
()

System 88
User's Manual

PolyMorphic
Systell1s

460 Ward Ctive Santa Barbara Califomia 93111 (805) 967-2351

o

The operating system described in this manual is the fourth
release of the PolyMorphic Systems System 88 operating system
software, Executive version 80 and later. The software
described herein was created by R. T. Martin, Frank Anderson,
Len G. Danczyk, and Roger L. Deran. The manual was written by
Robin C. Sota and Dr. Gerald A. Bradley, and revised by
Jennifer M. Douglas.

This manual is PolyMorphic Systems part number 810165, Revision
D. Copyright 1979, Interactive Products Corporation. All
rights reserved.

o

.. "':

,> ...~

' ..

PREFACE

Summary of Changes in Version 4 of the System Software

This manual is Version IV of the System 88 User's Manual. It
describes the 4th release of the System 88 software and its use
with both single and double-density systems. Those users who
are familiar with the previous version of the System 88
software, will need to note the following changes:

-The storage capacity of the double-sided, double-density
diskettes is four times greater than that of the single- sided,
single-density diskettes.

-It is imperative that double-density sys'tems not be powered up
or down while disks are in the drives and the drive doors are
shut. If this does occur, the information on the disk will be
harmed.

-Media intended for the Double-Sided
8813 Systems are Double-Sided) must
media intended for the Single-Sided
8813 Systems are Single-Sided).

8813 (All Double-Density
not be interchanged with
8813 (All Single-Density

-If you have
can transfer
of the File
System Disk.

a single-sided and a double-sided 8813 system, you
files from one system to the other through the use
Transfer Program which is also included on the
Appendix-I of this manual explains this process.

-It is now possible to have additional directories on a single
diskette. These additional directories are called "sub­
directories" because they are off-shoots of the main directory
or of each other. Files ~an now be stored on any of several
different levels of the directory tree.

WARNING: Disks with sub-directories should not be
used with any older version of the system software.
If you use any older versions of the system software
to PACK a disk with sub-directories, the information
in your sub- directories will be permanently erased.
The Version 4 software will not allow you to copy
sub-directories. If, however, you use an older
version of the software and try to copy a sub­
directory the system will assume you are trying to
copy a file. The result will be that you will have
copied a useless directory; none of its dependent
files will have been suc~essfully copied.

-Because of this new structure, it is necessary to specify
sub-directory names when you are using I the sub-directory
capability.

-The left bracket may be used in place of the right bracket in

file and path names.

EXAMPLE:

EDIT <2<Filename

is used rather than

EDIT <2>Filename

-The right bracket is acceptable, but using the left bracket
allows easy building of longer "Path names."

-In this manual we use the term "Path
specification you must provide in order
be affected by a command.

name" to refer to the
to indicate what is to

-Longer path
capability is
complete path
sub-directory,

names will be necessary if the sub-directory
to be used. To find out more about specifying
names, the use of brackets, and the use of the
read sections 3, 4 and 5.

-CHECKSUM is a new command which causes a specified directory
to be listed with an additional column showing the CHECKSUM for
each file listed in that directory. This will help you to
determine if a program has been altered. This file can be
deleted from the System Disk, but it is not reccommended that
you delete it since it is helpful in diagnosing problems.

-Mirror and Dup are now included on the System Disk. These two
programs allow you to copy a file or image a disk on a single
drive system. See Appendix-J for complete instructions on
their use.

-The new System Software includes a new printer driver which is
described in full in Section 13 of this manual. The new
commands associated with this printer driver are:

Printer CUSTOM

which allows the user to provide a program to handle
communications between the system and a printer.

Printer SHOW

which allows you to view the default page parameters in
effect.

Printer SET

The page parameters which are normally in effect are the
ones you specified in the definition of the printer that
is being used. However, you may want to change these
parameters to accommodate some special circumstance (e.g.

o

o
different sized paper or an unusual page layout). Printer
SET allows you to establish new paramemeters that will
remain in effect until the system is turned off or loaded.
This convenience allows you to specify parameters without
having to redefine a printer.

Setup

allows you to define a printer for the printer driver.

Read Section 13 for complete instructions on the use of the new
printer driver. Appendix H contains information on the CUSTOM
function, and provides a sample, user-written program.

o
PolyMorphic Systems System 88 User's Manual Page 1

. PART I

OVERVIEW OF SYSTEM 88 OPERATION

INTRODUCTION TO PART I

The sections in Part I provide you with all of the information
that you need to know to operate your System 88: how to
physically operate your machine (Section 2) and how to use the
system software (Sections 3-6).

Section 2 describes your system's physical components and tells
you how to turn on the machine, how to insert a disk (and what a
disk is), and how to use the keyboard.

Section 3 discusses the concept of a "file" and tells you what
kinds of files may exist in the system.

Section 4 explains the proper form for Path Name specification
and the method for getting the information in a disk file into
the memory, where you can work on it.

The disk's "table of contents" is the main directory for a disk.
The user has the option to create sub-directories, and Section 5
explains how and when you should make use of this sub-directory
capability.

The Executive is the section of the system that handles your
communications with the system. Section 6 talks about- the
Executive in detail and discusses the various commands recognized
by it. This section also provides information on what goes on
inside the disk operating system when your machine is turned on.

Page 2 System 88 User's Manual PolyMorphic Systems

THE PROPER ENVIRONMENT FOR YOUR SYSTEM 88

The proper environm~nt for your System 88 is one which is
reasonably free from dirt and smoke. Under normal circumstances
some dirt collects in the drives over a period of· time, but if
the environment is particularly dirty, the drives and heads can
be so affected that the media will be damaged as a result.
Double sided systems are particularly susceptible -to this
condition, and so should be operated in a "computer room"
environment, £ree of chalk dust, thick carpets and smoke.

After one year or 6,~~~ hours of use of your System 88, follow
the cover removal instructions in the 8813, 8810 or 88/MS
HARDWARE appendix. After you have removed the wood cover, vacuum
the system. Do not touch or attempt to clean the heads (if you
have a 88/MS refer to the 88/MS User's Manual for head cleaning
procedure.)

PolyMorphic Systems System 88 User's Manual Page 3

Section 1

GETTING STARTED WITH THE SYSTEM 88

1.0 INTRODUCTION

Small computers like the PolyMorphic Systems microcomputer, the
System 88, are putting the power of the computer into the hands
of many, many people who do not have access to the huge computers
of big corporations and scientific establishments. The
definition of "computer user" is fast becoming broader and
broader, embracing not only the computer professional but also
professionals of other kinds, business executives and staff
members, students, and hobbyists.

Because "computer user" is now coming to mean any person who
wants to increase his or her effectiveness, builders of
microcomputers, like PolyMorphic Systems, are trying to correct
the impression that computers are hard to understand and hard to
use. Wherever computers HAVE been hard to understand and use,
builders are striving to improve them. The mini-floppy diskette,
for instance, is a breakthrough in ease of use and storage. And
the documentation that accompanies these systems is intended to
be comprehensible to the inexperienced and experienced computer
user. Frequently we tell you when a section will be of interest
and benefit to the inexperienced computer user, and when it will
be of most value to the more experienced programmer. There are
many explanations about how the system operates which should be
of interest to those of technical and non-technical background
alike.

In that spirit, consider this conceptual description of the
System 88. The disk is a storage place, like a filing cabinet.
Data of any kind is magnetically recorded on it. All that is
really "on" the disk is a large number of small magnetized
locations. The system can "read" the patterns of magnetized
locations and interpret the patterns as information •.

Page 4 System 88 User's Manual PolyMorphic Systems

Figure 1. Movement of Information

VIDEO

KEYBOARO OISK

To work with the information stored on the disk, the system makes
a copy of a disk "file"-- as you might make a copy of the
contents of a file folder-- and puts that copy into "memory,"
which is a temporary storage place inside the computer's main
unit. Memory is the actual work-space where you put things that
you want to examine and change~ It corresponds to your desk-top,
where ·you spread out the copy of the file so that you can read it
and mark it up. You work on the contents of memory by using a
keyboard, and you see the part of memory you are affecting, and
how you are affecting it, on the video screen. When you are done
working with the contents of memory, you can store it on a disk;
you can also delete the previous version of the disk file from
the disk.

In other words, you can update your .filing cabinet by replacing
the old contents of the file folder with new contents. Of
course, you can create entirely new files and save them on disks,
too.

The System 88, as delivered, includes a pre-recorded operating
system, partly on the disks labeled "System Disks" and partly on
components inside the main unit. The collection of programs on
the System Disk which we refer to as "software" represent the
system's intelligence; they are responsible for the system
behaving the way it does. Before successful operation of your
system, you must insert a disk which contains these essential
programs. All applications disks, the System Disk, and the
WordMaster disk contain the operating software. This "software"
is not shown in the conceptual drawing above.

(To verify which system disk you should have, read section 1.1
below.) All of the above mentioned disks include "Exec" as part

,
{ .

PolyMorphic Systems System 88 User's Manual Page 5

o of the software. Exec is the program which takes control
automatically when you Load or power up your system with the
System Disk in drive one (System Residence drive). Exec allows
you to communicate directly with the system, and there are
specific commands for you to use for this purpose.

There are other programs on each of these disks which you can ask
Exec to run. Besides Exec, the System Disk contains BASIC, the
Assembler and the Editor.

When you invoke one of these other programs on the System Disk,
BASIC for instance, you are telling the system that you want
BASIC to receive your input rather than Exec. BASIC is a simple
computer "language" which provides an easy way to do hard
problems. When you awaken BASIC you will then be communicating
with the BASIC interpreter which translates your input for the
system.

The Assembler is another program on the system disk which you can
invoke from Exec and which takes over the communication between
you and the system. The assembler is used by those who are
writing programs in assembly language.

The Editor is a program that you may be using quite frequently as
it allows you to create and change text quickly and easily.

--:1 The- WordMaster disk contains the software necessary to use the
System 88 for word processing. Programs on this disk allow you
to create consistently attractive documents of all types. If you
are using the System 88 to create an instruction manual like this
one, you will be using WordMaster and the Editor so you will want
to use the WordMaster disk instead of the System Disk.

This manual devotes a section to each of the four programs on the
System Disk; read these sections for a sound introduction to
their use. For complete instructions on the use of the Editor
and WordMaster for word processing, read the System 88 WordMaster
manual. For extensive tutorial and reference information on
BASIC consult the System 88 BASIC manual. The Macro 88 Assembler
manual provides instructions on the use of the assembler. System
programmers will also want to read The System 88 System
Programmer's Guide

1.1 SYSTEM 88 MODELS

The System 88 product line consists of the System 8813, available
with up to 3 minj-floppy disk drives; the System 8810 with one
mini-floppy drive, and the 88/MS add-on with 2 large floppy
drives.

The 8813 and 8810 models are available with optional
double-sided, double density, mini-floppy disk drives. The
88/MS, an add-on storage for the 8813, is available with either
double or single-sided, double density large floppy disk drives.

Page 6 System 88 User's Manual PolyMorphic Systems

IMPORTANT: The media (floppy diskettes) are not
interchangab1e between single and double-sided systems.
Therefore you must not use media intended for the
single-sided in the double-sided double density 8813.
(NOTE: All single density 8813 systems have only
single-sided drives, and all double density 8813
systems have only double-sided drives.)

The blank, mini-floppy diskettes which you purchase for
use with your double-sided system should be designated
"double-sided" on the label. PolyMorphic Systems
double-sided applications and System diskettes will
contain this designation and a colored dot on their
labels. Single-sided diskettes have no special
designation on thierlabels.

1.1.1 What Software Should You Have Received?

Check the following chart to be sure that you received the
correct software for your model.

8813 and 8810 Systems are shipped with:

5" Single Density System Disk Part Number 820190
5" Single Density Confidence Disk Part Number 820186
5" Single Density WordMaster Disk Part Number 820131

Double Density 8813 and 8810 Systems are shipped with:

5" Double Density System Disk Part Number 820191
5" Double Density Confidence Disk Part Number 820163
5" Double Density WordMaster Disk Part Number 820162

Your First 88/MS Add-on Storage Unit is shipped with:

8" System Disk Part Number 820188
8" Confidence Disk Part Number 820175
8" WordMaster Disk Part Number 820166

You should receive one Confidence Disk for every drive in your
system.

1.2 MANUAL ORGANIZATION

The purpose of this manual is twofold: to help you to begin to
use the system right away, and to provide essential reference
material for your present questions and questions that might
arise later.

If computers are new to you, you may want to just skim sections
dealing with the inner workings of the system and discussing
machine language programs. Besides straightforward information
on how you operate this system, we include material explaining
some of the basic concepts behind microcomputer programming. We
have indicated the sections containing information which, while

PolyMorphic Systems System 88 User's Manual Page 7

c:> useful, is not strictly necessary to the operation of the system.

If you are an experienced computer user, you will probably rely
most heavily on the reference list of system commands included in
this manual, which briefly summarizes each command and gives its
correct form. You may find much of the introductory material
interesting to read, even though you are already familiar with
it. Specific information on the internal structure of the system
software is included in the System Programmer's Guide (available
separately). The System Programmer's Guide provides information
on writing your own system software and connecting your own
machine language programs to the disk operating system.

The following section of this manual invites you to sit down at
the keyboard and try some simple operations. The remainder of
the manual is divided into three major sections. Part I contains
basic information concerning the operation of the system. It
discusses the physical components of the system and their use.
We also introduce the ideas of a ·file, a disk directory, and a
disk operating system we call Executive, concepts essential for
successful use of the system. And we list the commands used in
the system and discuss their use.

Most of the information in Part I
non~programming use~ of the system as

will be of use to the
well as to the programmer.

The material in Part II, on the other hand, is devoted to the
actual construction and use of disk files, and is aimed at the
person planning on actually programming on the system. The
information covered in Part II is presented in a way that helps
the non-programmer, with the aid of a programming textbook, to
quickly produce his or her own files.

Part III contains information on the system Editor and Assembler.
You use an Editor to create and edit text files. This manual,
for instance, was created and edited as several disk files using
the System 88 Editor. Almost everyone who uses the System 88
will be using the Editor extensively. You can make full use of
the Editor without knowing anything about computers or computer
programming. An Assembler translates assembly language programs
into machine language, and the Assembler section is required
reading only for assembly langu~ge programmers.

As you read through this manual, you will find that the material
introduced in earlier sections is expanded upon in later
sections. If at any time you feel lost, look up the topic that
you are unsure about in the Index or Glossary .

Page 8 System 88 User's Manual PolyMorphic Systems

1.3 QUICK DEMONSTRATION OF SYSTEM USE

Even before you learn all of the details about the System 88
software, . we're going to take you through a quick demonstration
of the use of your machine. By the time you leave this section,
you will have done many of the kinds of things you can do with
the system. If you want more information on each subject we
cover, check the Index.

Anyone who can use a typewriter keyboard can sit down and begin
using the PolyMorphics System 88. So whatever you are-- novice
or expert-- let's start.

If you have an 8813, insert the key in the lock on the main unit,
press in on it, and by turning the key clockwise, turn the system
ON. If you have an 8810, press the top of the rocker switch to
turn the system ON. Turn the video monitor (TV set) ON.

Take the System Disk out of its paper envelope--but DON'T remove
the disk from its black sheath. The disk stays inside its black
sheath at all times. The disk is very delicate, so handle it
carefully. Don't touch the exposed areas of the disk itself.

Open drive 1, the left-hand slot (some systems have only one
slot) on the front of the main unit. To insert the disk in a
vertical drive, slide the disk into drive 1, notched edge down',
with the disk label to the left. To insert it into a horizontal
drive, slide the disk into the drive with the notched edge to the
left and the disk label up (see Figure 2).

Figure 2. Putting the disk into the drive.

I
I .

o
PolyMorphic Systems System 88 User's Manual Page 9

Push the disk all the way home gently. Close the drive. Don't
force the drive shut; if it won't close, make sure the disk is
all the way in.

WARNING: If you have a Double Density 8810 or 8813, or
if you have an 88/MS add-on you must not power the
system up or down while the disks are in the drives and
the doors are closed. If you power the system up or
down while disks are in the drives and the . doors are
closed, you will harm the contents of the disk. If you
follow the instructions in this section and turn on the
system before inserting the diskettes you will prevent
this problem.

closed the drive
the load button
taking place.
appear on the

When you have properly inserted the disk and
door, push the button m~rked "Load". Note that
begins to blink, indicating that processing is
After ten to twenty seconds, this message will
monitor screen:

(Exec/~~-top of RAM is ~~#~.)
$

The cursor (a solid white rectangle) will
the dollar sign. The me~sage tells you
your System 88 system software, and the
that the system can use.

be just to the right of
the version number of

highest memory location

If this message is not displayed, go through the 'hookup procedure
and the above procedure again.

The dollar sign is the "system prompt." A prompt is a symbol
indicating that the machine is waiting for an instruction from
you. The cursor symbol indicates your screen position; the next
character that you type on the keyboard will appear on the screen
where the cursor is now.

The keyboard is much like a typewriter keyboard, with numbers,
symbolS, and upper and lower case letters. Type all instructions
below EXACTLY as shown, including spaces. Type all instructions
in capital letters. (Note that the CAPS LOCK key affects letter
keys only; you must use SHIFT to shift the other keys, even if

. CAPS LOC K is loc ked down.) The symbo 1 (CR) means .. hi t the
carriage return key"; all instructions end ~ith a carriage
return. Do not space before hitting the carriage return. You
can erase symbols on the screen by hitting the DELETE key;
letters disappear one at a time from right to left.

Now let's start using the system.

First we'll find out what is already recorded on the System Disk.
Disks have a directory, or table of contents, listing the names
of any files they contain, just as file cabinet drawers often
have front labels listing the files they contain. A disk file
contains information, just as the folders in the file cabinet

Page 10 System 88 User's Manual PolyMorphic Systems

contain papers and letters.

Remember, (CR) means carriage return.
section, hit the RETURN key. All
carriage return. Type this:

When you see (CR) in this
instructions end with a

LIST(CR)

You now see a list of the contents of the System Disk. Next
you will be adding a file to the System Disk, and the name
of the file (and its location and length) will automatically
be added to the directory.

To add a BASIC file to the disk, begin by typing:

BASIC (CR)

The machine is now "in BASIC": it will now
instructions written in the BASIC "language."
matter at this point if you don't know BASIC.)

understand
(It doesn't

The fact that the · system is in BASIC is indicated by the
BASIC prompt> that now appears on the screen. The prompt
you see now is different from the previous prompt $. This
is because you are talking with BASIC instead of with the
Executive.

We will add a BASIC file (in this case a computer
instruction written in BASIC) to the System Disk. The file
will consist of the words "WELCOME TO THE SYSTEM 88" (or any
other message of a few words that you make up). Type:

10 PRINT "WELCOME TO THE SYSTEM 88"(CR)

SAVE;INITIAL(CR) (NOTE: You are naming your file initial)

The red light on drive I now comes on, to indicate that drive 1
is working. What is happening is that the system is "saving" the
message by putting it (or "writing" it) on the disk. Up till now
the message has been stored only in the temporary memory inside
the main unit. The light goes out when the file has been saved
on the System Disk. You will now see the BASIC prompt>; this
means that you can go on.

Type:

BYE (CR)

You are now out of BASIC. The name of
message) now appears in the disk directory.

LIST (CR)

the new file (your
To see it, type:

There it is. Now, to send a copy of your file to the screen,
type:

PolyMorphic Systems System 88 User's Manual Page 11

TYPE INITIAL(CR)

You can ask the machine to start up your program that you have
saved as a file simply by typing:

INITIAL (CR)

We chose the name INITIAL for a special reason. Whenever you
reset or turn on your machine, if the System Disk contains a file
named INITIAL, the system will "run" that file without waiting
for any instructions from you. Try this out; hit the Load
button. Your system will restart itself and run your program
INITIAL.

You will see that you are again in BASIC (you see a BASIC prompt
>). Now you'll enter a simple program in BASIC. (A program is
a set of instructions for the machine to perform.) Number program
lines so . that BASIC will know in what order to perform the
program commands. Type, exactly as shown:

10 PRINT "HOW DO I STOP THIS THING?" (CR)
20 GOTO 10(CR}
RUN (CR)

Program line number 10 tells BASIC to priht on the screen the
words within the quotation marks. Program line number 20 tells
BASIC to return to program line number 10. After this two- line
program is entered, you type the RUN command; this tells BASIC to
execute the program (that is, to perform the program commands).

The words HOW DO I STOP THIS THING? are now being printed rapidly
over and over on the bottom line of the screen. As the words are
printed, the previously printed lines scroll up and disappear at
the top of the screen. The program is an endless loop; the first
of the two intructions says to print the words, and the second
says to go back to the first instruction. So the computer
repeats the PRINT instruction rapidly and endlessly. Speed and
resistance to boredom are a computer's main virtues.

To stop this
Y. You will
symbol ».
interrupted.
CON.

program, hold down the control key (CTRL) and type a
notice that the BASIC prompt is now a double prompt
This indicates that program execution has been
You can make the program continue to run by typing

A small modification in the program limits it to a prescribed
number of runs. Type this, hitting the carriage return at the
end of each line:

10 PRINT "I WILL STOP MYSELF" (CR)
20 I=I+l(CR)
30 IF 1<10 THEN GOTO 10(CR}
RUN (CR)

The program will execute ten times and stop.

Page 12 System 88 User's Manual PolyMorphic Systems

Here is a slightly more complicated program. For WORD below,
substitute any short word of your choice. Don't forget to hit a
carriage return at the end of each line.

10 FOR X=l TO 200(CR)
20 PRINT TAB(25+25*(SIN(X/3») ," WORD "(CR)
30 NEXT(CR)

Let's save this program by typing:

SAVE;SINWAVE(CR)

Now, after you receive a BASIC prompt (indicating that the
machine is ready for another command), type:

RUN (CR)

The system is now printing your word repeatedly at the bottom of
the screen, each time at a different tab (indentation). As the
word prints, each line above it scrolls up and eventually
disappears off the top of the screen. The machine selects the
number of spaces to move over before printing the word by
performing the computation you gave it in line #20. To be
precise, the machine computes the sine of X divided by three,
where X=l. This quantity is multiplied by 25, and then 25 is
added to it. This gives the first tab value. Since X has not
yet reached its terminal value (200), the system goes back to
line #20, and performs that line with X=2. This continues on
with X increasing by 1 until X=200; at that point, line #20 is
performed one last time, and the program is finished.

Each time the word is printed on the screen, BASIC has had to go
through several different steps to calculate the tab value. As
you can see, the system works fast. (This tab formula, by the
way, generates a sinusoidal wave form.)

Now, "leave" BASIC and return to the system level by typing BYE
and a carriage return. You will once again see the system prompt
$, indicating that you are out of BASIC and again talking
directly to the system.

We'are now going to delete a file. (Remember to hit a carriage
return at the end of each line that you enter.) Type:

DELETE INITIAL(CR)

You will receive the following message:

<l<INITIAL.BS deleted.

If you display the directory again (by typing LIST), you will see
that INITIAL is no longer displayed in the disk directory.

Now that
list disk

you have learned how
directories, save an

to save BASIC programs as files,
INITIAL file, and delete files,

PolyMorphic Systems System 88 User's Manual Page 13

o you will learn how to construct and use a very powerful tool of
the ' system: a command file. Command files are files from which
the system draws instructions. Such a file contains a series of
the kinds of commands that you might enter from the keyboard;
whenever you want the computer to perform that set of
instructions, instead of having to type them, you have only to
run your command ffle •

One of the easiest ways to construct a command file is to create
a text file using the Editor. A text file is a collection of
letters and symbols. This may be simple text, such as a book
chapter or a letter to your bank. Or a text file may be a
program. The purpose of an Editor is to allow you to type in
text and make changes easily in that text.

Type:

EDIT YOUR-COMMANDS

(Dontt forget to hit a carriage return.) At the top left hand
corner of your screen you will see "Edit/Ii" (the version number
of the Editor). Next will appear the message:

Input file: not found

Output file: opened

Hit any key to continue •••••

"Input file: not found" means that the Editor knows that you are
creating a new file, not editing one already in existence. After
displaying this message, the Editor will wait until you tell it
to continue. To do so, type any character from the keyboard.
The screen will clear and the cursor will appear at the top left
corner of the screen. You are now ready to create a text file
that you will use as a command file.

Note: Lines beginning with a semi-colon are comments
and are ignored by the system. When you type the
following example, you do not have to type the
comments. If you do, make sure that a space follows
the semi-colon wherever you insert a comment.

Page 14 System 88 User's Manual PolyMorphic Systems

i This is a command file
It contains the instructions that will tell the
system to
1) list your System Disk directory,
2) run your BASIC program,
3) save it under another name,

i 4) exit BASIC,
i 5) list the directory again,

6) delete the copy of your program, and
7) display your program.

LIST
SINWAVE
SAVEiWAVE-2
BYE
LIST
DELETE WAVE-2
TYPE SINWAVE

Now exit from the Editor. Type an Escape (the key marked ESC).
Next type a Control-E by holding down the Control key (marked
CTRL) and typing an E. You will see the message "Exiting •••• "
When the Editor is "done saving your text file, you will see the
system prompt $ once again. To run your command file, simply
type:

YOUR-COMMANDS (CR)

The system will now start drawing its instructions from your file
because it realizes that your file is not a program, and so must
be used as a command file.

As the system performs your command file instructions, you will
' note an interesting thing about the execution of your BASIC
program -- it runs eve~ though you did not ask the system to
bring in BASIC. The system brings in BASIC automatically to run
a BASIC program file. The system is able to decide if a file
that you have asked for is a BASIC file. If it is, BASIC is
brought in by the machine and told to run the BASIC program.

You have now done all the procedures you will use most often when
using your machine. You may be surprised at how little else
there is to learn in order to use your machine effectively.

o
PolyMorphic Systems System 88 User's Manual Page 15

Section 2

SYSTEM OVERVIEW

Before you use your System 88, a few brief explanations are in
order. This ' section tells you how to handle disks, and how to
use the disk drives, the keyboard and the Load button, and start
up the system. The actual hardware specifications for your
System 88 may be found in the User's Hardware Guides (Appendixes
F and G).

2.1 THE DISK

The disk is a device for storing data. Data are recorded on the
disk surface much as music is recorded on a cassette tape. The
round disk 4s permanently enclosed within a square protective
covering, and rotates within that sheath. A disk drive "reads"
data on the disk as the disk rotates, in somewhat the same way
that a needle "reads" music on a phonograph record. The drive
can also record or "write" data onto the disk.

9 Your computer uses the type of disk known as a "minifloppy
diskette." This means that the disk is flexible and small. The
amount of data which can be stored on each "minifloppy" is
determined by the type of System 88 you have. Single- Density
models can store 89,600 "bytes" (a byte is a small unit of
information, usually representing one character) or about forty
pages of single-spaced text. Double-Density models store data at
twice the density and store it on both sides. This provides
357,400 bytes of storage.

Actually, the amount of storage provided by a diskette is usually
measured in sectors, rather than bytes. A sector is 256 bytes.
Single-Density diskettes store 350 sectors, while Double-Density
diskettes store 1400 sectors. A typical page full of typewritten
text requires 10 sectors.

Take a disk out of its paper half-envelope. The paper envelope
is NOT the black protective cardboard enclosing the disk itself.
NEVER remove a disk from the black holder.

Page 16 System 88 User's Manual PolyMorphic Systems

Figure 2.

Cover

Head Window
(don! t gr i p ~---+--:--"I
when pulling disk
and cover from
white envelope)

Cutaway drawing of a disk.

10 wedges
x35 tracks

=350 sectors

~'-~I------ 1 sec tor
=1 track
+1 wedge,

'-------write-enable notch

When you look at the disk, you will see that only a few areas of
the actual disk surface are visible. This is because the surface
of the disk is extremely delicate. NEVER touch the disk areas
not covered by the protective cardboard. Don't ever write on the
protective covering except VERY lightly with a felt-tip pen: it's
important that no impression be made upon the disk. A disk
should never be folded, bent, kept in temperatures over 125
degrees Fahrenheit or under 50 degrees Fahrenheit, or placed near
a magnetic field. Always keep the disk in its white paper
envelope (and stored in a safe place) when you are not using it.
Four sectors of every diskette are saved for directory space.
This leaves 346 sectors free for fil~s or sub-directories.

Usually you can write information onto a disk as well as read
data from it. However, you can "write-protect" your disks. The
system cannot write data on a write-protected disk. This feature
ensures that the data on a disk remains intact. The disk cover
has a small notch in one edge called the "write-enable notch"
(see Figure 2 above). To write-protect a disk, stick a
"write-protect tab" over the writ~-enable notch. The write­
protect tabs are the small stickers provided with your disks.
Put the tab on so that it covers the notch on both sides of the
disk cover. If you should want to write data on a
write-protected disk, remove the write-protect tab from the
write-enable notch and use the disk in the normal way.

PolyMorphic Systems System 88 User's Manual Page 17

o The disk of most importance to the operation of your machine is
the system Disk. This disk contains ' the files used by the disk
operating system as parts of the system itself. This disk is
essential to the operation of the system and must always be
placed in the System Drive, usually drive 1, the drive farthest
to the left).

2.2 THE DISK DRIVES

The front of your System 88 contains one or
doors or latches. These are the openings
Within these drives is the apparatus which
and reads it from the disks.

more slots with small
to the disk drives.

writes information to

The drives are numbered from left to right, beginning with number
1. You must always place the System Disk in the System Drive,
usually drive 1. If you have an 88/MS add-on you may be using
drive 4 as the System Drive.

A small red light is ~n the front of each drive. When this light
is on, the disk inside the drive is being either read from or
written to.

CAUTION: Never interrupt the system when one
lights is on. (Don't turn the system off
these lights are off.)

of these
until all

2.3 THE KEYBOARD

Your system uses a full upper and lower case keyboard. When the
system is first turned on or reset, you can use the full upper
and lower case character set. This is called "the FULL mode." In
this mode the keyboard is almost identical in use to a typewriter
keyboard.

Just as with a typewriter, you use the SHIFT key, for upper case
letters, and for the symbols on the main keyboard number keys.

Typing with the CAPS LOCK key down also produces upper case
letters. The main keyboard number keys, however, are not
affected by the CAPS LOCK key with the exception of the following
keys: A,0,_,[,] ,\. If the CAPS LOCK key is depressed, the shift
key can not be used to obtain the other symbols on these keys.

Use the DELETE key to delete one
character is any symbol that
keyboard--numbers, letters, symbols,
Deletion is from right to left.

character at a time. (A
you can type on your
control characters, etc.)

A useful feature of the system is its 64-character type-ahead
capability. "Type-ahead" means that you can type up to 64
characters during times that the system is not able to pay
attention to the characters that you type in from the keyboard
(for instance, during the running of a BASIC program). The
characters entered during that time will be displayed on the

Page 18 System 88 User's Manual PolyMorphic Systems

screen and processed when the system is once again free to deal
with information from the keyboard.

2.3.1 Numeric Pad

The numeric pad located to the right of the main keyboard area is
unaffected by the SHIFT and CAPS LOCK keys on the main keyboard.
The Roman Numeral keys are function keys which are not used by
Exec. They will only be used by programmers.

2.3.2 Control Characters

Certain special functions are performed by the use of characters
called control characters. To type a control character, hold
down the CTRL key on the keyboard and type the letter indicated.

EXAMPLE:

Control-Y -- Hold down the CTRL key and type y.

You may use the following control characters when you are typing
instructions to your machine. (These commands are also available
for use when you are using the computer language BASIC.)

Control Characters Used for Deletion (deletion is to the left)
are:

Control-W: Deletes one word at a time.

Control-X: Deletes entire line

Other Control Characters:

Control-Y Halts whatever action is being performed.

Control-L Form feed-- clears screen.

Control-I TAB-- moves cursor to the next tab position (tabs
are every eight spaces), as does the TAB key.

NOTE: When you are displaying a file on the video
screen (by using the TYPE command), a Corttrol-K
character in your file causes the cursor to move to the
upper left corner of the screen; a Control-L character
clears the screen. When you are using the Editor,
Control-L enters a Greek lambda into your file which,
when sent out to a printer, causes it to move on to the
next page or "form"; Control-K enters a Greek mu, which
some printers also use as a form feed. Typing either
Control-L or Control-K while in BASIC or Exec will move
the cursor, but will produce a "syntax error."

2.3.3 Other Keyboard Case Modes

In FULL mode, the keyboard works essentially the way a typewriter

l .

PolyMorphic Systems System 88 User's Manual Page 19

o keyboard does. But sometimes it is inconvenient to use the full
character set. For instance, most comrna~ds must be typed in
upper case letters. Rather than holding down the SHIFT key or
keeping the CAPS LOCK key on, it would be convenient to have the
machine automatically convert all letters to upper case. This
can be done by using the fold command. After a system prompt $
type:

fold

(in lower case) and a carriage return. The system prompt $ is
the indication that the system is ready for your next command.
From the time that you use the fold command until you type:

FULL

followed by a carriage return, all letters will appear in upper
case. This command affects only the letters (a-z): the other
keys are unaffected by the fold command.

Fold mode is useful when you are not using lower case letters at
all. You may find yourself using mostly upper case letters, and
lower case letters only occasionally. The "flip" command
switches upper and lower case. Starting in FULL mode, after a
system prompt $ type:

flip

(in lower case) and a carriage return. From this time until you
change the keyboard mode, you will use the SHIFT key to type
lower case letters. Upper case letters will be produced when you
type unshifted letters. For example, when in flip mode, an
unshifted r will produce a capital R. A shifted r will produce a
lower case , r. This command affects only the letters (a-z); the
other keys are ' not affected.

2.4 OPERATING THE , SYSTEM

Now that you have some idea of what the physical components of
your system look like and what they can do, you will want to
start using the machine. If you have not already looked at
Section 1.3, A QUICK DEMONSTRATION OF THE USE OF THE SYSTEM, you
might wish to do so after reading the rest of this section. The
following paragraphs will tell you how to get your system into
operation. Section 1.3 shows you a few things that you can do
once you turn on your machine.

2.4.1 Turning on the Machine

Insert the key into the ON-OFF lock on the front panel, press in
on it, and turn it to the right until it stops. The red light
above the lock is now lit, to indicate that the machine has been
turned on. (To turn off the machine, slowly turn the key back to
OFF) •

Page 20 System 88 User's Manual PolyMorphic Systems

2.4.2 Placing Disks in the Disk Drives

Take the colored paper envelope off of the disk. Hold the disk
lightly, being careful not to touch the exposed sections of the
disk surface. Hold the disk vertically so that the disk label is
on the left side of the disk and in the upper corner. The square
notch in the edge of the disk cover will be on the bottom edge of
the disk. (Some systems have one horizontal drive; put the disk
in with the label up and the notch in the edge to the left.)

Open the disk drive door and carefully slide the disk all the way
into the slot. Close the door. The drive cannot write or read
information to or from the disk if the doors are open!

The System Disk must always be placed in the System Drive,
usually the drive farthest to the left.

Once the System Disk has been inserted in the System Drive, Load
the system.

The white button on the front panel of your machine labeled Load
is the reset button. Always push it when you want to restart the
disk operating system. When you push the Load button, the disk
operating system starts up. You will see the following message
on the screen:

(Exec/83-top of RAM is ####.)
$.

The number following the word "Exec" is your system software
version number. The next number tells you the highest address of
usable memory on your system.

The dollar sign symbol $ is the system prompt. It tells you that
the system is waiting for your command. For more details on what
occurs within the system at start-up time, see Section 6.4,
SYSTEM START-UP.

2.4.3 Hazards During Disk I/O

Information is stored on a disk by writing data from the
temporary memory in the main unit onto the disk. The data is
recovered by reading it from the disk and placing a copy of it
into memory. These read and write operations are called "disk
I/O" (Input/Output). The red light on the front of each disk
drive is lit when I/O is being performed on the disk inside that
drive.

There are three things that you must not do while disk I/O is
taking place. DO NOT hit the Load button, open a disk drive
door, or turn off the system. Any of these actions ' will
interrupt read and write operations and may scramble the contents
of the disk. If the system is interrupted while it is updating a
disk directory, all of the contents of the disk may become
inaccessible.

PolyMorphic Systems System 88 User's Manual Page 21

o

Page 22 System 88 User's Manual PolyMorphic Systems

PolyMorphic Systems System 88 User's Manual Page 23

Section 3

OVERVIEW OF FILES

Disk files are groups of data. The data can be anything you want
them to be--words, numbers, results of experiments, client files,
games, BASIC programs, statistical calculation programs, etc.

A disk file is a storage device, like a folder in a file cabinet.
Your folder may hold any type of information that you desire.
You identify each file by its label. A collection of folders is
grouped together in a file cabinet drawer just as disk files are
grouped together on a disk. You may place a label on the front
of a file cabinet drawer listing the names of the files within.
In the same way, every disk has an area set aside called the disk
directory--a "table of contents" that lists files and
sub-directories found on the disk.

Imagine a file cabinet in which you do not actually remove any of
the folders from the drawer. Instead you somehow tell the
cabinet that you want the information in a particular folder in a
particular drawer. The cabinet then makes a copy of the contents
of the folder and delivers that copy to your desk, where you can
work on it. You can always replace the old contents of a folder
with NEW information, but any information that you take out of
the folder is only a copy of the folder's contents. This is how
a disk system works. You tell the system which file you want on
which disk, and a copy of that file is placed into the memory of
your machin~, where you can work on it. If you want to know
which files are in a particular "drawer" (disk), you ask the
system for a display of the disk directory (see Section 6~2.2,
LIST). At any time you may get rid of old files (see Section
6.2.3, DELETE), create new ones (see Part II, USING AND BUILDING
FILES), and get the information out of existing files (see 4.10,
INVOKING FILES).

There are five different kinds of files, categorized by the type
of information they contain:

Machine language program files:

Although you communicate with the system by using
various kinds of statements, even English words (like
LIST, FULL, etc.), the machine itself understands only
binary data (ls and 0s). The capital letter "R", for
example is interpreted by the computer as the following
pattern of binary numbers: 01010010. These binary
statements are called "machine language."

