POLYMORPHIC SYSTEMS
Gl BASIC

(E) Copyright 1977 Interactive Products Corporation

Preliminary Version

This manual represents a preliminary and interim document describing
briefly the features and capabilities of Poly 88 BASIC. It is applicable
to versions of Poly 88 BASIC up to and including V24 (the version number is
displayed at the top of the screen when BASIC starts). This manual is not
for teaching the beginning user BASIC, or computer programming; it is a
summary of the features and capabilities provided by Poly 88 BASIC. For
information and books on BASIC, and computer programming, visit your local
computer store.

Computer software has two fundamental properties: it evolves, and it
may not be free of errors. BASIC for the Poly 88 is an evolving system; it
is changing and growing in capabiitities, and for that reason, future versions
of BASIC will probably have features not present in this version. We make
the commitment that all these changes will be upward-compatible; the programs
you write for Poly 88 BASIC today you will be able to run on future versions.
Every large software system may contain errors; this alone is a reason for
new versions of the product, fixing errors. As we find errors in BASIC, or
are made aware of them, they will be fixed in future versions. If you think
you have found an error in BASIC, first try it out on another Poly 88 to
eliminate the possibility that the error is caused by hardware problems such
as memory or a marginal cassette. If you wish to inform us of a problem in
BASIC, please send us all the information on the problem that you can -
listings, descriptions, and a cassette of the program that causes the problem.
If we cannot reproduce the problem, we can't find or fix it. We hope that
because of our testing, each version of BASIC is as free from errors as we
can make it.

PolyMorphic Systems Preliminary Basic P.

INPUTTING A PROGRAM:

Every program line begins with a 1ine number. Any line of text
typed to BASIC in command mode that begins with a digit is processed
by the editor. There are four possible actions which may occur:

1) A new line is added to the program. This occurs if the line
number is legal (range is @ thru 65535) and at least one
character follows the 1ine number in the line.

2) An existing line is modified. This occurs if the line number
matches the line number of an existing line in the program.
That line is modified to have the text of the newly typed-in
line.

3) An existing line is deleted. This occurs if the typed-in
line contains only a line number which matches an existing
line in the program.

4) An error is generated. If the line number is out of range,
or the line is too long, or the memory would become full,
then error messages are generated and no other action is
taken by BASIC.

Blanks:

Blanks preceding a line number are ignored. The first non-digit

in a line terminates the line number (even tlanks). Multiple blanks
are pérmitted anywhere in a line for indentation purposes, but not
within reserved words or constants.

Multiple statements per line ¢

Multiple program statements may appear on a single line, if
separated by a (\) back slash. A line number must appear only at
the beginning of the first statement on the line.

Typing mistakes:

If a typing mistake occurs during the entering of any line of

PolyMorphic Systems Preliminary Basic P. 3

text to BASIC, there are two possible corrective actions available:

When the user types control-x, BASIC completely ignores all input
on the current line being typed in, and types a carriage return.
The correct line may then be typed to BASIC.

When the user types a del, or rubout, BASIC will ignore the
previously typed character.

COMMANDS

RUN <optional line number>
Begin program execution either at the first line of the
program or else at the optionally supplied 1ine number.

LIST <optional line number>, <optional second line number)
If no arguments are supplied, then print the entire existing
program. If one line number is supplied, then print the program
from the specified line number to the end. If two Tine numbers
are supplied, then print the program in the region between the
two 1line numbers.

SCR
Delete (scratch) the existing program and data, in preparation
for entering a new program.

REN <¢optional beginning value),¢optional increment value>
Renumber the entire existing program. If the first argument
is not supplied, then 1@ is used as the initial statement
renumber value. If the second argument is not supplied, then
19 is used as the increment value.

CLEAR
Clear all variables. This command deletes all arrays, strings
and functions, and initializes all scalar variables to zero.

CONT
This command causes execution of a running BASIC program to
continue after a STOP statement or after an escape stop.

