i @OMPUTERWARE

Software Services

COMPUTERWARE"BASIC

A 68XX STANDARD

We Sell Capabilities...

CSs BAsSIC

TABLE OF CONTENTS

BASIC Language SUMMALY + o+ « = « « « » oid
Introduction . « o « & « & = « « « s s o 1
Modes of Execution . « + ¢ ¢ o« « o o o o 2
Program Statements . . . « « ¢ 4 o o o o 3
Data FOrmat . o« « ¢ o o o o » s o« o« + « 4
String / Numeric Variables . . . « + « . 4
Control Functions . . « o« ¢« = o « o & « 5
BASIC Commands . . . I |
Disk commands and funct1 ONS « &« « « » 10
Housekeeping Commands . . « « « + o« » .11
Saving & Loading BASIC programs14
Arithmetic Operations . . « « + &+ « » .16
Relational Operators . » « « « o « « « 16
FUNCLIONS o 4 ¢ ¢ o o s 2 « o o« o o « 217
Transcendental Functions . . « . « - . 20
User Function . . o « o o o o » o » » 21
Statements« . e s o o o » o 222

Data and Read Statements. e s o o 223

For ~ Next Statements . . . « . . .24

Goto and Gosub Statements 25

On Goto / Gosub - Brror . . . « « 27

If - Then Statements. + . .28

Input/Output Statements30
Random and Sequential Disk files33
Cassette file handling . . « « ¢ « « « .39

Appendices:
Quick Reference Chart. . . . « « «. « . . . APPENDIX
Ascii-Cntl-Hex-Dec Table . . + « « « « . . APPENDIX
Memory Locations used by BASIC APPENDIX
Error Messages e e v s v+ s e « s e « .« . . BPPENDIX
Example of using the USER Function APPENDIX
Partial Source Listing . . . » » « » - « . APPENDIX

fxecution Time Information «. . . « APPENDIX

T 60 M m U o Wow

Memory Usage . « - o « ¢« =« o o« s &« o » « » APPENDIX
Loading and Using Cassette Basic APPENDIX
System default values , « . . APPENDIX

Modifying Logical I/0 Basic. APPENDIX

" 4 A

Loading and Using Random Disk Basic. . . . APPENDIX

- i- (C} 1978 COMPUTERWARE

CSS BASIC

COMMAND

ABS (X)

APPEND "filename"
ASC (X)

ATAN (X)

AUTO (X),(Y)

BASE=

CALL
CHAIN "filename"”

CHR$ (X)

CLOSE (disk)
CLdSE (cassette)
CONT

Cos (X)

CREATE

DATA

DEF FNA(X)

DEL (6809 only)
DIGITS=X

DIM A(N)

DLM=ON / DLM=CFF
DO command processor
DOS

EDIT

END

EOF

BASIC LANGUAGE SUMMARY

DESCRIPTION

Absolute value of X

Appends "filename® from disk
Decimal ASCII value of X
Arctangent of X

Auto line numBering

Establishes either 0 or 1 as BASE for
array subscripting and random files

Call user's machine language routine
Loads & begins execution of program

Single character string equivalent
to decimal ASCII value (X)

Close open disk files

Close output cassette file

Resumes execution after STOP or CTL C

Cosine of X

Create a random file

Puts data values in data buffer
User defined function

Deletes portions of a BASIC program
Sets number of digits for printing
Sets dimension of array

Turns on & off variable delimiters
Allows DOS command usage from BASIC
Return to the Disk Operating System
Editor feature in Basic

Ends execution and closes all files

End of file check for cassette files

PAGE

18
14
18
20

12

22
14
19

34
39

20
34
23
23

11

22
31

25

39

COMMAND

ERCODE

ERLINE

ESC

EXPAND

EXP (X)

FCHEK

FDEL

FION (6809 only)
FIOFF (6809 only)
FLIST

FOR =- NEXT -- STEP
FPSW (6809 only)
FREE

FREN

FSIZE

GET

GOSUB N

GOTO N

HOME

IF expl THEN exp2
tELSE exp3

IMOD (A,B)

INPUT

INT (X)

ION (6809 only)
IOFF (6809 only)
LEFTS$ (X$,N)

CSS BASIC

DESCRIPTION

Value of Basic error code - ON ERROR
Line number where error occured
Sends Escape sequences to output
Allows expansion of Random files
Base of natural log to the Xth power
Check absence or presence of disk file
Delete file(s) from disk

Enable the FIRQ interrupt

Disable the FIRQ interrupt

List disk file directory

Program loop (intentional)

Floating Point Switch

Free sectors on disk

Rename file on disk

Size of a Disk File

Get data from random disk file

Goes to subroutine at line N

Program branch to line N

Sends home~up, clear-~end-of~frame

Conditional execution of exp2
or execution of exp3

Remainder of A/B

Accepts daﬁa from terminal
Greatest integer less than X
Enable the IRQ interrupt

Disable the IRQ interrupt

String of characters from the left
most to the Nth character of X$

PAGE

27
27
19
34
20
10
10
13
13
10_
24
13
10
10
37
35
26
25
12
28

20
30
18
13
13
19

CSSs BASIC

COMMAND DESCRIPTION PAGE
LEN (X$) Number of characters in string X$ 18
LET X=N Assigns value N to variable X 24
LINE=X Defines print line length 11
LIST, LISTX, LIST X-Y Lists line of program 7
LOAD "filename" Loads program from disk 14
LOG X Natural log of X 20
MID$ (AS$,X,Y) String of X through X+Y characters 20
from string AS$
MON ‘ Return to operating system . 8
MSIZE Free memory space 20
NEW Clears program area 8
NVAL Test variable for numerics 19
ON ERROR : Basic error traping / handling 27
ON X GOTO/GOSUB N If X is true, branch to N 27
OPEN Open disk file (random & sequential) 33
OPENI Open cassette file for read 39
OPENO Open cassette file for write 39
OPTION Opticnal with BASE= 12
PACK - Pack String Variables 29
PAGE=X Define page length value 11
PEEK (X) Decimal value in memory loation X 17
PDLM : PACK Delimiter Character 29 .
PI 3,14159265 17
POKE (X,Y) Stores value Y in memory location X 22
PORT=N Sets control port to N 9
POS Present print position 18

(C) 1978 COMPUTERWARE - iv -

COMMAND

PRINT

PRINT USING
PUT

READ (disk)

READ X

RECNO
REM

REPLACE
RESTOREFHK disk)
RESTORE
RETURN

RIGHTS (X$,N)

RJUST=X
RND
.RNEXT
RSIZE
RUN
SAVE “"filename"
SCRATCH
SET

SGN (X)
SIN (X)
SIZE
SKIP X
SQR (X)

CSS BASIC

DESCRIPTION

Prints to the output device
Formatted print statement
Outputs record to random file
Read data from disk file

Read variable from data buffer

Recbrd‘pointer in random file

Remark |

Replaces program on disk - same name
Resets disk file pointer to start
Resets data statement buffer pointer
Ends subroutine

String of characters from the Nth
position from the right side of X$

Print numeric variables right just.
Random number generator

Next available record in random file
Random disk file size (records)
Initializes program & begins execution
Saves program "filename" to disk
Sets up file for output

Assign value to RECNO fummand

Sign (+ or ~) of X

Sine of X |

Size of Basic prOgrém and variables
Skip X print lines

Square root of X

PAGE

30
31
37
34
23

38
23
14
35
24
26
20

13
17
37
37

7
14
36
38
18
20

8
12
20

-V - (C) 1978 COMPUTERWARE

CSS BASIC

COMMAND DESCRIPTION PAGE
STATUS Disk file status (DFM) code 37
STOP Ends program execution 25
STR$ (X) String value of numeric variable X 19
STRING=X Sets maximum string length to X 12
TAB (X) Moves print position to X 17
TAN (X) Tangent of X 20
TLOAD X Load from tape 15
TPEND X Loads from tape to end of program 15
TRACE Toggles the display of line numbers 8
during program execution
TREAD A Cassette data file read 40
TSAVE X Saves to tape 15
TWRITE % Cassette data file write 40
' UNPACK Unpack Multiple Strings 29
USER Call to USER subroutine 21
VAL (X8$) Numeric constant equivalent to X$ 19
WAIT X Wait state for X units of time 13
WRITE Outputs data to disk file 36

(C) 1978 COMPUTERWARE - vi -~

CSS BASIC

INTRODUCTION:

— Computerware's SUPER BASIC and RANDOM BASIC were written to
conform closely to the proposed ANSI standard, thus allowing the
user to run standard BASIC programs with few, if any, changes.
In addition, many new commands have been added to make
programming easier, and to keep your source code to a minimum,
All commands, statements and functions can now be abbreviated and
the 1line input buffer has been expanded to 128 characters (90
characters for cassette/prom) to allow the use of longer text
strings and multiple statement lines. CSS BASIC supports many
transcendental functions, allows programs and data to be saved on
disk, and supports both RANDOM and sequential data files.

Complete documentation for input and output character routines is
provided so as to allow easy adaptation for special I/0 features.

LICENSE:

Computerware BASIC, in all machine readable formats, and the
written documentation accompanying them are copyrighted. The
purchase of (CSS BASIC, or the purchase of a disk system with
which CSS BASIC is distributed without additional charge, conveys
to the purchaser a license to copy BASIC for his/her own use, and
not for sale or free distribution to others. No other license,
expressed or implied is granted.

WARRANTEE INFORMATION:

The license to use C8S BASIC is sold AS IS without warrantee,
This warrantee is in lieu of all other warrantees expressed or
implied. Computerware does not warrant the suitability of BASIC
for any particular user application and will not be responsible
for damages incidental to its use in a user system,

REGISTRATION:

Computerware wants you, the user to be satisified with our
products. To help achieve this goal, we ask that you £ill out the
enclosed ORIGINAL registration form. If a problem is found in
the software, we can then communicate with you concerning
corrections and enhancements, If you find a problem - please
document it - send to Computerware the disk or tape(s) with the
software in question, and we will make every attempt to resolve
the problem/question., The materials you sent will be returned to
you with an explanation of what we found.

NOTE: Computerware supports ONLY SS-50 6800 Configurations with
their 1I/0 at $8000 or $F7E0 and if Disk Based, with DOS located
at either the $6000-$7FFF or $C000-$DFFF range. On the 6809, we
support I/O at either $E000 or $F7E0, with SSB DOS at $C000-$DFFF

- and our MONO9 or MON69 Monitor. We will offer no free assistance
for persons with confiqurations other than this, Our minimum
software consulting charge is $100.00 in advance,

-1 -~ (C) 1978 COMPUTERWARE

CSs BASIC

MODES OF EXECUTION:

BASIC has two modes of execution - the immediate (or direct) mode
and the program mode. In the program mode, BASIC executes a set
of instructions that have been stored prior to execution. In the
immediate mode, BASIC executes commands at the time they are
entered from the terminal.

The BASIC interpreter determines whether a statement is intended
for immediate execution or for storage as part of the program
solely on the basis of whether or not the statement was entered
with a line number. Statements having line numbers are stored
for later execution; those without line numbers are executed
immediately. Thus the line:

10 PRINT "CSS BASIC"

will produce no response at the terminal until the program is
executed, The line:

PRINT "CSS BASIC"
however, causes the terminal to respond immediately with:
C8S BASIC

By using statements without line numbers BASIC can be used as a
sophisticated calculator. For example,

PRINT (17%*2.83)*(7/4)
will cause BASIC to immediately respond with:
89.14

Another use for immediate mode execution is as an aid in program
developement and debugging. Through the use of direct statement
execution, program variables can be read or altered, and the
program flow may be directly controlled,

INSTRUCTION ABBREVIATION:

All instructions can be abbreviated by using only as many of the
first letters as required to provide uniqueness and then a period
(.). The most often used instructions (PRINT, LIST, RUN, FOR,
NEXT, GOTO, INPUT, THEN, etc.) only require their first letter
and a period. Abbreviated instructions that occur right after
the line number will be expanded to their full spelling, but all
others within the program will remain abbreviated and will be
processed faster than the full spelling format.

(C) 1978 COMPUTERWARE -2 -

CSS BASIC

PROGRAM STATEMENTS:

A BASIC program is made of a series of program lines. Each line
must Dbegin with a 1line number followed by one or more BASIC
statements and terminated with a carriage return., The following
are several rules that must be followed in writing a BASIC
program:

1. Every line must have a line number ranging between 1 and
9999. Line number 0 may not be used.

2, Line numbers are used by BASIC to arrange the program lines
sequentially. The program will be executed in order of
increasing line number regardless of the order in which they
are entered,

3. A line number may be used only once in any given program,

4. A previously entered 1line may be changed by simply
re-entering the same 1line number along with the corrected
line. Typing a 1line number followed immediately by a
carriage return deletes that line.

5. Program lines need not be entered in numerical order because
BASIC will automatically put them in ascending order,

6. A line cannot contain more than 128 characters including
spaces. (90 characters for cassette and prom Basic.)

7. Spaces are not processed by BASIC unless they are part of a
character string (i.e., enclosed in quotation marks). The
use of spaces is optional, The line 10 LET A = 10 is
the same as the line 10LETA=10, Spaces make the line more
readable, but take longer for the interperter to process and
consume more memory. Numbers may not contain imbedded
spaces, ,

8. Multiple statements on a single line are permitted and must
be separated by a colon ":". The statements are processed
from left to right. For example: :

10 A=4 : B=7 ; C=A+B : PRINT C
is equivalent to:

10 A=4

20 B=7

30 C=A+B
40 PRINT C

-3 - (C) 1978 COMPUTERWARE

. €8S BASIC

DATA FORMAT:

The range of numbers that can be represented is 1.0 E-99 to
9.99999999 E+99 where E+99 represents 10 to the power 99.

Numbers are retained to an accuracy of nine decimal digits and
are internally truncated (last digits dropped) to £fit this
format. Numbers may be entered and displayed in three formats:
integer, decimal, and exponential. For example:

1234 12.34 1234 E-2

NUMERIC VARIABLES:

vVariables are represented in a statement by an alphanumeric text
string {the lst character may NOT be numeric). BASIC considers
only the first 6 positions for uniqueness.

