TANT NOTE

-y & Tech lcal System‘i Corpultants wullﬁuot aisume responsibility
for any damages mcur d or generat d by; ‘such materi Alsc?, Southwest Technl

piniy: suCosposstion and Techmcal stems Consultantm ientherights
make changes in such material at any time

\ stems Consult ints

T [

219 W, RHAPSODY SAN ANTONIO, TEXA 78216.

‘ CONTENTS

. L, INErOUCHION « o v e v sve s enesraeneenenennns Ceeieeneens e e te e 1
1. Disk OperatingSystemovvvvvvrvotcanvarsnnas ceeseenanns e reerte et 1
DOSMemoryMap.ovvvvuenn C e e vetetennaeres ettt re st s a e 2

. User Callable Routines Crretenaenreen C et raeesreere e ae e 5
User Written Commands cvcovvernnn o T F R R R R R 10

Disk Resident Commands.ccvveevessnee e s ena et ereser i e 10

Comments About Commands.......... et e e tr et eaas et ettt e e an e 11

Examples 0f DOS Calls . v vve e ieroennrnanronssnnstnsisstseonansans 11

111, File Management SYStemM.t v rierunroorasansoosaesasoassassassonosnnses 11

File CONtrol BlOCKS . o« v v vttt eerseseoseoaneesossassssasssssasssscassannns 12

. FMS Entry POiNtS . .o ivieensnennnenorneasoasosssassoansasassasnsannss 15
FMS Global Variables ccvvveeeternennses et e s aee e ae e s e e 15

‘ FEMS FUNCLION COUBS. .+ vttt v e tv s s aseneeaesscontosssssossssseasnssanasssus 16
RaNdOMm Files + v v vt v ettt et enseesonsnessossassassasssosessstsassnessas 22

Error NUMDEIS &+ oo vt ettt s enenseseneneesasssassassssasassstsssnnnnssnss 22

) V. DiSK DIIVEIS. « v v v v et et es e e s senneesenasnnnenesasnnsnnsssessonsannnnaoss 24
V. Disk Structurescvovvveenesens et e seee et e 25

Diskette INitialization . « v oo v ve st e toeeetenecosssrsossstosssssasstssossanasos 25

DireCtory SECTOMS . v\ vttt vv vt sssosenanosanassasssosassssasasosntaons .25

Data SeCtOrS « v v v vttt ce ittt e et e rrarsar e 26

Binary Files. .. .ovvviiererunserennionannronnneenns e nene e 26

@ B a1 T R R R R R R R RRRRE 27
VI. Writing Utility Commands. . ..o ovv et vevtnenrnonsrsrasestotossrorastecnsnsaos 27

EXaMPle Program ... vvvv i ene s erntosattsnasaaaraenst sttt essaasens 29

Vil. The DOS LINK Utility . .vvvvvevans e rereaereenes e Cer e 31

VHLELPrinter ROULINGS . c v v v veveneeesetonnoossrassososnnnas e e rere et 31

The P ULItY c oo vt ee et en e innrntsensenonssenssasnssassstoanansassssassns 32

Preface

The purpose of the Advanced Programmer’s Manual is to providéfthe assembler language program-
mer with the information required to make effective use of the available system routines and func-
tions. This manual applies to the eight inch version of FLEX. The programmer should keep this
manual close at hand while learning the system. It is organized to make it convenient as a quick
reference guide as well as a thorough reference manual. The manual is not written for the novice
programmer and assumes the user to have a thorough understanding of assembler language pro-
gramming techniques.

Copyright Notice -

The FLEX Operating System and all of its associated documentation are provided for personal use
and enjoyment by the purchaser. The entire program and all documentation, including this manual,
are copyrighted by Technical Systems Consultants, Inc., and reproduction by any means is strictly
prohibited. Use of the FLEX Operating System and/or its documentation, or any part thereof,
for any purpose other than single end use is strictly prohibited.

"FLEX is a trademark of Technical Systems Consultants, Inc.

Introduction

The FLEX Operating System consists of three main parts: the Disk Operating System (DOS) which
processes commands, the File Management System (FMS) which manages files on a diskette, and
the Utility Command Set, which are the user-callable commands. The_ Utility Command Set is des-
cribed in the FLEX User's Guide. Details of the Disk Operating System and File Management
System portions of FLEX are described in this manual, which is intended for the programmer who
wishes to write his own commands or process disk files from his own program.

When debugging programs which use disk files and the File Management System, the user
should take the following precautions:

1. Write-protect the system diskette by exposing the write-enable cutout on the diskette. This
will prevent destruction of the system disk in case the program starts running wild.

2. Use an empty scratch diskette as the working diskette to which your program will write
any data files. If something goes wrong and the diskette is destroyed, no valuable data will
have been lost.

3. Test your program repeatedly, especially with “’special cases” of data input which may not be
what the program is expecting. Well-written programs abort gracefully when detecting errors,
not dramatically.

A careful programmer, using the information in this manual, should be able to make the fullest
use of his floppy disk system.

DISCLAIMER

This product is intended for use only as described in this document and the FLEX User’s Guide.
Technical Systems Consultants and Southwest Technical Products Corporation will not be respon-
sible for the proper functioning of features or parameters. The user is urged to abide by the
warnings and cautions issued in this document lest valuable data or diskettes be destroyed.

PATCHING “FLEX"”

It is not possible to patch FLEX. Technical Systems Consultants cannot be responsible for any des-
tructive side-effects which may result from attempts to patch FLEX.

The Disk Operating System
The Disk Operating System (DOS) forms the communciation link between the user (via a computer
terminal) and the File Management System. All commands are accepted through DOS. Functions
such as file specification parsing, command argument parsing, terminal 1/O, and error reporting
are all handled by DOS. The following sections describe the DOS global variable storage locations
(Memory Map), the DOS user callable subroutines, and give examples of some possible uses.

-_f - .

Memory Map

The following is a description of those memory locations within the DOS portion of FLEX which
contain information of interest to the programmer. The user is cautioned against utilizing for his
own purposes any locations documented as being either “reserved’’ or ‘‘system scratch”, as this
action may cause destruction of data.

$A080 - SADFF — Line Buffer
The line buffer is a 128 byte area into which characters typed at the keyboard are placed by
the routine INBUF. All characters entered from the keyboard are placed in this buffer with the
exception of control characters. Characters which have been deleted by entering the backspace
character do not appear in the buffer, nor does the backspace character itself appear. The
carriage return signaling the end of the keyboard input is, however, put in the buffer. This
buffer is also used to hold the STARTUP file during a coldstart (boot) operation.

$ACO0 — TTYSET Backspace Character
This is the character which the routine INBUF will interpret as the Backspace character. It
user definable through the TTYSET DOS utility. Default = $@8, a Control—H (ASCII BS).

$ACO1 — TTYSET Delete Character
This is the character which the routine INBUF will interpret as the line cancel or delete
character. It is user definable through the TTYSET DOS Utility. Default = $18, a control—X
(ASCII CAN).

$ACO2 — TTYSET End of Line Character .
This is the character DOS recognizes as the multiple command per line separator. It is user
definable through the TTYSET Utility. Default = $3A, a colon (:).

$ACO3 — TTYSET Depth Count _ 4
This byte determines how many lines DOS will print on a page before Pausing or issuing Ejects.
It may be set by the user with the TTYSET command. Default = 0.

$ACO4 — TTYSET Width Count
This byte tells DOS how many characters to output on each line. I1f zero, there is not limit
to the number output. This count may be set by the user using TTYSET. Default = Q.

$ACO5 — TTYSET Null Count
This byte informs DOS of the number of null or pad characters to be output after each car-
riage return, line feed pair. This count may be set using TTYSET. Default = 4,

$ACO6 — TTYSET Tab Character
This byte defines a tab character which may be used by other programs, such as the Editor.
DOS itself does not make use of the Tab character. Default = @, no tab character defined.

$ACO7 — TTYSET Backspace Echo Character
This is the character the routine INBUF will echo upon the receipt of a backspace character.
If the backspace echo character is set to a $08, and the backspace character is also a $08,
FLEX will output a space ($20) prior to the outputting of the backspace echo character. De-
fault = 0.

$ACO8 — TTYSET Eject Count
The Eject Count instructs DOS as to the number of blank lines to be output after each page.
(A page is a set of lines equal in number to the Depth Count.) If this byte is zero, no Eject
lines are output. Default = 0.

$AC09 — TTYSET Pause Control
The Pause byte instructs DOS what action to take after each page is output. A zero value indi-
cates that the pause feature is enabled; a non-zero value, pause is disabled. Default = $FF,
pause disabled.

-2

$ACOA — TTYSET Escape Character
The Escape character causes DOS to pause after an output line. Default = $18, ASCI!I ESC.

$ACOB — System Drive Number
This is the number of the disk drive from which commands are loaded. If this byte is $FF,
all ready drives will be searched. Default = $FF, all drives enabled.

$ACOC — Working Drive Number
This is the number of the default disk drive referenced for non-command files. If this byte is
$FF, all ready drives will be searched. Default = $FF, all drives enabled.

$ACOD — System Scratch

$ACOE - SAC10 — System Date Registers
These three bytes are used to store the system date. It is stored in binary form with the month
in the first byte, followed by the day, then the year. The year byte contains only the tens and
ones digits.

$AC11 — Last Terminator
This location contains the most recent non-alphanumeric character encountered in processing
the line buffer. See commentary on the routines NXTCH and CLASS in the section “‘User-
Callable System Routines”.

$AC12 - $AC13 — User Command Table Address
The programmer may store into these locations the address of a command table of his own
construction. See the section called ““User-Written Commands’* for details. Default = 0000,
no user command table is defined. :

$AC14 - $AC15 — Line Buffer Pointer ‘
These locations contain the address of the next character in the Line Buffer to be processed.
See documentation of the routines INBUFF, NXTCH, GETFIL, GETCHR, and DOCMND in
the section ‘‘User-Callable System Routines’ for instances of its use.

$AC16 - SAC17 — Escape Return Register
These locations contain the address to which to jump if a RETURN is typed while output
has been stopped by an Escape Character. See the FLEX User’s Guide, TTYSET, for informa-
tion on Escape processing. See also the documentation for the routine PCRLF in the section
called "User-Callable System Routines'’.

$AC18 — Current Character
This location contains the most recent character taken from the Line Buffer by the NXTCH
routine. See documentation of the NXTCH routine for additional details.

$AC19 — Previous Character
This location contains the previous character taken from the Line Buffer by the NXTCH
routine. See documentation of the NXTCH routine for additional details.

$AC1A — Current Line Number
This location contains a count of the number of lines currently on the page. This value is com-
pared to the Line Count value to determine if a full page has been printed.

$AC1B - SAC1C — Loader Address Offset
These locations contain the 16-bit bias to be added to the load address of a routine being
loaded from the disk. See documentation of the System Routine LOAD for details. These
locations are also used as scratch by some system routines.

$AC1D — Transfer Flag
After a program has been loaded from the disk (see LOAD documentation), this location is
non-zero if a transfer address was found during the loading process. This location is also used
as scratch by some system routines.

-3

$ACI1E - SAC1F — Transfer Address
If the Transfer Flag was set non-zero by a load from the disk (see LOAD documentation),
these locations contain the last transfer address encountered. If the Transfer Flag was set zero
by the disk load, the content of these locations is indeterminate.

$AC20 — Error Type
This location contains the error number returned by several of the File Management System
functions. See the ““Error Numbers’’ section of this document for an interpretation of the error
numbers.

$AC21 — Special I/0O Flag
If this byte is non-zero, the PUTCHR routine will ignore the TTYSET Width feature and also
ignore the Escape Character. The routine RSTRIO clears this byte. Default = 0.

$AC22 — Output Switch
If zero, output performed by the PUTCHR routine is through the routine OUTCH. If non-
zero, the routine OUTCH2 is used. See documentation of these routines for details.

$AC23 — Input Switch
If zero, input performed by GETCHR is through the routine INCH. If it is non-zero, the rou-
tine INCH2 is used. See documentation of these routines for details.

$AC24 - SAC25 — File Qutput Address
These bytes contain the address of the File Control Block bemg used for file output. If the
bytes are zero, no file output is performed. See PUTCHR description for details. These loca-
tions are set to zero by RSTRIO.

$AC26 - $AC27 — File Input Address
These bytes contain the address of the File Control Block being used for file input. If the bytes
are zero, no file input is performed. The routine RSTRIO clears these bytes. See GETCHR
for details.

$AC28 — Command Flag
This location is non-zero if DOS was called from a user program via the DOCMND entry
point. See documentation of DOCMND for details.

$AC29 — Current Output Column
This location contains a count of the number of characters currently in the line being output
to the terminal. This is compared to the TTYSET Width Count to determine when to start a
new line. The output of a control character resets this count to zero.

$AC2A — System Scratch

$AC2B - $AC2C — Memory End
These two bytes contain the end of user memory. |If 32K of memory exists in the machine,
the DOS reserves a portion of the upper memory for future utility use. This location is set
during system boot and may be read by programs requiring this information.

$AC2D - SAC2E — Error Name Vector
If these bytes are zero, the routine RPTERR will use the file ERRORS.SYS as the error file.
If they are non-zero, they are assumed to be the address of an ASCII string of characters
(in directory format) of the name of the file to be used as the error file. See the description
of RPTERR for more details.

$AC2F — File Input Echo Flag
If this byte is non-zero (default) and input is being done through a file, the character input will
be echoed by the output channel. If this byte is zero, the character retrieved will not be
echoed.

$AC30 - $AC4D — System Scratch

$AC4E - SACBF — System Constants

$ACCO - SACD7 — Printer Initialize
This area is reserved for the overlay of the system printer initialization subroutine.

$ACDS8 - $ACE3 — Printer Ready Check
This area is reserved for the overlay of the system “‘check for printer ready’’ subroutine.

$ACE4 - SACF7 — Printer Output
This area is reserved for the overlay of the system printer output character routine. See Printer
Routine descriptions for details.

$ACF8 - $ACFF — System Scratch

User-Callable System Routines

Unless specifically documented otherwise, the content of all registers should be presumed destroyed
by calls to these routines. All routines, unless otherwise indicated, should be called with a JSR
instruction.

$ADODP (COLDS) Coldstart Entry Point

The BOOT program loaded from the disk jumps to this address to initialize the F LEX system.
Both the Disk Operating System (DOS) portion and the File Management System portion
(FMS) of FLEX are initialized. After initialization, the FLEX title line is printed and the
STARTUP file, if one exists, is loaded and executed. This entry point is only for use by the
BOOT program, not by user programs. Indiscriminate use of the Coldstart Entry Point by user
programs could result in the destruction of the diskette. Documentation of this routine is in-
cluded here only for completeness.

$ADO3 (WARMS) Warmstart Entry Point

This is the main re-entry point into DOS from user programs. A JMP instruction should be
used to enter the Warmstart Entry Point. Here, the system stack is reset, the monitor (SWT-
BUG/DISKBUG) program counter (3A048) is reset, as well.as the Escape Return Register. At
this point, the main loop of DOS is entered. The main loop of DOS checks the Last Termina-
tor location for a TTYSET end-of-line character. If one is found, it is assumed that there is
another command on the line, and DOS attempts to process it. If no end-of-line is in the Last
Terminator location DOS assumes that the current command line is finished, and looks for a
new line to be input from the keyboard. If, however, DO” was called from a user program
through the DOCMND entry point, control will be returned (o the user program when the end
of a command line is reached.

$ADO6 (RENTER) DOS Main Loop Re-entry Point
This is a direct entry point into the DOS main loop. None of the Warmstart initialization is
performed. This entry point must be entered by a JMP instruction. Normally, this entry point
is used internally by DOS and user-written programs should not have need to use it. For an
example of use, see ‘‘Printer Driver’’ section for details.

$AD@9 (INCH) Input Character

$ADOC (INCH2) Input Character
Each of these routines inputs one character from the keyboard, returning it to the calling pro-
gram in the A-register. The address portion of these entry points is set to the SWTBUG/DISK-
BUG Input Character routine. It is not possible to patch this address to refer to some other
routine. The GETCHR routine normally uses INCH but may be instructed to use INCH2 by
setting the “‘Input Switch’’ non-zero (see Memory Map). The user’s program may change the
jump vector at the INCH address to refer to some other input routine such as a routine to get
a character from paper tape. The QUTCH2 address should never be altered. The Warmstart

Entry Point resets the INCH jump vector to the same routine as INCH2 and sets the Input
Switch to zero. RSTRIO also resets these bytes. User programs shouiti use the GETCHR rou-
tine, documented below, rather than calling INCH, because INCH does not check the TTYSET
parameters. The B and X registers are preserved.

