FLEX USER'S RANUAL

Copyright® 1978 by
Technical Systems Consultants, Inc.
P. O. Box 2574
West Lafayette, Indiana 47906
All Rights Reserved

COPYRIGHT NOTICE

This entire manual and documentation and the supplied software is provided for personal use and
enjoyment by the purchaser. The entire contents have been copyrighted by Technical Systems Con-
sultants, Inc., and reproduction by any means is prohibited. Use of this manual, or any part thereof,
for any purpose other than single end use is strictly prohibited.

IMPORTANT NOTE

Although every effort has been made to make the supplied software and its documentation as
accurate and functional as possible. Southwest Technical Products Corporation and Technical
Systems Consultants assumes no responsiblity for any damages incurred or generated by such
material. Southwest Technical Products Corporation and Technical Systems Consultants also
reserve the right to make changes in such material at anytime.

PREFACE

The purpose of this User’s Guide is to provide the user of the FLEX Operating System with the in-
formation required to make effective use of the available system commands and utilities. The user
should keep this manual close at hand while becoming familiar with the system. It is organized to
make it convenient as a quick reference guide, as well as a thorough reference manual.

DMAF1

Notice to FLEX Users

After reading the User’s Guide but before experimenting with the FLEX operating system, it is a
good idea to follow the steps given below to make a duplicate diskette in case you accidentally
‘ enter a command which would erase the supplied system diskette.

1.)

2.)

3.)

4.)

5.

7.)

8.)

9.)

10.)

Power up the computer system and disk system. Be sure that all memory is good and be
sure that you have memory installed from hex @000 - 2FFF (12K) and from hex AQQQ -
BEFE:

If possible write protect your supplied diskette by removing the small piece of tape that
covers the small rectangular hole on the edge of the diskette. Some diskettes do not have
this notch and can not be write protected.

WRITE PROTECT
NOTCH

Install the supplied system diskette in drive @ (the Iéft hand drive) as described in the disk
manual and close the door.

Install a blank diskette in drive #1 and close the door. The write protect notch on this
diskette (if it has one) should be covered.

Boot up the FDOS system as described in the manual by either entering the boot by hand

or by typing D depending on your monitor. The D command on the SWTBUG® monitor
will not boot a DMAF 1 system.

The system should respond with FLEX and ask for the current date. Enter the date such
as 5, 4, 78. If the system will not respond, try to boot again as described in the manual. If
after several trys the system cannot be booted, the system diskette should be removed
and all hardware checked.

When the system is booted, type NEWDISK 1 followed by a carriage return. Follow the
instructions given in the NEWDISK command to answer any prompts.

The system will then take several minutes to intialize the diskette. When finished, type
COPY 0,1 followed by a carriage return.

Flex will copy the system disk in about 5 minutes. When finished type LINK 1.DOS fol-
lowed by a carriage return.

The supplied system diskette should now be removed and set aside. The copy can be
tested and used as desired.

Advanced Programmer’s Manual

Throughout this manual you will find references to the DOS Advanced Programmer’s Guide.
This manual contains detailed information on the operation of the Disk Operating System at the
machine language level. It is written for the individual who wishes to write his own utilities, inter-
face to the DOS thru machine language programs, or just understand how it all works. It has been
written for the individual who understands programming at the machine language level and it is not
. recommended for the novice. It is not being supplied with the DMAF 1 kit but is sold separately for
$20.00 ppd. in the continental U.S. It should be available sometime in July, 1978. When ordering
please designate as the DMAF1 Advanced Programmer’s Guide.

DMAF1

Blank Diskettes

For those of you who are having trouble purchasing double sided diskettes locally, you can
order them from SWTPC. The order number for a blank double sided 8-inch diskette is FD-DS.
Diskettes are $9.95 each ppd. in the continental U.S. Remember that single sided diskettes which
are commonly available will also work with the DMAF1 system.

MP-T Interrupt Timer

For those of you wishing to implement the printer spooling function of FLEX, an MP-T Inter-
rupt Timer board is needed. SWTPC offers the MP-T (in kit form only) for $39.95 ppd in the con-
tinental U.S.

Notice to Owners of the MP-C Control Interface and MIKBUG

FLEX will not work with an MP-C control interface, therefore systems containing the earlier
MIKBUG® monitor will have to update the system to a monitor ROM which will support an MP-S
serial interface. For serious disk users we suggest using the DISKBUG® monitor with an MP-A2
processor board. If you wish to use the earlier MP-A processor board, the SWTBUG® monitor will
work but does not contain a DMAF 1 boot command.

DISKBUG®
Serious disk users may be interested in purchasing the new monitor ROM DISKBUG® for their
system. DISKBUG® contains a boot compatible with the DMAF1 disk system. DISKBUG® is cur-
rently available only in a 2716 EPROM for use in a MP-A2 processor board and is sold for $50.00
ppd in continental U.S. DISKBUG® requires an MP-S serial interface available for $35.00 (in kit
form only) ppd in the continental U.S. DISKBUG® is not compatible with the earlier MP-A pro-
cessor board since there is no provision for a EPROM on the board.

IMPORTANT NOTE

Although every effort has been made to make the supplied software and its documentation as
accurate and functional as possible. Southwest Technical Products Corporation and Technical Sys-
tems Consultants will not assume responsibility for any damages incurred or generated by such
material. Also, Southwest Technical Products Corporation and Technical System Consultants
reserve the right to make changes in such material at any time.

The hardware and software documentation for this kit are being shipped separately. Therefore,
if you have received one but not the other, be patient. The rest of the kit should arrive shortly.

MIKBUG® is a registered trademark of Motorola, Inc.
swTBUG® and DISKBUG® are registered trademarks of Southwest Technical Products Corp.

DMAF1

CHAPTER 1
l.
1.
HI.
V.
V.
V1.
CHAPTER 2
1.

CHAPTER 3

l.

.
1.
V.
V.
VI.
VILI.
VIII.
IX.
X.

CHAPTER 4
I

TABLE OF CONTENTS

INtrodUCTION . .. vttt i e e e e e e 1.1
Systemn Requirementst it it ittt i e, 1.1
Gettingthe System Startedt i i it e e 1.1
Disk Filesand Their Names. ottt it ittt 1.2
EnteringCommandsci ittt i i i e e 1.3
Command DesCriptions.ttt i ittt e e 1.4
Utility Command Set it i i i i 2.1
APPEN D . . . i e e e e A.1.1
ASN L e e e et e A.2.1
BACKUP. . .ttt e e e e e B.1.1
BUILD .ottt i ettt e et e e B.2.1
CAT L e e e et e e e C.1.1
010 = 2 c.2.1
DATE . ittt e e e e e e e D.1.1
DELETE . .ot i i e e e e e D.2.1
EXE C .t ittt e e e e e e E.1.1
b et e e e 1.1.1
JUMP e e e e e e J.1.1
10 AN« L.1.1
0 53 L.2.1
MEMTES Tl .« ittt e i e e e e ettt eaa et M.1.1
NEWDISK .ot ottt i e ettt e et e e N.1.1
e 0.1.1
P e e e e e e e e P.1.1
PRINT . oottt e ettt it ettt e e s P.2.1
PROT .ot e e i e P.3.1
[0 0 1 =X 0« Q.1.1
RENAME ..o ettt et e e e e e R.1.1
SAVE Lo e e e e e e e S.1.1
SAVE. LOW. . .o ittt i e e e e e e e e S.2.1
ST ARTUP . e i i it ittt e s i e e S.3.1
B I 1) =3 T.1.1
VERIFY oo e e e e et e e e e e V.1.1
RV =3 2 151 10 11t V.2.1
0 1 6 e X.1.1
[T 07T Y- Vot 1 oY 3.1
Write ProteCt. . o vt it i e it e e e e e e e 3.1
The ‘RESET BUttON. .o o ittt vt i it ittt e et ettt e i eaa e aeeens 3.1
Notesonthe P Commandc. ittt ittt it e i enenns 3.1
Accesing Drives Not ContainingaDisketteo it 3.1
System Error Numbersttt e e 3.2
SystemMemory Map.ottt e e e 3.2
FLEX Operating System Input/Qutput Subroutines....................... 3.3
Bootingthe Flex System. i i e 3.4
Requirements for the PRINT.SYS Printer Driverot 3.5
ComMaANd SUMIMIAIY . . v v vttt et e ettt e e te et e 4.1

A S T e

FLEX USER’'S MANUAL

I. INTRODUCTION

The FLEX® Operating System is a very versatile and flexible operating system. It provides the user
with a powerful set of system commands to control all disk operations directly from the user’s
terminal. The systems programmer will be delighted with the wide variety of disk access and file
management routines available for personal use. Overall, FLEX is one of the most powerful opera-
ting systems available today.

The FLEX Operating System is comprised of three parts, the File Management System (FMS),
the Disk Operating System (DOS), and the Utility Command Set (UCS). Part of the power of the
overall system lies in the fact that the system can be greatly expanded by simply adding additional
utility commands. The user should expect to see many more utilities available for FLEX in the
future. Some of the other important features include: fully dynamic file space allocation, the auto-
matic ‘‘removal’’ of defective sectors from the disk, automatic space compression and expansion on
all text files, complete user environment control using the TTYSET utility command, and uniform
disk wear due to the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs reside on the system
disk and are only loaded into memory when needed. This means that the set of commands can be
easily extended at any time, without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, loading, copying, renaming, deleting,
appending, and listing of disk files. There is an extensive CATalog command for examining the
disk’s file directory. Several environment control commands are also provided. Overall, FLEX pro-
vides all of the necessary tools for the user’s interaction with the disk.

II. SYSTEM REQUIREMENTS

The minifloppy version of FLEX requires random access memory from location @@@@ through
location 2FFF hex (12K). Memory is also required from A@@® (40K) through BFFF hex (48K),
where the actual operating system resides. The system also assumes at least 2 disk drives are connec-
ted to the controller and that they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX®will work only with Southwest Technical Product’s
SWTBUG® or DISKBUG® monitor ROMs and a MP-S Serial Interface.

I1l. GETTING THE SYSTEM STARTED :

Each FLEX system diskette contains a binary loader for loading the operating system into RAM.
There needs to be some way of getting the loader off of the disk so it can do its work. This can be
done by either hand entering the bootstrap loader provided with the disk system, or if DISKBUG®
is installed in the system, simply type ‘D"’ to call the disk boot loader from ROM.

As a specific example, suppose the system we are using has DISKBUG® installed and we wish
to run FLEX. The first step is to power on all equipment and make sure the DISKBUG prompt is
present ($). Next insert the system diskette into drive O (the boot must be performed with the disk
in drive @) and close the door on the drive. Type ‘D"’ on the terminal. The disk motors should start,
and after about 2 seconds, the following should be displayed on the terminai:

FLEX X.X
DATE (MM, DD, YY) ?

The name FLEX identifies the operating system and the X.X will be the version number of the
operating system. At this time the current date should be entered, such as 1@, 03, 78. The FLEX
prompt is the three plus signs (+++), and will always be present when the system is ready to accept an
operator command. The ‘+++’ should become a familiar sight and signifies that FLEX is ready to

work for you!
FLEX® is a registered trademark of Technical Systems Consultants, Inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corp.

