~ OPERATIONS
~ MANLAL

3017 LINCOLN

POST OFFICE BOX 28810

DALLAS. TEXAS 75228 5 @f n T — GARLAND, TEXAS 75041
11—
[S—
. { 1]
1 4 *—1)

June 12, 1979
ADDENDUM
280 GLOBAL PACKAGE

A change has been made to the assembler that makes 1t no longer
neccssary to have '"-$" after labels in the relative jump instruct-
ions (JR) and the "DJNI" instruction. Thus the following
instructions are now assembled the same (Version 3.1):

JR TAG-§ and JR TAG

DJNZ TAG-$ and DINZ TAG

All other configurations of operands for the relative jumps are

assembled in the same way as in Version 3.0 (See paragraph 4 on page

Test Editor, Z80 Global Assembler, Linker Manual.)

BCO-527-3460 — 214.271 4607 —TELEK 73.0151

2

C
e

February 5, 197¢

ADDENDUM

Z§0 GLOBAL PACKAGE

The Assembler (ZASM) and Linker (LINK) have been revised (Versicn 35.0)
to allow the options to be entered on the command line. This makes it
possible to batch up several "assemblies' and "Links' to be done with-
out operator interaction.

SSEMBLER OPTIONS

To speciziy options for an assembly enter ‘the file name, a space, and a
slash (/), and then-required options (Page 26).

Cxample: A> ZASM FILE.ASM /CL (CR)

This would cause the Z80 source program file named "FILE.ASM" to be
assembled with the 'C' (cross reference table) and 'L' (listing on prin-
ter) options.

Note that if the slash (/) is omitted, the "options' will be requested
as specified on Page 25, which Prevents continuous batch operation. (o
Therefore, if no options are required, enter the slash (/) on the o
command l;ne with no options following. -

LINKER OPTIONS
Linker options are entered on the command following the last Ille name
in the 1list of files to be linked.

Exanmnple: , A > LINK MAIN,SUB1,SUB2,SUB3 /CU A=1000 (CR)

This example would link the four programs listed with the 'C' (cross
reference table), 'U' (undefined symbol 1ist) and 'A' (link start
address=1000 (hexadecimal)options (Page 37).

1f the slash (/) is omitted, the options will be requested as shown 1n
the example on Page 39.)

The 'A' option is uscd to specify where the first relocatable modul

will be positioned. TIf one or morve absolute modules precede the first

relocatablce module, they will be positioned at their "ORG" address

while the relocatable module will be positioned starting at the address

(hexadecimal) specified using the '\ option. Note thnz i f mecre options
are entered after "Ashhhh', a comma (,) must be entered to separate the

address specification and the following option

TABLE OF CONTENTS

SECTION ' DESCRIPTION PAGE

TEXT EDITOR

1.0 INTRODUCTION 3

2.0 DEFINITIONS ’ 3
3.0 USING THE EDITOR. - CONSOLE INTERACTION 4
4.0 USING THE EDITOR - ENTERING COMMANDS 4
5.0 USING THE EDITOR ~ FIRST STEPS 5
6.0 EDITOR COMMANDS 7
6.1 An - ADVANCE 7
6.2 Bn - BACKUP 8
6.3 Cn/stringl/string2/ - CHANGE STRING 9
6.4 Dn - DELETE 11
6.5 En - EXCHANGE 12
6.6 Fn - PRINT FLAG 12
‘ 6.7 G file - GET FILE COMMAND 13
6.8 I - INSERT COMMAND 14
6.9 Ln - GO TO LINE NUMBER n 15
6.10 Pn file - PUT . 16
6.11 Q - QUuIT ’ 17
6.12 Sn/string/ - SEARCH FOR STRING 17
6.13 T -~ INSERT AT TOP 19
6.14 Vvn - VIEW 19
7.0 EDITING LARGE FILES 20
8.0 EDITOR MESSAGES) 20
9.0 SAMPLE EDITING SESSION 21
10.0 EDITOR COMMAND SUMMARY 22
280 ASSEMBLER
1.0 ~ INTRODUCTION 23
2.0 COMMAND SUMMARY 23

UT U1 b

SECTION

L L]) L[]
2 WNHO

(8]
L] L] L]
N = o

[«) We) We) W) We)We)Ws) e)W)
[] L] L] L] L]
ook WNHO

~l
L]
o

APPENDIX A

DESCRIPTION

DEFINITIONS

USING THE ASSEMBLER
ASSEMBLER OPTIONS

ERROR MESSAGES

OBJECT OUTPUT

ASSEMBLY LISTING OUTPUT

ADVANCED OPERATIONS

PASS 2 OPERATION (SINGLE PASS

OPERATION)

ASSEMBLING SEVERAL SOURCE MODULES

TOGETHER

780 ASSEMBLY LANGUAGE

DELIMITERS

LABELS

OPCODES

PSEUDO-OPS

OPERANDS

COMMENTS |

ABSOLUTE MODULE RULES

RELOCATABLE MODULE RULES

GLOBAL SYMBOI HANDLING

TECHNICAL INFORMATION
LINKER

INTRODUCTION

COMMAND SUMMARY

DEFINITIONS

LINKER OPERATION

EXAMPLE OF LINK COMMAND

Z280 OPCODE LISTINGS

27

28
28
28
28
28
30
33
33
33
34

36

37
37
38
38
39

41

ot o

REER

P

el

COPYRIGHT 1978 SD SYSTEMS
NOVEMBER, 1978
ALL RIGHTS RESERVED

NOTE: THIS DOCUMENT AND ASSOCIATED SOFTWARE IS COPYRIGHTED BY AND
PROTECTED BY LICENSE AGREEMENT WITH SD SYSTEMS. UNAUTHORIZED
DUPLICATION BY ANY MEANS IS PROHIBITED.,

1.0 INTRODUCTION

The : . Text Editor assists the wuser in origination and
modification of assembly -language source programs and English text
documentation. The Editor resides on a 32K system diskette. It permits
random access editing of ASCII diskette files. The Editor is designed
for usage with any CP/M compatible disk operating system (DOS) using a
Z80 microprocessor. (CP/M 1is a registered trademark of Digital
Research, Pacific Grove, California).

.The Text Editor permits random access editing of ASCII diskette files on

a line basis or character basis. Whole lines and character strings
embedded within lines can be easily accessed, changed, deleted, or added
to an existing or new diskette file. The size of the file to be edited
is limited only by diskette capacity. All TI/O operations to the
diskette are transparent to the user.

The Editor is resident on diskette. When loaded, it starts at RAM
address 100H. Editor buffers and variables are placed in RAM between
the top of the Editor and the bottom of the Operating System. All I/O

"is done with the console device and the disk.

2.0 DEFINITIONS

SOURCE - ASCII characters comprising a 780 assembly language program or
some other text.

FILE - a diskette file which contains the SOURCE.

LINE - a single source statement which ends with a carriage return.

LINE POINTER -~ the position in the source where the next action of the
Editor will be initiated.

CURRENT LINE - the line in the source pointed to by the LINE POINTER.

- LINE NUMBER - the decimal number of a line, beginning at one (0001) for
the first line in a file and increasing sequentially for each line. The
maximum line number allowed is 9999 (decimal). Line numbers are
assigned dynamically as editing of the file progresses. This means that
when 1lines are added to or deleted from a file, all 1lines are
automatically renumbered. :

‘INSERT - installation of one or more lines in a file immediately
following the current 1line. Inserted lines are assigned sequentially
increasing line numbers.

DELETE - removal of one or more lines from a file.
3.0 USING THE EDITOR - CONSOLE INTERACTION

All user interaction with the Editor 1is via the user console. The
Editor 1issues prompts and messages to direct the wuser. The user
responds by entering commands or data via the console keyboard. Each
command or data line is terminated by a carriage return. ~

The following conventions are used in this manual:

(CR) stands for carriage return.
All user input is underlined.
User input which must be entered exactly as shown
is in upper case letters.
User input which is variable is shown in lower case.

4.0 USING THE EDITOR - ENTERING COMMANDS

The Editor prompts for a command with an asterisk (*), The user may
then enter commands via the console keyboard. Modification of the
input, such as rubout, backspace, and line delete, is supported by the
operating system. entered in lower case as well as upper case. Several
commands may be entered on one line. Blanks and commas are ignored on
input. A command line is terminated by a <carriage return. A command
line may have up to 80 characters in it, including the carriage return.

.

All commands consist of one character followed by an optional operand.
#The operand may be separated from the command by zero or more blanks or
commas. The operand may be a decimal number in the range 0-9999. This
specifies the number of 1lines upon which the command is to operate.
Alternatively, the operand may be two decimal numbers separated by a
minus sign (=), In this case, the command takes effect on lines
A numbered from the first number in the operand through and including the
; second number. If the operand is not entered, it assumes a value of one

(except for the 'F' command).

EXAMPLE

v

~VIEW command with no operand. The operand
: value assumes the value of one.

V5 or vV 5 or v,5 _
—-one operand shown which acts on the next 5
lines in the source file.

V42-45 or V 42-45 or V,42-45
-two operands entered. The VIEW command acts
on lines numbered 42 through 45.

5.0 USING THE EDITOR - FIRST STEPS

After booting up DOS, the Text Editor may be executed by the following

command:
A>EDIT filename (CR)
-where filename is the name of the diskette file
to be edited on the currently selected disk.
The file may not have an extension of COM, BAK,
or $$$.

EXAMPLE
A>EDIT MYFILE(CR)
" ~ —user selects to run the Editor to edit the file

_named 'MYFILE' on the currently selected disk.

If the file does NOT exist on the diskette, then the Editor outputs the
following message on the console:

‘ ***NEW FILE
-Editor indicates that a new file is being created.

The Editor then enters the 'DATA MODE' and waits for lines of data to !E&
entered by the user: |

***DATA MODE
0001

-Editor prompts for data lines starting with '
line number 0001 (see I-INSERT command) .

At the end of editing, the new file will automatically be created.

If the file does exist on the disk, then ed1t1ng of that f11e will be

.done, and the Editor prompts for a command:

*
-Editor prompts for a command (see below).

At the end of editing, the original file will be renamed with an
extension of 'BAK'. The file which was edited will have all the changes
in it.

The following pages describe each of the Editor commands in detail.

6.0 EDITOR COMMANDS

6.1 An - ADVANCE

Format:
An
or
an
-where n is a decimal number.

This command is used to advance the line pointer (toward the end of the
file) a specified number of lines. 1If the operand n is not entered or
it 1is zero, then the pointer will be position to the next line in the
file. The line which is accessed is printed on the console after this
command.

EXAMPLE

-user advances to next line,.

0015 ANY STATEMENT.
-the next line with its line number is printed on
the console,

-user advances 5 lines from current pointer.
0020 SOME STATEMENT

—Editor prints line number and the line.
*

-Editor prompts for a command.

If the user attempts to advance the 1line pointer beyond the end of the
file, then an end-of-file indicator message will be printed on the user
console. The line pointer will be on the last line of the file.

EXAMPLE
*A9999 (CR)

-user advances over a large number of lines.
0438 LAST LINE OF FILE
*%*EOF
-Editor prints last line of file and end-of-file
indicator.

-Editor prompts for a command.

6.2 Bn - BACKUP

; Format: _ %

| Bn : !

or | f;

bn *
-where n is a decimal number,

This command is used to backup the line pointer (toward the beginning of

the file) a specified number of lines. If the operand n is zero or it
| is not entered, then the pointer is positioned to the previous 1line 1in
| » the file. The line which is accessed is printed on the console.