. $ADOF (OUTCH) Output Character
$AD12 (OUTCH2) Output Character
On entry to each of these routines, the A-register should contain the character being output.
. Both of these routines output the character in the A-register to an output device. The OUTCH
routine usually does the same as OUTCH2; however, OUTCH may be changed by programs to
refer to some other output routine. For example, OUTCH may be changed to drive a line prin-
ter. OUTCH2 is never changed, and always points to the SWTBUG/DISKBUG Output Charac-
ter routine. This address may not be patched to refer to some other output routine. The rou- .
tine PUTCHR, documented below, calls one of these two routines, depending on the content
of the location ‘Output Switch” (see Memory Map). The Warmstart Entry Point resets the
OUTCH jump vector to the same routine as OUTCH2, and sets the Output Switch to zero.
. RSTRIO also resets these locations. User routines should use PUTCHR rather than calling
OUTCH or OUTCH2 directly since these latter two do not check the TTYSET parameters. The
B and X registers are preserved.

$AD15 (GETCHR) Get Character
This routine gets a single character from the keyboard. The character is returned to the calling
program in the A-register. The Current Line Number location is cleared by.a call to GETCHR.
Because this routine honors the TTYSET parameters, its use is preferred to that of INCH.
If the location ““Input Switch’’ is non-zero, the routine INCH2 will be used for input. If zero,
the byte at “’File Input Address” is checked. If it is non-zero, the address at this location is
used as a File Control Block of a previously opened input file and a character is retrieved from
the file. If zero, a character is retrieved via the INCH routine. The X and B registers are pre-

. served.

$AD18 (PUTCHR) Put Character
This routine outputs a character to a device, honoring all of the TTYSET parameters. On
entry, the character should be in the A-register. If the ““Special /O Flag'' (see Memory Map) is
zero, the column count is checked, and a new line is started if the current line is full. If an
ACIA is being used to control the monitor terminal, it is checked for a TTYSET Escape
Character having been typed. If so, output will pause at the end of the current line. If the loca-
tion ““Output Switch’’ is non-zero, the routine OUTCH?2 is used to send the character. If zero,
the location File Output Address is checked. If it is non-zero the contents of this location is
used as a address of a File Control Block of a previously opened for write file, and the charac-
ter is written to the file. If zero, the routine OUTCH is called to process the character. Nor-
. mally, OUTCH sends the character to the terminal. The user program may, however, change
the address portion of the OUTCH entry point to go to another character output routine.
The X and B registers are preserved.

$AD1B (INBUFF) Inputinto Line Buffer
This routine inputs a line from the keyboard into the Line Buffer. The TTYSET Backspace
and Delete characters are checked and processed if encountered. All other control characters
except RETURN and LINE FEED, are ignored. The RETURN is placed in the buffer at the
. end of the line. A LINE FEED is entered into the buffer as a space character but is echoed
back to the terminal as a Carriage Return and Line Feed pair for continuation of the text on a
new line. At most, 128 characters may be entered on the line, including the final RETURN. If
more are entered, only the first 127 are kept, the RETURN being the 128th. On exit, the Line
. Buffer Pointer is pointing to the first character in the Line Buffer. Caution: The command
line entered from the keyboard is kept in the Line Buffer. Calling INBUF from a user program
will destroy the command line, including all unprocessed commands on the same line. Using
INBUF and the Line Buffer for other than DOS commands may result in unpredictable side-
effects. :

$AD1E (PSTRNG) Print String
This routine is similar to the PDATA routine in SWTBUG and DISKBUG On entry, the X-
register should contain the address of the first character of the string to be printed. The string
must end with an ASCII EOT character ($04). This routine honors all of the TTYSET conven-
. tions when printing the string. A carriage return and line feed are output before the string.
The B register is preserved.

$AD21 (CLASS) Classify Character
. This routine is used for testing if a character is alphanumeric (i.e. a letter or a number). On
entry, the character should be in the A-register. |f the character is alphanumeric, the routine

returns with the carry flag cleared. If the character is not alphanumeric, the carry flag is set
and the character is stored in the Last Terminator location. All registers are preserved by this
routine.

$AD24 (PCRLF) Print Carriage Return and Line Feed
In addition to printing a carriage return and line feed, this routine checks and honors several
‘ TTYSET conditions. On entry, this routine checks for a TTYSET Escape Character having
been entered while the previous line was being printed. If so, the routine waits for another
TTYSET Escape Character or a RETURN to be typed. If a RETURN was entered, the routine
clears the Last Terminator location so as to ignore any commands remaining in the command
line, and then jumps to the address contained in the Escape Return Register locations. Unless
changed by the user’s program, this address is that of the Warmstart Entry Point. If, instead
of a RETURN, another TTYSET Escape Character was typed, or it wasn’t necessary to wait
for one, the Current Line Number and the TTYSET Pause feature is enabled, the routine waits
for a RETURN or a TTYSET Escape Character, as above. Note that all pausing is done before
the carriage return and line feed are printed. The carriage return and line feed are now printed,
followed by the number of nulls specified by the TTYSET Null Count. If the end of the page
was encountered on entry to this routine, an ‘‘eject’’ is performed by issuing additional car-
. riage return, line feeds, and nulls until the total number of blank lines is that specified in the
TTYSET Eject Count. The X register is preserved.

$AD27 (NXTCH) Get Next Buffer Character
The character in location Current Caaracter is placed in location Previous Character. The
character to which the Line Buffer Pointer points is taken from the Line Buffer and saved in
the Current Character location. Multiple spaces are skipped so that a string of spaces looks no
different than a single space. The line Buffer Pointer is advanced to point to the next charac-
ter unless the character just fetched was a RETURN or TTYSET End-of-Line character. Thus,
once an end-of-line character or RETURN is encountered, additional calls to NXTCH will con-
tinue to return the same end-of-line character or RETURN. NXTCH cannot be used to cross
into the next command in the buffer. NXTCH exits through the routine CLASS, automatically
. classifying the character. On exit, the character is in the A-register, the carry is clear if the
character is alphanumeric, and the B-register and X-register are preserved.

$AD2A (RSTRIO) Restore 1/0 Vectors
This routine forces the OUTCH jump vector to point to the same routine as does the OUT-
CH2 vector. The Output Swtich location and the Input Switch location are set to zero. The
INCH jump vector is reset to point to the same address as the INCH2 vector. Both the File
Input Address and the File Output Address are set to zero. The A-register and B-register are
. preserved by this routine.

$AD2D (GETFIL) Get File Specification
On entry to this routine, the X-register must contain the address of a File Control Block (FCB)
and the Line Buffer Pointer must be pointing to the first character of a file specification in the
. Line Buffer. This routine will parse the file specification, storing the various components in
the FCB to which the X-register points. If a drive number was not specified in the file specifi-
cation, the working drive number will be used. On exit, the carry bit will be clear if no error
was detected in processing the file specification. The carry bit will be set if there was a format
error in the file specification. If no extension was specified in the file specification, none is

-7~

stored. The calling program should set the default extension desired after GETFIL has been

called by using the SETEXT routine. The Line Buffer Pointer is left pointing to the character

immediately beyond the separator, unless the separator is a carriage return or End of Line

character. If an error was detected, error number 21 is stored in the error status byte of the
. FCB. The X-register is preserved with a call to this routine.

$AD30 (LOAD) File Loader ,
On entry, the X-register must contain the address of a File Control Block which has been
. opened for binary reading of the desired file. This routine is used to load binary files only, not
text files. The file is read from the disk and stored in memory, normally at the load addresses
specified in the binary file itself. It is possible to load a binary file into a different memory
area by using the Loader Address Offset locations. The 16-bit value in the Loader Address Off-
set locations is added to the addresses read from the binary file. Any carry generated out of
the most significant bit of the address is lost. The transfer address, if any is encountered, is not
modified by the Loader Address Offset. Note that the setting of a value in the Loader Address
Offset does not modify any part of the content of the binary file. It does not act as a program
. relocator in that it does not change any addresses in the program itself, merely the location
of the program in memory. On exit, the Transfer Address Flag is zero if no transfer address
was found. This flag is non-zero if a transfer address record was encountered in the binary
file, and the Transfer Address locations contain the last transfer address encountered. The disk
file is closed on exit. |f a disk error is encountered, an error message is issued and control is
returned to DOS at the Warmstart Entry Point.

$AD33 (SETEXT) Set Extension
On entry, the X-register should contain the address of the FCB into which the default exten-
sion is to be stored if there is not an extension already in the FCB. The A-register, on entry,
should contain a numeric code indicating what the default extension is to be. The numeric
codes are described below. If there is already an extension in the FCB (possibly stored there by
. a call to GETFIL), this routine returns to the calling program immediately. |f there is no ex-
tension in the FCB, the extension indicated by the numeric code in the A-register is placed in
the FCB File Extension area. The legal codes are: '
— BIN
- TXT
- CMD
— BAS
— SYS
BAK
— SCR
- DAT
— BAC
— DIR
10 - PRT
11 - OouT
Any values other than those above are ignored, the routine returning without storing any ex-
tension. The X-register is preserved in this routine.

$AD36 (ADDBX) Add B-register to X-register
. The content of the B-register is added to the content of the X-register. The content of the B-
register is destroyed on exit.

$AD39 (OUTDEC) Output Decimal Number
On entry, the X-register contains the address of the most significant byte of a 16-bit (2 byte),
. unsigned, binary number. The B-register, on entry, should contain a space suppression flag.
The number will be printed as a decimal number with leading zeroes suppressed. If the B-
register was non-zero on entry, spaces will be substituted for the leading zeroes. If the B-
register is zero on entry, printing of the number will start with the first non-zero digit.

OCONOOMAWN=-S
!

$AD3C (OUTHEX) Output Hexadecimal Number _
On entry, the X-register contains the address of a single binary byte. The byte to which the
X-register points is printed as 2 hexadecimal digits. The B and X registers are preserved across
this routine.

’ $AD3F (RPTERR) Report Error
On entry to this routine, the X-register contains the address of a File Control Block in which
the Error Status Byte is non-zero. The error code in the FCB is stored by this routine in the
. Error Type location. A call to the routine RSTRIO is made and location Error Vector is
checked. If this location is zero, the file ERRORS.SYS is opened for random read. If this loca-
tion is non-zero, it is assumed to be an address pointing to an ASCI| string {containing any
necessary null pad characters) of a legal file name plus extension (string should be 11 charac-
ters long). This user provided file is then opened for random read. The error number is used in
a calculation to determine the record number and offset of the appropriate error string mes-
age in the file. Each error message string is 63 characters in length, thus allowing 4 messages
per sector. If the string is found, it is printed on the terminal. If the string is not found (due to
. too large of error number being encountered) or if the error file itself was not located on the
disk, the error number is reported to the monitor terminal as part of the message:
DISK ERROR #nnn
Where ‘‘nnn” is the error number being reported. A description of the error numbers is given
elsewhere in this document. :

$AD42 (GETHEX) Get Hexadecimal Number
This routine gets a hexadecimal number from the Line Buffer. On entry, the Line Buffer
Pointer must point to the first character of the number in the Line Buffer. On exit, the carry
bit is cleared if a valid number was found, the B-register is set non-zero, and the X-régister
contains the value of the number. The Line Buffer Pointer is left pointing to the character im-
mediately following the separator character, unless that character is a carriage return or End of
. Line. If the first character examined in the Line Buffer is a separator character {such as a com-
ma), the carry bit is still cleared, but the B-register is set to zero indicating that no actual
number was found. In this case, the value returned in the X-register is zero. If a non-hexadeci-
mal character is found while processing the number, characters in the Line Buffer are skipped
until a separator character is found, then the routine returns to the caller with the carry bit
set. The number in the Line Buffer may be of any length, but the value is truncated to be-
tween 0 and $FFFF, inclusive.

$AD45 (OUTADR) Output Hexadecimal Address
On entry, the X-register contains the address of the most significant byte of a 2-byte hex
value. The bytes to which the X-register points are printed » 1 hexadecimal digits.

. $AD48 (INDEC) Input Decimal Number
This routine gets an unsigned decimal number from the Line Buffer. On entry, the Line Buf-
fer Pointer must point to the first character of the number in the Line Buffer. On exit, the
carry bit is cleared if a valid number was found, the B-register is set non-zero, and the X-
register contains the binary value of the number. The Line Buffer Pointer is left pointing as
described in the routine GETHEX. If the first character examined in the buffer is a separator
character (such as a comma), the carry bit is still cleared, but the B-register is set to zero indi-
cating that no actual number was found. In this case, the number returned in X is zero. The
. number in the Line Buffer may be of any length but the result is truncated to 16 bit precision.

$AD4B (DOCMND) Call DOS as a Subroutine
This entry point allows a user-written program to pass a command string to DOS for proces-
sing, and have DOS return control to the user program on completion of the commands. The
. command string must be placed in the Line Buffer by the user program, and the Line Buffer
Pointer must be pointing to the first character of the command string. Note that this will des-
troy any as yet unprocessed parameters and commands in the Line Buffer. The command

—9—

string must terminate with a RETURN character ($D hex). After the commands have been
processed, DOS will return control to the user’s program with the B-register containing any
error code received from the File Management System. The B-register will be zero if no errors
were detected. Caution: do not use this feature to load programs which may destroy the user
program in memory. An example of a use of this feature of DOS is that of a program wanting
to save a portion of memory as a binary file on the disk. The program could build a SAVE
command in the Line Buffer with the desired file name and parameters, and call the DOCMND
entry point. On return, the memory will have been saved on the disk.

User-Written Commands

The programmer may write his own commands for DOS. These commands may be either disk-resi-
dent as disk files with a CMD extension., or they may be memory-resident in either RAM or ROM.

Memory-Resident Commands

A memory-resident command is a program, already in memory, to which DOS will transfer when
the proper command is entered from the keyboard. The command which invokes the program, and
the entry-point of the program, are stored in a User Command Table created by the programmer in
memory. Each entry in the User Command Table has the following format:

FCC ‘command’ (Name that will invoke the program)

FCB 0

FDB entry address (This is the entry address of the program)

The entire table is ended by a zero byte. For example, the following table contains the commands
DEBUG (entry at $3000) and PUNT (entry at $3200).

FCC ‘DEBUG’ Command Name

FCB 0 :
FDB $3000 Entry address for DEBUG
FCC ‘PUNT’ Command Name

FCB 0

FDB $3200 Entry address for PUNT
FCB 0 End of command table

The address of the User Command Table is made known to DOS by storing it in the User Command
Table Address locations (see Memory Map).

The User Command Table is searched before the disk directory, but after DOS’s own com-
mand table is searched. The DOS command table contains only the GET and MON commands.
Therefore, the user may not define this own GET and MON commands.

Since the User Command Table is searched before the disk directory, the programmer may
have commands with the same name as those on the disk. However, in this case, the commands on
the disk will never be executed while the User Command Table is known to DOS. The User Com-
mand Table may be deactivated by clearing the User Command Table Address locations.

Disk-Resident Command

A disk-resident command is an assembled program, with a transfer address, which has been saved on
the disk with a CMD extension. The ASMB section of the FLEX User’s Guide describes the way
to assign a transfer address to a program being assembled.

Disk commands, when loaded into memory, may reside anywhere in the User RAM Area; the
address is determined at assembly time by using an ORG statement. Most commands may be assem-
bled to run in the Utility Command Space (see Memory Map). Most of the commands supplied with
FLEX run in the Utility Command Space. For this reason, the SAVE command cannot be used to
save information which is in the Utility Command Space or System FCB space as this information
would be destroyed when the SAVE command is loaded.The SAVE.LOW command is to be used in
this case. The SAVE.LOW command loads into memory at location $100 and allows the saving pro-
grams in the $A100 region.

-10-

The System FCB area is used to load all commands from the disk. Commands written to run
in the Utility Command Space must not overflow into the Systen¥ FCB area. Once loaded, the com-
mand itself may use the System FCB area for scratch or as an FCB for its own disk 1/0. See the
example in the FMS section.

General Comments About Commands

User-written commands are entered by a JMP instruction. On completion, they should return con-
trol to DOS by jumping (JMP instruction) to the Warmstart Entry Point (see Memory Map).

Processing Arguments

User-written commands are required to process any arguments entered from the keyboard. The
command name and the arguments typed are in the Line Buffer area (see Memory Map). The Line
Buffer Pointer, on entry to the command, is pointing to the first character of the first argument, if
one exists. If there are no arguments, the Line Buffer Pointer is pointing to either an end-of-line
-character or a carriage return. The DOS routines NXTCH, GETFIL, and GETHEX should be used
by the command for processing the arguments.