-1.1-
DMAF1

IV. DISK FILES AND THEIR NAMES

All disk files are stored in the form of ‘sectors’ on the disk and in this version each sector contains
256 ‘bytes’ of information. Each byte can contain one character of text or one byte of binary
machine information. A maximum of 2280 sectors may be used on any one diskette, but the
user need not keep count, for the system does this automatically. A file will always be at least one
sector long and can have a maximum length of 2280 sectors. If single sided diskettes are beingused a
maximum of 1140 sectors are available. The user should not be concerned with the actual placement
of the files on the disk since this is done by the operating system. File deletion is also supported and
all previously used sectors become immediately available again after a file has been deleted.

All files on the disk have a name. Names such as the following are typical:
PAYROLL
INVENTRY
TEST1234
APRIL-78
WKLY-PAY

Anytime a file is created, referenced, or deleted, its name must be used. Names can be most
anything but must begin with a letter (not numbers or symbols) and be followed by at most 7 addi-
tional characters, called ‘name characters’. These ‘name characters’ can be any combination of the
letters ‘A’ through ‘Z’ or ‘a’ through ‘z’, any digit ‘0’ through '9’, or one of the two special charac-
ters, the hyphen (=) or the underscore _ (a left arrow on some terminals).

File names must also contain an ‘extension’. The file extension further defines the file and
usually indicates the type of information contained therein. Examples of extensions are: TXT for
text type files, BIN for machine readable binary encoded files, CMD for utility command files, and
BAS for BASIC source programs. Extensions may contain up to 3 ‘name characters’ with the first
character being a letter. Most of the FLEX commands assume a default extension on the file name
and the user need not be concerned with the actual extension of the file. The user may at anytime
assign new extensions, overiding the default value, and treat the extension as just part of the file
name. Some examples of file names with their extension follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period ‘.. The period is the
name ‘field separator’. It tells FLEX to treat the characters following the period as a new field in
the name specification.

A file name can be further refined. The name and extension uniquely define a file on a particu-
lar drive, but the same name may exist on several drives simultaneously. To designate a particular
drive,a ‘drive number’ is added to the file specification. It consists of a single digit (0-3) and is sep-
arated from the name by the field separator ‘.. The drive number may appear either before the
name or after it (after the extension if it is given). If the drive number is not specified, the system
will default to either the ‘system’ drive or the ‘working’ drive. These terms will be described a little
later. Some examples of file specifications with drive numbers follow:

0.BASIC

MONDAY.2

1.TEST.BIN

LIST.CMD 1
In summary, a file specification may contain up to three fields separated by the field separator.
These fields are: ‘name’, ‘extension’ and ‘drive’. The rules for the file specification can be stated
quite concisely using the following notation:

{{drive). Xname) {. (extension) }

(name) {. (extension) } {. (drive) }

The ‘()’ enclose a field and do not actually appear in the specification, and the ‘{} surround
optional items of the specification. The following are all syntactically correct:

-1.2-
DMAF1

0. NAME.EXT

NAME.EXT. 0

NAME.EXT

0. NAME

NAME. O

NAME

Note that the only required field is the actual ‘name’ itself and the other values will usually de-

fault to predetermined values. Studying the above examples will clarify the notation used. The same
notation will occur regularly throughout the manual.

V. ENTERING COMMANDS
When FLEX is displaying ‘+++', the system is ready to accept a command line. A command line is
usually a name followed by certain parameters depending on the command being executed. There is
no ‘RUN’ command in FLEX. The first file name on a command line is always loaded into memory
and execution is attempted. If no extension is given with the file name, ‘CMD’ is the default. If an
extension is specified, the one entered is the one used. Some examples of commands and how they
would look on the terminal follow:

+++TTYSET

+++TTYSET.CMD

+++LOOKUP.BIN

The first two lines are identical to FLEX since the first would default to an extension of CMD.
The third line would load the binary file ‘LOOKUP.BIN’ into memory and, assuming the file con-
tained a transfer address, the program would be executed. A transfer address tells the program load-
er where to start the program executing after it has been loaded. If you try to load and execute a
program in the above manner and no transfer address is present, the message, ‘NO LINK" will be
output to the terminal, where ‘link’ refers to the transfer address. Some other error messages which
can occur are ‘WHAT?’ if an illegal file specification has been typed as the first part of a command
line, and ‘NOT THERE' if the file typed does not exist on the disk.

During the typing of a command line, the system simply accepts all characters until a ‘RE-
TURN'’ key is typed. Any time before typing the RETURN key, the user may use one of two spe-
cial characters to correct any mistyped characters. One of these characters is the ‘back space’ and
allows deletion of the previously typed character. Typing two back spaces will delete the previous
two characters. The back space is initially defined to be a ‘control H’ but may be redefined by the
user using the TTYSET utility command. The second special character is the line ‘delete’ character.
Typing this character will effectively delete all of the characters which have been typed on the cur-
rent line. A new prompt will be output to the terminal, but instead of the usual ‘+++' prompt, to
show the action of the delete character, the prompt will be ‘???’. Any time the delete character is
used, the new prompt will be 2??’, which signifies that the last line typed did not get entered into the
computer. The delete character is initially a ‘control X’ but may also be redefined using TTYSET.

As mentioned earlier, the first name on a command line is always interpreted as a command.
Following the command is an optional list of names and parameters, depending on the particular
command being entered. The fields of a command line must be separated by either a space or a
comma. The general format of a command line is:

(command) {, (list of names and parameters) }

A comma is shown, but a space may be used. FLEX also allows several commands to be en-
tered on one command line by use of the ‘end of line’ character. This character is initially a colon
(“:'), but may be user defined with the TTYSET utility. By ending a command with the end of line
character, it is possible to follow it immediately with another command. FLEX will execute all
commands on the line before returning with the ‘+++' prompt. An error in any of the command
entries will cause the system to terminate operation of that command line and return with the
prompt. Some examples of valid command lines follow:

-13-
DMAF1

+++CAT 1
+++CAT 1: ASN S=1
+++LIST LIBRARY:CAT 1:CAT 0

As many commands may be typed in one command line as desired, but the total number of
characters typed must not exceed 128. Any excess characters will be ignored by FLEX.

One last system feature to be described is the idea of ‘system’ and ‘working’ drives. As stated
earlier, if a file specification does not specifically designate a drive number, it will assume a default
value. This default value will either be the current ‘system’ drive assignment or the current ‘working’
drive assignment. The system drive is the default for all command names, or in other words, all file
names which are typed first on a command line. Any other file name on the command line will
default to the working drive. This version of FLEX also supports automatic drive searching. When in
the auto search mode if no drive numbers are specified, the operating system will first search drive @
for the file. If the file is not found, drive 1 will be searched and so on. When the system is first ini-
tialized the auto drive searching mode will be selected. It is sometimes convenient to assign drive 1
as the working drive in which case all file references, except commands, will automatically look on
drive 1. It is then convenient to have a diskette in drive § with all the system utility commands on
it (the ‘system drive’), and a disk with the files being worked on in drive 1 (the ‘working drive’). If
the system is @ and the working drive is 1, and the command line was:

+++LIST TEXTFILE

FLEX would go to drive @ for the command LIST and to drive 1 for the file TEXTFILE. The

actual assignment of drives is performed by the ASN utility. See its description for details.

VI. COMMAND DESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which actually are part of the
operating system) and disk utility commands (those commands which reside on the disk and are
part of the UCS). There are only two resident commands, GET and MON. They will be described
here while the UCS (utility command set) is described in the following sections.

GET
The GET command is used to load a binary file into memory. It is a special purpose command and
is not often used. It has the following syntax:

GET {, (file name list) }

where (file name list) is: (file spec) {,(file spec) }etc.

Again the ‘{ }’ surround optional items. ‘File spec’ denotes a file name as described earlier.

The action of the GET command is to load the file or files specified in the list into memory for later
use. If no extension is provided in the file spec, BIN is assumed. In other words, BIN is the default
extension. Examples:

GET, TEST

GET,1. TEST, TEST2.0
Where the first example will load the file named ‘TEST.BIN’ from the assigned working drive, and
the second example will load TEST.BIN from drive 1 and TEST2.BIN from drive .

MON
MON is used to exit FLEX and return to the hardware monitor system such as SWTBUG®. The syn-
tax for this command is simply MON followed by the ‘RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the program at
location AD@3 hex. If using SWTBUG® or DISKBUG® simply typing ‘G’ will return you to the
FLEX operating system.

—14-
DMAF1

UTILITY COMMAND SET

The following pages describe all of the utility commands currently included in the UCS.You should
note that the page numbers denote the first letter of the command name, as well as the number of
the page for a particular command. For example, ‘B. 1. 2" is the 2nd page of the description for the
1st utility name starting with the letter ‘B’.

COMMON ERROR MESSAGES

Several error messages are common to many of the FLEX utility commands. These error messages
and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a particular com-
mand was not found on the disk specified. Usually the wrong drive was specified (or defaulted),
or a misspelling of the name was made.

ILLEGAL FILE NAME. This can happen if the name or extension did not start with
a letter, or the name or extension field was too long (limited to 8 and 3 respectively). This message
may also mean that the command being executed expected a file name to follow and one was not
provided..

FILE EXISTS. This message will be output if you try to create a file with a name
the same as one which currently exists on the same disk.Two files with the same name are not allow-
ed to exist on the same disk.

SYNTAX ERROR. This means that the command line just typed does not follow
the rules stated for the particular command used. Refer to the individual command descriptions for

syntax rules.

GENERAL SYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal, it may be temporarily hal-
ted by typing the ‘escape’ character (see TTYSET for the definition of this character). Once the
output is stopped, the user has two choices: typing the ‘escape’ character again or typing ‘RE-
TURN'. If the ‘escape’ character is typed again, the output will resume. 1f the ‘/RETURN’ is typed,
control will return to FLEX and the command will be terminated. All other characters are ignored
while output is stopped.

-21-
DMAF1

APPEND

The APPEND command is used to append or concatenate two or more files, creating a new file as
the result. Any type of file may be appended but it only makes sense to append files of the same
type in most cases. |f appending binary files which have transfer addresses associated with them, the
transfer address of the last file of the list will be the effective transfer address of the resultant file.
All of the original files will be left intact.

DESCRIPTION
The general syntax for the APPEND command is as follows:

APPEND. (file spec) {.(file list) }, (file spec)
Where (file list) can be an optional list of the specifications. The last file name specified should
not exist on the disk since this will be the name of the resultant file. If the last file name given
does exist on the disk, the question “MAY THE EXISTING FILE BE DELETED?"” will be dis-
played. A Y response will delete the current file and cause the APPEND operation to be com-
pleted. A N response will terminate the APPEND operation. All other files specified must exist since
they are the ones to be appended together. If only 2 file names are given, the first file will be copied
to the second file. The extension default is TXT unless a different extension is used on the FIRST
FILE SPECIFIED, in which case that extension becomes the default for the rest of the command
line. Some examples will show its use:

APPEND, CHAPTER1,CHAPTER2,CHAPTER3,BO0OK
APPEND,FILE1,1.FILE2.BAK,GOODFILE
The first line would create a file on the working drive called ‘BOOK .TXT’ which would con-
tain the files ‘"CHAPTER1.TXT’, CHAPTER2.TXT’, and ‘CHAPTER3.TXT’ in that order. The
second example would append ‘FILE2.BAK’ from drive 1 to FILE1.TXT from the working drive
and put the result in a file called ‘GOODFILE.TXT' on the working drive. The file GOODFILE de-
faults to the extension of TXT since it is the default extension. Again, after the use of the APPEND
command, all of the original files will be intact, exactly as they were before the APPEND operation.