EXAMPLE

-user backs up over one line in the file.
0019 A LINE OF INFORMATION
-Editor prints the line number and the line.
*B4 (CR) '
—user backs up 4 lines from current position in the file
0015 SOME LINE
-Editor prints the line number and the line.
*

-BEditor prompts for a command. iiﬁ

If the user attempts to back up the line pointer past the start of the
file, then a top-of-file indicator will be printed on the user console.
The line pointer will be on line number 0001.

EXAMPLE
*B9999 (CR)
| -user backs up over a large number of 1lines.
i . **k*POP :
0001 FIRST LINE OF FILE
-Editor prints top-of-file indicator and first
line of the file.

-Editor prompts for a command.

S ST,

.6.3 Cn /stringl/string2/ - CHANGE STRING

Format:
Cn/stringl/string2/
or
cn/stringl/string2/
-where n indicates the number of occurrences to change,
stringl represents the characters to be changed,
string2 represents the substitute or new characters,
and / represents a delimiter character which does
not appear in either string.

This command changes the next n occurrences of character stringl to
character strlngz starting with the current 1line. Any character which
does not appear in either stringl or string2 may be used as a delimiter.
All three delimiters must be identical, with the exception that the last
delimiter may be a carriage return. If the operand is zero or if it is
not entered, then only one occurrence of stringl will be changed. In
this case, only the current line will be searched in order to locate
stringl. 1If stringl is not found in the current line, then the Editor
issues a warning prompt ('?') and a new command prompt (*). The line
pointer will stay on the same line.

If the operand n is greater than 1, then the search for occurrences of
stringl occurs in a sequential manner starting with the current line.

‘Each line which is changed is printed on the user console. After all
changes are done, the line pointer will be on the last line that was
changed. 1If the nth occurrence of stringl is not found before the end
of the file is encountered, then the last line of the file is printed by
the Editor, as 'well as an end of file indicator (***EQF). The line
pointer will be on the last line of the file.

If string2 has no characters in it, then character stringl will be
deleted each time it is encountered by the change command.

EXAMPLES

-user views current line.

0009 THIS IS A RECORD
~Editor prints line number and line.

*C /THIS/THAT/ (CR)

, -user enters change command.
- ' 0009 THAT IS A RECORD

-Editor prints it.

*C/1S/WAS (CR)

-note that a carrlage return for the last delimiter
is allowed.
‘ 0009 THAT WAS A RECORD

I

*C /WAS //(CR)
-this is the method used to delete characters
0009 THAT A RECORD
*C 2 /T/V/(CR)
-note that blanks can be inserted between the
and operand and string definition to make the
more readable,
0009 VHAV A RECORD
*C4/VHAV/THAT/ (CR)
-this is a multiple change request which will
forward in the file starting with the current
0009 THAT A RECORD
0024 SOME TIMES THAT IS
-Editor prints out each line that is changed.
0043 LAST LINE OF FILE
***EOF

Tl
il

i

P

in a line.

command
command

search
line.

-Editor reached the end of the file before any more
- changes could be done. An end-of-file indicator
message is printed. The line pointer is on the last

line in the file.

~-Editor prompts for a command.

10

6.4 Dn - DELETE

Format:

Dn
or

dn
or

Dn-m
or

dn-m

~-where n and m are decimal numbers.

This command is used to delete, or remove, the specified lines from the
file. * TIf the operand is not entered or is zero, then only the current
line is deleted. Note that 1line numbers are assigned dynamically as
editing progresses. This means that 1lines in a file essentially get
renumbered each time one or more lines are deleted from the file.

EXAMPLE

*D (CR)
-user deletes the current line from the file.
The line pointer is on the next line in the file.

*D4 (CR)
-user selects to delete 4 lines starting with
the current line from the file.

*D4-15(CR)
—usef deletes lines numbered 0004 through and including
0015 from the current file.

-Editor prompts for a command.

11

6.5 En - EXCHANGE

Format:

En
or

en
or

En-m
or

en-m

—-where n and m are decimal numbers.

This command exchanges the specified lines with new lines to be inserted
via the DATA MODE. It is exactly equivalent to the command sequence:

Dn -delete lines
B -backup one line

I -go to DATA MODE

6.6 Fn — PRINT FLAG

Format:
Fn
or
fn
-where n=0 will inhibit printing after all but
‘the V-VIEW command, and n not = 0 will allow
printing after all change or access commands.

The Editor normally prints on the console device any 1lines which are
accessed or changed. Thus, the following commands print out a line: An,
Bn, Cn, Ln, 8Sn, Vn. 1In order to reduce the print out time on a slower
device (such as a teletype), this command can be used to inhibit print
out on all of the commands except V-VIEW.

12

6.7 G file - GET FILE COMMAND

Format:
G filename
or
g filename
~-where filename is the name of a file on the
selected disk.

This command is used to obtain 1lines from a given file on disk and
insert them in sequence following the current line. All 1lines in the
file requested are read. The file which is read is not altered in any
way. This command can be used with the P - PUT command to move blocks
of text around within a file being edited (See P - PUT command for

example) .

13

6.8 I - INSERT COMMAND

Format:
I
or
i

This command is used to insert data lines into the file being edited or
to build new files. The inserted lines always FOLLOW the current line.
After the command is entered, the Editor responds with the message:

***DATA MODE v

The wuser then enters data lines ending with carriage returns. The
Editor prompts with the line number for each line to be inserted. To
terminate the insertions, the user enters a single carriage return.
Note that blank lines must be entered as 'space carriage return' because
a single carriage return terminates the DATA MODE. After the user
terminates the DATA MODE, the Editor prompts for a new command (%),
Lines can be inserted before the first 1line of a file by using the T -
INSERT AT TOP command. Note that line numbers are assigned dynamically
while editing progresses. This means . that the lines of a file
essentially get renumbered whenever new lines are inserted.

*T (CR) &
~user selects data mode to insert lines into the file
being edited.

***DATA MODE

-Editor responds with message
0004 THIS IS AN INSERTED LINE. (CR)

-the line number being entered is printed by the
Editor. The user then enters the line of data.
0005 (CR)

-user terminates DATA MODE with a carriage return.

EXAMPLE

-Editor prompts for another command.

Note that modification of entered data lines can be done while they are

being typed just as in the DOS system. Inserted lines <can be up to 128
characters long.

14 -

6.9 Ln - GO TO LINE NUMBER n

Format:
Ln
or '
In
This command positions the 1line pointer to line number n. If the

operand is zero or it is not entered, then line number 0001 is accessed.
Any line number can be accessed from any position in the file. The line
which is accessed is printed on the console. If the line number cannot
be found because it is larger than the last 1line number in the file,
then the pointer will be positioned at the last line in the file and an
end-of~file indicator message will be printed.

EXAMPLE
*1,10(CR)
—~user accesses line number 0010.
0010 THIS IS A LINE OF DATA :
-line number 0010 is printed with its line number.
*1,2001 (CR)
~user selects line number 2001.
0943 LAST LINE OF FILE
: ~Editor prints last line of file.

***EOF

~Editor prints an end-of-file indication.
*L,1 (CR)

-user selects line number 1.
***TOF

0001 FIRST LINE OF FILE
-Editor responds with top of file indicator
and first line of file and its line number.

-Editor prompts for a command.

| 15

6.10 Pn file =~ PUT

Format:

Pn filename
or

pn filename
or

Pn-m filename
or

pn-m filename
-where n and m are decimal numbers and filename
is the name of a file on the selected disk.

This command is used to output one or more lines to a file on disk.
This can be used to break up a given source module. It can also be used
with the G - GET command to move blocks of text around in a file being
edited. If the operand is not entered or it is zero, then only one 1line
will be output. Lines of text which are output by the PUT command are
not deleted. They may be deleted via the D - DELETE command after the
PUT command is used. The filename specified must not be the same as the
current file being edited. 1If the file already exists on disk, it is
erased before any 1lines are output to it. After the PUT command is
used, the file output to the disk remains on the disk. -

EXAMPLE

*pP25-30 TEMP(CR) @
-user outputs lines 25 through 30 to a file
called TEMP. The space between the number and
the filename is not required.

*D25-30 (CR)
-user deletes lines 25 through 30 from file
being edited.

*L1(CR)

-user accesses line number one.

*G TEMP(CR)
-user reads lines from file TEMP and places them
after line number one. This effectively moves
lines 25-30 to just after line 1. The space
between the command and the filename is not
required.

-Editor prompts for a command

16

6.11 Q - QUIT

Format:
Q

or
q

This command returns control to the Operating System. The original file
will be backed up on the same primary filename with a secondary filename
of BAK. All of the editing will be saved in the file under the original
file name. QUIT can be done at any time during the course of editing.

6.12 Sn /string/ - SEARCH FOR STRING

Format:
Sn /string/
or ‘
sn /string/
-where n is the number of occurrences to be found,
string represents any set of characters which is to
be. searched for, and / represents a delimiter character
which does not appear in the string.

This command searches the file, starting with the NEXT 1line, for n
occurrences of the character string between the delimiters. Each line
which contains the string will be printed on the console. The pointer
is positioned on the line of the nth occurrence of the string. If the
nth occurrence of the string cannot be found before the end of the file
being edited, then the Editor issues an end-of-file indicator (***EOF).
This command always searches forward (toward increasing line numbers) in
the file,

Any character which does not exist in the string to be searched for may
be used as a delimiter. The second delimiter may be a carriage return.
If the operand n is zero or it is not entered, then only the first
occurrence of the string will be sought.

17

EXAMPLE o

*S /ORD/ (CR) (%
-user selects to search forward in the file, beginning
with the next line, for the string 'ORD'. Only the
first occurrence of the string is sought. The blank
between the command and the string is not required.

0021 SOME ORDERLY DATA ‘
~Editor prints the line number and line when the
string is found. The line pointer is on line 0021.

*S510/9AH/ (CR)

-user selects to search for and view the next
10 occurrences of the string '9AH’'.

***EQF
-Editor encountered the end of the file and found
no occurrences of the string. The end-of-file
indicator is printed.

-Editor prompts for a command.

6.13 T - INSERT AT TOP

Format:

T
or

t

This command inserts data 1lines at the top (start) of the file BEFORE
the first line in the file, See the I-INSERT command for proper usage.

6.14 Vn - VIEW

Format: Vn or vn or Vn-m or vn-m -where n and m are decimal
numbers.

This command prints the specified lines on the console device. The line
pointer is updated to the last line printed. If the operand n is zero
or is not entered, then only the current line is printed.

EXAMPLE

-user views current line on the console.
0009 THIS IS A LINE

-Editor prints line number and line.
*V3(CR) : ’

-user views current line plus two more.
0009 THIS IS A LINE
0010 THIS IS NEXT LINE
0011 THIS IS ANOTHER LINE

-Editor prints 3 lines on the console. The

line pointer now points to line 0011.
*V3-4(CR)

-user selects to view lines 3 through 4.
0003 SOME LINE OF DATA
0004 NEXT LINE OF DATA :

-Editor prints lines 3 through 4.
*

-Editor prompts for a command.

19

7.0 EDITING LARGE FILES

SNy
——————————————————— w

Editing of 1large files is no different than editing small files. All
commands are fully functional. However, diskette access may be required
for certain operations and a slight delay may be apparent before the
Editor responds.

8.0 EDITOR MESSAGES

If the user enters an unrecognizable file name, a syntax error will be
indicated and the Editor will return to DOS. If the user enters an
unrecognizable command, then the Editor will print a question mark and
another command prompt:

EXAMPLE
*R20(CR)

All I/0 errors to and from disk result 1in appropriate error messages
The original file should be backed up on another disk before using the
Editor.