Processing Errors

If the command, while executing, receives an error status from either DOS or FMS of such a nature
that the command must be aborted, the program should jump to the Warmstart Entry Point of DOS
after issuing an appropriate error message. Similarly, if the command “should detect an error on its
own, it should issue a message and return to DOS through the Warmstart Entry Point.

Examples of Using DOS Routines

1. Setting up a file spec in the FCB can be done in the following manner. This example assumes
the Line Buffer Pointer is pointing to the first character of a file specification, and the desired
resulting file spec should default to a TXT extension.

LDX #FCB Point to FCB

JSR GETFIL Get file spec into FCB
BCS ERROR Report error if one
LDAA #1 Set extension code (TXT)

JSR SETEXT Set the default extension
The user may now open the file for the desired action, since the file spec is correctly set up in
the FCB. Refer to the FMS examples for opening files.

2. The following examples demonstrate some simple uses of the basic I/O functions provided by
DOS. '
LDAA #A Setup an ASCII A
JSR PUTCHR Call DOS out character

LDX #STRING Point to string

JSR PSTRNG Print CR & LF + string
The above simple examples are to show the basic mechanism for calling and using DOS 1/0
routines.

The File Management System

The File Management System (FMS), forms the communication link between the DOS and the
actual disk hardware. The FMS performs all file allocation and removal on the disk. All file space
is allocated dynamically, and the space used by files is immedately reusable upon that file's dele-
tion. The user of the FMS need not be concerned with the actual location of a file on the disk, or
how many sectors it requires.

Communication with the FMS is done through File Control Blocks. These blocks contain the
information about a file, such as its name and what drive it exists on. All disk I/O performed
through FMS is ““one character at a time’’ 1/0. This means that programs need only send or request
a single character at a time while doing file data transfers. In effect, the disk looks no different than
a computer terminal. Files may be opened for either reading or writing. Any number of files may be
opened at any one time, as long as each one is assigned its own File Control Block.

The FMS is a command language whose commands are represented by various numbers called
Function Codes. Each Function Code tells FMS to perform a specific function such as open a file
for read, or delete a file. In general, making use of the various functions which the FMS offers is
quite simple. The index register is made to point to the File Control Block which is to be used, the
Function Code is stored in the first byte of the File Control Block, and FMS is called as a subrou-
tine (JSR). At no time does the user ever have to be concerned with where its directory entry is
located. The FMS does all of this automatically.

Since the file structure of FLEX is a linked structure, and the disk space is allocated dynami-
cally, it is possible for a file to exist on the disk in a set of non-contiguous sectors. Normally, if a
disk has just been formatted, a file will use consecutive sectors on the disk. As files are created and
deleted, however, the disk may become ‘‘fragmented’’. Fragmentation results in the sectors on the
disk becoming out of order physically, even though logically they are still all sequential. This is a
characteristic of “linked list” structures and dynamic file allocation methods. The user need not be
concerned with this fragmentation, but should be aware of the fact that files may exist whose sec-
tors seem to be spattered all over the disk. The only result of fragmentation is the slowing down of
file read times, because of the increased number of head seeks necessary while reading the file.

The File Control Block (FCB)

The FCB is the heart of the FLEX File Management System (FMS). An FCB is a 320 byte long
block of RAM, in the user’s program area, which is used by programs to communicate with FMS. A
separate FCB is needed for each open file. After a file has been closed, the FCB may be re-used to
open another file or to perform some other disk function such as Delete or Rename. An FCB may
be placed anywhere in the user’s program area (except page zero) that the programmer wishes.
The memory reserved for use as an FCB need not be preset or initialized in any way. Only the para-
meters necessary to perform the function need be stored in the FCB; the File Management System
will initialize those areas of the FCB needed for its use.

In the following description of an FCB, the byte numbers are relative to the beginning of
the FCB; i.e. byte @ is the first byte of the FCB.

Description of an FCB

Byte® Function Code
The desired function code must be stored in this byte by the user before calling FMS to pro-
cess the FCB. See the section describing FMS Function Codes.

Byte 1 Error Status Byte .
If an error was detected during the processing of a function, FMS stores the error number in
this byte and returns to the user with the CPU Z-Condition Code bit clear, i.e. a non-zero
condition exists. This may be tested by the BEQ or BNE instruction.

Byte 2 Activity Status
This byte is set by FMS to a ‘1" if the file is open for read, or ‘2" if the file is open for wri-
ting. This byte is checked by several FMS function processors to determine if the requested
operation is legal. A Status Error is returned for illegal operations.

The next 12 bytes (3-14) comprise the ‘‘File Specification’’ of the file being referenced by the FCB.
A “’File Specification’’ consists of a drive number, file name, and file extension. Some of the FMS
functions do not require the file name or extension. See the documentation of the individual func-
tion codes for details.

—-12 -

Byte3 Drive Number
This is the hardware drive number whose diskette contains the file being referenced. It should

be binary @ to 3.

The next 24 bytes (4-27) comprise the ‘‘Directory Information’’ portion of the FCB. This is the
exact same information which is contained in the diskette directory entry for the file being referen-
ced.

Bytes 4-11 File Name
This is the name of the file being referenced. The name must start with a letter and contain
only letters, digits, hyphens, and/or underscores. If the name is less than 8 characters long,
the remaining bytes must be zero. The name should be left adjusted in its field.

Bytes 12-14 Extension
This is the extension of the file name for the file being referenced. It must start with a letter
and contain only letters, digits, hyphens, and/or underscroes. |f the extension is less than 3
characters long, the remaining bytes must be zero. The extension should be left adjusted. Files
with null extensions should not be created.

Byte 15 File Attributes
At present, only the most significant 4 bits are defined in this byte. These bits are used for the
protection status bits and are assigned as follows:
BIT 7 = Write Protect
BIT 6 = Delete Protect
BIT 5 = Read Protect
BIT 4 = Catalog Protect

Setting these bits to 1 will activate the appropriate protection status. All undefined bits of this
byte should remain Q. ' ‘

Byte 16 Reserved for future system use

Bytes 17-18 Starting disk address of the file
These two bytes contain the hardware track and sector numbers, respectively, of the first
sector of the file.

Bytes 19-20 Ending disk address of the file
These two bytes contain the hardware track and sector numbers, respectively, of the last sector
of the file.

Bytes 21-22 File Size
This is a 16-bit number indicating the number of sectors in 1. 2 file.

Byte 23 File Sector Map Indicator
If this byte is non-zero (usually $02), the file has been created as a random access file and con-
tains a File Sector Map. See the description of Random Files for details.

Byte 24 Reserved for future system use

Bytes 25-27 File Creation Date
These three bytes contain the binary date of the files creation. The first byte is the month,
the second is the day, and the third is the year (only the tens and ones digits).

Bytes 28-29 FCB List Pointer
All FCBs which are open for reading or writing are chained together. These two bytes con-
tain the memory address of the FCB List Pointer bytes of the next FCB in the chain. These
bytes are zero if this FCB is the last FCB in the chain. The first FCB in the chain is pointed to
by the FCB Base Pointer. {See Global Variablcs.)

-13 -

Bytes 30-31 Current Position
These bytes contain the hardware track and sector numbers, respectively, of the sector current-
ly in the sector buffer portion of the FCB. If the file is being written, the sector to which these
bytes point has not yet been written to the diskette; it is still in the buffer.

. Bytes 32-33 Current Record Number
These bytes contain the current logical Record Number of the sector in the FCB buffer.

Byte 34 Data Index
. This byte contains the address of the next data byte to be fetched from (if reading) or stored
into (if writing) the sector buffer. This address is relative to the beginning of the sector, and is
advanced automatically by the Read/Write Next Byte function. The user program has no need
to manipulate this byte.

Byte 35 Random Index
This byte is used in conjunction with the Get Random Byte From Sector function to read a
specific byte from the sector buffer without having to sequentially skip over any intervening
‘ bytes. The address of the desired byte, relative to the beginning of the sector, is stored in Ran-
dom Index by the user, and the Get Random Byte From Sector function is issued to FMS. The
specified data byte will be returned in the A-register. A value less than 4 will access one of the
linkage bytes in the sector. User data starts at an index value of 4.

Bytes 36-46 Name Work Buffer
These bytes are used internally by FMS as temporary storage for a file name. These locations
are not for use by a user program.

Bytes 47-49 Current Directory Address
If the FCB is being used to process directory information with the Get/Put Information Re-
cord functions, these three bytes contain the track number, sector number, and starting data
indexof the directory entry whose content is in the Directory Information portion of the FCB.
. The values in these three bytes are updated automatically by the Get Information Record
function.

Bytes 50-52 First Deleted Directory Pointer . .
These bytes are used internally by FMS when looking for a free entry in the directory to which

to assign the name of a new file.

Bytes 53-63 Scratch Bytes . ' '
These are the bytes into which the user stores the new name and extension of a file being

renamed. The new name is formatted the same as described above under File Name and File
Extension.

. Byte 59 Space Compression Flag
If a file is open for read or write, this byte indicates if space compression is being performed.
A value of zero indicates that space compression is to be done when reading or writing the
data. This is the value that is stored by the Open for Read and Open for Write functions. A
value of $FF indicates that no space compression is to be done. This value is what the user
must store in this byte, after opening the file, if space compression is not desired. (Such as for
binary files.) A positive non-zero value in this byte indicates that space compression is cur-

‘ rently in progress; the value being a count of the numb_er of spaces processed thus fa.r. (Note
that although this byte overlaps the Scratch Bytes described above, there is no conflict since
the Space Compression Flag is used only when a file is open, and the Scratch Bytes are used
only by Rename, which requires that the file be closed.) In general, this byte should be

© while working with text type files, and $FF for binary files.

‘ Bytes 64-319 Sector Buffer
These bytes contain the data contained in the sector being read or written. The first four bytes
of the sector are used by the system. The remaining 252 are used for data storage.

—18 -

File Management System — Entry Points

$8400 — FMS Initialization
This entry point is used by the DOS portion of FLEX to initialize the File Management Sys-
tem after a coldstart. There should be no need for a user-written program to use this entry
point. Executing an FMS Initialization at the wrong time may result in the destruction of data
files, necessitating a re-initialization of the diskette.

$B403 — FMS Close

This entry point is used by the DOS portion of FLEX at the end of each command line to
close any files left open by the command processor. User-written programs may also use this
entry point to close all open files; however, if an error is detected in trying to close a file, any
remaining files will not be closed. Thus the programmer is cautioned against using this routine
as a substitute for the good programming practice of closing files individually. There are no
arguments to this routine. It is entered by a JSR instruction as though it were a subroutine. On
exit, the CPU Z-Condition code is set if no error was detected (i.e. a ‘‘zero’’ condition exists).
If an error was detected, the CPU Z-Condition code bit is clear and the X-register contains the
address of the FCB causing the error. '

$B406 — FMS Call

This entry point is used for all other calls to the File Management System. A function code is
stored in the Function Code byte of the FCB, the address of the FCB is put in the X-register,
and this entry point is called by a JSR instruction. The function codes are documented else-
where in this document. On exit from this entry point, the CPU Z-Condition code bit is set if
no error was detected in processing the function. This bit may be tested with a BEQ or BNE
instruction. If an error was detected, the CPU Z-Condition code bit is cleared and the Error
Status byte in the FCB contains the error number. Under all circumstances, the address of the
FCB is still in the X-register on exit from this entry point. Some of the functions require addi-
tional parameters in the A and/or B-registers. See the documentation of the Function codes
for details. The X and B registers are always preserved with a call to FMS.

Global Variables

This section describes those variables within the File Management System which may be of interest
to the programmer. Any other locations in the FMS area should not be used for data storage by user
programs.

$B409 - $B40A FCB Base Pointer

These locations contain the address of the FCB List Pointer bytes of the first FCB in the chain
of open files. The address in these locations is managed by FMS and the programmer should
not store any values in these locations. A user program may, however, want to chain through
the FCBs of the open files for some reason,and the address stored in these locations is the pro-
per starting point. Remember that the address is that of the FCB List Pointer locations in the
FCB, not the first word of the FCB. A value of zero in these locations indicates that there are
no open files.

$B408B - $B40C Current FCB Address
These locations contain the address of the last FCB processed by the File Management System.
The address is that of the first word of the FCB.

$B8435 Verify Flag
A non-zero value in this location indicates that FMS will check each sector written for errors
immediately after writing it. A zero value indicates that no error checking on writes is to be
performed. The default value is “‘non;zero’’.

—-16—

[. . : s
\ - y
t i ‘ o
, R .)
e, 0
N
N i
ol

FMS Function Codes

The FLEX File Management System is utilized by the user through function codes. The proper
function code number is placed, by the user, in the Function Code byte of the File Control Block
(FCB) before calling FMS (Byte @). FMS should be called by a JSR to the “FMS Call” entry. On

. entry to FMS, the X-register should contain the address of the FCB. On exit from FMS, the CPU
Z-Condition code bit will be clear if an error was detected while processing the function. This bit
may be tested by the BNE and BEQ instructions. Note: In the following examples, the line “JSR
FMS’’ is referencing the FMS Call entry at $8406.

. Function ® — Read/Write Next Byte/Character
If the file is open for reading, the next byte is fetched from the file and returned to the calling
program in the A-register. |f the file is open for writing, the content of the A-register on entry
is placed in the buffer as the next byte to be written to the file. The Compression Mode Flag
must contain the proper value for automatic space compression to take place, if desired (see
description of the FCB Compression Mode Flag for details). On exit, this function code re-
mains unchanged in the Function Code byte of the FCB; thus, consecutive read/writes may be

' performed without having to repeatedly store the function code. When reading, an End-of-
File error is returned when all data in the file has been read. When the current sector being
read is empty, the next sector in the file is prepared for processing automatically, without any
action being required of the user. Similarly, when writing, full sectors are automatically writ-
ten to the disk without user intervention.

Example:
If reading—
LDX #FCB Point to the FCB
JSR FMS Call FMS
BNE ERROR Check for error
The character read is now in A.

. If writing—

LDAA CHAR Get the character
LDX #FCB Point to the FCB
JSR FMS Call FMS

BNE ERROR Check for errors
The character in A has been written.

Function 1 — Open for Read
The file specified in the FCB is opened for read-only access. If the file cannot be found, an
error is returned. The only parts of the FCB which must be preset by the programmer before
issuing this function are the file specification parts (drive number file name, and file exten-
sion) and the function code. The remaining parts of the FCB will e initialized by the Open
. process. The Open process sets the File Compression Mode Flag to zero, indicating a text file.
If the file is binary, the programmer should set the File Compression Mode Flag to $FF,
after opening the file, to disable the space compression feature. On exit from FMS, after open-
ing a file, the function code in the FCB is automatically set to zero (Read/Write Next Byte
Function) in anticipation of Input/Output on the file.

Example:
. LDX #FCB Point to the FCB
[Set up file spec in FCB]
LDAA #1 Set open function code

STAA 00X Store in FCB
JSR FMS Call FMS

. BNE ERROR Check for errors
The file is now open for text reading

To set for binary—continue with the following

LDAA #$FF Set FF for sup. flag

STAA 59X Store in suppression flag
- 16 —

Function 2 — Open for Write

This is the same as Function 1, Open for Read, except that the file must not already exist in

the diskette directory, and it is opened for write-only access. A file opened for write may not

be read unless it is first closed and then re-opened for read-only. The space compression flag

should be treated the same as described in ““Open for Read’’. A file is normally opened as
. a sequential file but may be created as a random file by setting the FCB location File Sector

Map byte non-zero immediately following an open for write operation.Refer to the section on

Random Files for more details. The file will be created on the drive specified unless the drive
. spec of $FF in which case the file will be created on the first drive found to be ready.

Example:

LDX #FCB Point to FCB
[Setup file spec in FCB]
LDAA #2 Setup open for write code
STAA 0,X Store in FCB
JSR FMS Call FMS
. BNE ERROR Check for errors
File is now open for text write

For binary, follow example in Read open.

Function 3 — Open for Update ‘
This function opens the file for both read and write. The file must not be open and must exist
on the specified drive. If the drive spec is $FF, all drives will be searched. Once the file has
been opened for update, four operations may be performed on it: 1. sequential read, 2. ran-
dom read, 3. random write, and 4. close file. Note that it is not possible to do sequential writes
to a file open for update. This implies that it is not possible to increase the size of a file which
is open for update.

