:
TS IM ‘ Trace and simulate 1 instruction
TSIM, 20 Trace 20 instructions

'Control C!

PURPOSE:
Anytime a program is belng simuiated, & "contro! C!' will
cause the executicon *to hz!t and the message 'OP HALT AT
XXXX' tc be displayed at the terminal. This means
'Operateor Halt! and the XXXX will be replaced by the
actual address where the program was halted.

tEscape Character!

PURPOSE:
During program tTracing, typing an 'escape'! wil!l cause the
program to pause at the end cof the next displayed tine,

]

!
AT this ftime, typinc another 'escape'! wil! enable the
trace to restart, while fyping a ‘t'return' will return
control bezek to The command entry mode,

'Control F!
PURFCSE:
During proagram simulation, The delay value (see DELAY)
may be dynamically changed. Each time & 'control F' is
typed (only during program simulation) +the delay value
will be decremented by cne, Thus makinag the program run
faster, if The delay is zerc, the ‘'control F!' will ke
ignorec. |t shoulc be noted that for large delays, many
tcontroi F' functicons will need fto be typed 1o ses the
incresse in speed,
'Control St
PURPOSE:
This is similar t¢ the 'control F' key but makes the
simutation run slower, tf the delay is already at its

maximum value, the 'ccntrol S' wiil be ignored.

w
TSC Debug Package

V. Breakpoints

Breakpocints allow the insertion ¢f check points into a program,
A breakpoint always has an address associated with it. The
address specifies where in +the oprogram the breakpoint action
should occur. These actions range from printing the machine
registers to controlling trace mode. Each breakpeoint may also
have a pass ccunter which determines the amount cof Time until i+t
becomes active, or the amount of time it should remain active,.
The actions are also dependent on the result of a conditional
expressieon involving a CPU register or memory location,
Breakpoints are decoded with +th following precedence, I the
address of the current PC matches the adcress of a breakpoint,
then the pass count is checked. If the counter is in a state tfo
altow continuing, then tThe condition is checked (if present).
Finally +the actions specified for the breakpcint are performed.
The other commands in this group allow ciearing breakpoints
(remcving them}, printing histogram counter wvafues, print
breakpoint location and type, and clear histogram counters,

B,<actions>@<address>[,<modifier><count>] [, !F<condition>]

or
Bé<address>[,<modifier><count>][, |F<ccndition>]

PURPOSE:
The B command is wused 1To set breakpoints. These
breakpoints are nondestructive in that they do not aflter
the contents of memory at the breaxpoint locatior, Twe
forms of the commend exist, The first s +the general
form ¢t the commarc and el lows user definabtle breakpoint

actions, The <actions> may be any one or comtination &f
The following:

F.eoPrint register corntents

Z...2ero the states counter

T...Trace moce on

U...Trace mode off {untrace)

H...Histogram counter

M...Print message

J...Jump To new acddress

S...Stcp simulation
The above actions are executed in the c<crder shown, A
histogram action causes z counTer tc be seT up such that
each time the instruction at the accdress specified is
executed, tThe counfter will be incremented by one. By
later reguesting a HiSTegram, all of The counters ang
their asscciated «counts will be displeayed. The seccnc
form of the B command is a special case of The first., In
this fcrm, nc actions are specified, and they default to
S and R (just as if S and R were used in form one), The

<count> part of the syntax is optional and acts ac a pass
counter, The <modifier> shown in the command cescription
represents either a '>', used to mean ‘'after', and '<' ‘o

TSC Debug Package

represent 'before', A count preceded by '>' will cause
the breakpoint defined on the line te remain inactive
until <count> number of times through that address, A
count preceded by '<' will cause the breakpoint defined
to be active for only the <count> number of times through
that address, at which time it will be automatically
remcved, The <count> in either case must noct exceed