A series
intended

of these machine language
to be followed in sequence,

instructions,
is called a

Page 24 System aa User's Manual PolyMorphic Systems

machine language program. A machine language program
file consists of nothing but binary numbers that
represent machine instructions. The file BASIC.GO on
the System Disk is a machine-language program file
containing the interpreter for the language BASIC.

It is awkward writing a program in machine language
form. Instead, we can write a program in a computer
language called "assembly language." This program is
then translated into machine language by you system.
The entity which translates assembly language programs
into the numbers used by your machine is called an
"Assembler," and is itself a machine language program.
Once "assembled" (translated by the Assembler), an
assembly language program is a machine language
program.

For information using the System 88 Assembler, see
Section 12, THE MACRO-aa ASSEMBLER.

System files:

Certain files, called system files, have attributes
that set them apart from regular files--you may not use
the following commands on them: RENAME, DELETE, COPY,
TYPE, PRINT, or EDIT. Any kind of file may be
designated a system file (e.g., the file holding the
language BASIC is a system file). (For information on
designating a file as a system file, see the System
Library volume, System Programmer's Guide, available
separately.)

A special kind of system file is a file called a system
overlay. An overlay is a file used by the system as an
actual part of the system itself. You cannot execute
an overlay; only the system itself can call overlays
into action.

Usually system files will not be listed when a disk
directory is displayed. (To see how you may see system
files listed, see Section 6.2.1, ENABLE and DISABLE.)

BASIC program files:

Programs written in BASIC are stored as files in te~t
form, that is, in the same form in which they were
originally typed into the machine. When brought into
memory by the system, such a file causes BASIC to be
automatically invoked by the system to run the program
file. A BASIC program file may also be brought into
memory by BASIC. For information on writing BASIC
programs, see the System Library volume BASIC: A
Manual.

Command files:

PolyMorphic Systems System 88 User's Manual Page 25

A command file is a file containing system commands.
For information on . using and constructing a command
file, see Section 9, COMMAND FILES.

BASIC data files:

A BASIC . data file
handling commands.
string data. It
example, or a list
on constructing and
BASIC Manual

Text files:

is a file built using BASIC file-
Such a file holds numeric and

might hold a book chapter, for
of prime numbers. For information
using data files, see the System 88

A text file is a file containing data in text form. It
holds the same sorts of data as a BASIC data file but
is created using the Editor. A text file can be a
BASIC program, an assembly language program, a command
file, an office memo, a travel itinerary--anything in
text form. For information on using the Editor to
create text files, see Section 11, THE EDITOR.

Sub-directories:

Sub-directories are stored on the disk like files.
Listed in sub-directories are more sub-directories and
files which are not found listed in the main disk
directory. This means that in addition to the 4
sectors set aside for the main disk directory, there
can be other directories on the disk that are
off-shoots of the main directory. Listed in those
sub-directories can ~e even more sub-directories.

You can not COPY, EDIT, TYPE or PRINT any directory.

3.1 FILE AND DIRECTORY NAMES

All files and directories have names. The name for a main disk
directory is the same as the name of the drive which contains it.
Sub-directories and files are given names from 1 to 31 characters
in length. Since this 31 character limit includes the 3
character extension, which the system affixes to the end of all
sub-directory and file names, your file name must not be any
longer than 28 characters. (See 3.2 of this section for
explanation of extensions)

File names may contain numbers, special symbols, and upper and
lower case letters. They may even contain control characters
(e.g., Control-L). But "it is, generally speaking, not a good
idea. Control characters will not show on the screen when you
are typing the file name. They are in the name, however. This
makes file names with control characters in them hard to
remember, and worse to type. When a file name is listed in a
disk directory display, any control characters in it will show up

Page 26 System 88 User's Manual PolyMorphic Systems

as Greek letters. (To find the Greek letter representation of a
control character, see Appendix B: The ASCII character Set.)

The symbols that a file name may not
space, a period, a plus sign, a TAB,
escape.

contain are a comma, a
a carriage return, or an

Any other symbols or combination of symbols are legal,except for
the one-character file name *. This symbol is used in several
commands asa sp.ecial "wild-card" symbol. The system would be
very confused by its appearance as a file name.

Some examples of legal and illegal file names:

Legal:

CASHFLOW-3
A
Correspondence

Illeg al :

ACCOUNTS PAYABLE (space in name)
* (illegal I-character name symbol)

SEVENTEEN-WAYS-TO-INVEST-MY-MONEY
(more than 31 characters)

MEMOS-IN+MEMOS-OUT
(plus sign in name)

If you try to save a file under a file name that already exists
on that disk, an error message will be displayed: "That file
already exists."

3.2 FILE NAME EXTENSIONS

We mentioned in Section I that the system automatically brings
BASIC into memory form the System Disk when a BASIC program file
is invoked. (When you" invoke" a fIe, you are asking the system
to bring a copy of the file into memory and then "run" the file.
This asumes that the information within the file is a runable
series of instructions that form a program.) How does the system
know that the file being invoked is a BASIC program? The answer
-- file name extensions.

You will notice when you display a disk directory that all file
names end with a two-character extension after a period.

Example:

GREETINGS.BS

PolyMorphic Systems System 88 User's Manual Page 27

These extensions give additional information to the system about
file contents. You will notice that when you save a BASIC
program, the file containing the program will always appear in
the directory with a .BS extension. This extension tells the
system that the file is .a BASIC program. In the same way, other
extensions provide "handles" to the system for managing other
kinds of files.

The extensions that the system recognizes and uses are:

.BS BASIC program file

.GO Machine language program file

.TX Text file

.DT Data file

.ov System overlay

.DX Directory

.SY Symbol Table

.PS Printer Driver

Whenever you save one of the above types of files, the system
automatically affixes the proper extension to its file name.

The system does NOT enforce the use of the above extensions. If
you wish to specify any extension as part of a file name you may
do 50. The above extensions are the file name extensions that
the system recognizes, but any two-character extension of letters
and/or numbers separated by a period from a file nameis legal.
However, a warning: the system cannot gain any information from
an unknown extension. You may, for example, save a BASIC program
under a file name with any extension (e.g., TIMETABLE.F2). The
system will not recognize that file as a BASIC program, however,
because its name does not carry a .BS extension. If you type
that file's name after a system prompt $, you will find that
BASIC is not automatically invoked to run the program because the
file is not recognized as a BASIC program. You will receive an
error message from the system.

You now know what kind of files are stored on the disk, how to
name them, and how the system labels them with extensions. You
will need to know how tell the system which file you want it to
affect. Often, merely supplying the file name will not be
sufficient; you will need to provide a path name. Section 4
explains how the file names are used as path names or parts of
path names.

Page 28 System 88 User's Manual PolyMorphic Systems

o
PolyMorphic Systems System 88 User's Manual Page 29

Section 4

PATH SPECIFICATION

At various points in the operation of any program - such as the
System-88 Exec - it is necessary for the operator to specify
files, disk drives, and file directories.

A System 88 has disks, directories and files. Each of the
commands that the system understands is either meant to affect
one of these three entities, or it is meant to affect the whole
system. Unless a command is meant to affect the whole system,
its entry alone is not enough to tell the system what you want.
Since there can be more than one disk, more than one directory
and more than one file, there must be a method for providing a
name that specifies which drive, which directory, or which file
is to be affected by a command.

The entry the user types which specifies a specific drive or file
or directory, is called a "path name." A path name is made up of
a sequence of disk, directory or file names which we can also
call component names. The sequence of component names describes
the sequence of selections in directories and sub-directories
that will lead to the desired disk, directory, or file.

This structure is sometimes called a
the directories branch into

"tree" because of
sub-directories

the way
and

sub-sub-directories. (See Figure 4.1 for clarification of
directory structure.)

PATH NAMES AND DIRECTORY
HIERARCHY

Root . . ~

Disks ~

Directories
and Files

.J,

<2<Films(Fgn

\

<2<Films<Fgn<Berg

\

(2< Films(Fgn(Berg· 7th~Seal
<2<Fi1ms<Fgn<Berg<Pel'~so ...

2<Films<Amer) .

<2<Films<Amer<Allen

.. ~
<2<Films<Amer<Allen<Manhat

PolyMorphic Systems System 88 User's Manual Page 31

To picture how the system understands the relationship between
the path name components, we can imagine an internal directory
which is a list of all of the main disk directories. This
imaginary, internal directory can be compared to the base or root
of a tree. When the component name we supply is 2 (the name of a
disk drive) the system is provided with the information it needs
to establish a path to a particular main disk directory; if 2 is
the only component entered, the system will know to access the
directory on drive 2. If our entry also contains a
sub-directory, the system will then continue its path to the
sub-directory we have named. If we have also supplied the name
of a file which is listed in that sub-directory, the system would
then know that the component we want it to access is that file
and would complete the path from the root to our specified file.
The last component in our entry is the name of the directory or
file that we want the system to access; if a file name is a part
of the path name the user enters, it must be the last component
since no directory or file can branch off from a file.

We have eX'plained that the last component name in a path name is
the item which the system will attempt to access. But, what will
it attempt to do to that item? This depends on what command we
supply before our path name.

The following chart shows the four groups of system commands,
determined by what part of the system they affect. In this
section we are concerned with the first three groups since they
must be accompanied by path names. The commands in the fourth
column do not require any path name since they affect the entire
system.

Types of System Commands

FILES DIRECTORIES DRIVES SYSTEM

COpy UNDELETE INIT I ZAP
RENAME LIST or IMAGE I DUMP
DELETE list PACK I ENABLE
TYPE DIRECTORY ZPACK I DISABLE
PRINT DIRECTORY DNAME I DISPLAY
SAVE I It
ZCOPY I Printer
ZGET or I CONTINUE
GET I FLIP
EDIT I FOLD

I RESET
I

The path names required for each type of command are different.
Commands which affect drives require a one component path name.

Page 32 System 88 User1s Manual PolyMorphic Systems

Commands which affect directories require a one or more component
na'me (more than one if a sub-directory is involved). Commands
which affect files 'require a two or more (more than 2 if
sub-directories are' involved) component path name. The following
sections explain in detail how to enter path names.

4.1 PATH NAMES SPECIFYING DRIVES

A command which is meant to affect an entire drive would need to
be accompanied with a path name which specifies which drive is to
be affected. A path name which identifies a drive would be made
up of one component name, a single digit, as in the following
example:

PACK <2

NOTE: The form for supplying the complete path name involves the
use of left angle brackets (less than signs). A left angle
bracket precedes the first component and left angle brackets are
placed between all other components. No left angle bracket is
placed at the end of the last component. There must be a space
between the command and the path name. There must not be a space
within the path name as that will cause the system to determine
that the path name is being terminated and some other entry is
beg inning.

4.2 PATH NAMES SPECIFYING DIRECTORIES

A command which is meant to act on directories can require one or
more components, depending on whether the directory being
specified is a main disk directory or a sub-directory.

For Example:

LIST <2

The above command and path name would cause the system to display
the main directory for the disk in drive 2.

If we wanted to see a list of the contents of one of the
sub-directories we would need to supply a path name with more
than one component. Whenever there are two or more components in
a path name, these components are separated from one another by
left angle brackets.

LIST <2<Films

This entry would cause the system
Films which is listed in the main
2.

to list the directory called
directory of the disk in drive

As does the above sample path, the following points out a
particular directory to be affected by the LIST command.

c·

PolyMorphic Systems System 88 User's Manual Page 33

LIST <2<Films<Fgn

However, this directory branches off
and so is the ending component of
sub-directory which is found in the
is a sub-directory that can be found
disk in drive 2.

from the <2<Films directory
a longer path. Fgnis a

directory called Films which
in the main directory of the

The final component of the path is always the name of the part
that is to be affected by the command. The other components,
which make up the initial stem of the path, are not affected by
the command. They are necessary parts of the path because they
help specify which directory is to be listed.

4.3 PATHS SPECIFYING DISK FILES

The following path name specifies a text file. Its initial stem
is made up of a disk and two directory specifiers. The command
is of the type which affect disk files, therefore the path must
include a drive specifying component; in this case, two directory
specifying components and a file name.

EDIT <2<Films<Fgn<Berg

This particular entry tells the sytem that
located in the sub-directory called Fgn.
in another sub-directory called Films, and
be found in the main directory of the disk

the file named Berg is
Fgn is in turn listed
that sub-directory can
in drive 2.

All paths which end with file names do not need to be as long as
the above example. Only necessary specifying component names are
included in a path name. For instance, if we wanted to create a
text file on drive 2 called 5-27-79 and if we have no need to
create a sub-directory structure we would type the following:

EDIT <2<5-27-79

Section 5 of this manual explains the reasons
choose to use the sub-directory capability of the
do not choose to use this capability you will
specify directory names because specification of
is equivalent to specifying the main directory
that drive.

why you might
system. If you
never need to

the drive name
of the disk in

Now you understand that a full path name is the entry you type
after a command which tells the system exactly what it is to
affect. There are two allowed short cuts in the typing of path
names. You don't need to specify the drive name when the drive
you wish to access is the System Residence Drive (usually drive
1). You don't need to use the opening left angle bracket before
your single component path name when you are entering commands

Page 34 System 88 User's Manual PolyMorphic Systems

which affect drives or the LIST command when it is to affect the
main disk directory.

4.4 OMISSION OF DRIVE NAME OF SYSRES DRIVE

The first left angle bracket is the indicator that the component
following it is a drive name.

Note that in sections 4.2, 4.3, and 4.4 the drive name was always
the first component name in the path names. This is because the
system can not begin to establish a path unless it is given a
drive name (the drive names are the closest components to the
root or origin of all paths).

The drive name component can be omitted when the drive being
specified is the System Residence drive. The system residence
drive, usually drive 1, is the location of the system disk.
Since the user needs to access this drive frequently, it has been
established as the default drive. If the user provides no drive
name the system will assume he wants to specify the default or
System Residence drive.

Therefore an entry that does not begin with a left angle bracket
is transformed by the system into a complete path name -- one
with the drive name appended to the front.

For example, if your System Disk is in drive 1 you could type:

EDIT Actors<Women<Keaton

This partial path name would be transformed into the following
full path name:

<l<Actors<Women<Keaton

The system would access a file on drive 1 called Keaton which is
contained in the directory Women, which is an off-shoot of the
directory Actors which is listed in . the main disk directory of
that drive.

You can see that the system needs full path names in order to
establish paths between the root and the specific thing you want
to access. However, it knows how to transform some partial path
names into complete path names.

If you typed:

LIST Actors<Women

This partial path name would be transformed into the following
full path name:

PolyMorphic Systems System 88 User's Manual Page 35

<l<Actors<Women

A sub-directory on drive 1 called Women would be listed as a
result of the transformation of your partial path name into a
complete path name. Since the omission of the left angle bracket
indicates that the Sysres drive name must be appended to the
front of your partial path name, be careful not to omit this
bracket by accident. If you typed the following:

EDIT 2<Actors<Women<Keaton

the system would see that you have left off the opening bracket
and would assume you wanted the Sysres drive name appended. Your
partial path name would become:

EDIT <1<2<Actors<Women<Keaton

Instead of opening the file you thought you had specified on
drive 2, the system would look down the directory structure of
drive 1. It would find no sub-directory called Actors, so it
would create one. Then it would create the directory called
Women and open a file called Keaton.

To avoid such a misunderstanding, remember that the system only
transforms partial path names in two ways. 1) It appends the
Sysres drive if there is no left bracket in your path name,

' unless 2) it appends only a left bracket because the particular
command that you have entered is one that is to affect the entire
drive. This second type of transformation is explained in the
next section.

4.5 OMISSION OF FIRST LEFT ANGLE BRACKET

We have explained that omission of the first left angle bracket
indicates that we want to specify drive 1, but are taking a
shortcut in the typing of the path name.

Some commands, those which affect drives, can be followed by
incomplete path names as follows:

PACK 2

and then transformed as follows:

PACK (2

It does not become the following:

PACK <1<2

Page 36 System 88 User's Manual PolyMorphic Systems

The system did not, as we suggested in 4.4, append the system
residence drive to the front of this incomplete path name.

This is because in the instances where commands which affect
drives are used, the system checks your path name to see if it is
a drive name. If it is a drive nGlme, the left bracket is
appended to the front and the path . is established. If the path
name you enter is not a drive name then of course the command can
not be performed.

Another example of this sort of transformation done to incomplete
path names is as follows:

List

becomes

List <1

In the above entry we left off both the left angle bracket and
the drive specifier, but the system knew that we wanted to list
the contents of the main directory of the disk in drive 1.

In the following entry

LIST 2

becomes

LIST <2

not

LIST <1<2

Also, when a directory or file is to be specified, the following
transformation might occur:

EDIT 2<File

becomes

EDIT <2<File

4.6 PATH NAME LENGTH

We have already explained that partial path names are tranformed
into full path names -- that the system adds the initial bracket

PolyMorphic Systems System 88 User's Manual Page 37

or the bracketed system residence drive number when appropriate.
When the system transforms partial path names that you enter irito
complete path names which will allow it to establish a path, it
also adds the 3 character extension described in Section 3.

In Section 3 we also explained that there is a 31 character limit
to file names. This same limit applies to path names. This
means that the number of characters in all of the components of
your path (The only exception is that the 3 characters necessary
to specify the drive name are not counted as part of the total
number of characters.) must be 31 or less.

When determining whether or not you are within the 31 character
limit for path name length, you must allow for the extension the
system will add to your partial path name to make it a complete
path name. Don't forget that to every sub-directory and file,
the system adds a 3 character extension, unless you enter it
yourself.

This means that if you type the following:

EDIT (2(Comedian(Impersonator(Little

you may think that you are within the 31 character limit because
you have typed only 28 characters (not including the command) ~
However the above entry will be answered with the error message:

Gfid says: Name too long

This is because you did not allow the system to attach its
extension abbreviations. It needs to affix a .DX to both
Comedian and Impersonator and it needs to affix .TXto Little.
This means we have created a file specifier which is 34
characters long and which cannot be processed.

4.7 Special Disk Specifier Symbols

You may occasionally want to request a file, even though you're
not sure what disk drive it's on. Prepared for that eventuality,
the System 88 recognizes two special symbols i and? as disk
specifiers •

. 4.7.1 The Disk Specifier Symbol?

If you type:

<?<Etude

you are telling the system, "I don't know what disk it's on, so
YOU find it." The system will first check the System Disk in for

Page 38 System 88 User's Manual PolyMorphic Systems

the file Etude. If it cannot find the file there, it will go on
to check the remaining drives in the system. If, after checking
all the drives, the system still cannot find the file, it will
give you this error message:

I can't find that file.

There are several things that you cannot do using this disk
specifier symbol. You may only use this symbol as a disk
specifier inside angle brackets. For example, you cannot type:

LIST?

The system will respond with an error message: Gfid says: Bad
disk identifier.

You also cannot use ? as a disk specifier when using the RENAME
command or when asking the system to create a file (e.g. EDIT
<2<BOOK <?<Chapter). BASIC also does not understand the ?
symbol. The cases where you cannot use the? symbol are:

Directory List command:
LIST ?
LIST <2<?<File-A

File Rename command:
RENAME <?<File <2<NewFile

SAVE command:
Filename:<?<National-Debt

BASIC:
LOAD, <?<BASIC-TUTORIAL

? Does not search subdirectories:
EDIT <2<?<File-A
TYPE <2<?<File-A
PRINT <2<?<File-A

File Copy command (when used as part of file specification of
file to be created):

EDIT<2<APPLICATIONS <?<STUFF

If you are interested in more information on the system commands
mentioned above, see Section 6.2, THE SYSTEM COMMANDS.

In all of the cases above, the system will refuse to fulfill your
request. Usually (depending on the particular case) the system
will display the error message:

"<?<" is not allowed here

4.7.2 The Wild Card Path Specifier Symbol #

(.

PolyMorphic Systems System aaUser's Manual Page 39

The # symbol is useful in specifying drive numbers and
directories which we call paths. If you want, you do not have to
specify a particular drive and directory when writing command
files or programs. Instead, you can use the i sign. Later, when
you are running the command file or program you can tell the
system what the # sign stands for. The # sign can stand for a
drive number, or a drive number and one or more sub-directories.
This meaning attached to the # sign is called the "wild card
path" •

If # is to mean that the file is on drive 2 and is found under
the directory "Coins" which is found under the directory "Money",
we can type the following while the system is in Exec.

$# 2<Money<Coins

We have just established the Wild Card Path. Note that there is
a space between the i sign and 2 and a carriage return after
Coins. Now we can type the following while in Exec:

PRINT <i<Quarters

and the system will look in the drive 2 directory for a directory
named "Money". In the "Money" directory it will locate another
directory named "Coins" and in the "Coins" directory it will find
the file named "Quarters fl

•

The # sign works a little differently if it is used after you
have used the 7 as a file specifier. As we explained in the
previous section, the system searches every drive for the file
named after the 7. Once this procedure has been accomplished,
the system remembers what drive it found the file specified with
7, and it then assumes that i means that you want to specify that
same drive.

This is convenient as you do not have to force the system to
check every drive when you want it to find a file as it does when
you use the 7 sign.

NOTE: When the # symbol is used after you have used 7,
it will only stand for a drive name. If you want to
cause it to represent a drive name and a sub-directory
you will need to redefine i.

The symbol # can be used as a disk specifier whenever you wish to
request a file on that same disk or whenever you wish to
reference that disk. The # symbol is a legal disk specifier for
any command or process except the INIT and IMAGE commands.

Type:

Page 40 System 88 User's Manual PolyMorphic Systems

$DISPLAY

while in Exec and you will be shown what the system understands #
to mean.

4.8 INVOKING FILES

You store your files on disks; you must bring a copy of a file in
from the disk and put it into memory in order to do something
with it. File invocation is the process of copying a file from a
disk into memory and beginning execution of that file, assuming
that the file is runable (i.e., a BASIC or machine language
program). (You'll recall that a program is a series of
instructions followed in order by a computer.)

To invoke a file, type the path name of the file you want to
bring in from a disk. ' This includes the disk specifier, the
directory specifier (if the sub-directory structure is being
used) the file name, and optionally, the file name extension
(e.g., <2<ACRONYM.BS). If you do not include the extension, the
system will look for the first file it can find on the specified
disk with the given file name. It will try to bring this file
in, regardless of its extension.

This could create a problem. If you have two files, ACRONYM.BS
and ACRONYM.TX, make sure either that you include the file name
extension when invoking the BASIC program file, or that
ACRONYM.BS occurs on the specified disk BEFORE the file
ACRONYM.TX. Otherwise, you might .wind · up trying to invoke the
text file (ACRONYM.TX), which is not runable because it is full
of words instead of machine language instructions.

There is one interesting example of a machine language program
file invocation that you have run up against before in Section 1.
That is the invocation of BASIC itself. To enter the language
BASIC, you type (after a system prompt) BASIC and a carriage
return. Alth6ugh it might appear to the casual eye that we are
giving the system a command, we are in fact invoking a machine
language program file. The file BASIC resides on the System
Disk. Because this disk is always in the default drive, no disk
specifier has to be included in the BASIC file specification.
When we type BASIC, we are really implying <l<BASIC. The system
brings the file BASIC.GO into memory from the System Disk, and
begins program execution. BASIC itself is merely another machine
language program file, although it is also a system file.
(Please remember that when we speak of "BASIC," we are talking
about the computer language BASIC itself, and not a program
WRITTEN in BASIC.)

More comprehensive information on the invocation of files is
presented in Sections 7, BASIC PROGRAM FILES and 8, MACHINE
LANGUAGE PROGRAM FILES.

PolyMorphic Systems System 88 User's Manual Page 41

Section 5

THE DISK DIRECTORY

5.0

The first four sectors of every disk are reserved for the main
disk directory, which contains a list of files and
sub-directories on the disk. The main disk directory is
displayed by use of the LIST or DIRECTORY commands accompanied by
the drive name of the disk to be listed.The directory also
carries within it information not seen in the display of the
directory, but necessary to the functioning of the system. After
discussing the information maintained in the directory that you
DO see, we'll discuss the information that you don't.

When a disk directory is displayed, you might see something like
the following:

Disk GUTNBERG has 20 files on it.
240 sectors in use, 2 deleted

Size Name
10 CHECKERS.BS
140 Article:lst-Draft.TX
50 CHECKBOOK.F2

5.1 THE DIRECTORY HEADER

The first two lines of the disk directory di~play are the
directory header. The header tells you a) the name of the disk
whose directory you are displaying; b) the number of files in the
directory c) the number of sectors used by those files; and,
d) the number of sectors making up deleted files (inactive,
inaccessible files).

5.2 THE DIRECTORY PROPER

The rest of the directory listing displays the names and sizes of
all its active (undeleted) files. The size of a file is the
number of disk sectors used by that file. Under certain
conditions, this section of the directory can list other
information about the files on the disk as well. (See Section
6.2.1, ENABLE and DISABLE for more details.)

5.3 "INVISIBLE" FILES \

If you add up the number of files listed in the directory
(three), you will see that that number is not equal to the number

Page 42 System 88 User's Manual PolyMorphic Systems

of files given in the directory header (20). You will also note
.that the number of sectors in use mentioned in the header does
not agree with the number of sectors in use you can see displayed
in the directory proper. Obviously there are files on the disk
that are not listed in the directory. What are these "invisible"
files?

There are three classes of files that are not displayed
disk directory--deleted files, other directories and
respective files, and system files.

in the
their

Deleted files are files that you have decided you no longer need.
You have deleted them by using the DELETE command (Section 6.2.3,
DELETE), or the system deleted them automatically to make way for
revised versions when you used the Editor. Deleted files,
although no longer listed in the directory, are not physically
gone from the disk. The number of sectors that they use is
reflected in the directory header both in the total number of
sectors in use and the number of sectors in use by deleted files.
You may not access deleted files (that is, find the file on the
disk and copy information from it). If you attempt to bring a
copy of a deleted file into memory, the system will tell you "I
can't find that file." To bring a deleted fileback into active,
accessible status, use the UNDELETE command (Section 6.2.4,
UNDELETE). To actually remove deleted files from a disk, use
PACK. (Section 6.2.5, PACK).

Another type of file not listed in a directory is the system
file. BASIC itself is a system file. Such a file cannot be
deleted or renamed. A special type of system file, an overlay,
cannot be brought into memory or executed except by the system
itself, and cannot have its contents displayed. A system overlay
file is always found on the System Disk.

Later in the manual (Section 6.2.1, ENABLE and DISABLE), we will
discuss how you may see system files listed in a disk directory
display.

The third type of file that can be on the disk but not listed in
the main directory is the sub-directory. of course
sub-directories can be listed in the main directory, however,
those first level sub-directories might contain more sub­
directories which are not listed in the m~in disk directory but
in one of its off-shoot directories. No files that are found in
a sub-directory would be listed in the main disk directory. The
number of sectors occupied by these files and sub-directories
which are listed in a sub- directory, are included in the main
disk heading as a part of the total sectors in use figure.

5.4 UNDISPLAYED DIRECTORY INFORMATION

Besides the file information talked about above, the directory
carries within it certain information about disk files that is
not displayed, but IS used by the system. The directory "knows"
if a file is a system file.

PolyMorphic Systems System 88 User's Manual Page 43

The directory also carries within it information about the status
of a file: l} is the file deleted or active?, and 2} is the file
"new" (is the file an original, or a copy of another file)? Such
information provides information to the system it needs to handle
files.

5.5 SUB-DIRECTORIES

All main disk directories take up 4 sectors on their disk. This
means that you .can store a maximum of about 6e file names (The
total number of file names that can be accommodated by one
directory varies depending on the length of each file name.) in
that main disk directory. 'If you have a double density 8813, or
an 88/MS add-on you may very likely find that a 4 sector area is
not enough room to house the names of all the files you would
like to be able to store on a single disk.

This limited directory factor is not a problem because many
sub-directories can be stored on your disk as well. This means
that your main disk directory may list the names of other
directories. These sub-directories are also limited to 4
sectors. However, one sub-directory name on your main disk
directory could be the parent directory for as many
sub-directories.as you can access legally given the 31 character
limit (see Section 4 on providing legal path names.)

WARNING: If you have a double-density system use the
subdirectory capability to avoid overfilling' your
directory. If the name of a file that you have opened
will not fit in your directory, you will lose your text
or data!

The sub-directory stucture also allows the convenient grouping of
files so that those which are obviously a sub-group of a larger
category can be grouped together under it. The following are
examples of sub-directory use. Note that if no sub-directory
exists on the disk, you can create one by providing a path name
with all of the desired sub-directory names and the file name
that is to be stored.

$EDIT Film<Fgn<Berg<7th-Seal

$EDIT Film<Am<Wood<Manhat

$EDIT Film<Fgn<Berg<Perso

$EDIT Film<Fgn<Wood<Annie

If we were to store information or reviews on films we might
create the the above path names. The major category is FILM,
which is listed in the main disk directory. , Then under that main
category there are two main divisions, FGN (foreign) and AM
(American). Within each of those categories are the names of
individual film artists, WOOD (Woody Allen) and BERG (Bergman).

Page 44 System 88 User's Manual PolyMorphic Systems

All of these headings so far mentioned become the names of
sub-directories. , T.he last headings, ALLEN and BERG, each contain
files which are named according to film titles. These files
contain the actual information which we are attempting to store.
We could also create a file under FGN or AM which could contain
general information on Foreign or American films. This
sub-directory tree structure allows for convenient storage whi~h
pertains to the actual way that these types of information relate
to each other. This sort of grouping together of information
also allows easy transfer or deletion of several related files at
once (see section 6 on the use of COpy and DELETE).

Sub-directories are stored on the disk like files but you can
tell that a particular item listed in the main directory is a
sub-directory because it has a .DX extension.

Section 4 explains how to provide
sub-directories, and Section 6 shows
and UNDELETE work both with files
directory and with sub-directories and
directories.

path names for files and
how COPY, DELETE, RENAME,
listed in the main disk
their off-shoot files and

()

PolyMorphic Systems System 88 User's Manual Page 45

Section 6

THE EXECUTIVE

Whenever you see the system prompt $ or $$, you are talking with
the part of the disk operating system called the Executive
(Exec). Exec handles all communication between the system and
you--it processes the words that you type and responds to them
either with the appropriate action or with an error message.
(When you are communicating with BASIC or the Editor, your
commands are processed by them and not by Exec, since you are not
actually communicating with the system.).

You will probably refer often to sections 6.2, SYSTEM COMMANDS,
and 6.3, REFERENCE LIST OF SYSTEM COMMANDS, since they contain
information that you will use frequently in operating the system.
Sections 6.1 and 6.4 discuss some of the internal workings of
Exec (e.g., how Exec processes input, what happens within the
system at start-up time, etc.). This infor~ation is not strictly
necessary for operating the system; you may find, however, that
you enjoy understanding HOW the system works and that knowing ' why
the system responds to your instructions the way it does will
allow you to make better use of it.

6.1 HOW EXEC PROCESSES INPUT

After Exec issues a system prompt $, it waits for you to give it
an order. When it receives an input (the words that you've typed
from the keyboard), it follows three steps in deciding what to
do. It decides if the input is: 1) a system command; 2) a file
invocation; or 3) a command file. The procedure it follows in
processing the input is to ask the following questions:

Is this a command?

Exec looks at the first word typed and determines if it
begins with a disk specifier (a number enclosed in
angle brackets). If a disk specifier is present, Exec
knows that a file is being invoked, and Exec then moves
on to the next step in processing the input.
Otherwise, Exec compares the word to the commands in
its list of legal commands. If it finds a match, it
takes the appropriate action in response to the
command. If no match is found, Exec decides that a
file on the System disk has been invoked (which
requires no disk specifier), and Exec moves on to the
next step in input processing--determining if the file
invocation is legal.

Page 46 System 88 User's Manual PolyMorphic Systems

Is this a file invocation?

If Exec does not find a file of the given name on the
disk specified, it puts an error message on the screen.
If such a file DOES exist, Exec does the following:

Is this file a machine language program?

If the file appears to be a runable file, and not
a system overlay, Exec brings a copy of the file
into memory and tries to run it. If the file is
a system overlay, the message "I can't run that
file" appears on the screen. If the file is not
a machine language program, Exec moves on to the
next step: determining if the file is a BASIC
program.

Is this file a BASIC program?

If the file carries the file name extension .BS,
and otherwise appears to be a BASIC program, Exec
brings the language BASIC into memory and "tells"
it to run the program. If the file is NOT a
BASIC program, Exec moves on to the next input
processing step •.

Is it a command file?

If Exec is able to find a file but Js not able to run
it as a BASIC program or a machine language program,
Exec will try to use the file as a command file. A
command file is one from which the system draws
instructions. More details on constructing a command
file, ending the use of a command file, and determining
what commands are legal as command file items will be
found in Section 9, COMMAND FILES. For now, the
important thing to remember is that from the time a
command file is invoked until its use is ended, the
system takes instructions entirely from that file,
without knowing whether those instructions come from a
command file or from the keyboard.

If Exec is not successful in using a command file (if,
for instance, an unknown command or unrecognizable file
name is found in the command file) use of that file
will be ended, and an error message will be displayed:
"(Cmdf abort). II

From the information above, it is clear that if given an input
that it cannot recognize, Exec will assume that you have given it
a file invocation for a non-existent file. If, for example, you
type "ZZZ" and a carriag~ return, you will receive the message "I
can't find that file."

PolyMorphic Systems System 88 User's Manual Page 47

6.2 SYSTEM COMMANDS

Some of the commands that Exec recognizes, we have encountered
before in this manual. Those commands will be covered more fully

here.

NOTE: Every command must be entered in upper case and
after a system prompt. You must type a carriage return
at the end of e~ery command line. Only as many letters
need be typed as will uniquely identify that command.
(In other words, you only have to type as many letters
as are required to distinguish the command from another
in Exec's command list.) All of the entries below will·
match the word "IMAGE" in Exec's command list:

$$IMAGE
$$IMAG
$$IMA
$$IM

6.2.1 ENABLE and DISABLE

The computer ordinarily operates in what is called the disabled
mode. Another mode of operation, the enabled mode, is intended
for use by those who have a considerable degree of familiarity
with computers. The experienced user is considered familiar
enough with assembly language and system operation to find
interesting and to benefit from an expanded disk directory
display and access to the front panel display.

6.2.1.1 Disabled Mode

When the system is turned on or restarted, it comes up in
disabled mode. This state is indicated by the appearance of a
single dollar sign prompt $. All of the situations and commands
that we have discussed up to this point occur when the machine is
in disabled mode. When in disabled mode, you are able to write
pr?grams, save programs, and otherwise use the system fully.

6.2.1.2 Enabled Mode

When the system prompt is a single dollar sign symbol $, you know
that the machine is operating in the disabled mode. To enter
enabled mode, type:

ENABLE

Exec will respond with a double dollar sign prompt $$,
indicating that you are now operating in enabled mode.

One option open to you when the system is in enabled mode is
entry to the front panel display. Type a Control-Z (hold
down the CTRL key and type a Z). A software simulation of a
traditional computer front panel will appear on the monitor

Page 48 System 88 User's Manual PolyMorphic Systems

screen. The information shown in the front panel display is
explained in Appendix E, The 4.0 Monitor and the Front Panel
Display. Briefly, however, what you are seeing is the
contents, expressed in machine language, of a section of
your machine's memory. This can be extremely useful for the
machine language programmer, and rather disconcerting for
the non-machine language programmer. You can use the
directions given in Appendix E to modify the contents of the
memory locations shown in the front panel display.

To return to the system from the front panel display, type a
G. Entry to the front panel display is prevented, whether
in enabled or disabled mode, whenever disk I/O (disk read
and write operations) is taking place.

Another advantage to operating the system in enabled mode is
the additional information provided when a disk directory is
displayed. This information, like the information provided
in the front panel display, is likely to be of benefit only
if you are an experienced machine language programmer.

A typical disk directory display, when the system is in
disabled mode, might look something like this:

Disk CATCHWORD has 12 files on it.
155 sectors in use, 0 deleted.
Size Name
HI SKETCH.BS

5 MAIL.BS
6 Graphics.GO

Three files seem to be missing from the display of the directory:
The directory header tells us that we have six fileson the disk,
but only three are listed. To find those "missing" files, we
must operate in enabled mode.

When the system is in enabled mode, the display of the partial
disk directory looks like this:

Disk CATCHWORD has 12
155 sectors in use, 0
Size Addr La Sa

6 4 2000 2000
2 A 2000 2000

10 C 0 0
5 16 , 0 0
6 lA 3200 3200

32 20 3200 32~0

files on it.
deleted.

Name
Exec~OV
Test.OV
SKETCH.BS
MAIL.BS
Graphics.GO
BASIC.GO

Now we see the three files missing from the first directory
display. They are: one system file (BASIC.GO) and two system
overlay files (Exec.OV and Test.OV). The file name extension .OV
indicates an overlay file. The directory tells us the name and
size (in sectors) of the files on the disk. In enabled mode it

PolyMorphic Systems System 88 User's Manual Page 49

also tells us the disk addresses of the files, and their load and
start addresses (explained below).

Let's discuss each of these new items of information separately.
You will need the following information if you plan on doing
machine language programming; if you intend to program primarily
in BASIC, skip over the next few paragraphs and return to them at
your leisure.

Disk address:

We already know that there are sections on disk called
sectors. The information that we store on a disk is
written into these sectors. The directory has always
told us how many sectors were used by each file. Now
we can see at exactly what sector on the disk each file
begins and ends. Notice that size of the files is
given in ordinary decimal notation (base 10). The disk
addresses look rather strange, however. They are given
in hexadecimal (base 16) rather than ordinary decimal
(base 10) numbers. It turns out that it is extremely
useful to have some information in hexadecimal. This
is because when we talk to the machine in machine
language we talk to it in hexadecimal numbers, which it
translates into binary numbers (base 2).