Function 4 — Close File
. If the file was opened for reading, a close merely removes the FCB from the chain of open
files. If the file was opened for writing, any data remaining in the buffer is first written to the
disk, padding with zeroes if necessary, to fill out the sector. If a file was opened for writing
but never written upon, the name of the file is removed from the diskette directory since the
file contains no data.

Example:
LDX #FCB Point to FCB
LDAA #4 Setup close code
STAA 0, X Store in FCB
JSR FMS Call FMS
. BNE ERROR Check for errors

File has now been closed.

Function 5 — Rewind File
Only files which have been opened for read may be rewound. On exit from FMS, the function
code in the FCB is set to zero, anticipating a read operation on the file. If the programmer
wishes to rewind a file which is open for writing so that it may now be read, the file must
first be closed, then re-opened for reading.

. Example:

Assuming the file is open for read:
LDX #FCB Point to FCB
LDAA #5 Setup rewind code
. STAA 0,X Store in FCB
JSR FMS Call FMS
- BNE ERROR Check for errors
File is now rewound and ready for read

-17 -

Function 6 — Open Directory
This function opens the directory on the diskette for access by a program. The FCB used for
this function must not already be open for use by a file. On entry, the only infotmation which
must be preset in the FCB is the drive number, no file name is required. The directory entries
are read by using the Get Information Record function. The Put Information Record function
. is used to write a directory entry. The normal Read/Write Next Byte function will not func-
tion correctly on an FCB which is opened for directory access. It is not necessary to close an
FCB which has been opened for directory access after the directory manipulation is finished.
The user should normally not need to access the directory.

Function 7 — Get Information Record :
This function should only be issued on an FCB which has been opened with the Open Direc-
tory function. Each time the Get information Record function is issued, the next directory
entry will be loaded into the Directory Information area of the FCB (see Description of the
FCB for details of the format of a directory entry). All directory entries, including deleted and
unused entries are read when using this function. After an entry has been read, the FCB is
. said to ‘‘point” to the directory entry just read; the Current Directory Address bytes in the
FCB refer to the entry just read. An End-of-File error is returned when the end of the direc-
tory is reached.

Example:

To get the 3rd directory entry—
LDX #FCB Point to FCB
LDAA DRIVE Get the drive number

STAA 3,X Store in the FCB
LDAA #6 Setup open directory code
STAA 0, X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
. LDAB #3 Set counter to 3
LOOP LDAA #7 Setup get rec code

STAA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors

DECB Decrement the counter
BNE LOOP Repeat til finished

The 3rd entry is now in the FCB

Function 8 — Put Information Record

This function should only be issued on an FCB which has been opened with the Open Direc-
‘ tory function. The directory information is copied from the Directory Information portion of

the FCB into the directory entry to which the FCB currently points. The directory sector just

updated is then re-written automatically on the diskette to ensure that the directory is up-to-

date. A user program should normally never have to write into a directory. Careless use of the

Put Information Record function can lead to the destruction of data files, necessitating a re-

initialization of the diskette.

Function 9 — Read Single Sector

. This function is a low-level interface directly to the disk driver which permits the reading of
a single sector, to which the Current Position bytes of the FCB point, into the Sector Buffer

" area of the FCB. This function is normally used internally within FLEX and a user program

should never need to use it. The Read/Write Next Byte function should be used instead, when-

ever possible. On return from FMS, the B-register is zero if no error was detected. If the B-

. register is non-zero on exit, a non-recoverable error was detected and the B-register contains
the hardware status returned by the disk driver, not a FLEX error number. The error code

- 18—

.;fdr

LT YRS I TR e

sy

y A5V

-

G

is not stored in the Error Status byte by this function, nor are any of the pointers in the FCB
updated. Extreeme care should be taken when using this fungtion since, it does not conform to
the usual conventions to which most of the other F LEX functions adhere.

Example:

LDX #FCB Point ot FCB

LDAA TRACK Get track number
STAA 30,X Set current track
LDAA SECTOR Get sector number
STAA 31,X Set current sector
LDAA #9 Setup function code
STAA 0.,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors
The sector is now in the FCB

Function 10 ($0A hex) — Write Single Sector

This function, like the Read Single Sector function, is a low-level interface directly to the disk
driver which permits the writing of a single sector. As such, it requires extreme care in its use.
This function is normally used internally by FLEX and a user program should never need to
use it. The Read/Write Next Byte function should be used whenever possible. Careless use of
the Write Single Sector Function may result in the destruction of data, necessitating the re-
initialization of the diskette. The disk address being written is taken from the Current Position
bytes of the FCB; the data is taken from the FCB Sector Buffer. On return, the B-register is
zero if no error was detected. This function honors the Verify Flag (see Global Variables
section for a description of the Verify Flag), and will check the sector after writing it if
directed to do so by the Verify Flag. If the B-register is non-zero on exit, an unrecoverable
error was detected, and the B-register contains the hardware status returned by the driver, not
A FLEX error number. The error status is not stored in the Error Status byte of the FCB, nor
are any of the pointers in the FCB updated.

Function 11 ($0B hex) — Reserved for future system use

Function 12 ($0C hex) — Delete File
This function deletes the file whose specification is in the FCB (drive numbers, file name, and
extension). The sectors used by the file are released to the system for re-use. The file should
not be open when this function is issued. The file specification in the FCB is altered during the
delete process.

Example:

LDX #FCB Point to FCB

[setup file spec in FCB]

LDAA #12 Setup function code
STAA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check errors

File has now been deleted.

Function 13 ($0D hex) — Rename File
On entry, the file must not be open, the old name must be in the File Specification area
of the FCB, and the new name and extension must be in the Scratch Bytes area of the FCB.
The file whose specification is in the FCB is renamed to the name and extension stored in the
FCB Scratch Bytes area. Both the new name and the new extension must be specified; neither
the name nor the extension can be defaulted.

-19 - .

~
¥

ot Bagn 0

3

Example:

LDX #FCB Point to FCB < .
[setup both file specs in FCB]
LDAA #13 Setup funciten code
. STAA 0, X Store in FCB
JSR FMS Call FMS

BNE ERROR Check for errors
File has been renamed

' Function 14 ($0E hex) — Reserved for future system use.

Function 15 ($0F hex) — Next Sequential Sector
On entry the file should be open for either reading or writing (not update). If the file is open
for reading, this function code will cause all of the remaining (yet unread) data bytes in the
current sector to be skipped, and the data pointer will be positioned at the first data byte of
the next sequential sector of the file. If the file is open for write, this operation will cause the
. remainder of the current sector to be zero filled and written out to the disk. The next charac-
ter written to that file will be placed in the first available data location in the next sequential
sector. It should be noted that all calls to this function code will be ignored unless at least
one byte of data has either been written or read from the current sector.

Function 16 ($10 hex) — Open System Information Record
On entry, only the drive number need be specified in the FCB, there is no file name associa-
ted with this function. The FCB must not be open for use by a file. This function accesses
the System Information Record for the diskette whose drive number is in the FCB. There
are no separate functions for reading or changing this sector. All references to the data con-
tained in the System Infomation Record must be made by manipulating the Sector Buffer
directly. This function is used internally within FLEX, there should be no need for a user-
: written program to change the System Information Record. Doing so may result in the des-
‘ truction of data, necessitating the re-initialization of the diskette. There is no need to close
the FCB when finished.

Function 17 ($11 hex) — Get Random Byte From Sector
On entry, the file should be open for reading or update. Also, the desired byte’'s number
should be stored in the Random Index byte of the FCB. This byte number is relative to the
beginning of the sector buffer. On exit, the byte whose number is stored in the Random
Index is returned to the calling program in the A-register. The Random Index should not be
less than 4 since there is no user data in the first four bytes of the sector.

Example:

To read the 54th data byte of the current sector—
() LDX #FCB Point to the FCB

LDAA #54+4 Settoitem+4

STAA 35,X Put it in random index

JSR FMS Call FMS

BNE "ERROR Check for errors

Character is now in acc. A

Funciton 18 ($12 hex) — Put Random Byte in Sector
. The file must be open for update. This function is similar to Get Random Byte except the
character in the A accumulator is written into the sector at the data location specified by
Random Index of the FCB. The Random Index should not be less than 4 since only system
data resides in the first 4 bytes of the sector., .

' ‘

-20 -

. A&
JINEIEE W GIEstI0E Bl :
S onmoosR nsTwl o)
00 noroat aidl pnies sno¥sd cigng v laE S . -
sriy af bissy liw D bro2st of pare : 5
ostern Jenid arlt oiTers o
07 1Qmesis nA Lbinosr batiosge witi To v B
esz ealit rnobosy Ae SOt SIGIT T
: i
i Do
B .
¢ 23y . o B
T AT
v U/ breosA eyl ey P YRR T S PR EA o s e
9y 267 2T LeamoIIeG 2 D081 e 8Tl T e T f SR ;
ong BT N R IS BT AT - RO .
e 4l : : G "
Dagl o LT DT ’f_ N I8 3

Example:

To write into the 54th data byte of the current sectdr— .
- LDX #FCB Point to the FCB
LDAA #54+4 Settoitem+4
. STAA 35,X Put it in Random Index
LDAA #18 Setup Function Code
STAA 0.X Store in FCB
LDAA CHAR Getcharacter to be written
C) JSR FMS Call FMS
BNE ERROR Check for errors
Character has been written

Function 19 ($13 hex) — Reserved for future system use

Function 20 ($14 hex) — Find Next Ready Drive
This function is used to find the next online drive which is in the “‘ready’’ state. If the Drive
. , Number in the FCB is hex FF, the search for drives will start with drive @. |f the Drive Number
is @, 1, or 2, the search will start with drive 1, 2, or 3 respectively. |f a ready drive is found,
its drive number will be returned in the Drive Number of the FCB and the carry bit will be
cleared. |f no ready drive is found, the carry bit will be set and error #16 (Drives Not Ready)
will be set.
Function 21 ($15 hex) — Position to Record N .
This is one of the 2 function codes provided for random file accessing by sector. The desired
record number to be accessed should be stored in the FCB location Current Record Number (a
16-bit bianary value). The file must be open for read or update before using this function code.
The first data record of a file is record number one. Positioning to record @ will read in the
first sector of the File Sector Map. After a successful Position operation, the first character
. read with a sequential read will be the first data byte of the specified record. An attempt to
position to a nonexistent record will cause an error. For more information on random files, see
the section titled ‘Random Files'.

Example:

To position to record #6—

LDX #FCB Point to the FCB
LDAA #6 Set position
STAA 33X Putin FCB

CLR 32,X SetM.S.Bto @

LDAA #21 Setup Function Code
STAA 0,X Store in FCB
. JSR FMS Call FMS

BNE ERROR Check for errors
Record ready to be read.

Function 22 ($16 hex) — Backup One Record
This is also used for random file accessing. This function takes the Current Record Number
in the FCB and decrements it by one. A Position to the new record is performed. This has the
effect of back spacing one full record. For example, if the Current Record Number is 16 and
. the Backup One Record function is performed, the file would be positioned to read the first
byte of record #15. The file must be open for read or update before this function may be used.
See ‘Random Files’ section for more details.

e , 4 .
S Ta I HY oY a0 O
Aiow zaiziir X333 hagho o
SasY e esr X203 gl gV e e
(obrey 6 ek DaTEEId nond ton Suino
-8uUD8: Be3Y 34 \ I =1 R
bluore vy, 130 4
~aldovoron :
£ -
L , » 4
T @9INENOIG MONIET v o e -y L . ‘
. 4 N
8gYst aGT 2ew I8 0 9 Yo oa,yd wial R
vhegy'e s ol noirss SARTEE T beuent e
g0 sz SRR f . G
Lo ot
e . B
o gh»ajw OSSR i il . g "~
[RE I -Luz)..}. b4 A BRI 4 dEpie i . 3 i Lo
SCICTOSTD 3338 KR a0 s v e, : IRIRET
o " [doT
4l :
¥ ¥ . M;
PO P X , | i)
I . s . BOK weyl vy, by R e e 4
¥ el . RS T .) . .
]

Random Files

o

The 8 inch version of FLEX supports random files. The random access technique allows access by
record number of a file and can reach any specified sector in a file, no matter how large it is, ina
maximum of two disk reads. With a small calculation using the number of data bytes in a sector
(252), the user may also easily reach the Nth character of a file using the same mechanism.

Not all files may be accessed in a random manner. It is necessary to create the file as a random
file. The default creation mode is sequential and is what all of the standard FLEX Utilities work

. with. The only random file in a standard FLEX system is the ERROR.SYS file. FLEX uses a ran-
dom access technique when reporting error messages. A file which has been created as a random
access file may read either randomly or sequentially. A sequential file may only be read sequen-
tially.

To create a random file, the normal procedure for opening a file for write should be used. Im-
mediately following a successful open, set the File Sector Map location of the FCB to any non-
zero value and proceed with the file’s creation. It only makes sense to create text type files in the
random mode. As the file is built, the system creates a File Sector Map. This File Sector Map (FSM)

. is a map or directory which tells the system where each record (sector) of the file is located on the
disk. The FSM is always two sectors in length and is assigned record number @ in the file. This im-
plies that a data file requiring 5 sectors for the data will actually be 7 sectors in length. The user has
no need for the FSM sectors and they are automatically skipped when opening a file for read.
The FMS uses them for the Position and Backup function code operations.

The directory information of a file states whether or not a file is a random file. If the File Sec-
tor Map byte is non-zero, the file is random, otherwise it is sequential only. It should be noted that
random files can be copied from one disk to another without losing its random properties, but’it
can not be appended to another file. '

FLEX Error Numbers

.1 — Illegal FMS Function Code Encountered
FMS was called with a function code in the Function Code byte of the FCB that was too large
or illegal.

2 — The Requested File is in Use
An Open for Read, Update, or Write function was issued on an FCB that is aiready open.

3 — The File Specified Already Exists
a. An Open for Write was issued on an FCB containing the specification for a file already
existing in the diskette directory.
b. A Rename function was issued specifying a new name that was the same as the name of a
file already existing in the diskette directory.

4 — The Specified File Could Not Be Found
An Open for Read or Update, a Rename, or a Delete function was requested on an FCB con-
taining the file specification for a file which does not exist in the diskette directory.

5 — System Directory Error—Reboot System
Reserved for future system use.

6 — The System Directory Space is Full .
This error should never occur since the directory space is self expanding, and can never be
filled. Only disk space can be filled (error #7).

7 — All Available Disk Space Has Been Used
. All of the available space on the diskette has been used up by files. If this error is returned
by FMS, the last character sent to be written to a file did not actually get written.

-22—

SRTM T
[REED B ' <t

esd 200G 30 pairgnisiin o
Di: OGY cooue tuentiw Barmie 8

]
:

aft oG phed e322510bE 1WITeR hne

t

duozed 200 101382 T SHIW OF G TGS O
307 SingaY s3079d 1019%2 vhiiier o :
-
arll pripgnxs va he1oatoragtine S
*ag f”:& AR
netalen od ton nen b 2 il 1y

SRV I AT TeTo Tt RN - PIRYE
LIR006 Deyo 10t PaGT W N
MobNeR 3 rdla D kE

393Ta & TN LY TRUM BN Nite

.29 NS -

-

s
T

[C
KERHI

A6

STl B

SRS
AR R TR v v
GEr e
P I N
SN " o -
RIS e T N i
. S
B N N . ER]
I LI
)
L3
R
g
A
[ARRRNIS S 4
B

-
o

oot

] R e A C. 3

8 — Read Past End of Flle ST e e

' A read operation on a file encountered an end-of-file. 'All of the data in the file has been pro-
cessed. This error will also be returned when reading a directory with the Get Information
Record function when the end of the directory is reached.

9 — Disk File Read Error
A checksum error was encountered by the hardware in attempting to read a sector. DOS has
already attempted to re-read the failing sector several times, without success, before reporting
the error. This error may also result from illegal track and sector addresses being put in the
FCB.

10 — Disk File Write Error
A checksum error was detected by the hardware in attempting to write a sector. DOS has al-
ready tried several times, without success, to re-write the failing sector before reporting the
error. This error may also result from illegal track and sector numbers being put in the FCB. A
write-error status may also be returned if a read error was detected by DOS in attempting to
update the diskette directory.

11 — The File or Disk is Write Protected
An attempt was made to write on a diskette which has been write-protected by exposing the
write-enable cut in the diskette or to a file which has the write protect bit set.

12 — The File is Protected—File Not Deleted :
The file attempted to be deleted has its delete protect bit set and can not be deleted.

13 — lllegal File Control Block Specified
An attempt was made to access an FCB from the open FCB chain, but it was not in the chain.