22,000. The next part of the syntax is the optional
<conditional>. This allows the breakpoint action 1o be
dependent on some condition., The condition can be the
contents of ény machine register being equal or not eqguszl
to & hex wvalue ('=!' and '!=' respectively}, or the
contents of a specified memory locaticn being zero or not
Z2ero, if & register is used, simply s*tate the recister
name, followed bty the relational, feollowed by tTre thex
value (e,g. A=23, or BI=E2). To use & memory locetion,
a dollar sign '$' must precede the accdress. For example,
$100=0 would <c¢heck if the byte at location hex 100 was
zero, and $A20!=0 would check if the byte at location hex
AZ0 was not zero, If a memory address is specifieg, the
only 2l lowed value fo the right of +the refational is
zero, and {f any other value is used, it will be icncred,
NOTE: The conditicnal part of the breakpoint defirition
may not be used with H,M, or J action codes, Twe of The
breaxpcint actions require special syntax., These are the
M (message) and J (jump)} *types, The M action is used *to
print a specified messagce *to The terminal upon executicn
of +the brezkpcint, The J action is used to trarnsfer
control tTo ancther address (like & JMP instructicn). Aoy
breakpoint containing M mey not contain J and vice versa,
A breazkpoint containing M should have an ASCI!I siring
following the <count> (or following the acdress if nc
count is specified).. This string is the message which
will be printed cn the tTerminal each time the instructic-
is tc be executed, Messages shoutd be kept short (under
5 letters if possibie). For the J type action, *The hex
address of the location of transfer should be proevides
after the <count> field. The examples below will help
clarify the syntax.

EXAMPLES:

B@ G0 Stop and print registers at $100

B,SR@10C0C Same as above

8,H2A100 Set histogram at $A100

B,ZRE300 >100 Zero states and print registers
after 100 *times through $300

B8200,1F A=3C Stcp & print registers at $200
only if acc. A = $3C

B,ME210,5UB 1 Print message 'SUB 1' every Time

through tocation $210

- continued -

TSC Debug Package

B,J21.2,1000 Transfer contrel to location $1000
when reach instruction at $100
B,T2@400,<25,F $20=0
For the first 25 times through
location 3400, turn *race on and
zero the states counter, but conly
it location $20 is zero.

BP[,<address>|-<address>]]

PURPOSE:
The BP command is wused To print the loccation of

breakpoints ang their associated action codes, The two
address specifications are usec toc define the recion of
memory for checking breakpoints (beginning arc ending,

respectively). If no addresses area specified, at!
breazkpoints will be listed, t¥f only one address is
giver, then only the breakpoint at that adcdress will =e

displayed (if one exists). Only the zction codes are
listed with each acddress,

EXAMPLES:
BF, 16-C00 List breakpcints between $10 & 500G
BrP List all breakpoints

CLB[,<address>(~<address> ||

PURPOSE:
Clear breakpoints in specifiec memory region, The
accresses define *he region of memory. ¥ orntfyv orne
acdress is listed +then «c¢nly the breakpoint at +hat
location wi!l be cleared, |f no addresses are scecitiern,
all breakpoints will be clezred,
EXAMELES
cLa Clezr all breakpcints
CLB,C-1C0 Clear breakpoints betwsen &0 & $100
CLB, 224 Cl. =~ breekpcint at £22-

CLH{,<acdress>{-<adcress>]]

PURPOSE :
Clear histogram counters in the specified memory region.,

The adcdresses define the region of memory, |If onrly ane
acdress is listed then only the histogram counter at that
location wit! be cleared. If no addresses are specifiec,
ail counters will be cdeclared., NCTE: This commarc deec

[

not remove the histogram breakpoints, but clears it
associated counter To zero in preparation for a new run.

TSC Debug Package

EXAMPLES:

CLH Clear all histogram counters
CLH,25~200 Clear counters between $25 & 3200
CLM
PURFOSE:

Clear all messages in the breazkpoint message table (used
by the M action code, see the B command). This table s
a fixed size and can be filled up., When deleting message
Type breakpcints using the CLB command, the assocciated
space in the message table does not get freed. [T 1s
recommended that whenever al!l M +type breakpoints have
been <c¢leared, also use the CLM command., Do nct use this
command if there are any active M type breakpcints,

Their message strings will be cestroyecd!
EXAMPLES:
CLM Ctear all messages

HIIST}[,<address>|-<address>]) |

PURPOSE :
Print the histogram counter fotals for +the sectizr of
memcry specified. The addresses define the recion o*
memory., |f only one address is listed then <crnly *re
counter at that location is displayed., |If noc addresses
are specitfied, ali counter cortents will be dispiayer.
tach counter s shown preceded by its address, Tre
counter value shows the number of times the instric-ioan

at that address has been executed.

EXAMPLES .
HIST Disptay all histogram courters
H,0-200 Display counters between O & 22CQ

RT[,<address>]

PURPOSE:
Start real time prcagram executicn (not simulatesd) a~ *t=
current PC location, Program executicn will halt - tne
<address> specified, This is similar to the sTarca-d

breakpoint most users are famiiiar with in that memory is
actually altered at the address specified (with 2 JMF
instruction), Erntering RT without an address wili ciear
any real time breakpoint which may have been previcusly
entered, This Type of breakpoint and program executicn is
not recommended since no protection or checking s
performecd, When the program reaches the breek adcress
specified, the breaxkpoint s automatically ctleared ang
the original code restored in memory, ROM may nrot te
breakpcinted with this command.