The Editor prompts with several other messages as editing progresses:

***NEW FILE - indicates that a new file is being created rather than
editing of an already existing file.

***DATA MODE - indicates that 1lines of data are to be entered rather
than Editor commands.

***TOF - indicates that the top of file (beginning of file) has been
encountered.

***EOF - indicates that the end of file has been encountered.

*** END OF EDITING - indicates that the Editor has successfully
completed. Control is then returned to the DOS Operating System. ‘

***END OF WINDOW. USE 'ADVANCE' TO SEE NEXT LINE - occurs ohly with the
VIEW command. Follow the directions.

20

9.0 SAMPLE EDITING SESSION

) The user 1is urged to follow the steps given here to become acquainted

- " with the Editor.

>EDIT NEWFILE(CR)
— user selects to run the Editor to create a new file.
SD SYSTEMS EDITOR V1.0 '
***NEW FILE
-Editor indicates that a new file is being created.
***DATA MODE
~ Editor prompts for data lines to be input from
the console device. User begins keying in a
program.
0001 ; A SIMPLE SAMPLE PROGRAM(CR)

0002 LD A,(LABl) (CR)

0003 LD E,0(CR)

0004 CALL SUBl1 ;SOME COMMENT (CR)

0005 LOOP LD (HL),0 ;STUFF ZEROS(CR)

0006 INC HL(CR)

. 0007 DNZ LOOP-$;LOOP FOR ALL(CR)

- s - T e e et o . v S — W V= W 3 v

0008 END(CR)

0009 (CR)

—-user terminates DATA MODE.
*B99V20(CR)

-user backs up to beginning of file and
views all lines.

;**EOF

-Editor indicates end of file encountered.
*L,7(CR) :
0007 DNZ LOOP-$;LOOP FOR ALL

~user views line 7 and observes an error,
*C /DN/DJN/ (CR)

-user modifies the line.
0007 DJNZ LOOP-$;LOOP FOR ALL

-Editor prints the changed line
*Q(CR)

~user terminates the editing session.

|
3
|
|

10.0 EDITOR COMMAND SUMMARY

" An

Bn

—— e — e G G S —— ey Gn S ——

advance n lines
backup n lines

cn/sl/s2/ change n occurrences of sl to s2

Dn

En

Fn

G file
I

I'n

Pn file
Q
Sn/sl/
T

vn

delete n lines

exchange n lines

turn on or turn off print flag

get file and insert into current file
insert lines of data

go to line number n

put n lines out to file

quit, save all editing and return to DOS
search for n occurrences of sl

insert lines at top of file before first line
view n lines on the console

22

SR

o

SD SYSTEMS RELOCATING Z80 ASSEMBLER VERSION 3.3
OPERATIONS MANUAL

COPYRIGHT SD SYSTEMS
NOVEMBER 1978
ALL RIGHTS RESERVED

NOTE: THIS DOCUMENT AND ASSOCIATED SOFTWARE IS COPYRIGHTED BY AND
PROTECTED BY LICENSE AGREEMENT WITH SD SYSTEMS,. UNAUTHORIZED
DUPLICATION BY ANY MEANS IS PROHIBITED.

1.0 INTRODUCTION

The SD SYSTEMS Z80 ASSEMBLER 1is provided on a standard CP/M compatible
diskette. It provides the means for assembling Z80 programs. The
Assembler (ZASM) reads standard Z80 source language (Mostek and Zilog
definition) and outputs an assembly 1listing and object code on disk.
The object code is in industry standard hexadecimal format extended for
relocatable and 1linkable programs. The Assembler supports conditional
assembly, a printed symbol table, and a printed cross reference table.
The Assembler can assemble any length program limited only by the symbol
table size which is based on available memory and available disk space.
Typically over 300 symbols are allowed in one assembly.

Any Z80 based system which is running 32K CP/M compatible disk operating
system (DOS) can use the 7280 Assembler.

2.0 COMMAND SUMMARY

ZASM file.ext / options (CR)
- executes assembler to assemble a file
~ object output is on file.OBJ
- listing output is on file.PRN

OPTIONS

C - print cross reference table

K - no listing output

L - direct assembly listing out to listing device (no .PRN file
is created)

N - no object output

P - pass 2 only

R - reset symbol table for pass 2 only operation

S - print symbol table

T - direct assembly listing out to console device

23

3.0 DEFINITIONS

In this manual, the following symbols are used:
- (CR) means carriage return.
- all user input is underlined.
- user input which is all upper case must be entered exactly
as shown.
- user input which is lower case is variable.

SOURCE MODULE - the user's source program. - Each source module is

assembled into one object module by the Assembler. The end of a source
module is defined by an 'END' statement or CP/M end of file code (1AH)
on input.)

OBJECT MODULE - the object output of the Assembler for one source
module, The object module contains linking information, address and
relocating information, machine code, and checksum information for use
by the SD SYSTEMS Linker. The object module is in ASCII. The object
module is output to a disk file with extension OBJ. The SD SYSTEMS
Linker must then be used to link and relocate one or more object modules
into a module loadable by the DOS. See the SD SYSTEMS Linkder
Operations Manual for more details.

LOAD MODULE - the absolute machine code of one complete program. The
load module is defined on disk as an absolute object file with extension
HEX. The file may be loaded by the DOS loader. It is created by the SD
SYSTEMS Linker from one or more relocatable object modules (secondary
file name OBJ) which were created by the 780 Assembler.

LOCAL SYMBOL - a symbol in a source module which appears in the label‘iﬁ
field of a source statement.

INTERNAL SYMBOL - a symbol in a source (and object) module which is to
be made known to all other modules which are linked with it by the
Linker. An internal symbol is also called global, defined, public, or

~ common. Internal symbols are defined by the GLOBAL pseudo-op. An
internal symbol must appear in the label field of the same source
module. Internal symbols are assumed to be addresses, not constants,

and they will be relocated when linked by the Linker.

EXTERNAL SYMBOL - a symbol which is used in a source (and object) module
but which is not a local symbol (does not appear in the label field of a
statement). External symbols are defined by the GLOBAL pseudo-op.
External symbols may not appear in an expression which uses operators.
An external symbol is a reference to a symbol that exists and is deflned
as internal in another program module.

GLOBAL DEFINITION =~ both internal and external symbols are defined as
GLOBAL in a source module. The Assembler determinhes which are internal
and which are external.

POSITION INDEPENDENT - a program which can be placed anywhere in memory.
It does not require relocating information in the object module.

24

)

ABSOLUTE - a program which has no relocating information in the object
module. An absolute program which is not position independent can be
loaded only in one place in memory in order to work properly.

RELOCATABLE -~ a program which has extra information in the object module
which allows the Linker to place the program anywhere in memory.

LINKABLE - a program which has extra information in the object module
which defines internal and external symbols. The Linker wuses the
information to connect, resolve, or 1link, external references to
internal symbols.

4.0 USING THE ASSEMBLER

The SD SYSTEMS Z80 ASSEMBLER is resident on a CP/M compatible system
diskette. The user first prepares his source module using the SD
SYSTEMS Editor. To use the Z80 Assembler, enter the following command:

A>ZASM file.ext / options (CR)

where 'file' is the primary file name and 'ext' is the
secondary file name of the file to be assembled. Also
where '/' allows the batching of several assemblies
without operator interaction and 'options' are those
described in paragraph 4.1.

Example: A>ZASM FILE.ASM /CL (CR)

This would cause the 280 source program file named "FILE.ASM" to be
assembled with the 'C' (cross reference table) and 'L' (listing on
printer) options.

The object output of the Assembler is sent to the disk on file.OBJ, and
the listing output is sent to the disk on file.PRN unless T or L options
are specified. One or more object files from the Assembler may be
linked and relocated by using the SD SYSTEMS Linker, which produces an
absolute object file with extension HEX. The absolute object file may
then be 1loaded via the DOS loader, and the listing file may be printed
using XFER., Note that if the (/) is omitted, the "options" will be
requested as specified below, which prevents continuous batch operation.
Therefore, if no options are required, enter the slash (/) on the
command line with no options following. '

SD SYSTEMS Z80 ASSEMBLER V3.3. OPTIONS?
Options are described in paragraph 4.1. If no options are to be
entered, the user enters 'carriage return'. The Assembler makes two
passes over the source file, At the end of the first pass the following
message is printed on the user console:

PASS 1 DONE

At the end of the assembly, the Assembler prints the total number of
errors (in decimal) found: ,

25

ERRORS=nnnn

Control is then returned to the DOS console processor (A>).

4.1 ASSEMBLER OPTIONS

When the Assembler outputs the message:
OPTIONS?

the user may enter any of the following codes, terminated with a
carriage return:

C - cross reference table - prints a cross reference table
of all the symbols at the end of the assembly listing.

K - no listing - this suppresses the assembly listing. All
errors are output to the user console for this option.

L - list to listing device - this option directs the assembly
listing out to the listing device rather than to a disk
file.

N - no object output - this suppresses object output from
the Assembler. .

P - pass 2 only - this option selects and runs only pass 2
of the Assembler. The symbol table is left intact from
a previous run of the Assembler.

R - reset the symbol table - clears the symbol table of all

previous symbol references. This operation is automaticallNE

done for pass 1. It is used primariy for single pass
operation (see paragraph 5.1).

S - symbol table - prints a symbol table at the end of the
assembly listing.

T - list to console device - this option directs the assembly
listing out to the console device rather than to a disk
file. .

4.2 ERROR MESSAGES
Any error which is found is denoted in the assembly listing. A message

is printed immediately after the statement in error. All messages are
self-explanatory.

EXAMPLE H2: LC A,B

%*%k ERROR *** BAD OPCODE
Certain errors abort the Assembler when they are encountered. = Abort
error messages are output only to the user console. Control is

immediately returned to the DOS console processor (A>). Abort errors
may occur during pass 1 or pass 2. '

26

$

i

j

}

y .

4.3 OBJECT OUTPUT

The object output from the Assembler 1is put on diskette to the same
primary file name as the source input file, with a secondary file name
of 'OBJ'. One or more object modules may be linked and relocated by the
SD SYSTEMS Linker to produce an absolute object file with a secondary
file name of 'HEX'. This file may then be loaded by the DOS loader.

4.4 ASSEMBLY LISTING OUTPUT

The assembly listing is put on diskette to the same primary file name as
the source input file, with a secondary file name of 'PRN'. The user
may insert tab characters in the source to obtain columns in the
assembly listing. The value of each equated symbol will be printed with
a pointer (>) next to it. The statement number and page number are
printed in decimal. Assembler directives (see paragraph 6.4.1.) do not
appear in the assembly listing, but they are assigned statement numbers.
If the no listing option is selected, errors will be output to the user
console. Any addresses which are relocatable will have a prime (')
printed next to them.

5.0 ADVANCED OPERATIONS

5.1 PASS 2 OPERATION (SINGLE PASS OPERATION)

k"

The Z80 Assembler can be used as a single pass assembler under the
following restrictions:

1. No forward symbol references are allowed.

2. The NAME pseudo-op is not allowed.

3. A cross reference table is not selected.

The Assembler will correctly assemble Z80 programs under the above
restrictions using the pass 2 only option ('P')., This is useful for
assembling data tables and certain types of programs. The Assembler
symbol table should be reset to assure proper operation in this mode by
using the 'R' option.

5.2 ASSEMBLING SEVERAL SOURCE MODULES TOGETHER

Several source modules may be assembled together to form one object
module. The 'INCLUDE' pseudo-op may be used any number of times in one.
module to properly sequence a set of source modules.

EXAMPLE NAME MYFILE shame of final object module

INCLUDE FILEl

INCLUDE FILE2

INCLUDE FILE3

END

- the object module named 'MYFILE' will be

built by the Assembler from FILEl + FILE2
+ FILE3.