Examples: TOTAL, Y, Z, X3, TAX3, R{(5,2), ARRAY(25)

STRING VARIABLES:

String variables may contain a maximum of 126 characters. A
string length command is available which allows the maximum
string length to be set at the beginning of the program. If the
string length is not explicitly defined using the STRING command,
BASIC assumes a string length of 32 characters. Refer to the
STRING command description for a detailed description of its use.
String variables must contain a '$' as the last character in the
variable name.

Examples of string variables: NAMES, Y§(7)}, TABLES$(3,2)

These string variables are all distinct from numeric variables
having the same name. For example, X=902, X$="PQLLY", Y(5)=23,
and Y$(5)="CRACKERS" are all legal and may appear 1in the same
program,

SIX CHARACTER VARABLE NAMES:

Random BASIC supports variable names ranging in length from 1 to
126 characters. Only the first six positions are used by BASIC
when referencing a variable. If the variable is a numeric
variable, the first position may NOT be numeric. String
variables must have their '$' designator within the name, and
only the portion to the left of the '$' will be considered when
BASIC is evaluating the variable name. BOTH upper and lower case
characters are allowed within variables and they are not
considered to be equivalent - ie., A is not equal to a. The
main purpose in allowing the extended variable naming is to

promote better programming thru better documented progfamiﬂaﬁn; Ce i
+C i

% CANNOT USE MULTE CHAMACTIL UARNRLE NAMEBS (U DiSk OPE

(C} 1978 COMPUTERWARE - 4 -

CSS BASIC

STRING CONCATENATION:

Strings may be concatenated (joined together) using "the
concatenation symbol "+". For example:

10 X$="Css"
20 Ys=" BASIC"
30 Z$=X$ + ¥$
40 PRINT Z$

Will print: €SS BASIC

The total length of the strings to be concatenated may not exceed
the maximum string length either set by default or by the use of
the STRING command.

‘CONTROL FUNCTIONS:

Control characters such as CONTROL C or CONTROL X are typed by
holding down the CTRL key while typing the specific letter.
Control characters are not displayed on the terminal but are
accepted by the computer. The control functions may be assigned
different characters more suitable to the user's system. Refer
to the appendices for specific details,

BREAEK -

Typing CONTROL C will cause BASIC to halt its current
operation and to respond with "BASIC#". BASIC will then accept
additional commands. CONTROL C may be used to stop a LIST
operation which is in progress before it ig completed, or to halt
the execution of a program. If an MP-C card is being used as the
terminal interface, the user may have to hit CONTROL C several
times before the terminal will respond.

LINE CANCEL -

Typing CONTROL X <clears the current contents of the
line buffer. 1If an error is made while making any entry on the
terminal, either during program entry or data input during a
program, this character can be used to delete the line, The user
may then re-enter the line followed by a carriage return. Once a
carriage return has been entered, however, the CONTROL X will no
longer delete the line.

-5 "~ (C) 1978 COMPUTERWARE

CSS BASIC

BACKSPACE -

The CONTROL H (backspace) is used as & single character
back space function. When a character has been typed in error,
either during program entry or data input during a program, it
may be corrected by typing the CONTROL H followed by the entry of
the correct character, You may backspace as many character
positions as necessary.

REPEAT - ‘

Typing CONTROL D will cause whatever 1is in BASIC'S
input buffer to be again used as a line of input. This feature
works in the immediate mode and its value 1is for the user to
establish,

HALT -

With some of the operating systems (SMARTBUG/MON09),
typing the rub-out character (Hex $7F) will cause processing to
halt. This applies to both commands used in the immediate mode
and while a program is running. To continue processing type any
character but a rub«out or a CTL C.

(C) 1978 COMPUTERWARE -6 -

CSS BASIC

BASIC COMMANDS:

It is possible to communicate with the computer in BASIC by
typing commands directly on the keyboard of the terminal. Also,
many statements can be executed directly using the direct mode of
operation described earlier, In addition, there are several
commands which may be used by the operator in order to list
programs, run programs, save or load programs, etc. When BASIC
is ready to receive commands, "BASICH#" will be displayed on the
terminal. After each entry, the system will prompt the operator
with a "#",

Commands are typed on the terminal without using statement
numbers. After the command has been executed, "BASIC#" will be
displayed indicating that BASIC is ready to receive another
command from the operator.

LIST -

This command displays the lines of the current program
on the terminal. The lines are 1listed in ascending numerical
order by line number. A single line may be listed, or all lines
within a given range may be listed. For example:

LIST ‘ List the entire program.
LIST 30 List only statement 30.
LIST 30~100 List statements 30 through 100.
_ LIST #4 List entire program on terminal/printer

connected to I/0 Port #4.

DEL - (6809 only)
The DEL command allows the user to delete portions of a
BASIC program that is in the computer's memory. The format is:
DEL N1 [,N2] where N1 is the starting (or only) line number and
N2 is the ending line number of a range of lines, DEL only works
in the immediate mode.

RUN -

Typing RUN, followed by a carriage return, causes the
program which is currently in memory to be executed starting with
the lowest line numbered 1line. The RUN command resets all
Program parameters and initializes all variables to zero. If for
Some reason you want to restart a program from within the
program, the command RUN will close all files prior to
restarting, thus allowing it's use when files are open,

CONT -

The CONTinue command causes program execution to be
resumed after a STOP statement has been executed. If a program
has been interrupted using a "break™ (control C) command,
execution may be resumed by typing CONT followed by a carriage
return. This command should not be used if a program error had
been encountered or if the program has been changed. The program
parameters are not changed by this command.

-7 - (C) 1978 COMPUTERWARE

CSs BASIC

NEW - :
This command causes the user program area and all -
variables and pointers to be reset, The effect of this command

is to erase all traces of the previous program from memory in
preparation for a new program. The CSS identification and BASIC
version number will print, followed by "BASIC#".

TRACE -

The TRACE feature is a useful debugging tool. Typing
TRACE causes BASIC to display to the terminal the line number of
each statement as it is executed. This allows the user to follow
the sequence in which the program is being executed. Typing
TRACE again returns the system to its normal mode of operation.
The TRACE command may be inserted anywhere in the program, or
executed in the direct mode,

SIZE -
The SIZE (DISK only) command returns the following
information to the control port:

AVAIL=(bytes of unused memory in decimal)

PROG=(bytes used for program source)

VAR=(bytes used for variable storage)
(after program has been run)

MON -

This command causes the computer to return to the
resident ROM monitor in the computer system. 1In the case of
MON09/SMARTBUG this will output a carriage return, line feed, and
the "*" prompt character. If the stack pointer address is not
altered (ie., pressing reset), then typing "G" will restart BASIC
leaving the user's BASIC program intact. The MON command may be
inserted as a statement within a BASIC program.

DOS -
The DOS (DISK only) command functions identically as
MON except that control is return to DOS, To re-enter BASIC from
DOS, type 'GOTO 103', BASIC's soft start,

AUTO -

The AUTO command provides the user with automatic
generation of line numbers while writing/adding to a BASIC
program, The format of the command is as follows: AUTO [X {,
Y} 1, where 'X' is a value between 1 and 9999 and represents the
beginning number to be automatically generated. 'Y' is a value
between 1 and 9999 and represents the increment value between
numbers. The defaults for 'X' and 'Y' are 100 and 10
respectively. To get out of the AUTO mode, use the break
character (typically CTL C).

{(C) 1978 COMPUTERWARE -8 -

CSS BASIC

PORT -

The command PORT = N defines the I/0 port which will
serve as the control port, N can be a constant, a variable, or
an expression. All messages, including BASIC's "BASIC#" will be
sent to the port assigned by the PORT command and the BASIC
program will expect all input from that port,

BEWARE
If a port without a terminal is defined as
the control port, you will lose control of
your program. Breaks may NOT always be
accepted from the control port.

Computerware considers the use of PORT to direct output to a
pPrinter to be a POOR programming technique. Use the PRINT $P (P
= port no.} for this purpose,

EDIT -

The EDIT command will allow the user to have an
‘overlay' capability similar to the editor =~ in BASIC. The
format is EDIT <line-~number>, where line-number is the line that
the user wants to make changes to. To change a character simply
type the new character under the old one. To leave a character
unchanged press the 'fill-character' (see below). CTL D will
automatically include the remainder of the old line with any
changes you may have made. Pressing carriage return will
truncate the line at the point where CR was pressed. The 1line
can be added to by typing beyond the end of the line and then
Pressing CR,

The 'fill character' is currently set to $0C (forspace character
on a SOROC terminal), but may be changed to whatever control
character causes a right - horizontal tab on your terminal (eq.
$09 for an ACT IA). To change the fill character, simply change
location $0140 (CHGCER) in the BASIC to what will work for you.

Do -

The DO command allows the user to execute most DOS
commands from BASIC. It works only in the immediate mode, and
it's format is as follows: DO 'DOS COMMAND'. Great CAUTION
should be exercised when using the DO command - in that the DOS
command requested may in fact have a memory location conflict
with BASIC. Examples of commands that should NOT be used include
BACKUP, FORMAT, COPY, SAVET, EDIT, ASMB, BASIC and any other
command that loads into a memory location lower than $4000. If
in doubt of the 1location a command loads into, use the FIND
command to verify its location. Example: DO FIND,VIEW.S$ will
execute from BASIC and in fact tell you that VIEW is located in
the DOS utility command area and is safe to use with DO. -

NOTE: Due to the way BASIC interprets a program, the DOS
commands starting with an 'S' will not work from BASIC. Simply
renaming them to a name that does NOT start with 'S’ will allow
their use,

-9 - (C) 1978 COMPUTERWARE

CSS BASIC

BASIC DISK COMMANDS AND FUNCTIONS:

The following commands and functions are unique to the DISK
BASICS. They are in a separate catagory from the disk file
handling commands and functions because they do not require data
files for their use. They may also be used in conjunction with
file handling, and in fact, are quite useful in that area.

FLIST -

The FLIST (file list) command allows the BASIC user to
list the file names stored in the disk directory without exiting
to DOS68, The format of this command is: FLIST [#<port
number>}[,<unit number>I, Typing FLIST alone lists the files
stored on disk drive 0. FLIST 2 will list the file directory on
disk 2. FLIST #4,]1 will list the disk file directory for disk
drive 1 on port 4, FLIST will not list the transient commands
found in the disk directory.

FDEL -

The FDEL (file delete) command allows the user to
delete disk files without exiting back to DOS68 to use the DELETE
command, The format of the FDEL command is: FDEL <file list
separated by commas>.

FREN -
The FREN (file rename) command functions Jjust as the
DOS68 RENAME command does to change the name of a disk file. The
command format is: FREN <old file name>,<new file name>. Note:
Drive number is allowed only on the 'old file' parameter,

FCHK - (Random Basic only)
The FCHK function allows the user to determine the

absence or presence of a program or data file on the disk
without invoking an Error that would stop BASIC. The format of
FCHK is: FCHK <unit number:><file/prog name> - since it 1is a
function it must be preceded by a command. The value that FCBK
returns is identical to those of the STATUS function described
elsewhere in the manual,

O =FLEfFound |
Examples: IF FCHK 1:MASTER.FIL <> 0 THEN 2000 OflwaWQ\
or LET A = FCHK PAYROL.BAS
FREE - {Random Basic only)

The FREE function returns to the user the number of
free sectors on the diskette for the drive specified., The format
is as follows: FREE X - where X is either a numeric variable or
number in the range of 0 to 3, representing the drive (unit)
number, To determine the number of free bytes, multiply the
number of sectors by 124. Example: P. (FREE0)}*]124 will print #
bytes free on drive 0.

(C} 1978 COMPUTERWARE - 10 -

CSS BASIC

HOUSEKEEPING COMMANDS:

The following three commands, LINE, DIGITS, and STRING allow the
user to define the associated parameters. Once these commands
are used, the values assigned remain the same until the commands
are used again or BASIC is reloaded from the disk. LINE and
DIGITS can be used more than once during a program; STRING
cannot. The default values for these parameters are 1listed in
APPENDIX J. The system returns to the default values whenever
the commands NEW, LOAD or CHAIN are executed,

LINE= -

The LINE= command specifies the number of print
Positions in a line. For example, LINE = 40 defines a line to be
40 characters long. While printing, if the next position is
within the last 25% of the line length and a space is printed, a
carriage return/line feed will be issued. This is done so that a
number or word will not be divided at the end of a print line,
To inhibit this function, just set the line length equal to more
than 125% of the actual desired line length. Setting LINE=0
disables the line command.

LINE -
The LINE (DISK only) function returns to the user the
value of the 1line length currently in use, either from system
default (64) or from the LINE= command.

DIGITS= - :
This command is used to specify the number of digits to
be printed to the right of the decimal point. Any digits that
appear beyond the number specified will be truncated., If there
are not enough digits to fill the given length, zeros will be
used. DIGITS = 0 resets the system to the floating point mode.

DIGITS =~
The DIGITS (DISK only) function returns to the user the
value of the digits counter, which was either set by the DIGITS=
command or the system default of zero (0).

PAGE= -

The PAGE= command allows the user to set their page
length value into the page length counter., Every time a line
feed character is outputted from BASIC (to any port), the page
counter is decremented, When the counter is equal to zero, it is
reset to the value in the page length counter. The default value
is 66.

- 11 - (C) 1978 COMPUTERWARE

CSS BASIC

PAGE -
The PAGE function returns to the user the current value
in the page counter. An example of it use:

001C IF PAGE < 5 SKIP,PAGE - If within five lines to the bottom
of the page, skip to the bottom. '

STRING= -

Executing the command STRING = N will set the maximum
string length to N characters. BASIC will now reserve N bytes in
memory for all string variables regardless of the actual number
of characters which are entered for any particular variable. A
maximum of 126 characters is allowed. If the STRING command is
not used, BASIC will assume the default value of 32 characters.
The STRING command can be used only once during a program and, if
used, MUST appear before reference to any string variable is
made. For these reasons the user is advised to place the STRING
command at the very beginning of his program in a one-time-only
"housekeeping” type routine.