TSC Debug Package

EXAMPLES:
RT,600 Start at PC, end at %600
RT Clear an existing RT breakpoint

¥l. Memory Protection

The memory protection commands are a very powerful feature of the
program debugger. The PROT command allows selected areas of
memory to be write, execute, memory, or simulate protected.
Write oprotected memory will cause a trap on any attempt to wrife
to it. Execute protect wiil nct allow opcecdes to be fetched.
Memory protect will not permit any type of reference; reac,
write, or execute, Simulate protect is used to protect sections
of code which should not be simulated (executed in rea! Time).
It is important that only code called as a subroutine from
non-simulate protected memory be contained in the area(s) of
memory designated as simulate protected., An example would be To
simulate protect the secticon of memory where a DOS resides. All

subroutine czl!s *to the DOS would then be executed in rezl time.
Code which is simulate protectec and does not follow this
convention will usually cause the CFPU to tzke over the execution

of the program resulting in a loss of centrol. NOTE: To protect
the memory around the machine stack (upper anc lower bounds), use
the 'memory'! protection. This is the only type checked on sTack
references. Other commands in *his groug allow examination of
protected memcry regions or bounds, as well as the clear ing of
protection types.

BOIUNGS I ,<types>]

FURPOSE: :
Display the bounds of protectec memory. £E£ach <*yped
specified will Iist all regions of memory protected by
that type. <type> may be W, M, X, or 5 focr wrife,
memory, execute, and simulate, respectively. Multicle
types may be displayed by iisting *The fypes on The
command line separate¢ by a comma or space. I(f no ‘ty:re
is specified, all types of protecticon will be listed,

EXAMPLES:

BOUNDS Display all memory protection
BO,M, X Display memory and execute

prctection bounds

TSC Debug Package

CLPl,<type>]

PURPOSE::
Clear all protected regions for a specified type of
prctfection, The <type> is specified by the same letters
described in BOUNDS. Only one type may be Ilisted per
command line, If type is not specified, all protection
will be cleared.
EXAMPLES:
CLP Clear all protection
CLP, X Clear execute protection

PIROT],<address>[-<address>],<type>

PURPOSE:
The PROT command is used to assign protection to a regicn
of memory. The two <address> specifiers designate the

beginning and ending addresses of the selected regicn,
!f only cne address is specified, only the byte at that

location will be protected. The <type> disignator may
either be M, X, W, or S for memory, execute, write, and
simulate protection respectively, Only one type may

appear with each address range. Multiple protection may
be performed on one line by separating the range-type
specifiers by a comma or a space.

EXAMPLES
PROT,0-100,M Memory prot 0-3100
P, 100,W,A100-A600,5S
Write prot $100 and simulate
protect 3$A100-A60C

VIT. Execution Traps

Execution traps allow program stopping on certain gereral
conditions., Several traps are always enabled., These incluce;
trap on iflegal epccde and trap ¢n RTS if nest count=0. The ucer
may enable and disable several other traps. These fraps are for
interrupt Type instructions, transfer ot address tyroe
instructions, *trap on a seiected subroutine depth (nest count),
an instryction ccunt *timeout, and a general 'stop! address,

INST=<count>

PURPOSE :
Set the instruction count timer to the value of count.
It set to zero, this frap will be disabled, This timer

is wused Tfo count the number of simulated instructiors.
Each time this counter reaches zero, the oprogram will
haltt and print 'IC TIMEOUT AT XXXX!', where XXXX is the
address where the program stopped, and the counter will

%
TSC Debug Package

ke reset to the vaiue it started at (the value specified
by <count>).

EXAMPLES:
INST=400 Set counter to 400
tNST=0 Disab!e the intruction counter

ITIRAP]=0OK or OFF

PURPOSE:
Turning the ITRAP on wil! cause the simulator *o ‘trea?
interrupt type instructions similar to illegal opcodes.
Any time a RT!, SWIl, or WAl insfruction is found, the
message 'I TRAP AT XXXX' will be displayed, The address
of the instructicon will be printed in place ¢f the XXXX
shown.
EXAMPLES:
| TRAP=0ON Enable the interrupt trap
| T=0FF Turn off the trap

NIESTI=<value>

PURPCSE :
Set the nest trap at the level specified by <value>. Tre
simulator will +frazp execution if a subrcocutine call
instruction is found which will cause the nest level fo
equal or exceed That set by NEST. Setting the <value> %o
zerc wiltl disable this tfrap,
ExaMPLES:
NEST=6 Set nest trap tc level 6
N=0 Disable nest trap 5

STOP=<address>

BURPDSE:
The STOF trap is a general 'stop at address X' tfrap, I+
is useful for trapping returns to monitor type programs
or operating systems. The +trap is set at the address

specitied.

