“.'.illl...L ™
3 (QOMPUTERWARE
W4V sSoftware Services

The 68XX Specialists for Application and System Software

SSB 6809 ASSEMBLER

We Sell Capabilities...

COPYRIGHT NOTICE

This entire manual and accompanying software have been copyrighted by
Smoke Signal Broadcasting. The reproduction of this document or
accompanying software for any reason other than archival or. backup
purposes for or on the computer for which the original copy was
aquired is stricetly prohibited.

WARRANTEE INFORMATION

The SSB ASSEMBLER 1is provided AS IS without warrantee. Reasonable
care has been taken to insure that the software operates as described
in this manual. If you find a situation in which the assembler does
not operate as described, please contact Smoke Signal Broadcasting.
We will attempt to correct any errors brought to our attention, but we
make no gaurantee to do so.

TABLE OF CONTENTS

li‘r‘.RODUCTION ..I.......C.'..‘....I....I.'...z
INVOKING THE ASSEMBLER sasscessssssssarsnsscl

COMMAND OPT':ON SWITCHES 'Y EE R EE N R NN B S 2
OPTIONS SUMMARY "TYEEREEEREEREER NN NN E NN B BN [] 3
COMMAND LINE EXAMPLES ceeevessoscccnasssed
LIS'I‘INGS I..I.........'..-..I.........'..s
ASSEMBLER DESCRIP’I‘ION FOrEr S N RN N B B N B L] .6

SOURCE STATEHENT FOR-MAT ..I...............l.s

LABEL E‘I ELD " EEEREENEERNEIN N N N I BB O B N B .7
UPERATION FIELD YR EEEEEREE RN E N NN N R RN N ..8
OPE‘RAND FIELD 'Y EERLEEENRENINIE N ENEJN] s e B EE s .9
ADDRESSING MODES "YEYEEEEERERE NN NN N BN SN B .10
EXPRESSIONS 'Y EEEEREENEERENE NN NN B BN s P B OB S .16
SYMBOLS EEEEEEEEEE N EE N E N N N BN N 3K N B B BN R 18
CONSTANTS 'Y EEEEEEEEEER R NN BRI B LI B BN) .19
COMMENT FlELD '"FEEREEEENEENE RN BB E RN L LI .2B
AUII‘O FIELDING 'EEEEREEERE X NN NN RSN "8 e e .20

ASSEP‘IBLER DIRECTIVESI....I.....l2l
ASSL’]BLER OPE’RA‘I‘ION .ll..I......'......‘...27

APPENDICES ...I......'..0.-........'.....l'28

CHARACTER SET EEEEREEEE N EN RN BN LI I .A
6839 INSTRUCTION SET EEEEEREERERENN R RN N BN N .B
ERROR MESSAGES "'TEEEEEERN N NN ERNENNENENEMN LI N .C
LISTING DESCRIPTION "YYEEEEEEEEER R RN N E BRENR) .D
USEFUL INFORMATION Ill.'...l'..ll....l-‘.E

588 w¥BY ASSEMBLER USER MANUAL
INTRODUCTION

ine 55E owd¥Y Assenvler for DOS6Y is a versatile and powerful
auwenbler for the 6809 computer system, The assembler will
permit very 1large source files (including multiple files) to be
assembled, producing a binary file on disk, A number of
atscmbly-time options are provided, The name of the source
Lile(s) to be assembled, unless otherwise specified, default(s)
to i ftilename bearing a type 1 extension., Likewise, binary
output filenames will default to type @ extensions, Since DOS6Y
initially defines a type 0 extension as LBIN and a type 1
extension as .TXT, extension types and their literal equivalents
#ill be wused interchangeably throughout the remainder of this
Taaual, :

in addition to all the standard 686Y mnemonics, the assembler
will accept and translate all 688wb mnemonics to 6809 object code.
This allows programs written for the 6888 to be moved to the
Loy with minimum of difficulty.

INVOKING THE ASSEMBLER

ine assemoler is invoked using the ASHOY command, which uses the
general syntax of:

ASIGY <FILENAME> [,<FILENAME>...] [/<OPTION> [[,) <OPTION>...)] -

'*he name of the file(s) to be assembled default(s) to the base
name bpearing a type 1 extension and the drive currently assigned
as the work drive, If the "0O=XXX" option {specifies object file
tilename) 1is not included in the command line, the binary file
will ve assigned the same 'name' as the first source file which
15 being assembled, but will be assigned a type @ extension.
Aoty will allow up to 20 source files to be assembled at one
time, The default filename extensions can be overiden by simply
defining the extension explicitly. That is, 1if FILE.A is
specitied, then the file FILE.A will be operated upon rather than
FILE,TXT or FILE.BIN, Refer to the DOS69 documentation for
information regarding extension type definitions, work drive
assignments, and the use of the SET command for defining such
parameters,

COMMANLD CPTION SWITCHES

There are many option switches which can be included in the

option list. The option list is separated from the file specs by

a '/'. Each option code is represented by a single letter, with

sultiple options specified as a 1list of unseparated option
uwitches. Options of the form "i=xxx", if not the last option on

Lhe command line, must be seperated by a ",". This is to delimit _
tue end of the string. Below is a list of the available options B
ana their meanings., a "-" preceeding an option switch will

result in that switch being turned off. (note that some switches

defsult to "CON"...).

SSB 6809 ASSEMBLER USER MANUAL
ASM COMMAND LINE OPTION SWITCHES
CPTICHN DEFAULT FUNCTION

A -A assemble into memory
note: the assembler will not overlay itself

G -G print code generated by FCB, FDB, & FCC directives
H -H get initial heading from console
K -K use formfeeds (instead of linefeeds) to get to

the top of the next page

L -L generate listing (may use L=XXX form)

listing file defaults to XXX.LST where XXX is
filename of 1lst file in command line

M -M list error messages

N=ddd N=78 set printer line length to ddd(dec.).
49 < ddd < 121

0 o create object file. (may use O=XXX form)
object file defaults to XXX.BIN where XXX is file-
name of lst file in command line.

P=ddd P=66 set number of lines per printed page & enable paging
S -S print symbol table
T -T put system's time / date into page headings

requires moniter to have a time / date routine.
{(see appendix E)

X -X print cross reference concordance

SSB 6889 ASSEMBLER USER MANUAL

EXAMPLES

1. ASMO9 TEST
2. ASM89 TEST/LS

4, ASMO9 TEST/L-O
5. ASMB9 PROGH.TXT,PROGl,TXT,PROGZ.TXT
6. ASMOY l:EQU.SYS,PROG3.TXT,2:PROG4.TXT/0=PROG.$

The first example would assemble the source file TEST.TXT from
the working drive and would check to see if TEST.BIN exists on
the the same drive. If TEST.BIN was not found, then the
assembler will create TEST.BIN. However, if TEST.BIN existed,
the assembler would overwrite TEST.BIN with new object code. The
second example would do the same thing as the first, except that
listing would be enabled & the symbol table would be printed,

Exaimple 3 would cause assembly of TEST.TXT (found on drive 8} and
would create a "transient command” file TEST.$ {(on drive 1).

The 4th example would cause file TEST.TXT (on the current working
drive) to be assembled for a listing only.

Example 5 shows how to assemble several files together to form a
single object file. Successful multiple assembly requires only
the 1last input file to contain an 'END' directive. Note also
that the same rules for multiple and undefined symbol detection
apply between files as well as within files. 1In addition, if the
name of the binary file is not specified, the binary file will
take on the name of the first file given in the file specs. This
example would place the binary output in a file named ‘PROGA.BIN'
on the working drive.

The command line of example 6 shows again how multiple files can
be assembled, with input files being read from different drives,

and a transient command file PROG.$ being the binary output file
located on the working drive. Note here how an equate file, for

example, can be included in the assembly process.

SSB 68P9 ASSEMBLER USER MANUAL

LISTINGS

To have the listing printed on a printer rather than appearing on
the system terminal, simply precede the the ASME9 command with
the "P," prefix (see 'P' command in the D0S69 description). This
is assuming that the appropriate PRINT,.SYS file exists in the
operating system, and has been run prior to an attempt to use the
printer, For example:

DOS: P ASM@9 TEST/L

This would cause the assembly listing of the source file TEST.TXT
to be printed on the system printer, Note that an option switch
of "/L=," would route the listing to a disk file (due to the
"="), and that this file would have the same filename as the
first source file in the command (but with an extension of ".LST"
{due to the *," in */L=,")).

NOTE:

Listing output (whether to a file, the console, or to the
printer) can be stopped, restarted or aborted by the standard

control characters (see appendix E).