Note that the first disk address is 4.
sectors 0-3 (we start counting with
reserved for the disk directory itself.

Remember that
a zero) are

Load address (La):

The load address is a hexadecimal number which
designates a memory location address. This address
tells the system where in the main unit's own memory to
start writing a copy of the disk file when that file is
invoked.

Start address (Sa):

The start address is also a hexadecimal
representing a memory location address. The
address 1S the beginning location of the
language program, and is the address the system
when starting execution of that program.

number
"start"
machine
goes to

Note that the load address is non-zero only for machine language
program files (including system files and system overlay files).
Load and start addresses of 2000H are reserved for system
overlays. A zero load address indicates BASIC programs and text
files.

To reenter disabled mode from enabled mode, type:

DISABLE

Page 50 System 88 User's Manual PolyMorphic Systems

Exec will respond with a single dollar sign prompt $, indicating
that the machine is in disabled mode.

6.2.2 LIST, DIRECTORY and CHECKSUM

The contents of a disk is discovered by looking at the disk
directory--the disk's "table of contents." If the sub- directory
capability is "being used, then there may be more than one
directory that has to be listed in order to view all of the
contents of a disk.

The LIST command is used only to display disk directories, and
means "LIST the directory of the disk in drive n."

In order to see a disk's main directory, type:

$LIST n

where n is the disk specifier (drive number) selecting the disk
whose directory you wish to display.

EXAMPLE:

$LIST 3

The directory of the disk in drive 3 will be displayed. As
always, no disk specifier need be given for a disk in the default
drive, drive 1.

You may also use the special disk specifier symbol t. (See
Section 4.7, Spcial Disk Specifier Symbols, for more information
on the use of this symbol.)

EXAMPLE:

$LIST t

where * has previously been defined as a valid drive number by
the use of the? disk specifier symbol.

Sometimes so many files are listed in the directory that the
complete directory display will not fit on the screen at one
time. If this occurs, the system will display a dot on the
screen at the bottom of the directory display. To continue the
display, type any character. Typing a Control-Y will end the
directory display at any time.

If you have a printer, you may use the DIRECTORY command to list
the disk directory out to your printer. Once you are sure that
your printer has been interfaced to the system software, (see
Section 13, THE PRINTER DRIVER)type:

$DIRECTORY n

IJ

PolyMorphic Systems System 88 User's Manual Page 51

where n is the disk specifier (drive number) selecting the disk
whose directory ~ou wish to see printed. You may also use the
special disk specifier symbol # and abbreviate the command.

EXAMPLE:

$DIR #

If you want to list
supply a path name
sub-directory name.

the contents of a sub-directory,
which contains the drive name

you must
and the

EXAMPLE:

$LIST <2<sub-dir-a

Note that you can not leave off the opening bracket when listing
a sub-directory as you can when providing a main disk directory
path name. If the above path name were typed without the opening
bracket, the the Sysres drive name would be appended to the front
of the path name causing the drive 1 directory tree to be
searched for the desired directory.

CHECKSUM is a file on the system disk which can be invoked by
typing:

$CHECKSUM DIRECTORYNAME

while the system is in DISABLEd or ENABLEd mode. This file will
cause the specified directory to be displayed. This directory
will look like a regular directory listing but there will be an
additional column which provides the CHECKSUM for each file.
When you first receive your system disk, you should record the
CHECKSUM for each file. Later if you think you have a problem
with the system software, you can use a CHECKSUM command to view
the directory of the file or files in question. If any of the
numbers in the CHECKSUM column have changed, then some part of
the software has been altered and may be causing problems. You
can, of course , use this program on files which you create.
Record their CHECKSUM when they are 'working correctly. Later you
can use this command to see if the CHECKSUM has changed.

Since CHECKSUM is a file on your system disk, you
if you want. We do not reccommend that you do,
you will then be unable to list the CHECKSUM of
you are having problems.

can delete it
however, since

your files when

For an explanation of the information to be found in the disk
directory display, see Section 5, THE DISK DIRECTORY, and 6.2.1,
ENABLE and DISABLE.

6.2.3 DELETE

The meaning of the DELETE command is simply "Tag the following

Page 52 System 88 User's Manual PolyMorphic Systems

files or sub-directories to be removed from the disk on the next
PACK operation, and don't display these files or sub-directories
in the disk directory."

You may recover deleted files by using the UNDELETE command.

To delete a file provide the DELETE command and the file's path
name. You may include as many path names (separated by commas)
within one DELETE command as will fit on one line of the screen.

To delete files, type:

DELETE Pathname,Pathname, •••

EXAMPLE:

$DELETE <2<ELECTRONS,<3<CHESS.UG,<3<Clock.TX

If you give no extension in a file specification, DELETE will
delete the first file of that name that it finds on the given
disk, regardless of its extension. If an extension IS given,
DELETE will delete only a file of the given name with that
particular extension.

Whenever a file is deleted, the directory header is updated to
reflect the new number of deleted sectors on the disk. The
figure indicating the number of files on the disk stays the same,
until the deleted file is actually removed from the disk.

Gone But Not Forgotten: Use of the DELETE command is only the
first step toward removing a file from a disk. Once a file is
deleted, it is no longer listed in the disk directory display.
It can no longer be invoked. However, it is not physically gone
from the disk. It can, in fact, be "undeleted" (see Section
~.2.4, UNDELETE). The final process in removing files from a
disk involves the use of the PACK command (Section 6.2.5, PACK).
Only then is a deleted file truly gone from a disk.

If Exec is unable to delete one of the files mentioned in the
DELETE command, it ignores the rest of the file specifications
after that point on the line. A system prompt will be displayed,
indicating that Exec is waiting for another command.

EXAMPLE:

$DELETE <2<ACCOUNTS.DT,<3<Addresses.TX,<9<RECIPE,<2<Tax

Exec was not able to delete <9<RECIPE (invalid disk specifier).
<2<Tax will not be deleted, even though it may be a deletable
file, because it "follows a file specification that caused an
error.

One of two error messages will be delivered to you on the screen
if Exec has not been able to delete a file: I can't find that
file, or I can't do that to a system file.

o

PolyMorphic Systems System 88 User's Manual Page 53

If files CAN be deleted, a message will appear on the screen
listing the files deleted.

EXAMPLE:

$DELETE 3-D-MAZE,<2<AIR-ROUTES

<1<3-D-MAZE.BS deleted.

<2<AIR-ROUTES.TX deleted.

6.2.3.1 Delete a Sub-Directory or A File in a Sub-Directory

To delete a sub-directory, type its correct path name.

EXAMPLE:

DELETE $<2<Film<Fgn<Berg

The sub-directory named Berg, an off-shoot of the sub-directory
Fgn found in the main directory in drive 2, would be deleted as
would all of the files listed in the Berg directory.

EXAMPLE:

$<2<Film<Fgn<Berg<7th-Seal

The above is the path name of a file in the Berg directory; this
file and any others listed in Berg will be deleted when Berg is
deleted.

If we typed:

DELETE $<2<Film<Fgn

the directories called Fgn, Berg, the file called
any other directories or files branching off of
deleted.

7th-Seal and
Fgn would be

You can not DELETE an entire main disk directory. DELETE only
affects individual files, and sub-directories and thier dependent
files. Since DELETE is a command which affects specific files on
a disk and not the entire disk, you must supply the opening left
angle bracket and drive name if you do not want the Sysres drive
name to be appended to the front (See Section 4.4).

$DELETE 2<Film<Fgn

The above partial path name would cause the system to search the
drive I directory tree which for a file or sub-directory called
Fgn.

Page 54 System 88 User's Manual PolyMorphic Systems

6.2.3.2 Using DELETE with *

An additional feature of the DELETE command is its use of a "wild
card n symbol, an asterisk (*). In cards, a wild card is a
special card that can be used to match any other card. In the
same way, the DELETE wild card symbol matches any file name or
extension it is paired with.

EXAMPLE:

$DELETE <2<*.TX

The above command will delete ANY files with the extension .TX
from the disk in drive 2 (other than system files), not just
thefirst file found with that extension.

EXAMPLE:

$DELETE <3<PAYROLL.*

The DELETE command above will cause to be deleted any files found
on the disk in drive 3 with the name PAYROLL, regardless of their
extensions.

One can see how the wild card symbol can be very useful. Suppose
that you have an entire family of programs that handle company
payroll. The programs are all named PAYROLL, but have different
extensions, depending upon their functions (.TX for text files
giving explanations on using the programs; .DT for payroll data
files; .BS for the actual payroll calculating programs; etc.).
All of the PAYROLL programs are on one disk. You may decide that
you want to eliminate all of the PAYROLL data files in order to
replace them with new ones. Use *.DT in a DELETE command. (Of
course, this will delete ALL files on the disk with the extension
.DT.) You may decide that you want to delete all PAYROLL
programs, regardless of their extensions. Use PAyROLL.* in a
DELETE command.

One wild card combination prohibited is * * This file
specif~cation in a DELETE command would result in all deletable
files on the given disk being deleted--a dangerous capability.
To completely erase a disk, use the IN IT command (see Section
6.2.15, INIT).

You may also use the special disk specifier symbols? and # as
part of the file specifications given in the DELETE command.

PolyMorphic Systems System 88 User's Manual Page 55

EXAMPLE:

$DEL <?<Diet, <#<Calendar

or, if # has been defined as <2<Film<Fgn, typing the following:

$DEL <#<Berg

will be the same as typing:

$DEL <2<Film<Fgn<Berg

and will cause Berg and all of its off-shoot files and sub­
directories to be deleted

(See Section 4.7 for information on the? and # disk specifier
symbols.)

6.2.4 UNDELETE

The UNDELETE command simply says "I've changed my mind. I want
the file or files specified by my path name to be undeleted.

The procedure for returning deleted files to active status
involves the use of the UNDELETE command with a directory path
name. The UNDELETE command operates on ALL deleted files listed
in the directory specified by the directory path name.

If the files you want to UNDELETE are listed in a main disk
directory, then you only need to specify the drive name in your
path name.

EXAMPLE

$UNDELETE 2

Notice that we did not provide the opening left angle bracket.
The system will not append the Sysres drive name to our partial
path name because the files we want to UNDELETE are listed in a
mai~ disk directory. Whenever a command is being used which
affects an entire main disk directory, the system refraims from
appending the Sysres drive name if it sees an unbracketed drive
name. Instead, it appends the opening left bracket to the above
partial path name. Since the above command causes all files
listed in drive 2 to be undeleted, its entry would also cause
sub-directories listed in drive 2 to be undeleted. Remember that
when a sub-directory is undeleted, all of its off-shoot
directories and files are also undeleted.

If we wanted to UNDELETE a sub-directory which is not listed in a
main disk directory, our path name would have to specify the
drive name and the component names leading to the sub-directory
we wish to UNDELETE.

Page 56 System 88 User's Manual Pol yMo rphic Systems

EXAMPLE:

$UNDELETE <2<Film<Fgn<Berg

Of course, any off-shoot files and directories of Berg would also
be undeleted.

Remember that even though you can DELETE a specific file, by
typing its path name after the DELETE command. You must UNDELETE
it by typing the path name of the directory which contained it.

EXAMPLE:

$DELETE <2<Film<Fgn<Berg<Persona

would cause the file named Persona in the Berg directory to be
deleted. To UNDELET this same file we must type the following:

$UNDELETE <2<Film<Fgn<Berg

then Persona and any other DELETEd files under Berg would be
undeleted.

You may also use the special disk specifier symbol i in the
UNDELETE command. (See Section 4.7.2 Wild Card Path Specifier)

EXAMPLE:

$UNDELETE t

would UNDELETE all files listed in the directory indicated by the
path name by which # is defined.

As files are undeleted, a message
file, indicating that it has been
file name.

EXAMPLE:

$UNDELETE 2

Biplane.TX undeleted.

Botany-Notes.TX undeleted.

TEXT-FORMATTER.GO undeleted.

appears on the screen for each
undeleted, and giving its full

Warning: You already know that you cannot create a
disk file with the same name as another active file on
that disk (that is, the same file name AND the same
extension). But you CAN create a file with the same
name as a deleted file. Let's say that you have a
BASIC program named FACTORIAL. You have deleted that

i.J

PolyMorphic Systems System 88 User's Manual Page 57

program file and saved a new version of the program on
the same disk as FACTORIAL. You decide that you want
to bring back into active status several previously
deleted files. You use the UNDELETE command, and find
that you suddenly have TWO files with the same file
specification on the same disk. To get out of this
predicament, use either the RENAME command to rename
the first duplicate file on the disk (remember that
RENAME will rename the FIRST file on the disk it finds
with the specified name) or the DELETE command to
delete the first duplicate file on the disk (DELETE
also will delete the first file of the given name that
it finds on a disk).

6.2.5 PACK

To physically erase deleted files from a disk, use the PACK
command. PACK erases all deleted files, and moves the rest of
the files up ("packs" them together and pushes them toward the
beginning of the disk) so that no empty areas are left between
files. This reclaims the space used by deleted files and causes
the directory heading to be updated to reflect the new number of
files existing on the disk and to show that there are no deleted
sectors.

~ Type:

SPACK 2

Since PACK is a command which affects the entire disk in the
specified drive, there will be no Sysres drive name appended to a
partial path name which does no have an opening left bracket.

The Sysres drive name will be appended if we- type the following:

SPACK

You may also use the special disk specifier symbol * in the PACK
command if the * has been defined as a drive name only.

EXAMPLE:

SPACK *
If * is defined as <2, the disk in drive 2 will be PACKed.

Once a disk has been PACKed, all the deleted files are
irretrievably gone. Take care when you use PACK; especially,
double-check to make sure you are PACKing the right disk.

When you use PACK, an automatic ZAP is also performed. That is
PACK it re-zeroes memory before it has finished its last data
transfer. Therefore make sure before you use PACK that you do
not have any data in memory that you need to retain.

Page 58 System 88 User's Manual PolyMorphic Systems

6.2.6 TYPE and PRINT

It is often desirable to display the contents of a particular
file. The TYPE command puts a copy of the asked-for file on the
monitor screen. To display a file, type:

$TYPE Pathname

EXAMPLE:

$TYPE <3<DESIGN-SPECS.BS

The BASIC program file DESIGN-SPECS will be brought into memory
from the disk in drive 3 and displayed on the screen.

The path name you give TYPE may contain the disk specifier
symbols # and? (See Sections 4.7.1 and 4.7.2)

EXAMPLE:

$TYPE <?<PHOENIX

TYPE "pages" the file display by stopping at every 14th carriage
return symbol that it encounters within the file. That is,
fourteen lines of information (one screen) are presented each
time you hit a key. A dot is then shown, and TYPE waits for any
character except an X before going ori to the next "page" of the
file. If you type an X, the file display is ended, and you are
returned to Exec. A Control-Y command also terminates the TYPE
display To print a copy of a file on a printer, use the PRINT
command. Making sure that your printer has been interfaced to
the system software (See Section 13, THE PRINTER DRIVER), type:

$PRINT Pathname

You can interrupt the printing of your file with Control-Y if you
decide that you do not want a full listing of the file. A word
of .warning. You can use TYPE or PRINT on any kind of file. What
happens if you display a file that isn't in text form (data
translating to keyboard-type letters and symbols)? A machine
language program file, for example, is stored in machine
language, a kind of data that isn't in text form. The system
will take the file and try to convert what it finds in it to
standard keyboard symbols. You will see an interesting but
illegible display of what TYPE or PRINT thinks is text data, but
isn't. Therefore, use TYPE or PRINT only on files which are
stored in text form (BASIC data files, text files, BASIC program
files,etc.).

You may not use PRINT or TYPE on a system file. If you try to do
so~ the system will display the error message: I can't do that to
a system file.

6.2.7 PAGE

C)

o
PolyMorphic Systems System 88 User's Manual Page 59

If you have a printer "hooked up," the PAGE command causes it to
feed one form-- move from the present page in the printer to the
top of the next.

6.2.8 COpy

To copy a file from one disk to another, or simply to make a copy
of a file on the same disk as the original file, use the COpy
command. Type:

$COPY (original) Pathname (new) Pathname

EXAMPLE:

$COPY <2<REVIEW <3<REVIEW

The above command will copy the first file on the disk in drive 2
with the name REVIEW. The copy will go on the disk in drive 3,
under the name REVIEW.

If you are COPYing a file which is listed in a sub-directory to
another disk where that sub-directory does not exist, a
sub-directory structure will be created on that new drive which
will accommodate that file.

-oj EXAMPLE:

$COPY <2<Film<Fgn<Berg<7th-Seal <3<Film<Fgn<Berg<7th-Seal

The above entry will result
directories called Film, Fgn,
course 7th-Seal will then exist
directory.

in the
and Berg
on drive

opening of the sub­
on drive 3. And, of

3 as a file in the Berg

You may use the disk specifier symbols? and * when using the
COPY command, as long as you do not use the? symbol in the path
name of the new file to be created.

EXAMPLE:

Legal: $COPY <?<COMMON-COLD <*<Rare-Flu
Illegal: $COPY <2<Rational-Numbers <?<Sane-Numbers

A file may not be created with the same name as another active
file on the same disk. If you had typed:

$COPY <2<REVIEW <2<REVIEW

an error message would have been displayed: "That file already
exists." You may, however, make a copy of REVIEW on its own disk
if you use another name.

Page 60 System 88 User's Manual PolyMorphic Systems

EXAMPLE:

$COPY <2<REVIEW <2<REVIEW-2

To create a new file with the same name as the original file, you
may use the wild card symbol *

EXAMPLE:

copy <3<FORMATTING <2<*

You may not use COpy on a system file. If you try to do so, Exec
will display the message: I can't do that to a system file.

To substantially speed up COpy, see Section 6.2.18.1, Using ZAP
to Speed Up COpy.

6.2.9 RENAME

It is possible to rename files without making additional copies
of them. Type:

RENAME original Pathname.e~tension new Pathname.extension

EXAMPLES:

$RENAME <2<BILLS.TX <2<BILLS.DT

$RENAME <3<TIME-SCHEDULE.BS <3<DEADLINES

If you do not supply an extension for the ne~ file name, the
original file's extension will be used for the new file name. If
you do not supply the extension of the original file, the system
will rename the first file of · the given name found on the disk.

The RENAME command.only involves the changing of the original
path name. One ~omponent of THE PATH NAME THAT YOU CAN NOT
CHANGE IS THE DRIVE NAME. If you attempt to do this, you will be
told that "you can not RENAME across directories" since there is
no file to RENAME on the new drive. If you want a file on drive
3 that is just like the one on drive 2 but with a different path
name, you will have to use the COpy command.

When a file is renamed, a message
telling you so, and giving the full

EXAMPLE:

will appear on the screen
old and new file path names.

$RENAME <2<Results-of-Experiment.DT
<2(DataResults-of-Experiment.DT renamed to Data.DT

The RENAME command uses the wild card symbol * in the same way
that the DELETE command does. The symbol * may represent one of

o

PolyMorphic Systems System 88 User's Manual Page 61

c:> the components in a path name or an extension. Thus you can
rename several files with one RENAME command.

EXAMPLE:

$RENAME <2<RESULTS.* <2<DATA.*

RESULTS.DT renamed to DATA.DT

RESULTS.TX renamed to DATA.TX

RESULTS.WW renamed to DATA.WW

$RENAME <3<*.DT <3<*.Fl

GRAPH.DT renamed to GRAPH.Fl

INVENTORY.DT renamed to INVENTORY.Fl

You may not, however, use a wild card symbol for the path name of
one of the files mentioned in the RENAME command if you use a
wild card symbol for the extension of the other file name given.

--1 EXAMPLE:

$RENAME <2<MOUSE.* <2<*.TX

The above command is confusing
command, you could wind up with
AND with the same extension.
command above.

to the system; if it obeyed the
several files with the same name
The system will not obey the

If you are using the sub-directory structure be sure that you
follow the following rules about renaming sub-directories.

You can provide a RENAME command to change one sub-directory name
at a time.

EXAMPLE

$RENAME <2<DOCTORS <2<Physicians

For the above command to work DOCTORS must be a sub-directory
that is listed in the main disk directory on drive 2. If you
want to change the name of a sub-directory that is an off-shoot
of DOCTORS type the following:

$RENAME <2<DOCTORS<SURGEONS<HEART <2<DOCTORS<SURGEONS<BRAIN

Notice that when
sub-directory that

you are renaming sub-directories,
can be renamed is the last one in

the only
your path

Page 62 System 88 User's Manual PolyMorphic Systems

name. You can not ask the system to do the following:

RENAME <2<DOCTORS<SURGEONS<HEART <2<DOCTORS<SPECIALISTS<BRAIN

If you were to attempt such a renaming request, the following
error message would be presented:

You can not RENAME across directories.

You also can rename files that are part of a sub-directory
structure by providing their path name and the new path name that
you want.

EXAMPLE:

RENAME <2<FILM<FGN<BERG<PERSONA <2<FILM<FGN<BERG<FACES

You will then see the following message:

PERSONA.TX renamed to FACES.TX

Notice that we changed only the last component name in the new
path name.

Do not use the wild card symbol * in the renaming of
sub-directories or of files which are listed in sub-directories.

System files and system file overlays cannot be renamed.

You cannot use the disk specifier symbols? and # when renaming a
file.

6.2.lrt1 SAVE

The SAVE command is used to make a disk file that is a copy of an
area of the machine's memory. The command is almost always used
to save on a disk a copy of a machine language program that is in
memory. Type:

SAVE

followed by a carriage return. SAVE will then ask
questions. (Note: your answer to each question is
you type a carriage return.) The questions are:

1) From address:

2) Load address:

3) Start address:

4) Number of sectors (1-7FH):

you several
ended when

PolyMorphic Systems System 88 User's Manual Page 63

5) Filename:
These questions presuppose a certain amount of knowledge on your
part about machine language and memory. You must know WHAT area
of memory you want to save (the beginning memory location and the
number of bytes you want to save). You also must know where in
memory your program should be copied into when you bring this
file back into memory.

We will discuss, each of the SAVE questions separately.

From address:

This address is the beginning memory address that SAVE is to
begin copying from. You answer this question with the
hexadecimal (base 16) number which is that memory location's
address. Note: You know that a number is in hexadecimal
form when it is followed by an H (e.g., 3200H).

If the first byte of your program is at location 40A0H, you
would answer the above question 40A0 followed by a carriage
return.

Load address:

The load address is the first address of the area of memory
. that you want this program to be copied into whenever it is
later brought in from the disk. The answer to this question
is the hexadecimal number that is that memory location's
address.

The memory contents you want to save are in a certain area
of memory, beginning with the memory address you gave as an
answer to the "from address" question. It may be that,
later on, when you invoke this file that you are saving, you
do not want the program copied back into the same memory
area that it was originally read from. By giving different
load and from addresses, you can save a program that starts
at memory location 9000H (for example). Then whenever you
bring that file back into memory, you can' have the program
placed in memory beginning at location 3200H.

Start add'ress:

The start ' address is the memory address that will contain
the beginning instruction of your machine language program
when it is loaded. A hexadecimal number is expected as the
answer to this question, representing the address of that
memory location.

Later on, when you want to use this file that you are
saving, and it is loaded into memory at the load address you
have supplied, the system will try to begin program
execution. You must specify a start address in response to
the above question in order for the system to execute your
program starting with the first instruction.

Page 64 System 88 User's Manual PolyMorphic Systems

Number of sectors (1-7FH):

You must give a hexadecimal number representing the number
of disk sectors you want to reserve for the file you are
creating. This number must be between 1 and 7F (7F=127 in
decimal). With this number, you are in effect telling SAVE
how many data bytes you wish saved. There are 256 bytes per
disk sector.

Filename:

You must state the name you want to give to this file you
are saving. A disk specifier must be included, so that SAVE
will know on what disk to place this file. (You may not use
the? disk specifier symbol (See Section 4.7.1) An optional
extension may be included. If you do not specify an
extension, the system will affix a default extension of .GO.

After you answer the last question (and have typed a carriage
return), the contents of the specified area of memory will be
written onto a disk as a file. If for some reason you decide
that you really don't want to go through with the SAVE command,
type a Control-Y command to abort the SAVE command and return to
Exec.

6.2.11 GET

It is often convenient to bring a machine language program file
into memory without beginning program execution. GET simply
says, "Get a copy of a file and put it into memory." Program
execution does NOT begin. In order to place a program into
memory without executing it, type:

GET Pathname

EXAMPLE:

$GET <3<PERMUTATIONS.GO

The file PERMUTATIONS is now in memory beginning at its load
address.

You may use the disk specifier symbols? and i.
4.7.1 and 4.7.2)

EXAMPLE:

$GET <?<Bridge/16

(See Sections

GET may be used to bring any machine language program into
memory. You can, for example, bring BASIC itself into memory.

PolyMorphic Systems System 88 User's Manual Page 65

EXAMPLE:

$GET BASIC

Although BASIC is now in memory, you will have to use the START
command to start the execution of BASIC.

An error message will be generated if you try to bring in a file
that is not a machine language file.

You might wonder about the use of a command which only brings a
machine language program into memory without executing it. It is
often very useful to combine more than one machine language
program within one disk file. The only way to do that is to
bring in copies of ALL of the programs into memory (by using the
GET command), and then save their combined memory locations as
one file by using the SAVE command. This presupposes, of course,
that none of the memory locations' of the programs overlap, and
that the programs are designed to execute together.

Another reason for bringing a machine language program into
memory without executing it is to make it accessible for
"debugg ing ." "Debugg ing It is the te rm prog rammers use for the
process of tracking down problems in a program. You can bring
your program into memory by using the GET command, then debug it
using the front panel display (see Appendix D, The 4.0 Monitor
and the Front Panel Display).

6.2.12 START

When a machine language program is placed into memory
the GET command, the START command must be used
execution of that program. Type:

$START

The program in memory will start running.

Caution:

by way of
to begin

Most machine language programs are saved with load and
start addresses of 3200H. This is simply because it is
a convenient place to start loading programs, since it
is the sta rt of "user memory" (that is I the area of
memory set aside for your use).

The system begins program execution by jumping to a
"start" address. This means that the system starts
program execution with the instruction at that address.
When you invoke a machine language program by giving
its file specification to Exec, the system "knows" the
file's start address, which may be any memory location

Page 66 System 88 User's Manual polyMorphic Systems

address. When you use START to begin program
execution, a start address of 3200H is assumed. This
means that if you use START on a program, the program's
start address must be 3200H, because that's where the
system is going to jump to in order to start executing
your program. If your program really starts at some
other location, the system will still try to execute
whatever random numbers are at location 3200H.

So if you plan to use GET to place a program into
memory, and you want to execute that program, make sure
that the program's start address is 3200H.

6.2.13 REENTER

The ReENTER command is used for programs that have a "warm-start"
address. Many programs contain a section of code which is
executed only when you want some program variables cleared or set
to their initial values. This is generally done the first time
through the program. After that, you usually do not want to
execute that area of code again. The first time you execute the
program, you want the system to jump to the start address.
Thereafter, you want an address further along in the program
(past the initializing code) to be used as the start address.
This is the "warm-start" address.

The purpose of the REENTER command is to give you the capability
of beginning program execution at the program's warm-start,
rather than start, address.

There is a distintion between using REENTER and START in the
ENABLEd and DISABLEd modes. When the system is DISABLEd, both
commands check to see if there appears to be anything in memory.
If there does not appear to be anything in memory both commands
send the following message:

Nothing to Run!

When the system is ENABLEd, the START command runs whatever
program is located at 3200H and the REENTER command runs whatever
is located at 3203H. To use REENTER, type:

$$REENTER

and a carriage return.

There's a catch.... As in the above START command, some
assumptions are made concerning the start and warm-start
addresses of machine language programs brought into memory. The
REENTER command assumes a warm-start address of 3203H. REENTER
is going to jump to address 3203H, because it assumes that your
warm-start instructions are going to be there. If your program
is at 8000H, the system is going to try to execute whatever is at
memory location 3203H. The results could be very strange indeed,
and certainly not what you are expecting.

PolyMorphic Systems System 88 User's Manual Page 67

6.2.14 CONTINUE

You use the CONTINUE command when you want to resume execution of
a machine language program that
instance, if you have interrupted
language program with a Control-Y,
execution by typing:

has been interrupted. For
the running of your machine
you can resume that program's

CONTINUE

after a system prompt $. You will probably use this command most
often to return to BASIC from the system level. (Remember, BASIC
is itself a machine language program.) For example, you may exit
from BASIC by using the EXEC command (see Section 7, BASIC
PROGRAM FILES). To return to BASIC, use the CONTINUE command.
IF you had a program in memory when you exited from BASIC, you
will find that program still intact when you return to BASIC
after using the CONTINUE command.

6.2.15 IMAGE

NOTE: In order to use this command, the machine must
be operating in enabled mode.

You can duplicate the contents of one disk on another by using
the IMAGE command.

Type:

$$IMAGE

You will then be asked two questions:

From which drive?

IMAGE expects the number of the drive holding the disk you want
copied.

To which drive?

You must tell IMAGE which drive is holding the disk upon which
you want the copy to be placed.

EXAMPLE: $$IMAGE

From which drive? 3
To which drive? 2

A complete verbatim copy of the disk in drive 3 will be made on
the disk in drive 2. Even the disk name will be the same.

You cannot use the disk specifier symbols
disk. (See Sections 4.7.1 and 4.7.2) You
disk's contents on that disk itself; an
cause a confused Exec to give you the

? and # when imaging a
may not make a copy of
attempt to do so will
error message: What?

Page 68 System 88 User's Manual PolyMorphic Systems

Because imaging a disk onto the disk in the System Drive would
destroy the contents of your System Disk, Exec will not allow you
to do that, and will issue the following error message:

I can't do that to the System Drive!

Because every write operation is verified,
perform a simple disk surface test of the
written to: if the disk contains a "bad"
message will be displayed, "Verify error."

imag ing a
disk that

disk will
is being

location, an error

Note: Before you use IMAGE, make sure that you do not
need to keep any of the data that is in memory. This
includes programs, text, data, etc. IMAGE uses all of
memory from the start of user's memory up to the end of
memory to hold the disk contents that is is
transferring to the new disk. This makes IMAGE very
fast but destroys any data that you might have had in
memory before you used IMAGE.

IMAGING A DATA DISK ON A TWO DRIVE SYSTEM:

Type:

$$IMAGE

When yo usee:

From which drive?

Do not type the number of the drive from which ,you wish to image.
Instead, remove the system disk and insert the data disk to be
IMAGEd. Make sure that a blank, inited disk (to be IMAGEd onto)
in inserted in drive 2.

Now type 1 after "From which drive?" and 2 after liTo which
drive?".

WARNING: Do not answer the "From which drive?" question
before removing the system disk and inserting the data
disk that is to be IMAGEd.

After the IMAGEd function is complete, you will be asked to
insert a system disk and type a RETURN.

6.2.16 INIT

NOTE: The machine must be
when you use this command.
command file.

operating in ENABLEd mode
INIT cannot be used from a

INIT initializes a disk. This means that INIT erases all
information on the disk. You also give a name to the disk at
this time. Before using a disk for the very first time, or to

PolyMorphic Systems System 88 User's Manual Page 69

completely erase a disk already in use, you must initialize it.

Type:

$$INIT

followed by a carriage return.

INIT will ask:

Which drive?

Enter the number of the drive containing the disk you wish to
initialize. You may not use the disk specifier symbols? and #.
(See Sections 4.7.1 and 4.7.2) Nor can you initialize your System
Disk (the disk in the System Drive). Exec will display the error
message

I can't do that to the System Drive!

if you try to do so.

INIT then will display the following message:

(Cleaning disk)

~ At this point INIT is writing zeros everywhere on the disk,
completely erasing everything on it. This process performs a
rough disk surface test, since an error message ("Verify error")'
will be generated if INIT is not able to write a zero in a
particular place.

INIT will then ask:

Disk name (up to 8 characters)?

You must
This name
directory.

state a disk name no more than eight characters long.
will appear in all subsequent listings of the disk

Any disk may be initialized at any time. Any information on that
disk will, however, be gone irretrievably.

6.2.17 DNAME

You may rename any disk by using the DNAME command. Type

DNAME

followed by a carriage return. You will then be asked two
questions:

Which drive?

DNAME expects the number of the drive containing the disk you

Page 7~ System 88 User's Manual PolyMorphic Systems

want to rename. If DNAME accepts your disk specifier as valid,
it will then ask for the new name of the disk:

New diskname:

Give it a name of eight characters or less. That will now become
the new name of the disk. A disk name may include any of the
keyboard characters including upper and lower case letters.

6.2.19 ZAP

Use the ZAP command to write zeroes in every memory location from
the start of user memory (32~~H) to end of memory (the last
memory location available on your machine). Type:

$ZAP

followed by a carriage return.

Why would you want to write zeroes throughout memory? When you
turn on or restart your machine, even though you may not have put
anything into memory, ' there is still non-zero data there. A
given section of memory may contain what looks like random
numbers. Often you want to make sure that there is NOTHING in
memory except your program. For instance, if you are "debugging"
a machine language program that generates data and stores it in
memory, you would lik~ to be able to see where your data ends and
empty memory begins. If you "zap" memory before you invoke your
program, you know that your data ends where the zeroes begin.

6.2.19.1 Using ZAP to Speed Up COpy

The COpy command will be speeded up if it is preceded by the ZAP
command. The reason for this is that COpy uses memory to
transfer data, and the more memory available for it to use, the
faster it will run. If memory has been ZAPped, all of user
memory may be used, thus COpy will be able to run at optimum
speed. In fact you may find that COpy can work over twice as
fast after the ZAP command has been used. This increased speed
is dependent on the amount of memory you have in your machine and
the size of the file to be copied.

If you have used ZAP before using COpy, it wil~ re-zero memory
after it has finished its last data transfer. Hence you should
make sure before you use ZAP, either alone or in combination with
COPY, that you do not have any data in memory that you need to
retain.

D
PolyMorphic Systems System 88 User's Manual Page 71

6.3 REFERENCE LIST OF SYSTEM COMMANDS

Commands available at the system level are listed below. For
information on general BASIC commands and BASIC file commands,
see the System Library volumes BASIC: A Manual and The System
Programmer's Guide.

NOTE: Remember that all commands must be typed in
upper case, and a carriage return must be typed at the
end of a command line.

The word Pathname, used in the following command definitions,
indicates that an entry specifying which file or disk or
directory is to be affected by the command. Sometimes pathnames
will need to contain more that one component name. (See Section
4) The · term "command syntax" is another way of saying, "This is
the proper form in which to type the command."

THE COMMANDS

CHECKSUM (page 49)

Lists the specified disk directory with CHECKSUM for each file.
Command Syntax: CHECKSUM Pathname (of directory)

CONTINUE (page 65)

Resume execution of a machine language program. Command syntax:
CONTINUE

COpy (page 57)

Copy a file. Command syntax: COpy original Pathname copy new
Pathname

DELETE (page 51)

Delete
symbol

files and
is legal.

sub-directories from disk. Using wild card
Command syntax: DELETE Pathname,Pathname, ••••

DIRECTORY (page 49)

Print a disk directory on a printer.
(Pathname of directory to be printed)

DISABLE (page 45)

Command syntax: DIRECTORY

Put machine into disabled mode. System prompt for this mode is
$. Command syntax: DISABLE

DISPLAY (page 39) While in Exec you will be shown what the system
understands i to mean. Command syntax: DISPLAY

Page 72 System 88 User's Manual PolyMorphic Systems

DNAME (page 67)

Rename disk. Command syntax: DNAME

ENABLE (page 45)

Put machine into enabled mode. System prompt for this mode is
$$. Command syntax: ENABLE

GET (pag e 62)

Place copy of machine language program file into memory but do
not execute program. Command syntax: GET Pathname

IMAGE (pag e 65)

Duplicate a disk by copying entire disk. May be used only when
system is in enabled mode. Command syntax: IMAGE

IN IT (pag e 66)

Initialize a disk. May be used only when system is in enabled
mode. Erases a disk by writing zeroes in every sector. Sets
disk name. Command · syntax: INIT

LIST (see page 49)

Display a directory. Additional i~formation is given when the
system is in enabled mode. Command syntax: LIST Pathname

PACK (page 55)

Pack disk, reclaiming sectors ,held by deleted files. This is the
only way to actually remove deleted files from a disk. When the
system PACKs a disk, it also does a ZAP. Be sure that you do not
need the information in memory. ' Command syntax: PACK Pathname

PAGE (page 57)

Send form feed to printer. If text is present after PAGE, it is
printed starting at the top of the next page. Command syntax:
PAGE

PRINT (pag e 56)

Print the contents of a file on a printer. Command syntax: PRINT
Pathname

REENTER (page 64)

Warm-start machine language
warm-start address of 3203H
syntax: REENTER

program currently in memory. A
(hexadecimal) is assumed. Command

PolyMorphic Systems System 88 User's Manual Page 73

RENAME (page 58)

Rename a disk file or sub-directory. Using wild card symbol is
legal. Command syntax:
RENAME (original) Pathname,(new) Pathname

SAVE (page 60)

Save a machine language program as a disk file. You must provide
hexadecimal "from," "load," and "start" addresses, and the number
of sectors to be used. Command syntax: SAVE

START (page 63)

Start execution of a machine language program currently in
memory. Start address of 3000 (hexadecimal) is assumed. Command
syntax: START

TYPE (page 56)

Display the contents of a file. Command syntax: TYPE Pathname

UNDELETE (page 53)

Undelete all deleted files on a specific disk. Command syntax:
UNDELETE Pathname

ZAP (page 68)

Puts zeroes in all memory locations from 3200H to top of memory.
Command syntax: ZAP

Page 74 System 88 User's Manual PolyMorphic Systems

6.4 SYSTEM START-UP

Every time you push the Load button you restart the disk
operating system. This section discusses what happens at the
time of system start-up. Although not necessary for operation of
your system, this information will give you some understanding of
the internal processes within the system.