EXAMPLES:
STOP=100 Set stop trap at $100
STOP=E£GDO Set trap at MIKBUG entry

TSC Debug Package

XFR=0N or OFF

PURPQOSE:
Enabling the XFR trap will cause a trap each time =
transfer of address type instruction is found (JMP, BRA,
or BXX). This is wuseful for following major program
flow, Typing a 'G' command after this trap will cause the

program to start executing again,

EXAMPLES:
XFR=0ON Enable the transfer trap
XFR=0FF Turn tThe trap off
Vill. Interrupt Control

re

Both NMT and IRQ type interrupts may be simulated., Two modes ¢

operation are possible, The first is automatic, pericdic
interrugt generation, This mode allows interrupts +to be
generated every N instructions, The seccnd allows ranco~
interrupt generation from the keyboard, When these keys zre
typed during program simufation, the appropriate interrupt !

be issued.

IRQ=<count>

PURPOSE:
Cause zn IRQ type interrupt tc be generated every <cour<>
instructions, |¥ <ccunt Jis set fo zero, IR(interrup=s
will be shut off,
EXAMFLES : .
IRQ=5C00 Generate |IRQ every 5000 instructicrs
IRC=0 Turn off automatic [RCs

NM | =<count>

PURPQOSE:
Cause an NM| type interrupt to be generated every <count>
instructions, | f <count> is zero, automatic NM|
intferrupts will be turned off,
EXAMPLES:
NMI=3200 Generate NM! every 3C0 instructions

NM 1 =0 Turn off avtomatic NMIis

TSC Debug Package

'Control !
PURPOSE :
Typing a 'control ' during
an IR type interrupt to be
'Control N!
PURPOSE:
Typing a 'contro! N' during

an NM} type interrupt tTo te

program simulation will
generated.

program simulation wil]l
generated.

cause

cause

Command Summary

i. General System Control

ClALC]
DELIAY])=<value>
DEPITH)

EIXIT)
FILAG]i=<address>]
I ND=ON or CFF
MAICH]

MOIDE]=C or 1
RIEG]

RESIET)

RET
S[ET],<register |ist>
STACK{ ,<value>]
STATIES]

TRAIL

X,<0., s, commanc>

l'l. Memcry Commands

A[SM][,<acdress>]

ClIS],<start address>,<stop acdress>
DU[MP],<address>

FILIL),<start adcdress>,<stop address>[,<byte>]
FIN[T),<start address>,<stcp address>,<string>
M[ZM],<address> .

P1l., Simutation Control

GIO]
JIUMP],<acdcress>
PALST]I[,<value>]
SIM[,<count>]
STIART],<address>
STEP{ ,<count>]
T{RACE!=<value>
TSUIM][,<count>]

TSC Debug Package

b]
TSC Debug Package

1V, Breakpoints

B,<action>@<address>|,<mcdifier><count>|{,F<conditicon>]
Be<address>|,<modifier><count>j],|F<ceondition>]
BFl,<address>[-<address>]|

CLBI[,<caddress>|-<address> ||

CLH[,<address>[-<address>|]

CLM

H{IST)!{,<address>|-<address>]|

RTl,<address>]

V., Memoc-y Frotectior

BOIOQUNDS [,<types>|
CLP!,<type>}
P[ROT],<address>{-<address>],<tyce>

VIi. fxecuticn Trars

INST=<count>

| T{RAF]=0ON or OFF
NIEST]=<valve>
STOP=<az24dress>
XFR=0W or CFF

VIil., interrugst Control

IRC=<coun~>
NMI=<conr t>

TSC Debug Package

Message Descriptions

The following is a list of all Debug generatec messages anc
their respective meanings.,

WHAT? = This is the general error message reported when an
invalid input command has been entered,

"WSTOP" AT = The address set by the STOP +trap command has been
reached. '

IC TIMEQUT AT = The number of instructions specified by the INST
trap command have been executed,

[LLEGAL OPCODE AT = The instruction pointed fo by the PC is an
illegal opcode.

| TRAP AT = An SWIl, RTI, or WAl insfruction has been encounterec
and the |TRAP command has been used to enable the interrupt

trap.,
LAST XFR FROM = Dispiayed by reguest using the TRAIL command,
The address gives the lccation of the last +ransfer of

address type instruction which was executecd,

SYNTAX ERROR = The command just entered dces not follow The
syntax rules for that ccmmand.

