$2.00

rn PHPERBUTE sook

- BAR CODE
LOADER

by Ken Budnick

11110101 01000100
01011111 1010111
10010001 01010101
01000100 10101010
01111010 10100001
01110101 01010101
01010101 11110111
10010010 01101101
01010101 10101010
01010111 01011110
10001010 01101010
10000101 11010100

01010000,

PAPERBYTE ™ _ An Exciting New Way To
Distribute Software

One of the most common problems for users and
suppliers of personal computer software is the need for
product distribution in a form which is helpful to the user,
low in cost, tolerant of errors in production use, and free of
the need for expensive highly specialized peripherals. One
solution, conceived in detail by Walter Banks of the
Computer Communications Network Group at the Univer-
sity of Waterloo, Ontario, Canada, is the use of bar code
patterns prepared on a computer controlled phototype-
setter. A bar code is a linear array of printed bars of varying
width which encodes digital data as alternating patterns of
black ink and white paper. By using a ruler as a guide, an
inexpensive hand held "‘wand’ scanning unit converts the
bar patterns into a time varying logic level signal. This time
varying binary value can then be interpreted by a program
which understands the format of the bars.

The purpose of this pamphlet is to present the decoding
algorithm which was designed by Ken Budnick of
Micro-Scan Associates at the request of BYTE Publications
Inc. The text of this pamphlet was written by Ken, and
contains the general algorithm description in flow chart
form plus detailed assemblies of program code for 6800,
6502 and 8080 processors. Individuals with computers
based on these processors can use the software directly.
Individuals with other processors can use the provided
functional specifications and detail examples to create
equivalent programs.

Paperbyte”
Bar Code Loader

By
Ken Budnick

Credits

Technical Design and Implementation.......... Ken Budnick
Bar Code Samples oo Walter Banks,
University of Waterloo
Technical Editor and Producer. Carl Helmers
Production Manager Christopher Smith
Cover Designo Christopher Smith
Cover Art . . Dawson Advertising
Concord NH
Production Art. The Hilltop Studio
Ambherst NH
Printing Rumford Press
Concord NH

Acknowledgements

This book would have been impossible to produce without the technical support of Micro-Scan Asso-
ciates, P O Box 705, Natick, MA 01760. The Programs contained in this book were designed by Ken
Budnick and tested using the input wand and electronics designed by Fred Merkowitz. The labors of these

gentlemen have helped advance the state of the art in printed software by several orders of magnitude.

©1977 BYTE Publications Inc.
BYTE, PAPERBYTE and PAPERBYTES
are trademarks of BYTE Publications Inc.

Paperbyte™ Bar Code Loader

Table of Contents

Byte Publications and PAPERBYTE "M Software 5
The Bar Code 6
Loader design considerations 7
A General Bar Code Loader Algorithm 10

LDA or LDR Subroutine 10
RBYT Subroutine , 12
RBIT Subroutine 13
RBAR Subroutine 14
Adjusting Program Timing Loops 15
The 6800 Bar Code Loader Program . 17
The 6502 Bar Code Loader Program 21
The 8080 or Z-80 Bar Code Loader Program 25

Using The Bar Code Loader Algorithm: 29
Implementation and Checkout Procedure 29
Text Entry Procedure 30
Absolute Entry Procedure 31

A Note About Bar Codes 32

BYTE Publications and Paperbyte 'V Software

notes by Carl Helmers, Editor in Chief

The bar code format presented here was conceived as a result of a telephone
conversation between Walter Banks and myself in August of 1976. This conversa-
tion led to Walter’s presentation on bar code technology at the Personal Computing
’76 show in Atlantic City NJ in August 1976. 1t was Walter who came up with a
practical way to implement printed software, a prospect which had been a relatively
low priority “wouldn’t it be neat if we had a way ...” kind of idea in our minds
before we met.

Our intent is to promote a method for recording machine readable printed
software that would be both easy to use and publicly available for software product
distribution. We have no intentions of restricting the use of this kind of notation in
any way. We believe that its relationship to the personal computer software indus-
try parallels that of written music notation to the music industry: no one company,
individual or organization has any specific proprietary claim to the notation itself;
rather it is the inteilectual property expressed by music notation which is produced
and distributed by composers and music publishing companies. (The legal and
ethical comparisons between the software publishing and music industries do not
stop at this one point.)

As a firm, BYTE Publications Inc does formally claim trademark on our “brand
name” of PaperbytesTM. | feel that BYTE magazine’s articles and software books
that use bar code machine readable text have a distinctive quality of style and
technical excellence which sets them apart from the ordinary. This pamphlet serves
as but one example of our product, the kind of technical documentation and
information which is needed by individuals experimenting with the personal use
of computers.

Our purpose as a book production company is to make high quality technical
documentation of software products available to personal computer experimenters.
Mass production allows us to make these products available at relatively low prices
when compared with the cost of similar software items in the recent history of the
computing industry. Our PaperbytesTM assemblers, compilers, interpreters, operat-
ing systems and applications programs come complete with source code listings,
relevant object code listings, and machine readable bar code format. PaperbytesT™
provides a means by which software artists can earn royalties from their creations
by making them available to a larger number of people, thereby benefiting both the
author and the computing public. | see this as a technological turning point in the
history of computer software.

loIebe.s

Carl Helmers
BYTE Publications Inc
August 15, 1977

The Bar Code

Bar codes are the newest form of software communica-
tion. Combining efficiency of space, low cost, and ease of
data entry, bar codes were originally used for product
identification in inventory control and supermarket check-
out. Because of their direct binary representation of data
they are an ideal computer compatible communications
media. By using a simple but reliable bar code format and
a low cost scanner, the Paperbytes machine readable
representation gives the small system user an inexpensive
method of input for new software purchased in printed
form.

Figure 1 shows how data is coded in bar code format.
Binary data is coded in bars of two different widths mea-
sured in terms of a unit width. A black bar one unit wide is
a zero, while a black bar two units wide is a one. Spaces
are also one unit wide.

[in Paperbytes™ books and articles, the physical con-

Straints of the phototypesetting machines currently em-
ployed make this unit width 1/72 part of an inch (0.0139
inches, or 0.353 mm). There is nothing sacred about this
particular choice of size, since the software used to read
the bars is adaptive and only cares about ratios of bar
width. ... CHJ

The data to be coded is broken into records or frames,
where one frame is one line of bars on the printed page.
Figure 2 shows the frame format. Each frame can be
divided into three parts: header, data, and trailer. The
header consists of four bytes and starts with synchroniza-
tion character (96 hexadecimal) which is used to define
the start of the 8 bit byte boundaries within the frame.
In addition, this character is used to establish the scanning
rate and provide an initial reference in decoding the bars.
This is followed by a checksum byte which is the two’s
complement of the modulo 256 sum of the rest of the
header and the data. If the frame is read correctly the sum
of the checksum and all following bytes in the frame
will be zero. This provides a simple but effective means
for the program to determine if any errors have been
made in scanning the frame. The next byte is the frame
identification. The first frame will have an identification
of 0; the second frame’s identification will be 1, etc., being
incremented by one to the last frarhe. This identification
makes it possible to rescan a line in case of error. As a
frame is being scanned, the program can check the identifi-
cation to see whether this is a rescan of the last frame or a
scan of the next frame. The final byte in the header is the
frame length, which is a count of the number of data
bytes in the data section of the frame. If the length is zero,
then the frame is interpreted as an end of file record.

If the file represented in this format requires more than
256 frames, the identification number will wrap around
module 256. This number is used solely to establish local
order during an input operation, so that the loader can
verify an orderly progression of the sequential frames of a
long program.

6

The header section is followed by n data bytes, with
n being the length specified in the header. In present
practice the data section has one of two formats depending
on the type of data it contains (see figure 3). A text format
frame consists of n data bytes. This format is used for
data which does not have a memory address associated
with it. An absolute loader format frame also in current
use, has 2 memory address in the first two bytes of the
data section, followed by n-2 data bytes. This format
is used for programs or any other data which must be
loaded into specific memory locations.

Finally, the frame ends with a trailer which consists
of a single zero bit. This bit is necessary for those decoding
schemes which measure the spaces to derive the scanning
velocity.

DIRECTION
OF

SCAN
. I - WIDTH = | UNIT
SPACE WIDTH = | UNIT
| WIDTH = 2 UNITS

SPACE
0

o]

o

Figure 1: Bar code format. As used in
PaperbytesTM products, data is coded using
a bar width modulation technique where
width is measured in terms of a single unit.
In current practice the unit of width is 1/72
part of an inch (0.0139 inches, 0.353 mm).
Each bit is represented as a bar followed by
a space one unit in width. The zero bar is
one unit in width, the one bar is two units in
width. Thus the complete pattern of a single
bit cell is either two units or three units in
width.