BASE= -

The command BASE=0 will cause array subscripts to begin
with the number 0. The c¢ommand BASE=1 will cause array
subscripts to begin with the number 1 which is the default value.
Random record numbers (RECNO) also are relative to the BASE=
command. To conform to the proposed ANSI standard, the BASE
command may be entered in the format: OPTION BASE=,

NOTE: BASE can be used only once in a program, and it's occurance
must be BEFORE references to any variables, DIM statements, etc.

HOME -

The HOME command will send the home-up and
clear~to-end-of-frame sequence to the output device. Appendix F
contains the 1location of where this string is located to allow
you to change this to be compatable with your system.

SKIP -

The SKIP command is used to skip X print lines. SKIP X
eliminates the need to use multiple PRINT statements. ‘X' must
be a decimal value between 1 and 255. This command sends BASIC's
carriage return line feed sequence to the output device. SKIP
may be directed to any I/0 port, using the following format: SKIP
#P,X where P is the port number and X is the number of lines,

(C) 1978 COMPUTERWARE - 12 -

CSS BASIC

WAIT -
The WAIT command provides the user with an easy way to
program wait loops. 'X' is a decimal value between 1 and 255,
The length of time represented by the value 1 is dependent upon
the the speed of the user's processor (usually between .5 and .9
seconds). A WAIT loop can be interrupted by the BREAK command.

RJUST= -

The value of 'X' in the command RJUST=X is the number
of print positions to the left of the decimal point when printing
@ number. Leading zeros in the field are printed as blanks. To
reset RJUST for left justification, set RJUST=0.

RJUST -
The RJUST (DISK only) function returns to the user the
value of the right justification counter, which was either set by
the RJUST= command or the system default of zero (0).

FPSW= - (6809 only)

The FPSW command allows the user to set the value of
the Floating Point Switch to a number between 1 and 9. The
Floating Point Switch indicates the number of positions to the
right of the decimal point that will be shown in the fleating
point notation rather than exponential notation. The total
number of positions printed to the right of the decimal point is
Still controlled by the DIGITS command. Example: Try to get .005
to print without FPSW equal to 3 or more. The FPSW function
returns to the user the value of the Floating Point Switch.

ION - (6809 only)
The ION command enables the IRQ interrupt (clear the
IRQ mask bit).

IOFF - (6809 only)
. The IOFF command disables the IRQ interrupt (set the
IRQ mask bit).

FION - (6809 only)
The FION command enables the FIRQ interrupt (clear the
FIRQ mask bit).

FIOFF - (6809 only)
The FIOFF command disables the NIRQ interrupt (set the
FIRQ mask bit).

- 13 - (C) 1978 COMPUTERWARE

C5S5 BASIC

SAVING AND LOADING BASIC PROGRAMS:

Computerware's BASICS were written to allow programs to be saved
and loaded using either disk, Kansas(City Standard cassette, or
paper tape. The Commands SAVE, LOAD, APPEND, REPLACE, and CHAIN
are CSS DISK BASIC only commands, while TSAVE, TLOAD, and TPEND
are in cassette and sequential disk BASIC (Not in RANDOM) .

SAVE -
This command is used to save programs to DISK. To save
a file, the user can type either SAVE filename or SAVE followed
by a carriage return, BASIC will prompt you for the file name if
you did not enter it. To save a program on disk unit #1 or #2
simply prefix the name with 1: or 2:.

LOAD -
This command is used to lcad a program from DISK. The
format of this command is the same as for SAVE.

APPEND -

This command also loads programs into memory as does
LOAD except that the current contents of memory are not cleared
out. The program which is loaded is "“appended" (added) to the
program already in memory according to the line numbers on the
appended program. Variable storage will be affected by the
APPEND command - thus it should not be used as a command in a
BASIC program but only in the immediate mode.

REPLACE -

The REPLACE command provides the dual function of FDEL
and SAVE. The format is the same as SAVE but BASIC will first
delete the program file from disk and then save the current
memory contents on the disk, using the same program file name.
CAUTION: if the program file name is not on the disk an error
will occur. Also, be sure that you really want to delete the
existing file on disk prior to using REPLACE.

CHAIN -

The CHAIN command allows one BASIC program to call
another BASIC program. The called program will automatically
begin execution. The format of the CHAIN command is the same as
SAVE and LOAD. A practical example of the use of the CHAIN
command would be to have a master program call various selected
programs which chain back to the master program after execution,
Even though variable storage is cleared by the CHAIN command,
you may use a variable as the file name (ie. CHAIN AS) - but
NOT a Subscripted Variable (ie. CHAIN A$(1l) }.

(C) 1978 COMPUTERWARE - 14 -

CSS BASIC

TSAVE - (Not in RANDOM)

The TSAVE command allows the user to dump the current
BASIC program to cassette tape. The TSAVE command is similiar to
the P command of MIKBUG - punch on/off commands are automatically
sent to the recording device. The cassette interface can be used
in either a manual or automatic motor control mode. If in the
manual mode, the recorder should be turned on prior to pressing
carriage return, after typing the TSAVE command. TSAVE will
output the entire BASIC source buffer onto the recording device.
The source buffer in memory is unchanged by the TSAVE command.

TSAVE allows file names to be entered in the following format:
TSAVE "FILE NAME" or TSAVE #3 "FILE NAME". The name will be
output to the tape ahead of the source program.,

TLOAD - (Not in RANDOM)

The TLOAD command allows for the entering of previously
recorded BASIC programs from cassette tape. The TLOAD command is
similiar to the L command of MIKBUG -~ reader on/off commands are
automatically sent, and either manual or automatic motor control
can be used on the cassette interface. Typing TLOAD, followed by
a carriage return, will transfer the source program from tape to
the BASIC source buffer. The buffer is automatically cleared at
the beginning of a TLOAD command.

If TLOAD is used with the filename option (TLOAD "FILE NAME™),
only a source program with that file name will be loaded. If a
file name was not specified, the first source program encountered
will be loaded.

TPEND - (Not in RANDOM)

The TPEND command is identical to the TLOAD command
except that the current BASIC buffer is not cleared. The
information provided for the APPEND command is also applicable to
TPEND.

The TSAVE, TLOAD, and TPEND commands can all be used to work with
any port. If, for example, your cassette recording device is on
the ACIA port two, a TSAVE #2 command would be used. If a port
number is not specified, the control port is assumed.

NOTE: If your cassette interface does not have automatic motor

control, you will have to manually turn the motor on and off when
using the above commands,

~ 15 - (C) 1978 COMPUTERWARE

CSS BASIC

ARITHMETIC OPERATORS:

BASIC performs addition, subtraction, multiplication, division,
and exponentiation. Mathematical expressions are evaluated from
left to right using the following operator precedence.
Parentheses may be used to override this normal precedence of
operators.

1) Exponentiation

2) Negation

3) Multiplication and division
4) Addition and subtraction

The mathematical operators are symbolized as follows:

]

. Exponentiation (up arrow character)
Negate (unary minus)

Multiplication

Division

Addition

Subtraction

{4+~ %1}
« v & s 2
. s 8 e s

No two mathematical operators may appear in sequence, and no
operator is ever assumed. For example:

10 C = A++B
20 (A+2) (B-3) are not valid,

NOTE: Exponentiation with negative numbers will give unpredictable
results,

RELATIONAL OPERATORS:

The following relational operators are used to compare two
values. They may be used to compare arithmetic expressions or
strings in an IF--THEN statement,

= Equal

<> Not equal

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
Examples:

10 IF X = Y THEN 320
20 IF Q > R THEN PRINT Q
30 IF A >= Z THEN GOSUB 100 : GOTO 200

(C) 1978 COMPUTERWARE - 16 -

CSS BASIC

FUNCTIONS:

Functions are not to be confused with commands. Functions may be
used as expressions or as parts of expressions. Function
arguments must be enclosed between parentheses.

PEEK -

PEEK(X) returns the decimal value contained in the
memory location specified by the decimal number X. For example,
the statement Z=PEEK{194) will assign to Z the value of the
contents of memory location 194 (hex C2).

PI -
PI returns the decimal value 3.14159265. It may be
used in any arithmetic expression. The PI function has no
arguments. (Not in RANDOM BUSINESS BASIC)

RND - .

RND(X) generates a set of uniformly distributed random
numbers, There are two ways in which RND can be used. 1) If
X=0, then a different random number between 0 and 1 will be
returned each time RND(X) is used. 2) If X is not 0, then the
same random number will be returned each time RND(X) is used. TIf
no argument is used then X=0 is assumed. To yield random numbers
within a range other than 0 to 1 use the following:

10 PRINT ({J~I+1)*RND{0)+I)

where the range of numbers is to be I through J.

TAB -

TAB(X) moves the print position to the Xth position to
the right of the left margin. If the print position is already
to the right of the Xth position then a carriage return - 1line
feed will be first printed and the TAB will then position to the
print location specified by 'X'., This conforms to the proposed
ANSI standard, The left-hand margin is print position #1. For
example, to print A$ starting in column 25:

220 PRINT TAB(25); AS

The following function illustrates how a table of values can be
printed with the right-hand column aligned:

100 DEF FNA(J) = LEN(STRS$(INT(J)))
200 PRINT TAB{(25-FNA{(J))};J

TAB(0) is a null tab command. Thus if you are using TAB with a
numeric variable and sometimes do not want to tab, assign a value
of zero to the variable prior to executing the TAB statement.

- 17 - (C) 1978 COMPUTERWARE

CSS BASIC

INT -
INT(X) returns the greatest integer value which is less
than X, For example:

INT(8,9) returns 8
INT(-7.2) returns -8

ABS -
ABS(X) returns the absolute value of the expression X.
For example:
ABS(6.27) returns 6.27
ABS(-6.27) returns 6.27

SGN -
SGN(X) returns the sign (+ or -) of X. Examples:
SGN{2.3) returns 1
SGN(~2.3) returns -1
SGN(Q) returns 0
SGN(-0) returns 0
POS -

POS returns the present column number of the print
head. In fact, POS is the inverse of the TAB function., For
example:

' 10 PRINT TAB(1l); X;
20 IF POS = 71 THEN PRINT AS$

LEN -
LEN(X$) returns the number of characters currently in
the string represented by X$. Example:

LEN("EXAMPLE") returns 7

ASC -)
ASC(X$) returns the decimal ASCII numeric value of the
first ASCII character within the string. For example:

ASC("™2"™) returns 63
ASC("A"™) returns 65
ASC("ABC"™) returns 65

(C) 1978 COMPUTERWARE - 18 -

CSS BASIC

ESC -

ESC(X) when used in conjuction with the PRINT
statement, will send an Escape Sequence to the output device.
'X' represents the numeric value in decimal ASCII, of the
character that is to be sent following the Escape ($1B) control
character,

CHRS$ -~
CHR$(X) returns a single character string equivalent to
the decimal ASCII numeric value of X. CHR$ is the inverse of the
ASC function, Example:

CHR$(63) returns ?
CHRS$(65) returns A

VAL -~
VAL(X$) returns the numeric constant equivalent to the
string X$, VAL is the inverse of the STR$ function. An error
will occur if X$ is non-numeric. Examples:

VAL{"5E4") returns 5000
VAL("17.8") returns 17.8

NVAL -

NVAL allows the user to 'test' a string variable for
numerics prior to using the VAL function. NVAL can be used in
conjunction with the MID function to test any position within a
string variable. The format for NVAL is:

IF NVAL (AS$) =0 The FIRST position of A$ is NUMERIC

IF NVAL (AS) <> 0 The FIRST position of A$ is NOT NUMERIC
and an ERROR 27 will occur if you
try to take the VAL{(AS).

STRS -
STR3(X) returns the string value of a numeric value.
STR$ is the inverse of the VAL function. Example:

10 LET G = 4918 + 2
20 LET M$ = STRS(G) - Now M$§ = "4920"

LEFTS$ -
LEFT(X$,N) returns the string of characters from the
left most to the Nth character of X$. For example:

"BIG BROWN COW"
LEFT$§(W$,5) - Now AS$ = "BIG B"

10 LET wWs$
20 LET AS

- 19 - (C} 1978 COMPUTERWARE

CSs BASIC

RIGHTS -
RIGHT$(X$,N) returns a string of characters from the
Nth position to the left of the right most character through the
right most character. For example:

10 LET P$ = "BIG BROWN COW"
20 LET A$ = RIGHTS$(P$,5) - Now A$ = "N COW"

MIDS -

MID$(A$,X,Y) returns a string of characters from the
string variable AS beginning with the Xth character from the left
and continuing for Y characters from that point. Y is optional.
If Y is not specified, then the string returned is from the Xth
character to the right of the beginning of the string through the
end of the string. For example:

10 LET P$ = "RED,BLUE,GREEN"
20 LET AS = MID$(P$,3,10)

The variable A$ now contains the string "D,BLUE,GRE"

IMOD -
IMOD(X,Y) returns the integer remainder of dividing X
by Y. (DISK only)

MSIZE -
The MSIZE function returns the decimal value of unused
memory sSpace in the computer. It is identical to the available
space value as shown in the SIZE command,

- - - ——

TRANSCENDENTAL FUNCTIONS:

Accuracy for the following mathematical functions is retained to
seven significant digits. The accuracy of the seventh digit is
not guaranteed. The arguments of SIN, COS, and TAN are in
radians rather than degrees. .

FUNCTION EXPLANATION

SIN(X) Returns the sine of X

COsS(X) Returns the cosine of X

TAN(X) Returns the tangent of X

ATAN(X) Returns the arctangent of X

LOG(X) Returns the natural logarithm of X

EXP(X) Returns 2.718282 (e) to the Xth power.
The inverse of LOG(X).

SQR(X) Returns the square root of X

NOTE: The above Functions are NOT in RANDOM BUSINESS BASIC.

(C) 1978 COMPUTERWARE - 20 -

CS8S BASIC

USER -

The USER function is provided to allow the programmer to jump to
a user defined subroutine from a BASIC program. The statement
LET A = USER (X) transfers program control to a user written
machine language program. Program control branches to the memory
location pointed to by memory locations $28 and $29. X is a
numeric expression which is then stored in a 7-byte series
beginning at a memory location pointed to by $30 and $31.