EP TRAP AT = An Execution Protect trap at the specified location
resuiting from an attempt fo execute cocde in execuTe

protected memory,

WP TRAP AT = A Write Protect trap at the specified locaticn
resulting from an attempt to write info write protectec
memory .,

EX - MP TRAP AT = An attempt To execute code residing in memory
protected memory has been detected at the specified address,

REF - MF TRAP AT = An attempt to reference (read or write) a byte
in memory protected memory has been detected at tre

specified address,

SP TRAP AT = A Stack Pointer reference {PSH, JSR, etc.) wzs
attempted in a secticn of memory which is memory protfectec.

TABLE OVERFLOW = The {ast command entered caused an internal
table tc overflow. The command dis not get executed.

NC TRAP AT = A Nest Count trap occurred as a result of the nest
‘level reaching the leve! specified in a NEST coemmand,

TSC Debug Package

RTS IN LEVEL O AT = An RTS instruction was encountered while the
nest level was 0 (no previcus call to subroutine had been

executed).

NEST LEVEL 1S 0 = There is no return address on the stack s¢ the
RET command can nct display an address,

XFR TRAP AT = A transfer of address +type irstruction has been
encounterd with the transfer trap enabled {(from XFR=0ON),

MON XFR AT The program being simulated tried to pass control to
the monitor adcress which is used by the EXIT command.

OF HALT AT = An operztor halt signa! (cecntroi C character) was
detected by tre sirmuleter,

v TSC Debug Package

Getting Debug Running

The Debug Package Ilcads from address $3C00 through $5FFF,
The tape should be loaded into memory using your monitor system's
load routine, Once loaded, the program to be debugged should be
lcaded. [+ is important that the two programs do not overlap in
memory, If they do, <consult +the section of this manua! on
releccating the debugger. After all code is resident fin memory,
start the Debug Package at loccation 34100, the cold start entry
point. A '¥1 prompt <should appear. The <coild start entry
initializes all system tabies, clears all registers, and clears
out breakpoints., |f it is necessary *to re-enter the debugger
after an E£EXIT command, the program should be entered at location
$£4103, the warm start entry point, No «clearing of wvalues or
tabies is performed at this entry,

TSC Debug Package

TSC Debug Package

Example Use

The following is an example debug session. |t is assumed
that the Debug Package is running and the program being tested is
resident in memory., The sample program is shown first in its

source listing form, Following is the sample debug operation.

. Sample Program Scurce Listing

*

* FIND THE MAX & MIN OF DATA LIST

*

0100 ORG $0100
* STORAGE LOCATIONS

0100 LARGE RMB 1 LARGEST VALUE
0101 SMALL RMB 1 SMALLEST VALUE
0200 ORG £0200

* PROGRAM STARTS HERE

0200 CE 02 26 MINMAX LDX #DATA PGINT TO DATA STRING

0203 7F 01 00 CLR LARGE PRESET MAX

020 86 FF LDA A #SFF ALSO

0208 B7 01 01 STA A SMALL PRESET MINIMUM

0208 A6 00 LOOP LDA A 0,X GET DATA ITEM

020D B1 01 00 CMP A LARGE ITEM > LARGE ?

0210 24 03 BCC CONTZ

0212 87 01 00 STA A LARGE UPDATE LARGE

0215 B1 Ol 01 CONT2 CMP A SMALL ITEM < SMALL ?

0212 24 03 BCC CONT3

021A B7 01 00 STA A LARGE UPDATE SMALL

021D 08 CONT3 INX MOVE TO NEXT ITEM

021E 8C 02 2E CPX #DATEND END OF LIST?

0221 26 E8 BNE LOOP IF NOT, REPEAT

0223 75 EO DO JMP MON RETURN TO MONITOR
* DATA LIST

0226 02 DATA FCB 2,54,76,32,12,87,55,6

022E DATEND EQU *

EODO MON EQU $ECDO MONITOR EQUATE

END

TSC Debug Package

Sample Debug Session

**D15,200,223

0200 LDX #3%0226

0203 CLR 30100

0206 LDA A ESFF

0208 STA A sSC101

020B LDA A 0,X

020D CMP A $0100

0210 BCC %0215

0212 STA A $0100

0215 CMP A SO1I01

0218 BCC $C21D

021A STA A 20100

0210 IKX

021E CPX #S022E

0221 BNE %0208 .
0223 J¥P SEODO .

**PROT, 200,225 W

**BOUNDS,W

DisAssEMBLE MAcHIWE Codb Fho

Bilon 70 2232 SEE 7im& Soulc b

Al DT AL -

WEITE oTéer THE Flos A

FoK CemMPARL ISOA,

AREL

DisoLay THE POrTEeTIoN Boasls

wrITE PROTECTICN

(200-0225

**R

{=C00 A=00 B=C0 X=000C S=AQ07F P=0000 N=00 0000 ADC A $BOB¢

DisPuAY THE REG <2

(LACSE < SnAce.)