Loader Design Considerations

At first glance it would appear that the software to
decode bar codes would be quite simple. It would seem
that one needs only check the output of the scanner for
zeros and ones and then assemble them into 8-bit bytes.
Unfortunately, the solution is not quite this simplistic.
The software to decode bar codes must be capable of hand-
ling many different problems such as speed variation and
acceleration, spots and drop-outs, varying print quality,
and noise from the scanner. The algorithm design and
programs presented here are able to handle all of these
problem areas.

One of the more severe problems is speed variation.
When using a scanner the average person will vary his
scanning rate from about 10 to 40 inches per second
(25 to 102 cm per second). Therefore the software must
be able to allow for speed variations of several hundred
percent. This large speed variation eliminates the possi-
bility of decoding the bars by directly measuring bar widths
with respect to a processor clock. Some simple calculations
will show that a zero bar at 10 inches per second will be
one and one half times as wide as a one bar at 30 inches
per second. This is almost a complete reversal of the proper
relationship between zeros and ones, where a zero bar
should be only half as wide as a one bar.

One possible method for solving this speed variation
problem is to compare each bar to the space which follows
it. Since all spaces are as wide as a zero bar we now have a
reference to use in decoding the bar widths. This method
however has several drawbacks. First, since we are timing
both bars and spaces there will be no time left over to
process data. A 1 MHz processor clock on a typical 8 bit
machine is simply too slow to aliow long timing loops or
the use of interrupts because the counts representing the
bar widths would become too small to allow for accuracy.
Since data cannot be processed on the fly, it would appear
to be necessary to store the raw counts in an intermediate
buffer for later processing by another routine in order to
arrive at the final data. This not only wastes large amounts
of memory but results in a program that is unnecessarily
complex.

A different approach to the speed variation problem
(and the one used here) is to use “‘adaptive’’ software.
In this method the program does not know how wide a
zero bar (or a one bar) is supposed to be. Instead it knows
that the first bar in each frame is a one. One half of the
width of this bar is used as a “unit”’ width (i.e. a zero bar
is one unit wide and a one bar is two units wide). The next
bar which is scanned is compared to the unit width to
determine whether it is a zero or one. Any bar which is
less than 1/ times the unit width is considered to be a
zero, and any longer bar is a one. In addition, as each bar
is read, its width (in the case of a one bar, half its width)
is averaged with the unit width to arrive at a new unit
width to use in decoding the next bar. This method assumes
that the speed will not change drastically in two bar widths,

which is a valid assumption under normal scanning condi-
tions. If the scanner is used with a light touch so that it
does not stick and jump as it moves across the page the
software will be able to handle most of the speed variations
that are likely to occur.

Since this method does not measure the spaces it is
possible to do the processing for each bit during the space
that follows it. This allows the data to be decoded imme-
diately and stored in its final location in memory without
the use of intermediate buffers or post-processing. This
results in a shorter and simpler program, a program which
does not require a large memory buffer for input
processing.

A second problem, closely related to speed variation, is
acceleration. This problem occurs in two different forms.
First is the acceleration as the operator begins moving
the scanner at the beginning of the frame. If the operator
normally scans at around 30 inches per second, it would
be necessary to accelerate from O to 30 inches per second
in a fairly short distance. This requirement is not too
severe, so the problem can be largely eliminated with
a “running start”. When used properly, the scanner should
be placed at least one inch away from the first bar in the
frame, then most of the acceleration will occur before the
first bar is detected. When reading Paperbytes™ bar codes
with the programs presented here, it is possible to read
right over the humanly readable print of the frame number
and relative data address. This “invalid data” appearing
at the beginning of each frame is ignored, because the
program is seeking a synchronization character pattern.
This should give a more than adequate margin for accelera-
tion. Similarly, deceleration (and thereby slow speed)
at the end of the line is a potential problem. The solution
here is to follow through. Scan right off the end of the
frame. This will insure that the large decelerations occur
after reading the last bar in the frame. In the printed
form, PaperbytesT™ bar codes are positioned with ample
acceleration and deceleration zones at the top and bottom
of the page.

The second area where the problem of acceleration
(and deceleration) occurs is when the scanner sticks and
jumps as it moves across the page. This problem is so
severe that no scanner or software in the world could
take care of it. Luckily, the solution here is also quite
simple. In our experience, this problem is caused by using
excessive pressure when scanning the page. All that is
required is enough pressure to insure that the scanner does
not lift away from the page in the middle of a frame.

Another common mistake is to grip the scanner too
tightly. This makes it difficult to maintain a light pressure
against the page. The correct procedure is to grasp the
scanner lightly with the finger tips, keeping everything
from the fingers to the shoulder loose and flexible. When
the scanner is used in this manner it will seem to “float”
across the page, with a nice even pressure and speed.

(UELLHTGILETE IR LT LT T L L T T e T L L T T e T e e e T e e L

A)

B}
C)

D)

> E)

< F)

Synchronization pattern hexadecimal 96

Check sum hexadecimal EC

Line identification, hexadecimal 2D, decimal 45

Length, hexadecimal 1C, decimal 28

Data field, 28 bytes with the following values:

05 Bb
BC 04
74 04
BC 04

70
70
FE
70

15 04 CC 70
BE 04 D4 FF
4B 04 DB 70

Single zero width bar as trailer.

Another problem which must be handled by the scan-
ning program is the presence of spots during the white
spaces and dropouts during the bars. The spot problem is
relatively minor because during much of the space the
software is not looking at the scanner output because it
is busy processing the last bar. Therefore it never sees
any spots which occur in the first part of the space. Later
spots are handled in the same manner as dropouts. The
dropout problem is more severe because the program
will see all the dropouts which occur. To help eliminate
this problem software filtering has been included. Since a
spot will appear to be a very short bar, each bar is required
to be at least one fourth of the unit width. Similarly,
a dropout will appear as a short space. Therefore, when a
space is detected, a short loop is entered to assure that the
space has a certain minimum width. Otherwise it is con-
sidered to be a dropout. Bar widths are accumulated until
the total width is greater than one fourth of a unit width
and a minimum width space is detected. At this point
the program has read a valid bar and begins processing it.

header data trailer

e AN - AN

sync | check- | frame [length
char | sum ID n

———-\//

@ J zero bit

n data bytes

Figure 2: Frame Format. (a) The frame is divided into three
major sections. The header section contains four bytes (8
bit) of overhead information. It begins with a synchroni-
zation character (hexadecimal 96). This is followed by a
checksum of the remaining bytes in the frame. The frame
Identification byte is a sequential 8 bit integer used to keep
track of the order of frames. The length byte specifies how
many data bytes are contained in the balance of the frame.
The data section contains “n’’ 8 bit data bytes where n is
the value of the length byte in the header. The trailer
consists of a single zero bit used to define the

space following the last bit cell in the frame.

(b) A single bar code frame taken from a typical Paper-
bytes™ product illustrates this format. The bytes of this
frame are listed to illustrate a specific example. This frame
was created by Walter Banks at the University of Waterloo,
and is taken from the object text of a 6800 processor pro-
gram called MONDEB written by Don Peters of Nashua,
NH.

a)

b)

1 2 3 n
data data data data
byte byte byte byte

1 2 3 n

1 2 3 n
high low data data

address address byte byte
byte byte 1 n-2

W

\ Address of first data byte

Figure 3: In current Paperbytes TM software products, two
formats for the data field of a frame of bar codes have been
used. The most common practice is to use a text format
data field as shown in (a). Here the optical bar code
medium is being used to transfer an address independent
block of text into the user’s computer for later processing
according to the specific needs of the software involved.
This form is intended for character texts as well as object
code data input to relocation schemes. A second data
field format currently in use is shown in (b). This absolute
loader format is used for data which will be loaded in a
known segment of address space at addresses contained in
the first two bytes of each frame.

A General Bar Code
Loader Algorithm

In this publication I've provided a set of three bar code
loader programs appropriate for use with PaperbytesTM
software products and articles appearing in BYTE maga-
zine, The detailed programs are written and assembled for
the 6800, 6502 and 8080 microprocessor designs.

All three programs presented here use the same general
algorithm for reading the bar codes. Figure 4 shows a high
level flow chart which applies to all programs. The algor-
ithm has been divided into four subroutine to make it easier
to understand and modify. The first is the main or control
subroutine. This calls the other three to decode the bytes,
separates the header bytes, and then stores the data bytes
into memory. The second subroutine reads one byte from
the bar codes and adds it to the checksum. The third sub-
routine reads a single bit of data. And the fourth subroutine
reads the length of a bar. The operation of these subrou-
tines will be more easily understood if they are studied
in reverse order.