The assembler has a seperate counter for included files. The assembler

Q listing indicates included statements by placing a "+" in front of the

line number,.

27

6.0 Z80 ASSEMBLY LANGUAGE

T
"""""""""""" W

An assembly language program (source module) consists of labels,
opcodes, pseudo-ops, and comments in a sequence which defines the user's
program. The assembly 1language conventions are described in the
following paragraphs.

6.1 DELIMITERS
Labels, opcodes, operands, and pseudo-ops must be separated from each

other by one or more commas, spaces, or tab characters (ASCII 09H). The
label may be separated from the opcode by a colon, only, if desired.

6.2 LABELS

A label is composed of one or more characters. If more than 6
characters are used for the label, only the first 6 are recognized by
the Assembler. The characters in the label cannot include ' () * + - /
r = < > . : ; Or space. In addition, the first character cannot be a

number (0-9)., A label can start in any column if immediately followed
by a colon (:). It does not require a colon if started in column one.

EXAMPLE allowed not allowed
LAB 9LAB s STARTS WITH ILLEGAL CHARACTER ™
L923 L) AB ; CONTAINS ILLEGAL CHARACTER ‘hﬁ
$25 L:ABC ; CONTAINS ILLEGAL CHARACTER

6.3 OPCODES

The full set of Z80 opcodes is documented in the 'Z80 PROGRAMMING
MANUAL' (which is available from SD SYSTEMS). ‘

g 6.4 PSEUDO-OPS

Pseudo-ops are used to define assembly time parameters. Pseudo-ops
appear 1like Z80 opcodes 1in the source module. Several pseudo-ops
require a label. The following pseudo-ops are recognized by the
Assembler: ‘

DEFB n,n,n...- define byte - defines the contents of successive bytes to
be the expressions n. »

label DEFL nn - define 1label -~ sets the value of the label to the
expression nn; may be repeated in the program with different values for
the same label. At any point in the program, the label assumes the last
previously defined value.

DEFM 'aa'- define message - defines the contents of successive bytes of
memory to be the ASCII equivalent code of characters within quotes. 9]
to 63 characters may be in one message. Quote characters in the message
may be defined by two successive quote characters ('').

28

L e

DEFS nn- define storage - reserves nn bytes of memory starting at the

‘current program counter, where nn is an expression. When loaded, these

bytes will contain what was previously in memory. This pseudo-op cannot
be used at the start or at the end of a program to reserve storage.

DEFW nn,nn,nn... - define word - defines the contents of successive two

~byte words to be the value of expressions nn. The least significant
byte 1is located at the current program counter address, and the most
significant byte follows it.

END- end statement -~ defines the last line of the program. The 'END'
statement is not required.

ENDIF- end of conditional assembly -~ re-enables assembly of subsequent
statements after an IF pseudo-op.

label EQU nn- equate - sets the value of a label to the expression nn;
can occur only once for any label.

GLOBAL symbol - define global symbol - any symbol which is to be made
known among several separately assembled modules must appear in this
type of statement. The Assembler determines if the symbol is internal
(defined as a label in the program), or external (used in the program
but not defined as a label).

IF nn- conditional assembly - if the expression nn is true (non-zero),
the IF pseudo-op is ignored. If the expression is false (zero), the
assembly of subsequent statements is disabled until an ENDIF pseudo-op.
IF statements cannot be nested.

INCLUDE file.ext - include source statements from another file - allows
source statements from another input file to be included within the body
of the given program. If the file cannot be opened properly, then
assembly is aborted. The source module to be included must not end with
an END pseudo-op (otherwise, assembly would be terminated). The INCLUDE
pseudo-op cannot be nested.

NAME symbol- module name - this pseudo-op defines the name of the
program (source and object). The name is placed in the heading of the
assembly 1listing and in the first record of the object output. The

module name defaults to 6 blanks.

PSECT op - program section - may appear only once at the start of a
source module. This pseudo-op defines the program module attributes for
the following operands:

REL - relocatable program (default)

ABS - absolute program. No relocating
information is generated in the object
module. The module will be linked where
it is origined.

29

ORG nn- origin - sets the program counter to the value of the expression
nn. If more than one ORG statement is used in a source module, then the

expression nn is a given ORG statement must be greater than a previous

ORG statement.
6.4,1 ASSEMBLER DIRECTIVES

Assembler directives are pseudo-ops which are designed to format the
‘assembly listing.

EJECT - eject a page of assembly listing.

LIST - turn assembly listing on (default).

NLIST - turn assembly listing off,

TITLE s - place title of characters 's' at top

of each page of assembly listing. s can
be up to 32 characters long.

6.5 OPERANDS

There may be zero, one, or more operands in a statement depending on the
opcode or pseudo-op used. Operands in the Assembler may take the
following forms:

A GENERIC OPERAND, such as the letter 'A', which stands for the
accumulator. The following are Z80 generic operands: -

Accumulator
register
register
register
register
register
register
register

CfmEmEOQW >
11
(== e e Bw i@ Ner)

AF - AF register pair
AF' - AF' register pair
BC - BC register pair
DE - DE register pair
HL - HL register pair

SP - stack pointer register
$ - program counter

I - I register
R - refresh register

IX - IX index register
IY - 1Y index register

30

NZ - not zero

Z - zero

NC - not carry

C - carry \

PO - parity odd/not overflow
PE - parity even/overflow

P - sign positive

‘M - sign negative

A CONSTANT. The constant must be in the range 0 thru OFFFFH. It can be
in the following forms:

DECIMAL - (default); any number can be denoted as
decimal by following it with the letter D.
Eg: 35, 249D

HEXADECIMAL - must begin with a number (0-9) and end
with the letter H. Eg: OAFlH

OCTAL - must end with the letter Q or 0. Eg:
377Q, 2770

BINARY - must end with the letter B. Eg: 0110110B

ASCII - letters enclose in quote marks will be

converted to their ASCII equivalent value.
‘Eg: 'A' = 41H

A LABEL which appears elsewhere in the program. Note that labels cannot
be defined by labels which have not yet appeared in the program:

EXAMPLE allowed not allowed
I EQU 7 L EQU H
H EQU I H EQU I
L EQU H I EQU 7

AN EXPRESSION. The Assembler accepts a wide range of expressions in the
operand field of a statement. All expressions are evaluated left to
right constrained by the hierarchies shown below. Parentheses may be
used to ensure correct expression evaluation.

operation operator hierarchy
equal to = or JEQ 0
signed less than < 0
signed greater than > 0
signed less than or equal to {= or =<0

signed greater than or equal to >= or =>0

not equal > or <> or .NE. O
unsigned less than LT. 0
unsigned greater than .GT. 0
unsigned less than or equal to .LE. 0
unsigned greater than or equal .GE. 0
reset overflow - «RES, 0

31

"unary plus
unary minus ,
logical NOT (one's complement) .NOT.

1
=

multiplication * 2
« division / 2
addition + 3
subtraction - 3
logical AND +AND. 4
logical OR .OR. 4
logical XOR . XOR. 4
logical shift right .SHR., 4
logical shift left .SHL. 4

All operands and expressions are converted to 16-bit values. The only
exception to this is when expressions take the form:

'characfer string l'='character string 2'

In this case, character string 1 and character string 2 are compared
character by character for a match. If they do not match, then the
value of the expression is false. If they have the same length and
match, then the value of the expression is true (OFFFFH).

The reset operator (.RES.) unconditionally resets any overflow error in
an operand expression. The shift operators shift their first argument
right or left by the number of bit positions given in their second
argument. Zeros are shifted into the vacated bit positions. The
negative (2's complement) of an expression may be formed by preceding it
with a minus sign. The one's complement of an expression may be formed
by preceding it with the .NOT. operator.

The symbol $ is used to represent the value of the program counter of
the current instruction.

- EXAMPLE SYM1 EQU $

will equate SYM to current value of
program counter,

All versions after (and including) V3.1 have been enhanced making it no
longer necessary to have "-$" after 1labels 1in the relative jump
instructions (JR) and the "DJNZ" instruction., Thus the following
instructions are assembled the same.

JR TAG-$ and JR TAG

DJNZ TAG-$ and DJNZ TAG
Note that enclosing an expression wholly in parentheses indicates a
memory address. The contents of the memory address equivalent to the
expression value will be used as the operand value.
The allowed range of an expression depends on the context of its use.

For example, the limits on a relative jump instruction are -126 and +129
bytes,.

32

v

e 3

6.6 COMMENTS

A comment is defined as any characters following a semicolon (;) in a
line. A semicolon in quotes in an operand is treated as an expression
rather -than a comment starter. Comments are ignored by the Assembler
but they are printed in the assembly listing. Comments can begin in any
column,

6.7 ABSOLUTE MODULE RULES

The pseudo-op 'PSECT ABS' defines a module to be absolute. The program
will be loaded in the exact addresses at which it is assembled. This is
useful for defining constants, a common block of global symbols, or a
software driver whose position must be known. This method can be used
to define a list of global constants as follows:

EXAMPLE
PSECT ABS ; ABSOLUTE ASSEMBLY
GLOBAL AA
AA EQU - 0E3H
GLOBAL AX
AX EQU OAF3H
END

6.8 RELOCATABLE MODULE RULES

1. Programs default to relocatable if the 'PSECT ABS' statement 1is not
used or if 'PSECT REL' is used. '

2. Only those values which are 16~bit address values will be relocated.
16-bit constants will not be relocated.

EXAMPLE
‘ AA EQU 0Al3H ;s ABSOLUTE VALUE
. LD A, (AA) ~ ;AA NOT RELOCATED
AR EQU s s RELOCATABLE VALUE
LD HL, (AR) ;AR WILL BE RELOCATED UPON LINKING

3. Relocatable quantities may not be used as 8-bit operands. This
restriction exists because only 16-bit operands are relocated by the SD
SYSTEMS Linker.

EXAMPLE ’
LAB EQU $; RELOCATABLE VALUE
DEFB LAB ; NOT ALLOWED
LD A, (IX+LAB) ;NOT ALLOWED
LD A, (LAB) ; ALLOWED
LD HL,LAB ; ALLOWED

33

4., Labels equated to 1labels which are constants will be treated as
constants. Labels equated to 1labels which are relocatable addresses
will be relocated.

EXAMPLE
B8 EQU 20H ; CONSTANT
Cc8 EQU B8 ; CONSTANT
LD A, (C8) ;C8 WILL NOT BE RELOCATED
AR EQU s ; RELOCATABLE ADDRESS
BR EQU AR ; RELOCATABLE
LD A, (BR) ;BR WILL BE RELOCATED

5. External symbols in a relocatable program are marked relocatable,
except for the first usage. The code for external symbols is actually a
backward link list through the object code.

6.9 GLOBAL SYMBOIL HANDLING

A global symbol is a symbol which is known by more than on module. A
global symbol has its value defined in one module. It can be used by
that module and by any other module which is 1linked with it by the SD
SYSTEMS Linker. A global symbol is defined as such by the GLOBAL pseudo
-0p.

An internal symbol is one which is defined as global and also appears as
a label in the same program. The symbol value is thus defined for all
programs which wuse that symbol. An external symbol is one which is
defined as global but does NOT appear as a label in the same program.

EXAMPLE ’
GLOBAL SYM] :DEFINE GLOBAL SYMBOL
CALL SYM1
END
- SYM1 is an external symbol
EXAMPLE

GLOBAL SYM1 ;DEFINE GLOBAL SYMBOL
SYM1 EQU s - .
LD A, (SYM1)

END
- SYM1 is an internal symbol. 1Its value
is the address of the LD instruction.

34

If these two programs were assembled and then 1linked by the SD SYSTEMS
Linker, then all global symbol references from the first program would
be 'resolved'. This means that each address in which an external symbol
was used would be modified to the value of the corresponding internal
symbol. The 1linked programs would be equivalent (using our example) to
one program written as follows.