o BEcoLT

J—

F=06FF

F=06FF
F=COFF
F=00FF
F=00FF
F=00FF
F=00FF
F=00FF
F=00FF
F=00FF
F=02FF

**START, 200 Svelr 2icezim A7 Az o

MO XFR AT ECDC = fiew .70k #Camziid 704 .
*% 100 .

2100 06 Eeamiind dico & #icy

0101 FF — RESILT 15 AT Rl LT
Tt PR ser o § ixpons gbcsrecs
C=C5 £=06 B=00 X=022E S=AQ7F P=02C0 N=00 0200 LDX
FrIRD=0h SET IND é FLAl,

**ELAG=100

**R

C=C5 A=0& B=00 X=022E S=A07F P=0200 N=00 =89
**TSIM, 10 TEACE 16 TWITRICTIONS
L=Cl A=0¢ B=00 X=0226 S5=AC7F P=0203 N=00 1=02
C=C4 A=06 B=00 X=0226 S=AQ7F P=0206 N=00 I=0?
C=CE A=FF B=00 X=0226 S=AQ7F P=0208 N=00 I=02
C=C8 A=FF B=00 X=0226 S=AQ7F P=02CB N=0C [=02
C=C0 A=02 B=00 X=0226 S=AQ7F P=0200 N=00 1=02
C=C0 A=02 B=00 X=0226 S=A0Q7F P=0210 N=00 I=02
C=C0O A=02 B=0C X=0226 S=AQ7F P=0215 N=00 I=02
C=C1 A=02 B=00 X=0226 S=AQ7F P=0218 N=00 [=02
€=C1 A=02 B=00 X=0226 S=AQ7F P=021A N=00 1=02
C=C1 A=02 B=00 X=0226 S=AQ7F P=021D N=00 1=02
**3p2l8

**Bp

A

~

-~

\%7\5f'8ﬁﬂm%MN‘»T'32/8

—

#50226

0200

0203
0206
0208
(208
020D
0210
0218
0218
021A
021D

LDX.

CLR
LDA
STA
LDA
CMP
BCC
CMP
BCC
STA
INX

#3022¢

$0100
#SFF
%0101
0,X
$0100
0215
A $0101
$021D
A $0100

I I > X

**G

**TSIM

—~ TRACE ¢

(AMSTR I Tront,

START PROCRAM AT Pl

HiT BEEAKPOINT
L=C1 A=36 B=00 X=0227 S=A0Q07F P=0218 N=00 I=36 F=02FF (0218 BCC

TSC Debug Package

$021D

C=C1 A=36 B=00 X=0227 S=A07F P=021A N=00 I=36 F=02FF O021A STA A 30100
e ———

**ASM 21A

0Z21A STAA $101

u21D
**CLB

**START 200

Use As 7o £1x 1

CLEAR ALl BEEAK AoyiyTs .

MON XFR AT EODO

Ko PLréRAM ALhHin

Shevid bhe 3744 #uJI(

i85 STrLe (LR AE

R

[=02
[=02
=02
1=02
I=02
[=02
1=02
[=02
1=02
I=02
1=36
[=36
[=36
I=36
I=36
I=36
I=36
[=36

F=0002
F=0002
F=0002
F=00FF
F=00FF
F=00FF
F=00FF
F=00FF
F=00FF
F=0002
F=0002
F=0002
F=0002
F=0002
F=0002
F=0002
F=0002
F=0002