LDA, LDR Subroutine

The last subroutine is the control loop. It contains
two entry points: LDA, which loads absolute data, and
LDR, which loads relocatable data. The only difference
between the two entry points is the setting of the text or
absolute format indicator flag. The LDA entry sets the
flag to a “1” and the LDR entry sets it to a “‘0”. Next,
ID (the frame number of the frame being scanned) is
initialized to 0. At LD4 the timing bit is read by calling
RBAR. Since the timing bit is a one, its length must be
divided in half to arrive at the UNIT width (this timing bit
is actually the first bit of the synchronization character).
The header is now read and values are saved for later use.
At LD6 a loop is entered to search for the rest of the

10

synchronization byte (hexadecimal 16). This is done
by calling RBIT to read bits until the assembled BYTE
equals 16 hex. Next, at LD8, the checksum (CKSM) is
read and saved. At LD10 the frame number is read and
compared to ID (the identification number of the last
frame scanned). If the frame number equals the identifi-
cation number a rescan of the last frame is implied. 1t is
therefore necessary to reset the buffer address pointer
to the value it had at the beginning of the frame the last
time. This value was saved in ABUF. If the frame number
equals 1D plus one, then the next frame is being scanned.
The new frame number is saved in ID and ABUF is set
to the present value of the buffer address pointer (in case
this frame is rescanned). If the frame number has any other
value then an error has occurred and control is transferred
to LD4 to prepare to read another frame. Next, at LD14
the frame length (LEN) is read and saved. 1f LEN = 0 then
this is an end-of-file frame and if the CKSM is zero then
control is returned to the user. If LEN is not zero then
there is data to be read. If flag is zero, then this is text
data and the program skips to LD18 to read the data.
However if flag = 1, then it is absolute data, and the address
of where to store the data is contained in the first two
bytes of the data section. This address is read by two calls
to RBYT and saved in the buffer address pointer. (Note
that the previous process of saving and/or retrieving a
buffer address from ABUF has meaning only for a text
format frame. However, the process is carried out for both
text and absolute types in order to simplify the program.)
Finally at LD18 a loop is entered to read and store the data
bytes. When all data bytes have been read, the CKSM
is checked. If it equals zero then the frame has been read
correctly and the bell on the terminal is rung as an indicator
{ASCIl hexadecimal value 07). Control is then transferred
to LD4 to prepare for reading the next frame.

ABSOLUTE FORMAT TEXT FORMAT

LDA LDR

SET CLEAR
TEXT/ABS FLAG TEXT/ABS FLAG

ABUF =
BUFFER ADR

D=0
LD4: | reAD Y T Y
TIMING BIT ! RBAR 1
UNIT = BAR/2
Lo6 [sEaRCH FOR oAt o
SYNC BYTE Lo BEI_T_—__:
Los: i
1}
L___"BYT__
Loio: [T Reap o r o caL
FRAME NO. = RBYT |
U g g g g -
SET SET
ABUF=BUF ADR BUF ADR =ABUF
LD 14 [rEAD T ealL 0
FRAME LEN [77777~ = RBYT i
e e e e - - J
A
RING BELL . s
Figure 4a: The main program of the
bar code loader software. Two
entry points are defined. LDA sets
e————— - - FLAG=] to indicate use of the
READ R CALL i : '
BUFFER ADDRESS L RBYT ' absolute loader format defined in
figure 3b. LDR clears FLAG to
- indicate loading of a block of text
. frm—————— - starting at the initialized value of
LDI8:| READ & STORE ! CALL i)
pAaTA [T~ '*L RBYT J ABUF. The lower level subroutines
________ RBAR, RBIT and RBYT are called
LD 20: by this routine from the points
CKSM=0 noted. Labels of the form LDN
No P show corresponding points in the
YES detail assemblies of listings 1, 2,
and 3.
RING BELL

RBYT Subroutine

The RBYT (Read Byte) subroutine reads an 8 bit
byte. This is accomplished by calling RBIT eight times.
If RBIT returns an end of frame timeout indication {carry
flag set), RBYT immediately returns to the calling routine
with the carry flag still set. When the entire byte has been
read it is added to the checksum. The checksum was of
course initialized to zero for the line identification prior
to the beginning of the RBYTE call.) Finally the carry
flag is cleared to indicate that a byte has been read and
RBYT returns to the calling routine.

BITCNT =8
BYT 2: CALL
RBIT [AN ERROR

{(TIMEQUT) !
LHAS_OCCURRED |

DECREMENT
BITCNT

VARIABLES
TCN =COUNTER FOR BITS PER BYTE ADD BYTE
Bl T TO CHECKSUM
BYTE =8 BIT INPUT FIELD (LOADED BY
RBAR WITH SHIFT. [
CHECKSUM = CURRENT RUNNING CHECK SUM CLEAR
TOTAL CARRY
CARRY =PROCESSOR CARRY FLAG USED
AS ERROR FLAG |t = e A

C'NORMAL !
RETURN e = oo mm e 4 ERROR FREE |
LRETURN

Figure 4b: The byte read subroutine, RBYT. This subroutine assembles one 8 bit byte of data
and adds it to the checksum. Each bit of the byte is read with a call to the subroutine RBIT.

RBIT Subroutine

The RBIT (Read Bit) subroutine reads a single data
bit. It starts by calling RBAR to get the width of the bar.
If the carry flag is set on the return from RBAR, an end
of frame timeout has occurred and RBIT returns to the
calling routine with the carry flag still set. If a bar was
read, it is compared to the current unit width to determine
whether it represents a 0 or 1 bit. Any bar which is less
than one and one half unit widths is called a 0 bit and all
others are called 1 bits. This bit is then shifted into the
low order bit position of the BYTE that is being read.
The bar width is then used to compute a new unit width
by dividing the bar width in half if it was determined to be
a one bit. The bar width is then averaged with the old unit
width to arrive at the new unit width and finally, the
carry flag is cleared to indicate that a bit was read and
RBIT returns to the calling routine. Note that when im-
plementing the algorithm, dividing by one half is done
using a right shift operation; calculating 1.5 times a small
integer is similarly done with a single bit shift followed
by an addition.

RBIT

CALL F (TIMEOUT)
]
I
|
i

e—————————
1 AN ERROR —!
)

RBAR
L HAS OCCURRED _:

RETURN

B8I7 2:
i BAR = BAR/2
BIT=0 BIT = |
BIT4 1 sHiFT BIT
VARIABLES: INTO BYTE
BAR = BAR WIDTH COUNT FROM I
RBAR o - ONIT +BAR
UNIT = CURRENT UNIT WIDTH 2
BIT = OUTPUT BIT, O OR 1 l
BYTE = OUTPUT BYTE (LOW OR- CLEAR
DER HAS LATEST BiT CARRY
SHIFTED INTO IT)
CARRY = PROCESSOR CARRY FLAG| |
USED AS ERROR FLAG. | NoRMAL |
RETURN }———— RETURN |
_ -

Figure 4c: The bit read subroutine, RBIT. This subroutine decodes a single
bit of data and shifts it into the BYTE which is being assembled. This
subroutine contains the adaptive portion of the program which eliminates
dependence upon speed and acceleration by averaging each new BAR width
with the previous UNIT width. Each bar width is measured using the
subroutine RBAR.

RBAR Subroutine

The RBAR (Read Bar} subroutine returns the width of
a single bar. It includes filtering to eliminate spots and
dropouts and, if there is no change in the scanner output
for a long period of time relative to a typical bandwidth,
returning an end of frame timeout indication. The sub-
routine measures the bar width by incrementing a counter
in a timing loop. Thus the bar width is a count in the range
of 0 to 255.

The program actually keeps two counters, one for spaces
and another for bars. The only use of the space counter is
in detecting the end of a frame. If either counter overflows,
the program assumes that the end of the frame has been
reached and returns an end of frame timeout indication
to the calling routine.

The RBAR subroutine consists of three timing loops
starting at BAR2, BAR4, and BARG6. The first loop {at
BAR2) cycles until a bar is detected, at which time the
space counter is incremented. When a bar is detected,
the second timing loop (at BAR4) is entered. This loop
increments the bar counter until a space is detected. The
bar width is now checked to see if it is greater than one
fourth of the current unit width. If it is not, this bar is
assumed to be a partial bar (caused by a dropout) and the
first timing loop (BAR2) is reentered to wait for the
rest of the bar to be detected. If the bar width is greater
than one fourth of the unit width, the third loop (at
BARGS) is entered to make sure that the space has a certain
minimum width. If the space is too short, it is assumed
to be a dropout in the bar and the second timing loop
(BAR4) is reentered to continue reading the bar. Finally,
when this trailing space is found to be wider than the
minimum width, the subroutine clears the processor’s
carry flag to indicate that a bar has been read and returns
to the calling routine. If a counter overflows in any timing
loop, the subroutine sets the carry flag to indicate an end-
of-frame timeout before returning. (The carry flag is thus
used as an error indicator.)

Figure 4d: The bar width measurement
subroutine, RBAR. This subroutine times
the width of a single bar of data input
from the scanner. A bar starts when the
scanner input becomes logical 1, and it
ends when the scanner input again
becomes logical 0. Filtering for dropouts
and ink blotches is provided by testing to
make sure that the measurement is
greater than the current UNIT width
divided by 4.

14

RBAR

BAR=0

BAR L.
SPAC=0

BAR 2

INCREMENT
SPAC

BAR 4.