For a complete description of the format of the listing which
will be produced by ASMP9, please refer to appendix D.

SSB 6809 ASSEMBLER USER MANUAL

ASSEMBLER DESCRIPTION

The SSB 6809 Assembler was written for maximum flexibility for
DOS69 disk system users. As always, flexibility adds
complexity and therefore the user is advised to read the
following application notes before attempting to use the
assembler.

It 1is assummed that the user 1is familiar with assembly

language and, in particular, the mnemonics of the 6889
assembly language. Those who are not should refer to the

"M6809 Microprocessor Programming Manual"™ or the "M6809

Programming Reference Manual", both available from your
Motorola distributor,

The source language (input) for the SSB 6809 Assembler
consists of a subset of the 7-bit ASCII (American Standard
Code for Information Interchange, 1968) character set, In all
cases the parity bit (most significant bit) of each character

must be B,

SOURCE STATEMENT FORMAT

Each source statement may include up to 5 fields: a seguence
number, a label (or "*" for a comment line}, an operation, an
operand, and (optionally) a comment.

SEQUENCE NUMBERS

The sequence number field is an optional field provided as a
programming convenience. The sequence number field starts
at the beginning of the source line, and consists of up to
five decimal digits. The value of the number must be less
than 65536, Seguence numbers (if supplied) must be
followed by a space. ASM#9 will automatically supply
sequence numbers if the first character of the first source

line of the first file is not an ASCII numeric digit ("@" :
thn) R

Although sequence numbers are optional, they must be
consistently used or not used for the entire assembly. 1f
the first source statement has a sequence number, then every
succeeding source statement must also have a seguence
number, If the first source statement does not have a
sequence number, then no other source statement may be
numbered.,

b SSB 6809 ASSEMBLER USER MANUAL

SOURCE STATEMENT FORMAT

{ continued)
LABEL FIELD

The label field occurs as the first field of a source
statement. The label field can take one of the following
forms:

1. An asterisk (*) as the first character in the label field
indicates that the rest of the source statement is
comment. Comments are ignored by the Assembler, and
are printed on the source 1listing only for the
programmer's information.

2, A space as the first character indicates that the label
field is empty. The line has no label and is not a
comment.

3. A symbol chaacter as the first character indicates that
the line has a label. Symbol characters are the upper
case letters A~Z, digits 0-9, and the special
characters, period (o), dollar sign ($), and
underscore (_). Symbols consist of one to six
characters, the first of which must be alphabetic or
the special character, period (.). Certain special
symbols are reserved by the Assembler, and will cause
an error to be generated if they appear in a label
field, These reserved symbols are: A, B, and X, CC, L,
Dp, PC, PCR, S5, U, and ¥,

A symbol may occur only once in the label field unless
it is used with the SET directive. If a symbol does
occur more than once in a label field, then each
reference to that symbol will be flagged with an
error.

With the exception of some directives, a 1label is
assigned the value of the program counter of the first

byte of the instruction or data being assembled.

Each unique label, undefined symbol, and external
reference symbol in a program is allocated a ten-byte
block in the symbol table. In addition, a ten-byte
block is allocated for every four references to a
symbol, if the cross reference option is in effect.

R e —a - L

SSB 6889 ASSEMBLER USER MANUAL

SOURCE STATEMENT FORMAT

{ continued:)
OPERATION FIELD i :

¢

The operation field occurs after the label field, and must be
preceded by at least one space. The operation field must
contain a symbol,. Thus, the rules governing labels apply
to the operation field as well., Entries in the operation
field may be one of two types:

Opcode

These correspond directly to the machine instructions.
The operation code includes the "A"™ or "B"™ character

for the accumulator specification., For compatibility
with other 6800 / 6869 assemblers, a single space may
separate the operation code from the accumulator
designator. For example, "LDA A" is the same as "LDA

A" is the same as "LDAA" . Although ASMBY9 recognizes
the above instruction forms, the propr form for the

6809 instruction "load accumulaor A" is "LDA".

Directive

These are special operation codes known to ASMA9 which
control the assembly process rather than being
translated into machine instructions. (see section
entitled "ASSEMBLER DIRECTIVES")

T

SSB 6889 ASSEMBLER USER MANUAL

SOQURCE STATEMENT FORMAT

(continued)
OPERANWND FIELD

The operand field's interpretation is dependant on the
contents o©of the operation field, The operand field, if
required, must follow the operation field, and must be
preceded by at 1least one space. The operand field may
contain a symbol, expression, or a combination of symbols
and expressions separated by commas. The operand field of
machine instuctions is used to specify the addressing mode

of the instruction, as well as the operand of - the
instruction.

The following operand formats exist:

Operand Format 6809 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate
<expression>,X indexed
<<expression> direct

_ ><expression> extended
[<expression>] extended indirect
<expression>,R indexed
<{<expression>,R 8 bit coffset indexed

. ><expression>,R 16 bit offset indexed

[<expression>,R] indexed indirect
<[<expression>,R] 8 bit offset indirect
>{<expression>,R] 16 bit offset indirect

Q+ auto increment by 1

Q++ auto incremet by 2

[Q++] auto increment indirect (by 2)
-Q auto decrement by 1

--Q auto decrement by 2

[--Q] auto decrement indirect (by 2)
W1l[,wW2,...Wn] immediate

vihere R is one o the registers PCR, S, U, X, or ¥, and Q0 is one
of the registers S, U, X, or Y. Wi (i=l to n) 1is one of the
symbols A, B, €C, D, DP, PC, S, U, X, or Y.

SSB 6809 ASSEMBLER USER MANUAL

6809 ADDRESSING MODES

The 68089 includes some instructions which require no .
cperands. These 1instructions are self-containeéd, and

employ the inherent addressing or the accumulator
addressing mode., For more information, refer to appendix
B.

IMMEDIATE ADDRESSING

Immediate addresssing refers to the use of one or two
bytes of information that immediately follow the operation
code in memory. Immediate addressing is indicated by
preceding the operand field with the pound sign or number
sign (#) e.g., #<expression>, The expression following
the "#" will be assigned one or two bytes of storage,
depending on the instruction. All instructions
referencing the accumulator "A" or "B", or the condition
code register "CC", will generate a one-byte immediate
value. Also, immediate addressing used with the PSHS,
PULS, PSHU, and PULU instructions generates a one-byte
immediate value, Immediate operands used in all other
instructions generate a two-byte value.

The register 1list operand does not take the form
#<expression> but still generates one byte of immediate
data., The form of the operand is:

Rl [,RZ, ---ar]

where Ri (i-1 to n) is one of the symbols A, B, ¢CC, D, DP, .
PC, S, U, X or Y. The number and type of symbols vary,
depending on the specific instruction.

For the instructions PSHS, PULS, PSHU, and PULU, any of
the above register names may be included in the register
list. The only restriction is that "U" cannot be
specified with PSHU or PULU, and "S" cannot be specified
with PSHS or PULS. The one-byte immediate value assigned
to the operand is determine by the registers specified.

Each register name sets a bit in the immediate byte as
follows:

PC U,8 X Y DP B,DA,D C <«-=--~ register(s)
7 6 5 4 3 2 1 B <~-- bit set

For the instructions EXG and TFR, exactly two of the above
register names must be included in the register 1ist. The
other restriction is the size of the registers specified.
For the EXG instruction, the two registers must be the
same size. For the TFR instruction, the two registers
must be the same size, or the first can be a 16-bit ‘
register and the second an B-bit register, In the case
where the transfer is from a 16-bit register to an 8-bit
register, the least significant B bits are transferred.
The 8-bit registers are A, B, CC, and DP. The 1lé6-bit

-18-

—"

' SSB 6809 ASSEMBLER USER MANUAL
[}

registers are D, PC, S, U, X, and Y. The one-byte
immediate value assigned to the operand is determined by
the register names. The most significant four bits of the
immediate byte contain the value of the first register
name; the least significant four Bits contain the value of
the second register‘ as shown by the following table:

Register value size
specified (hex) (binary) 8b 16b

*p" a papd *

"x" 1 0001 *

"y" 2 pele *

"g" 3 gA11 *

"s" 4 0160 *
"PC" 5 2181 *

"a" 8 1900 *

"B" 9 1991 *
"CcC" A 1019 *
"pp" B 1911 *

4

-11~

SSB 6809 ASSEMBLER USER MANUAL

RELATIVE ADDRESSING

Relative addressing is used by branch instructions. There .
are two forms ,o0 the branch instruction. The short

branch can only pe executed within the range -126 to +129
bytes relative; to the first byte of the branch
instruction., The actual branch offset is put into the
second byte of the branch instruction. The long branch
can execute in the full range of addressing from 2008-FFFF
(hexadecimal) because a two-byte offset is calculated and
put into the operand field of the branch instruction. The
offset is the two's complement of the difference between
the location of the byte immediately following the branch
instruction and the location of the destination of the
branch. ‘