-A11-

ASN

The ASN command is used for assigning the ‘system’ drive and the ‘working’ drive or to select auto-
matic drive searching. The system drive is used by FLEX as the default for command names or, in
general, the first name on a command line. The working drive is used by FLEX as the default on all
other file specifications within a command line. As the system is initialized the automatic drive
searching mode will be selected. An example will show how the system defaults to these values:
APPEND,FILE1,FILE2,FILE3

Upon receiving the above command line the operating system will try to execute the APPEND
utility stored on drive 0. If a file APPEND.CMD is not found on drive @, drive 1 would be searched,
and if not there, drive 2, etc. The referencing of FILE1 and FILE2 would be done in the same way.
The created file, FILE3, will be saved on the lowest drive number, drive @. When using the auto
searching mode the lowest drive number in the system is always accessed first.

If the system drive is assigned to be @ and the working drive is assigned to drive 1, then the
above example will perform the following operation: get the APPEND command from drive @ (the
system drive), then append FILE2 from drive 1 (the working drive) to FILE 1 from drive 1 and put
the result in FILE3 on drive 1. As can be seen, the system drive was the default for APPEND where
the working drive was the default for all other file specs listed.

DESCRIPTION
The general syntax for the ASN command is as follows:
ASN {, W=(drive }{, S=(drive) }
where (drive) is a single digit drive number or the letter A. If just ASN is typed followed by a ‘RE-
TURN’, no values will be changed, but the system will output a message which tells the current as-
signments of the system and working drives, for example:
+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0
Some examples of using the ASN command are:
ASN W=1
ASN,S=1,W=0
Where the first line would set the working drive to 1 and leave the system drive assigned to its pre-
vious value. The second example sets the system drive to 1 and the working drive to @. Careful use
of drive assignments will allow the operator to avoid the use of drive numbers on file specifications
most of the time!
If auto drive searching is desired, then the letter A, for automatic, should be used in place of the
drive number.
Example:
ASN W=A
ASN S=A, W=
ASN S=A, W

—A21-
DMAF1

BACKUP

The BACKUP command allows for the making of copies of entire FLEX disks. These copies are
different from those produced by the COPY command in that BACKUP makes a ‘‘mirror image’’
copy of the input disk, where COPY always reorganizes a disk so that a file’s sectors are all group-
ed together. There are trade-offs involved when deciding whether to use the BACKUP command
or the COPY command. Reorganization will speed up file accesses which have become slow due
to the sectors of a file not being grouped together. Generally, COPY should be used if there are
only a few files on the disk, or if the disk is very slow in access times. COPY will also allow single
files to be copied as well as copying files to partially used sides. The BACKUP command, which in
most cases will run faster than the COPY routine, will only copy entire disks, and the output disk
will be entirely overwritten. Experience will help determine which command to use and when.

DESCRIPTION
The general syntax for the BACKUP command is:

BACKUP, (input drive), (output drive)
where the drives are specified with single digits. The input drive contains the disk we wish to copy
the information from, and the output drive contains the disk on which we wish the data to be pla-
ced. As an example, to BACKUP drive @to drive 1, the following should be typed:

+++BACKUP,0,1

There are several situations which can exist at the start of a BACKUP operation. Since the

BACKUP command copies every sector from the input drive to the output drive, not caring if there
is actually information on those sectors, it requires that the output disk be formatted (initiaiized)
and have no bad sectors.

If an attempt is made to back up to a diskette that has not be formatted, the message DISK
FILE WRITE ERROR will be displayed. An error message will aiso be displayed if a bad sector is
encountered on the destination disk or on the source disk.

One final note will be of interest. If the input disk had DOS.SYS on it, and it had been pre-
viously linked to the boot (see LINK command), then the new disk will also have DOS.SYS and it
will be linked to the boot as well.

-B.1.1 -
DMAF1

BUILD

The BUILD command is provided for those desiring to create small text files quickly (such as
STARTUP files, see STARTUP) or not wishing to use the optionally available FLEX Text Editing
System. The main purpose for BUILD is to generate short text files for use by either the EXEC
command or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:

BUILD,(file spec)
where (file spec) is the name of the file you wish to be created. The default extension for the spec is
TXT and the drive defaults to the working drive. If the output file already exists the question
“MAY THE EXISTING FILE BE DELETED?" will be displayed. A Y response will delete the exis-
ting file and build a new file while a N response will terminate the BUILD operation.

After you are in the ‘BUILD’ mode, the terminal will respond with the equals sign (‘=’) as the
prompt character. This is similar to the Text Editing Systems’s prompt for text input. To enter your
text, simply type on the terminal the desired characters, keeping in mind that once the ‘RETURN'
is typed, the line is in the file and can not be changed. Any time before the ‘RETURN"’ is typed, the
backspace character may be used as well as the line delete character. If the delete character is used,
the prompt will be ???’ instead of the equals sign to show that the last line was deleted and not en-
tered into the file. It should be noted that only printable characters (not control characters) may be
entered into text files using the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign (‘#') immediately following the
prompt, then type ‘RETURN’. The file will be finished and control returned back to FLEX where
the three plus signs should again be output to the terminal. This exiting is similar to that of the
Text Editing System.

-B.2.1 -
DMAF1

CAT

The CATalog command is used to display the FLEX disk file names in the directory on each disk.
The user may display selected files on one or multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:

CAT {,(drive list) } { ,{match list} }
where (drive list) can be one or more drive numbers separated by commas, and (match list) is a set
of name and extension characters to be matched against names in the directory. For example, if
only file names which started with the characters '"VE’ were to be cataloged, then VE would be in
the match list. If only files whose extensions were ‘TXT’ were to be cataloged, then TXT should
appear in the match list. A few specific examples will help clarify the syntax:

+++CAT

+++CAT, 1, A.T,.DR

+++CAT,PR

+++CAT,0,1

+++CAT,0,1,.CMD,.SYS

The first example will catalog all file names on the working drive or on all drives if auto drive
searching is selected. The second example will catalog only those files on drive 1 whose names
begin with ‘A’ and whose extensions begin with ‘T’, and also all files on drive 1 whose names start
with ‘DR’. The next example will catalog all files on the working drive (or on all drives if auto
drive searching is selected) whose names start with ‘PR’. The next line causes all files on both drive
@ and drive 1 to be cataloged. Finally, the last example will catalog the files on drive @ and 1 whose
extensions are CMD or SYS.

During the catalog operation, before each drive’s files are displayed, a header message stating
the drive number is output to the terminal. The name of the diskette as entered during the NEW-
DISK operation will also be displayed. The actual directory entries are listed in the following form:

NAME.EXTENSION SIZE PROTECTION CODE :
where size is the number of sectors that file occupies on the disk. If more than one set of matching
characters was specified on the command line, each set of names will be grouped according to the
characters they match. For example, if all .TXT and .CMD files were cataloged, the TXT types
would be listed together, followed by the CMD types.

In summary, if the CAT command is not parameterized, then all files on the assigned working
drive will be displayed. If a working drive is not assigned (auto drive searching mode) the CAT com-
mand will display files on all on line drives. If it is parameterized by only a drive number, then all
files on that drive will be displayed. If the CAT command is parameterized by only an extension,
then only files with that extension will be displayed. If only the name is used, then only files which
start with that name will be displayed. If the CAT command is parameterized by only name and ex-
tension, then only files of that root name and root extension (on the working drive) will be display-
ed. Learn to use the CAT command and all of its features and your work with the disk will become
a little easier.

The current protection code options that can be displayed are as follows:

D This file is delete protected (delete or rename prohibited)
W This file is write protected (delete, rename and write prohibited)
(blank) No special protection

-C.1.1-
DMAF1

COPY

The COPY command is used for making copies of files on a disk. Individual files, groups of name—
similar files, or entire disks may be copied. The COPY command is a very versatile utility. The
COPY command also re-groups the sectors of a file in case they were spread all over the old disk.
This regrouping can make file access times much faster. When copying entire disks it is sometimes
more desirable to use the BACKUP command. Refer to its description for details of the tradeoffs
involved between the two methods of copying disks. It should be noted that before copying files to
a new disk, the disk must be formatted first. Refer to NEWDISK for instructions on this procedure.

DESCRIPTION
The general syntax of the COPY command has three forms:

a. COPY,(file spec),(file spec)

b. COPY,(file spec),(drive)

c. COPY,(drive),(drive){,(match list) }
where (match list) is the same as that described in the CAT command and all rules apply to match-
ing names and extensions. When copying files, if the destination disk already contains a file with the
same name as the one being copied, the file name and the message: FILE EXISTS DELETE ORI-
GINAL ? will be output on the terminal. Typing Y will cause the file on the destination disk to be
deleted and the file from the source disk will be copied to the destination disk. Typing N will direct
FLEX not to copy the file in question.

The first type of COPY allows copying a single file into another. The output file may be on a
different drive but if on the same drive, the file names must be different. It is always necessary to
specify the extension of the input file but the output file’s extension will default to that of the in-
put’s if none is specified. An example of this form of COPY is:

+++COPY 0. TEST.TXT,1.TEXT25

This command line would cause the file TEST.TXT on drive @ to be copied into a file called
TEST25.TXT on drive 1. Note how the second file’s extension defaulted to TXT, the extension of
the input file.

The second type of COPY allows copying a file from one drive to another drive with the file
keeping its original name. An example of this is:

+++COPY,0.LIST.CMD,1

Here the file named LIST.CMD on drive @ would be copied to drive 1. It is again necessary to
specify the file’s extension in the file specification. This form of the command is more convenient
than the previous form if the file is to retain its original name after the copying process.

The final form of COPY is the most versatile and the most powerful. It is possible to copy all
files from one drive to another, or to copy only those files which match the match list characters
given. Some examples will clarify its use:

+++COPY,0,1
+++COPY,1,0,.CMD,.SYS
+++COPY,0,1,A,B,CA.T

The first example will copy all files from drive @ to drive 1 keeping the same names in the pro-
cess. The second example will copy only those files on drive 1 whose extensions are CMD and SYS
to drive @. No other files will be copied. The last example will copy the files from drive @ whose
names start with ‘A’ or ‘B’ regardless of extension, and those files whose names start with the letters
‘CA’ and whose extensions start with ‘T’, to the ouput drive which is drive 1. The last form of copy
is the most versatile because it will allow putting just the command (CMD) files on a new disk, or
just the SYS files, etc., with a single command entry. During the COPY process, the name of the file
which is currently being copied will be ouput to the terminal, as well as the drive to which it is
being copied.