This value may be modified by the user written machine language
program to act as a data output from the program or as an
indicator that something must be done. The user routine must
terminate with a $39 (RTS), thereby transferring control back to
the BASIC interpreter. Additionally, X is now set equal to the
value stored in the seven byte series stored in memory locations
pointed to by $30 and $31.

When BASIC is loaded, memory locations $28 and $29 point a
location containing an RTS ($39) so that if the user function is
called it simply returns control to the BASIC interpreter. You
must modify memory locations $28 and $29 using POKE or MON
command in order to take advantage of the USER function.

Format of the seven byte numeric area:

Byte: 1 2 3 4 5 6 7
XX X X XX X X XX XX X X
1 2 3 4
l =sign : 2 = BCD number : 3 = not used : 4 = exponent
+ =0 Standard BCD Standard BCD
-=9 10's Compliment Standard BCD
- 21 - (C) 1978 COMPUTERWARE

CSS BASIC

BASIC STATEMENTS:

POKE -

POKE(X,Y) stores the value of Y at location X <(both X
and Y are decimal values). This allows the user to modify
specific memory locations during program execution. Extreme
caution should be taken while using this statement. It is very
easy to accidentally modify the BASIC interpreter itself which
would cause the program, the data, and the interpreter to be
destroyed!

DIM -~
The DIM (dimension) statement allows the user to
explicitly define the size of a one or two dimension array. An
array is a collection of subscripted variables or strings. The
DIM statement initializes String arrays to nulls, and numeric
arrays to zeros.

An array can only be "dimensioned™ once in a program, but need
not be dimensioned at all. If a subscripted variable is
encountered prior to dimensioning, a default of 10 elements is
established for the array. Only the variables A - Z followed a §
may be dimensioned for string arrays. The maximum dimension size
is '255' - which will provide an array that has 256 variable
positions when BASE=0 and 255 positions when BASE=l, When

'~ processing under BASE=0, there is always one (1) more position in

the array than the DIM size. Some examples:

10 DIM X(30) assigns 30 memory spaces to array X
{room for 30 numeric variables)

20 DIM z(12,3) dimensions a 12 X 3 array for 2

30 DIM A$(155) defines a 155 element string array

{room for 155 strings each of
maximum string length)

CALL -

CALL allows the user to 'call' an assembly language
sub~routine from BASIC and pass a parameter to that sub-routine,.
The format of CALL is simpler and more flexible than the USER
function. But, Jjust as with USER, CALL is a very DANGEROUS
command in that if not properly used, it is entirely possible to
DESTROY your prodgram, your disk and your sanity. The format of
CALL is identical to that of POKE (destructive commands hang
around together):

CALL(X,Y)

Where X is the DECIMAL address of your sub-routine and Y is a
DECIMAL value between 0 and 255 which will be placed in the 'A?
accumulator for use by your sub-routine. You MUST end your
sub-routine with an RTS ($39) if vou wish to return to BASIC.
There is no provision for passing data back to BASIC. Both USER
and the INPUT command can be used for this.

(C) 1978 COMPUTERWARE - 22 -

CSS BASIC

REM -

The REMark statement is a nonexecutable statement which
gives the user the ability to document his program. By including
remark statements with the program source the listing becomes
more readable. The abbreviation for REM is colon (:).

DEF -
DEF FNA(X) allows the user to define his own functions.
The letter "A"™ can be any letter of the alphabet and the wvariable
X must be a non-subscripted variable. Once defined, the function
FNA(X) can be used anywhere in the program just like any other
BASIC functions. A function must be defined before a reference
is made to it. (Not in RANDOM BUSINESS BASIC)

DATA AND READ STATEMENTS -

Data and read statements are used together to assign
values to variables within a program. Every time a data
statement is encountered, the values in the argument field are
assigned sequentially to the next available position of a data
buffer., All data statements, no matter where they occur in a
program, are combined into a continuous list,

READ statements cause values in the data buffer to be accessed
sequentially and assigned to the variables named in the READ
Statement, They start with the first data element from the first
data statement, then the next element, and so on to the end of
the first data statement, and then to the first element of the
second data statement, etc. Each time a READ command is
encountered, it reads the next data value that has not been
assigned to a variable. If a READ is executed and the data
Statements are out of data, an error is generated,

Numeric and string data may be intermixed. However, they must be
used in the appropriate order to assign the data to the
appropriate variables. DATA and READ statements may be placed
anywhere within the program,

String data need not be enclosed in quotes since the comma acts
as the delimiter. However, if the string contains a comma, then
it must be enclosed in quotes, For example:

10 DATA JANUARY,17,1973
20 DATA "SMITH, BOBBY",5
30 READ M$,D,Y,N$

40 READ A

The statements shown above are equivalent to the following:

10 LET M$ = "JANUARY"

20 LET D = 17

30 LET Y = 1973

40 LET N$ = "SMITH, BOBBY"
50 LET A = 5

~ 23 - (C) 1978 COMPUTERWARE

CSS BASIC

RESTORE -
The RESTORE statement causes the data buffer pointer
(which is advanced by execution of READ statements) to be reset
to the beginning of the data buffer. For example:

10 DATA ALVIN,17 ,KAREN,22
20 READ AS$,A,BS,B

30 RESTORE

40 READ C$,C

is equivalent to:

10 LET A$ = "ALVIN" : A = 17
20 LET B$ = "KAREN" : B = 22
30 LET C$ = "ALVIN" : C = 17

LET -

The LET statement is used to assign a value to a
variable, The use of LET is optional unless the statement is
being executed in the immediate mode. In the immediate (or
direct) mode, the LET is required., For example, the statement

LET B=100 is the same as the statement B=1l00.

The equal sign does not mean equivalence as in mathematics, but
rather the replacement operator. It means: replace the value of
the variable name on the left with the value of the expression on
the right side of the equal sign. The expression on the right
can be a simple numeric value or an expression composed of
numerical values, variables, mathematical operators, or
functions.

FOR —-- NEXT STATEMENRTS -
The following is the format of the FOR - NEXT group of
statements:

10 FORI = ... TO ... STEP ...
20

30

40 NEXT I

The FOR - NEXT statements are used together for setting up
program loops. A loop causes the execution of one or more
statements for a specified number of times before exiting from
the loop. The varjiable in the FOR statement {(shown above as "I")
is initially set to the value of the first expression.
Subsequently, the statements following the FOR are executed.

When the NEXT statement is encountered the STEP value is added to
the variable and program execution is resumed at the statement
following the FOR - TO statement. If the addition of the STEP
results in a sum greater than the expression that follows TO, the
NEXT instruction executed will be the one following the NEXT
statement.

(C) 1978 COMPUTERWARE .= 24 -

CSS BASIC

FOR - NEXT contd.

If no STEP is specified, the value of 1 is assumed. If the TO
value is less than the initial value, the FOR - NEXT Joop will be
executed only once. For example:

10 FOR K=] TO 3 STEP .5
20 PRINT K;

30 NEXT K

40 PRINT "DONE"

This example will print: 1 1.5 2 2.5 3 DONE

Although expressions are permitted for the initial, final, and
step values in the FOR statement, they will be evaluated only
once (the first time the loop is entered). The same index
variable cannot be used in two different loops if the loops are
nested together., When the statement after the NEXT statement is
executed, the variable is equal to the last value assigned, 1i.e.
the value which caused the loop to stop (generally one greater
than the TO value).

STOP -

The STOP statement causes the program to halt
execution, BASIC returns to the command mode and prints "BASIC#".
The STOP statement differs from the END statement in that it
causes BASIC to display the statement number where the program
stopped. The program can be restarted by executing a GOTO or a
CONT command. The message displayed is STOP XXXX where XXXX is
the line number where the program stopped. STOP is often used as
a debugging aid. STOP automatically closes all files.

END -
The END statement causes the program to stop executing.
BASIC returns to the command mode and prints "BASIC#". END may
be used more than once and need not be used at all. When
executed, END closes all files.

GOTO -

The GOTO statement is an unconditional branch which
directs the program flow to the statement number specified. Note
that the statement number may specified as being the contents of
& numeric variable or expression.

Examples of GOTO:

100 GOTO 10

200 LET L=500 : GOTO L

GOTO 1000 (direct mode execution)
GOTO I*100

- 25 =~ (C) 1978 COMPUTERWARE

CSS BASIC

GOSUB AND RETURN -

The GOSUB statement causes the program to branch to a
specified statement number. It is assumed that this statement
number is the start of a subroutine. The sequence of statements
which make up the ' subroutine must be terminated with a RETURN
statement in order to send the program back to the statement
following the original GOSUB statement, Like GOTO, the
destination of a GOSUB may be represented as a numeric variable
or expression,

A subroutine is a sequence of instructions which need to be
executed more than once in a BASIC program. To use such a
sequence, a GOSUB instruction is employed. Upon completion of
the subroutine, control is returned statement following the GOSUB
by execution of the RETURN statement.

A subroutine may use a GOSUB to call another subroutine which in
turn may call another subroutine, and so on. This process is
referred to as "nesting”. Subroutine nesting is limited to eight
levels,

Example of the use of GOSUB and RETURN:

l10T=0

20 P = 3.50: GOSUB 100: PRINT C
30 P = 5.00: GOSUB 100: PRINT C
40 PRINT "TOTAL ",T

50 END

100 C =P * 1,06

110 T=T + C

120 RETURN

This ﬁrogram would output:
3.71

5,30
TOTAL 9.01

(C) 1978 COMPUTERWARE - 26 -

CSS BASIC

ON N GOTO OR ON N GOSUB -

This statement causes the program to branch to a
specified statement number depending upon the value of N. N may
be an integer value or may be an expression. If it is an
expression, the expression will be evaluated, rounded to an
integer, and the program will then branch to the Nth statement
number, For example:

220 ON N GOTO 700,350,490,450

This means:

If N = 0 Fall through to next line
If N =1 GOTO 700

If N = 2 GOTO 350

If N =3 GOTO 490

If N = 4 GOTO 450

If N> 4 an error will result

ON ERROR -

The command ON ERROR can be followed by any BASIC
statement. More than one ON ERROR command can be used in the same
program; the last one encountered will be the one executed if an
error occurs. If there is an error in the ON ERROR routine, an
infinite loop will result.

For example: 0010 ON ERROR GOTO 9000

ERLINE -

The ERLINE function returns to the user the line number
on which the error occurred. For Example:

9000 PRINT "ERROR FOUND IN LINE: ";ERLINE

ERCODE -
The ERCODE function returns to the user the error
number that occurred. The meaning of this value is described in
Appendix D. For Example:

89010 PRINT "ERROR CODE WAS: ";ERCODE

or
9010 IF ERCODE = 14 PRINT "BUY MORE MEMORY - TURKEY!!"

- 27 - (C) 1978 COMPUTERWARE

CSS BASIC

IF -—— THEN - [:ELSEI]

The IF statement is used to control program execution
depending upon specified conditions. If the relational
expression after the IF is true, then the program performs the
statement after the THEN. If the conditional after the IF is
false, program execution continues with the statement on the next
line after the IF --- THEN statement., The statement after THEN
may be just a line number, which will cause program execution to
GOTO the line specified. All multiple statements on the same
line as an IF =-=- THEN will be executed if the relationship tested
true.

For example:
10 IF A=5 THEN GOSUB 100: GOTO 230

This statement will perform the GOSUB and then will GOTO 230
when A is equal to 5.

The 1logical operators "AND"™ and "OR" are not supported in this
version of BASIC but may be easily handled using the IF -~ THEN
statement.

To perform:
IF A=B AND C=D THEN 100

use the following:

IF A=B IF C=D THEN 100

To perform:
IF A=B OR C=D THEN 100

use the following:

IF A=B THEN 100
IF C=D THEN 100

sELSE -
The :ELSE operator allows for the 'not true' side of a .
compare to be acted upon on the same line as the 'true' side. It
allows for more efficient program flow in that without it, the
'not true' case had to be processed on a separate line and then
if program flow was to again converge, a GOTO over the 'not true’
was required by the 'true' side. The format for :ELSE is as
follows: it must appear as the next operator after the normal
{IF (expr) THEN (operation)], and must be preceeded by a colon,
ie. IF A=4 THEN B=6 : ELSE B=8,

Processing can continue after the :ELSE operator, and it is
executed by both the 'true' and 'not true' sides of the compare
{just as if it were a new line).

(C) 1978 COMPUTERWARE - 28 -

CSS BASIC

PACK -

o The PACK statement allows multiple string variables to
be 'packed' into one string variable. The format is as follows:
PACK A$,X$,Y$..... where A$ is the receiving variable and X$,Y$,
etc, are the wvariables to the ‘'packed'. Each of the input
string variables is separated from the next by the PDLM
character. Standard string truncation will take place if the
total of the input strings is greater than the size 'STRING' is
set to,

UNPACK -

-The UNPACK statement functions in the reverse of the
PACK command. It's format is as follows: UNPACK AS$,X$,Y$....
The string A$ will be moved into X$ until the PDLM character is
found - then into Y¥$, etc. Each time a PDLM is found, a new
output string is used. If there are more segments in the string
being unpacked than receiving strings, the excess is ignored. 1If
there are not enough segments, the remaining output strings are
filled with nulls,

PDLM -

The PDLM statement sets the Pack Delimiter to the value
of the left most character in the argument on the right of the
equal sign. Example: PDLM = S$ (PDLM now equals the first
character in S$) or PDLM = "JUNK" (PDLM now equals the character
'JY.

NOTE: The default value for PDLM is the tilde '~°',

PDLM -
The PDLM function returns the current value of the PDLM
character. Format: LET P$ = PDLM or 1IF PDLM = "?" THEN END.

- 29 - (C) 1978 COMPUTERWARE

CSs BASIC

INPUT/OUTPUT STATEMENTS -

Any INPUT or PRINT statement may be followed with an #N where N
is the I/0 port number (0-7). N may be a constant, variable, or
an expression. If no port number is specified, the control port
(port #1, or port #2 for SMARTBUG) is assumed, If any expression
follows the port number, it must be separated by a comma. For
example: '

730 INPUT #2, AS

220 PRINT #4, X, Y, Z

INPUT -

The INPUT statement allows the user to enter either
numerical or string data on the terminal during program
execution. For example, statement 10 INPUT X allows one numeric
value to be entered. The gtatement 10 INPUT X$§ allows one
string value, with a length up to that specified by the STRING
command, to be entered. The values inputted are assigned to the
variables specified in the INPUT statement.