DIRECT AND EXTENDED ADDRESSSING

Direct and extended addresssing utilize one (direct) or
two (extended) bytes to contain the address of the
operand. Direct and extended addressing are indicated by
having only an expression in the operand field (i.e.,
<expression>). Direct addressing will be used by ASMBY
whenever possible. Regardless of the criteria described
above, it is possible to force the Assembler to use the
direct addressing mode by preceding the operand with the
"<" character. Similarly extended addresssing can be
forced by preceding the operand with the ">" character.
These two operand forms are: <<expression> and
><expression>, There 1is no restriction on the latter
form. It will always generate extended addressing. I1f -
direct addressing is forced, the most significant byte of
the expression is compared with the direct page pseudo
register, If they are not the same, a warning message is
generated., The user must ensure that the direct page
register is set up at execution time,

-12-

SSB 6809 ASSEMBLER USER MANUAL

INDEXED ADDRESSING

Indexed addressing is relative to one of the index
registers. The general form is <expression>,R. The
address is calculated at the time of instruction execution
by adding the value of <expression> to the current
contents of the index register. The other general form is
[<expression>,R], 1In this indirect form, the address is
calculated at the time of instruction execution by first
adding the value of <expression> to the current contents
of the index register, and then retrieving the two bytes
from the calculated address and address+l, This two-byte
value 1is used as the effective address of the operand.
The allowable forms of indexed addressing are described
below. Appendix B describes the format of the post-byte
(i.e., the byte immediately following the opcode) for each
of the indexed addressing modes.

In the description below, R refers to one of the index
registers S, U, X, or Y.

The accumulator offset mode allows one of the accumulators
to be specified instead of an <expression>, Valid forms

are:
<acc>,R and [,<acc>,R]

where <acc> is one of the accumulators A, B, or D, This
form generates a one-byte operand (post-byte only). When
accumulator A or B is specified, sign extension occurs
prior to adding the value in the accumulator to the index

. register. The valid forms for the automatic
increment/decrement mode are shown below. For each row,
the three entries shown are equivalent.

R+ + R+ 2, R+
=R +—R g,-R
R++ ,R++ @, R++
~-=R ;-"R ﬂ'-"'R

(R++] ([R++] {@,~--R]

In this form, the only valid expression is @, Like the
accumulator offset mode, this form generates a one-byte
operand (post-byte only). The wvalid forms for the
expression offset mode are:

R R <expression>,R
(R] [,R] [<expression>,R]
<R <R <<expression>,R
<[R} <[,R] <[<expression>,R]
<R >R ><expression>,R
> [R] >{,R] * >[<expression>,R]

The "<" and ">" characters force an 8-bit or 16-bit
offset, respectively,and are described below. If no
expression is specified, only the post byte of the operand
- is generated. If an expression with a value in the range
-16 to +15 is specified without indirection, a one-byte

-13-

ol

SSB 6889 ASSEMBLER USER MANUAL

operand is gencrated which contains the expression's value
as well as the index register indicator. At execution

time, the expression's value is expanded to 16 bits with
sign extension before being added to the index register,

All other forms will generate a post-byte, as well as
either a one-byte or two-byte offset which contains the
value of the expression. The size of the offset is
determined by the type and size of the expression,
Expressions with values in the range -128 to +127 generate
an 8-bit offset. If an expression that follows the above
rules contains a symbol that is referenced before it has
been defined, the instruction will be assembled using a
16~bit offset in order to avoid phasing errors. All other
cases will result in a 16-bit offset being generated. In
the case where an 8-bit offset is generated, the value is
expanded to 16 bits with sign extension at execution time,
Regardless of the criteria described above, it is possible
to force the Assembler to generate an 8-bit offset by
preceding the operand with the "<" character., Similarly,
a 16-bit offset can be forced by preceding the operand
with the ">" character. There is no restriction on the
">"form. It always generates a post-byte followed by a
l6-bit offset. If an 8-bit offset is forced and the
expression has a value outside of the range =128 to +127,
a byte overflow error is generated.

The valid forms for the program counter relative mode are
exactly the same as the expression offset mode, with the
exception that the index register specificaion must be
"PCR". However, the manner in which the offset is
generated by ASM89 differs, The assembler generates a
relative address which is then used as the 8-bit or 16-bit
offset following the post-byte. The relative address is
the two's complement o©of the difference between the
location of the byte immediately following the indexed
instruction and the value of the expression. If the
relative address calculated is not in the range =128 to
+127, or if the expression references a symbol that has
not yet been defined, a two-byte offset is generated after
the post-byte, A one byte offset is generated if the
relative address is in the range -128 to +127. Like the
expression offset mode, a one-byte offset can be forced by
preceding the operand with a "<", A ">" forces a two-byte
offset. A byte overflow error is generated if a one-byte
offset is forced when the relative address is not 1in the
range -128 to +127.

-14-

SSB 6809 ASSEMBLER USER MANUAL

EXTENDED INLIRECT ADDRESSING
The extended indirect mode has the form:

[<expression>]

Although extended indirect is a logical extension of the
extended addressing mode, this mode is implemented using
an encoding of the post-byte under the indexed addressing
mode. A post-byte is generated, as well as a two-byte
offset which contains the value of the expression,

SEB 6809 ASSEMBLER USER MANUAL

EXPRESSIONS

An expression is a combination of sgmbols, constants, :
algebraic operators, and parentheses. Tne expression is

used to specify a value which is to be used as an operand.
Expressions follow the conventional rules of algebra,

CPERATORS

The precedence of the various operators is as follows,
Paranthetical expressions are evaluated first, with the
innermost parentheses being processed before the outer ones.
Next, the multiplication (*), division (/), and all
two-character operators have precedence, Of lowest
precedence are the addition (+4) and subtraction (-)
operators. Unary minus can only occur at the beginning of an
expression or immediately before a left parenthesis. Unary
minus is equivalent in evaluation to putting a zero directly
before the minus sign. For example the following expressions
are all equivalent:

—TAG*INDEX+3
6-TAG1*INDEX+3

-(TAG1*INDEX) +3

Operators of the same precedence are evaluated from left to

right., All intermediate results in the computation of an
expresssion are truncated to a 16-bit integer value. The -
result of an expression is also a 16-bit integer. Operators '
can operate on numeric constants, single character ASCII

literals, and symbols, In addition to the normal operators

for multiplication, division, addition, and subtraction, -
ASMBS recognizes certain two character operators. The

operators are infix operators and have the same precedence as
maltiplicaion or division, Each two-character operator

begins with an exclamation point (!) and takes two operands.

The following two-character operators are defined:

-16~

1X

i<

1>

L

IR

SSB 6889 ASSEMBLER USER MANUAL

exponentiation
The left operand is raised to the power specified
by the right operand. If the right operand is
zZero, the resulting value will be "1", regardless
of the value ¢f the left operand,
logical AND
Each bit in the left operand is logically "ANDed"
with the corresponding bit in the right operand,
inclusive OR
Each bit in the left operand is inclusively "ORed"
with the corresponding bit in the right operand.
exclusive OR
Each bit in the left operand is exclusively "“ORed"
with the corresponding bit in the right operand.
shift left '
The left operand is shifted to the left by the
number of bits specified by the right operand.
The left operand is zero-filled from the right.
shift right
The left operand is shifted to the right by the
numer of bits specified by the right operand. The
left operand is zero~filled from the left.
rotate left
The left operand is rotated left by the number of
bits specified by the right operand, The most
significant bit is rotated into the least
significant bit position of the left operand.
rotate right
The left operand is rotated right by the number of
bits specified by the right operand. The least
significant bit is rotated into the most
significant bit position of the left operand.

-17-

—

SSB 6809 ASSEMBLER USER MANUAL

SYMBOLS

Each symbol 1is associated with a 16 bit integer value which
is used in place of the symbol during the expresssion

evaluation. The astetisk (*) used in an expression as a
symbol represents the current value of the location counter
(the first byte of a multi-byte instruction).