PolyMorphic Systems Preliminary Basic P. 4

LINE < number of hharacters>
This command defines the Tine length of the user terminal.
No input 1ine will be accepted longer than the specified value,
and no output line will be printed longer than the specified
value. The maximum value is 132. The initial value is 72.

NULL <number of nulls> A
This command specifies the number of ACSII null characters
to output following the output of each carriage return character.
The initial value is zero. | V

SAVE and LOAD

SAVE and LOAD allow the storage and retrieval of named files on
cassette tape. SAVE is used to save a program on tape, and LOAD

is used to load the program into memory from tape. Programs may

be saved in either "byte" or "Polyphase" format, and must be loaded
in the same mode as they were written. The syntax for SAVE and
LOAD commands are:

>SAVE,B ,NAME save program in "byte" format
>SAVE,P ,NAME save program in "Polyphase" format
>LOAD,B ,NAME load program in "byte" format
>LOAD, P ,NAME load program in "Polyphase" format

NAME is the name of the file, and may be from one to eight characters
in length. Note that in the lines above illustrating the syntax, the
">" is the prompt given by BASIC and is not typed by the user. When
saving or loading programs, BASIC types "Working..." to indicate that
the process has begun, and types out the record number of the current
tape record as it is loaded or written. A "Syntax" error may be
generated if the mode specified is not "B" or "P", the file name is

too long or not given, or commas are omitted. If an error occurs
reading the tape, "Checksum error” is generated. The SAVE or LOAD
process may be interrupted by typing the ESCAPE character (see page)

PolyMorphic Systems Preliminary Basic

CONSTANTS:

Magnitude range: .1E-63 thru .99999999E+63
Constants appearing in programs are rounded to 8 digits if
necessary. Internal representation of numbers is binary-coded-
decimal.

NAMES:

A1l user defined names are one or two characters long: a letter
of the alphabet optionally followed by any digit. For example:
A, 79, and Q9 are legal names. The same name may be use& to
identify different values, as long as the values they identify
are of different types. For example, it is possible to have a
scalar variable named Al, an array named Al, a string named Al$
and functions named FNA1 and FNA1$. There is no relationship
between these entities.

OPERATORS:
Numeric: +, -, /, *, 4 (or " on some keyboards)

Relational: =, <, >, ¢, >=, =2, €=, =<
A relational operation gives a 1 (true) or @ (false) result.

Boolean: AND, OR, NOT
A Boolean operand is true if non-zero, and false if zero.

The result of a boolean operation is 1 or Q.

PalyMorphic Systems Preliminary Basic P.
STATEMENTS:

Only some statements listed below are accompanied by discussion.
Consult the example programs in Appendix 1 for questions about the
use of a particular type of statement.

LET
The LET is optional in assignment statements. Multiple assign-
ments are not allowed. The statement A=B=@ assigns true or
false to A depending on whether or not B equals 9.

IF

An IF statement may optionally have an ELSE clause. A THEN
or ELSE clause may be a LET statement, a RETURN statement,
another IF statement or a GOTQ, for example. If either the
THEN clause or the ELSE clause is a simple GOTO, then the
GOTO reserved word may be optionally omitted.
1¢¢ IF A=B THEN 15@ ELSE A=A-1

FOR |
FOR Toops may be multiply nested. The optional STEP value
may be positive or negative. It is possible to specify

values such that the FOR loop will execute zero times. For
example,

166 FOR J=5 TO 4 \ PRINT J\NEXT
NEXT

A NEXT statement may optionally specify the control variable
for the matching FOR statement, as a check for proper
nesting.

GOTO

ON

The ON statement provides a multi-branched GOTO capability.

PolyMorphic Systems Preliminary Basic P.

For example,
190 ON J GOTO 509,609,700

will branch to 509, 699 or 792 depending on the value of J
being 1,2, or 3 respectively.