Multiple inputs can be entered by separating them with commas.
If the expected number of values are not entered, a " ?" will be
generated. The statement 10 INPUT "ENTER VALUE",X will print
the message inside the quotes, then prompt with a * 2%,

Wwhen the program comes to an INPUT statement, a " ?" is displayed
on the terminal. The program then waits for the user to respond
by entering the requested data followed by a carriage return. If
insufficient data is entered, the system then prompts the user
with another "™ ?". If a non-numeric character is entered when a
numeric variable is required, the system will prompt the user
with "RE-ENTER".

I1f a carriage return is pressed without any number when inputting
a numeric variable, a zero will be placed into the numeric
variable.

PRINT -

The PRINT statement directs BASIC to print either the
value of the expression, literal values, string values, or text
strings on the terminal. The various forms of print requests may
be combined on a single statement and separated by commas or by
semi-colons. If the statement is terminated with a semi-colon or
comma, the 1line feed / carriage return sequence (which is
normally issued by BASIC automatically at the end of each print
statement) will be suppressed and the next print statement will
resume printing on the same line where the last print left off.

(C) 1978 COMPUTERWARE - 30 -

CSS BASIC

PRINT contd.

Examplies: \

10 PRINT Skip a line

20 PRINT A,B,C Print variables A, B, and C auto-
matically tabbed into 16
character fields

30 PRINT A; B; C Print A, B, and C with only
one space separating them

40 PRINT "POR SALE" Print a message

50 PRINT "TOTAL=";A Print the message followed by the
value of variable A

60 PRINT #4,X Print the value of X on I/0 port 4

DLM=0ON - DLM=OFF

DLM=ON and DLM=OFF allow the user to manipulate strings
with commas and semi-colons etc. in them. DLM=ON 1is the
'normal' mode of BASIC in that comma is used as a delimiter
between both string and numeric variables. The default upon
loading BASIC or executing NEW is DLM=ON. DLM=0OFF allows the
user to input or read from a disk file a string variable that has
imbedded commas, along with any other valid ASCIT characters
other than carriage return. This feature also applies to
pPrinting or writing to a disk file. Another way to describe
DLM=OFF is that it provides a 'line input’ capability: one line
= one string variable. Only one (1) variable can be referenced
at a time on either the INPUT, PRINT, READO, or WRITEO commands.
The delimiter commands are supported for both sequential and
random files.

Even though the DLM= command can be used at any time in a BASIC
program, Computerware does not recommend this as it is very easy
to get the variable pointers in BASIC confused through
accidental use and thus garbage all your data.

PRINT USING -

The PRINT USING statement allows both alphanumeric and
numeric variables to be printed in a pre-defined format. The
format is: :

PRINT USING (mask),(variable list)

The mask is a string expression that must match the variable list
with respect to the data type (alphanumeric or numeric) and
number of elements. If there is not a one for one correspondence
between the mask and the variable list, then an ERROR 48 will
result and none of the 'USING' elements will be printed, The
following list describes the control characters that PRINT USING
recognizes:

- 31 - (C) 1978 COMPUTERWARE

CSS BASIC

PRINT USING contd.

print alphanumeric character

print numeric digit

print 'floating' dollar sign

print asterisk £ill from leftmost position
to the most significant digit

% 4ntE =

Any text that is imbedded in the mask other than the control
characters will be printed in its own position on the output
device. The mask for any numeric field must be followed by a
space to reserve a print position €for the minus sign., If a
numeric value requires more print positions than provided in the
mask, the field will be filled with asterisks to indicate an
overflow condition. When a control character of "*" is used, an
error will result if the field is negative. The following is a
sample of valid masks:

VARIABLE MASK RESULTS
" ABCDEFGHIJ" tes ABRC
"ABC® rrees ABC™"
1.5 E1 3 1
1.5 TII T 1.50
1.5 $E5%.58 $1.50
1.5 tIYTIE T kk*] 50
1.5 S*ERE, **$]1 ,50
-1.5 $#84. .48 $1.50-
-1.5 4% 1-
S#84%% .44 WAS DUE ON "1t 1? $173.86 WAS DUE ON 05/31/79

The PRINT USING element list may be terminated by a semicolon,
colon or carriage return., If terminated by the semicolon, the
normal end-of-print-line sequence is suppressed and the print
mechanism will be left positioned after printing the last
element. Any non-control character will serve as a delimiter
between string fields, or at the start of a numeric field. The
following are some valid examples:

PHINT #P,TAB(10) ;USING Q, ,A0;L% :

PRINT #P,TAB(90);"TODAY IS ".D$;TAB(35) ; "TOTAL = ";USING M$,Al
PRINT #P,TAB(15) ;USING M$,A2;

PRINT #P,TAB(25);USING 2$,A33TAB(35) ;A$; TAB(50) ;A5

The PRINT USING does not affect the values of DIGITS or RJUST.

The commands DIGITS and RJUST have no effect on the PRINT USING
command. They do apply to the non-USING portion of the PRINT
statement. Conventional PRINT and PRINT USING can be intermixed in
the same statement.

(C) 1978 COMPUTERWARE - 32 -

CSS BASIC

RANDOM AND SEQUENTIAL DISK FILE HANDLING:

The following section describes the disgk file capabilities of
Computerware's RANDOM DISK BASIC. Both the random and sequential
modes allow the user to create true 'records' in that string and
numeric variables may be intermixed in the logical fashion that
the data normally appears when being processed by the user.

Sequential files are denoted by the use of file numbers 0 - 9 and
Random files use file numbers 10 - 19. The use of random access
file commands and functions on sequential(files will rmsult in a
disk error and termination of the Basic program, '

Sequential files are Variable Length Record files and are in
ASCII format. Only the actual data in a variable will be written
out, regardless of string lentgh. Commas, Semi-~colons and
Carriage Returns are used as delimiters.

Random access records are fixed length records so that they may
be updated in place. This is accomplished by using a 6 byte BCD
format for the numeric variables and forcing all strings to the
size specified by the STRING= command. Thus it is important for
the user to PLAN the record definition for a random file, because
once created, all programs accessing the file must have the same
string size as the create program had.

OPEN - *

The command OPEN #(FLN),(FILE SPEC) is used to open a
disk file, The file number, (FLN), is an expression that must
evaluate to the range 0 through 19. The £file specification,
(FILE SPEC), must be string variable or string literal which
supplies the file name in standard DOS68 format.

For sequential files, the type of file access (read or write)
will be determined by the first usage of the file after opening.
Random files are OPENed for both input and output., Before a
BASIC program can read input or write output to a file, the file
must have previously been opened by the OPEN statement.

Before a RANDOM file can be opened, it must first be created,
using the CREATE statement.

Multiple files may be opened with the same OPEN statement by
using variables for (FLN) and (FILE SPEC) and repeating the
series of statemmnt{. For example:

10 INPUT "NUMBER OF FILES",F
20 FORI =1 TOF

30 INPUT "FILE NAME",F$

40 OPEN #I,Fs

50 NEXT I

- 33 - (C) 1978 COMPUTERWARE

CSSs BASIC

CREATE - CREATE #(FLN),(FILE SPEC),(# OF RECS),(#BYTES/REC)

The CREATE statement is used for the creation of new
random access files. The file number must be between (10 - 19}
and file spec, as described above. The number of records is
either a numeric variable or constant specifying the size, in
records, that the user wants allocated for the random file, The
number of bytes / record is calculated as follows:

Numeric variables - six (6) bytes per variable
Sstring variables - string length + 1

Example: CREATE#12,"“1:CREDIT.HST",200,55

Where STRING=24 and the record is one string (24+1) and five
numeric variables (6 * 5) for a record size of 55 and an
allocation of a file for 200 records,

A newly created file will be initialized to a 'zero' data state -
nulls for strings and zeros for numerics - and will be OPEN,

EXPAND - :
EXPAND Random Data Bases allows a previously CREATED
file to be increased in record count., It's format is as follows:
EXPAND #(FLN) ,(FILE SPEC),(NEW # OF RECS). The new # of records
is the total of the previous size plus the amount to be expanded
by.

Example: EXPAND#12,"1:CREDIT.HST",300

NOTE: EXPAND- and CREATE should never be used in multiple
statement lines.

CLOSE -
The command CLOSE #(FLN) ,#(FLN),... 1is for closing
open files. The file number may be an expression., The specified
file number must have previously been OPENed.

READ -

The statement READ #(FLN),{VARIABLE LIST) is provided
to request data be read from a disk file. Input from a file is
taken an item at a time - as the program needs it. (VARIABLE
LIST) consists of one or more variables, either string or
numeric, separated by commas. If the receiving element is a
string, it will receive the data from the file up to the maximum
string length of 126 characters, The line input buffer for a
single item from a file is 128 characters.

A string item over 126 characters will be truncated, and if more
then 128 characters are contained in a single item of input, the
buffer input processing will be terminated.

(C)} 1978 COMPUTERWARE - 34 -

CSS BASIC

If READing a numeric variable, the input is scanned for a comma
or a null and that portion of the input - up to the break
character - is then processed by a validation routine which
verifies the number as being a valid numeric value. If the
number is invalid, Error $#3 (ILLEGAL CHARACTER) will occur.

RANDOM ACCESS NOTES: The commands GET, READ, PUT, WRITE have the
ability to be CONTINUED on additional lines. To continue one of
these commands, a colon (:) must be placed on the end of the line
to be continued (right after the last variable on that line).
The next 1line (the continuation) must start with a colon,
followed immediately by the remaining variables in the record.
Example: .

0100 GET #10, NAMES$,ADDR$,CITY$,ZIP$,CURBAL:
0110 : PREBAL,DATEl,DATE2,DATE3:
0120 : AMTDUE,PSTDUE

GET -
GET is a random access statement identical to READ
except that automatic increment of the record number (RECNO) does
NOT occur.

RESTORE -

The statement RESTORE #(FLN),#(FLN}),... causes the
files associated with the list of file numbers to be repositioned
to the beginning of the file. Thus, the data in the file may be
reread. Note that this statement functions for files just as the
RESTORE described earlier functions for DATA statements. The
file number may be that of a file which is open for reading
(input) or writing (output). On a random file, RESTORE resets
the record number (RECNO) to the first record (BASE=0 is 0 -
BASE=]1 is 1),

10 OPEN #1,"PART,MST" {Quotes are not
20 LET C = 5 required)
40 READ #1,B

50 IF STATUS#1 <> 0 THEN 80

60 PRINT B

70 GOTO 40

80 RESTORE #1

90 LET C=C-1

100 IF C <> 0 THEN 40

110 CLOSE $#1

120 END

The above program causes File #1 named “PART.MST" to be opened,
A counter (C) is set to 5 to keep track of the number of times we
go through - the file, Data is then read and printed until the
status is non-zero (generally 6 for EOF), The file is then
restored (rewound). The count, C, is decremented and if the
result is not 0 the process is repeated until the count does
become 0 in which case the file is closed and the program ended.

- 35 - (C) 1978 COMPUTERWARE

Css BASIC

This example could be adapted to listing a file Jjust created.
The RESTORE after the write sequence will close the file, rewind
the file, and open the file for reading.

SCRATCH FILE - '

The SCRATCH statement is used to remove an existing
file from the current disk directory and then re-enter it into
the directory. After the file is re-entered into the directory
it is opened for output (writing). The o0ld file is lost from the
disk and a new file with the same name is prepared to receive
data. A file that has been opened for input (read) cannot be
scratched until it is closed and then reopened.

SCRATCH is an ILLEGAL statement for a random file since it is
always opened for both input and output - to delete a random file
permanently from the disk, use the FDEL command.

10 OPEN #1,2:FILE.RND
20 SCRATCH #1

30 FOR I=1 TO 10

40 WRITE #1,RND(0)

50 NEXT I

60 RESTORE #1

70 READ #1,I

80 IF STATUS #1 = 6 THEN 110
90 PRINT I

100 GOTO 70

110 CLOSE #1

120 END

This program opens a file called "FILE.RND" and clears out all
existing data with the scratch command, Then it writes ten
random numbers to the file, closes it, and then re-opens the file
for reading with the RESTORE statement. The random numbers are
read and printed until the end of file is encountered (STATUS =
6) at which time the file is closed and the program ends.

WRITE -

The statement WRITE #(FLN) ,(VARIABLE LIST) allows the
writing of the data indicated in the variable 1list to a disk
file, Thg variable 1list may contain either string, or numeric
variables, separated by commas. An error will occur on the first
execution of the WRITE command if the file specified currently
exists on the disk. To insure the availability of the file write
access, use the SCRATCH command which will prepare the file to
receive the output,

The record number (RECNO) will be automatically incremented after
the completion of the WRITE statement. As mentioned previously,
the string size must be the same as that specified in the program
which created the random file.

(C) 1978 COMPUTERWARE - 36 -

CSS BASIC

PUT -
PUT is a random access statement identical to WRITE
except that automatic increment of the record number (RECNO) does
NOT occur.

STATUS -

STATUS #(FLN) is a function allowing for monitoring of
error status of any specified file number. The status most often
used is the end-of-file (EOF) which has a value of 6 for SSB and
8 for FLEX. The status number is that number returned by the
disk file management system. Refer to your DOS MANUAL for other
values, It is a good idea to check the file status after a READ
at least for end of file.

If STATUS of a file is checked after opening, but prior to
reading or writing, the absence or presence of the file may be
established without getting a Basic Error (if the file were not
there). A STATUS of zero (0) means the file is there and
non-zero means not there. ‘

Random access files do not have an end-of-file status - the
functions RSIZE and RNEXT have been provided so that both file
size and the record number (RECNO) positioning can be monitored
by the user, NOTE: After the last record in a random file has
been read or written to, the record number (RECNO) will remain
positioned on the last record - it obviously can not be
automatically incremented.