~]18~

S5SB 6809 ASSEMBLER USER MANUAL

CONSTANTS

Constants represent gquantities of data that do not vary in

" value during the execution of a program. The numeric
constants can be in one of four bases: decimal, hexadecimal,
binary, or octal,

A decimal constant consists of a string of numeric digits.
The value of a decimal constant must fall in the range
P-65535, inclusive. Optionally, decimal constants may be
preceded by the ampersand character (&). The following
example shows both valid and invalid decimal constants:

VALID INVALID REASON INVALID

12 123456 more than 5 digits
12345 12.3 invalid character
65201 67800 out of range (> 65535)

A hexadecimal constant consists of a maximum of four
characters from the set of digits (6-9) and the upper case
alphabetic letters (A-F), and is preceded by a dollar sign
($). Hexadecimal constants can also be designated by being
succeded by the letter "H". 1In this case, the first digit of
the hexadecimal constant must be a numeric so that the
constant can be distinguished from a symbol name,
Hexadecimal constants must be in the range $0008 to SFFFF.
The following example shows both valid and invalid
hexadecimal constants:

. VALID INVALID REASON INVALID
$12 ABCD no preceding "$"
@ABCDH $G2A invalid character
$O01F $2F018 too many digits

A binary constant consists of a maximum of 16 ones or zeros
preceded by a percent sign (%). Binary constants can also be
represented by a series of ones and zeros succeeded by the
letter "B", The following examle shows both valid and

invalid binary constants:

VALID INVALID REASON INVALID
200101 12619101 missing percent
tl $160110606191810111 too many digits
161688 $210101 invalid digit

An octal constant consists of a maximum of six numeric

digits, excluding the digits 8 and 9, preceded by a

commercial at-sign (@), Octal constants can also be
. designated by ending in the letter ™0" or "Q". Octal
- constants must be in the the ranges @0 to €177777. The

following example shows both valid and invalid octal
. constants:

=19~

SSB 6809 ASSEMBLER USER MANUAL

VALID INVALID REASON INVAID
817634 @2317234 too many digits
377Q @277272 out of range
1776080 239140 invalid character

Character constants can be used in expressions if they are
single characters. Character constants are preceded by a
single guote. Any character, including the single quote, can
be used as a character constant, The following example shows
both valid and invalid character constants:

VALID INVALID REASON INVALID

' 'VALID too long

COMMENT FIELD

The last field of an ASMB9 source statement is the comment
field. This field 1is optional and is only printed on the
source listing for documentation purposes, The comment field
is separated from the operand field (or from the operation
field if no operand is reguired)

AUTO FIELDING

ASMB9 performs automatic output fielding. No matter what the
scurce file looks like in terms of field spacing, the output will

automatically tab each field into a columnar form,

-20-

- e -

SSB 6809: ASSEMBLER USER MANUAL
ASSEMBLER DIRECTIVES

In addition to the 6869 mnemonics, this assembler supports 16
assembler directives or pseudo-ops. These pseudo-ops are listed
below along with a brief description. More detailed descriptions
follow:

-FCC form constant character

FCB form constant byte

FDB form double byte

SPC insert spaces in output listing

OPT © activates or deactivates assembler options
PAGE skip to next page of output

ORG define new origin (PC)

EGU assign value to symbol

END signal end of source program

NAM specify name

TTL specify title

RMB reserve nemory bytes

BSZ reserve block of storage (f111 with $68's)
SETDP set direct-page pseudo register

REG define register list

SET assign temporary value to a symbol

FCC

The function of FCC is to create character strings for messages
or tables., The character string ‘text' is broken down to ASCII,

one character per byte. The two allowable formats are shown
below.

label FCC count,text
or
label FCC delimiter text same delimiter

where count is any decimal number. In the case where a number is
used as a delimiter, the first character of text must not be a
conma, The character limit of any FCC statement is 255, The
use of label is optional.

FCB

The FCb pseudo-~op caused an axpression to be evaluated and the
resultant 8 bits placed in memory. Usage is shown below:

label FCB expression l,expression 2,...expression N

Each expression 1is separated by a comma with a maximum of 255
expressions per FCB statement., The label is optional.

-2]1-

SSB 6899 ASSEMBLER USER MANUAL

FDB

The function of the FDB directive is identical to the FCB except
16 bit quantities are assembled, i.e., two bytes generated for
each expression. The reguired format is shown below:

label FDB expression 1l,expression 2,...expression N

where the label is optional.

SPC

The SPC operator causes the specified number of spaces to be
inserted in the output listing. The format is shown below:

SPC expression

Hotice that no 1label is allowed. If 'expression' evaluates to
zero, one space is inserted. The operator SPC itself does not

appear in the output listing., If PAGE mode is selected, SPC will
not cause spacing past the top of the next page.

OPT

The directive OPT is used to activate or deactivate the assembler

options from within the source program. The format is shown

below. Note that no label is allowed, and no code is generated.
OPT optionl,option2,...0ptionN

The allowable options are:

-22-

SSB 6889 ASSEMBLER USER MANUAL

SYHM print sorted symbol table after listing.
- NOS do not print the symbol table (default).

GEN print code generated by FCB, FDB, and FCC.
NOG print only one line for each FCB, FDB, or FCC (default).

LIS print the assembled source listing. (if "/L" in command)
NOL supress the printing of the assembly listing (default).

PAG enable page formatting and numbering (default).
NOP disable page mode.

CRE enable printing of cross-reference concordance at end of
listing, This option must be specified before the first
symbol is encountered in the source program.

LLE=ddd set printer line length {defaults to 78, max is 124).
P=ddd set printer page length (defaults to 66, max is 128).

WAR enable printing of warning messages (default).
NOW suppress warnings

OBJ enable writing of object module (default)
KOO disable writing of object module

If contradicting options appear, the last one appearing takes
precedence, All options take effect simultaneously at the

. beginning of pass 2. The default options specified take effect
unless the user specifies a particular option. Only the first 3
characters of an option name are significant and multiple options
are separated by a comma,

-23-

SSB 6809 ASSEMBLER usc*a MANUAL

PAGE

The PAGE operator, if the PAGE option is on, causes a page eject
and subsequently causes the title (if any}) and page number to be

printed at the top of the next page. No label is allowed and no
code is produced.

ORG

The ORG operator, whose format is shown below, causes a new
origin address (PC) for the code following.

ORG expression

No label is allowed and no code is produced. If no ORG appearé
an origin of 8600 is assumed

LgU

EQU is used to equate a symbol to an expression as shown below.
A label is required and no code is generated. Only one level of
forward referencing is allowed and the equate must not be
recursive,

label EQU expression

No code is produced by EQU.

END

This operator signals the assembler that the end of the source
input has occured. No label is allowed and no code is generated.

A second use of the END statement allows for the assignment of a
transfer address to the binary file created. This can be
accomplished by putting a label or value in the ‘operand field®
of the END statement. As an example, suppose the program you are
assembling is to start executing at location $1086, and in the
source file you have the label START on the statement which is
OkGed at $100. The END statement should now include this label
in its operand field in order to assign $188 as the transfer
address, as shown on the next page.

-24-

SSB 6809 ASSEMBLER USER MANUAL

ORG $100
START LDX $807D

program here
END START
or

END $0140

HAM
The WAM directive inserts a module name into the heading line.
It has no effect on the object code,
TTL
This operator is used to assign a title to be printed at the top
of all pages if the PAGE option is on. If the PAGE option is
off, this operator has no effect. The format, as shown below
allows up to 45 characters in the title. No label is aliowed.

TTL text for the title

Wo code is generated. If more than one NAM or TTL operator
appears the last one encountered will be printed on the next

page.

RMB

This operator causes the assembler to reserve memory for data
storage. No code is generated, therefore the contents of the
reserved memory locations are undefined at run time, The label
is optional as shown below:

label RMB expression

where 'expression' is a 16 bit guantity.

-25-

SSB 6809 ASSEMBLER USER MANUAL

BSZ

This directive causes ASMBY to reserve a block of memory whose
lengtn is given by the operand field. All bytes thus reserved

will be set to $00,.
SETDLE

This directive causes ASM#9 to set an internal psuedo register to
the value of the low order 8 bits of the expression in the
operand field. If the high order 8 bits are not all zeroes, a
byte overflow error will occur, If the high order B bits of any
memory reference match the contents of this register, then ASMOY
will assemble that instruction using the direct addressing mode
{unless the ">" 1is used, in which case the extended addressing
mode will be used). If a forward reference is made to a symbol
(e«g. RMB's at the end of the program), ASM#89 will assemble that
instruction using the extended addressing mode (unless the “<" is
used, in which case the direct addressing mode will be used).

NOTE :

I1f direct page psudeo register does not agree with the high order
byte of the forced direct address, an addressing error will
occur.

It is up to the programmer to insure that the DP register is set
up appropriatly at execution time to correctly reach the desired
memory region,

REG

This directive translates a list of register names into a mask
which may be used in the post-byte of certain instructions. The
operand field must contain a non-duplicated list of symbols of
the set A, B, CC, D, DP, PC, S, U, X, OR Y, An error will occur
if both U and 8 are specified at the same time.