6.4.1 Start-Up of the Disk Operating System

We have mentioned quite a few times in this manual that you must
place the System Disk in the System Drive, usually drive 1. This
is because Exec has been told that drive 1 is the System Drive.
If you attempt to do anything that might destroy the System Disk
in the System Drive, Exec will refuse to perform that action and
will give you an error message: I can't do that to the System
Drive! For example, Exec will not let you image another disk onto
the disk in the System Drive or initialize the System Disk.

The System 88 central processor card, the heart of the system's
main unit, contains three ROMs (Read-Only-Memories). A ROM is a
section of memory that cannot be erased or written into by the
user. The first ROM contains the 4.0 Monitor (a sectiQn of code
which performs some basic system functions and which is used by
the disk operating system). (See Appendix D, 4.0 Monitor and the
Front Panel Display, for information on the Monitor.) The second
and third ROMs contain the core of the disk operating system.
The use of ROMs maintains the validity of the disk operating
system and system monitor, since ROMs cannot be erased or
altered. At the time of system start-up, the monitor performs
its basic system functions and begins execution of the disk
operating system.

The operating system then brings into memory and executes the
copy of Exec on the System Disk. Before Exec prints anything on
the screen, it does two things: 1) it notes the highest usable
memory location on the system (known as the "top of memory"), and
2) it searches for a file named INITIAL on the System Disk (see
Section 6.4.2, INITIAL Program) •

Exec has noted and displayed the address of the last "good"
memory location. Supposing for now that no program named INITIAL
has been found, Exec will print the following message on the
screen:

(Exec/ii-top of RAM is iiii)
$

The number after the word Exec is the version number of your
system software.

The four-digit number in the message refers to the address of the .

()

polyMorphic Systems System 88 User's Manual Page 75

last usuable memory location Exec found. If the system is
behaving normally, and memory is good, this hexadecimal number
will end in a string of , F~ , ,(e.g., 5FFF, BFFF, or 9FFF).

A system prompt $ is also displayed on the screen, indicating
that the system is now ready for your commands. N6te that the
prompt is a single dollar sign symbol, indicating that the system
is operating in disabled mode.

6.4.2 INITIAL Program

If Exec had found a program named INITIAL after determining the
top of memory, you would not see a system prompt or a screen
message. Instead, the system would automatically execute the
file named INITIAL. An INITIAL file is invoked in the same way
as any other file: 1) if INITIAL is a runable machine language
program, it is brought into memory and executed; 2) if it is a
BASIC program, BASIC is automatically invoked, and BASIC then
runs the program; 3) if it is a command file, the system draws
its instructions from it until the use of the command file ends.

The reason for the existence of a program called INITIAL is to
let you decide what the user of your machine will first see when
that machine is turned on or restarted. For example, let's say
that you have the following BASIC program saved on the System
Disk under the name INITIAL:

9 10 PRINT '~This system currently contains bookkeeping",
20 PRINT " programs."\PRINT
30 PRINT TAB(lO) ,"To see what programs you can run,"
40 PRINT TAB(lO) ,"put the disk labeled CONTENTS in"
50 PRINT TAB(lO) ,"drive #2. Now type 'L 2' and a"
60 PRINT TAB(lO) ,"carriage return."
70 REM The next program statement types BYE command
80 REM and carriage return ("CHR$(13)") for you, so
90 REM that you exit BASIC after this program executes.
100 OUT 0, "BYE"+CHR$(13)

Whenever someone starts up or resets your machine, the first
thing that he will see will be:

This system currently contains bookkeeping programs.

To see what
in drive #2.

>BYE

$

programs you can run, put the disk labeled CONTENTS
Now type 'L 2' and a carriage return.

You can save any type of program you desire under the name of
INITIAL.

Page 76 System 88 User'~ Manual PolyMorphic Systems

.~

PolyMorphic Systems System 88 User's Manual Page 77

PART II

BUILDING AND USING FILES

INTRODUCTION TO PART II

You now know how to operate the system. For the fullest use of
the system, you should know how to create your own disk files.

The purpose of this section is to provide you with the knowledge
you need to build and use files of several different sorts: BASIC
programs, machine language programs, command files, and BASIC
data files. Some of the information in Sections 7 and 8 you have
already seen. It is provided again here so that each section of
the manual is largely complete in itself.

Although these sections tell you how to save and invoke BASIC and
machine language files, they do not tell you how to write the
programs themselves. For information on BASIC, see the System
Library volume, BASIC: A Manual. For information on using the
system Assembler, see Section 12, THE ASSEMBLER.

Page 78 System 88 User's Manual PolyMorphic Systems

o
_olyMorphic Systems System 88 User's Manual Page 79

Section 7

BASIC PROGRAM FILES

BASIC is perhaps the most widely used of all computer languages
in the field of micro-computers. Many applications programs and
games are written in BASIC, and beginning programmers generally
find programming in BASIC much easier than programming in
assembly language.

If you want information on programming in BASIC, there are many
good books designed to teach it. For a full explanation of the
BASIC that is part of your system, see the System Library volume
BASIC: A Manual.

This section discusses what to do with your BASIC program after
you've written it. You will learn how to save your program as a
disk file and how to bring that file into memory from the disk.

7.1 BRINGING A BASIC PROGRAM FILE INTO MEMORY

You may bring a BASIC program file into memory in either one of
two ways: invoking it at the system level or, , while in BASIC,
using the BASIC command LOAD.

7.1.1 Invoking BASIC Program Files at the System Level

To invoke a BASIC program at the system level: after a system
prompt $ or $$, type the pathname of the BASIC program file you
wish to invoke (disk specifier, file name, and, optionally, the
file name extension .BS) • .

EXAMPLE:

$(3(MATRIX.BS

You may use the ? and * disk specifier symbols when invoking from
the system level.

EXAMPLE:

$<?<Hertzsprung-Russell

When we speak of being "at the system level," we mean that you
are communicating with Exec (indicated by a system prompt $ or
$$), and not BASIC, the Editor, or the Assembler.

Exec will process your file invocation in the following way: Exec
decides that your input is not a system command. It then finds
your file on the disk specified. Exec then must decide if your
file is truly a BASIC program or some other type of file (such as

Page 80 System 88 User's Manual PolyMorphic Systems

a text file). Exec looks at the extension of your file's name.
If the extension is .BS, Exec knows that a BASIC program is being
invoked. A copy of the language BASIC is brought into memory
automatically. After BASIC is brought in, Exec "tells" it that
it has a BASIC program to run. When BASIC is invoked in the
normal way (that is, when you type BASIC and a carriage return
after a system prompt), a screen message appears telling you
which version of BASIC you have invoked and how much room is left
in memory. When the system invokes BASIC because you have asked
the system to run a BASIC program, the screen message does not
appear. Instead, BASIC immediately loads your program into
memory and begins execution of that program. Execution of that
program will begin whether or not the program was saved in
"auto-execute" (self-starting) mode or regular execution mode.
(See Section 7.2, SAVING BASIC PROGRAM FILES, for information on
saving BASIC programs in auto-execute and regularmodes.)

After your program is finished running, you are still in BASIC if
you see the BASIC user prompt> or ». To exit from BASIC, use
the commands BYE or EXEC.

It is clear from the information above that Exec uses the
extension of your file's name to identify that file as a BASIC
program file. You may save a BASIC program as a file with any
extension you might want to invent. Howgver, you will not be
able to invoke a BASIC program file from the system level unless
that file carries the extension .BS. (That is, the system will
not invoke BASIC and instruct BASIC to run your program if the
file name of your program does not include the extension .BS.)

You can also run your BASIC program by typing

$BASIC pathname

to the Exec. BASIC will then run the program you named.

7.1.2 Bringing BASIC Program Files into Memory While in BASIC

You may also bring a copy of a BASIC program file into memory
while you are communicating with BASIC. After a BASIC prompt>
or », type:

LOAD,pathname

followed by a carriage return. You may not use the? and # disk
specifier symbols when you are communicating with BASIC at the>
or »levels. If you try to do so, BASIC will tell you: "<?<"
not allowed here. (See Section 4.7, Special Disk Specifier
Symbols.)

EXAMPLE:

>LOAD,<3<MAILING-LIST

BASIC will respond with a prompt if it has found the file and has

PolyMorphic Systems System 88 User's Manual Page 81

c:> put a copy of it into memory. Then type RUN and a carriage
return. If BASIC is unable to find the file, it will display an
error message: "I can't find that file." If BASIC has found the
file, and if the program in it has been saved in auto-execute
mode, the program will begin running automatically without the
use of the RUN command.

We have seen in Section 7.1.1 on invoking BASIC program files
from the system level that Exec cannot identify a BASIC program
file as such unless it carries an extension of .BS. When you are
in BASIC, BASIC itself does not require that a program file carry
the extension .BS. However, if a BASIC program file does NOT
have an extension of .BS, you MUST specify the correct extension
in the file specification given in the LOAD command. Otherwise,
the BASIC program file will not be found.

EXAMPLE:

You have a BASIC program file named BANKING.RT on the disk
in drive 2 • . You may not invoke this file from the system
level. If you type <2<BANKING.RT or <2<BANKING after a
system prompt, you will get the error message "(Cmdf abort}I
can't find that file." The system displays this error
message because it cannot identify the program as a BASIC
program (no .BS extension). Exec realizes that the program
is not a machine language program. It then tries to use the
file as a command file. The first line of the file is a .
BASIC program line, however, and not a legal system command
or file invocation. The system ends the use of the file as
a command file-- hence the message "(Cmdf abort) "-- because
it cannot understand the first line of that file. It then
concludes "I can't find that file." You can use BASIC
BANKING.RT to run your file. Or if you are in BASIC, you
can bring a copy of this file into memory by way of the
BASIC LOAD command. After a BASIC prompt, type
LOAD,<2<BANKING.RT. You MUST specify the extension, since
it is not the expected extension of .BS. If you type
LOAD,<2<BANKING you will get the error message: "I can't
find that file."

7.2 SAVING BASIC PROGRAM FILES

BASIC programs may only be saved as disk files from within BASIC.
In other words, you must be working in BASIC and use the BASIC
SAVE command to save a BASIC program file.

To save a BASIC program that is now in memory (having just been
written or brought into memory from a disk), type SAVE followed
by a comma or semi-colon (for auto-execute mode) and the file
specification you wish to use for the new file.

EXAMPLE:

>SAVE,<3<DATA

Page 82 System 88 User's Manual PolyMorphic Systems

This program will now be saved as a disk file on the disk in
drive #3, with the name DATA.BS. (If you do not specify a file
name extension when saving a BASIC program, the system will
affix the default extension of .BS to the name of your file.)

We have mentioned "auto-execute~ mode before. Remember that
a program saved in auto-execute mode begins execution as soon
as it is loaded into memory by BASIC--no RUN command is needed.
BASIC knows that if a semi-colon follows the word SAVE, the
pr~gram is to be saved in this mode.

EXAMPLE:

>SAVEi(2(Finance

If you display a BASIC program saved in auto-execute mode by
using the TYPE command, you will see the simple method BASIC uses
to set up an auto-execute program file--the letters RUN appear as
the last characters in the file.

EXAMPLE:

TYPE (3<COUNTER.BS

10 1=0
20 1=1+1
30 PRINT I
40 IF I<lOO GOTO 20 ELSE PRINT "END""
RUN

The presence of the RUN command at the end of the file ensures
that BASIC will execute the program file.

7.3 EXITING FROM BASIC (THE USE OF EXEC, BYE, AND CONTINUE)

To exit from BASIC (that is, to return to communicating with the
Exec), you use one of two commands: BYE or EXEC after a BASIC
prompt> or ».

The purpose of the EXEC command is to let you leave BASIC,
perform a few simple Exec functions (with the exception of ZAP
and PACK which do an automatic ZAP) and then return to BASIC.

EXAMPLE:

>10 PRINT "THIS IS A BASIC PROGRAM"
>EXEC
(Exec/*#)
$DELETE <2(ORBIT.BS
<2<ORBIT.BS deleted.
$CON
>LIST
>10 PRINT "THIS IS A BASIC PROGRAM"

The Exec commands that you can use in this manner are: PRINT,

C)

PolyMorphic Systems System 88 User's Manual Page 83

TYPE, DELETE, PACK, COPY, RENAME, LIST, DIR, UNDELETE, ENABLE,
DISABLE, PAGE, and SAVE.

When you do not need to return to BASIC, use the BYE command.
When you use this command, all data files are closed. Use of the
CONTINUE command will not return you to BASIC. You can invoke
BASIC in the nOFmal way (by typing BASIC and a carriage return),
but you will find that any BASIC program that you had in memory
is no longer there.

7.4 BASIC PROGRAMS AS SYSTEM FILES

A BASIC program may be marked a system file. BASIC programs so
marked are protected in the same way that other system files are:
the commands COPY, DELETE, RENAME, TYPE, and PRINT will not work
on them. Also, within BASIC, the only legal commands are RUN
(without a line number), SCR (scratch), and BYE, to exit BASIC.
New lines may not be entered into the program, and the program
cannot be SAVEd from BASIC. If you want to mark BASIC program
files as system files, see the System Library volume The System
Programmer's Guide.

Page 84 System 88 User's Manual PolyMorphic Systems

PolyMorphic Systems System 88 User's Manual page 85

Section 8

MACHINE LANGUAGE PROGRAM FILES

8.0

We have talked about machine language programs before, and we
have already seen a large example ofa machine language program
file--the file containing BASIC itself. This section discusses
in more detail: what a machine language program is, how to bring
into memory a machine language program file, how to execute and
"warm-start" such a file, and how to save a machine language
program as a disk file. It also gives information on a special
machine language program, the system file.

The next few paragraphs contain introductory material. If you
are an experienced programmer, you may want to skip over them.
If you are new to machine language programming, you will need to
know the following information.

when you communicate with your machine, everything that you type
is translated into ones and zeroes (binary data). Even letters
have a binary representation. The code that your machine uses to
represent keyboard symbols is called ASCII~ A capital A, for
example, in the ASCII code is the binary number 01000001 (65 in
decimal or 41 in hexadecimal).

Long strings of Is and Os are very cumbersome. We can reduce
this problem somewhat by using hexadecimal. numbers (base 16).
Hexadecimal numbers turn out to a convenient representation of
binary data for humans to use: Data is stored in your machine in
groups of eight "bits" (Is and Os), called "bytes." Because of
this grouping, two hexadecimal digits represent one byte of data.
When it is necessary to indicate that a number is in hexadecimal
rather than decimal form, the hexadecimal number is followed by a
capital H. The number 41H, then, is the number 41 in base 16.
(41H is 65 in decimal.)

Among other things, these numbers stored in the memory of your
machine may represent characters (in ASCII code). A BASIC
program, for example, is stored in text form--that is, it is
stored in memory as ASCII code values representing the keyboard
characters used to make up the lines of the program. When data
in memory does not represent a character, it may be a machine
language instruction or a value used by a Program. (It is
important at this point ' to acknowledge the ·ambiguity in our use
of the worf "data." For many people, the word "data" has come to
mean specifically information that is generated by a computer
program or is used by that program. According to that
definition, data is a different kind of thing from the program

Page 86 System 88 User's Manual PolyMorphic Systems

that uses it. This manual usually uses the word in its more
general sense-- that is, as a synonym for information~ Given
this usage, ALL of the numbers stored within memory and on disks
as files are data, whether they represent characters, BASIC
programs, machine language programs, information used by
prog rams, etc.)

Si~ce the machine only understands numbers, it is not clear how
so complicated a thing as a BASIC program is ever acted upon by
the machine. At the machine's .most primitive level, it
understands only some 78 instructions, each represented by a
different number. The most complicated thing that these
instructions can do is to move numbers from one location in
memory to another and perform simple arithmetic operations on
them. The instructions are called machine language instructions.
A series of these instructions forms a machine language program.
BASIC itself is a machine language program. Its functi0n is to
take your BASIC programs, interpret them, and respond to them
with the appropriate action. A machine language program
interpreting a program in text form (e.g., BASIC interpreting a
BASIC program) naturally works much slower than a machine
language program working alone.

Constructing a machine language program would be a slow and
frustrating process (number after nUII!ber after number) if it were
not for "assembly language" and "assemblers." Assembly language
is the language that programmers use to write machine language
programs. It allows us to use words to represent the numerical
machine language instructions that we want to use. It is
obviously much easier to remember the instruction JMP (jump) than
the hexadecimal number C3H. The assembler is the program (itself
a machine language program) that translates our assembly language
program into machine language code. Within our actual machine
language program file, therefore, there are no "~ords" like JMP,
only numbers like C3H.

The advantage of machine language programs over higher level
language programs (such as BASIC programs) is that they take up
quite a bit less room within memory and execute or run much
faster. On the other hand, many people consider writing in
assembly language more difficult than writing in a high-level
language such as BASIC because the former requires an
understanding of the logical structure of the machine.

For information on the use of the System 88 assembler, see the
System Library volume The MACRO-88 Assembler.

8.1 BRINGING A MACHINE LANGUAGE PROGRAM FILE INTO MEMORY

There are two methods of bringing a machine language program file
into memory from a disk: invocation and use of the GET command.
The first method brings in a copy of the file and attempts to
begin program execution. The second brings a copy of the file
into memory but does not run it.

PolyMorphic Systems System 88 User's Manual page 87

8.1.1 Invoking Machine Language Program Files

You are now familiar with examples of file invocation from
earlier sections of the manual. As you will recall, to invoke a
file, type the full file specification after a system prompt
(disk specifier, file name, and optional file name extension).

Whenever a machine language program is
"load" and "start" addresses are stored
(see Section 6.2.10, SAVE). When
invocation, such as:

$(3(FLOW-CHART

saved as a disk file, its
within the disk directory
you give Exec a file

it looks at the directory of the disk in drive 3. It makes sure
that the filename has the ".GO" extension and hence is a runable
machine language program. It then copies the disk file into
memory beginning at the file's load address, and executes it.
The start address tells the system the memory location containing
the program's starting instruction. (Files with .OV extensions
a re machine lang uage, but are not runable in this sense;(they are
used internally by the system.)

If Exec has determined that the file is not a machine language
program file, the file will be invoked as a BASIC program or a
command file. If none of these attempts to run the file is
successful, an error message will be displayed.

8.1.2 Bringing Machine Language Program Files Into Memory:

GET, START, and REENTER

You may sometimes want to bring machine language files into
memory without executing them. This can be done by using the GET
command. Type:

GET filename

followed by a carriage return. You may use the
specifier symbols when you use the GET command.
4.7, Special Disk Specifier Symbols.)

EXAMPLE:

$GET <2<CATALOG

? and # disk
(See Section

Exec will look for the file CATALOG on the disk in drive 2. If
the file is a runable machine language file, and NOT a system
overlay file, a copy of the file will be put into memory at the
file's load address. Program execution will not begin, however,
until START or REENTER is used.

Machine language program files (except system file overlays) are
usually saved with load and start addresses of 3200H. This means
that when these files are brought into memory, they are copied

Page 88 System 88 User's Manual PolyMorphic Systems

into memory beginning at location 3200H. Program execution is
begun by jumping to the . instruction at Ideation 3200H. Memory
location 3200H is simply a convenient place to put programs,
because it is the start of the user area of memory. When you use
the START command to begin execution of a program, a start
address of 3200H is assumed. The REENTER command is used for
programs with a warm-start aqdress. The warm-start address is an
alternative start address used when you wish to skip over the
section of your program that assigns initial values to program
variables. REENTER assumes a warm-start address of 3203H.

8.2 SAVING MACHINE LANGUAGE PROGRAM FILES

The use of the SAVE command is discussed in great detail in
Section 6.2.10, SAVE. However, it is important to note that ONLY
machine language program files may be saved by way of this
command. When determining the load and start addresses that you
wish to use when saving a program, remember that START and
REENTER assume start and warm-start addresses of 3200H and 3203H
respectively. If you plan to use GET, then START or REENTER,
make sure that your load and start addresses correspond to these
locations.

8.3 SPECIAL MACHINE LANGUAGE FILES (SYSTEM FILES)

We have mentioned system files and system overlay files often in
earlier sections of the manual. To recapitulate:

System files are files recognized by the system as special files.
You may not use the following commands on a system file: COPY,
DELETE, RENAME, TYPE, PRINT, or EDIT.

BASIC is an example of a system file, but any type of file may be
made a system file. The System Programmer's Guide provides a way
for you to designate your own files as system files. If you try
to rename or delete a system file, the system will display the
error message: "I can't do that to a system file."

A system overlay file is a type of system file. However, it is a
very special kind of file, since it constitutes part of the
actual system itself. Only the system itself can execute an
overlay. If you try to invoke an overlay, you will get the error
message: "I can't run that file."

PolyMorphic Systems System 88 User's Manual Page 89

SECTION 9

COMMAND FILES

A command file is simply a text file from which the system draws
commands and instructions. The text entries in a command file
may be any legitimate inputs: system commands (LIST, TYPE, etc.)
or file invocations (including invocations of BASIC program
files, machine language program files, other command files,
etc.) •

Exec ignores any line in a command file beginning with a
semi-colon followed by a space, TAB or a CR. This allows you to
place comments in your command file. BASIC, on the other hand,
will · not accept any input beginning with a semi-colon.
Therefore, make sure your command file comments do not occur
among statements which will communicate with BASIC.

EXAMPLE:

A Typical Command File

$TYPE <2<COMMAND-FILE.TX
; Make a copy of a BASIC program
COpy <2<CHECKBOOK.BS<3<CHECKBOOKl.BS
; Run that program
<3<CHECKBOOKl.BS
BYE
; Delete the copied file
DEL <2<CHECKBOOK.BS

When you invoke a command file, the system starts reading the
command file. entr ies. Nei ther BASIC nor Exec have any way of
knowing if instructions are coming from a command file or
directly from the keyboard. When you use a command file, then,
the effect is just as if you were typing in all of the commands
yourself from the keyboard. After performing the action asked
for by the first entry, the system returns to the command file
and reads the next statement in the file. This continues on
until: a) the system reaches the end of the command file; b) an
error occurs; c) you type a Control-Y (interrupting the system);
or d) the system comes upon the command INIT within the command
file.

When the use of a command file is ended by the occurrence of an
error, the error message "(Cmdf abort)" is displayed.

The kinds of things that can cause an error to occur when a
command file is in use are: a) the system doesn't recognize a

Page 90 System 88 User's Manual PolyMorphic Systems

command given in the file (e.g., DALETE <2<PLOTTER.GO, instead of
DELETE <2<PLOTTER.GO); b) the system can't find a file mentioned
in a file invocation; c) the next entry ' processed is a BASIC
command, but you are presently at the system level, communicating
with Exec; or conversely d) you are in BASIC, and the next
command file entry processed is a system command.

Command files are very useful when you want a sequence of events
to occur, but typing in the necessary commands and file
invocations would be tedious and time-consuming. For instance,
you could set up a command ' file that would bring in every file on
one disk one by one and copy each one to another disk under a new
name. Or you might have a program or a set of programs that
performs a lengthy series of statistical calculations. Rather
than wait for a long time to simply enter the name of another
statistics program, you can easily set up a command file that
will invoke a series of programs to run one after the other.

You may even have a command file invoke itself.
given the command file <3<DEMO-FILE.TX:

For example,

EXAMPLE:

TYPE <3<DEMO-FILE.TX

;

This command file will run a series of BASIC
programs. The user of this file must type a
Control-Y

to end the demonstration.

BASIC
LOAD,<2<STANDARD-DEVIATION.BS
LOAD,<2<ANALYSIS-OF-VARIANCE.BS
LOAD,<2<STUDENTS-T-TEST.BS
BYE

Note: The above BASIC programs do not ask for
; user input. If they had, the system would look in
; the command file for the required input and would
; have found either the BASIC commands BYE or LOAD.
; The use of the file would have been aborted, since an
; input error would have been caused within BASIC.
;
; The file now invokes itself, to keep the above
; process running until you type a Control-Yo
;
<3<DEMO-FILE.TX

Constructing command files consists of nothing more than placing
text into a file. This may be done either by way of the system
Editor or from within BASIC. To use the Editor, see Section 11,
THE EDITOR. To construct text data files in BASIC, see the
volume BASIC: A Manual on building basic data files.

One important point to remember when constructing command files
is to remember whom you're speaking to, Exec or BASIC. If one

o
PolyMorphic Systems System 88 User's Manual page 91

line in the command file is "BASIC," make sure that from that
point until you exit from BASIC with a BYE statement, all command
file entries are legitimate BASIC commands. By the same token,
do not use BASIC statments when the command file is communicating
with Exec.

Examples of Incorrect Command Files:

i use of this command file will be ended
i when an error is generated--
BASIC
i

you are now talking to BASIC, but BASIC doesn't
i accept a line beginning with a semi-colon. An
i error message will be displayed:
i "(Cmdf abort)Syntax error."

Use of this command file will be ended because a
i BASIC statement appears when the file is talking
i with Exec.
i
<2<Data-Gatherer.BS.
BYE
TYPE <2<Data-Gatherer
IF X>2 THEN PRINT "End"
i The above BASIC statement causes an error message to
i be displayed: " (Cmdf abort) I can't find that file."
i (Exec was looking for a command or file name
i consisting of the letters IF)

You will find one feature of Exec especially useful when you
construct command files. That is Exec's ability to recognize the
special disk specifier symbols ? and #. (See Section 4.7,
Special Disk Specifier Symbols.) You may use the same command
f il e many, many times. But . you may find it inconveni ent to
reedit the command file every time you use it. You may find
yourself doing that, however, if the drive numbers mentioned in
the file are not correct for this particular use of the file.

EXAMPLE

<3<Data-Creator.GO
i Data-Creator creates a data file, DATAl on drive 3
copy <3<DATAI <3(Data-Copy
LIST 3
PACK 3

The above command file is fine as long as Data-Creator is indeed
on the disk in drive 3. But what if you are not sure on which
drive it will be convenient to run Data-Creator? Every time you

Page 92 System 88 User's Manual PolyMorphic Systems

use the command file, you will have to re-edit it to make sure it
selects the proper drive numbers.

By using the special disk specifier symbols, you can avoid this
dilemma.

EXAMPLE:

<?<Data-Creator
; Data-Creator creates a data file on its own disk
COPY <i<DATAl <i<Data-Copy
LIST i
PACK i

If Data-Creator is on a disk in a valid drive, Exec will find it.
From that point on, the i symbols in the command file will select
the drive on which Exec found Data-Creator.

polyMorphic Systems System 88 User's Manual Page 93

Section 10

APPLICATIONS PROGRAMMING

Your System 88 software contains several features of special
interest to the applications programmer. This section briefly
discusses what an applications program is and points out a few of
the system features especially useful for applications programs.

An applications program
a specific service. A
factors or perform a
applications program.

is one that
program that
statistical

has been designed to provide
helps you to figure stress

test is an example of an

A good appplications program is "human engineered": fully
documented and tailored for use by people not familiar with
computers. In fact, the user of a good app~ications program
should not need to know any more about computers than how to
insert a disk into a drive and push a Load button. The designer
of an applications program generally assumes that the future user
of the program will have minimal knowledge of the System 88 and
no knowledge of how the program works. This means that an
applications program NEVER asks for input by displaying:

?

All requests for data are fully explained by the program (e.g.
"How many employees work for you?"). The program should validate
all data input by the user and respond appropriately.

EXAMPLE:

How many employees work for you? -20.5

That's not possible. Try again.
How many employees work for you?

System 88 provides several tools useful for the development of
applications programs and packages. (A software "package" IS a
set of programs that provide the same type of services, such as a
set of programs that perform accounting arid bookkeeping
functions.) The features you will probably find most useful are:
1) the INITIAL program; 2) command files; 3) designation of a
file as a system file; 3) automatic invocation of BASIC; 4) BASIC
program auto-execute mode; 5) use of the BASIC file- handling
command DEF to connect your own hardware devices to the system
software. For mo!e information on each of these points, see the
appropriate sections of this manual, the System Programmer's
Guide, and BASIC: A Manual.

Page 94 System 88 User's Manual PolyMorphic Systems

By using these features in combination, you can limit the amount
of computer experience the user of your programs needs. By
naming a program INITIAL, you make it the first thing that the
user of your system sees when the machine is turned on or reset.
INITIAL might be a BASIC program telling the user of the system
what kinds of programs the system has in its disk library, or it
might be a program asking for log-on information (making sure
that the user of the system is a legal user). INITIAL might even
be a command file, causing a series of programs to be executed.

A big advantage in the use of command files is the fact ' that they
can contain system commands. This allows you, the programmer, to
arrange for certain system functions to be performed (such as
deleting data files, invoking BASIC programs, etc.) without the
user of your system ever having to enter a system or BASIC
command. Your program user, then, can be completely
inexperienced in the use of programs or computers. Because BASIC
is automatically invoked by the system when you ask Exec to
invoke a BASIC program, the user does not even have to be aware
he is communicating with a different entity (BASIC vs. Exec)
when the BASIC program begins execution. Even when a BASIC
program is brought into memory by way of a BASIC LOAD command
when you are already in BASIC, automatic execution of that
program can be arranged by saving the program in "auto-execute
mode"; execution will begin without the use of the BASIC RUN
command.

Experienced machine language programmers have several powerful
options available to them for applications programming. The
System Programmer's Guide provides methods for designating any
file as a system file. An applications program so marked cannot
be altered, deleted, or renamed. Also, BASIC programs marked as
system files cannot be listed or modified from BASIC. This is an
obvious advantage in applications programming, where
experimenting by an inexperienced user could destroy your
program. In addition, the Guide discusses a way to disable the
Control-Y command in BASIC. This prevents the user of the
program from interrupting its execution. The BASIC DEF statement
may be used to define your own machine language file-management
routines.

o
PolyMorphic Systems System 88 User's Manual Page 95

. PART III

THE EDITOR AND THE ASSEMBLER

INTRODUCTION TO PART III

The System 88, as delivered, includes several special software
items prerecorded on the System Disk in addition to the disk
operating system. Two of them, the Editor and the Assembler, let
you create text and BASIC and assembly language programs.

The ability to create and change text is valuable to all users of
the System 88. The Assembler is useful to those who want to
write assembly-language programs. The Editor is discussed in
Section 11. You may find it the most useful part of the system.
Section 12 briefly reviews the use of The Assembler. It is more
fully discussed in the System Library volume The MACRO-aa
Assembler.

Page 96 System 88 User's Manual PolyMorphic Systems

.J

PolyMorphic Systems System 88 User's Manual Page 97

SECTION 11

THE EDITOR

An "Editor" is a system program that has a special use. To put
it briefly, the Editor allows you to create and change text.
Specifically, the Editor displays on the screen the contents of a
text file (a file that YOU can read, as opposed, say, to a
machine language file) and lets you move back and forth in the
text, adding and deleting as you please. When you write text
(including text-form programs, such as BASIC programs or assembly
language programs) you use the Editor, working directly on the
screen. You can jump from place to place in the text at will,
taking things out, inserting things.

11.1 INVOKING THE EDITOR

The Editor is a machine language program on the System Disk. To
invoke it (that is, to bring it into memory and execute it), type
(after a system prompt $ or $$):

EDIT in-pathname out-pathname

followed by a carriage return. "in-pathname" is the file
specification of the text file you want to edit, and
"out-pathname" is th~ file specification you want to give to your
new, edited file.

EXAMPLE:

EDIT <2<MYSTERY-STORY <3<WHODUNIT

If you do not specify an extension for the input file, the Editor
will bring in the first file of the given name found on the
specified disk, regardless of its extension. If you do not
specify an extension for the output file, the Editor will use the
default extension .TX (text file).

~
\

If you do not include a disk specifier for either the input or
output file, the Editor will use the system drive.

You may use the disk specifier symbols? and i, as long as you do
not use the ? symbol in the file specification of the file to be
created. (See Section 4.7, Special Disk Specifier Symbols).

Page 98 System 88 User's Manual PolyMorphic Systems

EXAMPLE:

Leg al :
Illegal:

EDIT (?(Orbit (#(Orbit-2
EDIT (2(Math (?(Tutorial

If you want your new,edited file to have
specification as your original text file, do
output file in the EDIT command.'

EXAMPLE:

EDIT (3(END-OF-QUARTER-REPORT.TX

the same file
not specify an

The Editor will delete the original input file on the disk in
drive 3, and create a new output file on the disk in drive 3
named END-OF-QUARTER-REPORT.TX.

You use the Editor to create a new text file, as well as to edit
an existing file. To create a new text file, choose a file
specification, using a file of name that does not already exist
on that disk. Type:

EDIT in-pathname

The Editor will look for the file specified in the command, and
not finding it, will create a new text file of that nam~.

To create a BASIC program file, specify the extension .BS.

After you have invoked the Editor, you will see a message in the
upper left hand corner of the screen: "Edit/ii," which tells you
the version number of your Editor. Next you will see one of
three messages, depending on the form of your Editor invocation:

If you type:

EDIT in-pathname out-pathname

where the input file is an existing file, the Editor will display
the message:

Input file:
Output file:

opened
opened

Hit any key to continue •••••

If you type:

EDIT in-pathname

where the input file does not exist, the Editor will display the
message:

polyMorphic Systems System 88 User's Manual page 99

Input file: not found

Creating output file: opened

Hit any key to continue •••••

If you type:

EDIT in-pathname

where the input file is an existing file that you want to edit,
the Editor will display the message:

Input file: opened
(Old input file deleted)

Output file: opened

Hit any key to continue •••••

(The editor will load text, if it exists, BEFORE stopping and
awaiting a strike of any key.)

Note that when you edit an existing file, the old file (input
file) will not be deleted if the new file (output file) is given
a different name or a different disk specifier.

~ After one of the above screen messages is displayed, the Editor
will wait. You may tell it to continue by typing any key on the
keyboard. Then one of the two things will happen: 1) If the
input file is an existing file, the cursor (the white rectangle
at the top left of the screen) will begin to blink. The Editor
is now copying text into memory from the disk input file; don't
interrupt it. Or, 2) If the input file does not exist (that is,
you want to create a text file), the screen will clear and the
Editor will display an unblinking cursor on the empty screen, as
an indication that you may begin to type in your text. You are
now ready to start creating the file.

If you are editing an existing input file, the cursor will
continue to blink until enough text has been copied into memory
from your input file to fill half of the available memory space.
At that time, the cursor will stop blinking, and the first
fifteen lines of your text file will appear on the screen. You
can now start to edit your file.

11.2 USING THE EDITOR

You are now ready to begin editing or entering text. The cursor
is a kind of place marker; it tells you the precise point in the
text that will be affected by your commands. You move the cursor
to the point you want to affect, then type in what you want to
add or delete what you want to remove. The cursor does not
"cover up" a character; it fits into a space of its own.

Page 100 System 88 User's Manual PolyMorphic Systems

11.2.1 Moving the Cursor

When you are typing in text, the cursor moves in the usual way,
one space at a time from left to right. When it reaches the
end of the line on the screen, it jumps down to the next line.
To change existing text, it is important to be able to move the
cursor WITHOUT inserting text. You can move the cursor by
using the four keys on your keyboard marked with arrows. These
keys are on the lower left of the keyboard.

To move the cursor forward (to the right), use the
right-pointing arrow key. When the cursor reaches the end of
the line, it will jump down to the beginning of the next line
below its present position.

To move the cursor backward (to the left) , use the
left-pointing arrow key. When the cursor reaches the end of
the line, it will jump up to the end of the line just above its
present position.

To move the cursor up, use the up-pointing arrow.

To move the cursor down, use the down-pointing arrow.

When you move the cursor up and down by use of the up and down
arrow keys, you will notlce that the cursor attempts to move to
the position exactly above or below its present position on the
line. This direct . up or down movement may be impossible
because the cursor is to the right of the end of the line it's
moving to. In that case, it will move to the end of the line.
That is its new position, and if you move the cursor again up
or down, it will attempt to move to the position directly above
or below its new position.

To move to the BEGINNING of the line above or below, type
Escape, then up arrow or down arrow.

As you continue to move the cursor up or down, eventually you
reach the top or bottom line. If you continue to move the
cursor up or down, the lines displayed on the screen change.
The fifteen-line display on the screen is a "window" into the
text now in memory. As you move the cursor up, you advance
toward the beginning of your text; as you move the cursor down,
you proceed toward the end of the text in memory.

11.2.2 Inserting and Deleting Text

You can insert text at any point in the text display. Simply
begin typing, and your insertion will appear on the screen at
the cursor position. This is also the way you create a new
text file; just start typing.

CAUTION: What appears to be one line of text on the
screen may noi necessarily be a true line. When you

PolyMorphic Systems System 88 User's Manual Page 101

type more than 64 characters, the cursor will "wrap '
around"; that is, the rest of your line will continue
on the next line of the screen. However, these two
lines on the screen, apparently separate, are in
reality ONE line, since no carriage return was typed
to separate them. If you print your output file on a
printer, the two lines will be printed as one, with
no break between them.

Therefore, unless you know exactly how many characters you want
per line in your output file, it is wise to remember to type a
carriage return at the end of every screen line so that one
line of text in your file will be equal to one screen line.

When you insert text, remember to check to see if you need to
change the locations of the carriage returns in the text
following y?ur insertion.

To delete text, move the cursor to the RIGHT of the character
or characters you want to erase. To delete one character, hit
the DELETE key; one character to the left of the cursor will
disappear and the cursor will move to the left one space each
time you hit the DELETE key. To delete one word, type a
Control-W (hold down the CTRL key and type a W). The word to
the left of the cursor will disappear, and the cursor will move
to the left. To delete one line of text (the characters
between two carriage returns), type a Control-X (hold down the
CTRL key and type an X). Remember that the Control-X will
delete ALL of the characters back to the next previous carriage
return, disregarding apparent breaks between lines caused by
wrap-around. Be careful, then, that what appears to be a line
is in fact one separate line of text.

To change characters, words, or lines: d~lete the appropriate
text, then simply type in your changes before moving the
cursor. You can undelete characters you have just deleted with
the Control-U command: hold down CTRL and hit U. Deleted
characters will be restored one at a time. This works only if
the cursor has not been moved since the characters were
deleted.