EXIT

The EXIT statement is identical to a GOTO except that it has

the effect of terminating any active FOR loops and reclaiming
the associated internal stack memory. It should be used for

branching out of a FOR loop.

STOP
END

REM
READ
DATA
RESTORE

The RESTORE statement may optionally include a line number,
specifying where the READ pointer is to be restored to. In
the absence of the optional Tine number, the READ pointer is
set to the first line of the program.

INPUT
INPUTT

The INPUT or INPUT1 statement may optionally specify a
literal string which is typed on the terminal as a prompt
for the input instead of a question mark. To inhibit the
echoing of the carriage return at the end of user input, use
the INPUT1 statement.

198 INPUTI "TYPE VALUE:",V

PolyMorphic Systems Preliminary Basic

GOSuUB
RETURN
PRINT

FILL

ouT

The PRINT statement may include a list of expressions, variables,
or constants separated by (,) commas. Note that if the list of
variables is terminated by a comma, then a carriage return is
not typed. The null PRINT statement will cause only a carriage
return to be typed. A semi-colon is egquivalent to a comma in

the print list. All values are printed in free format, separated
by a blank, unless formatting is specified. If a value will not
fit on the current output 1ine, then it is printed on the next
output line. Advancement of the printer to a specified output
position may be accomplished with the TAB function. Formatting
may be accomplished by including a "format string” in a print
statement (see below).

This statement permits filling a specified byte in the computer
memory with a given expression value. For example, FILL 100,J+3
will fill memory byte 19@ with J+3.

This instruction permits doing an 8989 QUT instruction. For
example, OUT 5,3 will perform an QUT 5 instruction with 3 in
the 8080 accumulator.

PolyMorphic Systems Preliminary Basic p. 9

PLOT

The PLOT statement allows the user to display data on the yideo
display as a 128 by 48 grid. The "origin" for the display grid

is the lower left corner of the display, and is addressed as point
(8,8). The x coordinate (left-right) must be in the range @ <=
<=127, and the y coordinate in the range § <= y <= 47 or "Qut of
bounds" error will result. The syntax for the PLOT statement is;

PLOT xexpr,yexpr,zexpr

Where xexpr and yexpr are arbitrary expressions selecting the x and

y coordinates, in the ranges mentioned above and zexpr is an arbitrary
expression that will plot a bright spot if odd, and a dark spot if
even. As a side effect, the PLOT statement causes cursor position

to move, so that the next PRINT or INPUT statement will appear at
theat cursor position. This is useful for formating the screen, or
displaying text in different positions on the screen. See the sample
programs in Appendix 1 for expamples of PLOT useage.

ARRAYS:
Arrays may be dimensioned with any number of dimensions, limited only
by available memory, e.g.,

199 DIM A(1)}, B7(5,2,3,4,5,6)
Array indexing starts at element @. Array A in the above example
actually has two elements, A(@) and A(1). Use of an undimensioned
array causes automatic dimensioning to a one-dimension, 18 element
array. Arrays may not be re-dimensioned within a program.

PolyMorphic Systems Preliminary Basic P.10

STRINGS:

Strings of 8-bit characters may be dimensicned to any size, limited
only by available memory, e.g.,

199 DIM A$(1),A15(12009)

Note that a string name is a variable name followed by a ($) dollar
sign. Substrings may be accessed as A$(N,M} which is the substring of
characters N thru M. For example, if A$ is "ABCDEF" then A$(3,5) is
"CDE". Alternatively, A${(N) identifies the substring including
characters N thru the last character in the string. The concatenation
operator is a plus sign.

If'an'assigned value is larger than the destination string or substring,
then it is truncated to fit. If an assigned value to a substring is
shorter than the substring, then the extra characters of the substring
are left unmodified. A string variable used before being DIMensioned

is given the default demension of 1. Strings may not be redimensioned
within a program.

Strings, substrings and string expressions may be used in conjunction
with: LET, READ, DATA, PRINT, IF, and INPUT statements. The string

[F statement does alphabetic comparisons when the relational operators
are used, .e.g.