SET

This directive will assign a value to a symbol., Its function is
the same as "EQU", however, a symbol may be redefined after being
“SE’I’ 1] -

S5B 6889 ASSEMBLER USER MANUAL

ASSEMBLER OPERATION
Fass 1

The first pass is used to build the symbol
tes0lve forwara references,

Fass 2

table which is usea to

wuring the second pass, several things may happen. If the Li&%

option is on, the assembled source listing
messages, 1if any. If the LIS option
source lines and their corresponding error
If the S¥M option is on, a symbol table
end of pass 2. If the CREF option is in
table will contain all of the symbols'

is printed with error
is off, only offending
messages are printed.
will be printed at the
effect, this symbol
definition & reference

points, Note that this will eat a lot of paper -- you won't often

need a cross reference concordance...

-27-

5SB 6869 ASSEMBLER USER MANUAL

APPENDIX A
) { CHARACTER SET)

The character set recognized by ASM@9 is a subset of ASCII. The
ASCII code is shown in the following Ffigure, The following
characters are recognized by ASM@9:

l. The upper case letters A thru 2

2, The digits @ thru 9,

3. Four arithmetic operators: +, ~, *, & /.

4. The special 2-character expression operators:
!", l), !(, lx' !.' !+' !R' & !L

5. Parentheses in expression: (&).]

6. The special symbol characters: underscore (), period (.),
and dollar sign ($). Only the period may Be used as the first
character of a symbol,

7. The characters used as prefixes for constants and addressing

modes:
1immediate addressing
$ hexadecimal constant
& decimal constant
@ octal constant
? binary constant

character constant

8. The characters used as suffixes for constants and addressing
modes:

X indexed addressing

hexadecimal constant

octal constant

octal constant

decimal constant

binary constant

character constant

9. Three seperator characters: space,carriage return, & comma.

10. The character "*" to indicate comments. Comments may contain
any printable character.

11. The special symbols "A" & "B” to denote the accumulators,
"*" to indicate the value of the location counter,
"PCR","S","0U","X", & "Y" to indicate indexed addressing
in the operand field, "D" to specify the 16-bit double
accumulator, and "CC" & "DP" to specify the control
registers,

12, The special characters "[", & "]" used to indicate indirect
addressing, "<" to force direct addressing or to force
8 bit offset mode, ">" to force extended addressing
or to force 16 bit offset mode for indexed addresses,
and "+" & "-" to indicate auto increment / decrement.

-3
-agfe OO M

SSB 668029 ASSEMBLER USER MANUAL

ASCII CODE

del

QDY I T KDy N— 1

> AUV H DL N~ BE OO

AQENBHDE TR —

QENOARMDODEANEIEZO

Ve N AAO DO s sV || A

Q,
N e B gl e % 4 & | s

DN NLC SO LM QA

SSB 6809 ASSEMBLER USER MANUAL

APPENDIX B

(6829 INSTRUCTIONS)

The following table 1lists the special symbols used in the
description of the 6889 instruction set:

- XXOop

%

left side of equal sign is replaced by right side

evaluate contents first; grouping

the contents of

the contents of the memory location addressed by the
enclosed expression

arithmetic addition

arithmeti¢ subtraction-

arithmetic multiplication

boolean and

6809 effective address

boolean inclusive or

boolean exclusive or

logical shift right by number of bits specified

logical shift left by number of bits specified

arithmetic shift right by number of bits specified

arithmetic shift left by number of bits specified

rotate right by number of bits specified

rotate left by number of bits specified

the hexadecimal number nn

a bit value of n (6 or 1)

an 8 bit value of nn (60 : S$FF)

a 16 bit value of nnnn { 0088 : $FFFF)
8 bit address

16 bit address

accumulator A

accumulator B

carry condition code { bit ® of CC)
condition code register

16 bit dual acumulator A,B

fast interrupt condition code (bit 6 of CC)
half carry condition code { bit 5 of CC)
interrupt condition code { bit 4 of CC)
8 bit immediate operand

16 bit immediate operand

sign condition code (bit 3 of CC)
program counter

register list

8 bit relative branch address

16 bit relative branch address

stack pointer

user stack pointer

overflow condition code (bit 1 of CC)
index register

& bit indexed addressing offset

opcode depends on index mode

index register

zero condition code (bit 2 of CC)

SEB 6809 ASSEMBLER USER MANUAL

(6869 8 bit arithmetic instructions

Yne- Oper- Op- Function

monic and code

ABX - 3A X=(X)+(DB)

ADCA ii 89 A={A)+ii+(C)
aa 99 A=(A) +m{aa)+(C)

XXOp A9 A= (A} +xx0p+(C)

aaaa B9 A=(A)+M(aaaa)+(C)
ADCB ii C9 B=(B)+ii+(C)

aa D9 A={A)+M(aa)

XXO0p E9 B={B)+xxop

aaaa F9 B=(B)+M (aaaa) +(C)
ADDA ii 8B A={A)+ii

aa 9B A=(A)+M (aa)

Xxop AB A= (A)+xxo0p

aaaa BB A={A) +M (aaaa)
ADLB ii CB B=(B)+ij

aa DB B=(B) +M (aa)

XXop EB B=(B)+xxop

aaaa FB B=(B) +M (aaaa)
ADLD iiii C3 D=(D)+1iiii

aa D3 D=(D}+M (aa:aa+l)

XXop E3 D=(D)+xxo0p

aaaa F3 D={D) +M (aaaa:aaaa+l)

LAA - 19 binary to BCD conv.
MUL — ib b=(A) * (B)
CoCA id 82 A=(A)-1i-(C)

aa 92 A=(A)-M({aa)~(C)

XXop A2 A= (A) ~xxop-(C)

aaaa B2 A=(A}-M (aaaa)~(C)
SBCB ii C2 B=(B)-1i-(C)

aa D2 B={B)-M(aa)~-(C)

X Xop EZ2 B={(B)-xxop~(C)

aaaa F2 B=(B)-M (aaaa)~(C)

SEX -— ip Sign extension of B into A
SUBA ii 80 A=(A)-ii
aa 90 A=(A)~-M(aa)

XXOp A A= (A) -xx0p

aaaa BO A=({A)-M({aaaa)
s5uBB i1 Co B=(B)-ii

aa D8 B=(B}-M(aa)

XXOp E@ B=(B)-xxop

aaaa Fo B=(B)~-M(aaaa)
SURD iiii 83 D=(D)-1iiii

aa 93 D={D)-M(aa:aa+l)

X XOp A3 D= (D) -xxop

aaaa B3 D=(D)~M(aaaa:aaaa+l)
NEG aa Do M(aa}=0-M(aa)

XXOp 68 XX0p=P-xx0p

aaaa 78 M{aaaa)=B-M(aaaa)
NEGA - 49 A=p-(A)
NEGB -- 50 B=@-(B)

H

=R

Ll |

-

-
t]

b

T

=

fl'-

=

= w3

Status
FHIN
- T - T
-T =T
-T-T7
- T -7
- - -
__....T
__...11-
- ~ =17
-~ = =T
...’)_T
-2 -7
- = =17
-2 -7
-2 -7
-2 =7

SSB 6809 ASSEMBLER USER MANUAL

(6889 logical instructions)}

{ine~ Oper- Op- Function Status

monic and code FHEINGESEZV

ANDA ii 84 A=(A) and ii e S O I
aa 94 A=(A) and M{aa)

XXOP 44 A=(A) and xxop

aaaa B4 A=(A) and M (aaaa)
ANDB ii C4 B={B) and ii - =-==TT g -

aa D4 B=(B) and M{aa)

XX0p E4 B=(B) and xxop

aaaa F4 B={B} and M({aaaa) '
ANDCC ii 1C CC=(CC) and ii ? 77?7

? P
ASL aa 08 M(aa)=M(aa) A< 1 ‘ -2?2=-T 7?2
xxop 68 xxop=xxop A< 1
aaaa 78 M(aaaa)=M(aaaa) A< 1
ASLA -- 48 A=(A) A< 1 ' -2 -TT7?
ASLE ~-- 58 B=(B) A< 1 - 2?2 -TT?
ASR aa B7 M{aa)=M(aa) A> 1 -2 -TT 272"
Xxop 67 XX0op=xx0p A> 1
aaaa 77 M(aaaa)=M(aaaa) a> 1
ASRA -- 47 A=(A) A> 1 : -2 -TT?
- ASRB -= 57 B=(B) A> 1 -2 -TT?
BITA 1ii 85 (A) and ii - ==-TTOQ
aa 95 (A} and M{aa)
* XXOp A5 (A} and xxop
aaaa B5 (A) and M(aaaa)
BITB ii C5 {B) and ii -=-==-TTDO0
aa D5 (B} and M (aa)