FSIZE -

The FSIZE function returns to the user the size of a
file in terms of a decimal count of sectors. To establish the
file size in characters, single density files should be
multiplied by 124 and double density files by 252.

RSIZE -

RSIZE is a function that returns to the user the size
of a RANDOM file in records. This should be used during random
file processing to insure that the record number (RECNO)
requested is within the boundaries of the file.

Example: IF RECNO#10 > RSIZE#10 THEN (error message - etc.)

- 37 - (C) 1978 COMPUTERWARE

CSs BASIC

RNEXT -

RNEXT is a function that returns to the user the value
of the highest record written in the random file plus one. This
is typically the next available record 'slot' to be written into.
If you are using a method of loading the random data base other
than sequential, the RNEXT function may return a value that would
not reflect the next available ‘'slot'. Assuming a sequential
load, the following example shows how to add records to an
existing random file without over-writing any existing records:

0010 SET RECNO#13 = RNEXT#13 set RECNO to next available
0020 WRITE#13, A$,B$,C$,X,Y,2 WRITE record/auto increment

SET =~
SET is used to assign a value to the RECNO fummand
(both function and command).

RECNO -

The RECNO fummand serves the dual purpose of informing
the user the current position of the record pointer, and allowing
the user to move the record pointer to any location within the
random file, To assign a value to RECNO, the SET verb is used as
follows:

SET RECNO#12 = <any numeric expression>
RECNO can also be interrogated, printed, etc. as a function:
SET RECNO#12 = RECNO#12 + 4

IF RECNO#15 > 55 THEN 2000
PRINT RECNO#17 / PI

(C) 1978 COMPUTERWARE - 38 -

CSS BASIC
CASSETTE FILE HANDLING STATEMENTS:

——=> CASSETTE BASIC ONLY {«=—-

OPEN FILE -
For INPUT - OPENI "FILE NAME"

For OUTPUT - OPENO "FILE NAME"

The FILE NAME may be any name and may have a length up
to 60 characters. It may also be represented by a string
variable. When opening for output, the file name is written into
a special header record at the front of the file.

When opening for input, BASIC begins reading the input tape,
looking for a header record with the requested file name in it,.
BASIC will print on the control terminal the names of any files
that it passes while looking for the requested file. NOTE: The
BREAK feature of BASIC IS NOT FUNCTIONAL WHILE SEARCHING FOR AN
INPUT FILE NAME. If you have given BASIC an incorrect file name,
the only way to regain control of the computer system is to
press 'RESET' and then re-enter BASIC at HEX ADDRESS $0103.

Below are sample input and output routines using file handling:

0010 INPUT "INPUT FILE NAME ",F$

- 0020 OPENI FS$
0030 TREAD A$: IF EOF <> 0 THEN END
0040 PRINT AS : GOTO 30

0010 INPUT "INPUT FILE NAME ",F$
0020 OPENOC F$

0030 FOR X = 1 TO 15

0040 TWRITE X

0050 NEXT X

0060 CLOSE

CLOSE FILE -
The CLOSE statement is for OUTPUT FILES ONLY, CLOSE

will cause the last file control block to be written out to
cassette and set an end of file indicator in the file,

EQF -
The EOF function is used to determine whether an input
file has more data to be read or is at the 'End Of File'. When

EOF is equal to ZERO (0) the file still has data - when EOF is
NON-ZERO (<>0) all of the input file has been read.

- 39 - (C) 1978 COMPUTERWARE

CSS BASIC

READ FILE -
TREAD (VARIABLE LIST)

This statement specifies that data is to be 'read' from
the cassette file, Input from a file is taken an item at a time
- as the program needs it, (VARIABLE LIST) consists of one or
more variables, either string or numeric, separated by commas.

If the . receiving element is a string variable, it will receive
the data from the file up to the maximum string variable length
of 90 characters. The line input buffer for a single item from a
file is 90 characters.

A string item over 90 characters will be truncated, and if more
than 90 characters are contained in a single item of input, the
buffer input processing will be terminated.

If the receiving element is a numeric variable, the input is
scanned for a break character (a comma or a null) and that
portion of the input - up to the break character - 1is then
processed by a validation routine which verifies the number as
being a valid numeric variable. If the number is invalid, Error
3 (ILLEGAL CHARACTER) will occur.

WRITE TO FILE -
TWRITE (VARIABLE LIST)

The TWRITE statement allows writing data contained in
the variable list. This 1list may contain either string or
numeric variables, separated by commas. String literals (text
enclosed in quotes) may also be written out with the TWRITE
statement.

ADDITIONAL NOTES:

The TWRITE statement will display the data being
written out on the control terminal - on the same line (line feed
not given)., TREAD will not display on the control terminal (the
software echo is turned off). Motor control is essential for
proper operation of file handling statements.

The input routine must be a reverse mirror image of the output
routine used to save the data initially. For example, if you
write out three variables with a single TWRITE statement (TWRITE
L,M,N), you must read back those variables with a single TREAD
statement (TREAD A, B,C). The most flexible method is to only
write or read a single variable with any TREAD or TWRITE
statement.

Although the file handling statements will not give an error
message when used in the immediate mode, it is not recommended to
to use this mode of operation - nor is it guaranteed to work.....

(C) 1978 COMPUTERWARE - 40 -

APPENDIX B

CHARACTER CONVERSION TABLE

ASCII CNTL HEX DEC ASCII HEX DEC ASCII HEX DEC
NUL € 00 00 , 2C 44 X 58 88
SOH A 01 01 - 2D 45 Y 59 89
STX B 02 02 . 2E 46 z 54 90
ETX C 03 03 / 2F 47 [5B 91
EOT D 04 04 0 30 48 \ 5¢ 92
ENQ E 05 05 1 31 49 1 5D 93
ACK F 06 06 2 32 50 - S5E 94
BEL G 07 07 3 33 51 _ S5F 95
BS H 08 08 4 34 52 7T T600 96
HT I 09 09 5 35 53 a 61 97
LF J 0A 10 6 36 54 b 62 98
VI K 0B 11 7 37 55 c 63 99
FF L 0C 12 8 38 56 d 64 100
CR M 0D 13 9 39 57 e 65 101
SO N OE 14 : 3A 58 £ 66 102
SI 0 OF 15 ; 3B . 59 g 67 103
DLE P 10 16 < 3¢ 60 h 68 104
DClI Q@ 11 17 = 30 61 i 69 105
DC2 R 12 18 > 3E 62 j 6A 106
DC3 § 13 19 ? 3F 63 k 6B 107
DC4 T 14 20 e 40 64 1 6C 108
NAK U 15 21 A 4l 65 m 6D 109

- SYN V 16 22 B 42 66 n 6E 110
ETB W 17 23 C. 43 67 o 6F 111
CAN X 18 24 D 44 68 p 70 112
EM Y 19 25 E 45 69 g 71 113
SUB z 1a 26 F 46 70 r 72 114
ESC [1B 27 G 47 71 s 73 115
FS \ 1 28 H 48 72 t 74 116
GS 1 1Ip 29 I 49 73 u 75 117
RS ~ 1E 30 J 4 74 v 76 118
Uus _ 1F 31 K 4B 75 w 77 119
SP 20 32 L 4 76 x 78 120

121 33 M 4D 77 y 79 121
"~ 22 34 N 4E 78 z 7A 122
$ 23 35 0 4F 79 7B 123
s 24 36 P 50 80 7C 124
$ 25 37 Q 51 81 7D 125
& 26 38 R 52 82 7E 126
voo27 39 S 53 83 DEL 7F- 127
(28 40 T 54 84
) 29 41 U 55 85
* 24 42 vV 5 85
+ 2B 43 W 57 87

APPENDIX A

QUICK REFERENCE OF INSTRUCTIONS

COMMANDS
APPEND RJUST
CHAIN RUN
CONT SAVE
DIGITS SKIP
HOME STRING
LINE TLOAD
LIST TPEND
AUTO DOS
LOAD TRACE
MON TSAVE
NEW WAIT
PORT BASE
SIZE PAGE
FLIST FREN
DO ON-ERROR
FDEL REPLACE
EDIT DEL
ION IOFF
FION FIOFF
FPSW

CASSETTE FILE COMMANDS:

FUNCTIONS
ABS PEEK
ASC PI
ATAN POS
CHRS RIGHTS
Ccos RND
DEF SGN
EXP SIN
INT SQR
LEFTS STRS
LEN TAB
LOG TAN
MID$ VAL
IMOD FREE
ESC FCHK
ERCODE ERLINE
STATUS FSIZE
MSIZE RSIZE
RVAL RNEXT
RECNO
OPENI OPENO

CLOSE

STATEMENTS
DATA ON-GOSUB
DIM ON-GOTO
END POKE
FOR-NEXT PRINT
GOSUB READ
GOTO REM
IF-THEN RESTORE
INPUT RETURN
LET STOP
SCRATCH READ
CLOSE WRITE
PDLM OPEN
PACK UNPACK
SET ELSE
DLM=OFF DLM=0ON
GET PUT
CREATE CALL
EXPAND

PRINT USING

TREAD

TWRITE

EOF

NOTE: All instructions can be abbreviated by using as many of the

period (.).

ie.

FLIST =

FL. -

MATHEMATICAL OPERATORS

~

I+~ %1

Exponentiation
Negate
Multiplication
Division
Addition
Subtraction

first letters as required to provide uniqueness and then a
PRINT = P, -

etc.

RELATIONAL OPERATORS

<>
<
>
{=
>=

PRECEDENCE OF OPERATORS

(1)
(2)
(3)
(4)

Exponentiation
Negation
Multiplication or Division
Addition or Subtraction

Equal

Not equal
Less than
Greater than

Less than or equal
Greater than or equal

(c} 1978 COMPUTERWARE

APPENDIX C

MEMORY LOCATIONé USED BY BASIC

0020 - 0021 Contains the start of BASIC program (source)

0022 - 0023 Contains the next available memory location after
the BASIC program (source)

0024 - 0025 Contains the next available memory location after
the BASIC source program and any defined variables

0026 - 0027 Memory limit
0028 - 0029 Contains the pointer for USER .

0030 - 0031 Contains the address of the present arithmetic
value in use during a USER call

0100 Cold start address
0103 Warm start address
0106 Auto-run address

0109 - 010A Size of the BASIC interpreter

0loB Number of the control port

010C - 010D Maximum memory size available for BASIC to use.
010E - 010F Address of home / clear end-of-frame string
0110 - 0111 Address of carriage return/line feed string
0112 - 0113 Address of ERROR routine (Error # in ACCB)

0114 - 011B Disk FCB sizes and location of non file FCB

0137 - 013a RESERVED for future jump addresses

013B Line delete control character (CTIL X)

013cC Character delete control character (CTL H)
013D Character delete ECHO character (NULL)
013E BREAK control character (CTL C)

NOTE: The last 256 bytes of memory available are used as a
string expression buffer and for the machine stack. ALSO, some
of the above addresses may vary between the different versions of
BASIC (cassette or disk etc.). The partial Source Listing that
comes with your Basic will give you accurate addresses.

APPENDIX D
ERROR MESSAGES

The following is printed when an error occurs:

ERROR § =—==—-
LINE NO. = 'DATA ON LINE
* (DISK BASIC ONLY)
-——- Pointer to location just past
part of line that was processed
prior to the error condition,

—— - - — —— - -— - - i — - -

BASIC ERRORS

ERROR MEANING

01 Maximum variable length exceeded (over 255)

02 Input error

03 Illegal character or variable

04 Missing ending " in print literal

05 Dimension error

06 Illegal arithmetic

07 - Line number not found

.08 Attempt to divide by @

09 Maximum subroutine nesting exceeded (over 8 levels)
10 RETURN statement executed without a prior GOSUB

11 Illegal variable

12 Unrecognizable statement - also common dis¢ command error
13 Parenthesis error

14 Memory full

15 Subscript error

16 Too many FOR-NEXT loops active (maximum is 8)

17 NEXT X statement without prior FOR X=...

18 Nesting error in FOR-NEXT
1% Error in READ statement

20 Error in ON statement

21 Input overflow (more than 128 characters on input line)

22 Syntax error in DEF statement

23 FN function error. Either syntax error or FN is not defined.
24 Error in STRING usage, or mixing of numeric and strings

25 String buffer overflow, or string extract too long

26 Not used in Logical IrQO Basic

27 VAL function error - string starts with a non-numeric

28 Cannot take LOG of a negative number

29 Error message error

DISK FILE ERRORS

ERROR MEANING

30 File number is not in range of 0 through 19

31 Unable to open file for write

32 Attempt to write to file not open for write
33 Unable to open file for read '
34 Attempt to read from a file not open for read

35 Attempt to read data beyond end of file
36 Specified file failed to close
37 Specified file failed to delete

38 Disk Directory error

39 Disk Unit (drive) number error
40 Disk Rename (FREN) error

41 Cheap memory found in system

42 RANDOM file failed to create (disk space - already exists)
43 RANDOM file failed to open
44 RANDOM file failed to position (out of boundaries)

45 Attempt to read from random file a numeric variable
that was not numeric (numerics on disk in BCD format)

46 Attempt to read from a random file a string variable
that was not string data

47 Insufficient record size to hold data (total ¢ of

variables greater than record size or string size
has been changed since file was created)

48 Print Using Error - best bet is to re-read manual
and go back and check your code.

Error numbers 60-69 (sequential) and 70-79 (random) indicate that
DFM (the disk file handler) has detected an error in handling the
file number corresponding to the least significant diqgit of the
error number. DFM's own error code will also be displayed (see
the BFD-68 system manual for value of the DFM error codes) .