**M 100
uloo 00 . ExAminit JARLE & SMALL
0101 02 Smibir o5 o | LALLE
**.Sr'[?ﬁg%,ggo Ev8ALE TCAcE To YO #
C=C0 A=06 B=00 X=0226 S=AQ7F P=0203 N=00
C=C4 A=06 B=00 X=0226 S=AQ7F P=0206 N=00
C=C8 A=FF 8=00 X=0226 S=A07F P=0208 N=00
C=C8 A=FF B=00 X=0226 S=A07F P=020B N=00
C=C0 A=02 B=00 X=0226 S=AQ7F P=020D N=00
C=CC A=02 B=00 X=0226 S=AQ7F P=0210 N=00
C=C0 A=02 8=00 X=0226 S=AQ7F P=0215 N=00
C=C1 A=02 B=00 X=0226 S=AQ7F P=0218 N=00
C=C1 A=02 B=00 X=0226 S=A07F P=021A N=00
C=Cl A=02 B=00 X=0226 S=AQ7f P=021D N=00
C=C1 A=02 B8=00 X=0227 S=A07F P=021F N=00
C=C1 A=02 B=00 X=0227 $=AQ7F P=0221 N=00
C=C1 A=02 B=00 X=0227 $=AQ7F P=020B N=00
C=C1 A=36 B=00 X=0227 S=AQ7F P=020D N=00
C=C0 A=36 B=00 X=0227 S=A07F P=0210 N=00
C=C0 A=36 B=00 X=0227 S=A07F P=0215 N=00
C=C0O A=36 B=00 X=0227 S=A07F P=0218 N=00
C=C0 A=36 B=00 X=0227 S=AQ7F P=021D N=00

OP HALT AT 021D

**DIS 20B 210

0208 LDA A 0,X
0200 CMP A $0100
$0215

0210 BCC
**ASM 210

U210 BLS $215

u2lz
®*T=()
=*START 200

UsE ASM 7o (CoEPEeT codf

0203
0206
0208
0208
020D
0210
0215
0218
021A
021D
021E
0221
0208
0200
0210
0215
0218
021D

CLR
LDA
STA
LDA
CMP
BCC
CMP
BCC
STA
INX
CPX
BNE
LDA
CMP
BCC
CMP
BCC
INX

= — e = 4

I

bR o]

$0100
#SFF

$0101
0, X

$0100
$0215
$0101
$021D
30101

#$022€
$0208
0, X
$0100
$0215§

30101
20210

SHOULD NOT HAVE BRAKHED

A//ﬂff—“‘“'—jhmuj CE Eksfr/ufﬂ&k:WOLJ/

Ser TeAck 70 @ Lott) md By Proc s,

MON XFR AT EODO

** 100
0100 57 .
0101 €2

AUSELs ALE Aloew CORREC T ./

L]
T5C Debug Package

::g Hgggg DOFILE THE PEICCAN (orTHd MisTondd M
e BOEAK PoindTs A7 8200, 202, 216 £2/D
**B HEA21D
**Bp
p200 - LISPAY ALl BeLAKAmITS
0208 -
0215 -
0210 -

I T XX

*+START 200 Lo TROELAM — 'siacr | cilile

MON XFR AT EQDO
wxH1ST THE STATES Coonih B,

V200 -
0208 -
0215 -
0210 -

HISTOCKRAM Plimioo

oo O

**STATES
STATES = 00000300 FEOCRRBN RECUVEED S00 Aifde il EFcr e

**DIS 200 223

0200 LDX #3%0226
0203 CLR $0100

0206 LDA A #5FF

0208 STA A %0101

0208 LDA A O,X

02CD CMP A $C10C0 :

0210 BLS %0215 D/ SEM il Friddl L0628 4047 .
0212 STA A %0100

0215 CMP A S0101

0218 BCC $021D

C21A STA A $0101

021D INX

021E CPX #%022E
0221 BNE $020B

0223 JMP~ $EODO

**EXTT EXiT TE DERWGEF,
$

v TSC Debug Package
Adapting to Your System

The following descriptions may prove helpful in adapting
this program to non-standard systems. All 1/0 and stack
references are described below,

!. /0 References

GETCHR at $4106. This jump vector references the standard input
character rcutine in the SWTBUG monitor ROM. Any input routine
may be used as long as it returns the ASCI| character in the A
accumulatecr with the parity removed, and preserves the 8 and X

registers,

PUTCHR at $4109. This jump vector references the standard output
character routine in the SWTBUG monitor RCM, Any output routine
may be used as long as it outputs the character from the A

accumulator, and preserves the B and X registers,

WARMS 2t 3$410C. This jump vector references the starting entry
address of *the SWTBUG monitor ROM., This may be <changed to the
starting address of your own monitor, This is the address used
by the EXIT command.,

1. 1/0 Relzated Storage

ACIA at :410F, This FDB feormed address is a pointer to the ACIA
base agdress used by the basic .input and cutput routines, Change
@s needed, NOTE: The Debug Package requires an ACIA type serizal
interface %o functicn correctly.