EXAMPLE
CALL SYM1

SYM1 EQU §
LD A, (SYM1)

END

Global symbols are used to allow large programs to be broken up into
smaller modules. The smaller modules are used to ease programming,
facilitate changes, or allow programming by different members of the
same team.

6.9.1 GLOBAL SYMBOIL RULES

1. An external symbol cannot appear in an expression which uses
operators. ‘

EXAMPLE
GLOBAL SYM1 ; EXTERNAL SYMBOL
CALL SYM1 ;OK
LD HL, (SYM1+2) ;s NOT ALLOWED

2. An external symbol 1is always considered to be a 16-bit address.
Therefore, an external symbol cannot appear in an instruction requiring
an 8-bit operand.

EXAMPLE
GLOBAL SYM1 ;s EXTERNAL SYMBOL
CALL - SyMl ;OK
LD A,SYM1 ;NOT ALLOWED

3. An external symbol cannot appear in the operand field of an EQU or
DEFL statement.

4., An internal symbol 1is always marked relocatable in a relocatable
assembly. This point is important because an internal symbol will
always be relocated even though it 1looks like a constant. To define
constant internal symbols, create an absolute assembly via the PSECT ABS
pseudo-op.

35

5. For a set of modules to be linked together, no duplication of
internal symbol names is allowed. That is, an internal symbol can be
defined only once in a set of modules to be linked together. :

7.0 TECHNICAL INFORMATION

The Assembler is resident on a CP/M compatible system diskette and, when
loaded, starts at location 100H. Assembler variables are placed in
memory at the top of the Assembler. The symbol table is placed in RAM
starting at the end of the Assembler and ending at the starting address
of DOS. Typically, more than 300 symbols are allowed per program.

36

SD SYSTEMS LINKER VERSION 3.1
OPERATIONS MANUAL

COPYRIGHT SD SYSTEMS
NOVEMBER 1978
ALL RIGHTS RESERVED

1.0 INTRODUCTION

The SD SYSTEMS Linker 1is provided on a standard CP/M compatible
diskette. The Linker (LINK) provides the means for linking object
modules produced by the Z80 Assembler (ZASM). The Linker concatenates
modules together and resolves global symbol references which provide
communication between modules. The Linker produces a load module
containing "hex" format machine code which may be read by the DOS LOAD
commmand. The LOAD command reads a load module (secondary filename =
HEX) and produces a memory image file (secondary filename .= COM) which
can be executed by the disk operating system (DOS).

2.0 COMMAND SUMMARY

In this manual, the following symbols are used:
- (CR) means carriage return,
- all user input is underlined.
- user input which is all upper case. must
be entered exactly as shown.
- user input which is lower case is variable.

A>LINK filename 1, filename 2,....filename N / options (CR)
- Links object input files (secondary filename=0BJ) -
- Producés a LOAD module (secondary filename=HEX)
- As an option creates a cross reference file
(secondary filename=CRS)

OPTIONS

C - Produces an output file containing a global cross reference
table and a load map.

U - Lists all undefined global symbols

A - Is used to specify where the first relocatable module will
be positioned. If one or more absolute modules precede the
first relocatable module, they will be positioned at their
"ORG" address while the relocateable module will be
positioned starting at the address (hexadecimal) specified
using the 'A' option. Note that if more options are
entered after "A=hhhh, a comma (,) must be entered to
seperate the address specification and the following option.

37

3.0 DEFINITIONS

SOURCE MODULE - the user's source program. Each source module is
assembled into one object module by the Assembler,.

OBJECT MODULE - the object output of the Assembler for one source
module. The object module contains linking information, address and
relocating information, machine code, and checksum information for use
by the Linker. The object module is 1in ASCII,. The object module is
output to a disk file with extension OBJ.

LOAD MODULE - the absolute machine code of one complete program. The
load module is defined on disk as an absolute object file with secondary
filename of HEX. A Load module is produced by the Linker.

GLOBAL DEFINITION - both internal and external symbols are defined as
GLOBAL in a source module. The Assembler determines which are internal
and which are external. (See Z80 Assembler description of internal and
external symbols).)

ABSOLUTE - a program which has no relocating information in the object
module. An absolute program which is not position independent can be
loaded only in one place in memory in order to work properly.

RELOCATABLE - a program which has extra information in the object module
which allows the Linker to place the program anywhere in memory.

4.0 LINKER OPERATION

During Pass 1 the Linker reads one or more object input files and places
the global symbol definitions in the Linker symbol table. 1In PASS 2
global symbol references are resolved and an output Load file is
produced. The Load file has the same primary filename as the first
object input file (filename 1) and has a secondary filename of HEX. If
the cross reference option 1is specified a cross reference file is
produced. The cross reference file has the same primary filename name
the first object input file (filename 1) and has a secondary filename of
CRS.

In Pass 2 as each object input module is read its beginning and ending
address in memory is printed on the console. The module type is also
listed as either absolute or relocatable (ABS/REL). Absolute modules
are always positioned at their starting address in memory as defined by
the ORG pseudo-op. Relocatable modules are positioned at the next
location after the end address of the previous module. If the first
input module 1is relocatable, it is positioned by the starting 1link
address. If the starting link address 1is not specified by the A option
it assumes a value of 0.

38

It is suggested that the first object input module read by the Linker
have a starting address of 100H for operation with the DOS. This
starting address should also serve as the entry point for the combined
Load module. A starting address of 0100H can be created either with the
ORG pseudo-op or the Linker A option. The DOS 1loads and begins
execution of RAM image files at location 0100H.

When absolute modules are being linked together, the files in the LINK
command must appear in sequential order according to their starting
addresses in memory. If an absolute module 1is encountered having a
starting address lower in memory than a previous module a module
sequence error message will be generated. Furthermore, if- a source

module contains more than one ORG statement, the address used in any

given ORG statement must be greater than a previous ORG statement.

5.0 EXAMPLE OF LINK COMMAND

EXAMPLE 1. Link the relocatable object modules MAIN.OBJ, SUB1l.0OBJ,
,SUB2.0BJ,SUB3.0BJ together starting at 100H producing the LOAD module
MAIN.HEX. Also generate a global <cross referecne table and a load map
in the file MAIN.CRS.

A>LINK MAIN,SUB1,SUB2,SUB3 /C A=100 (CR)
Note: With LINK (Version 3.1) Linker options can be entered on the
command line following the last file name in the list of files to be
linked.This makes it possible to batch up several 1links to be done
without operator interaction. 1If the slash (/) is omitted, the options
will be requested as shown below

OPTIONS? A C (CR)

MAIN .OBJ

SUB1 .OBJ

SUB2 .OBJ

SUB3 .OBJ

UNDEFINED SYMBOLS 00

PASS 2

MAIN .OBJ REL BEG ADDR 0100 END ADDR 0125
SUB1 .OBJ " REL BEG ADDR 0126 END ADDR 01CD
SUB2 .0BJ REL BEG ADDR 01CE END ADDR O01lES8
SUB3 .OBJ REL BEG ADDR 01E9 END ADDR 0212
A>

39

EXAMPLE 2. Using the load module MAIN.HEX created in Example 1 and the
DOS LOAD command create a memory image file and begin execution of MAIN. ﬁy'

A>LOAD MAIN.HEX (CR)

NOTE: Execution of MAIN has been started.
EXAMPLE 3. Using the DOS TYPE command list the global cross reference
table and the load map for the modules linked in Example 1.

A>TYPE MAIN.CRS (CR)

LOAD MAP

MAIN .OBJ REL BEG ADDR 0100 END ADDR 0125
SUB1 .0OBJ REL BEG ADDR 0126 END ADDR 01CD
SUB2 .OBJ REL BEG ADDR 01CE END ADDR 01lES8
SUB3 .OBJ REL BEG ADDR 01E9 END ADDR 0212

GLOBAL CROSS REFERENCE TABLE

SYMBOL, ADDR REFERENCES ¢
CRLF E59C 020C 01E6

MAIN 0100

MODNO O01FB 01D4 01D1 012C 0129 010C 0109
MSGBEG 013F 0101

MSGEND 0165 O011FE

MSGMAI 018A O10F

MSGMOD 01C2 0201

MSGSB2 0195 01D7

MSGSB3 019B O01F2

PRINT O01E0 O01F5 013C 0132 0121 0112 0104
PTEST 0138 O01F8 01DD

SUBI 0126 0115

SUB123 020F ”

SUB2 O0ICE 0118

SUB3 01E9 O011B

40

APPENDIX A

280 OPCODE LISTINGS

ADDR

>0000

'0000
'>0001
>55AA

- 'ooo0l

>0005
'0007
>AABB
>0005
>0020
>0030

'0009

'000B
'000C
'000F
'0012
'0013
'0014
'0015
'0016
'0017
'0018
'0019
'001B
'001D
'001F
'0021

'0023
'0024
10027
'002A
'002B
'002C
'002D
'002E
'002F
'0030

'0031

2380 OPCODE LISTING

CODE

AA

41424344

BBAA

78

8E
DD8EO05
FDBEO5
8r

88

89

8A

8B

8C

8D
CE20
ED4A
ED5A
ED6A
ED7A

86
DD8605
FD8605
87
80
81
82
83
84
85

€620

STHUT

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046

- 0047

0048
0049
00650
0051
0052
0053
0054
0055
0056
0057
0058
0059

. 0060

0061
0062
0063

SD SYSTEMS Z80 ASSEMBLER PAGE 0001

SOURCE STATEMENT

~e wo

~e

L2
L2

NN

Ll
IN
N

DI

~e

ue

™G WE WO W Ne WP WO

~e

PSEUDO OPS
ORG 0
PSECT REL
DEFB 0AAH
DEFL $
DEFL 55AAH
DEFM 'ABCD'
DEFS 2
DEFW 0AABBH
EQU 0OAABBH
D EQU 5
EQU 20H
S EQU 30H
GLOBAL NN
IF 0
SHOULD NOT BE ASSEMBLED
LD A,B
ENDIF
IF 1
SHOULD BE ASSEMBLED
LD A,B
ENDIF

TURN LISTING OFF
LISTING SHOULD BE ON

280 OPCODES

ADC A, (HL)

ADC A, (IX+IND)
ADC A, (IY+IND)
ADC A,A

ADC A,B

ADC A,C

ADC A,D

ADC A,E

ADC A,H

ADC AL

ADC A,N

ADC HL,BC

ADC HL,DE

ADC HL ,HL

ADC HL,SP

ADD A, (HL)