14 — lllegal Disk Address Encountered
Reserved for future system use

15 — An lllegal Drive Number Was Specified
Reserved for future system use.

16 — Drives Not Ready
The drive does not have a diskette in it or the door is open.

17 — The File is Protected—Access Denied
Reserved for Future system use.

18 — System File Status Error
a. A Read or Rewind was attempted on a file which was closed, or open for write access.
b. A write was attempted on a file which was closed, or open for read access.

19 — FMS Data Index Range Error
The Get Random: Byte from Sector function was issued with a Random Byte number greater
than 255.

20 — FMS Inactive—-Reboot System
Reserved for future system use.

21 — lllegal File Specification '
A format error was detected in a file name specification. The name must begin with a letter
and contain only letters, digits, hyphens, and/or underscores. Stmllarly with file extensions.
File names are limited to 8 characters, extensions to 3.

22 — System File Close Error
Reserved for future system use.

ST TRTS TS SR AR Lo P X U HEF ST Lo e oo

FCRN
videdoige: siit wilT b0y 10003 a0t e L o g e s T e T e
oAl ’ ’
oy [REATENEEEN i
TR RN o TR N1V TSNS TR SR -
P vt b LCERE PR . B
DFrssent Bhasd ey a0 ar T s e O L T

S2ETOIT OF 218V AiD mws Yotr ol o DL o o L sl HEE I
sonrioe T son 1obasy sy veayshd gooney o a0 D sy
100 828t ob on cnoizeyap 0o e ot e o G s e g e

2T cagtivastese Teee 2D T e i T

voaoit orty paivinh svewbies et has AF0 5 I PR RN R CHE A A PERURR

ariv ritiw ssetisini of Fenpiesh s mesevt L L o : SRR
(SIS 3 ‘ 1 i v, i

LRy IS 2aRitunuT e A LA HES oo L g g : &
210178 10 3z 0l eanen sthasd jos] : Vi
ok sih ol rithe Nixg Bleo s ceny L 00 ; T ‘
sy bt BOTET e eusl) wnes o L T .
PRNT leripe DD e oo oer owd besuthiong on o0 L udele BiotLwL Lo T
Hluogve 2vevitbh A pseu 2t ebioiann oo betalumie ed szle

LOIOUYTR0 Lo 7 bavie s o sy A Josposi

wiies onel
T

2005 18:1ud 101992 anld 010t RISy GC GY 2 2IRGITLTT 0L Y T LT 2 =

-uv e85z arit oY nettovw 9g 63 o BOR

210179 U e s T

Ty RO

23 — Sector Map Overflow—Disk Too Segmented _
An attempt was made to create a very large random access file on a disk which is very seg-
mented. All record information could not fit in the 2 sectors of thelFile Sector Map. Recrea-
ting the file on a new diskette will solve the problem.

24 — Non-Existent Record Number Specified
A record number larger than the last record number of the file was specified in a random
position access.

25 — Record Number Match Error—File Damaged
The record located by the FSM random search is not the correct record. The file is probably
damaged. '

26 — Command Syntax Error—Retype Command
The command line just typed has a syntax error contained in it.

27 — That Command is Not Allowed While Printing
The command just entered is not allowed to operate while the system printer spooler is acti-
vated.

28 — Wrong Hardware Configuration
This error usually implies insufficient memory installed in the computer for a particular
function or trying to use the printer spooler without the hardware timer board installed.

Disk Drivers

The following information is for those users who wish to write their own disk drivers to interface
with some other disk configuration than is supplied by the vendor. Nether the vendor nor Technical
Systems Consultants is in a position to write disk drivers for other configurations, no do these com-
panies guarantee the proper functioning of FLEX with user-written drivers.

The disk drivers are the interface routines between F LEX and the hardware driving the floppy
disks themselves. The drivers released with the FLEX System are designed to interface with the
Western Digital 1771 Floppy Disk Formatter/Controller chip. ‘

The disk drivers are located in RAM at addresses $BE8@ - $BFFF. All disk functions are vec-
tored jumps at the beginning of this area. The disk drivers need not handle retries in case of errors;
FLEX will call them as needed. If an error is detected, the routines should exit with the disk hard-
ware status in the B-register and the CPU Z-Condition code bit clear (issue a TST B before return-
ing to accomplish this). FLEX expects status responses as produced by the Western Digital 1771
Controller. These statuses must be simulated if some other controller is used. All drivers should
return with the X-register unchanged. All routines are entered with a JSR instruction.

$BESD — Read
Entry - (X) = FCB Sector Buffer Address
(A) = Track Number
(B) = Sector Number
The sector referenced by the track and sector numbers is to be read into the Sector Buffer area
of the indicated FCB.

$BES83 — Write
Entry - (X) = FCB Sector Buffer Address
(A) = Track Number
(B) = Sector Number
The content of the Sector Buffer area of the indicated FCB is to be written to the sector re-
ferenced by the track and sector numbers.

. $BEB6 — Verify

Entry - (No parameters)
The sector just written is to be verified to determine if there are CRC errors.

-24 —

[y

. .
apariw gvicn i o e trcieg ad of B vt e o7 LA R
- s 8 L9
CEA ey e : ' ;
; - y
4 e
genk sAr oninelas @t pusie et v LT waTene L T
Cennnag §ORG e DESGE 2D L I T T -
T .
NEISUAL of R . . . ~ PN . '
28T aneh ton-et velab bricos: ;S YR G A v :
it : T T .

ronasinat < et

Aos pnitersal XA 571 v siiu i0d
s 10 e101d%e 9l nivastzanhbs 10t 0
TR0 2 A e2sa01g Noiesisint oib

oldshs s 0 L0817 An 20Tse S
"":)od“ & isinod awuisaz o et @l
S7e MW g rood sdT Sotinem DuUdrzil se
.,\,.qumu' pnalzyd 3 O

I NG 10153E

2037 o1tbng bng g":-**-r*qu 2047 T0 pnges e i or D
- ~ -, ~ .) -~ b
: sz 107 peew e Q Aneir Yo gesn At ' s i RN S
zagved Ow tevd edT Jgemnet ro Ting CERPIEH P
Qvol THET 3icT ..r:ir;‘ri-’r et oraes txen adi oo foriauR GOl Al DRt 0Ll e .
. Y : . M pn - . ko H
FISAVISIN areen 3T el ar B A st 0F Duvn 216 BEIVA
a

wadmun Sonss o sial Lnes e

9rif 300 sge fass by io oy

3
- I ooyt . i amps By ta PREISIEN - AR
29.’\{(. ‘.‘.«ef_a)i”.;" vE COtR W aleY g T o)
T
Rt bistasie 971 ol remto? bishest 1
wiame ad vHaripol 918 vor ze ot 81 RS
-~ o ey

s Ce RV SN 9 2iGlose ANt B2

givyy 2 soedit

G cied n04n6e TX8n 8Y Tesnsen G FIEh 807 2280070 07 101352 LA FwdT T S
TR SITHT BAEZ29DCTC 8N _ SHG 918 21010we st Y L L
Yo erarorarg 50T cigh st onigsancag w0t smil oom awoils 2307192 i To g Eon

u.l~~
08 © Ditind

VIov 2T b TenoiTUioveY prza it LUHAS 21 283 pRIZesdo: | T 10 gk
2ufls enchuioves bageimn {0 sedimun il essober ssomot X343 s

Fus s",\}"la‘

101082 vio129%10 6 Yo noitqineal

ey Y323 5 To pooang viotnard erdd ool

Y15 (063 6102 vicsnl 07 eririnoo 4

3

i 9EEANI 103092 ST NIETA0D 22t 0 Tul 0N 0l aiDee NUES MU 2lEnc T R 1O 81T 8730 o)

$BES89 — Restore
Entry - (X) = FCB Address
Exit - CC, NE, & B=$B if write protected
CS, NE, & B=%F if no drive
A Restore Operation (also known as a Seek to Track @9) is to be performed on the drive whose
number is in the FCB.

$BESC — Drive Select
Entry - (X)= FCB Address
The drive whose number is in the FCB is to be selected.

$BESF — Check Drive Ready
Entry - (X) = FCB Address
Exit - NE & CS if drive not ready
EQ & CC if drive ready
The drive whose number is in the FCB is checked for a ready status after selecting that drive
and delaying long enough for the drive motor to come up to speed (approx. 2 seconds).

$BE92 — Quick Check Drive Ready
This routine is the same as Drive Check Ready except the 2 second delay is not done. This
assumes the drive motor is already to speed.

Diskette Initialization

The NEWDISK command is used to “initialize’ a ‘diskette for use by the FLEX Operating System.
The initialization process writes the necessary track and sector addresses in the sectors of a “soft-
sectored’’ diskette such as is used by FLEX. In addition, the initialization process links together
all of the sectors on the diskette into a chain of available sectors. '

The first track on the diskette, track 0, is special. None of the sectors on track @ are available
for data files, they are reserved for use by the FLEX system. The first two sectors contain a “boot"’
program which is loaded by the “D’* command of the DISKBUG monitor. The boot program, once
loaded, then loads FLEX from the diskette. Another sector on track @ is the System Information
Record. This sector contains the track and sector addresses of the beginning and ending sectors of
the chain of free sectors and those available for data files. The rest of track @ is used for the direc-

_tory of file names.

After initialization, the free tracks on the diskette have a common format. The first two bytes
of each sector contain the track and sector number of the next sector in the chain. The next two
bytes are used to store the logical record number of the sector in the file. The remaining 252 bytes
are zero. Initially, all record number bytes are zero. When data is stored in a file, the two' linkage
bytes at the beginning of each sector are modified to point to .ie next sector in the file, not. the
next sector in the free chain. The sectors in the diskette director on track @ also have linkage bytes
similar to those in the free chain and data files.

A FLEX diskette is not initialized in the strict IBM standard format. In the standard format,
the sectors on the diskette should be physically in the same order as they are logically, i.e. sector
2 should follow sector 1, 3 follow 2, etc. On a FLEX diskette, the sectors are interleaved so that
there is time, after having read one sector, to process the data and request the next sector before it
has passed under the head. If the sectors are physically adjacent, the processing time must be very
short. The interleaving of the sectors allows more time for processing the data. The phenomena of
missing a sector because of long processing times is called ‘‘missing revolutions”, and results in very
slow running time for programs. The FLEX format reduces the number of missed revolutions, thus
speeding up programs.

Description of a Directory Sector

Each sector in the directory portion of a FLEX diskette contains 10 directory entries. Each entry
refers to one file on the diskette. In each sector, the first four bytes contain the sector linkage in-

- 25 —

SRRV LSOV o[22 VAL

i oL B0 tRMIOTUE £ o .
E0% olr o0 2 2 terdr caidoe . o
shigdal swom w0 R E
e Te ey s st e T e TRl rmven et T Gy e

A0 Jo 81ve v’ g’y s s ermen oot e Pl anit eart har g el g

ol 8350 s Yo noltoinee O

", :.* priwotiobr arl sue olone TO08 0w v

i

altd i 6 Yo rovoimead

LY ., g 23 A o~ o -~ R AN R LT - - K
ST ViR d G087 DawonE 838 eTesI6ens HOGA L B0 g prutiyrs nel 00 v 97 y

819Nz ¢ \

SETOETEY Y0 300G

FUG TGO Sy) e G 2 B AL Pragey v

srit 1o (70031 80 To stz 3t of ¢

P

emenr s LV ’&9 XE05 e e B

28t 5. 0 v oY ERS18 y"*’\»"?r‘f" o gz ortt oyt o0 Hiw o sew
DE ot ee s b reas s 2 SN 1ENCIIC (E NIETT GO OEls yeat @it el A
20 Consenaw visnid B 0 1oieg Y e o e e v e Gt zeand

lewe 0N en

ziierans gl & 1i

e nintnes dninw

Dswene T g et 5ol fsau

07 182l 1 ot sz dnarregrne M ol ariy dpuoids olit viead & pnitiiw Yo pribeey s (W
¥ 3.3 ey 29229700s b0l bns 2o1ve 10ie0ibni 1098 9RT czennny Tiuia MIBTEOIG piti leD Gl

1920 9l 10T HOITBMIICT i eiily £29507Q 10 YyICgUE 100 0l

]

el vasaid pr
c-]Drﬁ a1C . 9r:

ey

- BC -

formation and the next 12 bytes are not used. When reading information from the directory using
the FMS Get Information Record function, these 16 bytes are skipped automatically as each sector
is read; the user need not be concerned with them.

Each entry in the directory contains the exact same information that is stored in the FCB
bytes 4-27. See the description of the File Control Block (FCB) for more details.

A directory entry which has never been used has a zero in the first byte of the file name. A
directory entry which has been deleted has the leftmost bit of the name set (i.e. the first byte of the
name is negative).

Description of a Data Sector

Every sector on a FLEX diskette (except the two BOOT sectors) has the following format:

Bytes 0-1 Link to the next sector

Bytes 2-3 File Logical Record Number

Bytes 4-255 Data

If a file occupies more than one sector, the “link to the next sector’ portion contains the track

and sector numbers, respectively, of the next sector in the file. These bytes are zero in the last sec-
tor of a file, indicating that no more data follows (an ‘‘end-of-file”” condition). The user should
never manually change the linkage bytes of a sector. These bytes are automatically managed by
FMS. In fact, the user need not be concerned at all with sector linkage information.

Description of a Binary File

A FLEX binary file may contain anything as data; all ASCII characters are allowed. Each binary file
is composed of one or more binary records. There may be more than one binary record in a single
sector.

A binary record looks as follows: (byte numbers are relative to the start of the record, not the
beginning of a sector)

Byte ® Start of record indicator ($02, the ASCII STX)
Byte 1 Most significant byte of the load address

Byte 2 Least significant byte of the load address

Byte 3 Number of data bytes in the record

Byte 4-n The binary data in the record

The load address portion of a binary record contains the address where the data resided when
it was written to the file with the FLEX SAVE command. When the file is loaded for execution or
use, it will be put in the same memory areas from which it was SAVED.

A binary file may also contain an optional transfer address record. This record gives the ad:
dress in memory of the entry point of a binary program. The format of a transfer address record is
as follows:

Byte® Transfer Address Indicator ($16, ASCII ACK)
Byte 1 Most significant byte of the transfer address
Byte 2 Least significant byte of the transfer address

If a file contains more than one transfer address record (caused by appending binary files
which contain transfer addresses), the last one encountered by the load process is the one that is
used, the others are ignored.

When reading or writing a binary file through the File Management System from a user pro-
gram, the calling program must process the record indicator bytes and load addresses itself; FLEX
does not supply or process this information for the user.