BSP at 34111, This byte contains the character which s decoded
@s the backspace character (currently a Control H, $08). Change

as desired,

DEL 2T %4112, This byte contains the character which is decoded
as the line cancel c¢haracter (currently a Control X, $18).
Change as desired,

BSE at 34113, This byte contains the <character which will be
echoed after the receipt of a backspace character (current!y a
Control H, 308), |If this character is set to $08, a space will
be output prececing the backspace echo character, Setting this
byte fo zero witl inhibit the backspace echo character,

ESC at 14114, This byte contains the character which is decoded
as the Escape character (currently an ASC!| Escape, $1B). This
may be changed as desired,

T5C Debug Package

f1t, Stack Pcinter References

Load S*ack at $4118 and $4195. These two locations contain LDS
instructions and set the stack to $3FFF, They may be changed as
desired,

Vv, The X Command

The X command calls a section of code at ilocation $5589. This is
implemented for the FLEX disk cperating system and cails FLEX +to
perform a specified command, If you are wusing a different
operating system, you may substitute ycur own code to perfcrm the
equivalent, The code may reside from $558%9 through %5522,

Y. System Tables

The Debug Package wuses several system tables which reside from
$3C00 to $3F9F. They are named and sized as folicws;

BPTAB RME 256 Allocws 32 breakpeints

STRTPC RMB 512 " 256 past instructions
SMTAS RMEB 22 " 8 sim prot fields
EXTAE RMB 32 " B ex prot fieics
WPTABE RME 32 " 2 write prot fields
MTAE RMB 27 " 8 rmem prot fields
MSCTAB RNMZ 22 " zzprox ° messages

These tatles may be moved anc expancec To allow more breskpocints
and protection fields as desired. Complete details wil!ll not be
given here, as this is & jJob for the more experienced programmer.

V. Saving the Altered Program

After modifications have been mace to the ©progrem, it may bLe
saved on mass stcorage, The prooram should be savec from $410C
+hrough $5FFF. The starting or transfer accress is $£100,

TSC Debug Package

Relocating the Debug Package

The Debug Package may be relocated in memory by wusing the
TSC 6800 Relocator (part number SL68-28)., The Debug Package as
scld resides from $3C00 to $5FFF. |t may be moved easily to any
lower memory location and to any locaticn higher than $5C00. The
example below shows relocation to $5C00 which moves tThe cold
start entry address ftc 36100 (from $£4100), The relocated version
will reside from 15C00 fo $7FFF, If it is necessary to move the
program Yo an area between $3C00 and 3$5C00C, two reilocations must
be pertformed, one moving it to a lower location, and then up *to
The cdesired positicn, This is necessary because of program
overlap. NOTE: The Debug Package must =always start on a page
boundery.

Relocation Example

* TSC 6800 RELOCATOR *

PRESENT PROGRAM:

EEGIN ADDRESS? 4100
END AUDRESS? 5FFF

MCVE T07 510C

FIX REFERENCES? ¥

LCAD FROM TAPE? N

DATA ELOCKE? Y

BEGIN ADDRESS? 410F
END ACDRESS? 411A

BEG !N ALDRESST 57Af
) ALDIURESST? SFFF
BEGIN ACDRESS? FFFF
ALTER FANGZ? Y
BEGIN ADDRESE? 3BOO
NG ALDZRCSS? S5FFF
FIX FODB'S? Y '
ATDRESS? 57AC
ADDRESS? 57BO
" 5789
. S78E
" 5765
" S7CR
" 57D1
" 5707
" 270D
" 57E3
" 57EB
" 57?3
g STFA
" 5801
" 808
" 580F

TSC Debug Package

" 58iB
" 5822
" 5828
" 582F
g 5835
i 583D
" 5844
" 5R4A
" 5851
" 5858
" S585F
f 5865
" 586C
2 5873
i’ 5879
" 5881
" SlESN]
" 588C
U 5892
" 5868
" 58A0
" 58A8
" S8B1
" 5888
" S8BF
" 58C7
" 58CF
" S80€
" SEDA
" 58EQ
11 LRz

S

' 38tD

on oMM
mom
— M

NORRTORRVARES sBEN AN S RS sHNCSNER NI o}

—~ D00 OO MM M T TN
N1 — O W WAl — T D ~J R n

WO 0

AN AN ANIAARD AN AU AN AN AN AT AR AN AR

LY

0

\

" RCRRS
" 5910
ODRESS? 592
ADDRESS? FFFF

RELDCAT!CH COMPLETE I!!