INCREMENT
BAR

-
! TIMEOUT
—————|-——

L ERROR

RETURN

NO

-
)

SPAC=-3 VARIABLES:
BAR = BAR WITH COUNT
SPAC = SPACE WIDTH COUNT
UNIT = CURRENT UNIT WIDTH

CARRY: PROCESSOR'S CARRY
FLAG USED TO PASS
STATUS BACK ON RETURN

0:=G00D READ
1= TIMEOUT ERROR

INCREMENT
SPAC

RETURN

Adjusting Program Timing Loops

While the program of listing 1 is address independent
due to the use of relative addressing on all branches, several
assumptions have been made about the hardware address
commitments of the system which uses the program. All
the hardware address space commitments are essentially
arbitrary, and should be changed to reflect the character-
istics of the 6800 system in which this code is actually
used.

The origin of hexadecimal 1000 for the program itself
was arbitrarily chosen as a “nice’” round number that is far
away from page 0. In order to take advantage of direct
addressing, all scratch data areas of the program have been
assembled at locations hexadecimal 30 to 36 in page O.
These locations can be changed by hand to any location
within page zero by modifying each use within the listing,
or with re-assembly using the source code of listing 1. The
data areas can be reassembled anywhere in memory if
desired, using extended addressing instead of direct ad-
dressing of page 0, but some thought should be given to the
effect this will have on the execution time characteristics of
the program.

The program also assumes that the user has a simple 8
bit input port wired to hexadecimal address 8000 such that
the high order bit of the port reads the value of the
scanner’s output: logical level 1 for input of a bar opposite
the scanner’s aperture, and logical level O for input of a
space under the aperture. This port must be initialized prior
to entry into the scanning routine, so users of PIA ports
should do this either by hand or using a program set up the
proper PIA configuration for input.

An ASCII “‘bell” character output is used as operator
feedback to indicate end of frame without error. This
program assumes a Motorola MIKBUG monitor program
with a character output routine located at hexadecimal
address E1D1.

Unlike the 6800 program of listing 1, the 6502 program
is not address independent. An origin of hexadecimal 300
was chosen for the program based on the original system’s
characteristics. The 6502 system used for this version’s
testing is reflected in the choice of the location for a
routine to type out a single ASCII character at location
02D9, and the input port which is assumed to be located at
hexadecimal address FC12.

The program timing loops in RBAR must be set up so
that the resulting counts do not get too small on zero bars
when scanning fast, or too large on one bars when scanning
slow. If the computer is slow (or the timing loop too long)
then accuracy will decrease resulting in more errors. This
will force the user to scan at a slower rate. I the computer
is fast (or the timing loop too short) then the counts will
overflow at slower scanning speeds causing end of frame
timeouts to occur. This will force the user to scan at a

higher speed, which significantly increases the wear on the
page of bar codes. Table 1 shows the time required to
scan zero and one bars at various scanning rates. The table
also gives the counts that would result from a 16 us timing
foop. (This count is found by dividing the given times
by the length of the timing loop in microseconds.) For
good accuracy, a zero bar scanned at the highest speed
should give a count greater than 20 and a one bar scanned
at the slowest speed should give a count less than 200.
If the loader program does not seem to work reliably on
your system, calculate these counts for the timing loop
at BAR4, If the counts are too high, then insert some
NOPs or other “do nothing” instructions into each of the
timing loops to slow them down. If the counts are too
low, then either the computer or the timing loops will
have to be speeded up, or you should scan the bars more
slowly.

Scanning Rate

10 ips 20 ips 30 ips
zZero
. bar 1400 us/87 700 us/43 466 us/29
oY (.014 in)
2 ;" one
o bar 2800 us/175 1400 us/87 932 us/59
(.028 in)

Table 1: Time and counts required to scan a bar at various
rates of speed. In each position of the matrix, the number
to the left of the slash is the number of microseconds that a
bar will take in crossing the scanner head at a given rate of
scan. The number to the right of the slash gives the integer
width count for the bar, assuming a (typical) 16 uS timing
loop performs the measurement.

15

The 6800 Bar Code Loader Program

The 6800 program of listing 1 uses the A, B, and X
registers to hold the checksum, decoded byte, and storage
address. Locations 0030 through 0036 hold the other
program variables to allow direct addressing. The program
uses relative addressing only for branches. This means that
it can be loaded anywhere in memory without modification
and will still operate correctly provided that the destination
storage address does not overlap the program’s location.

This program was developed on a SWTP 6800 which
runs at a processor clock rate which is a little less than 1
MHz. The efficiency of the 6800 resulted in timing loops
which were much too fast, therefore they had to be almost
doubled in length. This was accomplished simply by
repeating the TST instructions a number of times. The
redundant TST instructions have the comment “KILL
TIME” to indicate their use. A total of 12 processor states
per loop are wasted with two TST instructions in listing 1.
By removing these redundant instructions the program will
operate reliably even on 500 kHz systems. If you are
fortunate enough to have one of the newer 6800 chips
running at 1.5 MHz or 2 MHz then additional time wasting
instructions will be necessary to slow the timing loops
down even more.

17

LISTING NO. 1

YLVG Qv3Ey
SSaHUGY UV3Yy - S8v 41 *
AETRER *

734 &C sev a3l 338

HL9N3T dkvls UVdy

NV3S3R *
InvEd LX3IN '
gl uvay

KNSYHS UV3Y

31A8 ONAS 504 HJEVDS

Llg ONIWIL 2/T = LING

LIE ONIWIL Qvdy

cdv 4NE 3AVS
Gl dwvdba LINI

ANIOd AYMLINI ¥3UVGT 378vivICT3N

INIOd AYLINI ¥30V0D 3LiN7CSHY

xX*0
va?
LAdY

N3T
N3
4nay
T+3nay
rdn
lAal
angay
¥al
LAdd
gTUd
U=
oY 4

vean
N3
vul
LAgY

4Nuy
angv
al
'y
Ul

¢tun
al
vu?
LAut

Q7
LAgd

9ul
FAT L]
vul
11lay

LIND

Yyve
4
waun
LIND
Ovss=

4ndy
'8¢

9via

gvis
s$d8
uSe

234
33U
xa1
8vis
SJs
¥Se
§YLS
508
¥Se
03g
8did
evgn

038
8vLS
Rl
4Se&

xa1
X1ls
JNI
INB
BdWd
8030
u3e
Bdnd
SJb
4Sb

vEL
$Jg
use

INg
8dind
SJ8
LRy
84710

vvis
vysa
vvail

SJs

ERY
VYiS
yvai

X1$
8710
8HSd
yvils

vy1d
YHSd

vie
vvan
YHSd

41407

91a7

[AY'N]

(AN

01an

su1

L'

00
EV
£

££00
££00
g
1€
68
133
og
JE
I3
[
00
123

13

al
144

og
('3
¢g00
60
2g

v0
(4%
i3
65

(2%

et
64

(2
oy

og
¢g£00

9¢

20
30

{3
114
as

e
L3
EL
1]

as
La
114
as
{e
L%
94U

Le
La

as

30
40
3L

Ta
Ve
Le
1a
s¢
as

L1
Sc
Uy

9
12
14
as
39

Lé
(24
96

as
L6
98

EL
i
I3
Lo

R
9¢€

0e¢
98
9¢

901
290t
05073

Qg01
ve0l
8601
9601
v601
¢s01
0g0t
3v07
J%01
yyol
§v01
9v01

14403
2ol
ov0?d
igo01

2¢01%
veol
(801
[42}
££07
eeot
6g01
3201
Jeol
veotd

6201
L2o0tv
€c01

£207
Teo0d
3101
ato1
c1o1l

vio1l
6101
{10t
€101
£1071
1107
2001

aoo1
Yool
60071
L0017

0071
€007

£00%
1601
gootd

£VI14 T3ysSuv 9¢8

G3NNVOS ONI38 ¥VE JC RIONIT 3% 3

uvY u¥3Z V¥V 4C RLIENIT (2%

F1ON3T 3nvay X%

Ul 3nvyg 2¢

Sh¥ed 34U UNINNIY3e 4V BUdV r3340E 0¢s

EVMD VvV 3dAL GL 3NILNCH 3¢ eQuv TUT4%
S93e0UY H¥INAVOIS CuDug

00uTy

S ABURIN OLiv

GZUV0T 3iAg vivd LSV y312v AOILVOCT 4

SSZ:UUY NIVINOD 17IM X 41Xz NC O3¥CLS3
ONY Adina NO QU3AVS ZeV 531SIL38 & uhy

$S3¥0Uv 58valis -
S1AE 03uCl30 -
WCSHISHD -

1
u
<]
v

< O

b
1
1

1103
nas
o3
nos
ngs3
nGa

nos
NVE]

40
d0
dC

HELA AN E RN -

‘viv0 34CLS OL I¥3nM 40

SSZHCUY UNINIVANOD ¥34SI93k X RLIM ¥ZUIN3
*SS3HUQY A¥UWzw Vv HLIM UILVIICSSY

LCN vlvy (113sv ‘9°3) 378vivILI3s Suvul

J3wVEas VIVU NI U3NIVINGD S SSZHUGY AHCWINW
“AECW3Ik OLND vivO ABYN]IE 31777CSbY Suvul

-~ Y

-V

ul

u?