199 IF A$+B$ < "SMITH" THEN 5@

When string variables are INPUT, they must not be quoted. When strings
appear in DATA statements, they must be quoted.

USER DEFINED FUNCTIONS:

User-defined functions (either of type string or numeric) may be
1-line or multiple line functions. There may be any number of numeric
arguments. Parameters are "local" to a particular call of a function.

PolyMorphic Systems Preliminary Basic P. N

That is, the value of the variable is not affected outside of the
execution of the function.

Functions are defined before execution begins (at RUN time), so definitions
need not be executed, and functions may be defined only once.

Muitiple Tine functions must end with a FNEND statement. A multiple-line
function returns a value by executing a RETURN statement with the value
to be returned, for example:

198 DEF FNA(X,Y,Z)

209 IF Z=1 THEN RETURN X
309 X=Y*Z+X*3

409 RETURN X

5@@ FNEND

600 PRINT FNA(1,2,X+Y)

BUILT IN FUNCTIONS:

FREE(3) returns number of bytes remaining in free storage.
ABS{expr) returns the absolute value of the expression
SGN(expr) returns 1, @, or -1 if the value is +, @, or -
INT(expr) returns the integer portion of the expression value
LEN(string name) returns the length of the specified string
CHR$ (expr) returns a string with the specified character
VAL(string expr) returns the numeric value of the string
STR$(expr) returns a string with the specified numeric value
ASC(string name) returns ASCII code of first character in string
SIN(expr) returns SINE of the expression

COS(expr) returns the COSINE of the expression

RND(expr) returns a random number between @ and 1

LOG(expr) returns the natural log of the expression

EXP(expr) returns the value of e raised to the specified power
SQRT(expr) returns the positive square root of the expression
CALL(expr, optional expr) see below

TIME(expr) returns value of real-time clock, see below

PolyMorphic Systems Preliminary Basic P. 12

EXAM(expr) return contents of addressed memory byte
INP(expr) return result of 8989 IN to specified port

MACHINE LANGUAGE SUBROUTINE INTERFACING:

The built-in function CALL takes a first argument which is the address
of a machine lanquage subroutine to call. The optional second argument
is a value which is converted to an integer and passed to the machine
language subroutine in DE. The CALL function returns as value the
integer which is in HL when the machine language subroutine returns.

TIME

The TIME function returns as its value the least significant 16 bits of
the Poly 88 real-time clock, which is incremented every 1/6¢ of a second
The syntax used for the TIME function is:

TIME(expr)
The argument (expr) is required, and if the expression evaluates to
zero, the TIME function returns the current value of the timer, and then
sets the timer to zero; this is useful for recording eleapsed times. If
the expressions is non-zero, it is ignored. Note that since only the
least 16 significant bits of the timer are returned, the value returned
by the TIME function will cycle every (2416)/6@ = 1992 seconds = 18.2
minutes. Longer timing periods may be measured using the EXAM and FILL
features to manipulate the most significant bytes of the real-time clock.
See the sample programs in Appendix 1 for examples.

FORMATTED QUTPUT:

If no format string is present in a PRINT statement, then all
numeric values will be printed in the "default format". (The default
format is initially set to be free format.) A format siring appears
anywhere im the print list and must begin with a per cent (%)
character, e.qg.

PRINT %$19F3,J
A format string consists of optional format characters followed
optionally by a format specification. The format characters are:

PolyMorphic Systems Preliminary Basic p. 13

place commas to the left of decimal point as needed
put a dollar sign to the left of value
suppress trailing zeroes

N O

make this format string the default specification
Format specifications (similar to FORTRAN) are:

nFm F-format. The value will be printed in a n-character field,
right justified, with m digits to the right of decimal point.

nl I-format. The value will be printed in a n-character field,
right qutified, if it is an integer. (Otherwise an error message will
occur.)

nEM E-format. The value will be printed in scientific notation in a
n-character field, right justified, with m digits to the\right of the
decimal point.