ADD A, (IX+IND)
ADD A, (IY+IND)
ADD A,A

ADD A,B

ADD A,C

ADD A,D

ADD AE

ADD A,H

ADD A, L

ADD A,N

280 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0002

ADDR CODE - STMT SOURCE STATEMENT
'0033 09 006 4 ADD HL,BC
'0034 19 0065 ADD HL,DE
'0035 29 0066 ADD HL,HL
'0036 39 0067 ADD HL,SP
'0037 DD09 0068 ADD IX,BC
'0039 DDI19 0069 ADD IX,DE
'003B DD29 0070 ADD IX,IX
'003D DD39 0071 ADD IX,SP
'003F FDO9 0072 ADD IY,BC
'0041 FD19 0073 ADD 1Y,DE
'0043 ‘FD29 0074 ADD IY,IY
'0045 FD39 0075 ADD 1Y,SP
0076 ;
'0047 A6 0077 AND (HL)
'0048 DDA605 0078 ~ AND (IX+IND)
'004B FDA605 0079 AND (IY+IND)
1004E A7 0080 AND A
'004F A0 0081 * AND B
'0050 Al 0082 AND C
'0051 A2 0083 AND D
'0052 A3 0084 AND E
10053 A4 0085 AND H
'0054 A5 0086 - AND L
'0055 E620 0087 AND N
0088 ;
'0057 CB46 0089 BIT 0, (HL)
'0059 DDCB0546 0090 BIT 0, (IX+IND)
'005D FDCB0546 0091 BIT 0, (IY+IND)
'0061 CB47 0092 BIT 0,A
'0063 CB40 0093 BIT 0,B
'0065 CB4l 0094 BIT 0,C
10067 CB42 0095 BIT 0,D
10069 CB43 0096 BIT 0,E
'006B CB44 0097 BIT 0,H
'006D CB45 0098 BIT 0,L
0099 ;
'006F CBAE 0100 BIT 1, (HL)
'0071 DDCBO54E 0101 BIT 1, (IX+IND)
0075 FDCBOS54E 0102 BIT 1,(IY+IND)
'0079 CB4F 0103 BIT 1,A
'007B CB48 0104 BIT 1,B
'007D CB49 0105 BIT 1,C
'007F CB4A 0106 BIT 1,D
10081 CB4B 0107 BIT 1,E
0083 CB4C 0108 BIT 1,H
'0085 CB4D 0109 BIT 1,L
0110 ;
'0087 CB56 0111 BIT- 2, (HL)
'0089 DDCBO0556 (0112 BIT 2, (IX+IND)
'008D FDCB0556 0113 "BIT 2, (IY+IND)
'0091 CB57 0114 BIT 2,A
'0093 CB50 0115 BIT 2,B
'0095 CB51 0116 BIT 2,C
'0097 CB52 0117 BIT 2,D
'0099 CB53 0118 BIT 2,E
'009B CB54 0119 BIT 2,H
'009D CB55 0120 BIT 2,L

0121 ;

280 OPCODE LISTING SD SYSTEMS 7280 ASSEMBLER PAGE 0003

ADDR CODE STMT SOURCE STATEMENT
'009F CBS5E 0122 BIT 3, (HL)
'00A1 DDCBO55E 0123 BIT 3, (IX+IND)
"00A5 FDCBO55E 0124 BIT 3, (IY+IND)
'00A9 CB5F 0125 BIT 3,A
'00AB CB58 0126 BIT 3,B ¢
'00AD CB59 0127 BIT 3,C
'00AF CBSA 0128 BIT 3,D
'00B1 CB5B 0129 BIT 3,E
'00B3 CB5C 0130 BIT 3,H
'00B5 CB5D 0131 BIT 3,L

‘ 0132 ;

'00B7 CB66 0133 BIT 4, (HL)
'00B9 DDCB0566 0134 BIT 4, (IX+IND)
'00BD FDCB0566 0135 ~ BIT 4, (TY+IND)
'00C1 CB67 0136 BIT 4,A
100C3 CB60 0137 BIT 4,B
'00C5 CB61 0138 BIT 4,cC
100C7 CB62 0139 BIT 4,D
'00C9 CB63 0140 BIT 4,F
'00CB CB64 0141 BIT 4,H
'00CD CB65 0142 BIT 4,L

0143 ;
'00CF CB6E 0144 BIT 5, (HL)
100D1 DDCBO56E 0145 BIT 5, (IX+IND)
'00D5 FDCBOS6E 0146 BIT 5, (IY+IND)
'00D9 CB6F 0147 BIT 5,A
'00DB CB68 0148 BIT 5,B
'00DD CB69 0149 BIT 5,C
'00DF CB6A 0150 - BIT 5,D
'00E1 CB6B 0151 BIT 5,E e
'00E3 CB6C 0152 BIT 5,H 4
"00E5 CB6D 0153 BIT 5,L

0154 ; -
'00E7 CB76 0155 BIT 6, (HL)
'00E9 DDCB0576 0156 BIT 6, (IX+IND)
'00ED FDCB0576 0157 BIT 6, (IY+IND)
'00F1 CB77 0158 BIT 6,A
'00F3 CB70 0159 BIT 6,B
'00F5 CB71 0160 BIT 6,C
'00F7 CB72 0161 BIT 6,D
'00F9 CB73 0162 BIT 6,E
'00FB CB74 0163 BIT 6,H
'00FD CB75 0164 BIT 6,L

0165 ;
'"00FF CB7E 0166 BIT 7, (HL)
10101 DDCBO57E 0167 BIT 7, (IX+IND)
'0105 FDCBO57E 0168 BIT 7, (IY+IND)
10109 CB7F 0169 BIT 7,A
'010B CB78 0170 BIT 7,B
1010D CB79 0171 BIT 7,C
'010F CB7A 0172 BIT 7,D
10111 CB7B 0173 . BIT 7,E

10113 CB7C 0174 BIT 7,H
10115 CB7D 0175 BIT 7,L

0176 ;
10117 DCO500' 0177 CALL C,NN

'011A FCO0500' 0178 CALL M, NN
011D D40500' 01709 CALL NC, NN

|

Z80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0004

ADDR CODE STMT SOURCE STATEMENT
'0120 CDO500" 0180 CALL NN
'0123 C40500'" 0181 CALL NZ,NN
'0126 F40500"' 0182 CALL P,NN
'0129 EC0500'" 0183 CALL PE, NN
'012C E40500'" 0184 CALL PO, NN
'012F CCO0500"' 0185 CALL Z , NN
0186 ;
'0132 3F 0187 , CCF
’ 0188 ;
'0133 BE 0189 CcP (HL)
0134 DDBEO5S 0190 cp (IX+IND)
'0137 FDBEQOS 0191 CP (IY+IND)
'013A BF 0192 CcP A
'013B BS 0193 . CcP B
'013C B9 0194 Ccp C
'013D BA 0195 Ccp D’
'013E BB 0196 CPp E
'013F BC 0197 . CcP H
'0140 BD 0198 CcP L
'0141 FE20 0199 CP N
’ 0200 ;
'0143 EDA9 0201 CPD
'0145 EDB9 0202 - CPDR
'0147 EDAl 0203 CPI
'0149 EDB1 0204 CPIR
0205 ;
'014B 2F ‘ 0206 , CPL
0207 ;
'014Cc 27 0208 DAA
0209 ;
014D 35 0210 DEC (HL)
'014F DD3505 0211 DEC (IX+IND)
0151 FD3505 0212 DEC (IY+IND)
'0154 3D 0213 DEC A
0155 05 0214 DEC B
'0156 OB 0215 DEC BC
'0157 0D 0216 DEC C
'0158 15 0217 DEC D
'0159 1B 0218 DEC DE
'015A 1D 0219 DEC E
'015B8 25 0220 DEC H
'015C 2B 0221 DEC - HL
'015D DD2B 0222 DEC IX
'015F FD2B 0223 DEC 1Y
'0161 2D - 0224 DEC L
'0162 3B 0225 DEC SP
0226 ; i
'0163 F3 0227 DI
0228 ;
'0164 102E 0229 DJNZ DIS
' 0230 ;
0166 FB 0231 EI
0232 ;
'0167 E3 0233 EX (sP) ,HL
'0168 DDE3 0234 EX (spP) ,IX
'0l16A FDE3 0235 EX (sp),1Y
'0l16C 08 0236 EX AF ,AF!

'016D EB 0237 EX DE, HL

Z80 OPCODE LISTING SD SYSTEMS 780 ASSEMBLER PAGE 0005

ADDR CODE STMT SOURCE STATEMENT
'0l16E D9 0238 EXX
0239 ;
'0l6F 76 0240 HALT
0241 ;
'0170 ED46 0242 M 0
10172 EDS56 0243 M 1
- '0174 EDSE 0244 M 2
; 0245 ;
'0176 ED78 0246 IN A, (C)
- '0178 DB20 0247 IN A, (N)
'017A ED40 0248 IN B, (C)
'017C ED48 0249 IN Cc,(C)
'"017E EDS50 0250 IN D, (C)
0180 - ED58 0251 IN E, (C)
'0182 ED70 0252 IN F,(C)
- '0184 ED60 0253 IN H,(C)
'0186 ED68 0254 IN L,(C)
0255 ; ~
'0188 34 0256 INC (HL)
'0189 FD3405 0257 INC (IY+IND)
'018C DD3405 0258 INC (IX+IND)
'018F 3C 0259 INC A
'0190 04 ' 0260 INC B
'0121 03 0261 INC BC
0192 oOC 0262 INC c
10193 14 0263 INC D
0194 13 0264 INC DE
'0195 1C 0265 INC E
- '019% 24 0266 INC H
0197 23 0267 INC HL
- '0198 DD23 0268 INC IX p
"019A FD23 0269 INC 1Y
019C 2C 0270 INC L
'019D 33 0271 INC SP
0272 ;
'"019E EDAA 0273 IND
'01A0 EDBA 0274 INDR
'0lA2 EDA2 0275 INI
'0lA4 EDB2 0276 INIR
| 0277 ;
'01A6 EO9 0278 JP (HL)
'01A7 DDE9 0279 JP (IX)
"01A9 FDES 0280 Jp (1Y)
'"0l1AB DAO0500' 0281 JP C,NN
"01AE FA0500' 0282 JP M, NN
~'01B1 D20500" 0283 JP NC, NN
'01B4 C30500' 0284 JP.. NN
'01B7 C20500"' 0285 JP NZ,NN
'01BA F20500' 0286 JP P,NN
'01BD EAQ0500'° 0287 JP PE, NN
'01CO E20500" 0288 JP PO, NN
'01C3 CA0500° 0289 JP 7 , NN
0290 ;
'01C6 382E 0291 JR C,DIS
'01C8 182E 0292 JR DIS
'01CA 302E 0293 JR NC,DIS
‘'01CC 202E 0294 JR NZ,DIS

'01CE 282E 0295 JR z,DIS

Z80 OPCODE LISTING SD SYSTEMS 780 ASSEMBLER PAGE 0006

ADDR CODE STMT SOURCE STATEMENT
0296 ;
'01D0 02 0297 LD (BC) ,A
'01D1 12 0298 LD (DE) ,A
’ '01D2 77 0299 LD (HL) ,A
< '01D3 70 0300 LD © (HL),RB
'01D4 71 0301 LD (HL) ,C
'01D5 72 0302 LD (HL) ,D
i '01D6 73 0303 LD (HL) ,E
\ '01D7 74 0304 LD (HL) ,H
: '01D8 75 0305 LD (HL) ,L
'01D9 3620 0306 LD (HL) ,N
, 0307 ;
! '01DB DD7705 0308 LD (IX+IND) ,A
| '01DE DD7005 0309 LD (IX+IND),B
| '0lE1 DD7105 0310 LD (IX+IND),C
'"0l1E4 DD7205 0311 LD (IX+IND),D
'01E7 DD7305 0312 LD (IX+IND) ,E
'"01EA DD7405 0313 LD (IX+IND) ,H
"01ED DD7505 0314 LD (IX+IND),L
"01F0 DD360520 0315 LD (IX+IND) ,N
“ 0316 ;
'01F4 FD7705 0317 LD (IY+IND) ,A
'01F7 FD7005 0318 - LD - (IY+IND),B
'0l1FA FD7105 0319 LD (IY+IND),C
'01FD FD7205 0320 LD (IY+IND) ,D
'0200 FD7305 0321 LD (IY+IND) ,E
0203 FD7405 0322 LD (IY+IND) ,H
'0206 FD7505 0323 LD (IY+IND),L
10209 FD360520 0324 LD (IY+IND) ,N
7’ : 0325 ;
. 020D 320500° 0326 LD (NN) ,A
'0210 ED430500' 0327 LD (NN) , BC
'0214 EDS530500' 0328 LD (NN) ,DE
10218 220500° 0329 LD (NN) , HL
'021B DD220500' 0330 LD (NN) , IX
'021F FD220500' 0331 LD (NN) ,IY
'0223 ED730500' 0332 LD (NN) , SP
0333 ;
'0227 OA 0334 LD A, (BC)
10228 1A 0335 LD A, (DE)
10229 7E 0336 " LD A, (HL)
'022A DD7E05 0337 LD A, (IX+IND)
022D FD7E05 0338 LD A, (IY+IND)
0230 3A0500" 0339 LD A, (NN)
| '0233 7F 0340 LD A,A
& 10234 78 0341 LD A,B
| 10235 79 0342 - LD A,C
0236 7A 0343 ' LD A,D
9 10237 7B 0344 LD A,E
10238 7C 0345 LD A,H
0239 ED57 0346 LD A,I
‘ '023B 7D 0347 LD A,L
'023C 3E20 0348 LD A,N
'023E EDSF 0349 LD A,R
: : 0350 ;
\‘ 0240 46 0351 LD B, (HL)
'0241 DD4605 0352 LD B, (IX+IND)
'0244 FD4605 0353 LD B, (IY+IND)