-C.21-
DMAF1

DATE

The DATE command is used to display or change an internal FLEX date register. This date regis-
ter may be used by future programs and FLEX utilities.

DESCRIPTION

The general syntax of the DATE-command is:
DATE (mo., day, year)

where mo. is the numerical month, day is the date and year is the last two digits of the year.
+++ DATE 5,2,78 Sets the date register to May 2, 1978

Typing DATE followed by a carriage return will return the last entered date.

Example:

+++ DATE
May 2, 1978

-D.11-
DMAF1

DELETE

The DELETE command is used to delete a file from the disk. Its name will be removed from the
directory and its sector space will be returned to the free space on the disk.

DESCRIPTION
The general syntax of the DELETE command is:
DELETE,(file spec) {,(file list) }
where (file list) can be an optional list of file specifications. It is necessary to include the extension
on each file specified. As the DELETE command is executing it will prompt you with:
DELETE “FILE NAME'"?

The entire file specification will be displayed, including the drive number. If you decide the
file should be deleted, type ‘Y’, otherwise, any other response will cause that file to remain on the
disk. If a ‘Y’ was typed, the message ‘ARE YOU SURE?’ will be displayed on the terminal. If you
are absolutely sure you want the file deleted from the disk, type another ‘Y’ and it will be gone.
Any other character will leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO
WAY TO GET IT BACK! Be absolutely sure you have the right file before answering the prompt
questions with Y'’s. Once the file is deleted, the space it had occupied on the disk is returned back
to the list of free space for future use by other files. A few examples follow:

+++DELETE MATHPACK.BIN
+++DELETE,1.TEST.TXT,0.AUGUST.TXT

The first example will DELETE the file named MATHPACK.BIN from the working drive. If
auto drive searching is selected, the file will be deleted from the first drive it is found on. The
second line will DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive 0.

There are several restrictions on the DELETE command. First, a file that is delete or write pro-
tected may not be deleted without first removing the protection. Also a file which is curréntly in
the print queue (see the PRINT command) can not be deleted using the DELETE command.

-D.2.1 -
DMAF1

EXEC

The EXECute command is used to process a text file as a list of commands, just as if they had been
typed from the keyboard. This is a very powerful feature of FLEX for it allows very complex pro-
dedures to be huilt up as a command file. When it is desirable to run this procedure, it is only
necessary to type EXEC followed by the name of the command file. Essentially all EXEC does is to
replace the FLEX keyboard entry routine with a routine which reads a line from the command file
each time the keyboard routine would have been called. The FLEX utilities have no idea that the
line of input is coming from a file instead of the terminal.

DESCRIPTION
The general syntax of the EXEC command is:
EXEC,(file spec)
where (file spec) is the name of the command file. The default extension is TXT. An example will
give some ideas on how EXEC can be used. One set of commands which might be performed quite
often is the set to make a new system diskette on drive 1 (see NEWDISK). Normally it is necessary
to use NEWDISK and then copy all .CMD and all .SYS files to the new disk. Finally the LINK must
he performed. Rather than having to type this set of commands each time it was desired to produce
a new system diskette, we could create a command file called MAKEDISK.TXT which contained
the necessary commands. The BUILD utility should be used to create this file. The creation of this
file might go as follows:
+++BUILD ,MAKEDISK
=NEWDISK,1
=COPY,0,1,.CMD,.0OV,.LOW,.SYS
=LINK,1.DOS
=4
+++
The first line of the example tells FLEX we wish to BUILD a file called MAKEDISK (with
the default extension of. TXT). Next, the three necessary command lines are typed in just as they
would be typed into FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive @ to drive 1. Finally the LINK will be performed. Now when we want to
create a system disk in drive 1 we only need to type the following:
+++EXEC,MAKEDISK
We are assuming here that MAKEDISK resides on the same disk which contains the system
commands. EXEC can also be used to execute the STARTUP file (see STARTUP).
There are many applications for the EXEC command. The one shown is certainly useful but
experience and imagination will lead you to other useful applications.

IMPORTANT NOTE: The EXEC utility is loaded into memory beginning at hex location
7C00. Do not attempt to use EXEC if your system does not have memory at this address.

- E1.1-
DMAF1

The | command can be used to force characters to all operator input requests (questions) in FLEX
utilities.

DESCRIPTION
The general syntax of the | command is:

I, (file spec.),(command)
where (file spec.) is the name of the file containing the characters to be used as input and (com-
mand) is the FLEX utility command that will be executed and that will receive the input from
(file spec.). The default extension on (file spec) is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT deleted from the
disk without having to answer the “ARE YOU SURE?'’ questions. This could be done in the follow-
ing manner:

+++BUILD, YES

=YY The first Y will answer the “DELETE @.DATA.DAT?" question.
and the second Y will answer the “ARE YOU SURE?"' question

=#

+++BUILD STARTUP

=1,YES,DELETE,DATA.DAT

=#

Upon booting the disk, FLEX will execute the STARTUP file and perform the following op-
eration: delete the file DATA.DAT receiving all answers from any questions from the input file
YES.TXT rather than from the terminal.

See the description of the STARTUP command for more information on STARTUP.

-1L1.1-
DMAF1

- b
s
\ 3
. R

X]

-5

-

- g 5

. e

JUMP

The JUMP command is provided for convenience. It is used to start execution of a program already
stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:
JUMP, (hex address)
where (hex address) is a 1 to 4 digit hex number representing the address where program execution
should begin. The primary reason for using JUMP is if there is a long program already in memory
and you do not wish to load it off of the disk again. Some time can be saved but you must be sure
the program really exists before JUMPing to it!
As an example, suppose we had a BASIC interpreter in memory and it had a ‘warm start’
address of 103 hex. To start its execution from FLEX, type the following:
+++JUMP,103
The BASIC interpreter would then be executed. Again, remember that you must be absolutely
sure the program you are JUMPing to is actually present in memory.

—-J.1.1 -
-DMAF1

LINK

The LINK command is used to tell the bootstrap loader where the DOS.SYS file resides on the disk.
This is necessary each time a system disk is created using NEWDISK. The NEWDISK utility should
be consulted for complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:
LINK,(file spec)
where (file spec) is usually DOS. The default extension is SYS. Some examples of the use of LINK
follow:
+++LINK,DOS
_+++LINK,1.DOS
The first line will LINK DOS.SYS on the working drive, while the second example will LINK
DOS.SYS on drive 1. For more advanced details of the LINK utility, consult the ““Advanced Pro-
grammers Guide'’.

-L11-
DMAF1

LIST

The LIST command is used to LIST the contents of text or BASIC files on the terminal. It is often
desirable to examine a file without having to use an editor or other such program. The LIST utility
allows examining entire files, or selected lines of the file. Line numbers may also be optionally
printed with each line.)

DESCRIPTION
The general syntax of the LIST command is:

LIST,(file spec) {,(line range) } {,+{options) }
where the (file spec)designates the file to be LISTed (with a default extension of TXT) and (line
range) is the first and last line number of the file which you wish to be displayed. All lines are out-
put if no range specification is given. The LIST command supports two additional options. If a +N
option is given, line numbers will be displayed with the listed file. If a +P option is given, the output
will be formatted in pages and LIST will prompt for “TITLE' at which time a title for the output
may be entered. The TITLE may be up to 40 characters long. This feature is useful for obtaining
output on a printer for documentation purposes (see P command). Each page will consist of the
title, date, page number, 54 lines of output and a hex @C formfeed character. Entering a +NP will
select both options. A few examples will clarify the syntax used:

+++LIST,RECEIPTS,

+++LIST,CHAPTER1,30,200,+NP

+++LIST,LETTER,100

The first example will list the file named ‘RECEIPTS.TXT' without line numbers. All lines will

be output unless the ‘escape character’ is used as described in the Utility Command Set introduc-
tion. The second example will LIST the 3@th line through the 2@@th line of the file named ‘CHAP-
TER1.TXT' on the terminal. The hyphen (') is required as the range number separator. Line num-
bering and page formatting will be selected because of the ,+NP option. The last example shows a
special feature of the range specification. If only one number is stated, it will be interpreted as the
first line to be displayed. All lines following that line will also be LISTed. The last example will
LIST the lines from line 100 to the end of the file. No line numbers will be output since the ‘N’
was omitted.

-L21-
DMAF1

MEMTEST1

The MEMTEST1 utility can be used to verify the integrity of the computer’s memory. MEMTEST1
should be run periodically on your computer to alert you of any memory failures.

DESCRIPTION
The general syntax of the MEMTEST1 utility is:
MEMTEST1
MEMTEST1 does not have any arguments or file specifications associated with it. MEMTEST1
will then prompt you for the beginning and ending memory addresses. A four digit hexadecimal
number should be entered in each case. In the case of a 32K system, the response would be as

follows:
+++MEMTEST1
ENTER THE STARTING MEMORY ADDRESS (0200 min) 9200
ENTER THE ENDING MEMORY ADDRESS (7FFF max) 7FFF

If no errors are found in the memory being checked a & will be displayed on the screen. To
completely test an area of memory, MEMTEST1 must be allowed to run until 256 &’s have been
displayed on the screen. Each time a & is displayed on the screen MEMTEST has successfully cycled
through memory storing and reading a different pattern.

After the selected region of memory has been tested (256 &'’s displayed) MEMTEST 1 will then
cycle thru the RAM memory that FLEX uses (AQ@® - BFFF). Each + displayed on the screen de-
notes one successful cycle thru the memory. The diagnostic should run until 256 +’s have been dis-
played. MEMTEST1 will then exit to the computer system’s monitor.

If an error is detected the output will be similar to the following:

$06 20 16A0
(PATTERN #) (ERRANT BITS) (ADDRESS)

An error message such as this says that MEMTEST1 cycled thru memory five times without
error, but on the sixth try a pattern was used that detected an error. The @6 tells what pattern
number MEMTEST1 was working on when the error was detected. The 20 (hexadecimal) tells
‘which bit(s) were in error. 20 converted to binary is 0010000@—the location of the 1 is the bit(s)
that were in error, in this case bit 5. Bit numbers start from @ as shown.

76543210 BIT #
2016=00100000

The 16A0 is the address where the error was detected. This address may not store a particular
number or possibly writing into another address, such as 16B@, changed the contents of 16A0.

The IC assignments table supplied with the memory board should be used to help locate the
problem. In the above case on an MP-8M 8K memory board the bit # 5 IC in the upper 4K of
memory should be suspected.

After running MEMTEST1, FLEX may be re-entered only by re-booting the system.

-M.1.1 -
DMAF1

NEWDISK

NEWDISK is used to format a new diskette. Diskettes as purchased will not work with FLEX until
certain system information has been put on them. The NEWDISK utility puts this information on

‘ the diskette, as well as checking the diskette for defective sectors (bad spots on the surface of the
disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDISK command is:

NEWDISK,(drive)
where (drive) represents a single digit drive number and specifies the drive to be formatted. After
typing the command, the system will ask if you are sure you want a NEWDISK, and if the disk to
be initialized is a scratch disk. Type ‘Y’ as the response to these questions if you are sure the NEW-
DISK command should continue. NEWDISK will also ask you if you have a double sided disk in-
stalled. If so, type ‘Y'. If you are using single sided diskettes, type ‘N’. SWTPC supplies only double
sided diskettes with the DMAF1. NEWDISK then prompts for a volume name and number. This
gives you the ability to ““name’’ the diskette for future reference.