A1l printed values are rounded if necessary. A null format string
will print values in free format.

ESCAPE

Typing the escape character (control-shift K) has the effect of
prematurely interrupting BASIC from whatever it is doing. If a LIST

is in progress, the listing will be terminated at the completion of

the output of the current line. If a RUN or CONT is in progress,

then execution will stop after the completion of the currently executing

statement.

DIRECT STATEMENTS:

When BASIC is in command mode, certain statements may be typed for
immediate execution. This is typically used for examining the values
of certain variables to diagnose a programming error. Note that an
exclamation point (!) may be used as a shorthand way of typing the
PRINT reserved word. No direct statement is permitted which transfers
control to the BASIC program. Also, DATA, DEF, FOR, NEXT, INPUT, and

REM are forbidden.

PolyMorphic Systems Preliminary Basic P. 14

199
119
129
139
149
150
169
179
175
189
199
208
219
229
23p
249
25p

100
119
115
129
13p
149
159
155
169
179
175
189
199

Appendix 1: SAMPLE PROGRAMS.

REM A NUMERIC SORT PROGRAM

REM

DIM A(15)

PRINT "INPUT FIFTEEN VALUES, ONE VALUE PER LINE"

FOR J=1 TO 15

INPUT A(J)

NEXT

REM DO EXCHANGE SORT UNTIL ALL IN ORDER

F=@ \ REM THIS FLAG USED TO SIGNAL WHETHER ARRAY IN ORDER YET
FOR g=2 TO 15

IF A(J-1) <=A(J) THEN 228

T=A(J) VA(J)=A(J-1) \A(J-1)=T VREM EXCHANGE A(J) AND A(J-1)
F=1 \ REM SET FLAG

NEXT

IF F=1 THEN 175\ REM LOOP IF EXCHANGES HAPPENED

PRINT "SORTED ARRAY:",

FOR J=1 TO 15\ PRINT A(J), \ NEXT

REM CHARACTER SORT

REM EXAMPLE USING STRINGS AND FUNCTION
DIM A$(72)

INPUT "TYPE A STRING OF CHARACTERS" “,A$
IF LEN(A$)=¢ THEN 12¢

IF FNA(LEN(A))=1 THEN 14@ \REM CALL FNA UNTIL IT RETURNS ZERO VALUE
PRINT "SORTED ARRAY: “,A$

END

DEF FNA(N)\ REM CHARACTER SORT

REM RETURN @ IF A$ SORTED, ELSE RETURN 1
F=p

FOR J=2 TO N

IF A$(J-1,J-1) < =A$(J,J) THEN 222

PolyMorphic Systems Preliminary Basic

2p0
219
229
239
249

109
105
19
115
129
139
149
145
150
155
160
500
519
520

T$=A$(J,d) A$(J,0)=A$(3-1,3-1) A(J-1,3-1)=T$
F=1

NEXT

RETURN F

FNEND

REM INPUT A STRING AND CHECK THAT IT IS A LEGAL INTEGER

REM

DIM A$(72)

INPUT “TYPE AN INTEGER: “,A$

IF LEN(A$)=0 OR LEN(A$)=8 THEN GOTO 500
FOR J=1 TO LEN(A$)

IF A$(J,J)< "0" THEN 500

IF A$(d,J)> "9" THEN 500

NEXT J

PRINT "THE INTEGER IS OK: “,VAL(A$)
GOTO 115

REM

PRINT "NOT AN INTEGER:"

GOTO 115

100
110
120
130
140
150
160
170
180
190
200
210
220
230

100
110
1290
130
1493
150
160
170
139

120
[RES)
120
132
140
150
180
170

180

190
200
210

PolyMorphic Systems Preliminary Basic

REM THIS PROGRAM PLOTS A FUNCTION ON THE VIDEO SCREEN
REM USING THE PLOT FEATURE OF BASIC

PRINT CHRs(12), \ REM CLEAR THE SCREEN

X=0

FOR I=0 TO 3%3.1415 STEP 3%3.1415/127

PLOT X,FNA(I),i \ REM PLOT THE POINT

X=X+l N\ NEXT

PLOT 0,4,0 \ REM PLACE CURSOR SECOND LINE FROM BOTTOM
STOP)