- 26—

ot A
&t e
2IATILNE L e SHATRVI FTVIRIARE : ! ;i\'J(»‘ AE N e 7Y D

X373 5 Aipne caiginoes resaiine DGl B mm OIS BeG T - B L. WET

protoeopi Jobitw roporg ey to yrhideeo e FETEe IDRRIE IR B et RCEIET I T TR M T

Dl ginit pfBU 3t oy 00 sat s it

LT

@1n st 1xest KA 8 oo eareeaasy o v oo o o2 b aiy e dn B dne0 ing @

Gl el 01008 w30 B GO Dl el

RIS RO oA
. P b 3o av, psl
e aotfleny o of ber v AT AT P Py e o
PN Somg
ot ot by a0 han ot do L sl sl i ha aroc e T D e
‘. . ARSN T.,r‘\‘. LR ! vEOU

et aiir et Devorney cesd enn 24052 f-n;*‘f' Coiaidendsnte aiow oon s peibe oot
REISTRMVIETRME Folh PRSI
TGGT ~::>‘7 I AAIOLTE rir::»
SViZesOILL I8 T
R UMY BT ToTXa LIRS 153 IR TR .n SRR 1= T DUERNE TR 2 ta T LA A 'x‘a'» “b‘-‘q rp o L e gt

SATRAT PR i g0l vt St e D VT i e BT B G

2 57 o tisn i S Coalisn .1_'{3“

IRIRT:FIVINTLS Seh BERCCTRNNAS L8 BEGRENIF TGN IO 1o Ml O ARE PR ACT U RT- SE I

H -~ r B 4 IR S e g ~oam s L - Lz S L

a0 At feTaye INgMEns el i gl oorosdi pionme s .\mﬂ 9E. 904 A 0h Sl L BQITRTD
; . : ; - atapy an T oyt N L
iios ard of Dn2sgrosit SICte19nt a neieasya s 8Ish an T oot g il redsant

ot e M 2ncirereng 1xaT w0t rage 2 shif ety G R TR

P et .
aliY i3 M1 EBGAL ¢ 28 VLS Decre Ty op iaen b 98l e

Besrned vl oW

oy s Yo Ao B 2saees X3 0 bl nszes an b0 220 93 v Dot or w0 J2ad T, 0o Bmind il
20rer e B0E W AZ A0NEDCT X980 TE NI LWL ety YBT3t £ o oy
L ORIt e G ORSeD norieser T HOE G iav2 i RIS N
z wosez §23 Sn2 &0 1suins 7 eV RIgIOT T 80 SRR R TP

I

aesititit ?—'"""" St Soad Yoopribast et e e b 1

ré;‘?ri'w eSTar AT bas 20u ré"lr-m ardy Yo armoe wrnronomeh of revy 9a v sigiuinxa oA

23ps0 poihvet 2 sy e Buot adonsn dabrie slams e an aﬁi* Fiu gaitioa 9 or ez ad slucde
CNROMBITTNVE e

-3
A

- P L]
fatias s, X3

. peiten o Bl SiImi &
HORRE 2t
26T el an neoerte 40 ":’.,,.-3b atT

LA a0, s R s g en @it ket

Lootioue v ne 1ol 5o nanod oloon

ety A et R FE
conitve oo VAN DT Te s e poi2n kiR

2
ghing om0 e m(a\ sn‘» LTER LE : ¢
ey@ SO alueMaT 182U 0T tgunutn 2 s g L :fuhwt,ds 9l §AeEIIgET CET s 320001 oI
: : y : ' 7fgn;;r;09-rvwsi

-g1 L 5l b .am’o,q‘ vitng ZN3 ey o1 et orlt 2siBUpPS C2!s S1c 2001T16E D L. AE@n an’
“ONG 2int i nemeiste ORD el 0T s chwre vhienit mewporq isutos 20T G0 sneiive 9r1t eamic st
01+t IR0 st swisnedly DOTAZ 15 He. ool 39608 brsmmod vinisy snt to s wdara hiw sw ey
AR AR

2 eysw s of 2i 29itilit, 2CT pririvw nathw baveszdo ed bluar fo roittve .rotRavion sl G0 amd
Asdy T 823 WV 5 ad bivore nodousent 2t oniwollod neitoutizer A7 8 6 onfiw (eNeoT v

=

18y {5030 9t 19veIsNW C3 19z 9C 621800 0 bluode T adT (yrilitn o0 3¢ mdreu naienay erly 2amisi:

A3V X303 o ewolle noitnevnod 2intT L 2 radmiun noivev el 3iqingse 2ids nd 2l ssdonbn o
bremmne & 1o wdmun noizey eilt yinass e o ol yidis U nCin

Description of a Text File

A text file (also called an "*ASCII file”’ or ‘‘coded file’’) contains only printable ASCII characters
plus a few special-purpose control characters. There is no ““load address” associated with a FLEX
text file as there is with FLEX binary files. It is the responsibility of the program which is reading
the text file to put the data where it belongs.

The only control character which FLEX recognizes and processes in a FLEX text file are:

$0D (ASCH CR or RETURN)
This character is used to mark the end of a line or record in the file;

$00 (ASCII NULL)
Ignored by FLEX; if encountered in the file, it is not returned to the calling program.

$18 (ASCII CANCEL)
Ignored by FLEX; if encountered in the file, it is not returned to the callingi‘program.

$09 (ASCIHI HT or HORIZONTAL TAB)

This is a flag character which indicates that a string of spaces has been removed from the file
as a space-saving measure. The next byte following the flag character is a count of the number -
of spaces removed (2-127). The calling program sees neither the flag character nor the count
character. The proper number of spaces are returned to the user program as successive charac-
ters are requested by the Read Next Byte function. When writing a file, the spaces are auto-
matically deleted as the user program sends them to the File Management System using the
Write Next Byte function. The data compression is, therefore, transparent to the calling
program. (The above discussion is only valid if the file is open for Text operations. |f open for
Binary, the compression flag and count get passed exactly as they appear in the file.)

Writing Utility Commands

Utility commands are best prepared by the use of an assembler. FLEX reserves a bock of memory in
which medium size utilities may be placed. This memory starts at hex location $A100 and extends
through location $ABFF. The system FCB at location $A840 may also be used in user written utili-
ties for either FCB space or temporary storage. No actual code should reside in this FCB space since
it would interfere with the loading of the utility (FLEX is using that FCB while loading utilities).

An example will be given to demonstrate some of the conventions and techniques which
should be used when writing utilities. The example, which can be found on the followmg pages is
a simple text file listing utility. It syntax is: - o ow

LIST, [(FILE SPEC)]

The default extension on the file spec is TXT. The utlllty will snmply dlsplay the contents of a
text file on the terminal, line for line. :

The following is a section by section description of the LIST utility. The fll’St section of the
source listing is a set of EQUATES which tell the assembler where the various DOS routines reside
in memory. These equates represent the addresses given in this manual for- “User Callable DOS Sys-
tem Routines". .

The next two sections are also equates, the first to the FMS entry points, and the second re-
ferences the system FCB. The actual program finally starts with the ORG statement. In this pro-
gram, we will make use of the Utility Command space located at $A100, therefore, the ORG is to
$A100. \
One of the conventions which should be observed when writing DOS utilities is to always start
the program with a BRA instruction. Following this instruction should be a ‘VN FCB 1" 'which
defines the version number of the utility. The 1 should of course be set to whatever the actual ver-
sion number is. In this example, the version number is 1. This convention allows the FLEX VER
SION Utility to correctly identify the version number of a command.

-27-—

aht Lty auaivm 0f 2hon MET coenet sy Ov L ooty W WOL B
i ST iy o gl sanac o otnaS 82T anr ar roran s O

Y o . " LTI Y [)
e ETONYR YT e S - Coovisader s of TaTTTEAD weiss o

AW IR 1SS ul o - CUAD A Hgw gace Ty PMTIG0
JDerela TOnar tat T oy o D503y sy U8 ans bpg 2onz gl o

B T fue 1m . -y . N~ i NOYTD R
IEIRRIEE R et Lo s s e L Fse 2P YTTE 51530 3G 2 Pl Q-' AN RIA LT

ol inew ew VST AD chentavidiey Sonctaemu s ol ;)«i;v .333"«"(;3 PRI 1-Te I IR
Yitzswh o TYITHE muorer gur o T oadT UTRT P i

o1 abven X U bhoo editioiniomivus, 4 sat o TXT vl i"'f)’dﬁ BT TG OF yth v 2l i
(INEEIRGO NEHE SR "‘" SRIacy 0OF ont my ruc oeie 2t a2l i

2

O Ft Hedt BT o o o 1ee Y0203 WO L ginsT el * :
TX T Ao
bryyeg e b
[ORI N P :
ywan s Al o S !
sreovave 1o Py : :
: Ty ceras ey eno.s € E
A gnituo: 2TT o s 2l ob o s e zove b e i N
g3t 2ib ﬁ—sm‘“; H’,- ey gLt NIRRT 30T 06 wIR8IN 1L VAL o ’
RN Wy ben 8 ¢dl LenRIQMIoLTR yit s a4
M e s 08 preanigl v a2
adr riti 30 9nr of beoten s
AT T TR oY, IR NS IRRaLs § MNCE S VI SN S SRERL AR
sud zanil 1o nog it S 26i'T ?xej:hi Fay ' .
S TUGTUe 300 G il 59 H0R
h"as, anti g Dhg nTute 4,,‘}-‘:30; ey
2 Ausote yerrie gy yab stt ans noil -
oo ‘3 NE “i03F T 290G SR [T RS b PO B D
sl T Yo bl et ya 2 el reingrioe o srovendt et
AR FINMS AT o ‘Jr:e'i 3 : puy
Yo bhn e g o tons el o nonv
& prireein e abn oo "'J..:.'-. Rt SO Vel TR
o? ."qmq;:b Haw 20T pr 5

ar Ao0ad borostensy 2 loanes

¢ Beo 2borrem ads o Es sl BlOMGA g
, a0 37 To-sebi pizsd 20T DR $IOW INTUOT oM
Ve O "m g0yt 2UCveY B3y LrniiLs To elarees snT CONE st s

=00 sfi: Yo v N zeritit

b

faw 2o . Dats e ies 319 DTz
- 1

2 g!"!- JhuiS motaostae e st

Ak bie ehesniros weil e ¢ oy prutry adem Hiw o Bno ooy ‘s'iil‘”C‘-C**? TP R el
1 VEBS I8 TABIRON DE]

Moving down the program to the label called ‘LIST2’, the program needs to retrieve the file
specification and get it into the FCB. Pointing X to the FCB, we can make use of the DOS resident
subroutine called ‘GETFIL’ to automatically parse the file spec, check for errors, and set the name
in the FCB correctly. If all goes well in GETFIL, the carry should be clear, otherwise there were
errors in the file spec and this fact needs reporting. If the carry is set, control is passed to the line
with the label ‘LIST9’. At this point, the error message is reported and control is returned to FLEX.

If the file spec was correct, and the carry was clear after the return from GETFIL, we want to
set a default file name extension of TXT. The DOS subroutine named SETEXT will do exactly
that. First it is necessary to put the code for TXT in the A accumu lator (the code is 1). X needs to
be pointing to the FCB which it still is. The ‘1’ is also put in the FCB for the future open aperation.
The call is made to SETEXT and the file name is now correctly set up in the FCB. Note that no
errors can be generated by a call to SETEXT.

Now that we have the file spec, it is necessary to open the requested file for read. X is still
pointing to the FCB so it is not necessary to reset. The FMS Function Code for ‘open a file for read’
is 1 which was previously put in the FCB location @. A call to FMS is now made in an attempt to
open the file. Upon return, if the Z-condition code is set, there were no errors. If there was an
error, the ‘BNE LIST9’ will take us to the code to report the error. This section of code is the de-
sired way to handle most FMS caused disk errors. The first thing to do is call the DOS routine RP-
TERR which will pint the disk error message on the monitor terminal. Next, all open disk files
should be closed. This can be easily accomplished by a call to the FMS close entry (FMSCLS).
Finally, return control back to DOS by jumping to the WARM START entry. If the file opened suc-
cessfully, control will be transfered to the line with the label ‘LIST4". At this time is desirable to
fetch characters one at a time from the file, printing them on the monitor terminal as they are
received. Since line feeds are not stored in text files (carriage returns mark the end of lines, but the
next line will follow immediately), each carriage return received from the file is not output as is,
but instead a call to the DOS routine ‘PCRLF’ is made-to print a carriage return and a line feed. As
each character is received from the file (by a call to FMS at label LIST4), the error status is check-
ed. If an error does occur, control is transferred to ‘LIST6’. Since FLEX does not store an End of
File character with a file, the only mechanism for determining the end of a file is by the End of File
error generated by FMS. At ‘LIST6’, the error status is checked to see if it is 8 (end of file status). If
it is not an 8, control is transferred to the error handling routine described above. If it is an End of
File, we are finished listing the file so it must now be closed. The FMS Function Code for closing a
file is 4. This is loaded into accumulator A and stored in the FCB. Calling FMS will attempt to
close the file. Upon return, errors are checked, and if none found, control is transferred back to
DOS by the jump to ‘WARMS".

This example illustrates many of the methods used when writing utilities. Many of the DOS
and FMS routines were used. The basic idea of file opening and closing were demonstrated, as well
as file 1/0. The methods of dealing with various types of errors were also presented. Studying this
example until it is thoroughly understood will make writing your own disk commands and disk
oriented programs an easy task.

R 4

abld 2Tova a4 04 Lanre

WTTAIT TELL TN st neal®

TS RS

ML LRTWRT JUNWOT PRETEYE LI

R4
R
>

-4
u

FAYMI TRATE SHask 207
VOITRATAIONGAS 34T 03
CEMITLO% SITIARART TJ0

I

LRI
3
L]
.

J

Capd v 1Y
R PETRC N ST I REFLE A
Te I OMARMOT N33 0 ?3? THRTIE
'“”93 AZITQ THOEEA AT 39
ST OAIVER SMT e
&3 a3 T4 St
Ry Y b7 723 TR

TEl
-
—
1
LA
-4
i
.‘:
1"‘_5

3

-
¥
i
™

s |
Ll
9

1

i

-
-t
=

{
)

ol
vy
o
e
BT
-t
-«
-3
-
-
b4
4
Dis
4
l'\
%

2RMAT BIIGER T30 RN 139 T SRS
ISAMU DIy z 507 e SROFELR

203 AT Th1AR

3

3
4o
193]
-4
w
%
“3 0
Voo
L N3

TRAOFIAZ M, PTET E :
3a00 9. TIe T LRGBS 8wy
3D GREIH- 203 IVAS L8R & 6

T =D L) 00

gLl W b
D
B
o &
B
X

3 REEA
GE AL
O3 TLER
3% SEiA.
g HETA
ESCRN N -
8. [LrA
a3 PSEA
A8 T2rA
85 A%
‘ﬁﬂ‘aﬁiﬁ
s

WOIBWETRE T#T T3% T43758
U290 DA -~ 2MI 1R
ADHAZ 997 4IIHD

933 0T TUIOY 30

AART TIT - anT Len ems
R TZA0ART HT2I 3ansg
AT B OARHD 2T ‘% A 9MD

H 9D Dw G

AE L L)
=
[1y]
i
ot
(33} o
[T332 VY I
}

YY)
faiil
L
et
1.
bed
it

::‘;
L.
t
4
.= ".:
-
[
v}
e b
L
o (]

a W

CTUATUG 21929 At
THIGIA FT2I AA3

HT TLAaTUC AHITS AZL CRNEI S Br
1932 T332 +TEL AA8, '

J1
.
e
A

¥

T¢

Y
A qi ;
WTidi Do G oM

o a0
m

FLEX Advanced Programmer’s Guide

*

. 'SIMPLE TEXT FILE LIST UTILITY

COPYRIGHT <> 1978 BY
* S
* TECHNICAL SYSTEMS CONSULTANTS, INC.

*

* DOS EQUATES

ADB3 WARMS QU $ADB3I ‘Dbé HARMS START -ENTRY

AD2D GETFIL EQU $AD2D GET FILE. “PECIFICRTIOH

. AD18 'PUTCHR EQU $AC18 PUT CHHRHCTEP ROUTINE
Ab24 PCRLF EQU $Ab24 PRINT CR. & LF. - - -~
AD33 SETEXT EGU $AD33 SET, EF'EFFIULT NAME. EXT
AD3F RFTERR EQU $AD3F REPORT DISK ERROR

* FMS EOQUATES

B426 FMS EGU $B4ms
B483 FMSCLS EQU $B4@3

* SYSTEM EQUATES

Ag4o FCB EQU $A240 SYSTEM FCB

. * LIST UTILITY STARTS HERE
R100 , ORG $A1LB0
A180 29 B1 LIST BRA LIST2 BET AROUND TEMPS
fA182 01 VN FCB 1 VERSION HUNBER
AL93 CE AS 46 LIST2 LD¥X #FCB 'POINT To FLB
‘ALB6 BOD AD 2D ISR GETFIL GET FILE. sper
‘A109 25 34 ‘BCS LISTS ANY. ERRDRS?-

‘ ‘ALBR 86 B1 LDR A #1 SET UP CODE - -
‘ALeD A7 B8 STR' A @, X . SAVE ‘FOR REHD OPEN
‘A18F BD AD 33 JOR, SETEXT SET TXT EXTENSION
‘ALLE BD B4 96 "JSR - FMS.. CALL FMS - DO OPEN
A115 26 28 . BNE. LISTS THECK. FOR ERROR
f147 CE AS 49 LIST4 LDX #FCB. ~ POINT TO FCB
‘A14A BD B4 06 JSR FMS .. CALL . FHS - GET CHAR
11D 26 BE BNE. LISTs ERRORS?- -
ALLF 81 8D CMP A #8D . IS CHAR A cnv

o Ri2d 26 @5 ENE LISTS Bt
A123 BD AD_ .24 ISR PCRLF OUTPUT R & LF
A126 28 EF . BRRA LIST4 . REPEAT
A128 BD AD 18 LISTS JSR PUTCHR © OUTPUT THE CHRRﬂCTER

. fd12B ‘20 EA BRA LIST4 REPEAT SEQUENCE

I ORCRTI L
3

i3413

ACERAT TRl
: .'."p' : "

N AV

R)

Lot

£330

“FH0
33
e
ATE-
@I

T3

AT

A b

S

WO TG e uptabe®

LU Y

—
]

10N
R A

o
A
- ¥

FLEX ﬁdbanced,Prognammer’s.ﬁuide

A12D
A12F
A131
A133
A13S
A137
A13A
A13C

A13F
R142
A145

A&
g1
=)

86 .