“Au0W3n OLNI
tINANVIS 30UD ¥VE WUY¥a vivO QVO~ UL SaNIinCueEns

vy

vy?

uvig
EvE
LINN
N3
(‘D)
arev

dJeAl
4NOS

* & 2 & & O & & % & ¥ & O & O % T % 0 % X & X T 5B

18

o
o
Siy 6¢ 0301 olle SJ8 6T 62 9601
v INd 2¢ 301 yvE m«wa Yyl 4¥Se 6T 08 #6071
NUNL3Y LNU3WIL 3nVB3-30-UN3 03s 6rvE au €301 Y 3AYS YHSd LleY 9¢ f£60°
Sly 6y v301
ving 2¢ 6301
- , Z IN03WlL 3wvdd-4U=UNT 4] L3538 = .
NENLIE TYhEON PRk 20 €307 Av3y 118 41 812 = Amdyd .
YHVE dNG 64 92 $30% NI Q3LJIHS LIE HWAIM 31A8 = (8)0 111x3 .
; b z -
ave e N Mwww. BINNYOS WCHA LIE 3NO QY3 .
YNDS 1SL YEve 0008 GL 0307 *
IN3538d 11118 30veS ¥GJ ¥C3IHD uds= vvan G4 96 suol — u
LHvE 1dE €0 ve Suol i16Y o
Ve vuns <€ 06 vUol Tees .
vys vy 60U0T Siy 6g 2601
vas vy &U01 370 30 160t
CvivQ QIvA) b/7LINC € wVE 3] 338 LING vv(@D ve 96 SU01 vey 81 0601
WNSYXJI3h3 04 3148 QQv ¥ind 28 480°%
pHVE IWs 04 €¢ +U0T
BNUS 1Sy 0008 Uz Tyot ¢lAE 3NE 64 92 080t
awnll 131> ‘ UNUS 1S 6008 G¢ =201 LREL] v 08071
akil 1> ’ 4NJS 1S) ulog 0 €001 6Ll SJs& ¢2 2 vg0l
oHVE U3k 02 Lz €901 dlhe UvIy L184 ¥S8 2lA8 60 Gy 8807
¥V210 LNgNI »3INANVIS &Ca LIVM ¥ve UNI vEvE sgul Z 5001
AINNOD LI8 L3S 8= vyv@d 60 98 9801
cyvE leg é3 ve v501 Y 3AVS YHSd LAY 8¢ €601
uNJS 1S1 00U8 GL 1501
awll 11> . ¥NIS 1Sy u0os GZ Ze01
sell 131> : 8NJS 1SU 0008 QL EEODT
6¥VE U3 08 L¢ 6601 AN03WIL InVHI=-40=-UNT 4] L3S = .
138 LNaNI ¥3ANNVIS £Ca ilvM VON] ceve Jv 6&0T Uvid 3148 31 81D = Ay¥dYD .
NNSHIIHI = (V) .
LNNLD 30VeS 89310 vyl leve v Le0l 34Ab = (8)3 $11x3 »
*
INFLD ¥VE 8¥372 ¥ve u19 €E00 4L vEOT wNSX33HD OL 3ILAE GUY .
v ZAVS VHSd &VEY Sy £E01 ¥3INNVIS wOb4 3LAE 3INC Qv3y .
-*
LN03AWIL 3wvH4-4u=-GNI 2 L3S = ° ‘.
av3y &ve 31 ¥70 = AbHVD » N :
INNGS EVE = (¥VE)D $1lx3 " LABY .
LA X L
HiS%A3T &V¥E u¥3d °
” dvdeE vde Yeun 3¢ 0¢ €801
¢ S1y 65 25073
Sl 68 26073 ving 2g Ts01
ving 6118 eg 1801 LEIDED : €1ng £ 0801
NYIL3Y 0712 20 0£07 JdAl asr TA13 g& Q07
YNUIS 410388004 1NeiNC . Lz yvQ L0 95 €401
LINM YVAS $e L6 3IvO01 HOyN3 WNSHI3HD 41 . ¥G7 3INg b6 9¢ 6401
LINA vadv »$ 86 OvO01 uvsy 403 = VYdkd p2G7 00 Ty (LOT
vas? vy EYO01
yve vvad Gg 96 6vOol PU” viag 86 02 €L071
LING M3N 3UNcWUD LING ¥S7 vE00 ¥4 SvoOl ddAl ¥Sr 10313 e 2401
TYNDLS 1 103H80U. 4NdLINC * (= yyQ1 L0 98 0L01
6108 6s €vOl bLyys 4l X pU~ dNe 16 92 Z90%1
31AH GUIND LIB LaIMS visv vl1i8 gy pvoOT WPS¥IIRD ¥53HD Uz vdwd 02w 00 Tg C901
47ve NI HLION3T dvu 301A10 - L18 3NC yve 4§17 S£00 vL Tvol 81U 3Nk ¥4 92 V901
vil€ de £0 v2 4601 N3 53¢ £€00 VYL L507T
¥¥E Yuns S€ 06 Q60T XN1 8U 5901
LINN vuav g 66 €607
vySsT by V60l

(L1€ 3NO V) LINNeG'T € W¥E a1 33S LINN ¥YVQ7 €118 PE 96 6601

S9JON

20

The 6502 Bar Code Loader Program

The 6502, because it lacks enough registers in the
processor itself, must save virtually all program variables in
memory. The only exception is the Y index register which
is used to hold the decoded byte. All other variables are
stored in page zero locations 0030 through 003A. This
program was developed for a home brew 6502 system
running at 1 MHz. Because of the speed of the 6502 it was
necessary to almost double the length of the program
timing loops. This was done by repeating the BIT instruc-
tions several times (not necessarily the best method). If the
redundant instructions are removed the program will run
reliably on a 500 kHz system. This program was hand
assembled, with listing 2 created using a text editor running
on the 6800 system. The hand prepared assembly format of
listing 2 uses conventions of a typical 6502 assembler, but
has never been actually assembled and could conceivably
contain one or more syntax errors of a relatively trivial
nature. The object code shown in listing 2 has been
successfully executed as it appears here.

21

LISTING NO. 2

YYNDLS 41333802, LFaLNG
#0883 WNSHI3KD 41
dv3y 4C3

TYNDIS L338¥0D LfdiNC
yobe3d 41
WAS»33RrI Hi3IkD

Yivy Qvay

SS3¥UGy Qv07 Qv3k ~ SEV
RELRED)
134 ¥ SEv 41 338

HAON3T 3Wvds Qvad

NYIS3y

InvEd LX3N

QI Qv3y

WNS»J3KHJ dVv3dy

3448 INAS 504 MIEVYSS

3dAl
(0=
[2¢]
WSND

AR

3dAd
L0=
*Q@1
WSHI

81071
N3
Teyay
A2]

uavy
A‘cuay)
0=

a7
LkgY

N3
N3T
uav
07
iA8y
1S4°140)
01
LA8Y
8101
9vI4

vean

N3T
¥@?
lA8Y

Teyay
Tednay
1)
anay
Tednay
T+uQyv
angy
uav

al

¥al

al

2ian
al
v@
lA8Y

WSHD
val
1A88

901
9iss
@
il8y
0=

usr
val
ELL
val

s08
bER
usr
val
3aNE
val

3N8
340
onl

ang
Add
A30
LET
Add
SJ6
sl

ALS
so8
ysr

ang
Add
sog
usr
AQ7

¢0ed

L0

vd

reun 68

['}:]

20¢0

L0

68

veun 6f

<3
£f
133
2o
o¢
og
00

1]

8107 £0€V
¢£€
£f
[}
(2]
£0ev
1€
Qv
sUeY
¢t
9107 ve
(2

g€

, &8
»107 €06V
1g
&€
og
2101 (s
T

1g

£

0f

g

za

2¢

40

4%

€

uta £06V
68
e3
607 £06Y

(¥
st
€3
907 £0€e8
00

1]
sy

v
113
sy
11
ev
93
0a
[2]
88
04
¥
0§
0¢

08
"4

oc
062
08
0e
ov

Oveo

‘2680

S6g£0
véego

G680
L680
v6£0
26¢€0
0650
3620

880
v¥8£0
66£0
S8EC
$8€C
(434
0g¢e0
3,80
(P34}
VL0

6L€C
SLEC
vLE0
eLgu
29¢0
usee
€9¢€(
6950
$9¢C
vogu

29¢0
1980
dego
dego
veeo

8s€0
9¢¢0
s
esel
0cg0
29€0
IvEQ
yveo
8veo0
9vel
1441
£re0
Tre0
4£€0
aseq
vego

8£€0
S¢£0
££€0

Te£0
42¢0
azeo
veeo
8¢efe

LIND visS e §8

LR TR vy

1Iu ONIWIL 2/T = LIM 4vd vy €g gv
v@1 sug L4 08

yvay ysr £060 02

LINN wiS v S8

118 SNIml) UV3Y Orss wvy? 07 or 6V
T+4n8Y vis 68 69

L+ydy va? g &v

ngy vis LS S8

BQv 4NE 3AVS 80y vd" 0f Sv

al vis 2¢ 68

Ql Swydg LIN 0= vd? 00 6V
YHd 8y

YAL 86

YHd X3

¥Xxl vy

Ovl4d VvisS ¢al Vg ¢8

0s vu?l 00 6V

INIOd ABLINI y¥3UY0T 378vivIG1ISY YHd tQ7 :14
2a1 3Ine £0 0Q

T= vyl 10 &V

INIGd A¥INI ¥3AYCO 3iN7CSEV YHd L [ih -1
$¥4 13k/Sev veE$ Nu3

WNSNHC3RD 684 NU3

Zhvyd 40 938 Lv 0¥ 4C 3nTvA (A% S
GINNYUS ONI38 30VeS 40 RLIENIT 9¢% Nu3
U3NNVIS ONIHE8 ¥VE JU hLONIT 9€$ nNu3