REM PLACE YOUR FUNCTION HERE AS FNA(X) OR WHATEVER-
REM IT SHOULD RETURN Y SUCH THAT O <= Y <= 47 FOR

REM AN. INPUT ARGUMENT 0O <= X <= 3*P]

THE FOLLOWING FUNCTION GENERATES THE "BOUNCING BALL"
DEF FNA(X)=47%ABS(COS(X)})*EXP(=X/19)

REM ®TICK-TOCK"™ DISPLAY USING REAL-TIME CLOCK

REM NOTE- THIS DISPLAY REALLY IRRITATES SOME PEOPLE!
AS="TICK!# \ Bs="TOCK!® \ REM INITIAL STRINGS
S=TIME(Q) \ R=M ZERO THE CLOCK, DONT CARE ABOUT S.
IF TIME(1)<30 THEN 140 \ REM WAIT 1/2 SECOND

PRINT TAB(X),AS \ REM PRINT SOMETHING

Ts=AS \ As=BS \ BS=TS \ REM SWAP AS AND BS

IF K=2n THEN K=49 ELSE K=20

GOTO 130 \ REM KEEP TICKING

HEM THE OLD RANDOM WALK ON THE SCRFEN. ...

PRINT CHRS(12), \ REM PRINT FORM FEED TO CLEAR THE SCRFEN
H=64 \ V=23 \ REM INITIAL X AND Y POSITIONS

A=TIME(1) \ AsSA-2*[NT(A/2) \ REM RANDOM | OR 0O
B=INT(RND(A)*3-1) \ C=INT(RND(A)*3)-1

IF A THEN B=-8 ELSE C=~C

IF H+B=128 (R H+B=0 THEN B=-B

IF V+C=48 0OR C+V=0 THEN C=-C

H=H+B \ V=V+C\ PLOT H,V,A \ GOTO 130

REM B AND C ARE RANDOM X AND Y MOVES, EITHER (=1,n,1)
REM STATEMENTS ARE SQUASHED ONTO ONE LINE TO SPEED
REM THINGS UP!

. 16

PolyMorphic Systems Preliminary Basic P. 17

Appendix II

This appendix deals with two topics: restarting BASIC, and changing
the memory limits set in BASIC. These topics are mainly of interest to
the programmer who wishes to connect interface assembly language routines
to BASIC using the CALL interface.

RESTARTING BASIC

In the event of a catastrophic error in BASIC, it may be necessary to
restart BASIC. The starting address for BASIC is (in hexadecimal) 2(@Q.
Starting the program at this address results in what is known as a “"cold
start" - ANY BASIC PROGRAM PREVIOUSLY LOADED WILL BE LOST WHEN BASIC IS
RESTARTED AT ADDRESS 2¢9@. To restart BASIC without losing the loaded
program, the "warm start", or restart address (in hexadecimal) is 20@3.
When restarted at 2@@3, any BASIC program will be retained, but the contents
of all variables, arrays, strings, etc., will be lost. Usually it is only
necessary to resort to restarting BASIC when an attached assembly language
program has run away, or some part of the BASIC system itself has been
damaged through use of the FILL statement, or intermittant memory. If you
think that the copy of BASIC you have in memory is not well, it is usually
advisable to save the program you are working on cassette, and then reload
BASIC and your program.