XXO0p E5 (B) and xxop
aaaa F5 {(R) and M(aaaa)
CLR aa oF M(aa) =0 - - -92109
XXO0p oF xxop=@
aaaa r M{aaaa) =0

CLRA -—- 4F A=p -—-=-814
CLRB -- 5F B=0 - =-=-82129
COM aa 83 M(aa)=M(aa) xor $FF -==-TT2®8
Xxop 63 xxop=xxop xor S$FF
aaaa 73 M{aaaa)=M{aaaa) xor S$FF
cUMaA -- 43 A=(A) xor SFF - =-=T7T
COMB ~-- 53 B=(B) xor $FF - = =-TTuw
EORA 1ii 88 A={(A) xor ii - - =TT
aa 98 A=(A) xor M{aa)
XXop A8 A=(A) Xor XxXxXop
aaaa B8 A=(A) xXor M{aaaa)
EORB ii cs8 B=(B) xor ii -~ = =TT 4§

. aa D8 B=(B) xor M{aa)
XXop E8 B=(B} xor xxop
aaaa F8 B=(B) xor M(aaaa)

SSB 6809 ASSEMBLLR USER MANUAL

Mne- Oper-
monic and

ORA ii
aa
XXop
aaaa

CkKB ii
aa
xXop
aaaa

CrRCC ii

(

OP_

code

8A
Y9A

BA
ca
D&
EA
FA
ia

H

6809 logical instructions

(

Function

A=(A) or
A=(A) or
A=(A) or
A={A) or
B=(B) or
B=(B) or
B=(B) or
B=(B) or

continued)

¥

ii
M({aa)
XxXop

M (aaaa)
ii
M({aa)
XXop
m(aaaa)

CC=(CC) or ii

)

- -7

? 2?2

SSB 6809 ASSEMBLER USER MANUAI

(6889 compare / test instructions)

Mne- Oper- Op- Function Status

monic and code FHIG®ZWVC

CMPA ii 81 (A)-ii -2 -TTT1
aa 91 (A)-M(aa)

xxop Al {(A) -xxo0p
aaaa Bl (A)-M({aaaa)
CMPE i Cl (B)-ii -?2~-T T 1
aa D1 (B)-M{aa)
XXOop El (B)-xxop
aaaa Fl {B)-M(aaaa)

cMPD 1iiii 1883 (D)-iiii “- &« =7 T TT
aa 1893 (D)-M{aa:aa+l)
X xop 18A3 (D)=xxo0p
aaaa 10B3 (D)-M(aaaa:aaaa+l)
Cups iiii 118C {s)~iiii -==T4YTT
aa 119C (5)-M(aaszaa+l)
X xop 11AC (S)-xxop
aaaa 11BC (S)-M(aaaa:aaaa+l)
CMPU itii 1183 (U)-iiii - - =TT 4T
aa 1193 (U)-M(aa:aa+l)
XX0p 11A3 (U)-xxop
aaaa 11B3 (U)}-M(aaaa:aaaa+l)
B CMEX iiii 8C {(X)-iiii - - =-TT7TTT
aa 9C (Xx)-M(aa:aa+l)
XX0p AC {X}-xx0p
. aaaa BC (X)=-M(aaaa:aaaa+l)
CuPy iiii 188C (Y)=-iiii --=-T T TT
aa 109C (Y)-M(aa:aa+l)
XXOP 1@AC (Y)-xxop
aaaa 10BC {(Y)-M{aaaa:aaaa+l)
TST aa 2D M{aa)-80 - -=TT 49 -
xxop 6D xxop-0#0
aaaa 7D M{aaaa)-00
TSTA ~-- 4D (A)~-00 -==T16 08
TSTB -~ 5D (B3)-00 -=-T7%T 9 &
¢

SSP 68U9 ASSEMBLER USER MANUAL

{ 6809 load / pull instructions)

ine- Oper- Op- Function Status
monic and code FHINZVC
EXG rl 1E exchange 2 registers 2?22?22 22°%7
ifeR rl 1F transfer register P22 20
LLA ii 86 A=ii -=-=-T7TEgE -
aa 96 A=M(aa)
XXOp Ab A=xxop
aaaa B6 A=M(aaaa)
LLCB ii Cé B=ii) -=~-T7T748 -
. aa b6 B=M(aa) .
XXOp Eé B=xxop
aaaa Fo B=M (aaaa)
LDD iiii CcC D=iiii -~-=-TT4y -
aa DC D=M (aa:aa+l)
XXOop EC D=xxo0p
aaaa FC D=M (aaaa:aaaa+l) -
LDS iiii 16CE S=iiii -~-T7T78 -
aa 19DE S=M(aa:aa+l)
X Xop 10EE S=xxop
aaaa 1PFE S=M(aaaa:aaaa+l)
Lou iiii CE U=iiii -=-=TTyg -
aa DE U=M(aa,aa+l) :
XXop EE U=xxop
aaaa FE U=M (aaaa:aaaa+l)
LDX iiii 8E X=iiii -~ ==TT kg - .
aa SE X=M({aa:aa+l) '
XXOp AE X=xxop
aaaa BE X=M (aaaa:aaaa+l)
LDY iiii 198E Y=iiii - =TT B -
aa 109E Y=M{aa:aa+l)
XX0p 1@AE Y=xxop
aaaa 10BE Y=M (aaaa:aaaa+l)
LEAS xxop 32 S=effad xxop e c e o e . -
LEAU xxop 33 U=effad xx0p a4 a - - - -
LEAX xxop 34 X=effad xxop - = - =T - -
LEAY xxop 31 Y=effad xxop - = = =T = =~
POLS r1 35 pull register(s) from M(S) 2?2?2722 27
TULU rl 37 pull register (s) from M(U) ??2?2?2727?°7?

‘*N

SSB 6809 ASSEMBLER USER MANUAL

P (6809 store / push instructions)
iine~ Oper- Op- Function Status
monic and code 5 FHINRNZW
s5Ta aa 97 M(aa)=(A) - ==T7TT248a -

XXop A7 xxop=(A)
aaaa B? M{aaaa)=(A)

STR aa D7 M{aa)=(B) - =-=T7 @
XXOPp E7 xxop=(B)
aaaa F7 M(aaaa) =(B)

5TD aa DD M(aa:aa+l)=(D) - -~ T Ty
XX0p ED xxop=(D)
aaaa FD M{aaaa:aaaa+l)=(D) .

STS aa 18DF M{aa:aa+l)=(8) - -1 T
xiXO0p 19EF xxop=(8S)
aaaa 18FF M(aaaa:aaaa+l)={(S)

5TU aa DF M(aa:aa+l)=(U) - - -T T @
XX0op EF xxop=(U)
aaaa FF M{aaaa:aaaa+l)=(U) :

STX aa SF M{aa:aa+l)=({X) - - -7
XXop AF Xxop={X)
aaaa BF M{aaaa:aaaa+l)=(X)

STY aa 109F M{aa:aa+l) =(Y) - - =T g
XXop 10AF xxop=(Y)
aaaa 16BF M(aaaa:aaaa+l)=(Y)

3
=

PSHS rl 34 push register(s) onto M(S) = - - - - - - -
PSHU rl 36 push register(s) onto M(U) = - - - - - - .