YVE O¥HZ ¥ 30 hLIEN3T ve€d NU3

MIENST Invad 1% SIDE]

Gl 3nveid 2€% Nu3

$83:0Q0GY 33408 ugs NU3

¥¥r3 ¥V FgAl 01 3NDIirCe 40 xQ0V 60c0% NU3
Ss350QVY BINAVCIS ¢tuds no3

ArQn3n OLN] C3QVET

Z1A8 LSV ONIMUTICs NGILVICT 4C SSIyulv
NIVAINOD T7IM T+¥UV EUVY "LIXS NC G340LS3Y
OAY ANLINI NO U3AVS kY SHILSIOEE A X ‘¥

SlAE U300C3d - A
- X
\j

$45vSMH u3LSI94Y

"vivQ 3401S 0L 3¥3HM 40
S$3UQY ONINIVLINOD T+2QV‘y0V MiIM ¥ILINI
*SSINQAUY AMUWIR V HLIF U34VIOCSSY

ACN YAVQ (I1JSv *9°3) 3T€vLIVICIay SUYOD - dul

T3nV¥es YLIYO NI Q3INIVLINGD SI SSauUAV ANCWINW
“ARCWIW OLNI wivd AMVNIE Z4rTCSEyV SUVOT - vull

"AtOW3n OUNI
ESANVIS 3000 BvO wWOuas vivQ Gv0~ 0L S3aNILNCH&NS

4ul ¢ vyl

§2¢0
e2gC
£ee0
12¢£0
3180
J1¢0
vigo

81¢£0
91¢0
$1€0
2ige
01g0
3oee
aogo
Juge
E0g0
Yog0
80£0

9080
080

£0£0
10£0
goge

5%74
wWS»J
arev
JvaS
EVE
lINN
NI
ul
tdyv

JechAl
uhJs

L B B K N B B I R R BN R BN BE B BN UK N B BE BN BN B NN B NN J

22

NENL3Y LNO3WIL 3kY¥4=30-0N3

NOPL3Y IYAECON

IN3S38d 1S 30VdS ¥04 %33mD

(vivl Qlva)

$/LINGSEYE 31 338

8vd410 43NNVIS 803 LIVM

43S Y3INNYIS 804 LIV

LNNOD 3TvdS ®V3TD

ANNCD ¥YE ¥Y3TD

INO3WIL 3WV¥I=JU=UN3 41 L3S =

9uvy
Jvds
ruve
¥NDJS
Jdvds
Q48=

Tavy
yvu

LIND

ryve
¥NIS
YNIS
¥NDS
YNJS
6yvyd

yvd

Zuve
¥NDS
UNJS
¥NDIS
YNDS
6yvY
avds

Jvds
0=

yvy
0=

av3s Lls 341 81D = Apdvd
ANNCD bvE = (MVE)D $1Ix3

Siy
a3s

Siy
370

ang
ONI
In8
118
vis
val

1d8
J8s
EE
¥s1
s
¥al

Ine
lig
118
118
118
038
INI

1d8
l1e
118
i18
118
L]
INI

vis
val

vis
val

HLON3T yvy uv3y

uvgy

6xvE

9rve

veveg

cuve

brve

yVEY

L3
S
ca
PETAS
S
a4

33
[13

(2%

53
J4¢t
2421
2421
Jaet

9¢c

[

33
FEYAS
2421
3427
RETAS

&

(2%

(2%

1Y
00

09
8¢

09
81

0d
93
0g
32
<8
6v

01
<3
8g
\A4

sy

0g
J2
32
e
4
04
93

01

x4
x4
e
04
93

1]
6v

11
6v

0240
EAS D]

3ty0
ateo

E1v0
6740
L1900
vIv0
(23]
0Ts0

3090
J0%0
€0v0
Yovo
60%0
L0v0

(1 2]
20p0
3480
J4¢0
64€0
4320
€4E0

£480
0480
a3ge
v3go
{3¢0
$3¢0
£3¢£0

L=
40¢0

gaso
€0g0

S1i¥
-1 1] el o]
LINND visS
v s
avd 34y
el)
LINN PEN 31New(D LINOD v
AVL
v 0¥
YAl
J1Ae OIND L11€ 1lalrs v sy
3TYH Nl N3 uv8 AlQ = LIE 3NO ¥vd ¥ST
vlild 1d8
4vo JuS
348
LINN S4v
3713
v s
(L1868 T v) LINMwg'Teprve 41 32§ LINN vul
6ilw SJ&
HVE uvIy yvgy §Sr
AN0ImIL Invad-40-GNag 3] L3S =
) Gv3b L16 31 %70 = ArHvd
NI U3LJIHS LIk HLIM 3LAt = (A)D 111x3

EINNVIS WCyJ Lik 3NU UVdy

ilew
Sy
NYNLSH 312
WSYHJ viS
WSMD Juv
210
WNSYJI3HT C1 diA8E duv YAl
2¢lAd 3NE
x40
61Ad SUE
JLAE UV3Y 1184 ¥Sr
LNNCD L16 43S 8z xaQ1

ANOawll Imwyy4=40=GN3 4] L3S =
Uv3y 3IL1AE 31 ¥°D = Aud¥vVD
FLA0 = (A)D 111x3

wNSXJI3HD 0L 31AE aQv
Y3ANNYIS WOEd 3LAE 3NO Qv3y

LAgy
(X IEL] Siy
vld
XVl
vid
AVl
SY3y 3eCis3e ¥ld

6ilg

vilE

cllIE

lley

* 2 % 3 &3 & &

o
-
>
o

CilAg

.
>
[+ o)
o

L 20 B BN BN BN BRI BN BN N

vE

2%

(2%

vl
$ 080

68
68

CE]

va
£0¢€

60

09
61

]
vy
&9
61
eV

6v
ve
86
vu

St
01
3
8¢
g9
§1
vy
(4]

09
81

117
s9
81
86

0d
¥o
08
0e

eV

0y
2]
vy
69

By

vago
6UEC

LUg0
sasc
vGE0
£40¢e0
T0g0

o0ugo
2080
Z3¢0
Gagc

€3¢0
62¢0
(380
SOfU
| 29394
£3¢¢C
(eI 3"
03¢0

eSO
EeSC

vEg£o
68€0

Lug0
S8¢0
[4:3%]
£6£0

TE£0
0ege
3vee
Eveo

EVED

6Y§0
(24"
SvEl
(2241}
Ve
£VEC

23

S9)JON

24

The 8080 or Z-80 Bar Code Loader Program

The 8080 or Z-80 program is able to use the registers in
the computer to hold most of the program variables. The B,
C, D and E registers contain the decoded byte, the unit
width, the checksum, and the frame length, respectively.
The HL register pair holds the buffer address. The only
values which must be stored in memory are ABUF (buffer
address at the beginning of the frame), 1D (frame ID}, and
FLAG (the absolute or text format flag). The only
programming ‘“‘trick” used was to have the RBAR sub-
routine return to the calling program by jumping to the
return sequences in RBIT (BIT7 for a normal return, and
BIT9 for an end-of-frame timeout return). This saves a few
bytes of code since both routines have to do similar cleanup
operations before actually returning. The 8080 or Z-80
program was developed using a TDL Z-80 processor board
running at 2 MHz. This program probably will not operate
properly on a slow 8080 system because the bar counts will
get too small to allow for good accuracy. Because of the
inherent limitations of an 8080 microprocessor, the timing
loops are about as fast as possible (which is not all that
fast). This problem can be compensated for by scanning at
a slower rate than would be used for an equivalent Z-80,
6502 or 6800 system.