P

CASSETTE FILE ERRORS
ERROR MEANING

32 Attempt to write to a file not opened for write
34 Attempt to read from a file not opened for read
or past EOF

- D=2 -

0030

0028
0028

cooo0
cooo

coo3

Coos
coos
cooa
coocC
COOF

co

7E

00
FF
DE
6C

39

00

Co05

00

Co003
30
06
Co003

O % % % ¥ ¥ N ¥ N ¥

*

*

POINT EQU $30

APPENDIX E

EXAMPLE OF THE USER FUNCTION

THE FOLLOWING EXAMPLE OF HOW TO USE USER
MULTIPLIES THE NUMBER 'X' GIVEN USER(X)

BY TEN AND THEN RETURNS TO BASIC. NOTE HOW
THE 'X' IS REFERENCED IN THIS PROGRAM -
THIS IS THE MOST COMMON MISUNDERSTANDING

ON HOW USER WORKS. :

ADDR OF USER DATA

ORG $0028 ADDR OF POINTER TO USER PGM
FDB USTART SET UP POINTER TO USER PGM
ORG $C000

USTART JMP BEGIN
*

* SAVE AREAS FOR USER PGM

*

ISAVE FDB 0O
*

BEGIN STX ISAVE

SAVE THE INDEX REGISTER

LDX UPOINT LOAD X W/ADDR OF USER DATA
INC 6,X INC THE EXPONENT BY 1

LDX ISAVE RESTORE THE INDEX REGISTER
RTS RETURN TO BASIC

END

RANDOM LABEL BASIC - DBAS20.SRC 6809 ASSEMBLER PAGE 06

0261 #
0100 0262 ORG $100
0263 #
0100 BD028B 0264 BEGIN JSR START COLD START
0103 BDOCO2 0265 JSR RSTART SOFT START
0106 TEOCD7T 0266 JMP RUN AUTO RUN
0267 *
0109 3140 0268 BUFBAS FDB SRCBEG END OF BASIC & WORK AREAS
010B 02 0269 CNTPRT FCB 2 CONTROL PORT
010C €000 0270 MEMMAX FDB $C000 MEM LIMIT ~ CHGD TO YMEMAX
010E 0B88 0271 HOMSTR FDB HOMLIS ADDR OF HOME/CLEAR EOF STRING
0110 03DF 0272 CRLFST FDB CRLF2 ADDR OF CR/LF STRING
0112 0D76 0273 ERRPNT FDB ERROR ADDR OF ERROR RTN (# IN ACCB)
0114 0046 0274 SEQFSZ FDB 166 SEQUENTIAL FILE FCB SIZE
0116 0140 0275 RNDFSZ FDB 320 RANDOM FILE FCB SIZE
0118 0240 0276 DRNDFZ FDB 576 RANDOM DOUBLE DENSITY
0114 €880 0275 gMDFCB FDB DOSFCB COMMAND FCB ADDRESS
027
011C 43 ozgg NOTICE FCC "COPYRIGHT 1979 COMPUTERWARE!
0280 *
0137 FFFF 0281 . FDB $FFFF,$FFFF JUMP ADDRESSES
0282 :
013B 18 0283 DELINE FCB $18 CTL X
013C 08 0284 DELCHR FCB $08 CTL H
013D 00 0285 BSECHO FCB $00 NULL
013E 03 0286 BRKCHR FCB $3 CTL C
013F 2¢C 0287 DELIM FCB COMMA - VARIABLE DELIMITER
0140 oC 0238 CHGCHR FCB $0C CHG FILL CHAR
0289
0290 : I/0 DEFINITION TABLE -~ CONFIGURATION BYTE
0291
0292 *BIT#{ 7 1 6 | 5 | 4 | 3 ! 2 1 1 1 o |
0293 * 1 ! | ! | | | |
0294 *HEX | 80 | 40} 201! 10! 08! o4 | o2 I 01 |
0295
0296 # CTL RES SPR PIA PIA STD X64 X16
029; * TERM CAS IN OUT PIA SER SER
029
0299 # CONFG = 0 => NON-STD I/0 (IE. VIDEO BOARD - GRAPRICS,
0300
0301 * LOGICAL UNIT TABLE ENTRY
0302
0303 # 0 -> CONFIGURATION BYTE
0304 *# 1-2 -> ADDRESS OF I/0 DEVICE
0305 *¥ 3.5 .> JUMP CHAR OUTPUT
0306 ¥ 6-8 -> JUMP CHAR INPUT
030; ® 9-11 <> JUMP PORT INITIALIZATION
030
0141 0309 LUTBLE EQU *
0310 *
0311 #* LOGICAL UNIT #0
0312 *
0141 01 0313 LUO FCB SERCLK
0142 E000 0314 FDB 0#®4+I0
0144 TEO1FOQ 0315 JMP CHROUT
0147 TEOQ21E 0316 JMP CHRIN

0144 TEO1A1 0317 JMP IOINIT

RANDOM LABEL BASIC - DBAS20.SRC 6809 ASSEMBLER PAGE 07

0319 *
0320 ¥ LOGICAL UNIT #1
0321 %
014D 01 0322 LU1 FCB SERCLK
O14E EOQOH4 0323 FDB 1#44710
0150 TEO1FO 0324 JMP CHROUT
0153 TEO21E 0325 JMP CHRIN
0156 TEO1A1 0326 JMP IOINIT
0327 *
0328 *® LOGICAL UNIT #2
0329 *
0159 81 0330 Lue FCB $80+SERCLK
015A E008 0331 CTLADR FDB 2%4+1I0
015C TEO1FO 0332 CTLOUT JMP CHROUT
015F TEQ21E 0333 CTLIN JMP CHRIN
0162 TEO14A1 0334 JMP IOINIT
0335 *
0336 * LOGICAL UNIT #3
0337 *
0165 01 0338 LU3 FCB SERCLK
0166 EOOC 0339 FDB 3%Y4+10
0168 TEO1FO 0340 JMP CHROUT
016B TE021E 0341 JMP CHRIN
016E TEO1A1 0342 JMP IOINIT
0343 *
0344 * LOGICAL UNIT #4
0345 %
0171 o4 0346 Lud FCB $04
0172 EO010 0347 FDB 44410
0174 TEO1FO 0348 JMP CHROUT
0177 TEO21E 0349 JMP CHRIN
017A TEO1A1 0350 JMP IOINIT
0351 *
0352 ¥ LOGICAL UNIT #5
0353 *
017D 04 0354 LUS FCB $04
017E EO14 0355 ' FDB 5%¥44+1I0
0180 7EO01FO 0356 JMP CHROUT
0183 TEOD21E 0357 JMP CHRIN
0186 TEO1A1 0358 JMP IOINIT
0359 *
0360 * LOGICAL UNIT #6
0361 *
0189 04 0362 LU6 FCB $04
0184 E018 0363 FDB 6%4+I0
018C 7TED1FOQ 0364 JMP CHROUT
018F TEO21E 0365 JMP CHRIN
0192 T7EQ1A1 0366 JMP IOINIT
0367 *
0368 * LOGICAL UNIT #7
0369 *
0195 04 0370 LUT FCB $04
0196 E01C 0371 FDB T*4+I0
0198 TEO1FO 0372 JMP CHROUT
019B TEO21E 0373 JMP CHRIN
019E TEO1A1 0374 JMP IOINIT
0375

0376 REZEBEREXERERERRERE XXX R EE SR AR EFXRENERERERERERERREREE

RANDOM LABEL BASIC - DBAS20.SRC 6809 ASSEMBLER PAGE 08

0378
0339 * INITIALIZE I/0 PORT AS SPECIFIED
—~ 0380
01A1 9ES56 0381 IOINIT LDX LUPTRX
01A3 E684 0382 LDB CONFG,X
01A5 AEO1 0383 LDX OPORT,X
01A7 CUQF 0384 ANDB #$9F CLEAR NU BITS
0149 2B13 0385 BMI IOINTR CONTROL TERM
01AB 2711 0386 BEQ IOINTR OTHER TYPE IO
01AD C51C 0387 BITB #%11100 PIA TYPE
01AF 260E 0388 BNE IOPIA YES
01B1 B6FF 0389 LDA #$FF DELAY
01B3 44 0390 IOI1 DECA FOR OUTPUT
01BY4 8103 0391 CMPA #3 COMPLETION
01B6 26FB 0392 BNE I0I1
01B8 A784 0393 STA 0,X MASTER CLEAR ACIA
01BA CA1Y4 0394 ORB #$14 COMBINE WORD & DIVIDE SELECT
01BC E784 0395 STB 0,X
01BE 39 0396 IOINTR RTS
01BF C504 0397 IOPIA BITB #%00000100 STD PIA
01C1 2713 0398 BEQ IOPIA1 NO
01C3 6F01 0399 CLR 1,X INIT ‘A AND B SIDES
01C5 6F03 0400 CLR 3,X
01C7 6F8Y4 0401 CLR 0,X
01C9 6F02 0402 CLR 2,X
01CB 6384 0403 COM 0,X
01CD 863E 0401 LDA #3$3E
_ O1CF A701 0405 STA 1,X
01D1 862E 0406 LDA #$2E
01D3 A703 0407 STA 3,X
01D5 39 0408 RTS
01D6 C508 0409 IOPIA1 BITB #%00001000 OUTPUT PIA
01D8 270B 0410 BEQ IOPIA2 NO
01DA 6F01 0411 CLR 1,X SET PIA A FOR OUTPUT
01DC B6FF 0412 LDA #-1
01DE A784 0413 STA 0,X
01E0 863E 0411 LDA #$3E
01E2 A701 0415 STA 1,X
01E4 39 0416 RTS
01E5 6F01 0417 IOPIA2 CLR 1,X SET PIA A FOR INPUT
01E7 8600 0418 LDA #0
01E9 A78Y4 0419 STA 0,X
01EB 862E 0420 LDA #$2E
01ED A701 0421 STA 1,X
01EF 39 0422 RTS
o423

0424 l**!*i**!'l'l'!****i*************!*l'i*****!*i*!*****

RANDOM LABEL BASIC =~

01F0
01F2
01F4
01F6
01F8
01FA
01FC
CiFE
0200
0202
0204
0206
0207
0209
020B
020D
020F
0211
0213
0215
0217
0219
021B
021D

021E
0220
0222
0224
0226
0228
0224
022C
022E
022F
0231
0233
0235
0237
0239
023B
023D
023F
0241
0243
0245
0247
0249
024B
024D
O24F

EGC8Y
2712
AEO1
C50C
260D
C503
2708
E684
€502
27FA
AT01
39

1A50
AT84
C636
E701
C63E
ET01
965C
1F8A
E601
2AFC
A684

39

E684
272D
AEO1
C514
2615
€503
2723
E684
57

24FB
A601
BUATF
B17F
27F3
9E56
6ED3
c504
2708
E603
2AFC
A602
20F0
E601
2AFC
A684

0426
0427
0428
0429
0420
0431
0432
0433
0434
0435
0436
0437
0438
0439
0410
o441
0442
o443
oNul
ou L5
0446
ou4T
ouus
o419
0450
0U51
0U52
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
04614
0465
0L66
0u67
0468
0469
0470
o471
0LT2
0473
04T
0475
0476
0477
0478
0479
0480
0481
0482
0483
0481

DBAS20.SRC

¥ DO CHARACTER OUTPUT

6809 ASSEMBLER PAGE 09

NO OUTPUT REQ'D
PIA OUTPUT

YES

ACIA OUTPUT

NO

WAIT FOR TDRE
OUT CHAR

LOCK INTERRUPTS
OUTPUT CHAR

RESTORE INTERRUPT STATE
WAITlFOR CHAR TRANSFER
CLEAR INTR FLAG

Yy Y 3222323323232 32332233332223223332 2232222222t

CHROUT LDB CONFG,X
BEQ CHROR
LDX OPORT,X
BITB #%00001100
BNE OUTPIA
BITB #%00000011
BEQ CHROR
CHRO1 LDB 0,X
BITB #2
BEQ CHRO1
STA 1,X
CHROR RTS
OUTPIA ORCC #$50
STA 0,X
LDB #$36
STB 1,X
LDB #$3E
STB 1,X
LDA INTRP
TFR A,CC
OUTPI1 LDB 1,X
BPL OUTPI1
LDA 0,X
RTS
* DO CHARACTER INPUT
CHRIN LDB CONFG,X
BEQ CHRINR
LDX OPORT,X
BITE #%00010100
BNE INPIA
BITB #%00000011
BEQ CHRINR
INACIA LDB 0,X
ASRB
BCC INACIA
LDA 1,X
ANDA #37F
CMPA #$7F
BEQ INACIA
INECHO LDX LUPTRX
JMP OFFOUT,X
INPIA BITB #%00000100
BEQ INPIA2
INPI1 LDB 3,X
BPL INPIT
LDA 2,X
BRA INECHO
INPIA2 LDB 1,X
BPL INPIA2
LDA 0,X
CHRINR RTS

PIA INPUT
YES
ACIA INPUT
NO

WAIT FOR RDRF

GET CHAR

MASK PARITY

DEL CHAR

YES,GET NEXT

ECHO VIA CHAR OUTPUT

STD PIA
NO
WAIT FOR INTR ON B

READ B SIDE
ECHO CHAR
WAIT FOR INTR ON A o

READ A SIDE
NO ECHO, INPUT ONLY

22X RZI SIS 222 R R R 2R L]

- ——

RANDOM LABEL BASIC - DBAS20.SRC 6809 ASSEMBLER PAGE 10

0486
0487 * PROCESS CHECK FOR BREAK
o 0488
0250 3416 0489 BREAK PSHS D,X
0252 9ER8 0490 LDX LUBRKX USE DEFAULT PORT ONLY
0254 E684 0491 LDB CONFG,X
0256 AEO1 0492 LDX OPORT, X
0258 €517 0493 BITB #%00010111 ACIA,PIA INPUT
025A 2718 o494 BEQ BREAK?2 NO
025C C503 0495 BITB #%00000011 ACIA
025E 2616 0496 BNE BREAK3 YES
0260 €514 0497 BITB #%00010100 PIA INPUT
0262 2619 o498 BNE BREAKY4 YES
0264 200E 0499 BRA BREAK?2 WRONG, NO CONFIGURATION TO BR
0266 9ES8 - 0500 BREAKO LDX LUBRKX GOTO INPUT PROCESSOR
0268 ADO6 0501 JSR OFFIN, X
026A B1013E -0502 BREAK1 CMPA BRKCHR BREAK CHAR?
026D 2605 0503 BNE BREAK2 NO
026F OF81 0504 CLR AUTFLG
0271 TE0CO08 0505 JMP READY STOP CYCLING
0274 3596 0506 BREAK2 PULS D,X,PC
0276 E684 0507 BREAK3 LDB 0,X ACIA PORT
0278 57 0508 ASRB
0279 24F9 0509 BCC BREAK2
027B 20E9Q 0510 BRA BREAKO
027D C504 0511 BREAKY4 BITB #%00000100 STD PIA
027F 2706 0512 BEQ BREAK6 NO
- 0281 E603 0513 LDB 3,X CHECK B SIDE
0283 2AEF 0514 BREAKS5 BPL BREAK?2
0285 20DF 0515 BRA BREAKO
0287 E601 0516 BREAK6 LDB 1,X PIA INPUT ONLY
0289 20F8 051g BRA BREAKS CHECK SIDE A
051