The NEWDISK process takes approximately five minutes to initialize a disk, assuming there are
no bad spots on it. Defective sectors wiil make NEWDISK run even slower, depending on the num-
ber of bad sectors found. As bad sectors are detected, a message will be output to the terminal such
as:

BAD SECTOR AT xxyy
where ‘‘xx’’ is the disk track number (in hex) and ‘‘yy’’ is the sector number, also in hex. NEWDISK
automatically removes bad sectors from the list of available sectors, so even if a disk has several bad
sectors on it, it is still usable. When NEWDISK finishes, FLEX will report the number of available
sectors remaining on the disk. If no defective sectors were detected, the total should be 2280 for
double sided disks and 1140 for single sided. '

Sometimes during the NEWDISK process, a sector will be found defective in an area on the

. disk which is required by the operating system. In such a case, NEWDISK will report:
FATAL ERROR—FORMATTING ABORTED
and FLEX will regain control. You should not immediately assume the disk to be useless if this
occurs, but instead, remove the disk from the drive, re-insert it, and try NEWDISK again. If after
several attempts the formatting is still aborted, you should assume the disk is unusable. You may
not BACKUP onto a diskette with bad sectors on it. See the BACKUP documentation for more
information.

CREATING SYSTEM DISKETTES

A system disk is one from which the disk operating system can be loaded. Normally the system disk
will also contain the Utility Command Set (UCS). The following procedure should be used when
preparing system disks.

1. Initialize the diskette using NEWDISK as described above.
2. COPY all .CMD files desired to the new disk. ,
3. COPY all .SYS files to the new disk. It should be noted that steps 2 and 3 can be

done with one command; ‘COPY,0,1,.CMD,.0OV,.LOW,.SYS’, assuming you are copying from @
to 1 and all command files and their overlays are desired. (the .OV copies overlay files and
.LOW copies the utility ‘SAVE.LOW’).

4, Last it is necessary to LINK the file DOS.SYS to the system using the LINK com-
mand.

A very convenient way to get the above process performed without having to type all of the
commands each time is to create a command file and use the EXEC command. Consult the EXEC
documentation for details.

‘ It is not necessary to make every disk a system diskette. It is also possible to create ‘working’
diskettes, disks which do not have the operating system on them, for use with text files or BASIC

—N.1.1 -
DMAF1

files. Remember that a diskette can not be used for booting the system unless the operating system
is contained on it. To create a working disk, simply run NEWDISK on a diskette. It will now have
all of the required information to enable FLEX to make use of it. This disk, however, does not con-
tain the disk operating system and is not capable of booting the system.

-N.1.2 -
DMAF1

NEWDISK

NEWDISK is used to format a new diskette. Diskettes as purchased will not work with FLEX until
certain system information has been put on them. The NEWDISK utility puts this information on

. the diskette, as well as checking the diskette for defective sectors (bad spots on the surface of the
disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDISK command is:

NEWDISK, (drive)
where (drive) represents a single digit drive number and specifies the drive to be formatted. After
typing the command, the system will ask if you are sure you want a NEWDISK, and if the disk to
be initialized is a scratch disk. Type ‘Y’ as the response to these questions if you are sure the NEW-
DISK command should continue. NEWDISK will also ask you if you have a double sided disk in-
stalled. If so, type ‘Y'. If you are using single sided diskettes, type ‘N’. SWTPC supplies only double
sided diskettes with the DMAF1. NEWDISK then prompts for a volume name and number. This
gives you the ability to “name’’ the diskette for future reference.

The NEWDISK process takes approximately five minutes to initialize a disk, assuming there are
no bad spots on it. Defective sectors wiil make NEWDISK run even slower, depending on the num-
ber of bad sectors found. As bad sectors are detected, a message will be output to the terminal such
as:

BAD SECTOR AT xxyy
where “’xx’’ is the disk track number (in hex) and ‘“yy’’ is the sector number, also in hex. NEWDISK
automatically removes bad sectors from the list of available sectors, so even if a disk has several bad
sectors on it, it is still usable. When NEWDISK finishes, FLEX will report the number of available
sectors remaining on the disk. If no defective sectors were detected, the total should be 2280 for
double sided disks and 1140 for single sided. '

Sometimes during the NEWDISK process, a sector will be found defective in an area on the

. disk which is required by the operating system. In such a case, NEWDISK will report:
FATAL ERROR—FORMATTING ABORTED
and FLEX will regain control. You should not immediately assume the disk to be useless if this
occurs, but instead, remove the disk from the drive, re-insert it, and try NEWDISK again. If after
several attempts the formatting is still aborted, you should assume the disk is unusable. You may
not BACKUP onto a diskette with bad sectors on it. See the BACKUP documentation for more
information.

CREATING SYSTEM DISKETTES

A system disk is one from which the disk operating system can be loaded. Normally the system disk
will also contain the Utility Command Set (UCS). The following procedure should be used when
preparing system disks.

1. Initialize the diskette using NEWDISK as described above.
2. COPY all .CMD files desired to the new disk. ‘
3. COPY all .SYS files to the new disk. It should be noted that steps 2 and 3 can be

done with one command; ‘COPY,8,1,.CMD,.0V,.LOW,.SYS’, assuming you are copying from 0
to 1 and all command files and their overlays are desired. (the .OV copies overlay files and
.LOW copies the utility ‘SAVE.LOW’).

4. Last it is necessary to LINK the file DOS.SYS to the system using the LINK com-
mand.

A very convenient way to get the above process performed without having to type all of the
commands each time is to create a command file and use the EXEC command. Consult the EXEC
documentation for details.

. It is not necessary to make every disk a system diskette. It is also possible to create ‘working’
diskettes, disks which do not have the operating system on them, for use with text files or BASIC

—N.1.1 -
DMAF1

(o)

The O (not zero) command can be used to route all displayed output from a utility to an output file
instead of to the terminal. The function of O is similar to P (the printer commend) except that out-
put is stored in a file rather than being printed on the terminal or printer. Other SWTPC and TSC
software may support this utility. Check the supplied software instruction for more details.

DESCRIPTION
The general syntax of the O command is:
0, (file spec),(command)
where (command) can be any standard utility command line and (file spec) is the name of the de-
sired output file. The default extension on (file spec) is .OUT. If O is used with multiple commands
per line (using the ‘end of line’ character :) it will only have affect on the command it immediately
precedes. Some examples will clarify its use.
+++0,CAT,CAT writes a listing of the current disk directory into a file called
CAT.OUT
+++0,BAS,ASMB,BASIC.TXT writes the assembled source listing of the text
source file BASIC.TXT into a file called BAS.OUT
when using the assembler.

-0.1.1-
DMAF1

P

The P command is very special and unlike any others currently in the UCS. P is the system print
routine and will allow the output of any command to be routed to the printer. This is very useful
for getting printed copies of the CATalog or when used with the LIST command will allow the
printing of FLEX text files.

DESCRIPTION
The general syntax of the P command is:

P,(command)

where (command) can be any standard utility command line. If P is used with multi-
ple commands per line (using the ‘end of line’ character ,:), it will only have affect on the command
it immediately precedes. Some examples will clarify its use:

+++P,CAT

+++P,LIST MONDAY:CAT,1

The first example would print a CATalog of the directory of the working drive on the printer.
The second example will print a LISTing of the text file MONDAY.TXT and then display on the
terminal a CATalog of drive 1 (this assumes the ‘end of line’ character is a ‘:’). Note how the P did
not cause the ‘CAT,1’ to go to the printer. Consult the ‘Advanced Programmer’s Guide’ for details
concerning adaption of the P command to various printers.

The P command tries to load a file named PRINT.SYS from the same disk which P itself was
retrieved. The PRINT.SYS file which 'is supplied with the system diskette contains the necessary
routines to operate a SWTPC PR 40 printer connected through a parallel interface on PORT 7 of
the computer. If you wish to use a different printer configuration, consult the ‘Advanced Program-
mer’s Guide’ for details on writing your own printer driver routines to replace the PRINT.SYS file.
The PR 40 drivers, however, are compatible with many other parallel interfaced printers presently
on the market. '

-P.1.1-
DMAF1

PRINT

FLEX has the ability to output file stored data to a printer at the same time that it is performing
other tasks. This feature is especially useful when it is necessary to print a long listing without tying
up the computer. This method of printing is called PRINTER SPOOLING. In order for the printer
spooling function to work, a SWTPC MP-T interrupt timer board must be installed in 1/0 position
#4 on the computer’s mother board.

DESCRIPTION
The general syntax of the PRINT command is as follows:
PRINT (file spec), {repeat #}
where (file spec) is the name of the file to be printed. The default extension on (file spec) is .OUT.
{Repeat # }is the number of additional copies of the file you wish to be printed.

For example, say that your disk had a very large number of files on it and a printed catalog
listing was desired. A file containing the output information shoul'd first be created by using the
O command such as:

+++0,CAT.OUT,CAT.CMD or +++O,CAT,CAT (see the description of the O

command.)

when printer output is desired the command

+++PRINT,CAT.OUT or +++PRINT,CAT
should be entered.
At this time the file CAT.OUT is stored in a buffer called a print queue (waiting list). If another
PRINT command is issued before the first has finished, the second file will be put in the next
available location in the print queue.

After the file name to be printed has been stored in the print queue, control will return to the
FLEX operating system. At this time you may perform any disk operation you want, such as dele-
ting files, copying disks, etc. While you are using FLEX, PRINT will be outputting the desired file
to the printer. PRINT will automatically wait for the printer to become ready (power up) even after
the file has been entered into the print queue.

After printing the first file, the second file in the queue will be printed (if there is one), etc.
The print queue may be examined or modified at any time by using the QCHECK utility.

NOTE: There are several things that the user should be aware of when using printer spooling:

1.) Any file that is in the print queue may not be deleted, renamed, or changed in any way
until it has been printed or removed by the QCH ECK print queue manager untility.

2.) Disks which contain the files in the print queve should not be removed while the files are
still in the queue.

3.) The P command should not be used while files are waiting in the print queue.

4.) Any paper or cassette tape load or any other operation which requires that the computer
accept data at precise time intervals should not be executed during a printer spooling
operation.

-P.21. -
DMAF1

CREATE OUTPUT FILE EXACTLY
AS YOU WANT IT PRINTED

J

ISSUE PRINT (file) COMMAND

J

PRINT QUEUE

(file) entered in PRINT queue

J

FLEX CONTROL RESUMED

i

PERFORM OTHER DISK OPERATIONS
(CAT, RENAME, etc.)

PRINTER SPOOLING FLOWCHART

FILE #2
FILE #3

FILE #N

SEND OUTPUT FROM

FILE IN QUEUE TO PRINTER

YES

#

DELETE (file) FROM QUEUE
WHEN PRINTED

ANY MORE FILES

-P.22 -
DMAF1

IN QUEUE?