Z80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0007

ADDR CODE STMT SOURCE STATEMENT
'0247 47 0354 LD B,A
'0248 40 0355 LD B,B
'0249 41 0356 LD -B,C
'024A 42 0357 LD B,D
'024B 43 0358 LD B,E
'024C 44 0359 LD B,H
'024D 45 0360 LD B,L
'024E 0620 0361 LD B,N
0362 ;
'0250 ED4B0500' 0363 LD BC, (NN)
'0254 010500 0364 LD BC,NN
0365 ;
'0257 4E 0366 LD C, (HL)
'0258 DD4EO0S5 0367 LD C, (IX+IND)
'025B 'FD4EO05 0368 LD C, (IY+IND)
'025E 4F 0369 LD C,A
'025F 48 0370 LD C,B
0260 49 0371 LD c,C
'0261 4A 0372 LD C,D
0262 4B 0373 LD C,E
0263 4C 0374 LD C,H
'0264 4D 0375 LD C,L
'0265 O0E20 0376 LD C,N
0377 :
'0267 56 0378 LD D, (HL)
'0268 DD5605 0379 LD D, (IX+IND)
'026B FD5605 0380 LD D, (IY+IND)
'026E 57 0381 LD D,A
'026F 50 0382 LD D,B
'0270 51 0383 LD D,C
'0271 52 0384 LD D,D
'0272 53 0385 LD D,E
0273 54 : 0386 LD D,H
'0274 55 0387 LD D,L -
0275 1620 0388 LD D,N.
0389 ;
0277 ED5B0500' 0390 LD DE, (NN)
'027B 110500 0391 LD DE, NN
0392 ;
'027E SE 0393 LD E, (HL)
'027F DD5EQS 0394 LD E, (IX+IND)
0282 FD5EOQ5 0395 LD E, (IY+IND)
'0285 5F 0396 LD E,A
0286 58 0397 LD E,B
'0287 59 0398 LD E,C
'0288 5SA 0399 LD E,D
'0289 5B 0400 LD E,E
'028A 5C 0401 LD E,H
'028B 5D - 0402 LD E,L
'028C 1E20 0403 LD E,N
- 0404 ;
'028E 66 © 0405 LD H, (HL)
'028F DD6605 0406 LD H, (IX+IND)
0292 FD6605 0407 LD H, (IY+IND)
'0295 -67 0408 LD H,A
- '0296 60 0409 LD H,B
10297 61 0410 LD H,C
'0298 62 0411 LD H,D

Z80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0008
ADDR CODE STMT SOURCE STATEMENT :
0299 63 0412 LD H,E
'029A 64 0413 LD H,H
'029B 65 0414 LD H,L
'029C 2620 0415 LD H,N
"‘ 0416 ;
'029E 2A0500' 0417 LD HL, (NN)
'02A1 210500° 0418 LD HL,NN
0419 ; '
, '02A4 EDA47 0420 LD I,A
g 0421 ;
N '02A6 DD2A0500' 0422 LD IX, (NN)
- "02AA DD210500°' 0423 LD IX,NN
B 0424 ;
'02AE FD2A0500' 0425 LD 1Y, (NN)
'02B2 FD210500' 0426 LD IY,NN
0427 ;
'02B6 6FE 0428 LD L, (HL)
'02B7 DD6E0S 0429 LD L, (IX+IND)
'02BA FD6EO05 0430 LD L, (IY+IND)
'02BD 6F 0431 LD L,A
'"02BE 68 0432 LD L,B
'02BF 69 0433 LD L,C
'02C0 6A 0434 - LD L,D
'02C1 6B 0435 LD L,E
'02C2 6C 0436 LD L,H
'02C3 6D 0437 LD L,L
'02C4 2E20 0438 LD L,N
0439 ;
'02C6 EDAF 0440 LD R,A
’ < 0441 ;
'02C8 ED7B0500' 0442 LD SP, (NN)
'02CC F9 0443 LD SP, HL
'02CD DDF9 0444 LD SP,IX
'02CF FDF9 0445 LD SP,IY
'02D1 310500° 0446 LD SP,NN
| 0447 ;
| '02D4 EDAS 0448 LDD
, '02D6 EDBS 0449 LDDR
'02D8 EDAO 0450 LDI
"02DA EDBO 0451 LDIR
0452 ;
'02DC ED44 0453 NEG
0454 ;
'"02DE 00 0455 NOP
0456 ;
'02DF B6 ‘ 0457 OR (HL)
'"02E0 DDB605 0458 OR (IX+IND) -
'02E3 FDB605 0459 OR (IY+IND)
1 '"02E6 B7 0460 OR A
'"02E7 BO 0461 OR B
'02E8 Bl 0462 OR C
‘ '"02E9 B2 0463 OR D
'"02EA B3 0464 OR E
'"02EB B4 0465 OR H
'02EC BS5 0466 OR L
:x.. '02ED F620 0467 OR N
0468 ;
'02EF EDBB 0469 OTDR

Z80 OPCODE LISTING SD SYSTEMS 7Z80 ASSEMBLER PAGE 0009

ADDR CODE STMT SOURCE STATEMENT
'02F1 EDB3 0470 OTIR
0471 ;
'02F3 ED79 0472 OUuT (C),Aa
'02F5 ED41 0473 ouT (c),B
"02F7 EDA49 0474 ouT (c),cC
'02F9 ED51 0475 ouT (c),D
'02FB - ED59 0476 ouT (C),E
'02FD ED61 0477 ouT (C),H
"02FF ED69 0478 ouT (C),L
'0301 D320 0479 OouT (M) ,A
0480 ;
'0303 EDAB 0481 OUTD
'0305 EDA3 0482 OUTI
0483 ;
'0307 Fl1 0484 POP AF
'0308 C1 0485 POP BC
'0309 D1 0486 POP DE
'030A El1 0487 POP HL
'030B DDE1l 0488 POP IX
030D FDE1 0489 POP IY
'030F F5 0490 PUSH AF
'0310 C5 0491 PUSH BC
'0311 D5 0492 PUSH DE
'0312 E5 0493 PUSH HL
'0313 DDES 0494 PUSH IX
'0315 FDES 0495 PUSH IY
0496 ;
'0317 CB&6 0497 RES 0,(HL)
'0319 DDCB0586 0498 RES 0, (IX+IND)
'031D FDC§0586 0499 RES 0,(IY+IND)
0321 CBS87 0500 RES 0,A
0323 CB&0 0501 RES 0,B
'0325 CB81 0502 RES 0,C
"'0327 CB82 0503 RES 0,D
'0329 CB83 0504 RES 0,E
'032B CB84 0505 RES 0,H
'032D CBS85 0506 RES 0,L
0507 ;
'"032F CBSE 0508 RES 1, (HL)
-'0331 DDCBOS8E 0509 RES 1,(IX+IND)
0335 FDCBO58E 0510 RES 1, (IY+IND)
'0339 CBSF 0511 RES 1,A
'033B CBS8S8 0512 RES 1,B
033D CB89 0513 RES 1,C
'033F CBS8A 0514 RES 1,D
-"0341 CBSB 0515 RES 1,E
- '0343 CBS8C 0516 RES 1,H
*0345 CBED 0517 RES 1,L
) 0518 ;
10347 CB96 0519 RES 2, (HL)
1034% DDCB0595 0520 RES 2, (IX+IND)
'034D FDCB0596 0521 RES 2,(IY+IND)
'0351 CB97 0522 RES 2,A
'0353 CB90 0523 RES 2,B
'0355 CB91 0524 RES 2,C
:'0357 CB92 0525 " RES 2,D
-¥0359 CB93 0526 RES 2,E
2,H

'035B CB94 0527 RES

Z80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0010
ADDR CODE STMT SOURCE STATEMENT
035D CB95 0528 RES 2,L
: 0529 ;
'035F CB9E 0530 RES 3, (HL)
0361 DDCBO59E 0531 RES 3, (IX+IND)
’ 0365 FDCBO59E 0532 RES 3, (IY+IND)
'0369 CBOF 0533 RES 3,A
'036B CB98 0534 RES 3,B
: '036D CB99 0535 RES 3,C
; '"036F CB9A - 0536 RES 3,D
| '0371 CB9B 0537 RES 3,E
| 0373 CB9C 0538 RES 3,H
'0375 CB9D 0539 RES 3,L
0540 ;
0377 CBA6 0541 RES 4, (HL)
'0379 DDCBO5A6 0542 RES 4, (IX+IND)
037D FDCBO5A6 0543 RES 4,(IY+IND)
0381 CBA7 0544 RES 4,A
10383 CBAO 0545 RES 4,B
10385 CBAl 0546 RES 4,C
'0387 CBA2 0547 RES 4,D
10389 CBA3 0548 RES 4,E
'038B CBA4 0549 RES 4,H
038D CBAS5 0550 - RES 4,L
0551 ;
'038F CBAE 0552 RES 5, (HL)
'0391 DDCBOSAE 0553 RES 5, (IX+IND)
'0395 FDCBOSAE 0554 @ RES 5, (IY+IND)
'0399 CBAF 0555 RES 5,A
'039B CBAS 0556 RES 5,B
' '039D CBA9 0557 RES 5,C
. '"039F CBAA 0558 RES 5,D
"03A1 CBAB 0559 RES 5,E
'03A3 CBAC 0560 RES 5,H
'"03A5 CBAD 0561 RES 5,L
| 0562 ;
| 103A7 CBB6 0563 RES 6, (HL)
'03A9 DDCBO5B6 0564 RES 6, (IX+IND)
"03AD FDCBO05B6 0565 RES 6, (IY+IND)
'03B1 CBB7 0566 RES 6,A
'03B3 CBBO 0567 RES 6,B
'03B5 CBBl 0568 RES 6,C
'03B7 CBB2 0569 RES 6,D
'03B9 CBB3 0570 RES 6,E
'03BB CBB4 0571 RES 6,H
'03BD CBB5 0572 RES 6,L
0573 ;
'"03BF CBBE 0574 RES 7, (HL)
"03C1 DDCBOSBE 0575 RES 7, (IX+IND)
2 '03C5 FDCBOSBE 0576 RES 7, (IY+IND)
"03C9 CBBF 0577 RES 7,A
'03CB CBBS8 0578 RES 7,B
- '03CD CBB9 0579 RES 7,C
'03CF CBBA 0580 RES 7,D
'03D1 CBBB 0581 RES 7,E
'03D3 CBBC 0582 RES 7,H
¢. '03D5 CBBD 0583 RES 7,L
0584 ;
'03D7 C9 0585 RET