LISTING NO. 3

NINLIY ¢

MUNDIS 1334300 INdino:
YOI WNSHIFHI 4T ¢

aqu3y 403 ¢

THENOIS 1334303 1N4in0 ¢
JONNI JI¢

NNSMAIHI MIIHI ¥

HiH3T gHIN ¢

S53¥QQY gHIY - 59 JI ¢
13y 4I7

T3Y ¥0 Sg4 4T 3357
403 4I7

HIONIT INHYS gH3IY 1
NHIS3Y ¢

JWHYS LNIN ¢
g1 wWe371r JI¢

ENEHIS3N H0 JWHYS M3IN ¢
gl qgu3IN-’

1

&
aul4

+237
2
gy
33
#Qa7
149y

4nNgd
anay
ar
ka7
g

2]
ZTa7
g

ar
37

143y,

133
J40d
J04
d0d
TIHD
IAW
NI
1432
AN

o
T
IAM
NI
I47
AN

INE
AOH
¥29

¥
AON
A0
ar
TIHS
AON
ar
TIHD

ar
TIH2

207

BTqT

3Ta7

PTaT
:ZEIT

ara7

araT Ha
SHAT 33

QTAT HJ
2uat aJ

9TTT
QITT
STTT
QTAT

Jeat
STIT

arat
cHaT

THAT
oHAT

AILTN
X, 7,
il

Ty 1y
o

e o T g

-
2]

o0 T,
bl

D g 3 = 17
B R R R R e T R R P R R e R R R L

g 0
G O3

o3

]
RV

7

TSl T

W

9
&
I}
]

T
T
T
T
AT
T
T
T
T
T

S Doy e iy
R R VR (R
™D T 3

et
'y
=

PO o
s
Dol

SPAT
Z24aT
4287
3sar

aT
25aT
ssaT

F 1 AON a5 FLarT
k37 Ir QAT HJ TFEaT
WNSNIFHI JHIN S LAY Twa -8d7 SHAT J2 32871

217 ZNP 228T 23

g 142 734

IH AON 34

+J7 ar [TAT HJ

LIy TWI o2d7 #38T J2

J1AS INAS 04 HINHIS ¢ &g IAN aasa
HD AON T dt

Y 47

+J7 ar [TAT HG

AHIY T2 T3IAT 92

1IG ONIWIL QW3NS 8F 3 Isl £QJ7

es30

aI WS STFT 2 £TAT
aH IAN @a3s TIaT
q HSNd o1 @rar

3 HSNd §7 Jeat
OWl4 WIS 291 STTT FF 2887
ad 1AM @03s HOAT
4194 JTIHS QTTT ZZ /9T

INIOJ ANINI ¥30607 379616207347 MSd HSNd <37 54 sear
Z97 dur 86T £3 £08T
TH 1AW T3S 79T
INIO A¥INT ¥3QH07T 3LNI0SEH* MSd HSNd Hd7 54 evat
JINNBIS 40 1380d 0-T¢ & = ¥NIS z00a
YHHI W 34AL 01 INILAOY 90 M & HE@OID=Id41 6ead
HE@aTa 307 2007
SaHd
ANDWIN OLNT 3TN0 ¢
FLAG HIHG 1SHT #3144 NOIIHIOT 47 S53¥I0M :
NIHINDD TTIM T°H LIX3 NO Q3¥0I5TY MM ¢
AYINT NO Q3AMS 3¥H T°H 143353 S¥ILSININ T ‘
S53¥GGH FOHINLE ~TH ‘
HLON3IT JHEdd - 3 :
WNSNI3HD - 7 :
HLOIM 1IND - 3 :
3149 9390930 - @ ‘
(39457 ¥ILST03Y ¢
WIHG FHOLS 0L I¥IHM J0 S53¥I0H :
ONINIHINOY S¥31S1934 7°H HLIM 33IN3 :
'SS34JAY AYOWIN H_FLIIN QIIHIINSSH :
LON MIHG CTIJSH 0 30 FIGHIHIOTZY 50607 - #77 ¢
FWHAS HIHG NI QINIHINGT ST SSIHQIH ANOHIW ‘
AYONIN OLNI HIHG AFHNIZ 2LNT059H SOHOT ~ 07 ‘
AYONIN DINI :
NINNEIS FO0I ¥HF WO¥S HIWT QEOT 0L SINILAD¥INE
¥97 AT ¢

04 1344534 ¢ 8 3148 -OHTA
JI IWHNS 7 A 3149 qr
JNHY S 40 ONINNIO3S IH o334 4087 8 qyoM T 4ngy
FOHYOLS HIRW] .
2113 NI
NAILIY THNSON ¢ I AON
2363 ENI
d ¥37
tyHT NI
& 142
AN3S NI 9363
INISIdd TTILS FIHS 204 H33HT 7 L0 IAN
TyHg
3
Paleray
(HLIHG QITHAY bALING 33 41 3357 JH
FHHG
a
MNIS
slI3 2r
H73 YINNHIS 204 LIEM Y 3 ANI CFNHG
S¥Hg dr
a Id42
YNIS NI
6119 21
135 YINNHIS &04 LIEM Y g YNI -T¥H3
INMO3 J3HdS ¥HITD ¢ 80 IAW TAHI
ANNOS ¥HG ¥HITTD ! 83 IAN
3] IAHS S J HSNd - dHgy
1N03NIL 3NHYS-40-INT 41 135 = i
JHIY HHG JI 73 = SY¥HD !
ANNQD ¥HT = (H2XD 1IX3 !
HLONIT yH9 qu3y !
JHIY !
13
als
:] 404 ell3
NYLIy LN03INTL FNHYS-H0-INT ¢ Med dod mkwm
134
a3
a5
7404 L1113
WNLIN THNYON © MS4 404 2LI3

(20
aa
egoa

sJar £2
g4
LATT &0
[=4

TJ8T HA
#34
F837
sear
#39T 7@
93

a7

47
3423

-y
TAAT HA
aa3d
Iagq
3J8T U2
ar

33T o4
9834
£ag9q

378T HI

rT

8alT

8a3T
&qd

6TTT
8TIT
rTTT

STTT
ZTIT
4977
3ary
gOTT
SOTT
SOTT
CATT

Farr
TarT
a8rT
448T
J487
48T
£48T
£48T
£48T
Z48T
T48T

338T
NEC)S
H3IAT
£38T1
[3a1

+38T

2387
¥3aT

LINN = ¢

(5]

23

LINN M3IN 3LNdNO2 ¢

3iAT OINI LI3 1JIKS S
CAYYHD FAHS) ¢

LINNS T < ¥H3 4T 335 ¢
I qHIY ¢

SOHTS 'H 24H5 ¢

377 JAES ¢

ANO3WIL IFWEAA-J0-INT 4T LIS

3 AON
3 JIH
T INY
HHY
HoAOH
‘d AOW
T INH
oY FLI3
AHY
IR
9 INI
H o AON
54 J0d
I
Yy
H AN

4 H5N4
-1
2 Jgd
LZT INH
[
3
g

NHY
AON
ADW 2113
! ar
¥HIY T2
M54 HSnd

7 H5Nd 113y

gH3Y 113 41 T3 = AYNH] !

NI J314IHS 119 HIIM 3149 =

(322 LIX3

AINNHIS WONH LI9 IND JHIY !

WNSMIFHD 01 3LA9 Ja
118 IN3IN JHIY 01 40077

J1A9 gH3Y

INNODY 119 = (H2DY

1N03NIL FNHYA-40-NT JT L3S =

113y

13¥ 6149
N2
aLs
va AOW
3 Jqad
dH AON

ZlAg ENC
4 ¥3qg
€148 ar
118¥ T2 :2LAg

W JAN 1A9¥

JHIY J1AG F1 ¥72 = ANNHD :

WNSNAIHD =
JiIAG =

adirl :
€832 LINT !

WNSNIFHD 0L 31AS Qv !
YINNHIS NOdd JLAT IND gHIY !

149y !

4
AT 7J
gs
T4

T

o
=

3:

'

JIAT HI
T3ar J2
£
543

28
a3
7y

PHAT 72

as
£99T Ha
$30T 02

{a3g

£98T
2907
+3aT
S9AT
zaaT
TgoT
39T
3307
a7
2297
€397
8207
2307
[26T
<07
£20T
£207T
zaaT
TI2T
43971
3307
agar
2997
£307

£9aT
F307T

£997F
zaar
7397
23aT
4937
war

quaT
HHOT
2vat
+UOT

ZHar

27

S9JON

28

Using The Bar Code Loader Algorithm

Implementation and Checkout Procedure

1. Verify the hardware connections to the scanner. The “wand” unit and electronics employed
must be level sensitive, ‘translating reflectance of a white paper into a data value of 0 on its
output line, translating reflectance of a black (fully inked) paper into a data value of 1 on its
output line. (Some commercial point of sale scanners produce edge timing information in the
form of pulses which occur when light changes to dark and vice versa. These scanners are
unusable with the programs given here.) The output line of the scanner electronics should be
connected to the high order bit of the 8 bit input port used by the programs of listings 1 to 3.

2. Using the manual methods (ie: keyboard and monitor program, toggle switches, etc.) of
your system, enter one of the programs from listing 1 to listing 3. Modify the program’s
hardware dependent address constants to suit your system’s hardware constraints. If you use a
processor other than a 6800, 6502, 8080 or Z-80, then use the flowcharts of figure 4 and
examples of listings 1 to 3 to create a new loader program for your processor.