WAIT FOR ANOTHER
FILE TO BE ENTERED
INTO PRINT QUEUE

— FILE #1 ~——

PROT

The PROT command is used to change a protection code associated with each file. When a file is
first saved, it has no protection associated with it thereby allowing the user to write to,rename,
or delete the file. Delete or write protection can be added to a file by using the PROT command.

DESCRIPTION
The general syntax of the PROT command is:
PROT, (file spec), {option list}
where the (file spec) designates the file to be protected and {option list }is any combination of the
following options.

D —A D will delete protect a file. A delete protected file cannot be affected by using the DE-
LETE or RENAME commands, or by the delete functions of SAVE, APPEND, etc.

W —A W will write protect a file. A write protected file can not be deleted, renamed or have any
additional information written to it. Therefore a write protected file is automatically delete
protected as well.

C —A C will Catalog protect a file. Any files with a C protection code will function as before
but will not be displayed when a CAT command is issued.
X —An X will remove all protection options on a specific file.
Examples:

+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD
utility and write protect it.

+++PROT CAT.CMD,X Remove all protection from the CAT.CMD utility.

+++PROT INFO.SYS,C Prohibit INFO.SYS from being displayed in a catalog
listing.

—-P.3.1-
DMAF1

QCHECK

The QCHECK utility can be used to examine the contents of the print queue and to modify its con-
tents. QCHECK has no additional arguments with it. Simply type QCHECK. QCHECK will stop any
printing that is taking place and then display the current contents of the print queue as follows:

+++ QCHECK
POS NAME TYPE RPT
1 TEST. .OuUT 2
2 CHPTR. .OuUT]
3 CHPTR2. TIXT 0
COMMAND?

This output says that TEST.OUT is the next file to be printed (or that it is in the process of being
printed) and that 3 copies (1 plus a repeat of 2) of this file will be printed. After these three copies
have been printed, CHPTR.OUT will be printed and then CHPTR2.TXT. The COMMAND? prompt
means QCHECK is awaiting for one of the following commands:

COMMAND
(carriage return)
Q
R,#N,X

D,#N

FUNCTION

Re-start printing, return to the FLEX command mode

A Q command will print the queue contents again

An R command will repeat the file at position #N X times. If X is omitted
the repeat count will be cleared.

Example: R, #3,6

A D command will delete the file at queve position #N. If N=1, the cur-
rent print job will be terminated.

Example: D,#3

A T command will terminate the current print job. This will cause the job
currently printing to quit and printing of the next job to start. If the cur-
rent files RPT count was not zero, it will print again until the repeat count
is 0. To completely terminate the current job use the D,#1 command.

A N command will make the file at position #N the next one to be printed
after the current print job is finished. Typing Q after this command will
show the new queue order.

Example: N,#3

An S command will cause printing to stop. After the current job is finish-
ed printing, printing will halt until a G command is issued.

A G command will re-start printing after an S command has been used to
stop it.

A K command will kill the current print process. All printing and queued
jobs will be deleted. No files are actually deleted, however.

-Q1.1 -
DMAF1

RENAME

The RENAME command is used to give an existing file a new name in the directory. It is useful
for changing the actual name as well as changing the extension type.

DESCRIPTION
The general syntax of the RENAME command is:

RENAME, (file spec 1),(file spec 2)
where (file spec 1) is the name of the file you wish to RENAME and (file spec 2) is the new name
you are assigning to it. The default extension for file spec 1 is TXT and the default drive is the
working drive. If no extension is given on (file spec 2), it defaults to that of (file spec 1). No drive
is required on the second file name, and if one is given it is ignored. Some examples follow:

+++RENAME, TEST1.BIN,TEST2

+++RENAME,1.LETTER,REPLY

+++RENAME,D.FIND.BIN,FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example RENAMEs

the file LETTER.TXT on drive 1 to REPLY.TXT. The last line would cause the file FIND.BIN on
drive @ to be renamed FIND.CMD. This is useful for making binary files created by an assembler
into command files (changing the extension from BIN to CMD). If you try to give a file a name
which already exists in the directory, the message:

FILE EXISTS
will be displayed on the terminal. Keep in mind that RENAME only changes the file’s name and in
no way changes the actual file’s contents.

One last note of interest. Since utility commands are just like any other file, it is possible to

rename them also. |If you would prefer some of the command names to be shorter, or different all
together, simply use RENAME and assign them the names you desire.

—R.1.1 -
DMAF1

SAVE

The SAVE command is used for saving a section of memory on the disk. Its primary use is for sav-
ing programs which have been loaded into memory from tape or by hand.

DESCRIPTION
The general syntax of the SAVE command is:

SAVE, (file spec),(begin adr),(end adr) {,(transfer adr) }
where (file spec) is the name to be assigned to the file. The default extension is BIN and the default
drive is the working drive. The address fields define the beginning and ending addresses of the sec-
tion of memory to be written on the disk. The addresses should be expressed as hex numbers. The
optional (transfer address)would be included if the program is to be loaded and executed by FLEX
This address tells FLEX where execution should begin. Some examples will clarify the use of
SAVE:

+++SAVE,DATA, 100,1FF

+++SAVE,1.GAME,0,1680,100

The first line would SAVE the memory locations 100 to 1FF hex on the disk in a file called
DATA.BIN. The file would be put on the working drive and no transfer address would be assigned.
The second example would cause the contents of memory locations @ through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of 100 was specified as a para-
meter, typing ‘GAME.BIN’ in response to the FLEX prompt after saving would cause the file to be
loaded back into memory and execution started at location 100.

If an attempt is made to save a program under a file name that already exists, the prompt
“MAY THE EXISTING FILE BE DELETED?"" will be displayed. A Y response will replace the file
with the new data to be saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiguous segments of memory. To do this it would be
necessary to first SAVE each segment as a separate file and then use the APPEND command to
combine them into one file. If the final file is to have a transfer address, you should assign it to one
of the segments as it is being SAVEd. After the APPEND operation, the final file will retain that
transfer address.

-S.1.1-

SAVE.LOW

There is another form of the SAVE command resident in the UCS. It is called SAVE.LOW and loads
in a lower section of memory than the standard SAVE command. Its use is for saving programs in ,
the Utility Command Space where SAVE.CMD is loaded. Those interested in creating their own .
utility commands should consult the ‘Advanced Programmer’s Guide’ for further details.

—-8.2.1.—
DMAF1

STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often desirable to have the oper-
ating system do some special action or actions upon initialization of the system (during the boot-
strap loading process). As an example, the user may always want to use BASIC immediately follow-
ing the boot process. STARTUP will allow for this without the necessity of calling the BASIC
interpreter each time.

DESCRIPTION
FLEX always checks the disk’s directory immediately following the system initialization for a file
called STARTUP.TXT. If none is found, the three plus sign prompt is output and the system is
ready to accept user commands. If a STARTUP file is present, it is read and interpreted as a single
command line and the appropriate actions are performed. As an example, suppose we wanted
FLEX to execute BASIC each time the system was booted. First it is necssary to create the START-
UP file:
+++BUILD,STARTUP
=BASIC
=#
+++

The above procedure using the BUILD command will create the desired file. Note that the file
consisted of one line (which is all FLEX reads from the STARTUP file anyway). This line will tell
FLEX to load and execute BASIC. Now each time this disk is used to boot the operating system,
BASIC will also be loaded and run. Note that this example assumes two things. First, the disk must
contain DOS.SYS and must have been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment parameters such as
TTYSET parameters or the assigning of a system and working drive. If the STARTUP command
consisted of the following line:

TTYSET,DP=16,WD=60:ASN W=1:ASN:CAT,0
each time the system was booted the following actions would occur. First, TTYSET would set the
‘depth’ to 16 and the ‘width’ to 6@. Next, assuming the ‘end of line’ character is the ":’, the ASN
command would assign the working drive to drive 1. Next ASN would display the assigned system
and working drives on the terminal. Finally, a CATalog of the files on drive @ would be displayed.
For details of the actions of the individual commands, refer to their descriptions elsewhere in this
manual.

As it stands, it looks as if the STARTUP feature is limited to the execution of a single com-
mand line. This is true but there is a way around the restriction, the EXEC command. If a longer
list of operations is desired than will fit on one line, simply create a command file containing all of
the commands desired. Then create the STARTUP file using the single line.’

EXEC,(file name)
where (file name) would be replaced by the name assigned to the command file created. A little
imagination and experience will show may uses for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS command it is possible to
lockout access to DOS. You can correct the problem by hitting the RESET button, setting the pro-
gram counter addresses AP48 and AP49 to AD@3and typing G for go. The STARTUP file may then
be deleted and if desired, modified. Directing execution to AD@3, the DOS warm start address, by-
passes the DOS STARTUP function. ‘

—-8.3.1~-

TTYSET

The TTYSET utility command is provided so the user may control the characteristics of the ter-

minal. With this command, the action of the terminal on input and the display format on output
may be controlled.

DESCRIPTION
The general syntax of the TTYSET command is:

TTYSET{ ,(parameter list) }
where (parameter list) is a list of 2 letter parameter names, each followed by an equals sign (=),
and then by the value being assigned. Each parameter should be separated by a comma or a space. |f
no parameters are given, the values of all of the TTYSET parameters will be displayed on the
terminal.

The default number base for numerical values is the base most appropriate to the parameter. In
the descriptions that follow, ‘hh’ is used for parameters whose default base is hex; ‘dd’ is used for
those whose default base is decimal. Values which should be expressed in hex are displayed in the
TTYSET parameter listing preceded by a ‘$’. Some examples follow:

+++TTYSET
+++TTYSET ,DP=16,WD=63
+++TTYSET,BS=8,ES=3.

The first example simply lists the current values of all TTYSET parameters on the terminal.
The next line sets the depth ‘DP’ to 16 lines and the terminal width, ‘WD’ to 63 columns. The last
example sets the backspace character to the value of hex 8 and the escape character to hex 3.

The following fully describes all of the TTYSET parameters available to the user. Their initial
values are defined, as well as any special characteristics they may possess.

BS=hh BackSpace character

This sets the ‘backspace’ character to the character having the ASCII hex value of hh. This character
“is initially a ‘control H’ (hex @8), but may be defined to any ASCII character. The action of the

backspace character is to delete the last character typed from the terminal. If two backspace

characters are typed, the last two characters will be deleted, etc. Setting BS=0 will disable the back-

space feature.

BE=hh Backspace Echo character ' ‘ _ _

This defines the character to be sent to the terminal after a ‘backspace _character is received. The
character printed will have the ASCII hex value of hh. This character is initially set to a null but can
be set to any ASCII character.

The BE command also has a very special use that will be of interest to some terminal owners, such
as the SWTPC CT-64.

If a hex @8 is specified as the echo character, FLEX will output a space (20) then a'nother 08.
This feature is very useful for terminals which decode a hex @8 as a cursor left but which do not
erase characters as the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:

+++CAY

typing in one ctrl. H (hex @8) would position the cursor on top of the Y and delete the Y from the
DOS input buffer. FLEX would then send out a space (20) to erase the Y and another @8 (cursor
left) to re-position the cursor.