Z80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0011

ADDR CODE STMT SOURCE STATEMENT
'03D8 D8 0586 RET C
'03D9 F8 0587 RET M
'03DA DO 0588 RET NC
'03DB CO 0589 RET NZ
'03DC FO 0590 RET p
'03DD EB8 0591 RET PE
. "03DE EO 0592 RET PO
'03DF C8 ‘ 0593 RET A
0594 ;
'"03E0 ED4D 0595 RETI
'03E2 EDA45 0596 RETN
0597 ;
'03E4 CBl6 0598 ' RL (HL)
'03E6 DDCB0516 0599 RL (IX+IND)
'03EA FDCB0516 0600 RL (IY+IND)
"03EE CB17 0601 RL A
'03F0 CB10 0602 RL B
'03F2 CBl1 0603 RL C
'03F4 CB12 0604 RL D
'03F6 CB13 0605 RL E
'03F8 CB1l4 0606 RL: H
'"03FA CB15 0607 RL L
0608 ; L
'03FC 17 0609 RLA
0610 ;
'03FD CBO06 0611 RLC (HL)
'03FF DDCB0506 0612 RLC (IX+IND)
0403 FDCB0506 0613 RLC (IY+IND)
'0407 CBO07 0614 RLC A
0409 CBOO 0615 RLC B
'040B CBO1 0616 RLC C
'040D CBO02 0617 RLC D
'040F CBO03 0618 RLC E
0411 CBO04 0619 RLC H
'0413 CBO5 0620 RLC L
0621 ;
'0415 07 - 0622 RLCA
0623 ;
'0416 ED6F 0624 RLD
0625 ;
'0418 CB1E ‘0626 RR (HL)
'041A DDCBO51E 0627 RR (IX+IND)
'041E FDCBOS1E 0628 RR (IY+IND)
0422 CB1F 0629 RR A
'0424 CB18 0630 RR B
'0426 CB1S 0631 RR C
'0428 CBI1A 0632 RR D
'042A CBI1B 0633 RR E
'042C CB1C 0634 RR H
'042E CBI1D 0635 RR L
0636 ;
"0430 1F 0637 RRA
0638 ;
'0431 CBOE 0639 RRC (HL)
'0433 DDCBO50E 0640 RRC (IX+IND)
0437 FDCBO50E 0641 RRC (IY+IND)
. '043B CBOF 0642 RRC A ‘

'043D CBO8 - 0643 RRC B

) 7280 OPCODE LISTING SD SYSTEMS 780 ASSEMBLER PAGE 0012
ADDR CODE STMT SOURCE STATEMENT
'043F CBO09 0644 RRC C
10441 CBOA 0645 RRC D
'0443 CBOB 0646 RRC E
‘ '0445 CBOC 0647 RRC H
¥ '0447 CBOD 0648 RRC L
0649 ;
'0449 QF 0650 RRCA
0651 ;
H '044A ED67 0652 - RRD
0653 ;
1044C C7 0654 RST 0
044D CF 0655 RST 08H
'044E D7 0656 RST 10H
'044F DF 0657 RST 18H
- '0450 E7 0658 RST 20H
10451 EF 0659 RST 28H
10452 F7 0660 RST 30H
10453 FF 0661 RST 38H
0662 ;
10454 9E 0663 SBC A, (HL)
10455 DD9EO5 0664 SBC A, (IX+IND)
'0458 FDYEO5 0665 SBC A, (IY+IND)
'045B 9F 0666 : SBC A,A :
'045C 98 0667 SBC A,B
"045D 99 0668 SBC A,C
"045E 9A 0669 SBC A,D
'045F 9B 0670 SBC A,E
10460 9C 0671 “SBC A,H
_ '0461 9D 0672 SBC A,L
. 10462 DE20 0673 SBC A,N
g 0674 ;
'0464 ED42 0675 SBC HL,BC
'0466 ED52 0676 SBC HL ,DE
'0468 ED62 0677 SBC HL ,HL
'046A ED72 0678 SBC HL ,SP
0679 ;
"046C 37 0680 ' SCF
0681 ;
'046D CBC6 0682 SET 0, (HL)
'046F DDCBO05C6 0683 SET 0, (IX+IND)
0473 FDCB05C6 0684 SET 0, (IY+IND)
'0477 CBC7 0685 SET 0,A
10479 CBCO 0686 SET 0,B
'047B CBCl 0687 SET 0,C
'047D CBC2 0688 SET 0,D
'047F CBC3 0689 SET 0,E
10481 CBC4 0690 SET 0,H
i 10483 CBCS 0691 SET 0,L
0692 ; .
0485 CBCE 0693 SET 1, (HL)
, 10487 DDCBO5SCE 0694 SET 1, (IX+IND)
i '048B FDCBOSCE 0695 SET 1,(IY+IND)
; '048F CBCF 0696 SET 1,A
'0491 CBCS 0697 SET 1,B
’ '0493 CBC9 0698 SET 1,C
10495 CBCA - 0699 SET’ 1,D
10497 CBCB 0700 SET 1,E
10499 CBCC 0701 SET 1,H

Z80 OPCODE LISTING SD SYSTEMS Z7Z80 ASSEMBLER PAGE 0013

ADDR CODE STMT SOURCE STATEMENT
~ '049B CBCD 0702 SET 1,L
0703 ;
049D CBD6 0704 SET 2, (HL) N
'049F DDCB0O5D6 0705 SET 2, (IX+IND) 'L;
'04A3 FDCBO5D6 0706 SET 2, (IY+IND) ,
'04A7 CBD7 0707 SET 2,A
'04A9 CBDO 0708 SET 2,B
'04AB CBD1 0709 SET 2,C
'"04AD CBD2 0710 SET 2,D
'04AF CBD3 0711 SET 2,E
'04B1 CBD4 0712 SET 2,H
"04B3 CBD5 0713 SET 2,L
0714 ;
'04B5 CBDE 0715 SET 3, (HL)
'04B7 DDCBOSDE 0716 SET 3, (IX+IND)
'"04BB FDCBOSDE 0717 SET 3, (IY+IND)
'04BF CBDF 0718 SET 3,A
'04C1 CBDS8 0719 SET 3,B
'04C3 CBDY 0720 SET 3,C
'04C5 CBDA 0721 SET 3,D
'04C7 CBDB 0722 SET 3,E
'04C9 CBDC 0723 SET 3,H
'04CB CBDD 0724 SET 3,L
0725 ;
'04CD CBE6 0726 SET 4, (HL)
'"04CF DDCBO5E6 0727 SET 4, (IX+IND)
'04D3 FDCBOS5E6 0728 SET 4,(IY+IND)
'04D7 CBE7 0729 SET 4,A
'04D9 CBEO 0730 SET 4,B
~ '04DB CBEl 0731 SET 4,C
'04DD CBE2 0732 SET 4,D
'04DF CBE3 - 0733 SET 4,E
"'04E1 CBE4 0734 SET 4,H
'04E3 CBE5 0735 SET 4,L
‘ 0736 ;
'04E5 CBEE 0737 SET 5, (HL)
'04E7 DDCBOSEE 0738 SET 5, (IX+IND)
'04EB FDCBOSEE 0739 SET 5,(IY+IND)
"04EF CBEF 07 40 SET 5,A
'04F1 CBES 0741 SET 5,B
'04F3 CBES 0742 SET 5,C
'04F5 CBEA 0743 SET 5,D
'04F7 CBEB 0744 SET 5,E
'04F9 CBEC 0745 SET 5,H
"0AFB CBED 0746 SET 5,L
0747 ;
'04FD CBF6 0748 SET 6, (HL)
'04FF DDCBOS5F6 0749 SET 6, (IX+IND)
'0503 FDCBO5F6 0750 SET 6, (IY+IND)
'0507 CBF7 0751 SET 6,A
0509 CBFO 0752 SET 6,B
'050B CBF1 0753 SET 6,C
'"050D CBF2 0754 SET 6,D
'050F CBF3 0755 SET 6,E
'0511 CBF4 0756 SET 6,H
'0513 CBF5 0757 SET 6,L
‘ 0758 ;

'0515 CBFE 0759 SET 7, (HL)

[2R DAV} U.I.'\’UUEI'IJ.LD'.I.'—.LL\I\:I"~'* k v VUV JIXIO0L DY L0V NOUOLULDIIDIN L LANJIx U UVL-T
ADDR CODE STMT SOURCE STATEMENT
'0517 DDCBOSFE 0760 SET 7, (IX+IND)
'051B FDCBOSFE 0761 SET 7, (IY+IND)
'051F CBFF 0762 SET 7,A
'0521 CBF8 0763 SET 7,B
. 0523 CBF9 0764 SET 7,C
; '0525 CBFA 0765 SET 7,D
0527 CBFB 0766 SET 7,E
| 0529 CBFC 0767 SET 7,H
§ '052B CBFD 0768 SET 7,L
1 0769 ;
5 052D CB26 0770 SLA (HL)
; '052F DDCB0526 0771 SLA (IX+IND)
s '0533 FDCB0526 0772 SLA (IY+IND)
; 10537 CB27 0773 SLA A
i 0539 CB20 0774 SLA B
| '053B CB21 0775 SLA C
053D CB22 0776 SLA D
'053F CB23 0777 SLA E
. 0541 CB24 0778 SLA H
L '0543 CB25 0779 SLA L
1 0780 :
0545 CB2E 0781 SRA (HL)
'0547 DDCBO052E 0782 SRA (IX+IND)
'054B FDCBO52E 0783) SRA (IY+IND)
i '"054F CB2F 0784 SRA A
I '0551 CB28 0785 SRA B
i 0553 CB29 0786 SRA C
g '0555 CB2A 0787 SRA D
| '0557 CB2B 0788 SRA E
0559 CB2C 0789 SRA H
‘ '055B CB2D 0790 SRA L
0791 ;
'055D CB3E 0792 SRL (HL)
'055F DDCBO53E 0793 SRL (IX+IND)
0563 FDCBOS53E 0794 SRL (IY+IND)
10567 CB3F 0795 SRL A
10569 CB38 0796 SRL B
'056B CB39 0797 SRL C
056D CB3A 0798 SRL D
'056F CB3B 0799 SRL E
0571 CB3C 0800 SRL H
0573 CB3D 0801 SRL L
0802 ;
0575 96 0803 SUB (HL)
‘ '0576 DD9605 0804 SUB (IX+IND)
] 0579 FD9605 0805 SUB (IY+IND)
¥ '057C 97 0806 SUB A
‘ '057D 90 0807 SUB B
'057E 91 0808 SUB C
"057F 92 0809 SUB D
0580 93 0810 SUB E
0581 94 0811 SUB H
0582 95 0812 SUB L
'0583 D620 0813 SUB N
0814 ;
. 10585 AE 0815 XOR (HL)
" '0586 DDAEQS 0816 XOR (IX+IND)

'0589 FDAEO5S 0817 XOR (IY+IND)

£80 OPCODE LISTING SD SYSTEMS Z80 ASSEMBLER PAGE 0015

ADDR CODE STMT SOURCE STATEMENT
'058C AF 0818 XOR A
'058D A8 0819 XOR B
'058E A9 - 0820 XOR C
'058F AA 0821 XOR D .
'0590 AB 0822 XOR E Q&
10591 AC 0823 XOR H
'0592 AD 0824 XOR L
'0593 EE20 0825 XOR N
0826 ;
0827 END

ERRORS=0000

	20250910_125039
	20250910_125131
	20250910_125315
	20250910_125513
	20250910_125733
	20250910_125857
	20250910_130042
	20250910_130226
	20250910_130359
	20250910_130538