3. Verify the operation of the loader program by using one pass of the data contained in figure
2b and comparing the results to the data listed in the figure. For those who use listings 1 to 3
for the program, most problems will probably be found in the area of making the hardware
dependent address changes. More general debugging may be needed if a new program is coded
for a different processor. Use the Text Entry Procedure (see separate box) for this checkout
operation.

4. With the loader’s operation verified, save it on your system’s mass storage device; make sure
the cassette or floppy disk copy is verified against the memory image of the program, and make
redundant copies if you require that degree of safety.

29

30

Using The Bar Code Loader Algorithm

Text Entry Procedure

This procedure is used whenever reading bar code texts which have been encoded using the
“text” format of figure 3a. In this format, the bar code copy is used to define an address
independent block of data which can be placed in an arbitrary buffer in memory. Typical types
of data involved are character source texts of applications programs, character data files in
general and relocatable object code files which will be processed further by appropriate linking
loaders, etc.

1. Make sure that your bar code loader program has been correctly loaded into a scratch area
of memory, and that the hardware is all set up. Set up of the hardware includes initialization of
the scanner input port if this is required, as in the case of those who use PIA (Motorola 6820)
input ports.

2. Set the initial value of the pointer ABUF. For the 6800 program of listing 1, this is
accomplished by loading the index (X) register prior to entry. In the 6502 program of listing 2,
this is accomplished by initializing the variable ADR which is at location hexadecimal 30 in
memory in listing 2. For the 8080 or Z-80 program of listing 3, this is accomplished by
initializing the H and L register pair with the starting memory pointer. ABUF should be set so
that during the course of the loading operation it will not conflict with the memory location of
the loader program itself, or for that matter, any other program which you want to preserve.

3. Physically prepare for the first scan by laying the bar codes on a flat surface, obtaining a
ruler or straight edge which is longer than the longest frame of bars by several inches, and
positioning yourself comfortably.

4, Start the bar code loader program by calling the LDR entry point from your monitor.

5. For each frame of the bar code text being read, position the ruler so that the wand will scan
with its aperture centered directly over the bars. Use guide marks (built in or added by
yourself) on the wand head to set the ruler position. Then, with a steady hand, move the wand
down the line of bars starting from about one half to three fourths of an inch before the
beginning of the frame, and continuing at a steady rate until the end of the frame has been
scanned. If the frame was successfully read, the terminal device of your system will sound the
“bell” code (a bell on Teletypes, or tone of some form on CRT terminals). When you have
received a correct read acknowledgement go on to the next frame of the text.

If no acknowledgement is heard, there was a timeout or checksum error and the frame was
incorrectly read. Repeat the same frame, after checking the ruler position, your scanning
technique, etc. This feedback interactively teaches you how to correctly position the rulerand
wand; from our own experience, once the technique is practiced a bit, nearly every frame will
be correctly positioned and read.

6. When the last frame has been read with a zero length and zero checksum, end of file is
determined and the program loader will return to the calling point. If no end of file frame is
found in the bars, return can also be effected by restarting the system in your usual manner.

7. This has read the data into memory starting at the initial value of ABUF. What is done with
the bar code originated data depends on the documentation accompanying the program or
other text which you have just read.

A General Bar Code Loader Algorithm

Absolute Entry Procedure

This procedure is used whenever reading bar code texts which have been encoded using the
simple “absolute” loader format of figure 3b. In this format, the bar code data of each frame
begins with a two byte destination address for the data, high order byte first. This form is
generally used with absolute object code of simple programs which are compiled for fixed
addresses in memory. Such programs are generally ready to run upon completion of the loading
process.

1. Make sure that your bar code loader program has been correctly loaded into a scratch area of
memory, and that the hardware is all set up. Hardware set up should include initialization of
the scanner input port if necessary. Using the documentation of the program being input, verify
that the absolute addresses encoded in the bar code file are consistent with available memory
areas in your system,

2. Physically prepare for the first scan by laying the bar codes on a flat surface, obtaining a
ruler or straight edge which is longer than the longest frame of bars by several inches, and posi-
tioning yourself comfortably.

3. Start the bar code loader program by calling the LDA entry point from your monitor.

4. For each frame of the bar code text being read, position the ruler so that the wand will scan
with its aperture centered directly over the bars. Use guide marks (built in or added by your-
self) on the wand head to set the ruler position. Then, with a steady hand, move the wand
down the line of bars starting from about one half to three fourths of an inch before the begin-
ning of the frame, and continuing at a steady rate until the end of the frame has been scanned.
If the frame was successfully read, the terminal device of your system will sound the “bell”
code (a bell on Teletypes, or tone of some form on CRT terminals). When you have received a
correct read acknowledgement go on to the next frame of the text.

If no acknowledgement is heard, there was a timeout or checksum error and the frame was
incorrectly read. Repeat the same frame, after checking the ruler position, your scanning
technique, etc. This feedback interactively teaches you how to correctly position the ruler and
wand; from our own experience, once the technique is practiced a bit, nearly every frame will
be correctly positioned and read.

5. When the last frame has been read with a zero length and zero checksum, end of file is deter-
mined and the program loader will return to the calling point. If no end of file frame is found in
the bars, return can also be effected by restarting the system in your usual manner.

6. This has loaded data in regions of your system’s memory which are encoded within the bar
code text. Proceed to use the data as specified in the documentation accompanying the bar

codes; for example, if the data is a program loaded in absolute form, call or jump to the appro-
priate entry point address.

31

32

A Note About Bar Codes ...

Our intent in making PaperbytesTM software available in bar code form is to
provide a method of conveying machine readable information from documentation
to the memories and mass storage of a user’s system on a one time basis. We suggest
that the user of software obtained in this manner should locally record the data on
the mass storage devices of his system after the data has been scanned from the
printed page. The PaperbytesTM bar code representations provide a standardized
means of obtaining the data, but they cannot be compared to the convenience of
local mass storage devices such as floppy disks, digital cassettes or audio cassettes.
Thus if repeated use of the software obtained from bar code is anticipated, we
recommend that the user make a copy on some form of magnetic medium.

Bar codes are the newest form of machine readable data
representation. They are used in all Paperbyte TM software
products in BYTE magazine articles and self contained
book publications and combine efficiency of space, low
cost, and ease of data entry with the need for mass
produced machine readable representations of software. Bar
codes were originally used for product identification in
inventory control and supermarket checkout applications.
Today, because of their direct binary representation of
data, they are an ideal computer compatible communi-
cations medium. In the application of bar codes to software
distribution (such as Paperbyte TM books and articles), the
use of a simple but reliable optical scanning wand and an
appropriate program provides a convenient means for the
user to acquire software.

PAPERBYTE ™ — An Exciting New Way T
Distribute Software :

One of the most common problems for users and
suppliers of personal computer software is the need for
product distribution in a form which is helpful to the user,
low in cost, tolerant of errors in production use, and free of
the need for expensive highly specialized peripherals. One
solution, conceived in detail by Walter Banks of the
Computer Communications Network Group at the Univer-
sity of Waterloo, Ontario, Canada, is the use of bar code
patterns prepared on a computer controlled phototype-
setter. A bar code is a linear array of printed bars of varying
width which encodes digital data as alternating patterns of
black ink and white paper. By using a ruler as a guide, an
inexpensive hand held ‘“‘wand" scanning unit converts the
bar patterns into a time varying logic ievel signal. This time
varying binary value can then be interpreted by a program
which understands the format of the bars.

The purpose of this pamphlet is to present the decoding
algorithm which was designed by Ken Budnick of
Micro-Secan Associates at the request of BYTE Publications
Inc. The text of this pamphlet was written by Ken, and
contains the general aigorithm description in flow chart
form plus detailed assemblies of program code for 6800,
6502 and 8080 processors. Individuals with computers
based on these processors can use the software directly.
Individuals with other processors can use the provided
functional specifications and detail examples to create
equivalent programs.

©1977 BYTE Publications Inc.
BYTE, PAPERBYTE and PAPERBYTES

are trademarks of BYTE Publications Inc. 0‘07'003856-):

2

Hy

7

	Bar Code Loader - Front Cover

	Cover Page

	Copyright Page

	Table of Contents

	Byte Publications and PaperByte Software

	The Bar Code

	Loader Design Considerations

	A General Bar Code Loader Algorithm

	LDA or LDR Subroutine

	RBYT Subroutine

	RBIT Subroutine

	RBAR Subroutine

	Adjusting Program Timing Loops

	The 6800 Bar Code Loader Program

	The 6502 Bar Code Loader Program

	The 8080 or Z-80 Bar Code Loader Program

	Using The Bar Code Loader Algorithm

	Implementation and Checkout Procedure

	Text Entry Procedure

	Absolute Entry Procedure

	A Note About Bar Codes...

	Bar Code Loader - Back Cover