SSB 6809 ASSEMBLER USER MANUAL

(6809 shift / rotate instructions) —~
Y¥ne- Oper- Op~ Function Status
onic and code FRINZUVC
LSL aa g8 M(aa)=M(aa) A< 1 -2 T T 2T

XXop 68 XX0p = xxop A< 1
aaaa 78 M(aaaa) = M(aaaa) A< 1

LSLA ~- 48 A=(A) A< 1 -2 -T9 27
LSLD -~ 58 B=(B) A< 1 -2 ~TT?T
LSR aa B4 M(aa)=M{(aa) L> 1 - - =@ T -1
xxop 64 xxop=xxop L> 1
aaaa 74 M(aaaa)=M{(aaaa) L> 1
LSRA -- 44 A=(A) L> 1 -=-=3T-17
LSRE ~-- 54 B=(B) 1> 1 - == T-T
RGL aa @9 M{aa)=M{aa) R< 1 -~ = =TT 2T
xX0p 69 Xxxop=xxop R< 1 :
‘aaaa 79 M({aaaa)=M({aaaa) RC 1
ROLA ~- 49 A=(A) R< 1 - =-==-TT?2?T
ROLB -~ 59 B=(B) R< 1 _ -==TT?2%
ROR aa 26 M(aa)=M(aa) R> 1 - ==TT?2T
xxop 66 Xxop=xxop R> 1
aaaa 76 M(aaaa)=M(aaaa) R> 1
RORA -~ 46 A=(A) R> 1} - —-=-TT?2 T
RORB -- 56 B=(B) R> 1 - =-TT? T

S5B 6809 ASSEMBLER USER MANUAL

a8 (65609 branching instructions)
iine- Oper~- Cp- Function Status
tionic and code FHINDGZZUV:
HCC rr 24 P=(P)+2+rr iff (C)=0 = e m e - L.
BCS rr 25 P=(P)+2+rr iff (C)=1 e a e - - ..
BLY rr 27 P=(P)+2+rr iff (2)=1 = - e - - . L.
BGE £ 2C P=(P)+2+rr iff (N) xor (V}=60 - = - - . -
BGT rr 2E P=(P)+2+4rr iff (Z) or [(N) xor (V)]=p - - ~ - - - .
BHI1 rr 22 P=(P)+2+rr iff (C) xor (2)=6 - = - - « - -
BilS) 4 .24 P=(P)+2+rr iff (C)=8 = e e e - - - .
BLE rr 2F P=(P)+2+4rr iff (2) or [(N) xor (V)]=1 = - - = « - .
BLO rr 25 P=(P)+2+rr iff (C)=1 e e m e .
BLS rr 23 P=(P)+2+rr iff (C) or (2)=1 = = « - - =
BLT re 2D P=(P)+2+rr iff (N) xor (V)=1 = = = m - - - .
BMI rr 2B P=(P)+2+rr iff (N)=2 - = - - ..
BNE rr 26 P=(P)+2+4rr iff (z)=¢ - - <« - - -
BPL rr 2A P=(P)+2+rr iff (N)=0 - -—— - - .
CRA Ic 20 P=(P)+2+4rr (always } = & - « - - -
BRU re 21 P=(P)+2 (a 2 byte no-op} = - - - - - - -
BvC Ir 28 P=(P)+2+rr iff (V)=0 = e - - - - -
BVS rr 29 P=(P)+2+4rr iff (V)=12 = a e e e - - .
JiHp aa PE P=¢8aa = amam e 4 - -

- Xxop 6E P=xxop

’ aaaa 7E P=aaaa
LBCC rrrr 18024 P=(P)+4+rrrr iff (C})=¢ = =~ o o - = - -

" LBCS rrrr 1025 P=(P)+4+rrrr iff (¢)=1 -~ - - - - -
LBEQ rrrr 1627 P=(P)+4+rrrr iff (2)=1 = e - - - - -
LBGE rrrr 182C P=(F)+4+rrrr iff (N) xor (V)= = - - - - - - .
LBGT rrrr 102E P=(P)+4+rrrr iff (Z) or [(N) xor (V)]=0 - -« - - - - .
LBHY rrrr 1922 P=(P)+4+rrrr iff (C) xor (2} = ==+« - - - -
LBHS rrrr 1024 p=(P)+4+rrrr iff (C)=8 = <« = - - - - <
LBLE rrrr 182F pP=(P)+4+rrrr iff (2) or [(N) xor (V)]=} - - - - - ~« ~
LBLO rrrr 1825 P=(P)+4+4rrrr iff (C)=1 = . e e~ - - -
LBLS rrrr 1823 P=(P)+4+rrrr iff (C) or (2)=1 = = = = = = - -
LBLT rrrr 102D P=(P)+4+rrrr iff (N) xor (V)=1 =« - - - - - -
LBMI rrrr 192B P=(P)+4+rrrr iff (N)=1 = - w - - - - <
LBNE rrrr 1026 P=(P)+4+rrrr iff (2)=6 = <« - - - - - .
LBPL rrrr 102A P=(P)+4+rrrr iff (N)=6 = = = = - = - -
LBRA rrrr i6 P=(P)+3+rrrr {always) @ — e e s - .

- LBRN rrrr 1821 P=(P}+4 (a 4 byte no-op) = - = - - - = -

LBVC rrrr 1828 P=(P)+4+rrrr iff (V)= @ e e = - e - -
LBVS rrrr 1629 P=(P)+4+rrrer iff (V)= = = e e - - - -

S5B 6809 ASSEMBLER USER MANUAL

(6899 subroutine & special function instructions) =

Mne- Oper- Op- Function Status

monic and code FHINZSEVC
BSR rr 8D M(S5-2)=(P)+2; P=(P)+24rr; S5=(8)-2 = = = = = =~ =
JSR aa 9D M(S-2}=(P)+2; P=0fBaa; S={S)-2 = = = = = ~ -

xXop AD M(S-2)=(P)+2; P=xxop; S=(5)~2
aaaa BD M(5-2)=(P)+3; P=aaaa; S=(5)-2

LBSR rrrr 17 M({S-2)=(P)+3; P=(P)+3+4rrrr; S=(8)«2 = = = = « ~ =
SWI -- 3F M(S-2)=(P)+1; P=M($FFFA); S=(S§)-2 - - = =~ = = ~
SWI2 -~ 183F M(S-2)=(P)+2; P=M(SFFF4); S=(S8)~2 = = = = =« - =«
SWI3 -- 113F M(S-2)=(P)+2; P=M($FPFF2); S=(S)-2 - - - - - - -
R1'T - 3B P=M(S}; S=({S)+2 2?2?22
RTS - 39 P=M(S); s=(8)+2 a e m e - - -

okl aa AA M(aa)=M(aa)-1 -==TT7T7? -
XXop 6a xxop=xxop-1 -
taaa A M{aaaa)=M(aaaa)-1

DECA ~—- 4A A=(A)-1 -=-=-TT7T7? -~
CECB -- 5A B=(B)-1 -=-=-T7T7?2 -
INC aa ac M(aa)=M(aa)+l - = =TT 7? -

XX0p 6C Xxop=xxop+l

aaaa 7C M(aaaa)=M(aaaa)+1 -
INCA ~- 4C A=(A)}+1 -=-=-TT?
INCB -—- 5C B=(B) +1 -—--T T 2 -
WOE - 12 P=(P)+1 (1 byte no-op)} = = = = = = - - -
CwAl i iC clear & wait for interrupt 2227?2227
5¥YNC -- 13 Syncronize 2?2222 72°2

-18-

SS5B 6889 ASSEMBLER USER MANUAL

(POST BYTE)

(1indexed addressing)

the value of the post-byte (the lst byte following the opcode)
for instructions using the indexed addressing mode is determined
by the format of the operand. Two formats exist: Simple indexing
and complex indexing. Simple indexing is used when the operand
is of the form:
{exp>,R

where <exp> is an expression in the range -16 to 15 but not equal
to zero, and R is one of the index registers "s", "“U", "X", or
"Y". All other indexed addressing modes use the complex 1ndex1ng
format. The two post-byte formats are:

(simple) { complex)
B RRX XX XX 1 RRITTTT
where R EK = 809 for X register (or PCR if TTTT = 116x)
g1 for Y register
18 for U register
or 11 for S register
and TTTT-= 00048 for sihgle auto increment { R+)

686l for double auto increment (R++)
2919 for single auto decrement { R-)
g1l for double auto decrement (R-=-)
2100 for @ offset or no offset
181 for register B is offset (B,R)
9119 for register A is offset (A,R)
16609 for 8 bit offset (aa,R)
10821 for 16 bit offset (aaaa,R)
1911 for register D is offset (D,R)
1198 for 8 bit offset with PCR
1101 for 16 bit offset with PCR

or 1111 for extended indirect addressing

and I =2 for direct addressing
1 for indirect addressing

(XX XX X is a 5 bit 2's compliment offset)

-11-

SSB 6809 ASSEMBLER USER MANUAL

APPENDIX C
(ERROR MESSAGES)

173 Invalid use of direct mode indicator. The direct mode
indicator ("<") was used in the indirect extended addressing
mode. The "<" is ignored.

174 Invalid auto increment/decrement format. Single auto
increment or decrement was used in the indirect mode, or more
tinan 2 "+" or "-" encountered.

175 Invalid@ index register format. O©One of the accumulators "A",

"B", or "L" was used as the offset in the indexed mode, - but
was not followed by one of the index registers "s", "u", "X",
or "y,

176 Invalid expression for PSH/PUL The immediate expression
following one of the instructions "PSHS", "PULS", "PSHU", or
"PULU" contained symbols defined with other than the "REG"
directive, contained an operator other than "!{+" or contained
no symbol following the "§".