A7

BD -
26 .

7E

ep
BD
7E

‘a1

e

1P

a4
g
B4
83
AD

AD
B4
AD

a5

3F
23

83

LISTE LoA.
P

~BNE

LDA -

“8TA
JSR
. BNE
IMP

LISTS JSR

JSR
JMF

END

u ¢l ¢

DD

‘!” .
1, ¥ GET: ERPOR STATUS
#8 IS IT EOF ERROR?
A.ISTS
#4 CLOSE FILE CnDE
. ¥ ,°TBRE’IH ‘FCEB
FMS CﬁLL FMS - CLOSE. FILE
HLISTO ‘ERRORS?
“WARMS RETURM TO: FLEx

RPTERR REPORT ERROR
“FMSCLS CLOSE ‘ALL FILES
“WARMS RETURN ' TO ‘FLEX

LIST

CHITL ALY SO0 eAT

tew sbev e oL 20T LT

motn, of =i nodoaut yvine an {)ﬂﬁ»"n""t}“ﬁ u‘enmuq e
»0 Mg e 2 sdondwe, ol AT s

. LA i
aitt npivon mnuof Eeaiy 4 Crcie) cabib ey cionn w90

Vi el 200 :ur 2 a)*q 200 i sgraing ond o o AL o¥ 0ismgd nod
LA 3 2ok b :"mi 84 Yo :ez:‘_x'zi.»m: ‘2“" COUINRET st S Y MIEE-) 18 A N 30K

‘ fﬁ,nf"\f;’ R TePITICINoTo So Nk FANSY 43.‘;(1'0(}
Croiae it y”-v‘»(j‘»!,‘ ;»’; L0l o 2e9'h
a1 iagahs sl s (o ;q:‘iz}-fju&l“
1ba

X6 aeih ©.413 -2aET 'y‘lq'm"s? HENE ‘,.Jt.,wwj' °F
Fot0 h3iRGICYS) 2i eenootg bso. 9.7 ;
bued ;?L:{ ms ﬂpo*'ﬁ air{7’ 01 by~ V‘“'uc .
TGO 2l 'v‘e'pmq hadAnil st Y e Ez“.'ﬂ‘i'l‘i}””’

2eabhbe deilb anr gry 2uwon s rond 3
1540 MOTAUD 70 LN9MGOILvaL arty o -'nO 2 ".“,f"i') in 4 ? v i A
vf?ab‘as«hqau pas Jood :ﬂ‘ oF niie! el poln oo e ._,‘,:.:.: w: E":‘:.']S"Vc‘. iz
PeENNY ilsc £z Yo pf g TR ' '

i

€3 "
crdf antab ~9

_:v..r £ 1(!? 1ot
LRGN reod

x gz 205C addy izninu

hAl

o f‘!umsm RHB LS 'r?:j, e d

€0 & w30 el \HIIU G ery #
Lierneasis soario bin vafh.inj aciigitin!
VIOTBRSIaXS Tiwe ad Bl Vit PENTN AN

1 b-‘b:vmq 2i pii t*ep wgng i helﬁ 3

4R E

318) B0 29MI 00T Y9I 2I2R0 2310
BrITLy a0 9 el su
Ssiniig st ariw gissinu o of
Potisew MILIRY gnioa bss JiC":E

160 thiw g lgumghd
w3t betell eve 2Inemuitpns 1ar Dol n

pu

OG0 70C @ ealE i choedt o

0818710 Y60 L n00os 180 181, @
X578 8 A avines oA

05 AH09 pailled 1atis A oni - wLenery onr toatun bioce e ey AT G A L5 DAZ) TUos

"-sn Icn,., TED VRO STy 9N

1qunesn T-3V D9TWE ns o moirsieion

‘ EHE LI sene nun A2
Gl JuQtue 8t arivy migiav: pod st-itium o

} s :” *3 AL smw__ ,sz‘r:xw,s 3 i\‘t';i)'i»' \hths
03 Aesd 310G air seuss Hivw W‘inaa Mo u:‘f';.;,r;"‘ev val tgs ‘Yu x: .xc;; LU IO o 2out gIntg.
<ihs ei 10309V U YWE 9T 230 baton ad Shuodde g &y NYsa ¢ si‘e:b,;‘,(;h':m Mg .»ymmuqnvﬁ-z
A0 s fo Azidy .‘mcqc 5 i* GISIICE GJ DSEL & wwmmoo TMIP~5 mi f;&}i .{{:‘Ei‘rdi, Seei w0 beg,
ot sh c.il“"f INN I8 NCIILINGS p»riim £5D 106%3, i3y 1o HY ralits agh
’ 1 e npieodaug

i

~ rgi’.

The DOS LINK Utility

The LINK Utility provrded with FLEX is a special purpose command. Its only function is to mform
the “‘disk boot’’, which is on track @, where the program resides which is to be loaded dunng the
boot operation. Normally, LINK is used to set the pointer to the DOS program Since DOS may
reside anywhere on the disk, LINK takes the starting disk address of the file and stores it in a
pointer in the boot sector. When the boot program is later exectued, it srmply takes this disk ad-
dress, and loads the binary file which resides at that location. The load process is termmated upon
the receipt of a‘transfer address record. At this time, control is transferred to the program just load-
ed by jumping to the address specified in the transfer address record. If the ‘linked’ program is ever
‘moved on the disk, then it must be re-linked so the boot knows the new disk address.

LINK ‘'may be used in some specrallzed applications. One is the development of custom opera-
ting systems. The user may write his own operating system, link it to the boot, and use it exactly
as FLEX is used now. It may also be desirable for special disks to boot in specrahzed programs
rather than the operating system. If this is done, remember that unless the DOS is loaded during the
boot process, there will not-be any disk drivers or Fnle Management System resident in memory.

Printer Routines
There are two printer related programs provided with FLEX. One is the P Utlllty, the other is the
PRINT.SYS file which is the actual set of printer drivers (lmtlahze printer and output character).
The P command source listing is provided on the followmg pages and should be self explanatory.

Below you will find the requirements of the PRINT.SYS file. No source listing is provided here
since one is given in the ‘‘FLEX User’s Manual.”’

PRINT.SYS File Requirements

The PRINT.SYS file needs to provide the system with three basic printer routines, one for printer
port initialization, one for printer status, and one for output character to printer routine. The P
routine and the system printer spooler use these routines to communicate with the printer. A source
listing of the provided routines are included in the ‘“FLEX User's Manual” and will not be dupli-
cated here. The three routines and their requirements are listed here.

PINIT ($ACCO-ACD7) This routine should initialize the printer port. No registérs need to be
preserved.

PCHK ($ACDB8-ACE3) This routine should check to see |f the pnnter can accept another charac-
ter. Return Negative CC status if can accept, Plus if can not. Preserve A ‘B, and X.

POUT ($ACE4-ACF7) This routine should output the character in A after callmg PCHK to
verify the printer can accept the character. Preserve B and X.

The System Printer Spooler

FLEX contains a printer spooler module. It redtiires the ineta‘llation of an SWTPC MP-T interrupt
timer board for operation. Essentially, the spooler is a multi- taskmg system, with the output to
printer function being a low priority task. Any requtred disk service will cause the printer task to
temporarily halt until the disk has been used. It should be noted that the SWI CPU vector is: adjus-
ted in this task scheduler. The PRINT command i is’ used to activate the spooler which.in turn prints
- the- files (rf any)'in the print queue. Exact deatail$ of the spoolmg operation are not available for
.publication at-this time.

v
I
=

)

IR

-

eI

I

‘v’ b

i

a

A

]

e

k}u
U

ey

1

2]

-

pus

Tl

d

g

-
-

: 7}(’? -

-
i

nt

ok

i

=

C

‘é}», <

¢
¥

Lr
YRS
Ly

"
e

e

]
3
3
qQ

o 0o

UR

3z

it
5

~33TIARARN
2

I

bhaun s

FLEX Advanced Programmer s Guide

“P" UTILITY COMMAND

THE P COMMAND INITIALIZES A PORT AND
+ CHAMGES THE -QUTCH JUMF “ECTOR IN FLEX

E2E IR 3R 38 2K 2

%

COPYRIGHT <L) 197¢3 BY

* %

_TECHNICAL S?STENS,CDHSULTHNTS; INC.

* EQURTES
0810 INDEX EQU $8010
@ -nseo FCB EQU $AB40
ADZ0 LOAD EQU $AC30
B406 FMS ‘EQU ‘$B4BE
B403 FMSCLS ' EQU $B407
ADBE 'RENTER -E&WU $ADOE
oo84 CNFER EQU %4 -
ACO9 JPRAUSE ERU "~ $ACE9 .
AD1E PSTRNG EQU $ADLE
RD3F " RPTERR ' ERQU “$AD3F
ADB3 WARMS EQU $ADAZ
AC11 “LSTTRM EQU $AC11
ACcB2 EOL EQU $ACH2
ACCo _PINIT EQU $ACCO
. ACE4 “POUT (EQU - $ACE4
ADBF ‘DUTCH ~ "EQU $RDOF
ACFC PR1 CEQU $ACFC
A100 ORG $A109
A102 20 91 P - BRA Pl - BRANCH . ARDUND TEMPS
A182 81 VM FCB 1 VYERSIOMN MUMBER
A183 BE AC FC P1 LDA A PR1 CHECK SYSTEM PROCESS REG
A106 27 B89 "BEQR P12 ~IS IT EJSY?
. A182 CE RE 40 . LD¥ #FCB POINT TO FCB
A16B C6 1B - _LDRA B #27 SET BUSY ERROR
A100 E7? B1 - 8TR B 41,X . STUFF IN FCB
AL10F 29 43 " BRA . P3 - GO REPORT ERROR
A111 B6 AC 11 P12 LDA A LSTTRM ~~GET LAST TERMINATOR
.A114 81 @D a CMP A - #3%D ~I8$ IT A CR?
L A116° 27 .45 BE®Q P8 =
'A118. B1 AC @2 CMP A EOL ~IS -IT EOL CHARACTER?
. A11B 27 40 ‘BEQ PS8 R
A11D ?F AC @9 CLR . PAUSE DISABLE THE PRAUSE FEATURE

- continued -

SCLd 2 enna ol Denneabh
3TA8Z 30 3TVA TaL T2

Hta

1)

[2o

d34AP0 11EYT - T 3T
SUR G TR

JRIH I T UTII H3ISC

2m 51RD

PANYST AR HSEHD
GR3S YARUIT 457 Y3S
GRSE WOITI2A%MG Y

T

(YU T]
e

-
-d
;o
-~

ki

i

)

LR Rt

Y
O e T

ro
0

Fl

R
3
3
@
%

O
r

k

[

Mok
A1

a3

SWTATE 0T TWToR

A R
boRMa
EIuEY

R
f‘} LT

XIS Tes |
A ATE

mEL

343

A2L
ot
Azt
ML

(A%
Y

FS
v s,
A IS
P

“._;, W
fle @R 3
IRA
g %
FUT: B
T i
A
EER

&

SRR LF G
s |
F

i E
T

R

=

4

A
[T I ClE e

-

ef

PR Y]

KN F2 R SRS

3l

Q4% 2R
E5R
25 A
o

RELR
LA

GRS o
Sl

oo
T e
m

oy
g
Bkl ¢

I3 T
ot
i
b Ly O

FLEX Advanced Programmer’s Guide
:?n s
A120 BS6 AC E4 LDA A POUT GET 1ST BYTE OF SPACE
A123 81 39 CMP A #$39 IS IT RTS?
. A125 26 13 BNE P15 IF NOT - THEN LOADED
A127 CE RS 40 LDX #FCB POINT TO FCB
A12A 86 B1 LDA A #1 OPEN FILE FOR READ
A12C A7 08 STA A @, %
() A12E BD B4 96 JSR FMS CALL FMS
A131 26 13 BNE P2 CHECK FOR ERRORS
A133 86 FF LDA A #$FF SET FOR BINARY READ
A135 A7 3B STA'A $3B, X SET COMPRESSION FLAG)
A137 BD AD 30 JSR LORD CALL FLEX’S LORDER
A13A BD AC CO P15 JSR PINIT GO INITIALIZE PORT
A13D CE AC E4 LD¥ #POUT GET OUTPUT ADDRESS
A140 FF AD 10 STX OUTCH+1 STUFF IN FLEX
o A143 7E AD 96 IMP RENTER RETURN TO FLEX
Al146 A6 B4 P2 LDA A 1,X GET ERROR CODE
A148 81 94 CMP A #NFER IS IT "NO SUCH FILE"?
A14A 26 93 BNE P3 .
A14C CE A1 62 LD¥ #NOPST POINT TO MESSAGE
AL14F BD AD 1E P25 JSR PSTRNG 30 PRINT IT
A152 20 83 BRA P4
A154 BD AD 3F P3 JSR RPTERR REFORT ERROR
ALE7 BD B4 93 P4 JSR FMSCLS CLOSE ALL FILES
A1SA 7E AD B3 P WARMS RETURN TO FLEX
. A1SD CE AL 78 P8 LDX #ERSTR POINT TO STRING
A160 28 ED BRA P2s GO PRINT IT
ALE2 22 NOPST FCC +wpRINT SYS" NOT FOUND’
AL?77 94 i FCB' 4
AL78 22 ERSTR FCC sup MUST BE FOLLOWED BY A COMMAND”
A199 @4 FCB 4
* THE FOLLOWIMG CODE IS LORDED INTO
* THE SYSTEM FCB WMHEN THE P COMMAND IS
* LOADED INTO MEMORY. |
1" * IT PRESETS THE FILE MAME IN THE FCE.
AB43 ORG $A243
AB43 FF FCB $FF
AS44 50 FCC “PRINT’
AS4S @0 FCB 8, 9.0
AS4C S3 FCC FSYs”
'., END P
-33—

SRR TTART:S fa

%
@

e i)

v ore i

i o
4 f

B qurina
:J

gicH

oy T

PPN

1
e

Celd BNERY L e NET

I At
B . F R
LAt AT

O s gead ghoosenition B0 ne sy cuvsini Ll Lt i Tonetgains
Hue) TWILRY o perdy on N S RN ¢ SRS B T¢3 (05: LUNNRERIN LN I Aoenarnd iy
bz ozhg 2 noetoons N LR S RTQLTIELAN 00 Las BTe Fuaz or s T psanae s 2
of A3 wd 18z 2f MAF bagegesas GUENDIC odl mivasnes EAEEE R NE
simrwg fon Liw neeewenc, A0 edv gpn 43R o NG Sy b zue creor PWE i s drnog

gy TINS5 S g e gt Ll WA s
OY¢ eiderqumeta By ave L0 AHE EECelod b VPR) IR TR Ry o YT SIS TID S I O
Frive el oo rellll Lantintg i Rl 20 0t B NG T CEp
N2 =0 O ol Bigods aand oo 1L ol & [NERFEITUEN 10
Praen sy bo 0y pnitnen sliove .

Tars -

e B e

Al120

A123

A12S5
Ai127
AL12A
A12C
A12E
R131
A133
A13S

AL37
AL3A

A13D
R140
A143

Al14&
A14E
A14A

A14C

Al4F
A152

A154
AL1S7
ALSA

~AL5D
R169

R1é2
AL??

A178

A199

Ag43

AS43
AS44
AZ49
Ag4C

B6
81

26

CE
86
A7
BD
26
86
A?
BD
BD
CE
FF
7E

A&

81
26
CE
BD
=4

BD-

BD
’E

CE
29

ee
o4

2e
24

FF

‘58

a9
53

AC
39
13
Ag
o1
00
B4
132
FF
3B
AD
AC
AC

AD

AD

81

84
a8
Al
AD
a3

AD
B4
AD

A1
ED

E4

40

6

30
co
E4
10
96

62
1E

3F
B3

n3

P1i

Pe

Pe

P3
P4

]

NO

ER

* % ¥ ¥

FLEX Advanced Programmer’s Guide

Slrls i

!!n [‘
GET 4ST BYTE OF SPACE
IS IT RTS?

IF NOT - THEN LOADED
POINT TO FCB
OPEN FILE FOR READ

CALL FMS

CHECK FOR ERRORS

SET FOR BINARY READ
SET COMPRESSION FLARG
CALL FLEX’S LOARDER
GO INITIALIZE PORT
GET QUTPUT RADDRESS
STUFF IN FLEX

RETURN TO FLEX

GET ERROR COCE
IS IT “"NO SUCH FILE"“?