DL=hh Delete character

This sets the ‘delete current line’ character to the hex value hh. This character is initially_a_’control
X’ (hex 16). The action of the delete character is to ‘erase’ the current input line before it is accep-
ted into the computer for execution. Setting DL=0@ will disable the line delete feature.

~T.11-
DMAF1

EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on one input line. It is ini-
tially set to a colon (*:’), a hex value of 3A. Setting this character to @ will disable the multiple com-
mand per line capability of FLEX. The parameter ‘EL=hh’ will set the end of line character to the

character having the ASCI| hex value of hh. This character must be set to a printable character {(con-
trol characters not allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical lines of output. A page may be
considered to be the number of lines between the fold if using fan folded paper on a hard copy ter-
minal, or a page may be defined to be the number of lines which can be displayed at any one time

on a CRT type terminal. Setting DP=0 will disable the paging (this is the initial value). See EJ and
PS beiow for more details of depth.

WD=dd WiDth
The WD parameter specifies the (decimal) number of characters to be displayed on a physical line at

the terminal (the number of columns). Lines of text longer than the value of width will be ‘folded’
at every multiple of WD characters. For example, if WD is 50 and a line of 125 characters is to be
displayed, the first 5@ characters are displayed on a physical line at the terminal, the next 5@ charac-
ters are displayed on the next physical line, and the last 25 characters are displayed on the first phy-

sical line. If WD is set to @, the width feature will be disabled, and any number of characters will be
permitted on a physical line.

NL=dd NuLl count

This parameter sets the (decimal) number of non-printing (Null) ‘pad’ characters to be sent to the
terminal at the end of each line. These pad characters are used so the terminal carriage has enough
time to return to the left margin before the next printable characters are sent. The intial value is 4.

Users using CRT type terminals may want to set NL=0 since no pad characters are usually required
on this type of terminal.

TB=hh TaB character
The tab character is not used by FLEX but some of the utilities may require one (such as the Text

Editing System). This parameter will set the tab character to the character having the ASCII hex
value hh. This character should be a printable character.

EJ=dd EJect count

This parameter is used to specify the (decimal) number of ‘eject lines’ to be sent to the terminal
at the bottom of each page. |f Pause is ‘on’, the ‘eject sequence’ is sent to the terminal after the
pause is terminated. If the value dd is zero (which it is by default), no ‘eject lines” are issued. An
eject line is simply a blank line (line feed) sent to the terminal. This feature is especially useful for
terminals or printers with fan fold paper so as to skip over the fold (see Depth). It may also be use-
ful for certain CRT terminals to be able to erase the previous screen contents at the end of each
page.

PS=Y or PS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause feature. |f Pause is on and
depth is set to some nonzero value, the output display is automatically suspended at the end of each
page. The output may be restarted by typing the ‘escape’ character (see ES description). If pause is
disabled, there will be no end-of-page pausing. This feature is useful for those using high-speed CRT
terminals to suspend output long enough to read the page of text.

-T1.2-
DMAF1

ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the ‘escape character’. Its intial value is
$1B, the ASCIl ESC character. The escape character is used to stop output from being displayed,
and once it is stopped, restart it again. It is also used to restart output after Pause has stopped it. As
an example, suppose you are LISTing a long text file on the terminal and you wish to tempor-
arily halt the output. Typing the ‘escape character’ will do this. At this time (output halted), typing
another ‘escape character’ will resume output, while typing the RETURN key will cause control to
return to FLEX and the three plus sign prompt will be output to the terminal. It should be noted
that line output termination always happens at the end of a line.

~TA3-
DMAF1

VERIFY

The VERIFY command is used to set the File Maﬁagement System'’s write verify mode. If VERIFY
is on, every sector which is written to the disk is read back from the disk for verification (to make
sure there are no errors in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION
The general syntax of the VERIFY command is:

VERIFY {,ON}

or

VERIFY {,OFF}
where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed without any para-
meters, the current status of VERIFY will be displayed on the terminal. Example:

+++VERIFY, ON

+++VERIFY

The first example sets the VERIFY mode to ON. The second line would display the current

status (ON or OFF) of the VERIFY mode. VERIFY causes slower write times, but it is recom-
mended that it be left on for your protection.

-V.1.1 -
DMAF1

VERSION

The VERSION utility is used to display the version number of a utility command. If problems or
updates ever occur in any of the utilities, they may be replaced with updated versions. The VER-
SION command will allow you to determine which version of a particular utility you have.

DESCRIPTION
The general syntax of the VERSION command is:
VERSION,(file spec)
where (file spec) is the name of the utility you wish to check. The default extension is CMD and
the drive defaults to the working drive. As an example:
+++VERSION,0.CAT
would display the version number of the CAT command (from drive @) on the terminal.

X ouT
XOUT is a special form of the delete command which deletes all files having the extension .OUT.

‘ DESCRIPTION
The general syntax of XOUT is:
XOUT (drive spec)
where drive spec is the desired drive number. If no drive is specified all .OUT files on the working
drive will be deleted and, if auto drive searching is enabled, all .OUT files on all on line drives
will be deleted. XOUT will not delete any files which are delete protected or which are currently
in the print queue.
Example:
+++X0OUT
+++XO0UT 1

- X.1.1-
DMAF1

GENERAL SYSTEM INFORMATION

1. DISK CAPACITY

Each double sided diskette when used with FLEX is capable of holding 2280 sectors. Each sector
can contian a maximum of 252 characters (4 bytes in each sector are used by the system). The
total capacity of the diskette is then 574,560 characters or bytes of information. When using single
sided diskettes with FLEX exactly one-half the amount of space is available.

II. WRITE PROTECT
It is possible to write on some diskettes only by placing a piece of opaque tape over the small rec-
tangular cutout on the edge of the diskette. Any attempts to write files or delete files on a pro-
tected disk (no tape, hole exposed) will cause an error message to be issued. It is good practice to
write protect disks which have important files on them. Some diskettes, however, do not contain
this write protect notch.

Il. THE ‘RESET'BUTTON

The RESET button on the front panel of your computer should NEVER BE PRESSED DURING
A DISK OPERATION. There should never be a need to ‘reset’ the machine while in FLEX. If the
machine is ‘reset’ and the system is writing data on the disk, it is possible that the entire disk will
become damaged. Again, never press ‘reset’ while the disk is operating! Refer to the ‘escape’ cha-
racter in TTYSET for ways of stopping FLEX.

IV. NOTES ON THE P COMMAND

The P command tries to load a file named PRINT.SYS from the same disk which P itself was re-
trieved. The PRINT.SYS file which was supplied with the system diskette contains the necessary
routines to operate a SWTPC PR40 printer connected through a parallel interface on PORT 7 of the
computer. If you wish to use a different printer configuration, consult the ‘Advanced Programmer’s
Guide’ for details on writing your own printer driver routines to replace the PRINT.SYS file.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE
If an attempt is made to access a drive not containing a diskette, a DRIVES NOT READY message
will be output on the terminal.

- 3.1 -
DMAF1

VI. SYSTEM ERROR NUMBERS

Any time that FLEX detects an error during an operation, an appropriate error message will be dis-

played on the terminal. FLEX internally translates a derived error number into a plain language

statement using a look-up table called ERRORS.SYS. If you have forgotten to copy this .SYS file

onto a disk that you are using. FLEX will report a corresponding error number as shown below:
DISK ERROR #xx

where ‘xx’ is a decimal error number. The table below is a list of these numbers and what error they

represent.

ERROR # MEANING

1 ILLEGAL FMAS FUNCTION CODE ENCOUNTERED
2 THE REQUESTED FILE IS IN USE
3 THE FILE SPECIFIED ALREADY EXISTS
4 THE SPECIFIED FILE COULD NOT BE FOUND
5 SYSTEM DIRECTOR ERROR—REBOOT SYSTEM
6 THE SYSTEM DIRECTORY SPACE IS FULL
7 ALL AVAILABLE DISK SPACE HAS BEEN USED
8 READ PAST END OF FILE
9 DISK FILE READ ERROR
10 DISK FILE WRITE ERROR
1 THE FILE OR DISK ISWRITE PROTECTED
12 THE FILE ISPROTECTED—FILE NOT DELETED
13 ILLEGAL FILE CONTROL BLOCK SPECIFIED
14 ILLEGAL DISK ADDRESS ENCOUNTERED
15 AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
16 DRIVES NOT READY
17 THE FILE ISPROTECTED—ACCESS DENIED
18 SYSTEM FILE STATUS ERROR
19 FMS DATA INDEX RANGE ERROR
20 FMS INACTIVE—REBOOT SYSTEM
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK TOO SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR—FILE DAMAGED
26 COMMAND SYNTAX ERROR—RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONFIGURATION

For more details concerning the meanings of these error messages, consult the ‘Advanced
Programmer’s Guide'.

VIl. SYSTEM MEMORY MAP
The following is a brief list of the RAM memory space required by the FLEX Operating System.
All address are in hex.
0000 - 7FFF User RAM
*Note: Some of this space is ued by NEWDISK, BACKUP and other utilities.

AQQQ - BFFF Disk Operating System
ADOO FLEX cold start entry address
ADO3 FLEX warm start entry address
A100 - AG6FF Utility command space
AD4A - AQ7F System stack

For a more detailed memory map, consult the ‘Advanced Programmer’s Guide'.

-3.2-
DMAF1

VIIL.FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX 1/0 functions to operate properly, all user program character input/output
subroutines should be vectored thru the FLEX operating system rather than the computer’s moni-
tor. Below is a list of FLEX's I/O jumps and a brief description of each. All given addresses are in

hexadecimal.

AD15
This subroutine is functionally equivalent to SWTBUG®'s or DISKBUG®’s character input routine
EIAC. This routine will look for one character from the control terminal (1/0 #1) and store it in the
A accumulator. Once called, the input routine will loop within itself until a character has been in-
put. Anytime input is desired, the call JSR $ AD15 should be used.
AD15 automatically sets the 8th bit to @ and does not check for parity. When using the sub-

routine the processor’s registers are affected as follows:

ACC A loaded with the character input from the terminal

ACCB not affected

IXR not affected

AD18
This subroutine is used to output one character from the computer to the control port (1/0 #1).
To use AD18 the character to be output should be placed in the A accumulator in its ASCII
form. To output the letter A on the control terminal, the following program could be used:
LDA A#$41
JSR $AD18
The processor’s registers are affected as follows:
ACCA changed internally
ACCB not affected
IXR not affected
This routine is functionally equivalent to EIDI in SWTBUG® and DISKBUG®monitors.

ADIE
ADIE is the entry point of the subroutine used to output a string of text on the control terminal.
When address ADIE is called, a carriage return and line feed will automatically be generated and data
output will begin at the location pointed to by the index register. Output will continue until a 04 is
seen. The same rules for using the ESCAPE and RETURN keys for stopping output apply as des-
cribed earlier.
The accumulator and register status after using ADIE are as follows:
ACCA Changed during the operation
ACCB UNCHANGED .
IXR Contains the memory location of the last character read from the string
(usually the @4 unless stopped by the ESC key)
NOTE: The ability of using backspace and line delete characters is a function of your user
program and not of the FLEX 1/O routines described above.
For additional information consult the ‘Advanced Programmer’s Manual’.