177 Incompatable register for PSH/PUL instruction. The register
list for the PSHS/PULS instructions cannot contain the
register "S", and the register 1list for the PSHU/PULD
instructions cannot contain the register "U".

178 Invalid register operand specification, aAn undefined
register name was encountered in a register list or there are
not exactly two register names in the register 1list for a
TFR/EXG instruction or no register list was specified for a
PSH/PUL instruction. !

179 Incompatable register pair. The register pair of an EXG
instruction was not the same size or the register pair of a

TFR instruction specified a transfer from an 8 bit register to
a 16 bit register,

202 Label or opcode error. The label or opcode symbol does not
begin with an alphabetic character or a period.

2Uu5 Label error. The statement's label field is not terminated
with a blank. This Usually occurs if an invalid character is
used in the label,

207 Undefined opcode. The symbol in the opcode field is not a
valid 6889 (or 6888) mnemonic nor 1is it a valid ASM@?9

directive,

208 Branch out of range. The operand resulted in a forward
offset of >129 bytes or a backward offset of >126 bytes from
the first byte of the branch instruction.

S5SB 6669 ASSEMBLLR USER MANUAL

269 1llegal addressing mode., The specified addressing mode in
tibe operand field is not valid for this instruction type.

218 Byte overflow, The operand's value exceeded 1 byte (6 bits).
The most significant, 8 bits of the 16 bit value of the
expression must be alllones or all zeroes for a one byte
field. (due to sign propagation of 2's compliment numbers)

211 undefined symbol. A symbol was referenced in an operand
field but has never occured in the lablel field of a correctly

assembled instruction.

212 Directive operand error. A syntax error was detected in the
operand field of a ASMPY directive.

214 PCB directive syntax error. The structure of the FCB is
incorrect.

<15 #iB directive syntax error. The structure of the FDB is
incorrect

216 Directive operand error. The directive's operand field is
missing, terminated by an invalid character, or an expression
in the operand field contains an invalid operator.

217 Option error. An option in the operand field of the OPT
directive is undefined.

219 No "END" statement. The end of the last source file has been
encountered before an "END"™ directive. ASME9 has supplied the
" END " o

<240 vhasing error., The value of the program counter during pass
Il is different from the value during pass I for the same
instruction,

221 symbol table overflow. The symbol table has overflowed,
This is a FATAL pass I error which will cause ASM89 to suspend
assembly.

222 Reserved symbol used. One of the reserved symbols ("a", "B",
"X", “Y", "U"; "S"' "D", nCCn' "DP“, "PC", or ”PCR") appeared
in the label field or in the operand field of an instruction.
These symbols can only be used in the operation field to
modify a root mnemonic ("A"™ or "B") or in the operand field to
specify indexed addressing.

223 Invalid label for directive. Depending on the directive,
there must be or must not be a symbol in the label field of
this instruction,

226 Illegal parenthesis. The parentheses "("™ or ")" in an
expression do not balance. EG there is/are more of one than

+he other.

SSB 6889 ASSEMBLER USER MANUAL

227 Too many digits in a numeric constant. An overflow has

occured during the evaluation of a numeric constant. May also
occur if a sequence number is present / missing on a line in a
file which has not / has sequence numbers.

229 Invalid starting execution address, The starting execution
address given in the expression on the "END" statement is not
valid.

233 Symbol name toc large. A symbol of greater than 6 characters
was incountered.

234 Multiply defined symbol. A reference was made to a multiply
defined symbol.

235 Memory error. The "OPT MEM" directive was used and object
code was going to be written into non-existant memory or into
the memory occupied by ASM89, The write operation has been
aborted & no further writes will be done.

236 Program counter overflow. The program c¢ounter overflowed
beyond S$FFFF.

237 invalid terminator for seguence number, The character
following a user supplied sequence number was not a blank.

241 Illegal symbol used in an expression. An undefined forward
teferend symbol was used in an expression. This can occur in
the PCR indexing mode.

242 OPT directive error. Conflicting options were specified or
the "OPT CRE"™ directive was encountered after the first symbol
had been placed into the symbol table,

244 Illegal page or line 1length, The "OPT LLE=nnn" or "OPT
P=nnn" directive(s) was(were) used with "nnn"™ being outside
the allowable range.,

247 Invalid operand terminator. The character followin? the
legal part of an operand is not a valid terminator (usually a

CR or a space). May also be caused by invalid indirect
pairing {(ie "[(" & "]" not balanced).

SSB 6809 ASSEMBLER USER MANUAL

(WARNING MESSAGES)

1 Long branch not required, a long branch instruction was used
to branch to an addyess within the range of -126 to +129,
Alihough the long branch instruction could be changed to 3
short branch, it could result jp other out-of-range short
branches.

[

Extended addressing should be used, Direct addressing was
Eorced by using the "¢» indicator, However, the direct-page
Psuedo register (set by the "SETDP" directive) indicated that
the location was accessable via the eXtended addressing mode,.

3 Duplicate register specification, The Same register was
Specified more than once in a register list. Register "p"

specified with either "A" or ngn will give this warning,

4 Possible SETDP expression error, The most significant byte
Ot an expression in a "SETpDP" directive was not zero,

5 Extended addressing should have been used, Direct addressing
was forced by using the "¢n» indicator,

6 Possible transfer error, The TFR instruction was used to
transfer from a 16 bit register to an 8 bit register, The
result of such @ transfer is to move the lower 8 bits & to
truncate the upper 8 bhits,

SSB 68£9 ASSEMBLER USER MANUAL

-y

T APPENDIX D
- (LISTING DESCRIPTIGCN)

COLUMN CCNTENTS
1-5 Source line number
8:11 Program Counter

13:14 lst (or only) byte of op-code
15:16 2nd byte of op-code (if any)
18:19 lst byte of operand
20:21 2nd byte of operand (if any)

for non-branch, non~indexed instructions:
18-19 lst byte of operand
20:21 2nd byte of operand (if any)

for non-branch, indexed instructions:
18:19 index post-byte
21:22 lst byte of operand
23:24 2nd byte of operand (if any)

for branch instructions: .
18:19 lst byte of relative branch offset
20:21 2nd byte of offset (if any)
23:26 absolute address of target

for 6800-equivalent instructions:
18:19 2nd byte of translated instruction
21:22 3rd byte of instruction (if any)
23:24 4th byte of instruction {(if any)

for directives like BSZ, EQU, ORG, ETC. :
23:26 value of reduced operand expression
23:33 Label
3540 Operation
41:48 Operand; longer operands extend into comment field
5#:12v Comment (8)

TR

S5SB 6809 ASSEMBLER OSER MANUAL

COLUHKN
1

4:7
9:14

16:7?

CROSS REFERENCE CONCORDANCE FORMAT

CONTENTS
Symbol's "type":

U = udefined symbol
M = mu1t1ply defined symbol
8 = "set" symbol

ilexadecimal value of symbol

The symbol

List of source line numbers where the symbol
has been referenced, An "*" appears after
the line number of a symbol's definition.
If the symbol is undefined, the "*" will
appear after the line number of the last
reference to the symbol.

SSB 6809 ASSEMBLER USER MANUAL

APPENDIX E

(USEFUL INFORMATION)

1) USAGE OF SYSTEM'S DATE & TIME

In order to use the system's date / time facility, the
vector at $D2E2 (in a "$COUP" system) must point to somewhere
other than the system's warm-start routine. ASMA9 checks this,
and if the vector is an effective "warm start™, the "T" option is

ignored. This vector should read the date / time hardware or do
whatever is necessary to get a date & time string into the
system's parameter table. These strings must be 15 or less bytes
long (for the date) and 8 or less bytes long (for the time) and
soth must be terminated by a $6@. See the DOS69 manual for more
details. In order to use the strings (initialized with "SET")
with out having a date / time driver {(or hardware), it is
suggested that you change the vector (at $D2E2 in a $CPPO system)
to:

$39,500,508

This will cause ASM89 to presume that the date / time has been
read. ASM@9 will then retrive the bogus date / time which is in
the system's tables. See the D0S69 listing for more detailed
information. i

2) 1/0 BREAK, PAUSE, & RESUME

ASMPY9 will moniter the keyboard for a Kkeypress during
assembly. If one is detected, then the key is checked. If this
key is one of the three control characters (see the DOS69 manual
for information on changing the characters) defined by the
system's parameter table, then ASMP9 will take the appropriate

action. If any other key is pressed, it will be ignored. The
three pre-defined keys are:

char function

“C causes assembly to be aborted

esc stops the assembly (waits for start or abort)
esc starts the assembly again

This is useful to "throttle" the listing if it is going to a CRT.