0519 ******’l******’l*!l***l-*!-******l!********i***i**!***

RANDOM LABEL BASIC - DBAS20.S3RC

028B
028D
028F
0292
0294
0296
0298
0294
029D
02A0
0243
0245
02A8
02AB
02AD
02B0
02B2
02B5
02B7
02B9
02BB
02BD
02BF
02C2
02CcH
02C7
02C9
p2CccC
02CE
02D1
02D4
02D6
02D8

86FF
976D
B6010B
975B
1FAS8
84DO
975C
8E0CO8
BFD30D
BED317
2703
BFO154A
BED302
2705
BF010C
2017
BEO109
86AA
AT84
A184
2607
6F80
BCO10C
25F3
BFO10C
2005
8C3800
25E4
TFO10D
BD1865
9E56
9F58
TEOB8O

0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558

6809 ASSEMBLER PAGE 11

% BASIC'S START-UP ROUTINE

START LDA
STA
LDA
STA
TFR
ANDA
STA
LDX
STX
LDX
BEQ
STX
STARTO LDX
BEQ
STX
BRA
START1 LDX
LDA
START2 STA
CMPA
BNE
CLR
CMPX
BLO
START3 STX
BRA
START4 CMPX
BLO
STARTS CLR
JSR
LDX
STX
JMP

#$FF

AUTRFG
CNTPRT
CONSOL
cC, A

#$D0O

INTRP
#READY
YABRTV
YCPORT
STARTO

'CTLADR

YMEMAX
START1
MEMMAX
START4
BUFBAS
#$AA
0,X
0,X
START3
X+
MEMMAX
STARTZ2
MEMMAX
STARTS
#$3800
START1
MEMMAX+1
PORTCN
LUPTRX
LUBRKX
NEW

TURN ON TEST FOR AUTO FILE LOA
CONTROL PORT#

KEEP INTERRUPT STUFF

SAVE INTERRUPT MASKS

BREAK RETURN ADDR

STORE IN DOS BREAK ADDR
PARAMETER TABLE CTL PORT ADDR

SAVE IN PORT#2 JUMP TABLE
PARAMETER TBL MEM LIMIT

SIZE -THE MEMORY

DIDN'T STORE OK

CLEAR OUT THE $AA
DON'T OVERRUN THE TOP
NOT DONE YET

MIN MEMORY REQD FOR BASIC
YMEMAX TOO SMALL; SIZE MEM
FORCE BOUNDARY

INITIALIZE CTL PORT

ERBEEEEEEREE R R R RN ERE RN R AR E R RS ERRARREEREERREE

APPENDIX G
HOW TO REDUCE EXECUTION TIME

Subscripted variables require considerable time; use
non-subscripted variables whenever possible.

The number of calculations involved in the transcendental
functions (SIN, COS, TAN, ATAN, EXP, and L0OG) make them
slow. Use these functions only when necessary. .

BASIC searches for functions and subroutines in the source
file. Placing often called routines at the start of the
program will reduce BASIC's search time.

Variables are entered into the symbol table as they are
referenced. BASIC then searches the symbol table each time a
variable is used. Therefore, reference a frequently called
variable early in the source program so that it comes near
the front of the table.

Numeric constants are converted each time they are
encountered, If a constant is used often, it should be
assigned to a variable and the variable name used instead.

Multiple statements per line take longer to process than the
same instructions on single statement lines. This is an
example of the classical trade off between space and speed,

Speed up your processor.

APPENDIX H

MEMORY USAGE IN BASIC

REM statements use space, so use them wisely.
Each non-subscripted numeric variable uses 13 bytes.
Each numeric array uses 11 bytes + 6 bytes for each element.

If the default string length of 32 characters is used, each
non-subscripted string variable uses 39 bytes and each
string array uses 11 bytes + 32 bytes for each element. Use
the STRING command to explicitly allocate the size you need.

An implicitly dimensioned variable creates a 10 X 10 array.
If you do not intend to use all 10 elements wuse the DIM
statement to explicitly allocate only the space you need.

Each BASIC line uses 2 bytes for the line number, 2 bytes
for the encoded key word, 1 byte for the line length, 1 byte
for the end of 1line terminator, plus 1 byte for each
character following the key word. Reduce memory space by
using as few spaces as possible.

Each Single Density Sequential file opened takes 172 bytes -
Single Density Random files take 326 bytes per file opened.
Double Density file sizes are 326 (Sequential) and 582
(Random) . Reusing the same file number (after the file
closing) in subsequent OPEN statements will save allocation
of new space when the old space is no longer required.

APPENDIX I
LOADING & USING CASSETTE BASIC
LOADING BASIC - USING: Command "L" and a
Binary Load Program

The following is typically how your terminal will look after you
have loaded CSs BASIC.

$§ or * : * = Mikbug and
$§ or *L _ Smartbug prompt
$ or *G 03 E0 E12B 0100 A042 $ = Swtbug prompt
$ or *G
COMPUTERWARE BASIC Basic's ID and
VERSION: CASS - 4.3 Version Number
BASIC
is the prompt
in BASIC

SEQUENCE OF EVENTS:

System prompt on the terminal - you type 'L' - and turn the AC-30
to the READ status 'locked on' position (this is the far right
position). After the 'G' (which is on the tape) is displayed on
the terminal put the AC-30 read status switch back ito the center
position. When the Binary Load is completed, the following will
be displayed on the terminal:

G 03 EO0 EI12B 0100 A042 (some of these values may differ)

Again the system prompt will appear on the terminal. You type
'G'. This exectues the BASIC interpreter which will display the
Basic's ID, version number and prompt. You are now ready to use

Side #1 of the Basic tape is configured for Port #1 as control
terminal, using an ACIA type I/0. First the Binary Load - then a
MIKBUG type load. Side #2 is configqured for the control port
being #2 - otherwise it's the same as side #1. Refer to Appendix
K for more information on how the Logical 1I/0 Basic works.
Regardless of which operating system you are using, if you have a
problem with the binary loader, you should try the MIXKBUG load
before concluding that the cassette is in error.

USING BASIC WITH THE DIFFERENT SYSTEMS:

Refer to Appendix F for Source Listing information, and to
Appendix K for Logical 1/0 information.

APPENDIX J

SYSTEM DEFAULT VALUES

The following table lists the default values of system parameters
that are set on system initialization or on executing the NEW,
LOAD, or CHAIN commands.

TRACE is turned off.

DIGITS is set to floating point mode,
RJUST is set to floating point mode.
STRING is set to 32.

BASE is set to 1.

LINE is set to 64.

PAGE is set to 66.

PDLM is set to '"' (tilde).

APPENDIX K

MODIFYING LOGICAL I/O BASIC'S I/0

The new logical I/0 drivers in CSS Basic makes the Basic
essentially self contained. Cassette/Prom Basic use the upper
scratch pad area -- all the Basics reference $EOE3 (Control) and
SA008 (Stack Pointer) and the Disk versions reference the DOS --
these are the only external references.

The philosophy behind using Logical I/0 is that the user may
easily modify the Basic to interface to virtually any I/0 device
or to special machine language subroutines for features that are
not included in the Basic. THE EASIEST WAY TO GET DATA INTO OR
OUT OF BASIC IS THRU THE I/0O ROUTINES. This way, all of Basic's
edits are performed and data is normaligzed so that when
referenced later by the program there will not be problems
associated with invalid data (maybe bad data =~ but at least
syntactially correct!) ‘

THE CONFIGURATION BYTE

The following is a description of the available
configurations in Basic:

§8X - Control terminal 'x° may be 0,1,2, or 4. The Control
Terminal is not initialized. The 'X' will determine the
type of I/0 that will be performed.

$40 - SWTBUG optional port for cassette - Cassette Basic only
- 1f wused, it must be for Port #0 and the SWTBUG command
'OE' needs to be executed prior to entering Basic. The
scratch pad location $A0OB is referenced.

$20 - If the user is still using an MP-C type of I/0 card with
either SWTBUG or MIKBUG the Config byte should be set to $AQ
(ctl port & MP-C) for Logical Unit #1 and the jumps to
CHROUT and CHERIN changed to OUTEEE and INEEE.

$10 - Input only from a parallel device (either side of an MPL-A)
$08 - Output only to a parallel device (either side of an MPL-A)

$04 - Input (side B) and Output (side A) on a parallel device.
This is the way Basic used the parallel I/O ports in the
past,

$02 - Serial I/0 with X64 clock - this is not standard - but we
understand that some 6800 Computers (SSB) will be wusing a
times 64 clock, rather than a times 16. Consult your dealer
or the Manufacturer for more specifics.

$01 - Garden Variety Serial 1/0 = typically your CTL I/0 unit
will be $81,

$00 - Other - see Table description for more information.

ADDRESS OF I/0 DEVICE

Basic doesn't really care what address you assign to an I/O
device. There is no longer an ERROR #26 in Basic - if there
isn't an I/0 device at the address you specify, you may lose
control of Basic - so be very careful when modifying the 1I1/0
addresses, For the standard I/0 types, Basic will assume a two
byte location - ie. Basic supports Dual serial I/O cards and
also both sides of a parallel card as individual I/O locations.

LOGICAL I/0 JUMP TABLE

This is where you may use the 'ports' of Basic for your own
routines If you specify $00 for the configurator byte -~ Basic
will do nothing in it's I/0 routines, but all of the I/0 jumps in
the jump table are made. Thus if you modify the jump table to go
to your own routines, you will be able to pass data to Basic
using INPUT or PRINT, etc. or just go execute some code that you
want executed.

THE CONTROL PORT

wWwith DO0S68.50, the control port address will be picked up
from the Parameter Table and will always be logical port #2. If
you aren't using D0S68.50 it should be assigned to the port your
operating system talks thru. For SWTBUG, this is #1 and for
SMARTBUG it is #2. There are two locations that MUST be modified
when changing the location of the control port, The first is
CNTPRT which is located at $010B - this is equal to the number of
the port ie. 1,2,3,4 etc, The other location 1is configuration
byte of the 1logical unit corresponding to the number that was
put into CNTPRT.

MODIFY AND SAVING BASIC

Prior to getting too involved in modifying Basic, the user
should establish the size of Basic. The starting address for all
versions is $0100 and the transfer (execution beginning) address
is $0100. The easiest way of getting a 'safe' ending address is
to memory examine locations $0109 and $010A, which gives you the
ending address of Basic and work areas. This is slightly greater
than what really needs to be saved, but not by much. To get the
exact location, SSB Disk users can 'FIND' the Basic PRIOR to
loading it into memory - and Cassette users can display the
MIKBUG load of the cassette in the local mode on their terminal
and take note of the address where the load ends,

After knowing the starting, ending and transfer addresses,
make your modifications and then re-save the Basic.

APPENDIX L
LOADING AND USING RANDOM DISK BASIC

- There are four (4) copies of RANDOM BASIC on the 6800 disk:
1) RBAS90.%5 -~ BASIC for $6000 - $7FFF DOS with I/0 located at
$8000. 2) DBAS90.$ - same BASIC for $CO000 - $DFFF DOS. 3),
CH6BAS.$ - BASIC for $6000 -~ S$7FFF DOS with I/0 located at S$SF7ED.
4) ., CHCBAS.$ - same BASIC for $C000 - SDEFF DQS. There are two
(2) versions of BASIC on the 6809 disk: 1), DBAS20.$ - BASIC
for $C000 - $DFFF DOS and I/0 located at $EQ00. 2), CEBS20.5 -~
same BASIC with I/0 located at $F7E0Q.

After you've selected the version on Random Basic that suits

: your needs (and is compatible with your system) simply type the

) name of the Basic and it will load and begin execution. If this
does not happen, check the following:

1) Does the version of BASIC match the version of DOs
you are using - if yes goto 2.

a) correct situation and try againt!

2) If the COMPUTERWARE logo prints but then BASIC goes away,
it found your I/O port but doesn't like your memory.

a) Check MEMAX
b) Swap memory boards around.

The above covers most problems people have in loading Basic.
If after trying these you are still unable to load Basic, make
a disk with your DOS, the version of Basic you are trying to use,
your overlays, and any other relévant material including a
description of your system (operating system, amt. of memory,
type of I/0 used, etc.) and send it to Computerware - Box 668 =
Encinitas, Calif, 92024, We will research the problem and try
to help you resolve it. The above proceedure also applies to
any type of problem that you encounter in using the Basic - also
a sample program must be enclosed that demonstrates the problem,
NOTE: If you want us to help you - follow the above... Material
sent to us that does not include these items will be returned.

RANDOM BASIC'S MEMORY LIMIT WITH DOS68.5X OR HIGHER

Random Basic checks to confirm that it is running with
DOS68.5X or higher. If it 1is, the wvalue that is in MEMAX
(Parameter Table) is used for Basic's memory limit. Since Basic
must start it's stack on a page boundary, only the high order
address byte is used, the low order being forced to zero.

BASIC'S AUTO LOAD AND RUN FEATURE

BASIC NOW allows you to enter the name of the program that
you want executed on the DOS command line at the time you call in
BASIC. Example: DBAS90,START.BAS will load BASIC, which will
then 1load the program START.BAS and begin execution. CAUTION:
—_ If you use this technique in your START.UP file, SET MEMAX to a
. value that protects the version of EXEC that you are using.

-1 -

ALhT - 21 SF

T A T

Pok & A GSiGrIEl)

) ~
- Ty ,
- I
‘ - / o+
-
- S

) ; Do D '?. 1 A C f? f’*’: y// .