-3.3~
DMAF1

IX. BOOTING THE FLEX SYSTEM

Below is a short bootstrap program which will load the FLEX operating system from the system
diskette. This boot is not necessary for user’s having a DISKBUG® monitor—DISKBUG®already con-
tains this boot.

To bring up the FLEX operating system, enter the bootstrap program below instruction by in-
struction using the memory examine and change function of your monitor. As shown, the bootstrap
loads from hex address @100 to P15A. After entering the bootstrap, set the computer’s program
counter AP48 and AD49 to B100. After a system diskette is installed in drive @, a G may be entered
to execute the bootstrap.

If the system will not boot properly, re-position the system diskette in the drive and re-execute
the bootstrap. The diskette to be booted must be initialized and must also contain the disk opera-
ting system software.

0100 C& O1 DIZHE LA B #1 LOAD DRIVE NUMEER

0102 F7 70 22 ETA B SECRES SET SECTOR TO i

0105 5= comM b GENERATE INVERTED DATA
Q104 F7 90 24 LDIsksC =TA B DRVRESG

0107 20 4A ESR OIZHET TEST SELECTED DRIVE STATUS
O10E 27 OA EBE®: DIskRC GO ISSUE A RESTORE

Q100 on LISKND SEC

010E 5% ROL E

O10F C5 10 EIT B #%10 TEST DRIVE ZELECT EIT

0111 2& F= ENE DIzkESC SCAN IF =0

0112 C& FE LA B #$FF-1 SET EACE TO DRIVE 1

0115 20 EF ERA DIzk=C

0117 &84 Oz LDIZERC LDA A #3502 LOAD THE RESTORE COMMAND
01iv EB7 906 20 ETA A COMREG

011C 2D ZF ESR DISHWT WAIT FOR COMMAND TO FINISH
O11E CE FE FF Lox #FFFFF-EYTES LOAD DMA EYTE COUNT
0121 FF 70 QZ =5TX CNTREG ETORE IN COUNT REGISTER .
0124 CE SE FF LoX #EFFFF-$A100 SET THE LOAD ADDRESS
0127 FF 70 Q0O =5TX ADDREG

012A 846 FD LDA A #$FF-2 LOAD THE CHANNEL REGIZTER
0122 B7 Y0 10 STA A CCREG

O12F 3& FE LA A H$FF-1 SET THANNEL O

01z1 B7 70 14 ZTA A FRIREG

G134 =24 BC LDA A #3200 SET SINGLE SECTOR READ
0134 E7 70 20 =TA A COMREG

01Zv FE 90 0Z DIZHEDW LDX CNTREG GET THE EYTE COUNT

0130 22 FE FF ZFX #$FFFF-EYTES

O1zF 27 F& EER DISKDW LOOF AGAIN

0141 &84 FF LA A #$FF SET THE PRI REGISTER TO ©
014= E7 70 14 5TA A FRIREG

G144 20 05 EsR DISEWT WAIT FOR COMMAND TO FINISH
0145 ED A1 OO JER $A100 JUMF TO SECTOR LOADED OFF OF DISK
014E 20 CO ERA DISEND IF RTE, USE NEXT DRIVE
0140 20 O& DISEWT ESR DIISEET CHECE READY ESTATUZ

Q14F 246 FC ENE DISEWT LooF

0151 47 ASR A TEST EBUsY EBIT

0152 25 F92 BCE DIZEWT WAIT FOR NOT EUSY

0154 =9 RTZ

0155 B& 70 20 DISEST LOA A COMREG

0152 85 20 EIT A& #3520 TEST DRIVE READY EIT

01SA =29 RTS

— 3.4 —
DMAF1

X Requirements for the PRINT.SYS Printer Driver

FLEX, as supplied, includes a printer driver that will work with most parallel type printers, such as

the SWTPC PR-40. If desired, the printer driver may be changed to accommodate other types of
' printers. Included is the source listing for the supplied driver. Additional information on the re-

quirements for the PRINT.SYS driver can be found in the ‘Advanced Programmer’s Guide'.

1.) The driver must be in a file called PRINT.SYS
2.) Hex location @010 must contain the starting address of the port initialization routine.

3.) Hex location @012 and location 710D must contain the address of the character output
routine.

4.) When the printer character output routine is called by FLEX, the character to be output
will be in the A accumulator. The output routine must not destroy the index register or
the B accumulator.

5.) Both the initialization and output routine may reside anywhere in memory, but must not
conflict with any utilities or programs which will use P.

6.) Both the initialization and the output routine must end with a return from subroutine

RTS.

1 NAM FRINT

Z OFT FAG

i #GENERATES THE FRINT 2¥YZ FILE FOR UESE
4 #WITH THE F AND FRINT UTILITIEZ

bl #VERSION 1

7 201 FIA EGi S2G1C FORT #7

. V7 #FRINTER INITIALIZATION (MUJST EBE AT $ACLCO)

10 ACCO ORG SACZ0

i1l ACCO 24 FF FINIT LOA A #%FF

2 ACCZ BT 20 10 ZTA A FIA ALL QUTFUTES
12 ACCS 526 3 LDAa A #SZE

id ACC7 E7 =20 1D ZTAa A FIA+] SET UF HANLDZHAKE TYFE
15 ACCA =9 RTZ

17 #CHECKE IF PRINTER READY ROUTINE

13 #MUUST BE LOCATED AT $ACLOE

17 AChE ORIG sACDE
20 ACDE 70 20 1D PICHE T=T FIAa+1
21 ACLDE 39 RTZ
22 ACDC B7 20 10 FOHESE STA A FIA+1
I3 ACDF Zv ’ RTZ
25 #OJITFUT THARACTER ROUTINE
2é& #MUST BE LOCATED AT SACE4S
Z7 ALCE4S ORG SACESL
23 ACE4 2D FZ2 FOUT EsR FiHE
27 ACEA ZA FC EFL FoUT
20 ACE=R 70 20 1 TST FIA
Z1 ACEER B7 20 1icC ZTA A FIA
22 ACEE 24 24 LOA A #3324
3 ACFO B7 20 10 STA A FIA+1

‘ 24 ACFZ =24 ZE LDA A #3ZE
2D ACFS 20 ES ERA FCHES
Tk END
CONTINUED
~35-—

DMAF1

COMMAND SUMMARY

APPEND, (file spec) {,(file list) },(file spec)

Default extension: .TXT

Description page: A.1.1
ASN { , W=(drive) }{,S=(drive) }

Description page: A.2.1

BACKUP, (input drive), (output drive)

Description page: B.1.1
BUILD,(file spec)
Default extension: .TXT
Description page: B.2.1
CAT {,(drive list) }{,(match list) }
Description page: C.1.1
COPY, (file spec),(file spec)
COPY, (file spec),(drive)
COPY, (drive),(drive) { ,(match list) }
Descriptior page: C.2.1

DATE (mm,dd,yy)
Description page: D.2.1

DELETE,(file spec) {,(file list) }
Description page: D.1.1
EXEC, (file spec)
Default extension: .TXT
Description page: E.1.1
GET, (file spec) {,(file list) }
Description page: 1.4

| (file spec),(command)
Default extension: .TXT
Description page: 1.1.1

JUMP, (hex address)
Description page: J.1.1
LINK,(file spec)
Default extension: .SYS
Description page: L.1.1

LIST,(file spec) {,(line range) }{,N }
Default extension: .TXT
Description page: L.2.1

MEMTEST1

Description page: M.1.1
MON

Description page: 1.4
NEWDISK, (drive)

Description page: N.1.1

O (file spec),(command)
Default extension: . OUT
Description page: 0.1.1

PRINT (file spec)
Default extension: .OQUT
Description page: P.2.1
PROT, (file spec),(option list)
Description page: P.3.1
P, (command)
Description page: P.1.1

RENAME,(file spec 1),(file spec 2)
Default extension: .TXT
Description page: R.1.1

SAVE,(file spec),(begin adr),(end adr) { ,(transfer adr) }
Default extension: .BIN
Description page: S.1.1
SAVE.LOW
Description page: S.2.1
STARTUP
Description page: S.3.1
TTYSET { ,(parameter list) }
Description page: T.1.1

VERIFY {,ON}
VERIFY {,OFF}
Description page: V.1.1

VERSION, (file spec)
Default extension: .CMD
Description page: V.2.1

XOUT (file spec)
Description page: X.1.1

—41-
DMAF1

	2023-01-26-14-10-13-01
	2023-01-26-14-10-34-01
	2023-01-26-14-11-9-01
	2023-01-26-14-11-28-01
	2023-01-26-14-11-59-01
	2023-01-26-14-12-17-01
	2023-01-26-14-12-40-01
	2023-01-26-14-12-57-01
	2023-01-26-14-13-21-01
	2023-01-26-14-13-39-01
	2023-01-26-14-14-11-01
	2023-01-26-14-14-34-01
	2023-01-26-14-15-9-01
	2023-01-26-14-15-27-01
	2023-01-26-14-15-57-01
	2023-01-26-14-16-15-01
	2023-01-26-14-16-44-01
	2023-01-26-14-17-2-01
	2023-01-26-14-17-23-01
	2023-01-26-14-17-46-01
	2023-01-26-14-18-7-01
	2023-01-26-14-18-41-01
	2023-01-26-14-19-2-01
	2023-01-26-14-19-24-01
	2023-01-26-14-19-47-01
	2023-01-26-14-20-9-01
	2023-01-26-14-20-30-01
	2023-01-26-14-20-50-01
	2023-01-26-14-21-13-01
	2023-01-26-14-21-32-01
	2023-01-26-14-21-54-01
	2023-01-26-14-22-14-01
	2023-01-26-14-22-33-01
	2023-01-26-14-22-54-01
	2023-01-26-14-23-15-01
	2023-01-26-14-23-36-01
	2023-01-26-14-23-57-01
	2023-01-26-14-24-23-01
	2023-01-26-14-24-49-01
	2023-01-26-14-25-11-01
	2023-01-26-14-25-31-01
	2023-01-26-14-25-51-01
	2023-01-26-14-26-10-01
	2023-01-26-14-26-30-01
	2023-01-26-14-26-49-01
	2023-01-26-14-27-10-01
	2023-01-26-14-27-34-01
	2023-01-26-14-28-3-01
	2023-01-26-14-28-22-01
	2023-01-26-14-28-52-01
	2023-01-26-14-29-10-01
	2023-01-26-14-29-32-01
	2023-01-26-14-29-53-01
	2023-01-26-14-30-13-01
	2023-01-26-14-30-32-01
	2023-01-26-14-30-53-01
	2023-01-26-14-31-13-01
	2023-01-26-14-31-36-01
	2023-01-26-14-31-55-01
	2023-01-26-14-32-15-01
	2023-01-26-14-32-36-01
	2023-01-26-14-32-59-01
	2023-01-26-14-33-17-01