11.2.3 Moving Within the Text in Memory

You now know how to move the cursor around in the text display.
There are ways to make larger movements within the copy of text
that is in memory. This movement is caused by control
characters: Control-B, Control-E, Control-N, and Control-Po To
type a control character, hold down the CTRL key and type the
appropriate letter (e.g., Control-E: hold down the CTRL key and
type an E).

You can return to the beginning of the text in memory by using
the Control-B (Beginning) command. If you have not outputted
any text (see Section 11.2.4, Inputting and Outputting Text),

Page 102 System 88 User's Manual PolyMorphic Systems

the beginning of your text will be the first fifteen lines of
your input file. In any case, Control-B takes you to the
beginning of the text currently in memory.

To get to the end of the text now in memory, use a Control~E
(End) command. If you have a long file--too long to be
entirely contained in available memory--the end of the text in
memory may not be the end of your input file (see Section
11.2.4, Inputting and Outputting Text).

You can "turn the pages" of the displayed text with two other
control commands. To see the next fifteen lines of the text
currently in memory, use the Control-N (Next) command. To see
the previous fifteen lines, use the Control-P (Previous)
command.

11.2.4 Inputting and Outputting Text

When the Editor is first invoked, it copies as much text from
the input file as will fill half of available memory. It
leaves half of memory free so that you can add text to the text
in memory.

If you have a long text file, all of it may not fit into half
of memory. In that case, if you want to make changes in the
text not yet copied in from the input file, you will want to
force the Editor to copy in more text from the input file. Use
the Control-A (Append text) command. Enough text will be
copied in from the input file to fill half of the remaining
space in memory. The next Control-A command will fill half of
THAT remaining space, and so on, until either all of the text
is in memory, or you have run out of room.

You will know when you have run out of space in memory because
the Editor will not copy in more text and because when you try
to insert text, the cursor will not move and no characters will
appear on the screen. In either case, you must make room by
outputting text into your output file. Use the Control-O
(Out-put text) command. Half of the text now in memory will be
output to your output file.

BEWARE: Once text has been output to your outP~t
file, it is no longer available for editing; it 1S

gone from memory. You can only reach that text by
leaving the Editor, then returning and re-editing the
file, using the output file as your new input file.

Once you have outputted text, you can again copy in text from
the input file using the Control-A command until memory is
again full.

Important note: Copy in only as much text as you actually need
to edit. When you exit from the Editor, the Editor will
automatically output any remainder of your input file into your

!)

PolyMorphic Systems System 88 User's Manual Page 103

out-put file. You do not have to use Control-A and Control-O
to input and output the text past the part that you want to
change.

11.2.5 Searching for a Text String

A special Editor command lets you find any word or other com
bination of characters (a "string"), wherever it occurs in the
text currently in memory. Suppose you suddenly realize that
you have been mis-spelling a word, or you want to replace a
word with another, everywhere that it occurs. Or you used a
certa in word or phrase in a particular place, and · you want to
find that place fast. You can do this by using the Control-F
(Find) command. To use Find, type Control-F. A second cursor
will now appear next to the first one. Now type the string
that you want to find. It appears between the two cursors.
You can include control characters (such as a TAB or a carriage
return); they will appear on the screen as Greek letters. (By
the way, you can delete mistakes in a "search string" just as
when you create any text.) When the string is complete, hit
the escape key, ESC, once. You can use the Control-F command
at any place within the text, but make sure that your position
is before the string you want to find; the Editor begins its
search at your current cursor position.

After you hit the escape key, the second cursor will disappear.
If the original cursor does not blink, the Editor has not found
any occurrences of the search string. If the cursor does
blink, the Editor has found an occurrence of the search string;
the cursor will move to the space directly to the right of the
first occurence of the search string within the text. You can
now change the found string.

To find the next occurrence of the search string, use the
Control-C (Continue search) command. The Editor remembers the
search string and advances in its search to the next
occurtence. You can use Control-C as many times as you want:
if there are no more occurrences of the search string, the
cursor simply will not move from its current position.

To be sure to find all occurrences of the search string, use
the Control~B command to get to the beginning of the text in
memory. Make sure that your search string is exactly the same
as the item you are searching for, mis-spellings and all. If
the item you are looking for contains a space, TAB, carriage
return, etc., you must include that within the search string.

11. 2. 6 "Cut and Paste": Moving, Copying, and Deleting a Block

The System 88 Editor has a very useful set of special commands
that let you "cut and paste." Using these commands, you can
move a block of text from one place to another, copy it in any
number of places without re-typing it, or delete the block.

Page 104 System 88 User's Manual PolyMorphic Systems

These commands all use the left and right arrows to mark the
beginning and end of a block of text.

11.2.6.1 Moving a Block of Text

To move a block of text from one location to another, first
mark the beginning and end of the block with arrows. Just
before the first character in the block, insert a
right-pointing arrow by hitting the ESC key, then the right
arrow key. Then go to the end of the block of text and insert
a left-pointing arrow by hitting the ESC key, then the left
arrow key. The block of text is now marked; moving, copying,
or deleting a block of text always begins with marking the
block with arrows (and always uses the FIRST marked block if
there are several).

Now that the block of text to be moved is marked, move the
cursor to the place in the text where you want to insert the
block. When the cursor is correctly located, hit the Escape
key (ESC), then CTRL-C (hold down the Control key and type
C--for Copy). The block of text will appear in the current
cursor location.

The last step is
location. This you
original location
hold down the SHIFT
text will vanish
moved the block of
one.

to delete the block from its original
can do without even returning to the

of the block. Just hit the ESC key, then
key and hit the DELETE key. The block of
from its original location. You have now

text from its original location to a new

11.2.6.2 Copying a Block of Text

As you can see, the same commands let you copy a block of text
several times over without re-typing it. Mark the block of
text as above, then move the cursor to where you want the block
to appear again. Type ESC, then Control-C, and the block will
appear at the current cursor location. You can move the cursor
again and copy the block in other locations if you want to.

All that remains to be done after you've copied the block as
often as you want is to remove the arrows from the original
block. Once again, this you can do without even returning to
the location of the arrows in the text. Just hit the ESC key,
then the DELETE key, and the arrows will vanish from the marked
block, leaving that block intact.

11.2.6.3 Deleting a Block of Text

To delete a block of text, first mark it with arrows as above.
Then hit the ESC key, then hold down the SHIFT key and hit the
DELETE key. The block will vanish, arrows and all. Take care
not to mark the wrong part of the text, because once it's gone,
it's gone.

()

PolyMorphic Systems System 88 User's Manual Page 105

11.2.7 Printing a Marked Block

It's a great convenience at times to
printer only a particular part of a file.
marking the desired block with arrows
ESC-Control-P (hit the ESC key, then hold
type P). Only the marked block will be
"printer" is the screen, you will get
very helpful display.)

11.2.8 Reversing Capitals and Lower Case

be able to print on a
You can do this by

as above, then typing
down the CTRL key and
printed. (If your

a distressing and not

One Editor command reverses capitals and lower case--it changes
all the capital letters to lower case letters and vice versa.
The command affects only the characters to the RIGHT of the
cursor, and only the characters in a single line. Symbols
other than letters are not affected.

To reverse capitals and lower case letters, type Control-V
(hold down the CTRL key and hit V). A line like this:

ENTER THE STOCK PURCHASE PRICE

becomes this:

enter the stock purchase price

Now you just have to change the initial e to a capital to have
a normal line. In fact, if you begin with the cursor located
just to the right of the E, the CTRL-V command will reverse all
the letters in the line EXCEPT the inital E.

11.3 EXITING FROM THE EDITOR

You must exit properly from the Editor for your editing efforts
to be actually recorded from memory onto the disk.

When you are done editing, type an Escape. Then type
Control-E. As you leave the Editor, you will see the message:

Exiting •••

The cursor blinks, indicating that the text currently in memory
and the rest of your input file are being outputted to your
out-put file. Make sure that the disk containing your output
file is not write-protected; if it is, you will receive an
error message and a system prompt $, indicating that you are no
longer communicating with the Editor, but with Exec.

If your output file will not fit on the disk specified in your
output file file specification, the Editor will tell you so:

Output disk is full.
New f i lena me:

Page 106 System 88 User's Manual PolyMorphic Systems

You must
to hold
thi s new
for the
message:

then give the Editor a file specification for a file
the rest of the output text. The disk specifier for

output file must refer to a disk that has room enough
left-over text. The Editor will now display the

Output file: opened

You now have two output files, each containing part of your
edited text. To avoid this complication, make sure that the
output file specified in your invocation of the Editor is on a
disk that has enough room for your file. (To learn how to
re-combine your two files, see 11.4.1, Combining Files.)

If you should accidentally type a Control-Y, returning you from
the Editor to Exec, you can resume editing at your point of
departure by typing CONTINUE and a carriage return. If for
some other reason you find that your editing has been
interrupted and you are back at the system level (indicated by
a $ or $$ prompt), you will probably be able to resume editing
your file without any difficulty. First you must be in enabled
mode. If you aren't (if you see the single. Exec prompt $
instead of the double prompt $$), BEFORE you do anything else,
type:

ENABLE

followed by a carriage return. When you are enabled, type:

REENTER

followed by a carriage return.

You should be back editing again.

11.4 COMBINING AND DIVIDING FILES

11.4.1 Combjning Files

The Editor allows you to put two or more files together to form
a single file. First write down the names of the files to be
combined, in the order you want them combined. Make sure the
names are exactly correct.

Begin by invoking the Editor and the first file. Append using
Control-A until you have reached the end of this file (you can
output using Control-O to make room in memory as you go) .

When you have reached the end of the file, type ESC-Contro1-1
(hit ESC, then hold down CTRL and type i). This screen message
will appear:

New input file name:

PolyMorphic Systems System 88 User's Manual Page 107

Type in the name of the file you want to be next, then hit
return. The screen will say:

New Input file: opened

Hit any key to continue ••••

Hit any key. The second file has now been brought in. To
append it, type Control-A. To add the next file, repeat the
procedure: keep appending until you reach the end of the second
file, then type ESC-Control-I and respond to the screen
messages. Keep repeating the procedure till you have combined
all your files.

11.4.2 Dividing Files

To divide one file into several files, invoke the Editor and
the file you want to divide. Use a name for your new output
file that you want to assign to one of the new files you are
creating.

EXAMPLE:
EDIT <2>USA-DATA <2>OHIO-DATA

Now, using the arrows as above, mark the part of the input file
that you want to make into a new file. Then type Control-D
(hold down CTRL and type d--for Dump). The marked block will
be copied out to the output file. If the new file is to
consist of several parts of the old file, repeat this procedure
on the other desired blocks.

You now have a new file consisting of part of what was in the
old file. To make another new file out of another part of the
old file, type ESC-Control-O. This screen message will appear:

New output file name:

Type in
will see

a new output file name, then a carriage return.
this message:

Output file: closed
New Output file: opened

Hit any key to continue ••••

You

Hit any key.
ESC-Control-D,
output file.

The next time you mark a block and type
the marked block will go out to the newly named

NOTE: If you are dividing up a long file, you may
find that the part you want to be your new file is
not in memory when you begin--there isn't enough
room. If this is the case, remember that this time
you CAN'T use Control-Q to make more room in memory.

Page 108 System 88 User's Manual PolyMorphic Systems

If you do, unwanted material from the old file will
go into the new file. Instead, delete the contents
of memory as required, then append using Control-A.
Repeat till you have the part you want in memory.

11.5 REFERENCE LIST OF THE EDITOR COMMANDS

Typing EDIT plus the name of the text file brings in all Editor
features and the desired input file. You may also name the
output file at this time.

Arrow keys: The arrow keys are used to move the cursor. If
your keyboard does not have arrow keys, the indicated control
characters will serve the same function.

UP Up-pointing arrow (Control-Q) Move cursor to point
dlrectly above present cursor position; if there are
no characters directly above the cursor, it moves to
the right of the nearest character above.

DOWN Down-pointing arrow (Control-R) Move cursor to
poInt directly below present cursor position; if
there are no characters directly below the cursor, it
moves to the right ,of the nearest character below.

RIGHT Right-pointing arrow (Control-S) Move cursor
one space to the right; if the cursor is at the right
end of the line, it moves to the beginning of the
next line down.

LEFT Left-pointing arrow (Control-T) Move cursor one
space to the left; if the cursor is at the left end
of the line, it moves to the right end of the next
line up.

Move the cursor to the BEGINNING of the line above by typing
Escape-up arrow. Move it to the BEGINNING of the line below by
typing Escape-down arrow.

The Commands

Control-A

Add to text in memory from input file.

Control-B

Display beginning of text in memory.

Control-C

Continue search for search string.

Control-D

polyMorphic Systems System 88 User's Manual Page 109

Same as DELETE key.

Control-E

Display end of text in memory.

Control-F

Find a string. Type Control-F, then the string.
Then hit ESC (escape key) once.

Control-H

Same as BACK SPACE key: insert a backspace into the
text (which appears on the screen as the Greek
lower-case iota).

Control-I

Same as TAB key.

Control-L

Insert a form feed character into the text (which
appears on the screen as a lambda).

Control-N

Display next fifteen lines from present position.

Control-O

Output text in memory to output file.

Control-P

Display fifteen lines before present position.

Control-U

Undelete deleted characters.

Control-V

Reverse upper and lower case.

Control-W

Delete one word.

Control-X

Delete one line.

Page 110 System 88 User's Manual PolyMorphic Systems

ESC-right arrow, ESC-left arrow

To mark a block of text for moving, copying, or
deletion, insert a right-pointing arrow at its
beginning by hitting the ESC key, then the right
arrow key, and insert a left-pointing arrow at its
end by hitting ESC and the left arrow.

NOTE: The commands below always affect the FIRST
marked block in memory.

ESC-Control-C

Copy a marked block to the present cursor location.

ESC-Control-D

Output a marked block to the output file.

ESC-SHIFT-DELETE

Delete a marked block.

ESC-DELETE

Delete block markers only.

PolyMorphic Systems System 88 User's Manual Page III

Section 12

THE MACRO-88 ASSEMBLER

The System 88, like any computer, actually "understands" only
binary data. It obeys instructions that are expressed as binary
numbers or code, called machine language. You can write a
program in machine language, but the binary-code instructions,
being numbers, are rather hard to remember, so the programmer who
wants to write in machine language actually uses "assembly
language," a translation of machine language into word-like
mnemonics. Jump instructions, for instance, all use the mnemonic
JMP in place of the corresponding machine language.

Having written a program in assembly language, the programmer
submits it to a special program called an assembler. An
assembler simply re-translates the assembly language into machine
language so that the ~omputer can understand it. The
assembly-language program is called the source code, and the
resultant machine-language program is called the object code.

Note that an assembler is a translator program, which creates a
new version of the program in machine language which can then be
run in a comput~r. BASIC, on the other hand, is an interpreter
program, which is automatically called into play whenever you run
a BASIC program. When you run a program written in BASIC, the
file called BASIC ' runs simultaneously and intervenes between the
BASIC program and the processor, interpreting the BASIC
statements.

It might seem that all assemblers would be more or less the same,
or at least that all assemblers written to work with the 8080
processor (the processor used in the System 88 and many other
small computers) would be much the same, but they are not. The
assembler translates your assembly language program into machine
language, and the ability of your translator to understand what
you are saying limits what you can say. All assemblers written
for the 8080 processor allow you to use the assembly language
instructions corresponding to the 78 different kinds of machine
instructions that are built into the 8080. But all assemblers
also have other commands' that cause other events than generation
of a machine instruction. Some assemblers are very simple, and
put the programmer to some trouble to make the assembly-language
program correspondingly straightforward. Others, like MACRO-88,
can understand and translate some rather sophisticated
statements. For instance, MACRO-S8 lets you use
macro-instructions (which are a bit like sub-routines condensed
into a single instruction) in your assembly language program.

This section gives the minimum information necessary to use the
MACRO-88 assembler, with no explanation of how to program in

Page 112 System 88 User's Manual PolyMorphic Systems

MACRO-88 or of what the assembler does internally or why. To
learn more about the assembly process, the philosophy of
MACRO-88, its implementation restrictions, its library file
system, or its advanced macro features, read the MACRO-88
Assembler Manual.

12.1 INVOKING MACRO-88

We'll assume you are "in Edit" and have just finished writing a
draft of an assembly language program. You now want to go from
the Editor to the Assembler, assemble your program, and check it
for errors. Exit from Edit to Exec in the usual way. At this
point you can choose to have your program listed on a printer
other than your· defaul t printer (see Section 13, The Pr inter
Driver). Select another listing device by typing the Printer
command and the name of the device you want to list on:

SPrinter (user's printer driver)

(Note: throughout this discussion, variable items are
enclosed in "square brackets" [] .)

If you do not want to list on a printer other than your default
printer, skip the step above.

Now type the assembler invocation command, Asmb, and the full
name of your source code file (starting with the disk specifier
if your source file is not on the default drive), plus another
name for the object code output file if desired:

$Asmb [source file] [optional object code output file]

If the optional object code output file name is omitted, no
object code will be generated. You may choose this option when
test-assembling a program that you expect will have many assembly
errors.

12.2 SELECTING OPTIONS

When you invoke the MACRO-88 Assembler, it responds by putting a
series of questions on the screen, as follows:

MACRO-SS Version (version of this copy): (date of this version)
Hardcopy? (defaul t is v ideo display) (Y 0 r N):

Type Y for yes if you want a hard-copy listing (listing on any
device other than the screen). Type N if you wish to list on the
video screen only---your probable choice if this is the first
attempt at assembly for this program. Then hit the carriage
return (all responses end with a carriage return).

Full listing? (else errors only) (Y or N):

The first time you try to assemble a program, you will probably
choose to answer this question with an N for no. An N response

uJ

PolyMorphic Systems System 88 User1s Manual

means that the assembler will list only errors that
your program, if any. You can then return to Edit
errors, then re-assemble.

Symbol table printout? (Y or N):
I

Page 113

it finds in
and correct

The assembler will list a table of all the symbols used in the
program if you answer yes.

12.3 THE ASSEMBLY PROCESS

Assembly begins automatically as soon as you answer the last
question above.

The assembler makes two passes through your program, first
creating a table of labels, then doing the actual assembly. As
the process unfolds, the assembler displays on the screen:

Pass one. Pass two.

Having gone through your source file twice, when MACRO-aa
encounters an END statement, it displays:

Error total = [total number of assembly errors]

It then returns you · to Exec.

~ If the assembler comes to the end of your source file on its
first pass without finding an END statement, it assumes that the
program resides in more than one file and asks you to name the
file that contains the rest of the program. This continues until
an END statement is actually found. Then in pass two, the
assembler asks for the names of all the files again, even the
source file specified in the "Asmb [source file]" line. Giving
only a carriage return as a response to any of the questions says
that there is no continuation file: "I just forgot to put in the
END statement." Assembly then continues as if there actually were
an END statement.

Page 114 System 88 User's Manual PolyMorphic Systems

PolyMorphic Systems System 88 User's Manual Page 115

Section 13

SYSTEM 88 PRINTER DRIVER

The System 88 Operating software includes a Printer Driver. It
is the job of this Printer Driver to act as the connection and
frequently as the interpretor, between the system and the
printer. The System 88 Printer Driver is designed so that it can
send characters to many different makes of printers, enabling
your System 88 to run them. This flexibility is possible because
the Printer Driver provides a means for you to teach it about the
particular characteristics of your printer. This flexibility can
even include parallel printers since the Printer Driver is
capable of utilizing a user-written program which will handle the
communication between the system and the parallel printer.

All printing-related functions are controlled by the Printer
Driver, including the establishing of page parameters (top and
side margins, lines per page and, width) and of a DEFAULT printer
which the Printer Driver will automatically prepare to run each
time the System 88 is turned on or the Load button is pressed.
Each time the Printer Driver learns about a new printer it adds
that printer name to its list of "known printers" and stores the

~ printer's characteristics until it needs to run 'that printer.

Whether or not there is a printer connected to the System 88, the
Printer Driver is automatically loaded into memory when the
system disk is Loaded and is always ready to establish
communications with the printer. The Screen printer can be
connected if you do not have a printer available but would like
to test a program which involves printing. In this case, the
Printer Driver will output characters to your video screen rather
than to a printer.

.
Now that you have an idea of what the Printer Driver can do, the
next step is to learn how to define a printer and establish a
DEFAULT printer. Then we will explain the daily use of your
Printer Driver to print from Exec, or BASIC and to connect
different printers or establish different page parameters.,

13.1 USING THE PRINTER EDITOR

How does the Printer Driver learn how to run a particular
printer? You teach it by supplying the information it needs about
each printer type. You supply this information while in the
Printer Editor which you invoke by typing:

$Setup

Page 116 System 88 User's Manual PolyMorphic Systems

Below is a list of things you can do while the printer editor is
invoked:

Supply answers to an appropriate series of questions,
allowing the Printer Driver to learn about a new printer.

Display the list of characteristics of any known (previously
defined) printer.

Establish any known printer as the DEFAULT printer.

DELETE all information about any previously defined printer.
In which case, that printer would then be unknown to the
system's Printer Driver.

Return the system to EXEC.

When you type Setup you will see the following:

Known printers: Null Screen Diablo Diablo-1200 1660
Commands: NEW CUSTOM VIEW DEFAULT DELETE EXIT
#.#

is the prompt for the printer editor, which · is waiting for
instructions from you.

The "Known printers" 'are those which the printer already knows
about. The ones shown above are the ones that are pre-defined
and included on the system disk shipped by PolyMorphic Systems.
As shipped, ·the DEFAULT printer is the known printer "Null." This
means every time you Load your system or turn it on, the printer
will prepare to drive the Null printer. While the Null printer
is connected, no data will be output to a printer.

If you are setting up a System 88, or if you have just attached a
different sort of printer, you will need to establish your
printer as the DEFAULT printer. You may find that the printer
you wish to connect is not a known printer; you will then need to
define your printer to the Printer Driver before you can
establish it as your DEFAULT printer. (See 13.1.1)

If the printer you want to use is a known printer, then you
should type

##VIEW Printername

Now you can see what page parameters were established for your
printer. If the page parameters are different than those you
would set, you can redefine the printer using another name.

For example, you can redefine the Diablo-1200, using that same
name only after you DELETE the existing definition by typing

##DELETE Diablo-1200

polyMorphic Systems System 88 User's Manual Page 117

NOTE: If you type DELETE Diablo-1200 you will delete
the definition of that printer and remove it from the
list, freeing the name . Diablo-1200 for your own
definition. Before you do this, you should jot down
the technical characteristics so that you can reenter
them in a minute, along with your page perameters.

Once you have determined that one of the known printers is
suitable, that its technical characterstics match those of your
printer and its page parameters are what you want, you can make
it your DEFAULT printer. Your DEFAULT printer is the one which
the Printer Driver will prepare to run every time the system
software is loaded. You specify your DEFAULT printer while still
in the printer editor by typing

**DEFAULT Printername

After EXITing, the system will load the new DEFAULT printer each
time the load button is pressed or the system is turned on. The
new DEFAULT printer is, however, not connected after the EXIT
command. Either the system must be powered up or loaded, or the
printer must be connected with an explicit Printer Printername
command.

The use of the NEW command to define a printer is explained in
13.1.1.

. .

~ 13.1.1 Defining NEW Printers

If you would like to teach the Printer Driver about a particular
type of printer, first type

**NEW Printername

You can select any name you want but a single printer name cannot
be used twice. There may be no spaces within the printer name
(e.g. Diablo 1200 is Diablo-1200).

The information you need to understand the printer definition
procedure will be presented in two parts. First we will list the
various questions which you may be asked by the Printer Editor.
Then we will define the terms used in these questions.

Page 118 System 88 User's Manual PolyMorphic Systems

First the printer Setup questions:

Printer setup:

Similar to a Diablo?
Understand Form Feeds?
Understand TAB characters?
Speed of printer (in BAUD)?
Blocking type device?

Your answer to this last question will be followed by
different questions if it is affirmative than if it is
negative.

If your answer to this last question is Yes, you will
see the following questions:

Device buffer size (O-255)?
Send a start character?

Again, an affirmative answer to this question
will pe followed by a different set of questions
than will a negative answer.

If you indicate that your printer does send a
start character, you will be asked the following:

ASCII code for START character?
ASCII code for END character?
ASCII code for ACKNOWLEDGE character?

If you indicate that your printer does not send a
start character, you will be asked the following:

ASCII code for END character?
ASCII code for Acknowledge character?

If your answer to the Blocking type device question was
No, the~ the following questions will follow:

ASCII code for PAD character
Number of pads after CR?
Number of pads after LF?
Number of pads after TAB?

You will only be asked the following at this
poin~ if you indicated that your printer does not
understand form feeds.

Number of pacts after BS?

o ·

o

PolyMorphic Systems System 88 User's Manual Page 119

Now you will be presented the DEFAULT page parameter
questions:

Lines per' page (form size)?
Characters per line (page width)?
Lines for TOP margin?
Lines for BOTTOM margin?
Offset for left EDGE?

Listed below are definitions of Printer Setup terms; consult
these while you are defining your printer.

Similar to a Diablo?

(Answer Yes or No)

Your printer is similar to a Diablo if it has the
following:
settab1e left margins (code <esc> 9).
Settable tabs (code <esc> 1)
Absolute horizontal positioning (code <esc> HT pos)
Clear tab stops (code <esc> 2)

Understand Form Feeds? (Answer Yes or No)

Some printers automatically respond to form feed
characters by moving on to the top of the next page.
If yours does not, the Printer Driver will translate
form feed characters into enough blank lines to move
the printer to the next page.

Understand TAB characters? (Answer Yes or No)

Some printers automatically respond to tab characters
by tabbing over to pre-set tab stops. If yours
doesn't, the Printer Driver will simulate tab
characters by supplying the correct number of spaces to
the printer.

Speed of printer (in Baud)? (Answer with a decimal
number)

Printers communicate at a set rate of speed called the
Baud rate. Consult the specification for your printer
to find this figure.

Blocking type device? (Answer Yes or No)

Some printers have an internal buffer and thus can
receive a block of characters at a time, initiated by
an optional "start character," delimited by an "end
character" and once received the printer returns an
"acknowledge character."

Page 120 System 88 User1s Manual PolyMorphic Systems

Device buffer size?

(Answer with a decimal number) Respond by typing the
internal size of the printer's buffer.

Send a Start character? (Answer Yes or No)

Some printers, Diablos for instance, don't need start
characters.

ASCII code for START character? (Answer with a decimal
number)

The start character varies from printer to printer.
For most printers it is <stx> (ASCII code 2).

ASCII code for END character?
number)

(Answer with a decimal

The end character varies from printer to printer. For
most printers it is <etx> (ASCII code 3).

ASCII code for ACKNOWLEDGE character? (Answer with a
decimal number)

The acknowledge character varies from printer to
printer. For most printers it is <ack> (ASCII code 6
) .
Lines per page (form size)? (Answer with a decimal
number)

The number of lines that your printer can print on one
page varies. Most printers print six lines per inch,
and most pages are eleven inches long, so 66 is the
usual response to this question. If your printer or
form differs, do some calculation to determine how many
lines your printer will print on your form.

Characters per line (Answer with a decimal number)

Most printers print 80 ch~racters per line if they are
using standard size paper. However, you may be using
narrower or wider paper and consequently may wish to
establish a different width.

Lines for TOP margin? (Answer with a decimal number)

Define how much of a margin you want left blank at the
top of each page by stating a number of lines.

Lines for BOTTOM margin? (Answer with a decimal number)

Define how much of a margin you want left blank at the

o

PolyMorphic Systems System 88 User's Manual Page 121

bottom of each page by stating a number of lines.

Offset for left Edge (Answ~r wth a decimal number)

This establishes the point to the right of the left
edge that will be considered the left edge by your
printer. A left bias between 2 and 10 is usually
suitable.

When you have answered all questions, you will see the following
message:

Printer defined i*

You can then establish your DEFAULT printer by typing

iiDEFAULT Printername

Type EXIT to return to Exec. Once you have returned to Exec you
can either push Load or type the fqllowing:

$Printer Default Printername

to cause the DEFAULT printer to be connected.

13.1.2 CUSTOM

If you want to drive a parallel printer with the System 88
Printer Driver, you can do so after you have supplied a user
written program. The CUSTOM function of the Printer Editor
allows you to do this. Type

##CUSTOM Printername

Questions will then appear on the screen one by one. The first
two questions you will have to answer are:

Driver name?

In answer to this question, type in the name of the user written
program which is stored on the system disk and is capable of
handling the communication between the Printer Driver and the
parallel printer. This name must be three characters or less;
the extension on the file must be .PS.

Use Standard dialog?

An answer of no to this question
(series of questions) followed by
questions.

will result in a short dialog
the standard page parameters

If you answer yes, the program will run through the entire usual
dialog (the questions shown in 13.1.1).

See Appendix-H for an example of a user-written driver.

Page 122 System 88 User's Manual PolyMorphic Systems

13.2 PRINTING FROM EXEC.

Printer, PRINT, Directory, LOG, NOLOG and PAGE are the commands
which are connected with the printing process inItiated in Exec.
As you have just learned, when you first install your System 88,
and again when you change printers, you will follow · the
procedures outlined for defining printers to the Printer Driver.
These defined printers constitute the list of "known printers."
You will probably also establish a DEFAULT printer at that time.

SPrinter Printer-name

while the system is in Exec.

If your physical printer is not turned on and hooked up to your
System 88 when you perform the above procedure, nothing will
happen when you give a PRINT, LOG or FORMAT command. You will
not even be given an error message because the system is waiting
for a signal from your physical printer. When this happens, turn
on your printer, push Load and type the Printer Printername
command again.

If you wish to use a printer other than the DEFAULT printer you
can type the command Printer followed by the name of the printer
you wish to use.

Remember that you must have already defined that printer to your
Printer Driver. To make sure that you have you can type:

SPrinter

You will then see a list of "known printers." Only one of these
can be the DEFAULT printer at a time, but anyone of them can be
connected in moments by following the above procedure.

If you type Printer followed by a printer name other than your
DEFAULT printer, your system will connect that alternate printer
and continue to be capable of driving it until you use the
Printer command to attach another printer, or until you push the
Load button or turn off the system.

If you want your printer to print out the contents of a
particular file, type

$PRINT <2>filename

If you want your printer to advance to the top of the next page,
type

$PAGE

If you want the printer to print the list of files in your
directory, type

$DIR <2

o
PolyMorphic Systems System 88 User's Manual Page 123

If you want your printer to begin typing everything which
subsequently appears on the screen, type:

SPrinter LOG

If you want your printer to stop typing what appears on the
screen, type

SPrinter NOLOG

LOG and NOLOG provide a means for you to keep a record of all of
your keyboard entries. Since your entries eventually scroll off
of the screen, you can not refer to some prior sequence of your
input and the system's response unless you use the LOG command to
cause the printer to keep a record.

13.3 PRINTING FROM BASIC

To use the Printer Driver from BASIC, you must use two types
statements in BASIC.

First you must attach your printer while in BASIC.
This is done with the following statement:

10 FILE:C, LIST

where C is the channel to which the printer is
attached.

Next, the user must provide BASIC PRINT statements in the
following format:

20 PRINT:C,'prin list'

ExAMPLE:

10 FILE:2,LIST
20 FOR I=l TO 10
30 PRINT:2,TAB(I),"Test the Printer Driver"
40 NEXT

You can also use

LIST:2
XREF:2
DUMP:2

For more information, see the System 88 BASIC manual •

. 13.4 USING YOUR SCREEN FOR A PRINTER

You may want to test a BASIC program or FORMAT a text file on a
system without a printer. You can do this by typing

SPrinter Screen

Page 124 System 88 User's Manual PolyMorphic Systems

This means you have connected Screen, one of the printers your
software already knows about to your Printer Driver. Once you
have connected Screen as your printer, all output to the printer
will appear on the screen.

13.5 Printer SET

Once you have defined your Printer Driver and its parameters, and
have established it as your DEFAULT printer, you will not have to
enter the Printer Editor again unless you need to define a new
'printer, or establish some other printer as your DEFAULT printer.

You already know that you can temporarily over-ride the DEFAULT
printer by typing

SPrinter printername

while still in Exec. You also know that if you are not happy
with the DEFAULT page parameters, you can change them by
redefining your printer in the Printer Editor. However,
sometimes you may want to temporarily over-ride the DEFAULT
parameters for your printer. You can do this without entering
the Printer Editor, and without answer the technical questions
about your type of printer. All you have to do is type

SPrinter SET

You will then be asked the following:

Lines per page (form size)?
Characters per line(page width)?
Lines for top margin?
Lines for bottom margin?
Offset for left EDGE?

When you have finished entering your temporary parameters, the
system will return to Exec. and you can then operate your
printer with the new parameters. These parameters will remain in
effect until the system is turned off or until you push Load.
Then your DEFAULT parameters will again be in effect.

13.6 Printer SHOW

What if you forget what your DEFAULT parameters are? Or, you may
forget whether or not you have temporarily changed the page
parameters. You can view the page parameters that are in effect
by typing:

SPrinter SHOW

o

~

PolyMorphic Systems System 88 User's Manual Page 125

Appendix A

SYSTEM 88 ERROR MESSAGES

Sometimes Exec cannot respond to a command or file invocation.
This may be because the input was incorrect (e.g., INAGE
instead of IMAGE), illegal (e.g., DELETE Exec.OV), or
impossible to perform (e.g.,<2<FILE, where <2<FILE does not
exist) • At these times, the system displays error messages
that tell you the problem and give you some idea of what to do.

All the error messages you may receive from the system are
listed below, along with their possible causes. For error
messages generated by BASIC, see the System Library volume
BASIC: A Manual.

ERROR MESSAGES GENERATED BY THE SYSTEM

The error codes associated with the error messages are given
for the benefit of the machine language programmer who may want
to modify the section of the system software that generates
error messages. See the System 88 Library volume System
Programmer's Guide for information on interfacing your programs
with the system software.

ERROR CODE MESSAGE

0101 DIO says: Bad parameters!

0102 010 says: Hard error! Preamble bad!

0103 010 says: Checksum error!

0104 DIO says: Verify error!

0105 DIO says: Write protected!

0106 010 says: No disk or door open!

0107 No Controller for that device

0108 Data transfer error

0110 System PROMS must be version 74 or later!

0111 I can't do that to the System Drive!

0112 I can't, too much data for object disk

0201 I can't run that file

0202 Nothing to run!

Page 126

0204

0205 .

0206

0207

0300

0301

0302

0303

0306

0307

0309

0308

030C

0380

0381

0382

0383

0384

0385

0386

0387

0388

0389

038A

System 88 User's Manual PolyMorphic Systems

What?

I don't know what to do with that file

I don't have eno ugh memory to do tha t!

I can only pack entire disks

I can't find that file

I can't access that device!

Disk directory unreadable!

Disk directory unreadable!

I can't read the directory-no disk or
door open!

No controller (Controller circuitry may be
malfunctioning so severly that CPU ROMs
can not tell if it exists.

Bad track 0 switch on the selected drive
(Circuitry to detect this may be at fault)

Seek Error (Head positioning mechanism on
the selected drive did not get to where it
was directed by the controller (Controller
circuitry to perform this may be at fault).

Controller Self-check error

IC33 is bad

Self Test Failure in SDLC

Memory Error

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Memory Error on 88/MS Controller

Phase Lock Loop tested bad

PolyMorphic Systems

l 03FF

0500

0501

0502

0503

0504

0505

0506

0507

0508

0509

050C

0600

0601

0701

0702

0703

0704

0705

0706

0901

0902

0903

0904

System 88 User's Manual Page 127

Disk directory destroyed!

Gfid says: Bad disk identifier

Gfid says: Name too long

Gfid says: .Illegal extension

Gfid says: Name null or weird!

I can't: the directory is full

I can't: the disk is full

I can't RENAME across drives: use COpy

No new extension given

I can't do that to a system file

"(?<" is not allowed here

I can't copy directories

That file already exists

That file does not exist

Output file not specified

Output file already exists

Input file not specified

I can't edit that file!

Input file does not exist

I can't have two files open OUT on the same

You haven't defined a set of parameters for
tha t pr inter.

You have already defined a set of parameters

Please give me a printer name

I can't do that to that printer name!
(Cmd f abort)

Page 128 System 88 User's Manual PolyMorphic Systems

EXPLANATION OF ERROR MESSAGES

010 ERROR MESSAGES

When you see an error message beginning "010 says: ••• ," that
message is coming from a particular area of the system. 010
(DISK I/O) is the part of the operating system that performs
disk read and write operations. It reports any errors
resulting from problems in writing and reading information to
and from a disk.

Error Code 0101 010 says: Bad parameters!

This usually indicates an internal system error, caused by the
system giving bad arguments to 010.

Error Code 0102 010 says: Hard error! Bad preamble!

010 thinks that your disk is bad. It wasn't able to read
information off of it, and thinks that the fault lies with the
disk, rather than with the system. Try again, perhaps with the
disk in another drive. If you keep getting this message, you
had better check the status of your disk, perhaps by erasing
the disk using the INIT command. T~is will perform a simple
surface test of the disk, by writing a zero in every location
in every sector of the disk. (Of course, this costs you all
the information that was on that disk.) If INIT can't write a
zero in a particular location, you will get the message "Verify
error," and you will know that your disk is bad.

Error Code 0103 010 says: Checksum error!

The data that has been read off of your disk does not look
valid to 010. Try the operation again-- chances are, however,
that your data is no longer accessible.

Error Code 0104 oro says: verify error!

The system has tried to verify a disk write operation. The
data written on to the disk does not match the original data
still in memory. This may be due to a faulty write operation
or a change in the data in memory. Try again. If you receive
this error again, suspect that your disk is bad.

Error Code 0105 010 says: Write protected!