CHANGING MEMORY LIMITS

This section is of interest mainly to those who wish to interface
assembly language routines to BASIC, or to change the memory iimits used
by BASIC to allow it to use more or less memory. When BASIC is either
"cold started” or "warm started" (see above), it sets the default memory
limits it will use for storage of both programs and data. These initial
low and high 1imits are assembled into the program as the following two
assembly language instructions at the locations shown:

2012 21PPQQ LXI H,QQPPH ; first free byte
2015 11FF5F LXI D,5FFFH ; end of memory

PolyMorphic Systems Preliminary Basic P. 18

Note that the address given as "QQPP" is representative, and changes with
each version of BASIC. The address SFFF assumes the existance of 16K of
memory starting at (hexadecimal) gggg: Changing the -addresses in these

-two instructions, then, will change the amount of memory available to BASIC.
If, for example, a user has 24K of memory instead of 16K, then the
instruction at location 2815 would be changed from 11FF5F using the front
panel mode described in the Poly 88 user's manual, and restarting BASIC

at either 200@ or 20@3 (hexadecimal). For interfacing assembly language
programs, the user may examine locations 2¢12-2@14 (again, using the front
panel mode described in the user's manual) to determine the starting data
address for this version of BASIC. The user then assembles the assembly
language program to start after this address when running the combined
program, first load BASIC from cassette. After BASIC has been loaded, return
to the tape boot section of the monitor (by hitting the RESET button on the
Poly 88), and load the assembly language program into memory. When the assemb’
language program is loaded, using the front panel mode, change the first free
byte of memory pointer in location 20¢12-2194 of BASIC to point past the end
of the assembly language program. BASIC may then be started at either 2099
or 2003 ' y

v AN 1
v 0
5 hss Y %
- A}
- “1)) .a“ -
‘ ;\-./ “‘ \.‘,v\

~ Preliminary specifications for

PolyMorphic Systems BASIC, subject to change.

. 16K '

Size: 10K bytes

Scientific functions: sine, cosine, log, exponential, square root,
random number, x to the y power

Formatted output

Multi-line function definition

String manipdTation and string functions

‘Real-time clock

Point-plotting on video display

Arrays of up to 7 dimensions

Cassette save and load of named programs

Multiple statements per line

Renumber

Memory load and store

8P89 input and output

IF THEN ELSE

Commands:
RUN LIST SCR CLEAR REN CONT LINE NULL

Statements: . _
LET IF THEN ELSE FOR NEXT GOTO ON EXIT STOP END REM

READ DATA RESTORE INPUT GOSUB RETURN PRINT FILL OUT

Built in functions: .
FREE ABS SGN INT LEN CHR$ VAL STRS$ ASC SIN COS RND LOG TIME

EXP SQRT CALL EXAM INP PLOT

Preliminary specifications for
PolyMorphic Systems BASIC, subject to change.
. 8K

Size: 7%K bytes
Scientific functions: sine, cosine, square root, random number, x to the y

power (y=integer)
Arrays of up to 7 dimensions
Cassette save and load of named programs
Multiple statements per line
IF THEN ELSE

Commands :
RUN LIST SCR CLEAR CONT
Statements:
LET IF THEN ELSE FOR NEXT GOTO ON STOP END REM READ DATA RESTORE INPUT
GOSUB RETURN PRINT
Built in functions:
FREE ABS SGN INT SIN COS RND SQRT

Here are some better known books on BASIC. You can fipd some or all of
these at your local computer store. Most of these are available from

Peopies Computer Company (PCC):

Community Computer Company
1919 Menalto Avenue
Menlo Park, CA 94025

BASIC, BASIC
by James S. Coan
Published by Hayden Books, Rochelle Park, NJ 1970

ADVANCED BASIC
by James S. Coan
Published by Hayden Books, Rochelle Park, NJ

BASIC, A SELF-TEACHING GUIDE
by Bob Albrecht

MY COMPUTER LIKES ME WHEN I SPEAK IN BASIC
by Bob Albrecht '
PublishHed by Dymax, Menlo Park, CA 1972

BASIC
by Bob Albrecht

Published by Findel, Brown 1973

101 BASIC COMPUTER GAMES
Edited by David Ahil
1974