POINT TO MESSAGE

50 PRINT IT

REFPORT ERROR
CLOSE ALL FILES
RETURN TO FLEX

POINT TO STRING
GO PRINT IT

NOT FOUND-

cup" MUST BE FOLLOWED BY R COMMAND”

THE SYSTEM FCB MHEN THE P COMMAND IS

LDA A POUT
CMP A #$39
BNE P15
LDX = #FCB
LDA A #1
STA A 8,X
JSR FMS
BNE P2
LDR A #$FF
STA A $3B, X
, JER LOAD -
5 JSR PINIT
LD¥X #POUT
ST OUTCH+1
JIMP REMNTER
LOAR A 1, X
CMP R #NFER
BNE P3
LD¥ #NOPST
S JSR PSTRNG
BRA P4
JSR RPTERR
JSR FMSCLS
Jnp WARMS
LDX #ERSTR
ERA PES
PST FCC < “PRINT
FcB' 4
STR FCC
FCB 4
THE FOLLOWING CODE IS LOADED INTO
LOADED INTO MEMORY,

IT PRESETS THE FILE MAME IN THE FCB

ORG

FCB
FCC
FCE
FCC

END

$A243

$FF
*PRINT’
8.9.8
-1 1%

P

-33-

s

L TRt i)
r
\,

d

b ool O o TAMD ol o
38! s ge=dT zheoasnitim
Hur) T AN o

beev Qelg 2 nodoe

5
or X3.0Y d
e lis T

Jirmwg fon linw new

“—

e n

O fidssgunstad By ovg L0

i el o
W2 o O
PRS0 g boay

ariy

53

a1 91Tl Ml A

T 12 AGLANCCYSS I

yaz 2t MAR bhagenseas UE X0
ST Tet's L

LN Ei
h;uf‘h's"' ?‘3{”’." e
gt

P I R LT RT3 9]

T ERP AT FTC) SR PRI S

Doe Lt
T et
ToeTart iy
2

we e

ool eaes e e ek e unisiag 1o
Rt wy TYGRY o Ly Yo s

‘Y. s L B
(A RY 5 PRI AN LS,

TV PLQING LT Ll

L5 gy s

R RN SR OIS IS 143 F5 8

vt

SBOLY AR ATQLTIEIN o0
whgergl wo &

ETA VI S TR D Y D HEN
B - G P N Y Ll Y
R TR WS S SR AL =S N aare PWE 2ii s oy

Pyl g o 1. . e PP
RS e o i e gt iy

A120
A123
A125
p12?
A12A
A12Cc
A12E
A131
A133
A135S
A137
A13A
A13D
A140
A143

A14&
A142
A14A
A14C
A14F
A1S2

A154
R1S57
A1SA

-AL5D
R169

Al1e2
ok rard

A178

A199

Ae43

AS43
AS44
A249
Ag4C

B6
81

26

CE
86
A7
BD
26
86
A7
BD
BD
CE
FF
7E

A&

81
26
CE
BD
2o

BD-

B
’E

CE
20

ee
a4

22

a4

FF

59

= 1)

53

AC
39

13

Ag
01
00
B4
13
FF
3B
RD
AC
AC

RD

RD

21
24

s
Al
AD
e3

AD
B4
RD

A1
ED

E4

40

p6

30
co
E4
190
B6

62
1E

3F

B3

B3

Pi

Pe

pa

P3
P4

P&

NO

ER

* ¥ ¥ ¥

FLEX Advanced Programmer’s Guide

SIT‘S n

"” .

GET 1ST BYTE OF SPACE
IS IT RTS?

IF NOT - THEN LOADED
POINT TO FCB

OPEN FILE FOR RERD

CALL FMS

CHECK FOR ERRORS

SET FOR BINARY READ
SET COMPRESSION FLAG
CALL FLEX’'S LORDER
GO INITIALIZE PORT
GET QUTPUT ADDRESS
STUFF IN FLEX

RETURM TO FLEX

GET ERROR COCE
IS IT "NO SUCH FILE"?

POINT TD MESSAGE

530 PRINT IT

REFORT ERROR
CLOSE ALL FILES
RETURN TO FLEX

POINT TO STRING
GO PRINMNT IT

NOT FOUND”

supv MUST BE FOLLOWED BY A COMMAND”

THE SYSTEM FCB MHEN THE P COMMAND IS

LbA A POUT
CMP A #$39
BNE P4S
LDX #FCB
LDA A #1
STAR A @,¥%
JSR FMS
BNE P2
LDA R #$FF
STA A $3B, X

, JER LORD

5 JSR PINIT
LDX #POUT
STX OUTCH+1
JMP RENTER
LOR A 1, ¥
CMP A #NFER
BNE P3
LD¥ #NOPST

5 JSR PSTRNG
BRA P4
JSR RPTERR
JSR FMSCLS
JHP WARMS
LDX #ERSTR
EeRrRRA P2s

PST FCC 7U“PRINT
FCB" 4

STR FCC
FCB 4

THE FOLLOWIMG CODE IS LOADED INTO

LOADED INTO MEMORY.

IT PRESETS THE FILE MAME IN THE FCB.

ORG

FCB
FCC
FCB
FCC

END

$A243

$FF
“PRINT”
9.9.8
111

P

-33 -

¢ P S LR AL Eat3 131}

od! ni zod? aw swdly nawt.nd T ARARTE > £ i W AR RS R S ST ROV
b ol v ni TAM! ol wmiT g L

wa TVHRY o oy o

OB s geadV ghoosenilion F0os v arowvedni ru@ine o0 LLGHAn s neod T Retging
Ly T A

bzt o2fs 2 T

I S e HCTE RS b 1o 3 18- NSNS I SN B DT SRRt ChS 10 AN S
TnoLy et 2TQUTRECME o Lo e pudz 2 asemy 2

RN i H

¥ SN

[SEEPNE eI Y1
sernsn WA afe e W ey e

Y- T2 LUt EAVES TS

sortigne Wi oW 2

VA0 VA
N

P

o X35Y wd 38z 2f MAF bagoe

+ it oelginerogy o e

apr . .
catuee PWE uie o Jonoy
o

N . [Y F g o T
KT IELE T IRt RS JELY s NG G BT

o1 gidsrguretodl Pe ove DA o tezem™ G

AR TR -Tol BE PN 8

st mimeeo AR A

SO ORGSR

ST Rk a9RL m 0t s g T

y . T COVREL- TR SRS [
P2 o 07 orly Blugods asaed oo 1L o

OB BN PR A &

LR Poolnes

ST 1

RN sigowy boop SR paitne sliewe o ot ol) TSI Y RECE (o3
Ay el 2 e iy G003

Interrupts-in FLEX 4

FLEX makes extensive use of interrupts during printer spooling. Anytime there are files in the
PRINT Queue (as a result of using the PRINT command) the Timer board (MP-T in 1/O slot 4}
is activated. This board is initialized to output interrupts every 10 milliseconds. These are IRQ
type interrypts and FLEX sets the I1RQ vector to point to its 1RQ routine. When the PRINT Queue
is empty, the timer is shut off and no interrupts are generated. The SWI instruction is also used
quite extensively in FLEX. The SWI vector in the DISKBUG scratchpad RAM is set by FLEX to
point to its SW! routine. Because of the SW! and IRQ use, the MON command will not permit
leaving FLEX while there is a file in the PRINT Queue:

All FLEX utilities, the Editor, the Assembler, Text Processor, and BASIC are all interruptable pro-
grams. When writing your own programs, if they are to be used while printing (files in the print
queue), they should be written to be interruptable as well. At no time should the IRQ or SWI
vectors be changed in a utility which is to be run while printing. In general, good programming
practice will yield interruptable programs!

SAVITUORILE X313

YIS Pl
Oy RO PERRR NG, L .
EAS-ET G BT .
Proeiesin g N

i
i

EEUR L

[S VERVE (V]

S

it
By

(Y RN RV

R TR P) Te It

N
b
ey .t N o Ty B ‘
7t i LTt SRR S Es { BAvE) [SRR 1 - .
, frir U -
- S TEN i 4 ot
)

FR O il T

O T T R T

O T

WRETINU3

3.1?-’ W“'.'} .
&4 . -
FAS T -2A
SR .o
FAMaP
fﬂ W:)ulu\ L e v

FLEX REFERENCE SHEET

FLEX MEMORY LOCATIONS
SA080 - SADFF Line Buffer

SACOD. TTYSET Backspace Character
SACOT1 TTYSET Delete Character
SACO2 * TTYSET End of Line Character
$ACO3....... - TTYSET Depth Count

$ACD4 TTYSET Width Count
SACO5....... TTYSET Null Count

$SACO6 TTYSET Tab Character

$ACO7 TTYSET Backspace Echo Character
SACO8 TTYSET Eject Count

$AC09 TTYSET Pause Cantrol

SACOA TTYSET Escape Character
SACOB System Drive Number

$ACOC Working Drive Number

SACOD System Scratch; future use
$ACOE - SAC10 System Date Registers

$AC11 Last Terminator

$AC12-SAC13
SAC14 - $AC15
$AC16 - SAC17

User Command Table Address
Line Buffer Pointer
Escape Return Register

$ACI8 Current Character
$AC19 Previous Character
SACIA Current Line Number
$ACIBSACIC Loader Address Offset
SACID Transfer Flag
S$ACI1E-SACIF Transfer Address
SAC20 Error Type

SAC21 Special 1/0 Flag
SAC22 Output Switch
SAC23 Input Switch
$AC24-SAC25 File Output Address
SAC2B8SAC27 File Input Address
$AC28....... Command Flag
SAC29 Current Output Column
SAC2A System Scratch
SAC2BSAC2C Memory End
SAC2D-SAC2E Error Name Vector
$AC2F File Input Echo Flag
SAC30-8AC4D System Scratch
SAC4E-SACBF System Constants
SACCO-SACD7 Printer Initialize
SACD8-SACE3 Printer Ready Check
SACE4-SACF7 Printer Qutput
SACFB8SACFF System Scratch
$B409-8B40A FCB Base Pointer
$B84DBSBAOC Current FCB Address

Verify Flag

FMS COMMANDS

FUNCTION
(HEX) FUNCTION
01 OPEN FOR READ
02 OPEN FOR WRITE
03 OPEN FOR UPDATE
04 CLOSE FILE
@ REWIND FILE
06OPEN DIRECTORY
07 GET INFORMATION RECORD
‘ P8 PUT INFORMATION RECORD
9 READ SINGLE SECTOR
OA WRITE SINGLE SECTOR
B reserved/future use
oC DELETE FILE
8D JRENAME FILE
QE: reserved/future use
. @FNEXTSEQUENTIAL SECTOR
) WL OPEN SYSTEM INFORMATION RECORD
L S GET RANDOM BYTE FROM SECTOR
12 PUT RANDOM BYTE tN SECTOR
| 1 S reserved/future use
14 FIND NEXT READY DRIVE
1% POSITION TO RECORD N
16BACKUP ONE RECORD

FLEX SUBROUTINES
$ADOD . COLDS....... {coldstart entry)
“$ADP3 . WARMS {warm start entry)
$ADO6 . .RENTER...... {main loop re-entry)
SADO9 . INCH (input character}
SADOC . INCH2
SADOF . OUTCH....... {output character)
$AD12 . . OUTCH2
$AD15 . GETCHR. (preferred get character)
$AD18 . PUTCHR...... {preferred output character)
$AD1IB . .INBUFF {input to line buffer)
$AD1E . PSTRNG {print string)
$AD21 . CLASS {classify character)
$AD24 . PCRLF....... {print C/R, L/F)
$AD27 . NXTCH....... (next character)
$AD2A . .RSTRIO {restore 1/0 vectors)
$AD2D . .GETFIL {parse file spec.)
SAD30 . .LOAD........ (file loader)
$AD33 . SETEXT {set extension)
$AD36 . ADDBX. {add ACC-B to X)
$AD39 . OUTDEC. (output decimal number}
SAD3C . OUTHEX...... (output hex number)
$SAD3F . .RPTERR... ... (report error)
SAD42 . GETHEX...... (get hex number)
SAD45 . OUTADR {output hexadecimal address)
SAD48 . INDEC {input decimal number)
$AD4B . DOCMND (call DOS)
$B4pY. . .FMS Initialization
$B403. . .FMS Close
$B4P6. . .FMS Call

FILE CONTROL BLOCK SPECIFICATION

BYTE
(DeCiMAL) FUNCTION
0...... FMS COMMAND (function code)
1...... ERROR STATUS
2...... ACTIVITY STATUS
3...... DRIVE NUMBER
4-11 . .FILE NAME
12-14 . . EXTENSION
15 FILE ATTRIBUTES
16 reserved/future use
17-18 . . STARTING DISK ADDRESS
19-20 . . .ENDING DISK ADDRESS
2122 .. FILE SIZE
23 FILE SECTOR MAP INDICATOR
24reserved/future use
2527 .. .FILECREATION DATE

28-29 .. .FCB LIST POINTER

30-31 . . .CURRENTPOSITION

32-33 .. .CURRENT RECORD NUMBER

A DATA INDEX

3B RANDOM INDEX

3646 . . NAME WORK BUFFER (internal)

47-49 .. CURRENT DIRECTORY ADDRESS

5052 . . .FIRST DELETED DIRECTORY '
POINTER

5363 . . .SCRATCH BYTES (for RENAME)

89SPACE COMPRESSION FLAG

64-319 ., SECTOR BUFFER

g -

-

o

4

	2023-01-26-14-47-26-01
	2023-01-26-14-47-44-01
	2023-01-26-14-48-10-01
	2023-01-26-14-48-35-01
	2023-01-26-14-49-0-01
	2023-01-26-14-49-19-01
	2023-01-26-14-49-39-01
	2023-01-26-14-50-2-01
	2023-01-26-14-50-23-01
	2023-01-26-14-50-41-01
	2023-01-26-14-51-1-01
	2023-01-26-14-51-21-01
	2023-01-26-14-51-41-01
	2023-01-26-14-52-3-01
	2023-01-26-14-52-27-01
	2023-01-26-14-52-45-01
	2023-01-26-14-53-7-01
	2023-01-26-14-53-26-01
	2023-01-26-14-53-46-01
	2023-01-26-14-54-3-01
	2023-01-26-14-54-24-01
	2023-01-26-14-54-43-01
	2023-01-26-14-55-10-01
	2023-01-26-14-55-29-01
	2023-01-26-14-55-50-01
	2023-01-26-14-56-10-01
	2023-01-26-14-56-30-01
	2023-01-26-14-56-48-01
	2023-01-26-14-57-8-01
	2023-01-26-14-57-27-01
	2023-01-26-14-57-54-01
	2023-01-26-14-58-16-01
	2023-01-26-14-58-37-01
	2023-01-26-14-58-55-01
	2023-01-26-14-59-15-01
	2023-01-26-14-59-32-01
	2023-01-26-14-59-52-01
	2023-01-26-15-0-9-01
	2023-01-26-15-0-34-01
	2023-01-26-15-0-53-01
	2023-01-26-15-1-14-01
	2023-01-26-15-1-35-01
	2023-01-26-15-1-55-01
	2023-01-26-15-2-15-01
	2023-01-26-15-2-35-01
	2023-01-26-15-2-53-01
	2023-01-26-15-3-13-01
	2023-01-26-15-3-31-01
	2023-01-26-15-3-51-01
	2023-01-26-15-4-10-01
	2023-01-26-15-4-31-01
	2023-01-26-15-4-48-01
	2023-01-26-15-5-28-01
	2023-01-26-15-5-53-01
	2023-01-26-15-6-14-01
	2023-01-26-15-6-38-01
	2023-01-26-15-6-58-01
	2023-01-26-15-7-15-01
	2023-01-26-15-7-35-01
	2023-01-26-15-7-59-01
	2023-01-26-15-8-18-01
	2023-01-26-15-8-36-01
	2023-01-26-15-8-57-01
	2023-01-26-15-9-15-01
	2023-01-26-15-9-33-01
	2023-01-26-15-9-51-01
	2023-01-26-15-10-11-01
	2023-01-26-15-10-28-01
	2023-01-26-15-10-49-01
	2023-01-26-15-11-6-01
	2023-01-26-15-11-23-01
	2023-01-26-15-11-40-01
	2023-01-26-15-11-58-01
	2023-01-26-15-12-17-01
	2023-01-26-15-12-38-01
	2023-01-26-15-12-56-01
	2023-01-26-15-13-17-01
	2023-01-26-15-13-39-01
	2023-01-26-15-16-10-01
	2023-01-26-15-17-8-01
	2023-01-26-15-18-5-01