You are trying to write data on a disk that is
"write-protected" (the disk has a write-protect tab fixed over
its "write-enable" notch). A write operation cannot be
performed on such a disk. To write-protect a disk, place a
write-protect tab over the disk's write-enable notch (see
Figure 1, Cutaway Drawing of a Disk) • To make a
write-protected disk available once again for write operations,
simply remove the write-protect tab from the disk's

PolyMorphic Systems System 88 User's Manual Page 129

write-enable notch.

Error Code 0106 DIO says: No disk or door open!

You have attempted to access a disk, b~t the drive you have
selected is empty, or the drive door is open. No read or write
operation will be performed. If you have speqified a legal
disk drive number, but your system does not contain that many
drives, DIO will respond with this message.

EXAMPLE: $L 3 (no disk drive with that number)

Error Code 0110 System PROMS must be version 74 or later!

You have tried to run current software on a machine containing
an old version of the System 88 PROMS (Programmable Read-Only­
Memories). Can't be done.

Error Code 0111 I can't do that to the System Disk!

Exec assumes that the disk in the System Drive (usually drive
1) is your System Disk. It thinks you are trying to do
something that will destroy the System Disk, such as imaging
over it or initializing it. If you really want to do one of
those things to the disk, put it in another drive and use
another System Disk in the System Drive.

GFID ERROR MESSAGES

The area of the system that deals with getting and identifying
disk files is GFID (Get-File-Identifier). If the system has
trouble getting file names or identifying a file, GFID will
generate one of the error messages below.

Error Code 0500 Gfid says: Bad disk identifier

GFID does not understand the disk specifier you have given to
the system.

EXAMPLE: $LIST @

Error Code 0501 Gfid says: Name too long

The file name you have entered is more than 31 characters long.

Error Code 0502 Gfid says: Illegal Extension

You have tried to save a file with a file name extension longer
or shorter than the mandatory two characters in length or in
some other way illegal.

EXAMPLE: <2(Frammis.A

Error Code 0503 Gfidsays: Name null or weird

Page 130 System 88 User's Manual PolyMorphic Systems

You have given a bad file name to the system. This message
will also be generated if you enter NO file name to the SAVE
command. A "bad" file name is any name not acceptable to the
system.

EXAMPLE: $RENAME <2<PHONE.DT <2<+.DT

(The second file name, +.DT, is illegal.)

PRINTER DRIVER ERROR MESSAGES

The system gives these messages for the kinds of errors that
can occur when you are using the printer driver.

Error Code 0901: You haven't defined parameters for that
printer.

The printer driver · doesn't have a set of parameters for the
printer you requested.

EXAMPLE: SPrinter Terminet

but you have not yet told Printer what a Terminet is.

Error Code 0902: You have already defined parameters for that
printer.

You have tried to define parameters for a printer that Printer
already knows about. Use the DEL and NEW commands. (You might
also have tried to rename a device with its own name.)

Error Code 0903: Please give me a printer name!

You have tried to use a printer driver command, but have not
specified which printer the printer driver is to rename,
define, delete, etc. Use the command again, but on the same
line give a valid printer name.

Error code 0904: I can't do that to that printer name!

You tried to delete, rename, or view the Null or Screen
"printer." Can't be done.

OTHER ERROR MESSAGES

Error Code 0201 I can't run that file

You have asked the system to run a system overlay file.
the system itself may invoke an overlay.

Error Code 0202 Nothing to run!

Only

You have used the START or REENTER command to begin execution
of a machine language program. The system, however, believes

o
PolyMorphic Systems System 88 User's Manual Page 131

that there is nothing in memory to execute.

Error Code 0203 What?

A general purpose error message indicating that the system does
not understand what you are saying.

EXAMPLES: $ (a line of spaces) $<%<FILE

Error Code 0205 I don't know what to do with that file

You have typed a file name after a system prompt, but the
system cannot run that file or use it as a command file. You
will get this error message if you try to invoke any file with
the extension .DT, .SY, or .OV.

Error Code 0206 I don't have enough memory to do that!

You will get this message if you try to load into memory a file
that checks for the top of memory and finds that it's too big
to fit into the available memory space. For instance, if you
try to load the MACRO-88 assembler (which always checks for the
top of memory when it is first loaded) into 16K or less of
memory, you will get this message.

Error Code 0300 I can't find that file

Whenever the system fails to identify an input as a command or
file invocation, it issues this error message. If the system
is confused by an input, it usually assumes that you have asked
for a file that it is not able to find. Make sure that you
have spelled your input correctly.

Error Code 0301 I can't access that device!

Exec has failed to understand the disk specifier you used when
you asked it to locate or create a file.

EXAMPLE: $EDIT <2<File <?<Oops

Exec cannot tell where you want to put the output file.

Error Code 0302 Error Code 0303 Disk directory unreadable!

The system believes that the disk directory has been destroyed.
No file on a disk can be accessed if the disk directory is
invalid. Try again in another drive. You have probably lost
all access to the data on the disk, however. Possible cause-­
interrupting disk I/O while the disk directory was being
updated.

Error Code 0306 I can't read the directory-no disk or door open

No write or read operation will take place to or from a disk

Page 132 System 88 User's Manual PolyMorphic Systems

while the door is open on the drive containing that disk.

(Error 0306)

This is the same
or door. open."
the System Disk.
System Drive and

error as "I can't read the directory-no
However, in this case, the system cannot
Make sure that the System Disk is in

that it is in the drive correctly.

Error Code 0308 Data Transfer Error

Checksome error -- memory error on controller board

Error Code 03FF Disk directory destroyed!

disk
find
the

The system thinks that your disk directory is no good. Try
again in another drive. No files on a disk may be accessed if
the disk's directory is bad. Possible cause--interrupting disk
I/O while the directory was being updated.

Error Code 0504 I can't: the directory is full

You have tried to save a file on a disk whose directory is
full. The directory is of a fixed size and has a finite amount
of room for file names. Try saving the file on another disk.
Or you may delete files from the full disk, pack the disk, and
try again.

Error Code 0505 I can't: the disk is full

You have tried to save a
file on another disk.
disk, pack the disk, and
disk. Error Code 0506 I

file on a full disk. Try to save the
Or you may delete files from the full

try again to save the file on the
can't rename across drives: use COpy

You have tried to use the RENAME command on files on different
disks.

EXAMPLE $RENAME <2<Printer.GO <3<TELETYPE.GO

You must use the COpy command when renaming files across disk
drives.

Error Code 0507 No new extension given

You have tried to rename or copy a file, but it is not clear
what the extension of the new file name will be.

Error Code 0508 I can't do that to a system file

You have tried to use one of the following commands on a system
file: RENAME, COPY, PRINT, TYPE, DELETE, or EDIT.

Error Code 0509 "<7<" is not allowed here

o

0··· -

PolyMorphic Systems System 88 User's Manual Page 133

You have used the disk specifier? when it is meaningless, e.
g. as part of the file specification of an output file.

EXAMPLE: $RENAME <?<SysGen <?<Start-Up

Error Code 0600 That file already exists

You have tried to save a file under a name that already exists
on the specified disk.

EXAMPLE: (You have a file on the disk in drive 2 named
BOOK.) $SAVE,<2<BOOK

The system will tell you "That file already exists."

Error Code 0601 That file does not exist

Some areas of the system will issue this message if you try to
access a non-existent file. Make sure that the file you have
requested does exist and is on the disk in the drive that you
have indicated.

Error Code 0701 Output file not specified

Some system software requires that you specify an output file.
If you don't give an output file, the system will not know
where to put the data you are working with.

Error Code 0702 Output file already exists

You have given as an output file a file name that already
exists on the disk specified.

Error Code 0703 Input file not specified

Some system software requires you to specify an input file. If
you don't specify an input file, the system will not know where
to get the data you want to work with.

Error Code 0704 I can't edit that file!

You have tried to edit a file that cannot be edited! You may
not edit any file with a load or start address (a system file,
a system overlay, or any machine language file).

Error Code 0705 Input file does not exist

You have asked for an input file that does not exist.

Error Code 0706 I can't have two files open OUT on the same
device!

You have asked the Assembler to create an output file on a disk
that already has an output file openl They must be put on

Page 134 System 88 User's Manual PolyMorphic Systems

disks in separate drives.

(Cmdf abort)

The system has tried to use a file as a command file but has
been unable to do so. This may be due to an illegal command, a
bad file invocation, or a~ unrecognizable entry in the command
file. If you try to invoke an unrunable file from the system
level (such as a text file or a BASIC program whose file name
does not contain the .BS extension), the system will try to use
the file as a command file, but will not be able to do so, and
will then give the error message "(Cmdf abort)."

Use of a valid command file is terminated (and this error
message displayed) when you type a Control-Y or the command
PACK or INIT appears in the command file.

()

()
polyMorphic Systems System 88 User's Manual Page 135

Appendix B

ASCII CHARACTER SET

Since the only data that your machine understands is binary
data (Is and Os), all information within the computer must be
stored in that form. All of the characters that can be typed
from your keyboard (letters, numbers, symbols, control
characters, etc.) must have a binary value assigned to them in
order for your machine to store them. The code that is most
commonly used in assigning values to these characters is called
the ASCII code (American Standard Code for Information
Interchange). Every symbol you type from your keyboard has an
ASCII value and is stored in that form within the machine.

at the ASCII Character Set table that follows these
All of the symbols that you can enter from your
listed, along with their ASCII values (in

Take a look
paragraphs.
keyboard are
hexadecif!l..2.l) •

Besides the letters, numbers, and symbols that appear on your
monitor screen, special characters, called control characters,
can be entered from the keyboard. You type these characters by
holding down the Control key on the keyboard (labeled CTRL) and
typing the letter in any column in the table below which is in

. the row corresponding to the control character. A tab control
character r for instance, can be entered either by hitting the
TAB key on the keyboard or by typing a Control-I, that is, by
holding d~wn the CTRL key and typing an i (or an I).

The control characters perform various functions in the system.
Some of the control characters used by the disk operating
system are:

Control-I

Same as TAB key (tabs cursor to the right eight spaces}

Control-L

Form Feed (clears screen and places cursor in upper right hand
corner of screen)

Control-M

Carriage Return (advances the cursor one line on the screen)

Control-Q

Same as up arrow key

Page 136 System 88 User's Manual PolyMorphic Systems

Control-R

Same as down arrow key

Control-S

Same as right arrow key

Control-T

Same as left arrow key

Control-W

Deletes one word

Control-X

Deletes one line (same as CANCEL key on some keyboards)

Control-Y

Interrupts current process

Control-Z

Enters front panel display mode

NOTE: Control characters are not visible when you use them
within file names. They will be displayed as Greek
characters, however, when that file name is shown in a
disk directory display. Each control character will be
displayed as the Greek letter that appears in the same row
as the control character in the table below. EXAMPLE:

The control character "SOH" (Control-A) will appear as the
G r e e k let t e r Be t a (j3) ~

Page 137 System 88 User's Manual PolyMorphic Systems

ASCII CHARACTER SET

The following table gives the ASCII code for your machine's
character set. The ASCII values are given in hexadecimal form.

Control Greek Other Characters
Characters Letters

00 NUL 80 20 SP 40 @ 60
,

grave a.
01 SOH 81 S 021 41 A 61 a
02 STX 82 Y 22 " 42 B 62 b
03 ETX 83 <5 23 # 43 C 63 c
04 EOT 84 e: 24 $ 44 D 64 d
05 ENQ 85 1;; 25 % 45 E 65 e
06 ACK 86 n 26 & 46 F 66 f
07 BEL 87 e 27 , apos 47 G 67 9
08 BS 88 1 28 (48 H 68 h
09 HT 89 K 29) 49 I 69 i
0A LF 8A A 2A * 4A J 6A j
0B VT 8B j.l 2B + 4B K 6B k
0C FF 8C \i 2C , 4C L 6C 1
0D CR 8D t; 2D 4D M 6D m
0E SO 8E 0 2E 4E N 6E n

i-j 0F SI . 8F 'TT 2F / 4F 0 6F 0
10 DLE 90 P 30 0 50 P 70 P
11 DCl 91 a 31 1 51 Q 71 q
12 DC2 92 'c 32 2 52 R 72 r

"

13 DC3 93 u 33 3 53 S 73 s
14 DC4 94 <P 34 4 54 T 74 t
15 NAK 95 X 35 5 55 U 75 u
16 SYN 96 1/J 36 6 56 V 76 v
17 ETB 97 w 37 7 57 W 77 w
18 CAN 98 11 38 8 58 X 78 x
19 EM 99 I 39 9 59 Y 79 Y
lA SUB 9A + 3A . 5A Z 7A z .
IB ESC 9B +- 38 i 5B [7B {
lC FS 9C + 3C < 5C \ 7C I ·
lD GS 9D 30 = 50] 70 }
IE RS 9E E 3E > 5E

A

carat 7E -tilde
IF US 9F ~ 3F ? SF u'line7F DEL

The characters 21 through 7E will print on a printer. However,
some printer font character sets will vary slightly. The char-
acters in positions 27, 5C, 5E&, SF, 60, 7B, 7C, 70, and 7E may
be different. An upper-case-onli printer will print only char-
acters 2l-5F (characters 60-7E will be printed as 40-5E in most
cases) •

Page 138 System 88 User's Manual PolyMorphic Systems

I)

o
PolyMorphic Systems System 88 User's Manual Page 139

Appendix C

THE SYSTEM 88 GRAPHICS CHARACTER SET

We have already mentioned the ASCII character set (see Appendix
B, ASCII CHARACTER SET), which consists of all of the symbols
you can type on your keyboard. This set includes upper and
lower case letters, numbers, and punctuation--all the
charactersthat appear on the keyboard--plus control characters
and some other symbols which can also be typed in from the
keyboard. There is another type of character you can display
on the monitor screen--graphics characters.

Graphics characters are symbols that you cannot type from the
keyboard, but that BASIC or assembly language programs can
cause to be displayed on the screen. You use graphics
characters to display data that does not lend itself to
expression in letters and numbers. For instance, BASIC uses
graphics characters when it plots data on the screen with the
PLOT function. You too can use graphics characters to graph
data, or you can use them to draw lines, geometrical shapes,
business-form lines, bar charts, etc.

This appendix discusses how the system forms these characters
on the screen by "turning on" tiny sections of character
matrices, and how ASCII and graphics characters differ in the
way they are represented as binary code in machine memory. It
tells you what the various graphics characters are and how you
can use them in BASIC or assembly language programs. The
following discussion assumes some familiarity with machine
language.

1.1 REPRESENTING GRAPHICS AND ASCII CHARACTERS

Although graphics and ASCII characters are formed in the same
way on the screen, they are represented in different ways
within the machine. You already know that every ASCII symbol
is associated with a number, its ASCII code. This binary code
is one byte long (that is to say, eight bits of Is and Os).
When the machine sees this number, it knows which character to
display on the screen. Every graphics character also has a
code associated with it. The machine knows whether a character
is ASCII or graphics by whether there is a 1 or a 0 in the
"top" bit, the bit farthest to the left in the byte. ASCII
characters have a 1 in the top bit; graphics characters have a
zero in that position. The next bit to the right may be either
1 or zero without affecting whether the character is graphics
or ASCII.

EXAMPLES:

The ASCII code for the question mark symbol, ? . . ,IS the

Page 140 System 88 User's Manual polyMorphic Systems

hexadecimal number 23 (35 in decimal). In binary:

00100011

The top bit must be set in order for the machine to recognize
this as an ASCII · character and therefore to display it as a ?
on the screen. So the above number becomes:

10100011

or the hexadecimal number A3 (163 in decimal). To tell the
machine that a character is an ASCII character, therefore, you
make the top bit a 1 in the binary representation of its ASCII
code. This is the same as adding 10000000 to its binary code-­
which is the same as adding 80H to its hexadecimal ASCII code,
or adding 128 decimal to its decimal M::II code. Because the
second bit from the left may be either 1 or zero without
affecting whether the character is recognized as ASCII or
graphics, the ASCII character above can also be represented by
the binary number:

11100011

The graphics character code for the graphics symbol is the
hexadecimal number 23 (35 in decimal). The machine knows that
this is not an ASCII character because the top bit is a zero:

00100011

If the top bit were 1, the machine would think that the ASCII
question mark symbol was being asked for. Again, since the
second bit from the left does not affect whether an ASCII or a
graphics character is displayed, the same graphics character
would be selected by the binary number:

01100011

1.2 HOW THE SYSTEM FORMS CHARACTERS ON THE SCREEN

Every letter, number, and symbol that you see on the monitor
screen is actually composed of many small white dots on a dark
background. You can think of the screen as a grid consisting
of a large number of small rectangles all the same size. Each
rectangle is a screen location where a symbol can appear. Each
of these rectangles is itself a grid of small squares or dots.
The symbol that you see on the screen is the pattern of dots
that have been "turned on," against the background of the dark
dots of the rectangle that are "off." For example, the period
that you see at the end of a sentence is actually a rectangle
of about 80 dots, all of which are dark (or "off") except for
four dots near the left bottom corner of the rectangle, which
are bright (or "on"). This pattern creates a small white
square which you see as a period:

..

PolyMorphic Systems System 88 User's Manual Page 141

1.2.1 How the System Forms Graphics Characters on the Screen

When the system displays graphics characters on the screen, it
divid~s each of the rectangles mentioned above into a grid of
six "cells" (2 across and three down) :

Each of these cells can be turned "on" or "off" in any
combination to form the 64 graphics characters. For example,
if all six cells of a rectangle are bright ("on"), you will see
a white rectangle on the screen. If all of the cells are dark
("off"), you will not see anything. The cells are numbered in
this way: ·

5 2

4 1

3 a

We've mentioned that each graphics character has a number
associated with it. This number tells the system which cells
are on and which are off. It does this by presenting the
system with a binary ntlmber. in which bLt position corresponds
to cell number: bit to corresponds to cell ltO, bit' Itl
corresponds to cell #1, etc. A zero says "turn this cellON";
a 1 says "turn this cell OFF."

EXAMPLE:

To select the graphics character ~ ,
number 34 or 74:

00110100

or

01110100

use the hexadecimal

Remember, the first bit on the left must be zero to indicate a
graphics character, and the second bit from the left makes no

Page 142 System 88 User's Manual polyMorphic Systems

difference in selecting an ASCII or graphics character.)

This tells the machine: turn on cells . O, 1, and 3; turn off
cells 2, 4, and 5.

off off
off ON

ON ON

One last note: ASCII characters are always surrounded by a
narrow band of dots that are "off." This allows letters and
numbers, etc. to be slightly separated from one another, just
as they are when printed by a typewriter or printer. Graphics
characters, on the other hand, are contiguous-- their cell
parts are lighted all the way to the edge-- so that they can
form continuous graphic elements, such as lines.

See Figure C-l for a complete
characters along with the
representations of their codes.

listing of
hexadecimal

the graphics
and decimal

1.3 USING GRAPHICS CHARACTERS IN BASIC AND ASSEMBLY LANGUAGE
PROGRAMS

Now that you know how to select the graphics characters you
want, you will want to know hoW to use them in your programs.
Remember that we divided up the screen into an invisible grid
of rectangles. Each one of those rectangles is a potential
location for a graphics or ASCII charac~er. ~ach rectangle has
a memory address associated with it. The address which selects
the first location on the first line of the screen is 1800H.
Since there are 64 character positions on one line of the
screen~ the beginning address of the screen plus 64 will give
you the first location on the SECOND line of the screen, and so
on. The entire screen contains 1024 character positions, so
the address selecting the last location at the end of the
screen is lBFFH (1800H + 1023 decimal).

Whether you are programming in BASIC or assembly language, the
basic technique for getting graphics characters on the screen
is the same: you must determine the memory address selecting
the spot on the screen where you want your graphics character
to appear. Then move the character to that address. The
details of . doing this depend on whether you are programming in
BASIC or in assembly language.

PolyMorphic Systems System 88 User's Manual Page 143

1.3.1 Using Graphics Characters in BASIC

BASIC understands only decimal numbers. Therefore you must
convert all hexadecimal numbers to decimal. The first address
of the screen in decimal is 6144 (1800H) • The last screen
address (bottom right corner of the screen) is 7167. Use the
BASIC POKE function to put graphics characters where you want
them on the screen. (Remember to convert the graphics
character codes to decimal too.) The form of the POKE function
is:

POKE address,expression

"Give POKE the address (in decimal) of the spot where you want
your graphics character to appear, then give it a number or
expression which selects the graphics character you want.

EXAMPLE:

10 POKE 6213,0 \REM place a white rectangle on fifth
20 REM position of second line of screen (beginning
30 REM address of screen + 64 [2nd line] + 5 [5th
40 REM position])

Be careful not to give POKE an address less than 6144 or
greater than 7167. Such an address is not a video screen
address; poking odd numbers into an undetermined memory
location is almost sure to get you into trouble.

1.3.2 Using Graphics Characters in Assembly Language Programs

Put graphics characters on the screen via assembly language in
,the same way that you would insert data into any memory loca­
tion. Use the hexadecimal representations of the graphics
character codes and the screen location addresses.

Page 144 System 88 User's Manual PolyMorphic Systems

EXAMPLE:

LXI H,Screen ; Point to screen address
LDA GChar ; Graphics character
i Display on screen by putting into memory location
i pointed to by HL registers.
MOV M,A

1.4 SAMPLE BASIC AND ASSEMBLY LANGUAGE PROGRAMS

Both of these programs display the System
characters.

1.4.1 BASIC Program

88

10 REM Display the 64 graphics characters on the screen
20 A=6l44\REM First scree~ address
30 PRINT CHR$(12)\ REM Clear the screen
40 FOR C=O TO 63\ REM C=graphics character
50 POKE A,C
60 A=A+17 \REM Increment screen address for well-spaced
70 REM character display
80 NEXT
90 PLOT 45,23,0\PRINT "SYSTEM 88 Graphics Characters!"
100 PLOT O,O,O\REM Move cursor to less obtrusive spot

1.4.2 Assembly Language Program

i
; Sample program displaying the 64 graphics characters
; on the video screen

graphics

;
User EQU 3200H Beginning of user memory

IDNT
ORG

;
LXI
XRA
STA

Start LDA
CPI
JZ
MOV
LXI
DAD
INR
STA
JMP

Endlt RET

GChar DB
END

User,User
User

H,1800H
A
GChar
GChar
40H
Endlt
M,A
B,llH
B
A
GChar
Start

0

First screen address

First graphics char = 0
Check character to make

i sure isn't> maximum

; Put on screen
i Increment screen address by

17 for well-spaced character
display

; Return to system Exec

lJ

0 E§ 8 ~ 16
OOH 08H 10H

1

~ 9 W 17
OlH 09H llH

~ ~ 2 10 18
02H OAH 12H

3 Ei 11

~ 19
03H OBH 13H

4 ~ 12 ~ 20
04H OCH 14H

5 ~ 13 ~ 21
05H ODH 15H

~ ~ 6 14 22
06H OEH 16H

tI ~ 7 15 23
07H OFH 17H

l '
~I

Upper number decimal, lower hexadecimal.

White is bright, black dark.

~
24 i] 32 m 40
18H 20H 28H

~ 25

~
33 ~. 41

19H 2lH 29H

~ i3 ~ 26 34 42
lAH 22H 2AH

~ 27 Ii 35 ~ 43
1BH 23H 2BH

~ 28 ~ 36 m 44
1CH 24H 2CH

~ 29 ~ 37 ~ 45
1DH 25H 2DH

~ ~ ~ 30 38 46
1EH 26H 2EH

~ II ~ 31 39 47
1FH 27H 2FH

Fig. C-1 Graphic Character Set

o

~
48 ~ 56 ~ 30H 38H

~
49

~ 57 ~ 3lH 39H
C/l

'-<:

~ ~ ~
en

50 58 rt
(!)

32H 2AH a
00
OJ

~ 51 ~ 59 Ii
q
en

33H 3BH (!)
ti

en

~ 52 ~ 60 Ij ~
III

34H 3CH ::s
~
Pl
t-'

= 53 ~ 61

-= 35H 3DH

t-cI

~ ~, ~
0

54 62 t-'

36H 3EH ~
0
ti

'0

CI ~ I
::r'

55 63
~.

()

37H 3FH Cf.l
'< en
rt
(!)

a en

Page 146 System 88 User's Manual PolyMorphic Systems

PolyMorphic Systems System 88 User's Manual Page 147

Appendix D

SYSTEM 88 MEMORY MAP

The following is a graphical representation of the allocation
of the System 88 memory. Memory location addresses (in
hexadecimal) appear on the left of the figure; the functions of
the various areas of memory appear on the right. The term
"ROM" refers to Read-Only-Memory: memory areas which cannot be
wri tten into. "RAM" is the term for Random-Access-Memory:
memory areas which may be both written into and read from.

polyMorphic Systems System 88 User's Manual Page 1

SYSTEM 88 MEMORY MAP

MEMORY ADDRESS

0000

0400

0800

OCOO

1000

1800

lCOO

IFOO

IFEO

IFFO
200.0

3200

FFFF

~ .. -------r
\ I

4.0 Monitor
ROM

FUNCTION

Disk Operating \
System ROM ~

System Stack, Wormholes

88/MS Controller

Video Boa rd RAM
(video display memory)

SYSTEM ROM

Double Density Controller (5")

Reserved for use by PolyMorphic

88/MS Controller

Optional Hardware Floating Point Board

Disk System RAM
(the area used by the disk
system itself for overlays,
buffers, data, printer driver, etc.

User RAM
(the area used by your programs)

PolyMorphic Systems System 88 User's Manual Page 149

Appendix E

THE MONITOR; FRONT PANEL DISPLAY

1. Operating System ROMS

A computer works by manipulating or processing data by means of
programmed instructions. The data that the computer processes is
transient material: you put it into the system, and the system
processes it back out. Most of the programs you use are also
transient: they may be conveniently stored on disk, but you
decide when you want to put them in and use them.

Some programs, however, are not transient. They are "part of the
system": available at all times and usually used automatically by
the system itself in doing its work. We have . already talked
about the "system software" pre-recorded on the System Disk. The
System Disk always resides ~n the System Drive, so the system
software recorded on it is always available. The system itself
decides what system software it needs to use in order to obey
your commands; its use of system software may not even be
particularly apparent to you. Collectively, these programs used
automatically by the system in obeying your . commands are called
the operating system.

Now, there is another group of operating-system programs besides
the System Disk, programs that are even less transient than those
on the System Disk. This is the group of programs permanently
recorded on three memory chips inside the main unit. These three
chips differ from all the other memory devices inside the main
unit in that they are read-only memories or ROMs. The system can
read the information recorded on them, but it cannot erase that
information or change it in any way.

It is very important to have a part of memory that cannot be
erased or changed, for without it, the system would suffer total
amnesia every time it was turned off. The memory contents of the
random-access memory units or RAMs are lost when the power goes
off. If the system had no permanent memory, when you turned it
back on it would wake up with no recollection of how to get to
work. You would need to have some means of teaching it how to
accept information before you could even begin to use it. For
instance, it would not have routines for bringing system software
in off the System Disk. S9me small computers actually have
"front panel switches"-- literally switches in the front panel of
the main unit, that are set by hand, one by one, to force the
individual microscopic electronic devices inside the main unit
into the desired states. This hand-feeding is a tedious

Page 150 System 88 User's Manual PolyMorphic Systems

business.

"Firmware" routines like those on the System 88 ROMs allow the
system to wake up remembering several crucial things. (The term
"firmware" is a compromise between "hardware," the mechanical,
permanent components of the machine, and "software," the programs
and other relatively transient data.) Thanks to the ROMs, it
wakes up knowing how to bring in data from disks. It knows how
to accept and correctly interpret input from the keyboard. It
knows how to display a character on the video screen. And the
ROMs make available seVeral other routines-- "utility programs"-­
that the system makes use of without your even necessarily being
aware of it.

In addition to these programs, system firmware includes routines
collectively called the Monitor. The Monitor incorporates some
firmware programs that the user can use directly. These
independent functions are the front panel mode and the tape
loader. Of special interest is the front panel mode.

2. Front Panel Mode

As we said, firmware makes it unnecessary to start out by using
front panel switches to force the microscopicailly small binary
devices into desired states. But it is useful at times to be
able to go right down to the lowest machine level and directly
force individual bytes to take on desired values. The Monitor
makes this 'job easy, by providing a front panel display and
letting you reach out and change the items shown in the display.
We should note that this ability to reach down into the machine
and forcibly change single bytes can be dangerous.

The front panel display is given its name because it is a video
monitor display that conveys the kind of information a
conventional front panel might give, but in a more useful form.
The display shows all of the CPU registers, the "workspace" of
the CPU, and a memory "window." The "workspace" is the areas of
memory pointed to or addressed by the register pairs, including
the program counter and stack pointer. The workspace display
shows, therefore, the program area, stack area, and data areas
pointed to by HL, DE, and BC. The memory "window" is an 8 X 8
block of memory (64 memory locations) that is displayed, both
contents and addresses, on the bottom of the screen. This window
can be used to view a selected area of memory or to point to data
areas to be modified. ,

The display is updated each time a command is executed or the
registers are modified in any way. Thus, it always reflects the
contents of the registers and memory at any instant, just as if
it were hardwired into the CPU and the memory and address and
data buses. Visible in the display are:

Contents of CPU registers: program counter (PC), stack
pointer (SP), accumulator (A), and general purpose
registers.

C)

PolyMorphic Systems System 88 User's Manual Page 151

Contents of memory areas pointed
registers: program area, stack
pointed to by BC, DE, and HL.

to by general purpose
area, and the areas

A movable memory window which shows 64 contiguous
memory locations: their address and their contents.

The status of the carry, sign, and zero flags, decoded
into an easy-to-read form.

Whenever you look at the front panel display, you also have at
your disposal a set of commands that let you change what you see.
Hitting keys on the keyboard will allow the operator to:

Interrupt a running user program to bring up the front
panel display.

Single step (run a program one instruction at a time),
run with breakpoints, or return to full-speed execution
of the user program.

Move the memory window to view the contents of any
address.

Enter single bytes or long strings pf bytes in
hexadecimal form into memory, with instant verification
of entered data and easy error correction.

Trace byte-reversed (lower-significance byte first)
address pointers in memory by moving the memory window
to the given address.

Move the memory window to point at the program, stack,
or data areas currently being used by the user program.

The Monito~ commands are primitives; when used in combination,
they provide a powerful system for manipulating memory data and
debugging machine language programs. There is, for example, no
command for setting the contents of any given general register.
Instead, there is a command for pointing the memory window at the
place in the system stack where the contents of a given register
are stored. This enables you to modify the contents of the
register using the rest of the commands, suc~ as the Jumbo (J)
command, which lets you enter a full address in its normal byte
order instead of the usual byte-reversed order of 8080 addresses.
Another example is using the I (indirect) command after pointing
the window at the register save area on the stack. This points
the window at the memory area that the register points at.

In other words, if the register is the program counter, a
sequence of "SPJ" will leave the window displaying the program
area. The program area can then be modified, using the full
power of the front panel commands.

Page 152 System 88 User's Manual PolyMorphic Systems

2.1 Sample Front Panel Display

PC 008C DC DC 7E a7 C2 8a FE 8C
SP OFFA FF 8C 00 FB 7C 2F 31 AD
HL OCOC'49 48 D5 10 08 56 C6 DA
DE OCSl 21 00 88 A7 BA DC OF IF
ac 0000 FF FF FF 31 00 10 06 FF
AF FF86 C Z

lFE3 FF FF FF FF FF FF FF FF
IFEB FF FF FF FF FF FF FF FF
IFF3 FF FF FF FF FF FF FF FF
lFFB FF FF FF FF FF FF FF FF
2003 00 AA FE 3A 40 21 CE 8F
200B 76 C2 3C 03 2A S7 OC C9
2013 26 4F 3A 29 2A 44 DC C9
201B B9 83 B2 16 FO C8 33 BA

The upper half of the front panel display shows the contents of
all registers and the status of the carry,- sign, and zero flags.
It also shows what is stored in the memory locations addressed by
the registers-and the contents of adjacent memory locations. The
bottom half shows a block of sixty-four memory locations, both
addresses and contents. First we'll consider the upper half in
some detail.

The left-hand column of the upper part of the display shows what
item in the processor architecture we're looking at. The first
line of the display begins with the letters PC, for program
counter. To the right of PC is 008C. This indicates that the
current contents of the program counter are 008C hex. In other
words, the program counter is currently addressing or pointing to
the memory location with address 008CH. Now note the up-pointing
arrow at the bottom of this half of the display. The arrow
indicates the column of display that shows the contents of the
memory locations currently addressed by the registers. So we
know that PC is pointing to memory address a08C hex, and thatthat
memory address now contains the value B7. Since we 'are
considering the program counter, what this tells us is that the
first program instruction that will be executed when execution
resumes is B7, which happens to be ORA A.

As you can see, there are several other items in the PC line, the
top line of the display. In addition to the contents of address
008C, we are being shown the contents of the three addresses
prior to that location (to the left) and the four locations after
that location (to the right). So we know what instructions have
just previously been executed and what instructions are coming.

The other lines are much the same. The stack pointer is
currently pointing to address OFFA, which contains FB. Previous
and subsequent pop instructions would pop the other addreses

,)

-1

o

PolyMorphic Systems System 88 User's Manual Page 153

shown. So here we can see an eight~entry chunk of the stack. HL
is currently pointing to address OCOC (or, to be exact, the value
in HL is OCOC hex), and 10 is stored at that address. DE and HL
contain OCSl and 0000 hex respectively, and the contents of those
addresses (assuming that those values are to be considered
addresses) are shown, as well as the contents of the neighboring
addresses. The last line is the accumulator and flags (AF).
First we see the program status word (PSW). The accumulator
holds the value FF hex, and the flag byte value expressed in hex
is 86. And we see three flag bits, carry, sign, and zero. C
indicates that the last accumulator operation resulted in a
carry; if it had not, this space would be blank. The next space
is sign; it is blank, indicating that the last operation
affecting that flag left it reset to positive; if negative, the
letter M for minus would appear in this place. Z in the last
place indicates that the last operation affecting the zero flag
left it set to indicate that the result of the operation was
zero. For non-zero, this space would be blank.

Now for the bottom half of the display. Here we see the contents
of a continuous piece of memory space, sixty-four locations in
all, in eight lines of eight locations each. The address of the
first location in each line is shown at the left of the display.

Also at the left is a right-pointing arrow, pointing at th~
contents of a single memory location. This is the memory item
that we can now force to take on a desired value. In the sample,
w~ can change the value 00 hex, stored at address 2003 hex, to
any desired value. We can also see the contents of the
sixty-three surrounding memory locations.

Note that the arrow points directly at the item to be changed.
Suppose you want to change CD, the value stored at address 2002
(the last item in the previous line-- i.e., the item just
previous to the one the arrow now points at). To move back one
address, hit the backspace. The arrow does not move; instead, CD
will move down and over ~o be next to the arrow, all other items
will move correspondingly, and the values in the address column
will change accordingly.

2.2 Using the Front Panel Mode

Suppose we wish to construct a simple program in an available
location in RAM. The demonstration we will use is a video
display test which loads each location of video card memory with
the less-significant address byte of each screen location. This
has the effect of displaying all possible characters and graphics
patterns on the screen in a cyclic group of 256 characters. The
display is thus repeated four times.

The program looks like this in assembly language:

Page 154 System 88 User's Manual PolyMorphic Systems

LXI H, 1800H start at top of system
screen
LOOP: MOV M,L put out each location's low

address byte
INX H ; next location
MOV A,H ; get high addr byte for

comparison
CPI lCH ; is it off the screen yet?
JNZ LOOP no - keep going

HLTAGN: HLT i yes - OK, we're done, . stop
JMP HLTAGN i go back to the HLT.

In hexadecimal machine code:

21 00 18 75 23 7C FE lC C2 83 OC 76 C3 8B OC
assuming that we want to load it at C80H, which is a free space
in the system RAM. The problem is to correctly load this hex
into the RAM at that address and then send the CPU off executing
it.

Turn on the System 88 and push the front panel Load button. To
use the front panel mode, type ENABLE first, then push Control-Z
(hold down CTRL and push Z). The front panel display should
appear on the screen. Note the memory window at the bottom.
Remember, the window is a 64-byte s~ction of memory which shows,
in hex, .the current memory modify location (i.e. the location
that would be affected by a modification command), plus locations
before and after the current modify position~ The byte actually
at the current modify position is indicated by a right-pointing
arrow at the left center of the block. The address of this byte
and the leftmost byte in each row is displayed at the far left of
the screen, also in hex.

Now, to enter the test program into the RAM, we first point the
window at the desired address:

LC80(CR)

(CR) means "hit the carriage return." The display should now show
ocao in the address next to the arrow. To enter the bytes of our
program, we can simply type the hex for each instruction followed
by a space. When hex is being entered, the termination character
for each byte is interpreted as a valid command. In this case,
the space indicates that the window pointer is to be incremented:
each byte goes into the succeeding location. The program entry
looks like this:

21(space)OO(space)18(space) ••....••• 76(space)C3(space)8B(space)
OC(space) where (space) means, of course, a blank space from
the space bar.
Suppose you make an error while entering data into memory. The
window (i.e. the exact point where modification will occur) may
be moved back one location with the backspace. You can correct
the erroneous byte, then (after the usual space) enter the rest

0

o

polyMorphic Systems System 88 User's Manual Page 155

of the program bytes. If you detect the error before typing a
termination character, you need only continue typing ,in the hex
for the correct code until the last two hex characters shown at
the bottom of the screen are correct. The hex input routine used
by the command interpreter shifts hex characters into a two-byte
register from the bottom, so when it returns to the calling
program on receipt of the termination character, it leaves only
the last four hex characters in the register pair. In the case
of hex input to the window location, the program uses only the
bottom two nybbles. It ignores any previous hex digits. The use
of the last hex characters typed in is built into all the other
commands that expect a hexadecimal input of some kind.

One of the commands
J stands for Jumbo,
is to be entered at
followed by up to
thus:

JF800(CR)

which expects a hex input is the J command.
a mnemonic that indicates that a double word
the current window loction. The J command is
four hex characters and a carriage return,

The result is that the contents of the two locations at and
following the window are modified to contain the "byte-reversed"
double word that was entered. Actually, as mentioned above, only
the four last characters typed in for hex are used, so if an
error is made on entry, just keep typing until all four of the
last characters are perfect. Since the register that the bytes
are shifted into ~tarts out with all zero contents, a small hex
number need not b,e typed in with leading zeroes (unless, of
course, it is being re-typed after an error). The way to enter
an address of OC80, then, is to type the J followed by C80
followed by a carriage return: JC80 (CR). One important fact
about the J command is that it does not move the window pointer.
The reason for this is to allow the use of the I command
immediately after a J. Sometimes this combination can be useful.

The I command is the "indirect" operator. It takes the two bytes
at and following the window location and puts them into the
window pointer. It "jumps" to the address currently shown at the
window pointer. This is a very useful function: for tracing
programs that do JMPs or CALLs, place the window pointer over the
address of the JMP or CALL and then type I. It is also used
immediately after a "J" as a check of the address entered. If
the address is correct, the window will show the data that are
supposed to be pointed to.

It should be pointed out that the I and J commands work with
double words in memory that are stored in what is known as
"byte-reversed" format. The 8080 puts the more significant byte
of an address stored in memory into the high-order
(greater-significance) register of a pair when POP or LHLD
instructions are executed. PUSH and SHLD instructions operate
similarly. Addresses in JMP and CALL instructions also follow
this rule. Although it seems logical to arrange addresses this
way, it is normal to enter data into memory while incrementing

Page 156 System 88 User's Manual PolyMorphic Systems

addresses between bytes entered. This, unfortunately, means that
the low-order address byte is typed in first. Addresses are also
displayed backwards in the normal representation of data in
memory: addresses increasing to the right. The seemingly
backwards storage of addresses has come to be called
"byte-reversed."

Now that the program has been entered correctly, we would like to
run the program. The first thing to do is to set up the program
counter to point at the first instruction of the program. To do
this we will use one of the S commands: SP, which will point the
window at the area on the system stack where the program counter
is stored. Now of course, the actual program counter could not
be stored on the stack, because the program we are running that
displays the front panel and interprets our commands is moving
the PC up and down in the monitor. But the program counter we
will modify is the one that will be stored into the "real"
program counter when we want to execute the program. Thus as far
as we are concerned, the actual program counter is stored right

. there in memory, along with the values of all the other
registers. Since the stack may have any value in it when we
pressed control-Z, the locations actually used to store the
register values are unknown. The monitor, however, keeps track
of these locations and will point us at anyone we want if we use
the S ' type of command.

So, to set up the program counter, we point the window at the
proper place on the stack with an SP command, and then do a J:

SPJC80(CR)

The front panel display at the top of the screen should now show
the OC80 we just entered in the PC register. The area to the
right of the PC double word shows the memory pointed to by the
PC, which is the program area. It should show part of the
program we have loaded. The arrow at the bottom of this part of
display points upwards at the actual locations that all the
register pairs point to. The 21 hex that was the firstopcode of
our program should be visible above this arrow in the field next
to the PC.

The memory window should also show the new PC value, except it
will be backwards because of the "byte-reversed" address format.
The window should show 80 followed by an ~C. Now, to check this
value, let's see if the PC actually points at the program. Press
I. The window should show the first instruction again: the 21H.
For one last check before we run the program, hit the carriage
return; the window will scroll up one row (8 bytes). We could
move backwards one row by typing a line feed. This gets closer
to the address in the JNZ instruction that we want to test.
Space down to the locations following the JNZ (following the C2)
and press I. The window should point at the address we called
"LOOP" in the symbolic assembly program. The instruction at this
address was a MOV M,L, which is hex opcode 7C. The 7C should be
in the memory window after the I command is typed.

o

o
PolyMorphic Systems System 88 User's Manual Page 157

If this last test works, we are ready to step the program through
one cycle of its loop to see what happens. The program counter
is still set up to OC80, so press the single-step command key, X.
The program counter will advance to OC83 and the HL register pair
will be loaded with 1800, the data . from the second two bytes in
the LXI H instruction. On the next single-step, the first byte
will be transmitted to the video screen, but since the front
panel display is replaced on the screen after the byte the
instruction transfers, we do not see anything happen. The next
instruction increments HL to 1801. Next, A gets the contents of
H, then it is compared with lC hex in the CPI OICH instruction
(FE 1C). Finally, since 18 does not equal IC, and the zero flag
is not set, the JNZ instruction goes back to OC83 to continue the
loop.

The program seems to work when single stepping, so the final test
is to execute it at full machine speed. This can be done by
pressing G. The entire screen should fill with the test pattern
of consecutive ASCII characters and graphic patterns, in a cyclic
replication four times down the screen. The single-stepping
loses the first character in the upper left corner of the screen,
tho ugh.

When the test pattern is verified, front panel mode may be
re-entered at any time by typing Control-Z. The front panel will
appear, showing the program counter just as it was, halted at the
end of the program on the 76 (HLT) instruction. The HL pair
should have the last screen address used: lCOOH.

To return to the disk operating system, put its warm-start
address (403H) into the program counter and start execution:

SPJ403(CR)G

Warning! Don't tamper with system data unless you're prepared to
deal with the potentially chaotic results.

3. Monitor Commands

The following list comprises the set of primitive operators or
commands available in the front panel mode. You can enter front
panel mode at any time by striking Control-Z. Further commands
on the keyboard have effects which are immediately reflected in
the front panel display. When you want to leave front panel
mode, you can re-start the interrupted program where it left off,
since the entire status of the CPU is saved on the current system
stack upon entry to the monitor.

Control-Z

Interrupt currently executing program. Front panel
entered. Status of CPU (PC, SP, registers, flags) is
the system stack.

mode is
saved on

Page 158 System 88 User's Manual PolyMorphic Systems

x

Execute the next instruction of the interrupt~d program and
return to front panel mode to display ~esults.

G

Go to the next instruction of the interrupted program and do not
return.

Lxx •• xx(CR)

Look at address xx •• xx with the memory modify display. The
variable-length address (up to four last hex digits accepted) is
placed into the memory modify display pointer.

SPACE bar

Move the memory modify display pointer forward one address and
redisplay everything.

BACKSPACE

Move the memory modify display pointer back one address and
redisplay everything.

RETURN key

Move the pointer forward "eight positions. This scrolls the
display up one line.

LINE FEED

Move the pointer back eight positions. This scrolls the display
down one line.

xx xx(any command)

The last two hex characters before the command are entered into
the location pointed to by the memory modify pointer. The
command is then executed.

o

PolyMorphic Systems System 88 User's Manual Page 159

Jxxxx (CR)

Jumbo data word (double-word) is entered in byte-reversed format
at and following the memory modify pointer. The last four hex
characters before the carriage return are used.

I

Indirect display. The two bytes
modify pointer are placed into it
they represent the address in a JMP
be moved to that address.

SP (Program Counter)
SH CHL)
SD (DE)
S8 (BC)
SA (Accumulator/flags)

at and following the memory
in reverse order', so that if
instruction, the pointer will

Stack modification. Move the memory modify pointer to that
address on the stack where the indicated register pair was stored
on program interrupt. If the location at the memory modify
pointer is modified, the register display will show the contents
of the appropriate register as having changed, and when the G
command is executed, program execution will continue with the new
value. To enter a double-word, use the J command. A single byte
may be inserted in one register of a pair by simply entering it
for the lower register and by spacing once over the lower
register to enter it into the upper register. You can modify
data at the address pointed to by a register pair by using the I
command to move the memory modify pointer to the appropriate area
of memory.

U (or other illegal command)

Updata the display. This can be used to watch dynamically
changing events such as the real time clock counter being
incremented in system memory, or an I/O buffer filling.

Page 160 System 88 User's Manual PolyMorphic Systems

o
PolyMorphic Systems System 88 User's Manual

Appendix F: 8813 Hardware

Table of Contents

SECTION 1 - GENERAL DESCRIPTION

1.1
1.1.1
1.1. 2
1.1. 3
1.1. 4
1.1. 5
1.1. 6
1.1. 7

1.2
1. 2.1
1. 2. 2
1. 2. 3
1. 2. 4
1. 2.5

CHASSIS LAYOUT
Power Supply
Disk Drives
Backplane
Minicards
Rear Panel
Switches

Drives

SPECIFICATIONS
Power Supply
Disk Drives
Backplane
Memory
Central Processor

~ SECTION 2 - INSTALLING OPTIONS

2.1
2.2
2.2.1
2.2.2

2.3
2.3.1
2.3.2
2.3.3

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2.5

SAFETY
Cabinet
Removing the Cover
Installing the Cover

DISK DRIVES
Removing the Filler Panels
Installing Disk Drives
Removing Disk Drives

BACKPLANE
Card Hold-down
Installing Cards
Removing Cards
Memory Cards
I/O Cards

I/O CONNECTORS

Page 161

Page 162 System 88 User's Manual PolyMorphic Systems

o

PolyMorphic Systems System 88 User's Manual Page 163

Appendix F:

8813 HARDWARE: GENERAL DESCRIPTION

1.1 CHASSIS LAYOUT

Several components are mounted within the main chassis. Viewed
from the front, the power supplies are to the left. One or two
optional minicards may be mounted on the rear panel just above
the power supply. The right section contains the backplane
assmbly, mounted in the rear, and up to three disk drives in
front.

1.1.1 Power Supply

The power transformers are mounted in the left rear, and in front
of them is the power supply printed circuit card (PC card).
Along the left of the transformers are two cooling fans. The
power supply supplies unregulated power to the backplane and
regulated power to up to three disk drives. The drives are
connected through three connectors mounted on the right rear
corner of the card.

1.1.2 Disk Drives

The minifloppy drive offers the user the random access storage
lcapability of large disk drives in a package about the size of
most cassette tape units. In addition, they provide superior
data integrity and faster throughput. Up to three disk drives
may be mounted in the 8813 chassis. Each drive can store 89,600
bytes of information on a single five inch minidisk, or 358,400
on a double-sided, double-density minidisk. Attached to each
drive is a PC card containing the control electronics.

1.1.3 Backplane

The backplane contains ten edge connectors spaced ~t 3/4"
intervals along the PC card, for the insertion of ten S-lOO bus
compatible cards. Behind the edge connectors are seven bus
termination networks and the components for the real-time clock.
Power enters the backplane through four ·slide connectors mounted
at the left rear edge of the card. The adjacent connector is
used for the real-time clock signal and front panel controls.

The 8813 in its minimum configuration uses four card positions,
leaving six free for additional memory or input/output (I/O)
cards. The first position contains the disk controller card.
Mounted behind it are the CPU card and one memory card. The
rearmost position contains the Video Terminal Interface (VTI)
card. Other memory cards may be installed between the first one
and the VTI card.

Page 164 System 88 User's Manual PolyMorphic Systems

WARNING: The CPU card must always be installed in
the second or third slot from the front of the card
cage in order for the system to operate properly.

1.1.4 Minicards

Space is provided on the rear panel for mounting two optional
minicards. An audio cassette interface minicard and a serial
printer interface minicard are available. Both of these cards
plug into the CPU card, without using up positions on the S-100
backplane.

1.1.5 Rear Panel

All connections to other devices are made through connectors
mounted on the rear panel. The left side of the panel as
viewed from the front contains the power line connector and
fuse. Two accessory outlets are provided for powering the
video monitor and the optional adio cassette recorder. The
power line voltage and fuse rating are marked on the serial
number sticker on the rear panel. Use only the type of fuse
and power source indicated; other types can cause severe damage
to the computer.

To the right of the accessory outlets are the mounting holes
for the minicards. These are covered by a sticker unless the
minicards are installed. The sti~ker ensures proper air
circulation by covering up the unused holes, and should not be
re moved except as provided in the minicard installation
instructions.

The right side of the rear panel contains cutouts for various
I/O device connectors. At the edge of the panel is a column of
four cutouts for 25-pin "D" connectors. The top connecto~ is
the keyboard connector in the standard configuration. To the
left are four cutouts for "UHF" coaxial connectors. The
topmost connector is the video monitor output ' in the standard
configuration. Left one column are four more cutouts for
25-pin "D" connectors. Next are two cutouts for 24-pin
micro-ribbon connectors. These are normally used for
connection to the IEEE-488 instrumentation bus (also known as
GPIB bus, HPIB bus, and ANSI standard MC 1.1-1975). Below
these are cutouts for two 37-pin "D" connectors.

1. 1. 6 Swi tches

The 8813
the left.
power-on
pressed,
drive 1.

has only two switches. A key-operated switch is on
Above it is a red LED (light-emitting diode)

indicator. The pushbutton is marked "Load." When
it causes the sy~tem software to be loaded off of

lJ

PolyMorphic Systems System 88 User's Manual Page 165

1.1.7 Drives

Up to three disk drives may be mounted. The leftmost drive is
drive 1, usually the system drive. The middle drive is 2, and
the rightmost drive is 3. The red LED indicators on each drive
light up when that drive is being used. If a system has fewer
than three drives, matching filler panels are installed in
place of disk drives.

1.2 SPECIFICATIONS

1.2.1 Power Supply

AC Line:
Voltage:
Frequency:

110-125 or 220-250 VAC
50 or 60 Hz

DC Output (to backplane w/ 3 drives):
Pins 1 and 51

Pin 2

Pin 52

1.2.2 Disk Drives

Data storage per disk:
bit transfer rate:
Sector transfer rate:
Latency (average):
Track step:
Seek ave.:
Number of tracks:
Sides
Sectors per track:
Bytes per sector:
Maximum hard error rate:
Mean time between errors:

+7.5 to 10 VDC
15 A (max.)
+15 to 20 VDC
A (max.)
-15 to 20 VDC
lA (max.)

Standard DSDD
89,600 358,600 bytes
125,000 250,000 bits/sec.
25 90 sectors/ sec.
100 100 ave. mSec.
40 5 ave. mSec.
700 87 ave. mSec.
35 35
1 2
10 10 (20 simulated)
256 512 (256 simulated)

1 in 10 A ll bits read
8,000 hours

The DSDD (double sided, double density) operates at a faster
track step time and has out-of-sequence sector read
capabilities due to an intelligent controller which also
buffers tracks. The average latency time is thus effectively
lower than sho~n, because multiple sector accesses may begin
reading at any sector. Also, some reads require no disk
access.

1.2.3 Backplane

Bus Type: S-lOO (except no DMA) Number of Card Slots: 10 Card
Spacing: 3/4" center-to-center Maximum Card Size: Length: 10"
Height (0.5" from edge): 5.3" Height (center) 5.8" Bus

Page 166 System 88 User's Manual

Termination impedance: 220 ohms

1.2.4 Memory

Maximum addressable:
Access Time:
Error Rate (per bits read):

1.2.5 Central Processor

Type:
No. of user-accessible registers
(8-bit):
Data Word Size:
Register to Register Add Time:

PolyMorphic Systems

57,344 Bytes(56KB)
500 uS
1 in 1,000,000,000,000

8080

7
8 or 16 bits
2 uS

PolyMorphic Systems System 88 User's Manual Page 167

Section 2

INSTALLING OPTIONS

2.1 SAFETY

Whenever working on the 8813 chassis, perform these three steps
before opening the chassis:

1) Remove all disks from drives. 2) Turn off power with key
switch. 3) Remove line cord from rear panel socket.

Do not insert or remove
line cord attached.
portions of the chassis
destroyed. Remember,
chassis until the line
key is turned off).

2.2 CABINET

any cards or minicards with power on or
If this precaution is not observed,
circuitry and cards will probably be
there are dangerous voltages in the

cord is unplugged (even when the power

The 8813 desktop version is enclosed in an attractive walnut
cabinet. To avoid damage, do not set wet or sharp objects on
it. The surface of the wood is waxed, not varnished; do not
apply varnish. To maintain the cabinet, occasionally wax it
with a little high-quality furniture wax and a soft, clean
cloth.

A 6" airspace on either side of the cabinet is necessary for
proper airflow. Air enters through the right bottom opening in
the cabinet and exits through the left opening. If the airflow
is blocked, internal temperatuies may rise enough to cause

- faulty operation, reduce the operating life of the computer, or
cause component failure. Do not run the computer when it is
resting on a soft surface.

2.2.1 Removing the Cabinet

To get inside the chassis, you must remove the cabinet. Follow
the safety precautions above (2.1), and place the computer on a
table or workbench so that the front of the chassis overhangs
by about 1". On each side of the front panel, just inside the
cabinet, are two trim strips. Slide the two trim strips down
until they are free of their mounting hardware. Then remove
the four 10-32 screws and plastic washers attaching the front
panel to the cabinet. Be careful not to scratch the brushed
aluminum front panel. Four more screws and washers are located
on the rear panel; remove these. Then grip the lower edges and
pull upward, sliding off the cabinet.

2.2.2 Installing the Cabinet

Page 168 System 88 User's Manual PolyMorphic Systems

To . install the cabinet, place it over the chassis so that the
wooden front mounting brackets on the cabinet are between the
front and rear metal mounting brackets on the chassis. Then
slide the cabinet down and forward until the rear cabinet edge
is flush with the rear panel on the 'chassis. Secure the
cabinet front and rear with the 10-32 X 3/4" machine screws and
washers (plastic washers for mounting trim strips in front).
Then slide the two trim strips on from the bottom.

2.3 DISK DRIVES

From one to three floppy disk drives are mounted in the 8813
chassis. Any remaining drive openings are covered by filler
panels. These panels must be removed to install additional
disk drives. The drives may be added by obtaining an add-on
drive kit containing a drive and all the necessary mounting
hardware and cables. The part number for a drive add-on kit is
000915; please specify whether you are adding a second or third
drive.

2.3.1 Removing the Filler Panels

To remove the panel, first remove the cabinet (see section
2.2.2 of this appendix). Then remove the 6-32 screw and
associated nut and lockwasher attaching the panel to the front
support bracket. Save the hardware for use in attaching the
disk drive. Now turn the chassis on its left side (power
supply side) and remove the hardware attaching the bottom
filler panel angle bracket to the bottom of the chassis. Now
slide out the panel.

2.3.2 Installing Disk Drives

Before installing a new disk drive, the termination network
must be removed and the drive addressed , as drive 2 or 3.
Consult the installation instructions provided with the drive
before proceeding.

Remove the card hold-down by removing the 6-32 screws securing
it to the chassis. Remove the ribbon cable assembly connecting
the drives to the controller card. Then remove the controller
card.

Now take the drive power cable and insert one end through the
cutout in the card guide bracket near the power supply PC card.
Insert the plug into the next empty socket on the power supply
PC card. Insert the new drive into the chassis through the
front panel, and attach the power cable to the socket on the
drive PC card. Make sure the plug is fully inserted into the
socket. Make sure that the disk drive PC card does not bedome
detached.

Now insert the drive all the way into the chassis and line up
its mounting holes with the holes in the bottom of the chassis.

o

o
PolyMorphic Systems System 88 User's Manual Page 169

Secure the drive with two 6-32 X 3/8" machine screws and
lockwashers provided in the kit. Put the chassis back on its
feet and secure the top of the drive to the support bracket
with the last of the 6-32 hardware.

Now reinstall the floppy disk controller card in the last card
connector. Make sure it is firmly seated. Reconnect the disk
drives and controller with the new drive cable provided. The
striped side of the cable must be on the right side of the
controller card cdnnector and on the top end of each drive
connector. The card hold-down must now be installed. Place it
over the top of the card guide bracket at the center of the
chassis, and secure it with 6-32 screws and lockwashers.

2.3.3 Removing Drives

To remove a disk drive, firit remove the card hold-down,
controller card, and drive cable as detailed in section 2.3.2
of this appendix. Now turn the chassis on its left (power
supply) side and remove the three 6-32 screws and lockwashers
securing the drive to the chassis and retaining bracket. Pull
the drive out far enough to remove the power supply plug, then
remove it completely.

Reinstall the controller card, drive cable, and card hold-down
as in section 2.3.2 of this appendix.

2.4 BACKPLANE

2.4.1 Card Hold-Down

To protect cards during handling and shipment, card hold-downs
are secured along the card guide brackets in the 8813 chassis.
(Only one hold-down is provided in the rack-mountable
configuration.) - These hold-downs must be removed before
removing or installing cards in the backplane and replaced
after the task is complete. The hold-downs are secured by 6-32
screws and lockwashers.

2.4.2 Installing Cards

When installing cards, make sure the power is off before
inserting the card, and make sure the card is fully inserted
into the connector before reapplying power. To insert the
card, slide its ends into the card guides located on the
chassis at each end of the IOO-pin connectors. Slide the card
down until it reaches the connector. Finally, push down firmly
on the card until it seats in the slot. The card must not be
tilted in the connector, or the computer will be damaged when
power is applied.

2.4.3 Removing Cards

When removing a card from the backplane, grasp each end of the

Page 170 System 88 User's Manual PolyMorphic Systems

card firmly and pull upward, gently rocking the card from side
to side. Do not bend the card and do not apply much force.
When it comes free from the connector slot, draw it up through
the card guides carefully.

2.4.4 Memory Cards

When a memory card is installed into the system, the card's
address must be set up properly. The memory in a standard
system (with 32K of RAM) ends at 09FFFH. The next memory card
should be installed with its address switches or jumpers set
for address AOOOH. Consult the manufacturer's manual for
address setup. The next card must always be installed at the
end · of current memory, or erratic operation or possible damage
to the memory card will result. The system will hold up to
56KB of RAM. A typical configuration would be 3 l6KB RAM cards
at addresses 2000, 6000, and AOOO, and 1 8KB RAM card at EOOO.

After you install the memory card, test it with the Confidence
Package Memory Test. If you find errors, consult the memory
card's manual . or get your dealer to repair the card. If the
memory is not working properly, neither will the software.

2.4.5 I/O Cards

If an I/O card is installed in the 8813, that card is not all
that is needed. Software, called an I/O driver program, is
necessary to make the card run with the system. If none is
provided, you must write your own. Consult the System
Programmer's Guide (available from PolyMorphic Systems; part
number 810133) for information on how to install your own
software. When installing I/O devices, remember that all I/O
ports below 40H are reserved for system use, and you must not
place cards at those addresses unless explicitly instructed to
do so by PolyMorphic Systems.

PolyMorphic Systems provides instructions for attaching I/O
driver software in its I/O card manuals or system user's
manuals.

2.5 I/O Connectors

Cutouts are provided on the rear panel for various types of
connectors. Most connectors will mount with standard hardware.
However, special hardware is needed if connector mounting
screws are to be used with "D" connectors. This hardware is
available from PolyMorphic Systems (part number 104415).
Preassembled cables are available from PolyMorphic Systems for
all of its I/O cards .

o

o
PolyMorphic Systems System 88 User's Manual

APPENDIX G: 8810 HARDWARE

Table of Contents

Section 1: General Description
1.1 CHASSIS LAYOUT

1.1.1 Power supply
1.1.2 Disk drive
1.1.3 Backplane
1.1.4 Minicards
1.1.5 Rear panel
1. 1. 6 Swi tches

1.2 SPECIFICATIONS
1.2.1 Power supply
1.2.2 Disk drive
1.2.3 Backplane
1.2.4 Memory
1.2.5 Central processor

Section 2: Installing Options

2.1 SAFETY

2.2 CABINET
2.2.1
2.2.2

Removing the cabinet
Removing the side panels

2.3 BACKPLANE
2.3.1 Card hold-downs
2.3.2 Installing cards
2.3.3 Removing cards
2.3.4 Memory cards
2.3.5 I/O cards. General Description

Page 171

Page 172 System 88 User's Manual PolyMorphic Systems

C)

o
PolyMorphic Systems System 88 User's Manual Page 173

1.1 CHASSIS LAYOUT

Referring to Figure G-l, note that several components are
mounted within the main chassis. Viewed from the front, the
five-slot backplane and fan are to the left. One or two
optional mini-cards may be mounted on the rear panel just above
the powersupply. The right section contains power supply
components, mounted in the rear, and a disk drive in front.

1.1.1 Power Supply

The power transformers are mounted in the right rear, and in
front of them is the disk drive power supply printed circuit
card (PC card). To the right of the transformers is the
cooling fan. The power supply supplies power to the disk
drive.

1.1.2 Disk Drive

The mini-floppy drive offers the user the random access storage
capability of large disks in a package about the size of most
cassette tape units. In addition, it provides superior data
integrity and faster throughput. The double-density drive can
store 358,600 bytes of information on a on a double-sided
five-inch mini-disk. A single-density drive can store 89,000
bytes of information on a single-sided disk. Attached to the
top of the drive is a PC card containing the control
electronics.

1.1.3 Backplane

The backplane contains five edge connectors spaced at 3/4"
intervals along the PC card, for the insertion of five S-100
bus compatible cards. In front of the edge connectors are the
components for the backplane power supply and real~time clock.
AC power enters the backplane through a connector mounted at
the front of the card. The rear connector is used for the
real-timeclock signal and power and load switch connections.

The 8810 in its minimum configuration uses four card positions,
leaving one free for additional memory or an input/output (I/O)
card. The bottom position contains the disk controller card.
Mounted above it are the CPU card and one 16K RAM card. The
top position contains the video terminal interface (VTI) card.

1.1.4 Minicards

Space is provided on the rear panel for mounting two optional
minicards. An audio cassette interface minicard and a serial
printer interface minicard are available. Both of these cards
include cables that plug into the CPU card, without using up
positions on the S-IOO backplane.

1.1.5 Rear Panel

page 174 System 88 User's Manual PolyMorphic Systems

All connections to other devices are made through connectors
mounted on the rear panel. The right side of the panel as
viewed from the front contains the power line connector and
fuse. An accessory outlet is provided for powering the video
monitor. The power line voltage and frequency are marked on
the serial number sticker on the rear panel. The fuse ratings
for each voltage are marked on one side of the fuse holder.
Use only the type of fuse and power source indicated; other
types can severely damage the computer.

Six connector cutouts are provided on the rear panel. In the
minimum configuration, the keyboard and video connectors are
installed at the positions marked on the panel. The printer
interface minicard may be installed in the cutout labeled
PRINTER and the cassette interface minicard just above it at
AUX 2. The cutout labeled AUX 3 takes a standard 25-pin D
connector (Ampheno1 DB-25P or DB-25S) for use with other I/O
cards. The long cutout at AUX 1 takes a 37-pin D connector
(DB-37P or S).

1.1. 6 Swi tches

The 8810
left • . The
switch is
the system

has just two switches. The power switch is on the
switch is illuminated when power is on. The other

a pushbutton marked Load. When pressed, it causes
software to be loaded off of the drive.

1.2 SPECIFICATIONS

1.2.1 Power Supply

Voltage:
Frequency:

AC Line

110-1255 or 220-250 VAC
50 or 60 Hz

DC Output to Backplane

Pins 1 and 51:
Pin 2:
Pin 52:

+7.5 to 10 VDC @ 6A max.
+15 to 20 VDC @ 0.75A max.
-IS to 20 VDC @ O.2SA max.

':)

PolyMorphic Systems System 88 User's Manual Page 175

1.2.2 Disk Drive

Data storage per disk:
bit transfer rate:
Sector transfer rate:
Latency (average):
Track step:
Seek ave.:
Number of tracks:
Sides
Sectors per track:
Bytes per sector:
Maximum hard error rate:
Mean time between errors:

Standard DSDD
89,600 358,600 bytes
125,000 250,000 bits/sec.
25 90 sectors/ sec.
100 100 ave. mSec.
40 5 ave. mSec.
700 87 ave. mSec.
35 35
1 2
10 10 (20 simulated)
256 512 (256 simulated)

1 in 10 A ll bits read
8,000 hours

The DSDD (double sided, double density) operates at a faster
track step time and has out-of-sequence sector read
capabilities due to an intelligent controller which also
buffers tracks. The average latency time is thus effectively
lower than shown, because multiple sector accesses may begin
reading at any sector. Also, some reads require no disk
access.

1.2.3 Backplane

Bus type:
Number of card slots:
Card spacing:
Maximum card size:

S-100 (except no DMA)
5
3/4" center-to-center

length: 10"
height (measured at
edge to 0.5" from edge): 5.3"
height (center) 5.8"

1.2.4 Memory

Maximum addressable User RAM:
Access time:
Error rate:

1.2.5 Central Processor

Type:
Number of user-accessible
registers:
Data word size:
Register-to-register add time:

57,344 bytes (56KB)
500 nS
1 in lOA12 bits read

8080

7 (8-bi t)
8 or 16 bits
2,000 nS

Page 176 System 88 User's Manual PolyMorphic Systems

Section 2. INSTALLING OPTIONS

2.1 SAFETY

Whenever working on the 8810 chassis, perform these three steps
before opening the chassis:

1. Remove disk from drive.
2. Turn off power switch.
3. Remove line cord from rear panel socket.

Do not insert or remove any cards or minicards with power on or
line cord attached. If this precaution is not observed, parts
of the chassis circuitry and cards will probably be destroyed.
Remember, there are dangerous voltages in the chassis until the
line' cord is unplugged, even when the power key is turned off.

2.2 CABINET

The 8810 is enclosed in an attractive cabinet with walnut side
panels. To avoid damage, do no~ set cups or sharp objects on
it. The surface of the wood is waxed, not varnished; do not
apply varnish. Occasionally rub the wood surfaces with a small
amount of high-quality furniture wax and a soft, clean cloth.

Leave a 6" air space
ai r flow. If ·the
inside the main unit
shorten the life of

at the rear of the cabinet to allow proper
flow of air is blocked, the temperature
may rise enough to impair operation,

the computer, or cause components to fail.

2.2.1 Removing the Cover

The top cover is secured by two 6-32 screws and lockwashers
located at the top left and right corners of the rear panel.
The front of the panel slides into a receptacle underneath the
top of the brushed aluminum front panel. To remove the cover,
remove the two screws and slide it toward the back of the 8810.

2.2.2 Removing the Side Panels.

Each of the side panels is secured by the two black anodized
screws and decorative washers that protrude slightly from the
wood panels. The left panel ,must be removed to access the
five-slot backplane. The right panel need never be removed.

2.3 BACKPLANE

2.3.1 Card Hold-Downs

To protect cards during handling and shipment, card hold-downs
are secured to the top of the card guide brackets on the 8810
backplane. These must be removed before removing or installing
cards in the backplane and replaced afterward. Each hold-down
is secured by a 6-32 screw and lockwasher.

()

PolyMorphic Systems System 88 User's Manual Page 177

2.3.2 Installing Cards

When installing cards, make sure the power is off before
inserting the card, and make sure the card is fully inserted
into the connector before re-applying power. To insert the
card, slide its ends into the card guides located on the
brackets at each end of the lOa-pin connectors. Slide the card
into the guides until it reaches the connector, then carefully
guide the card contacts into the connector. Support the
backplane from behind by placing one hand behind the backplane
PC card, then press firmly on the card and seat it in the slot.

WARNING! Failure to support the backplane will cause
excessive stress on the backplane printed circuit
card, which may result in damage to the printed
traces.

The card must not be skewed in the connector, or the computer
will be damaged when power is applied.

2.3.3 Removing Cards

When removing a card from the backplane, grasp each ~nd of the
card firmly and pull upward, gently rocking the card from side
to side. Do not bend the card and do not apply much force.
When it comes free from the connector, draw it up through the
card guides carefully.

2.3.4 Memory Cards

When a memory card is installed into the system, its address
must be set properly. The memory in a standard system (with
32K of RAM) ends at 9FFFH. The next memory card should be
installed with its address switches or jumpers set for address
AOOOH. Consult the manufacturer's manual for addres setup.
The next card must always be installed at the end of current
memory, or erratic operation or damage to the memory card will
result. The system will hold up to 56KB of RAM. A typical
configuration would be 3 16KB RAM cards at addresses 2000,
6000, and AOOO, and 1 8KB RAM card at EOOO.

After installing a new memory card, use the Confidence Disk to
perform the memory test on the new memory card. If you find
errors, consult the memory card's manual or get your dealer to
repair the card. If the memory is not working properly,
neither will the software.

2.3.5 I/O Cards

If an I/O card is installed in the 8810, that card is not all
that is needed. Software, called an I/O driver program, is
necessary to make the card run with the system. If none is
provided, you must write your own. Consult the System
Programmer's Guide (available from PolyMorphic Systems; part

Page 178 System 88 User's Manual PolyMorphic Systems

number 810133) for information on how to install your
software. When installing I/O devices, remember that all
ports below 40H are reserved for system use, and you must
place cards at those addresses unless told to do so
PolyMorphic Systems.

own
I/O
not

by

I/O cards from PolyMorphic Systems include instructions for
attaching the I/O driver software.

C)

o

g

PolyMorphic Systems System 88 User's Manual Page 179

Appendix H

PRINTER DRIVER INTERNAL STRUCTURE

This section describes the machine language level structure of
the printer driver. It is intended to allow the assembly
language programmer to use the machine level features of the
printer driver and to write special assembly la~guage drivers
for special hardware interfaces.

The printer driver runs in system RAM from 2FOOH-3lFFH. There
are two areas which contain machine code, and two parameter
passing areas. The Wormhole driver area is the permanent part
of the printer driver. The program in the device driver area
is dependent on the hardware, and may be changed by the user.
The Wormhole driver is installed by Prnt.OV when the Exec
"Printer" command is invoked. The system is provided with only
one driver, Sio.PS. All drivers are stored on the system disk
with .PS extensions, so they can easily be copied from system
to system.

2FOO
Wormhole driver

3000
Device driver

31EO
Optional communication area

3lEC
Wormhole communication area

3200

WORMHOLE DRIVERS

The wormhole drivers are the heart of the program which
supports the functions provided by WH5 through WH7.

WH5 prints characters from the A register, handles the left
EDGE, TAB & FF emulation, and keeps track of cpos & lpos (see
description below), making many printers appear identical to
the higher levels. It recognizes TAB,LF, VTAB,FF, and CR. TAB
moves the print head horizontally to the next position whose
location is divisible by 8. The left margin offset value is
not significant for TABs. CR moves the print head directly to
the left, with no vertical motion. LF moves the print head
straight down, with no horizontal motion. VTAB moves to the
next page, as does FF, but will not move from the top of a
page; thus two successive VTABs are identical to one.

WH5 communicates with higher level programs such as Wordmaster
through "data requests". Characters passed in the accumulator
are printed if the 80H bit is clear, or else are interpreted as
data requests according to the following table.

Page 180 System 88 User's Manual PolyMorphic Systems

code name functional description

80H
81H
82H
83H

Ipos
cpos
lpp
cpl

line position (O •• lpp-l) counts up
char postion (0 •• cpl-l) counts up
lines per page (1 •• 256) 0 = 256
c ha r pe r lin e (0 •• 255)

The data returned by a data request to WH5 is supplied in the A
register. NOTE: The contents of all of the 8080 registers may '
be changed by the WH5 driver.

WH6 simply waits for and obtains a
if it has a keyboard. If the device
WH6 returns a NULL (ASCII 0).
Accumulator are preserved by WH6.

character from the printer
doesn't have a keyboard
All registers except the

WH7 is the normal output for characters to be printed. It does
pagination (top and bottom margins) and generation of LF after
CR automatically. LF still works as usual, but normal text
files will print properly when sent to WH7, because they have
only CR to terminate lines. All registers are preserved by
WH7.

DEVICE DRIVER SPECIFICATIONS

The device driver is a user written assembly langage program
which handles the low level communication between'the printer
and the computer. It should be assembled to run starting at ,
location 3000H with the first location being its entry point.
A function code is passed in the B register and characters are
passed to and from the device driver in the accumulator.

The function codes are ,defined as follows:

OlH Ouput a character in Accumulator to the device
02H Input a character from the device into the Accumulator
03H Initialize the device
04H Disconnect the device

All registers may be destroyed by your program, with the
obvious exception of the accumulator in function 2. An example
of a simple device driver appears at the end of this appendix.

COMUNICATION AREAS

The following labels appear in
file on the disk provided. They
following way in MACRO-88.

REFS
REF
MAGIC

PrntRefs
MAGIC

the PrntRefs.SY symbol table
may all be REFed in the

MAGIC is a macro which defines the addresses of all the labels

/)
\,,,.

o

~

PolyMorphic Systems System 88 User's Manual Page 181

in the following tables.

Optional communication area

The optional communication area and part of the wormhole
communication area are initialized by the "Printer printername"
Exec command with the values defined by the user for the
"printername."
The optional communication area may be used for program
code if the standard dialog is NOT used, as defined when
installing the printer driver using the CUSTOM command.

speed contains the speed of the printer
llH = 50 12H = 75 l3H = 110
14H = 134.5 ISH = 150 16H = 300
17H = 600 18H = 900 19H = 1200
lAH = 1800 IBH = 2400 lCH = 3600
IDH = 4800 lEH = 7200 IFH = 9600

padchr ASCII code for the padding character
crpad The number of pads after a CR (0 •. 255)
Ifpad The number of pads after a LF (0 •• 255)
tabpad The number of pads after a TAB (0 .. 255)
bspad The number of pads after a BS (0 •• 255)

blim (Device buffer limit)-l O=not blocking
stxflg should we send a start character
stxchr ASCII code for the start of text character
etxchr ASCII code for the end of text character
ackchr ASCII code for the acknowledge character

Wormhole communication area

The wormhole communication area is shared
between the wormhole driver and the printer
driver, for margination, and for simulation of TABs, FFs, and
VTABs for printers which do understand them.

Logsp
lpos
cpos

lpp
cpl
top
bottom
edge

A six byte space used by the LOG command
current line position (O •. lpp-l) counts up
current char position (0 •• cpl-l) counts up

1 in e s pe r pa g e (1.. 256) 0 = 2 5 6
char per line (0 •• 255)
first printable line (top margin)
last printable line (bottom margin)
offset for left edge (0 .• 255)

(note: 0 (= top (= bottom (= lpp-l)

tabflg understand TABs (O=no, nz=yes)

Page 182

ffflg
devtyp

System 88 User's Manual PolyMorphic Systems

understand FFs (O=no, nz=yes)
Similar to a Diablo (O=no, nz=yes)

C)

g

PolyMorphic Systems System 88 User's Manual Page 183

**** EXAMPLE DEVICE DRIVER ****

ORG 3000H
IONT $,$

hardware definitions.
i
STATUS EQU 80H
PrtRdy EQU 80H

;
PRTCTL EQU STATUS
IntEn EQU 80H

PRTOAT EQU STATUS+l
Strobe EQU 80H
i
.**************** ,
i
Start MOV C,A

OCR B .
JZ Putc
DCR B
JZ Getc
OCR B
JZ Init
OCR B
JZ Kill
RET

iWhere we live
iLoad, start address

i Sta tus po rt
;Bit says printer is ready

;Control port
;Enables keyboard interrupt

;Data port
;Active on falling edge

i Save in C for future use

;1> output a char

;2> input a char

;3> hookup device

;4> disconnect device

Output a character to the device
;
Putc IN STATUS

ANI PrtRdy
JNZ Putc ;Wait till device is ready
MOV A,C
ORI Strobe ;Set MSB (strobe)
OUT PRTOAT
ANI NOT Strobe ;Clear MSB
OUT PRTOAT ;And output again
RET

Input a character from the device

Getc LXI H,kbuf iPointer to flag
Getcl MOV A,M

ORA A
JNZ Getcl iWait for a character
DCR M iClear flag
INX H
MOV A,M ;G rab char in A
RET i and split

Initialize the device

Page 184

j

Init

j Shut
;
Kill

;

LXI
SHLD
MVI
OUT
RET

off

MVI
OUT
LXI
SHLD
RET

System 88 User's Manual PolyMorphic Systems

the

H,Isr
SRA4
A, IntEn
PRTCTL

device

A,NOT IntEn
PRTCTL
H,Ioret
SRA4

jJust setup rSR

jLet keyboard int in

jStifle interrupts

jDisconnect ISR

j Our simple interrupt service routine.
;
Isr IN

LXI
MVI
INX
MOV
i

Ioret POP

kbuf

POP
POP
POP
EI
RET
i
DS

END

PRTDAT
H,KBUF
M,O
H
M,A

H
D
B
psw

2

iGet the character

iZero the flag.

iPut char in buffer

iStandard interrupt return

4

PolyMorphic Systems System 88 user's Manual Page 185

Appendix-I

FILE TRANSFER PROGRAM

1.0 General Description

There is a file on your system disk called FTP. It is a file
transfer program. It will allow you to transfer files on" your
disk to another system which is also running FTP. This
transfer is accomplished over an RS232 link. This program
enables you to transform files created on a single density,
single-sided System 88 into files which can be read on a Double
Density 8813.

The program's secondary function is to cause the system to act
like a terminal. It can therefore be used as a remote terminal
for another computer, either connected directly to the RS232
port on the other computer, or over a modem link. The program
will also allow you to send files over a modem to another
System 88 running FTP.

To use FTP you must first be sure that you have the right
header in the printer interface on your computer. If you wish
to use your computer as a terminal (with or without a modem)
the header should be wired straight across, ie. pin 1 to pin
16, pin 2 to pin 15 etc. If you wish to connect two System 88s
back to back, to transfer files, one system should have a
header wired as just described. The other system should have
it's header cross wired, ie. pin 1 to pin 15, pin 2 to pin 16,
pin 3 to pin 13, pin 4 to pin 14 etc. See diagram below.

1 0-----0 16 1 ~
16

2 0 0 15 2 15
3 0 0 14 3

~
14

4 0 0 13 4 13
5 0 0 12 5 ~

12
6 0 0 11 6 11
7 0 0 10 7

~
10

8 0 0 9 8 9

Straight Across Crossed

Header Wiring

When you use the file transfer program it will take control of
the USART (Universal Synchronous Asynchronous Receiver
Transmitter) chip and its associated circuitry. This means
that the printer driver on the System 88 will no longer be
connected to this circuitry. Consequently when you are
finished with this program the printer driver should be set up
again.

Page 186 System 88 User's Manual PolyMorphic Systems

1.1 USING FTP TO TRANSFER FILES BETWEEN ADJACENT SYSTEMS.

To use FTP to transfer programs between two systems which are
connected directly together (no modem link) first set up the
headers on the printer interfaces as described above. Power up
the systems and invoke the program on both systems.

FTP will first ask you "Baud? (110,300,9600)". Since you want
a speedy transfer of data you should answer 9600 to the
questions on both systems. Note: Both systems must be running
at the same baud rate in order for the program to work.

FTP will then put a say "(File transfer terminal/04: 6/6/79)".
This version number and date will let us know which version of
the program you have and should be refered to in any
correspondence regarding the program.

At this point the two systems should be communicating with each
other. Anything typed on the keyboard of one one computer
should appear on the screens of both computers.

To initiate a file transfer, type control S on the computer
~hat already has the file. It will then ask you "Send File:"
to which you should reply with the name of the file you want
sent.

A messa~e will then appear on the other computer's 'screen which
reads "File: (filename) is being sent." The receiving computer
will then ask "Receive file name (ESC (ret) for abort) :". You
should type into the receiving computer the filename on that
system where you want the data stored. If you want to abort
the transfer process at this point type the ESC key followed by
a carriage return. To abort the transfer at any other point in
the process type the ESC key on either computer.

When the process is aborted at the receiving end the message
"Load Aborted" will appear on the screen of the receiving end
and the message "Transmission terminated at receiving end."
will appear on the screen of the transmitting computer. If the
process was aborted by the transmitting computer the message
"Transmission terminated." will appear on the screen of the
transmitting computer, and the message "Transmission Aborted"
will appear on the screen at the receiving end. In either case
both computers will be dumped back into a terminal mode.

The load process will also be aborted automatically if the
receiver gets a record number that is out of order. If this
occurs the same messages will appear on both screens as if an
ESC had been typed on the keyboard of the receiving computer.

As soon as you have entered the destination filename the data
transfer will begin. A display of the record numbers being
sent will appear on the left side of both screens. If an error
is made in the transfer of any of the records the program will

o
PolyMorphic Systems System 88 User's Manual Page 187

send the re~o~d over again. This will be evidenced by a
repeated record number on the left side of the screen.

When the entire file has been transfered the message "File
mailed." will appear on the screen of the transmitting
computer and· the message "File Loaded." will appear on the
screen of the receiving computer. At this point the program
will return to its terminal mode. To exit the program type
control Y. Note: When a control Y has been typed to exit from
this program, ex~cution CANNOT be continued by using the
CONTINUE or REENTER commands.

1.2 Using FTP as a terminal.

If you wish to use your System 88 as a terminal you can do so
using FTP. The header must first be set up as described in
section 1.0. The system is then powered up and FTE is invoked.

FTE will ask you for the baud rate you wish to use. Three baud
rates are provided. The 9600 baud rate is used when connecting
the System 88 directly to the back of another computer. The
110 and 300 baud rates are used when connecting the computer
through a modem to another computer. Two baud rates are
provided to accomidate different types of modems.

There is only one restriction in using FTE as a terminal. That
is that a control S cannot be typed or received. If one is the
program will revert to file transfer mode (See section 1.1).

FTP can also be used to transfer a file over a modem by setting
up the baud rate for a modem, selecting the right header, and
using the procedures outlined in section 1.1.

Page 188 System 88 User's Manual PolyMorphic Systems

polyMorphic Systems System 88 User's Manual Page 189

Appendix J

MIRROR AND DUP

MIRROR and DUP are two programs on your System Disk which are
intended for use on single drive systems. They allow you to copy
files from one disk to the other, and to IMAGE whole disks on to
other disks.

You must ENABLE your system before invoking MIRROR. If you want
one disk to be the mirror image of another, type

$$MIRROR

You will then see the following message:

Normally, you should wait for drive light to go off
before removing disks, but in this program, you may swap
them immediately after I tell you.

Insert copy FROM disk.
Hit any key to continue.

Follow these instructions. Note that the disk you are making a
mirror image of does not have to be a system disk. You are being
given this opportunity to remove your system disk and insert any
disk that you want to "copy FROM."

Once you have inserted the "copy FROM" disk and "hit any key to
continue," you will be asked to:

Insert copy TO disk.
Hit any key to continue •

When you have inserted the "copy FROM" disk, you will see the
following message:

THIS DISK WILL BE UNUSEABLE UNTIL THE PROCESS IS COMPLETED

The above message is warning
process if you plan to be able
the process is interrupted, the
be properly constructed and the

you not to interrupt the IMAGE
to use your "copy TO" disk. If

"copy TO" disk directory will n6t
disk will not be useable.

You will be asked to repeat this process of exchanging disks
until all of the data on the "copy FROM" disk has been recorded
onto the "copy TO" disk.

When all of the information has been copied from the "copy FROM"
to the "copy TO" disk, the screen will display the following
message and return to Exec,

Page 190 System 88 User's Manual polyMorphic Systems

OPERATION COMPLETED

If the disk in the drive is not a system disk, you will be asked
to insert a system disk and hit any key to continue. Once you
have inserted the system disk, the system will return to Exec.

If you want to copy one file from one disk to another disk, type
the following:

$DUP Pathname

You will then see the following message on your screen:

Normally, you should wait for drive light to go off
before removing disks, but in this program, you may swap
them immediately after I tell you.

Insert master disk. Hit any key to continue.

Follow these instructions. Note that the disk which has the file
you wish to copy does not have to be a System Disk as you are
being given the opportunity to replace your System Disk with the
"master" disk. Once you have inserted the master disk and hit
return you will be asked to insert the "slave" disk. You will be
asked to alternate the slave and the master disk until the
copying process is finished. Then you will be given a chance to
insert your System Disk. When the copying process is finished
and there is a System Disk in the drive the system will return to
Exec.

o

PolyMorphic Systems System 88 User's Manual Page 191

GLOSSARY OF MANUAL TERMS

ASCII

Because the machine deals only with binary numbers, all
characters must be represented within the machine by a
numerical code. The American Standard Code for Information
Interchange (ASCII) is a numerical code representing letters,
numbers and symbols-- all of the characters that can be typed
in from your keyboard, including control characters. When you
type a capital letter T from your keyboard, for example, the
machine receives that symbol as the number 54H in hexadecimal
or the number 1010100 in binary--the ASCII code for a capital
T. (See Appendix BThe ASCII Character Set for the ASCII values
for your system's complete character set.)

Assembler

The "Assembler" is a machine language program that translates
assembly language programs (see Assembly Language) into machine
language that your machine can use as instructions. For
information on using the Assembler, see Section 12, The
Assembler, and the System Library volume The MACRO-SS
Assembler.

Assembly Language

At its most basic level of operation, a computer understands
only numbers, in fact only 0 and 1. Every instruction that it
follows is represented by a particular number made up of Os and
Is. When you type in a BASIC command, that command is
interpreted by BASIC, and BASIC then performs the actions
called for by the command. However, BASIC is itself a machine
language program--it is made up of numbers (machine language)
which the machine understands as instructions. To write a
machine language program, we use a computer language called
"assembly language." This language consists of "mnemonics"
(word substitutes) that represent the numerical instructions of
machine language. This makes it much easier for humans to
communicate with the machine. The assembly language program
must still be translated into the machine language that your
machine can recognize. This is the task of the Assembler (see
Assembler) •

BASIC

Page 192 System 88 User's Manual PolyMorphic Systems

BASIC is a widely used computer language. It i~ a much higher
level language than assembly language--it resembles normal
English much more closely than assembly language does. It is
generally considered to be simple to use and easy to
understand. See the System Library volume BASIC: A Manual for
details on using BASIC.

Binary

A binary number is a number written in base 2. We normally use
decimal numbers, or numbers in base 10. ("Base 10" means that
each place in a number represents a power of ten, and thus ten
symbols are used to form the numbers in that base-- the symbols
o through 9. "Base 2" means that places in a number represent
powers of two, so two symbols, a and 1, are used to form
numbers in binary notation.) Each digit in the decimal number
256 represents that digit multiplied by a power of ten (what
power of ten depends upon the digit's place in the number).
What the decimal number 256 really means is:

2 . 1 a
2 X 10 + 5 X 10 + 6 X 10

Or, (2 X 100) + (5 X 10) + (6 X 1). Just so, the digits in a
binary number represent powers of two. The decimal number 10
is represented as the binary number 1010. What this really
means is:

3
1 X 2 +

2
o X 2 +

1
1 X 2 +

o
a ~ 2

Or, (1 X 8) + (0 X 4) + (1 X 2) + (0 X 1). At its most basic
level, a computer understands only binary numbers.

Bit

All information within your machine is represented as binary
numbers (Is and Os). Each digit of these numbers is called a
"bit" (for binary digit) and is the smallest unit of
information. The following number consists of· 8 bits and
represents the decimal number 84 or the hexadecimal number
(base 16) 54H: 01010100.

Byte

Binary information is grouped
eight bits (eight Is and as).
"byte." This is a convenient
language instructions carried

within your machine in groups of
Each of these groups is called a
grouping, because the machine

out by your machine are performed

()

PolyMorphic Systems System 88 User's Manual Page 193

on groups of eight or 16 bits (one or two bytes). One byte of :
eight bits is also the amount of bits needed to represent one
character in ASCII code.

Computer Language

A language is a set of symbols which can be combined according
to certain rules to communicate information. A computer
language is a set of symbols with which we communicate with the
machine. The language closest to the functioning of the
machine is machine language, which consists of binary numbers
(translated for our use into hexadecimal numbers) representing
machine instructions. A language closer to human language is
called assembly language. It consists of word symbols that
represent machine language. Even higher-level languages exist,
like BASIC or FORTRAN.

Control Characters

Control characters are characters entered from your keyboard
that signal the system to perform operations on the monitor
screen and/or printer, such as clear the screen, move the
cursor, delete characters, etc. See Appendix B--ASCII
Character Set for a list of control characters and their uses.

Data

As used in this manual, data is simply another word for
information. Numbers, characters, text, etc. are all
considered data. When we speak of one byte of data, we are
talking about a unit of information that can be represented in
one - byte of machine memory (e.g., one character). When
speaking of BASIC programs, we sometimes make the distinction
between information generated and used by programs (often
referred to as "data") and the programs themselves. On the
machine level, however, since programs are represented as
numbers, as are the values they manipulate, no true distinction
exists between programs, text, program data, etc.

Decimal

A decimal number is a number written in base 10.
for an explanation of base 10 and base 2.)

Ed ito r

(See Binary

The Editor is a machine language program that helps you to
create and change text files. You can create and edit (correct
and change) assembly language programs, BASIC programs, and
non-program text files. This manual was created using the

Page 194 System 88 User's Manual PolyMorphic Systems

Editor. See Section 11, The Editor, for more information.

Execute

To execute a program means to "run" that program. A program
consists of a series of instructions followed 1n proper
sequence by the machine. As the instructions are performed, we
say that the program is executing. (American computers execute
instructions; British computers obey orders.)

Expression

An expression is a group of mathematical terms and variables
connected by arithmetic operator symbols. An expression will
be evaluated by the machine-- that is, it will be reduced to
its simplest expression. An expression may consist of only one
term or many terms.

File

Examples of expressions:
3+25*(SIN(45/A»
78
65+45.678-(234.1/56)

Any data that you want to save can comprise a disk file. A
file may thus contain text, machine language, BASIC programs,
numerical data, etc. You can think of a file as a manila
folder that you use to hold any type of information. After
putting it in the file cabinet (i.e., the disk), you can make a
copy of the contents of the file folder. You work on the
"copy" that is in the temporary memory inside the main unit,
not on the "original" that is in the "filing cabinet" or disk.
Eventually, however, you may replace the "original" on the disk
with the up-dated "copy."

Form Feed

Typing the control character Control-L results in a form feed-­
the screen is cleared and the cursor appears in "the upper left
hand corner of the screen after the next carriage return. The
Editor is the only exception: when editing, you insert a form
feed into your text by typing Control-L (the Greek letter
appears to show you where the form feed will occur). When your
text is printed on a printer, the form feed will force the
printer to go on to the beginning of the next sheet of paper.

Hexadecimal

o

PolyMorphic Systems System 88 User's Manual Page 195

Many of the numbers mentioned in this manual are written with
an H after them (e.g., 2000H). The H indicates that the number
is in hexadecimal (base 16) form. Why do we use hexadecimal
numbers? Data are groupea within your machine in groups of
eight bits (Is and Os), called bytes. Each memory location
holds exactly one byte of data. (Bytes are convenient
groupings because one byte represents one character in ASCII
code and because most machine operations are performed on one
byte at a time.) Hexadecimal numbers may be very easily
translated into bytes of binary numbers (the actual numbers
used by the machine). Any hexadecimal digit can be expressed
in no more than four bits-- a half of a byte. Therefore two
hexadecimal numbers exactly represents the contents of one
memory location; that is, one byte of data.

Because hexadecimal is base-16 rather than base-IO (i.e.,
ordinary decimal), it uses sixteen symbols instead of ten: the
ten digits 0-9 and the first six letters A-F. The largest
number expressible in two digits in hexadecimal is FF, written
FFH and equal to 255 in decimal.

Input

To input data is to transfer it to a device (memory, disk file,
etc.) from another device (keyboard, memory, disk file, etc.).
For instance, when you type a character, you are "inputting"
that data into the memory inside of the machine. In addition
to being a verb, input is also a noun identifying the data
transferred-- the character that you inputted to memory is
itself known as "input."

Invocation

Invoking a file means -bringing a copy of a program file into
memory and executing it. Invocation thus implies that the file
is a runable file (a series of program instructions that can be
carried out by the machine) rather than a data file (a file of
information to be manipulated in a program), for example.

I/O

The common term for the combined operations of input and output
is "I/O" (Input/Output). Disk I/O means data transfer both
into and out of a file (read and write operations).

Lang uage

See Computer Language.

Line

Page 196 System 88 User's Manual . PolyMorphic Systems

A line of text is all of the characters between two carriage
returns. In the case of this paragraph, for .example, the first
line of the paragraph consists of the characters A line of •••
••••••••• two carriage. Usually a line appears on the screen as
just that-- one separate line. But a line may be longer than
the width of ' the monitor screen. If it is, it will "wrap
around" and continue on the next line position, even though you
haven't put in a carriage return. Be careful that everything
that you mean to be a line is delimited with carriage returns.

Load Address

Machine language program files are saved along with certain
information the system uses when that program is again brought
into memory and executed. The load address tells the system at
what memory address to begin writing the program when it is
placed in memory. A machine language program could thus be
saved from memory location 3200H but written back into memory
at location 4000H (memory addresses are in hexadecimal form,
and so are followe~ by an "H").

Machine Language

At its most basic level, your machine operates in a very simple
way. The machine actually understands only about eighty
instructions which in machine language are represented by
binary numbers (translated for our use into hexadecimal
numbers) • These instructions are very simple; they can do no
more than cause numerical data to be moved from one place in
memory to another and cause simple arithmetic operations to be
performed on that data. In order to write programs in machine
language, programmers almost always actually write in a
language that uses mnemonic word-substitutes for the machine
language (see Assembly Language) and which is then translated
into machine language by the Assembler (see Assembler).

Memory

The temporary storage area for the data your machine is
actually using at any given moment is called "memory." The
"amount" of memory that your machine has is equal to the number
of memory locations that you can use. Each memory location
stores one byte of data. When you invoke a file, a copy of
that file is placed into memory. All data, whether it is a
program, text, a copy of a data file, etc., is placed into
memory in order for it to be accessible to the machine.

Memory Address

Every memory location in your machine is reached via its

o
PolyMorphic Systems System 88 User's Manual Page 197

address (a two-byte hexadecimal number). It is important to
keep clear the difference between the contents of a memory
location and the location's address. Memory location 3000H,
for example, will always hold one byte of data (eight bits).
That data can be anything you desire that can be represented in
numerical form, and can be changed at any time. But that
particular location will always have the address 3000H, no
matter what contents that location may hold.

Mode

Mode means "way," and the system has many different ways of
functioning. For instance, we can talk about "keyboard modes"
(FULL, fold, flip) which cause characters typed in from the
keyboard to be translated in different ways. We can talk about
"system modes" (enabled and disabled) which reflect different
states of system operation. A mode implies a temporary or
changeable method of operation-- if you are in enabled mode,
for example, you may in the future be in disabled mode.

Output

The process of transferring data out of a device (a keyboard or
a disk, for instance) to another is called output. Writing
data out from memory is outputting that data. Besides being
the term for the process of data transfer as viewed from the
data's point of origin, output is also what we call the data
itself that is being transferred. If a BASIC program asks for
a number from the user of that program (asks for input), and
then writes that data out to a file, that number is output to a
file and is itself called output.

Path Name

When you want to specify a file or directory to the system, you
must type its path name. The path name is made up of component
names. The components which can be in a path name are: drive
names, sub-directory names, file names and extensions. See
Section 4 for . a complete explanation of how to enter path
names.

Printer Driver

When you want to output data to a printer so as to
printed, you must have software that processes the
enables the printer to operate. The System
adaptable printer driver to communicate with a
printers.

Program

get the data
output and

88 uses an
variety of

A series of instructions for the system to follow in order is

Page 198 System 88 User's Manual PolyMorphic Systems

called a program. The instructions may be expressed in the
terms of the computer language called BASIC (a BASIC program)
or in machine language (a machine language program) or in some
other computer language. You might even consider a command
file (a series of system commands) a program.

Prompt

A prompt is a symbol used by the system or various files on the
system (e.g., BASIC or the Assembler) as an indication that the
system is waiting for a new user input. The prompt symbol for
the system level (communicating with Exec) is a single or
double dollar sign symbol $ or $$, depending upon whether the
machine is operating in disabled or enabled mode. The BASIC
prompt symbol is a single or double carat symbol, > or »,
depending upon whether execution of the BASIC program currently
in memory cannot or can be continued by BASIC.

RAM

The most common type of machine memory is RAM-- Random-Access
Memory. Unlike Read-Only Memory (see ROM), Random-Access
Memory may be both read from and written into. Every memory
location has an "address" (see Memory Address) by which you
select that particular location; this means that you can access
RAM locations in any order (not just sequentially). This is
why this type of memory is called Random-Access Memory.

Register

Certain areas of machine memory, called registers, are set
aside as special data handling areas. When you write a machine
language program, the great majority of the instructions of
your program are concerned with moving data between these
registers. All arithmetic operations performed by the system
are done on the data in these registers.

ROM

A very useful type of memory is called Read-Only Memory (ROM).
A ROM contains data and programs the system needs to function.
This information, unlike data in ordinary machine memory (see
RAM), will always remain in the ROM whether the machine is
turned on or off. (Usually data in memory disappears when your
machine is turned off.) ROMs can be read from but not written
into-- their contents are never altered or erased. The ROMs in
the System 88 contain the 4.0 Monitor and the core or "Root" of
the disk operating system.

o
PolyMorphic Systems System 88 User's Manual Page 199

Run

To run a program is
sequential instructions.

to perform the
(See Execute.)

program's series of

Save

When you write a machine language or BASIC program, you want to
store a copy of that program so that you can run later. Often
you want to store a copy of data or text for future reference.
The process of storing information (whether programs, text,
etc.) is called "saving" data. The processes for saving these
various forms of data differ depending upon the type of data.

Save Address

When you save a machine language program, you must tell the
system at what memory address to begin saving that program
(that is, the memory address at which your program begins).
This address is a hexadecimal number.

Sector

The diskette used by your machine is divided into ten
"pie-slice" wedges. In addition, beginning at the central
cutout circle, the diskette is divided into 35 concentric
circles, called "tracks." The area on one wedge and along one
track is called a sector. There are 350 sectors (35 tracks
multiplied by ten wedges) on a disk. The disk directory shows
the amount of information stored on the disk and the length of
the files in sectors.

Start Address

When you save a machine language
information used by the system
retreived and executed. The star.t
what memory location will hold
your program.

String

program, you must include
when that program is later
address tells the system

the beginning instruction of

BASIC distinguishes between two types of data-- string and
numerical. Numerical data (represented by numerical variables)
may have arithmetic operations performed on it and be assigned
as values to numerical variables. Strings (represented by
string variables) are identified as such by being enclosed
with-in quotation marks. Strings of characters within
quotationmarks are treated as a unit by the program, and are

Page 200 System 88 User's Manual PolyMorphic Systems

not processed except to be reproduced literally by the program.
Data placed in a file as strings must be read from that file by
using string variables.

TAB

Use of the TAB key on your keyboard (and the Control-I command)
causes the cursor (the white rectangle that indicates your
position on the screen) to move to the right eight spaces. If
you are creating text, the TAB key also inserts a tab character
into the text at that point. The tab character is not visible
on the screen, but it is in the file and will cause the printer
to execute a tab when the file is output to a printer. The
BASIC TAB command causes the PRINT statement to "tab" over an
arbitrary amount (depending upon the value specified in the TAB
command) before printing data.

Text

Machine language programs are collections of numbers. They are
understood directly by the computer as instructions. Other
types of data are given in encoded form (see ASCII), which then
must be translated by the system. Characters given in ASCII
code are called text. The computer does not perform arithmetic
operations directly on numbers that are ASCII characters.
BASIC will perform the translation between ASCII numbers and
machine l'anguage numbers for you when you ask for arithmetic
operations. The actual ASCII characters, however, form a type
of data that we call text. Text files contain characters that
are ASCII-encoded data and not runable machine language.
Technically, therefore, all files except for machine language
files are text files, since they are stored in ASCII form. In
general, however, when we speak of text files we are speaking
not of BASIC programs or BASIC data files (even though they are
stored in ASCII form), but of files consisting of text material
such as memos, article.s, research papers, etc.

Type-ahead

Your machine is occasionally preoccupied and unable to attend
to keyboard input (for example, when running a BASIC program).
The characters that you type during these times are stored by
the machine and displayed and processed later, when the machine
is again free. This capability is called type-ahead. You can
enter up to 64 characters to the type-ahead processor.

Variable

A variable is a symbol used to represent
variable may be either a numerical

data. In BASIC, a
or string variable~

o

PolyMorphic Systems System 88 User's Manual Page 201

Numerical values or strings may be assigned to the proper type
of variable. When we say A=lO, we mean that wherever the
variable A occurs, the value of 10 will be substituted for that
variable. When we say A$="This is a string", we mean that the
phrase assigned to A$ will be substituted for the string
variable A$. (For example, when we say PRINT A$ in a program
line, the string "This is a string" will be printed--without
its surrounding quotation marks.) A BASIC numerical variable
is an upper case letter optionally followed by one numerical
digit (e.g., AI, X, B3). A BASIC string variable is any legal
numerical variable followed by a dollar sign (e.g., AI$, X$,
B3$) •

Warm-start

The start (or "cold-start") address of a machine language
program refers to the memory location containing the program's
starting instruction. Program execution begins with this
instruction if the program is "starting cold"-- if it has not
been running yet. Often this cold-start instruction is at the
beginning of a block of code that performs initializations
meant to be performed only the first time through the entire
program. It may be that instructions in the program cause
execution to start over again "from the beginning" many times,
but without initialization being repeated. Another start
address must be supplied just after the initialization block.
This address is the warm-start address.

Write-protect

Ordinarily, you can write data to and read it from a disk.
Occasionally, you may want to protect the integrity of the data
on your disk by prohibiting anyone from writing new data onto
it (and thus erasing your data). You can do this by
"write-protecting" your disk: put a write-protect tab (supplied
with a box of blank disks) over the write-enable notch (see
Section 2) The write-protect procedure for the 8" diskette is
exactly the opposite of that for the 5" diskette. An 8"
diskette is write-protected when the tab over the write­
protect notch has been removed.

Page 202 System 88 User's Manual PolyMorphic Systems

()

PolyMorphic Systems System 88 User's Manual Page 203

INDEX

Words written all upper-case (e.g. DELETE) are usually the
names of commands.

Active files, 39
Angle brackets, 30, 33
Angle brackets in path names, 32, 35
Append ing, 102
Applications . programs, 93
Arrow keys, 100
ASCII code, 83, 135, 136 (chart 137) 139, 191
Assembler, 5, Ill, 131, 133, 191
Assembler options, 112
Assembly language, 22, 84, 111, 191
Asterisk, 24, 52, 58
Auto-execute mode, 79, 80, 93
Auto-repeat, 17
Backplane, 161, 162, 165, 167, 173, 175, 177
Base, 47
BASIC, 5,10,77, III
BASIC commands .

BYE, 78, 80, 81
EXEC, 78, 80
LOAD, 78
SAVE, 81
SCR, 81

BASIC command files, 89, 90
BASIC programs, 10, 22, 77, 94
BASIC promptj 10, 12, 79
Binary, 21, 83, 188
Bit, 83, 188
BYE, 78, 80, 81
Byte, 15~ 83, 188
Cabinet, 165, 177
CAPS LOCK key, 9, 17
Carriage return, 10
Central Processor, 167, 176
Characters, 18-19
Chassis, 161, 173
CHECKSUM, 51
Combining files, 105
Complete path names, 32, 33
Component names, 32
Cmdf abort, 46, 87, 134
Command files, 13, 22, 46,87, 93
Command Syntax, 69, 70, 71
Comments, 13
Computer language, 187, 189
CONTINUE, 65, 81
Control characters, 18, 23, 108, 110, 193
Control-A, 102-3, 108, 136
Control-B, 102, 108
Control-C, 103, 108
Control-D, 108

Page 204 ' System 88 User's Manual

Control-E, 102, 109
Control-F, 103, 109
Control-I, 18, 109, 135
Control-K, 18
Control-L, 18, 109, 135
Control-M, 109
Control-N, 102, 109
Control-O, 103, 109
Control-P, 102, 109
Control-Q, 108, 135
Control-R, 108, 135
Control-S, 108, 135
Control-T, 108, 135
Control-U, 100, 101
Control-V, 105, 109
Control-W, 18, 109, 135
Control-X, 18, 100, 109, 136
Control-Y, 11, 18, 37, 41, 87, 110, 134, 136
Control-Z, 110, 45
COPY, 42, 57, 81
Copying a block of text, 103
Copying a disk, see IMAGE
Copying files, 42
Cursor, 8, 100
Custom printer, 121, (sample program) 183
Data, 85, 192
Data fles, 23, 91
Deb ugg ing, 64
Decimal, 85, 192
DEF, 93
DEFAULT, 117, 121
Default drive, 34
Default printer, 117, 121
Default REENTER address, 66, 86
DELETE, 13, 51, 52, 83
DELETE key, 9, 18, 100
Deleting a block of text, 103
Deleted fles, 13, 51
Deleting characters, 18, 101
Deleting files, 13, 51
Deleting lines, 19, 100
Deleting words, 18, 100
DIO, 127-128
DIRECTORY, 51, 122
Directory, 9, 41, 47, 132
Directory header, 52, 41, 47
DISABLE, 47
Disabled mode, 47, 73
Disk, 8, 15
Diskette, See Disk
Disk directory, see Directory
Disk drives, 17, 132, 163, 165-169, 173-175
Disk initialization, see INIT
Disk name, see INIT, DNAME
Disk specifier, 30, 32, 132

PolyMorphic Systems

()

PolyMorphic Systems System 88 User's Manual

Disk surface test, see INIT
Displaying disk directory, 41, 51
Displaying files, 106
Dividing files, 106
DNAME, 60
Double-density, 5, 15
Double-sided, 5, 15
Drive, see Disk drives
Drive lights, 10, 17
DUP, 187 ff
EDIT, 13, 97
Editor, 13, 23, 97, 193
ENABLE, 19, 46, 106
Enabled mode, 46, 68, 69
END, (in Assembler), 113
Erasing, see deleting
Erasing a disk, see INIT
Error messages, 45, 125 ff
ESC (escape) key, 103, 104, 106, 107
Escape sequences, 110
EXEC, 45, 46, 47
Exec, (see Executive)
Execute, 192
Executive, 45 ff, 80,89,91,113,122,125
EXIT, 96
Exiting from Editor, 120
Express ion, 192
Extensions, 26, 52, 60, 49, 80,82, 130
Files, 4, 25, 193
File commands, see BASIC commands
File names, 25, 129, 130
Filename, 64, 65
File specification, See Path name
File transfer program, 185ff
Firmware, 149
Flip, 19
fold, 19
Form feed, 14,155
From address, 64
Front panel, 46, 66, 149
FULL, 18-19
GET, 66, 47, 87
GFID, 129-130
Graphics characters, 139ff
Graphics in BASIC programs, 16
Graphics in machine language programs, 142
Graphics character set (chart), 145
Hardware, 149, 161ff

8810 hardware, 173ff
8813 hardware, 163ff

Hexadecimal, 49, 85, 194
IMAGE, 67, 83
INIT, 54, 68, 134
Initializing a disk, 54, 68, 69
INITIAL program, 10,11, 75, 93

Page 205

1 " , •.•

Page 20 .6. "~. System 88 User's Manual

Input, 44,102,193
Input fi 'le,· 13, 198-100, 105
Input Pt~c~ssing, 18, 44
Invocati()rt, 193
Invokihg Assembler, 112
Invoking BASIC, 9, 34, 77, 91
Invoking BASIC programs, 79
Invoking Editor, 98-100
Invoking files, 39, 40, 45, 86
Invoking machine language files, 86
Inserting disks, 8, 20
I/O, 21, 128-129, 193
I/O connectors, 139
I/O hazards, 20-21
Keyboard, 9, 17
LIST, 10, 50
Listing assembly-language programs, 112
LOAD, 80
Load address, 48,63,66,87,133,196
Load button, 19, 70, 72
Machine language, 21, 55, 85, 86, 112, 196

PolyMorphic Systems

Machine language program, 41, 65, 66, 67, 85ff, Ill, 131
Macros, III
Memory, 4, 166, 175, 196
Memory address, 196
Memory map, 147-148
Minicards, 164, 173
MIRROR, 189ff
Mode, 197
Moni tor, 74, 149
Monitor commands, 151-158
Moving a block of text, 103
NEW (printer), 117
Output, 195
Output file, 13, 97-98, 105-106
Overlays, 22, 47, 130
PACK, 57, 58
Packing disks, 57
PAGE, 59
Partial path name, 34, 35
Path names, 32-35
Power supply, 163, 165, 173, 174
PRINT, 9, 58, 72, 83, 115
Printer, 115
Printer editor, 115ff
Printer driver, 115ff, 130, 195
Printer SET, 124
Printer SHOW, 124
Printing a block of text, 105
Printing from BASIC, 123
Printing from Exec, 122-123
Program, 23,27,86,87,197
Prompt, 8, 195
Question mark, see Special symbols? and #
RAM, 19, 149, 197

D
PolyMorphic Systems System 88 User's Manual

Rear panel, 162, 173
Recovering deleted characters, 101
Recovering deleted files, see Undeleting
REENTER, 66, 87, 106, 130
Register, 196, 150
RENAME, 60-62
RENAME (printer), 116
Renaming files, 60-62
Restarting system, 19
Reversing upper and lower case, 105
Roll-over, see Type-ahead
ROM, 74, 149, 198
RUN, 11, 82, 84
Safety, 167, 176
SAVE, 9, 63, 83
SAVE (in BASIC), 62-63
Save address, 199
Saving, 9, 133, 199
Saving BASIC programs, 9, 82
Saving machine language programs, 63
SCR, 84
Sector, 16, 63, 64, 199
Setup, 115
SHIFT key, 17
Single-density, 5, 15
Single-sided, 5, 15
Software, 149

files

Page. 20:7

. . " .. " .
'-

Special symbols? and JI:, 37, 38, 39, 50, 51, 55, 56, 57, 58,
59, 62, 64, 67, 68, 87, 91, 132

START, 65, 73, 83, 87,
Start-up, 7, 19, 73
String, 197
Switches, 165, 173
Symbols, 112

130

System commands, 46ff
CONTINUE, 67, 71
COPY, 59, 70, 71, 83
DELETE, 51-55, 71, 83
DIRECTORY 50, 71
DISABLE, 47, 71
DNAME, 69, 71
ENABLE, 47
GET, 65, 71, 87
IMAGE, 67, 71
INIT, 59, 68, 71
LIST, 9, 50, 71
PACK, 57, 72
PAGE, 59, 72
PRINT, 9, 58, 72
REENTER, 66, 72, 87
Reference list, 71
RENAME, 60, 73
SA VE, 9, 63, 73
START, 65, 73, 83, 87
TYPE, 10, 58, 73, 83

page 20 • .
.. : ... I.\~:

System 88 User's Manual

;~t)!:ti:1E 55 73 . . " " ,
zMj " .. 6,9, , 7 3

syst~. ,~·J:~ii1h~ 4,5,67,68,74,129
syst~~.-'~~:t"*f!, 4, 5, 34, 74, 129
sx,s~. ~l(~~nsions, 26
sy!t~' l~~lte, 24, 44, 48, 59, 63, 83, 93, 133
Syst.m . ~~';J.)lY, 23, 24,48,131,133
Systetn ' -.fpgrammer' s Guide, 6, 23
System p~6~pt, 8, 45, 74, 97
System start~up, 8, 19, 22, 74
TAS' ,ttey., 1-2, 20, 200
Text, 12, ,' 85, 97ff, 200
Text fil~: , 12, 25, 89
Top of , I'I!'J.u.~ny, 74, 130
TYPE, toti.!.·"'SS, 74, 83
Type-ab:e''ad, 17, 201
UNDELETE, 55, 73
Undeleting files, 55, 56
Var iable, 198
Verify," see INIT,
VIEW, 116
Warm-~tart, 66, 67, 201
Warm-start address, 66, 88
Wild card, 26, 54, 60, 61
Wrap-atound, 10l
Write~~n~ble notch, 16, 128

PolyMorphic Systems

fWr it.~. p~9:t.-ect ;"l6., 128,201
" Write 'pFotedt ,tab, io,128--' . " . ' I : . ~ I ~"' "

ZAP, 69, 73

t)

